
ORACLE CONFIDENTIAL.

For authorized use only.

Do not distribute to third parties.

Oracle® Fusion Middleware
User's Guide for Technology Adapters

11g Release 1 (11.1.1.9.0)

E10231-16

April 2015

Documentation for Oracle SOA (Service-Oriented
Architecture) developers that describes underlying concepts,
context within SOA, and developing and deploying SOA
JCA technology adapters.

Oracle Fusion Middleware User's Guide for Technology Adapters, 11g Release 1 (11.1.1.9.0)

E10231-16

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author: Oracle Corporation

Contributor: Amandeep Mahajan, Bo Stern, Srimant Misra, Deepak Agarwal, Raghavendra Chandrashekar,
Stephen Mcritchie, Michael Chiocca, Rod Fernandez, Sunil Gopal, Manas Panda, Sagar Shiruguppi, Vikas
Anand, Sujay Bandyopadhyay, Syed Zarina, Anuj Kaushal, Ashish Mathur, Prateek Maheshwari, Dhaval B
Shah, Sandeep Jain

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement
only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in
making purchasing decisions. The development, release, and timing of any features or functionality
described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the
exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms and
conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle
PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has been
executed by you and Oracle and with which you agree to comply. This document and information contained
herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior
written consent of Oracle. This document is not part of your license agreement nor can it be incorporated
into any contractual agreement with Oracle or its subsidiaries or affiliates.

iii

Contents

Preface ... xxv

Audience... xxv
Documentation Accessibility ... xxv
Related Documents ... xxv
Conventions ... xxvi

What's New in This Guide for Release 11.1.1.9 ... xxvii

Part I Introduction and Concepts

1 Introduction to Oracle JCA Adapters

1.1 Features of Oracle JCA Adapters .. 1-1
1.2 Types of Oracle JCA Adapters ... 1-2
1.2.1 Oracle Technology Adapters ... 1-3
1.2.1.1 Architecture ... 1-4
1.2.1.2 Design-Time Components ... 1-4
1.2.1.3 Run-Time Components ... 1-7
1.2.1.4 Deployment ... 1-7
1.2.2 Legacy Adapters .. 1-8
1.2.2.1 Architecture ... 1-8
1.2.2.1.1 Oracle Connect .. 1-9
1.2.2.1.2 Oracle Studio .. 1-10
1.2.2.1.3 J2CA Adapter .. 1-10
1.2.2.2 Design-Time Components ... 1-10
1.2.2.3 Run-Time Components ... 1-12
1.2.2.4 Deployment ... 1-12
1.2.3 Packaged-Application Adapters .. 1-12
1.2.3.1 Architecture ... 1-13
1.2.3.1.1 Application Explorer ... 1-14
1.2.3.1.2 BSE .. 1-14
1.2.3.1.3 J2CA 1.5 Resource Adapter .. 1-15
1.2.3.2 Design-Time Components ... 1-15
1.2.3.3 Run-Time Components ... 1-16
1.2.3.4 Deployment ... 1-16
1.2.4 Oracle Adapter for Oracle Applications .. 1-17

iv

1.3 Types of Oracle JCA Adapters Adapter Services ... 1-17
1.3.1 Request-Response (Outbound Interaction) Service ... 1-17
1.3.2 Event Notification (Inbound Interaction) Service .. 1-18
1.3.3 Metadata Service .. 1-18

2 ADAPTER Life-Cycle Management

2.1 Installing Oracle JCA Adapters .. 2-2
2.2 Starting and Stopping Oracle JCA Adapters .. 2-2
2.3 Defining Adapter Interface by Importing an Existing WSDL .. 2-2
2.3.1 Adapter Configuration Wizard for Oracle MQ Series Adapter, Oracle JMS Adapter

and the Oracle AQ Adapter ... 2-4
2.3.1.1 Example of Use of Callbacks ... 2-4
2.4 Configuring Message Header Properties for Oracle JCA Adapters 2-5
2.5 Physically Deploying Oracle JCA Adapters ... 2-6
2.5.1 The RAR Deployment Descriptor File and the weblogic-ra.xml Template File 2-6
2.6 Creating an Application Server Connection for Oracle JCA Adapters 2-7
2.7 Deploying Oracle JCA Adapter Applications from JDeveloper 2-10
2.7.1 Deploying an Application Profile for the SOA Project and the Application 2-10
2.8 Manually Deploying an Adapter RAR File that Does Not Have a Jar File Associated With

It ... 2-11
2.8.1 Example of Manual Deployment ... 2-12
2.9 Handling the Deployment Plan When Working on a Remote Oracle SOA Server 2-13
2.10 Migrating Repositories from Different Environments ... 2-13
2.11 How Oracle JCA Adapters Ensure No Message Loss .. 2-13
2.11.1 XA Transaction Support ... 2-14
2.11.2 Local Transactions and Global (XA) Transactions ... 2-14
2.11.2.1 Adapter Support of Local Transactions ... 2-15
2.11.2.2 Adapter Support of Global Transactions ... 2-15
2.11.2.2.1 Global Transactions, Retries and Rollbacks and Fault Policies 2-15
2.11.3 Basic Concepts of Transactions and Adapters ... 2-15
2.11.3.1 Asynchronous Transaction Flow .. 2-16
2.11.3.1.1 Example using JMS, BPEL, DB Adapter and a Database 2-16
2.11.3.2 Synchronous Transaction Flow ... 2-17
2.11.4 Inbound Transactions .. 2-18
2.11.5 Outbound Transactions ... 2-18
2.12 Composite Availability and Inbound Adapters ... 2-19
2.13 Singleton (Active/Passive) Inbound Endpoint Lifecycle Support Within Adapters 2-19
2.13.1 Multiple Activations of the Same Adapter Endpoint ... 2-20
2.13.2 Hot-Standby State .. 2-20
2.14 Correlation Support Within Adapters ... 2-20
2.14.1 CorrelationID of Receive Message Not Matching Invoke: Log Error Message 2-21
2.14.1.1 Rejecting Nonmatching Native Correlation IDs .. 2-21
2.15 Setting Payload Size Threshold .. 2-21
2.15.1 Payload Native Size ... 2-22
2.15.1.1 Setting the Payload Threshold .. 2-22
2.15.1.2 Limitations on Payload Size Enforcement ... 2-22
2.15.1.2.1 Changing Global Payload Size to a Finite Value ... 2-23

v

2.16 Streaming Large Payload ... 2-23
2.17 Batching and Debatching Support .. 2-23
2.18 Adding an Adapter Connection Factory .. 2-24
2.18.1 Creating a Data Source ... 2-24
2.18.2 Creating a Connection Pool ... 2-25
2.19 Adding or Updating an Adapter Connection Factory .. 2-26
2.19.1 Modify the JCA File ... 2-27
2.19.2 Use a Config Plan ... 2-27
2.19.3 Use the Web Logic Server Console to Create a New Connection 2-28
2.20 Recommended Setting for Data Sources Used by Oracle JCA Adapters 2-28
2.21 Error Handling ... 2-29
2.21.1 Handling Rejected Messages ... 2-29
2.21.1.1 Configuring Rejection Handlers .. 2-30
2.21.1.1.1 Creating Fault Policies .. 2-30
2.21.1.2 Checking for Rejected Messages .. 2-31
2.21.1.2.1 Checking from the Database ... 2-31
2.21.1.2.2 Checking from the Fusion Middleware Control Console 2-31
2.21.1.2.3 Handling Message Errors: A Sample Scenario .. 2-32
2.21.2 Inbound Interaction Error Handling .. 2-33
2.21.2.1 Message Error Rejection Handlers .. 2-33
2.21.2.1.1 Available Rejection Handlers for Message Errors 2-33
2.21.2.1.2 Web Service Handler .. 2-33
2.21.2.1.3 Custom Java Handler ... 2-33
2.21.2.1.4 JMS Queue .. 2-34
2.21.2.1.5 File .. 2-34
2.21.2.2 Inbound Retryable Errors ... 2-35
2.21.2.2.1 Configuring Inbound Adapters to Handle Retryable Errors 2-35
2.21.2.2.2 Specifying Inbound Retry Properties in the composite.xml File 2-35
2.21.2.2.3 Changing the Default Value of jca.retry. count for Inbound Adapter

Endpoints .. 2-36
2.21.2.2.4 Global Property Modification using the MBeans Browser 2-36
2.21.2.3 Inbound Non-Retryable Errors .. 2-37
2.21.2.3.1 Examples of Non-Retryable Errors .. 2-37
2.21.3 Outbound Adapter Interaction Error Handling ... 2-38
2.21.3.1 Retryable Errors for Outbound Adapter Error Handling 2-38
2.21.3.1.1 Setting Retryable Properties for Outbound Error Handling in the

composite.xml File .. 2-38
2.21.3.1.2 Example: How to Set Values for Retryable Exceptions for Outbound

Interactions ... 2-38
2.21.3.2 Non-Retryable Errors for Outbound Interaction Handling 2-39
2.21.3.2.1 Fault Propagation ... 2-39
2.21.3.2.2 Two Cases When the Fault Policy Mechanism Does Not Work 2-40
2.21.3.2.3 Outbound Adapters in XA Mode .. 2-40
2.21.3.2.4 Outbound Adapter in Mediator Sequential Routing 2-40
2.22 Testing Applications ... 2-40
2.23 Setting the Trace Level of Oracle JCA Adapters .. 2-41
2.23.1 How to Set the Trace Level of Oracle JCA Adapters .. 2-41

vi

2.24 Viewing Adapter Logs ... 2-42
2.25 Adapter Diagnosability Dumps .. 2-43
2.26 Creating a Custom Adapter ... 2-43
2.26.1 Configuring a Custom Adapter ... 2-43
2.26.1.1 Custom Adapter Screen Flow ... 2-44
2.26.2 Frequently Asked Questions about Adapters .. 2-48
2.26.2.1 Why are My Applications Timing Out? ... 2-48
2.26.2.2 How do Transactional and Non-Transactional Adapters Differ? 2-48
2.26.2.3 What Happened to My Application’s Rejected Messages? Can One Do Anything

With Them? ... 2-49
2.27 Advanced Topic: Using the Execution Context ID Across Technologies 2-49
2.27.1 Placing the ECid .. 2-50
2.27.2 Configuring Composite Services/References .. 2-50
2.27.3 Simple Database/File/JMS Example ... 2-51

3 Adapter Integration with Oracle Application Server Components

3.1 Adapter Integration with Oracle WebLogic Server .. 3-1
3.1.1 Oracle WebLogic Server Overview .. 3-1
3.1.2 Oracle WebLogic Server Integration with Adapters .. 3-3
3.1.2.1 Design Time .. 3-3
3.1.2.2 Run Time ... 3-3
3.2 Adapter Integration with Oracle Fusion Middleware .. 3-3
3.2.1 Oracle BPEL Process Manager Overview .. 3-4
3.2.2 Oracle Mediator Overview .. 3-5
3.2.3 Oracle Fusion Middleware Integration with Adapters .. 3-5
3.2.3.1 Design Time .. 3-5
3.2.3.2 Run Time ... 3-6
3.2.3.3 End-to-End Testing ... 3-7
3.2.3.4 Oracle BPEL PM Integration with Outbound Interaction 3-7
3.2.3.5 Oracle BPEL PM Integration with Inbound Interaction 3-8
3.2.3.6 Use Case: Integration with Oracle BPEL Process Manager 3-10
3.2.4 Oracle SOA Composite Integration with Adapters ... 3-12
3.2.4.1 Oracle SOA Composite Overview ... 3-12
3.2.4.2 Adapters Integration With Oracle SOA Composite .. 3-13
3.3 Monitoring Oracle JCA Adapters ... 3-15

4 Oracle JCA Adapter for Files/FTP

4.1 Introduction to Oracle File and FTP Adapters ... 4-1
4.1.1 Oracle File and FTP Adapters Architecture ... 4-1
4.1.2 Oracle File and FTP Adapters Integration with Oracle BPEL PM 4-2
4.1.3 Oracle File and FTP Adapters Integration with Mediator ... 4-3
4.1.4 Oracle File and FTP Adapters Integration with SOA Composite 4-4
4.2 Oracle File and FTP Adapters Features .. 4-4
4.2.1 File Formats ... 4-5
4.2.2 FTP Servers .. 4-5
4.2.3 Inbound and Outbound Interactions ... 4-6
4.2.4 File Debatching .. 4-7

vii

4.2.5 File ChunkedRead ... 4-7
4.2.6 File Sorting ... 4-8
4.2.7 Dynamic Outbound Directory and File Name Specification 4-8
4.2.8 Security .. 4-8
4.2.9 Nontransactional .. 4-8
4.2.10 Proxy Support .. 4-8
4.2.11 No Payload Support .. 4-9
4.2.12 Large Payload Support .. 4-9
4.2.13 File-Based Triggers .. 4-9
4.2.14 Pre-Processing and Post-Processing of Files .. 4-10
4.2.14.1 Mechanism For Pre-Processing and Post-Processing of Files 4-10
4.2.14.2 Configuring a Pipeline .. 4-11
4.2.14.3 Using a Re-Entrant Valve For Processing Zip Files .. 4-18
4.2.14.4 Configuring Batch Notification Handler ... 4-19
4.2.15 Error Handling ... 4-20
4.2.15.1 Sending a Malformed XML File to a Local File System Folder 4-21
4.2.16 Threading Model ... 4-21
4.2.16.1 Default Threading Model .. 4-22
4.2.16.2 Modified Threading Model ... 4-23
4.2.17 Performance Tuning .. 4-23
4.2.18 High Availability ... 4-24
4.2.19 Multiple Directories .. 4-24
4.2.20 Append Mode .. 4-25
4.2.21 Recursive Processing of Files Within Directories in Oracle FTP Adapter 4-26
4.2.22 Securing Enterprise Information System Credentials .. 4-29
4.3 Oracle File and FTP Adapter Concepts .. 4-34
4.3.1 Oracle File Adapter Read File Concepts .. 4-35
4.3.1.1 Inbound Operation .. 4-35
4.3.1.2 Inbound File Directory Specifications ... 4-36
4.3.1.2.1 Specifying Inbound Physical or Logical Directory Paths in SOA Composite

4-37
4.3.1.2.2 Archiving Successfully Processed Files ... 4-38
4.3.1.2.3 Deleting Files After Retrieval .. 4-38
4.3.1.3 File Matching and Batch Processing .. 4-38
4.3.1.3.1 Specifying a Naming Pattern .. 4-39
4.3.1.3.2 Including and Excluding Files .. 4-39
4.3.1.3.3 File Include and Exclude ... 4-41
4.3.1.3.4 Debatching Multiple Inbound Messages .. 4-42
4.3.1.4 File Polling ... 4-42
4.3.1.5 Postprocessing ... 4-44
4.3.1.6 Native Data Translation .. 4-45
4.3.1.7 Inbound Service ... 4-45
4.3.1.8 Inbound Headers ... 4-46
4.3.2 Oracle File Adapter Write File Concepts .. 4-47
4.3.2.1 Outbound Operation ... 4-47
4.3.2.2 Outbound File Directory Creation ... 4-49

viii

4.3.2.2.1 Specifying Outbound Physical or Logical Directory Paths in Oracle BPEL PM .
4-50

4.3.2.2.2 Specifying Outbound Physical or Logical Directory Paths in Mediator 4-50
4.3.2.2.3 Specifying a Dynamic Outbound Directory Name 4-51
4.3.2.2.4 Specifying the Outbound File Naming Convention 4-53
4.3.2.2.5 Specifying a Dynamic Outbound File Name .. 4-56
4.3.2.2.6 Batching Multiple Outbound Messages .. 4-57
4.3.2.3 Native Data Translation .. 4-58
4.3.2.4 Outbound Service Files ... 4-58
4.3.2.5 Outbound Headers .. 4-59
4.3.3 Oracle File Adapter Synchronous Read Concepts ... 4-59
4.3.4 Oracle File Adapter File Listing Concepts ... 4-60
4.3.4.1 Listing Operation .. 4-61
4.3.4.2 File Directory Specifications .. 4-61
4.3.4.2.1 Specifying Inbound Physical or Logical Directory Paths in SOA Composite

4-62
4.3.4.3 File Matching ... 4-63
4.3.4.3.1 Specifying a Naming Pattern .. 4-63
4.3.4.3.2 Including and Excluding Files .. 4-64
4.3.5 Oracle FTP Adapter Get File Concepts .. 4-65
4.3.6 Oracle FTP Adapter Put File Concepts .. 4-69
4.3.7 Oracle FTP Adapter Synchronous Get File Concepts .. 4-70
4.3.8 Oracle FTP Adapter File Listing Concepts ... 4-71
4.4 Configuring Oracle File and FTP Adapters .. 4-72
4.4.1 Configuring the Credentials for Accessing a Remote FTP Server 4-72
4.4.2 Configuring Oracle File and FTP Adapters for High Availability 4-72
4.4.2.1 Prerequisites for High Availability .. 4-72
4.4.2.2 High Availability in Inbound Operations ... 4-73
4.4.2.3 High Availability in Outbound Operations .. 4-75
4.4.3 Using Secure FTP with the Oracle FTP Adapter .. 4-77
4.4.3.1 Secure FTP Overview .. 4-78
4.4.3.2 Installing and Configuring FTP Over SSL on Solaris and Linux 4-79
4.4.3.2.1 Installing and Configuring OpenSSL .. 4-79
4.4.3.2.2 Installing and Configuring vsftpd .. 4-80
4.4.3.2.3 Setting Up the Oracle FTP Adapter .. 4-81
4.4.3.3 Installing and Configuring FTP Over SSL on Windows 4-82
4.4.3.3.1 Installing OpenSSL ... 4-82
4.4.3.3.2 Generating OpenSSL Server Key and Certificate .. 4-83
4.4.3.3.3 Importing the Server Key and Certificate Into FileZilla Server 4-83
4.4.3.3.4 Converting the Server Key From PEM to PKCS12 Format 4-84
4.4.3.3.5 Configuring Oracle FTP Adapter Deployment Descriptor to Use the New Key

.. 4-85
4.4.4 Using SFTP with Oracle FTP Adapter ... 4-85
4.4.4.1 SFTP Overview ... 4-86
4.4.4.1.1 Encryption .. 4-86
4.4.4.1.2 Authentication .. 4-86
4.4.4.1.3 Integrity .. 4-86
4.4.4.1.4 Data Compression .. 4-87

ix

4.4.4.2 Install and Configure OpenSSH for Windows .. 4-87
4.4.4.3 Set Up Oracle FTP Adapter for SFTP ... 4-88
4.4.4.3.1 Configuring Oracle FTP Adapter for Password Authentication 4-89
4.4.4.3.2 Configuring Oracle FTP Adapter for Public Key Authentication 4-90
4.4.4.3.3 Configuring OpenSSH for Public-Key Authentication 4-90
4.4.4.3.4 Configuring Oracle FTP Adapter for Public Key Authentication with

OpenSSH Running Inside a Firewall .. 4-91
4.4.4.3.5 Configuring Oracle FTP Adapter for Public Key Authentication with

OpenSSH Running Outside a Firewall .. 4-91
4.4.5 Configuring Oracle FTP Adapter for HTTP Proxy ... 4-92
4.4.5.1 Configuring for Plain FTP Mode ... 4-93
4.4.5.1.1 Proxy Definition File ... 4-93
4.4.5.2 Configuring for SFTP Mode .. 4-95
4.5 Oracle File and FTP Adapters Use Cases .. 4-96
4.5.1 Oracle File Adapter XML Debatching .. 4-97
4.5.1.1 Prerequisites .. 4-97
4.5.1.2 Designing the SOA Composite .. 4-97
4.5.1.3 Creating the Inbound Oracle File Adapter Service .. 4-100
4.5.1.4 Creating the Outbound File Adapter Service .. 4-104
4.5.1.5 Wiring Services and Activities ... 4-106
4.5.1.6 Deploying with JDeveloper ... 4-114
4.5.1.7 Monitoring Using Oracle Enterprise Manager Fusion Middleware Control Console

(Fusion Middleware Control Console) .. 4-114
4.5.2 Flat Structure for Oracle BPEL PM ... 4-115
4.5.2.1 Prerequisites .. 4-115
4.5.2.2 Designing the SOA Composite .. 4-115
4.5.2.3 Creating the Inbound Oracle File Adapter Service .. 4-116
4.5.2.4 Creating the Outbound Oracle File Adapter Service 4-117
4.5.2.5 Wiring Services and Activities ... 4-118
4.5.2.6 Deploying with JDeveloper ... 4-122
4.5.2.7 Monitoring Using Oracle Fusion Middleware Control Console 4-122
4.5.3 Flat Structure for Mediator .. 4-123
4.5.3.1 Prerequisites .. 4-123
4.5.3.2 Creating a Mediator Application and Project .. 4-123
4.5.3.3 Importing the Schema Definition (.XSD) Files ... 4-124
4.5.3.4 Creating the Inbound Oracle File Adapter Service .. 4-124
4.5.3.5 Creating the Outbound Oracle FTP Adapter Service 4-125
4.5.3.6 Wiring Services .. 4-125
4.5.3.7 Creating the Routing Rule ... 4-126
4.5.3.8 Deploying with JDeveloper ... 4-128
4.5.3.9 Run-Time Task .. 4-128
4.5.4 Oracle File Adapter Scalable DOM .. 4-128
4.5.4.1 Prerequisites .. 4-128
4.5.4.2 Designing the SOA Composite .. 4-128
4.5.4.3 Creating the Inbound Oracle File Adapter Service .. 4-129
4.5.4.4 Creating the Outbound Oracle File Adapter Service 4-131
4.5.4.5 Wiring Services and Activities ... 4-132

x

4.5.4.6 Deploying with JDeveloper ... 4-138
4.5.4.7 Monitoring Using Fusion Middleware Control Console 4-138
4.5.5 Oracle File Adapter ChunkedRead .. 4-139
4.5.5.1 Prerequisites .. 4-139
4.5.5.2 Designing the SOA Composite .. 4-139
4.5.5.3 Creating the Inbound Oracle File Adapter Service .. 4-140
4.5.5.4 Creating the Outbound Oracle File Adapter Service 4-141
4.5.5.5 Wiring Services and Activities .. 4-144
4.5.5.6 Deploying with JDeveloper ... 4-155
4.5.5.7 Monitoring Using Fusion Middleware Control Console 4-155
4.5.6 Oracle File Adapter Read File As Attachments ... 4-155
4.5.6.1 Prerequisites .. 4-156
4.5.6.2 Designing the SOA Composite .. 4-156
4.5.6.3 Creating the Inbound Oracle File Adapter Service .. 4-157
4.5.6.4 Creating the Outbound Oracle File Adapter Service 4-158
4.5.6.5 Wiring Services and Activities .. 4-159
4.5.6.6 Deploying with JDeveloper ... 4-166
4.5.6.7 Monitoring Using Fusion Middleware Control Console 4-166
4.5.7 Oracle File Adapter File Listing ... 4-167
4.5.7.1 Prerequisites .. 4-167
4.5.7.2 Designing the SOA Composite .. 4-167
4.5.7.3 Creating the Outbound Oracle File Adapter Service 4-168
4.5.7.4 Wiring Services and Activities .. 4-169
4.5.7.5 Deploying with JDeveloper ... 4-174
4.5.7.6 Monitoring Using Fusion Middleware Control Console 4-175
4.5.8 Oracle File Adapter Complex Structure ... 4-175
4.5.8.1 Prerequisites .. 4-175
4.5.8.2 Designing the SOA Composite .. 4-176
4.5.8.3 Creating the Inbound Oracle File Adapter Service .. 4-177
4.5.8.4 Creating the Outbound Oracle File Adapter Service 4-178
4.5.8.5 Wiring Services and Activities .. 4-179
4.5.8.6 Deploying with JDeveloper ... 4-182
4.5.8.7 Monitoring Using Fusion Middleware Control Console 4-182
4.5.9 Oracle FTP Adapter Debatching .. 4-183
4.5.9.1 Prerequisites .. 4-183
4.5.9.2 Designing the SOA Composite .. 4-183
4.5.9.3 Creating the Inbound Oracle FTP Adapter Service ... 4-184
4.5.9.4 Creating the Outbound Oracle FTP Adapter Service 4-186
4.5.9.5 Wiring Services and Activities .. 4-187
4.5.9.6 Deploying with JDeveloper ... 4-191
4.5.9.7 Monitoring Using Fusion Middleware Control Console 4-191
4.5.10 Oracle FTP Adapter Dynamic Synchronous Read ... 4-192
4.5.10.1 Prerequisites .. 4-192
4.5.10.2 Designing the SOA Composite .. 4-193
4.5.10.3 Creating the Inbound Oracle File Adapter Service .. 4-194
4.5.10.4 Creating the Outbound Oracle FTP Adapter Service 4-195
4.5.10.5 Wiring Services and Activities .. 4-197

xi

4.5.10.6 Deploying with JDeveloper ... 4-202
4.5.10.7 Monitoring Using Fusion Middleware Control Console 4-203
4.5.11 Copying, Moving, and Deleting Files .. 4-203
4.5.11.1 Moving a File from a Local Directory on the File System to Another Local

Directory .. 4-204
4.5.11.2 Copying a File from a Local Directory on the File System to Another Local

Directory .. 4-207
4.5.11.3 Deleting a File from a Local File System Directory .. 4-207
4.5.11.4 Using a Large CSV Source File ... 4-208
4.5.11.5 Moving a File from One Remote Directory to Another Remote Directory on the

Same FTP Server .. 4-209
4.5.11.6 Moving a File from a Local Directory on the File System to a Remote Directory on

the FTP Server ... 4-212
4.5.11.7 Moving a File from a Remote Directory on the FTP Server to a Local Directory on

the File System ... 4-213
4.5.11.8 Moving a File from One FTP Server to another FTP Server 4-213
4.5.12 Creating a Synchronous BPEL Composite using File Adapter 4-213
4.5.12.1 Changing the Connection Factory JNDI Dynamically in Ftp Adapter 4-218
4.5.12.2 Retrieving the Details of the File from an Outbound Write Operation 4-219
4.5.13 Changing the Sequencing Strategy for FILE/Ftp Adapter 4-222
4.5.14 Creating a Synchronous BPEL Composite using the File Adapter 4-224
4.5.15 Controlling the Order in which Files Are Processed .. 4-228

5 Oracle JCA Adapter for Sockets

5.1 Introduction to Oracle Socket Adapter ... 5-1
5.1.1 Oracle Socket Adapter Architecture .. 5-1
5.1.2 Oracle Socket Adapter Integration with Mediator ... 5-2
5.1.3 Oracle Socket Adapter Integration with Oracle BPEL PM ... 5-2
5.1.4 Oracle Socket Adapter Integration with SOA Composite .. 5-4
5.2 Oracle Socket Adapter Features ... 5-4
5.3 Oracle Socket Adapter Concepts .. 5-4
5.3.1 Communication Modes .. 5-4
5.3.1.1 Inbound Synchronous Request/Response .. 5-5
5.3.1.2 Outbound Synchronous Request/Response ... 5-5
5.3.1.3 Inbound Receive .. 5-6
5.3.1.4 Outbound Invoke .. 5-6
5.3.2 Mechanisms for Defining Protocols ... 5-6
5.3.2.1 Protocol with Handshake Mechanism Using Style Sheet 5-6
5.3.2.2 Protocol with Handshake Mechanism Using Custom Java Code 5-8
5.3.2.3 Protocol Without Handshake Mechanism ... 5-11
5.3.3 Character Encoding and Byte Order .. 5-12
5.3.4 Performance Tuning .. 5-13
5.3.4.1 Configuring Oracle Socket Adapter Connection Pooling 5-13
5.4 Configuring Oracle Socket Adapter ... 5-17
5.4.1 Modifying the weblogic-ra.xml File ... 5-17
5.4.2 Modeling a Handshake .. 5-19
5.4.2.1 Modeling an Outbound Handshake .. 5-19

xii

5.4.2.2 Modeling an Inbound Handshake .. 5-19
5.4.3 Designing an XSL File Using the XSL Mapper Tool .. 5-20
5.4.3.1 Designing XSL for Inbound Synchronous Request/Reply 5-20
5.4.3.2 Designing XSL for Outbound Synchronous Request/Reply 5-30
5.4.4 Specifying a TCP Port in a Configuration Plan For an Oracle Socket Adapter 5-37
5.5 Oracle Socket Adapter Use Cases ... 5-38
5.5.1 Oracle Socket Adapter Hello World .. 5-38
5.5.1.1 Prerequisites .. 5-38
5.5.1.2 Designing the SOA Composite .. 5-39
5.5.1.3 Creating the Inbound Oracle Socket Adapter Service 5-42
5.5.1.4 Creating the Outbound Oracle Socket Adapter Service 5-47
5.5.1.5 Wiring Services and Activities .. 5-50
5.5.1.6 Deploying with JDeveloper ... 5-61
5.5.1.7 Monitoring Using the Oracle Enterprise Manager Fusion Middleware Control

Console (Fusion Middleware Control Console) .. 5-61
5.5.2 Flight Information Display System .. 5-62
5.5.2.1 Prerequisites .. 5-62
5.5.2.2 Designing the SOA Composite .. 5-62
5.5.2.3 Creating the Inbound Oracle Socket Adapter Service 5-64
5.5.2.4 Creating Outbound Oracle Socket Adapter Services ... 5-67
5.5.2.5 Wiring Services and Activities .. 5-72
5.5.2.6 Deploying with JDeveloper ... 5-95
5.5.2.7 Monitoring Using the Fusion Middleware Control Console 5-95

6 Native Format Builder Wizard

6.1 Creating Native Schema Files with the Native Format Builder Wizard 6-1
6.1.1 Supported File Formats ... 6-2
6.1.1.1 Delimited ... 6-3
6.1.1.2 Fixed Length (Positional) .. 6-3
6.1.1.3 Complex Type ... 6-3
6.1.1.4 DTD ... 6-3
6.1.1.5 COBOL Copybook .. 6-3
6.1.2 Editing Native Schema Files .. 6-7
6.2 Native Schema Constructs ... 6-8
6.2.1 Understanding Native Schema Constructs .. 6-8
6.2.2 Using Native Schema Constructs ... 6-10
6.2.2.1 Defining Fixed-Length Data .. 6-11
6.2.2.2 Defining Terminated Data ... 6-14
6.2.2.3 Defining Surrounded Data .. 6-17
6.2.2.4 Defining Lists .. 6-18
6.2.2.5 Defining Arrays ... 6-20
6.2.2.6 Conditional Processing .. 6-26
6.2.2.7 Defining Dates ... 6-33
6.2.2.8 Using Variables ... 6-35
6.2.2.9 Defining Prefixes and Suffixes .. 6-37
6.2.2.10 Defining Skipping Data ... 6-38
6.2.2.11 Defining fixed and default Values ... 6-39

xiii

6.2.2.12 Defining write ... 6-40
6.2.2.13 Defining LookAhead ... 6-40
6.2.2.14 Defining Complex lookAhead Strategies for Conditional Processing of Record

using RegEx Expressions ... 6-42
6.2.2.15 Defining outboundHeader .. 6-42
6.2.2.16 Defining Complex Condition in conditionValue ... 6-43
6.2.2.17 Defining Complex Condition in choiceCondition ... 6-45
6.2.2.18 Defining dataLines .. 6-46
6.2.2.19 Defining Date Formats with Time Zone .. 6-47
6.2.2.20 Implementing Validation During Translation ... 6-49
6.2.2.20.1 Payload Validation .. 6-49
6.2.2.20.2 Schema Validation .. 6-50
6.2.2.21 Processing Files with BOM .. 6-51
6.2.3 Multi-Byte Translation ... 6-51
6.2.3.1 Specifying Padded Data .. 6-52
6.2.3.2 Specifying a Prefix or a Suffix .. 6-52
6.2.3.3 Translator Behavior ... 6-52
6.2.3.4 SOSI Support ... 6-53
6.2.3.5 Outbound Translation Behavior .. 6-53
6.3 Translator XPath Functions .. 6-53
6.3.1 Terminologies .. 6-54
6.3.2 Translator XPath Functions ... 6-54
6.3.2.1 doTranslateFromNative Function ... 6-54
6.3.2.2 doTranslateToNative Function .. 6-59
6.3.2.3 doStreamingTranslate Function ... 6-61
6.3.2.4 Batching Transformation Features .. 6-63
6.4 Use Cases for the Native Format Builder ... 6-65
6.4.1 Defining the Schema for a Delimited File Structure ... 6-65
6.4.1.1 Defining a Asterisk (*) Separated Value File Structure 6-74
6.4.2 Defining the Schema for a Fixed Length File Structure .. 6-74
6.4.3 Defining the Schema for a Complex File Structure .. 6-81
6.4.4 Removing or Adding Namespaces to XML with No Namespace 6-97
6.4.5 Defining the Choice Condition Schema for a Complex File Structure 6-98
6.4.6 Defining Choice Condition With LookAhead for a Complex File Structure 6-103
6.4.7 Defining Array Type Schema for a Complex File Structure 6-109
6.4.8 Defining the Schema for a DTD File Structure ... 6-113
6.4.9 Defining the Schema for a COBOL Copybook File Structure 6-116
6.5 Command Line Tool for Testing NXSD Translator .. 6-128
6.5.1 Prerequisites .. 6-128
6.5.2 Running the Test Tool .. 6-128

Part II Message Adapters

7 Oracle JCA Adapter for AQ

7.1 Introduction to the Oracle AQ Adapter .. 7-1
7.1.1 Oracle AQ Adapter Integration with Oracle BPEL Process Manager 7-1
7.1.2 Oracle AQ Adapter Integration with Oracle Mediator .. 7-2

xiv

7.2 Oracle AQ Adapter Features .. 7-2
7.2.1 Enqueue-Specific Features (Message Production) ... 7-3
7.2.2 Dequeue and Enqueue Features .. 7-4
7.2.3 Supported ADT Payload Types ... 7-6
7.2.4 Native Format Builder Wizard .. 7-7
7.2.5 Normalized Message Support ... 7-7
7.2.6 Is DOM 2 Compliant .. 7-8
7.2.7 Is Message-Size Aware .. 7-8
7.2.8 Multiple Receiver Threads ... 7-8
7.2.9 DequeueTimeout Property .. 7-9
7.2.10 Control Dequeue Timeout and Multiple Inbound Polling Threads 7-9
7.2.11 Stream Payload Support .. 7-9
7.2.12 Oracle AQ Adapter Inbound Retries ... 7-9
7.2.13 Error Handling Support ... 7-10
7.2.14 Performance Tuning .. 7-10
7.3 Deployment .. 7-10
7.4 Oracle AQ Adapter Use Cases ... 7-12
7.4.1 Generic Use Case ... 7-12
7.4.1.1 The Adapter Configuration Wizard Walkthrough .. 7-12
7.4.1.1.1 Meeting Prerequisites ... 7-13
7.4.1.1.2 Creating an Application and an SOA Project .. 7-13
7.4.1.1.3 Defining an Oracle AQ Adapter Service ... 7-16
7.4.1.1.4 Generated WSDL and JCA Files ... 7-27
7.4.1.2 Dequeuing and Enqueuing Object and ADT Payloads 7-28
7.4.1.3 Dequeuing One Column of the Object Payload .. 7-28
7.4.1.4 Configuring the Enqueue/Dequeue Operation Type 7-29
7.4.1.4.1 Meeting Prerequisites ... 7-30
7.4.1.4.2 Creating an Application and an SOA Project .. 7-30
7.4.1.4.3 Defining an Oracle AQ Adapter Service ... 7-30
7.4.1.4.4 Wiring Services and Activities .. 7-36
7.4.1.4.5 Deploying with JDeveloper .. 7-41
7.4.1.4.6 Monitoring Using the Fusion Middleware Control Console 7-41
7.4.1.4.7 Generated WSDL and JCA Files ... 7-42
7.4.1.5 Using Correlation ID for Filtering Messages During Dequeue 7-44
7.4.1.6 Enqueuing and Dequeuing from Multisubscriber Queues 7-44
7.4.2 Oracle AQ Adapter ADT Queue .. 7-45
7.4.2.1 Meeting Prerequisites .. 7-45
7.4.2.2 Creating an Application and an SOA Project .. 7-46
7.4.2.3 Creating an Inbound Oracle AQ Adapter ... 7-47
7.4.2.4 Creating an Outbound Oracle AQ Adapter .. 7-49
7.4.2.5 Wiring Services and Activities .. 7-51
7.4.2.6 Configuring Routing Service ... 7-52
7.4.2.7 Configuring the Data Sources in the Oracle WebLogic Server Administration

Console .. 7-54
7.4.2.8 Deploying with JDeveloper ... 7-59
7.4.2.9 Monitoring Using the Fusion Middleware Control Console 7-59
7.4.3 Oracle AQ Adapter RAW Queue ... 7-60
7.4.3.1 Prerequisites .. 7-60

xv

7.4.3.2 Creating an Application and an SOA Project .. 7-60
7.4.3.3 Creating an Inbound Adapter Service ... 7-61
7.4.3.4 Creating an Outbound Adapter Service .. 7-65
7.4.3.5 Wiring Services and Activities ... 7-66
7.4.3.6 Configuring the Data Sources in the Oracle WebLogic Server Administration

Console .. 7-71
7.4.3.7 Deploying with JDeveloper ... 7-72
7.4.3.8 Monitoring Using the Fusion Middleware Control Console 7-72

8 Oracle JCA Adapter for JMS

8.1 Introduction to the Oracle JMS Adapter ... 8-1
8.1.1 Oracle JMS Adapter Integration with Oracle BPEL Process Manager 8-1
8.1.2 Oracle JMS Adapter Integration with Oracle Mediator ... 8-1
8.2 Oracle JMS Adapter Features .. 8-2
8.3 Oracle JMS Adapter Concepts .. 8-6
8.3.1 Point-to-Point ... 8-7
8.3.2 Publish/Subscribe .. 8-7
8.3.3 Destination, Connection, Connection Factory, and Session 8-7
8.3.4 Structure of a JMS Message .. 8-8
8.3.5 Oracle JMS Adapter Header Properties ... 8-8
8.4 Oracle JMS Adapter Use Cases ... 8-8
8.4.1 Configuring Oracle JMS Adapter ... 8-8
8.4.1.1 Creating an Application and a SOA Project .. 8-9
8.4.1.2 Using the Adapter Configuration Wizard to Configure Oracle JMS Adapter ... 8-11
8.4.1.3 Generated Files .. 8-18
8.4.1.4 weblogic-ra.xml file ... 8-19
8.4.1.4.1 Creating a New Connection by Using the Oracle WebLogic Server

Administration Console .. 8-20
8.4.1.4.2 Adding a Third-Party JMS Provider ... 8-21
8.4.1.5 Produce Message Procedure .. 8-21
8.4.2 Configuring Oracle JMS Adapter with TIBCO JMS ... 8-23
8.4.2.1 NonDirect Connection ... 8-23
8.4.2.2 Direct Connection .. 8-25
8.4.3 Configuring Oracle JMS Adapter with IBM WebSphere MQ JMS 8-26
8.4.3.1 Non-XA Data Sources .. 8-26
8.4.3.2 XA Data Sources .. 8-27
8.4.4 Configuring Oracle JMS Adapter with Active MQ JMS ... 8-28
8.4.5 WLS JMS Text Message .. 8-30
8.4.5.1 Meeting Prerequisites .. 8-30
8.4.5.1.1 Creating Queues in the Oracle WebLogic Server Administration Console . 8-30
8.4.5.1.2 Creating the Q2Qorders.xsd file ... 8-31
8.4.5.2 Creating an Application Server Connection .. 8-32
8.4.5.3 Creating an Application and an SOA Project .. 8-32
8.4.5.4 Creating an Inbound Adapter Service ... 8-33
8.4.5.5 Creating an Outbound Adapter Service .. 8-37
8.4.5.6 Wiring Services and Activities ... 8-37
8.4.5.7 Deploying with JDeveloper ... 8-40

xvi

8.4.5.8 Monitoring Using the Fusion Middleware Control Console 8-41
8.4.6 Accessing Queues and Topics from WLS JMS Server in a Remote Oracle WebLogic

Server Domain ... 8-41
8.4.6.1 JMS Adapter Limitations When a Remote Server is Used 8-42
8.4.7 Synchronous/Asynchronous Request Reply Interaction Pattern 8-42
8.4.7.1 Synchronous Request Reply Pattern ... 8-42
8.4.7.2 Asynchronous Request Reply Pattern ... 8-43
8.4.8 AQ JMS Text Message ... 8-43
8.4.8.1 Meeting Prerequisites .. 8-43
8.4.8.1.1 Configuring AQ JMS in Oracle WebLogic Server Administration Console 8-43
8.4.8.1.2 Creating Queues in Oracle Database .. 8-46
8.4.8.2 Create an Application Server Connection ... 8-47
8.4.8.3 Creating an Application and an SOA Project .. 8-47
8.4.8.4 Creating an Inbound Adapter Service ... 8-47
8.4.8.5 Creating an Outbound Adapter Service .. 8-48
8.4.8.6 Wiring Services and Activities .. 8-49
8.4.8.7 Deploying with JDeveloper ... 8-51
8.4.8.8 Monitoring Using the Fusion Middleware Control Console 8-51
8.4.9 Accessing Queues and Topics Created in 11g from the OC4J 10.1.3.4 Server 8-51
8.4.10 Configuring the 11G Server to Access Queues Present in 10.1.3.X OC4J 8-53
8.4.10.1 Copy Jar Files into the domains Folder of the Web Logic Server 8-53
8.4.10.2 Add Connector factory in the weblogic-ra.xml File .. 8-53
8.4.11 Accessing Distributed Destinations (Queues and Topics) on the WebLogic Server JMS

8-54
8.4.11.1 Providing JMS Adapter Access to Distributed Topics 8-54
8.4.11.2 The JMS Adapter with Distributed Queues and Distributed Topics 8-55
8.4.11.3 One Copy of a Message Per Application (Default Behavior) 8-56
8.4.11.4 One Copy Of a Message Per Adapter Endpoint .. 8-57
8.4.11.4.1 Specifying the Message Selector when Defining an Activation Spec 8-57
8.4.11.4.2 Compatibility and Migration .. 8-58
8.4.12 Configuring Oracle JMS Adapter with IBM WebSphere Default JMS Provider 8-58
8.4.13 Configuring Request-Reply in JMS Adapter ... 8-60
8.4.14 Using the WLS JMS Unit-Of-Order with the JMS Adapter 8-64
8.4.14.1 Getting a Unit of Order Property .. 8-64

9 Oracle JCA Adapter for Database

9.1 Introduction to the Oracle Database Adapter .. 9-1
9.1.1 Functional Overview ... 9-1
9.1.1.1 Oracle Database Adapter Integration with Oracle BPEL PM 9-2
9.1.2 Design Overview ... 9-3
9.2 Complete Walkthrough of the Adapter Configuration Wizard 9-4
9.2.1 Creating an Application and an SOA Project ... 9-5
9.2.2 Defining an Oracle Database Adapter ... 9-7
9.2.3 Connecting to a Database .. 9-8
9.2.4 Selecting the Operation Type ... 9-9
9.2.5 Selecting and Importing Tables ... 9-11
9.2.6 Defining Primary Keys .. 9-12

xvii

9.2.7 Creating Relationships ... 9-13
9.2.7.1 What Happens When Relationships Are Created or Removed 9-15
9.2.7.2 Different Types of One-to-One Mappings ... 9-16
9.2.7.3 When Foreign Keys Are Primary Keys .. 9-16
9.2.8 Creating the Attribute Filter ... 9-16
9.2.9 Defining a WHERE Clause .. 9-17
9.2.10 Choosing an After-Read Strategy .. 9-19
9.2.10.1 Delete the Rows That Were Read .. 9-20
9.2.10.2 Update a Field in the Table (Logical Delete) .. 9-20
9.2.10.3 Update a Sequencing Table ... 9-21
9.2.10.4 Update an External Sequencing Table on a Different Database 9-22
9.2.10.5 Update a Sequencing File .. 9-23
9.2.11 Specifying Polling Options .. 9-24
9.2.12 Specifying Advanced Options ... 9-24
9.2.13 Entering the SQL String for the Pure SQL Operation .. 9-26
9.3 Oracle Database Adapter Features ... 9-27
9.3.1 Transaction Support ... 9-28
9.3.1.1 Configuring Oracle Database Adapter for Global Transaction Participation 9-28
9.3.1.2 Both Invokes in Same Global Transaction .. 9-29
9.3.1.3 Failure Must Cause Rollback ... 9-29
9.3.1.3.1 Using the Same Sessions for Both Invokes .. 9-29
9.3.1.4 Transaction/XA Support ... 9-29
9.3.1.4.1 Configuring an Oracle Database Adapter for Global Transaction Participation

9-30
9.3.1.4.2 Failure Must Cause Rollback .. 9-30
9.3.2 Pure SQL - XML Type Support .. 9-30
9.3.3 Row Set Support Using a Strongly or Weakly Typed XSD 9-31
9.3.4 Proxy Authentication Support ... 9-33
9.3.5 Streaming Large Payload ... 9-33
9.3.6 Schema Validation ... 9-34
9.3.7 High Availability ... 9-34
9.3.8 Scalability ... 9-34
9.3.8.1 Distributed Polling First Best Practice: SELECT FOR UPDATE (SKIP LOCKED)

9-34
9.3.8.1.1 Configuring PollingInterval, MaxTransactionSize, and ActivationInstances

9-35
9.3.8.1.2 Partition Field ... 9-36
9.3.8.1.3 activationInstances .. 9-36
9.3.8.1.4 Indexing and Null Values ... 9-37
9.3.8.1.5 Disabling Skip Locking ... 9-37
9.3.8.1.6 MarkReservedValue ... 9-38
9.3.8.1.7 SequencingPollingStrategy (Last Read or Last Updated) 9-38
9.3.8.2 Distributed Polling Second Best Practice: Tuning on a Single Node First 9-39
9.3.9 Performance Tuning .. 9-39
9.3.10 detectOmissions Feature .. 9-39
9.3.11 OutputCompletedXml Feature ... 9-41
9.3.12 QueryTimeout for Inbound and Outbound Transactions .. 9-42

xviii

9.3.13 Doing Synchronous Post to BPEL (Allow In-Order Delivery) 9-42
9.4 Oracle Database Adapter Concepts .. 9-42
9.4.1 Relational-to-XML Mapping .. 9-42
9.4.1.1 Relational Types to XML Schema Types ... 9-47
9.4.1.2 Mapping Any Relational Schema to Any XML Schema 9-48
9.4.1.3 Querying over Multiple Tables ... 9-48
9.4.1.3.1 Using Relationship Queries (TopLink Default) .. 9-48
9.4.1.3.2 Twisting the Original Select (TopLink Batch-Attribute Reading) 9-49
9.4.1.3.3 Returning a Single Result Set (TopLink Joined-Attribute Reading) 9-49
9.4.1.3.4 Comparison of the Methods Used for Querying over Multiple Tables 9-52
9.4.2 SQL Operations as Web Services ... 9-53
9.4.2.1 DML Operations ... 9-53
9.4.2.2 Polling Strategies ... 9-54
9.5 Deployment .. 9-61
9.5.1 Deployment with Third Party Databases ... 9-65
9.6 JDBC Driver and Database Connection Configuration .. 9-66
9.6.1 Creating a Database Connection Using a Native or Bundled Oracle WebLogic Server

JDBC Driver ... 9-67
9.6.2 Creating a Database Connection Using a Third-Party JDBC Driver 9-67
9.6.3 Summary of Third-Party JDBC Driver and Database Connection Information 9-69
9.6.3.1 Using a Microsoft SQL Server ... 9-69
9.6.3.2 Using a Sybase Database ... 9-70
9.6.3.2.1 Using a Sybase JConnect JDBC Driver .. 9-70
9.6.3.3 Using an Informix Database .. 9-70
9.6.3.3.1 Using an Informix JDBC Driver .. 9-71
9.6.3.4 Using an IBM DB2 Database ... 9-71
9.6.3.4.1 IBM DB2 Driver .. 9-71
9.6.3.4.2 JT400 Driver (AS400 DB2) ... 9-71
9.6.3.4.3 IBM Universal Driver ... 9-71
9.6.3.5 Using a MySQL Database .. 9-71
9.6.4 Location of JDBC Driver JAR Files and Setting the Class Path 9-71
9.7 Stored Procedure and Function Support .. 9-72
9.7.1 Design Time: Using the Adapter Configuration Wizard ... 9-72
9.7.1.1 Using Top-Level Standalone APIs ... 9-72
9.7.1.2 Using Packaged APIs and Overloading .. 9-79
9.7.2 Supported Third-Party Databases ... 9-81
9.7.2.1 Terms Used ... 9-82
9.7.2.2 Supported Third-Party Databases ... 9-83
9.7.2.2.1 Microsoft SQL Server .. 9-83
9.7.2.2.2 DB2 Data Types .. 9-84
9.7.2.2.3 IBM DB2 AS/400 .. 9-86
9.7.2.2.4 MySQL .. 9-87
9.7.2.3 Creating Database Connections .. 9-89
9.7.3 Design Time: Artifact Generation .. 9-91
9.7.3.1 The WSDL–XSD Relationship ... 9-92
9.7.3.2 JCA File ... 9-93
9.7.3.3 Oracle Data Types ... 9-94
9.7.3.4 Generated XSD Attributes ... 9-94

xix

9.7.3.5 User-Defined Types ... 9-95
9.7.3.6 Complex User-Defined Types ... 9-97
9.7.3.7 Object Type Inheritance ... 9-97
9.7.3.8 Object References .. 9-98
9.7.3.9 Referencing Types in Other Schemas .. 9-99
9.7.3.10 XSD Pruning Optimization ... 9-99
9.7.4 Run Time: Before Stored Procedure Invocation .. 9-100
9.7.4.1 Value Binding .. 9-100
9.7.4.2 Data Type Conversions ... 9-102
9.7.5 Run Time: After Stored Procedure Invocation ... 9-103
9.7.5.1 Data Type Conversions ... 9-103
9.7.5.2 Null Values .. 9-104
9.7.5.3 Function Return Values ... 9-104
9.7.6 Run Time: Common Third-Party Database Functionality 9-104
9.7.6.1 Processing ResultSets .. 9-105
9.7.6.2 Returning an INTEGER Status Value .. 9-105
9.7.7 Advanced Topics ... 9-106
9.7.7.1 Row Set Support Using a Strongly Typed XSD ... 9-106
9.7.7.1.1 Design Time .. 9-107
9.7.7.1.2 Run Time .. 9-113
9.7.7.2 Row Set Support Using a Weakly Typed XSD .. 9-114
9.7.7.2.1 Design Time .. 9-115
9.7.7.2.2 Run Time .. 9-115
9.7.7.3 Support for PL/SQL Boolean, PL/SQL Record, and PL/SQL Table Types 9-116
9.7.7.3.1 Default Clauses in Wrapper Procedures ... 9-119
9.8 Oracle Database Adapter Use Cases ... 9-120
9.8.1 Use Cases for Oracle Database Adapter ... 9-120
9.8.2 Use Cases for Oracle Database Adapter - Stored Procedures 9-121
9.8.2.1 Creating and Configuring a Stored Procedure in JDeveloper BPEL Designer . 9-122
9.8.2.1.1 Prerequisites ... 9-122
9.8.2.1.2 Creating an Application and an SOA Composite 9-122
9.8.2.1.3 Creating the Outbound Oracle Database Adapter Service 9-123
9.8.2.1.4 Add an Invoke Activity ... 9-124
9.8.2.1.5 Change the Message Part of the Request Message 9-125
9.8.2.1.6 Change the Message Part of the Response Message 9-126
9.8.2.1.7 Add a Assign Activity for the Input Variable ... 9-126
9.8.2.1.8 Add an Assign Activity for the Output Variable 9-127
9.8.2.1.9 Deploying with JDeveloper .. 9-128
9.8.2.1.10 Creating a DataSource in Oracle WebLogic Server Administration Console

9-129
9.8.2.1.11 Monitoring Using the Fusion Middleware Control Console 9-130
9.8.2.2 File To StoredProcedure Use Case ... 9-131
9.8.2.2.1 Prerequisites ... 9-131
9.8.2.2.2 Creating an Application and an SOA Project .. 9-132
9.8.2.2.3 Creating the Outbound Oracle Database Adapter Service 9-133
9.8.2.2.4 Creating an Invoke Activity .. 9-134
9.8.2.2.5 Creating the Inbound File Adapter Service ... 9-135

xx

9.8.2.2.6 Adding a Receive Activity .. 9-136
9.8.2.2.7 Adding an Assign Activity ... 9-137
9.8.2.2.8 Wiring Services and Activities .. 9-140
9.8.2.2.9 Deploying with JDeveloper .. 9-140
9.8.2.2.10 Creating a Data Source ... 9-140
9.8.2.2.11 Adding a Connection-Instance ... 9-142
9.8.2.2.12 Testing using the File Adapter Service and SQL*Plus 9-143
9.8.2.2.13 Monitoring Using the Fusion Middleware Control Console 9-144
9.8.3 Database Adapter/Coherence Integration ... 9-146
9.8.3.1 Inserts/Updates to a Database .. 9-146
9.8.3.1.1 Select Optimization ... 9-146
9.8.3.1.2 Queries that Do Not Benefit from Coherence Database Adapter Integration

9-147
9.8.3.2 Database Adapter/Coherence Integration Architecture 9-147
9.8.3.2.1 Using Coherence Database Adapter Integration with WebLogic Server 10.3.5 .

9-147
9.8.3.2.2 Current Design of the Database Adapter (No Coherence Cache) 9-148
9.8.3.2.3 Read-Write Coherence Cache Database Adapter Integration 9-148
9.8.3.2.4 Read Coherence Cache Database Adapter Integration 9-148
9.8.3.2.5 Enabling No Cache Using the Operations Type Screen 9-148
9.8.3.2.6 Enabling Read-Write Caching Using the Operation Type Screen 9-149
9.8.3.2.7 Enabling Read Caching Using the Operation Type Screen 9-150
9.8.3.2.8 XA Transactions, Read-Write and Read Operations with Coherence/Database

Adapter Integration .. 9-151
9.8.3.2.9 Coherence Cache Lifecycle and Configuration .. 9-152

10 Oracle JCA Adapter for MQ Series

10.1 MQ Series Message Queuing Concepts .. 10-1
10.1.1 MQ Series Concepts ... 10-3
10.2 Introduction to Native Oracle MQ Series Adapter ... 10-4
10.2.1 The Need for Oracle MQ Series Adapter ... 10-4
10.2.2 Oracle MQ Series Adapter Integration with Oracle BPEL Process Manager 10-5
10.2.3 Oracle MQ Series Adapter Integration with Mediator ... 10-6
10.3 Oracle MQ Series Adapter Features ... 10-7
10.3.1 RFH Version 2 (RFH2) Header .. 10-7
10.3.1.1 Fixed Portion ... 10-7
10.3.1.2 Variable Portion .. 10-8
10.3.2 SSL Enabling .. 10-10
10.3.3 XA Transactions ... 10-10
10.3.3.1 XA Recovery ... 10-12
10.3.4 High Availability ... 10-12
10.3.4.1 Prerequisites for High Availability .. 10-12
10.3.4.2 High Availability in Inbound/Outbound Operations 10-12
10.3.5 Scalability ... 10-12
10.3.6 Securing Enterprise Information System Credentials .. 10-13
10.3.7 Fault Policy .. 10-13
10.3.8 Inbound Rejection Handler .. 10-13

xxi

10.3.9 Retry Mechanism ... 10-13
10.3.9.1 JCA Inbound Retry Mechanism ... 10-14
10.3.9.2 Message Backout Queue .. 10-14
10.3.10 Performance Tuning .. 10-15
10.4 Oracle MQ Series Adapter Concepts .. 10-15
10.4.1 Messaging Scenarios .. 10-15
10.4.1.1 Enqueue Message .. 10-16
10.4.1.2 Dequeue Message .. 10-19
10.4.1.3 Asynchronous Request-Response (Oracle BPEL PM As Client) 10-20
10.4.1.4 Synchronous Request-Response (Oracle BPEL PM As Server) 10-26
10.4.1.5 Asynchronous Request-Response (Oracle BPEL PM As Server) 10-29
10.4.1.6 Synchronous Request-Response (Mediator As Server) 10-35
10.4.1.7 Synchronous Request-Response (Oracle BPEL PM As Client) 10-35
10.4.1.8 Synchronous Request-Response (Oracle Mediator as Client) 10-38
10.4.1.9 Asynchronous Request-Response (Oracle Mediator As Client) 10-38
10.4.1.10 Outbound Dequeue Scenario .. 10-40
10.4.2 Message Properties .. 10-41
10.4.2.1 Messages Types ... 10-41
10.4.2.2 Message Format ... 10-42
10.4.2.3 Message Expiry ... 10-42
10.4.2.4 Message Priority .. 10-42
10.4.2.5 Message Persistence .. 10-42
10.4.3 Correlation Schemas .. 10-43
10.4.4 Distribution List Support ... 10-43
10.4.5 Report Messages .. 10-43
10.4.6 Message Delivery Failure Options ... 10-44
10.4.7 Message Segmentation ... 10-44
10.4.8 Integration with CICS .. 10-45
10.4.9 Supported Encodings ... 10-50
10.4.10 Using the MQ Series Client Channel Definition Table Feature 10-53
10.5 Configuring the Oracle MQ Series Adapter ... 10-55
10.5.1 Adding jar Files to the Oracle MQ Series Adapter Classpath: MQ Series 6 and 7 .. 10-55
10.5.2 Adding JNDI Entry .. 10-56
10.5.3 Enabling Binding Mode for Connections ... 10-58
10.6 Oracle MQ Series Adapter Use Cases ... 10-59
10.6.1 Dequeue Enqueue .. 10-59
10.6.1.1 Prerequisites .. 10-60
10.6.1.2 Designing the SOA Composite .. 10-60
10.6.1.3 Creating an Inbound Adapter Service ... 10-63
10.6.1.4 Creating an Outbound Adapter Service .. 10-68
10.6.1.5 Wiring Services and Activities ... 10-70
10.6.1.6 Deploying with JDeveloper ... 10-73
10.6.1.7 Monitoring Using the Oracle Enterprise Manager Fusion Middleware Control

Console (Fusion Middleware Control Console) .. 10-73
10.6.2 Inbound Synchronous Request-Reply .. 10-74
10.6.2.1 Prerequisites .. 10-74
10.6.2.2 Designing the SOA Composite .. 10-75

xxii

10.6.2.3 Creating an Inbound Adapter Service ... 10-76
10.6.2.4 Wiring Services and Activities .. 10-77
10.6.2.5 Deploying with JDeveloper ... 10-79
10.6.2.6 Monitoring Using the Fusion Middleware Control Console 10-79
10.6.3 Inbound-Outbound Synchronous Request-Reply .. 10-80
10.6.3.1 Prerequisites .. 10-80
10.6.3.2 Designing the SOA Composite .. 10-80
10.6.3.3 Creating an Inbound Adapter Service ... 10-81
10.6.3.4 Creating an Outbound Adapter Service .. 10-83
10.6.3.5 Wiring Services and Activities .. 10-84
10.6.3.6 Deploying with JDeveloper ... 10-90
10.6.3.7 Monitoring Using the Fusion Middleware Control Console 10-90
10.6.4 Asynchronous-Request-Reply ... 10-91
10.6.4.1 Prerequisites .. 10-91
10.6.4.2 Designing the SOA Composite .. 10-91
10.6.4.3 Creating an Inbound Adapter Service ... 10-92
10.6.4.4 Creating an Asynchronous Outbound Request Reply Adapter Service Outbound .

10-93
10.6.4.5 Creating Another Outbound Adapter Service .. 10-95
10.6.4.6 Wiring Services and Activities .. 10-96
10.6.4.7 Deploying with JDeveloper ... 10-101
10.6.4.8 Monitoring Using the Fusion Middleware Control Console 10-101
10.6.5 Outbound Dequeue ... 10-101
10.6.5.1 Prerequisites .. 10-102
10.6.5.2 Designing the SOA Composite .. 10-102
10.6.5.3 Creating an Outbound Dequeue Adapter Service ... 10-103
10.6.5.4 Wiring Services and Activities .. 10-104
10.6.5.5 Deploying with JDeveloper ... 10-107
10.6.5.6 Monitoring Using the Fusion Middleware Control Console 10-107
10.6.6 Configuring a Backout Queue ... 10-108
10.6.6.1 Prerequisites .. 10-109
10.6.6.2 Designing the SOA Composite .. 10-109
10.6.6.3 Creating an Inbound Adapter Service ... 10-109
10.6.6.4 Creating an Outbound Adapter Service .. 10-110
10.6.6.5 Wiring Services and Activities .. 10-111
10.6.6.6 Deploying with JDeveloper ... 10-114
10.6.6.7 Monitoring Using the Fusion Middleware Control Console 10-114
10.6.7 CCDT Use Cases .. 10-115
10.6.7.1 Example Queue Manager Properties and CCDT Configuration 10-115
10.6.7.2 Configuringa ConnectionFactoryJNDI .. 10-115
10.6.7.3 Configuring the CCDTurl ... 10-116
10.6.7.4 Configuring the QueueManagerName .. 10-116
10.6.8 Reading Single or Multiple RFH2 Rules and Formatting Header Version 2 Headers

10-116
10.6.8.1 Inbound and Outbound with Multiple RFH2 Headers on Both Sides 10-117
10.6.8.1.1 Designing the SOA Composite ... 10-117
10.6.8.1.2 Creating an Inbound Adapter Service .. 10-118
10.6.8.1.3 Creating an Outbound Adapter Service ... 10-118

xxiii

10.6.8.1.4 Wiring Services and Activities .. 10-119
10.6.8.1.5 Deploying with JDeveloper .. 10-125
10.6.8.2 Outbound Dequeue with Multiple RFH2 Headers .. 10-125
10.6.8.2.1 Designing the SOA Composite ... 10-125
10.6.8.2.2 Creating an Outbound Dequeue Adapter Service 10-126
10.6.8.2.3 Wiring Services and Activities .. 10-127
10.6.8.2.4 Deploying with JDeveloper .. 10-131

11 Oracle JCA Adapter for UMS

11.1 UMS and UMS Adapter Concepts .. 11-1
11.1.1 Oracle UMS Adapter ... 11-2
11.2 Oracle UMS Adapter Features .. 11-2
11.2.1 UMS Adapter Message Concepts ... 11-3
11.2.1.1 Custom Java Callout .. 11-5
11.2.1.1.1 Use Cases for Custom Java Callout ... 11-5
11.2.1.1.2 Using the Custom Callout Facility .. 11-6
11.2.2 UMS Adapter Error Handling and Transactions ... 11-6
11.2.2.1 Using a JNDI Name Configured to Use XA With LRC Optimization 11-6
11.2.2.2 Inbound Error Handling ... 11-7
11.2.2.3 Outbound Error Handling ... 11-7
11.2.2.3.1 Retry Mechanism for Failed Outgoing Notifications with Status Reporting

11-7
11.2.2.3.2 Outbound Send with TLS (SSL) to Communication with an SMTP Server . 11-7
11.2.2.3.3 Inbound Receive Notification in a Cluster (Through Polling or Through a

Listener) .. 11-8
11.2.2.3.4 UMS Adapter Properties and Mime Type Configuration 11-8
11.2.2.3.5 Proprietary Headers .. 11-11
11.2.2.4 Email Attachments .. 11-11
11.2.2.5 Mail Attachment Handling ... 11-12
11.2.2.5.1 Retrieving Mime Information Associated with an Attachment in BPEL ... 11-12
11.2.2.5.2 Setting Mime Information for Multiple Attachments in BPEL 11-13
11.2.2.6 UMS Adapter Inbound and Outbound Operations ... 11-13
11.2.2.6.1 Oracle UMS Adapter Inbound ReceiveNotification Concepts 11-13
11.2.2.6.2 Oracle UMS Outbound Send Notification Concepts 11-14
11.2.2.6.3 Receive Message id as reply request ... 11-14
11.2.3 Configuring the Oracle UMS Adapter .. 11-15
11.2.3.1 Configuring the Email Driver for the UMS Adapter - Outbound Connectivity

11-15
11.2.3.2 Configuring the Email Driver for UMS Adapter - Inbound Connectivity 11-16
11.2.3.3 Designing the Adapter Service and the BPEL Process for Inbound Connectivity

11-16
11.2.3.4 Designing the Adapter Service and the BPEL Process for Outbound Connectivity .

11-26
11.3 Sample .. 11-30
11.3.1 Creating the Composite ... 11-30
11.3.2 Creating the Inbound Oracle UMS Adapter Service .. 11-31
11.3.3 Creating the Outbound UMS Adapter service ... 11-31

xxiv

11.3.4 Wiring Services and Activities ... 11-32
11.3.5 Add a Receive Activity .. 11-32
11.3.6 Obtaining Email Header Information .. 11-32
11.3.7 UMS Adapter Configuration Changes for IBM WebSphere Server 11-33

A Oracle JCA Adapter Properties

A.1 Oracle File and FTP Adapters Properties ...A-1
A.2 Oracle Socket Adapter Properties ..A-7
A.3 Oracle AQ Adapter Properties ...A-8
A.4 Oracle JMS Adapter Properties ..A-10
A.5 Oracle Database Adapter Properties ..A-13
A.6 Oracle MQ Series Adapter Properties ..A-15
A.7 Generic Oracle JCA Adapter Properties ...A-22
A.8 Generic Oracle Adapter Binding Properties ...A-22

B Oracle JCA Adapter Valves

B.1 A Simple Unzip Valve ..B-1
B.2 A Simple Decryption Valve That Uses Staging File ...B-2
B.3 A Valve for Encrypting Outbound Files ...B-5
B.4 An Unzip Valve for processing Multiple Files ...B-7

xxv

Preface

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
Oracle Fusion Middleware User's Guide for Technology Adapters is intended for anyone
who is interested in using these adapters.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Fusion Middleware 11g
Release 1 (11.1.1.7.0) documentation set:

■ Oracle Fusion Middleware Programming Resource Adapters for Oracle WebLogic Server

■ Oracle Fusion Middleware Adapter for Oracle Applications User's Guide

■ Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Oracle Fusion Middleware Administrator's Guide

■ Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle
Business Process Management Suite

■ Oracle Fusion Middleware Administrator's Guide for Oracle Service Bus

■ Oracle® Application Server Installation Guide for Legacy Adapters

xxvi

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Beta Draft xxvii

What's New in This Guide for Release
11.1.1.9

For Release 11.1.1.9, this guide has been updated in several ways. The following table
lists the sections that have been added or changed. If a feature was not available in the
previous release, the last columns denote which documentation release contains the
update.

For a list of known issues (release notes), see the "Known Issues for for Oracle SOA
Products and Oracle AIA Foundation Pack" at
http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-know
nissuesindex-364630.html.

Sections Changes Made
February
2013

May
2013

Chapter 1 Introduction

Section 1.1, "Features of Oracle JCA
Adapters"

Made clarifications to wording. X

Chapter 2 Life Cycle

Example 2–2, "Log Error When
CorrelationId of the Receive Does not
Match any Earlier Invoke"

X

Section 2.19.3, "Use the Web Logic
Server Console to Create a New
Connection"

Added pointer to Adapter
Diagnostic Dumps in SOA
Administraion Guide

x

Section 2.27, "Advanced Topic: Using
the Execution Context ID Across
Technologies"

Added this section. Z

Chapter 4 File and FTP Adapter

Chapter 6 Native Format Builder
Wizard

Changes to text for clarification X

Section 6.2.3, "Multi-Byte Translation" Added this section X

Chapter 8 Oracle JCA Adapter for
JMS

Revised Chapter for clarity.

8.4.3.3 Configuring Oracle JMS
Adapter with IBM WebSphere Default
JMS Provider

X

Section 8.4.13, "Configuring
Request-Reply in JMS Adapter"

Added this section x

xxviii Beta Draft

8.4.10.6 Using the WLS JMS
Unit-Of-Order with the JMS Adapter

Added this section x

Section 8.4.6, "Accessing Queues and
Topics from WLS JMS Server in a
Remote Oracle WebLogic Server
Domain"

Added a note about setting up
access to WebLogic Server secure
queues.

Chapter 9 Oracle JCA Adapter for
Database

Modifications to wording for clarity. x

Section 9.3.1, "Transaction Support" Added specifics about samples
related to this subsection,
specifically Transaction Support.

Section 9.8.3, "Database
Adapter/Coherence Integration"

Added section on Coherence
Integration with Database
Adapter.

Chapter 10 Oracle JCA Adapter for
MQ Series

Section 10.6.7, "CCDT Use Cases" Added section on the CCDT use
cases.

x

Section 10.6.8, "Reading Single or
Multiple RFH2 Rules and Formatting
Header Version 2 Headers"

Added this section X

Appendix A Oracle JCA Adapter
Properties

 X

Added additional summary paragraph
at beginning of Appendix to clarify
purpose of Appendix.

X

Added several properties X

Section A–12, " JCA Properties for
Oracle JMS Adapter: Normalized
Properties"

Added more text to the
description of
jca.jms.JMSProperty.name

X

Sections Changes Made
February
2013

May
2013

Part I
Part I Introduction and Concepts

Part I contains the following chapters:

■ Chapter 1, "Introduction to Oracle JCA Adapters"

■ Chapter 2, "ADAPTER Life-Cycle Management"

■ Chapter 3, "Adapter Integration with Oracle Application Server Components"

■ Chapter 4, "Oracle JCA Adapter for Files/FTP"

■ Chapter 5, "Oracle JCA Adapter for Sockets"

■ Chapter 6, "Native Format Builder Wizard"

1

Introduction to Oracle JCA Adapters 1-1

1Introduction to Oracle JCA Adapters

This chapter provides an introduction to Oracle JCA-compliant adapters, which enable
you to integrate your business applications, and which provide a robust, lightweight,
highly-scalable and standards-based integration framework for disparate applications
to communicate with each other. The chapter provides context for the JCA Adapters
within today’s business application processing.

With the growing need for business process optimization, efficient integration with
existing back-end applications has become the key to success. To optimize business
processes, you can integrate applications by using JCA 1.5 compliant resource
adapters. Adapters support a robust, light weight, highly scalable, and
standards-based integration framework, which enables disparate applications to
communicate with each other. For example, adapters enable you to integrate packaged
applications, legacy applications, databases, and Web services. Using Oracle JCA
Adapters, you can ensure interoperability by integrating applications that are
heterogeneous, provided by different vendors, based on different technologies, and
run on different platforms.

This chapter includes the following sections:

■ Section 1.1, "Features of Oracle JCA Adapters"

■ Section 1.2, "Types of Oracle JCA Adapters"

■ Section 1.3, "Types of Oracle JCA Adapters Adapter Services"

1.1 Features of Oracle JCA Adapters
Oracle JCA Adapters provide the following benefits:

■ Provide a connectivity platform for integrating complex business processes:
Adapters integrate mainframe and legacy applications with enterprise resource
planning (ERP), customer relationship management (CRM), databases, and
messaging systems. Oracle provides adapters to connect various packaged
applications, such as SAP and Siebel, and databases. In addition, adapters
integrate middleware messaging systems, such as MQSeries and Oracle Advanced
Queuing, and legacy applications, such as CICS and Tuxedo, to provide a
complete solution.

■ Support open standards: Adapters are based on a set of standards such as J2EE
Connector Architecture (JCA) version 1.5, Extensible Markup Language (XML),
and Web Service Definition Language (WSDL). The support for standards reduces
the learning curve of a user and eliminates the dependency of users on a single
vendor.

Types of Oracle JCA Adapters

1-2 Oracle Fusion Middleware User's Guide for Technology Adapters

■ Service Component Architecture (SCA) assembly model: Provides the service
details and their interdependencies to form composite applications. SCA enables
you to represent business logic as reusable service components that can be easily
integrated into any SCA-compliant application. The resulting application is known
as an SOA composite application. The specification for the SCA standard is
maintained by the Organization for the Advancement of Structured Information
Standards (OASIS).

■ Implement a Service-Oriented Architecture (SOA): The support for open standards
enables adapters to implement an SOA, which facilitates loose coupling, flexibility,
and extensibility.

■ Use native APIs: Adapters support multiple ways of interfacing with the back-end
system and provide various deployment options. Using native APIs, adapters
communicate with the back-end application and also translate the native data to
standard XML, which is provided to the client.

■ Model data: Adapters convert native APIs to standard XML and back, based on
the adapter metadata configured during design time. Adapter configurations are
defined during design time, which is used by run-time components.

■ Facilitate real-time and bidirectional connectivity: Adapters offer bidirectional
communication with various back-end systems. This includes sending requests to
back-end systems and receiving a response. Adapters also support the real-time
event notification service. This service notifies about the back-end events
associated with successful back-end transactions for creating, deleting, and
updating back-end data. This two-way connectivity ensures faster, flexible,
efficient integration, and reduces the cost of integration.

■ Maximize availability: Oracle JCA Adapters are based on the J2CA 1.5
specification. Adapters can, therefore, fully leverage the scalability and high
availability of the underlying Oracle Application Server platform.

For more information, see Oracle Fusion Middleware Programming Resource Adapters
for Oracle WebLogic Server.

In addition, adapters can be deployed on the JBoss and WebSphere platforms.

■ Provide easy-to-use design-time tools: Adapters use design-time tools that provide
a graphical user interface (GUI) to configure and administer adapters for fast
implementation and deployment. In addition, the tools let you to browse,
download, and configure back-end schemas.

■ Support seamless integration with Oracle Application Server components:
Adapters integrate with Oracle Fusion Middleware. Adapters integrate with the
JCA Binding Component of the Oracle Fusion Middleware platform, thereby
seamlessly integrating with other service engines and binding components.

1.2 Types of Oracle JCA Adapters
Oracle JCA Adapters include:

■ Section 1.2.1, "Oracle Technology Adapters"

■ Section 1.2.2, "Legacy Adapters"

■ Section 1.2.3, "Packaged-Application Adapters"

■ Section 1.2.4, "Oracle Adapter for Oracle Applications"

Figure 1–1 illustrates the different types of adapters.

Types of Oracle JCA Adapters

Introduction to Oracle JCA Adapters 1-3

Figure 1–1 Types of Oracle JCA Adapters

1.2.1 Oracle Technology Adapters
Oracle technology adapters integrate Oracle Application Server and Oracle Fusion
Middleware components such as Oracle BPEL Process Manager (Oracle BPEL PM) or
Oracle Mediator components to file systems, FTP servers, database queues (advanced
queues, or AQ), Java Message Services (JMS), database tables, and message queues
(MQ Series).

These adapters include:

■ Oracle JCA Adapter for Files/FTP

■ Oracle JCA Adapter for Sockets

■ Oracle JCA Adapter for Oracle Streams Advanced Queuing (Oracle JCA Adapter
for AQ)

■ Oracle JCA Adapter for JMS

■ Oracle JCA Adapter for Database

■ Oracle JCA Adapter for MQ Series

Oracle technology adapters are installed as part of Oracle Fusion Middleware.

This section includes the following topics:

J2EE
Applications

Mediator

BPEL
PM

Oracle JCA Adapters

Oracle WebLogic Server

Technology

Oracle
Applications

Legacy
Application

Packaged
Application

Adapters
Design
Time

J2CA

SOAP

Types of Oracle JCA Adapters

1-4 Oracle Fusion Middleware User's Guide for Technology Adapters

■ Section 1.2.1.1, "Architecture"

■ Section 1.2.1.2, "Design-Time Components"

■ Section 1.2.1.3, "Run-Time Components"

■ Section 1.2.1.4, "Deployment"

For more information, see:

■ the remaining chapters in this book

■ Oracle Fusion Middleware Programming Resource Adapters for Oracle WebLogic Server

■ Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Oracle Fusion Middleware Administrator's Guide

■ Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle
Business Process Management Suite

1.2.1.1 Architecture
Oracle technology adapters are based on J2EE Connector Architecture (JCA) 1.5
standards and deployed as a resource adapter in the same Oracle WebLogic Server as
Oracle Fusion Middleware. Oracle Adapter for Oracle Applications consists of the
same architecture as Oracle technology adapters. Figure 1–2 illustrates the architecture
of Oracle technology adapters.

Figure 1–2 Oracle Technology Adapters Architecture

1.2.1.2 Design-Time Components
During design time, Oracle technology adapters use Oracle JDeveloper (JDeveloper) to
generate the adapter metadata. Binding configuration files consist of J2CA-centric
XML markup. The J2CA binding configuration files are used by the JCA Binding
Component to seamlessly integrate the J2CA 1.5 resource adapter with Oracle Fusion
Middleware.

J2EE
Applications

Mediator

BPEL
PM

Oracle JCA Adapters

Oracle WebLogic Server

Files/FTP

Socket

Oracle
Applications

JMS/AQ

Database

JDeveloper
Adapter
Wizard

J2CA

Types of Oracle JCA Adapters

Introduction to Oracle JCA Adapters 1-5

For more information about integration of Oracle technology adapters with Oracle
Fusion Middleware, see Section 3.2, "Adapter Integration with Oracle Fusion
Middleware."

Example 1–1 Generating WSDL and Binding Configuration Files for Oracle JCA Adapter
for Database

By using JDeveloper, you can configure Oracle JCA Adapter for Database. This
adapter helps you to perform data manipulation operations, call stored procedures or
functions, and publish database events in real time. To configure adapter definitions,
drag and drop Database Adapter from the Component Palette to the External
References swim lane.

Figure 1–3 shows how to browse through the Import Tables window to select the
required tables for the adapter.

Figure 1–3 Browsing for Required Tables

Figure 1–4 shows how to specify the WSDL settings for Oracle JCA Adapter for
Database.

Types of Oracle JCA Adapters

1-6 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 1–4 Specifying WSDL Settings

Next, you must establish a database connection, select an operation type, and select
the required tables. The run-time connection parameters are specified in the
weblogic-ra.xml file and linked to a Java Naming and Directory Interface (JNDI)
name, which is specified during design time. Figure 1–5 shows the creation of a new
database connection.

Figure 1–5 Creating a New Database Connection

Finally, JDeveloper generates a WSDL file and a binding configuration file with the
J2CA binding for the Oracle JCA Adapter for Database, as shown in Figure 1–6.

Types of Oracle JCA Adapters

Introduction to Oracle JCA Adapters 1-7

Figure 1–6 Structure of a JCA File

1.2.1.3 Run-Time Components
The run-time component of Oracle technology adapters is the J2CA 1.5 resource
adapter for the specific back-end application. Oracle technology adapters are deployed
in the J2CA container of the Oracle WebLogic Server. Oracle Fusion Middleware
integrates with these J2CA 1.5 adapters through the JCA Binding Component, which
converts Web service messages into J2CA interactions and back.

Oracle Fusion Middleware uses the JCA Binding Component to integrate the
request-response service (J2CA outbound interaction) with a SCA composite reference
and publish the adapter events to a SCA composite service.

For more information about integration with Oracle Fusion Middleware, see
Chapter 3, "Adapter Integration with Oracle Application Server Components".

1.2.1.4 Deployment
Oracle technology adapters are deployed as J2CA 1.5 resource adapters within the
same Oracle WebServer container as that of Oracle Fusion Middleware during
installation. Although Oracle technology adapters are physically deployed as J2CA 1.5
resource adapters, their logical deployment involves creating the connection factory
entries for the J2CA 1.5 resource adapter by editing the weblogic-ra.xml file and
using JDeveloper during design time. By using JDeveloper, you specify the JNDI
name, which acts as a placeholder for the connection used when your composite is
deployed to the Oracle WebLogic Server. This placeholder enables you to use different
databases for development and later production. However, for the logical deployment
changes (that is, only if you are creating a new outbound connection) to take effect, the
WebLogic Server container process should be updated. However, if you are updating
any outbound connection property for an existing JNDI, then you must restart the
Oracle WebLogic Server. To avoid a server restart when you update an outbound
connection property for an existing JNDI, refer to Section 2.19, "Adding or Updating
an Adapter Connection Factory."

Types of Oracle JCA Adapters

1-8 Oracle Fusion Middleware User's Guide for Technology Adapters

1.2.2 Legacy Adapters
Legacy adapters integrate Oracle Application Server with legacy and mainframe
applications using legacy communication protocols.

These adapters include:

■ OracleAS Adapter for Tuxedo

■ OracleAS Adapter for CICS

■ OracleAS Adapter for VSAM

■ OracleAS Adapter for IMS/TM

■ OracleAS Adapter for IMS/DB

Legacy adapters are available as part of the OracleAS Adapters CD.

This section includes the following topics:

■ Section 1.2.2.1, "Architecture"

■ Section 1.2.2.2, "Design-Time Components"

■ Section 1.2.2.3, "Run-Time Components"

■ Section 1.2.2.4, "Deployment"

For more information, see:

■ Oracle Fusion Middleware Programming Resource Adapters for Oracle WebLogic Server

■ Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Oracle Fusion Middleware Administrator's Guide

■ Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle
Business Process Management Suite

1.2.2.1 Architecture
Legacy adapters include the following components in the architecture

■ Section 1.2.2.1.1, "Oracle Connect"

■ Section 1.2.2.1.2, "Oracle Studio"

■ Section 1.2.2.1.3, "J2CA Adapter"

Figure 1–7 illustrates the architecture of legacy adapters.

Changed Data Capture (CDC) adapters also have the same architecture.

Types of Oracle JCA Adapters

Introduction to Oracle JCA Adapters 1-9

Figure 1–7 Legacy Adapter Architecture

1.2.2.1.1 Oracle Connect

Oracle Connect is a component that resides on the legacy and mainframe platforms. It
consists of native adapters for communicating with the mainframe application and
data stores. Oracle Connect consists of the following components:

■ Server Processes

■ Native Adapters

■ Daemon

■ Repository

Server Processes
Oracle Connect consists of multiple servers to process client requests.

Native Adapters
Oracle Connect consists of various embedded native adapters to communicate with
Tuxedo and IMS-TM transaction systems, and database drivers to communicate with
various databases and file systems on mainframe systems such as VSAM and IMS-DB.
The native adapters convert application structures, such as the legacy COBOL
applications data, to and from XML. The XSD schema is used for precise mapping
between mainframe data and standard XML data.

Daemon
Daemon is an RPC-based listener that manages and maintains multiple server
configurations. It runs on every computer running Oracle Connect and handles user
authentication and authorization, connection allocation, and server process
management.

When a client requests for a connection, the daemon allocates a server process to
handle this connection. The allocated server process may be a new process or any
process that has been running. Further communication between the client session and
the server process is direct and does not involve the daemon. However, the daemon is

Oracle JCA Adapters

J2CA

Oracle WebLogic Server

VSAM

Tuxedo

IMS DB/TM

CICS

Oracle
Studio

Oracle Connect

Mainframe/Legacy

J2EE
Applications

Mediator

BPEL
PM

Types of Oracle JCA Adapters

1-10 Oracle Fusion Middleware User's Guide for Technology Adapters

notified when the connection ends and the server process is either killed or being used
by another client.

The daemon supports multiple server configurations called workspaces. Each
workspace defines accessible data sources, applications, environment settings, security
requirements, and server allocation rules. The daemon authenticates clients, authorizes
requests for a server process within a certain server workspace, and provides clients
with the required servers. The allocation of servers by the daemon is based on the
workspace that the client uses. Thus, a client can access a data source using one
workspace, where a server process is allocated from an existing pool of servers, or the
client can access a data source using a different workspace, where a new server process
is allocated for each client request. A fail-safe mechanism enables the specification of
alternate daemons, which function as a standby for high availability.

Repository
Oracle Connect supports a repository for storing the XML-based schema and
configuration information. There is a single repository for each Oracle Connect
instance. The repository stores the following information:

■ Oracle Connect configuration settings (including the Daemon settings to control
client/server communication)

■ User profiles to enable single sign-on to multiple back-end applications and data
sources

■ Adapter metadata for each adapter, which includes adapter request-response and
event services

1.2.2.1.2 Oracle Studio

Oracle Studio is the design-time tool for configuring the Oracle AS Adapters for
mainframes. It enables you to configure the services, events, and connection
information for native adapters. The configuration information is stored in the Oracle
Connect repository on the legacy or mainframe application. In addition, it enables you
to do management and monitoring of Oracle Connect. The Oracle Studio is available
only on the Windows platform. The Oracle Studio is based on the Eclipse GUI
framework.

1.2.2.1.3 J2CA Adapter

The J2EE Connector Architecture (J2CA) adapter forwards the WebLogic Server
application client requests to the Oracle Connect application. Oracle Connect
communicates with the mainframe application and forwards the response back to the
J2CA adapter. The response might contain the transaction data or might contain the
exception data if the request generated an error. Oracle Fusion Middleware integrates
with Oracle Connect through the J2CA Legacy adapter.

1.2.2.2 Design-Time Components
To configure legacy adapters during design time, use Oracle Studio, as shown in
Figure 1–8.

Types of Oracle JCA Adapters

Introduction to Oracle JCA Adapters 1-11

Figure 1–8 Oracle Studio

Example 1–2 Configuring OracleAS Adapter for Tuxedo

Using Oracle Studio, you can configure OracleAS adapter for Tuxedo, as shown in
Figure 1–9 and Figure 1–10.

Figure 1–9 Configuring OracleAS Adapter for Tuxedo

Types of Oracle JCA Adapters

1-12 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 1–10 Selecting the Types of Interactions for OracleAS Adapter for Tuxedo

1.2.2.3 Run-Time Components
During run time, WSDL files generated during design time are consumed by the
integrating components. For example, Oracle Fusion Middleware uses the JCA
Binding Component to integrate the request-response service (J2CA outbound
interaction) with a BPEL Invoke activity and to publish the events to a BPEL process
receive activity.

For more information, see Section 3.2, "Adapter Integration with Oracle Fusion
Middleware."

1.2.2.4 Deployment
Legacy adapters are deployed as J2CA resource adapters within the Oracle WebLogic
Server J2CA container during installation. The adapter must be in the same Oracle
WebLogic Server container as that of the Oracle Fusion Middleware for integration.

1.2.3 Packaged-Application Adapters
Packaged-application adapters integrate the Oracle Application Server with various
packaged applications, such as SAP and Siebel.

These adapters include:

■ OracleAS Adapter for PeopleSoft

■ OracleAS Adapter for SAP R/3

■ OracleAS Adapter for Siebel

■ OracleAS Adapter for J.D. Edwards

Packaged-application adapters are available as part of the OracleAS Adapters CD.

This section includes the following topics:

■ Section 1.2.3.1, "Architecture"

■ Section 1.2.3.2, "Design-Time Components"

Types of Oracle JCA Adapters

Introduction to Oracle JCA Adapters 1-13

■ Section 1.2.3.3, "Run-Time Components"

■ Section 1.2.3.4, "Deployment"

For more information, see:

■ Oracle Fusion Middleware Programming Resource Adapters for Oracle WebLogic Server

■ Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Oracle Fusion Middleware Administrator's Guide

■ Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle
Business Process Management Suite

1.2.3.1 Architecture
Packaged-application adapters can be deployed as J2EE Connector Architecture
(J2CA) 1.5 resource adapters or as Web service servlets within the Oracle WebLogic
Server container. Packaged-application adapters support the Web Service Definition
Language (WSDL) and Simple Object Access Protocol (SOAP) interface, in addition to
a J2CA interface. J2CA and Web service deployments of packaged-application
adapters should have a repository project. In J2CA deployment, the resource adapter
points to a repository project that can contain multiple back-end connection objects.
The deployment descriptor, weblogic-ra.xml, points to the J2CA repository project
and the connection name to access within the J2CA repository project. In the WSDL
deployment, the WSDL repository project consists of a set of WSDL files that describe
the adapter metadata.

The architecture of packaged-application adapters consists of OracleAS Adapter
Application Explorer (Application Explorer), J2CA 1.5 resource adapter, and Business
Services Engine (BSE).

Figure 1–11 illustrates the architecture of packaged-application adapters:

Note: Only the following packaged-application adapters support
WSDL and SOAP extensions in this release:

■ OracleAS Adapter for SAP

■ OracleAS Adapter for Siebel

■ OracleAS Adapter for Peoplesoft

■ OracleAS Adapter for J.D. Edwards

Types of Oracle JCA Adapters

1-14 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 1–11 Packaged-Application Adapters Architecture

This section describes the components of the packaged-application adapter
architecture.

This section includes the following topics:

■ Section 1.2.3.1.1, "Application Explorer"

■ Section 1.2.3.1.2, "BSE"

■ Section 1.2.3.1.3, "J2CA 1.5 Resource Adapter"

1.2.3.1.1 Application Explorer

Application Explorer is a Java swing-based design-time tool for configuring
packaged-application adapters. Using Application Explorer, you can configure the
back-end application connection, browse the back-end application schemas, and
expose these schemas as adapter services. Application Explorer is shipped with
packaged application-specific plug-ins for browsing the back-end application-specific
metadata.

You can use Application Explorer to create repository projects for either OracleAS
Adapter J2CA or BSE. Each repository project can consist of multiple back-end
application connections. The schemas are represented as either XML Schema
Definition (XSD) for the OracleAS Adapter J2CA interface or as a WSDL with SOAP
binding.

1.2.3.1.2 BSE

Application Explorer works with BSE, which is deployed in the Oracle WebLogic
Server container of the Oracle Application Server. BSE uses SOAP as a protocol for
accepting requests from clients, interacting with the back-end application, and sending
responses from the back-end application back to clients.

J2EE
Applications

Mediator

BPEL
PM

Oracle JCA Adapters

Oracle WebLogic Server

Siebel

J.D.Edwards

Sap

Peoplesoft

Adapter
Application

Explorer

J2CA

BSE

SOAP

Types of Oracle JCA Adapters

Introduction to Oracle JCA Adapters 1-15

1.2.3.1.3 J2CA 1.5 Resource Adapter

The J2CA 1.5 resource adapter consists of a Channel component for receiving back-end
events.

1.2.3.2 Design-Time Components
Application Explorer is used to configure packaged-application adapters during
design time. This tool is used to create a repository project for the J2CA 1.5 resource
adapter, which contains a list of back-end connections. Application Explorer exposes
back-end metadata as XSD and WSDL with J2CA extensions. The XSD metadata is
used by the Oracle WebLogic Server application clients for integration through the
J2CA Common Client Interface (CCI) Application Programming Interface (API). The
WSDL with J2CA extension is used for integration with Business Process Execution
Language for Web Services (BPEL) Process Manager. The BSE metadata can be defined
as WSDL or SOAP.

Figure 1–12 shows the Application Explorer.

Figure 1–12 Application Explorer

Example 1–3 Generating XML Request Schema for OracleAS Adapter for SAP

You can use Application Explorer to establish a connection for OracleAS Adapter for
SAP. To establish such a connection, you must first define a target to OracleAS Adapter
for SAP, as shown in Figure 1–13 and Figure 1–14.

Types of Oracle JCA Adapters

1-16 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 1–13 Selecting OracleAS Adapter for SAP

Figure 1–14 Defining a Target to OracleAS Adapter for SAP

After you have explored the SAP business function library and have selected an object,
you can use Application Explorer to create the XML request schema and the XML
response schema for that function. To view the XML for each schema type, select the
required tab, as shown in Figure 1–15:

Figure 1–15 Viewing the XML Schema

1.2.3.3 Run-Time Components
The run-time components of packaged-application adapters include J2CA 1.5 resource
adapter, BSE, and servlet. The WebLogic Server application clients use the CCI API to
directly interface with the J2CA 1.5 resource adapter. The J2CA 1.5 resource adapter
integrates with Oracle Fusion Middleware through the JCA Binding Component.
During run time, the JCA Binding Component translates the Oracle Fusion
Middleware service requests to J2CA calls and back based on the adapter metadata
(WSDL and binding configuration) configured during design time.

During run time, the WSDL files generated during design time are consumed by the
integrating components. For example, Oracle Fusion Middleware uses the JCA
Binding Component to integrate the request-response service (J2CA outbound
interaction) with a BPEL process invoke activity and to publish adapter events to a
BPEL process receive activity.

For more information about integrating with Oracle Fusion Middleware, see
Section 3.2, "Adapter Integration with Oracle Fusion Middleware".

1.2.3.4 Deployment
Packaged-application adapters are deployed as J2CA 1.5 resource adapters within the
WebLogic Server J2CA container during installation. The adapter must be in the same
WebLogic Server container as Oracle BPEL PM for integration.

You can integrate any Web service client with the BSE servlet. The BSE exposes the
underlying back-end functionality as Web services, which can be either WSDL or
SOAP. Oracle BPEL PM can integrate with the BSE layer, as well, through WSDL and
SOAP binding.

Types of Oracle JCA Adapters Adapter Services

Introduction to Oracle JCA Adapters 1-17

BSE is deployed as a servlet within the WebLogic Server container during installation.
BSE can be remotely located and need not be in the same container as the Oracle BPEL
PM.

1.2.4 Oracle Adapter for Oracle Applications
Oracle Applications are built on a unified information architecture that consolidates
data from Oracle and non-Oracle applications and enables a consistent definition of
customers, suppliers, partners, and employees across the entire enterprise. This results
in a suite of applications that can give you information, such as current performance
metrics, financial ratios, profit and loss summaries. To connect Oracle Applications to
non-Oracle applications, you use Oracle Adapter for Oracle Applications.

Oracle Adapter for Oracle Applications provides comprehensive, bidirectional,
multimodal, synchronous, and asynchronous connectivity to Oracle Applications. The
adapter supports all modules of Oracle Applications in Release 12 and Release 11i
including selecting custom integration interface types based on the version of Oracle
E-Business Suite.

The architecture of the Oracle Adapter for Oracle Applications is similar to Oracle
technology adapters.

For more information, see:

■ Oracle Fusion Middleware Adapter for Oracle Applications User's Guide

■ Oracle Fusion Middleware Programming Resource Adapters for Oracle WebLogic Server

■ Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Oracle Fusion Middleware Administrator's Guide

■ Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle
Business Process Management Suite

1.3 Types of Oracle JCA Adapters Adapter Services
Adapters provide the following types of services to facilitate communication between
applications:

■ Section 1.3.1, "Request-Response (Outbound Interaction) Service"

■ Section 1.3.2, "Event Notification (Inbound Interaction) Service"

■ Section 1.3.3, "Metadata Service"

1.3.1 Request-Response (Outbound Interaction) Service
Adapters support the synchronous request-response service. The adapters receive
requests from adapter clients, translate these requests into the native back-end data
format, and call the appropriate method in the back-end application. In addition, the
request-response service retrieves the back-end response to the JCA Binding
Component after performing reverse translation. In J2CA terminology, this type of
service is also known as outbound interaction.

Note: Adapter for Oracle Applications is also informally known as
Oracle E-Business Suite Adapter

Types of Oracle JCA Adapters Adapter Services

1-18 Oracle Fusion Middleware User's Guide for Technology Adapters

You can use the request-response service to create, delete, update, and query back-end
data, and to call back-end workflows and transactions. For example, a WebLogic
Server application client can use OracleAS Adapter for SAP to create a customer
within the SAP application.

Figure 1–16 illustrates the request-response service.

Figure 1–16 Request-Response Service

1.3.2 Event Notification (Inbound Interaction) Service
Adapters support the event-notification service, which is an asynchronous
communication paradigm. In J2CA terminology, this type of service is also known as
inbound interaction.

Adapters either listen or poll for back-end event changes. When listening for events,
an adapter registers as a listener for the back-end application that is configured to
push events to the adapter. The adapter can also poll the back-end application, which
is usually a database or file, for the events required by the client application.

You can use the event-notification service to keep a track of back-end events associated
with successful back-end transactions for creating, deleting, and updating back-end
data.

Figure 1–17 illustrates the event-notification service.

Figure 1–17 Event-Notification Service

1.3.3 Metadata Service
The adapter metadata definition stores information about the back-end connection and
schemas for business objects and services. Adapters consist of a design-time
component for browsing and storing metadata and a run-time component for running
services. The adapter metadata definitions are generated as XML Schema Definition
(XSD), WSDL, and binding configuration files. Figure 1–18 illustrates the metadata
interaction.

Back-End
ApplicationNative API

Oracle
Application

Server

AdapterAdapter
Client

Request-Response

CCI

Request-Response

Publish

Native API

Oracle
Application

Server

Adapter
SPI

PublishAdapter
Client

Back-End
Application

Types of Oracle JCA Adapters Adapter Services

Introduction to Oracle JCA Adapters 1-19

Figure 1–18 Metadata Service

Back-End Applicaton

Browse & Select
Back-End Application
Schemas

Adapter
Design-Time Tool

File Repository

Native API

Stores
Configuration
(XSD/WSDL)

Types of Oracle JCA Adapters Adapter Services

1-20 Oracle Fusion Middleware User's Guide for Technology Adapters

2

ADAPTER Life-Cycle Management 2-1

2 ADAPTER Life-Cycle Management

This chapter describes the installation, starting and stopping, error handling,
configuration and deployment of Oracle JCA Adapters that integrate with Oracle
Fusion Middleware through the JCA Binding Component.

Oracle JCA Adapters are based on J2EE Connector Architecture (J2CA) 1.5 standards
and deployed in the Oracle Containers for Java EE. The life cycle of Oracle JCA
Adapters depend on Oracle Fusion Middleware. These adapters integrate with Oracle
Fusion Middleware through the JCA Binding Component.

This chapter includes the following sections:

■ Section 2.1, "Installing Oracle JCA Adapters"

■ Section 2.2, "Starting and Stopping Oracle JCA Adapters"

■ Section 2.3, "Defining Adapter Interface by Importing an Existing WSDL"

■ Section 2.4, "Configuring Message Header Properties for Oracle JCA Adapters"

■ Section 2.5, "Physically Deploying Oracle JCA Adapters"

■ Section 2.6, "Creating an Application Server Connection for Oracle JCA Adapters"

■ Section 2.7, "Deploying Oracle JCA Adapter Applications from JDeveloper"

■ Section 2.8, "Manually Deploying an Adapter RAR File that Does Not Have a Jar
File Associated With It"

■ Section 2.9, "Handling the Deployment Plan When Working on a Remote Oracle
SOA Server"

■ Section 2.10, "Migrating Repositories from Different Environments"

■ Section 2.11, "How Oracle JCA Adapters Ensure No Message Loss"

■ Section 2.12, "Composite Availability and Inbound Adapters"

■ Section 2.13, "Singleton (Active/Passive) Inbound Endpoint Lifecycle Support
Within Adapters"

■ Section 2.14, "Correlation Support Within Adapters"

■ Section 2.15, "Setting Payload Size Threshold"

■ Section 2.16, "Streaming Large Payload"

■ Section 2.17, "Batching and Debatching Support"

■ Section 2.18, "Adding an Adapter Connection Factory"

■ Section 2.19, "Adding or Updating an Adapter Connection Factory"

Installing Oracle JCA Adapters

2-2 Oracle Fusion Middleware User's Guide for Technology Adapters

■ Section 2.20, "Recommended Setting for Data Sources Used by Oracle JCA
Adapters"

■ Section 2.21, "Error Handling"

■ Section 2.22, "Testing Applications"

■ Section 2.23, "Setting the Trace Level of Oracle JCA Adapters"

■ Section 2.24, "Viewing Adapter Logs"

■ Section 2.26, "Creating a Custom Adapter"

2.1 Installing Oracle JCA Adapters
Oracle Technology Adapters and Oracle Adapter for Oracle Applications are available
as part of the Oracle Fusion Middleware install. These adapters support both Oracle
Containers for Java EE and middle tier deployments. For more information, see the
Oracle Fusion Middleware Installation Planning Guide.

Legacy adapters and packaged-application adapters are available as part of the Oracle
Fusion Middleware Adapters and Connectors CD. These adapters support middle tier
deployment only.

2.2 Starting and Stopping Oracle JCA Adapters
Oracle JCA Adapters are deployed as JCA 1.5 resource adapters. Therefore, to start or
stop an adapter, every resource adapter must implement the start
(BootstrapContext) and stop methods as part of the SPI interface. Oracle JCA
Adapters are started when an SOA composite using them starts a JCA outbound
interaction. Adapters can also be started when an SOA composite is itself loaded for
inbound interactions or when adapters publish events to the Oracle BPEL process.

Once you have started an adapter, you can stop the adapter by shutting down the
Oracle Containers for Java EE or by stopping the J2EE application within Oracle
Fusion Middleware. In this release, the JCA Binding Component acts as a part of the
JCA 1.5 container.

2.3 Defining Adapter Interface by Importing an Existing WSDL
You can define an adapter interface in the Adapter Configuration Wizard Adapter
Interface page, as shown in Figure 2–1, by using either of the following methods:

■ Using a WSDL that is generated using the operation name and schema that you
specify in the Adapter Configuration Wizard in the pages that appear after the
Adapter Configuration Wizard Adapter Interface page.

■ Importing an existing WSDL.

Note: Before installing any adapter, consult the System Requiremnts
document on the following page:
http://docs.oracle.com/html/E18558_01/fusion_requirements.htm

Defining Adapter Interface by Importing an Existing WSDL

ADAPTER Life-Cycle Management 2-3

Figure 2–1 The Adapter Configuration Wizard Adapter Interface Page

This section describes how to define an adapter interface by importing an existing
WSDL. You can use this feature to create an adapter service or reference by using
existing WSDLs. The option to choose an existing WSDL is supported for the
following adapters only:

■ Oracle File Adapter

■ Oracle FTP Adapter

■ Oracle Socket Adapter

■ Oracle AQ Adapter

■ Oracle JMS Adapter

■ Oracle MQ Series Adapter

If you select the option of defining the adapter interface by importing an existing
WSDL, then some functionalities on subsequent wizard pages are disabled. For
example, since the WSDL defines the operation name and the message schema, the
subsequent operation name and schema element fields are automatically filled in and
you cannot modify it, as shown in Figure 2–2. However, if you do not choose to use an
existing WSDL, then the adapter wizards behaves exactly as before.

Defining Adapter Interface by Importing an Existing WSDL

2-4 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 2–2 Operation Page for Oracle AQ Adapter with Fields Automatically Populated

2.3.1 Adapter Configuration Wizard for Oracle MQ Series Adapter, Oracle JMS Adapter
and the Oracle AQ Adapter

The Adapter Configuration Wizard for Oracle MQ Series Adapter, Oracle JMS
Adapter, and the Oracle AQ Adapter appears different from the other adapters. These
adapters have the additional option to select a callback including the port type and
operation.

Subsequent options in the Adapter Configuration Wizard are enabled or disabled
depending on the port types and operations you select.

2.3.1.1 Example of Use of Callbacks
For example, while using the Adapter Configuration Wizard for defining the Oracle
MQ Series Adapter, if a callback is selected, only the Send Message to MQ and Get
Reply/Reports and the Get Message from MQ and Send Reply/Reports
Asynchronous options are enabled.

If a callback is not selected, only the Put Message into MQ and Get Message from MQ
options are enabled.

If a WSDL operation that has a synchronous reply is selected, only the Get Message
from MQ and Send Reply/Reports Synchronous option are enabled. When you use an
existing WSDL, the options to use CICS or IMS schemas are disabled.

Configuring Message Header Properties for Oracle JCA Adapters

ADAPTER Life-Cycle Management 2-5

2.4 Configuring Message Header Properties for Oracle JCA Adapters
Oracle JCA Adapters expose the underlying back-end operation-specific properties as
message header elements and enable the manipulation of these elements within a
business process.

As the properties are exposed, you can add, delete, or revert Oracle JCA Adapters
properties from the Fusion Middleware Control Console. However, depending on the
type of property, you must redeploy your composite application to apply the property
change.

Table 2–1 lists the types of message header properties you can configure and whether
redeployment is required.

For more information, see Appendix A, "Oracle JCA Adapter Properties".

Note: The most common approach to importing an existing WSDL is
to first create an Oracle BPEL process or a Mediator, and then define
their WSDL files from schemas (or NXSD). After this is done, adapter
services are created, and the WSDL file generated for the BPEL
process or the Mediator component is imported as the existing WSDL
file.

However, you must keep in mind that this feature works only for
those messages which use schema element. Simple and complex types
are not supported.

Table 2–1 Oracle JCA Adapters Property Types

Property Type Description Restrictions

Activation
specification and
interaction
specification

Activation specification
properties operate as
services and interaction
specification properties
operate as references in a
SOA composite application.

Do not add or remove these properties.
You can only change their values.

These properties require the adapter
endpoint to be recycled. These types of
properties are also dependent upon
other properties. If you attempt to add
properties, you have no way of knowing
which dependent properties must also be
added.

Endpoint These are tuning-related
properties that are not
exposed through the
activation or interaction
specification properties, such
as specifying time outs,
thresholds, maximum
intervals, and so on.

There are no restrictions on adding,
removing, or changing endpoint
properties. The adapter is notified when
these properties are added, removed, or
changed, but it does not require
redeployment.

You cannot add or remove
jca.retry.* endpoint properties
without redeploying the composite.
However, you can change these
properties by using the Fusion
Middleware Control Console without
redeploying the composite.

Physically Deploying Oracle JCA Adapters

2-6 Oracle Fusion Middleware User's Guide for Technology Adapters

2.5 Physically Deploying Oracle JCA Adapters
Oracle JCA Adapters are deployed as JCA 1.5 resource adapters in an Oracle
Containers for Java EE container. Adapters are packaged as Resource Adapter Archive
(RAR) files using the Java Archive (JAR) format.

The physical deployment of adapters involves using the RAR file to register the
adapters as connectors with the underlying WebLogic Server or the middle tier
platform.

2.5.1 The RAR Deployment Descriptor File and the weblogic-ra.xml Template File
The RAR file contains the ra.xml file, which is the deployment descriptor XML file
containing deployment-specific information about the resource adapter. In addition,
the RAR file contains declarative information about the contract between Oracle
Containers for Java EE and the resource adapter.

In addition to the ra.xml file in the.rar file, adapters package the
weblogic-ra.xml template file. The weblogic-ra.xml file is used to define
resource adapter ConnectorFactory objects (logical deployment). The
weblogic-ra.xml file is the Oracle Containers for EE-specific deployment
descriptor for a resource adapter. It contains deployment configurations for deploying
resource adapters to the WebLogic Server, which includes the back-end application
connection information as specified in the deployment descriptor of the resource
adapter, Java Naming and Directory Interface (JNDI) name to be used, connection
pooling parameters, resource principal mapping mechanism, and configurations.

For more information, see:

■ Section 2.6, "Creating an Application Server Connection for Oracle JCA Adapters"

File Contents

RAR file Contains deployment-specific
information about resource adapter

Contains declarative information about
the contract between the Oracle
Containers for Java EE and the resource
adapters

weblogic-ra.xml template fil Defines resource adapter
ConnectorFactory objects (logical
deployment)

Contains deployment configurations for
deploying resource adapters to the
WebLogic Server

Provides back-end application
connection information as specified in
the deployment descriptor of the
resource adapter

Provides the Java Naming and Directory
Interface (JNDI) name to be used

Provides the connection pooling
parameters

Provides a resource principal mapping
mechanism

Provides configuration information

Creating an Application Server Connection for Oracle JCA Adapters

ADAPTER Life-Cycle Management 2-7

■ Section 2.7, "Deploying Oracle JCA Adapter Applications from JDeveloper"

■ Section 2.8, "Manually Deploying an Adapter RAR File that Does Not Have a Jar
File Associated With It"

■ Section 2.9, "Handling the Deployment Plan When Working on a Remote Oracle
SOA Server"

■ Section 2.10, "Migrating Repositories from Different Environments"

■ Section 2.18, "Adding an Adapter Connection Factory"

■ Section 2.20, "Recommended Setting for Data Sources Used by Oracle JCA
Adapters"

2.6 Creating an Application Server Connection for Oracle JCA Adapters
You must establish connectivity between the design-time environment and the server
to which you want to deploy. To establish such connectivity, you must create an
application server connection.

The following are the steps to create an application server connection:

1. In the File menu, click New.

The New Gallery page is displayed, as shown in Figure 2–3.

Figure 2–3 The New Gallery Page

2. In the All Technologies tab, under General categories, select Connections.

A list of the different connections that you can make is displayed in the Items pane
on the right side of the New Gallery page.

3. Select Application Server Connection, and then click OK.

The Create Application Server Connection page is displayed, as shown in
Figure 2–4.

Creating an Application Server Connection for Oracle JCA Adapters

2-8 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 2–4 The Create Application Server Connection Name and Type Page

4. Enter a connection name in the Connection Name field. For example,
AppsServerConnection1.

5. Select WebLogic 10.3. for Connection Type and click Next.

The Authentication page is displayed, as shown in Figure 2–5.

Figure 2–5 The Create Application Server Connection Authentication Page

6. Enter the user name and password, and then click Next.

The Create Application Server Connection Configuration page is displayed, as
shown in Figure 2–6.

Creating an Application Server Connection for Oracle JCA Adapters

ADAPTER Life-Cycle Management 2-9

Figure 2–6 The Create Application Server Connection Configuration Page

7. Enter the host name, the port details, and the domain server name in the
Configuration page.

8. Click Next.

The Create Application Server Connection Test page is displayed, as shown in
Figure 2–7.

Figure 2–7 The Create Application Server Connection Test Page

9. Click Test Connection. A success message is displayed in the Status pane.

10. Click Finish.

Deploying Oracle JCA Adapter Applications from JDeveloper

2-10 Oracle Fusion Middleware User's Guide for Technology Adapters

You have created a server connection.

2.7 Deploying Oracle JCA Adapter Applications from JDeveloper
You deploy an SOA composite application from JDeveloper.

JDeveloper requires the use of profiles for the SOA projects and applications to be
deployed. This section describes how to create and deploy such profiles with
JDeveloper.

2.7.1 Deploying an Application Profile for the SOA Project and the Application
This section specifically describes how you deploy an application profile for the SOA
project and the application. To deploy the application, you must perform the following
steps:

1. Right-click the project to deploy, and select Deploy > project_name, to
Application_Server_Connection_Name, as shown in Figure 2–8.

The SOA Deployment Configuration dialog is displayed.

Figure 2–8 Application Profile Deployment

2. Use the default settings, as shown in Figure 2–9.

Manually Deploying an Adapter RAR File that Does Not Have a Jar File Associated With It

ADAPTER Life-Cycle Management 2-11

Figure 2–9 The SOA Deployment Configuration Dialog

3. Click OK.

The Authorization request dialog is displayed.

4. Enter the user name and password, and then click OK.

The project is compiled and deployed to the Managed Server. You can view the
deployment log clicking the Deployment tab in the design area.

To redeploy the same version of a SOA composite application, you cannot change
the composite name. You can deploy with the same revision number if you
selected the Overwrite any existing composites with the same revision ID check
box on the SOA Deployment Configuration dialog. However, if you do not do so,
then the following error message is deployed in the deployment log:

pr 29, 2009 1:55:57 AM
oracle.integration.platform.blocks.deploy.servlet.CompositeDeployerMessages
severeSendError
SEVERE: Sending back error message:
Error during composite deployment:
oracle.fabric.common.FabricDeploymentException:
Composite with same revision ID already exists:
default/<application name>!<revision id>.
Please set the overwrite flag or use different revision ID.
Abort deployment...

2.8 Manually Deploying an Adapter RAR File that Does Not Have a Jar
File Associated With It

This section describes how to manually deploy any adapter RAR file that does not
have a jar file associated with it.

Manually Deploying an Adapter RAR File that Does Not Have a Jar File Associated With It

2-12 Oracle Fusion Middleware User's Guide for Technology Adapters

If you deploy any adapter RAR file that only contains META-INF/ra.xml and
META-INF/weblogic-ra.xml and also does not contain the jar file adapter required
for creating JNDIs, then while deploying, you must change the deployment order to a
higher value (say 500) so the Oracle WebLogic Server can deploy this RAR file after the
jar file of this adapter is loaded.

2.8.1 Example of Manual Deployment
For example, to deploy the DBAdapter_NewJndis.rar file that contains only
META-INF/ra.xml and META-INF /weblogic-ra.xml and does not contain the
jar file adapter (DbAdapter.jar) required while instantiating the new JNDIs, you
can follow a specific procedure.

Use the following steps to manually deploy an adapter RAR file that does not have a jar
file associated with it:

1. Navigate to the Oracle WebLogic Server Administration Console:
http://servername:portnumber/console.

2. Use the required credentials to open the Home page of the Oracle WebLogic
Server Administration Console.

The Home page of the Oracle WebLogic Server Administration Console is
displayed.

3. Select Deployments in the Domain Structure pane.

The Oracle WebLogic Server Administration Console Summary of Deployments
page is displayed.

4. Click Install.

The Install Application Assistant page is displayed.

5. Enter the path of the application directory or file in the Path field, and then click
Next.

6. Select the servers to which you want to deploy this application, and then click
Next.

The Optional Settings page is displayed.

7. Modify these settings or accept the defaults, and then click Next.

The Review your choices and click Finish page is displayed.

8. Click Finish to complete the deployment.

9. After you deploy the RAR file, under Summary of Deployments, click the name
of the RAR file that you deployed.

The Settings page is displayed.

10. Change the value of Deployment Order field to a value that is higher than the
default value. For example, 500.

Note: In this case, after deploying the DBAdapter_NewJndis.rar
file, you must change the deployment order to a higher value. This
ensures that the Oracle WebLogic Server deploys the DBAdapter_
NewJndi.rar file correctly even if you restart the Oracle WebLogic
Server.

How Oracle JCA Adapters Ensure No Message Loss

ADAPTER Life-Cycle Management 2-13

This ensures that the newly deployed RAR file is always loaded after the
supporting classes are loaded by the Oracle WebLogic Server.

2.9 Handling the Deployment Plan When Working on a Remote Oracle
SOA Server

If the Adminserver is running on computer A and the Oracle SOA server is running on
computer B, you must copy the deployment plan file to computer B before you
activate changes made on the Oracle SOA server.

If you try to activate changes without copying the deployment plan to the Oracle SOA
Server computer, a NullPointerException is thrown.

2.10 Migrating Repositories from Different Environments
All the JCA files generated by the Adapter Configuration Wizard have a reference to
the JNDI name. The reference is defined in the weblogic-ra.xml file, which is the
adapter's deployment descriptor.

The JNDI name is the key when you want to migrate from a development environment
to a test environment to a production environment.

You must update the weblogic-ra.xml file to have the same JNDI name in all three
environments: development, testing, and production.

You should specify values for deployment time properties, such as retry interval and
retry count, and then redeploy to testing environment or production environment.

The weblogic-ra.xml identifies the end point as a development EIS or testing EIS
or production EIS. For example, consider that when running through the Database
Adapter Service Wizard, you specify eis/DB/custStore as the JNDI name for the
createCustomer service.

After modeling the composite by using this adapter service, you should deploy it to
the development, test, or production environments without making any changes. But
before you deploy, ensure that you have a corresponding JNDI entry for
eis/DB/custStore in each of your various environments pointing to the right EIS
instance.

To summarize:

■ All JCA files reference the JNDI name as defined in the weblogic-ra.xml file

■ You must update the weblogic-ra.xml file to have the same JNDI name in all
your environments in which it is deployed.

■ Use the weblogic-ra.xml deployment descriptor to specify values for
deployment time properties, such as retry interval and retry count. This file also
identifies the end point’s environment.

■ Before deployment, ensure you have a corresponding JNDI entry for the correct
environment.

2.11 How Oracle JCA Adapters Ensure No Message Loss
This section describes how adapters ensure that messages are not lost.

Transactional adapters allow the Enterprise Information System (EIS) to participate in
one-phase or two-phase commits (local transactions or global/distributed
transactions).

How Oracle JCA Adapters Ensure No Message Loss

2-14 Oracle Fusion Middleware User's Guide for Technology Adapters

Non-transactional adapters implement their own schemes to ensure delivery, without
the use of transactional semantics.

This section describes:

■ Section 2.11.2, "Local Transactions and Global (XA) Transactions"

■ Section 2.11.3, "Basic Concepts of Transactions and Adapters"

■ Section 2.11.5, "Outbound Transactions"

For more information, see:

■ Section 2.12, "Composite Availability and Inbound Adapters"

■ Section 3.1.1, "Oracle WebLogic Server Overview"

■ Section 5.9.1.2 "Oracle JCA Adapters Reliability and Transactional Behavior" in the
Oracle Fusion Middleware High Availability Guide.

2.11.1 XA Transaction Support
The goal of XA is to allow multiple resources (such as databases, application servers,
message queues, transactional caches) to be accessed within the same transaction. XA
uses a two-phase commit to ensure that all resources either commit or rollback any
particular transaction consistently.

The XA specification describes what a resource manager must do to support
transactional access. Resource managers that follow this specification are said to be
XA-compliant.

XA transactions are part of the scenario you use when you want to work with multiple
resources: for example, or two or more databases, or a database and a JMS connection,
or all of these plus the adapter, all in a single transaction.

Transactional adapters enable XA transaction support, which, along with the inherent
data processing, ensures that each modification has a clearly defined outcome,
resulting in either success or failure, thus preventing potential corruption of data, It
ensures execution independently from other changes, and, when completed, leaves
underlying data in the same state until another transaction takes place.

XA is a two-phase commit protocol, more robust than a one-phase commit or
emulated protocol. With a one-phase, or emulated, protocol, you can see message loss
or other rollback/commit inconsistency.

2.11.2 Local Transactions and Global (XA) Transactions
An XA transaction is a transaction started by an application server's transaction
manager. All XA resources must participate in any active global transaction, and only
commit or rollback when provided a signal by the transaction manager. If a failure to
commit occurs after the signal is received, a recovery mechanism must also exist to
ensure the commit eventually happens.

A non-participating local resource can start and end a local transaction irrespective of
an active global transaction. The commit can be done immediately and is not in
response to a signal from the transaction manager. If the commit fails, the transaction
is rolled back instead, with an exception thrown. No special recovery is required for
that transaction because there is no other resource with which to synchronize its
commit.

How Oracle JCA Adapters Ensure No Message Loss

ADAPTER Life-Cycle Management 2-15

2.11.2.1 Adapter Support of Local Transactions
Adapters define the type of transaction support by specifying the transaction-support
element in the ra.xml deployment descriptor file.

2.11.2.2 Adapter Support of Global Transactions
Adapters support global transactions in the JCA 1.5 XA contracts that leverage the
underlying application server transaction manager.

The types of adapters that leverage the underlying application transaction manager
includes Oracle Adapter for Oracle Applications, Database, Advanced Queuing, JMS
and MQSeries Adapters.

Non-transactional adapters, which do not leverage the underlying transaction manager,
include Oracle File Adapter and Oracle FTP Adapter.

2.11.2.2.1 Global Transactions, Retries and Rollbacks and Fault Policies

A global transaction can be marked rolled back by any parties that participate in the
global transaction. Once a party marks the global transaction for rollback, other parties
cannot revoke the rollback,

The fault type indicates if the errors are retryable. If retryable, the retries are governed
by the JCA retry properties. Refer to the error handling section. If the error is deemed
unretryable, the handling of such an error is governed by the fault policy, in which
case the fault policy gets executed. This is the same for both inbound and outbound
adapters.

Actions performed by a fault policy are in its local transaction and not in the global
transaction.

Specifically, the fault policy, running in its own transaction, commits any existing JTA
transaction before it starts executing a particular Reference (for example, in Oracle
BPEL PM it is an Invoke activity). The pre-existing JTA transaction is not suspended
and then committed.

Exercise care when using non-transactional adapters, including Oracle File Adapter
and Oracle FTP Adapter, with transactional adapters, as retries can affect
non-transactional data, including creating duplicate messages. The type of care you
need to exercise can include, for example, modelling business processes so message
duplicates do not occur.

2.11.3 Basic Concepts of Transactions and Adapters
For additional information on topics related to retryability, see Section 2.21.1,
"Handling Rejected Messages," and following sections.

■ Polling: All Oracle JCA Adapters and legacy adapters, support a pull, or polling,
model for connecting to the back-end application for receiving events, that is,
periodically querying the EIS endpoint for available messages and data.The
exception to this is the Oracle Socket Adapter, which uses a different set of
logistics, where the socket adapter can either connect to the EIS endpoint as the
other adapters do using a client socket (polling), or, alternatively, create a server
socket and then wait for incoming requests (push.) With polling,
connection-related issues are recoverable and the inbound adapters keep retrying
until the adapters are able to establish connection with the EIS. The adapter
endpoints attempts to recover a lost connection for the duration of the active life of
the composite. During this time they also update the log with diagnostics
pinpointing the issue with connection

How Oracle JCA Adapters Ensure No Message Loss

2-16 Oracle Fusion Middleware User's Guide for Technology Adapters

■ Local retry: These are typically transient connectivity errors. where retries can be
tried again and data is not compromised by a retry. However, non-successive local
retries can change transaction state. Examples of retryable errors include
temporary permission errors or resource constraint errors, or both. If a transaction
can be retried, this does not necessarily mean a rollback.

■ Global retry: A transaction that is rolled back to the beginning of the composite,
for example, to a BPEL Receive where BPEL is part of the composite, which is at
the beginning of the BPEL flow within a composite application. The transaction
can be retried as indefinitely, or as many times as jca.count.retry indicates.
Prior to the retry, a rollback can occur. An example could be where there is a BPEL
fault in a synchronous process, or where there is a partial update to a database
with master and child records and a temporary database fault occurs, and the
toplink mapping logic decides a retry is acceptable. In other words, a global retry
can occur if data is not tainted and it can be considered an explicit retry, where a
rollback is needed.

■ Not-retriable: A transaction that is not retried. With not-retriable conditions, there
is no change to existing state. No-retry conditions derive from binding faults.
Not-retriable situations typically occur where database integrity is an issue. Hence,
not-retriable transactions are rolled back, when rejected; they are typically related
to database constraint issues. Errors such as "Data already exists" (for example,
Primary Key Errors) are not retriable as are message correlation ID errors. A list of
errors that are not retriable is provided later in this chapter.

■ Inbound transaction: A transaction initiated by an inbound adapter. For example,
a transaction entering the SOA system from a JMS system.

■ Outbound transaction: A transaction outbound from the SOA system (and hence
from an adapter). For example, a transaction that is made against a database
outside the SOA system.

■ JTA transaction: Every step of a process is executed within the context of a JTA
transaction. A JTA transaction ensures that one or more operations execute as an
atomic unit of work. See the section on XA above.

■ Asynchronous transaction: A composite transaction composed of
sub-transactions. However, these sub-transactions are consecutive and serialized,
that is, some sub-transactions may have been committed while others may be still
executing or have not yet executed. Asynchronous transactions are guaranteed to
be propagated once and only once. When an update at the source is committed,
the transaction commits and expects that the update is propagated to the target
appropriately.

■ Synchronous transaction: These are transactions that execute in one thread from
one endpoint to another, without intermediate processes, and which are not
serialized.

2.11.3.1 Asynchronous Transaction Flow
In the following sections, asynchronous and synchronous transactions are illustrated
through a canonical combination set of adapters, JMS and DB, with BPEL technology
intermediary. The example could employ other adapters, and other intermediaries, for
example, the Mediator.

For an asynchronous service entry point, a transactional adapter initiates a global JTA
transaction before sending an inbound message to the composite.

2.11.3.1.1 Example using JMS, BPEL, DB Adapter and a Database

How Oracle JCA Adapters Ensure No Message Loss

ADAPTER Life-Cycle Management 2-17

The example described below uses a test composite bound to the JMS adapter, which
is bound to a composite bound in this example to BPEL which in turn is wired to a DB
Adapter. BPEL dispatches messages to the DB adapter.

In this example, messages are read from JMS by the polling JMS Adapter and written
to the BPEL process, where there the transaction commits. This is JTA1, the first XA
transaction.

For any BPEL activity errors that, however, could not be retried or which exhausted their
retry count, BPEL writes to its recovery table to store information. This information
includes BPEL errors.

The second transaction, JTA2, begins with the DB Adapter reading from the BPEL
dispatch table, obtaining the database insert argument. and writing an update message
to the DB Adapter. This transaction, JTA 2, proceeds Outbound from the reference
endpoint DB Adapter (that is, Outbound from SOA) to the Database itself. Retry
situations from a duplicate data situation in the Database are retried either back from
the DB Adapter to BPEL’s table, or from the database back to the DB Adapter.

Global retries for any error handling are returned to the BPEL Receive activity
instance, for example, or, more generally, to the point at which the transaction started.
Such a retry could occur if there was an error such as a temporary database fault. The
default retry count is by default indefinite, or specified in the jca.retry.count
property.

If any errors are caught as part of the second XA transaction, JTA2, a rollback occurs.

2.11.3.2 Synchronous Transaction Flow
For a synchronous process, the global transaction initiated by the adapter spans both:

■ Message delivery

■ Composite execution

As with asynchronous transaction flow, the default retry count is indefinite, but can be
specified through jca.count.retry.

Synchronous transaction flow is similar to the asynchronous flow, with these
differences:

■ Flow consists of request-response messages between the JMS Adapter and
intermediary processing, for example, BPEL processing, and between, using the
same example, BPEL and the Database Adapter, where messages requesting, for
example, an insert are written. With a synchronous transaction, a retryable error is
not caught by BPEL (the example intermediary) within the composite; the
transaction returns all the way back to the JMS adapter for possible global retry.

■ The synchronous transaction is just one JTA transaction, rather than two.

■ The Adapter rejection table keeps a record of adapter rejections. Within the context
of a synchronous transaction, local BPEL error handling is bypassed, and with a
synchronous transaction, the private BPEL table does not contain relevant Adapter
rejection data. The data is instead kept in the Adapter rejection table.

■ Local retries that exhaust the retry count are stored in the BPEL recovery table.

Using a similar example as that used in the synchronous example, and keeping in
mind that an example synchronous message flow, parallel to the one used in the
asynchronous example, consists of only one JTA transaction, JTA 1, throughout the
transaction, processing is straightforward. The transaction starts with a polled
message Inbound to the service endpoint, a JMS read message that then writes to the
BPEL process.

How Oracle JCA Adapters Ensure No Message Loss

2-18 Oracle Fusion Middleware User's Guide for Technology Adapters

Unlike the situation with the asynchronous transaction, with a synchronous
transaction, the JTA transaction does not commit at this point.

Instead, the same JTA transaction proceeds Outbound from the reference endpoint DB
Adapter to the Database itself. The message is then read from BPEL, and the DB
Adapter is invoked with the insert argument from BPEL.At this point the JTA
transaction commits.

As with asynchronous transactions, retries can be global and subject to a count
indicated in the jca.retry.count property. In this example, faults which are locally
retryable are tried either from the database back to the BPEL process or from the
Database back to the DB Adapter.

2.11.4 Inbound Transactions
Inbound the adapter runs in an autonomous work thread; the adapter is in charge of
connection recovery, and uses its own retry properties (for example,
adapter.jms.retry.interval).

A transactional adapter initiates a global JTA transaction before sending an inbound
message to a composite.

For transactional adapters, retries can either be local retries (for example, a BPEL
remote fault), global, or no retry (similar to a binding fault). Global retries are returned
to the location where the transaction started. The default retry count is again, by
default, indefinite, but are retriable only as the jca.retry.count specifies.

When control returns to the adapter, the adapter commits the JTA transaction, and
executes the following set of actions as an atomic unit of work.The adapter:

■ Commits the removal of the message from the inbound adapter endpoint (for
example, table and queue).

■ Commits the execution of the composite instance.

If anything fails during this set of commit actions, that is, in removing the message and
executing the composite instance, both actions are rolled back.

2.11.5 Outbound Transactions
All outbound transaction composite activities, including Oracle JCA adapter
invocations, are part of a global transaction, and if an error occurs the default behavior
is that all activities are either committed or rolled back.

For example, a BPEL process can insert data into several tables (on different databases)
through different Invoke activities (invoking the Database adapter).

When the BPEL instance is about to finish, the JTA transaction is committed.

Only at that point are the database insert operations be committed.

However, if errors occur during the BPEL instance execution, all activities (and thus
database operations) are rolled back to the last BPEL dehydration point (the last time the
BPEL instance was stored to a database.)

Whether an outbound transaction is retryable depends on the nature and scope of a
specific interaction. Specifically:

■ Interactions that involve integrity, for example, database integrity, on the target
side of the Outbound transaction, are not retried.

■ There can be local retries where a locally retriable condition exists, for example, a
minor database issue with a single record.

Singleton (Active/Passive) Inbound Endpoint Lifecycle Support Within Adapters

ADAPTER Life-Cycle Management 2-19

■ If the retry situation is a more complicated database integrity scenario that could
possibly be corrected, for example, an issue with updating both a Master Detail
and a child record, the transaction might be rolled back to its beginning, back to a
BPEL Receive (if BPEL were part of the scenario), and the transaction started
again. The retry is again subject to jca.retry but also could be subject to any
BPEL fault handling retry parameters.

■ Connectivity issues outbound from an adapter are typically always retryable. For
an outbound transaction, the adapter throws a retryable exception when it cannot
get a connection, and then lets the appropriate JCA binding conduct retries
(through jca.retry.count).

An example for a connectivity retryable error related to an outbound interaction is
where a database listener might not have started and, accordingly, that state might be
issuing connection errors.

2.12 Composite Availability and Inbound Adapters
Oracle WebLogic Server migration is used on WebLogic platform so that if a managed
server fails, the server automatically restarts on the same or another physical system
and inbound adapters specific to a composite on the failed server resume functioning.

Meanwhile, inbound adapters in other cluster members continue working servicing
messages.

For more information, see:

■ Section 2.13, "Singleton (Active/Passive) Inbound Endpoint Lifecycle Support
Within Adapters"

■ File and FTP adapters: Section 4.2.18, "High Availability"

■ Database adapter: Section 9.3.7, "High Availability"

■ MQ adapter: Section 10.3.4, "High Availability"

■ Section 2.11, "How Oracle JCA Adapters Ensure No Message Loss"

■ Section 5.9 "Oracle JCA Adapters and High Availability Concepts" in the Oracle
Fusion Middleware High Availability Guide.

2.13 Singleton (Active/Passive) Inbound Endpoint Lifecycle Support
Within Adapters

The JCA Binding Component supports active fail over of inbound Adapter Services.

To enable this fail over feature for a given inbound adapter endpoint, you must add
the singleton JCA service binding property in the composite.xml within the
<binding.jca> element and set it to a value of true as Example 2–1 shows.

To disable this feature, set the singleton property to a value of false (or remove
the property from the <binding.jca> element).

Example 2–1 singleton Property in composite.xml

<service name="JmsTopicSubscr" ui:wsdlLocation="JmsTopicSubscr.wsdl">
<interface.wsdl interface="http://xmlns.oracle.com/...#wsdl.interface(Subscr_

ptt)"/>
<binding.jca config="JmsTopicSubscr_file.jca">

<property name="singleton">true</property>
</binding.jca>

Correlation Support Within Adapters

2-20 Oracle Fusion Middleware User's Guide for Technology Adapters

</service>

2.13.1 Multiple Activations of the Same Adapter Endpoint
In an Oracle WebLogic cluster, multiple activations of the same (for example, JMS)
adapter (inbound) endpoint (for a specific composite service) are detected implicitly
and automatically by all instances of the adapter framework active in that cluster.

However, only one activation is allowed to start the reading or publishing of messages.

The JCA Binding Component instances choose one among the activations, randomly
the activation that assumes the Primary Activation responsibility.

2.13.2 Hot-Standby State
The other activations (also called instances) in the Oracle WebLogic cluster initiate to a
hot stand-by state, without invoking EndpointActivation on the JCA resource
adapter. These activations can be reassigned primary activation responsibility.

If a primary activation at some point becomes unresponsive, is deactivated manually,
or crashes or exits, any of the remaining JCA Binding Component members of the
Oracle WebLogic cluster immediately detect the deactivation, and reassign the
primary activation responsibility to an activation agent that is in stand-by state.

For more information, see Section 2.12, "Composite Availability and Inbound
Adapters".

2.14 Correlation Support Within Adapters
You can use Native Correlation to correlate an inbound asynchronous message with a
previous outbound message, by defining a callback interface (for a Reference) or by a
mid-process BPEL Receive:

For example, the following composite defines such a correlation:

<reference name=’Outbound’>
<interface.wedl
interface="http://xmlns.oracle.com/pcbpel/demo#wsdl.interface
(JMSOutbound_PortType)"
callbackinterface="http://xmlns.oracle.com/pcbpel/demo#wsdl.interface
(JMSCallback_PortType)"/>
<binding.jca.operation="Consume" config="SampleOutbound_adapter.jca"/>

The jca file must contain both JCA interaction and JCA activation.

The correlation between the request and the response is done transparently by the JCA
binding run-time.

For a JMS use case, the third party application must copy the JMS message ID from the
request message to the JMS CorrelationID of the response message.

For the Oracle AQ Adapter and Oracle JMS Adapter use cases, if an external
application copies the MessageId from the request (Invoke) message to the
CorrelationId of the response (Receive) message, the adapter framework ensures
that the BPEL correlation occurs.

Setting Payload Size Threshold

ADAPTER Life-Cycle Management 2-21

2.14.1 CorrelationID of Receive Message Not Matching Invoke: Log Error Message
However, when the CorrelationId of the Receive message does not match any
earlier Invoke message, the message is mapped to a BPEL conversation that does not
actually exist.

In this case, although the message is persisted in the database, the SEVERE log
message can occur, as Example 2–2 shows:

Example 2–2 Log Error When CorrelationId of the Receive Does not Match any Earlier
Invoke

SEVERE: JCABinding=> aqadapter aqadapterAdapter Service aqadapter was
unable to perform delivery of inbound message to the composite ... due to: Cannot
simply post callback message to the composite as there is no
 service element associated with the callback. Recommendation:
add/set the JCA reference/binding property 'rejectUncorrelatedMessages' to true
...
SEVERE: JCABinding=> aqadapter Unable to create/save Composite
Instance Fault due to: null

2.14.1.1 Rejecting Nonmatching Native Correlation IDs
You can explicitly alter the adapter framework behavior so that it rejects nonmatching
native correlation IDs by adding the rejectUncorrelatedMessages service
binding property to the composite.xml file as shown in Example 2–3.

Example 2–3 Setting the rejectUncorrelatedMessages Property

<reference name="ReqReply" ui:wsdlLocation="ReqReply.wsdl">
 <interface.wsdl
interface="http://xmlns.oracle.com/pcbpel/adapter/mq/MQAsyncSol_ReplyQ_
NonRelatedMsg/SOA_AsyncSol_ReplyQ_NonRelatedMsg/ReqReply/#wsdl.
interface(Enqueue_ptt)"
callbackInterface="http://xmlns.oracle.com/pcbpel/adapter/mq/
MQAsyncSol_ReplyQ_NonRelatedMsg/
SOA_AsyncSol_ReplyQ_NonRelatedMsg/ReqReply/#wsdl.interface(Dequeue_ptt)"/>
 <binding.jca config="ReqReply_mq.jca">
 <property name="rejectUncorrelatedMessages">true</property>
 </binding.jca>
</reference>
When rejectUncorrelatedMessages is set to true, uncorrelatable Receive
messages are rejected by the adapter framework; that is, the messages are pushed back
to the publishing JCA resource adapter.

By default, this property is set to false.

For more information, see:

■ Section 2.21, "Error Handling"

■ Section 8.2, "Oracle JMS Adapter Features"

■ Section 7.2.5, "Normalized Message Support"

■ Appendix A, "Oracle JCA Adapter Properties".

2.15 Setting Payload Size Threshold
System resources are finite and have a threshold limit for processing. The Oracle SOA
Suite, dependent on system resources, also has certain size limitations, largely due to
the underlying resources beyond which the system cannot process incoming requests.

Setting Payload Size Threshold

2-22 Oracle Fusion Middleware User's Guide for Technology Adapters

For example, Oracle JCA Adapters can process large payloads but the Oracle BPEL PM
consumes huge memory when processing large payloads, which can cause
OutOfMemory conditions and affect the whole system.

You must set the payload threshold for Oracle JCA Adapters to avoid errors such as
OutOfMemory. Setting the payload threshold helps ensure that Oracle JCA Adapters
process payloads that are less than the threshold limit and reject others that are not less
than the threshold limit. This section provides information relative to your
consideration of the relative size of payloads.

2.15.1 Payload Native Size
If the native size of the payload is available, then the pertinent adapters use the native
size of the payload to limit the payload size below the threshold limit.

For example, with Oracle File Adapter, the native size (size of file polled) is available
to the adapter, and if it is greater than the payload size threshold then the file is
rejected.

If the native size of payload is not available, for example, as is the case for the Oracle
Socket Adapter, the adapter must calculate the native size of the payload internally.

Native size can be determined internally if you use the native translation library to
translate non-XML or parse serialized XMLs.

The Oracle Database Adapter does not rely on the translation framework but has a
special built-in handling mechanism to calculate the size of native messages.

2.15.1.1 Setting the Payload Threshold
You can set the payload threshold by using the knob exposed by Oracle JCA Adapters.
The knob can be set in the composite.xml file as a binding property for the adapter
service, as shown in the following sample:

<binding.jca config="getMsg_mq.jca">
 <property name="payloadSizeThreshold" type="xs:string" many="false"
override="may">1000</property>
</binding.jca>

2.15.1.2 Limitations on Payload Size Enforcement
Where the native size of the payload is not available and if the specific adapter does
not use the native translation library, you cannot enforce the payload size threshold
limit. For example, in case of xml-debatching, where the Oracle File and FTP Adapters
pass a chunk of file content and the actual native size is not known, payload size
threshold limit cannot be used. Also, where there are serialized XML payloads and
where XDK parser that lacks the feature to calculate native size is used for parsing
instead of the native translation library, you cannot use payload size threshold limit.

XSD and Opaque translator scenarios can only be handled in adapters where the
payload size is deterministic. For more information on the scenarios that are supported
for specific Oracle JCA Adapters, refer to Table 2–2.

Caution: In case of debatching with error recovery, payload size
threshold must be used carefully. Payload size violations might lead to
unwarranted rejections while skipping the stream in case of erroneous
records.

Batching and Debatching Support

ADAPTER Life-Cycle Management 2-23

2.15.1.2.1 Changing Global Payload Size to a Finite Value

Also, you can set the global property for capping payload size to change the default
value of payloadSizeThreshold (from indefinite) to a finite number. In this case,
where you set the default value of payloadSizeThreshold to a finite number, even
if you do not explicitly configure a value for the payloadSizeThreshold property
for a particular inbound adapter endpoint, the global default takes effect. If you
specify the global default along with the value in composite.xml, then the value
specified in composite.xml overrides the global value.

You can modify this global property using the MBeans browser (Adapter Mbean) of
the Oracle Enterprise Manager. This change takes immediate effect for all current and
future endpoints

2.16 Streaming Large Payload
Oracle JCA Adapters support large payload processing for both inbound and
outbound processing. However, only the following adapters support the streaming
feature explicitly:

■ Oracle File Adapter

For more information, see Section 4.5.4, "Oracle File Adapter Scalable DOM".

■ Oracle AQ Adapter

For more information, see Section 7.2.11, "Stream Payload Support".

■ Oracle JMS Adapter

For more information, see "Supports Streaming Large Payload" on page 8-5.

■ Oracle Database Adapter

For more information, see Section 9.3.5, "Streaming Large Payload".

The other adapters do not have explicit support for both.

2.17 Batching and Debatching Support
The batching and debatching functionality is supported for these adapters:

■ Oracle JCA Adapter for Files

■ Oracle JCA Adapter for FTP

■ Oracle JCA Adapter for Databases

Oracle JCA Adapter for File and Oracle JCA Adapter for FTP consist of a Reader to
debatch a single large file into several batches. You must specify the batch size during
the design-time configuration. In addition, the adapter includes a Writer to batch a set

Table 2–2 Translation Scenarios Supported for Oracle JCA Adapters

Scenario

Oracle File
and FTP
Adapters

Oracle JMS
Adapter

Oracle MQ
Series Adapter

Oracle AQ
Adapter

Oracle Database
Adapter

NXSD Yes Yes Yes Yes Not applicable

XSD Yes Yes Yes No Yes

Opaque Yes Yes Yes No Not applicable

DTD No No No No Not applicable

Adding an Adapter Connection Factory

2-24 Oracle Fusion Middleware User's Guide for Technology Adapters

of messages into a single file. For more information, see Section 4.2.4, "File
Debatching".

Oracle JCA Adapter for Databases consists of a Publish component to poll a set of
tables to detect events. This component can raise events to the BPEL process one
record at a time or multiple records at a time. For more information, see Section 9.4.2.2,
"Polling Strategies".

2.18 Adding an Adapter Connection Factory
The logical deployment of adapters implies the creation of ConnectionFactory
objects in the weblogic-ra.xml deployment descriptor file. The
weblogic-ra.xml file contains run-time connection parameters for an adapter.

To add the connection information and assign to a JNDI name, you must edit the
corresponding weblogic-ra.xml file of the resource adapter by either using Oracle
WebLogic Server Administration Console or WLST scripts.

For more information about creating a connection factory, see Oracle Fusion Middleware
Installation Guide for Oracle WebLogic Server.

The following steps describe how to set up a Database connection factory in the Oracle
WebLogic Server Administration Console.

This section includes the following topics:

■ Section 2.18.1, "Creating a Data Source"

■ Section 2.18.2, "Creating a Connection Pool"

2.18.1 Creating a Data Source
To create a data source:

1. Navigate to http://servername:portnumber/console.

2. Use the required credentials to open the Home page of the Oracle WebLogic
Server Administration Console.

The Home page of the Oracle WebLogic Server Administration Console is
displayed.

3. Under Domain Structure, select Services, JBDC, and then click DataSources.

The Summary of JDBC Data Sources page is displayed.

4. Click New. The Create a New JDBC Data Source page is displayed.

5. Enter the following values for the properties to be used to identify your new JDBC
data source:

■ Name: soademoDatabase

■ JNDI Name: jdbc/soademoDatabase

■ Database Type: Oracle

Retain the default value for Database driver.

6. Click Next. The Create a New JDBC Data Source Transaction Options page is
displayed.

7. Click Next. The Create a New JDBC Data Source Connection Properties page is
displayed.

Adding an Adapter Connection Factory

ADAPTER Life-Cycle Management 2-25

8. Enter the connection properties in the Connection Properties page, and then click
Next.

The Create a New JDBC Data Source Test Database Connection page is displayed.

9. Click Test Configuration to test the database availability and the connection
properties you provided. A message stating that the connection test succeeded is
displayed at the top of the Create a New JDBC Data Source Test Database
Connection page.

10. Click Next. The Create a New JDBC Data Source Select Targets page is displayed.

11. Select a target, and then click Finish. You have created a data source.

The Summary of JDBC Data Sources page is displayed. This page summarizes the
JDBC data source objects that have been created in this domain. The Data Source
that you created is displayed in this list.

2.18.2 Creating a Connection Pool
To create a connection pool:

1. Navigate to http://servername:portnumber/console.

2. Use the required credentials to open the Home page of the Oracle WebLogic
Server Administration Console.

The Home page of the Oracle WebLogic Server Administration Console is
displayed.

3. Under Domain Structure, click Deployments.

The Summary of Deployments page is displayed.

4. Click the Database adapter name from the Deployments list.

The Settings for DbAdapter page is displayed.

5. Click Configuration tab, and then click Outbound Connection Pools tab.

The Outbound Connection Pool Configuration Table is displayed.

6. Click New.

7. Select javax.resource.cci.ConnectionFactory, and then click Next.

The Create a New Outbound Connection page is displayed.

8. In the JNDI Name: field, enter eis/DB/soademoDatabase.

9. Click Finish.

The Settings for DbAdapter page showing a table of Outbound Connection Pool
groups and instances for this resource adapter is displayed.

The configuration changes that you made must be stored in a new deployment
plan. You do this in the next step.

Note: The JNDI value that you enter in this step is different from the
same value that you entered in Step 5 in Section 2.18.1, "Creating a
Data Source." The JNDI name specified in this step must match the
value you enter in your database connection you create when building
your application later.

Adding or Updating an Adapter Connection Factory

2-26 Oracle Fusion Middleware User's Guide for Technology Adapters

10. In the Path field, select or enter the path of a deployment plan file. The path must
end with ".xml".

11. In the Properties field, enter the value for xADataSourceName as
jdbc/soademoDatabase

12. Click Save.

13. Under Domain Structure, click Deployments.

The Summary of Deployments is displayed.

14. Perform the following steps:

a. Select the DbAdapter check box, and then click Update.

The Update Application Assistant page is displayed.

b. Select the Update this application in place with new deployment plan
changes option.

c. Click Next, and then click Finish.

The Summary of Deployments page stating that the deployment you selected
is updated is displayed.

15. Under Domain Structure, click Deployments, DbAdapter, Configuration, and
then Outbound Connection Pools.

Notice that the value of the xADataSource property that you entered in Step 11 is
displayed in the Connection Factory Interface tab.

2.19 Adding or Updating an Adapter Connection Factory
You can add a new adapter connection factory or update an existing adapter
connection factory.

If you add or update an adapter connection factory, you must perform any of the
following procedures to ensure that the composite uses the new adapter connection
factory properties.

Note: If the Adminserver is running on computer A and the Oracle
SOA server is running on computer B, then you must copy the
deployment plan file to computer B before you activate changes made
on the Oracle SOA server. If you try to activate changes without
copying the deployment plan to the Oracle SOA Server computer, a
NullPointerExceptwion is thrown.

Note: The properties do not get saved when you click Save as
mentioned in this step. Instead, you must press Enter in the keyboard
to save the changes you made.

Note: If you are adding a new value for the outbound connection
pool, then you do not have to restart the Managed server or the
Admin server. However, if you edit any property of an existing
connection pool, you must restart the server.

Adding or Updating an Adapter Connection Factory

ADAPTER Life-Cycle Management 2-27

2.19.1 Modify the JCA File
Follow these steps:

1. Create a new JNDI for a JCA adapter connection factory. For more information
about creating a connection factory, see Oracle Fusion Middleware Installation Guide
for Oracle WebLogic Server.

2. Modify the JCA file of the deployed composite to point to the new JNDI.

The composite takes the properties from the newly-created JNDI.

2.19.2 Use a Config Plan
1. Create a new JNDI for a JCA adapter connection factory.

2. Create a Config plan for the composite.

To create a Config Plan, right-click composite.xml in the JDeveloper design
area. From the menu that appears, click Generate Config Plan. The Config
Plan is generated.

3. Specify a logical name for the JNDI in the JCA file.

For example, in the following sample, jndi-name is the logical JNDI name:

 <connection-factory location="jndi-name" adapterRef=""/>

4. Replace the logical name with the absolute value of the new JNDI in the
Config plan.

For example, in the following sample, the logical JNDI name, jndi-name is
replaced by the absolute value, eis/MQ/MQSeriesAdapter7:

<wsdlAndSchema
 name="DQ1.wsdl|DQ1_mq.jca|EQ1.wsdl|EQ1_mq.jca|monitor.config">
 <searchReplace>
 <search>jndi-name</search>
 <replace>eis/MQ/MQSeriesAdapter7</replace>
 </searchReplace>
 </wsdlAndSchema>

When a composite uses new adapter connection factory properties, you must perform
the following steps to avoid an Oracle Containers for Java EE restart:

1. Log into the Home page of the Oracle WebLogic Server Administration Console.

2. Select Deployments in the Domain Structure pane.

The Oracle WebLogic Server Administration Console Summary of Deployments
page is displayed.

3. Select the adapter for which you added a new connection factory.

4. Click Update.

The Update Application Assistant page is displayed.

5. Select the Update this application in place with new deployment plan changes
option.

6. Click Next, and then click Finish.

The Summary of Deployments page stating that the deployment you selected is
updated is displayed. You can use this procedure to change adapter endpoints, for
example, without having to perform a restart.

Recommended Setting for Data Sources Used by Oracle JCA Adapters

2-28 Oracle Fusion Middleware User's Guide for Technology Adapters

2.19.3 Use the Web Logic Server Console to Create a New Connection
You can use the Web Logic Console to create connection factories for use with JMS.
Refer to Section 8.4.1.4.1, "Creating a New Connection by Using the Oracle WebLogic
Server Administration Console"

2.20 Recommended Setting for Data Sources Used by Oracle JCA
Adapters

This section describes the recommended setting for non-XA and XA data sources used
by Oracle JCA Adapters.

The following are the recommended settings for multi data sources:

■ test-frequency-seconds should be 5

■ algorithm-type should be Load-Balancing

■ data-source-list should point to a list of comma-delimited child data
sources. For example, ("JDBC Data Source-0,JDBC Data Source-1")

If your endpoint property resides in an Oracle RAC database, use multi-data sources.

Table 2–3 lists the recommended setting for XA and non-XA data sources used by
Oracle JCA Adapters.

Table 2–3 Recommended Setting For XA and Non-XA Data Sources

XA Data Sources Non-XA Data Sources

The driver used is
oracle.jdbc.xa.client.OracleXADataSource.

The driver used is
oracle.jdbc.OracleDriver.

The JDBC URL should be in the following format:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=
TCP)(HOST=host-vip)(PORT=1521))(CONNECT_
DATA=(SERVICE_NAME=service_name)(INSTANCE_
NAME=inst1)))

Same as that of XA data source.

You must set the following property

<property>
<name>oracle.net.CONNECT_TIMEOUT</name>
<value>10000</value>
</property>

Same as that of XA data source.

The value of initial-capacity must be 0 Same as that of XA data source.

The value of
connection-creation-retry-frequency-seconds
must be 10

Same as that of XA data source.

The value of test-frequency-seconds must be 300. Same as that of XA data source.

The value of test-connections-on-reserve must be
TRUE.

Same as that of XA data source.

The value of test-table-name must be SQL SELECT
1 FROM DUAL

Same as that of XA data source.

The value of
seconds-to-trust-an-idle-pool-connection
must be 0

Same as that of XA data source.

Error Handling

ADAPTER Life-Cycle Management 2-29

In addition to applying the settings mentioned in Table 2–3, you must perform the
steps documented in "Using Oracle Thin/XA Driver" in the Oracle Fusion Middleware
Programming JTA for Oracle WebLogic Server

These steps are required for data sources using XA driver. After performing the steps
mentioned in the preceding link, you must run the following SQL statements to enable
WLS JTA recovery to work:

grant select on sys.dba_pending_transactions to public
GRANT FORCE ANY TRANSACTION TO public
grant execute on sys.dbms_xa to public

2.21 Error Handling
The Oracle JCA Adapters provide error handling capabilities, as listed in the following
sections. These rejection handlers are applicable in synchronous processes only. They
do not apply to asynchronous or one-way processes.

This section includes the following topics:

■ Section 2.21.2, "Inbound Interaction Error Handling"

■ Section 2.21.3, "Outbound Adapter Interaction Error Handling"

■ Section 2.21.1.2.3, "Handling Message Errors: A Sample Scenario"

2.21.1 Handling Rejected Messages
The messages that error out before being posted to the service infrastructure are
referred to as rejected messages. For example, the Oracle File Adapter selects a file
having data in CSV format and tries to translate it to XML format (using NXSD). If
there is any error in the translation, this message is rejected and are not be posted to
the target composite.

Primarily, adapters and binding components are the generators of rejected messages.

The value of global-transactions-protocol must
be TwoPhaseCommit

The value for
global-transactions-proto
col must be None.

The value of keep-xa-conn-till-tx-complete must
be TRUE.

NA

The value of xa-retry-duration-seconds must be
300.

NA

The value of xa-retry-interval-seconds must be
60.

NA

Note: The settings mentioned in Table 2–3 are applicable to both
types of database, single instance and an Oracle RAC database. In case
of an Oracle RAC database, these settings must be used for constituent
data sources for multi data sources created for endpoints. See the
Oracle RAC Documentation at
http://www.oracle.com/technetwork/database/options/clustering/documentati
on/index.html

Table 2–3 (Cont.) Recommended Setting For XA and Non-XA Data Sources

XA Data Sources Non-XA Data Sources

Error Handling

2-30 Oracle Fusion Middleware User's Guide for Technology Adapters

Errors or faults that arise downstream in a synchronized flow are handled in the
following manner by the inbound adapter:

■ Immediately rejected if the exception is non-retryable.

■ Retried indefinitely if the exception is retryable.

■ Retried several times equal to the value of jca.retry.count (if configured) and
then rejected when the retries are exhausted.

Adapters reject messages that error out at the binding level; that is, they error out
before entering the Service Infrastructure layer.

All rejected messages are stored in the Database with the payload. The rejected
messages can later be queried against.

This section includes the following topics:

■ Section 2.21.1.1, "Configuring Rejection Handlers"

■ Section 2.21.1.2, "Checking for Rejected Messages"

For more information, see Section 2.14, "Correlation Support Within Adapters".

2.21.1.1 Configuring Rejection Handlers
In the 10.x release, rejection handlers were defined in the deployment descriptor
(bpel.xml) of an Oracle BPEL process.

However, in the 11g release, you must define rejection handlers by using fault policies.

You can specify only one action handler for inbound rejection handlers.

2.21.1.1.1 Creating Fault Policies

You must create two files named fault-policies.xml and
fault-bindings.xml, and copy them to the SOA project directory in JDeveloper, as
described in the following steps:

1. Define a fault policy for the rejected messages in the fault-policies.xml file,
stored with the composite.xml file in the JDeveloper project directory.

The following is an example of a fault policy:

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies>
<faultPolicy version="2.0.1" id="RejectedMessages">
<Conditions> <!-- All the fault conditions are defined here -->
<faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages"

name="rjm:<SERVICE_NAME>"> <!-- local part of fault name should be the service
name-->

<condition>
 <action ref="writeToFile"/> <!-- action to be taken, refer to

Actions section for the details of the action -->
</condition>

</faultName>
</Conditions>
<Actions> <!-- All the actions are defined here -->

<Action id="writeToFile">
<fileAction>
<location>/tmp/rej_msgs</location>
<fileName>emp_%ID%_%TIMESTAMP%.xml</fileName>

</fileAction>
</Action>

</Actions>

Error Handling

ADAPTER Life-Cycle Management 2-31

</faultPolicy>
</faultPolicies>

2. You must associate the fault policy with a service endpoint of the composite in
fault-bindings.xml, as is done in the following example:

<faultPolicyBindings version="2.0.1"
xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

...
<service faultPolicy="RejectedMessages">

<name>Read</name>
</service>
...

</faultPolicyBindings>
3. Copy the fault-policies.xml and the fault-bindings.xml files to your

SOA composite project directory.

4. Deploy the SOA composite project.

2.21.1.2 Checking for Rejected Messages
Rejected messages are stored in the rejected_message table.

You can check for rejected messages by using either of the following steps. You can
obtain the messages and perform additional processing on them, according to your
own implementation.

■ Checking from the Database

■ Checking from the Fusion Middleware Control Console

2.21.1.2.1 Checking from the Database

To check from the database, you must connect to the database as soainfra schema, and
run the following SQL command:

select * from rejected_message

2.21.1.2.2 Checking from the Fusion Middleware Control Console

You can view the rejected messages in the Recent Faults and Rejected Messages
section of the Dashboard tab or in the Faults and Rejected Messages tab.

For more information about using the Fusion Middleware Control Console for
checking for rejected messages, see:

■ Section 28.2, "Monitoring Recent Faults and Rejected Messages for an Inbound
Adapter" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite
and Oracle Business Process Management Suite.

Note: If you do not configure rejection handlers as mentioned in
Section 2.21.1.1, "Configuring Rejection Handlers", a default file-based
rejection handler starts processing and the rejected messages is
directed to <domain_home>/rejmsgs/<wls_server_
name>/<composite_name>.

Also, you can configure rejected messages with a Mediator
Component in the same fault policy as that of Oracle BPEL Process
Manager (Oracle BPEL PM).

Error Handling

2-32 Oracle Fusion Middleware User's Guide for Technology Adapters

■ Section 28.3, "Monitoring Faults and Rejected Messages for an Inbound Adapter"
in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and
Oracle Business Process Management Suite

2.21.1.2.3 Handling Message Errors: A Sample Scenario This section describes how to
handle message errors through a sample scenario.

There are two composites, Composite 1 and Composite 2 each having an Oracle BPEL
process and there is a mix of local and XA resources, as shown in Figure 2–10.

Figure 2–10 Sample Scenario: Handling Message Errors

When the message is successfully delivered to all the queues (Q1, Q2 and Q3), the
transaction commits successfully.

If the message cannot be delivered to Q1 (or to any queue) but the message is
delivered to queues Q2 and Q3, the transaction must roll back all the three messages
because all are XA resources and there is an exception in an XA unit.

The rollback exception is thrown only for the second composite where Q1 failed, and
the transactions commits Q2 and Q3 instead of rolling back the messages for all the
three queues.

To have the transaction roll back all the queues even if only one fails, and for the other two
have messages successfully delivered to them, you must make the change in the
composite.xml file of the called composite (Composite2) as Example 2–4 shows:

Example 2–4 Changes in composite.xml of Composite2

<component name="BPELProcess1">
<implementation.bpel src="BPELProcess1.bpel"/>
<property name="bpel.config.transaction">required</property>

</component>
This sets the property bpel.config.transaction to the value of required,
which causes the transaction to roll back all the queues even if only one fails.

If you set property bpel.config.transaction to a value of required, the Oracle
BPEL engine effectively processes the synchronous request without creating a new
transaction; rather, it uses the caller's transaction. Therefore, if at any point the
transaction gets rolled back, nothing done in that transaction commits.

Composite2 (Called Composite) : (Synchronous BPEL Process)

Composite1 (Caller Composite): (Synchronous BPEL Process)

Web Service Oracle BPEL Process Q1 (XA)

Web Service Oracle BPEL Process

Q3 (XA)

Service1 (Composite2)

Q2 (XA)

Error Handling

ADAPTER Life-Cycle Management 2-33

2.21.2 Inbound Interaction Error Handling
You can indicate the way inbound adapters should handle errors by specifying
rejected message handlers.

2.21.2.1 Message Error Rejection Handlers
You can create rejection handlers to handle message errors. Message errors include
those that occur during translation, correlation ID mismatch and XML parsing after
message reception.

2.21.2.1.1 Available Rejection Handlers for Message Errors

Before considering error handling in terms of retryability, it is important to understand
the error handlers that are available.

The following are the system-defined error handlers, which you can configure through
fault policies:.

■ Web Service Handler

■ Custom Java Handler

■ JMS Queue

■ File

2.21.2.1.2 Web Service Handler

A rejected message can be handled by calling a Web Service. If you choose to use a
Web Service to handle these errors, you should implement a predefined WSDL
interface implemented by the target service, SOAP bindings for the Web service
invocation, and native payloads passed as WebService-attachments, as shown in the
following example:

<Action id="ora-ws">
<invokeWS uri="WebServiceURI"/>

<!-- format - <Absolute wsdl path>|service name|port name -->
</Action>

The WSDL Interface for the Web Service handler must have one port type, only one
input operation, and a schema for the input message. This is shown in the following
example.

<?xml version="1.0"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://xmlns.oracle.com/pcbpel/errorHandling"
xmlns:tns="http://xmlns.oracle.com/pcbpel/errorHandling"
elementFormDefault="qualified">
<element name="RejectedMessage" type="tns:RejectedMessageType">
<complexType name="RejectedMessageType"/>
<sequence>
<element name="MessageHeader" type="string"/>

<!-- base64 encoded string -->
<element name="MessagePayload" type="string"/>

<!-- base64 encoded string -->
<element name="RejectionReason" type="string"/>

</sequence>
<attribute name="RejectionId" type="string"/>

</complexType>
</schema>

2.21.2.1.3 Custom Java Handler

Error Handling

2-34 Oracle Fusion Middleware User's Guide for Technology Adapters

Another option to handle errors is to create a predefined Java framework, an interface,
that forwards errors. You can implement a Java interface by the target class, as shown
in the following example.

<Action id="ora-custom">
<javaAction className="mypackage.myClass" defaultAction="ora-terminate">
<returnValue value="SUCCESS" ref="ora-file"/>
<returnValue value="FAILED" ref="ora-ws"/>

</javaAction>
</Action>
The interface itself specifies a fault recovery class. See the following snippet for an
example of the interface.

package oracle.integration.platform.faultpolicy;
public interface IFaultRecoveryJavaClass
{

public void handleRetrySuccess(IFaultRecoveryContext ctx);
public String handleFault(IFaultRecoveryContext ctx);}

2.21.2.1.4 JMS Queue

You can enqueue a rejected message to a JMS queue as a JMS message with the
appropriate context and payload, as shown in the following two examples.

The first example uses a standalone database:

<Action id="ora-queue">
<enqueue uri="QueueURI"/> <!-- QueueURI format -

jdbc:oracle:thin:@<host>:<port>:<sid>#<un>/<pw>#queue -->
</Action>
The second example is used with an Oracle RAC database:

<Action id="ora-queue">
<enqueue uri="QueueURI"/> <!-- QueueURI format -

jdbc:oracle:thin:@(DESCRIPTION=(LOAD_BALANCE=on)(ADDRESS_
LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=<host1>)(PORT=<port1>))(
ADDRESS=(PROTOCOL=TCP)(HOST=<host2>)(PORT=<port2>)))(CONNECT_DATA=(SERVICE_
NAME=<service_name>)))#<un>/<pw>#queue -->
</Action>

2.21.2.1.5 File

You create an error handler for messages by storing a rejected message in a file. You
can store the payload with the proper context, as shown in the following example. The
Payload file is created at the configured location.

<Action id="ora-file">
<fileAction>
<location>FOLDER_LOCATION</location>
<fileName>FILE_NAME</fileName>

<!-- FILE_NAME will support %ID%(rejected message instance id) or %TIMESTAMP%
wildcards -->
</fileAction>

</Action>
Error payload persistence in the Database is available by default. Only the File
Adapter handler creates a metadata file that contains all the properties of the rejected
message.

For example, for the Oracle File Adapter, this metadata file could include information
such as the inbound direction and file name. The location of metadata file is same as
the payload file and the naming pattern is <FILE_NAME>_metadata.

Error Handling

ADAPTER Life-Cycle Management 2-35

For resubmitting rejected messages, payload persistence is imperative. Payloads are
stored in the Database and a facility to view the payloads is available through the
Fusion Middleware Control Console. The message/payload is provided in full to each
configured error handler, in addition to providing the payload to the default error
handler.

2.21.2.2 Inbound Retryable Errors
Inbound retryable errors are typically transient connectivity errors. Only retryable errors
for a synchronous process thrown by the outbound binding is subject to retry by the
inbound adapter (an indefinite number of times by default, which is limited by setting
the jca.retry.count property). Any JTA transaction is rolled back before a retry.

Examples of retryable errors thrown by outbound adapters include connection errors
but include also termporary permission errors or resource constraint errors, or both.

Errors such as "Data already exists" (for example, Primary Key Errors) are not
retryable. In addition, message correlation ID errors are not retryable.

When a set number of retries have been exhausted, the rejection mechanism handles
the error.

2.21.2.2.1 Configuring Inbound Adapters to Handle Retryable Errors

You can configure inbound adapters to handle inbound retryable errors. The following
properties, which you can specify in the composite.xml file, are supported for
retryable exceptions for inbound interactions:

By default, there is unlimited retry for inbound errors; however, adapter retry is either
at the level of the composite (local) application or at the global level.

Once you have configured properties in the composite, at the service level, the
configuration of the properties has meaning. (For example, when you configure the
number of retries before rejection, the value of the interval property takes its default
value.)

Properties you can specify in the composite.xml file include:

■ jca.retry.count

Specifies the maximum number of retries before rejection. Again, specifying this
value is a pre-requisite to specifying the other property values.

■ jca.retry.interval

Specifies the time interval between retries (measured in seconds.)

■ jca.retry.backoff

Specifies the retry interval growth factor (positive integer.)

■ jca.retry.maxInterval

Specifies the maximum value of retry interval, that is, a cap if backoff > 1

2.21.2.2.2 Specifying Inbound Retry Properties in the composite.xml File

You can modify the composite application’s xml descriptor to specify properties that
apply to retries. The preceding list of properties are specified in the composite.xml file
in JDeveloper, as shown in the following example:

 <service name="Inbound">
 <interface.wsdl interface="http://xmlns...#wsdl.interface(Inbound_PortType)"/>
 <binding.jca config="Inbound_db.jca">

Error Handling

2-36 Oracle Fusion Middleware User's Guide for Technology Adapters

 <property name="jca.retry.count">5</property>
 <property name="jca.retry.interval">1</property>

 <property name="jca.retry.backoff">2</property>
 <property name="jca.retry.maxInterval">6</property>

 </binding.jca>
</service>
For retryable exceptions, you must set the value of jca.retry.count to the number
of times the retry is to be carried out.

For example, if you set the value of jca.retry.count to 10, the retry occurs 10
times.

However, if you have not set any value for jca.retry.count, the retry is carried out
indefinitely, which is the default for retryable errors.

2.21.2.2.3 Changing the Default Value of jca.retry. count for Inbound Adapter Endpoints

You can change the global property for capping retries to alter the default value of
jca.retry.count from an indefinite to a finite number.

In this case, where you set the default value of jca.retry.count to a finite number,
even if you do not explicitly configure a value for the jca.retry.count property for
a particular inbound adapter endpoint, the global default takes effect.

If you specify the global default along with the value in the composite.xml, the value
specified in the composite.xml overrides the global value.

You can modify the global property using the MBeans browser (Adapter Mbean) of the
Oracle Enterprise Manager. Any change you do through the MBeans browser takes
immediate effect for all current and future endpoints.

2.21.2.2.4 Global Property Modification using the MBeans Browser

To modify the global property using the MBeans browser (Adapter Mbean) of the Oracle
Enterprise Manager, you must use the following procedure:

1. Navigate to http://servername:portnumber/em.

The Fusion Middleware Control Console displays its home page.

2. Right-click soa-infra from the SOA Folder in the navigator in the left pane.

The soa-infra page is displayed.

3. From the SOA Infrastructure menu, select Administration, and then System
Mbean Browser, as shown in Figure 2–11.

The System Mbean Browser page is displayed.

Note: Infinite retries by inbound adapters for errors results in the
creation of multiple composite instances, because for every retry a
separate composite instance is created.

Error Handling

ADAPTER Life-Cycle Management 2-37

Figure 2–11 The soa-infra Page

4. Select oracle.as.soainfra.config, Server, AdapterConfig, and then adapter, as
shown in Figure 2–12.

Figure 2–12 The soa-infra Page: System MBean Browser

5. Modify the GlobalInboundJcaRetryCount attribute (as an example of a Global
Property)

2.21.2.3 Inbound Non-Retryable Errors
Typically non-retryable errors are a result of either transformation or message parsing.

Inbound adapters handle non-retryable errors thrown from the Enterprise Information
System by rejecting the inbound messages. If the error is a non-retryable error, you
must use the rejection handler to handle the non-retryable error.

2.21.2.3.1 Examples of Non-Retryable Errors

Examples of non-retryable errors thrown from interaction with an Enterprise
Information System include the following:

Error Handling

2-38 Oracle Fusion Middleware User's Guide for Technology Adapters

■ Primary key violation

■ Queue does not exist

■ Master record does not exist

■ Unable to serialize payload

Non-retryable errors are never retried because they are never expected to resolve
themselves simply by being retried. For example, messages can be sent from a file to
an inbound file adapter through a Mediator. The Mediator, in turn, has sequential
routing to an outbound Database Adapter that inserts data to a database table. The DB
adapter might encounter a unique constraint error as it is performing the insert
operation. This unique constraint error is:

■ Considered by the outbound Database Adapter as a non-retryable error

■ Propagated back to the inbound Adapter

■ Considered by the inbound adapter as a non-retryable error as well, using a
rejection handler. The adapter uses a fault policy if one is defined.

A mediator could have errors on a transformation. This type of error is a non-retryable
error. The error returns to the inbound adapter where it is handled, depending on the
signature of the WSDL.

2.21.3 Outbound Adapter Interaction Error Handling
Outbound Interaction errors occur with messages that have interactions outbound
from an adapter.

This section addresses the retryability and non-retryability of these Outbound
Interaction errors and provides a basis for understanding the related properties you
can set.

2.21.3.1 Retryable Errors for Outbound Adapter Error Handling
Outbound retryable errors can be retried based on the value of jca.retry.count in
the composite.xml file.

2.21.3.1.1 Setting Retryable Properties for Outbound Error Handling in the composite.xml File

For retryable exceptions for outbound error handling, you must set the value of
jca.retry.count to the number of times the retry is to be carried out.

For example, if you set the value of jca.retry.count to 10, the retry occurs 10
times.

However, if you have not set any value for jca.retry.count, the retry is carried out
by the fault policy, if you have included the fault policy as part of the composite.

2.21.3.1.2 Example: How to Set Values for Retryable Exceptions for Outbound Interactions

The following code snippet is an example of how to set values in the composite.xml
file for retryable exceptions for outbound interactions.

The retry is set to 5 minutes with an interval of 1 minute, and the other properties are
appropriately configured. As stated before, the additional properties have meaning
when the jca.retry.count property is specified.

<reference name="Outbound">
<interface.wsdl interface="http://xmlns...#wsdl.interface(Outbound_PortType)"/>
<binding.jca config="Outbound_jms.jca">
<property name="jca.retry.count">5</property>

Error Handling

ADAPTER Life-Cycle Management 2-39

<property name="jca.retry.interval">1</property>
<property name="jca.retry.backoff">2</property>
<property name="jca.retry.maxInterval">6</property>
<property name="jca.retry.maxPeriod">30</property>

</binding.jca>
</reference>

2.21.3.2 Non-Retryable Errors for Outbound Interaction Handling
You can handle non-retryable exceptions for outbound interactions by defining the
maximum number of reconnection attempts that can be made in the fault-policy.xml
file, which establishes the expected behavior for non-retryable errors.

In this fault policy file, you specify the parameters for reconnection attempts, as shown
in the following example. This includes:

■ The number of reconnection retries (retryCount)

■ Intervals between reconnection retries (retryInterval)

■ An exponential backoff value for the connection retries (exponentialBackoff)

All time measurements are specified in seconds.

<faultName xmlns:bplex="http://schemas.oracle.com/bpel/extension"
name='bplex;bindingFault">

<condition>
<action ref="ora-retry"/>

</faultName>
</condition>

 <Actions>
 <Action id="ora-retry">

<retry>
<retryCount>10</retryCount>
<retryInterval>2</retryInterval>
<exponentialBackoff>2</exponentialBackoff>

</retry>
 </Action>

 </Actions>
You must associate a fault policy with a reference end point of the composite in
fault-bindings.xml file, as shown in the following example, with the
faultPolicy ConnectionFaults and the reference name
writeMessageToQueue.

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicyBindings version="2.0.1"
xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<reference faultPolicy="ConnectionFaults">
<name>writeMessageToQueue</name>

</reference>
</faultPolicyBindings>
After the configured number of retries is reached without a positive result, the Service
Infrastructure Invocation exception is thrown.

2.21.3.2.1 Fault Propagation

The propagation of the type of the Service Infrastructure Invocation exception is
important to allow inbound adapters to respond to errors reported by outbound
adapters.

Testing Applications

2-40 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 2–13, "Fault Propagation" shows the fault propagation when an adapter calls
the service infrastructure synchronously, after which the Oracle BPEL Process
Manager calls a down-stream adapter.

In this figure, a Service Infrastructure Invocation exception propagates from the
down-stream adapter, through Oracle BPEL Process Manager, and to the caller
adapter.

Figure 2–13 Fault Propagation

2.21.3.2.2 Two Cases When the Fault Policy Mechanism Does Not Work

There are two cases where the fault policy mechanism does not work:

■ Outbound Adapters in XA Mode

■ Outbound Adapters in Mediator Sequential Routing

2.21.3.2.3 Outbound Adapters in XA Mode

The fault policy mechanism does not work for outbound adapters in XA mode.

For example, in XA mode, if you want the fault policy to retry when the outbound
adapter fails, it does not retry and any outbound adapter that has been successful
before this failure occurred does not rollback messages.

2.21.3.2.4 Outbound Adapter in Mediator Sequential Routing

Fault policies also do not work for the outbound adapter that is invoked in Mediator
sequential routing, because the mediator fault policies are applicable to parallel
routing rules only.

2.22 Testing Applications
You can run and test instances of deployed SOA composite applications from Oracle
Enterprise Manager Grid Control Console. Running and testing your instances this
way enables you to:

■ Manage a composite application

■ Initiate an instance of a composite

Adapter

Adapter

Service
Infrastructure

BPEL

Service
Infrastructure

Service Infrastructure Invocation Exception

Service Infrastructure Invocation Exception

Setting the Trace Level of Oracle JCA Adapters

ADAPTER Life-Cycle Management 2-41

■ Track an instance of a composite

■ View detailed component instance audit trails

For more information about testing applications, see Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

2.23 Setting the Trace Level of Oracle JCA Adapters
Set the trace level for the following types of adapters as follows:

■ Oracle JCA Adapters and Oracle Adapter for Oracle Applications: set the log level
to, for example, TRACE:32 in the logger oracle.soa.adapter.

For more information about setting trace levels for adapters, see Oracle Fusion
Middleware Administrator's Guide.

■ Packaged-application adapters: For outbound interactions, set the Loglevel
property for packaged-application adapters in the weblogic-ra.xml file.

■ Legacy adapters: you can use Oracle Studio to set the trace level for Oracle
Connect, and the mainframe server.

2.23.1 How to Set the Trace Level of Oracle JCA Adapters
To set the trace level by using the Fusion Middleware Control Console:

1. Navigate to http://servername:portnumber/em.

The Fusion Middleware Control Console home page is displayed.

2. Right-click soa-infra from the SOA Folder in the Navigator in the left pane.

The console displays a menu.

3. Select Logs, and the Log Configuration, as shown in Figure 2–14.

Figure 2–14 Navigating to the Log Configuration Page

The Log Configuration page is displayed.

Viewing Adapter Logs

2-42 Oracle Fusion Middleware User's Guide for Technology Adapters

4. Locate oracle.soa.adapter in the Logger Name list, and change the log level in the
Oracle Diagnostic Logging Level (Java Level) field. In this example, select Trace:32
(FINEST) from the list, as shown in Figure 2–15.

Figure 2–15 The Log Configuration Page

For more information, see Section 2.24, "Viewing Adapter Logs".

2.24 Viewing Adapter Logs
You can view the logs for Oracle JCA Adapters as follows:

■ Oracle JCA Adapters and Oracle Adapter for Oracle Applications: These adapters
implement the LogManager interface of the JCA Binding Component, which
redirects log files in the Oracle Diagnostic Logging (ODL) format. For both
outbound and inbound interactions, the log files are redirected to the
soa-diagnostic.log file.

The log files for the Oracle SOA Suite that is deployed to the server-soa
managed server are located in:

MW_HOME/user_projects/domains/domain_
name/servers/server-soa/logs/soa-diagnostic.log

For more information about searching and viewing log files, see Oracle Fusion
Middleware Administrator's Guide.

■ Packaged-application adapters: These adapters do not implement the
LogManager interface because it is not part of the J2CA 1.5 standard. Therefore,
for system components the log outputs are redirected to

Note: To ensure that log levels persist across component restarts,
select Loggers With Persistent Log Level State from the View list. By
default, the log level is set for run-time loggers. Run-time loggers do
not persist across component restarts.

Creating a Custom Adapter

ADAPTER Life-Cycle Management 2-43

ORACLE_INSTANCE\diagnostics\logs\component_type\component_
name. For outbound interactions, the logs are directed to the same location. On the
other hand, for inbound interactions, logs are redirected to
soa-diagnostic.log.

■ Legacy adapters: In addition to the J2CA resource adapter, legacy adapters
consists of Oracle Connect, which consists of native adapters for communicating
with the mainframe application and data stores. Oracle Connect logs can be
viewed using Oracle Studio, which is the mainframe adapter design-time tool and
Oracle Connect management tool. Oracle Connect generates various types of logs,
such as the daemon log, workspace log, and server process log.

For more information, see Section 2.23, "Setting the Trace Level of Oracle JCA
Adapters".

2.25 Adapter Diagnosability Dumps
For information on Diagnosability Dumps, see Supported SOA Adapter
Diagnosability Dumps in the SOA Administration Guide.

2.26 Creating a Custom Adapter
You can configure a Custom JCA Adapter wizard as a generic adapter wizard within
the JDev IDE that reads and displays its interaction/activation specs, properties and
default values from a configuration file. The wizard enables you to select the specs,
override the default property values, and add new properties. The Custom Adapter
wizard has several purposes:

■ You can use the Custom Adapter Wizard on an "as-is" basis to support custom
run-time adapters. Supply (or extend) the Custom Adapter configuration file,
customAdapter-config.xml to use the Custom Adapter.

■ You can modify or extend the Custom Adapter classes if you want to create a more
specific adapter (for example, you can change the text to match your adapter

■ You can use the Custom Adapter wizard to see a simple example of how to
develop a new adapter wizard by using the JCA Adapter framework and by
hooking into the SCAEndpoint interface.

After the SOA jdev extension is installed, the Custom Adapter java source files can
be found in <JAVA_HOME>
/jdeveloper/integration/adapters/samples/custom

2.26.1 Configuring a Custom Adapter
When you select SOA as an installable option with JDev, by default the Custom
Adapter is not available. To ensure that the Custom Adapter is available, edit
the<JDEV_HOME>\jdeveloper\integration\seed\soa\configuration\
soa-config.xml file, search for "custom", and uncomment its <adapterType>
element. The JDEV Component Palette displays the Custom Adapter for the SOA
Diagram.

The <JDEV_HOME>\jdeveloper\integration\seed\soa\configuration\
customAdapter-config.xml file contains the detailed options for the Custom
Adapter (connection-factory location, interaction-spec className, activation-spec
className, and properties).

The properties within an activation-spec are properties that are specific to an inbound
adapter. The properties within an interaction-spec are the properties specific to an

Creating a Custom Adapter

2-44 Oracle Fusion Middleware User's Guide for Technology Adapters

outbound adapter. The property values are the default values shown by the Custom
Adapter. See the screenshots below for examples.

You can modify the contents of the customAdapter-config.xml to match options
needed by your custom run-time adapter. For example, you can change all property
names and their default values, add new properties, or add multiple activation or
interaction specs.

The displayResourceKey and resourceBundle attributes are optional. If an
activation-spec, interaction-spec, or property element has a displayResourceKey,
the attribute value is used as a key to retrieve displayable text from a resource bundle.
If a resource bundle is not available or the key is not found in the bundle, the key itself
is used as the displayable text (it is not required to have a resource bundle). The
resource bundle you want to use can be specified by putting the resourceBundle
attribute on the connection-factory element.

Here is an example of a customAdapter-config.xml that has been modified.

<adapter-config xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">

 <connection-factory location="eis/Custom/CustomAdapter"
resourceBundle="oracle.tip.tools.ide.pm.modules.bizintegration.adapter.custom.resource.
CustomStringResourceBundle"/>

 <endpoint-interaction >
 <interaction-spec className="oracle.tip.adapter.custom.outbound.
CustomInteractionSpec" displayResourceKey="CustomInteractionSpec" >
 <property name="PropX" value="x" displayResourceKey="SAMP_PROP_X" />
 <property name="PropY" value="y" displayResourceKey="Sample Property Y"/>
 <property name="Append" value="false"/>
 <property name="NumberMessages" value="1"/>
 </interaction-spec>
 </endpoint-interaction>

 <endpoint-activation>
 <activation-spec className="oracle.tip.adapter.custom.inbound.
CustomActivationSpec" displayResourceKey="CustomActivationSpec">
 <property name="UseHeaders" value="false"/>
 <property name="PhysicalDirectory" value="x"/>
 <property name="Recursive" value="true"/>
 <property name="DeleteFile" value="true"/>
 <property name="IncludeFiles" value="x"/>
 <property name="PollingFrequency" value="60"/>
 <property name="MinimumAge" value="0"/>
 </activation-spec>
 </endpoint-activation>

</adapter-config>

2.26.1.1 Custom Adapter Screen Flow
When you drag-and-drop the Custom JCA Adapter icon to the Exposed Service or
External Reference swimlane within JDev, the IDE displays the Adapter Configuration
Welcome Page. You can then select Next to begin the Custom Adapter Configuration
Wizard workflow.

Creating a Custom Adapter

ADAPTER Life-Cycle Management 2-45

Figure 2–16 Adapter Configuration Wizard Welcome Screen

The next screen displays the service type and name, similar to the way it occurs with
the Configuration Wizards of other adapters. This screen enables you to provide the
name of a Service that makes sense in the Adapter you are configuring.

Figure 2–17 Adapter Configuration Wizard Service Name Screen

If the config.xml file contains a <connection-factory> entry (as required by
the custom run-time adapter), the Wizard displays the Connection Information page
displaying the default Connection Factory Location. If the config.xml does not
contain a <connection-factory> entry (not required by the custom run-time
adapter), the Wizard does not display this page.

Creating a Custom Adapter

2-46 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 2–18 Adapter Configuration Wizard Connection Information Screen

The next screen is the Adapter Interface Screen, which displays information in a
similar manner to the configuration wizard for other Adapters. (Refer to the
appropriate chapter on each Adapter for information on its configuration wizard.)This
screen provides you a way to either define a new WSDL from an operation and
schema you provide later, or import an existing WSDL, using the WSDL name, port
type and operation.

Figure 2–19 Custom Adapter Wizard Adapter Interface Screen

The next screen enables the user to choose the type of interaction: Inbound or
Outbound. If Outbound Interaction is selected, the Wizard provides a list of

Creating a Custom Adapter

ADAPTER Life-Cycle Management 2-47

Interaction Class names (or translated display names as seen in this example) from
which to choose. You earlier provided these names in the
customAdapter-config.xml file.

Figure 2–20 Custom Adapter Configuration Wizard Operation Screen (Inbound Choice)

The following screen enables you to specify the name and value of JCA properties.
Depending on the Class Name chosen, the screen displays the properties associated
with that class in the customAdapter-config.xml file. You can use this screen to
change any of the default values and to add or delete properties.

Figure 2–21 Custom Adapter Configuration Wizard JCA Properties Screen

Creating a Custom Adapter

2-48 Oracle Fusion Middleware User's Guide for Technology Adapters

The next screen is the Custom Adapter Wizard Messages Screen, which behaves in a
way similar to that of other Adapter Configuration Wizards, enabling you to define
the message for the Read File operation, by either specifying a Schema or by declaring
that the schema is opaque.

Figure 2–22 Customer Adapter Configuration Wizard Messages Screen

The next page is the Final screen for the Custom Adapter Configuration Wizard. The
name of the WSDL files you created is displayed on the screen.

2.26.2 Frequently Asked Questions about Adapters
Following are some frequently asked questions about adapters.

2.26.2.1 Why are My Applications Timing Out?
Why would composite applications are time out? Enough time has been provided for
your composite applications to execute with adapters, but applications are still timing
out.

A contributing factor is the WebLogic timeout value. The timeout value of the
WebLogic Server JTA must be taken into account when you use adapters with your
business processing.

For example, you have set the Timeout Seconds value at 30 seconds. You should
increase the value of the Oracle WebLogic JTA attribute Timeout Seconds from its
default of 30 to something greater, something that makes sense in the overall context of
your business processing. You can use the WebLogic Server Console to change the JTA
transaction timeout value by navigating in this fashion: WLS Console ->
SOADomain -> Configuration -> JTA

2.26.2.2 How do Transactional and Non-Transactional Adapters Differ?
Transactional Adapters, such as the Oracle JMS Adapter execute within a JTA
transaction. A transaction ensures that one or more operations execute as an atomic
unit of work.

Advanced Topic: Using the Execution Context ID Across Technologies

ADAPTER Life-Cycle Management 2-49

If an operation within a transaction fails, all operations are rolled-back so that the
application is returned to its prior state. Depending on whether the business process
logic is defined as stateful or stateless, there may be one or more transactions in a
given business process.

Non-transactional adapters implement their own schemes to ensure delivery, without
the use of transactional semantics.

The Service Engine obtains a file from an inbound directory, processes the file, and
sends the processed file to an output directory. The inbound adapter is limited to
translation (if there is one configured) and publishing the translated content which is
processed as a part of the business scenario. The business scenario can use the adapter
to write to an output directory. However, during this process, if a failover occurs in as
a response to a disaster, the file may be lost because of the nontransactional nature of
the Oracle File Adapter. As a result, some files read by the inbound adapter might not
be sent to the output directory. Of course, when you have a a single node cluster (or no
cluster), failover is not an option.

The file adapter is not configured for high availability to avoid message loss, but
rather to ensure consistent access to the file system and load balancing across cluster
nodes. If you have a single node setup, you do not need a high availability setup for
the File adapter, and it does not loose messages.

Consequently, because it is non-transactional, you must configure the Oracle File
Adapter for high availability, to ensure that files are not duplicated during a failover.
The file adapter never loses messages, but might duplicate some (during disaster
recovery).

Additionally, if you have processing scenarios that include Transactional and
Non-Transactional Adapters, you must ensure file integrity within the part of your
processing that is Non-Transactional.

The JMS adapter can also function with just local transactions; that is, a transaction
that begins and commits independently from and within the boundary of a (global)
JTA transaction, that is. the local transaction only spans the actual invocation of the
adapter.

2.26.2.3 What Happened to My Application’s Rejected Messages? Can One Do
Anything With Them?
Rejected messages are stored in the database (specifically, in the rejected_message
table) by default. A default rejected message handler, which stores them on the file
system, participates if you have not defined any policy to handle the rejected messages
explicitly. This handler stores the payload and properties of the message on the file
system at a predefined location in WLS_HOME. Currently, the Oracle SOA suite does
not provide the capability to resubmit rejected messages; consequently it is your
responsibility to take care of the resubmission.

2.27 Advanced Topic: Using the Execution Context ID Across
Technologies

SOA Suite 11g deployments can include the use of the technology adapters for various
activities including integration with FTP, database, and files, and other activities.
Although the integrations with these adapters are easy and feature rich, there can be
some challenges from the operations perspective.

One of these challenges is how to correlate a logical business transaction across SOA
component instances. This correlation is typically accomplished via the execution

Advanced Topic: Using the Execution Context ID Across Technologies

2-50 Oracle Fusion Middleware User's Guide for Technology Adapters

context ID (ECID), but you can lose the ECID correlation when the business
transaction spans technologies such as FTP, database, and files.

A new feature in the Oracle adapter JCA framework enables the propagation of the
ECID. This feature is available in the SOA Suite 11.1.1.7 with back ports available for
11.1.1.4 and 11.1.1.5.

The basic concept of propagating the ECID is to identify a location in the payload of
the message where the ECID can be stored.

Next, two Binding Properties, relating to the location of the ECID in the message, are
added to either the Exposed Service (left-hand side of composite) or External
Reference (right-hand side of composite).

This provides the JCA framework enough information to either extract the ECID from,
or add the ECID to, the message.

When you extract the ECID from the message, the ECID is used for the new
component instance.

2.27.1 Placing the ECid
When determining where to store the ECID in the message, you have two options:

■ Add a new optional element to your message schema.

■ Leverage an existing element that is not used in your schema

The best scenario is that you are able to add the optional element to your message, as
trying to find an unused element proves difficult in most situations. The schema is
holding the ECID value which looks something like the following:

11d1def534ea1be0:7ae4cac3:13b4455735c:-8000-00000000000002dc

2.27.2 Configuring Composite Services/References
Once you have identified where you want the ECID to be stored in the message, the
JCA framework needs to have this information as well. The two pieces of information
that the framework needs relate to the message schema:

■ The namespace for the element in the message.

■ The XPath to the element in the message.

To better understand this, first look at an example for the following database table:

Figure 2–23 Example Database Table

When the Database Adapter Configuration Wizard creates an Exposed Service in the
composite, the following schema is created:

Advanced Topic: Using the Execution Context ID Across Technologies

ADAPTER Life-Cycle Management 2-51

Figure 2–24 Schema Created when Exposed Service is Created

For this example, the two Binding Properties added to the ReadRow service in the
composite are:

<!-- Properties for the binding to propagate the ECID from the database table -->
<property name="jca.ecid.nslist" type="xs:string" many="false">
 xmlns:ns1="http://xmlns.oracle.com/pcbpel/adapter/db/top/ReadRow"
</property>

<property name="jca.ecid.xpath" type="xs:string" many="false">
 /ns1:EcidPropagationCollection/ns1:EcidPropagation/ns1:ecid
</property>
The property called jca.ecid.nslist contains the targetNamespace defined in the
schema.

The property called jca.ecid.xpath contains the XPath statement to the element.

The XPath statement also contains the appropriate namespace prefix (ns1) which is
defined in the jca.ecid.nslist property.

When the Database Adapter service reads a row from the database, it will retrieve the
ECID value from the payload and remove the ECID element from the payload. When
the component instance is created, it will be associated with the retrieved ECID and
the payload contains everything except the ECID element/value. The only time the
ECID is visible is when it is stored safely in the resource technology such as the
database, a file, or a queue.

2.27.3 Simple Database/File/JMS Example
This section contains a simplified example of how the ECID can propagate through a
database table, a file, and JMS queue. The composite for the example looks like the
following:

Advanced Topic: Using the Execution Context ID Across Technologies

2-52 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 2–25 The Composite for the Example

The flow of this example occurs in the following order:

■ Invoke database insert using the insertwithecidbpelprocess_client_ep
Service.

■ The InsertWithECIDBPELProcess adds a row to the database using the
Database Adapter. The JCA Framework adds the ECID to the message prior to
inserting.

■ The ReadRow Service retrieves the record and the JCA Framework extracts the
ECID from the message. The ECID element is removed from the message.

■ An instance of ReadRowBPELProcess is created and it is associated with the
retried ECID.

■ The ReadRowBPELProcess now writes the record to the file system via the File
Adapter. The JCA Framework adds the ECID to the message prior to writing the
message to file.

■ The ReadFile Service retrieves the record from the file system and the JCA
Framework extracts the ECID from the message. The ECID element is removed
from the message.

■ An instance of ReadFileBPELProcess is created and it is associated with the
retried ECID.

■ The ReadFileBPELProcess now enqueues the message via the JMS Adapter. The
JCA Framework adds the ECID to the message prior to enqueuing the message.

Advanced Topic: Using the Execution Context ID Across Technologies

ADAPTER Life-Cycle Management 2-53

■ The DequeueMessage Service retrieves the record and the JCA Framework
extracts the ECID from the message. The ECID element is removed from the
message.

■ An instance of DequeueMessageBPELProcess is created and it is associated
with the retried ECID.

■ The logical flow ends.

 When viewing the Flow Trace in the Enterprise Manger, you will now see all the
instances correlated by the ECID:

Figure 2–26 All Instances Correlated by the ECid, as Seen in the Flow Trace

Advanced Topic: Using the Execution Context ID Across Technologies

2-54 Oracle Fusion Middleware User's Guide for Technology Adapters

3

Adapter Integration with Oracle Application Server Components 3-1

3Adapter Integration with Oracle Application
Server Components

This chapter discusses how to integrate adapters with Oracle WebLogic Server and
Oracle Fusion Middleware.

Oracle Application Server adapters can be integrated with various components of
Oracle WebLogic Server and Oracle Fusion Middleware.

This chapter includes the following topics:

■ Section 3.1, "Adapter Integration with Oracle WebLogic Server"

■ Section 3.2, "Adapter Integration with Oracle Fusion Middleware"

■ Section 3.3, "Monitoring Oracle JCA Adapters"

3.1 Adapter Integration with Oracle WebLogic Server
Oracle JCA Adapters are based on the J2CA 1.5 specification and are deployed to the
Oracle WebLogic Server. The resource adapter is used within the address space of the
Oracle Fusion Middleware. This section provides an overview of the Oracle WebLogic
Server and design-time and run-time integration with an adapter.

This section includes the following topics:

■ Section 3.1.1, "Oracle WebLogic Server Overview"

■ Section 3.1.2, "Oracle WebLogic Server Integration with Adapters"

3.1.1 Oracle WebLogic Server Overview
Oracle WebLogic Server is the core J2EE run-time component of Oracle Application
Server. Oracle WebLogic Server is a scalable, enterprise-ready Java Platform,
Enterprise Edition (Java EE) application server. The WebLogic Server infrastructure
supports the deployment of many types of distributed applications. It is an ideal
foundation for building applications based on Service Oriented Architecture (SOA).

All client applications run within the Oracle WebLogic Server environment. To
integrate an Oracle WebLogic Server client application with a resource adapter, use the
common client interface (CCI). The Oracle WebLogic Server adapter clients include a
servlet, EJB, or Java application client that implements the CCI Application
Programming Interface (API). The CCI defines a standard client API for application
components to access the back-end application.

On the other hand, the contract between the Oracle WebLogic Server container and the
resource adapter is defined by the service provider interface (SPI). Contracts define a

Adapter Integration with Oracle WebLogic Server

3-2 Oracle Fusion Middleware User's Guide for Technology Adapters

standard between Oracle WebLogic Server and adapters. The system handles these
contracts automatically and hides them from the application developer. Figure 3–1
illustrates the CCI and SPI contracts:

Figure 3–1 Contracts Between Oracle WebLogic Server and Resource Adapter

The Oracle WebLogic Server architecture includes the following set of system-level
contracts:

■ Connection management: Enables application components to connect to a
back-end application and leverage any connection pooling support of the Oracle
WebLogic Server container. This leads to a scalable and efficient environment that
can support a large number of components requiring access to a back-end
application. For more information, see Section 2.18, "Adding an Adapter
Connection Factory".

■ Transaction management: Enables an application server to use a transaction
manager to manage transactions across multiple resource managers. Most of the
adapters support only local transactions (single-phase commit) and not XA
transactions (two phase commit). For more information, see Section 2.11, "How
Oracle JCA Adapters Ensure No Message Loss".

The following adapters support XA transactions:

– Oracle MQ Series Adapter

– Oracle JMS Adapter

– Oracle AQ Adapter

– Oracle Database Adapter

– Oracle EBS Adapter

The following adapters do not support XA transactions:

– Oracle File Adapter

– Oracle FTP Adapter

– Oracle Socket Adapter

All Oracle JCA Adapters are preconfigured with the correct value for transaction,
and you must not change this configuration in the Oracle WebLogic Server
Administration Console.

■ Security management: The WebLogic Server security architecture provides a
comprehensive, flexible security infrastructure designed to address the security
challenges of making applications available on the web. WebLogic security can be
used standalone to secure WebLogic Server applications or as part of an
enterprise-wide security management system that represents a best-in-breed
security management solution.

Enterprise
Information

Systems

Application
Contract

(Client API:
CCI, specific)

System Contracts

(Quality of Service)

J2EE Application
Component Resource

Adapter

Oracle WebLogic
Server

Network

Adapter Integration with Oracle Fusion Middleware

Adapter Integration with Oracle Application Server Components 3-3

3.1.2 Oracle WebLogic Server Integration with Adapters
Oracle JCA Adapters are based on the J2CA 1.5 specification and are deployed as the
J2CA resource adapter within the Oracle WebLogic Server container in this release.
The J2CA resource adapter is packaged into a Resource Adapter Archive (RAR) file
using the Java Archive (JAR) format. A RAR file contains a correctly formatted
deployment descriptor (/META-INF/ra.xml). In addition, it contains declarative
information about the contract between the Oracle WebLogic Server and resource
adapter.

Oracle WebLogic Server generates the corresponding weblogic-ra.xml file during
the deployment of the J2CA adapter. The weblogic-ra.xml file is the deployment
descriptor for a resource adapter. It contains deployment configurations for deploying
resource adapters to Oracle WebLogic Server, which includes the back-end application
connection information as specified in the deployment descriptor of the resource
adapter, Java Naming and Directory Interface (JNDI) name to be used, connection
pooling parameters, and resource principal mapping mechanism and configurations.

3.1.2.1 Design Time
Use the adapter design-time tool to generate XML Schema Definition (XSD) files for
the adapter request-response service. The Oracle WebLogic Server clients use these
XSD files during run time for calling the J2CA outbound interaction.
Packaged-application adapters use OracleAS Adapter Application Explorer
(Application Explorer), Legacy adapters use OracleAS Studio, and technology
adapters use Oracle JDeveloper (JDeveloper).

For more information, see Section 3.2.3.1, "Design Time".

3.1.2.2 Run Time
Oracle JCA Adapters are based on the J2CA 1.5 specification but are deployed as the
J2CA 1.5 resource adapter within the Oracle WebLogic Server container in this release.
The J2CA 1.5 specification addresses the life-cycle management, message-inflow (for
Adapter Event publish), and work management contracts.

3.2 Adapter Integration with Oracle Fusion Middleware
Adapters integrate with the JCA Binding Component of the Oracle Fusion Middleware
platform, thereby seamlessly integrating with service engines, such as Oracle BPEL
Process Manager (Oracle BPEL PM) and Oracle Mediator.

Figure 3–2 shows the architecture of Oracle JCA Adapters.

Adapter Integration with Oracle Fusion Middleware

3-4 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 3–2 Oracle Adapter Architecture in Oracle Fusion Middleware

The Adapter Configuration Wizard generates a WSDL and a JCA properties file, which
contain the binding information for that service.

Oracle technology adapters gather and publish statistics for every inbound and
outbound message they process. For more information, see Section 3.3, "Monitoring
Oracle JCA Adapters".

For information on using Adapters with the Oracle Service Bus, see "Working with
Adapters" in the Oracle® Fusion Middleware Developer's Guide for Oracle Service
Bus.

This section includes the follows topics:

■ Section 3.2.1, "Oracle BPEL Process Manager Overview"

■ Section 3.2.2, "Oracle Mediator Overview"

■ Section 3.2.3, "Oracle Fusion Middleware Integration with Adapters"

■ Section 3.2.4, "Oracle SOA Composite Integration with Adapters"

3.2.1 Oracle BPEL Process Manager Overview
Oracle BPEL PM is a comprehensive solution for creating, deploying, and managing
Oracle BPEL PM business processes. Oracle BPEL PM is based on the Service Oriented
Architecture (SOA) to provide flexibility, interoperability, reusability, extensibility, and
rapid implementation. Oracle BPEL PM reduces the overall cost of management,
modification, extension, and redeployment of existing business processes. Each
business activity is a self-contained, self-describing, modular application with an

 JCA
Binding

Component

SCA
Run-Time

JDeveloper
SOA

Studio

JDeveloper Project File (.JPR)
.properties

Application Server

JCA

JNDI EIS/JCA Adapter

Fabric

or_mappings.xml
· WSDL
· .JCA
· XSD
· Schemas

Deployment

weblogic-ra.xml

Oracle JCA
Adapters

composite.xml
Adapter
Configuration
Wizard

SOA
Artifacts Design Time

sessions.xml

EIS

Adapter Integration with Oracle Fusion Middleware

Adapter Integration with Oracle Application Server Components 3-5

interface that is defined by a WSDL file and the business process that is modeled as a
web service.

3.2.2 Oracle Mediator Overview
Oracle Mediator provides a lightweight framework to mediate between various
producers and consumers of services and events. In most business environments,
customer data resides in disparate sources including business partners, legacy
applications, enterprise applications, databases, and custom applications. The
challenge of integrating this data can be met by using Oracle Mediator to deliver
appropriate real-time data access to all applications that update or have a common
interest in the same data. For example, a Mediator can accept data contained in a text
file from an application or service, transform it to a format appropriate for updating a
database that serves as a customer repository, and then route and deliver the data to
that database.

3.2.3 Oracle Fusion Middleware Integration with Adapters
The JCA Binding Component is used for the bidirectional integration of the J2CA 1.5
resource adapters with Oracle BPEL PM and Oracle Mediator. Oracle JCA Adapters
generate a WSDL file and a JCA binding, and expose the underlying interactions as
web Services.

The interface (input/output XML elements) to an adapter service is described through
a WSDL file. However, in the 11g release, the binding element has been removed,
making the WSDL file abstract. Instead the binding information, that the JCA Binding
Component (referred to as adapter framework in the previous releases) and adapters
must invoke for a particular call on a particular EIS, is stored in a separate
binding.jca file.

This section describes:

■ Section 3.2.3.1, "Design Time"

■ Section 3.2.3.2, "Run Time"

■ Section 3.2.3.3, "End-to-End Testing"

■ Section 3.2.3.4, "Oracle BPEL PM Integration with Outbound Interaction"

■ Section 3.2.3.5, "Oracle BPEL PM Integration with Inbound Interaction"

■ Section 3.2.3.6, "Use Case: Integration with Oracle BPEL Process Manager"

3.2.3.1 Design Time
While integrating adapters with Oracle BPEL PM and Oracle Mediator, the underlying
adapter services are exposed as WSDL files with the J2CA extension. The following
table lists the design-time tools used for generating WSDL and JCA files for various
types of adapters.

Adapter Tool

Oracle Technology Adapters Oracle JDeveloper

Legacy Adapters Oracle Studio

Packaged-Application Adapters Application Explorer

Oracle Adapter for Oracle Applications Oracle JDeveloper

Adapter Integration with Oracle Fusion Middleware

3-6 Oracle Fusion Middleware User's Guide for Technology Adapters

WSDL files are created for both request-response and event-notification services of an
adapter. The J2CA extension contains J2CA elements that are required by the JCA
Binding Component during run time to convert web service messages to J2CA
Interactions and back. The J2CA WSDL extension elements contain the metadata for
the JCA Binding Component to call any request-response service and activate any
inbound J2CA 1.5 endpoint to receive inbound events. The J2CA extension elements
for the request-response service contains the JNDI location and InteractionSpec
details for calling an outbound interaction. The J2CA extension elements for the
event-notification service contains the resource adapter class name and
ActivationSpec parameters for publishing an adapter event through the J2CA
inbound interaction.

Figure 3–3 illustrates the design-time tool, JDeveloper, used by Oracle JCA Adapters.

Figure 3–3 Design Time Configuration of Technology Adapters

Figure 3–4 illustrates the design-time tool for configuring packaged-application
adapters. In this figure, the design-time tools are used to expose adapter metadata as
WSDL files. The WSDL files are consumed by BPEL Process Manager during run time.

Figure 3–4 Configuring Packaged-Application Adapters

3.2.3.2 Run Time
Oracle Application Server adapters are based on the J2CA 1.5 specification, and BPEL
is deployed on the 11g run-time on the Oracle WebLogic Server. The JCA Binding
Component acts as a glue layer that integrates the standard J2CA 1.5 resource adapter
with the Oracle BPEL Process Manager and Oracle Mediator during run time. The JCA
Binding Component acts as a pseudo J2CA 1.5 container.

JDeveloper
SOA

Studio

JDeveloper Project File (.JPR)
.properties

or_mappings.xml
· WSDL
· _db.JCA
· XSD

Deployment

composite.xml
Adapter
Configuration
Wizard

SOA
Artifacts Design Time

Adapter
Clients

Oracle WebLogic Server

J2CA
Web

Services

Channel Port
Repository

Client

Adapter SDK

EIS Libraries OracleAS
Adapter

Repository

OracleAS Adapter
Application Explorer

(design-time tool)

EIS

Adapter Integration with Oracle Fusion Middleware

Adapter Integration with Oracle Application Server Components 3-7

The web service invocation launched by the BPEL Invoke activity is converted to a
J2CA CCI outbound interaction, and the J2CA response is converted back to a web
service response. This end-to-end invocation is synchronous.

3.2.3.3 End-to-End Testing
You could also wrap up your custom adapter as a web Service, and expose this to
BPEL Process Manager. This is a loose coupling strategy and does not need an Adapter
SDK. Both these approaches (JCA/web service) are suitable for outbound invoke
operations referred to as reference. Only the JCA 1.5 integration allows the Oracle
BPEL PM to receive inbound events (from EIS to J2EE/Oracle BPEL PM). The Oracle
BPEL PM acts as a pseudo JCA 1.5 container and implements the JCA 1.5-specific
System Contracts.

You can use any custom design tool for the configuration of the adapter, but a WSDL
file must be generated at the end of the design-time phase for consumption by the
Oracle BPEL PM design-time (JDeveloper). The WSDL file for the JCA interactions
have a JCA extension. The Adapter is a JCA 1.5 resource adapter deployed in the same
Oracle WebLogic Server container as that of the Oracle BPEL PM product. The JCA 1.5
Resource Adapter and the Oracle BPEL PM instance must be deployed in the same
Oracle WebLogic Server container.

The JCA Binding Component is the glue layer that integrates the standard JCA 1.5
Resource Adapter seamlessly with the Oracle BPEL PM product at run time. The JCA
Binding Component has a JCA Provider for wrapping the JCA interactions as web
Services and performs the translation between web Service messages to JCA
interaction messages based on the WSDL files generated at design time.

3.2.3.4 Oracle BPEL PM Integration with Outbound Interaction
The following is a snippet of the composite.xml file for an outbound invoke
(referred to as reference in the 11g release):

<reference name="insert" ui:wsdlLocation="insert.wsdl">
<interface.wsdl

interface="http://xmlns.oracle.com/pcbpel/adapter/db/DBRetriesApplication/XARollba
ck/insert%2F#wsdl.interface(insert_ptt)"/>

<binding.jca config="insert_db.jca"/>
</reference>
The following list summarizes the process of BPEL Process Manager integration with
the outbound interaction:

■ During design time, adapter services are exposed as WSDL files and consumed
during configuration of the PartnerLink activity of the BPEL process.

■ The .jca file contains the JNDI address of the resource adapter,
InteractionSpec class name, InteractionSpec parameters.

■ During run time, the Invoke activity of the BPEL Process Manager is used to call
the PartnerLink activity, which is a J2CA Resource Adapter outbound
interaction.

■ The components are wired into a composite application.

■ The JCA Binding Component translates the event to a web service response for
consumption by the Oracle BPEL PM instance.

■ The outbound JCA adapter communicates with the EIS through CCI interaction.

Adapter Integration with Oracle Fusion Middleware

3-8 Oracle Fusion Middleware User's Guide for Technology Adapters

3.2.3.5 Oracle BPEL PM Integration with Inbound Interaction
BPEL Process Manager receives events from the J2CA 1.5 resource adapter through the
JCA Binding Component, which is the pseudo J2CA 1.5 container and implements the
message inflow contracts for receiving events from the adapter. The J2CA inbound
interaction is captured in a WSDL file during design time. The J2CA inbound WSDL
binding section contains the J2CA 1.5 ActivationSpec parameter. The
ActivationSpec parameter captures the inbound connectivity and inbound
interaction details (according to J2CA 1.5 specification). The J2CA Inbound WSDL
Service section contains the J2CA 1.5 ResourceAdapter class name. In addition, the
Service section can optionally contain a JNDI location.

The following list summarizes the process of BPEL Process Manager integration with
the inbound interaction:

■ The ResourceAdapter class name and the ActivationSpec parameter are
captured in the WSDL extension section of the J2CA inbound interaction WSDL
during design time and made available to BPEL Process Manager and the JCA
Binding Component during run time.

■ An instance of the J2CA 1.5 ResourceAdapter class is created, and the Start
method of the J2CA ResourceAdapter class is called.

■ Each inbound interaction operation referenced by the BPEL Process Manager
processes results in invoking the EndPointActivation method of the J2CA 1.5
ResourceAdapter instance. The JCA Binding Component creates the
ActivationSpec class (Java bean) based on the ActivationSpec details
present in the WSDL extension section of the J2CA inbound interaction and
activates the endpoint of the J2CA 1.5 resource adapter.

■ The JCA Binding Component MessageEndpoint implementation implements
the javax.resource.cci.MessageListener interface. The J2CA 1.5 resource
adapter calls the onMessage() method in this MessageEndpoint when it
receives a back-end application event. The J2CA 1.5 resource adapter creates an
instance of the MessageEndpoint implementation through
MessageEndpointFactory provided to the resource adapter during
endpointActivation.

■ The JCA Binding Component receives the event through the MessageListener
class and forwards it to the Receive activity of the BPEL Process Manager instance.

■ When the BPEL process is stopped, all associated inbound end points are
deactivated through the endPointDeactivation method implemented by the
resource adapter.

In the case of J2CA adapters, particularly the JDBC based ones, such as Oracle
Database Adapter and Oracle AQ Adapter, there are two kinds of connection
management at play:

■ for inbound (endpoint) activations (BPEL Receive)

■ for outbound interactions (BPEL Invoke).

In the case of inbound activations, the J2CA adapter is fully in charge of connection
creation and recovery. The JCA Binding Component can only be requested to lookup
and provide a J2CA ConnectionFactory handle to the adapter through its
ActivationSpec. This is possible only if it implements a certain interface, which it

Note: The outbound interaction with Oracle Mediator is the same as
that of Oracle BPEL PM.

Adapter Integration with Oracle Fusion Middleware

Adapter Integration with Oracle Application Server Components 3-9

can use to create connections, thereby going through the Application Server
connection manager. Whenever a managed (JDBC) connection goes bad, the adapter
must close the J2CA connection handle (and subsequently the managed connection if
destroy() is called by the Application Server), enter a temporary recovery loop, and
then try to reestablish a new connection.

In the case of outbound interactions (J2CA), each port caches tuples of the following:

■ ConnectionFactory

■ ConnectionSpec

■ Connection

■ Interaction

■ InteractionSpec

As the BPEL engine typically invokes the port concurrently with any number of
threads, the size of the cache reflect the highest concurrency level at any given time.
The cache can be tuned to automatically expire unused tuples after a configured idle
period (interactions and connection handles are then closed). The cache greatly
improves performance in high load environments, for example, Retek (8 million
transactions every hour).

If just one JCA adapter interaction using the cache throws a ResourceException,
then all members of the cache are closed and released immediately (purged), so new
interactions have to re-create (fresh) members to the cache. The BPEL engine has a
feature known as PartnerLink retry which can be configured for each invoke. Thus, any
JCA adapter invoke or interaction which throws a ResourceException exception
marked as Retryable make the engine retry the Invoke (Database update) which
then repopulate the port cache (if the Database has become available again: typically
immediately the case with Oracle RAC).For non-transactional adapters
(adapterMetadata.supportsLocalTransactionDemarcation() == false),
such as File adapter, the J2CA connection cache contains only one member. Thus all
threads coming through multiplex over the same CCI Connection handle.

The JCA connection cache can be enabled or configured explicitly by using the
following bpel.xml partnerlink properties:

<property name="useJCAConnectionPool">true</property>

Generally, this property is derived from the declared transactional support of the
adapter. For example, the File adapter does not use this connection pool because it is
multi thread safe, but that can be overridden through the following property:

<property name="maxSizeJCAConnectionPool">500</property>

If the property mentioned in the preceding example is not specified, then the size of
the connection pool is assumed to be unbounded. This applies for each partnerlink.

<property name="lruConnectionMaxIdleAge">50000</property>

The maximum age of idle connections in the pool is important because some type of
connections hold on to expensive external resources, for example DB shadow
processes which is measured in ms, as shown in the following example:

property name="lruConnectionCheckInterval">10000</property>

Finally, the property mentioned in the preceding example determines how frequently
the connection pool should be scanned for idle connections, also measured in ms.

Adapter Integration with Oracle Fusion Middleware

3-10 Oracle Fusion Middleware User's Guide for Technology Adapters

The following is a code snippet of the composite.xml file for an inbound polling
receive operation (referred to as service in the 11g release):

<service name="poll" ui:wsdlLocation="poll.wsdl">
<interface.wsdl

interface="http://xmlns.oracle.com/pcbpel/adapter/db/DBRetriesApplication/
XARollback/poll%2F#wsdl.interface(poll_ptt)"
(http://xmlns.oracle.com/pcbpel/adapter/db/DBRetriesApplication/XARollback/poll%2F
#wsdl.interface%28poll_ptt%29)/>

<binding.jca config="poll_db.jca"/>
</service>

Note how the composite.xml file links the WSDL interface (the interface.wsdl
file), the name of the component which is handling the request (the binding.jca
file), and the binding information required to invoke a particular call (the config
file). Hence the JCA Binding Component is registered in SCA as the implementation of
the binding.jca file (others include binding.ejb and binding.java), while in
the 10.1.3 release it was registered as a WSIF provider.

In the current release the <binding.jca> element is in the composite.xml file,
which explicitly indicates that the JCA Binding Component is handling the invoke
activity. Whereas in the 10.1.3 release you had to look at the concrete binding in the
WSDL to see whether it was an adapter invoke or not, as shown in the following
example:

<binding name="invokeService_binding" type="tns:invokeService_ptt">
<jca:binding />
<operation name="merge">
<jca:operation>

3.2.3.6 Use Case: Integration with Oracle BPEL Process Manager
From the Partner Link dialog in Oracle BPEL PM, shown in Figure 3–5, you can access
the adapters that are provided with Oracle BPEL PM.

Figure 3–5 Partner Link dialog box

Click the Define Service icon, shown in Figure 3–6, to access the Configure Service or
Adapter dialog.

Adapter Integration with Oracle Fusion Middleware

Adapter Integration with Oracle Application Server Components 3-11

Figure 3–6 Defining an Adapter

This dialog enables you to configure the types of adapters shown in Figure 3–7 for use
with Oracle BPEL processes.

Figure 3–7 Adapter Types

When you select an adapter type (Oracle AQ Adapter in this example), and then click
OK, the Adapter Configuration Wizard - Welcome page appears, as shown in
Figure 3–8.

Figure 3–8 The Adapter Configuration Wizard- Welcome Page

Click Next, and the Service Name page appears, as shown in Figure 3–9. You are
prompted to enter a name for the service.

Adapter Integration with Oracle Fusion Middleware

3-12 Oracle Fusion Middleware User's Guide for Technology Adapters

For this example, AQ Adapter is selected, as shown in Figure 3–7. When the wizard
completes, a WSDL file by this service name appears in the Application Navigator for
the BPEL process (for this example, named DequeueDemo.wsdl). This file includes
the adapter configuration settings you specify with this wizard. Other configuration
files (such as header properties and files specific to the adapter) are also created and
displayed in the Application Navigator.

Figure 3–9 The Adapter Configuration Wizard- Service Name Page

The Adapter Configuration Wizard windows that appear after the Service Name
window are based on the adapter type you selected. These configuration windows and
the information you must provide are described in later chapters of this guide.

3.2.4 Oracle SOA Composite Integration with Adapters
Oracle JCA Adapters can be integrated with Oracle SOA Suite.

This section includes the following:

■ Section 3.2.4.1, "Oracle SOA Composite Overview"

■ Section 3.2.4.2, "Adapters Integration With Oracle SOA Composite"

3.2.4.1 Oracle SOA Composite Overview
An SOA composite application is an assembly of services, service components,
references, and wires designed and deployed to meet a business need.

SOA provides an enterprise architecture that supports building connected enterprise
applications. SOA facilitates the development of enterprise applications as modular
business web services that can be easily integrated and reused, creating a truly flexible,
adaptable IT infrastructure.

Adapter Integration with Oracle Fusion Middleware

Adapter Integration with Oracle Application Server Components 3-13

3.2.4.2 Adapters Integration With Oracle SOA Composite
A composite is an assembly of services, service components, wires, and references
designed and deployed in a single application. The composite processes the
information described in the messages.

For example, a composite includes an inbound service binding component (an
inbound adapter), a BPEL process service component, and an outbound reference
binding component (an outbound adapter). The details of this composite are stored in
the composite.xml file.

An Oracle SOA composite typically comprises the following parts:

■ Binding Components

The binding component establishes the connectivity between a SOA composite
and the external world. There are two types of binding components:

– Service Binding Components

Provide the outside world with an entry point to the SOA composite
application. The WSDL file of the service informs external applications of its
capabilities. These capabilities are used for contacting the SOA composite
application components. The binding connectivity of the service describes the
protocols that can communicate with the service, for example, Oracle JCA
adapter.

– Reference Binding Components

Enable messages to be sent from the SOA composite application to external
services in the outside world.

The Oracle SOA Suite provides web Services, such as Oracle JCA adapters for
integrating services and references with technologies (for example, databases, file
systems, FTP servers, messaging: JMS, IBM WebSphere MQ, and so on) and
applications (Oracle E-Business Suite, PeopleSoft, and so on). This includes Oracle
AQ Adapter, Oracle Database Adapter, Oracle File Adapter, Oracle FTP Adapter,
Oracle JMS Adapter, Oracle MQ Series Adapter, and Oracle Socket Adapter.

■ Service Infrastructure

Provides internal message transport. For example, receives the message from an
inbound adapter and posts the message for processing to the BPEL process service
engine.

■ Service Engines (containers hosting service components)

Host the business logic or processing rules of the service components. Each service
component has its own service engine. For example, an Oracle BPEL process
engine or an Oracle Mediator Component.

For more information about adapter integration with service engines, see
Section 3.2, "Adapter Integration with Oracle Fusion Middleware."

■ UDDI and MDS

The MDS (Metadata Service) repository stores descriptions of available services.
The UDDI advertises these services and enables discovery and dynamic binding at
run time.

■ SOA Archive: Composite

The deployment unit that describes the composite application.

Adapter Integration with Oracle Fusion Middleware

3-14 Oracle Fusion Middleware User's Guide for Technology Adapters

A composite is an assembly of services (for example, inbound adapters), service
components, wires, and references (for example, outbound adapters) designed and
deployed in a single application. The composite processes the information described in
the messages. A composite.xml file is automatically created when you create a SOA
project. This file describes the entire composite assembly of services, service
components, references, and wires. The composite.xml file describes the entire SOA
composite.

The following is a sample composite.xml file:

Composite.xml (JCA Bindings)<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SOA Modeler version 1.0 at [2/23/09 3:02 PM]. -->
<composite name="MediatorFlatStructure"

revision="1.0"
 label="2009-02-23_15-02-00_374"
 mode="active"
 state="on"
 xmlns="http://xmlns.oracle.com/sca/1.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy"
 xmlns:ui="http://xmlns.oracle.com/soa/designer/">
<import

namespace="http://xmlns.oracle.com/pcbpel/adapter/file/SOA-FlatStructure/MediatorF
latStructure/MedFlatIn%2F" location="MedFlatIn.wsdl" importType="wsdl"/>

<import
namespace="http://xmlns.oracle.com/pcbpel/adapter/file/SOA-FlatStructure/MediatorF
latStructure/MedFlatOut%2F" location="MedFlatOut.wsdl" importType="wsdl"/>

<service name="MedFlatIn" ui:wsdlLocation="MedFlatIn.wsdl">
<interface.wsdl

interface="http://xmlns.oracle.com/pcbpel/adapter/file/SOA-FlatStructure/MediatorF
latStructure/MedFlatIn%2F#wsdl.interface(Read_ptt)"/>

<binding.jca config="MedFlatIn_file.jca"/>
</service>
<component name="MediatorFlat">

<implementation.mediator src="MediatorFlat.mplan"/>
</component>
<reference name="MedFlatOut" ui:wsdlLocation="MedFlatOut.wsdl">

<interface.wsdl
interface="http://xmlns.oracle.com/pcbpel/adapter/file/SOA-FlatStructure/MediatorF
latStructure/MedFlatOut%2F#wsdl.interface(Write_ptt)"/>

<binding.jca config="MedFlatOut_file.jca"/>
</reference>
<wire>

<source.uri>MedFlatIn</source.uri>
<target.uri>MediatorFlat/MediatorFlat</target.uri>

</wire>
<wire>

<source.uri>MediatorFlat/MedFlatOut</source.uri>
<target.uri>MedFlatOut</target.uri>

</wire>
</composite>
For more information about Oracle SOA composite and its integration with various
service engines, see Oracle Fusion Middleware Developer's Guide for Oracle SOA
Suite.

Monitoring Oracle JCA Adapters

Adapter Integration with Oracle Application Server Components 3-15

3.3 Monitoring Oracle JCA Adapters
In Oracle BPEL Process Manager and Oracle Mediator, Oracle JCA adapters such as
File, JMS, and Database, gather and publish statistics for every message they process,
either inbound or outbound. The statistics are broken down into categories and
individual tasks. The following is an example of how statistics are broken down in an
outbound (reference) process:

■ Adapter Preprocessing

– Preparing InteractionSpec

■ Adapter Processing

– Setting up Callable Statement

– Invoking Database

– Parsing Result

■ Adapter Postprocessing

The adapter statistics can be viewed in the Fusion Middleware Control Console. The
following are the steps to view the adapter statistics:

1. Navigate to http://servername:portnumber/em.

2. In the SOA folder in the Target Navigation tree (in the extreme left pane), click
soa_infra.

The soa-infra page is displayed.

3. From the SOA Infrastructure menu in the soa-infra page, click Services and
References, as shown in Figure 3–10.

Figure 3–10 Viewing the Adapter Statistics in the Fusion Middleware Control Console

The SOA Infrastructure Home > Interfaces page is displayed, as shown in
Figure 3–11.

Monitoring Oracle JCA Adapters

3-16 Oracle Fusion Middleware User's Guide for Technology Adapters

This page shows a list of all currently active inbound (services) and outbound
adapter interactions (references), and the average execution time for the various
steps each adapter performs.

Figure 3–11 The SOA Infrastructure Home > Interfaces Page

4

Oracle JCA Adapter for Files/FTP 4-1

4Oracle JCA Adapter for Files/FTP

This chapter describes how to use the Oracle File and FTP Adapters, which work with
Oracle BPEL Process Manager and Oracle Mediator. Information on concepts, features,
configuration and use cases for the Oracle File and FTP Adapters is also provided.

This chapter includes the following sections:

■ Section 4.1, "Introduction to Oracle File and FTP Adapters"

■ Section 4.2, "Oracle File and FTP Adapters Features"

■ Section 4.3, "Oracle File and FTP Adapter Concepts"

■ Section 4.4, "Configuring Oracle File and FTP Adapters"

■ Section 4.5, "Oracle File and FTP Adapters Use Cases"

4.1 Introduction to Oracle File and FTP Adapters
Oracle BPEL PM and Mediator include the Oracle File and FTP Adapters. The Oracle
File and FTP Adapters enable a BPEL process or a Mediator to exchange (read and
write) files on local file systems and remote file systems (through use of the file
transfer protocol (FTP)). The file contents can be both XML and non-XML data
formats.

This section includes the following topics:

■ Section 4.1.1, "Oracle File and FTP Adapters Architecture"

■ Section 4.1.2, "Oracle File and FTP Adapters Integration with Oracle BPEL PM"

■ Section 4.1.3, "Oracle File and FTP Adapters Integration with Mediator"

4.1.1 Oracle File and FTP Adapters Architecture
The Oracle File and FTP Adapters are based on JCA 1.5 architecture. JCA provides a
standard architecture for integrating heterogeneous enterprise information systems
(EIS). The JCA Binding Component of the Oracle File and FTP Adapters expose the
underlying JCA interactions as services (WSDL with JCA binding) for Oracle BPEL PM
integration. For details about Oracle JCA Adapter architecture, see Chapter 1,
"Introduction to Oracle JCA Adapters."

Note: The term Oracle JCA Adapter for Files/FTP is used for the Oracle
File and FTP Adapters, which are separate adapters with very similar
functionality.

Introduction to Oracle File and FTP Adapters

4-2 Oracle Fusion Middleware User's Guide for Technology Adapters

4.1.2 Oracle File and FTP Adapters Integration with Oracle BPEL PM
The Oracle File and FTP Adapters are automatically integrated with Oracle BPEL PM.
When you drag and drop File Adapter for FTP Adapter from the Component Palette
of JDeveloper BPEL Designer, the Adapter Configuration Wizard starts with a
Welcome page, as shown in Figure 4–1.

Figure 4–1 The Adapter Configuration Wizard - Welcome Page

This wizard enables you to select and configure the Oracle File and FTP Adapters. The
Adapter Configuration Wizard then prompts you to enter a service name, as shown in
Figure 4–2.

Figure 4–2 The Adapter Configuration Wizard - Service Name Page

Introduction to Oracle File and FTP Adapters

Oracle JCA Adapter for Files/FTP 4-3

When configuration is complete, a WSDL and JCA file pair is created in the Application
Navigator section of Oracle JDeveloper. (JDeveloper) This JCA file contains the
configuration information you specify in the Adapter Configuration Wizard.

The Operation Type page of the Adapter Configuration Wizard prompts you to select
an operation to perform. Based on your selection, different Adapter Configuration
Wizard pages appear and prompt you for configuration information. Table 4–1 lists the
available operations and provides references to sections that describe the configuration
information you must provide.

For more information about Oracle JCA Adapter integration with Oracle BPEL PM, see
Chapter 1, "Introduction to Oracle JCA Adapters."

4.1.3 Oracle File and FTP Adapters Integration with Mediator
The Oracle File and FTP Adapters are automatically integrated with Mediator. When
you create an Oracle File or FTP Adapter service in JDeveloper Designer, the Adapter
Configuration Wizard is started.

This wizard enables you to select and configure the Oracle File and FTP Adapters.
When configuration is complete, a WSDL, JCA file pair is created in the Application
Navigator section of JDeveloper. This JCA file contains the configuration information
you specify in the Adapter Configuration Wizard.

The Operation Type page of the Adapter Configuration Wizard prompts you to select
an operation to perform. Based on your selection, different Adapter Configuration
Wizard pages appear and prompt you for configuration information. Table 4–2 lists the
available operations and provides references to sections that describe the configuration
information you must provide. For more information about Adapters and Mediator,
see Chapter 1, "Introduction to Oracle JCA Adapters."

Table 4–1 Supported Operations for Oracle BPEL Process Manager

Operation Section

Oracle File Adapter -

■ Read File (inbound operation) Section 4.3.1, "Oracle File Adapter Read File
Concepts"

■ Write File (outbound operation) Section 4.3.2, "Oracle File Adapter Write File
Concepts"

■ Synchronous Read File (outbound
operation)

Section 4.3.3, "Oracle File Adapter Synchronous
Read Concepts"

■ List Files (outbound operation) Section 4.3.4, "Oracle File Adapter File Listing
Concepts"

Oracle FTP Adapter -

■ Get File (inbound operation) Section 4.3.5, "Oracle FTP Adapter Get File
Concepts"

■ Put File (outbound operation) Section 4.3.6, "Oracle FTP Adapter Put File
Concepts"

■ Synchronous Get File (outbound
operation)

Section 4.3.7, "Oracle FTP Adapter Synchronous Get
File Concepts"

■ List Files (outbound operation) Section 4.3.8, "Oracle FTP Adapter File Listing
Concepts"

Oracle File and FTP Adapters Features

4-4 Oracle Fusion Middleware User's Guide for Technology Adapters

4.1.4 Oracle File and FTP Adapters Integration with SOA Composite
A composite is an assembly of services, service components (Oracle BPEL PM and
Mediator), wires, and references designed and deployed in a single application. The
composite processes the information described in the messages. The details of the
composite are stored in the composite.xml file. For more information about
integration of the Oracle File and FTP Adapters with SOA composite, see Section 3.2.4,
"Oracle SOA Composite Integration with Adapters."

4.2 Oracle File and FTP Adapters Features
The Oracle File and FTP Adapters enable you to configure a BPEL process or a
Mediator to interact with local and remote file system directories. This section explains
the following features of the Oracle File and FTP Adapters:

■ File Formats

■ FTP Servers

■ Inbound and Outbound Interactions

■ File Debatching

■ File ChunkedRead

■ File Sorting

■ Dynamic Outbound Directory and File Name Specification

■ Security

■ Nontransactional

■ Proxy Support

■ No Payload Support

Table 4–2 Supported Operations for Oracle Mediator

Operation Section

Oracle File Adapter -

■ Read File (inbound operation) Section 4.3.1, "Oracle File Adapter Read File
Concepts"

■ Write File (outbound operation) Section 4.3.2, "Oracle File Adapter Write File
Concepts"

■ Synchronous Read File (outbound
operation)

Section 4.3.3, "Oracle File Adapter Synchronous
Read Concepts"

■ List Files (outbound operation) Section 4.3.4, "Oracle File Adapter File Listing
Concepts"

Oracle FTP Adapter -

■ Get File (inbound operation) Section 4.3.5, "Oracle FTP Adapter Get File
Concepts"

■ Put File (outbound operation) Section 4.3.6, "Oracle FTP Adapter Put File
Concepts"

■ Synchronous Get File (outbound
operation)

Section 4.3.7, "Oracle FTP Adapter Synchronous Get
File Concepts"

■ List Files (outbound operation) Section 4.3.8, "Oracle FTP Adapter File Listing
Concepts"

Oracle File and FTP Adapters Features

Oracle JCA Adapter for Files/FTP 4-5

■ Large Payload Support

■ File-Based Triggers

■ Pre-Processing and Post-Processing of Files

■ Error Handling

■ Threading Model

■ Performance Tuning

■ High Availability

■ Multiple Directories

■ Append Mode

■ Recursive Processing of Files Within Directories in Oracle FTP Adapter

■ Securing Enterprise Information System Credentials

4.2.1 File Formats
The Oracle File and FTP Adapters can read and write the following file formats and
use the adapter translator component at both design time and run time:

■ XML (both XSD- and DTD-based)

■ Delimited

■ Fixed positional

■ Binary data

■ COBOL Copybook data

The Oracle File and FTP Adapters can also treat file contents as an opaque object and
pass the contents in their original format (without performing translation). The opaque
option handles binary data such as JPGs and GIFs, whose structure cannot be captured
in an XSD or data you do not want to have translated.

The translator enables the Oracle File and FTP Adapters to convert native data in
various formats to XML. The native data can be simple (just a flat structure) or
complex (with parent-child relationships). The translator can handle both XML and
non-XML (native) formats of data.

4.2.2 FTP Servers
Oracle FTP Adapter supports most RFC 959 compliant FTP servers on all platforms. It
also provides a pluggable mechanism that enables Oracle FTP Adapter to support
additional FTP servers. In addition, Oracle FTP Adapter supports FTP over SSL (FTPS)
on Solaris and Linux. Oracle FTP Adapter also supports SFTP (Secure FTP) using SSH
transport.

Note: For composites with Oracle File and FTP Adapters, which are
designed to consume very large number of concurrent messages, you
must set the number of open files parameter for your operating
system to a larger value. For example, to set the number of open files
parameter to 8192 for Linux, use the ulimit -n 8192 command.

Note: Oracle FTP Adapter supports SFTP server version 3 or later.

Oracle File and FTP Adapters Features

4-6 Oracle Fusion Middleware User's Guide for Technology Adapters

4.2.3 Inbound and Outbound Interactions
The Oracle File and FTP Adapters exchange files in the inbound and outbound
directions. Based on the direction, the Oracle File and FTP Adapters perform different
sets of tasks.

For inbound files sent to Oracle BPEL PM or Mediator, the Oracle File and FTP
Adapters perform the following operations:

1. Poll the file system looking for matches.

2. Read and translate the file content based on the native schema (NXSD) defined at
design time.

3. Publish the translated content as an XML message.

This functionality of the Oracle File and FTP Adapters is referred to as the file read
operation, and the component that provides this function is the file reader. This
operation is known as a Java Connector Architecture (JCA) inbound activation.

For outbound files sent from Oracle BPEL PM or Mediator, the Oracle File and FTP
Adapters perform the following operations:

1. Receive messages from BPEL or Mediator.

2. Format the XML contents as specified at design time.

3. Produce output files. The output files can be created based on the following
criteria: time elapsed, file size, and number of messages. You can also specify a
combination of these criteria for output files.

This functionality of the Oracle File and FTP Adapters is referred to as the file write
operation. This operation is known as a JCA outbound interaction.

For the inbound and outbound directions, the Oracle File and FTP Adapters use a set
of configuration parameters. For example:

■ The inbound Oracle File and FTP Adapters have parameters for the inbound
directory where the input file appears and the frequency with which to poll the
directory.

■ The outbound Oracle File and FTP Adapters have parameters for the outbound
directory in which to write the file and the file naming convention to use.

The file reader supports polling conventions and offers several postprocessing options.
You can specify to delete, move, or leave the file as it is after processing the file. The
file reader can split the contents of a file and publish it in batches, instead of as a single
message. You can use this feature for performance tuning of the Oracle File and FTP
Adapters. The file reader guarantees once and once-only delivery.

following sections for details about the read and write functionality of the Oracle File
and FTP Adapters:

■ Section 4.3.1, "Oracle File Adapter Read File Concepts"

■ Section 4.3.2, "Oracle File Adapter Write File Concepts"

Note: You must use the Adapter Configuration Wizard to modify the
configuration parameters, such as publish size, number of messages,
and polling frequency.

You must not manually change the value of these parameters in JCA
files.

Oracle File and FTP Adapters Features

Oracle JCA Adapter for Files/FTP 4-7

■ Section 4.3.5, "Oracle FTP Adapter Get File Concepts"

■ Section 4.3.6, "Oracle FTP Adapter Put File Concepts"

4.2.4 File Debatching
When a file contains multiple messages, you can choose to publish messages in a
specific number of batches. This is referred to as debatching. During debatching, the
file reader, on restart, proceeds from where it left off in the previous run, thereby
avoiding duplicate messages. File debatching is supported for files in XML and native
formats. You must not manually change the value of the publish size parameter in JCA
files. You must use the Adapter Configuration Wizard to modify this parameter.

You can register a batch notification callback (Java class) which is invoked when the
last batch is reached in a debatching scenario.

<service ...
 <binding.jca ...
 <property
name="batchNotificationHandler">java://oracle.sample.SampleBatchCalloutHandler
</property>

where the property value needs to be java://{custom_class} and where
oracle.sample.SampleBatchCalloutHandler must implement

package oracle.tip.adapter.api.callout.batch;
public interface BatchNotificationCallout extends Callout
{
 public void onInitiateBatch(String rootId,
 String metaData)
 throws ResourceException;
 public void onFailedBatch(String rootId,
 String metaData,
 long currentBatchSize,
 Throwable reason)
 throws ResourceException;
 public void onCompletedBatch(String rootId,
 String metaData,
 long finalBatchSize)
 throws ResourceException;

4.2.5 File ChunkedRead
This is a feature of Oracle File and FTP Adapters that uses an invoke activity within a
while loop to process the target file. This feature enables you to process arbitrarily
large files.

If an invalid payload is provided, then ChunkedRead scenarios do not throw an
exception. When a translation exception (bad record violating the NXSD specification)
is encountered, the return header is populated with the translation exception message
that includes details such as line and column where the error occurred. All translation
errors do not result in a fault. These errors are manifested as a value in the return
header. You must check the jca.file.IsMessageRejected and
jca.file.RejectionReason header values to ascertain whether an exception has
occurred. Additionally, you can also check the jca.file.NoDataFound header
value.

Oracle File and FTP Adapters Features

4-8 Oracle Fusion Middleware User's Guide for Technology Adapters

4.2.6 File Sorting
When files must be processed by Oracle File and FTP Adapters in a particular order,
you must configure the sorting parameters. For example, you can configure the sorting
parameters for Oracle File and FTP Adapters to process files in ascending or
descending order by time stamps.

You must meet the following prerequisites for sorting scenarios of Oracle File and FTP
Adapters:

■ Use a synchronous operation

■ Add the following property to the inbound JCA file:

<property name="ListSorter"
value="oracle.tip.adapter.file.inbound.listing.TimestampSorterAscending"/>
<property name="SingleThreadModel" value="true"/>

4.2.7 Dynamic Outbound Directory and File Name Specification
The Oracle File and FTP Adapters enable you to dynamically specify the logical or
physical name of the outbound file or outbound directory. For information about how
to specify dynamic outbound directory, see Section 4.3.2.2, "Outbound File Directory
Creation."

4.2.8 Security
The Oracle FTP Adapter supports FTP over SSL (FTPS) and Secure FTP (SFTP) to
enable secure file transfer over a network.

For more information, see Section 4.4.3, "Using Secure FTP with the Oracle FTP
Adapter" and Section 4.4.4, "Using SFTP with Oracle FTP Adapter."

4.2.9 Nontransactional
The Oracle File Adapter picks up a file from an inbound directory, processes the file,
and sends the processed file to an output directory. However, during this process if a
failover occurs in the Oracle RAC back end or in an SOA managed server, then the file
is processed twice because of the nontransactional nature of Oracle File Adapter. As a
result, there can be duplicate files in the output directory.

4.2.10 Proxy Support
You can use the proxy support feature of the Oracle FTP Adapter to transfer and
retrieve data to and from the FTP servers that are located outside a firewall or can only
be accessed through a proxy server. A proxy server enables the hosts in an intranet to
indirectly connect to hosts on the Internet. Figure 4–3 shows how a proxy server
creates connections to simulate a direct connection between the client and the remote
FTP server.

Oracle File and FTP Adapters Features

Oracle JCA Adapter for Files/FTP 4-9

Figure 4–3 Remote FTP Server Communication Through a Proxy Server

To use the HTTP proxy feature, your proxy server must support FTP traffic through
HTTP Connection. In addition, only passive data connections are supported with this
feature. For information about how to configure the Oracle FTP Adapter, see
Section 4.4.5, "Configuring Oracle FTP Adapter for HTTP Proxy."

4.2.11 No Payload Support
For Oracle BPEL PM and Mediator, the Oracle File and FTP Adapters provide support
for publishing only file metadata such as file name, directory, file size, and last
modified time to a BPEL process or Mediator and excludes the payload. The process
can use this metadata for subsequent processing. For example, the process can call
another reference and pass the file and directory name for further processing.You can
use the Oracle File and FTP Adapters as a notification service to notify a process
whenever a new file appears in the inbound directory. To use this feature, select the Do
not read file content check box in the JDeveloper wizard while configuring the "Read
operation."

4.2.12 Large Payload Support
For Oracle BPEL PM and Mediator, the Oracle File Adapter provides support for
transferring large files as attachments. To use this feature, select the Read File As
Attachment check box in the JDeveloper wizard while configuring the "Read
operation." This option opaquely transfers a large amount of data from one place to
another as attachments. For example, you can transfer large MS Word documents,
images, and PDFs without processing their content within the composite application.
For information about how to pass large payloads as attachments, see Section 4.5.6,
"Oracle File Adapter Read File As Attachments."

Additionally, the Oracle File Adapter provides you with the ability to write files as an
attachment. When you write files as attachments, and also have a normal payload, it is
the attached file that will be written, and the payload will be ignored.

4.2.13 File-Based Triggers
You can use the Oracle File and FTP Adapters, which provide support for file-based
triggers, to control inbound adapter endpoint activation. For information about how to
use file-based triggers, see Section 4.3.1.4, "File Polling."

Note: You must not pass large payloads as opaque schemas.

Client

Port 80
Port 21

Proxy Server

Data

Passive Port

Remote FTP Server

Control

Oracle File and FTP Adapters Features

4-10 Oracle Fusion Middleware User's Guide for Technology Adapters

4.2.14 Pre-Processing and Post-Processing of Files
The process modeler may encounter situations where files must be pre-processed
before they are picked up for processing or post-processed before the files are written
out to the destination folder. For example, the files that the Oracle File and FTP
adapters receive may be compressed or encrypted and the adapter must decompress
or decrypt the files before processing. In this case you must use a custom code to
decompress or decrypt the files before processing. The Oracle File and FTP Adapters
supports the use of custom code that can be plugged in for pre-processing or
post-processing of files.

The implementation of the pre-processing and post-processing of files is restricted to
the following communication modes of the Oracle File and FTP Adapters:

■ Read File or Get File

■ Write File or Put File

■ Synchronous Read File

■ Chunked Read

This section contains the following topics:

■ Section 4.2.14.1, "Mechanism For Pre-Processing and Post-Processing of Files"

■ Section 4.2.14.2, "Configuring a Pipeline"

■ Section 4.2.14.3, "Using a Re-Entrant Valve For Processing Zip Files"

■ Section 4.2.14.4, "Configuring Batch Notification Handler"

4.2.14.1 Mechanism For Pre-Processing and Post-Processing of Files
The mechanism for pre-processing and post-processing of files is configured as
pipelines and valves. This section describes the concept of pipelines and valves.

A pipeline consists of a series of custom-defined valves. A pipeline loads a stream
from the file system, subjects the stream to processing by an ordered sequence of
valves, and after the processing returns the modified stream to the adapter.

A valve is the primary component of execution in a processing pipeline. A valve
processes the content it receives and forwards the processed content to the next valve.
For example, in a scenario where the Oracle File and FTP Adapters receive files that
are encrypted and zipped, you can configure a pipeline with an unzip valve followed
by a decryption valve. The unzip valve extracts the file content before forwarding it to
the decryption valve, which decrypts the content and the final content is made
available to the Oracle File or FTP Adapter as shown in Figure 4–4.

Oracle File and FTP Adapters Features

Oracle JCA Adapter for Files/FTP 4-11

Figure 4–4 A Sample Pre-Processing Pipeline

4.2.14.2 Configuring a Pipeline
Configuring the mechanism for pre-processing and post-processing of files requires
defining a pipeline and configuring it in the corresponding JCA file.

To configure a pipeline, you must perform the following steps:

■ Step 1, "Implementing and Extending Valves"

■ Step 2, "Compiling the Valves"

■ Step 3, "Creating a Pipeline"

■ Step 4, "Adding the Pipeline to the SOA Project Directory"

■ Step 5, "Registering the Pipeline"

Step 1 Implementing and Extending Valves
All valves must implement Valve or StagedValve interface.

Example 4–1 is a sample valve interface.

Example 4–1 The Valve Interface

package oracle.tip.pc.services.pipeline;

import java.io.IOException;
/** <p>
 * Valve component is resposible for processing the input stream
 * and returning a modified input stream.
 * The <code>execute()</code> method of the valve gets invoked
 * by the caller (on behalf) of the pipeline. This method must
 * return the input stream wrapped within an InputStreamContext.
 * The Valve is also responsible for error handling specifically

Tip: You can extend either the AbstractValve or the
AbstractStagedValve class based on business requirement rather
than implementing a valve from the beginning.

Oracle File and FTP Adapters Features

4-12 Oracle Fusion Middleware User's Guide for Technology Adapters

 *
 * The Valve can be marked as reentrant in which case the caller
 * must call the <code>execute()</code> multiple times and each
 * invocation must return a new input stream. This is useful, if
 * you are writing an UnzipValve since each iteration of the valve
 * must return the input stream for a different zipped entry.
 * You must note that only the first Valve in the pipeline can
 * be reentrant
 *
 * The Valve has another flavor <code>StagedValve</code> and if
 * the valve implements StagedValve, then the valve must store
 * intermediate content in a staging file and return it whenever
 * required.
 * </p>
 */
public interface Valve
{
 /**
 * Set the Pipeline instance. This parameter can be
 * used to get a reference to the PipelineContext instance.
 * @param pipeline
 */
 public void setPipeline(Pipeline pipeline);

 /** Returns the Pipeline instance.
 * @return
 */
 public Pipeline getPipeline();

 /** Returns true if the valve has more input streams to return
 * For example, if the input stream is from a zipped file, then
 * each invocation of <code>execute()</code> returns a different
 * input stream once for each zipped entry. The caller calls
 * <code>hasNext()</code> to check if more entries are available
 * @return true/false
 */
 public boolean hasNext();

 /** Set to true if the caller can call the valve multiple times
 * e.g. in case of ZippedInputStreams
 * @param reentrant
 */
 public void setReentrant(boolean reentrant);

 /** Returns true if the valve is reentrant.
 * @return
 */
 public boolean isReentrant();

 /** The method is called by pipeline to return the modified input stream
 * @param in
 * @return InputStreamContext that wraps the input stream along with required
metadata
 * @throws PipelineException
 */
 public InputStreamContext execute(InputStreamContext in) throws
PipelineException, IOException;

 /**
 * This method is called by the pipeline after the caller publishes the

Oracle File and FTP Adapters Features

Oracle JCA Adapter for Files/FTP 4-13

 * message to the SCA container.
 * In the case of a zipped file, this method gets called repeatedly, once
 * for each entry in the zip file.
 * This should be used by the Valve to do additional tasks such as
 * delete the staging file that has been processed in a reentrant
scenario.
 * @param in The original InputStreamContext returned from
<code>execute()</code>
 */
 public void finalize(InputStreamContext in);

 /**Cleans up intermediate staging files, input streams
 * @throws PipelineException, IOException
 */
 public void cleanup() throws PipelineException, IOException;
 }

The StagedValve stores intermediate content in staging files. Example 4–2 shows the
StagedValve interface extending the Valve interface.

Example 4–2 The StagedValve Interface Extending the Valve Interface

package oracle.tip.pc.services.pipeline;

import java.io.File;

/**
 * A special valve that stages the modified
 * input stream in a staging file.
 * If such a <code>Valve</code> exists, then
 * it must return the staging file containing
 * the intermediate data.
 */
public interface StagedValve extends Valve {

 /**
 * @return staging file where the valve stores its intermediate results
 */
 public File getStagingFile();
}

Example 4–3 is a sample of an AbstractValve class implementing the Valve
interface.

Example 4–3 The AbstractValve Class Implementing the Valve Interface

package oracle.tip.pc.services.pipeline;

import java.io.IOException;

/**
 * A bare bone implementation of Valve. The user should extend from
 * AbstractValve rather than implementing a Valve from scratch
 *
 */
public abstract class AbstractValve implements Valve {

 /**
 * The pipeline instance is stored as a member
 */

Oracle File and FTP Adapters Features

4-14 Oracle Fusion Middleware User's Guide for Technology Adapters

 private Pipeline pipeline = null;

 /**
 * If reentrant is set to true, then the Valve must adhere to the
following:
 * i) It must the first valve in the pipeline ii) Must implement hasNext
 * method and return true if more input streams are available A reentrant
 * valve will be called by the pipeline more than once and each time the
 * valve must return a different input stream, for example Zipped entries
 * within a zip file
 */
 private boolean reentrant = false;

 /*
 * Save the pipeline instance.
 *
 * @see
oracle.tip.pc.services.pipeline.Valve#setPipeline(oracle.tip.pc.services.pipeline
.Pipeline)
 */
 public void setPipeline(Pipeline pipeline) {
 this.pipeline = pipeline;
 }

 /*
 * Return the pipeline instance (non-Javadoc)
 *
 * @see oracle.tip.pc.services.pipeline.Valve#getPipeline()
 */
 public Pipeline getPipeline() {
 return this.pipeline;
 }

 /*
 * Return true if the valve is reentrant (non-Javadoc)
 *
 * @see oracle.tip.pc.services.pipeline.Valve#isReentrant()
 */
 public boolean isReentrant() {
 return this.reentrant;
 }

 /*
 * If set to true, the valve is reentrant (non-Javadoc)
 *
 * @see oracle.tip.pc.services.pipeline.Valve#setReentrant(boolean)
 */
 public void setReentrant(boolean reentrant) {
 this.reentrant = reentrant;
 }

 /*
 * By default, set to false For valves that can return more than one
 * inputstreams to callers, this parameter must return true/false
depending
 * on the availability of input streams (non-Javadoc)
 *
 * @see oracle.tip.pc.services.pipeline.Valve#hasNext()
 */
 public boolean hasNext() {

Oracle File and FTP Adapters Features

Oracle JCA Adapter for Files/FTP 4-15

 return false;
 }

 /*
 * Implemented by concrete valve (non-Javadoc)
 *
 * @see oracle.tip.pc.services.pipeline.Valve#execute(InputStreamContext)
 */
 public abstract InputStreamContext execute(InputStreamContext in)
 throws PipelineException, IOException;

 /*
 * Implemented by concrete valve (non-Javadoc)
 *
 * @see
oracle.tip.pc.services.pipeline.Valve#finalize(oracle.tip.pc.services.pipeline.In
putStreamContext)
 */
 public abstract void finalize(InputStreamContext in);

 /*
 * Implemented by concrete valve (non-Javadoc)
 *
 * @see oracle.tip.pc.services.pipeline.Valve#cleanup()
 */
 public abstract void cleanup() throws PipelineException, IOException;

}
Example 4–4 shows the AbstractStagedValve class extending the
AbstractValve class.

Example 4–4 The AbstractStagedValve Class Extending the AbstractValve Class

package oracle.tip.pc.services.pipeline;

import java.io.File;
import java.io.IOException;

public abstract class AbstractStagedValve extends AbstractValve implements
 StagedValve {

 public abstract File getStagingFile();

 public abstract void cleanup() throws IOException, PipelineException;

 public abstract InputStreamContext execute(InputStreamContext in)
 throws IOException, PipelineException;

}

For more information on valves, see Appendix B, "Oracle JCA Adapter Valves."

Step 2 Compiling the Valves

You must use the bpm-infra.jar file to compile the valves. The bpm-infra.jar
file is located at $MW_HOME/AS11gR1SOA/soa/modules/oracle.soa.fabric_
11.1.1/bpm-infra.jar.

Oracle File and FTP Adapters Features

4-16 Oracle Fusion Middleware User's Guide for Technology Adapters

1. Reference the SOA project to the bpm-infra.jar file, by using the following
procedure:

a. In the Application Navigator, right-click the SOA project.

b. Select Project Properties. The Project Properties dialog is displayed.

c. Click Libraries and Classpath. The Libraries and Classpath pane is displayed
as shown in Figure 4–5.

Figure 4–5 The Project Properties Dialog

d. Click Add Jar/Directory. The Add Archive or Directory dialog is displayed.

e. Browse to select the bpm-infra.jar file. The Bpm-infra.jar file is located
at $MW_HOME/AS11gR1SOA/soa/modules/oracle.soa.fabric_
11.1.1/bpm-infra.jar.

f. Click OK. The bpm-infra.jar file is listed under Classpath Entries.

2. Compile the valves using the bpm-infra.jar file.

3. Make the JAR file containing the compiled valves available to the Oracle
WebLogic Server classpath by adding the jar file to the soainfra domain
classpath. For example, $MW_HOME/user_
projects/domains/soainfra/lib.

Step 3 Creating a Pipeline
To configure a pipeline, you must create an XML file that conforms to the following
schema:

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

Note: Ensure that you compile bpm-infra.jar with JDK 6.0 to
avoid compilation error such as "class file has wrong
version 50.0, should be 49.0".

Oracle File and FTP Adapters Features

Oracle JCA Adapter for Files/FTP 4-17

targetNamespace="http://www.oracle.com/adapter/pipeline">
 <xs:element name="pipeline">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="valves">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="valve" maxOccurs="unbounded">
 <xs:complexType mixed="true">
 <xs:attribute name="reentrant" type="xs:NMTOKEN" use="optional" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:attribute name="useStaging" type="xs:NMTOKEN" use="optional" />
 <xs:attribute name="batchNotificationHandler" type="xs:NMTOKEN" use="
optional" />
 </xs:element>
</xs:schema

The following is a sample XML file configured for a pipeline with two valves,
SimpleUnzipValve and SimpleDecryptValve:

<?xml version="1.0"?>
<pipeline xmlns="http://www.oracle.com/adapter/pipeline">
<valves>
 <valve>valves.SimpleUnzipValve</valve>
 <valve> valves.SimpleDecryptValve </valve>
</valves>
</pipeline>

Step 4 Adding the Pipeline to the SOA Project Directory
You must add the pipeline.xml file to the SOA project directory. This step is
required to integrate the pipeline with the Oracle File or FTP Adapter. Figure 4–6
shows a sample pipeline.xml file (unzippipeline.xml) added to the
InboundUnzipAndOutboundZip project.

Figure 4–6 Project with unzippipeline.xml File

Oracle File and FTP Adapters Features

4-18 Oracle Fusion Middleware User's Guide for Technology Adapters

Step 5 Registering the Pipeline
The pipeline that is a part of the SOA project must be registered by modifying the
inbound JCA file, by adding the following property:

<property name="PipelineFile" value="pipeline.xml"/>

For example, in the JCA file shown in Figure 4–6, FileInUnzip_file.jca, the
following property has been added to register an Unzip pipeline with an Oracle File
Adapter:

<property name="PipelineFile" value="unzippipeline.xml"/>

There may be scenarios involving simple valves. A simple valve is one that does not
require additional metadata such as re-entrancy, and
batchNotificationHandlers. If the scenario involves simple valves, then the
pipeline can be configured as an ActivationSpec or an InteractionSpec
property as shown in the following sample:

<adapter-config name="FileInUnzip" adapter="File Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/FileAdapter" UIincludeWildcard="*.zip"
adapterRef=""/>
 <endpoint-activation portType="Read_ptt" operation="Read">
 <activation-spec
className="oracle.tip.adapter.file.inbound.FileActivationSpec">
 <property../>
 <property name="PipelineValves"
value="valves.SimpleUnzipValve,valves.SimpleDecryptValve"/>
 </activation-spec>
 </endpoint-activation>
</adapter-config>

4.2.14.3 Using a Re-Entrant Valve For Processing Zip Files
The re-entrant valve enables you to process individual entries within a zip file. In a
scenario that involves processing all entries within a zip file, wherein each entry is
encrypted using the Data Encryption Standard (DES), you can configure the valve by
adding the reentrant="true" attribute to the unzip valve as follows:

<?xml version="1.0"?>
<pipeline xmlns="http://www.oracle.com/adapter/pipeline">
<valves>
 <valve reentrant="true">valves.ReentrantUnzipValve</valve>
 <valve> valves.SimpleDecryptValve </valve>
</valves>
</pipeline>

Note: There is no space after the comma (,) in the
PipelineValves property value.

Note: If you configure a pipeline using the "PipelineValves"
property, then you cannot configure additional metadata such as
Re-entrant Valve and Batch Notification Handler. Additional metadata
can be configured only with "PipelineFile" that is used for the
XML-based approach.

Oracle File and FTP Adapters Features

Oracle JCA Adapter for Files/FTP 4-19

In this example, the pipeline invokes the ReentrantUnzipValve and then the
SimpleDecryptValve repeatedly in the same order until the entire zip file has been
processed. In other words, the ReentrantUnzipValve is invoked first to return the
data from the first zipped entry, which is then fed to the SimpleDecryptValve for
decryption, and the final content is returned to the adapter. The process repeats until
all the entries within the zip file are processed.

Additionally, the valve must set the message key using the setMessageKey() API.
For more information refer to Appendix B.4, "An Unzip Valve for processing Multiple
Files."

Error Handling For Zip Files
If there are translation errors for individual entries within the zip file, then entries with
the translation errors are rejected and the other entries are processed.

If there are errors during the publish operation, then the publish operation is retried and
the retry semantic holds. If the retry semantic does not hold, then the original file is
rejected and the pipeline ends.

4.2.14.4 Configuring Batch Notification Handler
The BatchNotificationHandler API is used with the Oracle File and FTP Adapter
inbound de-batchability. In a de-batching scenario, each file contains multiple
messages, and some sort of bookkeeping is required for crash-recovery. This is
facilitated by the BatchNotificationHandler API, which lets you receive
notification from the pipeline whenever a batch begins, occurs, or ends. The following
is the BatchNotificationHandler interface:

package oracle.tip.pc.services.pipeline;

/*
 * Whenever the caller processes de-batchable files, each file can
 * have multiple messages and this handler allows the user to plug in
 * a notification mechanism into the pipeline.
 *
 * This is particularly useful in crash recovery situations
 */

public interface BatchNotificationHandler {

 /*
 * The Pipeline instance is set by the PipelineFactory when the
 * BatchNotificationHandler instance is created
 */
 public void setPipeline(Pipeline pipeline);

 public Pipeline getPipeline();

 /*
 * Called when the BatchNotificationHandler is instantiated
 */
 public void initialize();

 /*
 * Called by the adapter when a batch begins, the implementation must
return
 * a BatchContext instance with the following information:
 * i) batchId: a unique id that will be returned every time onBatch is
invoked by called

Oracle File and FTP Adapters Features

4-20 Oracle Fusion Middleware User's Guide for Technology Adapters

 * ii)line/col/record/offset: for error recovery cases
 */
 public BatchContext onBatchBegin();

 /*
 * Called by the adapter when a batch is submitted. The parameter holds
the
 * line/column/record/offset for the successful batch that is published.
 * Here the implementation must save these in order to recover from
crashes
 */

 public void onBatch(BatchContext ctx);

 /*
 * Called by the adapter when a batch completes. This must be used to
clean
 * up
 */
 public void onBatchCompletion(boolean success);
}

To use a pipeline with de-batching, you must configure the pipeline with a
BatchNotificationHandler instance as follows:

<?xml version="1.0"?>
<pipeline xmlns="http://www.oracle.com/adapter/pipeline"
batchNotificationHandler="oracle.tip.pc.services.pipeline.ConsoleBatchNotification
Handler">
<valves>
 <valve reentrant="true">valves.SimpleUnzipValve</valve>
 <valve>valves.SimpleDecryptValve</valve>
</valves>
</pipeline>

4.2.15 Error Handling
The Oracle File Adapter and Oracle FTP Adapter provide inbound error handling
capabilities, such as the uniqueMessageSeparator property.

In the case of debatching (multiple messages in a single file), messages from the first
bad message to the end of the file are rejected. If each message has a unique separator
and that separator is not part of any data, then rejection can be more fine grained. In
these cases, you can define a uniqueMessageSeparator property in the schema
element of the native schema to have the value of this unique message separator. This
property controls how the adapter translator works when parsing through multiple
records in one file (debatching). This property enables recovery even when detecting
bad messages inside a large batch file. When a bad record is detected, the adapter
translator skips to the next unique message separator boundary and continues from
there. If you do not set this property, then all records that follow the record with errors
are also rejected.

The following schema file provides an example of using the
uniqueMessageSeparator property:

<?xml version="1.0" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://TargetNamespace.com/Reader"

Oracle File and FTP Adapters Features

Oracle JCA Adapter for Files/FTP 4-21

 xmlns:tns="http://TargetNamespace.com/Reader"
 elementFormDefault="qualified" attributeFormDefault="unqualified"
 nxsd:encoding="US-ASCII" nxsd:stream="chars"
 nxsd:version="NXSD" nxsd:uniqueMessageSeparator="${eol}">
 <xsd:element name="emp-listing">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="emp" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="GUID" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy=""">
 </xsd:element>
 <xsd:element name="Designation" type="xsd:string"
 nxsd:style="terminated" nxsd:terminatedBy=","
 nxsd:quotedBy=""">
 </xsd:element>
 <xsd:element name="Car" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy=""">
 </xsd:element>
 <xsd:element name="Labtop" type="xsd:string"
 nxsd:style="terminated" nxsd:terminatedBy=","
 nxsd:quotedBy=""">
 </xsd:element>
 <xsd:element name="Location" type="xsd:string"
 nxsd:style="terminated" nxsd:terminatedBy=","
 nxsd:quotedBy=""">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>
<!--NXSDWIZ:D:\work\jDevProjects\Temp_BPEL_process\Sample2\note.txt:-->
<!--USE-HEADER:false:-->

For information about handling rejected messages, connection errors, and message
errors, see Section 2.21.1, "Handling Rejected Messages".

4.2.15.1 Sending a Malformed XML File to a Local File System Folder
During an Inbound Read operation, if a malformed XML file is read, the malformed
file results in an error. The errored file is by default sent to the remote file system for
archival.

The errored file can be archived at a local file system by specifying the
useRemoteErrorArchive property in the jca file and setting that property to
false.

The default value for this property is true.

4.2.16 Threading Model
This section describes the threading models that Oracle File and FTP Adapters
support. An understanding of the threading models is required to throttle or
de-throttle the Oracle File and FTP Adapters. The Oracle File and FTP Adapters use
the following threading models:

Oracle File and FTP Adapters Features

4-22 Oracle Fusion Middleware User's Guide for Technology Adapters

■ Default Threading Model

■ Modified Threading Model

4.2.16.1 Default Threading Model
In the default threading model, a poller is created for each inbound Oracle File or FTP
Adapter endpoint. The poller enqueues file metadata into an in-memory queue, which
is processed by a global pool of processor threads. Figure 4–7 shows a default
threading model.

Figure 4–7 Default Threading Model

The following steps highlight the functioning of the default threading model:

1. The poller periodically looks for files in the input directory. The interval at which
the poller looks for files is specified using the PollingFrequency parameter in
the inbound JCA file.

2. For each new file that the poller detects in the configured inbound directory, the
poller enqueues information such as file name, file directory, modified time, and
file size into an internal in-memory queue.

3. A global pool of processor worker threads wait to process from the in-memory
queue.

4. Processor worker threads pick up files from the internal queue, and perform the
following actions:

a. Stream the file content to an appropriate translator (for example, a translator
for reading text, binary, XML, or opaque data.)

b. Publishes the XML result from the translator to the SCA infrastructure.

c. Performs the required postprocessing, such as deletion or archival after the file
is processed.

Note: New files are ones that are not being processed.

Poll File System

Enqueue

Process

EIS (File/FTP/SFTP/FTPS)

Only metadata is
enqueued e.g. filename

directory name etc

Poller In-memory Queue

Processor

By default, there are 4
processors. Can be

modified in pc.properties

1..n

Oracle File and FTP Adapters Features

Oracle JCA Adapter for Files/FTP 4-23

4.2.16.2 Modified Threading Model
You can modify the default threading behavior of Oracle File and FTP Adapters.
Modifying the threading model results in a modified throttling behavior of Oracle File
and FTP Adapters. The following sections describe the modified threading behavior of
the Oracle File and FTP Adapters:

■ Single Threaded Model

■ Partitioned Threaded Model

Single Threaded Model
The single threaded model is a modified threaded model that enables the poller to
assume the role of a processor. The poller thread processes the files in the same thread.
The global pool of processor threads is not used in this model. You can define the
property for a single threaded model in the inbound JCA file as follows:

<activation-spec className="oracle.tip.adapter.file.inbound.FileActivationSpec">
 <property../>
 <property name="SingleThreadModel" value="true"/>
 <property../>
</activation-spec>

Partitioned Threaded Model
The partitioned threaded model is a modified threaded model in which the in-memory
queue is partitioned and each composite application receives its own in-memory
queue. The Oracle File and FTP Adapters are enabled to create their own processor
threads rather than depend on the global pool of processor worker threads for
processing the enqueued files. You can define the property for a partitioned model in
the inbound JCA file as follows:

<activation-spec
className="oracle.tip.adapter.file.inbound.FileActivationSpec">
 <property../>
 <property name="ThreadCount" value="4"/>
 <property../>
</activation-spec>

In the preceding example for defining the property for a partitioned model:

■ If the ThreadCount property is set to 0, then the threading behavior is like that of
the single threaded model.

■ If the ThreadCount property is set to -1, then the global thread pool is used, as
in the default threading model.

■ The maximum value for the ThreadCount property is 40.

4.2.17 Performance Tuning
The Oracle File and FTP Adapters support the performance tuning feature by
providing knobs to throttle the inbound and outbound operations. The Oracle File and
FTP Adapters also provide knobs that you can use to tune the performance of
outbound operations.

For more information about performance tuning, see "Oracle JCA Adapters for
Files/FTP" in the Oracle Fusion Middleware Performance and Tuning Guide.

Oracle File and FTP Adapters Features

4-24 Oracle Fusion Middleware User's Guide for Technology Adapters

4.2.18 High Availability
The Oracle File and FTP Adapters support the high availability feature for the
active-active topology with Oracle BPEL Process Manager and Mediator service
engines. It supports this feature for both inbound and outbound operations.

4.2.19 Multiple Directories
The Oracle File and FTP Adapters support polling multiple directories within a single
activation. You can specify multiple directories in JDeveloper as opposed to a single
directory. This is applicable to both physical and logical directories.

After selecting the inbound directory or directories, you can also specify whether the
subdirectories must be processed recursively. If you check the Process Files
Recursively option, then the directories would be processed recursively. By default,
this option is selected, in the File Directories page, as shown in Figure 4–8.

When you choose multiple directories, the generated JCA files use semicolon(;) as the
separator for these directories. However, you can change the separator to something
else. If you do so, manually add DirectorySeparator="chosen separator" in
the generated JCA file. For example, to use comma (,) as the separator, you must first
change the separator to "," in the Physical directory and then add <property
name="DirectorySeparator" value=","/>, in the JCA file.

Additionally, if you choose to process directories recursively and one or more
subdirectories do not have the appropriate permissions, the inbound adapter throws
an exception during processing. To ignore this exception, you must define a binding
property with the name ignoreListingErrors in your composite.xml as shown
in the following example:

<service name="FlatStructureIn">
<interface.wsdl
interface="http://xmlns.oracle.com/pcbpel/adapter/file/FlatStructureIn/#wsdl.inte
rface(Read_ptt)"/>
<binding.jca config="FlatStructureIn_file.jca">
<property name="ignoreListingErrors" type="xs:string"
many="false">true</property>
</binding.jca>
</service>

Note: If the inbound Oracle File Adapter is configured for polling
multiple directories for incoming files, then all the top-level directories
(inbound directories where the input files appear) must exist before
the file reader starts polling these directories.

Oracle File and FTP Adapters Features

Oracle JCA Adapter for Files/FTP 4-25

Figure 4–8 The Adapter Configuration Wizard - File Directories Page

4.2.20 Append Mode
The Oracle File and FTP Adapters enable you to configure outbound interactions that
append to an existing file. The Append to Existing File option enables the outbound
invoke to write to the same file. There are two ways in which you can append to a file
name:

■ Statically - in the JCA file for the outbound Oracle File Adapter

■ Dynamically - using the header mechanism

When you select the Append to existing file option in the File Configuration page, the
batching options such as Number of Messages Equals, Elapsed Time Exceeds, File Size
Exceeds options are disabled. Figure 4–9 displays the Append to Existing File option.

Note: The append mode is not supported for SFTP scenarios, where
instead of appending to the existing file, the file is overwritten.

Oracle File and FTP Adapters Features

4-26 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–9 The Adapter Configuration Wizard - File Configuration Page

Batching option is disabled if "Append" is chosen in the wizard. In addition, the
following error message is displayed if the user specifies a dynamic file naming
convention as opposed to a static file naming convention:

You cannot choose to Append Files and use a dynamic file naming convention at the
same time

If you are using the "Append" functionality in Oracle FTP Adapter, ensure that the
FTP server supports the "APPE" command.

4.2.21 Recursive Processing of Files Within Directories in Oracle FTP Adapter
In earlier versions of the Oracle SOA Suite, the inbound Oracle FTP Adapter used the
NLST (Name List) FTP command to read a list of file names from the FTP server.
However, the NLST command does not return directory names and therefore does not
allow recursive processing within directories. In the 11g release, the Oracle FTP
Adapter uses the LIST command, instead.

However, the response from the LIST command is different for different FTP servers.
To incorporate the subtle differences in results from the LIST command in a standard
manner, the following parameters are added to the deployment descriptor for Oracle
FTP Adapter:

■ defaultDateFormat: This parameter specifies the default date format value. On the
FTP server, this is the value for files that are older. The default value for this
parameter is MMM d yyyy as most UNIX-type FTP servers return the last
modified time stamp for older files in the MMM d yyyy format. For example, Jan
31 2006.

You can find the default date format for your FTP server by using the ls -l
command by using a FTP command-line client. For example, ls -l on a vsftpd
server running on Linux returns the following:

-rw-r--r-- 1 500 500 377 Jan 22 2005 test.txt

Oracle File and FTP Adapters Features

Oracle JCA Adapter for Files/FTP 4-27

For Microsoft Windows NT FTP servers, the defaultDateFormat is MM-dd-yy
hh:mma, for example, 03-24-09 08:06AM <DIR> oracle.

■ recentDateFormat: This parameter specifies the recent date format value. On the
FTP server, this is the value for files that were recently created.

The default value for this parameter is MMM d HH:mm as most UNIX-type FTP
servers return the last modified date for recently created files in MMM d HH:mm
format, for example, Jan 31 21:32.

You can find the default date format for your FTP server by using the ls -l
command from an FTP command-line client. For example, ls -l on a vsftpd
server running on Linux returns the following:

150 Here comes the directory listing.
-rw-r--r-- 1 500 500 377 Jan 30 21:32 address.txt
-rw-r--r-- 1 500 500 580 Jan 3121:32 container.txt
...
......

For Microsoft Windows NT FTP servers, the recentDateFormat parameter is in
the MM-dd-yy hh:mma, format, for example, 03-24-09 08:06AM <DIR>
oracle.

■ serverTimeZone: The server time zone, for example, America/Los_Angeles. If this
parameter is set to blank, then the default time zone of the server running the
Oracle FTP Adapter is used.

■ listParserKey: Directs the Oracle FTP Adapter on how it should parse the
response from the LIST command. The default value is UNIX, in which case the
Oracle FTP Adapter uses a generic parser for UNIX-like FTP servers. Apart from
UNIX, the other supported values are WIN and WINDOWS, which are specific to the
Microsoft Windows NT FTP server.

■ serverLocaleLanguage: This parameter specifies the locale construct for language.

■ serverLocaleCountry: This parameter specifies the locale construct for country.

■ serverLocaleVariant: This parameter specifies the locale construct for variant.

Configure the Parameters in the Deployment Descriptor
The standard date formats of an FTP server are usually configured when the FTP
server is installed. If your FTP server uses a format "MMM d yyyy" for
defaultDateFormat and "MMM d HH:mm" for recentDateFormat, then your Oracle
FTP Adapter must use the same formats in its corresponding deployment descriptor.

If you enter "ls -l" from a command-line FTP, then you can see the following:

200 PORT command successful. Consider using PASV.
150 Here comes the directory listing.
-rw-r--r-- 1 500 500 377 Jan 22 21:32 1.txt
-rw-r--r-- 1 500 500 580 Jan 22 21:32 2.txt
...

Note: The locale language for the FTP server can be different from
the locale language for the operating system. Do not assume that the
locale for the FTP server is the same locale for the operating system it
is running on. You must set the serverLocaleLanguage,
serverLocaleCountry, and serverLocaleVariant parameters
in such cases.

Oracle File and FTP Adapters Features

4-28 Oracle Fusion Middleware User's Guide for Technology Adapters

This is the recentDateFormat parameter for your FTP server, for example MMM d
HH:mm (Jan 22 21:32). Similarly, if your server has an old file, then the server does not
show the hour and minute part and it shows the following:

-rw-r--r-- 1 500 500 377 Jan 22 2005 test.txt

This is the default date format, for example MMM d yyyy (Jan 22 2005).

Additionally, the serverTimeZone parameter is used to by the Oracle FTP Adapter to
parse time stamps for FTP server running in a specific time zone. The value for this is
either an abbreviation such as "PST" or a full name such as "America/Los_Angeles".

Additionally, the FTP server might be running on a different locale. The
serverLocaleLanguage, serverLocaleCountry, and serverLocaleVariant parameters are
used to construct a locale from language, country, variant where

■ language is a lowercase two-letter ISO-639 code, for example, en

■ country is an uppercase two-letter ISO-3166 code, for example, US

■ variant is a vendor and browser-specific code.

If these locale parameters are absent, then the Oracle FTP Adapter uses the system
locale to parse the time stamp.

Additionally, if the FTP server is running on a different system than the SOA suite,
then you must handle the time zone differences between them. You must convert the
time difference between the FTP server and the system running the Oracle FTP
Adapter to milliseconds and add the value as a binding property:"timestampOffset" in
the composite.xml.

For example, if the FTP server is six hours ahead of your local time, you must add the
following endpoint property to your service or reference:

<service name="FTPDebatchingIn">
 <interface.wsdl
interface="http://xmlns.oracle.com/pcbpel/adapter/ftp/FTPDebatchingIn/#wsdl.
interface(Get_ptt)"/>
 <binding.jca config="DebatchingIn_ftp.jca">
<property name=" timestampOffset" type="xs:string" many="false" source=""
override="may"> 21600000</property>
 </binding.jca>
 </service>.

Some FTP servers do not work well with the LIST command. In such cases, use the
NLST command for listing, but you cannot process directories recursively with NLST.

To use the NLST command, then you must add the following property to the JCA file,
for example:

<?xml version="1.0" encoding="UTF-8"?>
<adapter-config name="FTPDebatchingIn" adapter="Ftp Adapter"
 xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
<connection-factory location="eis/Ftp/FtpAdapter" UIincludeWildcard="*.txt"
 adapterRef=""/>
 <activation-spec
className="oracle.tip.adapter.ftp.inbound.FTPActivationSpec">
 …………………………………………..
 …………………………………………..
 <property name="UseNlst" value="true"/>
 </activation-spec>
 </endpoint-activation>

Oracle File and FTP Adapters Features

Oracle JCA Adapter for Files/FTP 4-29

</adapter-config>

4.2.22 Securing Enterprise Information System Credentials
When a resource adapter makes an outbound connection with an Enterprise
Information System (EIS), it must sign on with valid security credentials. In
accordance with the J2CA 1.5 specification, Oracle WebLogic Server supports both
container-managed and application-managed sign-on for outbound connections. At
run time, Oracle WebLogic Server determines the chosen sign-on mechanism, based on
the information specified in either the invoking client component's deployment
descriptor or the res-auth element of the resource adapter deployment descriptor.
This section describes the procedure for securing the user name and password for
Oracle JCA Adapters by using Oracle WebLogic Server container-managed sign-on.

Both, Oracle WebLogic Server and EIS maintain independent security realms. A
container-managed sign-on enables you to sign on to Oracle WebLogic Server and also
be able to use applications that access EIS through a resource adapter without having
to sign on separately to the EIS. Container-managed sign-on in Oracle WebLogic
Server uses credential mappings. The credentials (user name/password pairs or
security tokens) of Oracle WebLogic security principals (authenticated individual
users or client applications) are mapped to the corresponding credentials required to
access EIS. You can configure credential mappings for applicable security principals
for any deployed resource adapter.

To configure credential mappings, you can specify the user names and passwords in
the weblogic-ra.xml file for the corresponding adapter or perform the following
procedure by accessing the Oracle WebLogic Server Administration Console:

1. Log in to the Oracle WebLogic Server Administration Console.

2. Click Deployments in the Domain Structure pane. The deployed applications and
adapters are displayed, as shown in Figure 4–10.

Oracle File and FTP Adapters Features

4-30 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–10 The Oracle WebLogic Server Administration Console - Summary of
Deployments Page

3. Click the adapter for which you must create the security credentials. For example,
click FtpAdapter. The Settings for FtpAdapter page is displayed, as shown in
Figure 4–11.

Figure 4–11 The Oracle WebLogic Server Administration Console - Settings for
FTPAdapter Page

Oracle File and FTP Adapters Features

Oracle JCA Adapter for Files/FTP 4-31

4. Click the Security tab. The Settings for FTPAdapter page with the Stand-Alone
Resource Adapter Roles pane displayed, as shown in Figure 4–12.

Figure 4–12 The Oracle WebLogic Server Administration Console - Settings for
FTPAdapter Page

5. Click the Credential Mappings tab.

6. Click New in the Credential Mappings pane. The Create a New Security
Credential Mapping page is displayed, as shown in Figure 4–13.

Figure 4–13 The Oracle WebLogic Server Administration Console - Create a New
Security Credential Mapping Page

Oracle File and FTP Adapters Features

4-32 Oracle Fusion Middleware User's Guide for Technology Adapters

7. Select eis/Ftp/FtpAdapter (JNDI for Oracle FTP Adapter) to create a security
credential map entry for Oracle FTP Adapter, as shown in Figure 4–14.

Figure 4–14 The Oracle WebLogic Server Administration Console - Create a New
Security Credential Mapping Page

8. Click Next. The Create a New Security Credential Mapping – WebLogic Server
User page is displayed, as shown in Figure 4–15.

Figure 4–15 The Oracle WebLogic Server Administration Console - Create a New
Security Credential Mapping Page

Note: Credential mapping is not supported for the User for creating
initial connections and Unauthenticated WLS User options.

Oracle File and FTP Adapters Features

Oracle JCA Adapter for Files/FTP 4-33

9. Select Configured User Name and enter the Oracle WebLogic Server user name in
the WebLogic Server User Name field, as shown in Figure 4–16. For example,
enter weblogic, which is the default user name.

Figure 4–16 The Oracle WebLogic Server Administration Console - Create a New
Security Credential Mapping Page

10. Click Next. The Create a New Security Credential Mapping – EIS User Name and
Password page is displayed.

11. Enter the EIS user name in the EIS User Name field, the EIS password in the EIS
Password field, and then reenter the EIS password in the Confirm Password field
to confirm the password, as shown in Figure 4–17.

Oracle File and FTP Adapter Concepts

4-34 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–17 The Oracle WebLogic Server Administration Console - Create a New
Security Credential Mapping Page

12. Click Finish. The new security credential mapping is created, as shown in
Figure 4–18.

Figure 4–18 The Oracle WebLogic Server Administration Console - Settings for
FTPAdapter Page

4.3 Oracle File and FTP Adapter Concepts
The Oracle File and FTP Adapters concepts are discussed in the following sections:

Oracle File and FTP Adapter Concepts

Oracle JCA Adapter for Files/FTP 4-35

■ Section 4.3.1, "Oracle File Adapter Read File Concepts"

■ Section 4.3.2, "Oracle File Adapter Write File Concepts"

■ Section 4.3.3, "Oracle File Adapter Synchronous Read Concepts"

■ Section 4.3.4, "Oracle File Adapter File Listing Concepts"

■ Section 4.3.5, "Oracle FTP Adapter Get File Concepts"

■ Section 4.3.6, "Oracle FTP Adapter Put File Concepts"

■ Section 4.3.7, "Oracle FTP Adapter Synchronous Get File Concepts"

■ Section 4.3.8, "Oracle FTP Adapter File Listing Concepts"

4.3.1 Oracle File Adapter Read File Concepts
In the inbound direction, the Oracle File Adapter polls and reads files from a file
system for processing. This section provides an overview of the inbound file reading
capabilities of the Oracle File Adapter. You use the Adapter Configuration Wizard to
configure the Oracle File Adapter for use with a BPEL process or a Mediator.
Configuring the Oracle File Adapter creates an inbound WSDL and JCA file pair.

The following sections describe the Oracle File Adapter read file concepts:

■ Section 4.3.1.1, "Inbound Operation"

■ Section 4.3.1.2, "Inbound File Directory Specifications"

■ Section 4.3.1.3, "File Matching and Batch Processing"

■ Section 4.3.1.4, "File Polling"

■ Section 4.3.1.5, "Postprocessing"

■ Section 4.3.1.6, "Native Data Translation"

■ Section 4.3.1.7, "Inbound Service"

■ Section 4.3.1.8, "Inbound Headers"

4.3.1.1 Inbound Operation
For inbound operations with the Oracle File Adapter, select the Read File operation, as
shown in Figure 4–19.

Oracle File and FTP Adapter Concepts

4-36 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–19 Selecting the Read File Operation

4.3.1.2 Inbound File Directory Specifications
The File Directories page of the Adapter Configuration Wizard shown in Figure 4–20
enables you to specify information about the directory to use for reading inbound files
and the directories in which to place successfully processed files. You can choose to
process files recursively within directories. You can also specify multiple directories.

Figure 4–20 The Adapter Configuration Wizard - Specifying Incoming Files

The following sections describe the file directory information to specify:

Oracle File and FTP Adapter Concepts

Oracle JCA Adapter for Files/FTP 4-37

■ Section 4.3.1.2.1, "Specifying Inbound Physical or Logical Directory Paths in SOA
Composite"

■ Section 4.3.1.2.2, "Archiving Successfully Processed Files"

■ Section 4.3.1.2.3, "Deleting Files After Retrieval"

4.3.1.2.1 Specifying Inbound Physical or Logical Directory Paths in SOA Composite

You can specify inbound directory names as physical or logical paths in the composite
involving Oracle BPEL PM and Mediator. Physical paths are values such as
c:\inputDir.

In the composite, logical properties are specified in the inbound JCA file and their
logical-physical mapping is resolved by using binding properties. You specify the
logical parameters once at design time, and you can later modify the physical
directory name as needed.

For example, the generated inbound JCA file looks as follows for the logical input
directory name InputFileDir.

<?xml version="1.0" encoding="UTF-8"?>
<adapter-config name="FlatStructureIn" adapter="File Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">

 <connection-factory location="eis/FileAdapter" UIincludeWildcard="*.txt"
adapterRef=""/>
 <endpoint-activation operation="Read">
 <activation-spec
className="oracle.tip.adapter.file.inbound.FileActivationSpec">
 <property name="UseHeaders" value="false"/>
 <property name="LogicalDirectory" value="InputFileDir"/>
 <property name="Recursive" value="true"/>
 <property name="DeleteFile" value="true"/>
 <property name="IncludeFiles" value=".*\.txt"/>
 <property name="PollingFrequency" value="10"/>
 <property name="MinimumAge" value="0"/>
 <property name="OpaqueSchema" value="false"/>
 </activation-spec>
 </endpoint-activation>

</adapter-config>

In the composite.xml file, you then provide the physical parameter values (in this
case, the directory path) of the corresponding logical ActivationSpec or
InteractionSpec. This resolves the mapping between the logical directory name
and actual physical directory name.

<service name="FlatStructureIn">
 <interface.wsdl
interface="http://xmlns.oracle.com/pcbpel/adapter/file/FlatStructureIn/#wsdl.
interface(Read_ptt)"/>
 <binding.jca config="FlatStructureIn_file.jca">
<property name=" InputFileDir" type="xs:string" many="false" source=""

Note: If the inbound Oracle File Adapter is configured for polling
multiple directories for incoming files, then all the top-level directories
(inbound directories where the input file appears) must exist before
the file reader starts polling these directories.

Oracle File and FTP Adapter Concepts

4-38 Oracle Fusion Middleware User's Guide for Technology Adapters

override="may"> /home/user/inputDir</property>

 </binding.jca>
</service>

4.3.1.2.2 Archiving Successfully Processed Files

This option enables you to specify a directory in which to place successfully processed
files. You can also specify the archive directory as a logical name. In this case, you
must follow the logical-to-physical mappings described in Section 4.3.1.2.1,
"Specifying Inbound Physical or Logical Directory Paths in SOA Composite."

4.3.1.2.3 Deleting Files After Retrieval

This option enables you to specify whether to delete files after a successful retrieval. If
this check box is not selected, processed files remain in the inbound directory but are
ignored. Only files with modification dates more recent than the last processed file are
retrieved. If you place another file in the inbound directory with the same name as a
file that has been processed but the modification date remains the same, then that file
is not retrieved.

4.3.1.3 File Matching and Batch Processing
The File Filtering page of the Adapter Configuration Wizard shown in Figure 4–21
enables you to specify details about the files to retrieve or ignore.

The Oracle File Adapter acts as a file listener in the inbound direction. The Oracle File
Adapter polls the specified directory on a local or remote file system and looks for files
that match specified naming criteria.

Figure 4–21 The Adapter Configuration Wizard-File Filtering Page

The following sections describe the file filtering information to specify:

■ Section 4.3.1.3.1, "Specifying a Naming Pattern"

Oracle File and FTP Adapter Concepts

Oracle JCA Adapter for Files/FTP 4-39

■ Section 4.3.1.3.2, "Including and Excluding Files"

■ Section 4.3.1.3.4, "Debatching Multiple Inbound Messages"

4.3.1.3.1 Specifying a Naming Pattern

Specify the naming convention that the Oracle File Adapter uses to poll for inbound
files. You can also specify the naming convention for files you do not want to process.
Two naming conventions are available for selection. The Oracle File Adapter matches
the files that appear in the inbound directory.

■ File wildcards (po*.txt)

Retrieves all files that start with po and end with .txt. This convention conforms
to Windows operating system standards.

■ Regular expressions (po.*\.txt)

Retrieves all files that start with po and end with .txt. This convention conforms
to Java Development Kit (JDK) regular expression (regex) constructs.

4.3.1.3.2 Including and Excluding Files

If you use regular expressions, the values you specify in the Include Files and Exclude
Files fields must conform to JDK regular expression (regex) constructs. For both fields,
different regex patterns must be provided separately. The Include Files and Exclude
Files fields correspond to the IncludeFiles and ExcludeFiles parameters,
respectively, of the inbound WSDL file.

For the inbound Oracle File Adapter to pick up all file names that start with po and
which have the extension txt, you must specify the Include Files field as po.*\.txt
when the name pattern is a regular expression. In this regex pattern example:

Notes:

■ If you later select a different naming pattern, ensure that you also
change the naming conventions you specify in the Include Files
and Exclude Files fields. The Adapter Configuration Wizard does
not automatically make this change for you.

■ Do not specify *.* as the convention for retrieving files.

■ Be aware of any file length restrictions imposed by your operating
system. For example, Windows operating system file names
cannot be more than 256 characters in length (the file name, plus
the complete directory path). Some operating systems also have
restrictions on the use of specific characters in file names. For
example, Windows operating systems do not allow characters
such as backslash(\), slash (/), colon (:), asterisk (*), left angle
bracket (<), right angle bracket (>), or vertical bar(|).

Note: The regex pattern complies with the JDK regex pattern.
According to the JDK regex pattern, the correct connotation for a
pattern of any characters with any number of occurrences is a period
followed by a plus sign (.+). An asterisk (*) in a JDK regex is not a
placeholder for a string of any characters with any number of
occurrences.

Oracle File and FTP Adapter Concepts

4-40 Oracle Fusion Middleware User's Guide for Technology Adapters

■ A period (.) indicates any character.

■ An asterisk (*) indicates any number of occurrences.

■ A backslash followed by a period (\.) indicates the character period (.) as indicated
with the backslash escape character.

The Exclude Files field is constructed similarly.

If you have Include Files field and Exclude Files field expressions that have an overlap,
then the exclude files expression takes precedence. For example, if Include Files is set
to abc*.txt and Exclude Files is set to abcd*.txt, then no abcd*.txt files are
received.

Table 4–3 lists details of Java regex constructs.

Note: You must enter a name pattern in the Include Files with Name
Pattern field and not leave it empty. Otherwise, the inbound adapter
service reads all the files present in the inbound directory, resulting in
incorrect results.

Note: Do not begin JDK regex pattern names with the following
characters: plus sign (+), question mark (?), or asterisk (*).

Table 4–3 Java Regular Expression Constructs

Matches Construct

Characters -

The character x x

The backslash character \\

The character with octal value 0n (0 <= n <= 7) \0n

The character with octal value 0nn (0 <= n <= 7) \0nn

The character with octal value 0mnn (0 <= m <= 3, 0
<= n <= 7)

\0mnn

The character with hexadecimal value 0xhh \xhh

The character with hexadecimal value 0xhhhh \uhhhh

The tab character ('\u0009') \t

The new line (line feed) character ('\u000A') \n

The carriage-return character ('\u000D') \r

The form-feed character ('\u000C') \f

The alert (bell) character ('\u0007') \a

The escape character ('\u001B') \e

The control character corresponding to x \cx

- -

Character classes -

a, b, or c (simple class) [abc]

Any character except a, b, or c (negation) [^abc]

Oracle File and FTP Adapter Concepts

Oracle JCA Adapter for Files/FTP 4-41

For details about Java regex constructs, go to

http://java.sun.com/j2se/1.5.0/docs/api

4.3.1.3.3 File Include and Exclude

The FileList operation does not expose the java.file.IncludeFiles property. This
property is configured while designing the adapter interaction and cannot be
overridden through headers, for example:

<adapter-config name="ListFiles" adapter="File Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
<connection-factory location="eis/FileAdapter" UIincludeWildcard="*.txt" adapterRef=""/>
<endpoint-interaction portType="FileListing_ptt" operation="FileListing">
 <interaction-spec className="oracle.tip.adapter.file.outbound.FileListInteractionSpec">
 <property name="PhysicalDirectory" value="%INP_DIR%"/>
 <property name="PhysicalDirectory" value="%INP_DIR%"/>
 <property name="Recursive" value="true"/>
 <property name="Recursive" value="true"/>
 <property name="IncludeFiles" value=".*\.txt"/>
</interaction-spec>
</endpoint-interaction>
</adapter-config>

a through z or A through Z, inclusive (range) [a-zA-Z]

a through d, or m through p: [a-dm-p] (union) [a-d[m-p]]

d, e, or f (intersection) [a-z&&[def]]

a through z, except for b and c: [ad-z] (subtraction) [a-z&&[^bc]]

a through z, and not m through p: [a-lq-z](subtraction) [a-z&&[^m-p]]

- -

Predefined character classes -

Any character (may or may not match line terminators) -

A digit: [0-9] \d

A nondigit: [^0-9] \D

A white space character: [\t\n\x0B\f\r] \s

A nonwhitespace character: [^\s] \S

A word character: [a-zA-Z_0-9] \w

A nonword character: [^\w] \W

Greedy quantifiers -

X, once or not at all X?

X, zero or more times X*

X, one or more times X+

X, exactly n times X{n}

X, at least n times X{n,}

X, at least n, but not more than m times X{n,m}

Table 4–3 (Cont.) Java Regular Expression Constructs

Matches Construct

Oracle File and FTP Adapter Concepts

4-42 Oracle Fusion Middleware User's Guide for Technology Adapters

In this example, after you set the IncludeFiles, they cannot be changed.

4.3.1.3.4 Debatching Multiple Inbound Messages

You can select whether incoming files have multiple messages, and specify the number
of messages in one batch file to publish. When a file contains multiple messages and
this check box is selected, this is referred to as debatching. Nondebatching is applied
when the file contains only a single message and the check box is not selected.
Debatching is supported for native and XML files.

4.3.1.4 File Polling
The File Polling page of the Adapter Configuration Wizard shown in Figure 4–22
enables you to specify the following inbound polling parameters:

■ The frequency with which to poll the inbound directory for new files to retrieve.

■ The minimum file age of files to retrieve. For example, this polling parameter
enables a large file to be completely copied into the directory before it is retrieved
for processing. The age is determined by the last modified time stamp. For
example, if you know that it takes three to four minutes for a file to be written,
then set the minimum age to five minutes. If a file is detected in the input
directory and its modification time is less than five minutes older than the current
time, then the file is not retrieved because it is still potentially being written to.

Figure 4–22 The Adapter Configuration Wizard-File Polling Page

Using Trigger Files
By default, polling by inbound Oracle File and FTP Adapters start as soon as the
endpoint is activated. However, to obtain more control over polling, you can use a

Note: You must not manually change the value of polling parameters
in JCA files. You must use the Adapter Configuration Wizard to
modify this parameter.

Oracle File and FTP Adapter Concepts

Oracle JCA Adapter for Files/FTP 4-43

file-based trigger. Once the Oracle File or FTP Adapter finds the specified trigger file in
a local or remote directory, it starts polling for the files in the inbound directory.

For example, a BPEL process is writing files to a directory and a second BPEL process
is polling the same directory for files. To have the second process start polling the
directory only after the first process has written all the files, you can use a trigger file.
You can configure the first process to create a trigger file at the end. The second
process starts polling the inbound directory after it finds the trigger file.

The trigger file directory can be the same as the inbound polling directory or different
from the inbound polling directory. However, if your trigger file directory and the
inbound polling directory are the same, then you should ensure that the name of the
trigger file is not similar to the file filter specified in the Adapter Configuration page
shown in Figure 4–21.

The content of a trigger file is never read and therefore should not be used as payload
for an inbound receive activity.

Table 4–4 lists the parameters that you must specify in the inbound service JCA file:

Table 4–4 Trigger File Parameters

Parameter Description Example

TriggerFilePhysicalDirec
tory

or

TriggerFileLogicalDirect
ory

The physical or logical name
of the directory in which the
Oracle File and FTP
Adapters look for the
trigger file.

The
TriggerFilePhysicalDi
rectory and
TriggerFileLogicalDir
ectory parameters are
optional. These parameters
must be used only if the
trigger file directory is
different from the inbound
polling directory. By default,
the Oracle File and FTP
Adapters looks for the
trigger file in the inbound
polling directory.

TriggerFilePhysicalDi
rectory="C:\foo"

TriggerFileLogicalDir
ectory=
"TriggerFileDir"

TriggerFile The name of the trigger file. TriggerFile="Purchase
order.trg"

Oracle File and FTP Adapter Concepts

4-44 Oracle Fusion Middleware User's Guide for Technology Adapters

The following is a sample JCA file for the inbound service:

<?xml version="1.0" encoding="UTF-8"?>
<adapter-config name="FlatStructureIn" adapter="File Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">

<connection-factory location="eis/FileAdapter" UIincludeWildcard="*.txt"
adapterRef=""/>
<endpoint-activation operation="Read">
<activation-spec className="oracle.tip.adapter.file.inbound.FileActivationSpec">
<property.../>
<property name="TriggerFilePhysicalDirectory" value="/tmp/flat/ArchiveDir"/>
</activation-spec>
</endpoint-activation>

</adapter-config>

4.3.1.5 Postprocessing
The Oracle File Adapter supports several postprocessing options. After processing the
file, files are deleted if specified in the File Polling page shown in Figure 4–22. Files can
also be moved to a completion (archive) directory if specified in the File Directories
page shown in Figure 4–20.

TriggerFileStrategy Strategy that is used as the
triggering mechanism. The
value can be:

EndpointActivation: The
adapter looks for the trigger
file every time the
composite is activated.
Note: The composite gets
activated every time you
start the container or
redeploy the application, or
retire or activate the
composite application from
Oracle Enterprise Manager.

Every time you restart the
container, the composite
application is not triggered
until it sees the trigger file in
the specified directory.

OnceOnly: The adapter
looks for the trigger file only
once in its lifetime. After it
finds the trigger file, it
remember that across
restarts and redeployments.

EveryTime: The adapter
looks for the trigger file on
each polling cycle.The
default value for
TriggerFileStrategy is
EndpointActivation.

TriggerFileStrategy="
EndpointActivation "

Table 4–4 (Cont.) Trigger File Parameters

Parameter Description Example

Oracle File and FTP Adapter Concepts

Oracle JCA Adapter for Files/FTP 4-45

4.3.1.6 Native Data Translation
The next Adapter Configuration Wizard page that appears is the Messages page
shown in Figure 4–23. This page enables you to select the XSD schema file for
translation.

Figure 4–23 Specifying the Schema - Messages Page

If native format translation is not required (for example, a JPG or GIF image is being
processed), then select the Native format translation is not required check box. The
file is passed through in base-64 encoding.

XSD files are required for translation. To define a new schema or convert an existing
data type definition (DTD) or COBOL Copybook, then select Define Schema for
Native Format. This starts the Native Format Builder wizard. This wizard guides you
through the creation of a native schema file from file formats such as comma-delimited
value (CSV), fixed-length, DTD, and COBOL Copybook. After the native schema file is
created, the Messages page is displayed, with the Schema File URL and Schema
Element fields filled in. For more information, see Section 6.1.1, "Supported File
Formats".

4.3.1.7 Inbound Service
When you finish configuring the Oracle File Adapter, a JCA file is generated for the
inbound service. The file is named after the service name you specified on the Service
Name page of the Adapter Configuration Wizard. You can rerun the wizard later to
change your operation definitions.

Note: Ensure that the schema you specify includes a namespace. If
your schema does not have a namespace, then an error message is
displayed.

Oracle File and FTP Adapter Concepts

4-46 Oracle Fusion Middleware User's Guide for Technology Adapters

The ActivationSpec parameter holds the inbound configuration information. The
ActivationSpec and a set of inbound Oracle File Adapter properties are part of the
inbound JCA file.

Table 4–5 lists the properties of a sample inbound JCA file.

The ActivationSpec property values are specified in the Adapter Configuration
Wizard during design time and, as shown in Table 4–5. The inbound Oracle File
Adapter uses the following configuration properties:

■ PollingFrequency

■ MinimumAge

■ PhysicalDirectory

■ LogicalDirectory

■ PublishSize

■ PhysicalArchiveDirectory

■ LogicalArchiveDirectory

■ IncludeFiles

■ ExcludeFiles

■ UseHeaders

■ ListSorter

■ ThreadCount

■ Recursive

■ MaxRaiseSize

For a description of these configuration properties, see Appendix A of this book.

4.3.1.8 Inbound Headers
Apart from the payload, Oracle File Adapter publishes the following header metadata,
from the inbound service, as shown in Figure 4–24:

■ jca.file.FileName: file name

■ jca.file.Directory: directory name

■ jca.file.Batch: a unique name for a batch in case of debatching

Table 4–5 Sample JCA Properties for Inbound Service

Property Sample Value

UseHeaders true

PhysicalDirectory /tmp/opaque/in

Recursive true

DeleteFile false

IncludeFiles .*\.xml

PollingFrequency 1

MinimumAge 0

Oracle File and FTP Adapter Concepts

Oracle JCA Adapter for Files/FTP 4-47

■ jca.file.BatchIndex: the batch index for each message within the batch for
debatching

■ jca.file.Size: the file size

■ jca.file.LastModifiedTime: the last modified time for the file

Figure 4–24 The Invoke Dialog

4.3.2 Oracle File Adapter Write File Concepts
In the outbound direction, the Oracle File Adapter receives messages from the service
engine and writes the messages to a file in a file system. This section provides an
overview of the outbound file writing capabilities of the Oracle File Adapter. You use
the Adapter Configuration Wizard to configure the Oracle File Adapter for use with a
BPEL process or a Mediator Service. This creates an outbound WSDL and a JCA file
pair.

This section includes the following topics:

■ Section 4.3.2.1, "Outbound Operation"

■ Section 4.3.2.2, "Outbound File Directory Creation"

■ Section 4.3.2.3, "Native Data Translation"

■ Section 4.3.2.4, "Outbound Service Files"

■ Section 4.3.2.5, "Outbound Headers"

4.3.2.1 Outbound Operation
For outbound operations with the Oracle File Adapter, select the Write File operation,
as shown in Figure 4–25.

Oracle File and FTP Adapter Concepts

4-48 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–25 Selecting the Write File Operation

The Add Output Header check box is visible when you select File Write. When you
select this check box, the adapter WSDL has an output message pointing to a header
schema, shown by the bold highlight below.

 <wsdl:definitions name="fileout3"
targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/file/SOAApp1/NewJCAFmwk/
fileout3"
 xmlns:jca="http://xmlns.oracle.com/pcbpel/wsdl/jca/"
 xmlns:FILEAPP="http://xmlns.oracle.com/pcbpel/adapter/file/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/file/SOAApp1/NewJCAFmwk/
fileout3"
xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">"
xmlns:opaque="http://xmlns.oracle.com/pcbpel/adapter/opaque/"
<plt:role name="Write_role" >
 <plt:portType name="tns:Write_ptt" />
 </plt:role>
</plt:partnerLinkType>"
<wsdl:types>
<schema TargetNamespace="http://xlmns.oracle.com/pcbpel/adapter/opaque/"
 xmlns:opaque="http://xmlns.oracle.com/pcbpel/adapter/opaque/"
 xmlns="http://www.w3.org/2001/XMLSchema" >
 <element name="opaqueElement" type="base64Binary" />
</schema>
<schema targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/file/"
xmlns="http://www.w3.org/2001/XMLSchema"
 attributeFormDefault="qualified"
 <element name="OutboundFileHeaderType" >
 <complexType>
 <sequence>
 <element name="filename" type="string" />
 <element name="directory" type="string" />
 </sequence>
 </complexType>
 </element>
</schema>

Oracle File and FTP Adapter Concepts

Oracle JCA Adapter for Files/FTP 4-49

</wsdl:types>
 <wsdl:message name="Write_msg">
 <wsdl:part name="opaque" element="opaque:opaqueElement"/>
</wsdl:message>
 <wsdl:message name="Output_msg">
 <wsdl:part name="body" element="FILEAPP:OutboundFileHeaderType"/>
</wsdl:message>
 <wsdl:portType name="Write_ptt">
 <wsdl:operation name="Write">
 <wsdl:input message="tns:Write_msg"/>
 <wsdl:output message="tns:Output_msg"/>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

You can select the 'Update Output Header' check box in edit mode, and the output
message/ header schema is removed from the adapter WSDL.

4.3.2.2 Outbound File Directory Creation
For the outbound operation, you can specify the outbound directory, outbound file
naming convention to use, and, if necessary, the batch file conventions to use.

The File Configuration page of the Adapter Configuration Wizard shown in
Figure 4–26 enables you to specify the directory for outgoing files and the outbound
file naming convention.

Figure 4–26 The Adapter Configuration Wizard-Parameters for Outgoing Files

The following sections describe the file configuration information to specify:

■ Section 4.3.2.2.1, "Specifying Outbound Physical or Logical Directory Paths in
Oracle BPEL PM"

■ Section 4.3.2.2.4, "Specifying the Outbound File Naming Convention"

■ Section 4.3.2.2.5, "Specifying a Dynamic Outbound File Name"

Oracle File and FTP Adapter Concepts

4-50 Oracle Fusion Middleware User's Guide for Technology Adapters

■ Section 4.3.2.2.6, "Batching Multiple Outbound Messages"

4.3.2.2.1 Specifying Outbound Physical or Logical Directory Paths in Oracle BPEL PM

You can specify outbound directory names as physical or logical paths. Physical paths
are values such as c:\outputDir.

If you specify logical parameters, then the generated JCA file looks as follows for the
logical outbound directory name OutputFileDir.

<?xml version="1.0" encoding="UTF-8"?>
<adapter-config name="FlatStructureOut" adapter="File Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">

 <connection-factory location="eis/FileAdapter" adapterRef=""/>
 <endpoint-interaction operation="Write">
 <interaction-spec
className="oracle.tip.adapter.file.outbound.FileInteractionSpec">
 <property name="LogicalDirectory" value="OutputFileDir"/>
 <property name="FileNamingConvention" value="%yyMMddHHmmssSS%_%SEQ%_
%yyyyMMdd%_%SEQ%.out.%SEQ%"/>
 <property name="Append" value="false"/>
 <property name="NumberMessages" value="1"/>
 <property name="OpaqueSchema" value="false"/>
 </interaction-spec>
 </endpoint-interaction>

</adapter-config>

Select the outbound adapter in the "External References" swim lane in JDeveloper
wizard (it is present in the composite.xml tab). Create a "Binding Property" in the
Property Inspector for the outbound adapter (you must scroll down to find it). Once
the Create Property box appears, enter OutputFileDir in the Name field and the
actual output directory name, example, C:\outputDir in the Value field. The
composite.xml file appears as follows:

<reference name="FlatStructureOut">
 <interface.wsdl
interface="http://xmlns.oracle.com/pcbpel/adapter/file/FlatStructureOut/#wsdl.
interface(Write_ptt)"/>
 <binding.jca config="FlatStructureOut_file.jca">
 <property name="OutputFileDir" type="xs:string" many="false"
 override="may">C:\outputDir</property>
 </binding.jca>
 </reference>

4.3.2.2.2 Specifying Outbound Physical or Logical Directory Paths in Mediator

You can specify outbound directory names as physical or logical paths in Mediator.
Physical paths are values such as c:\inputDir.

Note: Ensure that you limit the length of outbound file names (the
file name, plus the complete directory path) to 200 characters. This is
not an exact limit but rather a recommendation. When an outbound
file name is long (for example, 215 characters), a blank file with that
name is created in the outbound directory.

Oracle File and FTP Adapter Concepts

Oracle JCA Adapter for Files/FTP 4-51

You can specify the logical names at design time in the File Directories page shown in
Figure 4–20 and then provide logical-physical mapping by using the Endpoint
properties. For example, WriteFile is an outbound adapter service. You have
specified OutDir as the logical directory name during design time.

4.3.2.2.3 Specifying a Dynamic Outbound Directory Name

For outbound operation, you can specify a dynamic outbound directory name. You
can set variables to specify dynamic outbound directory names.

<?xml version="1.0" encoding="UTF-8"?>
<adapter-config name="ReadAddressChunk" adapter="File Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/FileAdapter" adapterRef=""/>
 <endpoint-interaction operation="ChunkedRead">
 <interaction-spec
className="oracle.tip.adapter.file.outbound.ChunkedInteractionSpec">
 <property name="PhysicalDirectory" value="C:\foo"/>
 <property name="FileName" value="dummy.txt"/>
 <property name="ChunkSize" value="1"/>
 </interaction-spec>
 </endpoint-interaction>
</adapter-config>

In the preceding example, in the JCA file, the physical directory is set to "C:\foo" but
during run time it is dynamically changed to the assigned value. In this example, the
physical directory is dynamically changed to "C:\out". You must perform the
following steps to specify the dynamic outbound directory name:

1. Double-click the invoke activity.

2. Click the Browse Variables icon.

3. In the Variable Chooser dialog, click the Create an Object icon.

4. Create a variable MyDir of type xsd:string, as shown in Figure 4–27.

Figure 4–27 Create Variable Dialog

5. Drag and drop an Assign activity from the Component Palette in between the
Receive and Invoke activities in the design area.

6. Double-click the assign activity and click the Copy Operation tab.

Oracle File and FTP Adapter Concepts

4-52 Oracle Fusion Middleware User's Guide for Technology Adapters

7. Click Create and then Copy Operation. The Create Copy Operation dialog is
displayed.

8. In the Create Copy Operation dialog, select Expression from Type and specify the
directory name and path, as shown in Figure 4–28. The operation writes the
output file to this directory.

Figure 4–28 Create Copy Operation Dialog

9. Click OK in the Create Copy Operation dialog and then click OK in the Assign
dialog. The .bpel page is displayed.

10. Double-click the invoke activity. The Invoke dialog is displayed.

11. Click the Properties tab.

12. Select the jca.file.Directory property from the Properties column and set
the Value as MyDir (the directory that you created in Step 4.) Ensure that the Type
column is set to input, as shown in Figure 4–29.

Oracle File and FTP Adapter Concepts

Oracle JCA Adapter for Files/FTP 4-53

Figure 4–29 The Invoke Dialog

4.3.2.2.4 Specifying the Outbound File Naming Convention

Specify the naming convention to use for outgoing files. You cannot enter completely
static names such as po.txt. This is to ensure the uniqueness in names of outgoing
files, which prevents files from being inadvertently overwritten. Instead, outgoing file
names must be a combination of static and dynamic portions.

The prefix and suffix portions of the file example shown in Figure 4–26 are static (for
example, po_ and .xml). The %SEQ% variable of the name is dynamic and can be a
sequence number or a time stamp (for example, po_%yyMMddHHmmss%.xml to create
a file with a time stamp).

If you choose a name starting with po_, followed by a sequence number and the
extension txt as the naming convention of the outgoing files, then you must specify
po_%SEQ%.txt.

If you choose a name starting with po_, followed by a time stamp with the pattern
yyyy.MM.dd and the extension txt as the naming convention of the outgoing file,
then you must specify po_%yyyy.MM.dd%.txt. For example, the outgoing file name
can be po_2004.11.29.txt.

Additionally, you can combine file naming conventions. For example, you can specify
the file naming convention as po_%SEQ%_%yyyy.MM.dd%_%SEQ%.txt.

Note: When using dynamic directories, ensure that parameters such
as NumberMessages, ElapsedTime, and FileSize are not defined
in the outbound adapter service WSDL file. These parameters are not
supported with dynamic directories.

Oracle File and FTP Adapter Concepts

4-54 Oracle Fusion Middleware User's Guide for Technology Adapters

You cannot use a regular expression for outbound synchronous reads. In these cases,
the exact file name must be known.

A time stamp is specified by date and time pattern strings. Within date and time
pattern strings, unquoted letters from 'A' to 'Z' and from 'a' to 'z' are interpreted
as pattern letters representing the components of a date or time string. Text can be
quoted using single quotation marks (') to avoid interpretation. The characters "''"
represent single quotation marks. All other characters are not interpreted.

The Java pattern letters are defined in Table 4–6.

Different presentations in the pattern are as follows:

Note: When you use the time stamp pattern, the same time stamp
may be generated on subsequent calls and you may lose messages.
The workaround is to combine the time-stamp pattern with a
sequence pattern. Alternatively, you can use a time-stamp pattern
closest to a millisecond, in which case the adapter handles the
uniqueness of the file names.

Table 4–6 Java Pattern Letters

Letter
Date or Time
Component Presentation Examples

G Era designator Text AD

y Year Year 1996; 96

M Month in year Month July; Jul; 07

w Week in year Number 27

W Week in month Number 2

D Day in year Number 189

d Day in month Number 10

F Day of week in month Number 2

E Day in week Text Tuesday; Tue

a AM/PM marker Text PM

H Hour in day (0-23) Number 0

k Hour in day (1-24) Number 24

K Hour in AM/PM
(0-11)

Number 0

h Hour in AM/PM
(1-12)

Number 12

m Minute in hour Number 30

s Second in minute Number 55

S Millisecond Number 978

z Time zone General Time Zone Pacific Standard
Time; PST;
GMT-08:00

Z Time zone RFC 822 Time Zone -0800

Oracle File and FTP Adapter Concepts

Oracle JCA Adapter for Files/FTP 4-55

■ Text

For formatting, if the number of pattern letters is four or more, then the full form is
used; otherwise, a short or abbreviated form is used if available. For parsing, both
forms are accepted, independent of the number of pattern letters.

■ Number

For formatting, the number of pattern letters is the minimum number of digits,
and shorter numbers are zero-padded to this number. For parsing, the number of
pattern letters is ignored unless it is needed to separate two adjacent fields.

■ Year

For formatting, if the number of pattern letters is two, then the year is truncated to
two digits; otherwise, it is interpreted as a number.

For parsing, if the number of pattern letters is more than two, then the year is
interpreted literally, regardless of the number of digits. Using the pattern
MM/dd/yyyy, 01/11/12 parses to Jan 11, 12 A.D.

For parsing with the abbreviated year pattern (y or yy), the abbreviated year is
interpreted relative to some century. The date is adjusted to be within 80 years before
and 20 years after the time instance is created. For example, using a pattern of
MM/dd/yy and Jan 1, 1997 is created; the string 01/11/12 is interpreted as Jan
11, 2012, while the string 05/04/64 is interpreted as May 4, 1964. During
parsing, only strings consisting of exactly two digits are parsed into the default
century. Any other numeric string, such as a one-digit string, a three-or-more-digit
string, or a two-digit string that is not all digits (for example, -1), is interpreted
literally. So, 01/02/3 or 01/02/003 is parsed using the same pattern as Jan 2, 3
AD. Likewise, 01/02/-3 is parsed as Jan 2, 4 BC.

■ Month

If the number of pattern letters is 3 or more, then the month is interpreted as text;
otherwise, it is interpreted as a number.

■ General time zone

Time zones are interpreted as text if they have names. For time zones representing
a GMT offset value, the following syntax is used:

GMTOffsetTimeZone:
 GMT Sign Hours : Minutes
 Sign: one of
 + -
 Hours:
 Digit
 Digit Digit
 Minutes:
 Digit Digit
 Digit: one of
 0 1 2 3 4 5 6 7 8 9

Hours must be between 0 and 23, and Minutes must be between 00 and 59. The
format is locale-independent and digits must be taken from the Basic Latin block of the
Unicode standard.

For parsing, RFC 822 time zones are also accepted.

For formatting, the RFC 822 4-digit time zone format is used:

RFC822TimeZone:
 Sign TwoDigitHours Minutes

Oracle File and FTP Adapter Concepts

4-56 Oracle Fusion Middleware User's Guide for Technology Adapters

 TwoDigitHours:
 Digit Digit

TwoDigitHours must be between 00 and 23. Other definitions are the same as for
general time zones.

For parsing, general time zones are also accepted.

4.3.2.2.5 Specifying a Dynamic Outbound File Name

For outbound operation, you can specify a dynamic outbound file name. You can set
variables to specify dynamic outbound file names.

<?xml version="1.0" encoding="UTF-8"?>
<adapter-config name="ReadAddressChunk" adapter="File Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/FileAdapter" adapterRef=""/>
 <endpoint-interaction operation="ChunkedRead">
 <interaction-spec
className="oracle.tip.adapter.file.outbound.ChunkedInteractionSpec">
 <property name="PhysicalDirectory" value="C:\foo"/>
 <property name="FileName" value="dummy.txt"/>
 <property name="ChunkSize" value="1"/>
 </interaction-spec>
 </endpoint-interaction>
</adapter-config>

In the preceding example, in the JCA file, the physical directory is set to "C:\foo" but
during run time it is dynamically changed to the assigned value. In this example, the
physical directory is dynamically changed to "C:\out". You must perform the
following steps to specify the dynamic outbound directory name:

1. Double-click the invoke activity.

2. Click the Browse Variables icon.

3. In the Variable Chooser dialog, click the Create an Object icon.

4. Create a variable file of type xsd:string, as shown in Figure 4–27.

5. Drag and drop an Assign activity from the Component Palette in between the
Receive and Invoke activities in the design area.

6. Double-click the assign activity and click the Copy Operation tab.

7. Click Create and then Copy Operation. The Create Copy Operation dialog is
displayed.

8. In the Create Copy Operation dialog, select Expression from Type and specify the
file name, as shown in Figure 4–28. The file operation writes the output file to this
file.

9. Click OK till you exit the assign activity dialog.

10. Double-click the invoke activity. The Invoke dialog is displayed.

11. Click the Properties tab.

12. Select the jca.file.FileName property from the Properties column and set the
Value as file (the file that you created in Step 4.) Ensure that the Type column is
set to input, as shown in Figure 4–30.

Oracle File and FTP Adapter Concepts

Oracle JCA Adapter for Files/FTP 4-57

Figure 4–30 The Invoke Dialog

4.3.2.2.6 Batching Multiple Outbound Messages

In the simplest scenario, you specify writing a single file to a single message. You can
also specify the outbound method for batch file writing. This method enables you to
specify the number of messages to publish in one batch file. The following batch file
settings are provided in the File Configuration page shown in Figure 4–26:

■ Number of Messages Equals

Specify a value which, when equaled, causes a new outgoing file to be created.

■ Elapsed Time Exceeds

Specify a time which, when exceeded, causes a new outgoing file to be created.

For example, if you specify that elapsed time exceeds 15 seconds, then the first
message that is received is not written out, even after 15 seconds, as batching
conditions are not valid. If a second message is received, then batching conditions
become valid for the first one, and an output file is created when the elapsed time
exceeds 15 seconds.

■ File Size Exceeds

Specify a file size which, when equaled, causes an outgoing file to be created. For
example, assume that you specify a value of 3 for the number of messages
received and a value of 1 MB for the file size. When you receive two messages that
when combined equal or exceed 1 MB, or three messages that are less than 1 MB,
an output file is created.

Note: When using dynamic files, ensure that parameters such as
NumberMessages, ElapsedTime, and FileSize are not defined in
the outbound adapter service WSDL file. These parameters are not
supported with dynamic files.

Note: The Elapsed Time Exceeds batching criteria is evaluated and a
new outgoing file is created, only when an invocation happens.

Oracle File and FTP Adapter Concepts

4-58 Oracle Fusion Middleware User's Guide for Technology Adapters

If the Oracle File Adapter encounters some problem during batching, then it starts
batching at the point at which it left off on recovery.

4.3.2.3 Native Data Translation
The next Adapter Configuration Wizard page that appears is the Messages page
shown in Figure 4–31. This page enables you to select the XSD schema file for
translation.

Figure 4–31 Specifying the Schema

As with specifying the schema for the inbound direction, you can perform the
following tasks in this page:

■ Specify whether native format translation is not required.

■ Select the XSD schema file for translation.

■ Start the Native Format Builder wizard to create an XSD file from file formats such
as CSV, fixed-length, DTD, and COBOL Copybook.

For more information about Messages page, see Section 4.3.1.6, "Native Data
Translation."

4.3.2.4 Outbound Service Files
When you complete configuration of the Oracle File Adapter with the Adapter
Configuration Wizard, a WSDL and a JCA file pair is generated for the outbound
operation. The files are named after the service name you specified on the Service
Name page of the Adapter Configuration Wizard shown in Figure 2–8, "Application

Note: You must not manually change the file configurations specified
in the preceding list in the JCA files. You must use the Adapter
Configuration Wizard to modify these configurations.

Oracle File and FTP Adapter Concepts

Oracle JCA Adapter for Files/FTP 4-59

Profile Deployment". You can rerun the wizard later to change your operation
definitions.

A sample outbound JCA file includes the information listed in Table 4–7:

The outbound Oracle File Adapter uses the following configuration parameters:

■ PhysicalDirectory

■ LogicalDirectory

■ NumberMessages

■ ElapsedTime

■ FileSize

■ FileNamingConvention

■ Append

For a description of these configuration properties, see Appendix A of this book.

4.3.2.5 Outbound Headers
Apart from the payload, the Oracle File Adapter receives the following headers from
the component:

■ jca.file.FileName: file name

■ jca.file.Directory: directory name

4.3.3 Oracle File Adapter Synchronous Read Concepts
In the outbound direction, the Oracle File Adapter polls and reads the current contents
of files. This section provides an overview of the outbound synchronous file reading
capabilities of the Oracle File Adapter. For reading a file synchronously, you select
Synchronous Read File operation, as shown in Figure 4–32.

Table 4–7 Sample JCA Properties for Outbound Service

Property Sample Value

PhysicalDirectory /tmp/flat/OutputDir

FileNamingConvention address-csv%SEQ%.txt

Append true

NumberMessages 1

ConcurrentThreshold 0

OpaqueSchema false

Oracle File and FTP Adapter Concepts

4-60 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–32 Synchronous Read Operation Page

All the pages of the Adapter Configuration Wizard are similar to the Read File
operation except the File Name page. You can specify the name of the file to be read in
the File Name field, as shown in Figure 4–33.

Figure 4–33 File Directories Page

4.3.4 Oracle File Adapter File Listing Concepts
This feature of the Oracle File Adapter lets you use a BPEL activity to retrieve a list of
files from a target directory. This list of files is returned as an XML document and

Oracle File and FTP Adapter Concepts

Oracle JCA Adapter for Files/FTP 4-61

contains information such as file name, directory name, file size, and last modified
time. This section provides an overview of the file listing capabilities of the Oracle File
Adapter. You use the Adapter Configuration Wizard to configure the Oracle File
Adapter for use with a BPEL process or a Mediator service. This creates an outbound
WSDL and JCA file pair.

This section includes the following topics:

■ Section 4.3.4.1, "Listing Operation"

■ Section 4.3.4.2, "File Directory Specifications"

■ Section 4.3.4.3, "File Matching"

4.3.4.1 Listing Operation
For listing files, you must select the List Files operation, as shown in Figure 4–34.

Figure 4–34 List Files Operation Page

4.3.4.2 File Directory Specifications
The File Directories page of the Adapter Configuration Wizard shown in Figure 4–35
enables you to specify information about the directory to use for reading files names
for the list operation. You can choose to list files recursively within directories.

Note: The file creation time property, creationTime, is not
supported because the standard Java APIs do not provide a
mechanism to retrieve the creation time. The value of the
creationTime property is always displayed as 0.

For example,

<creationTime
xmlns="http://xmlns.oracle.com/pcbpel/adapter/file/FAListFiles/FALi
stFilesTest/ReadS/">0</creationTime>

Oracle File and FTP Adapter Concepts

4-62 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–35 The Adapter Configuration Wizard-Specifying Incoming Files

The following section describes the file directory information to specify:

4.3.4.2.1 Specifying Inbound Physical or Logical Directory Paths in SOA Composite

You can specify directory names as physical or logical paths for composites involving
Oracle BPEL PM and Mediator. Physical paths are values such as C:\inputDir.

In the composite, logical properties are specified in the JCA file, and their
logical-physical mapping is resolved by using binding properties. You specify the
logical directory once at design time, and you can later modify the directory name as
needed.

For example, the generated JCA file looks as follows for the logical input directory
name C:\inputDir:

<adapter-config name="ListFiles" adapter="File Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">

 <connection-factory location="eis/FileAdapter" UIincludeWildcard="*.txt"
adapterRef=""/>
 <endpoint-interaction portType="FileListing_ptt" operation="FileListing">
 <interaction-spec
className="oracle.tip.adapter.file.outbound.FileListInteractionSpec">
 <property name="PhysicalDirectory" value="C:\inputDir"/>
 <property name="Recursive" value="true"/>
 <property name="IncludeFiles" value=".*\.txt"/>
 </interaction-spec>
 </endpoint-interaction>

</adapter-config>

Oracle File and FTP Adapter Concepts

Oracle JCA Adapter for Files/FTP 4-63

4.3.4.3 File Matching
The File Filtering page of the Adapter Configuration Wizard shown in Figure 4–36
enables you to specify details about the files to retrieve or ignore.

The Oracle File Adapter acts as a file listener and polls the specified directory on a
local or remote file system and looks for files that match specified naming criteria.

Figure 4–36 The Adapter Configuration Wizard - File Filtering

The following sections describe the file filtering information to specify:

■ Section 4.3.4.3.1, "Specifying a Naming Pattern"

■ Section 4.3.4.3.2, "Including and Excluding Files"

4.3.4.3.1 Specifying a Naming Pattern

Specify the naming convention that the Oracle File Adapter uses to poll for inbound
files. You can also specify the naming convention for files you do not want to process.
Two naming conventions are available for selection. The Oracle File Adapter matches
the files that appear in the inbound directory.

■ File wildcards (po*.txt)

Retrieve all files that start with po and end with .txt. This convention conforms
to operating system standards.

■ Regular expressions (po.*\.txt)

Retrieve all files that start with po and end with .txt. This convention conforms
to Java Development Kit (JDK) regular expression (regex) constructs.

Oracle File and FTP Adapter Concepts

4-64 Oracle Fusion Middleware User's Guide for Technology Adapters

4.3.4.3.2 Including and Excluding Files

If you use regular expressions, the values you specify in the Include Files and Exclude
Files fields must conform to JDK regular expression (regex) constructs. For both fields,
different regex patterns must be provided separately. The Include Files and Exclude
Files fields correspond to the IncludeFiles and ExcludeFiles parameters,
respectively, of the inbound WSDL file.

To have the inbound Oracle File Adapter to pick up all file names that start with po
and which have the extension txt, you must specify the Include Files field as
po.*\.txt when the name pattern is a regular expression. In this regex pattern
example:

■ A period (.) indicates any character.

■ An asterisk (*) indicates any number of occurrences.

■ A backslash followed by a period (\.) indicates the character period (.) as indicated
with the backslash escape character.

The Exclude Files field is constructed similarly.

If you have Include Files field and Exclude Files field expressions that have an overlap,
then the exclude files expression takes precedence. For example, if Include Files is set
to abc*.txt and Exclude Files is set to abcd*.txt, then you receive any files
prefixed with abcd*.

For details about Java regex constructs, go to

Notes:

■ If you later select a different naming pattern, ensure that you also
change the naming conventions you specify in the Include Files
and Exclude Files fields. The Adapter Configuration Wizard does
not automatically make this change for you.

■ Do not specify *.* as the convention for retrieving files.

■ Be aware of any file length restrictions imposed by your operating
system. For example, Windows operating system file names
cannot be more than 256 characters in length (the file name, plus
the complete directory path). Some operating systems also have
restrictions on the use of specific characters in file names. For
example, Windows operating systems do not allow characters
such as backslash(\), slash (/), colon (:), asterisk (*), left angle
bracket (<), right angle bracket (>), or vertical bar(|).

Note: The regex pattern complies with the JDK regex pattern.
According to the JDK regex pattern, the correct connotation for a
pattern of any characters with any number of occurrences is a period
followed by a plus sign (.+). An asterisk (*) in a JDK regex is not a
placeholder for a string of any characters with any number of
occurrences.

Note: Do not begin JDK regex pattern names with the following
characters: plus sign (+), question mark (?), or asterisk (*).

Oracle File and FTP Adapter Concepts

Oracle JCA Adapter for Files/FTP 4-65

http://java.sun.com/j2se/1.5.0/docs/api

4.3.5 Oracle FTP Adapter Get File Concepts
In the inbound direction, the Oracle FTP Adapter works the same way as the Read File
operations of the Oracle File Adapter in that it polls and gets files from a file system
for processing. The major difference is that the Oracle FTP Adapter is used for remote
file exchanges. To configure the FTP adapter for remote file exchanges, the Adapter
Configuration Wizard asks for connection information to an FTP server to be used
later, as shown in Figure 4–37.

Figure 4–37 Specifying FTP Server Connection Information

The default adapter instance JNDI name is eis/Ftp/FtpAdapter, or use a custom
name. This name connects to the FTP server during run time.

After logging in, you select the Get File (read) operation and the type of file to deliver.
Figure 4–38 shows this selection.

Note: Files are not read and therefore there is no native data
translation.

Note: The Oracle FTP Adapter does not support the FTP commands
RESTART and RECOVERY during the transfer of large files.

Oracle File and FTP Adapter Concepts

4-66 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–38 Selecting the Get File Operation

The serverType property in the deployment descriptor is used to determine line
separators when you transfer data. You can specify unix, win, or mac as property
values. These values represent the operating system on which the FTP server is
running. By default, the serverType property contains unix.

When you specify mac as the value, \r is used as line separator. For unix, \n is used
and for win, \r\n is used. You must note that this property is used by the NXSD
translator component to write the line separator during an outbound operation.

From this point onwards, pages of the Adapter Configuration Wizard for the Get File
operation are the same as those for the Read File operation of the file. Table 4–8 lists
the pages that are displayed and provides references to sections that describe their
functionality.

An additional Adapter Configuration Wizard page is also available for advanced
users. This page is shown in Figure 4–39 and appears only after you make either or
both of the following selections on the File Polling page shown in Figure 4–22:

■ Do not select the Delete Files After Successful Retrieval check box.

■ Set the value of the Minimum File Age field to a value greater than 0.

Table 4–8 Adapter Configuration Wizard Windows for Get File Operation

Page See Section...

File Directories (Figure 4–20) Section 4.3.1.2, "Inbound File Directory Specifications"

File Filtering (Figure 4–21) Section 4.3.1.3, "File Matching and Batch Processing"

File Polling (Figure 4–22) Section 4.3.1.4, "File Polling"

Messages (Figure 4–23) Section 4.3.1.6, "Native Data Translation"

Oracle File and FTP Adapter Concepts

Oracle JCA Adapter for Files/FTP 4-67

Figure 4–39 File Modification Time

This page enables you to specify a method for obtaining the modification time of files
on the remote FTP server:

■ File System

This option enables you to obtain the date/time format of the file modification
time with the file system listing command. However, this option is rarely used and
is not supported by all FTP servers. See your FTP server documentation to
determine whether your server supports the file system listing command, which
command-line syntax to use, and how to interpret the output.

For example, if the file system listing command quote mdtm filename is
supported and returns the following information:

213 20050602102633

specify the start index, end index, and date/time format of the file modification
time in the Data/Time Format field as a single value separated by commas (for
example, 4,18,yyyyMMddHHmmss).

Note: The Oracle FTP Adapter uses the LIST command as opposed
to NLST for listing and retrieves the time stamps because of which you
must not specify the time formats. However, you must specify the
time formats as shown below if you do any of the following:

■ If you specify NLST as the listing command (either through the
mapping file or the UseNlst="true" parameter in the
inboundJCA file)

■ To use the File Name Substring option

This note is not applicable if your case does not fall under neither of
these categories.

Oracle File and FTP Adapter Concepts

4-68 Oracle Fusion Middleware User's Guide for Technology Adapters

Where:

– 4 is the start index of the file modification time.

– 18 is the end index of the file modification time.

– yyyyMMddHHmmss is the data/time format of the file modification time
obtained with the quote mdtm filename command.

The resulting JCA file includes the following parameters and values:

<property name=" FileModificationTime " value=" FileSystem "/>
<property name=" ModificationTimeFormat" value=" 4,18,yyyyMMddHHmmss "/>

To handle the time zone issue, you must also be aware of the time stamp
difference. The time zone of the FTP server is determined by using the Windows
date/time properties (for example, by double-clicking the time being displayed in
the Windows task bar). You must then convert the time difference between the FTP
server and the system on which the Oracle FTP Adapter is running to milliseconds
and add the value as a binding property in the composite.xml file:

<binding.jca config="FlatStructureIn_file.jca">
 <property name="timestampOffset" source="" type="xs:string" many="false"
override="may">238488888</property-->
</binding.jca>

■ Directory Listing

This option enables you to obtain the date/time format from the file modification
time with the FTP directory listing command. For example, if the directory listing
command (ls -l) returns the following information:

12-27-04 07:44AM 2829 NativeData2.txt

specify the start index, end index, and date/time format of the file modification
time as a single value separated by commas in either the Old File Date/Time
Format field or the Recent File Date/Time Format field (for example, 0,17,
MM-dd-yy hh:mma).

Where:

– 0 is the start index of the file modification time.

– 17 is the end index of the file modification time.

– MM-dd-yy hh:mma is the date/time format of the file modification time
obtained with the ls -l command. For this example, the value is entered in
the Recent File Date/Time Format field. This field indicates that the format is
obtained from the most recent file adhering to the naming convention,
whereas the Old File Date/Time Format field obtains the format from the
oldest file.

The resulting JCA file includes the following parameters and values:

<property name=" FileModificationTime " value=" DirListing"/>
<property name=" ModificationTimeFormat" value="0,17, MM-dd-yy hh:mma "/>

To handle the time zone issue, you must also be aware of the time stamp
difference. The time zone of the FTP server is determined by using the Windows
date/time properties (for example, by double-clicking the time being displayed in
the Windows task bar). You must then convert the time difference between the FTP
server and the system on which the Oracle FTP Adapter is running to milliseconds
and add the value as a binding property in the composite.xml file:

Oracle File and FTP Adapter Concepts

Oracle JCA Adapter for Files/FTP 4-69

<binding.jca config="FlatStructureIn_file.jca">
 <property name="timestampOffset" source="" type="xs:string" many="false"
override="may">238488888</property-->
</binding.jca>

■ File Name Substring

This option enables you to obtain the modification time from the file name. For
example, if the name of the file is fixedLength_20050324.txt, you can specify
the following values:

– The start index in the Substring Begin Index field (for example, 12)

– The end index in the End Index field (for example, 20)

– The date and time format in the Date/Time Format field conforming to the
Java SimpleDateFormat to indicate the file modification time in the file
name (for example, yyyyMMdd)

The resulting JCA file includes the following parameters and values:

<property name=" FileModificationTime " value=" Filename"/>
<property name=" FileNameSubstringBegin " value="12 "/>
<property name=" FileNameSubstringEnd " value="20"/>
<property name=" ModificationTimeFormat " value=" yyyyMMdd "/>

After the completion of the Adapter Configuration Wizard, configuration files are
created in the Applications section of JDeveloper.

See Figure 2–21, "Custom Adapter Configuration Wizard JCA Properties Screen" for
more information about error handling.

You must also add the DefaultDateFormat and the RecentDateFormat
parameters to the deployment descriptor for Oracle FTP Adapter, as shown in the
following sample:

<non-managed-connection
managedConnectionFactoryClassName="oracle.tip.adapter.ftp.FTPManagedConnection
 Factory">
 <property name="host" value="localhost"/>
 <property name="port" value="21"/>
 <property name="username" value="****"/>
 <property name="password" value="****"/>
 <property name="listParserKey" value="UNIX"/>
 <property name="defaultDateFormat" value="MMM d yyyy"/>
 <property name="recentDateFormat" value="MMM d HH:mm"/>
</non-managed-connection>

For more information on the DefaultDateFormat and the RecentDateFormat
parameters, refer to Section 4.2.21, "Recursive Processing of Files Within Directories in
Oracle FTP Adapter."

4.3.6 Oracle FTP Adapter Put File Concepts
In the outbound direction, the Oracle FTP Adapter works the same as the Write File
operations of the Oracle File Adapter. The Oracle FTP Adapter receives messages from
a BPEL process or a Mediator service and writes the messages in a file to a file system
(in this case, remote). Because the messages must be written to a remote system, the
Adapter Configuration Wizard prompts you to connect to the FTP server with the
adapter instance JNDI name, as shown in Figure 4–37.

Oracle File and FTP Adapter Concepts

4-70 Oracle Fusion Middleware User's Guide for Technology Adapters

After logging in, you select the Put File (write) operation and the type of file to deliver.
Figure 4–40 shows this selection.

Figure 4–40 Selecting the Put File Operation

From this point onwards, pages of the Adapter Configuration Wizard for the Put File
operation are the same as those for the Write File operation of the Oracle File Adapter.
Table 4–9 lists the pages that display and provide references to sections that describe
their functionality.

After the completion of the Adapter Configuration Wizard, configuration files are
created in the Applications section of JDeveloper.

4.3.7 Oracle FTP Adapter Synchronous Get File Concepts
In the outbound direction, the Oracle FTP Adapter works the same way as the
Synchronous Read File operations of the Oracle File Adapter in that it polls and gets
files from a file system and reads the current contents of the file. The major difference
is that the Oracle FTP Adapter is used for remote file exchanges. Because of this
polling, the Adapter Configuration Wizard asks for connection information to an FTP
server to be used later. For reading a file synchronously, you select Synchronous Get
File operation, as shown in Figure 4–41.

Table 4–9 The Adapter Configuration Wizard Pages for Put File Operation

Page See Section...

File Configuration (Figure 4–26) Section 4.3.2.2, "Outbound File Directory Creation"

Messages (Figure 4–31) Section 4.3.2.3, "Native Data Translation"

Oracle File and FTP Adapter Concepts

Oracle JCA Adapter for Files/FTP 4-71

Figure 4–41 Selecting the Synchronous Get File Operation

4.3.8 Oracle FTP Adapter File Listing Concepts
The Oracle FTP Adapter file listing concepts are similar to the Oracle File Adapter file
listing concepts discussed in Section 4.3.4, "Oracle File Adapter File Listing Concepts."
The Oracle FTP Adapter polls for files in a target directory and lists files from the
target directory to specified FTP locations. The contents of the files are not read. This
feature of the Oracle FTP Adapter lets you use an invoke activity to retrieve a list of
files from a target directory. This list of files is returned as an XML document and
contains information such as file name, directory name, file size, and last modified
time.

You use the Adapter Configuration Wizard to configure the Oracle FTP Adapter for
use with a BPEL process or a Mediator service. This creates an outbound WSDL and
JCA file pair.

For listing files, you must select the List Files operation from the Operation Type
page of the Adapter Configuration Wizard. In the File Directories page of the Adapter
Configuration Wizard, you must specify information about the directory to use for
reading file names for the list operation. You can choose to list files recursively within
directories. The File Filtering page of the Adapter Configuration Wizard enables you
to specify details of the files to retrieve or ignore.

The Oracle FTP Adapter acts as a listener and polls the specified directory on a local or
remote file system and looks for files that match specified naming criteria.

Note: The file creation time property, creationTime, is not
supported for FTP because the standard Java APIs do not provide a
mechanism to retrieve the creation time. The value of the
creationTime property is always displayed as 0.

The creationTime property is supported for SFTP only.

Configuring Oracle File and FTP Adapters

4-72 Oracle Fusion Middleware User's Guide for Technology Adapters

4.4 Configuring Oracle File and FTP Adapters
Various configuration tasks for Oracle File and FTP Adapters are discussed in the
following sections:

■ Section 4.4.1, "Configuring the Credentials for Accessing a Remote FTP Server"

■ Section 4.4.2, "Configuring Oracle File and FTP Adapters for High Availability"

■ Section 4.4.3, "Using Secure FTP with the Oracle FTP Adapter"

■ Section 4.4.4, "Using SFTP with Oracle FTP Adapter"

■ Section 4.4.5, "Configuring Oracle FTP Adapter for HTTP Proxy"

4.4.1 Configuring the Credentials for Accessing a Remote FTP Server
To access a remote FTP server, you must configure the following credentials:

■ User name: the user name to use on the remote FTP server.

■ Password: the password to use on the remote FTP server.

■ Port: 21

■ Host: the IP address of the remote FTP server.

You must configure these credentials by modifying the weblogic-ra.xml file using
the Oracle WebLogic Server console.

To do so, in the Oracle WebLogic Server Admin Console:

1. Select Deployments from the Navigation pane on the left.

2. Select FtpAdapter from the table of Deployments shown on the right.

3. Select the Configuration subtab for the FtpAdapter and then Outbound
Connection Pools.

4. Expand javax.resource.cci.ConnectionFactory and then select the
instance that you are modifying. (For example, choose the
eis/Ftp/FtpAdapter instance for the non-HA use case.)

4.4.2 Configuring Oracle File and FTP Adapters for High Availability
The requirements and procedure to configure the Oracle File and FTP Adapters for
high availability for an active-active topology are discussed in the following sections:

■ Section 4.4.2.1, "Prerequisites for High Availability"

■ Section 4.4.2.2, "High Availability in Inbound Operations"

■ Section 4.4.2.3, "High Availability in Outbound Operations"

4.4.2.1 Prerequisites for High Availability
Before you configure the Oracle File or FTP Adapter for high availability, you must
ensure that the following prerequisites are met:

■ Clustered processes must use the same physical directory.

■ Connection-factories must specify the same shared directory as the control
directory, and their names must match. For example, if the deployment descriptor
for one connection factory has /shared/control_dir as the value for
controlDir, then the other deployment descriptor must also have the same
value.

Configuring Oracle File and FTP Adapters

Oracle JCA Adapter for Files/FTP 4-73

■ Fault-policies and fault-bindings must be created for remote faults to ensure that
the adapter acts correctly. For more information on fault-policies and
fault-bindings, see Section 2.21, "Error Handling".

■ The MaxRaiseSize property must be set in the inbound JCA file.

4.4.2.2 High Availability in Inbound Operations
The Oracle File and FTP Adapters must ensure that only one node processes a
particular file in a distributed topology. You can use the database table as a coordinator
to ensure that Oracle File and FTP Adapters are highly available for inbound
operations.

Using Database Table as a Coordinator
You must use the following procedure to make an inbound Oracle File or FTP Adapter
service highly available by using database table as a coordinator:

1. Create Database Tables

You are not required to perform this step because the database schemas are
pre-created as a part of soainfra.

2. Modify Deployment Descriptor for Oracle File Adapter

Modify Oracle File Adapter deployment descriptor for the connection-instance
corresponding to eis/HAFileAdapter from the Oracle WebLogic Server
Administration Console:

a. Log in to your Oracle WebLogic Server Administration Console. To access the
console, navigate to http://servername:portnumber/console.

b. Click Deployments in the left pane for Domain Structure.

c. Click FileAdapter under Summary of Deployments on the right pane.

d. Click the Configuration tab.

Note: For large payloads, you must increase the transaction time out
for the SOADataSource by adding the following:

<xa-set-transaction-timeout>true</xa-set-transaction-timeout>
<xa-transaction-timeout>1000</xa-transaction-timeout>

Note: For Windows platforms, you must ensure that the input and
output directories are made canonical. For example, you must use
C:\bpel\input instead of c:\bpel\input. Note the use of
capitalized drive letter C: instead of c:.

Note: On all platforms, you must not end input or output directory
names with the Java system property file.separator value. For
example, /tmp/file/in/ is invalid but /tmp/file/in is valid.

Note: You must increase global transaction timeouts if you use
database as a coordinator.

Configuring Oracle File and FTP Adapters

4-74 Oracle Fusion Middleware User's Guide for Technology Adapters

e. Click the Outbound Connection Pools tab, and expand
javax.resource.cci.ConnectionFactory to see the configured connection
factories, as shown in Figure 4–42:

Figure 4–42 Oracle WebLogic Server Administration Console - Settings for FileAdapter
Page

f. Click eis/HAFileAdapter. The Outbound Connection Properties for the
connection factory corresponding to high availability is displayed.

g. Update the connection factory properties, as shown in Figure 4–43.

Figure 4–43 Oracle WebLogic Server Administration Console - Settings for
javax.resource.cci.ConnectionFactory Page

The new parameters in connection factory for Oracle File and FTP Adapters
are as follows:

Configuring Oracle File and FTP Adapters

Oracle JCA Adapter for Files/FTP 4-75

controlDir - Set it to the directory structure where you want the control files
to be stored. You must set it to a shared location if multiple WebLogic Server
instances run in a cluster.

inboundDataSource - Set the value to jdbc/SOADataSource. This is the
data source, where the schemas corresponding to high availability are
pre-created. The pre-created schema file can be found under $BEA_
HOME/AS11gR1SOA/rcu/integration/soainfra/sql/adapter/creat
eschema_adapter_oracle.sql. To create the schemas elsewhere, use this
script. You must set the inboundDataSource property accordingly if you
choose a different schema.

h. Configure BPEL Process or Mediator Scenario to use the connection factory, as
shown in the following example:

<adapter-config name="FlatStructureIn" adapter="File Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/HAFileAdapter"
UIincludeWildcard="*.txt" adapterRef=""/>
 <endpoint-activation portType="Read_ptt" operation="Read">
 <activation-spec
className="oracle.tip.adapter.file.inbound.FileActivationSpec"../>
 <property../>
 <property../>
 </activation-spec>
 </endpoint-activation>
</adapter-config>

4.4.2.3 High Availability in Outbound Operations
The Oracle File and FTP Adapters must ensure that if multiple references write to the
same directory, then these do not overwrite each other. The following locking
capabilities you can use to make Oracle File and FTP Adapters highly available for
outbound operations:

■ Database mutex

■ User-defined mutex

Using a Database Mutex
You must use the following procedure to make an outbound Oracle File or FTP
Adapter service highly available by using database table as a coordinator:

1. Create Database Tables

You are not required to perform this step as the database schemas are precreated
as a part of soainfra.

2. Modify Deployment Descriptor for Oracle File Adapter

Note: The location attribute is set to eis/HAFileAdapter for the
connection factory.

Note: You must increase global transaction timeouts if you use the
database as a coordinator.

Configuring Oracle File and FTP Adapters

4-76 Oracle Fusion Middleware User's Guide for Technology Adapters

Modify Oracle File Adapter deployment descriptor for the connection-instance
corresponding to eis/HAFileAdapter from the Oracle WebLogic Server
Administration Console:

a. Log in to your Oracle WebLogic Server Administration Console. To access the
console, navigate to http://servername:portnumber/console.

b. Click Deployments in the left pane for Domain Structure.

c. Click FileAdapter under Summary of Deployments on the right pane.

d. Click the Configuration tab.

e. Click the Outbound Connection Pools tab, and expand
javax.resource.cci.ConnectionFactory to see the configured connection
factories, as shown in Figure 4–42.

f. Click eis/HAFileAdapter. The Outbound Connection Properties page is
displayed with the connection factory corresponding to high availability.

g. Update the connection factory properties, as shown in Figure 4–44.

Figure 4–44 Oracle WebLogic Server Administration Console - Settings for
javax.resource.cci.Connectionfactory Page

The new parameters in connection factory for Oracle File and FTP Adapters
are as follows:

controlDir - Set it to the directory structure where you want the control files
to be stored. You must set it to a shared location if multiple WebLogic Server
instances run in a cluster.

inboundDataSource - Set the value to jdbc/SOADataSource. This is the
data source, where the schemas corresponding to high availability are
precreated. The precreated schemas can be found under $BEA_
HOME/AS11gR1SOA/rcu/integration/soainfra/sql/adapter/creat
eschema_adapter_oracle.sql. To create the schemas elsewhere, use this
script. You must set the inboundDataSource property accordingly if you
choose a different schema.

outboundDataSource - Set the value to jdbc/SOADataSource. This is the
data source where the schemas corresponding to high availability are
precreated. The precreated schemas can be found under $BEA_
HOME/AS11gR1SOA/rcu/integration/soainfra/sql/adapter/creat

Configuring Oracle File and FTP Adapters

Oracle JCA Adapter for Files/FTP 4-77

eschema_adapter_oracle.sql. To create the schemas elsewhere, use this
script. You must set the outboundDataSource property if you choose to do so.

outboundLockTypeForWrite - Set the value to oracle if you are using
Oracle Database. By default the Oracle File and FTP Adapters use an
in-memory mutex to lock outbound write operations. You must choose from
the following values for synchronizing write operations:

memory - The Oracle File and FTP Adapters use an in-memory mutex to
synchronize access to the file system.

oracle - The adapter uses the Oracle Database sequence.

db - The adapter uses a precreated database table (FILEADAPTER_MUTEX) as
the locking mechanism. You must use this option only if you are using a
schema other than the Oracle Database schema.

user-defined - The adapter uses a user-defined mutex. To configure the
user-defined mutex, you must implement the mutex interface
"oracle.tip.adapter.file.Mutex" and then configure a new
binding-property with the name "oracle.tip.adapter.file.mutex"
and value as the fully qualified class name for the mutex for the outbound
reference.

h. Configure BPEL Process or Mediator Scenario to use the connection factory, as
shown in the following example:

<adapter-config name="FlatStructureOut" adapter="File Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/HAFileAdapter" adapterRef=""/>
 <endpoint-interaction portType="Write_ptt" operation="Write">
<interaction-spec
className="oracle.tip.adapter.file.outbound.FileInteractionSpec">
 <property../>
 <property../>
 </interaction-spec>
 </endpoint-interaction>
</adapter-config>

4.4.3 Using Secure FTP with the Oracle FTP Adapter
The Oracle FTP Adapter supports the use of the secure FTP feature on Windows,
Solaris, and Linux. For Windows, this feature is certified on FileZilla FTP server with
OpenSSL. This section provides an overview of secure FTP functionality and describes
how to install and configure this feature.

This section includes the following topics:

■ Section 4.4.3.1, "Secure FTP Overview"

■ Section 4.4.3.2, "Installing and Configuring FTP Over SSL on Solaris and Linux"

■ Section 4.4.3.3, "Installing and Configuring FTP Over SSL on Windows"

Note: The location attribute is set to eis/HAFileAdapter for the
connection factory.

Configuring Oracle File and FTP Adapters

4-78 Oracle Fusion Middleware User's Guide for Technology Adapters

4.4.3.1 Secure FTP Overview
In environments in which sensitive data is transferred to remote servers (for example,
sending credit card information to HTTP servers), the issue of security is very
important. Security in these cases primarily refers to two requirements:

■ Trust in the remote server with which you are exchanging data

■ Protection from third parties trying to intercept the data

Secure socket layer (SSL) certificates and encryption focus on satisfying these two
security requirements. When SSL is used for FTP, the resulting security mechanism is
known as FTPS (or FTP over SSL).

To gain the trust of clients in SSL environments, servers obtain certificates (typically,
X.509 certificates) from recognized certificate authorities. When you set up the FTP
server, you use openSSL to create a certificate for the server. Every client trusts a few
parties, to begin with. If the server is one of these trusted parties, or if the server's
certificate was issued by one of these parties, then you have established trust, even
indirectly. For example, if the server's certificate was issued by authority A, which has
a certificate issued by authority B, and the client trusts B, that is good enough. For the
setup shown in Figure 4–45, the server's certificate is directly imported into the client's
certificate store as a trusted certificate.

Figure 4–45 Establishing Trust

You make the data being transferred immune to spying by encrypting it before
sending it and decrypting it after receiving it. Symmetric encryption (using the same
key to encrypt and decrypt data) is much faster for large amounts of data than the
public key and private key approach. Symmetric encryption is the approach used by
FTPS. However, before the client and server can use the same key to encrypt and
decrypt data, they must agree on a common key. This client typically does this by
performing the following tasks:

■ Generating a session key (to be used to encrypt and decrypt data)

■ Encrypting this session key using the server's public key that is part of the server's
certificate

■ Sending the key to the server

The server decrypts this session key by using its private key and subsequently uses it
to encrypt file data before sending it to the client.

Trusted Store

3

At runtime, client
gets server
certificate

Certificate
4

Client checks for
server certificate
in its trusted store Server generates

certificate

1

Certificate

2
Client imports server
certificate in its
trusted store

Certificate

Configuring Oracle File and FTP Adapters

Oracle JCA Adapter for Files/FTP 4-79

4.4.3.2 Installing and Configuring FTP Over SSL on Solaris and Linux
The following subsections describe how to install and configure secure FTP for Solaris
and Linux:

■ Section 4.4.3.2.1, "Installing and Configuring OpenSSL"

■ Section 4.4.3.2.2, "Installing and Configuring vsftpd"

■ Section 4.4.3.2.3, "Setting Up the Oracle FTP Adapter"

4.4.3.2.1 Installing and Configuring OpenSSL

OpenSSL is an open source implementation of the SSL protocol. OpenSSL implements
basic cryptographic functions and provides utility functions. Install and configure
OpenSSL on the Solaris or Linux host to be used as the FTP server.

1. Go to the following URL:

http://www.openssl.org/source

2. Locate openssl-0.9.7g.tar.gz in the list of available files. For example:

 3132217 Apr 11 17:21:51 2005 openssl-0.9.7g.tar.gz (MD5) (PGP sign)

3. Download the following files:

■ openssl-0.9.7g.tar.gz

■ openssl-0.9.7g.tar.gz.md5 (under the MD5 link)

■ openssl-0.9.7g.tar.gz.asc (under the PGP sign link

4. Unzip the following file using gunzip.

gunzip openssl-0.9.7g.tar.gz

5. Untar the following file:

tar xvf openssl-0.9.7g.tar

6. Change directories to the following location:

cd openssl-0.9.7g

7. Run the following command:

./config --prefix=/usr --openssldir=/usr/local/openssl

8. Change to the Bourne shell (if you are not using it):

sh

9. Configure and export the PATH variable:

PATH=${PATH}:/usr/ccs/bin; export PATH

10. Run the following command:

make

11. Exit the Bourne shell:

exit

12. Run the following command:

make test

Configuring Oracle File and FTP Adapters

4-80 Oracle Fusion Middleware User's Guide for Technology Adapters

13. Log in as the super user:

msu

14. Enter the password when prompted.

15. Run the following command:

make install

4.4.3.2.2 Installing and Configuring vsftpd

The vsftpd server is a secure and fast FTP server for UNIX systems. Install and
configure vsftpd on the Solaris or Linux host to be used as the FTP server.

1. Go to the following location:

ftp://vsftpd.beasts.org/users/cevans/

2. Download vsftpd-2.0.5 (You need the tar and signature file (.asc file)). For
example:

[BINARY] vsftpd-2.0.5.tar.gz. [Mar 19 21:26] 149K
[FILE] vsftpd-2.0.5.tar.gz.asc. [Mar 19 21:26] 189B

3. Unzip the following file using gunzip.

gunzip vsftpd-2.0.5.tar.gz

4. Unzip the tar file:

tar xvf vsftpd-2.0.5.tar

5. Change directories to the following location:

cd vsftpd-2.0.5

6. Make the following change in the builddefs.h file:

#undef VSF_BUILD_SSL

to

#define VSF_BUILD_SSL

7. Log in as the super user:

msu

8. Enter the password when prompted.

9. Create a file named vsftpd.conf with the following settings in the /etc
directory:

Standalone mode
listen=YES
max_clients=200
max_per_ip=4
Access rights
anonymous_enable=YES
#chroot_local_user=YES
#userlist_enable=YES
ftp_username=ftp
local_enable=YES

Configuring Oracle File and FTP Adapters

Oracle JCA Adapter for Files/FTP 4-81

write_enable=YES
anon_upload_enable=YES
anon_mkdir_write_enable=YES
anon_other_write_enable=YES
chown_uploads=YES
chown_username=ftp
Security
anon_world_readable_only=NO
allow_anon_ssl=YES
ssl_enable=YES
connect_from_port_20=YES
hide_ids=YES
pasv_min_port=50000
pasv_max_port=60000
Features
ftpd_banner="Welcome to the FTP Service"
xferlog_enable=YES
ls_recurse_enable=NO
ascii_download_enable=NO
async_abor_enable=YES
Performance
one_process_model=NO
idle_session_timeout=120
data_connection_timeout=300
accept_timeout=60
connect_timeout=60
anon_max_rate=50000

10. Run the following commands:

mkdir /var/ftp
useradd -d /var/ftp ftp
chown root /var/ftp
chmod og-w /var/ftp
mkdir /usr/share/empty
mkdir /usr/share/ssl
mkdir /usr/share/ssl/certs

11. Run the following command:

openssl req -x509 -nodes -newkey rsa:1024 -keyout
/usr/share/ssl/certs/vsftpd.pem -out /usr/share/ssl/certs/vsftpd.pem

12. Run the vsftpd daemon from the vsftpd-2.0.5 directory:

./vsftpd

4.4.3.2.3 Setting Up the Oracle FTP Adapter

Perform the following tasks to set up the Oracle FTP Adapter:

1. On your Solaris or Linux host, run the following commands:

mkdir /var/ftp/inDir

Note: Copies of the vsftpd.conf file appear in several locations in
the vsftpd-2.0.5 directory structure. If you use one of those files to
create the vsftpd.conf file in the /etc directory, then ensure that it
only includes the parameters and settings described in Step 9.

Configuring Oracle File and FTP Adapters

4-82 Oracle Fusion Middleware User's Guide for Technology Adapters

mkdir /var/ftp/outDir
chmod 777 /var/ftp/inDir /var/ftp/outDir

2. Specify the FTP connection parameters in the Oracle FTP Adapter deployment
descriptor from the Oracle WebLogic Server Administration Console.

You have now installed and configured secure FTP and are ready to use this
feature with the Oracle FTP Adapter.

4.4.3.3 Installing and Configuring FTP Over SSL on Windows
The FTPS feature is certified on FileZilla FTP server with OpenSSL. You must follow
the procedure in the following subsections for installing and configuring OpenSSL for
FileZilla on Windows:

■ Section 4.4.3.3.1, "Installing OpenSSL"

■ Section 4.4.3.3.2, "Generating OpenSSL Server Key and Certificate"

■ Section 4.4.3.3.3, "Importing the Server Key and Certificate Into FileZilla Server"

■ Section 4.4.3.3.4, "Converting the Server Key From PEM to PKCS12 Format"

■ Section 4.4.3.3.5, "Configuring Oracle FTP Adapter Deployment Descriptor to Use
the New Key"

4.4.3.3.1 Installing OpenSSL

OpenSSL is an open source implementation of the SSL protocol. OpenSSL implements
basic cryptographic functions and provides utility functions. Perform the following
steps to install and configure OpenSSL on the Windows host to be used as the FTP
server.

1. Go to the following URL:

http://www.slproweb.com/products/Win32OpenSSL.html

2. Download and install Visual C++ 2008 Redistributables.

3. Download and install Win32 OpenSSL v0.9.8k Light.

Where... Is...

useFtps Set to True. This setting is required to use FTP over SSL. The default is
False.

channelMask The type of channel: control channel or data channel. Possible values are
both, control, data, or none. The default is both.

securePort The port for FTP over SSL. The default is 990.

keyStoreProvid
erName

The keystore provider class. The default is
oracle.security.pki.OraclePKIProvider.

keystoreType The keystore type. The default is PKCS12.

keystoreAlgori
thm

The keystore algorithm. The default is OracleX509.

enableCipherSu
its

List of comma separated cipher suites. The default is blank, in which case
the default list of cipher suites are used. For most cases, you are not
required to change this.

pkiProvider The PKI provider name. The default is OraclePKI.

jsseProvider The JSSE provider name. The default is OracleJSSE.

Configuring Oracle File and FTP Adapters

Oracle JCA Adapter for Files/FTP 4-83

4.4.3.3.2 Generating OpenSSL Server Key and Certificate

To create the server key and certificate files, you must perform the following steps:

1. Open the command prompt and browse to the OpenSSL\bin directory.

2. Run the following command:

openssl req -new -x509 -keyout mykey.pem -out mycert.pem -days 365

A sample command output is as follows:

C:\OpenSSL\bin>openssl req -new -x509 -keyout mykey.pem -out mycert.pem -days
365
Loading 'screen' into random state - done
Generating a 1024 bit RSA private key
..........++++++
.......++++++
writing new private key to 'mykey.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:CA
Locality Name (eg, city) []:Belmont
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Test
Organizational Unit Name (eg, section) []:Test
Common Name (eg, YOUR name) []:Test test
Email Address []:test@test.com

3. Enter a PEM pass phrase when prompted.

4. Re-enter PEM pass phrase entered in step 3 for verification.

5. Enter the requested details.

The server key (mykey.pem) and certificate (mycert.pem) are generated in the
OpenSSL\bin directory.

4.4.3.3.3 Importing the Server Key and Certificate Into FileZilla Server

To import the server key and certificate into FileZilla, you must perform the following
steps:

1. Open a FileZilla Server interface from your Windows Start menu.

2. Click Edit, and then click Settings.

The FileZilla Server Options dialog is displayed.

3. Click SSL/TLS settings.

4. Enter the server key and certificate details as shown in Figure 4–46.

Configuring Oracle File and FTP Adapters

4-84 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–46 The FileZilla Server Options Dialog

4.4.3.3.4 Converting the Server Key From PEM to PKCS12 Format

You must convert the server key and the server certificate from the PEM format to the
PKCS#12 format as the Oracle FTP Adapter does not recognize the PEM format. To
convert the server key and certificate to the PKCS#12 format, you must perform the
following steps:

1. Open the command prompt and browse to the OpenSSL\bin directory.

2. Run the following command:

openssl pkcs12 -export -out mykeyz.p12 -in mycert.pem -inkey mykey.pem

The command output is as follows:

C:\OpenSSL\bin>openssl pkcs12 -export -out mykeyz.p12 -in mycert.pem -inkey
mykey.pem
Loading 'screen' into random state - done
Enter pass phrase for mykey.pem:
Enter Export Password:
Verifying - Enter Export Password:

3. Enter a PEM pass phrase when prompted. This is the pass phrase that you created
while generating OpenSSL server key and certificate in Section 4.4.3.3.2,
"Generating OpenSSL Server Key and Certificate."

4. Enter an export password for the PKCS#12 file.

5. Re-enter the export password for verification.

6. Enter the requested details.

The mykeyz.p12 file is generated in the OpenSSL\bin directory.

Note: In the Key password field, you must use the PEM pass phrase
generated in Step 3 of Section 4.4.3.3.2, "Generating OpenSSL Server
Key and Certificate."

Configuring Oracle File and FTP Adapters

Oracle JCA Adapter for Files/FTP 4-85

7. Copy the mykeyz.p12 file to the managed Oracle WebLogic Server instance
running the Oracle FTP Adapter.

For example,

/scratch/$user/private/mykeyz.p12

4.4.3.3.5 Configuring Oracle FTP Adapter Deployment Descriptor to Use the New Key

You must perform the following steps to configure the Oracle FTP Adapter
deployment descriptor:

1. Navigate to http://servername:portnumber/console.

2. Use the required credentials to open the home page of the Oracle WebLogic Server
Administration Console.

3. Select Deployments in the Domain Structure pane.

The Oracle WebLogic Server Administration Console - Summary of Deployments
page is displayed.

4. Click FtpAdapter.

The Oracle WebLogic Server Administration Console - Settings for FtpAdapter
page is displayed.

5. Click the Configuration tab, and then click the Outbound Connection Pools tab.

The Outbound Connection Pool Configuration table is displayed.

6. Select the JNDI name for the Ftp Adapter instance you configure. For example,
"eis/Ftp/FtpAdapter".

7. Configure the deployment descriptors listed in Table 4–10:

4.4.4 Using SFTP with Oracle FTP Adapter
SSH file transfer protocol (SFTP) is a network protocol that enables secure file transfer
over a network. Oracle FTP Adapter supports the use of the SFTP feature on Windows
and Linux. This section provides an overview of the SFTP functionality and describes
how to install and configure this feature.

This section includes the following tasks:

■ SFTP Overview

Table 4–10 JCA Properties for Oracle File and FTP Adapters

Property Name Property Value

useFtps Set the value to true.

walletLocation Set it to the location of the PKCS#12 file in the managed Oracle WebLogic
Server instance: /scratch/$user/private/mykeyz.p12.

walletPassword Set the value to the export password generated in Step 4 of Section 4.4.3.3.4,
"Converting the Server Key From PEM to PKCS12 Format."

keyStoreProviderName Set the value to sun.security.provider.Sun

keystoreType Set the value to PKCS12

keystoreAlgorithm Set the value to SunX509

pkiProvider Must be left blank.

jsseProvider Must be left blank.

Configuring Oracle File and FTP Adapters

4-86 Oracle Fusion Middleware User's Guide for Technology Adapters

■ Install and Configure OpenSSH for Windows

■ Set Up Oracle FTP Adapter for SFTP

4.4.4.1 SFTP Overview
FTP is the network protocol that enables clients to securely transfer files over the
underlying SSH transport. SFTP is not similar to FTP over SSH or File Transfer
Protocol (FTP). Figure 4–47 displays the communication process between an SSH client
and an SSH server. SFTP is supported in Windows and Linux.

Figure 4–47 SFTP Communication

SFTP has the following features:

■ Encryption

■ Authentication

■ Integrity

■ Data Compression

4.4.4.1.1 Encryption The SSH protocol uses public key cryptography for encryption.
This section explains how data is encrypted:

1. The SSH subsystem uses symmetric key ciphers such as Data Encryption Standard
(DES) or Blowfish to generate a session key. The SSH protocol currently uses the
Diffie-Hellman Key Exchange Algorithm to derive the symmetric key for the
session.

2. The data is encrypted using the session key.

3. The session key is encrypted by using the recipient's public key. Because the
recipient has the private key, it can decrypt the message by using its preferred PKI
algorithm such as Rivest-Shamir-Adleman (RSA) or Digital Signature Algorithm
(DSA).

4.4.4.1.2 Authentication The SSH protocol inherently supports password authentication
by encrypting passwords or session keys as they are transferred over the network. In
addition, the SSH protocol uses a mechanism known as 'known hosts' to prevent
threats such as IP spoofing. When this mechanism is used, both the client and the
server have to prove their identity to each other before any kind of communication
exchange.

4.4.4.1.3 Integrity The SSH protocol uses widely trusted bulk hashing algorithms such
as Message Digest Algorithm 5 (MD5) or Secure Hash Algorithm (SHA-1) to prevent
insertion attacks. Implementation of data integrity checksum by using the algorithms
mentioned in Section 4.4.4.1.1, "Encryption" prevents deliberate tampering of data
during transmission.

SSH Client SSH Server

Integrity

Encryption

Authentication

Configuring Oracle File and FTP Adapters

Oracle JCA Adapter for Files/FTP 4-87

4.4.4.1.4 Data Compression The SSH protocol supports zlib, an open-source
cross-platform algorithm for data compression. SSH uses zlib to compress in-flight
data to reduce network bandwidth.

4.4.4.2 Install and Configure OpenSSH for Windows
OpenSSH for Windows is the free implementation of the SSH protocol on Windows.
Perform the following steps to install and configure OpenSSH on Windows XP:

1. Log in as a user with Administrator privileges.

2. Download setup.exe from the following location:

http://www.cygwin.com

3. Run setup.exe. The Cygwin Net Release Setup window is displayed.

4. Click Next. The Choose Installation type window is displayed.

5. Select Install from Internet as the download source and click Next. The Choose
Installation Directory window is displayed.

6. Leave the root directory as C:\cygwin. Also, keep the default options for the
Install For and the Default Text File Type fields.

7. Click Next. The Select Local Package Directory window is displayed.

8. Click Browse and select C:\cygwin as the local package directory.

9. Click Next. The Select Connection Type window is displayed.

10. Select a setting for Internet connection and click Next. The Choose Download
Site(s) window is displayed.

11. Select a site from the Available Download Sites list and click Next. The Select
Packages window is displayed.

12. Click View to see the complete list of packages available for installation.

13. Select openssh if it is not the default value.

14. Select the Binaries box for openssh.

15. Click Next to start the installation.

16. On Windows XP desktop, right -click My Computer and select Properties.

17. Click the Advanced tab and click Environment Variables.

18. Click New and enter CYGWIN in the Variable Name field and ntsec in the
Variable Value field.

19. Add C:\cygwin\bin to the system path.

20. Open the cygwin window.

21. Type ssh-host-config.

22. You are prompted with the following questions:

a. Shall privilege separation be used? (yes/no)

Enter yes.

b. Shall this script create a local user 'sshd' on this
machine?

Enter yes.

Configuring Oracle File and FTP Adapters

4-88 Oracle Fusion Middleware User's Guide for Technology Adapters

c. Do you want to install sshd as service?

(Say "no" if it's already installed as service) (yes/no)

Enter yes.

d. Which value should the environment variable CYGWIN have
when sshd starts? It's recommended to set at least "ntsec"
to be able to change user context without password.
Default is "binmode ntsec tty".

Enter ntsec.

23. Type net start sshd to start the sshd service.

24. Run the following command in the cygwin window to replicate the Windows local
user accounts to cygwin:

mkpasswd --local > /etc/passwd
mkgroup --local > /etc/group

25. To test the setup, type ssh localhost in the cygwin window.

4.4.4.3 Set Up Oracle FTP Adapter for SFTP
To use the SFTP functionality, you must modify the deployment descriptor for Oracle
FTP Adapter.

Table 4–11 lists the properties for which you must specify a value in the deployment
descriptor. The values of these properties depend on the type of authentication and the
location of OpenSSH.

Table 4–11 SFTP Properties

Property Description

useSftp Specify true.

Mandatory: Yes

Default value: false

authenticationType Specify PASSWORD for password-based authentication or
PUBLICKEY for public key authentication.

For password-based authentication, the user name and
password specified in the weblogic-ra.xml file are used.
Ensure that there is a Windows user with the same name
and password as specified in the weblogic-ra.xml file. In
addition, the user should have administrative privileges.

For public key authentication, the privateKeyFile
parameter must be set to the location of the private key file.

Mandatory: Yes

preferredKey
ExchangeAlgorithm

Specify diffie-hellman-group1-sha1 or
diffie-hellman-group-exchange-sha1.

This is an optional parameter where the user can select the
default key exchange protocol for negotiating the session
key for encrypting the message.

Mandatory: No

Default value: diffie-hellman-group1-sha1

Configuring Oracle File and FTP Adapters

Oracle JCA Adapter for Files/FTP 4-89

4.4.4.3.1 Configuring Oracle FTP Adapter for Password Authentication

preferred
CompressionAlgorithm

Specify none or zlib.

This parameter enables the user to choose whether in-flight
data should be compressed or not.

Mandatory: No

preferred
DataIntegrityAlgorithm

Specify hmac-md5 or hmac-sha1.

This parameter enables the user to select the bulk-hashing
algorithm for data integrity checks.

Mandatory: No

Default value: hmac-md5

preferredPKIAlgorithm Specify ssh-rsa or ssh-dsa.

This parameter enables the user to configure the asymmetric
cipher for the communication.

Mandatory: No

Default value: ssh-rsa

privateKeyFile Specify the path to the private key file. This is required if the
authenticationType parameter is set to PUBLICKEY.

Mandatory: No

preferredCipherSuite Specify a cipher from the following list:

■ twofish192-cbc

■ cast128-cbc

■ twofish256-cbc

■ aes128-cbc

■ twofish128-cbc

■ 3des-cbc

■ blowfish-cbc

■ aes256-cbc

■ aes192-cbc

Mandatory: No

Default value: blowfish-cbc

transportProvider Specify socket or HTTP.

Specify socket if the SSH server is inside a firewall. Specify
HTTP if the SSH server is outside the firewall or a server is
exposed through an HTTP server.

If you select HTTP, then you must provide values for the
following parameters:

■ proxyHost

■ proxyPort

■ proxyUser

■ proxyPassword

■ useProxy

Mandatory: Yes

Table 4–11 (Cont.) SFTP Properties

Property Description

Configuring Oracle File and FTP Adapters

4-90 Oracle Fusion Middleware User's Guide for Technology Adapters

To set up the Oracle FTP Adapter for password authentication, the deployment
descriptor for Oracle FTP Adapter must specify the values of the properties listed in
Table 4–11. Ensure that the authenticationType property is set to password.

Specify the following properties and values listed in Table 4–12:

4.4.4.3.2 Configuring Oracle FTP Adapter for Public Key Authentication

For public key authentication, you must first configure OpenSSH and then set up the
Oracle FTP Adapter. The Oracle FTP Adapter setup depends on whether the OpenSSH
is running inside a firewall or outside a firewall. If OpenSSH is running inside the
firewall, then see the following sections:

■ Section 4.4.4.3.3, "Configuring OpenSSH for Public-Key Authentication"

■ Section 4.4.4.3.4, "Configuring Oracle FTP Adapter for Public Key Authentication
with OpenSSH Running Inside a Firewall"

If OpenSSH is running outside the firewall, then see the following sections:

■ Section 4.4.4.3.3, "Configuring OpenSSH for Public-Key Authentication"

■ Section 4.4.4.3.5, "Configuring Oracle FTP Adapter for Public Key Authentication
with OpenSSH Running Outside a Firewall"

4.4.4.3.3 Configuring OpenSSH for Public-Key Authentication

Perform the following steps:

1. Go to the C:\cygwin\etc directory. If required, configure the sshd_config file
to force public key authentication. For more information, see openssh help or
manual.

2. Go to the C:\cygwin\bin directory.

3. Run the following command to generate the key pair:

ssh-keygen -t rsa

4. Enter /etc/id_rsa when prompted for the file in which the key should be
saved.

5. Enter the passphrase.

Table 4–12 Sample SFTP Properties and Values

Property Value

useSftp true

authenticationType PASSWORD

preferredKey
ExchangeAlgorithm

diffie-hellman-group1-sha1

preferred
CompressionAlgorithm

none

preferred
DataIntegrityAlgorithm

hmac-md5

preferredPKIAlgorithm ssh-rsa

privateKeyFile -

preferredCipherSuite blowfish-cbc

transportProvider socket

Configuring Oracle File and FTP Adapters

Oracle JCA Adapter for Files/FTP 4-91

6. Enter the passphrase again.

7. Go to the /etc directory and verify that both the public key file (id_rsa.pub)
and the private key file (id_rsa) are generated.

8. Run the following command to create a copy of the public key file:

cp id_rsa.pub authorized_keys

9. Create a copy of the private key file in a secured location such as
C:\my-secured-folder\. The Oracle FTP Adapter configuration refers to this
private key file.

10. Restart the OpenSSH server by running the following commands:

net stop sshd
net start sshd

4.4.4.3.4 Configuring Oracle FTP Adapter for Public Key Authentication with OpenSSH Running
Inside a Firewall

To set up the Oracle FTP Adapter for public key authentication, you must specify the
values of the parameters listed in Table 4–11 in the deployment descriptor. Ensure that
the authenticationType parameter is set to publickey and the
transportProvider parameter is set to socket. The privateKeyFile
parameters should contain the location of the private key file.

A sample list of public key authentication properties and their values is shown in
Table 4–13.

4.4.4.3.5 Configuring Oracle FTP Adapter for Public Key Authentication with OpenSSH Running
Outside a Firewall

Perform the following steps to set up the Oracle FTP Adapter for public key
authentication when OpenSSH is running outside the firewall:

1. In the deployment descriptor for Oracle FTP Adapter, you must specify the values
of the properties listed in Table 4–11 in the deployment descriptor for Oracle FTP
Adapter. Ensure that the authenticationType property is set to publickey

Table 4–13 Sample SFTP Properties and Values

Property Value

useSftp true

authenticationType publickey

preferredKey
ExchangeAlgorithm

diffie-hellman-group1-sha1

preferred
CompressionAlgorithm

none

preferred
DataIntegrityAlgorithm

hmac-md5

preferredPKIAlgorithm ssh-rsa

privateKeyFile C:\my-secured-folder\id_rsa

preferredCipherSuite blowfish-cbc

transportProvider socket

Configuring Oracle File and FTP Adapters

4-92 Oracle Fusion Middleware User's Guide for Technology Adapters

and the transportProvider property is set to HTTP. The privateKeyFile
property contains the location of the private key file.

2. In the deployment descriptor for Oracle FTP Adapter, also specify the following
proxy-related properties:

■ proxyHost: The name of the proxy host.

■ proxyPort: The port number of the proxy.

■ proxyUsername: The user name for the proxy.

■ proxyPassword: The password for the proxy.

■ useProxy: Specify true to use proxy.

A sample list with public key authentication properties and proxy properties is shown
in Table 4–14.

4.4.5 Configuring Oracle FTP Adapter for HTTP Proxy
The Oracle FTP Adapter provides proxy support for HTTP proxy only. The HTTP
proxy support is available in the following two modes, plain FTP mode and SFTP
mode. This section explains how to configure the Oracle FTP Adapter for running in
plain FTP mode and SFTP mode. It contains following sections:

■ Section 4.4.5.1, "Configuring for Plain FTP Mode"

■ Section 4.4.5.2, "Configuring for SFTP Mode"

Table 4–14 Sample SFTP Properties and Values

Property Value

proxyHost proxy.host.com

proxyPort 80

proxyUsername anonymous

proxyPassword tiger@scott.com

useProxy true

useSftp true

authenticationType publickey

preferredKey
ExchangeAlgorithm

diffie-hellman-group1-sha1

preferred
CompressionAlgorithm

none

preferred
DataIntegrityAlgorithm

hmac-md5

preferredPKIAlgorithm ssh-rsa

privateKeyFile C:\my-secured-folder\id_rsa

preferredCipherSuite blowfish-cbc

transportProvider HTTP

Configuring Oracle File and FTP Adapters

Oracle JCA Adapter for Files/FTP 4-93

4.4.5.1 Configuring for Plain FTP Mode
For running the Oracle FTP Adapter in plain FTP mode, you must specify the value of
certain parameters in the Oracle FTP Adapter deployment descriptor. Table 4–15 lists
the properties that you must modify.

A sample list of Oracle FTP Adapter descriptor properties and their values is shown in
Table 4–16.

4.4.5.1.1 Proxy Definition File You can specify all proxy-specific information in a proxy
definition file and configure the adapter to use this file with the
proxyDefinitionFile property of the Oracle FTP Adapter deployment descriptor
file. A proxy definition file is written in XML format and is based on XML schema. The
XML schema for the proxy definition file is shown in Example 4–5. Your proxy

Table 4–15 Plain FTP Mode Properties

Property Description

host The remote FTP server name.

port The FTP control port number.

username The FTP user name.

password The FTP password.

proxyHost The proxy host name.

proxyPort The proxy port number.

proxyUsername The proxy user name.

proxyPassword The proxy password.

proxyType The proxy type. Only HTTP proxy type is supported.

proxyDefinitionFile The absolute path of the proxy definition file.

This parameter is not mandatary.

See Section 4.4.5.1.1, "Proxy Definition File" for more
information.

useProxy Specify true to use proxy.

Table 4–16 Sample Plain FTP Mode Properties and Values

Property Value

host my.host.com

port 21

username user

password password

proxyHost proxy.host.com

proxyPort 80

proxyUsername anonymous

proxyPassword tiger@scott.com

proxyType http

proxyDefinitionFile c:\proxydefinitions.xml

useProxy true

Configuring Oracle File and FTP Adapters

4-94 Oracle Fusion Middleware User's Guide for Technology Adapters

definition file must be based on this XML schema.

Example 4–5 Proxy Definition File XML Schema

<?xml version = \"1.0\" encoding = \"UTF-8\"?>
<schema targetNamespace = "http://ns.oracle.com/ip/af/ftp/proxy" xmlns =
"http://www.w3.org/2001/XMLSchema"
xmlns:proxy="http://ns.oracle.com/ip/af/ftp/proxy">

 <element name="ProxyDefinitions" type="proxy:ProxyDefinitionsType"/>
 <complexType name="ProxyDefinitionsType">
 <sequence>
 <element name="Proxy" type="proxy:ProxyDefinition"
 minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <complexType name="ProxyDefinition">
 <sequence>
 <element name="Step" type="proxy:StepType"
 minOccurs="1" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="key" type="ID" use="required"/>
 <attribute name="description" type="string"
 use="required"/>
 <attribute name="type" type="proxy:Protocol"
 use="optional"/>
 </complexType>

 <complexType name="StepType">
 <simpleContent>
 <extension base="string">
 <attribute name="command" type="string"
use="required"/>
 <attribute name="args" type="string" use="required"/>
 </extension>
 </simpleContent>
 </complexType>

 <simpleType name="Protocol">
 <restriction base="string">
 <enumeration value="ftp" />
 <enumeration value="http" />
 </restriction>
 </simpleType>
</schema>

A sample proxy definition file, based on the XML schema in Example 4–5, would look
as shown in Example 4–6:

Example 4–6 Proxy Definition File

<?xml version = '1.0' standalone = 'yes'?>
<proxy:ProxyDefinitions xmlns:proxy="http://ns.oracle.com/ip/af/ftp/proxy">
<Proxy key="http" description="http" type="http">
<Step command="USER" args="remote_username" />
<Step command="PASS" args="remote_password" />
</Proxy>
</proxy:ProxyDefinitions>

Configuring Oracle File and FTP Adapters

Oracle JCA Adapter for Files/FTP 4-95

When you use the file in Example 4–6, the Oracle FTP Adapter sends the following
sequence of commands to log in:

1. USER remote_username

2. PASS remote_password

You can also direct the proxy definition file to pick values from the deployment
descriptor for Oracle FTP Adapter. You can use the following expressions for this:

■ $proxy.user: This corresponds to the value of the proxyUsername parameter
in the Oracle FTP Adapter deployment descriptor.

■ $proxy.pass: This corresponds to the value of the proxyPassword parameter
in the Oracle FTP Adapter deployment descriptor.

■ $remote.user: This corresponds to the value of the username parameter in the
Oracle FTP Adapter deployment descriptor.

■ $remote.pass: This corresponds to the value of the password parameter in the
Oracle FTP Adapter deployment descriptor.

■ $remote.host: This corresponds to the value of the host parameter in the
Oracle FTP Adapter deployment descriptor.

■ $remote.port: This corresponds to the value of the port parameter in the
Oracle FTP Adapter deployment descriptor.

A sample proxy definition file based on the XML schema in Example 4–6 and taking
values from the weblogic-ra.xml file is shown in Example 4–7:

Example 4–7 Proxy Definition File Taking Values from the Deployment Descriptor

<?xml version = '1.0' standalone = 'yes'?>
<proxy:ProxyDefinitions xmlns:proxy="http://ns.oracle.com/ip/af/ftp/proxy">
<Proxy key="http" description="http" type="http">
<Step command="USER" args="$remote.user" />
<Step command="PASS" args="$remote.pass" />
</Proxy>
</proxy:ProxyDefinitions>

4.4.5.2 Configuring for SFTP Mode
For running the Oracle FTP Adapter in SFTP mode, you must specify the value of
certain properties in the Oracle FTP Adapter deployment descriptor. Table 4–17 lists
the properties that you must modify.

Table 4–17 SFTP Mode Properties

Property Description

host The remote FTP server name.

port The FTP control port number.

username The SFTP user name.

password The SFTP password.

proxyHost The proxy server host name.

proxyPort The proxy port number.

proxyUsername The proxy user name.

proxyPassword The proxy password.

Oracle File and FTP Adapters Use Cases

4-96 Oracle Fusion Middleware User's Guide for Technology Adapters

A sample list of deployment descriptor properties is shown in Table 4–18.

4.5 Oracle File and FTP Adapters Use Cases
This section includes the following Oracle File and FTP Adapters use cases:

■ Section 4.5.1, "Oracle File Adapter XML Debatching"

■ Section 4.5.2, "Flat Structure for Oracle BPEL PM"

■ Section 4.5.3, "Flat Structure for Mediator"

■ Section 4.5.4, "Oracle File Adapter Scalable DOM"

■ Section 4.5.5, "Oracle File Adapter ChunkedRead"

■ Section 4.5.6, "Oracle File Adapter Read File As Attachments"

■ Section 4.5.7, "Oracle File Adapter File Listing"

■ Section 4.5.8, "Oracle File Adapter Complex Structure"

■ Section 4.5.9, "Oracle FTP Adapter Debatching"

■ Section 4.5.10, "Oracle FTP Adapter Dynamic Synchronous Read"

■ Section 4.5.11, "Copying, Moving, and Deleting Files"

useSftp Specify true for SFTP mode. This value is required to use the SFTP
feature.

authenticationType Specify either PASSWORD or PUBLICKEY.PASSWORD

See Section 4.4.4.3, "Set Up Oracle FTP Adapter for SFTP"

transportProvider Specify http as value. Only HTTP transport provider is supported.

Table 4–18 Sample SFTP Mode Properties and Values

Property Value

host my.host.com

port 22

username user

password password

proxyHost proxy.host.com

proxyPort 80

proxyUsername anonymous

proxyPassword password

useSFTP true

authenticationType password

transportProvider http

Table 4–17 (Cont.) SFTP Mode Properties

Property Description

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-97

4.5.1 Oracle File Adapter XML Debatching
This is an Oracle File Adapter feature that debatches large XML documents into
smaller individual XML fragments.

In this use case, the Debatching XML process uses the Oracle File Adapter to debatch
an XML file containing a batch of employees occurring in the XML file as repeating
nodes. The Adapter then processes the nodes and writes separate output files to every
individual node.

This use case includes the following sections:

■ Section 4.5.1.1, "Prerequisites"

■ Section 4.5.1.2, "Designing the SOA Composite"

■ Section 4.5.1.3, "Creating the Inbound Oracle File Adapter Service"

■ Section 4.5.1.4, "Creating the Outbound File Adapter Service"

■ Section 4.5.1.5, "Wiring Services and Activities"

■ Section 4.5.1.6, "Deploying with JDeveloper"

■ Section 4.5.1.7, "Monitoring Using Oracle Enterprise Manager Fusion Middleware
Control Console (Fusion Middleware Control Console)"

4.5.1.1 Prerequisites
To perform debatching, you require the following files from the artifacts.zip file
contained in the Adapters-102FileAdapterXMLDebatching sample:

■ artifacts/input/emps.xml

■ artifacts/schemas/employees.xsd

You can obtain the Adapters-102FileAdapterXMLDebatching sample by
accessing the Oracle SOA Sample Code site.

4.5.1.2 Designing the SOA Composite
You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following:

1. In the Application Navigator of JDeveloper, click New Application. The Create
Generic Application - Name your application page is displayed.

2. Enter SOA-XMLDebatching in the Application Name field, as shown in
Figure 4–48, and click Next. The Create Generic Application - Name your project
page is displayed.

Oracle File and FTP Adapters Use Cases

4-98 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–48 The Generic Create Application - Name your application Page

3. Enter XMLDebatching in the Project Name field.

4. In the Available list under the Project Technologies tab, double-click SOA to move
it to the Selected list, as shown in Figure 4–49.

Figure 4–49 The Create Generic Application - Name your project Page

5. Click Next. The Configure SOA settings dialog appears.

6. Select Composite With BPEL in the Composite Template box, as shown in
Figure 4–50, and click Finish. The Create BPEL Process - BPEL Process page is
displayed.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-99

Figure 4–50 The Create Generic Application - Configure SOA settings Page

7. Enter BPELXMLDebatching in the Name field, select Define Service Later from
the Template box, as shown in Figure 4–51.

Figure 4–51 The Create BPEL Process - BPEL Process Page

8. Click OK. The SOA-XMLDebatching application and the XMLDebatching project
appear in the design area, as shown in Figure 4–52.

Oracle File and FTP Adapters Use Cases

4-100 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–52 The JDeveloper - Composite.xml

9. Copy the employees.xsd file to the xsd directory in your project (see
Section 4.5.1.1, "Prerequisites" for the location of this file).

4.5.1.3 Creating the Inbound Oracle File Adapter Service
Perform the following steps to create an inbound Oracle File Adapter service to read
the file from a local directory:

1. Drag and drop the Oracle File Adapter from the Component Palette to the
Exposed Services swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter XMLDebatchingIn in the Service Name field and, as shown in Figure 4–53.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-101

Figure 4–53 The Adapter Configuration Wizard - Service Name Page

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select Read File, as shown in Figure 4–54, and click Next. The File Directories page
is displayed.

Figure 4–54 The Adapter Configuration Wizard Operation Page

7. Enter the physical path for the input directory, as shown in Figure 4–55. The File
Filtering page is displayed.

Oracle File and FTP Adapters Use Cases

4-102 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–55 The Adapter Configuration Wizard - File Directories Page

8. Enter *.xml in the Include Files With Name Pattern field, select Files Contain
Multiple Messages check box, specify 1 as the value for Publish Messages in
Batches Of box, as shown in Figure 4–56.

Figure 4–56 The Adapter Configuration Wizard File Filtering Page

9. Click Next. The File Polling page is displayed.

10. Click Next. The Messages page is displayed.

11. Click Browse For Schema File that appears at the end of the URL field. The Type
Chooser dialog is displayed.

12. Click Project Schema Files, employees.xsd, and employees, as shown in
Figure 4–57.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-103

Figure 4–57 The Type Chooser Dialog

13. Click OK. The URL field in the Messages page is populated with the
employees.xsd file, as shown in Figure 4–58.

Figure 4–58 The Adapter Configuration Wizard File Messages Page

14. Click Next. The Finish page is displayed.

15. Click Finish. The inbound Oracle File Adapter is now configured and
composite.xml appears, as shown in Figure 4–59.

Oracle File and FTP Adapters Use Cases

4-104 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–59 The JDeveloper - Composite.xml

4.5.1.4 Creating the Outbound File Adapter Service
Perform the following steps to create an outbound file adapter service to write the file
from a local directory to the FTP server:

1. Drag and drop the File Adapter from the Component Palette to the External
References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter XMLOut in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select Write File, and click Next. The File Configuration page is displayed.

7. Enter the physical path for the output directory and enter emp_%SEQ%.xml in the
File Naming Convention (po_%SEQ%.txt) field, as shown in Figure 4–60.

8. Select Number of Messages Equals option, if not selected. The default value is 1.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-105

Figure 4–60 The Adapter Configuration Wizard - File Configuration Page

9. Click Next. The Messages page is displayed.

10. Click Browse For Schema File that appears at the end of the URL field. The Type
Chooser dialog is displayed.

11. Click Project Schema Files, employees.xsd, and employee, as shown in
Figure 4–61.

Figure 4–61 The Type Chooser Dialog

12. Click OK. The URL field in the Messages page is populated with the
employees.xsd file, as shown in Figure 4–58.

13. Click Next. The Finish page is displayed.

Oracle File and FTP Adapters Use Cases

4-106 Oracle Fusion Middleware User's Guide for Technology Adapters

14. Click Finish. The outbound Oracle File Adapter is now configured and
composite.xml appears, as shown in Figure 4–62.

Figure 4–62 The JDeveloper - Composite.xml

4.5.1.5 Wiring Services and Activities
You have to assemble or wire the three components that you have created: Inbound
adapter service, BPEL process, Outbound adapter reference. Perform the following
steps to wire the components:

1. Drag the small triangle in the XMLDebatchingIn in the Exposed Services area to
the drop zone that appears as a green triangle in the BPEL process in the
Components area.

2. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in the XMLOut in the External References
area.

The JDeveloper Composite.xml appears, as shown in Figure 4–63.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-107

Figure 4–63 The JDeveloper - Composite.xml

3. Click File, Save All.

Add a Receive Activity
1. Double-click BPELXMLDebatching. The BPELXMLDebatching.bpel page is

displayed.

2. Drag and drop a Receive activity from the Component Palette to the design area.

3. Double-click the Receive activity. The Receive dialog is displayed.

4. Enter ReceiveEmployee in the Name field, as shown in Figure 4–64.

Oracle File and FTP Adapters Use Cases

4-108 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–64 The JDeveloper - BPELXMLDebatching.bpel

5. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

6. Select XMLDebatchingIn, as shown in Figure 4–65, and click OK.

Figure 4–65 The Partner Link Chooser Dialog

7. Click the Auto-Create Variable icon to the right of the Variable field in the Receive
dialog, as shown in Figure 4–66. The Create Variable dialog is displayed.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-109

Figure 4–66 The Receive Dialog

8. Select the default variable name and click OK. The Variable field is populated with
the default variable name.

9. Check Create Instance, and click OK. The JDeveloper BPELXMLDebatching.bpel
page appears, as shown in Figure 4–67.

Figure 4–67 The JDeveloper - BPELXMLDebatching.bpel

Oracle File and FTP Adapters Use Cases

4-110 Oracle Fusion Middleware User's Guide for Technology Adapters

Add an Invoke Activity
1. Drag and drop an Invoke activity from the Component Palette to the design area.

2. Double-click the Invoke activity. The Invoke dialog is displayed.

3. Enter WriteEmployee in the Name field, as shown in Figure 4–68.

Figure 4–68 The Invoke Dialog

4. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

5. Select XMLOut, as shown in Figure 4–69, and click OK.

Figure 4–69 The Partner Link Chooser Dialog

6. Click the Automatically Create Input Variable icon to the right of the Input
variable field in the Invoke dialog. The Create Variable dialog is displayed.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-111

7. Select the default variable name and click OK. The Variable field is populated with
the default variable name. The Invoke dialog is displayed, as shown in
Figure 4–70.

Figure 4–70 The Invoke Dialog

8. Click OK. The JDeveloper BPELXMLDebatching.bpel page appears, as shown in
Figure 4–71.

Figure 4–71 The JDeveloper - BPELXMLDebatching.bpel

Add a Transform Activity
1. Drag and drop a Transform activity from the Component Palette in between the

Receive and Invoke activities in the design area.

2. Double-click the Transform activity. The Transform dialog is displayed.

Oracle File and FTP Adapters Use Cases

4-112 Oracle Fusion Middleware User's Guide for Technology Adapters

3. Enter TransformPayload in the Name field, as shown in Figure 4–72.

Figure 4–72 The Transform Dialog

4. Click the Transformation tab. The Transform dialog is displayed, as shown in
Figure 4–73.

Figure 4–73 The Transform Dialog - Transformation Tab

5. Click the Create... icon. The Source Variable dialog is displayed.

6. Select ReceiveEmployee_Read_InputVariable in the Source Variable box, and
select employees in the Source Part box, and then click OK. The Transform dialog
is displayed with the Source and Part selected.

7. Select WriteEmployee_Write_InputVariable in the Target Variable list, select
employee in the Target Part, as shown in Figure 4–74.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-113

Figure 4–74 The Transform Dialog

8. Click the Create Mapping icon. The XSL Editor page is displayed.

9. Drag employees from sources to employee in the target, as shown in Figure 4–75.
The Auto Map Preferences dialog is displayed.

Figure 4–75 The JDeveloper - Transformation_2.xsl

Oracle File and FTP Adapters Use Cases

4-114 Oracle Fusion Middleware User's Guide for Technology Adapters

10. Click OK.

11. Click File, Save All.

12. Close the XSL Editor page. The BPELXMLDebatching.bpel page is displayed, as
shown in Figure 4–76.

Figure 4–76 The JDeveloper - XML Debatching Complete

4.5.1.6 Deploying with JDeveloper
You must deploy the application profile for the SOA project and the application you
created in the preceding steps. To deploy the application profile using JDeveloper,
perform the following steps:

1. Create an application server connection. For more information, see Section 2.6,
"Creating an Application Server Connection for Oracle JCA Adapters".

2. Deploy the application. For more information, see Section 2.7, "Deploying Oracle
JCA Adapter Applications from JDeveloper"

4.5.1.7 Monitoring Using Oracle Enterprise Manager Fusion Middleware Control
Console (Fusion Middleware Control Console)
You can monitor the deployed SOA composite using the Fusion Middleware Control
Console. Perform the following steps:

1. Navigate to http://servername:portnumber/em. The composite you
deployed appears in the application navigator.

2. Copy the emps.xml file to the input directory and ensure it gets processed. Check
the output directory to ensure that an output file has been created.

3. Click the SOA composite that you deployed. The Dashboard is displayed.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-115

Note your Instance ID in the Recent Instances area.

4. Click the Instances tab. The Instance IDs of the SOA composite are listed.

5. Click the Instance ID that you noted in Step 3. The Flow Trace page is displayed.

6. Click your BPEL process instance. The Audit Trail of the BPEL process instance is
displayed.

7. Expand a payload node to view payload details.

8. Click the Flow tab to view the process flow.

9. Click an activity to display the activity details.

4.5.2 Flat Structure for Oracle BPEL PM
This use case demonstrates how a flat structure business process uses the Oracle File
Adapter to process address book entries from a Comma Separated Value (CSV) file.
This is then transformed and written to another file in a Fixed Length format.

This use case includes the following sections:

■ Section 4.5.2.1, "Prerequisites"

■ Section 4.5.2.2, "Designing the SOA Composite"

■ Section 4.5.2.3, "Creating the Inbound Oracle File Adapter Service"

■ Section 4.5.2.4, "Creating the Outbound Oracle File Adapter Service"

■ Section 4.5.2.5, "Wiring Services and Activities"

■ Section 4.5.2.6, "Deploying with JDeveloper"

■ Section 4.5.2.7, "Monitoring Using Oracle Fusion Middleware Control Console"

4.5.2.1 Prerequisites
To perform the flat structure business process, you require the following files from the
artifacts.zip file contained in the
Adapters-101FileAdapterFlatStructure sample:

■ artifacts/input/address-csv.txt

■ artifacts/schemas/address-csv.xsd

■ artifacts/schemas/address-fixedLength.xsd

■ artifacts/xsl/addr1Toaddr2.xsl

You can obtain the Adapters-101FileAdapterFlatStructure sample by
accessing the Oracle SOA Sample Code site.

4.5.2.2 Designing the SOA Composite
You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following:

1. In the Application Navigator of JDeveloper, click New Application. The Create
Generic Application - Name your application page is displayed.

2. Enter SOA-FlatStructure in the Application Name field, and click OK. The
Create Generic Application - Name your project page is displayed.

3. Enter FlatStructure in the Project Name.

Oracle File and FTP Adapters Use Cases

4-116 Oracle Fusion Middleware User's Guide for Technology Adapters

4. In the Available list under the Project Technologies tab, double-click SOA to move
it to the Selected list.

5. Click Next. The Configure SOA settings dialog appears.

6. Select Composite With BPEL in the Composite Template box, and click Finish.
The Create BPEL Process - BPEL Process page is displayed.

7. Enter BPELFlatStructure in the Name field, select Define Service Later from
the Template box.

8. Click OK. The SOA-FlatStructure application and the FlatStructure project appear
in the design area, as shown in Figure 4–77.

Figure 4–77 The JDeveloper - Composite.xml

9. Copy the address-csv.xsd and address-fixedLength.xsd files to the schema
directory in your project (see Section 4.5.2.1, "Prerequisites" for the location of this
file).

10. Copy addr1Toaddr2.xsl to the xsl directory of your project (see Section 4.5.2.1,
"Prerequisites" for the location of this file).

4.5.2.3 Creating the Inbound Oracle File Adapter Service
Perform the following steps to create an inbound Oracle File Adapter service to read
the file from a local directory:

1. Drag and drop File Adapter from the Component Palette to the Exposed Services
swim lane. The Adapter Configuration Wizard Welcome page is displayed.

2. Click Next. The Service Name page is displayed.

3. Enter FlatStructureIn in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Click Next. The Operation page is displayed.

6. Select Read File, and click Next. The File Directories page is displayed.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-117

7. Enter the physical path for the input directory. Check Archive Processed Files.

8. Enter the physical path for the archive directory for processed files.

9. Click Next. The File Filtering page is displayed.

10. Enter *.txt in the Include Files With Name Pattern field, click Next. The File
Polling page is displayed.

11. Click Next. The Messages page is displayed.

12. Click Browse For Schema File that appears at the end of the URL field. The Type
Chooser dialog is displayed.

13. Click Project Schema Files, address-csv.xsd, and Root-Element.

14. Click OK. The URL field in the Messages page is populated with the
address-csv.xsd file.

15. Click Next. The Finish page is displayed.

16. Click Finish. The inbound Oracle File Adapter is now configured and
composite.xml appears, as shown in Figure 4–78.

Figure 4–78 The JDeveloper - Composite.xml

4.5.2.4 Creating the Outbound Oracle File Adapter Service
Perform the following steps to create an outbound Oracle File Adapter service to write
the file from a local directory to the FTP server:

1. Drag and drop File Adapter from the Component Palette to the External
References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

Oracle File and FTP Adapters Use Cases

4-118 Oracle Fusion Middleware User's Guide for Technology Adapters

2. Click Next. The Service Name page is displayed.

3. Enter FlatStructureOut in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select Write File, and click Next. The File Configuration page is displayed.

7. Enter the physical path for the output directory and enter address_%SEQ%.data
in the File Naming Convention(po_%SEQ%.txt) field.

8. Click Next. The Messages page is displayed.

9. Click Browse For Schema File that appears at the end of the URL field. The Type
Chooser dialog is displayed.

10. Click Project Schema Files, address-fixedLength.xsd, and Root-Element.

11. Click OK. The URL field in the Messages page is populated with the
address-fixedLength.xsd file.

12. Click Next. The Finish page is displayed.

13. Click Finish. The outbound Oracle File Adapter is now configured and
composite.xml appears, as shown in Figure 4–79.

Figure 4–79 The JDeveloper - Composite.xml

4.5.2.5 Wiring Services and Activities
You have to assemble or wire the three components that you have created: Inbound
adapter service, BPEL process, Outbound adapter reference. Perform the following
steps to wire the components:

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-119

1. Drag the small triangle in the FlatStructureIn in the Exposed Services area to the
drop zone that appears as a green triangle in the BPEL process in the Components
area.

2. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in the FlatStructureOut in the External
References area.

The JDeveloper Composite.xml appears, as shown in Figure 4–80.

Figure 4–80 The JDeveloper - Composite.xml

3. Click File, Save All.

Add a Receive Activity
1. Double-click BPELFlatStructure. The BPELFlatStructure.bpel page is displayed.

2. Drag and drop a Receive activity from the Component Palette to the design area.

3. Double-click the Receive activity. The Receive dialog is displayed.

4. Enter ReceiveCSV in the Name field.

5. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

6. Select FlatStructureIn, and click OK.

7. Click the Auto-Create Variable icon to the right of the Variable field in the Receive
dialog. The Create Variable dialog is displayed.

8. Select the default variable name and click OK. The Variable field is populated with
the default variable name.

9. Check Create Instance, and click OK. The JDeveloper BPELFlatStructure.bpel
page appears, as shown in Figure 4–81.

Oracle File and FTP Adapters Use Cases

4-120 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–81 The JDeveloper - BPELFlatStructure.bpel

Add an Invoke Activity
1. Drag and drop an Invoke activity from the Component Palette to the design area.

2. Double-click the Invoke activity. The Invoke dialog is displayed.

3. Enter InvokeWrite in the Name field.

4. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

5. Select FlatStructureOut, and click OK.

6. Click the Automatically Create Input Variable icon to the right of the Input
variable field in the Invoke dialog. The Create Variable dialog is displayed.

7. Select the default variable name and click OK. The Variable field is populated with
the default variable name.

8. Click OK. The JDeveloper BPELFlatStructure.bpel page appears, as shown in
Figure 4–82.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-121

Figure 4–82 The JDeveloper - BPELFlatStructure.bpel

Add a Transform Activity
1. Drag and drop a Transform activity from the Component Palette in between the

Receive and Invoke activities in the design area.

2. Double-click the Transform activity. The Transform dialog is displayed.

3. Enter TransformPayload in the Name field.

4. Click the Transformation tab. The Transform dialog is displayed.

5. Click the Create... icon. The Source Variable dialog is displayed.

6. Select ReceiveCSV_Read_InputVariable in the Source Variable box, and select
body in the Source Part box, and then click OK. The Transform dialog is displayed
with the Source and Part selected.

7. Select InvokeWrite_Write_InputVariable in the Target Variable list, select body in
the Target Part.

8. Click the Browse button at the end of the Mapper File field and select
addr1Toaddr2.xsl file from the xsl directory in your project.

9. Click OK.

10. Click File, Save All. The BPELFlatStructure.bpel page is displayed, as shown in
Figure 4–83.

Oracle File and FTP Adapters Use Cases

4-122 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–83 The JDeveloper - BPELFlatStructure.bpel

4.5.2.6 Deploying with JDeveloper
You must deploy the application profile for the SOA project and the application you
created in the preceding steps. To deploy the application profile using JDeveloper,
perform the following steps:

1. Create an application server connection. For more information, see Section 2.6,
"Creating an Application Server Connection for Oracle JCA Adapters."

2. Deploy the application. For more information, see Section 2.7, "Deploying Oracle
JCA Adapter Applications from JDeveloper."

4.5.2.7 Monitoring Using Oracle Fusion Middleware Control Console
You can monitor the deployed SOA composite using Fusion Middleware Control
Console. Perform the following steps:

1. Navigate to http://servername:portnumber/em. The composite you
deployed appears in the application navigator.

2. Copy the address-csv.txt file to the input directory and ensure it gets processed.
Check the output directory to ensure that an output file has been created.

3. Click the SOA composite that you deployed. The Dashboard is displayed.

Note your Instance ID in the Recent Instances area.

4. Click the Instances tab. The Instance IDs of the SOA composite are listed.

5. Click the Instance ID that you noted in Step 3. The Flow Trace page is displayed.

6. Click your BPEL process instance. The Audit Trail of the BPEL process instance is
displayed.

7. Expand a payload node to view payload details.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-123

8. Click the Flow tab to view the process flow. Additionally, click an activity (such as
invoke, receive) to view the details of an activity.

9. Click ReceiveCSV to display the activity details.

4.5.3 Flat Structure for Mediator
In this use case, Mediator receives the customer data from a file system as a text file,
through an inbound Oracle File Adapter service named ReadFile. The ReadFile
adapter service sends the message to a routing service named ReadFile_RS. The
ReadFile_RS sends the message to the outbound adapter service WriteFTP. The
WriteFTP service delivers the message to its associated external application.

This use case includes the following sections:

■ Section 4.5.3.1, "Prerequisites"

■ Section 4.5.3.2, "Creating a Mediator Application and Project"

■ Section 4.5.3.3, "Importing the Schema Definition (.XSD) Files"

■ Section 4.5.3.4, "Creating the Inbound Oracle File Adapter Service"

■ Section 4.5.3.5, "Creating the Outbound Oracle FTP Adapter Service"

■ Section 4.5.3.6, "Wiring Services"

■ Section 4.5.3.7, "Creating the Routing Rule"

■ Section 4.5.3.8, "Deploying with JDeveloper"

■ Section 4.5.3.9, "Run-Time Task"

4.5.3.1 Prerequisites
This example assumes that you are familiar with basic Mediator constructs, such as
services, routing service, and JDeveloper environment for creating and deploying
Mediator services.

To perform the flat structure for Mediator business process, you require the following
files from the artifacts.zip file contained in the
Adapters-101FileAdapterFlatStructure sample:

■ artifacts/schemas/address-csv.xsd

You can see the Adapters-101FileAdapterFlatStructure sample by accessing
the Oracle SOA Sample Code site.

4.5.3.2 Creating a Mediator Application and Project
To create an application and a project for the use case, follow these steps:

1. In the Application Navigator of JDeveloper, click New Application. The Create
Generic Application - Name your application page is displayed.

2. Enter FileFTP_RW in the Application Name field and click Next. The Create
Generic Application - Name your project page is displayed.

3. Enter FileRead_FTPWrite in the Project Name field.

4. In the Available list in the Project Technologies tab, double-click SOA to move it to
the Selected list.

5. Click Next. The Create Generic Application - Configure SOA settings page is
displayed.

Oracle File and FTP Adapters Use Cases

4-124 Oracle Fusion Middleware User's Guide for Technology Adapters

6. Select Composite With Mediator in the Composite Template box.

7. Click Finish. The Create Mediator - Mediator Component page is displayed.

8. Enter FileRead_RS in the Name field.

9. Select Define Interface Later in the Template list, and then click OK. The
FileFTP_RW application and the FileRead_FTPWrite project appear in the
design area.

4.5.3.3 Importing the Schema Definition (.XSD) Files
Perform the following steps to import the XSD files that define the structure of the
messages:

1. Create a Schema directory and copy the address-csv.xsd file to this directory
(see Section 4.5.3.1, "Prerequisites" for the location of this file).

2. In the Application Navigator, select FileRead_FTPWrite.

3. From the File menu, select Import. The Import dialog is displayed.

4. From the Select What You Want to Import list, select Web Source, and then click
OK. The Web Source dialog is displayed.

5. To the right of the Copy From field, click Browse. The Choose Directory dialog is
displayed.

6. Navigate to the Schema directory and click Select. The Web Source dialog with
the directory is displayed.

7. Click OK.

4.5.3.4 Creating the Inbound Oracle File Adapter Service
Perform the following steps to create an inbound Oracle File Adapter service to read
the file from a local directory

1. Drag a File Adapter service from Components Palette to the design area. The
Adapter Configuration Wizard Welcome page is displayed.

2. Click Next. The Service Name page is displayed.

3. Enter ReadFile in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Click Next. The Operation page is displayed.

6. Select Read File and click Next. The File Directories page is displayed.

7. Select Physical Path option, and click Browse and select a polling directory.

8. Click Next. The File Filtering page is displayed.

9. Enter *.txt in the Include Files with Name Pattern field and click Next. The File
Polling page is displayed.

10. Click Next. The Messages page is displayed.

11. Click the Browse For Schema File button at the end of the URL field. The Type
Chooser dialog is displayed.

12. Select Project Schema Files, address-csv.xsd, and then Root-Element.

13. Click OK.

14. Click Next in the Messages page. The Finish page is displayed.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-125

15. Click Finish. A ReadFile adapter service is created.

4.5.3.5 Creating the Outbound Oracle FTP Adapter Service
Perform the following steps to create an outbound Oracle FTP Adapter service to write
the file to an FTP server:

1. Drag an FTP Adapter service from Components Palette to the design area. The
Adapter Configuration Wizard Welcome page is displayed.

2. Click Next. The Service Name page is displayed.

3. Enter WriteFTP in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
FTP Server Connection page is displayed.

6. Specify the JNDI Name of the FTP Server in the FTP Server JNDI Name field and
click Next. The Operation page is displayed.

7. Select Ascii option as File Type.

8. Select Put File option as the Operation Type and click Next. The File
Configuration page is displayed.

9. Specify the directory to which file must be written in the Directory for Outgoing
Files (physical path) field.

10. Specify the naming convention for the output file name in the File Naming
Convention field. For example, po_%SEQ%.txt.

11. Click Next. The Messages page is displayed.

12. Click the Browse For Schema File button at the end of the URL field. The Type
Chooser dialog is displayed.

13. Select Project Schema Files, address-csv.xsd, and then Root-Element.

14. Click OK.

15. Click Next in the Messages page. The Finish page is displayed.

16. Click Finish. A WriteFTP adapter service is created.

4.5.3.6 Wiring Services
You have to assemble or wire the three components that you have created: Inbound
Oracle File Adapter service, Mediator component, Outbound Oracle FTP Adapter
reference. Perform the following steps to wire the components:

1. Drag the small triangle in the ReadFile in the Exposed Services area to the drop
zone that appears as a green triangle in the Mediator component in the
Components area.

2. Drag the small triangle in the Mediator component in the Components area to the
drop zone that appears as a green triangle in the WriteFTP in the External
References area. The JDeveloper composite.xml appears, as shown in Figure 4–84.

Oracle File and FTP Adapters Use Cases

4-126 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–84 The JDeveloper - Composite.xml

4.5.3.7 Creating the Routing Rule
Perform the following steps to create a routing service:

1. Double-click the ReadFile_RS routing service. The Read operation is listed in the
Operations pane, as shown in Figure 4–85.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-127

Figure 4–85 The JDeveloper - ReadFile_RS Routing Service Page

2. Click the + sign to the left of <<Filter Expression>>to expand the routing rule.

3. Click the icon that appears at the end of the Transform Using field. The Request
Transformation Map dialog is displayed, as shown in Figure 4–86.

Figure 4–86 The Request Transformation Map Dialog

4. Select Create New Mapper File and click OK.

A Root-Element_To_Root-Element.xsl tab is added to JDeveloper. This tab enables
you to graphically create a document transformation file to convert the structure
of the file data to a canonical data structure.

5. Drag and drop the imp1:Address source element to the imp1:Address target
element. The Auto Map Preferences dialog is displayed.

6. From the During Auto Map options, deselect Match Elements Considering their
Ancestor Names.

7. Click OK.

8. From the File menu, click Save.

Oracle File and FTP Adapters Use Cases

4-128 Oracle Fusion Middleware User's Guide for Technology Adapters

4.5.3.8 Deploying with JDeveloper
You must deploy the application profile for the SOA project and the application you
created in the preceding steps. To deploy the application profile using JDeveloper,
perform the following steps:

1. Create an application server connection. For more information, see Section 2.6,
"Creating an Application Server Connection for Oracle JCA Adapters."

2. Deploy the application. For more information, see Section 2.7, "Deploying Oracle
JCA Adapter Applications from JDeveloper."

4.5.3.9 Run-Time Task
At run time, copy a text file to the polling directory. Once the Oracle File Adapter picks
the file,it writes the file to the directory that you specified at design time.

4.5.4 Oracle File Adapter Scalable DOM
This use case demonstrates how a scalable DOM process uses the streaming feature to
copy/move huge files from one directory to another.

The streaming option is not supported with DB2 hydration store.

This use case includes the following sections:

■ Section 4.5.4.1, "Prerequisites"

■ Section 4.5.4.2, "Designing the SOA Composite"

■ Section 4.5.4.3, "Creating the Inbound Oracle File Adapter Service"

■ Section 4.5.4.4, "Creating the Outbound Oracle File Adapter Service"

■ Section 4.5.4.5, "Wiring Services and Activities"

■ Section 4.5.4.6, "Deploying with JDeveloper"

■ Section 4.5.4.7, "Monitoring Using Fusion Middleware Control Console"

4.5.4.1 Prerequisites
To perform the streaming large payload process, you require the following files from
the artifacts.zip file contained in the
Adapters-103FileAdapterScalableDOM sample:

■ artifacts/schemas/address-csv.xsd

■ artifacts/input/address-csv-large.txt

You can obtain the Adapters-103FileAdapterScalableDOM sample by accessing
the Oracle SOA Sample Code site.

4.5.4.2 Designing the SOA Composite
You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following:

1. In the Application Navigator of JDeveloper, click New Application. The Create
Generic Application - Name your application page is displayed.

2. Enter SOA-ScalableDOM in the Application Name field, and click Next. The
Create Generic Application - Name your project page is displayed.

3. Enter ScalableDOM in the Project Name field.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-129

4. In the Available list under the Project Technologies tab, double-click SOA to move
it to the Selected list.

5. Click Next. The Configure SOA settings dialog appears.

6. Select Composite With BPEL in the Composite Template box, and click Finish.
The SOA-ScalableDOM application and ScalableDOM project appears in the
Application Navigator and the Create BPEL Process - BPEL Process page is
displayed.

7. Enter BPELScalableDOM in the Name field, select Define Service Later from the
Template box.

8. Click OK. The SOA-ScalableDOM application and the ScalableDOM project
appears in the design area.

9. Copy the address-csv.xsd file to the xsd directory in your project (see
Section 4.5.4.1, "Prerequisites" for the location of this file).

4.5.4.3 Creating the Inbound Oracle File Adapter Service
Perform the following steps to create an inbound Oracle File Adapter service to read
the file from a local directory:

1. Drag and drop File Adapter from the Component Palette to the Exposed Services
swim lane. The Adapter Configuration Wizard Welcome page is displayed.

2. Click Next. The Service Name page is displayed.

3. Enter ScalableDOMIn in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select Read File, and check Use File Streaming, and click Next. The File
Directories page is displayed.

7. Enter the physical path for the input directory. The File Filtering page is displayed.

8. Enter *.txt in the Include Files With Name Pattern field, click Next. The File
Polling page is displayed.

9. Click Next. The Messages page is displayed.

10. Click Browse For Schema File that appears after the URL field. The Type Chooser
dialog is displayed.

11. Click Project Schema Files, address-csv.xsd, and Root-Element, as shown in
Figure 4–87.

Oracle File and FTP Adapters Use Cases

4-130 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–87 The Type Chooser Dialog

12. Click OK. The URL field in the Messages page is populated with the
address-csv.xsd file.

13. Click Next. The Finish page is displayed.

14. Click Finish. The inbound Oracle File Adapter is now configured and
composite.xml appears, as shown in Figure 4–88.

Figure 4–88 The JDeveloper - Composite.xml

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-131

4.5.4.4 Creating the Outbound Oracle File Adapter Service
Perform the following steps to create an outbound Oracle File Adapter service to write
the file from a local directory to the FTP server:

1. Drag and drop File Adapter from the Component Palette to the External
References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter ScalableDOMOut in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select Write File, and click Next. The File Configuration page is displayed.

7. Enter the physical path for the output directory and enter address-csv_
%SEQ%.xml in the File Naming Convention (po_%SEQ%.txt) field.

8. Click Next. The Messages page is displayed.

9. Click Browse For Schema File that appears at the end of the URL field. The Type
Chooser dialog is displayed.

10. Click Project Schema Files, address-csv.xsd, and Root-Element.

11. Click OK. The URL field in the Messages page is populated with the
address-csv.xsd file.

12. Click Next. The Finish page is displayed.

13. Click Finish. The outbound Oracle File Adapter is now configured and
composite.xml appears, as shown in Figure 4–89.

Oracle File and FTP Adapters Use Cases

4-132 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–89 The JDeveloper - Composite.xml

4.5.4.5 Wiring Services and Activities
You have to assemble or wire the three components that you have created: Inbound
adapter service, BPEL process, Outbound adapter reference. Perform the following
steps to wire the components:

1. Drag the small triangle in the ScalableDOMIn in the Exposed Services area to the
drop zone that appears as a green triangle in the BPEL process in the Components
area.

2. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in the ScalableDOMOut in the External
References area.

The JDeveloper composite.xml appears, as shown in Figure 4–90.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-133

Figure 4–90 The JDeveloper - Composite.xml

3. Click File, Save All.

Add a Receive Activity
1. Double-click BPELScalableDOM. The BPELScalableDOM.bpel page is displayed.

2. Drag and drop a Receive activity from the Component Palette to the design area.

3. Double-click the Receive activity. The Receive dialog is displayed.

4. Enter ReceiveFile in the Name field.

5. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

6. Select ScalableDOMIn, as shown in Figure 4–91, and click OK.

Oracle File and FTP Adapters Use Cases

4-134 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–91 The Partner Link Chooser Dialog

7. Click the Auto-Create Variable icon to the right of the Variable field in the Receive
dialog. The Create Variable dialog is displayed.

8. Select the default variable name and click OK. The Variable field is populated with
the default variable name.

9. Check Create Instance, and click OK. The JDeveloper composite.xml page
appears, as shown in Figure 4–92.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-135

Figure 4–92 The JDeveloper - BPELScalableDOM.bpel

Add an Invoke Activity
1. Drag and drop an Invoke activity from the Component Palette to the design area.

2. Double-click the Invoke activity. The Invoke dialog is displayed.

3. Enter WriteFile in the Name field.

4. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

5. Select ScalableDOMOut, and click OK.

6. Click the Automatically Create Input Variable icon to the right of the Input
variable field in the Invoke dialog. The Create Variable dialog is displayed.

7. Select the default variable name and click OK. The Input variable field is
populated with the default variable name. The Invoke dialog is displayed.

8. Click OK. The JDeveloper BPELScalableDOM.bpel page appears, as shown in
Figure 4–93.

Oracle File and FTP Adapters Use Cases

4-136 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–93 The JDeveloper - BPELScalableDOM.bpel Page

Add an Assign Activity
1. Drag and drop an Assign activity from the Component Palette in between the

Receive and Invoke activities in the design area.

2. Double-click the Assign activity. The Assign dialog is displayed.

3. Enter AssignPayload in the Name field.

4. Click the Copy Operation tab. The Assign dialog is displayed, as shown in
Figure 4–94.

Figure 4–94 The Assign Dialog - Copy Operation Tab

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-137

5. Select Copy Operation. The Create Copy Operation dialog is displayed.

6. Expand the variables in the From and To panes, as shown in Figure 4–95.

Figure 4–95 The Create Copy Operation Dialog

7. Click OK. The Assign dialog is displayed, as shown in Figure 4–96.

Figure 4–96 The Assign Dialog

8. Click OK, the JDeveloper BPELScalableDOM.bpel page is displayed, as shown in
Figure 4–97.

Oracle File and FTP Adapters Use Cases

4-138 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–97 The JDeveloper - BPELScalableDOM.bpel

9. Click File, Save All.

4.5.4.6 Deploying with JDeveloper
You must deploy the application profile for the SOA project and the application you
created in the preceding steps. To deploy the application profile using JDeveloper,
perform the following steps:

1. Create an application server connection. For more information, see Section 2.6,
"Creating an Application Server Connection for Oracle JCA Adapters."

2. Deploy the application. For more information, see Section 2.7, "Deploying Oracle
JCA Adapter Applications from JDeveloper."

4.5.4.7 Monitoring Using Fusion Middleware Control Console
You can monitor the deployed SOA composite using Fusion Middleware Control
Console. Perform the following steps:

1. Navigate to http://servername:portnumber/em. The composite you
deployed appears in the application navigator.

2. Copy the address-csv-large.txt file to the input directory and ensure it gets
processed. Check the output directory to ensure that an output file has been
created.

3. Click the SOA composite that you deployed. The Dashboard is displayed.

Note your Instance ID in the Recent Instances area.

4. Click the Instances tab. The Instance IDs of the SOA composite are listed.

5. Click the Instance ID that you noted in Step 3. The Flow Trace page is displayed.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-139

6. Click your BPEL process instance. The Audit Trail of the BPEL process instance is
displayed.

7. Expand a payload node to view payload details.

8. Click the Flow tab to view the process flow. Additionally, click an activity to view
the details of an activity.

4.5.5 Oracle File Adapter ChunkedRead
This is an Oracle File Adapter feature that uses an invoke activity within a while loop
to process the target file. This feature enables you to process arbitrarily large files.

This use case includes the following sections:

■ Section 4.5.5.1, "Prerequisites"

■ Section 4.5.5.2, "Designing the SOA Composite"

■ Section 4.5.5.3, "Creating the Inbound Oracle File Adapter Service"

■ Section 4.5.5.4, "Creating the Outbound Oracle File Adapter Service"

■ Section 4.5.5.5, "Wiring Services and Activities"

■ Section 4.5.5.6, "Deploying with JDeveloper"

■ Section 4.5.5.7, "Monitoring Using Fusion Middleware Control Console"

4.5.5.1 Prerequisites
To perform the Oracle File Adapter ChunkRead, you require the following files from
the artifacts.zip file contained in the
Adapters-106FileAdapterChunkedRead sample:

■ artifacts/schemas/address-csv.xsd

■ artifacts/schemas/address-fixedLength.xsd

■ artifacts/xsl/addr1Toaddr2.xsl

■ artifacts/input/address-csv.txt

You can obtain the Adapters-106FileAdapterChunkedRead sample by accessing
the Oracle SOA Sample Code site.

4.5.5.2 Designing the SOA Composite
You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following:

1. In the Application Navigator of JDeveloper, click New Application. The Create
Generic Application - Name your application page is displayed.

2. Enter SOA-ChunkedRead in the Application Name field, and click Next. The
Create Generic Application - Name your project page is displayed.

3. Enter ChunkedRead in the Project Name field.

4. In the Available list under the Project Technologies tab, double-click SOA to move
it to the Selected list.

5. Click Next. The Configure SOA settings dialog appears.

6. Select Composite With BPEL in the Composite Template box, and click Finish.
The Create BPEL Process - BPEL Process page is displayed.

Oracle File and FTP Adapters Use Cases

4-140 Oracle Fusion Middleware User's Guide for Technology Adapters

7. Enter BPELChunkedRead in the Name field, select Define Service Later from the
Template box.

8. Click OK. The SOA-ChunkedRead application and the ChunkedRead project
appears in the design area, as shown in Figure 4–98.

Figure 4–98 The JDeveloper - Composite.xml

9. Copy the address-csv.xsd and address-fixedLength.xsd files to the xsd directory
in your project (see Section 4.5.5.1, "Prerequisites" for the location of these files).

10. Copy addr1Toaddr2.xsl to the xsl directory of your project (see Section 4.5.5.1,
"Prerequisites" for the location of these files).

4.5.5.3 Creating the Inbound Oracle File Adapter Service
Perform the following steps to create an inbound Oracle File Adapter service to read
the file from a local directory:

1. Drag and drop File Adapter from the Component Palette to the Exposed Services
swim lane. The Adapter Configuration Wizard Welcome page is displayed.

2. Click Next. The Service Name page is displayed.

3. Enter FileInNoPayloadIn in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select Read File, check Do Not Read File Content box, and then click Next. The
File Directories page is displayed.

7. Enter the physical path for the input directory. Check Process Files Recursively.

8. Click Next. The File Filtering page is displayed.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-141

9. Enter *.txt in the Include Files With Name Pattern field, click Next. The File
Polling page is displayed.

10. Click Next. The Finish page is displayed.

11. Click Finish. The inbound Oracle File Adapter is now configured and
composite.xml appears, as shown in Figure 4–99.

Figure 4–99 The JDeveloper - Composite.xml

4.5.5.4 Creating the Outbound Oracle File Adapter Service
Perform the following steps to create an outbound Oracle File Adapter service to write
the file from a local directory to the FTP server:

1. Drag and drop File Adapter from the Component Palette to the External
References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter ReadAddressChunk in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select Synchronous Read File, enter ChunkedRead in the Operation Name field,
and then click Next. The File Directories page is displayed.

7. Enter the physical path for the output directory and select Delete Files After
Successful Retrieval.

8. Click Next. The File Name page is displayed.

9. Enter dummy.txt in the File Name field.

Oracle File and FTP Adapters Use Cases

4-142 Oracle Fusion Middleware User's Guide for Technology Adapters

10. Click Next. The Messages page is displayed.

11. Click Browse For Schema File that appears at the end of the URL field. The Type
Chooser dialog is displayed.

12. Click Project Schema Files, address-csv.xsd, and Root-Element.

13. Click OK. The URL field in the Messages page is populated with the
address-csv.xsd file.

14. Click Next. The Finish page is displayed.

15. Click Finish. The outbound Oracle File Adapter is now configured and
composite.xml appears, as shown in Figure 4–100.

Figure 4–100 The JDeveloper - Composite.xml

16. Manually edit the metadata to incorporate the chunked read feature.

Open ReadAddressChunk_file.jca file and modify the metadata as shown
below:

<?xml version="1.0" encoding="UTF-8"?>
<adapter-config name="ReadAddressChunk" adapter="File Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/FileAdapter" adapterRef=""/>
 <endpoint-interaction portType="ChunkedRead_ptt" operation="ChunkedRead">
 <interaction-spec
className="oracle.tip.adapter.file.outbound.ChunkedInteractionSpec">
 <property name="PhysicalDirectory" value="/tmp/chunked/in"/>
 <property name="FileName" value="dummy.txt"/>
 <property name="ChunkSize" value="1"/>
 </interaction-spec>
 </endpoint-interaction>
</adapter-config>

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-143

17. Click File, Save All.

Add Another Outbound Oracle File Adapter Service
1. Drag and drop File Adapter from the Component Palette to the External

References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter AppendChunk in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select Write File, enter Write in the Operation Name field, and then click Next.
The File Configuration page is displayed.

7. Enter the physical path for the output directory, enter dummy.txt in the File
Naming Convention (po_%SEQ%.txt) and select Append to Existing File.

8. Click Next. The Messages page is displayed.

9. Click Browse For Schema File that appears at the end of the URL field. The Type
Chooser dialog is displayed.

10. Click Project Schema Files, address-fixedLength.xsd, and Root-Element.

11. Click OK. The URL field in the Messages page is populated with the
address-fixedLength.xsd file.

12. Click Next. The Finish page is displayed.

13. Click Finish. The outbound Oracle File Adapter is now configured and
composite.xml appears, as shown in Figure 4–101.

Oracle File and FTP Adapters Use Cases

4-144 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–101 The JDeveloper - Composite.xml

4.5.5.5 Wiring Services and Activities
You have to assemble or wire the three components that you have created: Inbound
adapter service, BPEL process, two Outbound adapter reference. Perform the
following steps to wire the components:

1. Drag the small triangle in the FileInNoPayloadIn in the Exposed Services area to
the drop zone that appears as a green triangle in the BPEL process in the
Components area.

2. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in the ReadAddressChunk in the External
References area and also to the green triangle in the AppendChunk in the External
References area.

The JDeveloper composite.xml appears, as shown in Figure 4–102.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-145

Figure 4–102 The JDeveloper - Composite.xml

3. Click File, Save All.

Add a Receive Activity
1. Double-click BPELChunkedRead. The BPELChunkedRead.bpel page is displayed.

2. Click the Variables... icon represented by (x). The Variables dialog is displayed.

3. Click the Create... icon. The Create Variable dialog is displayed.

4. Create the following variables, as shown in Figure 4–103, for later use:

 <variable name="dir" type="xsd:string"/>
 <variable name="file" type="xsd:string"/>
 <variable name="outIsEOF" type="xsd:string"/>
 <variable name="outLineNumber" type="xsd:string"/>
 <variable name="outColumnNumber" type="xsd:string"/>
 <variable name="returnIsEOF" type="xsd:string"/>
 <variable name="returnLineNumber" type="xsd:string"/>
 <variable name="returnColumnNumber" type="xsd:string"/>
 <variable name="returnIsMessageRejected" type="xsd:string"/>
 <variable name="returnRejectionReason" type="xsd:string"/>
 <variable name="returnNoDataFound" type="xsd:string"/>

Oracle File and FTP Adapters Use Cases

4-146 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–103 The Variables Dialog

5. Drag and drop a Receive activity from the Component Palette to the design area.

6. Double-click the Receive activity. The Receive dialog is displayed.

7. Enter ReceiveFileDetails in the Name field.

8. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

9. Select FileInNoPayloadIn, and click OK.

10. Click the Auto-Create Variable icon to the right of the Variable field in the Receive
dialog. The Create Variable dialog is displayed.

11. Select the default variable name and click OK. The Variable field is populated with
the default variable name.

12. Check Create Instance.

13. Click the Properties tab. The properties and the corresponding value column is
displayed.

14. Select jca.file.Directory property. Double-click in the corresponding value column.
The Adapter Property value dialog is displayed.

15. Click the Browse Variables icon. The Variable XPath Builder dialog is displayed.

16. Expand Variables, select dir, and then click OK. The value of the
jca.file.Directory is set to dir.

17. Repeat the same for jca.file.FileName property and set the value to file. The
Receive dialog is displayed, as shown in Figure 4–104.

Note: All variables are Simple Types of type xsd:string.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-147

Figure 4–104 The Receive Dialog - Adapters Tab

18. Click OK. The JDeveloper BPELChunkedRead.bpel page appears, as shown in
Figure 4–105

Figure 4–105 The JDeveloper - BPELChunkedRead.bpel

Add an Assign Activity
1. Drag and drop an Assign activity from the Component Palette after the Receive

activity in the design area.

2. Double-click the Assign activity. The Assign dialog is displayed.

3. Enter AssignChunkedRead in the Name field.

Oracle File and FTP Adapters Use Cases

4-148 Oracle Fusion Middleware User's Guide for Technology Adapters

4. Click the Copy Operation tab. The Assign dialog is displayed, as shown in
Figure 4–94.

5. Select Copy Operation. The Create Copy Operation dialog is displayed.

6. Set the default values for the headers, as shown in Figure 4–106.

Figure 4–106 The Assign Dialog

7. Click OK, the JDeveloper BPELChunkedRead.bpel page is displayed, as shown in
Figure 4–107.

Figure 4–107 The JDeveloper - BPELChunkedRead.bpel

8. Click File, Save All.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-149

Add an Invoke Activity
1. Drag and drop an Invoke activity below the Assign Activity from the Component

Palette to the design area.

2. Double-click the Invoke activity. The Invoke dialog is displayed.

3. Enter InvokeReadAddress in the Name field.

4. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

5. Select ReadAddressChunk, and click OK.

6. Click the Automatically Create Input Variable icon to the right of the Input
variable field in the Invoke dialog. The Create Variable dialog is displayed.

7. Select the default variable name and click OK. The Variable field is populated with
the default variable name. The Invoke dialog is displayed with input variable
populated.

8. Repeat the same to select the output variable. The Invoke dialog is displayed, as
shown in Figure 4–108.

Figure 4–108 The Invoke Dialog

9. Click OK. The JDeveloper BPELChunkedRead.bpel page appears, as shown in
Figure 4–109.

Oracle File and FTP Adapters Use Cases

4-150 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–109 The JDeveloper - BPELChunkedRead.bpel

10. Click the Source tab for the BPELChunkedRead.bpel page, and add the following
properties for the invoke activity that you just created:

<bpelx:inputProperty name="jca.file.Directory" variable="dir"/>
<bpelx:inputProperty name="jca.file.FileName" variable="file"/>
<bpelx:inputProperty name="jca.file.LineNumber" ="outLineNumber"/>
<bpelx:inputProperty name="jca.file.ColumnNumber"
variable="outColumnNumber"/>
<bpelx:inputProperty name="jca.file.IsEOF" variable="outIsEOF"/>
<bpelx:outputProperty name="jca.file.LineNumber"
variable="returnLineNumber"/>
<bpelx:outputProperty name="jca.file.ColumnNumber"
variable="returnColumnNumber"/>
<bpelx:outputProperty name="jca.file.IsEOF" variable="returnIsEOF"/>
<bpelx:outputProperty name="jca.file.IsMessageRejected"
variable="returnIsMessageRejected"/>
<bpelx:outputProperty name="jca.file.RejectionReason"
variable="returnRejectionReason"/>
<bpelx:outputProperty name="jca.file.NoDataFound"
variable="returnNoDataFound"/>

The invoke activity appears as follows:

<invoke name="InvokeReadAddress"
inputVariable="InvokeReadAddress_SynchRead_InputVariable"
outputVariable="InvokeReadAddress_SynchRead_OutputVariable"
partnerLink="ReadAddressChunk" portType="ns3:SynchRead_ptt"
operation="SynchRead">
<bpelx:inputProperty name="jca.file.Directory" variable="dir"/>
<bpelx:inputProperty name="jca.file.FileName" variable="file"/>
<bpelx:inputProperty name="jca.file.LineNumber" variable="outLineNumber"/>
<bpelx:inputProperty name="jca.file.ColumnNumber"
variable="outColumnNumber"/>

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-151

<bpelx:inputProperty name="jca.file.IsEOF" variable="outIsEOF"/>
<bpelx:outputProperty name="jca.file.LineNumber"
variable="returnLineNumber"/>
<bpelx:outputProperty name="jca.file.ColumnNumber"
variable="returnColumnNumber"/>
<bpelx:outputProperty name="jca.file.IsEOF" variable="returnIsEOF"/>
<bpelx:outputProperty name="jca.file.IsMessageRejected"
variable="returnIsMessageRejected"/>
<bpelx:outputProperty name="jca.file.RejectionReason"
variable="returnRejectionReason"/>
<bpelx:outputProperty name="jca.file.NoDataFound"
variable="returnNoDataFound"/>
</invoke>

11. Add an assign activity called CopyHeaders, as given in Add an Assign Activity,
to copy the return parameters from the invoke activity. The Assign dialog is
displayed, as shown in Figure 4–110.

Figure 4–110 The Assign Dialog

12. Click OK. The JDeveloper BPELChunkedRead.bpel page is displayed, as shown in
Figure 4–111.

Oracle File and FTP Adapters Use Cases

4-152 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–111 The JDeveloper - BPELChunkedRead.bpel

Add a Switch Activity
1. Drag and drop a Switch activity below the CopyHeaders Assign activity.

2. Double-click <case> in the Switch activity. The Switch Case dialog is displayed.

3. Enter DATA FOUND in the Name field and select the returnNoDataFound
expression in the Expression box. The Switch Case dialog is displayed, as shown
in Figure 4–112.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-153

Figure 4–112 The Switch Case Dialog

4. Drag and drop an Invoke activity in the <Case DATA FOUND> for Switch
Activity.

5. Double-click the Invoke activity. The Invoke dialog is displayed.

6. Enter InvokeAppend in the Name field.

7. Select AppendChunk in the Partner Link field.

8. Click the Automatically Create Input Variable icon to the right of the Input
variable field in the Invoke dialog. The Create Variable dialog is displayed.

9. Select the default variable name and click OK. The Variable field is populated with
the default variable name. The Invoke dialog is displayed with input variable
populated.

10. Click the Properties tab and select file variable, as shown in Figure 4–113.

Figure 4–113 The Invoke Dialog

11. Click OK.

Oracle File and FTP Adapters Use Cases

4-154 Oracle Fusion Middleware User's Guide for Technology Adapters

Add a Transform Activity
1. Drag and drop a Transform activity in the <case DATA FOUND> section just

before the InvokeAppend activity.

2. Double-click the Transform activity.

3. Enter TransformPayload in the Name field.

4. Click the Transformation tab.

5. Click the Create... icon. The Source Variable dialog is displayed.

6. Select InvokeReadAddress_SyncRead_InputVariable, and click OK.

7. Select InvokeAppend_Write_InputVariable from the Target Variable list.

8. Click Browse at the end of the Mapper File field, and select the addr1Toaddr2.xsl
file.

9. Click OK.

10. Drag and drop an Empty activity in the <otherwise> section in the Switch activity.
The BPELChunkedRead.bpel page is displayed, as shown in Figure 4–114.

Figure 4–114 The JDeveloper - BPELChunkedRead.bpel

11. Click File, Save All.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-155

4.5.5.6 Deploying with JDeveloper
You must deploy the application profile for the SOA project and the application you
created in the preceding steps. To deploy the application profile using JDeveloper,
perform the following steps:

1. Create an application server connection. For more information, see Section 2.6,
"Creating an Application Server Connection for Oracle JCA Adapters."

2. Deploy the application. For more information, see Section 2.7, "Deploying Oracle
JCA Adapter Applications from JDeveloper."

4.5.5.7 Monitoring Using Fusion Middleware Control Console
You can monitor the deployed SOA composite using Fusion Middleware Control
Console. Perform the following steps:

1. Navigate to http://servername:portnumber/em. The composite you
deployed appears in the application navigator.

2. Copy the address-csv.txt file to the input directory (see Section 4.5.5.1,
"Prerequisites" for the location of this file) and ensure it gets processed. Check the
output directory to ensure that an output file has been created.

3. Click the SOA composite that you deployed. The Dashboard is displayed.

Note your Instance ID in the Recent Instances area.

4. Click the Instances tab. The Instance IDs of the SOA composite are listed.

5. Click the Instance ID that you noted in Step 3. The Flow Trace page is displayed.

6. Click your BPEL process instance. The Audit Trail of the BPEL process instance is
displayed.

7. Expand a payload node to view payload details.

8. Click the Flow tab to view the process flow. Additionally, click an activity to view
the details of an activity.

4.5.6 Oracle File Adapter Read File As Attachments
This is an Oracle File Adapter feature to opaquely copy or move large amount of data,
from a source directory on your file system to a destination directory, as attachments.
For example, you can transfer large MS Word documents, images, and PDFs without
processing their content within the composite application. The read file as attachment
feature is available only when the Read File option is chosen.

This use case demonstrates the ability of the Oracle File Adapter to process a large
*.doc file as an attachment. This feature of reading files as attachments is very similar
to Opaque translation. However, attachments can be of the order of gigabytes
depending on database limitations.

■ Section 4.5.6.1, "Prerequisites"

■ Section 4.5.6.2, "Designing the SOA Composite"

■ Section 4.5.6.3, "Creating the Inbound Oracle File Adapter Service"

■ Section 4.5.6.4, "Creating the Outbound Oracle File Adapter Service"

■ Section 4.5.6.5, "Wiring Services and Activities"

■ Section 4.5.6.6, "Deploying with JDeveloper"

■ Section 4.5.6.7, "Monitoring Using Fusion Middleware Control Console"

Oracle File and FTP Adapters Use Cases

4-156 Oracle Fusion Middleware User's Guide for Technology Adapters

4.5.6.1 Prerequisites
To perform Oracle File Adapter read file as attachments, you require a large MS Word
document (*.doc file).

4.5.6.2 Designing the SOA Composite
You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following:

1. In the Application Navigator of JDeveloper, click New Application. The Create
Generic Application - Name your application page is displayed.

2. Enter AttachmentApp in the Application Name field, and click Next. The Create
Generic Application - Name your project page is displayed.

3. Enter Attachment in the Project Name field.

4. In the Available list under the Project Technologies tab, double-click SOA to move
it to the Selected list.

5. Click Next. The Configure SOA settings dialog appears.

6. Select Composite With BPEL in the Composite Template box, and click Finish.
The Create BPEL Process - BPEL Process page is displayed.

7. Enter BPELAttachment in the Name field, select Define Service Later from the
Template list.

8. Click OK. The AttachmentApp application and the Attachment project appear
in the design area, as shown in Figure 4–115.

Figure 4–115 The JDeveloper - Composite.xml

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-157

4.5.6.3 Creating the Inbound Oracle File Adapter Service
Perform the following steps to create an inbound Oracle File Adapter service to read a
large file from a local directory:

1. Drag and drop File Adapter from the Component Palette to the Exposed Services
swim lane. The Adapter Configuration Wizard Welcome page is displayed.

2. Click Next. The Service Name page is displayed.

3. Enter AttachmentIn in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select Read File as the Operation Type and select Read File As Attachment, as
shown in Figure 4–116, and then click Next. The File Directories page is displayed.

Figure 4–116 The Adapter Configuration Wizard Operation Page

7. Enter the physical path for the input directory, as shown in Figure 4–55 and click
Next. The File Filtering page is displayed.

8. Enter *.doc in the Include Files With Name Pattern field, as shown in
Figure 4–56.

9. Click Next. The File Polling page is displayed.

10. Click Next. The Finish page is displayed.

Note: You must ignore Character Set, Encoding, and Content Type
fields. These fields must be populated with values only if you are
using third-party applications that must read this attachment. The
attachment in this use case is finally consumed by an outbound Oracle
File Adapter, hence these values are not required.

Oracle File and FTP Adapters Use Cases

4-158 Oracle Fusion Middleware User's Guide for Technology Adapters

11. Click Finish. The inbound Oracle File Adapter is now configured and
composite.xml appears, as shown in Figure 4–117.

Figure 4–117 The JDeveloper - Composite.xml

4.5.6.4 Creating the Outbound Oracle File Adapter Service
Perform the following steps to create an outbound Oracle File Adapter service to write
the file from a local directory to the FTP server:

1. Drag and drop File Adapter from the Component Palette to the External
References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter AttachmentOut in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select Write File, and click Next. The File Configuration page is displayed.

7. Enter the physical path for the output directory and enter attachment_
%SEQ%.doc in the File Naming Convention(po_%SEQ%.txt) field, as shown in
Figure 4–60.

8. Click Next. The Messages page is displayed.

9. Click Browse For Schema File that appears at the end of the URL field. The Type
Chooser dialog is displayed.

10. Click Project WSDL Files, AttachmentIn.wsdl, Inline Schemas, and
attachmentElement, as shown in Figure 4–118.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-159

Figure 4–118 The Type Chooser Dialog

11. Click OK. The URL field in the Messages page is populated with
AttachmentIn.wsdl.

12. Click Next. The Finish page is displayed.

13. Click Finish. The outbound Oracle File Adapter is now configured and
composite.xml appears, as shown in Figure 4–119.

Figure 4–119 The JDeveloper - Composite.xml

4.5.6.5 Wiring Services and Activities
You have to assemble or wire the three components that you have created: Inbound
adapter service, BPEL process, Outbound adapter reference. Perform the following
steps to wire the components:

Oracle File and FTP Adapters Use Cases

4-160 Oracle Fusion Middleware User's Guide for Technology Adapters

1. Drag the small triangle in the AttachmentIn in the Exposed Services area to the
drop zone that appears as a green triangle in the BPEL process in the Components
area.

2. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in the AttachmentOut in the External
References area.

The JDeveloper composite.xml appears, as shown in Figure 4–120.

Figure 4–120 The JDeveloper - Composite.xml

3. Click File, Save All.

Add a Receive Activity
1. Double-click BPELAttachment. The BPELAttachment.bpel page is displayed.

2. Drag and drop a Receive activity from the Component Palette to the design area.

3. Double-click the Receive activity. The Receive dialog is displayed.

4. Enter ReceiveInput in the Name field.

5. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

6. Select AttachmentIn, as shown in Figure 4–121 and click OK.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-161

Figure 4–121 The Partner Link Chooser Dialog

7. Click the Auto-Create Variable icon to the right of the Variable field in the Receive
dialog, as shown in Figure 4–122. The Create Variable dialog is displayed.

Figure 4–122 The Receive Dialog

8. Select the default variable name and click OK. The Variable field is populated with
the default variable name.

9. Check Create Instance, and click OK. The JDeveloper BPELAttachment.bpel page
appears, as shown in Figure 4–123.

Oracle File and FTP Adapters Use Cases

4-162 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–123 The JDeveloper - BPELXMLDebatching.bpel

Add an Invoke Activity
1. Drag and drop an Invoke activity from the Component Palette to the design area.

2. Double-click the Invoke activity. The Invoke dialog is displayed.

3. Enter Write_Attachment in the Name field.

4. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

5. Select AttachmentOut, as shown in Figure 4–124, and click OK.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-163

Figure 4–124 The Partner Link Chooser Dialog

6. Click the Automatically Create Input Variable icon to the right of the Input
variable field in the Invoke dialog. The Create Variable dialog is displayed.

7. Select the default variable name and click OK. The Variable field is populated with
the default variable name. The Invoke dialog is displayed, as shown in
Figure 4–125.

Figure 4–125 The Invoke Dialog

8. Click OK. The JDeveloper BPELAttachment.bpel page appears, as shown in
Figure 4–126.

Oracle File and FTP Adapters Use Cases

4-164 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–126 The JDeveloper - BPELXMLDebatching.bpel

Add an Assign Activity
1. Drag and drop an Assign activity from the Component Palette in between the

Receive and Invoke activities in the design area.

2. Double-click the Assign activity. The Assign dialog is displayed.

3. Enter AssignReference in the Name field.

4. Click the Copy Operation tab. The Assign dialog is displayed, as shown in
Figure 4–127.

Figure 4–127 The Assign Dialog - Copy Operation Tab

5. Select Copy Operation. The Create Copy Operation dialog is displayed.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-165

6. Expand the variables in the From and To panes, as shown in Figure 4–128.

Figure 4–128 The Create Copy Operation Dialog

7. Click OK. The Assign dialog is displayed, as shown in Figure 4–129.

Figure 4–129 The Assign Dialog

8. Click OK, the JDeveloper BPELAttachment.bpel page is displayed, as shown in
Figure 4–130.

Note: In the case of variables defined by reference to an element,
both the source and the target must be the same element.

Oracle File and FTP Adapters Use Cases

4-166 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–130 The JDeveloper - BPELScalableDOM.bpel

9. Click File, Save All.

4.5.6.6 Deploying with JDeveloper
You must deploy the application profile for the SOA project and the application you
created in the preceding steps. To deploy the application profile using JDeveloper,
perform the following steps:

1. Create an application server connection. For more information, see Section 2.6,
"Creating an Application Server Connection for Oracle JCA Adapters."

2. Deploy the application. For more information, see Section 2.7, "Deploying Oracle
JCA Adapter Applications from JDeveloper."

4.5.6.7 Monitoring Using Fusion Middleware Control Console
You can monitor the deployed SOA composite using the Fusion Middleware Control
Console. Perform the following steps:

1. Navigate to http://servername:portnumber/em. The composite you
deployed appears in the application navigator.

2. Copy the attachment.doc file to the input directory (see Section 4.5.6.1,
"Prerequisites" for details) and ensure it gets processed. Check the output directory
to ensure that an output file has been created.

3. Click the SOA composite that you deployed. The Dashboard is displayed.

Note your Instance ID in the Recent Instances area.

4. Click the Instances tab. The Instance IDs of the SOA composite are listed.

5. Click the Instance ID that you noted in Step 3. The Flow Trace page is displayed.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-167

6. Click your BPEL process instance. The Audit Trail of the BPEL process instance is
displayed.

7. Expand a payload node to view payload details.

8. Click the Flow tab to view the process flow. Additionally, click an activity to view
the details of an activity.

4.5.7 Oracle File Adapter File Listing
This is an Oracle File Adapter feature that lets you use an invoke activity to retrieve a
list of files from a target directory. This list of files is returned as an XML document
and contains information such as file name, directory name, file size, and last modified
time.

This use case includes the following sections:

■ Section 4.5.7.1, "Prerequisites"

■ Section 4.5.7.2, "Designing the SOA Composite"

■ Section 4.5.7.3, "Creating the Outbound Oracle File Adapter Service"

■ Section 4.5.7.4, "Wiring Services and Activities"

■ Section 4.5.7.5, "Deploying with JDeveloper"

■ Section 4.5.7.6, "Monitoring Using Fusion Middleware Control Console"

4.5.7.1 Prerequisites
To perform Oracle File Adapter Listing, you require *.txt files. You must create and
save the *.txt files in the target directory.

4.5.7.2 Designing the SOA Composite
You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following:

1. In the Application Navigator of JDeveloper, click New Application. The Create
Generic Application - Name your application page is displayed.

2. Enter FileListingApp in the Application Name field, and click Next. The
Create Generic Application - Name your project page is displayed.

3. Enter FileListing in the Project Name field.

4. In the Available list under the Project Technologies tab, double-click SOA to move
it to the Selected list.

5. Click Next. The Configure SOA settings dialog appears.

6. Select Composite With BPEL in the Composite Template box, and click Finish.
The Create BPEL Process - BPEL Process page is displayed.

7. Enter BPELFileListing in the Name field, select One Way BPEL Process from
the Template box.

8. Click OK. The FileListingApp application and the FileListing project appears in
the design area, as shown in Figure 4–131.

Oracle File and FTP Adapters Use Cases

4-168 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–131 The JDeveloper - Composite.xml

4.5.7.3 Creating the Outbound Oracle File Adapter Service
Perform the following steps to create an outbound Oracle File Adapter service to list
the file from a target directory:

1. Drag and drop File Adapter from the Component Palette to the External
References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter ListFiles in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select List Files, enter FileListing in the Operation Name field, and then click
Next. The File Directories page is displayed.

7. Enter the physical path for the input directory, as shown in Figure 4–55.

8. Click Next. The File Filtering page is displayed.

9. Enter *.txt in the Include Files with Name Pattern field.

10. Click Next. The Finish page is displayed.

11. Click Finish. The outbound Oracle File Adapter is now configured and
composite.xml appears, as shown in Figure 4–132.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-169

Figure 4–132 The JDeveloper - Composite.xml

12. Click File, Save All.

4.5.7.4 Wiring Services and Activities
You have to assemble or wire the two components that you have created: BPEL
process, and the Outbound adapter reference. Perform the following steps to wire the
components:

1. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in ListFiles in the External References area.

The JDeveloper Composite.xml appears, as shown in Figure 4–133.

Oracle File and FTP Adapters Use Cases

4-170 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–133 The JDeveloper - Composite.xml

2. Click File, Save All.

Create a String Variable
1. Double-click BPELFileListing. The BPELFileListing.bpel page is displayed.

2. Click the Variables... icon represented by (x). The Variables dialog is displayed.

3. Click the Create... icon. The Create Variable dialog is displayed.

4. Create a variable, MyDir of type xsd:string, as shown in Figure 4–134, for later
use.

Figure 4–134 The Variables Dialog

5. Click OK. The JDeveloper BPELFileListing.bpel page appears, as shown in
Figure 4–135

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-171

Figure 4–135 The JDeveloper - BPELFileListing.bpel

Add an Invoke Activity
1. Drag and drop an Invoke activity below the receive Activity from the Component

Palette to the design area.

2. Double-click the Invoke activity. The Invoke dialog is displayed.

3. Enter InvokeListFiles in the Name field.

4. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

5. Select ListFiles, and click OK.

6. Click the Automatically Create Input Variable icon to the right of the Input
variable field in the Invoke dialog. The Create Variable dialog is displayed.

7. Select the default variable name and click OK. The Variable field is populated with
the default variable name. The Invoke dialog is displayed with input variable
populated.

8. Repeat the same to select the output variable. The Invoke dialog is displayed, as
shown in Figure 4–136.

Oracle File and FTP Adapters Use Cases

4-172 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–136 The Invoke Dialog

9. Click the Properties tab. The properties and the corresponding value column is
displayed.

10. Select jca.file.Directory property. Double-click in the corresponding value column.
The Adapter Property Value dialog is displayed.

11. Click the Browse Variables icon. The Variable XPath Builder dialog is displayed.

12. Expand Variables, select MyDir, and then click OK. The value of the
jca.file.Directory is set to Mydir.

13. Click OK. The JDeveloper BPELFileListing.bpel page appears, as shown in
Figure 4–137.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-173

Figure 4–137 The JDeveloper - BPELFileListing.bpel

Add an Assign Activity
1. Drag and drop an Assign activity from the Component Palette in between the

Receive activities and the Invoke activity in the design area.

2. Double-click the Assign activity. The Assign dialog is displayed.

3. Enter AssignDirName in the Name field.

4. Click the Copy Operation tab. The Assign dialog is displayed.

5. Select Copy Operation. The Create Copy Operation dialog is displayed.

6. Set the values for the headers, as shown in Figure 4–138.

Oracle File and FTP Adapters Use Cases

4-174 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–138 The Assign Dialog

7. Click OK, the JDeveloper BPELFileListing.bpel page is displayed, as shown in
Figure 4–139.

Figure 4–139 The JDeveloper - BPELFileListing.bpel

8. Click File, Save All.

4.5.7.5 Deploying with JDeveloper
You must deploy the application profile for the SOA project and the application you
created in the preceding steps. To deploy the application profile using JDeveloper,
perform the following steps:

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-175

1. Create an application server connection. For more information, see Section 2.6,
"Creating an Application Server Connection for Oracle JCA Adapters."

2. Deploy the application. For more information, see Section 2.7, "Deploying Oracle
JCA Adapter Applications from JDeveloper."

4.5.7.6 Monitoring Using Fusion Middleware Control Console
You can monitor the deployed SOA composite using Fusion Middleware Control
Console. Perform the following steps:

1. Navigate to http://servername:portnumber/em. The composite you
deployed appears in the application navigator.

2. Copy the *.txt files to the input directory (see Section 4.5.7.1, "Prerequisites" for
details) and ensure it gets processed. Check the output directory to ensure that an
output file has been created.

3. Click the SOA composite that you deployed. The Dashboard is displayed.

Note your Instance ID in the Recent Instances area.

4. Click the Instances tab. The Instance IDs of the SOA composite are listed.

5. Click the Instance ID that you noted in Step 3. The Flow Trace page is displayed.

6. Click your BPEL process instance. The Audit Trail of the BPEL process instance is
displayed.

7. Expand a payload node to view payload details.

8. Click the Flow tab to view the process flow. Additionally, click an activity to view
the details of an activity.

4.5.8 Oracle File Adapter Complex Structure
This use case demonstrates the ability of the Oracle File Adapter to process native data
defined in a custom format. In this sample, the custom format represents an invoice
defined in invoice-nxsd.xsd. The Oracle File Adapter processes the invoice.txt
file and publishes this to the ComplexStructure BPEL process. This is then transformed
to a PurchaseOrder and written out as an xml file.

This use case includes the following sections:

■ Section 4.5.8.1, "Prerequisites"

■ Section 4.5.8.2, "Designing the SOA Composite"

■ Section 4.5.8.3, "Creating the Inbound Oracle File Adapter Service"

■ Section 4.5.8.4, "Creating the Outbound Oracle File Adapter Service"

■ Section 4.5.8.5, "Wiring Services and Activities"

■ Section 4.5.8.6, "Deploying with JDeveloper"

■ Section 4.5.8.7, "Monitoring Using Fusion Middleware Control Console"

4.5.8.1 Prerequisites
To perform the complex structure business process, you require the following files
from the artifacts.zip file contained in the
Adapters-104FileAdapterComplexStructure sample:

■ artifacts/schemas/invoice-nxsd.xsd

Oracle File and FTP Adapters Use Cases

4-176 Oracle Fusion Middleware User's Guide for Technology Adapters

■ artifacts/schemas/po.xsd

■ artifacts/xsl/InvToPo.xsl

■ artifacts/input/invoice.txt

You can obtain the Adapters-104FileAdapterComplexStructure sample by
accessing the Oracle SOA Sample Code site.

4.5.8.2 Designing the SOA Composite
You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following:

1. In the Application Navigator of JDeveloper, click New Application. The Create
Generic Application - Name your application page is displayed.

2. Enter SOA-ComplexStructure in the Application Name field, and click Next.
The Create Generic Application - Name your project page is displayed.

3. Enter ComplexStructure in the Project Name field.

4. In the Available list under the Project Technologies tab, double-click SOA to move
it to the Selected list.

5. Click Next. The Configure SOA settings dialog appears.

6. Select Composite With BPEL in the Composite Template box, and click Finish.
The Create BPEL Process - BPEL Process page is displayed.

7. Enter BPEComplexStructure in the Name field, select Define Service Later
from the Template box.

8. Click OK. The SOA-ComplexStructure application and the ComplexStructure
project appears in the design area, as shown in Figure 4–140.

Figure 4–140 The JDeveloper - Composite.xml

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-177

9. Copy the invoice-nxsd.xsd and po.xsd files to the schema directory in your project
(see Section 4.5.8.1, "Prerequisites" for the location of these files).

10. Copy InvToPo.xsl to the xsl directory of your project (see Section 4.5.8.1,
"Prerequisites" for the location of this file).

4.5.8.3 Creating the Inbound Oracle File Adapter Service
Perform the following steps to create an inbound Oracle File Adapter service to read
the file from a local directory:

1. Drag and drop File Adapter from the Component Palette to the Exposed Services
swim lane. The Adapter Configuration Wizard Welcome page is displayed.

2. Click Next. The Service Name page is displayed.

3. Enter Complex Structure In in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select Read File, and click Next. The File Directories page is displayed.

7. Enter the physical path for the input directory and click Next. The File Filtering
page is displayed.

8. Enter *.txt in the Include Files With Name Pattern field, click Next. The File
Polling page is displayed.

9. Click Next. The Messages page is displayed.

10. Click Browse For Schema File that appears at the end of the URL field. The Type
Chooser dialog is displayed.

11. Click Project Schema Files, invoice-nxsd.xsd, and invoice.

12. Click OK. The URL field in the Messages page is populated with the
invoice-nxsd.xsd file.

13. Click Next. The Finish page is displayed.

14. Click Finish. The inbound Oracle File Adapter is now configured and
composite.xml appears, as shown in Figure 4–141.

Oracle File and FTP Adapters Use Cases

4-178 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–141 The JDeveloper - Composite.xml

4.5.8.4 Creating the Outbound Oracle File Adapter Service
Perform the following steps to create an outbound Oracle File Adapter service to write
the file from a local directory to the FTP server:

1. Drag and drop the Oracle File Adapter from the Component Palette to the
External References swim lane. The Adapter Configuration Wizard Welcome page
is displayed.

2. Click Next. The Service Name page is displayed.

3. Enter ComplexStructureOut in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select Write File, and click Next. The File Configuration page is displayed.

7. Enter the physical path for the output directory and enter invoice_%SEQ%.txt
in the File Naming Convention(po_%SEQ%.txt) field.

8. Click Next. The Messages page is displayed.

9. Click Browse For Schema File that appears at the end of the URL field. The Type
Chooser dialog is displayed.

10. Click Project Schema Files, po.xsd, and po.

11. Click OK. The URL field in the Messages page is populated with the po.xsd file.

12. Click Next. The Finish page is displayed.

13. Click Finish. The outbound Oracle File Adapter is now configured and
composite.xml appears, as shown in Figure 4–142.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-179

Figure 4–142 The JDeveloper - Composite.xml

4.5.8.5 Wiring Services and Activities
You have to assemble or wire the three components that you have created: Inbound
adapter service, BPEL process, Outbound adapter reference. Perform the following
steps to wire the components:

1. Drag the small triangle in the ComplexStructureIn service in the Exposed Services
area to the drop zone that appears as a green triangle in the BPEL process in the
Components area.

2. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in the ComplexStructureOut reference in the
External References area.

The JDeveloper Composite.xml appears, as shown in Figure 4–143.

Oracle File and FTP Adapters Use Cases

4-180 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–143 The JDeveloper - Composite.xml

3. Click File, Save All.

Add a Receive Activity
1. Double-click BPELComplexStructure. The BPELComplexStructure.bpel page is

displayed.

2. Drag and drop a Receive activity from the Component Palette to the design area.

3. Double-click the Receive activity. The Receive dialog is displayed.

4. Enter ReceiveInvoice in the Name field.

5. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

6. Select ComplexStructureIn, and click OK.

7. Click the Auto-Create Variable icon to the right of the Variable field in the Receive
dialog. The Create Variable dialog is displayed.

8. Select the default variable name and click OK. The Variable field is populated with
the default variable name.

9. Check Create Instance, and click OK. The JDeveloper
BPELComplexStructure.bpel page appears.

Add an Invoke Activity
1. Drag and drop an Invoke activity from the Component Palette to the design area.

2. Double-click the Invoke activity. The Invoke dialog is displayed.

3. Enter InvokeWrite in the Name field.

4. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-181

5. Select ComplexStructureOut, and click OK.

6. Click the Automatically Create Input Variable icon to the right of the Input
variable field in the Invoke dialog. The Create Variable dialog is displayed.

7. Enter InvokeWrite_Write_OutputVariable in the variable name field and
click OK. The Invoke dialog is displayed.

8. Click OK. The JDeveloper BPELComplexStructure.bpel page appears.

Add a Transform Activity
1. Drag and drop a Transform activity from the Component Palette in between the

Receive and Invoke activities in the design area.

2. Double-click the Transform activity. The Transform dialog is displayed.

3. Enter TransformPayload in the Name field.

4. Click the Transformation tab. The Transform dialog is displayed.

5. Click the Create... icon. The Source Variable dialog is displayed.

6. Select ReceiveInvoice_Read_InputVariable in the Source Variable box, and select
body in the Source Part box, and then click OK. The Transform dialog is displayed
with the Source and Part selected.

7. Select InvokeWrite_Write_OutputVariable in the Target Variable list, select body
in the Target Part.

8. Click the Browse Mapping icon at the end of the Mapper File field and select
InvToPo.xsl file from the xsl directory in your project.

9. Click OK.

10. Click File, Save All. The BPELComplexStructure.bpel page is displayed, as shown
in Figure 4–144.

Oracle File and FTP Adapters Use Cases

4-182 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–144 The JDeveloper - BPELComplexStructure.bpel

4.5.8.6 Deploying with JDeveloper
You must deploy the application profile for the SOA project and the application you
created in the preceding steps. To deploy the application profile using JDeveloper,
perform the following steps:

1. Create an application server connection. For more information, see Section 2.6,
"Creating an Application Server Connection for Oracle JCA Adapters."

2. Deploy the application. For more information, see Section 2.7, "Deploying Oracle
JCA Adapter Applications from JDeveloper."

4.5.8.7 Monitoring Using Fusion Middleware Control Console
You can monitor the deployed SOA composite using Fusion Middleware Control
Console. Perform the following steps:

1. Navigate to http://servername:portnumber/em. The composite you
deployed appears in the application navigator.

2. Copy the invoice.txt file to the input directory (see Section 4.5.8.1,
"Prerequisites" for the location of this file) and ensure it gets processed. Check the
output directory to ensure that an output file has been created.

3. Click the SOA composite that you deployed. The Dashboard is displayed.

Note your Instance ID in the Recent Instances area.

4. Click the Instances tab. The Instance IDs of the SOA composite are listed.

5. Click the Instance ID that you noted in Step 3. The Flow Trace page is displayed.

6. Click your BPEL process instance. The Audit Trail of the BPEL process instance is
displayed.

7. Expand a payload node to view payload details.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-183

8. Click the Flow tab to view the process flow.

9. Click ReceiveInvoice to display the activity details

4.5.9 Oracle FTP Adapter Debatching
This is an Oracle FTP Adapter feature that debatches a large XML document into
smaller individual XML fragments. This use case demonstrates how the debatching
business process sample uses the Oracle FTP Adapter to process a file containing a
batch of business records such as one or more invoice and purchase orders. The
PurchaseOrders (POs) are then debatched and written to separate output files.

This use case includes the following sections:

■ Section 4.5.9.1, "Prerequisites"

■ Section 4.5.9.2, "Designing the SOA Composite"

■ Section 4.5.9.3, "Creating the Inbound Oracle FTP Adapter Service"

■ Section 4.5.9.4, "Creating the Outbound Oracle FTP Adapter Service"

■ Section 4.5.9.5, "Wiring Services and Activities"

■ Section 4.5.9.6, "Deploying with JDeveloper"

■ Section 4.5.9.7, "Monitoring Using Fusion Middleware Control Console"

4.5.9.1 Prerequisites
To perform the complex structure business process, you require the following files
from the artifacts.zip file contained in the
Adapters-101FTPAdapterDebatching sample:

■ artifacts/schemas/container.xsd

■ artifacts/schemas/po.xsd

■ artifacts/xsl/InvToPo.xsl

■ artifacts/xsl/PoToPo.xsl

■ artifacts/input/container.txt

You can obtain the Adapters-101FTPAdapterDebatching sample by accessing
the Oracle SOA Sample Code site.

4.5.9.2 Designing the SOA Composite
You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following:

1. In the Application Navigator of JDeveloper, click New Application. The Create
Generic Application - Name your application page is displayed.

2. Enter SOA-FTPDebatching in the Application Name field, and click OK. The
Create Generic Application - Name your project page is displayed.

3. Enter FTPDebatching in the Project Name.

4. In the Available list under the Project Technologies tab, double-click SOA to move
it to the Selected list.

5. Click Next. The Configure SOA settings dialog appears.

6. Select Composite With BPEL in the Composite Template box, and click Finish.
The Create BPEL Process - BPEL Process page is displayed.

Oracle File and FTP Adapters Use Cases

4-184 Oracle Fusion Middleware User's Guide for Technology Adapters

7. Enter BPELFTPDebatching in the Name field, select Define Service Later from
the Template box.

8. Click OK. The SOA-FTPDebatching application and the FTPDebatching project
appears in the design area, as shown in Figure 4–145.

Figure 4–145 The JDeveloper - Composite.xml

9. Copy the container.xsd and po.xsd files to the xsd directory of your project
(see Section 4.5.9.1, "Prerequisites" for the location of these files).

10. Copy the InvToPo.xsl and PoToPo.xsl files to the xsl directory of your project
(see Section 4.5.9.1, "Prerequisites" for the location of these files).

4.5.9.3 Creating the Inbound Oracle FTP Adapter Service
Perform the following steps to create an inbound Oracle FTP Adapter service to read
the file from a local directory:

1. Drag and drop the Oracle FTP Adapter from the Component Palette to the
Exposed Services swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter FTPDebatchingIn in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
FTP Server Connection page is displayed, as shown in Figure 4–146.

Note: Ensure that you have configured the jndi-name in the
deployment descriptor for Oracle FTP Adapter before deploying this
application.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-185

Figure 4–146 The Adapter Configuration Wizard FTP Server Connection Page

6. Click Next. The Operation page is displayed.

7. Select Get File, as shown in Figure 4–147, and click Next. The File Directories page
is displayed.

Figure 4–147 The Adapter Configuration Wizard Operation Page

8. Enter the physical path for the input directory, and click Next. The File Filtering
page is displayed.

Oracle File and FTP Adapters Use Cases

4-186 Oracle Fusion Middleware User's Guide for Technology Adapters

9. Enter *.txt in the Include Files With Name Pattern field, select Files Contain
Multiple Messages check box, specify 1 as the value for Publish Messages in
Batches Of box.

10. Click Next. The File Polling page is displayed.

11. Click Next. The Messages page is displayed.

12. Click Browse For Schema File that appears at the end of the URL field. The Type
Chooser dialog is displayed.

13. Click Project Schema Files, container.xsd, and container.

14. Click OK. The URL field in the Messages page is populated with the container.xsd
file.

15. Click Next. The Finish page is displayed.

16. Click Finish. The inbound Oracle File Adapter is now configured and
composite.xml appears, as shown in Figure 4–148.

Figure 4–148 The JDeveloper - Composite.xml

4.5.9.4 Creating the Outbound Oracle FTP Adapter Service
Perform the following steps to create an outbound Oracle FTP Adapter service to write
the file from a local directory to the FTP server:

1. Drag and drop the FTP Adapter from the Component Palette to the External
References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter PurchaseOrderOut in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-187

5. Select Define from operation and schema (specified later), and click Next. The
FTP Server Connection page is displayed.

6. Click Next. The Operation page is displayed.

7. Select Put File, and click Next. The File Configuration page is displayed.

8. Enter the physical path for the output directory and enter po_%SEQ%.txt in the
File Naming Convention(po_%SEQ%.txt) field.

9. Select Number of Messages Equals option, if not selected. The default value is 1.

10. Click Next. The Messages page is displayed.

11. Click Browse For Schema File that appears at the end of the URL field. The Type
Chooser dialog is displayed.

12. Click Project Schema Files, po.xsd, and po.

13. Click OK. The URL field in the Messages page is populated with the po.xsd file.

14. Click Next. The Finish page is displayed.

15. Click Finish. The outbound Oracle File Adapter is now configured and
composite.xml appears, as shown in Figure 4–149.

Figure 4–149 The JDeveloper - Composite.xml

4.5.9.5 Wiring Services and Activities
You have to assemble or wire the three components that you have created: Inbound
adapter service, BPEL process, Outbound adapter reference. Perform the following
steps to wire the components:

1. Drag the small triangle in the FTPDebatchingIn service in the Exposed Services
area to the drop zone that appears as a green triangle in the BPEL process in the
Components area.

Oracle File and FTP Adapters Use Cases

4-188 Oracle Fusion Middleware User's Guide for Technology Adapters

2. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in the PurchaseOrderOut reference in the
External References area.

The JDeveloper Composite.xml appears, as shown in Figure 4–150.

Figure 4–150 The JDeveloper - Composite.xml

3. Click File, Save All.

Add a Receive Activity
1. Double-click BPELFTPDebatching. The BPELFTPDebatching.bpel page is

displayed.

2. Drag and drop a Receive activity from the Component Palette to the design area.

3. Double-click the Receive activity. The Receive dialog is displayed.

4. Enter Receive in the Name field.

5. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

6. Select FTPDebatchingIn, and click OK.

7. Click the Auto-Create Variable icon to the right of the Variable field in the Receive
dialog. The Create Variable dialog is displayed.

8. Select the default variable name and click OK. The Variable field is populated with
the default variable name.

9. Check Create Instance, and click OK. The JDeveloper
BPELFTPDebatching.bpel page appears with the Receive activity added.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-189

Add an Invoke Activity
1. Drag and drop an Invoke activity from the Component Palette to the design area.

2. Double-click the Invoke activity. The Invoke dialog is displayed.

3. Enter Write in the Name field.

4. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

5. Select PurchaseOrderOut, and click OK.

6. Click the Automatically Create Input Variable icon to the right of the Input
variable field in the Receive dialog. The Create Variable dialog is displayed.

7. Enter Write_Put_OutputVariable in the Variable field and click OK. The
Invoke dialog is displayed.

8. Click OK. The JDeveloper BPELFTPDebatching.bpel page appears with the
invoke activity added.

Add a Switch Activity
1. Drag and drop a Switch activity from the Component Palette in between the

Receive and Invoke activities in the design area.

2. Expand the Switch activity. This displays a screen to enter the values for <case>
and <otherwise>.

3. In the <case> section, click the View Condition Expression icon, as shown in
Figure 4–151. The Condition Expression pop-up window is displayed.

Figure 4–151 BPELFTPDebatching.bpel Page

4. Click the Xpath Expression Builder icon in the pop-up window. The Expression
Builder dialog is displayed.

Oracle File and FTP Adapters Use Cases

4-190 Oracle Fusion Middleware User's Guide for Technology Adapters

5. Enter starts-with(local-name(ora:getNodes('receive_Get_
InputVariable','body','/ns3:container/child::*[position()=1]'
)),'invoice') as the expression, as shown in Figure 4–152, and click OK. The
screen returns to the Condition Expression pop-up window.

Figure 4–152 The Expression Builder Dialog

6. Add two transformation activities, one each for <case> and <otherwise> sections.

a. Drag and drop a Transform activity in the <case> section.

b. Double-click the Transform activity.

c. Enter InvToPo in the Name field.

d. Click the Transformation tab.

e. Click the Create... icon. The Source Variable dialog is displayed.

f. Accept the defaults and click OK.

g. Select Write_Put_OutputVariable in the Target Variable list.

h. Click the Browse Mappings icon at the end of the Mapper File field, and select
the InvToPo.xsl file.

i. Click OK.

j. Repeat the same process for the second transformation. Select PoToPo.xsl as
the Mapper File for this transform activity.

The BPELFTPDebatching.bpel page is displayed, as shown in Figure 4–153.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-191

Figure 4–153 The BPELFTPDebatching.bpel Page

7. Click File, Save All.

4.5.9.6 Deploying with JDeveloper
You must deploy the application profile for the SOA project and the application you
created in the preceding steps. To deploy the application profile using JDeveloper,
perform the following steps:

1. Create an application server connection. For more information, see Section 2.6,
"Creating an Application Server Connection for Oracle JCA Adapters."

2. Deploy the application. For more information, see Section 2.7, "Deploying Oracle
JCA Adapter Applications from JDeveloper."

4.5.9.7 Monitoring Using Fusion Middleware Control Console
You can monitor the deployed SOA composite using Fusion Middleware Control
Console. Perform the following steps:

1. Navigate to http://servername:portnumber/em. The composite you
deployed appears in the application navigator.

2. Copy the container.txt file to the input directory (see Section 4.5.9.1,
"Prerequisites" for the location of this file) and ensure it gets processed. Check the
output directory to ensure that an output file has been created.

3. Click the SOA composite that you deployed. The Dashboard is displayed.

Note your Instance ID in the Recent Instances area.

4. Click the Instances tab. The Instance IDs of the SOA composite are listed.

5. Click the Instance ID that you noted in Step 3. The Flow Trace page is displayed.

Oracle File and FTP Adapters Use Cases

4-192 Oracle Fusion Middleware User's Guide for Technology Adapters

6. Click your BPEL process instance. The Audit Trail of the BPEL process instance is
displayed.

7. Expand a payload node to view payload details.

8. Click the Flow tab to view the process flow. Additionally, click an activity (such as
invoke, receive) to view the details of an activity.

4.5.10 Oracle FTP Adapter Dynamic Synchronous Read
This use case demonstrates the ability of the Oracle FTP Adapter to perform a
mid-process synchronous read operation using an Invoke activity. This use case
illustrates the following adapter functionality:

■ Oracle File Adapter (Read Operation)

■ Oracle FTP Adapter (Synchronous Read operation)

Ability to specify the file name to be read during run-time

■ Oracle File Adapter (Write Operation)

The process is initiated by the presence of a trigger file appearing in a local directory
monitored by the inbound Oracle File Adapter. The trigger file contains the name of
the file to be read by the synchronous read operation. This file name is passed through
headers to the adapter. This can be done using the Properties tab for the Invoke
activity. This synchronous read file operation is performed against a remote directory
on a FTP server. The result of the read is then transformed and written out to a local
directory through the outbound Oracle File Adapter. This section includes the
following topics:

■ Section 4.5.10.1, "Prerequisites"

■ Section 4.5.10.2, "Designing the SOA Composite"

■ Section 4.5.10.3, "Creating the Inbound Oracle File Adapter Service"

■ Section 4.5.10.4, "Creating the Outbound Oracle FTP Adapter Service"

■ Section 4.5.10.5, "Wiring Services and Activities"

■ Section 4.5.10.6, "Deploying with JDeveloper"

■ Section 4.5.10.7, "Monitoring Using Fusion Middleware Control Console"

4.5.10.1 Prerequisites
To perform FTP Dynamic Synchoronous Read, you require the following files from the
artifacts.zip file contained in the
Adapters-102FTPAdapterDynamicSynchronousRead sample:

■ artifacts/schemas/address-csv.xsd

■ artifacts/schemas/address-fixedLength.xsd

■ artifacts/schemas/trigger.xsd

■ artifacts/xsl/addr1Toaddr2.xsl

■ artifacts/input/address_csv.txt

■ artifacts/input/trigger.trg

You can obtain the Adapters-102FTPAdapterDynamicSynchronousRead sample
by accessing the Oracle SOA Sample Code site, and selecting the Adapters tab.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-193

4.5.10.2 Designing the SOA Composite
You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following:

1. In the Application Navigator of JDeveloper, click New Application. The Create
Generic Application - Name your application page is displayed.

2. Enter SOA-FTPDynamicSynchronousRead in the Application Name field, and
click OK. The Create Generic Application - Name your project page is displayed.

3. Enter FTPDynamicSynchronousRead in the Project Name.

4. In the Available list under the Project Technologies tab, double-click SOA to move
it to the Selected list.

5. Click Next. The Configure SOA settings dialog appears.

6. Select Composite With BPEL in the Composite Template box, and click Finish.
The Create BPEL Process - BPEL Process page is displayed.

7. Enter BPELDynamicSynchronousRead in the Name field, select Define Service
Later from the Template box.

8. Click OK. The SOA-FTPDynamicSynchronousRead application and
FTPDynamicSynchronousRead project appears in the design area, as shown in
Figure 4–154.

Figure 4–154 The JDeveloper - Composite.xml

9. Copy the address-csv.xsd, address-fixedLength.xsd, and
trigger.xsd files to the xsd directory of your project (see Section 4.5.10.1,
"Prerequisites" for the location of these files).

10. Copy the addr1Toaddr2.xsl file to the xsl directory of your project (see
Section 4.5.10.1, "Prerequisites" for the location of this file).

Oracle File and FTP Adapters Use Cases

4-194 Oracle Fusion Middleware User's Guide for Technology Adapters

4.5.10.3 Creating the Inbound Oracle File Adapter Service
Perform the following steps to create an inbound Oracle File Adapter service to read
the file from a local directory:

1. Drag and drop File Adapter from the Component Palette to the Exposed Services
swim lane. The Adapter Configuration Wizard Welcome page is displayed.

2. Click Next. The Service Name page is displayed.

3. Enter ReadTrigger in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select Read File, and click Next. The File Directories page is displayed.

7. Enter the physical path for the input directory and click Next. The File Filtering
page is displayed.

8. Enter *.trg in the Include Files With Name Pattern field, click Next. The File
Polling page is displayed.

9. Click Next. The Messages page is displayed.

10. Click Browse For Schema File that appears at the end of the URL field. The Type
Chooser dialog is displayed.

11. Click Project Schema Files, trigger.xsd, and trigger.

12. Click OK. The URL field in the Messages page is populated with the trigger.xsd
file.

13. Click Next. The Finish page is displayed.

14. Click Finish. The inbound Oracle File Adapter is now configured and
composite.xml appears, as shown in Figure 4–155.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-195

Figure 4–155 The JDeveloper - Composite.xml

4.5.10.4 Creating the Outbound Oracle FTP Adapter Service
Perform the following steps to create an outbound Oracle FTP Adapter service to write
the file from a local directory to the FTP server:

1. Drag and drop FTP Adapter from the Component Palette to the External
References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter SyncRead in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
FTP Server Connection page is displayed.

6. Click Next. The Operation page is displayed.

7. Select Synchronous Get File, and click Next. The File Directories page is
displayed.

8. Enter the physical path for the output directory.

9. Click Next. The File Name page is displayed.

10. Enter dummy.txt in the File Name field and click Next. The Messages page is
displayed.

11. Click Browse For Schema File that appears at the end of the URL field. The Type
Chooser dialog is displayed.

12. Click Project Schema Files, address-csv.xsd, and Root-Element.

13. Click OK. The URL field in the Messages page is populated with the
address-csv.xsd file.

Oracle File and FTP Adapters Use Cases

4-196 Oracle Fusion Middleware User's Guide for Technology Adapters

14. Click Next. The Finish page is displayed.

15. Click Finish. The outbound Oracle FTP Adapter is now configured and
composite.xml appears, as shown in Figure 4–156.

Figure 4–156 The JDeveloper - Composite.xml

Add An Outbound Oracle File Adapter Service
1. Drag and drop the Oracle File Adapter from the Component Palette to the

External References swim lane. The Adapter Configuration Wizard Welcome page
is displayed.

2. Click Next. The Service Name page is displayed.

3. Enter WriteFile in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select Write File, enter Write in the Operation Name field, and then click Next.
The File Configuration page is displayed.

7. Enter the physical path for the output directory, enter address_%SEQ%.txt in
the File Naming Convention (po_%SEQ%.txt).

8. Click Next. The Messages page is displayed.

9. Click Browse For Schema File that appears at the end of the URL field. The Type
Chooser dialog is displayed.

10. Click Project Schema Files, address-fixedLength.xsd, and Root-Element.

11. Click OK. The URL field in the Messages page is populated with the
address-fixedLength.xsd file.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-197

12. Click Next. The Finish page is displayed.

13. Click Finish. The outbound Oracle File Adapter is now configured and
composite.xml appears, as shown in Figure 4–157.

Figure 4–157 The JDeveloper - Composite.xml

4.5.10.5 Wiring Services and Activities
You have to assemble or wire the four components that you have created: Inbound
adapter service, BPEL process, two Outbound adapter references. Perform the
following steps to wire the components:

1. Drag the small triangle in the ReadTrigger in the Exposed Services area to the drop
zone that appears as a green triangle in the BPEL process in the Components area.

2. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in the SyncRead in the External References
area and to the drop zone that appears as a green triangle in WriteFile.

The JDeveloper Composite.xml appears, as shown in Figure 4–158.

Oracle File and FTP Adapters Use Cases

4-198 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–158 The JDeveloper - Composite.xml

3. Click File, Save All.

Add a Receive Activity
1. Double-click BPELDynamicSynchronousRead. The

BPELDynamicSynchronousRead.bpel page is displayed.

2. Drag and drop a Receive activity from the Component Palette to the design area.

3. Double-click the Receive activity. The Receive dialog is displayed.

4. Enter ReceiveTrigger in the Name field.

5. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

6. Select ReadTrigger, and click OK.

7. Click the Auto-Create Variable icon to the right of the Variable field in the Receive
dialog. The Create Variable dialog is displayed.

8. Select the default variable name and click OK. The Variable field is populated with
the default variable name.

9. Check Create Instance, and click OK. The JDeveloper
BPELDynamicSynchronousRead.bpel page appears.

Create a Variable and add an Invoke Activity
1. Click the Variables... icon represented by (x). The Variables dialog is displayed.

2. Click the Create... icon. The Create Variable dialog is displayed.

3. Create a variable called file of type xsd:string, as shown in Figure 4–159.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-199

Figure 4–159 The Create Variable Dialog

4. Click OK to return to BPELDynamicSynchronousRead.bpel page.

5. Drag and drop an Invoke activity from the Component Palette to the design area.

6. Double-click the Invoke activity. The Invoke dialog is displayed.

7. Enter Invoke_SyncRead in the Name field.

8. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

9. Select SyncRead, and click OK.

10. Click the Automatically Create Input Variable icon to the right of the Input
variable field in the Invoke dialog. The Create Variable dialog is displayed.

11. Select the default variable name and click OK. The Input variable field is
populated with the default variable name.

12. Repeat the same for the Output Variable field.

13. Click the Properties tab. The properties and the corresponding value column is
displayed.

14. Select jca.ftp.FileName property. Double-click in the corresponding value
column. The Adapter Property value dialog is displayed.

15. Click the Browse variables icon. The Variable XPath Builder dialog is displayed.

16. Expand Variables, select file, and then click OK. The value of the
jca.ftp.FileName is set to file.

17. Click OK. The JDeveloper BPELDynamicSynchronousRead.bpel page appears.

Add another Invoke Activity
1. Drag and drop an Invoke activity from the Component Palette to the design area.

2. Double-click the Invoke activity. The Invoke dialog is displayed.

3. Enter InvokeWrite in the Name field.

4. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

Oracle File and FTP Adapters Use Cases

4-200 Oracle Fusion Middleware User's Guide for Technology Adapters

5. Select WriteFile, and click OK.

6. Click the Automatically Create Input Variable icon to the right of the Input
variable field in the Invoke dialog. The Create Variable dialog is displayed.

7. Select the default variable name and click OK. The Variable field is populated with
the default variable name.

8. Click OK. The JDeveloper BPELDynamicSynchronousRead.bpel page appears, as
shown in *** 'The JDeveloper - BPELDynamicSynchronousRead.bpel Page' on
page 200 ***.

Figure 4–160 The JDeveloper - BPELDynamicSynchronousRead.bpel Page

Add an Assign Activity
1. Drag and drop an Assign activity from the Component Palette in between the

ReceiveTrigger and Invoke_SyncRead activities in the design area.

2. Double-click the Assign activity. The Assign dialog is displayed.

3. Enter AssignFileName in the Name field.

4. Click the Copy Operation tab. The Assign dialog is displayed.

5. Select Copy Operation. The Create Copy Operation dialog is displayed.

6. Create the copy operation between the trigger file name and the file variable, as
shown in Figure 4–161.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-201

Figure 4–161 The Create Copy Operation Dialog

7. Click OK in the Create Copy Operation dialog.

8. Click OK to return to the JDeveloper BPELDynamicSynchronousRead.bpel page,
as shown in Figure 4–162.

Figure 4–162 The JDeveloper - BPELDynamicSynchronousRead.bpel

9. Click File, Save All.

Oracle File and FTP Adapters Use Cases

4-202 Oracle Fusion Middleware User's Guide for Technology Adapters

Add a Transform Activity
1. Drag and drop a Transform activity from the Component Palette in between the

Invoke_SyncRead and InvokeWrite activities in the design area.

2. Double-click the Transform activity. The Transform dialog is displayed.

3. Enter TransformPayload in the Name field.

4. Click the Transformation tab. The Transform dialog is displayed.

5. Click the Create... icon. The Source Variable dialog is displayed.

6. Select InvokeSyncRead_SyncRead_OutputVariable in the Source Variable box,
and select body in the Source Part box, and then click OK. The Transform dialog is
displayed with the Source and Part selected.

7. Select InvokeWrite_Write_InputVariable in the Target Variable list, select body in
the Target Part.

8. Click the Browse Mappings icon at the end of the Mapper File field and select
addr1Toaddr2.xsl file from the xsl directory in your project.

9. Click OK.

10. Click File, Save All. The BPELDynamicSynchronousRead.bpel page is displayed,
as shown in Figure 4–163.

Figure 4–163 The JDeveloper - BPELDynamicSynchronousRead.bpel

4.5.10.6 Deploying with JDeveloper
You must deploy the application profile for the SOA project and the application you
created in the preceding steps. To deploy the application profile using JDeveloper,
perform the following steps:

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-203

1. Create an application server connection. For more information, see Section 2.6,
"Creating an Application Server Connection for Oracle JCA Adapters."

2. Deploy the application. For more information, see Section 2.7, "Deploying Oracle
JCA Adapter Applications from JDeveloper."

4.5.10.7 Monitoring Using Fusion Middleware Control Console
You can monitor the deployed SOA composite using Fusion Middleware Control
Console. Perform the following steps:

1. Navigate to http://servername:portnumber/em. The composite you
deployed appears in the application navigator.

2. Copy the address-csv.txt file to the input directory (see Section 4.5.10.1,
"Prerequisites" for the location of this file) and ensure it gets processed. Check the
output directory to ensure that an output file has been created.

3. Click the SOA composite that you deployed. The Dashboard is displayed.

Note your Instance ID in the Recent Instances area.

4. Click the Instances tab. The Instance IDs of the SOA composite are listed.

5. Click the Instance ID that you noted in Step 3. The Flow Trace page is displayed.

6. Click your BPEL process instance. The Audit Trail of the BPEL process instance is
displayed.

7. Expand a payload node to view payload details.

8. Click the Flow tab to view the process flow.

9. Click ReceiveTrigger to display the activity details.

4.5.11 Copying, Moving, and Deleting Files
The Oracle File and FTP Adapters let you copy or move a file from one location to
another, or delete a file from the target directory. Additionally, the Oracle FTP Adapter
lets you move or copy files from a local file system to a remote file system and from a
remote file system to a local file system. This feature is implemented as a interaction
specification for outbound services. So, this feature can be accessed either by using a
BPEL invoke activity or a Mediator routing rule.

At a high level, you must create an outbound service and configure this service with
the source and target directories and file names.

The following use cases demonstrate the new functionality supported by Oracle File
and FTP Adapters that allow you to copy, move, and delete files by using an outbound
service:

■ Section 4.5.11.1, "Moving a File from a Local Directory on the File System to
Another Local Directory"

■ Section 4.5.11.2, "Copying a File from a Local Directory on the File System to
Another Local Directory"

■ Section 4.5.11.3, "Deleting a File from a Local File System Directory"

■ Section 4.5.11.4, "Using a Large CSV Source File"

■ Section 4.5.11.5, "Moving a File from One Remote Directory to Another Remote
Directory on the Same FTP Server"

Oracle File and FTP Adapters Use Cases

4-204 Oracle Fusion Middleware User's Guide for Technology Adapters

■ Section 4.5.11.6, "Moving a File from a Local Directory on the File System to a
Remote Directory on the FTP Server"

■ Section 4.5.11.7, "Moving a File from a Remote Directory on the FTP Server to a
Local Directory on the File System"

■ Section 4.5.11.8, "Moving a File from One FTP Server to another FTP Server"

4.5.11.1 Moving a File from a Local Directory on the File System to Another Local
Directory
You can model only a part of this procedure by using the wizard because the
corresponding Adapter Configuration Wizard is not available. You must complete the
remaining procedure by manually configuring the generated JCA file.

You must perform the following steps to move a file from a local directory on the file
system to another local directory:

1. Create an empty BPEL process.

2. Drag and drop File Adapter from the Component Palette to the External
References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

3. Click Next. The Service Name page is displayed.

4. Enter a service name in the Service Name field.

5. Click Next. The Adapter Interface page is displayed.

6. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

7. Select Synchronous Read File, enter FileMove in the Operation Name field, and
then click Next. The File Directories page is displayed.

8. Enter a dummy physical path for the directory for incoming files, and then click
Next. The File name page is displayed.

9. Enter a dummy file name, and then click Next. The Messages page is displayed.

10. Select Native format translation is not required (Schema is opaque), and then
click Next. The Finish page is displayed.

11. Click Finish. The outbound Oracle File Adapter is now configured.

Note: You have selected Synchronous Read File as the operation
because the WSDL file that is generated because this operation is
similar to the one required for the file I/O operation.

Note: The dummy directory is not used. You must manually change
the directory in a later step.

Note: The dummy file name you enter is not used. You must
manually change the file name in a later step.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-205

12. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in FileMove in the External References area.
The BPEL component is connected to the Oracle File Adapter outbound service.

13. Create an invoke activity for the FileMove service that you just created by
selecting the default settings.

The next step is to modify the generated WSDL file for MoveFileService service
and configure it with the new interaction specification for the move operation.

14. Open the FileMove_file.jca file and modify the endpoint interaction, as
shown in the following example.

You must configure the JCA file with the source and target directory and file
details. You can either hardcode the source and target directory and file details in
the JCA file or use header variables to populate them. In this example, header
variables are used.

<adapter-config name="FileMove" adapter="File Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/FileAdapter" adapterRef=""/>
 <endpoint-interaction portType="FileMove_ptt" operation="FileMove">
 <interaction-spec
className="oracle.tip.adapter.file.outbound.FileIoInteractionSpec">
 <property name="SourcePhysicalDirectory" value="foo1"/>
 <property name="SourceFileName" value="bar1"/>
 <property name="TargetPhysicalDirectory" value="foo2"/>
 <property name="TargetFileName" value="bar2"/>
 <property name="Type" value="MOVE"/>
 </interaction-spec>
 </endpoint-interaction>
</adapter-config>

15. Map the actual directory and file names to the source and target file parameters by
performing the following procedure:

a. Create 4 string variables with appropriate names. You must populate these
variables with the source and target directory details. The BPEL source view
shows you this:

<variables>
 <variable name="InvokeMoveOperation_FileMove_InputVariable"
messageType="ns1:Empty_msg"/>
 <variable name="InvokeMoveOperation_FileMove_OutputVariable"
messageType="ns1:FileMove_msg"/>
 <variable name="sourceDirectory" type="xsd:string"/>
 <variable name="sourceFileName" type="xsd:string"/>
 <variable name="targetDirectory" type="xsd:string"/>

Note: You have modified the className attribute, and added
SourcePhysicalDirectory,
SourceFileName,TargetPhysicalDirectory,
TargetFileName and Type. Currently, the values for the source and
target details are dummy. You must populate them at run-time. You
can also hardcode them to specific directories or file names.

The Type attributes decides the type of operation. Apart from MOVE,
the other acceptable values for the Type attribute are COPY and
DELETE.

Oracle File and FTP Adapters Use Cases

4-206 Oracle Fusion Middleware User's Guide for Technology Adapters

 <variable name="targetFileName" type="xsd:string"/>
 </variables>

b. Create an assign activity to assign values to sourceDirectory,
sourceFileName, targetDirectory, and targetFileName variables.
The assign operation appears in the BPEL source view as in the following
example:

<assign name="AssignFileDetails">
 <copy>
 <from expression="'/home/alex'"/>
 <to variable="sourceDirectory"/>
 </copy>
 <copy>
 <from expression="'input.txt'"/>
 <to variable="sourceFileName"/>
 </copy>
 <copy>
 <from expression="'/home/alex'"/>
 <to variable="targetDirectory"/>
 </copy>
 <copy>
 <from expression="'output.txt'"/>
 <to variable="targetFileName"/>
 </copy>
 </assign>

In the preceding example, input.txt is moved from /home/alex to
output.txt in /home/alex.

c. Pass these parameters as headers to the invoke operation. The values in these
variables override the parameters in the JCA file.

<invoke name="InvokeMoveOperation"
 inputVariable="InvokeMoveOperation_FileMove_InputVariable"
 outputVariable="InvokeMoveOperation_FileMove_OutputVariable"
 partnerLink="FileMove" portType="ns1:FileMove_ptt"
 operation="FileMove">
 <bpelx:inputProperty name="jca.file.SourceDirectory"
variable="sourceDirectory"/>
 <bpelx:inputProperty name="jca.file.SourceFileName"
variable="sourceFileName"/>
 <bpelx:inputProperty name="jca.file.TargetDirectory"
variable="targetDirectory"/>
 <bpelx:inputProperty name="jca.file.TargetFileName"
variable="targetFileName"/>
 </invoke>

16. Finally, add an initial receive or pick activity.

You have completed moving a file from a local directory on the file system to
another local directory.

Note: The source and target details are hardcoded in the preceding
example. You can also provide these details as run-time parameters.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-207

4.5.11.2 Copying a File from a Local Directory on the File System to Another Local
Directory
Perform the following procedure to copy a file from a local directory on the file system
to another local directory:

1. Follow steps 1 through 12 of Section 4.5.11.1, "Moving a File from a Local Directory
on the File System to Another Local Directory".

2. Change the value of the TYPE attribute to COPY instead of MOVE in the endpoint
interaction, in Step 14 of Section 4.5.11.1, "Moving a File from a Local Directory on
the File System to Another Local Directory" as shown in the following example:

<adapter-config ...>
 <connection-factory .../>
 <endpoint-interaction ...>
 <interaction-spec
className="oracle.tip.adapter.file.outbound.FileIoInteractionSpec">
 <property .../>
 <property name="Type" value="COPY"/>
 </interaction-spec>
 </endpoint-interaction>
</adapter-config>

4.5.11.3 Deleting a File from a Local File System Directory
To delete a file, you require TargetPhysicalDirectory and TargetFileName
parameters.

To delete a file, delete_me.txt, from /home/alex directory, you must perform the
following:

1. Follow steps 1 through 12 in Section 4.5.11.1, "Moving a File from a Local Directory
on the File System to Another Local Directory"

2. Change the value of the TYPE attribute to DELETE in the endpoint interaction in
Step 14 of Section 4.5.11.1, "Moving a File from a Local Directory on the File
System to Another Local Directory", as shown in the following example:

<adapter-config name="FileDelete" adapter="File Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/FileAdapter" adapterRef=""/>
 <endpoint-interaction portType="FileDelete_ptt" operation="FileDelete">
 <interaction-spec
className="oracle.tip.adapter.file.outbound.FileIoInteractionSpec">
 <property name="TargetPhysicalDirectory" value="/home/alex"/>
 <property name="TargetFileName" value="delete_me.txt"/>
 <property name="Type" value="DELETE"/>
 </interaction-spec>
 </endpoint-interaction>
</adapter-config>

Note: You do not require SourcePhysicalDirectory and
SourceFileName to delete a file from a local file system directory.

Oracle File and FTP Adapters Use Cases

4-208 Oracle Fusion Middleware User's Guide for Technology Adapters

4.5.11.4 Using a Large CSV Source File
Consider the following scenario, where you have a large CSV file of size 1 gigabyte
coming on the source directory, and you must perform the following:

1. Translate the CSV into XML.

2. Transform the resulting XML using XSL.

3. Translate the result from the transform operation into a fixed length file.

This use case is similar to the FlatStructure sample in the BPEL samples directory.
The difference is that the three steps occur in a single File I/O interaction.

To use a large CSV file and perform the operations listed in the preceding scenario,
you must perform the following steps:

1. Copy the address-csv.xsd and address-fixedLength.xsd files from the
FlatStructure sample into the xsd directory of your project.

2. Copy addr1Toaddr2.xsl from the FlatStructure sample into the xsl directory
of your project.

3. Configure the File I/O interaction, as shown in the following example. At a high
level, you must specify the source schema, the target schema, and the XSL in the
interaction specification along with the source and target directory or file details,
as shown in the following example:

<adapter-config name="FileMove" adapter="File Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/FileAdapter" adapterRef=""/>
 <endpoint-interaction portType="FileMove_ptt" operation="FileMove">
 <interaction-spec
className="oracle.tip.adapter.file.outbound.FileIoInteractionSpec">
 <property name="SourcePhysicalDirectory" value="foo1"/>
 <property name="SourceFileName" value="bar1"/>
 <property name="SourceSchema" value="xsd/address-csv.xsd"/>
 <property name="SourceSchemaRoot value="Root-Element"/>
 <property name="SourceType" value="native"/>
 <property name="TargetPhysicalDirectory" value="foo2"/>
 <property name="TargetFileName" value="bar2"/>
 <property name="TargetSchema" value="xsd/address-fixedLength.xsd"/>
 <property name="TargetSchemaRoot value="Root-Element"/>
 <property name="TargetType" value="native"/>
 <property name="Xsl value="xsl/addr1Toaddr2.xsl"/>
 <property name="Type" value="MOVE"/>
 </interaction-spec>
 </endpoint-interaction>
</adapter-config>

You have provided the following additional parameters:

■ SourceSchema: Relative path to the source schema.

■ SourceSchemaRoot: The root element in the source schema.

■ SourceType: The type of data. The other possible type is XML.

■ TargetSchema: Relative path to the target schema.

Note: All the three steps occur in a single File I/O interaction. This
works only if all the records in the data file are of the same type.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-209

■ TargetSchemaRoot: The root element in the target schema.

■ TargetType: The type of data. The other possible type is XML.

■ Xsl: Relative path to the Xsl file.

4.5.11.5 Moving a File from One Remote Directory to Another Remote Directory on
the Same FTP Server
The I/O use cases for the Oracle FTP Adapter are very similar to those for Oracle File
Adapter. However, there are a few nuances that need attention.

In this use case you move a file within the same directory, which is similar to a rename
operation on the same server. Most FTP servers support the RNFR/RNTO FTP
commands that let you rename a file on the FTP server.

However, even if the RNFR/RNTO commands are not supported, moving a file within
the same directory is still possible because of a binding property,
UseNativeRenameOperation. By default, this property is set to TRUE, and in this
case the Oracle FTP Adapter uses the native RNFR/RNTO commands. However, if this
property is set to FALSE, then the Oracle FTP Adapter uses the Get and Put
commands followed by a Delete command to emulate a move operation.

You can model only a part of this procedure by using the wizard because the
corresponding Adapter Configuration Wizard is not available. You must complete the
remaining procedure by manually configuring the generated JCA file.

You must perform the following steps to move a file from a remote directory to
another remote directory on the same FTP server:

1. Create an empty BPEL process.

2. Drag and drop FTP Adapter from the Component Palette to the External
References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

3. Click Next. The Service Name page is displayed.

4. Enter a service name in the Service Name field.

5. Click Next. The Adapter Interface page is displayed.

6. Click Next. The FTP Server Connection page is displayed.

7. Enter the JNDI name for the FTP server, and click Next. The Operation page is
displayed.

8. Select Synchronous Get File, enter FTPMove in the Operation Name field, and
then click Next. The File Directories page is displayed.

9. Enter a dummy physical path for the directory for incoming files, and then click
Next. The File name page is displayed.

Note: You have selected Synchronous Get File as the operation
because the WSDL file that is generated because this operation is
similar to the one required for the file I/O operation.

Note: The dummy directory is not used. You must manually change
the directory in a later step.

Oracle File and FTP Adapters Use Cases

4-210 Oracle Fusion Middleware User's Guide for Technology Adapters

10. Enter a dummy file name, and then click Next. The File Name page is displayed.

11. Click Next. The Messages page is displayed.

12. Select Native format translation is not required (Schema is opaque), and then
click Next. The Finish page is displayed.

13. Click Finish. The outbound Oracle File Adapter is now configured.

14. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in FTPMove in the External References area.
The BPEL component is connected to the Oracle FTP Adapter outbound service.

15. Click File, Save All.

16. Create an invoke activity for the FTPMove service that you just created.

The next step is to modify the generated WSDL file for FTPMove service and
configure it with the new interaction specification for the move operation.

17. Open the FTPMove_ftp.jca file and modify the interaction-spec, as shown
in the following example.

You must configure the JCA file with the source and target directory and file
details. You can either hardcode the source and target directory and file details in
the JCA file or use header variables to populate them. In this example, header
variables are used.

<adapter-config name="FTPMove" adapter="Ftp Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">

 <connection-factory location="eis/Ftp/FtpAdapter" adapterRef=""/>
 <endpoint-interaction portType="FTPMove_ptt" operation="FTPMove">
 <interaction-spec
className="oracle.tip.adapter.ftp.outbound.FTPIoInteractionSpec">
 <property name="SourcePhysicalDirectory" value="foo1"/>
 <property name="SourceFileName" value="bar1"/>
 <property name="TargetPhysicalDirectory" value="foo2"/>
 <property name="TargetFileName" value="bar2"/>
 <property name="Type" value="MOVE"/>
 </interaction-spec>
 </endpoint-interaction>

</adapter-config>

Note: The dummy file name you enter is not used. You must
manually change the file name in a later step.

Note: You have modified the className attribute, and added
SourcePhysicalDirectory, SourceFileName,
TargetPhysicalDirectory, TargetFileName, and Type.
Currently, the values for the source and target details are dummy. You
must populate them at run-time. You can also hardcode them to
specific directories or file names.

The Type attributes decides the type of operation. Apart from MOVE,
the other acceptable values for the Type attribute are COPY and
DELETE.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-211

18. Map the actual directory and file names to the source and target file parameters by
performing the following procedure:

a. Create 4 string variables with appropriate names. You must populate these
variables with the source and target directory details. The BPEL source view
shows you this:

 <variables>
 <variable name="InvokeMoveOperation_FileMove_InputVariable"
messageType="ns1:Empty_msg"/>
 <variable name="InvokeMoveOperation_FileMove_OutputVariable"
messageType="ns1:FileMove_msg"/>
 <variable name="sourceDirectory" type="xsd:string"/>
 <variable name="sourceFileName" type="xsd:string"/>
 <variable name="targetDirectory" type="xsd:string"/>
 <variable name="targetFileName" type="xsd:string"/>
 </variables>

b. Create an assign activity to assign values to sourceDirectory,
sourceFileName, targetDirectory, and targetFileName variables.
The assign operation appears in the BPEL source view as in the following
example:

 <assign name="AssignFTPFileDetails">
 <copy>
 <from expression="'/home/ftp'"/>
 <to variable="sourceDirectory"/>
 </copy>
 <copy>
 <from expression="'input.txt'"/>
 <to variable="sourceFileName"/>
 </copy>
 <copy>
 <from expression="'/home/ftp/out'"/>
 <to variable="targetDirectory"/>
 </copy>
 <copy>
 <from expression="'output.txt'"/>
 <to variable="targetFileName"/>
 </copy>
 </assign>

In the preceding example, input.txt is moved or renamed from /home/ftp
to output.txt in /home/ftp/out.

c. Pass these parameters as headers to the invoke operation. The values in these
variables override the parameters in the JCA file.

<invoke name="InvokeRenameService"
inputVariable="InvokeRenameService_RenameFile_InputVariable"
partnerLink="RenameFTPFile" portType="ns2:RenameFile_ptt"
operation="RenameFile">
<bpelx:inputProperty name="jca.file.SourceDirectory"
variable="returnDirectory"/>
<bpelx:inputProperty name="jca.file.SourceFileName"
variable="returnFile"/>

Note: The source and target details are hardcoded in the preceding
example. You can also provide these details as run-time parameters.

Oracle File and FTP Adapters Use Cases

4-212 Oracle Fusion Middleware User's Guide for Technology Adapters

<bpelx:inputProperty name="jca.file.TargetDirectory"
variable="returnDirectory"/>
<bpelx:inputProperty name="jca.file.TargetFileName"
variable="targetFile"/>
</invoke>

19. Finally, add an initial receive or pick activity.

You have completed moving or renaming a file from a remote directory to another
remote directory on the same FTP server.

4.5.11.6 Moving a File from a Local Directory on the File System to a Remote
Directory on the FTP Server

The steps for this use case are the same as the steps for the use case in Section 4.5.11.5,
"Moving a File from One Remote Directory to Another Remote Directory on the Same
FTP Server" except that you must configure the source directory as local and the target
directory as remote.

Use the SourceIsRemote and TargetIsRemote properties to specify whether the
source and target file are on the local or remote file system, as shown in the following
example:

<adapter-config name="FTPMove" adapter="Ftp Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">

 <connection-factory location="eis/Ftp/FtpAdapter" adapterRef=""/>
 <endpoint-interaction portType="FTPMove_ptt" operation="FTPMove">
 <interaction-spec
className="oracle.tip.adapter.ftp.outbound.FTPIoInteractionSpec">
 <property name="SourcePhysicalDirectory" value="foo1"/>
 <property name="SourceFileName" value="bar1"/>
 <property name="SourceIsRemote" value="false"/>
 <property name="TargetPhysicalDirectory" value="foo2"/>
 <property name="TargetFileName" value="bar2"/>
 <property name="Type" value="MOVE"/>
 </interaction-spec>
 </endpoint-interaction>

</adapter-config>

Note: If the FTP server does not support the RNFR/RNTO FTP
commands, then you must set UseNativeRenameOperation to
FALSE and define the property in composite.xml, as shown in the
following example:

<reference name="FTPMove" ui:wsdlLocation="FTPMove.wsdl">
 <interface.wsdl
interface="http://xmlns.oracle.com/pcbpel/adapter/ftp/SOAFtpIO/SOAF
tpIO/FTPMove/#wsdl.interface(FTPMove_ptt)"/>
 <binding.jca config="FTPMove_ftp.jca">
 <property name="UseNativeRenameOperation" type="xs:string"
many="false" override="may">false</property>
 </binding.jca>
</reference>

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-213

4.5.11.7 Moving a File from a Remote Directory on the FTP Server to a Local
Directory on the File System
The steps for this use case are the same as the steps for the use case in Section 4.5.11.6,
"Moving a File from a Local Directory on the File System to a Remote Directory on the
FTP Server" except that you must configure the source directory as remote and the
target directory as local, as shown in the following example:

<adapter-config name="FTPMove" adapter="Ftp Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">

 <connection-factory location="eis/Ftp/FtpAdapter" adapterRef=""/>
 <endpoint-interaction portType="FTPMove_ptt" operation="FTPMove">
 <interaction-spec
className="oracle.tip.adapter.ftp.outbound.FTPIoInteractionSpec">
 <property name="SourcePhysicalDirectory" value="foo1"/>
 <property name="SourceFileName" value="bar1"/>
 <property name="TargetPhysicalDirectory" value="foo2"/>
 <property name="TargetFileName" value="bar2"/>
 <property name="TargetIsRemote" value="false"/>
 <property name="Type" value="MOVE"/>
 </interaction-spec>
 </endpoint-interaction>

</adapter-config>

4.5.11.8 Moving a File from One FTP Server to another FTP Server
To move a file from one FTP server to another FTP server you must sequentially
perform the use cases documented in the following sections:

1. Section 4.5.11.7, "Moving a File from a Remote Directory on the FTP Server to a
Local Directory on the File System" to upload the file from the local directory to
another FTP server

2. Section 4.5.11.6, "Moving a File from a Local Directory on the File System to a
Remote Directory on the FTP Server" to download the file from the FTP server to a
local directory

4.5.12 Creating a Synchronous BPEL Composite using File Adapter
By default, the JDeveloper Adapter Wizard generates asynchronous WSDLs when you
use technology adapters. Typically, you follow these steps when creating an adapter
scenario in 11g:

Note: In this example, you have configured SourceIsRemote as
false. In this case, the FTP input and output operation assumes that
the source file comes from a local file system. Also, notice that you did
not specify the parameter for target because TargetIsRemote is set
to true by default.

Note: In this example, you have configured TargetIsRemote as
false. In this case, the FTP I/O assumes that the source file comes
from a remote file system whereas the target is on a local file system.
Also, notice that you did not specify the parameter for source because
SourceIsRemote is set to true by default.

Oracle File and FTP Adapters Use Cases

4-214 Oracle Fusion Middleware User's Guide for Technology Adapters

1. Create a SOA Application with either Composite with BPEL or an Empty
Composite selected. If you choose Empty Composite, you must drop the BPEL
Process from the Service Components pane onto the SOA Composite Editor.

You arrive at the screen below where you fill in the process details. You are
required to choose Define Service Later as the template.

Figure 4–164 Create Process Screen

2. Next, you create the inbound service and outbound references and wire them with
the BPEL component.

Figure 4–165 Cresting the Inbound Serv ice and Outbound References

3. And, finally you create the BPEL process with the initiating <receive> activity to
retrieve the payload and an <invoke> activity to write the payload

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-215

Figure 4–166

This is how most BPEL processes that use Adapters are modeled. The generated
WSDL implies one-way directionally one way and that makes the BPEL process
asynchronous:

Figure 4–167 Generated One-Way WSDL

In other words, the inbound File Adapter polls for files in the directory and for each
file that it finds there, it translates the content into XML and publishes to BPEL.

However, because the BPEL process is asynchronous, the File Adapter returns
immediately after the publish and performs the required post processing-for example.
deletion/archival of data.

The disadvantage with such asynchronous BPEL processes is that it becomes difficult
to throttle the inbound adapter. In otherwords, the inbound adapter would keep
sending messages to BPEL without waiting for the downstream business processes to
complete. This can lead to issues such as higher memory usage and CPU usage.

Oracle File and FTP Adapters Use Cases

4-216 Oracle Fusion Middleware User's Guide for Technology Adapters

To mitigate the occurrence of these problems, you can manually change the WSDL and
BPEL artifacts into synchronous processes. Once you have changed the synchronous
to synchronous BPEL processes, the inbound File Adapter automatically throttles itself
because the File Adapter is forced to wait for the downstream process to complete
with a <reply> before processing the next file or message.

Refer to the altered WSDL below. Here, you convert the one-way WSDL to a two-way
WSDL-- thereby making the WSDL synchronous.

Figure 4–168 Asynchronous WSDL Altered to be Two-Way WSDL

The next step is to add a <reply> activity to the inbound adapter partnerlink at the end
of your BPEL process, for example:

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-217

Figure 4–169 Specifying a Reply to the Inbound Adapter

Finally, the process looks like this:

Figure 4–170 The Synchronous File Adapter Process with Receive and Reply BPEL
Activities

This type of exercise is not required for the Mediator because the Mediator routing
rules are sequential by default. In other words, the Mediator uses the caller thread
(inbound file adapter thread) for processing routing rules. This is the case even if the
WSDL for mediator is one-way..

Oracle File and FTP Adapters Use Cases

4-218 Oracle Fusion Middleware User's Guide for Technology Adapters

4.5.12.1 Changing the Connection Factory JNDI Dynamically in Ftp Adapter
Where there is a requirement to send the same file to five different FTP servers, you
could create, for example, five FtpAdapter references, one for each connection-factory
location. However, this is not the most optimal approach; instead, you can use the
concept of "Dynamic Partner Links".

If you're running the adapter in managed mode, it requires you to configure the
connection factory JNDI in the WebLogic Server console for the FtpAdapter.

In the sample below, the connection-factory JNDI location "eis/Ftp/FtpAdapter" has
been mapped with the Ftp server running on localhost.

After you've configured the connection factory on your application server, you must
refer to the connection-factory JNDI in the jca artifact of your SCA process. In the
example below, the FTPOut reference in the following .jca file uses the FTP server
corresponding to eis/Ftp/FtpAdapter

You can change this connection-factory location dynamically using JCA header
properties in both BPEL and Mediator service engines. To do so, the business scenario

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-219

involving BPEL or Mediator is required to use a reserved JCA header property
jca.jndi as shown in the following.

Similarly, for the Mediator, the mplan is:

You must remember the following when using dynamic partner links:

■ You must preconfigure the connection factories on the SOA server. In the BPEL
example above, both eis/Ftp/FtpAdater1 and eis/Ftp/FtpAdater2 must
be configured in the WebLogic Server deployment descriptor for the FtpAdapter
before your deployment of the scenario.

■ Dynamic Partner Links are applicable to outbound invocations only

4.5.12.2 Retrieving the Details of the File from an Outbound Write Operation
You can capture the details of the file that was written out as a part of a BPEL process
that is invoking a File/FTP Adapter

For example, using FileNamingConvention as PurchaseOrder_%SEQ%.txt,
you might be required to perform post processing based on the file that was written
out (the name of the file is not known until the adapter invocation completes for
example, PurchaseOrder_1.txt, PurchaseOrder_2.txt ...)

To provide for the capture of metadata, you must edit the WSDL so the File/Ftp
Adapter can return the metadata of the file being written. In general, the File/Ftp
Write/Put WSDL operations are one way as shown below.

Oracle File and FTP Adapters Use Cases

4-220 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–171 Editing the WSDL File So the File/FTP Adapter Returns File Metadata

In general, the File/FTP Write/Put WSDL operations, as inserted in the .jca file, are
one way of enabling the return of the metadata, as shown below.

The File/TP Adapters are designed to return the metadata back if the WSDL is
tweaked into a two-way WSDL. In addition, the </wsdl.output> must import the
fileread.xsd schema. You must copy the fileread.xsd schema from the
following location:

http://blogs.oracle.com/adapters/resource/2010-04-12/fileread.xsd

Figure 4–172 Fileread

The next step is to edit the WSDL to ensure it is changed into a two-way WSDL.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-221

Figure 4–173 Editing the WSDL to Change It Into a Two-Way WSDL

Specify an Invoke WSDL statement through the BPEL Invoke statement panel.The file
metadata would be returned as a part of the BPEL output variable:

Figure 4–174 Specifying an Invoke WSDL Statement through the BPEL Invoke
Statement Panel

Oracle File and FTP Adapters Use Cases

4-222 Oracle Fusion Middleware User's Guide for Technology Adapters

4.5.13 Changing the Sequencing Strategy for FILE/Ftp Adapter
The File/Ftp Adapter enables you to configure outbound writes to use a sequence
number. For example, if you choose address-data_%SEQ%.txt as the
FileNamingConvention, all files would be generated as address-data_1.txt,
address-data_2.txt,..

Figure 4–175 Configuring Outbound Writes

The sequence number comes from the control directory for the particular adapter
project(or scenario). For each project that use the File or Ftp Adapter, a unique
directory is created for book-keeping purposes. Because this control directory must be
unique, the adapter uses a digest to ensure that no two control directories are the
same.

For example, for the FlatStructure sample in the example above, the control
information for my project would go under FMW_HOME/user_
projects/domains/soainfra/fileftp/controlFiles/[DIGEST]/outbound
where the value of DIGEST would differ from one project to another.

Within this directory, there is a file control_ob.properties file where the
sequence number is maintained. The sequence number is maintained in binary form
and you might need a hexadecimal editor to view its content. There is another zero
byte file, SEQ_nnn. This extra file is maintained as a backup.

One of the challenges faced by the adapter run time is to guard all writes to the control
files so no two threads inadverently attempt to update the control files at the same
time. It does this guarding with the help of a "Mutex". The mutex is of different types:

■ In-memory

■ DB-based

■ Coherence-based

■ User-defined

There might be scenarios, particularly when the Adapter is under heavy tranactional
load, where the mutex is a bottleneck. The Adapter, however, enables you to change
the configuration so the adapter sequence value is derived from a database sequence
or a stored procedure. In such a situation, the mutex is by-passed, and the process
results in improved throughput.

The simplest way to achieve improved throughput is by switching your JNDI
connection factory location for the outbound JCA file to use the
eis/HAFileAdapter:

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-223

Figure 4–176 Switching the JNDI Connection Factory to Use the HAFileAdapter

With this change, the Adapter run time creates a sequence on the Oracle database. For
example, if you do a select * from user_sequences in your soa-infra schema,
you see a new sequence being created with name as SEQ_<GUID>__ (where the GUID
differs by project).

However, to use your own sequence, you must add a new property to your JCA file
called SequenceName. You must create this sequence on your soainfra schema
beforehand.

Figure 4–177 Adding the SequenceName Property

Using DB2 or MSSQL Server as the dehydration support is a bit different. DB2
supports sequences natively but MSSQL Server does not. The Adapter run time uses a
natively generated sequence for DB2, but, for MSSQL server, the Adapter relies on a
stored procedure that ships with the product.To achieve the same result for a SOA
Suite running DB2 as the dehydration store, change the connection factory JNDI name
in the JCA file to eis/HAFileAdapterDB2. For MSSQL, use
eis/HAFileAdapterMSSQL. To use a stored procedure other than the one that ships
with the product, you must rely on binding properties to override the adapter
behavior; specifically, you must instruct the adapter to use a stored procedure:

Oracle File and FTP Adapters Use Cases

4-224 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 4–178 Using a Stored Procedure

When the File/Ftp Adapter is used in Append mode, the adapter run time degrades
the mutex to use pessimistic locks to prevent writers from different nodes appending
to the same file at the same time.

4.5.14 Creating a Synchronous BPEL Composite using the File Adapter
By default, the JDeveloper Adapter wizard generates asynchronous WSDLs when you
use technology adapters. Typically, you follow the following steps when creating an
adapter scenario in Release 11g:

1. Create a SOA Application with either Composite with BPEL or an Empty
Composite. If you choose Empty Composite, you must drop the BPEL Process
from the Service Components panel onto the SOA Composite Editor. Either way,
you arrive at the process details screen You must choose Define Service Later as
the template.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-225

2. Next, you create the inbound service and outbound reference and wire them with
the BPEL component:

3. Finally you create the BPEL process with the initiating <receive> activity to
retrieve the payload and an <invoke> activity to write the payload.

Oracle File and FTP Adapters Use Cases

4-226 Oracle Fusion Middleware User's Guide for Technology Adapters

This is how most BPEL processes that use Adapters are modeled. The generated
WSDL is one-way, which makes the BPEL process asynchronous.

The inbound File Adapter polls for files in the directory and for each file it finds there,
the Adapter translates the content into XML and publishes to BPEL. But, because the
BPEL process is asynchronous, the Adapter returns immediately after the publish
operation and performs the required post processing, for example, deletion/archival.

The disadvantage with such asynchronous BPEL processes is that it becomes difficult
to throttle the inbound adapter. In other words, the inbound adapter keeps sending
messages to BPEL without waiting for the downstream business processes to
complete. This can lead to several issues including higher memory usage, and CPU
usage.

To alleviate these problems, manually tweak the WSDL and BPEL artifacts into
synchronous processes. Oncet here are synchronous BPEL processes, the inbound
adapter automatically throttles itself as the adapter is forced to wait for the

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-227

downstream process to complete with a <reply> before processing the next file or
message.

In the following WSDL, the one-way WSDL has been converted to a two-way WSDL,
thereby making the WSDL synchronous:

Figure 4–179 One-Way WSDL Converted Into a Two-Way WSDL

Add a <reply> activity to the inbound adapter partnerlink at the end of your BPEL
process, for example:

Oracle File and FTP Adapters Use Cases

4-228 Oracle Fusion Middleware User's Guide for Technology Adapters

Finally, the process resembles the following process, shown in the swim-lane format:

Figure 4–180 The Synchronous BPEL Process

4.5.15 Controlling the Order in which Files Are Processed
The File/FTP Adapter enables you to control the order in which files get processed.
For example, you might want the files to be processed in sequience of their modified
times/ file sizes , or other determiners.

Oracle File and FTP Adapters Use Cases

Oracle JCA Adapter for Files/FTP 4-229

The File/FTP adapter enables you to achieve controlling the order in which files gets
processed through a FileSorter attribute that you can define in the JCA file for your
inbound File/Ftp Adapter service.

The File/FTP Adapter provides two predefined sorters that use the last modified
times--or example:

However, there are times when you would like to define the order yourself. You can
implement a Java Comparator and register that with the File Adapter as described
below:

1. Write a comparator. For example, the FileSizeSorter comparator below sorts
the files in descending order of their sizes:

Oracle File and FTP Adapters Use Cases

4-230 Oracle Fusion Middleware User's Guide for Technology Adapters

2. To compile this class, you must place fileAdapter.jar in the classpath. From
[FMW_HOME]/AS11gR1SOA/soa/connectors, expand FileAdapter.rar, for
example, jar xvf FileAdapter.rar to extract fileAdapter.jar. You
must place fileAdapter.jar in your classpath to compile the
FileSizeSorter.java class, for example:

setenv CLASSPATH fileAdapter.jar
jacac -d .FileSizeSorter.java

3. After compilation, bundle the class in its own jar file, for example,

jar cvf fileadapter-sorter.jar file

4. Bundle the fileadapter-sorter.jar in the FileAdapter.rar, for
example,

jar uvf FileAdapter.rar fileadapter-sorter.jar

This step is required since the fileadapter-sorter.jar becomes visible to the
ClassLoader that loads FileAdapter.rar. Though, there are other ways for
example, copying the fileadapter-sorter.jar and fileadapter.jar
under [DOMAIN_HOME]/lib, but the one above is the simplest and easiest to do.

5. Setting SingleThreadModel as true in the JCA file (see image at the beginning
of this section.)

6. If you're using BPEL, ensure you model a synchronous process.

5

Oracle JCA Adapter for Sockets 5-1

5 Oracle JCA Adapter for Sockets

This chapter describes how to use Oracle JCA Adapter for Sockets (Oracle Socket
Adapter), which works with Oracle BPEL Process Manager (Oracle BPEL PM) and
Oracle Mediator (Mediator) as an external service.

This chapter includes the following sections:

■ Section 5.1, "Introduction to Oracle Socket Adapter"

■ Section 5.2, "Oracle Socket Adapter Features"

■ Section 5.3, "Oracle Socket Adapter Concepts"

■ Section 5.4, "Configuring Oracle Socket Adapter"

■ Section 5.5, "Oracle Socket Adapter Use Cases"

5.1 Introduction to Oracle Socket Adapter
Oracle Socket Adapter is a JCA 1.5 compliant adapter for modeling standard or
nonstandard protocols for communication over TCP/IP sockets. You can use an Oracle
Socket Adapter to create a client or a server socket, and establish a connection. The
data that is transported can be text or binary.

This section includes the following topics:

■ Section 5.1.1, "Oracle Socket Adapter Architecture"

■ Section 5.1.2, "Oracle Socket Adapter Integration with Mediator"

■ Section 5.1.3, "Oracle Socket Adapter Integration with Oracle BPEL PM"

■ Section 5.1.4, "Oracle Socket Adapter Integration with SOA Composite"

5.1.1 Oracle Socket Adapter Architecture
Oracle Socket Adapter is based on the JCA 1.5 architecture. JCA provides a standard
architecture for integrating heterogeneous enterprise information systems (EIS). The
JCA Binding Component of the Oracle Socket Adapter exposes the underlying JCA
interactions as services (WSDL with JCA binding) for Oracle BPEL PM integration.
Figure 5–1 illustrates the architecture of Oracle Socket Adapter. For details about the
Oracle JCA Adapter architecture, see Section 1.2.1.1, "Architecture."

Introduction to Oracle Socket Adapter

5-2 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–1 Oracle Socket Adapter Architecture

5.1.2 Oracle Socket Adapter Integration with Mediator
Oracle Socket Adapter is automatically integrated with Mediator. When you create an
Oracle Socket Adapter service in JDeveloper Designer, the Adapter Configuration
Wizard is started. This wizard enables you to configure the Oracle Socket Adapter.
When configuration is complete, a WSDL file of the same name is created in the
Application Navigator section of Oracle JDeveloper (JDeveloper). This WSDL file
contains the configuration information you specify in the Adapter Configuration
Wizard.

The Operation Type page of the Adapter Configuration Wizard prompts you to select
an operation to perform. Based on your selection, different Adapter Configuration
Wizard pages appear and prompt you for configuration information.

For more information about Oracle JCA Adapter integration with Mediator, see
Section 3.2, "Adapter Integration with Oracle Fusion Middleware."

5.1.3 Oracle Socket Adapter Integration with Oracle BPEL PM
Oracle Socket Adapter is automatically integrated with Oracle BPEL PM. When you
drag and drop Socket Adapter from the Component Palette of JDeveloper BPEL
Designer, the Adapter Configuration Wizard starts with a Welcome page, as shown in
Figure 5–2.

Handshake Modes

Client Socket

Server Socket

(Interaction)

Client Socket

Server Socket

(Activation)

Socket Adapter

Native Schema Framework
JCA Binding Component

JCA 1.5

SOA/Fabric_____________________
Oracle WebLogic Server

Introduction to Oracle Socket Adapter

Oracle JCA Adapter for Sockets 5-3

Figure 5–2 The Adapter Configuration Wizard - Welcome Page

This wizard enables you to configure an Oracle Socket Adapter. The Adapter
Configuration Wizard then prompts you to enter a service name, as shown in
Figure 5–3.

Figure 5–3 The Adapter Configuration Wizard Service Name Page

When configuration is complete, a WSDL file of the same name is created in the
Application Navigator section of JDeveloper. This WSDL file contains the
configuration information you specify in the Adapter Configuration Wizard.

Oracle Socket Adapter Features

5-4 Oracle Fusion Middleware User's Guide for Technology Adapters

The Operation Type page of the Adapter Configuration Wizard prompts you to select
an operation to perform. Based on your selection, different Adapter Configuration
Wizard pages appear and prompt you for configuration information.

For more information about Oracle JCA Adapter integration with Oracle BPEL PM, see
Section 3.2, "Adapter Integration with Oracle Fusion Middleware."

5.1.4 Oracle Socket Adapter Integration with SOA Composite
A composite is an assembly of services, service components (Oracle BPEL PM and
Mediator), wires, and references designed and deployed in a single application. The
composite processes the information described in the messages. The details of the
composite are stored in the composite.xml file. For more information on integration
of the Oracle Socket Adapter with SOA composite, see Section 3.2.4, "Oracle SOA
Composite Integration with Adapters."

5.2 Oracle Socket Adapter Features
Oracle Socket Adapter enables you to configure a BPEL process or a Mediator service
to read and write data over TCP/IP sockets. It includes the following features:

■ Allows modeling of standard or nonstandard protocols for communication over
TCP/IP sockets

■ Supports both inbound and outbound communication

■ Allows you to model complex protocol handshakes declaratively, by using XSL

■ Allows you the option of plugging in custom Java code to model a protocol
handshake

■ Provides support for reading and writing native data over sockets as the adapter is
integrated with the translator infrastructure (NXSD)

■ Supports multiple character encoding

5.3 Oracle Socket Adapter Concepts
This section describes the following Oracle Socket Adapter concepts:

■ Section 5.3.1, "Communication Modes"

■ Section 5.3.2, "Mechanisms for Defining Protocols"

■ Section 5.3.3, "Character Encoding and Byte Order"

■ Section 5.3.4, "Performance Tuning"

5.3.1 Communication Modes
Oracle Socket Adapter supports inbound and outbound communication over sockets
that can be unidirectional or bidirectional. The communication modes of Oracle Socket
Adapter are discussed in the following sections:

■ Section 5.3.1.1, "Inbound Synchronous Request/Response"

■ Section 5.3.1.2, "Outbound Synchronous Request/Response"

■ Section 5.3.1.3, "Inbound Receive"

■ Section 5.3.1.4, "Outbound Invoke"

Oracle Socket Adapter Concepts

Oracle JCA Adapter for Sockets 5-5

5.3.1.1 Inbound Synchronous Request/Response
As part of inbound activation, the Oracle Socket Adapter opens a server socket and
waits for incoming connections. The adapter uses the connection to the server socket
and reads the request message, which is published to BPEL or Mediator. The Oracle
Socket Adapter then uses the same connection to send the response back
synchronously.

Figure 5–4 illustrates an inbound synchronous request/response scenario.

Figure 5–4 BPEL Scenario of Inbound Synchronous Request/Response

5.3.1.2 Outbound Synchronous Request/Response
In the case of outbound synchronous request/response, a request comes from BPEL or
Mediator. The Oracle Socket Adapter connects to the server socket to send the request
message to the server socket on the output stream. The Oracle Socket Adapter then
blocks the response from the server socket on the input stream and publishes the
response back to BPEL or Mediator.

Figure 5–5 illustrates an outbound synchronous request/response scenario.

Figure 5–5 BPEL Scenario of Outbound Synchronous Request/Response

Oracle Socket Adapter Concepts

5-6 Oracle Fusion Middleware User's Guide for Technology Adapters

5.3.1.3 Inbound Receive
As part of inbound activation, the Oracle Socket Adapter opens a server socket and
waits for incoming connections. The adapter uses the connection to the server socket
and reads the request message, which is published to BPEL or Mediator. In this
scenario, no reply is sent.

5.3.1.4 Outbound Invoke
In the case of an outbound one way invoke scenario, the request comes from BPEL or
Mediator. Oracle Socket Adapter connects to the server socket and sends the request
message to the server socket on the output stream without expecting a reply.

5.3.2 Mechanisms for Defining Protocols
Communication protocols or handshakes consist of different discrete steps such as
authentication procedures, acknowledgments, and sending or receiving data
depending on conditions. Oracle Socket Adapter supports the following mechanisms
to define the protocol handshakes.

■ Protocol with Handshake Mechanism Using Style Sheet

■ Protocol with Handshake Mechanism Using Custom Java Code

■ Protocol Without Handshake Mechanism

5.3.2.1 Protocol with Handshake Mechanism Using Style Sheet
Oracle Socket Adapter can be configured to use a protocol designed with a handshake
mechanism, defined using style sheets that use XPath Extension functions exposed by
the adapter. This can be granular read and write operation on the socket I/O stream or
till the end of the stream. These functions also enable you to use native format
constructs for reading and writing data. This handshake mechanism uses XSLT
constructs to define operations such as assignments, validations, and control flow.

You can use the XPath Extension functions with the translator infrastructure in the
following ways:

■ By using StyleReader, which is exposed by the NXSD framework, to read and
write from the socket stream using the following methods:

– socketRead(nxsdStyle:String,
nxsdStyleAttributes:String):String

You can use this method to read from the socket input stream.

– socketWrite(value:String, nxsdStyle:String,
nxsdStyleAttributes:String):String

You can use this method to write to the socket output stream.

The XSLT shown in Figure 5–6 demonstrates the usage of extension functions that
use StyleReader.

Oracle Socket Adapter Concepts

Oracle JCA Adapter for Sockets 5-7

Figure 5–6 XSLT with Extension Functions That Use StyleReader

■ By annotating the schema, which defines the input and output variables, using
NXSD constructs to read and write from the socket stream using the following
methods:

– socketReadWithXlation():DocumentFragment

You can use this method to read from the socket input stream by using the
schema and schema element configured for input.

– socketWriteWithXlation(xml:NodeList)

You can use this method to write to the socket output stream by using the
schema configured for output.

The XSD file shown in Figure 5–7 demonstrates the usage of extension functions
by annotating the schema, which defines the input and output variables, using
NXSD constructs.

Oracle Socket Adapter Concepts

5-8 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–7 XSD with Extension Functions That Do Not Use StyleReader

To define a handshake using style sheet, you must select Use XSLT to define the
handshake and browse to select the XSL file in the Protocol page, as shown in
Figure 5–8.

Figure 5–8 Defining a Protocol with Handshake Mechanism By Using a Style Sheet

5.3.2.2 Protocol with Handshake Mechanism Using Custom Java Code
Oracle Socket Adapter can be configured to use a protocol with a customized
handshake mechanism, defined by plugging in custom Java code. The custom Java
code must implement
oracle.tip.pc.services.translation.util.ICustomParser, the

Oracle Socket Adapter Concepts

Oracle JCA Adapter for Sockets 5-9

ICustomParser interface, provided by Oracle Socket Adapter, which enables custom
implementation of handshakes.

The following methods must be implemented based on the appropriate
communication paradigm:

■ public Element executeOutbound(InputStream in, OutputStream
out, Element payLoad) throws Exception;

The outbound handshake must implement this method.

Example:

public Element executeOutbound(InputStream in, OutputStream out, Element
payLoad) throws Exception {
 BufferedReader in1 = new BufferedReader(new InputStreamReader(in));
 PrintWriter out1 = new PrintWriter(new OutputStreamWriter(out));

 out1.println(payLoad.getFirstChild().getNodeValue());

 String retVal = in1.readLine();

 StringBuffer strBuf = new StringBuffer();
 strBuf.append("<?xml version='1.0' encoding='" + enc + "' ?>"
 + "<out xmlns='http://xmlns.oracle.com/EchoServer/'>");
 strBuf.append(retVal + "</out>");

 DOMParser parser = new DOMParser();
 parser.setValidationMode(DOMParser.NONVALIDATING);
 Element elem = (Element) parser.getDocument().getElementsByTagName(
 "out").item(0);

 return elem;
}

■ public Element executeInboundRequest(InputStream in) throws
Exception;

The inbound request must implement this method.

Example:

public Element executeInboundRequest(InputStream in) throws Exception {
 BufferedReader in1 = new BufferedReader(new InputStreamReader(in));

 String input = in1.readLine();

 StringBuffer strBuf = new StringBuffer();
 strBuf.append("<?xml version='1.0' encoding='" + enc + "' ?>"
 + "<EchoClientProcessRequest
xmlns='http://xmlns.oracle.com/EchoClient'>");

 strBuf.append("<input>" + input +
"</input></EchoClientProcessRequest>");

Note: The ICustomParser interface files are in the bpm-infra.jar
file. This jar file is available in the following directory:

$SOA_ORACLE_HOME/soa/modules/oracle.soa.fabric_
11.1.1

Oracle Socket Adapter Concepts

5-10 Oracle Fusion Middleware User's Guide for Technology Adapters

 DOMParser parser = new DOMParser();
 parser.setValidationMode(DOMParser.NONVALIDATING);
 parser.parse(new InputSource(new StringReader(strBuf.toString())));
 Element elem = (Element) parser.getDocument().getElementsByTagName(
 "EchoClientProcessRequest").item(0);

 return elem;
}

■ public void executeInboundReply(Element payLoad, OutputStream
out) throws Exception;

The inbound reply must implement this method.

Example:

public void executeInboundReply(Element payLoad, OutputStream out) throws
Exception {
 PrintWriter out1 = new PrintWriter(new OutputStreamWriter(out));

 NodeList list = payLoad.getChildNodes();
 String retVal = null;
 for(int i = 0; i < list.getLength(); i++) {
 Node node = list.item(i);
 NodeList list1 = node.getChildNodes();
 for(int j = 0; j < list1.getLength(); j++) {
 Node node1 = list1.item(j);
 if(node1.getNodeType() == Node.TEXT_NODE) {
 retVal = node1.getNodeValue();
 }
 }
 }
 out1.println(retVal);
 out1.flush();
}

To use a custom Java code to define a handshake, you must select Use Custom Java
Code to define the handshake and specify the Java class implementing the handshake
in the Java Class field, as shown in Figure 5–9.

Note: in is the handle to the socket input stream and out is the
handle to the socket output stream.

Oracle Socket Adapter Concepts

Oracle JCA Adapter for Sockets 5-11

Figure 5–9 Defining a Protocol with Handshake Mechanism By Using Custom Java Code

5.3.2.3 Protocol Without Handshake Mechanism
Oracle Socket Adapter can be configured to use protocols that do not require
handshakes involving translation to and from the socket I/O stream.

To use a protocol that does not require a handshake, you must select No Handshake in
the Protocol page, as shown in Figure 5–10.

Figure 5–10 Defining a Protocol without a Handshake Mechanism

Oracle Socket Adapter Concepts

5-12 Oracle Fusion Middleware User's Guide for Technology Adapters

5.3.3 Character Encoding and Byte Order
The Encoding property represents the character encoding in which native data is
stored, and the ByteOrder property is the byte order of the native data, which is either
BIG_ENDIAN or LITTLE_ENDIAN.

Character encoding and byte order can be specified in the schema file (NXSD), using
the Native Format Builder wizard. You can also specify the encoding and the byte
order to be used, by using the Adapter Configuration Wizard. When encoding and
byte order are not specified, the default values are US-ASCII and BIG_ENDIAN.

To specify the encoding and byte order values, which are applicable only if you are
using translation, you must perform the following steps in the Protocol page of the
Adapter Configuration Wizard:

1. In the Encoding/ByteOrder section of the Protocol page, select the Specify
Encoding/Byte Order option, as shown in Figure 5–11.

Figure 5–11 The Adapter Configuration Wizard - Protocol Page

2. Perform one of these tasks to set the encoding:

a. To use the encoding specified in the schema file, leave Encoding unchecked.

b. To specify the encoding using the Adapter Configuration Wizard, select
Encoding, and then select an encoding type from the Encoding list.

3. Perform one of these tasks to set the byte order:

a. To use the byte order specified in the schema file, select Use Byte Order Value
from the schema.

Note: If you select Encoding, then the encoding type specified using
the Adapter Configuration Wizard takes precedence over the
encoding type specified in the NXSD file.

Oracle Socket Adapter Concepts

Oracle JCA Adapter for Sockets 5-13

b. To specify the byte order using the Adapter Configuration Wizard, select
ByteOrder, and then select a byte order from the ByteOrder list.

4. Click Finish. Once you click Finish, the Configuration Wizard displays a page that
indicates that you have finished configuring the Socket Adapter.

5.3.4 Performance Tuning
The Oracle Socket Adapter supports performance tuning features, including:

■ Section 5.3.4.1, "Configuring Oracle Socket Adapter Connection Pooling"

For more information about performance tuning, see "Oracle Socket Adapter Tuning"
in the Oracle Fusion Middleware Performance and Tuning Guide.

5.3.4.1 Configuring Oracle Socket Adapter Connection Pooling
One way to optimize Oracle Socket Adapter performance is by using a Connection
Pool. You can use a connection pool while the socket server you are connecting to does
not close the socket with each interaction. A connection pool lets you use a socket
connection repeatedly, avoiding the overhead of creating a new socket for each
interaction. You must configure the connection pool for the Oracle Socket Adapter
using the Oracle WebLogic Server console.

How to configure Oracle Socket Adapter connection pooling:
1. Log into your Oracle WebLogic Server console. To access the console navigate to

http://servername:portnumber/console.

2. Click Deployments in the left pane for Domain Structure. The Summary of
Deployments page is displayed.

Note: The Connection Pool feature is applicable to outbound
interactions only.

Oracle Socket Adapter Concepts

5-14 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–12 Oracle WebLogic Server Console - Summary of Deployments Page

3. Click SocketAdapter. The Settings for SocketAdapter page is displayed.

4. Click the Configuration tab.

5. Click the Outbound Connection Pools tab, and expand
javax.resource.cci.ConnectionFactory to see the configured connection factories,
as shown in Figure 5–13:

Oracle Socket Adapter Concepts

Oracle JCA Adapter for Sockets 5-15

Figure 5–13 Oracle WebLogic Server Console - Settings for SocketAdapter Page

6. Click eis/socket/SocketAdapter. The Settings for
javax.resource.cci.ConnectionFactory page is displayed.

7. Set the KeepAlive connection factory property to true, as shown in Figure 5–14.
The connection pool feature for the Oracle Socket Adapter is enabled.

Oracle Socket Adapter Concepts

5-16 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–14 Oracle WebLogic Server Console - Settings for
javax.resource.cci.Connectionfactory Page

8. Click Save. The Settings for javax.resource.cci.ConnectionFactory page is
displayed with the message, Deployment plan has been successfully
updated, as shown in Figure 5–15.

Configuring Oracle Socket Adapter

Oracle JCA Adapter for Sockets 5-17

Figure 5–15 Oracle WebLogic Server Console - Settings for
javax.resource.cci.Connectionfactory Page

5.4 Configuring Oracle Socket Adapter
The following tasks are required for configuring Oracle Socket Adapter:

■ Modifying the weblogic-ra.xml File

■ Modeling a Handshake

■ Designing an XSL File Using the XSL Mapper Tool

■ Specifying a TCP Port in a Configuration Plan For an Oracle Socket Adapter

5.4.1 Modifying the weblogic-ra.xml File
To configure Oracle Socket Adapter, you must specify the value of the properties listed
in Table 5–1 in the weblogic-ra.xml file. You can update these properties from the
Oracle WebLogic Server Administration Console. For more information, see
Section 2.18, "Adding an Adapter Connection Factory."

Note: You can modify connection pool parameters by using the
Connection Pool tab of Oracle WebLogic Server Administration
Console.

Configuring Oracle Socket Adapter

5-18 Oracle Fusion Middleware User's Guide for Technology Adapters

The following is a sample weblogic-ra.xml file:

<wls:connection-instance>
 <wls:description>Socket Adapter</wls:description>
 <wls:jndi-name>eis/socket/SocketAdapter</wls:jndi-name>
 <wls:connection-properties>
 <wls:pool-params>
 <wls:initial-capacity>0</wls:initial-capacity>
 <wls:max-capacity>200</wls:max-capacity>
 <wls:capacity-increment>5</wls:capacity-increment>
 <wls:shrinking-enabled>true</wls:shrinking-enabled>

<wls:shrink-frequency-seconds>60</wls:shrink-frequency-seconds>

<wls:connection-creation-retry-frequency-seconds>2</wls:connection-creation-retry
-frequency-seconds>

<wls:connection-reserve-timeout-seconds>5</wls:connection-reserve-timeout-seconds>

<wls:match-connections-supported>true</wls:match-connections-supported>
 <wls:use-first-available>true</wls:use-first-available>
 </wls:pool-params>

<wls:transaction-support>NoTransaction</wls:transaction-support>

<wls:reauthentication-support>true</wls:reauthentication-support>
 <wls:properties>
 <wls:property>
 <wls:name>Host</wls:name>
 <wls:value>localhost</wls:value>
 </wls:property>
 <wls:property>
 <wls:name>Port</wls:name>
 <wls:value>12110</wls:value>
 </wls:property>
 <wls:property>
 <wls:name>Timeout</wls:name>

Table 5–1 Oracle Socket Adapter Configuration Properties

Property Description

Host In case of outbound interaction, the system name on which the socket server is
running, to which you want to connect. In case of inbound interaction, it is always
localhost.

Port In case of outbound interaction, it is the port number on which a socket server is
running, to which an adapter connects. In case of inbound interaction, it is the port
number on which the socket adapter listens for incoming connections.

Timeout With this value set to a nonzero timeout interval, a read() call on the InputStream
associated with this socket blocks for only this amount of time. If the timeout interval
expires, then a java.net.SocketTimeoutException is raised though the socket
is still valid. The option must be enabled before entering the blocking operation to
have effect. The timeout interval must be greater than 0. A timeout interval of 0 is
interpreted as an infinite timeout. The value is in milliseconds.

KeepAlive Applicable only in case of outbound interactions. Should be set to true to use
connection pool feature.

BacklogQueue Applicable in case of inbound interactions. This value indicates the maximum queue
length for incoming connection indications (a request to connect). If a connection
indication arrives when the queue is full, then the connection is refused.

Configuring Oracle Socket Adapter

Oracle JCA Adapter for Sockets 5-19

 <wls:value>10000</wls:value>
 </wls:property>
 <wls:property>
 <wls:name>BacklogQueue</wls:name>
 <wls:value>0</wls:value>
 </wls:property>
 <wls:property>
 <wls:name>KeepAlive</wls:name>
 <wls:value>True</wls:value>
 </wls:property>
 </wls:properties>
 <wls:res-auth>Application</wls:res-auth>
 </wls:connection-properties>
 </wls:connection-instance>

5.4.2 Modeling a Handshake
A handshake may be required to negotiate a connection with a client or a server
socket.

5.4.2.1 Modeling an Outbound Handshake
The outbound XSLT uses an input corresponding to the invoked message. The
outbound XSLT writes to the socket output stream by using extension functions. The
output is dummy for unidirectional or a response for bidirectional communication.

The following example demonstrates the modeling of a Synchronous
Request/Response communication paradigm:

<xsl:stylesheet
...
xmlns:socket="http://www.oracle.com/XSL/Transform/java/oracle.tip.adapter.socket.P
rotocolTranslator" />
xmlns:request="http://www.TragetNameSpace.com/Request" >

 <xsl:template match="/">

 <!–- Write the entire content of "books" element using translator -->
 <xsl:variable name="username" select="socket:socketWriteWithXlation(.)" />

 <!–- Read the stream using translator -->
 <xsl:copy-of select="socket:socketReadWithXlation()" />

 </xsl:template>
</xsl:stylesheet>

5.4.2.2 Modeling an Inbound Handshake
The inbound XSLT uses a dummy input, reads the socket input stream through
extension functions, and constructs the XML record to be published.

The following example demonstrates a handshake in which the client sends across a
user identification terminated by a comma (,) and a password terminated by a
semicolon (;) for validation, and then sends the message payload:

Note: To set up connection pooling, you must set the KeepAlive
property to true.

Configuring Oracle Socket Adapter

5-20 Oracle Fusion Middleware User's Guide for Technology Adapters

<xsl:stylesheet
...
xmlns:socket="http://www.oracle.com/XSL/Transform/java/oracle.tip.adapter.socket.P
rotocolTranslator" />
 <xsl:template match="/">
 <!-- Read the user name -->
 <xsl:variable name="username"
select="socket:socketRead('terminated','terminatedBy=,')" />
 <!-- Read password if user name is correct -->
 <xsl:if test="normalize-space($username)='user'">
 <xsl:variable name="password"
select="socket:socketRead('terminated','terminatedBy=;')" />
 <!-- If password is correct proceed to read the payload using translator
-->
 <xsl:if test="normalize-space($password)='password'">
 <!-- Send an OK -->
 <xsl:variable name="ack1" select="socket:socketWrite('001','','')" />

 <output>
<!-- Wait for the payload -->
 <xsl:copy-of select="socket:socketReadWithXlation()" />
 </output>

 </xsl:if>
 <!-- Send an error -->
 <xsl:else><xsl:variable name="ack2"
select="socket:socketWrite('000','','')" /></xsl:else>
 </xsl:if>
 </xsl:template>
</xsl:stylesheet>

5.4.3 Designing an XSL File Using the XSL Mapper Tool
You can design an XSL file by using the XSL mapper tool for Oracle Socket Adapter.
The following sections describe the procedure for designing XSL for different
communication scenarios:

■ Section 5.4.3.1, "Designing XSL for Inbound Synchronous Request/Reply"

■ Section 5.4.3.2, "Designing XSL for Outbound Synchronous Request/Reply"

5.4.3.1 Designing XSL for Inbound Synchronous Request/Reply
This section describes the procedure for designing XSL for an inbound synchronous
request/reply scenario by using the XSL mapper tool:

Note: To perform this use case, you require the following files from
the artifacts.zip file contained in the
Adapters-101SocketAdapterHelloWorld sample:

■ artifacts/schemas/HelloWorld.xsd

You can access the Adapters-101SocketAdapterHelloWorld
sample on the Oracle SOA Sample Code site.

Copy this file to the HelloWorldComposite\xsd folder under the
HelloWorldComposite project.

Configuring Oracle Socket Adapter

Oracle JCA Adapter for Sockets 5-21

Design an SOA Composite
To design an SOA composite, perform the steps described in Section 5.5.1.2,
"Designing the SOA Composite."

Create an Inbound Oracle Socket Adapter Service
To create an inbound Oracle Socket Adapter service, perform the following steps:

1. Drag and drop Socket Adapter from the Components Palette to the Exposed
Services swim lane. The Welcome page of the Adapter Configuration Wizard is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter the service name, HelloWorld in the Service Name field and then click
Next. The Adapter Interface page is displayed.

4. Select Define from operation and schema (specified later), as shown in the
Figure 5–16, and click Next. The Operation page is displayed.

Figure 5–16 The Adapter Configuration Wizard - Adapter Interface Page

5. Select Inbound Synchronous Request/Reply as the Operation Type and then click
Next. The Socket Connection page is displayed.

6. Enter eis/socket/InboundSocketAdapter in the Socket Connection JNDI
Name field, as shown in Figure 5–17, and click Next. The Messages page is
displayed.

Note: The steps provided in Section 5.5.1.2, "Designing the SOA
Composite" are applicable to a composite with Oracle BPEL PM.
Alternatively, you can create a composite with Mediator.

Configuring Oracle Socket Adapter

5-22 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–17 The Adapter Configuration Wizard Socket Connection Page

7. Click Browse For Schema File that appears at the end of the URL field in the
Request Message Schema box. The Type Chooser dialog is displayed.

8. Click Project Schema Files, HelloWorld.xsd, and HelloWorldProcessRequest, as
shown in Figure 5–18.

Figure 5–18 The Type Chooser Dialog

9. Click OK. The URL field in the Messages page is populated with the
HelloWorld.xsd file.

Configuring Oracle Socket Adapter

Oracle JCA Adapter for Sockets 5-23

10. Click Browse For Schema File that appears at the end of the URL field in the
Reply Message Schema box. The Type Chooser dialog is displayed.

11. Click Project Schema Files, HelloWorld.xsd, and HelloWorldProcessResponse.

12. Click OK. The URL fields in the Messages page are populated with the
HelloWorld.xsd files, as shown in Figure 5–19.

Figure 5–19 The Adapter Configuration Wizard File Messages Page

13. Click Next. The Protocol page is displayed, as shown in Figure 5–20.

Configuring Oracle Socket Adapter

5-24 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–20 The Adapter Configuration Wizard - Protocol Page

14. Select Use XSLT to define the handshake.

15. Click the create new xsl file icon that appears at the end of the Xslt field. The
Input dialog appears, as shown in Figure 5–21.

Figure 5–21 The input Dialog of the Protocol Page

16. Use the default value, request.xsl, as the name of the XSL file, as shown in
Figure 5–21 and click OK.

Configuring Oracle Socket Adapter

Oracle JCA Adapter for Sockets 5-25

17. Click the create new xsl file icon that appears at the end of the ReplyXslt field. The
Input dialog appears.

18. Use the default value, reply.xsl, as the name of the XSL file, and click OK.

19. Click Finish. The request.xsl and the reply.xsl files are created.

Figure 5–22 shows the request.xsl page.

Figure 5–22 The JDeveloper - request.xsl Page

Figure 5–23 shows the reply.xsl page.

Note: A dummy.xsd file appears in the left Source pane of the
request.xsl page, which is used as the source for the XSL mapper
tool.

In an inbound request scenario, Oracle Socket Adapter reads native
data that is received by the socket and converts it to an XML format.
That is, on the source side there is no XML file. Because the XSLT
mapper always needs source and target XSD files, a dummy XSD file
appears in the mapper tool.

Configuring Oracle Socket Adapter

5-26 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–23 The JDeveloper - reply.xsl Page

20. Define the request part of the inbound synchronous request/reply operation as
follows:

a. In the request.xsl page, drag and drop socketRead from the Advanced
Functions list of the Components Palette to the middle pane, as shown in
Figure 5–24.

Note: A dummy.xsd file appears in the right target pane of the
reply.xsl page. This dummy.xsd file is used as the target for the
XSL mapper tool.

Configuring Oracle Socket Adapter

Oracle JCA Adapter for Sockets 5-27

Figure 5–24 The JDeveloper - request.xsl Page

b. Double-click the socketRead advanced function. The Edit Function -
socketRead dialog appears.

c. Enter the function parameters in the nxsdStyle and nxsdStyleAttributes
fields, as shown in Figure 5–25.

Figure 5–25 The Edit Function - socketRead Dialog

Note: The socketRead function reads from the socket input stream
by using the StyleReader exposed by the NXSD framework.

Configuring Oracle Socket Adapter

5-28 Oracle Fusion Middleware User's Guide for Technology Adapters

d. Click OK. The request.xsl (XSL mapper tool) page is displayed.

e. Link the sockRead function in the middle pane to the target input node on
the right pane. The request.xsl (XSL mapper tool) with the XSL mapping is
displayed, as shown in Figure 5–26.

Figure 5–26 The JDeveloper - request.xsl Page

21. Define the reply part of the inbound synchronous request/reply operation as
follows:

a. From the Component Palette list, select Advanced, and then select Advanced
Functions. A list of advanced functions are displayed.

b. In the reply.xsl page, drag and drop socketWrite from the Advanced
Functions list of the Component Palette to the middle pane.

c. Double-click the socketWrite advanced function. The Edit Function -
socketWrite dialog appears.

d. Enter the function parameters in the valueToWrite, nxsdStyle, and
nxsdStyleAttributes fields, as shown in Figure 5–27.

Configuring Oracle Socket Adapter

Oracle JCA Adapter for Sockets 5-29

Figure 5–27 The Edit Function - socketWrite Dialog

e. Click OK. The reply.xsl (XSL mapper tool) page is displayed.

f. Link the sockWrite function in the middle pane to the target input node on
the right pane. The reply.xsl (XSL mapper tool) with the XSL mapping is
displayed, as shown in Figure 5–28.

Figure 5–28 The JDeveloper - reply.xsl Page

Note: The socketWrite function writes to the socket output stream
by using the StyleReader exposed by the NXSD framework.

Configuring Oracle Socket Adapter

5-30 Oracle Fusion Middleware User's Guide for Technology Adapters

22. Click File, Save All. The request.xsl and reply.xsl files for the inbound Oracle
Socket Adapter are created.

5.4.3.2 Designing XSL for Outbound Synchronous Request/Reply
This section describes the procedure for designing XSL for an outbound synchronous
request/reply scenario by using the XSL mapper tool:

Design an SOA Composite
To design an SOA composite, perform the steps described in Section 5.5.1.2,
"Designing the SOA Composite.".

Create an Outbound Oracle Socket Adapter Reference
To create an outbound Oracle Socket Adapter reference, perform the following steps:

1. Drag and drop Socket Adapter from the Components Palette to the External
References swim lane. The Welcome page of the Adapter Configuration Wizard is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter the service name, HelloWorld in the Service Name field and then click
Next. The Adapter Interface page is displayed.

4. Select Define from operation and schema (specified later), as shown in the
Figure 5–16 and click Next. The Operation page is displayed.

5. Select Outbound Synchronous Request/Reply as the Operation Type and then
click Next. The Socket Connection page is displayed.

6. Enter eis/socket/OutboundSocketAdapter in the Socket Connection JNDI
Name field and click Next. The Messages page is displayed.

7. Click Browse For Schema File that appears at the end of the URL field in the
Request Message Schema box. The Type Chooser dialog is displayed.

8. Click Project Schema Files, HelloWorld.xsd, and HelloWorldProcessRequest, as
shown in Figure 5–18.

9. Click OK. The URL field in the Messages page is populated with the
HelloWorld.xsd file.

Note: To perform this use case, you require the following files from
the artifacts.zip file contained in the
Adapters-101SocketAdapterHelloWorld sample:

■ artifacts/schemas/HellowWorld.xsd

You can access the Adapters-101SocketAdapterHelloWorld
sample on the Oracle SOA Sample Code site.

Copy the HelloWorld.xsd file to HelloWorldComposite\xsd
under the HelloWorldComposite project:

Note: The steps provided in Section 5.5.1.2, "Designing the SOA
Composite" are applicable to a composite with Oracle BPEL PM.
Alternatively, you can create a composite with Mediator.

Configuring Oracle Socket Adapter

Oracle JCA Adapter for Sockets 5-31

10. Click Browse For Schema File that appears at the end of the URL field in the
Reply Message Schema box. The Type Chooser dialog is displayed.

11. Click Project Schema Files, HelloWorld.xsd, and HelloWorldProcessResponse.

12. Click OK. The URL fields in the Messages page are populated with the
HelloWorld.xsd files, as shown in Figure 5–19.

13. Click Next. The Protocol page is displayed.

14. Select Use XSLT to define the handshake.

15. Click the create new xsl file icon that appears at the end of the Xslt field. The
Input dialog appears.

16. Use the default value, invoke.xsl, as the name of the XSL file and click OK.

17. Click Finish. The invoke.xsl file appears in the XSL mapper tool, as shown in
Figure 5–29.

Figure 5–29 The JDeveloper - invoke.xsl Page

18. Right-click the HelloWorldProcessResponse element on the target side. A menu is
displayed, as shown in Figure 5–30.

Configuring Oracle Socket Adapter

5-32 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–30 The JDeveloper - invoke.xsl Page

19. Click Add Variable.... The Add Variable dialog is displayed, as shown in
Figure 5–31.

Figure 5–31 The Add Variable Dialog

20. Enter var1 in the Local Name field, and click OK. The var1 variable is added to
the target pane of the XSL mapper tool.

21. From the Component Palette list, select Advanced; then, select Advanced
Functions. A list of advanced functions is displayed.

22. Define the request part of the outbound synchronous request/reply operation, to
write the data to the socket server, as follows:

a. Drag and drop socketWriteWithXlation from the Advanced Functions list of
the Component Palette to the middle pane, as shown in Figure 5–32.

Configuring Oracle Socket Adapter

Oracle JCA Adapter for Sockets 5-33

Figure 5–32 The JDeveloper - invoke.xsl Page

b. Drag the var1 node to the socketWriteWithXlation function. A link is created,
as shown in Figure 5–33.

Figure 5–33 The JDeveloper - invoke.xsl Page

c. Double-click the socketWriteWithXlation advanced function. The Edit
Function - socketWriteWithXlation dialog appears.

d. Enter a dot (.) in the NodeList field, as shown in Figure 5–34.

Configuring Oracle Socket Adapter

5-34 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–34 The Edit Function - socketWriteWithXlation Dialog

e. Click OK. A Warning dialog appears.

f. Click Yes. The invoke.xsl page is displayed. The request part of the
Synchronous Request/Reply operation is defined.

23. Define the reply part of the outbound synchronous request/reply operation as
follows:

a. Drag and drop socketReadWithXlation from the Advanced Functions list of
the Component Palette to the middle pane, as shown in Figure 5–35.

Note: The socketWriteWithXlation function writes to the
socket output stream using the schema configured for the output.

The dot (.) specified in the NodeList field signifies writing the
HelloWorldProcessRequest to the top level node.

Configuring Oracle Socket Adapter

Oracle JCA Adapter for Sockets 5-35

Figure 5–35 The JDeveloper - invoke.xsl Page

b. From the Component Palette list, select General; then, select XSLT Constructs.
A list of XSLT constructs is displayed.

c. Drag copy-of from the Component Palette to HelloWorldProcessResponse in
the target pane. The Copy-of Type Dialog appears, as shown in Figure 5–36.

Configuring Oracle Socket Adapter

5-36 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–36 The JDeveloper - invoke.xsl Page with Copy-of Type Dialog

d. Click OK. The invoke.xsl (XSL mapper tool) page is displayed with the
copy-of XSLT construct added to the target pane, as shown in Figure 5–37.

Figure 5–37 The JDeveloper - invoke.xsl Page

Configuring Oracle Socket Adapter

Oracle JCA Adapter for Sockets 5-37

e. Drag the copy-of XSLT construct to the socketReadWithXlation function. A
link is created, as shown in Figure 5–38.

Figure 5–38 The JDeveloper - invoke.xsl Page

24. Click File, Save All. The Outbound Synchronous Request/Reply handshake is
defined.

5.4.4 Specifying a TCP Port in a Configuration Plan For an Oracle Socket Adapter
To specify a TCP port in a configuration plan for an Oracle Socket Adapter, perform
the following steps (where <service-name> is Service name):

1. Add a port property to your <service-name>_tcp.jca file:

<property name="Port" value="Port"/>
2. Add the following code to your configuration plan XML file:

<service_name=<XXXXXX">
 <property>
 <property name="Port">
 <replace>2222</replace>
 </property>
 <binding type’"jca"/>
</service>

3. Add the port property to your .xml file under the service element and specify a
default value, in this example, 1111

<service name="XXXXX" ui:wsdlLocation
 <interface.wsdl.interface="..."/>
 <binding.jca config="XXXX_tcp.jca"/>
 <property name="Port" type=xs:string" many="false"
override="may">1111</property>

Oracle Socket Adapter Use Cases

5-38 Oracle Fusion Middleware User's Guide for Technology Adapters

</service>

4. Deploy your composite with the configuration plan.

When deployed, the Oracle Socket Adapter listens on port 2222, as provided in the
configuration plan.

If you deploy the composite without a configuration plan or if the configuration plan
does not override the Port property, then the Oracle Socket Adapter listens on the
socket that the composite.xml file's default Port property specifies (in this example,
port 1111).

5.5 Oracle Socket Adapter Use Cases
This section includes the following Oracle Socket Adapter use cases:

■ Section 5.5.1, "Oracle Socket Adapter Hello World"

■ Section 5.5.2, "Flight Information Display System"

5.5.1 Oracle Socket Adapter Hello World
This is a simple HelloWorld use case, which demonstrates the synchronous inbound
request/response and synchronous outbound request/response modes of
communication using Oracle Socket Adapter. The HelloWorld business process takes
an input string from the Oracle Socket Adapter inbound service and publishes the
message to the BPEL process. The BPEL process invokes the Oracle Socket Adapter
outbound service (a simple HelloWorld Server, which adds a prefix?Hello? to the input
string and returns it) and returns the received string using a synchronous reply.

This use case includes the following sections:

■ Section 5.5.1.1, "Prerequisites"

■ Section 5.5.1.2, "Designing the SOA Composite"

■ Section 5.5.1.3, "Creating the Inbound Oracle Socket Adapter Service"

■ Section 5.5.1.4, "Creating the Outbound Oracle Socket Adapter Service"

■ Section 5.5.1.5, "Wiring Services and Activities"

■ Section 5.5.1.6, "Deploying with JDeveloper"

■ Section 5.5.1.7, "Monitoring Using the Oracle Enterprise Manager Fusion
Middleware Control Console (Fusion Middleware Control Console)"

5.5.1.1 Prerequisites
To perform this use case, you require the following files from the artifacts.zip file
contained in the Adapters-101SocketAdapterHelloWorld sample:

■ artifacts/schemas/HelloWorld.xsd

■ artifacts/xsl/request.xsl

■ artifacts/xsl/reply.xsl

■ artifacts/xsl/invoke.xsl

You can access the Adapters-101SocketAdapterHelloWorld sample on the
Oracle SOA Sample Code site.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-39

5.5.1.2 Designing the SOA Composite
You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following:

1. In Application Navigator of JDeveloper, click New Application. The Create
Generic Application - Name your application page is displayed.

2. Enter helloworld-socket in the Application Name field, as shown in
Figure 5–39, and then click Next. The Name your project page is displayed.

Figure 5–39 The Create SOA Application Dialog

3. Click OK. The Name Your Project dialog is displayed.

4. Enter HelloWorldComposite in the Project Name field, and then select SOA
under Project Technologies and move it to the Selected box by clicking the
right-arrow, as shown in Figure 5–40.

The HelloWorld application and the HelloWorldComposite project appear in the
Application Navigator.

Oracle Socket Adapter Use Cases

5-40 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–40 The Create Project Dialog

5. Click Next. The Configure SOA settings dialog appears.

6. Select Composite With BPEL in the Composite Template box, as shown in
Figure 5–41, and click Finish. The Create BPEL Process dialog is displayed.

Figure 5–41 The Configure SOA Settings Dialog

7. Enter HelloWorldFlow in the Name field and select Define Service Later from
the Template box, as shown in Figure 5–42.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-41

Figure 5–42 The Create BPEL Process Dialog

8. Click OK. The HelloWorld application and the HelloWorldComposite project
appear in the design area, as shown in Figure 5–43.

Figure 5–43 The JDeveloper - composite.xml

9. Copy the HelloWorld.xsd file to the xsd directory in your project (see
Section 5.5.1.1, "Prerequisites" for the location of this file).

10. Copy the request.xsl, reply.xsl, and invoke.xsl files to the xsl directory
in your project (see Section 5.5.1.1, "Prerequisites" for the location of these files).

Oracle Socket Adapter Use Cases

5-42 Oracle Fusion Middleware User's Guide for Technology Adapters

5.5.1.3 Creating the Inbound Oracle Socket Adapter Service
Perform the following steps to create an inbound Oracle Socket Adapter service:

1. Drag and drop Socket Adapter from the Components Palette to the Exposed
Services swim lane. The Welcome page of the Adapter Configuration Wizard is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter HelloWorldClient in the Service Name field, as shown in Figure 5–44.

Figure 5–44 The Adapter Configuration Wizard Service Name Page

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), as shown in the
Figure 5–45 and click Next. The Operation page is displayed.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-43

Figure 5–45 The Adapter Configuration Wizard - Adapter Interface Page

6. Select Inbound Synchronous Request/Reply as the Operation Type, as shown in
Figure 5–46.

Figure 5–46 The Adapter Configuration Wizard Operation Page

7. Click Next. The Socket Connection page is displayed.

8. Enter eis/socket/InboundSocketAdapter in the Socket Connection JNDI
Name field, as shown in Figure 5–47, and click Next. The Messages page is
displayed.

Oracle Socket Adapter Use Cases

5-44 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–47 The Adapter Configuration Wizard Socket Connection Page

9. Click Browse For Schema File that appears at the end of the URL field in the
Request Message Schema box. The Type Chooser dialog is displayed.

10. Click Project Schema Files, HelloWorld.xsd, and HelloWorldProcessRequest, as
shown in Figure 5–48.

Figure 5–48 The Type Chooser Dialog

11. Click OK. The URL field in the Messages page is populated with the
HelloWorld.xsd file.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-45

12. Click Browse For Schema File that appears at the end of the URL field in the
Reply Message Schema box. The Type Chooser dialog is displayed.

13. Click Project Schema Files, HelloWorld.xsd, and HelloWorldProcessRequest.

14. Click OK. The URL fields in the Messages page are populated with the
HelloWorld.xsd files, as shown in Figure 5–49.

Figure 5–49 The Adapter Configuration Wizard File Messages Page

15. Click Next. The Protocol page is displayed.

16. Select Use XSLT to define the handshake.

17. Click Browse to select the XSL file that appears at the end of the Xslt field. The
SOA Resource Browser dialog is displayed.

18. Select request.xsl as the file name, as shown in Figure 5–50, and click OK. The Xslt
field is populated.

Oracle Socket Adapter Use Cases

5-46 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–50 The SOA Resource Browser Dialog

19. Click Browse to select the XSL file that appears at the end of the ReplyXslt field.
The SOA Resource Browser dialog is displayed.

20. Select reply.xsl as the file name and click OK. The Xslt field is populated, as
shown in Figure 5–51.

Figure 5–51 The Adapter Configuration Wizard Protocol Page

21. Click Finish. The composite.xml page appears, as shown in Figure 5–52.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-47

Figure 5–52 The JDeveloper - composite.xml Page

5.5.1.4 Creating the Outbound Oracle Socket Adapter Service
Perform the following steps to create an outbound Oracle Socket Adapter service:

1. Drag and drop Socket Adapter from the Component Palette to the External
References swim lane. The Welcome page of the Adapter Configuration Wizard is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter HelloWorldServer in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select Outbound Synchronous Request/Reply as the operation type, as shown in
Figure 5–53.

Oracle Socket Adapter Use Cases

5-48 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–53 The Adapter Configuration Wizard Operation Type Page

7. Click Next. The Socket Connection page is displayed.

8. Enter eis/socket/OutboundSocketAdapter in the Socket Connection JNDI
Name field, as shown in Figure 5–54, and click Next. The Messages page is
displayed.

Figure 5–54 The Adapter Configuration Wizard Socket Connection Page

9. Click Browse For Schema File that appears at the end of the URL field in the
Request Message Schema box. The Type Chooser dialog is displayed.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-49

10. Click Project Schema Files, HelloWorld.xsd, and HelloWorldProcessRequest, as
shown in Figure 5–48.

11. Click OK. The URL field in the Messages page is populated with the
HelloWorld.xsd file.

12. Click Browse For Schema File that appears at the end of the URL field in the
Reply Message Schema box. The Type Chooser dialog is displayed.

13. Click Project Schema Files, HelloWorld.xsd, and HelloWorldProcessResponse.

14. Click OK. The URL fields in the Messages page are populated with the
HelloWorld.xsd files, as shown in Figure 5–49.

15. Click Next. The Protocol page is displayed.

16. Select Use XSLT to define the handshake.

17. Click Browse to select the XSL file that appears at the end of the Xslt field. The
SOA Resource Browser dialog is displayed.

18. Select invoke.xsl as the file name, as shown in Figure 5–55, and click OK. The Xslt
field is populated.

Figure 5–55 The SOA Resource Browser Dialog

19. Click Finish. The Composite.xml page appears, as shown in Figure 5–56.

Oracle Socket Adapter Use Cases

5-50 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–56 The JDeveloper - composite.xml Page

5.5.1.5 Wiring Services and Activities
You have to assemble or wire the three components that you have created: Inbound
adapter service, BPEL process, Outbound adapter reference. Perform the following
steps to wire the components:

1. Drag the small triangle in the HelloWorldClient in the Exposed Services area to the
drop zone that appears as a green triangle in the HelloWorldFlow BPEL process in
the Components area.

2. Drag the small triangle in the HelloWorldFlow BPEL process in the Components
area to the drop zone that appears as a green triangle in the HelloWorldServer in
the External References area.

The JDeveloper composite.xml appears, as shown in Figure 5–57.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-51

Figure 5–57 The JDeveloper - composite.xml

3. Click File, Save All.

Add a Receive Activity
1. Double-click HelloWorldFlow. The BPELHelloWorld.bpel page is displayed.

2. Drag and drop a Receive activity from the Component Palette to the design area,
as shown in Figure 5–58.

Oracle Socket Adapter Use Cases

5-52 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–58 The JDeveloper - HelloWorldFlow.bpel

3. Double-click the Receive activity. The Receive dialog is displayed.

4. Enter ReceiveInput in the Name field, as shown in Figure 5–59.

Figure 5–59 The Receive Dialog

5. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

6. Select HelloWorldClient, as shown in Figure 5–60, and click OK.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-53

Figure 5–60 The Partner Link Chooser Dialog

7. Click the Auto-Create Variable icon to the right of the Variable field in the Receive
dialog, as shown in Figure 5–61. The Create Variable dialog is displayed.

Figure 5–61 The Receive Dialog

8. Select the default variable name and click OK. The Variable field is populated with
the default variable name.

9. Check Create Instance, and click OK. The JDeveloper HelloWorldFlow.bpel page
appears, as shown in Figure 5–62.

Oracle Socket Adapter Use Cases

5-54 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–62 The JDeveloper - HelloWorldFlow.bpel

Add an Invoke Activity
1. Drag and drop an Invoke activity after the ReceiveInput activity from the

Component Palette to the design area, as shown in Figure 5–63.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-55

Figure 5–63 The JDeveloper - HelloWorldFlow.bpel

2. Double-click the Invoke activity. The Invoke dialog is displayed.

3. Enter WriteHelloWorld in the Name field, as shown in Figure 5–64.

Figure 5–64 The JDeveloper - HelloWorldFlow.bpel

Oracle Socket Adapter Use Cases

5-56 Oracle Fusion Middleware User's Guide for Technology Adapters

4. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

5. Select HelloWorldServer, as shown in Figure 5–65, and click OK.

Figure 5–65 The Partner Link Chooser Dialog

6. Click the Automatically Create Input Variable icon to the right of the Input
variable field in the Invoke dialog. The Create Variable dialog is displayed.

7. Select the default variable name and click OK. The Variable field is populated with
the default variable name.

8. Repeat the same for selecting the output variable. The Invoke dialog is displayed,
as shown in Figure 5–66.

Figure 5–66 The Invoke Dialog

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-57

9. Click OK. The JDeveloper HelloWorldFlow.bpel page appears, as shown in
Figure 5–67.

Figure 5–67 The JDeveloper - HelloWorldFlow.bpel

Add a Reply Activity
1. Drag and drop a Reply activity from the Component Palette to the design area, as

shown in Figure 5–68.

Oracle Socket Adapter Use Cases

5-58 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–68 The JDeveloper - HelloWorldFlow.bpel

2. Double-click the Reply activity. The Reply dialog is displayed.

3. Enter Reply in the Name field.

4. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

5. Select HelloWorldClient, as shown in Figure 5–60, and click OK.

6. Click the Auto-Create Variable icon to the right of the Variable field in the Reply
dialog. The Create Variable dialog is displayed.

7. Select the default variable name and click OK. The Variable field is populated with
the default variable name, as shown in Figure 5–69.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-59

Figure 5–69 The Reply Dialog

8. Click OK. The JDeveloper HelloWorldFlow.bpel page appears, as shown in
Figure 5–70.

Figure 5–70 The JDeveloper - HelloWorldFlow.bpel

Add Assign Activities
1. Drag and drop an Assign activity from the Component Palette in between the

Receive and Invoke activities in the design area.

2. Double-click the Assign activity. The Assign dialog is displayed.

Oracle Socket Adapter Use Cases

5-60 Oracle Fusion Middleware User's Guide for Technology Adapters

3. Click the Copy Operation tab. The Assign dialog is displayed, as shown in
Figure 5–71.

Figure 5–71 The Assign Dialog - Copy Operation Tab

4. Select Copy Operation. The Create Copy Operation dialog is displayed.

5. In the left pane, under the ReceiveInput_InboundRequestReply_InputVariable
variable select, ns3:input.

6. In the right pane, under the WriteHelloWorld_OutboundRequestReply_
InputVariable variable select, ns3:input, as shown in Figure 5–72.

Figure 5–72 The Create Copy Operation Dialog

7. Click OK. The Assign dialog is displayed.

8. Click OK. The JDeveloper HelloWorldFlow.bpel page is displayed.

9. Add another Assign activity in between the Invoke and the Reply activities.

10. Double-click the assign activity.

11. Click the Copy Operation tab, and select Copy Operation.

12. In the left pane, select ns3:result under WriteHelloWorld_
OutboundRequestReply_OutputVariable.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-61

13. In the right pane, select ns3:result under Reply_InboundRequestReply_
OutputVariable and click OK.

14. Click OK, the JDeveloper HelloWorldFlow.bpel page is displayed, as shown in
Figure 5–73.

Figure 5–73 The JDeveloper - HelloWorldFlow.bpel

15. Click File, Save All.

5.5.1.6 Deploying with JDeveloper
You must deploy the application profile for the SOA project and the application you
created in the preceding steps. To deploy the application profile using JDeveloper,
perform the following steps:

1. Create an application server connection. For more information, see Section 2.6,
"Creating an Application Server Connection for Oracle JCA Adapters."

2. Deploy the application. For more information, see Section 2.7, "Deploying Oracle
JCA Adapter Applications from JDeveloper."

5.5.1.7 Monitoring Using the Oracle Enterprise Manager Fusion Middleware Control
Console (Fusion Middleware Control Console)
You can monitor the deployed SOA composite using the Fusion Middleware Control
Console. Perform the following steps:

1. Navigate to http://servername:portnumber/em. The composite you
deployed appears in the application navigator.

2. Click the SOA composite that you deployed. The Dashboard is displayed.

Note your Instance ID in the Recent Instances area.

3. Click the Instances tab. The Instance IDs of the SOA composite are listed.

Oracle Socket Adapter Use Cases

5-62 Oracle Fusion Middleware User's Guide for Technology Adapters

4. Click the Instance ID that you noted in Step 2. The Flow Trace page is displayed.

5. Click your BPEL process instance. The Audit Trail of the BPEL process instance is
displayed.

6. Expand a payload node to view payload details.

7. Click the Flow tab to view the process flow. Additionally, click an activity (such as
invoke, receive) to view the details of an activity.

5.5.2 Flight Information Display System
The flight information display system use case demonstrates the various modes of
defining handshakes by using Oracle Socket Adapter.A flight information display
server (FIDS) is started by an FIDS client requesting information on flight status for
flights originating from a particular source, JFK, or SFO. The FIDS, in turn, invokes
flight data requests for three airlines, Airline1, Airline 2, and Airline 3. The FIDS then
collates the information received and replies to the FIDS client by using the HTTP
protocol.

This use case includes the following sections:

■ Section 5.5.2.1, "Prerequisites"

■ Section 5.5.2.2, "Designing the SOA Composite"

■ Section 5.5.2.3, "Creating the Inbound Oracle Socket Adapter Service"

■ Section 5.5.2.4, "Creating Outbound Oracle Socket Adapter Services"

■ Section 5.5.2.5, "Wiring Services and Activities"

■ Section 5.5.2.6, "Deploying with JDeveloper"

■ Section 5.5.2.7, "Monitoring Using the Fusion Middleware Control Console"

5.5.2.1 Prerequisites
To perform this use case, you require the following files from the artifacts.zip file
contained in the
Adapters-102SocketAdapterFlightInformationDisplaySystem sample:

■ artifacts/schemas/Airline1.xsd

■ artifacts/schemas/Airline2.xsd

■ artifacts/schemas/Airline3.xsd

■ artifacts/schemas/FIDS.xsd

■ artifacts/xsl/request.xsl

■ artifacts/xsl/reply.xsl

■ artifacts/xsl/invoke.xsl

To obtain the
Adapters-102SocketAdapterFlightInformationDisplaySystem sample,
access the Oracle SOA Sample Code site.

5.5.2.2 Designing the SOA Composite
You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following steps:

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-63

1. In the Application Navigator of JDeveloper, click New Application. The Create
Generic Application - Name your application page is displayed.

2. Enter FIDSApp in the Application Name field, and then click Next. The Name
your project page is displayed.

3. Click OK. The Name Your Project dialog is displayed.

4. Enter FIDSComposite in the Project Name field, and then select SOA under
Project Technologies and move it to the Selected box by clicking the right-arrow.

The FIDSApp application and the FIDSComposite project appear in the
Application Navigator.

5. Click Next. The Configure SOA Settings dialog appears.

6. Select Composite With BPEL in the Composite Template box, and click Finish.
The Create BPEL Process dialog is displayed.

7. Enter BPEL_FIDS in the Name field and select Define Service Later from the
Template box.

8. Click OK. The FIDSApp application and the FIDSComposite project appear in the
design area, as shown in Figure 5–74.

Figure 5–74 The JDeveloper - composite.xml

9. Copy the Airline1.xsd, Airline2.xsd, Airline3.xsd, and FIDS.xsd files
to FIDSComposite\xsd under the project FIDSComposite (see Section 5.5.2.1,
"Prerequisites" for the location of these files).

10. Copy invoke.xsl, request.xsl, and reply.xsl to FIDSComposite\xsl
under the project FIDSComposite (see Section 5.5.2.1, "Prerequisites" for the
location of these files).

Oracle Socket Adapter Use Cases

5-64 Oracle Fusion Middleware User's Guide for Technology Adapters

5.5.2.3 Creating the Inbound Oracle Socket Adapter Service
Perform the following steps to create an inbound Oracle Socket Adapter service that
would be used to expose the FIDSApp application:

1. Drag and drop Socket Adapter from the Components Palette to the Exposed
Services swim lane. The Welcome page of the Adapter Configuration Wizard is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter FIDS in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select Inbound Synchronous Request/Reply as the operation type.

7. Click Next. The Socket Connection page is displayed.

8. Enter eis/socket/InboundSocketAdapter in the Socket Connection JNDI
Name field and then select Specify Host and Port, as shown in Figure 5–75.

Figure 5–75 The Adapter Configuration Wizard Socket Connection Page

9. Enter 9000 in the PortNumber field and click Next. The Messages page is
displayed.

10. Click Browse For Schema File that appears at the end of the URL field in the
Request Message Schema box. The Type Chooser dialog is displayed.

11. Click Project Schema Files, FIDS.xsd, and FIDSProcessRequest, as shown in
Figure 5–76.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-65

Figure 5–76 The Type Chooser Dialog

12. Click OK. The URL field in the Messages page is populated with the FIDS.xsd file.

13. Click Browse For Schema File that appears at the end of the URL field in the
Reply Message Schema box. The Type Chooser dialog is displayed.

14. Click Project Schema Files, FIDS.xsd, and FIDSProcessReply.

15. Click OK. The URL fields in the Messages page are populated with the FIDS.xsd
files, as shown in Figure 5–77.

Figure 5–77 The Adapter Configuration Wizard - Messages Page

16. Click Next. The Protocol page is displayed.

Oracle Socket Adapter Use Cases

5-66 Oracle Fusion Middleware User's Guide for Technology Adapters

17. Select Use XSLT to define the handshake.

18. Click the Browse to select the XSL file icon that appears at the end of the Xslt
field. The SOA Resource Browser dialog is displayed.

19. Select request.xsl as the file name and click OK. The Xslt field is populated.

20. Click the Browse to select the XSL file icon that appears at the end of the
ReplyXslt field. The SOA Resource Browser dialog is displayed.

21. Select reply.xsl as the file name and click OK. The Xslt field is populated, as
shown in Figure 5–78.

Figure 5–78 The Adapter Configuration Wizard - Protocol Page

22. Click Finish. The composite.xml page appears, as shown in Figure 5–79.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-67

Figure 5–79 The JDeveloper - composite.xml Page

5.5.2.4 Creating Outbound Oracle Socket Adapter Services
Perform the following steps to create an outbound Oracle Socket Adapter service for
the Airline1 server socket:

1. Drag and drop Socket Adapter from the Component Palette to the External
References swim lane. The Welcome page of the Adapter Configuration Wizard is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter Airline1 in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select Outbound Synchronous Request/Reply as the Operation Type.

7. Click Next. The Socket Connection page is displayed.

8. Enter eis/socket/OutboundSocketAdapter in the Socket Connection JNDI
Name field, as shown in Figure 5–80, and then select Specify Host and Port.

Oracle Socket Adapter Use Cases

5-68 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–80 The Adapter Configuration Wizard - Socket Connection Page

9. Enter the name of the system where the Airline1 socket server program must run
in the HostName field and 9001 in the PortNumber field, and click Next. The
Messages page is displayed.

10. Click Browse For Schema File that appears at the end of the URL field in the
Request Message Schema box. The Type Chooser dialog is displayed.

11. Click Project Schema Files, Airline1.xsd, and Source.

12. Click OK. The URL field in the Messages page is populated with the Airline1.xsd
file.

13. Click Browse For Schema File that appears at the end of the URL field in the
Reply Message Schema box. The Type Chooser dialog is displayed.

14. Click Project Schema Files, Airline1.xsd, and Flight-Details.

15. Click OK. The URL fields in the Messages page are populated with the
Airline1.xsd files, as shown in Figure 5–81.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-69

Figure 5–81 The Adapter Configuration Wizard - Messages Page

16. Click Next. The Protocol page is displayed.

17. Select Use XSLT to define the handshake.

18. Click Browse to select the XSL file that appears at the end of the Xslt field. The
SOA Resource Browser dialog is displayed.

19. Select invoke.xsl as the file name, as shown in Figure 5–82, and click OK. The Xslt
field is populated.

Figure 5–82 The SOA Resource Browser Dialog

20. Click Finish. The composite.xml page appears, as shown in Figure 5–83.

Oracle Socket Adapter Use Cases

5-70 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–83 The JDeveloper - composite.xml Page

Perform the following steps to create an outbound Oracle Socket Adapter service for
the Airline2 server socket:

1. Drag and drop Socket Adapter from the Component Palette to the External
References swim lane. The Welcome page of the Adapter Configuration Wizard is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter Airline2 in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select Outbound Synchronous Request/Reply as the operation type.

7. Click Next. The Socket Connection page is displayed.

8. Enter eis/socket/OutboundSocketAdapter in the Socket Connection JNDI
Name field and then select Specify Host and Port.

9. Enter the name of the system where the Airline2 socket server program must run
in the HostName field and 9002 in the PortNumber field, and click Next. The
Messages page is displayed.

10. Click Browse For Schema File that appears at the end of the URL field in the
Request Message Schema box. The Type Chooser dialog is displayed.

11. Click Project Schema Files, Airline2.xsd, and Source.

12. Click OK. The URL field in the Messages page is populated with the
Airline2.xsd file.

13. Click Browse For Schema File that appears at the end of the URL field in the
Reply Message Schema box. The Type Chooser dialog is displayed.

14. Click Project Schema Files, Airline2.xsd, and flight-details.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-71

15. Click OK. The URL fields in the Messages page are populated with the
Airline2.xsd files.

16. Click Next. The Protocol page is displayed.

17. Select No Handshake.

18. Click Finish. The composite.xml page appears, as shown in Figure 5–84.

Figure 5–84 The JDeveloper - composite.xml Page

Perform the following steps to create an outbound Oracle Socket Adapter service for
the Airline3 server socket:

1. Drag and drop Socket Adapter from the Component Palette to the External
References swim lane. The Welcome page of the Adapter Configuration Wizard is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter Airline3 in the Service Name field.

4. Click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

6. Select Outbound Synchronous Request/Reply as the operation type.

7. Click Next. The Socket Connection page is displayed.

8. Enter eis/socket/OutboundSocketAdapter in the Socket Connection JNDI
Name field and then select Specify Host and Port.

9. Enter the name of the system where the Airline3 socket server program must run
in the HostName field and 9003 in the PortNumber field, and click Next. The
Messages page is displayed.

10. Click Browse For Schema File that appears at the end of the URL field in the
Request Message Schema box. The Type Chooser dialog is displayed.

Oracle Socket Adapter Use Cases

5-72 Oracle Fusion Middleware User's Guide for Technology Adapters

11. Click Project Schema Files, Airline3.xsd, and src.

12. Click OK. The URL field in the Messages page is populated with the
Airline3.xsd file.

13. Click Browse For Schema File that appears at the end of the URL field in the
Reply Message Schema box. The Type Chooser dialog is displayed.

14. Click Project Schema Files, Airline3.xsd, and airline.

15. Click OK. The URL fields in the Messages page are populated with the
Airline3.xsd files.

16. Click Next. The Protocol page is displayed.

17. Select Use Custom Java Code to define the handshake.

18. Enter com.oracle.socket.fids.custom.Airline3Custom in the Java Class
field.

19. Click Finish. The composite.xml page appears, as shown in Figure 5–85.

Figure 5–85 The JDeveloper - composite.xml Page

5.5.2.5 Wiring Services and Activities
You have to assemble or wire the components that you have created: Inbound adapter
service, BPEL process, Outbound adapter references. Perform the following steps to
wire the components:

1. Drag the small triangle in the FIDS client in the Exposed Services area to the drop
zone that appears as a green triangle in the BPEL_FIDS process in the Components
area.

2. Drag the small triangle in the BPEL_FIDS process in the Components area to the
drop zone that appears as a green triangle in the Airline1, Airline2, and Airline3
servers in the External References area.

The JDeveloper composite.xml file appears, as shown in Figure 5–86.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-73

Figure 5–86 The JDeveloper - composite.xml

3. Click File, Save All.

Add a Receive Activity
1. Double-click BPEL_FIDS. The BPELFIDS.bpel page is displayed.

2. Drag and drop a Receive activity from the Component Palette to the design area.

3. Double-click the Receive activity. The Receive dialog is displayed.

4. Retain the default name Receive_1 in the Name field.

5. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

6. Select FIDS, as shown in Figure 5–87, and click OK.

Oracle Socket Adapter Use Cases

5-74 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–87 The Partner Link Chooser Dialog

7. Click the Auto-Create Variable icon to the right of the Variable field in the Receive
dialog, as shown in Figure 5–88. The Create Variable dialog is displayed.

Figure 5–88 The Receive Dialog

8. Select the default variable name and click OK. The Variable field is populated with
the default variable name.

9. Check Create Instance, and click OK. The JDeveloper BPEL_FIDS.bpel page
appears, as shown in Figure 5–89.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-75

Figure 5–89 The JDeveloper - BPEL_FIDS.bpel

Add a Reply Activity
1. Drag and drop an Reply activity from the Component Palette to the design area,

as shown in Figure 5–90.

Figure 5–90 The JDeveloper - BPEL_FIDS.bpel

Oracle Socket Adapter Use Cases

5-76 Oracle Fusion Middleware User's Guide for Technology Adapters

2. Double-click the Reply activity. The Reply dialog is displayed.

3. Retain the default name Reply_1 in the Name field.

4. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

5. Select FIDS, as shown in Figure 5–87, and click OK.

6. Click the Auto-Create Variable icon to the right of the Variable field in the Reply
dialog. The Create Variable dialog is displayed.

7. Select the default variable name and click OK. The Variable field is populated with
the default variable name, as shown in Figure 5–91.

Figure 5–91 The Reply Dialog

8. Click OK. The JDeveloper BPEL_FIDS.bpel page appears, as shown in Figure 5–92.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-77

Figure 5–92 The JDeveloper - BPEL_FIDS.bpel

Add a Flow Activity
1. Drag and drop a Flow activity from the Component Palette in between the Receive

and the Reply activities in the design area, as shown in Figure 5–93.

Figure 5–93 The JDeveloper - BPEL_FIDS.bpel

2. Expand the Flow_1 activity. This displays a screen to create sequences.

Oracle Socket Adapter Use Cases

5-78 Oracle Fusion Middleware User's Guide for Technology Adapters

Design the Flow for Airline1 Server
1. Drag and drop a Switch activity from the Component Palette to Sequence_1, as

shown in Figure 5–94.

Figure 5–94 The JDeveloper - BPEL_FIDS.bpel Page

2. Expand the Switch activity. This displays a screen to enter the values for <case>
and <otherwise>.

3. In the <case> section, click the View Condition Expression icon, as shown in
Figure 5–95. The Condition Expression pop-up window is displayed.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-79

Figure 5–95 The JDeveloper - BPEL_FIDS.bpel Page

4. Click the Xpath Expression Builder icon in the pop-up window. The Expression
Builder dialog is displayed.

5. Enter boolean(bpws:getVariableData('Receive_1_
InboundRequestReply_
InputVariable','FIDSProcessRequest','/ns5:FIDSProcessRequest/
ns5:AirlineName')='Airline1') as the expression, as shown in Figure 5–96,
and click OK. The screen returns to the Condition Expression pop-up window.

Note: This expression ensures that this flow is executed only when
information for Airline1 is requested.

Oracle Socket Adapter Use Cases

5-80 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–96 The Expression Builder Dialog

6. Add an invoke activity to the <case> section.

a. Drag and drop an Invoke activity in the <case> section.

b. Double-click the Invoke activity. The Invoke dialog is displayed.

c. Click Browse Partner Links at the end of the Partner Link field. The Partner
Link Chooser dialog is displayed.

d. Select Airline1, and click OK.

e. Click the Automatically Create Input Variable and the Automatically Create
Output Variable icons to the right of the Input and Output Variable fields in
the Invoke dialog. The Create Variable dialogs are displayed.

f. Select the default variable names and click OK. The Variable fields are
populated with the default variable name. The Invoke dialog is displayed.

g. Click OK. The JDeveloper BPEL_FIDS.bpel page is displayed, as shown in
Figure 5–97.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-81

Figure 5–97 The JDeveloper - BPEL_FIDS.bpel

7. Add an assign activity to the <case> section.

a. Drag and drop an Assign activity from the Component Palette before the
Invoke_1 activity in the <case> section.

b. Double-click the Assign_1 activity. The Assign dialog is displayed.

c. Click the Copy Operation tab. The Assign dialog is displayed.

d. Select Copy Operation. The Create Copy Operation dialog is displayed.

e. Create the copy operation between the source from the input variable of the
Receive_1 activity and the source from the input variable of the Invoke_1
activity, as shown in Figure 5–98.

Oracle Socket Adapter Use Cases

5-82 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–98 The Create Copy Operation Dialog

f. Click OK in the Create Copy Operation dialog.

g. Click OK.

The BPEL_FIDS.bpel page is displayed, as shown in Figure 5–99.

Figure 5–99 The JDeveloper - BPELFIDS.bpel

8. Add a Transform activity to the <case> section.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-83

a. Drag and drop a Transform activity in the <case> section, after the Invoke_1
activity.

b. Double-click the Transform activity.

c. Click the Transformation tab.

d. Click the Create...(Alt+N) icon. The Source Variable dialog is displayed.

e. Select Invoke_1_OutboundRequestReply_OutputVariable from the Source
Variable list and click OK.

f. Select Reply_1_InboundRequestReply_OutputVariable from the Target
Variable list.

g. Click OK. The XSL mapper tool is displayed.

h. Link the tns:Flight node from the source, on the left pane to the target
FlightDetails node on the right pane. The Auto Map Preferences dialog
appears.

i. Click OK. The Transformation_1.xsl (XSL mapper tool) is displayed, as shown
in Figure 5–100.

Figure 5–100 The JDeveloper - Transformation_1.XSL Page

9. Click File, Save All. The BPEL_FIDS.bpel page is displayed, as shown in
Figure 5–101, with the flow defined for the Airline1 server.

Oracle Socket Adapter Use Cases

5-84 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–101 The JDeveloper - BPEL_FIDS.bpel

Design the Flow for Airline2 Server
1. Double-click the empty Sequence activity and enter Sequence_2 in the Name

field.

2. Drag and drop a Switch activity from the Component Palette to Sequence_2.

3. Expand the Switch activity. This displays a screen to enter the values for <case>
and <otherwise>.

4. In the <case> section, click the View Condition Expression icon. The Condition
Expression pop-up window is displayed.

5. Click the Xpath Expression Builder icon in the pop-up window. The Expression
Builder dialog is displayed.

6. Enter boolean(bpws:getVariableData('Receive_1_
InboundRequestReply_
InputVariable','FIDSProcessRequest','/ns5:FIDSProcessRequest/
ns5:AirlineName')='Airline2') as the expression, and click OK. The
screen returns to the Condition Expression pop-up window.

7. Add an invoke activity to the <case> section.

a. Drag and drop an Invoke activity in the <case> section.

b. Double-click the Invoke_2 activity. The Invoke dialog is displayed.

Note: This expression ensures that this flow is executed only when
information for Airline2 is requested.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-85

c. Click Browse Partner Links at the end of the Partner Link field. The Partner
Link Chooser dialog is displayed.

d. Select Airline2, and click OK.

e. Click the Automatically Create Input Variable and the Automatically Create
Output Variable icons to the right of the Input and Output Variable fields in
the Invoke dialog. The Create Variable dialogs are displayed.

f. Select the default variable names and click OK. The Input and Output
Variable fields are populated with the default variable names. The Invoke
dialog is displayed.

g. Click OK. An Invoke activity is added to the JDeveloper BPEL_FIDS.bpel page
under Sequence_2.

8. Add an assign activity to the <case> section.

a. Drag and drop an Assign activity from the Component Palette before the
Invoke activity in the <case> section.

b. Double-click the Assign_2 activity. The Assign dialog is displayed.

c. Click the Copy Operation tab. The Assign dialog is displayed.

d. Select Copy Operation. The Create Copy Operation dialog is displayed.

e. Create the copy operation between the source from the input variable of the
Receive_1 activity and the source from the input variable of the Invoke_2
activity, as shown in Figure 5–102.

Figure 5–102 The Create Copy Operation Dialog

f. Click OK in the Create Copy Operation dialog.

g. Click OK.

9. Create a temporary variable and add a Transform activity to the <case> section.

Oracle Socket Adapter Use Cases

5-86 Oracle Fusion Middleware User's Guide for Technology Adapters

a. Click the Variables... icon represented by (x). The Variables dialog is
displayed, as shown in Figure 5–103.

Figure 5–103 The Variables Dialog

b. Click the Create... icon. The Create Variable dialog is displayed, as shown in
Figure 5–104.

Note: The temporary variable is used for storing flight details from
the Airline2 server, which would later be appended to the reply
variable.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-87

Figure 5–104 The Create Variable Dialog

c. Select Message Type as the variable type.

d. Click the Browse Message Types icon at the end of the Message Type field.
The Type Chooser dialog is displayed.

e. Click Message Types, Partner Links, FIDS, FIDS.wsdl, Message Types, and
then FIDSProcessReply_msg_reply, as shown in Figure 5–105.

Figure 5–105 The Type Chooser Dialog

f. Click OK. The Message type field in the Create Variable dialog is populated
with the FIDSProcessReply_msg_reply partner link.

Oracle Socket Adapter Use Cases

5-88 Oracle Fusion Middleware User's Guide for Technology Adapters

g. Click OK. A variable, Variable_1, of type Message Type is added to the
Variables list in the Variable dialog.

h. Click OK to return to the BPEL_FIDS.bpel page.

i. Drag and drop a Transform activity in the <case> section, after the Invoke_2
activity.

j. Double-click the Transform_2 activity.

k. Click the Transformation tab.

l. Click the Create... icon. The Source Variable dialog is displayed.

m. Select Invoke_2_OutboundRequestReply_OutputVariable from the Source
Variable list and click OK.

n. Select Variable_1 from the Target Variable list.

o. Click OK. The XSL mapper tool is displayed.

p. Link the tns:flight node from the source, on the left pane to the target
FlightDetails node on the right pane. The Auto Map Preferences dialog
appears, as shown in Figure 5–106.

Figure 5–106 The Transformation_2.XSL Page With Auto Map Preference Dialog

q. Click OK. The Transformation_2.xsl (XSL mapper tool) file with the XSL
mapping is displayed.

10. Click File, Save All.

The BPEL_FIDS.bpel page is displayed, as shown in Figure 5–107, with the flow
defined for the Airline2 server.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-89

Figure 5–107 The JDeveloper - BPEL_FIDS.bpel

Design the Flow for Airline3 Server
1. Right-click the Flow_1 activity. Click Add Sequence from the menu. Sequence_3

is added.

2. Drag and drop a Switch activity from the Component Palette to Sequence_3.

3. Expand the Switch activity. This displays a screen to enter the values for <case>
and <otherwise>.

4. In the <case> section, click the View Condition Expression icon. The Condition
Expression pop-up window is displayed.

5. Click the Xpath Expression Builder icon in the pop-up window. The Expression
Builder dialog is displayed.

6. Enter boolean(bpws:getVariableData('Receive_1_
InboundRequestReply_
InputVariable','FIDSProcessRequest','/ns5:FIDSProcessRequest/
ns5:AirlineName')='Airline3') as the expression, and click OK. The
screen returns to the Condition Expression pop-up window.

7. Add an invoke activity to the <case> section.

a. Drag and drop an Invoke activity in the <case> section.

b. Double-click the Invoke_3 activity. The Invoke dialog is displayed.

c. Click Browse Partner Links at the end of the Partner Link field. The Partner
Link Chooser dialog is displayed.

d. Select Airline3, and click OK.

Note: This expression ensures that this flow is executed only when
information for Airline3 is requested.

Oracle Socket Adapter Use Cases

5-90 Oracle Fusion Middleware User's Guide for Technology Adapters

e. Click the Automatically Create Input Variable and Automatically Create
Output Variable icon to the right of the Input and Output Variable field in the
Invoke dialog. The Create Variable dialogs are displayed.

f. Select the default variable names and click OK. The Input and Output
Variable fields are populated with the default variable names. The Invoke
dialog is displayed.

g. Click OK. An Invoke activity is added to JDeveloper BPEL_FIDS.bpel page
under Sequence_3.

8. Add an assign activity to the <case> section.

a. Drag and drop an Assign activity from the Component Palette before the
Invoke activity in the <case> section.

b. Double-click the Assign_3 activity. The Assign dialog is displayed.

c. Click the Copy Operation tab. The Assign dialog is displayed.

d. Select Copy Operation. The Create Copy Operation dialog is displayed.

e. Create the copy operation between the source from the input variable of the
Receive_1 activity and the source from the input variable of the Invoke_3
activity, as shown in Figure 5–108.

Figure 5–108 The Create Copy Operation Dialog

f. Click OK in the Create Copy Operation dialog.

g. Click OK.

9. Create a temporary variable and add a Transform activity to the <case> section.

a. Click the Variables... icon represented by (x). The Variables dialog is
displayed, as shown in Figure 5–109.

Note: The temporary variable is used for storing flight details from
the Airline3 server, which would later be appended to the reply
variable.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-91

Figure 5–109 The Variables Dialog

b. Click the Create... icon. The Create Variable dialog is displayed.

c. Select Message Type as the variable type.

d. Click the Browse Message Types icon at the end of the Message Type field.
The Type Chooser dialog is displayed.

e. Click Message Types, Partner Links, FIDS, FIDS.wsdl, Message Types, and
then FIDSProcessReply_msg_reply, as shown in Figure 5–105.

f. Click OK. The Message type field in the Create Variable dialog is populated
with the FIDSProcessReply_msg_reply partner link.

g. Click OK. A variable, Variable_2, of type Message Type is added to the
Variables list in the Variable dialog.

h. Click OK to return to the BPEL_FIDS.bpel page.

i. Drag and drop a Transform activity in the <case> section, after the Invoke_3
activity.

j. Double-click the Transform_3 activity.

k. Click the Transformation tab.

l. Click the Create... icon. The Source Variable dialog is displayed.

m. Select Invoke_3_OutboundRequestReply_OutputVariable from the Source
Variable list and click OK.

n. Select Variable_2 from the Target Variable list.

o. Click OK. The XSL mapper tool is displayed.

p. Link the tns:flight node from the source, on the left pane to the target
FlightDetails node on the right pane. The Auto Map Preferences dialog
appears.

Oracle Socket Adapter Use Cases

5-92 Oracle Fusion Middleware User's Guide for Technology Adapters

q. Click OK. The Transformation_3.xsl (XSL mapper tool) file with the XSL
mapping is displayed, as shown in Figure 5–110.

Figure 5–110 The Transformation_3.XSL Page

10. Click File, Save All. The BPEL_FIDS.bpel page is displayed, as shown in
Figure 5–111, with the flow defined for the Airline3 server.

Figure 5–111 The JDeveloper - BPEL_FIDS.bpel

Add an Assign Activity
1. Drag and drop an Assign activity from the Component Palette in between the

Reply and Receive activities in the design area.

2. Double-click the Assign_4 activity. The Assign dialog is displayed.

3. Click the Copy Operation tab. The Assign dialog is displayed, as shown in
Figure 5–112.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-93

Figure 5–112 The Assign Dialog - Copy Operation Tab

4. Select Append Operation. The Create Append Operation dialog is displayed.

5. Create an append operation to append the information stored in the temporary
variable, Variable_1, to the reply variable, Reply_1_
InboundRequestReply_OutputVariable, as shown in Figure 5–113.

Figure 5–113 The Create Append Operation Dialog

6. Click OK. The Assign dialog is displayed.

7. Select Append Operation. The Create Append Operation dialog is displayed.

8. Create another append operation to append the information stored in the
temporary variable, Variable_2, to the reply variable, Reply_1_
InboundRequestReply_OutputVariable, as shown in Figure 5–114.

Oracle Socket Adapter Use Cases

5-94 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 5–114 The Create Append Operation Dialog

9. Click OK. The Assign dialog is displayed.

10. Click OK. The JDeveloper BPEL_FIDS.bpel page is displayed, as shown in
Figure 5–115.

Oracle Socket Adapter Use Cases

Oracle JCA Adapter for Sockets 5-95

Figure 5–115 The JDeveloper - HelloWorldFlow.bpel

11. Click File, Save All.

5.5.2.6 Deploying with JDeveloper
You must deploy the application profile for the SOA project and the application you
created in the preceding steps. To deploy the application profile using JDeveloper,
perform the following steps:

1. Create an application server connection. For more information, see Section 2.6,
"Creating an Application Server Connection for Oracle JCA Adapters."

2. Deploy the application. For more information, see Section 2.7, "Deploying Oracle
JCA Adapter Applications from JDeveloper."

You must run the Server and Client java programs to test the application. For more
information, see the associated README file.

5.5.2.7 Monitoring Using the Fusion Middleware Control Console
You can monitor the deployed SOA composite using the Fusion Middleware Control
Console. Perform the following steps:

1. Navigate to http://servername:portnumber/em. The composite you
deployed appears in the application navigator.

2. Click the SOA composite that you deployed. The Dashboard is displayed.

Note your Instance ID in the Recent Instances area.

3. Click the Instances tab. The Instance IDs of the SOA composite are listed.

4. Click the Instance ID that you noted in Step 2. The Flow Trace page is displayed.

Oracle Socket Adapter Use Cases

5-96 Oracle Fusion Middleware User's Guide for Technology Adapters

5. Click your BPEL process instance. The Audit Trail of the BPEL process instance is
displayed.

6. Expand a payload node to view payload details.

7. Click the Flow tab to view the process flow. Additionally, click an activity (such as
invoke, receive) to view the details of an activity.

6

Native Format Builder Wizard 6-1

6 Native Format Builder Wizard

This chapter describes the Native Format Builder wizard, which enables you to create
native schemas used for translation. It includes use cases and constructs for the
schema.

This chapter includes the following sections:

■ Section 6.1, "Creating Native Schema Files with the Native Format Builder Wizard"

■ Section 6.2, "Native Schema Constructs"

■ Section 6.3, "Translator XPath Functions"

■ Section 6.4, "Use Cases for the Native Format Builder"

6.1 Creating Native Schema Files with the Native Format Builder Wizard
Oracle JCA Adapters are software components that enable the integration between
various enterprise information systems (EIS) and Oracle BPEL Process Manager
(Oracle BPEL PM), or Oracle Mediator (Mediator). Adapters accept native messages in
XML or non-XML format and publish them to Oracle BPEL PM or Mediator as XML
messages. Adapters can also accept XML messages and convert them back to native
EIS format. This translation from native data format to XML and back is performed
using a definition file (non-XML schema definition), which itself is defined in XML
schema format. The Native Format Builder wizard enables you to sample native data
and create the native XSD (NXSD) grammar for translation of native data.

When you click the Define Schema for Native Format button in the Messages page of
the Adapter Configuration Wizard shown in Figure 6–1, the Native Format Builder
wizard is displayed. The Messages page is the last page that is displayed in the
Adapter Configuration Wizard before the Finish page.

Creating Native Schema Files with the Native Format Builder Wizard

6-2 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–1 Starting the Native Format Builder Wizard

6.1.1 Supported File Formats
The Native Format Builder wizard guides you through the creation of a native schema
file from the following file formats shown in Figure 6–2. You must have a sample data
file format for the selected type to create a native schema. You can also select the
option for editing an existing native schema created with this wizard, except for those
generated from a Document Type Definition (DTD) or COBOL Copybook file types.
For information on editing the native schema file, see Section 6.1.2, "Editing Native
Schema Files."

Figure 6–2 Native Format Builder Wizard

Creating Native Schema Files with the Native Format Builder Wizard

Native Format Builder Wizard 6-3

6.1.1.1 Delimited
This option enables you to create native schemas for records, where the fields are
separated by a value such as a comma or number sign (#).

6.1.1.2 Fixed Length (Positional)
This option enables you to create native schemas for records, where all fields are of
fixed lengths.

6.1.1.3 Complex Type
This option enables you to create native schema for records, where the fields may
themselves be records having multiple delimiter types.

6.1.1.4 DTD
This option enables you to generate native schema from the user-supplied DTD, which
contains information about the structure of an XML document.

6.1.1.5 COBOL Copybook
This option enables you to generate native schema from the user-supplied COBOL
Copybook definition.

A COBOL mainframe application typically uses a COBOL Copybook file to define its
data layout. The converter creates a native schema from a COBOL Copybook so that
the run-time translator can parse the associated data file.

A COBOL Copybook is typically a collection of group items (structures). These group
items contain other items, which can be groups or elementary items. Elementary items
are items that cannot be further subdivided. For example:

01 Purchase-Order
 05 Buyer
 10 BuyerName PIC X(5) USAGE DISPLAY.
 04 Seller
 08 SellerName PICTURE XXXXX.

Purchase-order is a group item with two child group items (Buyer, Seller). The
numbers 01, 05, 04, and so on indicate the level of the group (that is, the hierarchy of
data within that group).

Groups can be defined that have different level-numbers for the same level in the
hierarchy. For example, Buyer and Seller have different level numbers, but are at
the same level in the hierarchy. A group item includes all group and elementary items
that follow it until a level number less than or equal to the level number of that group
is encountered.

Each of the group items (Buyer and Seller) has a child elementary item. The PIC or
PICTURE clause defines the data layout. For example, BuyerName defines an
alphanumeric type of size equal to five characters. SellerName has the same data
layout as BuyerName.

Group items in COBOL can be mapped to elements in XML schema with the
complexType type. Similarly, elementary items can be mapped to elements of type
simple type with certain native format annotations to help the run-time translator
parse the corresponding data file. For example, the Buyer item can be mapped to the
following definition:

<!--COBOL declaration : 05 Buyer-->
<element name="Buyer">

Creating Native Schema Files with the Native Format Builder Wizard

6-4 Oracle Fusion Middleware User's Guide for Technology Adapters

 <complexType>
 <sequence>
 <!--COBOL declaration : 10 Name PIC X(5)-->
 <element name="Name" type="string" nxsd:style="fixedLength"
 nxsd:padStyle="tail" nxsd:paddedBy=" " nxsd:length="5"/>
 </sequence>
 </complexType>
</element>

User Inputs
You are expected to provide the following information:

■ Target namespace for the native schema to be generated

■ Character set of the host computer on which the data file was generated. By
default, this is set to EBCDIC (ebcdic-cp-us).

■ Byte order of the host computer on which the data file was generated. By default,
this is set to big-endian.

■ Record delimiter, which is typically the new line character, or no delimiter, or any
user-supplied string.

■ Container tag name for generated native schema. By default, this is set to
Root-Element.

COBOL Clauses
Table 6–1 describes COBOL clauses. The numeric types covered in Table 6–1 are stored
as one character per digit. Support for clauses is defined as follows:

■ Y indicates that the clause is supported.

■ N indicates that the clause is not supported.

■ I indicates that the clause is ignored.

Table 6–1 COBOL Clauses (Numeric Types Stored as One Character Per Digit)

COBOL
Clause

Design-Time
Support

Run-Time
Support

Supported
Synonyms Comments

PIC X(n) Y Y XXX… Alphanumeric – An allowable
character from the character set of
the computer. Each X corresponds to
one byte.

PIC A(n) Y Y AA… Alphabetic – Any letter of the
alphabet or space. Each A
corresponds to one byte.

PIC 9(n)
DISPLAY

Y Y 9999… Any character position that contains
a numeral. Each nine is counted in
the size of the item.

OCCURS n
TIMES

Y Y Fixed-length array

JUSTIFIED Y Y For A and X types. Right justifies
with the space pad. Data is aligned
at the rightmost character position.

REDEFINES Y Y Allows the same computer memory
area to be described by different
data items.

Creating Native Schema Files with the Native Format Builder Wizard

Native Format Builder Wizard 6-5

The numeric types described in Table 6–1 are stored as one character per digit.
Table 6–2 describes the numeric types that are stored in a more efficient manner.

PIC
9(m)V9(n)
DISPLAY

Y Y Size = n+m bytes

OCCURS
DEPENDING
ON

Y Y NA

BLANK WHEN
ZERO

I I Ignored

RENAMES N N This is rarely seen in COBOL
Copybooks

INDEX N N Four-byte index

SYNCHRONIZE
D

I I SYNC NA

POINTER N N NA

PROCEDURE-P
OINTER

NA

FILLER Y Y NA

Table 6–2 COBOL Clauses (Numeric Types Stored More Efficiently)

COBOL
Clause

Design-Time
Support

Run-Tim
e
Support

Supported
Synonyms Comments

USAGE [IS] Y Y Both these keywords are optional.

PIC 9(n)
COMP

Y Y COMPUTAT
IONAL,
BINARY,
COMP-4

Length varies with n:

■ n = 1-4 (2 bytes)

■ n = 5-9 (4 bytes)

■ n = 10-18 (8 bytes)

COMP-1 Y Y COMPUTAT
IONAL-1

Single precision, floating point number
that is four bytes long.

COMP-2 Y Y COMPUTAT
IONAL-2

Double precision, floating point
number that is eight bytes long.

PIC 9(n)
COMP-3

Y Y PACKED-D
ECIMAL,
COMPUTAT
IONAL-3

Two digits are stored in each byte. An
additional half byte at the end is
allocated for the sign, even if the value
is unsigned.

PIC 9(n)
COMP-4

Y Y COMPUTAT
IONAL-4

Treated the same as a COMP type and
given its own data type for
customizing requirements.

PIC 9(n)
COMP-5

N N Capacity of the native binary
representation.

PIC S9(n)
DISPLAY

Y Y PIC S99… Sign nibble in the rightmost zone by
default. S is not counted in the size.

Table 6–1 (Cont.) COBOL Clauses (Numeric Types Stored as One Character Per Digit)

COBOL
Clause

Design-Time
Support

Run-Time
Support

Supported
Synonyms Comments

Creating Native Schema Files with the Native Format Builder Wizard

6-6 Oracle Fusion Middleware User's Guide for Technology Adapters

The following clauses can be added to impact the sign position.

■ SIGN IS LEADING

Used with signed zoned numerics.

■ SIGN IS TRAILING

Used with signed zoned numerics.

■ SIGN IS LEADING SEPARATE

The character S is counted in the size.

■ SIGN IS TRAILING SEPARATE

The character S is counted in the size.

Table 6–3 describes picture editing types.

PIC S9(n)
COMP

Y Y Same as COMP. Negative numbers are
represented as two's complement.

PIC S9(n)
COMP-3

Y Y NA

PIC
9(m)V9(n)
COMP

Y Y Length is the same as COMP.

PIC
9(m)V9(m)
COMP-3

Y Y Length = Ceiling ((n+m+1)/2)

Note: These assume that the numerics are stored using IBM COBOL
format. If these are generated for other platforms with different data
storage formats, then a custom data handler for that type must be
written.

Table 6–3 Edited Pictures

Edited Pictures Supported Editing Types Unsupported Editing Types

Edited
alphanumeric

Simple Insertion: B(blank) 0 / ,

Edited float
numeric

Special insertion: . (period)

Edited numeric ■ Simple Insertion: B(blank) 0
/ ,

■ Special insertion: . (period)

■ Fixed Insertion: cs + - CR
DB (Inserts a symbol at the
beginning or end)

■ Floating Insertion: cs + -

■ Zero suppression: Z *

■ Replacement insertion: Z * + -
c

Table 6–2 (Cont.) COBOL Clauses (Numeric Types Stored More Efficiently)

COBOL
Clause

Design-Time
Support

Run-Tim
e
Support

Supported
Synonyms Comments

Creating Native Schema Files with the Native Format Builder Wizard

Native Format Builder Wizard 6-7

Edited pictures are more for presentation purposes and are rarely seen in data files. It
is assumed that the editing symbols are also present in the data. For example, if you
have:

05 AMOUNT PIC 999.99

then, this field is six bytes wide and has a decimal point in the data.

Simple, special, and fixed insertions are handled by this method. Floating insertion,
zero suppression, and replacement insertion are not supported.

6.1.2 Editing Native Schema Files
You can edit an existing native schema generated using the Native Format Builder
wizard by sampling a delimited, fixed length, or complex type file. To edit an existing
native schema select the Edit existing option in the Choose Type page of the Native
Format Builder wizard, and click Browse to navigate to the location of the existing
schema file and then select the native schema file that must be edited. The Native
Format Builder wizard guides you through the editing of the native schema file.

Figure 6–3 shows the Native Format Builder - Choose Type page with the Edit existing
option selected.

Figure 6–3 The Native Format Builder Wizard - Choose Type Page

Before you edit a native schema file, you must ensure that the sample file specified in
the annotation within the schema exists. This annotation is automatically added when
the native schema is generated the first time from the sample file.

For example, if the specified sample file path in the annotation is
<!--NXSDWIZ:C:\Temp\Book1Out.csv:--> and if the file is not located at the
path specified, then the wizard displays an error.

Note: You cannot edit native schemas generated from a Document
Type Definition (DTD) or COBOL Copybook file types.

Native Schema Constructs

6-8 Oracle Fusion Middleware User's Guide for Technology Adapters

6.2 Native Schema Constructs
This section provides an overview of the various constructs of native schema used to
translate the native format data to XML and also explains the usage of these native
schema constructs.

This section includes the following topics:

■ Section 6.2.1, "Understanding Native Schema Constructs"

■ Section 6.2.2, "Using Native Schema Constructs"

6.2.1 Understanding Native Schema Constructs
Table 6–4 shows the constructs applicable only on the <schema> tag.

Table 6–4 Constructs Applicable Only on the <schema> Tag

Construct Description

byteOrder The byte order of the native data as bigEndian or
littleEndian.

encoding The encoding in which the actual data is stored. UTF-8 is
typically recommended for interoperability and Unicode
support. You can specify any legal encoding supported by the
Java run-time environment. For a complete listing of supported
encodings, visit
http://download.oracle.com/javase/6/docs/techno
tes/guides/intl/encoding.doc.html. You can specify
the encoding in the (N)XSD associated with the adapter proxy
meta data. For example, nxsd:encoding="iso-8859-1

nxsd:alwaysQuote Set to true if quotes must be forced around native non-xml data
in the outbound.

headerLines A positive integer specifying the number of lines to be skipped,
before translating the native data.

headerLinesTerminated
By

Skip until the specified string, before translating the native data.

standalone If declared, adds the standalone attribute in the XML declaration
prolog of the translated XML, with the actual value as that
specified in nxsd:standalone. Allowed values are true and
false.

stream Whether the data is stored as characters or bytes. Allowed
values are CHARS and BYTES.

uniqueMessageSeparato
r

String specifying the unique message separator in the native
data, in a batch of messages.

version The type of native data. Possible values are NXSD, DTD, XSD, and
OPAQUE.

xmlversion If declared, adds the XML declaration prolog to the translated
XML with the actual value as that specified in
nxsd:xmlversion. Allowed values are 1.0 and 1.1.

outboundHeader String specifying the header value to be inserted in the
outbound message.

dataLines Integer specifying the number of lines to process in the native
file.

Native Schema Constructs

Native Format Builder Wizard 6-9

Table 6–5 shows the constructs applicable on all tags other than the <schema> tag.

fieldValidation If set to true, then translator performs data type validation on
the tokens read from the native.

The fieldValidation construct is supported for built in simple
types only.

validation If set to true, then the translator performs result validation both
on the inbound and outbound.

validateNxsd If set to true, then a thorough native grammar validation is
performed. This construct is switched off by default and must be
switched off in production for better performance.

useArrayIdentifiers If set to true, then it optimizes the native framework for
handling array identifiers. This may result in a performance hit
for very large payloads. By default, arrayIdentifiers are not
supported.

parseBom If set to true, then the byte order mark is looked for in the
native stream and encoding is derived from this.

encodeLineTerminators If set to true, then the semantic interpretation of ${eol} is
\r\n instead of \n.

Table 6–5 Constructs Applicable On All Tags Other Than the <schema> Tag

Construct Description

arrayIdentifierLength The length of the array being stored in the native data occupying
the specified length

arrayLength The value of this construct is used as the length of the array,
which can also be a variable resolved to a valid number. This
value overrides any minOccurs and maxOccurs attributes of
the particle where it is specified. Use this feature as follows:

nxsd:style="array" nxsd:arrayLength="10"

This indicates that the array length is 10.

arrayTerminatedBy The last item in the array being terminated by the specified
string

assign Assigns a value to the variable that is declared

cellSeparatedBy The cells of the array in the native data being separated by the
specified string

choiceCondition Either fixedLength or terminated

conditionValue Matches the string read from the native stream for the
choiceCondition construct, against the specified string in the
conditionValue construct

dataLines The value specified in this construct is used to translate only a
portion of the data and not the entire data.

dateFormat A valid Java date format representing the date in the native data

identifierLength The number of characters and bytes in which the actual length of
the data is stored

itemSeparatedBy The items in the list being separated by the specified string

leftSurroundedBy,

rightSurroundedBy

The native data surrounded

Table 6–4 (Cont.) Constructs Applicable Only on the <schema> Tag

Construct Description

Native Schema Constructs

6-10 Oracle Fusion Middleware User's Guide for Technology Adapters

6.2.2 Using Native Schema Constructs
This section includes the following topics:

■ Section 6.2.2.1, "Defining Fixed-Length Data"

■ Section 6.2.2.2, "Defining Terminated Data"

■ Section 6.2.2.3, "Defining Surrounded Data"

■ Section 6.2.2.4, "Defining Lists"

■ Section 6.2.2.5, "Defining Arrays"

■ Section 6.2.2.6, "Conditional Processing"

■ Section 6.2.2.7, "Defining Dates"

length The length of the native data to be read. Used with fixed-length
style.

listTerminatedBy The last item in the list being terminated by the specified string

lookAhead Looks for a match ahead of the current position in the input
stream. If a match is found, then the node on which this
construct is specified is processed; otherwise, it is skipped. Use
this feature as follows:

nxsd:lookAhead="20" nxsd:lookFor="abc"

This indicates to skip 20 characters and look for the string abc
starting from that location. If this is found, then the node is
processed; otherwise, it is skipped.

paddedBy The string used for padding

padStyle head, tail, or none

quotedBy The native data being quoted by the specified string.

By default, the specified string is " ("). If your data
includes this character, you must override this default even if the
field is not quoted. For more information, see "Native Data
Format to Be Translated: Data Includes Default Quote Character"
on page 6-16.

skip Skips the specified number of bytes or characters

skipLines Skips the number of lines specified

skipUntil Skips until the string specified

startsWith Looks for the specified string in the native data. If it exists, then
proceeds with the element where it is specified; otherwise, skips
and processes the next element.

style The style used to read the native data from the input stream.
Allowed values are fixedLength, surrounded, terminated,
list, and array.

surroundedBy The native data being surrounded by the specified string

terminatedBy The native data being terminated by the string specified

variable Declares a single variable

variables Declares a set of variables or assigns the declared variables a
valid value

Table 6–5 (Cont.) Constructs Applicable On All Tags Other Than the <schema> Tag

Construct Description

Native Schema Constructs

Native Format Builder Wizard 6-11

■ Section 6.2.2.8, "Using Variables"

■ Section 6.2.2.9, "Defining Prefixes and Suffixes"

■ Section 6.2.2.10, "Defining Skipping Data"

■ Section 6.2.2.11, "Defining fixed and default Values"

■ Section 6.2.2.12, "Defining write"

■ Section 6.2.2.13, "Defining LookAhead"

■ Section 6.2.2.15, "Defining outboundHeader"

■ Section 6.2.2.16, "Defining Complex Condition in conditionValue"

■ Section 6.2.2.17, "Defining Complex Condition in choiceCondition"

■ Section 6.2.2.18, "Defining dataLines"

■ Section 6.2.2.19, "Defining Date Formats with Time Zone"

■ Section 6.2.2.20, "Implementing Validation During Translation"

■ Section 6.2.2.21, "Processing Files with BOM"

6.2.2.1 Defining Fixed-Length Data
Fixed-length data in the native format can be defined in the native schema by using
the fixed-length style. There are three types of fixed length:

■ With padding

■ Without padding

■ With the actual length also being read from the native data

Native Data Format to Be Translated: With Padding
The actual data may be less than the length specified. In this case, you can specify
paddedBy and padStyle as head or tail. When the data is read, the pads are
trimmed accordingly. The following is a sample native data to be translated:

GBP*UK000012550.00

Native Schema: With Padding
<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="fixedlength">
 <complexType>
 <sequence>
 <element name="currency_code" nxsd:style="fixedLength" nxsd:length="4"
 nxsd:padStyle="tail" nxsd:paddedBy="*">
 <simpleType>
 <restriction base="string">
 <maxLength value="4" />
 </restriction>
 </simpleType>
 </element>

Native Schema Constructs

6-12 Oracle Fusion Middleware User's Guide for Technology Adapters

 <element name="country_code" nxsd:style="fixedLength" nxsd:length="2"
 nxsd:padStyle="none">
 <simpleType>
 <restriction base="string">
 <length value="2" />
 </restriction>
 </simpleType>
 </element>
 <element name="to_usd_rate" nxsd:style="fixedLength" nxsd:length="12"
 nxsd:padStyle="head" nxsd:paddedBy="0">
 <simpleType>
 <restriction base="string">
 <maxLength value="12" />
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema: With Padding
<fixedlength xmlns="http://www.oracle.com/ias/processconnect">
 <currency_code>GBP</currency_code>
 <country_code>UK</country_code>
 <to_usd_rate>12550.00</to_usd_rate>
</fixedlength>

Native Data Format to Be Translated: Without Padding
To define a fixed-length data in native schema, you can use the fixed-length style. In
case the actual data is less than the length specified, the white spaces are not trimmed.
The following is a sample native data to be translated:

GBP*UK000012550.00

Native Schema: Without Padding
<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="fixedlength">
 <complexType>
 <sequence>
 <element name="currency_code" nxsd:style="fixedLength" nxsd:length="4">
 <simpleType>
 <restriction base="string">
 <maxLength value="4" />
 </restriction>
 </simpleType>
 </element>

Native Schema Constructs

Native Format Builder Wizard 6-13

 <element name="country_code" nxsd:style="fixedLength" nxsd:length="2">
 <simpleType>
 <restriction base="string">
 <length value="2" />
 </restriction>
 </simpleType>
 </element>
 <element name="to_usd_rate" nxsd:style="fixedLength" nxsd:length="12">
 <simpleType>
 <restriction base="string">
 <maxLength value="12" />
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema: Without Padding
<fixedlength xmlns="http://www.oracle.com/ias/processconnect">
 <currency_code>GBP*</currency_code>
 <country_code>UK</country_code>
 <to_usd_rate>000012550.00</to_usd_rate>
</fixedlength>

Native Data Format to Be Translated: Actual Length Also Being Read from the
Native Data
When the length of the data is also stored in the native stream, this style is used to first
read the length, and subsequently read the data according to the length read. The
following is a sample native data to be translated:

03joe13DUZac.1HKVmIY

Native Schema: Actual Length Also Being Read from the Native Data
<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="fixedlength">
 <complexType>
 <sequence>
 <element name="user" type="string" nxsd:style="fixedLength"
 nxsd:identifierLength="2" />
 <element name="encr_user" type="string" nxsd:style="fixedLength"
 nxsd:identifierLength="2" />
 </sequence>
 </complexType>
</element>

Native Schema Constructs

6-14 Oracle Fusion Middleware User's Guide for Technology Adapters

</schema>

Translated XML Using the Native Schema: Actual Length Also Being Read from
the Native Data
<fixedlength xmlns="http://www.oracle.com/ias/processconnect">
 <user>joe</user>
 <encr_user>DUZac.1HKVmIY</encr_user>
</fixedlength>

6.2.2.2 Defining Terminated Data
This format is used when the terminating mark itself is supposed to be treated as part
of the actual data and not as a delimiter. When it is not clear whether the mark is part
of actual data or not, you can use nxsd:quotedBy to be safe. Specifying
nxsd:quotedBy means that the corresponding native data may or may not be
quoted. If it is quoted, then the actual data is read from the begin quotation to the end
quotation as specified in nxsd:quotedBy. Otherwise, it is read until the
terminatedBy character is found.

By default, the terminating mark is " ("). If your data includes this character,
you must override this default even if the field is not quoted. For more information,
see "Native Data Format to Be Translated: Data Includes Default Quote Character" on
page 6-16.

Examples for the Optionally quoted, Not quoted, and Includes default quote character
scenarios are provided in the following sections:

Native Data Format to Be Translated: Optionally Quoted
The following is a sample native data to be translated:

Fred,"2 Old Street, Old Town,Manchester",20-08-1954,0161-499-1718

Native Schema: Optionally Quoted
<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="terminated">
 <complexType>
 <sequence>
 <element name="PersonName" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <element name="Address" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy="""/>
 <element name="DOB" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <element name="Telephone" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </sequence>
 </complexType>
</element>

Native Schema Constructs

Native Format Builder Wizard 6-15

Translated XML Using the Native Schema: Optionally Quoted
<terminated xmlns="http://www.oracle.com/ias/processconnect">
 <PersonName>Fred</PersonName>
 <Address>2 Old Street, Old Town,Manchester</Address>
 <DOB>20-08-1954</DOB>
 <Telephone>0161-499-1718</Telephone>
</terminated>

Native Data Format to Be Translated: Not Quoted
This is used when the data is terminated by a particular string or character. The
following is a sample native data to be translated:

1020,16,18,,1580.00

Native Schema: Not Quoted
<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="terminated">
 <complexType>
 <sequence>
 <element name="product" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <element name="ordered" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <element name="inventory" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <element name="backlog" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <element name="listprice" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema: Not Quoted
<terminated xmlns="http://www.oracle.com/ias/processconnect">
 <product>1020</product>
 <ordered>16</ordered>
 <inventory>18</inventory>
 <backlog></backlog>
 <listprice>1580.00</listprice>
</terminated>

Native Schema Constructs

6-16 Oracle Fusion Middleware User's Guide for Technology Adapters

Native Data Format to Be Translated: Data Includes Default Quote Character
The following is a sample native data to be translated:

aaa,"bbbbb,[cccc

In this case, fields are terminated by commas, the " character is part of the data in the
second field, and the [character is part of the data in the third field.

Because the default nxsd:quotedBy terminating mark is " ("), the Oracle File
Adapter fails to translate field two even if you specify that this field is terminated by a
comma character. To successfully translate this data, you must override the default
nxsd:quotedBy terminating mark to any character that is not be part of the data for
this field. In this example, you override the default nxsd:quotedBy terminating
mark to < (<) because this character never appears in field two:

<element name="FieldTwo" type="string" nxsd:style="terminated"
nxsd:terminatedBy="," nxsd:quotedBy="<"/>

By contrast, for field three, you must only specify nxsd:terminatedBy="," because
the [character does not conflict with the default nxsd:quotedBy terminating mark:

<element name="FieldThree" type="string" nxsd:style="terminated"
nxsd:terminatedBy="," />

Native Schema: Data Includes Default Quote Character
<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="terminated">
 <complexType>
 <sequence>
 <element name="FieldOne" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <element name="FieldTwo" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy="<"/>
 <element name="FieldThree" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 </sequence>
 </complexType>
</element>

Translated XML Using the Native Schema: Data Includes Default Quote
Character
<terminated xmlns="http://www.oracle.com/ias/processconnect">
 <FieldOne>aaa</FieldOne>
 <FieldTwo>"bbbbb</FieldTwo>
 <FieldThree>[cccc</FieldThree>
</terminated>

Native Schema Constructs

Native Format Builder Wizard 6-17

6.2.2.3 Defining Surrounded Data
This is used when the native data is surrounded by a mark.

The following are types of surrounded data:

■ Left and right surrounding marks are different.

■ Left and right surrounding marks are the same.

Native Data Format to Be Translated: Left and Right Surrounding Marks Are
Different
The following is a sample native data to be translated for which the left and the right
surrounding marks are different:

(Ernest Hemingway Museum){Whitehead St.}

Native Schema: Left and Right Surrounding Marks Are Different
<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:tns="http://www.oracle.com/ias/processconnect"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">
<element name="limstring">
 <complexType>
 <sequence>
 <element name="Landmark" type="string" nxsd:style="surrounded"
nxsd:leftSurroundedBy="(" nxsd:rightSurroundedBy=")" />
 <element name="Street" type="string" nxsd:style="surrounded"
nxsd:leftSurroundedBy="{" nxsd:rightSurroundedBy="}" />
 </sequence>
 </complexType>
</element>
</schema>

Translated XML Using the Native Schema: Left and Right Surrounding Marks Are
Different
<limstring xmlns="http://www.oracle.com/ias/processconnect">
 <Landmark>Ernest Hemingway Museum</Landmark>
 <Street>Whitehead St.</Street>
</limstring>

Native Data Format to Be Translated: Left and Right Surrounding Marks Are the
Same
The following is a sample native data to be translated for which the left and the right
surrounding marks are the same:

.FL..Florida Keys.+Key West+

Native Schema: Left and Right Surrounding Marks Are the Same
<?xml version="1.0" encoding="US-ASCII"?>

Native Schema Constructs

6-18 Oracle Fusion Middleware User's Guide for Technology Adapters

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:tns="http://www.oracle.com/ias/processconnect"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">
<element name="limstring">
 <complexType>
 <sequence>
 <element name="State" type="string" nxsd:style="surrounded"
nxsd:surroundedBy="."/>
 <element name="Region" type="string" nxsd:style="surrounded"
nxsd:surroundedBy="." />
 <element name="City" type="string" nxsd:style="surrounded"
nxsd:surroundedBy="+" />
 </sequence>
 </complexType>
</element>
</schema>

Translated XML Using the Native Schema: Left and Right Surrounding Marks Are
the Same
<limstring xmlns="http://www.oracle.com/ias/processconnect">
 <State>FL</State>
 <Region>Florida Keys</Region>
 <City>Key West</City>
</limstring>

6.2.2.4 Defining Lists
This format applies to lists with the following characteristics:

■ All Items Separated by the Same Mark, but the Last Item Terminated by a
Different Mark (Bounded)

■ All Items Separated by the Same Mark, Including the Last Item (Unbounded)

All Items Separated by the Same Mark, but the Last Item Terminated by a
Different Mark (Bounded)
The following sections explain the format of the data to be translated, the native
schema, and the translated XML.

Native Data Format to Be Translated:

125,200,255

Native Schema:

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"

Native Schema Constructs

Native Format Builder Wizard 6-19

 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="list" type="tns:Colors" />

<complexType name="Colors" nxsd:style="list" nxsd:itemSeparatedBy=","
 nxsd:listTerminatedBy="${eol}">

 <sequence>
 <element name="Red" type="string" />
 <element name="Green" type="string" />
 <element name="Blue" type="string" />
 </sequence>
</complexType>

</schema>

Translated XML Using the Native Schema

<list xmlns="http://www.oracle.com/ias/processconnect">
 <Red>125</Red>
 <Green>200</Green>
 <Blue>255</Blue>
</list>

All Items Separated by the Same Mark, Including the Last Item (Unbounded)
The following sections explain the format of the data to be translated, the native
schema, and the translated XML.

Native Data Format to Be Translated:

configure;startup;runtest;shutdown;

Native Schema:

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="list" type="tns:CommandSet" />

<complexType name="CommandSet" nxsd:style="list" nxsd:itemSeparatedBy=";">
 <sequence>
 <element name="Cmd1" type="string" />
 <element name="Cmd2" type="string" />
 <element name="Cmd3" type="string" />
 <element name="Cmd4" type="string" />
 </sequence>
</complexType>

Native Schema Constructs

6-20 Oracle Fusion Middleware User's Guide for Technology Adapters

</schema>

Translated XML Using the Native Schema:

<list xmlns="http://www.oracle.com/ias/processconnect">
 <Cmd1>configure</Cmd1>
 <Cmd2>startup</Cmd2>
 <Cmd3>runtest</Cmd3>
 <Cmd4>shutdown</Cmd4>
</list>

6.2.2.5 Defining Arrays
This is for an array of complex types where the individual cells are separated by a
separating character and the last cell of the array is terminated by a terminating
character.

The following are examples of array types:

■ All Cells Separated by the Same Mark, but the Last Cell Terminated by a Different
Mark (Bounded)

■ All Cells Separated by the Same Mark, Including the Last Cell (Unbounded)

■ Cells Not Separated by Any Mark, but the Last Cell Terminated by a Mark
(Bounded)

■ The Number of Cells Being Read from the Native Data

■ Explicit Array Length

All Cells Separated by the Same Mark, but the Last Cell Terminated by a Different
Mark (Bounded)
The following sections explain the format of the data to be translated, the native
schema, and the translated XML.

Native Data Format to Be Translated:

"Smith, John","1 Old Street, Old Town, Manchester",,"0161-499-1717".
Fred,"2 Old Street, Old Town,Manchester","20-08-1954","0161-499-1718".
"Smith, Bob",,,0161-499-1719.#

Native Schema:

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD"
>
<element name="array">
 <complexType>
 <sequence>
 <element name="Member" maxOccurs="unbounded"
 nxsd:style="array" nxsd:cellSeparatedBy="${eol}"

Native Schema Constructs

Native Format Builder Wizard 6-21

 nxsd:arrayTerminatedBy="#">
 <complexType>
 <sequence>
 <element name="Name" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Address" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="DOB" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Telephone" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="." nxsd:quotedBy='"'/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema:

<array xmlns="http://www.oracle.com/ias/processconnect">
 <Member>
 <Name>Smith, John</Name>
 <Address>1 Old Street, Old Town, Manchester</Address>
 <DOB></DOB>
 <Telephone>0161-499-1717</Telephone>
 </Member>
 <Member>
 <Name>Fred</Name>
 <Address>2 Old Street, Old Town,Manchester</Address>
 <DOB>20-08-1954</DOB>
 <Telephone>0161-499-1718</Telephone>
 </Member>
 <Member>
 <Name>Smith, Bob</Name>
 <Address></Address>
 <DOB></DOB>
 <Telephone>0161-499-1719</Telephone>
 </Member>
</array>

All Cells Separated by the Same Mark, Including the Last Cell (Unbounded)
The following sections explain the format of the data to be translated, the native
schema, and the translated XML.

Native Data Format to Be Translated:

"Smith, John","1 Old Street, Old Town, Manchester",,"0161-499-1717".
Fred,"2 Old Street, Old Town,Manchester","20-08-1954","0161-499-1718".
"Smith, Bob",,,0161-499-1719.

Native Schema:

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

Native Schema Constructs

6-22 Oracle Fusion Middleware User's Guide for Technology Adapters

 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="array">
 <complexType>
 <sequence>
 <element name="Member" maxOccurs="unbounded"
 nxsd:style="array" nxsd:cellSeparatedBy="\r\n">
 <complexType>
 <sequence>
 <element name="Name" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Address" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="DOB" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Telephone" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="." nxsd:quotedBy='"'/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema:

<array xmlns="http://www.oracle.com/ias/processconnect">
 <Member>
 <Name>Smith, John</Name>
 <Address>1 Old Street, Old Town, Manchester</Address>
 <DOB></DOB>
 <Telephone>0161-499-1717</Telephone>
 </Member>
 <Member>
 <Name>Fred</Name>
 <Address>2 Old Street, Old Town,Manchester</Address>
 <DOB>20-08-1954</DOB>
 <Telephone>0161-499-1718</Telephone>
 </Member>
 <Member>
 <Name>Smith, Bob</Name>
 <Address></Address>
 <DOB></DOB>
 <Telephone>0161-499-1719</Telephone>
 </Member>
</array>

Native Schema Constructs

Native Format Builder Wizard 6-23

Cells Not Separated by Any Mark, but the Last Cell Terminated by a Mark
(Bounded)
The following sections explain the format of the data to be translated, the native
schema, and the translated XML.

Native Data Format to Be Translated:

"Smith, John","1 Old Street, Old Town, Manchester",,"0161-499-1717"
Fred,"2 Old Street, Old Town,Manchester","20-08-1954","0161-499-1718"
"Smith, Bob",,,0161-499-1719
#

Native Schema:

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="array">
 <complexType>
 <sequence>
 <element name="Member" maxOccurs="unbounded"
 nxsd:style="array" nxsd:arrayTerminatedBy="#">
 <complexType>
 <sequence>
 <element name="Name" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Address" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="DOB" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Telephone" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="\r\n" nxsd:quotedBy='"'/> </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema:

<array xmlns="http://www.oracle.com/ias/processconnect">
 <Member>
 <Name>Smith, John</Name>
 <Address>1 Old Street, Old Town, Manchester</Address>
 <DOB></DOB>
 <Telephone>0161-499-1717</Telephone>
 </Member>
 <Member>
 <Name>Fred</Name>
 <Address>2 Old Street, Old Town,Manchester</Address>
 <DOB>20-08-1954</DOB>

Native Schema Constructs

6-24 Oracle Fusion Middleware User's Guide for Technology Adapters

 <Telephone>0161-499-1718</Telephone>
 </Member>
 <Member>
 <Name>Smith, Bob</Name>
 <Address></Address>
 <DOB></DOB>
 <Telephone>0161-499-1719</Telephone>
 </Member>
</array>

The Number of Cells Being Read from the Native Data
The following sections explain the format of the data to be translated, the native
schema, and the translated XML.

Native Data Format to Be Translated:

3"Smith, John","1 Old Street, Old Town, Manchester",,"0161-499-1717"
Fred,"2 Old Street, Old Town,Manchester","20-08-1954","0161-499-1718"
"Smith, Bob",,,0161-499-1719

Native Schema:

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="arrayidentifierlength">
 <complexType>
 <sequence>
 <element name="Member" maxOccurs="unbounded" nxsd:style="array"
 nxsd:arrayIdentifierLength="1">
 <complexType>
 <sequence>
 <element name="Name" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Address" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="DOB" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Telephone" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="\r\n" nxsd:quotedBy='"'/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema

Native Schema Constructs

Native Format Builder Wizard 6-25

<arrayidentifierlength xmlns="http://www.oracle.com/ias/processconnect">
 <Member>
 <Name>Smith, John</Name>
 <Address>1 Old Street, Old Town, Manchester</Address>
 <DOB></DOB>
 <Telephone>0161-499-1717</Telephone>
 </Member>
 <Member>
 <Name>Fred</Name>
 <Address>2 Old Street, Old Town,Manchester</Address>
 <DOB>20-08-1954</DOB>
 <Telephone>0161-499-1718</Telephone>
 </Member>
 <Member>
 <Name>Smith, Bob</Name>
 <Address></Address>
 <DOB></DOB>
 <Telephone>0161-499-1719</Telephone>
 </Member>
</arrayidentifierlength>

Explicit Array Length
The following sections explain the format of the data to be translated, the native
schema, and the translated XML.

Native Data Format to Be Translated:

3;John;Steve;Paul;Todd;

Native Schema:

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="array">
 <annotation>
 <appinfo>
 <nxsd:variables>
 <nxsd:variable name="len" />
 </nxsd:variables>
 </appinfo>
 </annotation>

 <complexType>
 <sequence>
 <element name="TotalMembers" type="string" nxsd:style="terminated"
nxsd:terminatedBy=";">
 <annotation>
 <appinfo>
 <nxsd:variables>
 <nxsd:assign name="len" value="${0}" />
 </nxsd:variables>

Native Schema Constructs

6-26 Oracle Fusion Middleware User's Guide for Technology Adapters

 </appinfo>
 </annotation>
 </element>
 <element name="Member" type="string" minOccurs="0" maxOccurs="unbounded"
 nxsd:style="array,terminated" nxsd:arrayLength="${len}"
nxsd:terminatedBy=";" />
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema:

<array xmlns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest">
 <TotalMembers>3</TotalMembers>
 <Member>John</Member>
 <Member>Steve</Member>
 <Member>Paul</Member>
</array>

6.2.2.6 Conditional Processing
This section provides the following examples of conditional processing:

■ Processing One Element Within a Choice Model Group Based on the Condition

■ Processing Elements Within a Sequence Model Group Based on the Condition

Processing One Element Within a Choice Model Group Based on the Condition
The following sections explain the format of the data to be translated, the native
schema, and the translated XML.

Native Data Format to Be Translated:

PO28/06/2004^|ABCD Inc.|Oracle
OracleApps025070,000.00
Database 021230,000.00
ProcessCon021040,000.00
PO01/07/2004^|EFGH Inc.|Oracle
Websphere 025070,000.00
DB2 021230,000.00
Eclipse 021040,000.00
SO29/06/2004|Oracle Apps|5
Navneet Singh
PO28/06/2004^|IJKL Inc.|Oracle
Weblogic 025070,000.00
Tuxedo 021230,000.00
JRockit 021040,000.00
IN30/06/2004;Navneet Singh;Oracle;Oracle Apps;5;70,000.00;350,000.00

Native Schema:

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:tns="http://www.oracle.com/ias/processconnect"
 targetNamespace="http://www.oracle.com/ias/processconnect"

Native Schema Constructs

Native Format Builder Wizard 6-27

 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="container">

 <complexType>
 <choice maxOccurs="unbounded" nxsd:choiceCondition="fixedLength"
 nxsd:length="2">

 <element ref="tns:PurchaseOrder" nxsd:conditionValue="PO" />

 <element ref="tns:SalesOrder" nxsd:conditionValue="SO" />

 <element ref="tns:Invoice" nxsd:conditionValue="IN" />

 </choice>
 </complexType>
</element>

<!-- PO -->
<element name="PurchaseOrder" type="tns:POType"/>

<complexType name="POType">
 <sequence>

 <element name="Date" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="^" />
 <element name="Buyer" type="string" nxsd:style="surrounded"
 nxsd:surroundedBy="|" />
 <element name="Supplier" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 <element name="Items">
 <complexType>
 <sequence>
 <element name="Line-Item" minOccurs="3" maxOccurs="3">
 <complexType>
 <group ref="tns:LineItems" />
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
</complexType>

<group name="LineItems">
 <sequence>
 <element name="Id" type="string" nxsd:style="fixedLength" nxsd:length="10"
 nxsd:padStyle="none"/>
 <element name="Quantity" type="string" nxsd:style="fixedLength"
 nxsd:identifierLength="2" />
 <element name="Price" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </sequence>
</group>

<!-- SO -->
<element name="SalesOrder" type="tns:SOType" />

Native Schema Constructs

6-28 Oracle Fusion Middleware User's Guide for Technology Adapters

<complexType name="SOType">
 <sequence>
 <element name="Date" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="|" />
 <element name="Item" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="|" />
 <element name="Quantity" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 <element name="Buyer" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </sequence>
</complexType>

<!-- INV -->
<element name="Invoice" type="tns:INVType" />

<complexType name="INVType">
 <sequence>
 <element name="Date" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="Purchaser" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="Seller" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="Item" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="Price" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="Quantity" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="TotalPrice" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </sequence>
</complexType>

</schema>

Translated XML Using the Native Schema:

<container xmlns="http://www.oracle.com/ias/processconnect">
 <PurchaseOrder>
 <Date>28/06/2004</Date>
 <Buyer>ABCD Inc.</Buyer>
 <Supplier>Oracle</Supplier>
 <Items>
 <Line-Item>
 <Id>OracleApps</Id>
 <Quantity>50</Quantity>
 <Price>70,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>Database </Id>
 <Quantity>12</Quantity>
 <Price>30,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>ProcessCon</Id>
 <Quantity>10</Quantity>
 <Price>40,000.00</Price>

Native Schema Constructs

Native Format Builder Wizard 6-29

 </Line-Item>
 </Items>
 </PurchaseOrder>
 <PurchaseOrder>
 <Date>01/07/2004</Date>
 <Buyer>EFGH Inc.</Buyer>
 <Supplier>Oracle</Supplier>
 <Items>
 <Line-Item>
 <Id>Websphere </Id>
 <Quantity>50</Quantity>
 <Price>70,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>DB2 </Id>
 <Quantity>12</Quantity>
 <Price>30,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>Eclipse </Id>
 <Quantity>10</Quantity>
 <Price>40,000.00</Price>
 </Line-Item>
 </Items>
 </PurchaseOrder>
 <SalesOrder>
 <Date>29/06/2004</Date>
 <Item>Oracle Apps</Item>
 <Quantity>5</Quantity>
 <Buyer>Navneet Singh</Buyer>
 </SalesOrder>
 <PurchaseOrder>
 <Date>28/06/2004</Date>
 <Buyer>IJKL Inc.</Buyer>
 <Supplier>Oracle</Supplier>
 <Items>
 <Line-Item>
 <Id>Weblogic </Id>
 <Quantity>50</Quantity>
 <Price>70,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>Tuxedo </Id>
 <Quantity>12</Quantity>
 <Price>30,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>JRockit </Id>
 <Quantity>10</Quantity>
 <Price>40,000.00</Price>
 </Line-Item>
 </Items>
 </PurchaseOrder>
 <Invoice>
 <Date>30/06/2004</Date>
 <Purchaser>Navneet Singh</Purchaser>
 <Seller>Oracle</Seller>
 <Item>Oracle Apps</Item>
 <Price>5</Price>
 <Quantity>70,000.00</Quantity>

Native Schema Constructs

6-30 Oracle Fusion Middleware User's Guide for Technology Adapters

 <TotalPrice>350,000.00</TotalPrice>
 </Invoice>
</container>

Processing Elements Within a Sequence Model Group Based on the Condition
The following sections explain the format of the data to be translated, the native
schema, and the translated XML.

Native Data Format to Be Translated:

PO28/06/2004^|ABCD Inc.|Oracle
OracleApps025070,000.00
Database 021230,000.00
ProcessCon021040,000.00
PO01/07/2004^|EFGH Inc.|Oracle
Websphere 025070,000.00
DB2 021230,000.00
Eclipse 021040,000.00
SO29/06/2004|Oracle Apps|5
Navneet Singh
PO28/06/2004^|IJKL Inc.|Oracle
Weblogic 025070,000.00
Tuxedo 021230,000.00
JRockit 021040,000.00
IN30/06/2004;Navneet Singh;Oracle;Oracle Apps;5;70,000.00;350,000.00

Native Schema:

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:tns="http://www.oracle.com/ias/processconnect"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="container">

 <complexType>
 <sequence maxOccurs="unbounded">

 <element ref="tns:PurchaseOrder" minOccurs="0" nxsd:startsWith="PO" />

 <element ref="tns:SalesOrder" minOccurs="0" nxsd:startsWith="SO" />

 <element ref="tns:Invoice" minOccurs="0" nxsd:startsWith="IN" />

 </sequence>
 </complexType>
</element>

<!-- PO -->
<element name="PurchaseOrder" type="tns:POType"/>

<complexType name="POType">
 <sequence>

Native Schema Constructs

Native Format Builder Wizard 6-31

 <element name="Date" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="^" /> <element name="Buyer" type="string"
nxsd:style="surrounded"
 nxsd:surroundedBy="|" />
 <element name="Supplier" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 <element name="Items">
 <complexType>
 <sequence>
 <element name="Line-Item" minOccurs="3" maxOccurs="3">
 <complexType>
 <group ref="tns:LineItems" />
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
</complexType>

<group name="LineItems">
 <sequence>
 <element name="Id" type="string" nxsd:style="fixedLength" nxsd:length="10"
 nxsd:padStyle="none"/>
 <element name="Quantity" type="string" nxsd:style="fixedLength"
 nxsd:identifierLength="2" />
 <element name="Price" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </sequence>
</group>

<!-- SO -->
<element name="SalesOrder" type="tns:SOType" />

<complexType name="SOType">
 <sequence>
 <element name="Date" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="|" />
 <element name="Item" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="|" />
 <element name="Quantity" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 <element name="Buyer" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" /> </sequence>
</complexType>

<!-- INV -->
<element name="Invoice" type="tns:INVType" />

<complexType name="INVType">
 <sequence>
 <element name="Date" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="Purchaser" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="Seller" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="Item" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" /> <element name="Price" type="string"

Native Schema Constructs

6-32 Oracle Fusion Middleware User's Guide for Technology Adapters

nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="Quantity" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="TotalPrice" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </sequence>
</complexType>

</schema>

Translated XML Using the Native Schema:

<container xmlns="http://www.oracle.com/ias/processconnect">
 <PurchaseOrder>
 <Date>28/06/2004</Date>
 <Buyer>ABCD Inc.</Buyer>
 <Supplier>Oracle</Supplier>
 <Items>
 <Line-Item>
 <Id>OracleApps</Id>
 <Quantity>50</Quantity>
 <Price>70,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>Database </Id>
 <Quantity>12</Quantity>
 <Price>30,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>ProcessCon</Id>
 <Quantity>10</Quantity>
 <Price>40,000.00</Price>
 </Line-Item>
 </Items>
 </PurchaseOrder>
 <PurchaseOrder>
 <Date>01/07/2004</Date>
 <Buyer>EFGH Inc.</Buyer>
 <Supplier>Oracle</Supplier>
 <Items>
 <Line-Item>
 <Id>Websphere </Id>
 <Quantity>50</Quantity>
 <Price>70,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>DB2 </Id>
 <Quantity>12</Quantity>
 <Price>30,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>Eclipse </Id>
 <Quantity>10</Quantity>
 <Price>40,000.00</Price>
 </Line-Item>
 </Items>
 </PurchaseOrder>
 <SalesOrder>
 <Date>29/06/2004</Date>

Native Schema Constructs

Native Format Builder Wizard 6-33

 <Item>Oracle Apps</Item>
 <Quantity>5</Quantity>
 <Buyer>Navneet Singh</Buyer>
 </SalesOrder>
 <PurchaseOrder>
 <Date>28/06/2004</Date>
 <Buyer>IJKL Inc.</Buyer>
 <Supplier>Oracle</Supplier>
 <Items>
 <Line-Item>
 <Id>Weblogic </Id>
 <Quantity>50</Quantity>
 <Price>70,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>Tuxedo </Id>
 <Quantity>12</Quantity>
 <Price>30,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>JRockit </Id>
 <Quantity>10</Quantity>
 <Price>40,000.00</Price>
 </Line-Item>
 </Items>
 </PurchaseOrder>
 <Invoice>
 <Date>30/06/2004</Date>
 <Purchaser>Navneet Singh</Purchaser>
 <Seller>Oracle</Seller>
 <Item>Oracle Apps</Item>
 <Price>5</Price>
 <Quantity>70,000.00</Quantity>
 <TotalPrice>350,000.00</TotalPrice>
 </Invoice>
</container>

6.2.2.7 Defining Dates
This example shows how to define dates.

Native Data Format to Be Translated:
11/16/0224/11/02
11-20-2002
23*11*2002
01/02/2003 01:02
01/02/2003 03:04:05

Native Schema:
<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

Native Schema Constructs

6-34 Oracle Fusion Middleware User's Guide for Technology Adapters

<element name="dateformat">
 <complexType>
 <sequence>
 <element name="StartDate" type="dateTime" nxsd:dateFormat="MM/dd/yy"
 nxsd:style="fixedLength" nxsd:length="8" />
 <element name="EndDate" type="dateTime" nxsd:dateFormat="dd/MM/yy"
 nxsd:style="terminated" nxsd:terminatedBy="${eol}" />
 <element name="Milestone" type="dateTime" nxsd:dateFormat="MM-dd-yyyy"
 nxsd:style="terminated" nxsd:terminatedBy="${eol}" />
 <element name="DueDate" type="dateTime" nxsd:dateFormat="dd*MM*yyyy"
 nxsd:style="terminated" nxsd:terminatedBy="${eol}" />
 <element name="Date" type="dateTime" nxsd:dateFormat="MM/dd/yyyy hh:mm"
 nxsd:style="terminated" nxsd:terminatedBy="${eol}" />
 <element name="Date" type="dateTime" nxsd:dateFormat="MM/dd/yyyy hh:mm:ss"
 nxsd:style="terminated" nxsd:terminatedBy="${eol}" />
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema:
<dateformat xmlns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest">
 <StartDate>2002-11-16T00:00:00</StartDate>
 <EndDate>2002-11-24T00:00:00</EndDate>
 <Milestone>2002-11-20T00:00:00</Milestone>
 <DueDate>2002-11-23T00:00:00</DueDate>
 <Date>2003-01-02T01:02:00</Date>
 <Date>2003-01-02T03:04:05</Date>
</dateformat>

The following example depicts the use of nxsd:dateParsingMode="lax/strict"
and locale support.

Native Data Format to Be Translated:
11/16/0224/11/02
11-20-2002
23*11*2002
01/02/2003 01:02
01/02/2003 03:04:05
Thu, 26 May 2005 15:50:11 India Standard Time
Do, 26 Mai 2005 15:43:10 Indische Normalzeit
20063202

Native Schema:
<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"

Note: nxsd:dateParsingMode="lax/strict" and locale
support have been added to the existing date format.

Native Schema Constructs

Native Format Builder Wizard 6-35

 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="dateformat">
 <complexType>
 <sequence>
 <element name="StartDate" type="date" nxsd:dateFormat="MM/dd/yy"
nxsd:localeLanguage="en" nxsd:style="fixedLength" nxsd:length="8" />
 <element name="EndDate" type="date" nxsd:dateFormat="dd/MM/yy"
nxsd:style="terminated" nxsd:terminatedBy="${eol}" />
 <element name="Milestone" type="dateTime" nxsd:dateFormat="MM-dd-yyyy"
nxsd:style="terminated" nxsd:terminatedBy="${eol}" />
 <element name="DueDate" type="dateTime" nxsd:dateFormat="dd*MM*yyyy"
nxsd:style="terminated" nxsd:terminatedBy="${eol}" />

 <element name="Date" type="dateTime" nxsd:dateFormat="MM/dd/yyyy hh:mm"
nxsd:style="terminated" nxsd:terminatedBy="${eol}" />
 <element name="Date" type="dateTime" nxsd:dateFormat="MM/dd/yyyy hh:mm:ss"
nxsd:style="terminated" nxsd:terminatedBy="${eol}" />

 <element name="LongDateInEnglish" type="dateTime" nxsd:dateFormat="EEE, d
MMM yyyy HH:mm:ss zzzz" nxsd:localeLanguage="en" nxsd:localeCountry="US"
nxsd:style="terminated" nxsd:terminatedBy="${eol}" />
 <element name="LongDateInGerman" type="dateTime" nxsd:dateFormat="EEE, d
MMM yyyy HH:mm:ss zzzz" nxsd:localeLanguage="de" nxsd:style="terminated"
nxsd:terminatedBy="${eol}" />

 <element name="InvalidDate" type="dateTime" nxsd:dateParsingMode="lax"
nxsd:dateFormat="yyyyMMdd" nxsd:style="terminated" nxsd:terminatedBy="${eol}" />

 </sequence>
 </complexType>
</element>

</schema>

Translated XML:
<dateformat xmlns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest">
 <StartDate>2002-11-16</StartDate>
 <EndDate>2002-11-24</EndDate>
 <Milestone>2002-11-20T00:00:00</Milestone>
 <DueDate>2002-11-23T00:00:00</DueDate>
 <Date>2003-01-02T01:02:00</Date>
 <Date>2003-01-02T03:04:05</Date>
 <LongDateInEnglish>2005-05-26T15:50:11</LongDateInEnglish>
 <LongDateInGerman>2005-05-26T15:43:10</LongDateInGerman>
 <InvalidDate>2008-08-02T00:00:00</InvalidDate>
</dateformat>

6.2.2.8 Using Variables
This example shows how to use variables.

Native Data Format to Be Translated:
{,;}Fred,"2 Old Street, Old Town,Manchester","20-08-1954";"0161-499-1718"
phone-2

Native Schema Constructs

6-36 Oracle Fusion Middleware User's Guide for Technology Adapters

phone-3

Native Schema:
<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">
 <element name="variable">
 <annotation>
 <documentation>
 1. var1 - variable declaration
 2. var2 - variable declaration with default value
 3. EOL - variable declaration with referencing a system variable
 </documentation>
 <appinfo>
 <junkies/>
 <nxsd:variables>
 <nxsd:variable name="var1" />
 <nxsd:variable name="var2" value="," />
 <nxsd:variable name="SystemEOL" value="${system.line.separator}" />
 </nxsd:variables>
 <junkies/>
 <junkies/>
 <junkies/>
 </appinfo>
 </annotation>

 <complexType>
 <sequence>
 <element name="delims" type="string" nxsd:style="surrounded"
 nxsd:leftSurroundedBy="{" nxsd:rightSurroundedBy="}" >
 <annotation>
 <appinfo>
 <junkies/>
 <junkies/>
 <junkies/>
 <nxsd:variables>
 <nxsd:assign name="var1" value="${0,1}"/>
 <nxsd:assign name="var2" value="${1}" />
 </nxsd:variables>
 </appinfo>
 </annotation>
 </element>

 <element name="PersonName" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${var1}" nxsd:quotedBy=""" />
 <element name="Address" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${var1}" nxsd:quotedBy="""/>
 <element name="DOB" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${var2}" nxsd:quotedBy='"'/>
 <element name="Telephone1" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" nxsd:quotedBy='"'/>
 <element name="Telephone2" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" nxsd:quotedBy='"'/>
 <element name="Telephone3" type="string" nxsd:style="terminated"

Native Schema Constructs

Native Format Builder Wizard 6-37

 nxsd:terminatedBy="${eol}" nxsd:quotedBy='"'/>
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema:
<variable xmlns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest">
 <delims>,;</delims>
 <PersonName>Fred</PersonName>
 <Address>2 Old Street, Old Town,Manchester</Address>
 <DOB>20-08-1954</DOB>
 <Telephone1>0161-499-1718</Telephone1>
 <Telephone2>phone-2</Telephone2>
 <Telephone3>phone-3</Telephone3>
</variable>

6.2.2.9 Defining Prefixes and Suffixes
In native format, when data is read, the specified data is prefixed, suffixed, or both, as
shown in the following example.

Native Data to Be Translated:
 Fred, "2 Old Street, Old Town,Manchester","20-08-1954",0161-499-1718

Native Schema:
<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD"
 >

<element name="terminated">
 <complexType>
 <sequence>
 <element name="PersonName" type="string" nxsd:prefixWith="Mr."
 nxsd:style="terminated" nxsd:terminatedBy="," nxsd:quotedBy=""" />
 <element name="Address" type="string" nxsd:suffixWith="]]"
 nxsd:prefixWith="[[" nxsd:style="terminated" nxsd:terminatedBy=","
 nxsd:quotedBy="""/>
 <element name="DOB" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Telephone" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" nxsd:quotedBy='"'/>
 </sequence>
 </complexType>
</element>

</schema>

Native Schema Constructs

6-38 Oracle Fusion Middleware User's Guide for Technology Adapters

Translated XML Using the Native Schema:
<terminated xmlns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest">
 <PersonName>Mr.Fred</PersonName>
 <Address>[[2 Old Street, Old Town,Manchester]]</Address>
 <DOB>20-08-1954</DOB>
 <Telephone>0161-499-1718</Telephone>
</terminated>

6.2.2.10 Defining Skipping Data
Translator skips, before or after the data is read, depending on the skipMode
construct, as shown in the following example:

Native Data to Be Translated:
 Fred, "2 Old Street, Old Town,Manchester","20-08-1954",0161-499-1718

Native Schema:
<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD"
 >

<element name="terminated">
 <complexType>
 <sequence>
 <element name="PersonName" type="string" nxsd:skip="5"
 nxsd:style="terminated" nxsd:terminatedBy="," nxsd:quotedBy=""" />
 <element name="Address" type="string" nxsd:skipMode="before" nxsd:skip="3"
 nxsd:style="terminated" nxsd:terminatedBy="," nxsd:quotedBy="""/>
 <element name="DOB" type="string" nxsd:skipMode="after" nxsd:skip="6"
 nxsd:style="terminated" nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Telephone" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" nxsd:quotedBy='"'/>
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using Native Schema:
<terminated xmlns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest">
 <PersonName>Fred</PersonName>
 <Address>2 Old Street, Old Town,Manchester</Address>
 <DOB>20-08-1954</DOB>
 <Telephone>99-1718</Telephone>
</terminated>

Native Schema Constructs

Native Format Builder Wizard 6-39

6.2.2.11 Defining fixed and default Values
When an element is declared without nxsd annotations but the value specified is
either fixed or default, the translator uses the value provided and does not throw
any exceptions.

Native Data to Be Translated:
Fred,"2 Old Street, Old Town,Manchester","20-08-1954","0161-499-1718"

Native Schema:
<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="terminated">
 <annotation>
 <appinfo>
 <nxsd:variables>
 <nxsd:variable name="x" value="hello" />
 </nxsd:variables>
 <junkies/>
 <junkies/>
 <junkies/>
 </appinfo>
 </annotation>

 <complexType>
 <sequence>
 <element name="PersonName" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy=""" />
 <element name="Age" type="string" fixed="16" />
 <element name="Address" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy="""/>
 <element name="DOB" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="salutation" type="string" default="${x}" />
 <element name="Telephone" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" nxsd:quotedBy='"'/>
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using Native Schema:
<terminated xmlns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest">
 <PersonName>Fred</PersonName>
 <Age>16</Age>
 <Address>2 Old Street, Old Town,Manchester</Address>
 <DOB>20-08-1954</DOB>
 <salutation>hello</salutation>
 <Telephone>0161-499-1718</Telephone>

Native Schema Constructs

6-40 Oracle Fusion Middleware User's Guide for Technology Adapters

</terminated>

6.2.2.12 Defining write
The write construct writes the literal at the current position in the output stream,
either before writing the actual data or after writing it.

Input XML:
<terminated xmlns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest">
 <PersonName>Fred</PersonName>
 <Address>2 Old Street, Old Town,Manchester</Address>
 <DOB>20-08-1954</DOB>
 <Telephone>0161-499-1718</Telephone>
</terminated>

Native Schema:
<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD"
 >

<element name="terminated">
 <complexType>
 <sequence>
 <element name="PersonName" type="string" nxsd:writeMode="before"
 nxsd:write="Mr." nxsd:style="terminated" nxsd:terminatedBy=","
 nxsd:quotedBy=""" />
 <element name="Address" type="string" nxsd:writeMode="after"
 nxsd:write="Over." nxsd:style="terminated" nxsd:terminatedBy=","
 nxsd:quotedBy="""/>
 <element name="DOB" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Telephone" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" nxsd:quotedBy='"'/>
 </sequence>
 </complexType>
</element>

</schema>

Translated Data Using Native Schema:
Mr.Fred,"2 Old Street, Old Town,Manchester",Over.20-08-1954,0161-499-1718

6.2.2.13 Defining LookAhead
The LookAhead construct is of the following types:

■ Type 1: LookAhead X chars, read the value from a position using a style, and
match against the specified literal.

Native Schema Constructs

Native Format Builder Wizard 6-41

■ Type 2: LookAhead X chars, read the value from a position using a style, and store
that value in a variable to be used later.

LookAhead: Type 1
LookAhead X chars, read the value from a position using a style, and match against
the specified literal.

Native Data Format to Be Translated:
Fred,"2 Old Street, Old Town,Manchester","20-08-1954","0161-499-1718",YES

Native Schema:
<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="LookAhead">
 <complexType>
 <sequence minOccurs="0" nxsd:lookAhead="70" nxsd:lookFor="YES">
 <element name="PersonName" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy=""" />
 <element name="Address" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy="""/>
 <element name="DOB" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Telephone" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using Native Schema:
<LookAhead xmlns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest">
 <PersonName>Fred</PersonName>
 <Address>2 Old Street, Old Town,Manchester</Address>
 <DOB>20-08-1954</DOB>
 <Telephone>0161-499-1718</Telephone>
</LookAhead>

LookAhead: Type 2
In native schema, LookAhead X chars, read the value from a position using a style,
and store that value in a variable to be used later.

Native Data Format to Be Translated:
Name1,"2 Old Street, Old Town,Manchester",20-08-1954,"0161-499-1718", YES
Name2,"2 Old Street, Old Town,Manchester",20-08-1954,"0161-499-1718", NO
Name3,"2 Old Street, Old Town,Manchester",20-08-1954,"0161-499-1718", NO

Native Schema Constructs

6-42 Oracle Fusion Middleware User's Guide for Technology Adapters

Name4,"2 Old Street, Old Town,Manchester",20-08-1954,"0161-499-1718", YES

Native Schema:
<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<!--
nxsd:lookAhead="70" nxsd:scan="3"
-->

<element name="LookAhead">
 <complexType>
 <choice maxOccurs="unbounded" nxsd:choiceCondition="${x}" nxsd:lookAhead="70"
 nxsd:scanLength="3" nxsd:assignTo="${x}">
 <element name="Record1" type="string" nxsd:conditionValue="YES"
 nxsd:style="terminated" nxsd:terminatedBy="," nxsd:skipMode="after"
 nxsd:skipUntil="${eol}" />
 <element name="Record2" type="string" nxsd:conditionValue="NO "
 nxsd:style="terminated" nxsd:terminatedBy="," nxsd:skipMode="after"
 nxsd:skipUntil="${eol}" />
 </choice>
 </complexType>
</element>

</schema>

Translated XML Using Native Schema:
<LookAhead xmlns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest">
 <Record1>Name1</Record1>
 <Record2>Name2</Record2>
 <Record2>Name3</Record2>
 <Record1>Name4</Record1>
</LookAhead>

6.2.2.14 Defining Complex lookAhead Strategies for Conditional Processing of
Record using RegEx Expressions

6.2.2.15 Defining outboundHeader
The actual content of outboundHeader can use variables, specifically ${eol}. When
headerLines and outboundHeader both are available, outboundHeader takes
precedence in the outbound.

Native Schema Constructs

Native Format Builder Wizard 6-43

Input XML:
<terminated xmlns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest">
 <PersonName>Fred</PersonName>
 <Address>2 Old Street, Old Town,Manchester</Address>
 <DOB>20-08-1954</DOB>
 <Telephone>0161-499-1718</Telephone>
</terminated>

Native Schema:
<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD"
 nxsd:hasHeader="true"
 nxsd:outboundHeader="This is a header ${eol}">

<element name="terminated">
 <complexType>
 <sequence>
 <element name="PersonName" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy=""" />
 <element name="Address" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy="""/>
 <element name="DOB" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Telephone" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" nxsd:quotedBy='"'/>
 </sequence>
 </complexType>
</element>

</schema>

Translated Data:
This is a header
Fred,"2 Old Street, Old Town,Manchester",20-08-1954,0161-499-1718

6.2.2.16 Defining Complex Condition in conditionValue
When you use the conditionValue construct along with the choiceCondition
construct, you can specify match criteria such as equals (==) and not equals (!=), along
with the Boolean operators AND and OR, for comparison between the value read and
the value specified in the conditionValue construct.

Note: In the inbound direction, the Skipping Headers feature is
supported. Only predefined variables can be used in a header because
other variables might either not be accessible or would have only
literals.

Native Schema Constructs

6-44 Oracle Fusion Middleware User's Guide for Technology Adapters

Native Data Format to Be Translated:
Order, ID41678, 20May2000
Item1, GigaWidget, 60, $75
Item2, MegaBucket, 48, $125
Cust1, Hopkins Associates, ID26490
Order, ID41680, 20May2000
Item3, Rt.Clopper, 40, $100
Item4, Lt.Clopper, 50, $100
Cust2, Jersey WebInovaters, ID46786

Native Schema:
<?xml version="1.0" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/extensions/SampleNS"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/nxsd/extensions/SampleNS"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified" nxsd:encoding="US-ASCII"
nxsd:stream="chars" nxsd:version="NXSD">

<xsd:element name="Container">
 <xsd:complexType>
 <xsd:choice minOccurs="1" maxOccurs="unbounded"
 nxsd:choiceCondition="terminated" nxsd:terminatedBy=",">
 <xsd:element name="Customer" nxsd:conditionValue="(== Cust1) or (== Cust2)
 and (!= emp)">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="C1" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy=""">
 </xsd:element>
 <xsd:element name="C2" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" nxsd:quotedBy=""">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Item" nxsd:conditionValue="(== Item1) or (== Item2) or
 (==Item3) or (== Item4)">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="C1" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy=""">
 </xsd:element>
 <xsd:element name="C2" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy=""">
 </xsd:element>
 <xsd:element name="C3" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" nxsd:quotedBy=""">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Order" nxsd:conditionValue="Order">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="C1" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy=""">

Native Schema Constructs

Native Format Builder Wizard 6-45

 </xsd:element>
 <xsd:element name="C2" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" nxsd:quotedBy=""">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Translated XML Using Native Schema:
<Container xmlns="http://xmlns.oracle.com/pcbpel/nxsd/extensions/SampleNS">
 <Order>
 <C1> ID41678</C1>
 <C2> 20May2000</C2>
 </Order>
 <Item>
 <C1> GigaWidget</C1>
 <C2> 60</C2>
 <C3> $75</C3>
 </Item>
 <Item>
 <C1> MegaBucket</C1>
 <C2> 48</C2>
 <C3> $125</C3>
 </Item>
 <Customer>
 <C1> Hopkins Associates</C1>
 <C2> ID26490</C2>
 </Customer>
 <Order>
 <C1> ID41680</C1>
 <C2> 20May2000</C2>
 </Order>
 <Item>
 <C1> Rt.Clopper</C1>
 <C2> 40</C2>
 <C3> $100</C3>
 </Item>
 <Item>
 <C1> Lt.Clopper</C1>
 <C2> 50</C2>
 <C3> $100</C3>
 </Item>
 <Customer>
 <C1> Jersey WebInovaters</C1>
 <C2> ID46786</C2>
 </Customer>
</Container>

6.2.2.17 Defining Complex Condition in choiceCondition
The choiceCondition construct is used along with the conditionValue construct for
records that are complex and may have fields delimited by multiple delimiter types.
The other choiceCondition types available are FixedLength, Variable, and Ad
hoc. The following example is for the variable choiceCondition type.

Native Schema Constructs

6-46 Oracle Fusion Middleware User's Guide for Technology Adapters

Native Data Format to Be Translated:
Name1,"2 Old Street, Old Town,Manchester",20-08-1954,"0161-499-1718", YES
Name2,"2 Old Street, Old Town,Manchester",20-08-1954,"0161-499-1718", NO

Native Schema:
<element name="LookAhead">
 <complexType>
 <choice maxOccurs="unbounded" nxsd:choiceCondition="${x}" nxsd:lookAhead="70"
nxsd:scanLength="3" nxsd:assignTo="${x}">
 <element name="Record1" type="string" nxsd:conditionValue="YES"
nxsd:style="terminated" nxsd:terminatedBy="," nxsd:skipMode="after"
nxsd:skipUntil="${eol}" />
 <element name="Record2" type="string" nxsd:conditionValue="NO "
nxsd:style="terminated" nxsd:terminatedBy="," nxsd:skipMode="after"
nxsd:skipUntil="${eol}" />
 </choice>
 </complexType>
</element>

Translated XML Using Native Schema:
<LookAhead xmlns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest">
 <Record1>Name1</Record1>
 <Record2>Name2</Record2>
</LookAhead>

6.2.2.18 Defining dataLines
If the requirement is to translate only a portion of the data and not the entire data, then
you can specify the number of lines to be ignored from the beginning of the file and
the number of lines to be translated from that point onwards by using the dataLines
construct.

Native Data Format to Be Translated:
Fred,addr,20-08-1954,0161-499-1718
Tam,addr,20-08-1954,0161-499-1718
Albert,addr,20-08-1954,0161-499-1718
Bill,addr,20-08-1954,0161-499-1718
Phil,addr,20-08-1954,0161-499-1718

Native Schema:
<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD"

 nxsd:headerLines="1"
 nxsd:dataLines="1">

<element name="terminated">
 <complexType>

Native Schema Constructs

Native Format Builder Wizard 6-47

 <sequence maxOccurs="unbounded">
 <element name="PersonName" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <element name="Address" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <element name="DOB" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <element name="Telephone" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using Native Schema:
<terminated xmlns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest">
 <PersonName>Tam</PersonName>
 <Address>addr</Address>
 <DOB>20-08-1954</DOB>
 <Telephone>0161-499-1718</Telephone>
</terminated>

6.2.2.19 Defining Date Formats with Time Zone
In the translator, the date or time must be associated with a time zone. The translator
supports the date formats with time zone for both, the date in native data and for the
date in XML.

There are two parts when translating a date/time string. First, the format of the date in
the native data (dateformat), second is the time zone to use when parsing that date
(timeZone or useTimeZone). The translator uses these details while parsing the
date/time string.

After the parsing, by default, the date string is converted to the ISO-8601 format in an
XML. You can override the defaults by using XMLDateFormat and XMLTimeZone, or
useTimeZone.

Native Data Format to Be Translated:
11/16/0224/11/02
11-20-2002
23*11*2002
01/02/2003 01:02
01/02/2003 03:04:05
Thu, 26 May 2005 15:50:11 India Standard Time
Do, 26 Mai 2005 15:43:10 Indische Normalzeit
20063202
11/16/02

Native Schema:
<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"

Native Schema Constructs

6-48 Oracle Fusion Middleware User's Guide for Technology Adapters

 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="dateformat">
 <complexType>
 <sequence>
 <element name="StartDate" type="date" nxsd:dateFormat="MM/dd/yy"
 nxsd:localeLanguage="en" nxsd:style="fixedLength" nxsd:length="8" />

 <element name="EndDate" type="date" nxsd:dateFormat="dd/MM/yy"
 nxsd:style="terminated" nxsd:terminatedBy="${eol}" />

 <element name="Milestone" type="dateTime" nxsd:useTimeZone="UTC"
 nxsd:dateFormat="MM-dd-yyyy" nxsd:style="terminated"
nxsd:terminatedBy="${eol}" />

 <element name="DueDate" type="dateTime" nxsd:useTimeZone="UTC"
 nxsd:dateFormat="dd*MM*yyyy" nxsd:style="terminated"
nxsd:terminatedBy="${eol}" />

 <element name="Date" type="dateTime" nxsd:useTimeZone="UTC"
 nxsd:dateFormat="MM/dd/yyyy hh:mm" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />

 <element name="Date" type="dateTime" nxsd:useTimeZone="UTC"
 nxsd:dateFormat="MM/dd/yyyy hh:mm:ss" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />

 <element name="LongDateInEnglish" type="dateTime"
 nxsd:displayTimeZone="true" nxsd:useTimeZone="IST" nxsd:dateFormat="EEE, d
MMM
 yyyy HH:mm:ss zzzz" nxsd:localeLanguage="en" nxsd:localeCountry="US"
 nxsd:style="terminated" nxsd:terminatedBy="${eol}" />

 <element name="LongDateInGerman" type="dateTime"
 nxsd:displayTimeZone="true" nxsd:useTimeZone="IST" nxsd:dateFormat="EEE, d
MMM
 yyyy HH:mm:ss zzzz" nxsd:localeLanguage="de" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />

 <element name="InvalidDate" type="dateTime" nxsd:useTimeZone="UTC"
 nxsd:dateParsingMode="lax" nxsd:dateFormat="yyyyMMdd"
nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />

 <element name="MyFormatDate" type="string" nxsd:dateFormat="MM/dd/yy"
 nxsd:xmlDateFormat="dd-MM-yyyy" nxsd:localeLanguage="en"
nxsd:style="fixedLength"
 nxsd:length="8" />

 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using Native Schema:
<dateformat xmlns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest">
 <StartDate>2002-11-16</StartDate>

Native Schema Constructs

Native Format Builder Wizard 6-49

 <EndDate>2002-11-24</EndDate>
 <Milestone>2002-11-20T00:00:00</Milestone>
 <DueDate>2002-11-23T00:00:00</DueDate>
 <Date>2003-01-02T01:02:00</Date>
 <Date>2003-01-02T03:04:05</Date>
 <LongDateInEnglish>2005-05-26T15:50:11+05:30</LongDateInEnglish>
 <LongDateInGerman>2005-05-26T15:43:10+05:30</LongDateInGerman>
 <InvalidDate>2008-08-02T00:00:00</InvalidDate>
 <MyFormatDate>16-11-2002</ MyFormatDate >
</dateformat>

6.2.2.20 Implementing Validation During Translation
You must configure Oracle JCA Adapters to implement validation during translation.
Validation helps ensure that Oracle JCA Adapters do not publish invalid messages
during translation.

You can implement either one or both of the following types of validation:

■ Payload Validation

■ Schema Validation

6.2.2.20.1 Payload Validation Payload validation involves validating the input and
output XML messages that are processed by Oracle JCA Adapters. You can set payload
validation at one of the these levels:

■ Top-Level Validation

■ Field-Level Validation

Top-Level Validation
In top-level validation, the DOMResult (result in the form of a Document Object
Model) is validated against the XML schema. This form of validation is implemented
on both inbound and outbound payloads. This form of validation can control the
publishing of invalid records and provide information about XML validation errors.
However, it does not provide translation context. For example, information about the
line and column in the native stream where the error was encountered is not provided
by top-level validation.

To implement top-level validation of XML messages:

■ The nxsd namespace in the message must be set to the following:

xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"

■ The validation flag must be set to true as follows:

nxsd:validation="true"

For example:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD"
 nxsd:validation="true"
 >

Native Schema Constructs

6-50 Oracle Fusion Middleware User's Guide for Technology Adapters

Field-Level Validation
In field-level validation, the individual fields are validated against the XML schema.
This form of validation is implemented only on inbound payloads, not on outbound
payloads.

If the XML message does not conform to the XML schema, then information about the
exact line and character where the error was encountered is displayed.

To implement field-level validation of XML messages:

■ The nxsd namespace in the message must be set to the following:

xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"

■ The validation flag must be set to true as follows:

nxsd:fieldValidation="true"

For example:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD"
 nxsd:fieldValidation="true"
 >

6.2.2.20.2 Schema Validation Schema validation involves validating the schema (native
schemas or XML schemas) that you define for the native or XML data formats to be
translated by the Oracle JCA Adapters.

To enable schema validation:

■ The nxsd namespace in the message must be set to the following:

xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"

■ The validate nxsd flag must be set to true as follows:

nxsd:validateNxsd="true"

For example:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD"
 nxsd: validateNxsd ="true"
 >

Note: The nxsd:validateNxsd="true" validation flag does not
affect payload level validations.

Native Schema Constructs

Native Format Builder Wizard 6-51

6.2.2.21 Processing Files with BOM
The byte order mark (BOM) is a special U+FEFF Unicode character that describes the
encoding of a byte sequence. The Native Format Translator can be configured to use
BOM for determining the character encoding of the native input data. By default, BOM
is not used. If your input data uses BOM, then set the nxsd:parseBom attribute to
true in the native schema. Otherwise, the translator throws a parsing error.

The following is a sample nxsd file:

<?xml version= '1.0' encoding= 'UTF-8' ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:tns="http://TargetNamespace.com/InboundService"
 targetNamespace="http://TargetNamespace.com/InboundService"
 elementFormDefault="qualified" attributeFormDefault="unqualified"
 nxsd:parseBom="true" nxsd:version="NXSD" nxsd:stream="chars"
 nxsd:encoding="UTF8">
 <xsd:element name="Root-Element">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="mydata" minOccurs="1" maxOccurs="unbounded"
 nxsd:style="array"
 nxsd:cellSeparatedBy="${eol}">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="C1" type="xsd:string"
 nxsd:style="fixedLength"
 nxsd:length="3"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>

6.2.3 Multi-Byte Translation
The Native Format Builder understands inbound native data it translates in terms of
characters. The translator internally uses character data.

However, you might want to specify the field length as bytes, and to process fixed
length data where length has to be specified in terms of bytes.

This not a problem with a single byte character set; however,it is a problem with a
multi byte character set as the l;ength in bytes is not equal to the length in characters.

To solve this, the translator supports specxifying the length of the field in terms of
bytes. You can specify the length unit as either Byte or Char. The default value is
Char. To specify this, use the following convention:

nxsd:lengthUnits="Byte|Char"

Byte specifies that the length of the field is to be translated in tems of Bytes, and Char
indicates that the length of the field is specified in terms of character.

Native Schema Constructs

6-52 Oracle Fusion Middleware User's Guide for Technology Adapters

6.2.3.1 Specifying Padded Data
You can also specify padded data. When you do this,the translator strips off all the
occurrences of padded data. To do this, you must let the translator know the format of
the padded Byte data it will be stripping off.

nxsd:paddedDataType="decimal|binary|octal|hexbinary|string" nxsd:paddedBy="XYZ"

See the following table for a description of the padded Data Type formats.

6.2.3.2 Specifying a Prefix or a Suffix
You can also specify the prefix and suffix which could be appended to the incoming
data before publishing to the XML To do, use the following convention:

nxsd:prefixWith="XXXX" nxsd:suffixWith="YYYY"

6.2.3.3 Translator Behavior
The behavior of the Translator depends upon the type of data to be published to the
XML. For example,you might specify the type as

type=" xsd:string|xsd:hexBinary|xsd:base64Binary"

If data type is specified as string, the Translator reads the specified number of bytes
for the input stream.

If the input stream does not contain sufficient data, the notEnoughData exception is
raised.

Format Description

Decimal Padded data specified is in decimal format. You must specify the
decimal values corresponding to the padded bytes. If you want to
specify more than one byte as padded data, then the length
corresponding to each byte must be three. For example, 001002, 01213
represent additional bytes as padded data.

Binary Padded data specified is in Binary format. You need to specify the
binary values corresponding to the padded bytes. If you want to
specify more than one byte as padded data,then the length
corresponding to each byte must be eight .For example, 001001100,
01010101.

Oct Padded data specified is in Octal format. You need to specify the octal
values corresponding to the padded bytes. If you want to specify more
than one byte as padded data then the length corresponding to each
byte must be three. For example, 064, 070, 246.

hexbinary Padded data specified is in Hexadecimal format. You have to specify
the hexbinary values corresponding to the padded bytes. If you want
to specify more than one byte as padded data, then the length
corresponding to each byte must be two. For example, AE, 07 .

string Padded data specified is in String format. Translator would use the
encoding specified at schema level (nxsd:encoding).

Note: While reading/writing data in byte mode in FixedLength
style, the Translator does not support specifying a prefix and suffix
with base64Binary and hexBinary data.

Translator XPath Functions

Native Format Builder Wizard 6-53

Once theTranslator has read the specified number of bytes, it strips off all padded data
from the read bytes. After removing the padded data, Translator converts remaining
bytes to Character.

If the remaining bytes do not match the character boundary, or if the remaining bytes
cannot be converted to Characterfor any reason, Translator throws an exception. If the
data is successfully converted to the Characters, these Characters are published to the
XML.

If data type you specify is either hexBinary or base64Binary, after removing the
padded data, the Translator converts the remaining bytes to the specified data type
and they are published to the XML.

6.2.3.4 SOSI Support
TheTranslator also provides support to escape bytes (SHIFT_OUT, SHIFT_IN) from the
input stream.

This support is specifically provided to support SJIS encoding, where in mixed Double
Byte Character Set mode, SHIFT_OUT and SHIFT_IN bytes are inserted to the data to
indicate the change of mode (from single byte to double byte).

To use SOSI support with the Translator,use the following convention:

nxsd:escapeBytes="sosi"

Note that the SJIS character can be used in padding only when
paddedDataType="string" .

6.2.3.5 Outbound Translation Behavior
For outbound translation, you can specify the field length in terms of bytes. The
Translator generates the bytes corresponding to the data specified in XML

Once data is converted to bytes, theTranslator first removes any prefix or suffix (if
present). Translator checks for the number of bytes generated along with the length
specified in the schema. If the number of bytes generated are more than that of
specified in Schema, Translator throws an exception.

If the generated bytes are less than that of specified in length, Translator adds the
paddedBy data bytes at the start or end of generated bytes as specified in schema.

6.3 Translator XPath Functions
The translator XPath functions can translate data from a native format (such as CSV,
fixed-length, tab-delimited, and COBOL Copybook formats) to an XML format and
from an XML format to a native format. The translator XPath functions are of two
types, streaming and non-streaming. The difference is that the streaming translator
XPath functions implement the batching transformation approach while the
non-streaming XPath functions do not implement the batching transformation
approach. With the batching transformation approach, files that are of the order of a
few gigabytes (GB) can be processed without running into memory issues.

This section includes the following topics:

■ Section 6.3.1, "Terminologies"

■ Section 6.3.2, "Translator XPath Functions"

Translator XPath Functions

6-54 Oracle Fusion Middleware User's Guide for Technology Adapters

6.3.1 Terminologies
This section describes the terminologies that you must understand for using
translation XPath functions.

Attachment Element
An attachment element unusually refers to the actual content elsewhere by using an
"href" attribute. The actual content may be present in a file system or in a database
table. An attachment is usually represented by using the following schema construct:

<element name="hrefelement">
 <complexType>
 <attribute name="href" type="string"/>
 </complexType>
</element>

The "href" attribute contains the actual location of the data being referred to. It can
contain the path to a file in the file system or a pointer (primary key) to a database
entity.

Scalable DOM
Scalable DOM (SDOM), from Oracle XML Developer Kit (Oracle XDK), provides
scalable and pluggable support for DOM. This removes problems of memory
inefficiency, limited scalability, and lack of control over the DOM configuration. Using
the lazy materialization mechanism, Oracle XDK only creates nodes that are accessed
and frees unused nodes from memory. Applications can process very large XML
documents with improved scalability.

6.3.2 Translator XPath Functions
A translator may be required while reading and writing files. This section discusses
the following translator XPath functions:

■ doTranslateFromNative Function

■ doTranslateToNative Function

■ doStreamingTranslate Function

6.3.2.1 doTranslateFromNative Function
The doTranslateFromNative XPath function translates input data into XML. The input
data can be a string, an attachment element, or a base64Binary element.

ora:dotranslateFromNative('input','nxsdTemplate','nxsdRoot','tar
getType','attachment element?')

The following table describes the parameters used in the syntax for using this function:

Parameter Description

input Input data for the XPath function; the data can either be a string
data that must be translated, an Oracle File or FTP Adapter
attachment, an attachment referring to an external file path, or a
base64Binary element.

nxsdTemplate NXSD schema to use to translate the input data into XML format.

nxsdRoot Root element in the NXSD schema.

Translator XPath Functions

Native Format Builder Wizard 6-55

Example 6–1 Configuring the XPath Function When the Input Data Is of String Type and
Must Be Converted to an XML DOM

<variables>
 <variable…/>
 <variable name="csv_data" type="xsd:string"/>
 </variables>
<assign name="assignCSVData">
 <copy>
 <from expression="'this, is, csv, data…'"/>
 <to variable="csv_data"/>
 </copy>
</assign>

<assign name="doTranslateFromNativeCall">
 <copy>
 <from expression="ora: doTranslateFromNative (bpws:getVariableData('csv_
data'),'xsd/address-csv.xsd','Root-Element','DOM')"/>
 <to variable="returnVariable" query="/ns1:Root-Element"/>
 </copy>
 </assign>

In this example:

■ csv_data is a BPEL variable containing CSV data to be translated into XML.

■ xsd/address-csv.xsd is relative path to the NXSD schema in the project.

■ Root-Element is a root element in the NXSD schema (This is optional.)

■ returnVariable is the returned XML data as DOM.

Example 6–2 When the Input data is an Attachment, Which Must Be Translated to a DOM

1. Define attachmentElement in the schema of the BPEL process, as follows:

<schema targerNamespace="…">
 <element name="attachmentElement">
 <complexType>
 <attribute name="href" type="string"/>
 </complexType>
 </element>

targetType This parameter decides how the XPath function translates the
native data into XML. Must be set to either 'DOM', or
'ATTACHMENT' or 'SDOM'. If the targetType parameter is:

■ 'DOM', then the translated data is returned as a DOM.

■ 'ATTACHMENT', then the translated data is returned as an
attachment. If the optional parameter
(attachmentElement) is available to the XPath function,
then the XPath function uses the corresponding href
attribute to write the translated XML. However, if the
parameter is absent, then the XPath function creates a new
database-backed attachment and returns that. See
Example 6–4 for more details.

■ 'SDOM', then the translated data is returned as SDOM. You
must use this if the returned XML file is huge.

attachmentElement This parameter is optional. This is the attachment for the returned
XML file.

Parameter Description

Translator XPath Functions

6-56 Oracle Fusion Middleware User's Guide for Technology Adapters

</schema>

2. Create a variable of type attachment element in the schema of the BPEL process, as
follows:

 <variables>
 <variable…/>
 <variable name="attachmentVariable" type="client:attachmentElement"/>
 </variables>

3. Assign the source file path that you must translate, as follows:

<assign name="AssignAttachmentReference">
 <copy>
 <from expression="'/tmp/xpath/in/address.csv'"/>
 <to variable="attachmentVariable"
 query="/client:attachmentElement/@href"/>
 </copy>
</assign>

4. Call the XPath function, as follows:

<assign name="xlateFromNative">
 <copy>
 <from
expression="ora:doTranslateFromNative(bpws:getVariableData('attachmentVariable'
),'xsd/address-csv.xsd', 'Root-Element', 'DOM')"/>
 <to variable="returnVariable" query="/ns1:Root-Element"/>
 </copy>
</assign>

In this example:

■ attachmentVariable is an attachment variable in BPEL referring to the source
file path.

■ xsd/address-csv.xsd is the relative path to the NXSD schema in the project.

■ Root-Element is a root element in the NXSD schema.

■ returnVariable is the XML data returned as DOM.

Example 6–3 Configuring XPath Function When the Input Data Is Base64-encoded and
Must Be Translated to DOM

1. Define the base64-encoded element in the schema of the BPEL process, as follows:

<schema targerNamespace="…">
 <element name="mtomElement" type="base64Binary"/>
</schema>

2. Create a variable of type mtom element in the schema of the BPEL process, as
follows:

<variables>
 <variable…/>
 <variable name="encodedData" type="client:mtomElement"/>
</variables>

3. Assign the source file path that you must translate, as follows

<assign name="assignBase64EncodedData">
 <copy>
 <from expression="'b3JhY2xl'"/>

Translator XPath Functions

Native Format Builder Wizard 6-57

 <to variable="encodedData" query="/client:mtomElement"/>
 </copy>
</assign>

<assign name="doTranslateFromNativeCall">
 <copy>
 <from expression="ora: doTranslateFromNative
(bpws:getVariableData('encodedData'),'xsd/address-csv.xsd','Root-Element','DOM'
)"/>
 <to variable="returnVariable" query="/ns1:Root-Element"/>
 </copy>
 </assign>

In this example:

■ mtomElement is a BPEL variable containing base64-encoded data to be translated
into XML.

■ xsd/address-csv.xsd is the relative path to the NXSD schema in the project.

■ Root-Element is a root element in the NXSD schema.

■ returnVariable is the XML data returned as DOM.

Example 6–4 Configuring XPath Function When the Input Data Is of String Type, Which
Must Be Translated to an Attachment Referred to by a File-Path

1. Define attachmentElement in the schema of the BPEL process, as follows:

<schema targerNamespace="…">
 <element name="attachmentElement">
 <complexType>
 <attribute name="href" type="string"/>
 </complexType>
 </element>
</schema>

2. Create an input variable of type string and an output variable of type attachment
in the schema of the BPEL process, as follows:

<variables>
 <variable…/>
 <variable name="csv_data" type="xsd:string"/>
 <variable name="returnAttachmentVariable" type="client:attachmentElement"/>
</variables>

3. Assign the CSV data that you must translate, as follows:

<assign name="assignCSVData">
 <copy>
 <from expression="'this, is, csv, data…'"/>
 <to variable="csv_data"/>
 </copy>
</assign>

4. Populate the attachment with the path of the file where you want the translated
data to be stored, as follows:

<assign name="AssignAttachmentReferenceForOutput">
 <copy>
 <from expression="'/tmp/xpath/output/address.xml'"/>
 <to variable=" returnAttachmentVariable "
 query="/client:attachmentElement/@href"/>

Translator XPath Functions

6-58 Oracle Fusion Middleware User's Guide for Technology Adapters

 </copy>
</assign>

5. Call the XPath function as follows:

<assign name="doTranslateFromNativeCall">
 <copy>
 <from expression="ora: doTranslateFromNative (bpws:getVariableData('csv_
data'),'xsd/address-csv.xsd','Root-Element','ATTACHMENT',
bpws:getVariableData('returnAttachmentVariable'))"/>
 <to variable="returnAttachmentVariable"/>
 </copy>
</assign>

In this example:

■ csv_data is a BPEL string variable containing CSV data to be translated into
XML.

■ xsd/address-csv.xsd is the relative path to the NXSD schema in the project.

■ Root-Element is a root element in the NXSD schema.

■ returnAttachmentVariable is the returned attachment.

Note: In this example, targetType is set to ATTACHMENT, and
returnAttachmentVariable points to the file path where the translated XML is to
be written.

However, the fifth parameter
(bpws:getVariableData('returnAttachmentVariable')) is optional. If this
parameter is missing, then the XPath function creates a database-backed attachment
and returns it. In such a case, the XPath function is configured, as follows:

1. Define attachmentElement in the schema of the BPEL process, as follows:

<schema targerNamespace="…">
 <element name="attachmentElement">
 <complexType>
 <attribute name="href" type="string"/>
 </complexType>
 </element>
</schema>

2. Create an input variable of type string and an output variable of type attachment
in the schema of the BPEL process, as follows:

<variables>
 <variable…/>
 <variable name="csv_data" type="xsd:string"/>
 <variable name="returnAttachmentVariable" type="client:attachmentElement"/>
</variables>

3. Assign the CSV data that you must translate, as follows:

<assign name="assignCSVData">
 <copy>
 <from expression="'this, is, csv, data…'"/>
 <to variable="csv_data"/>
 </copy>
</assign>

<assign name="doTranslateFromNativeCall">
 <copy>

Translator XPath Functions

Native Format Builder Wizard 6-59

 <from expression="ora: doTranslateFromNative
(bpws:getVariableData('csv_
data'),'xsd/address-csv.xsd','Root-Element','ATTACHMENT')"/>
 <to variable="returnAttachmentVariable"/>
 </copy>
 </assign>

After the XPath call returns, the returnAttachmentVariable variable is
populated with the href attribute pointing to the GUID representing the
database-backed attachment.

Note: If the data being translated is huge, then you must use either ATTACHMENT
or SDOM as the targetType parameter for the XPath function.

6.3.2.2 doTranslateToNative Function
The doTranslateToNative XPath function translates an input DOM into string
data or an attachment.

Syntax:
ora:dotranslateToNative('input','nxsdTemplate','nxsdRoot','targe
tType','attachmentElement?')

The following table describes the parameters used in the syntax for using this function:

Example 6–5 Configuring the XPath Function When the Input Data Is of XML Format and
Must Be Translated Into CSV String Format

<variables>
 <variable…/>
 <variable name="inputDOM" type="ns1:Root-Element"/> <!- - data that must be
translated into native - ->
 <variable name="returned_csv_data" type="xsd:string"/>
 </variables>

Parameter Description

input Input data for the XPath function; the data can either be DOM or
SDOM data that must be translated to a native format such as
CSV.

nxsdTemplate NXSD schema to be used to translate the input data into XML
format.

nxsdRoot Name of the root element in the NXSD schema.

targetType This parameter decides how the XPath function translates the
XML data into native formats. Must be set to either 'STRING', or
'ATTACHMENT'. If the targetType parameter is:

■ STRING, then the translated data is returned as a string.

■ ATTACHMENT, then the translated data is returned as an
attachment. If the optional parameter
(attachmentElement) is available to the XPath function,
then the XPath function uses the corresponding href
attribute to write the translated native data. However, if the
parameter is absent, then the XPath function creates a new
database-backed attachment and returns that. See
Example 6–6 for more details.

attachmentElement This parameter is optional. This is the attachment to which the
translated data is written.

Translator XPath Functions

6-60 Oracle Fusion Middleware User's Guide for Technology Adapters

<assign name="doTranslateToNativeCall">
 <copy>
 <from expression="ora: doTranslateToNative
(bpws:getVariableData('inputDOM'),'xsd/address-csv.xsd','Root-Element','STRING')"/
>
 <to variable="returned_csv_data"/>
 </copy>
 </assign>

In this example:

■ inputDOM is a BPEL DOM variable containing XML data to be translated into
string data representing the translated CSV.

■ xsd/address-csv.xsd is the relative path to the NXSD schema in the project.

■ Root-Element is a root element in the NXSD schema.

■ return_csv_data is the string variable that contains the translated CSV data.

Example 6–6 Configuring XPath Function to Translate an Incoming XML DOM into an
Attachment Representing the Target File-Path for the Translated CSV

1. Define attachmentElement in the schema of the BPEL process, as follows:

<schema targerNamespace="…">
 <element name="attachmentElement">
 <complexType>
 <attribute name="href" type="string"/>
 </complexType>
 </element>
</schema>

2. Create an input variable of type attachmentElement in the schema of the BPEL
process, as follows:

<variables>
 <variable…/>
 <variable name="inputDOM" type="ns1:Root-Element"/>
 <variable name="attachmentVariable" type="client:attachmentElement"/>
 </variables>

3. Assign the target file path where you want the translated CSV to be written, as
follows:

<assign name="AssignAttachmentReference">
 <copy>
 <from expression="'/tmp/xpath/out/address.csv'"/>
 <to variable="attachmentVariable"
 query="/client:attachmentElement/@href"/>
 </copy>
</assign>

4. Call the XPath function, as follows:

<assign name="xlateToNative">
 <copy>
 <from
expression="ora:doTranslateToNative(bpws:getVariableData('inputDOM'),'xsd/addre
ss-csv.xsd', 'Root-Element', 'ATTACHMENT', bpws:getVariableData('
attachmentVariable'))"/>
 <to variable="attachmentVariable"/>
 </copy>

Translator XPath Functions

Native Format Builder Wizard 6-61

 </assign>

In this example:

■ inputDOM is a BPEL DOM variable containing XML data to be translated into a
CSV output file represented by /tmp/xpath/out/address.csv.

■ xsd/address-csv.xsd is the relative path to the NXSD schema in the project.

■ Root-Element is a root element in the NXSD schema.

■ AttachmentElement points to the target output file path represented by
/tmp/xpath/out/address.csv.

Note: In this example, targetType is set to ATTACHMENT, and
AttachmentVariable points to the file path where the translated CSV file is to be
written.

However, the fifth parameter
(bpws:getVariableData('attachmentVariable')) is optional. If this
parameter is missing, then the XPath function creates a database-backed attachment
and returns it. In such a case, the XPath function is configured as follows:

1. Define attachmentElement in the schema of the BPEL process, as follows:

<schema targerNamespace="…">
 <element name="attachmentElement">
 <complexType>
 <attribute name="href" type="string"/>
 </complexType>
 </element>
</schema>

2. Create an input variable of type attachmentElement in the schema of the BPEL
process, as follows:

<variables>
 <variable…/>
 <variable name="inputDOM" type="ns1:Root-Element"/>
 <variable name="attachmentVariable" type="client:attachmentElement"/>
 </variables>

3. Call the XPath function, as follows:

<assign name="xlateToNative">
 <copy>
 <from
expression="ora:doTranslateToNative(bpws:getVariableData('inputDOM'),'xsd/addre
ss-csv.xsd', 'Root-Element', 'ATTACHMENT')"/>
 <to variable="attachmentVariable"/>
 </copy>
 </assign>

After the XPath call returns, attachmentVariable is populated with the href
attribute pointing to the GUID representing the database-backed attachment.

6.3.2.3 doStreamingTranslate Function
XPath functions implement the batching transformation approach. With this approach,
files that are of the order of a few gigabytes (GB) can be processed without running
into memory issues. Arbitrarily large payloads can be handled because the
transformation engine does not store the result of the transformation in its memory.
The transformation engine flushes its memory after a batch of elements of the large file

Translator XPath Functions

6-62 Oracle Fusion Middleware User's Guide for Technology Adapters

is processed. The default batch size is 10000, which is the number of elements after
which the transformation engine flushes its memory. This parameter is used internally
and is optional.

Syntax:
ora:doStreamingTranslate('input','streamingXpathContext','target
Type','attachmentElement?')

The following table describes the parameters used in the syntax for using this function:

The streamingXPathContext parameter specifies the context for the streaming
transformation and, it must conform to the following schema element:

<schema targetNamespace="…">
 <element name="streamingcontext">
 complexType>
 <sequence>
 <element name="sourceSchema" type="string"/>
 <element name="sourceRootElement" type="string"/>
 <element name="sourceType" type="string"/>
 <element name="xsl" type="string"/>
 <element name="targetSchema" type="string"/>
 <element name="targetRootElement" type="string"/>
 <element name="targetType" type="string"/>
 <element name="batchSize" type="string"/>
 </sequence>
 </complexType>
 </element>
</schema>

In context:

Note: Batching transformation approach is supported for XML
documents that have repeating structures only.

Parameter Description

input Input data for the XPath function; the data can either be SDOM or
an Attachment element.

streamingXpathContext DOM representing the XPath context.

targetType This parameter decides how the XPath function translates the
input data into an attachment. This must be set to either SDOM or
ATTACHMENT.

attachmentElement This parameter is optional. This is the attachment to which the
data is streamed.

Schema Element Description

sourceSchema Source NXSD schema used to translate a native data to XML.

sourceRootElement Name of root element in source NXSD schema.

sourceType Set this to either xml or native depending on the input data.

xsl Relative path of the XSL file.

targetSchema Target NXSD schema used to translate an XML into native
data.

Translator XPath Functions

Native Format Builder Wizard 6-63

6.3.2.4 Batching Transformation Features
This section discusses the following features of batching transformation:

Applicability
Batching transformation is applicable to:

■ Documents with repeating structure

■ XSLTs not requiring aggregation across entire document

Batched Invocation of XSLT Engine
The following procedure highlights the batched invocation of the XSLT engine:

1. Splitting the source document into multiple batches of one or more records

2. Performing the XSLT transformation one batch at a time

3. Combining the result of the XSLT invocation to a single target document

Splitting or Combining Performed on the Fly
The source documents are split and the results are combined into a target document:

■ Without any intermediate memory or disk storage

■ Through pipelining or intercepting SAX events

Low In-Memory Footprint
Batching transformation method uses low memory for the following tasks:

■ Transforming arbitrarily large XML documents, which are constrained by the
target system

■ For standalone tests, 540 MB is transformed in less than 3 minutes

Example 6–7 implements the FlatStructure FileAdapter sample using streaming
transformation XPath functions. This sample use case translates the inbound native
attachment from a CSV format to an XML format, and then applies the user-supplied
XSL file to the resulting XML file. The transformed XML file is then translated into a
fixed-length content represented by an attachment.

Example 6–7 Using Streaming Transformation XPath Function

1. Define attachmentElement, as shown:

<schema targerNamespace="…">
 <element name="attachmentElement">
 <complexType>
 <attribute name="href" type="string"/>
 </complexType>
 </element>
</schema>

targetRootElement Name of root element in target NXSD schema.

targetType Set this to either xml or native depending on the output
data.

batchSize The number of elements after which the transformation
engine flushes its memory.

Schema Element Description

Translator XPath Functions

6-64 Oracle Fusion Middleware User's Guide for Technology Adapters

2. Create a variable for the input attachment referring to the inbound csv file and the
output attachment referring to the output fixed-length file. Create the variable
corresponding to the streaming context. You must populate this variable before
making a call to the XPath function.

 <variables>
 <variable name="xlationContext" element="client:streamingcontext"/>
 <variable name="inputAttachment" element="client:attachmentElement"/>
 <variable name="returnAttachment" element="client:attachmentElement"/>
 </variables>

 <!- - Assign the input and output attachments - ->
 <assign name="assignValuesForAttachments">
 <copy>
 <from expression="'/tmp/xpath/in/address.csv' "/>
 <to variable="inputAttachment"
query="/client:attachmentElement/@href"/>
 </copy>
 <copy>
 <from expression="'/tmp/xpath/out/address_fixedLength.txt' "/>
 <to variable="returnAttachment"
 query="/client:attachmentElement/@href"/>
 </copy>
 </assign>
<!- - Assign the streaming context - ->
 <assign name="AssignStreamingContext">
 <copy>
 <from expression="'xsd/address-csv.xsd'"/>
 <to variable="xlationContext"
 query="/client:streamingcontext/client:sourceSchema"/>
 </copy>
 <copy>
 <from expression="'Root-Element'"/>
 <to variable="xlationContext"
 query="/client:streamingcontext/client:sourceRootElement"/>
 </copy>
 <copy>
 <from expression="'native'"/>
 <to variable="xlationContext"
 query="/client:streamingcontext/client:sourceType"/>
 </copy>
 <copy>
 <from expression="'xsd/address-fixedLength.xsd'"/>
 <to variable="xlationContext"
 query="/client:streamingcontext/client:targetSchema"/>
 </copy>
 <copy>
 <from expression="'Root-Element'"/>
 <to variable="xlationContext"
 query="/client:streamingcontext/client:targetRootElement"/>
 </copy>
 <copy>
 <from expression="'native'"/>
 <to variable="xlationContext"
 query="/client:streamingcontext/client:targetType"/>
 </copy>
 <copy>
 <from expression="'xsl/addr1Toaddr2.xsl'"/>
 <to variable="xlationContext"

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-65

 query="/client:streamingcontext/client:xsl"/>
 </copy>
 <copy>
 <from expression="'10000'"/>
 <to variable="xlationContext"
 query="/client:streamingcontext/client:batchSize"/>
 </copy>
 </assign>
<!- - call the XPath function - ->
 <assign name="executeStreamingXPath">
 <copy>
 <from
expression="ora:doStreamingTranslate(bpws:getVariableData('inputAttachment','/c
lient:attachmentElement'),
bpws:getVariableData('xlationContext'), 'ATTACHMENT',
bpws:getVariableData('returnAttachment'))"/>
 <to variable="returnAttachment" query="/client:attachmentElement"/>
 </copy>
 </assign>

6.4 Use Cases for the Native Format Builder
This section describes the following use cases:

■ Section 6.4.1, "Defining the Schema for a Delimited File Structure"

■ Section 6.4.2, "Defining the Schema for a Fixed Length File Structure"

■ Section 6.4.3, "Defining the Schema for a Complex File Structure"

■ Section 6.4.4, "Removing or Adding Namespaces to XML with No Namespace"

■ Section 6.4.5, "Defining the Choice Condition Schema for a Complex File
Structure"

■ Section 6.4.6, "Defining Choice Condition With LookAhead for a Complex File
Structure"

■ Section 6.4.7, "Defining Array Type Schema for a Complex File Structure"

■ Section 6.4.8, "Defining the Schema for a DTD File Structure"

■ Section 6.4.9, "Defining the Schema for a COBOL Copybook File Structure"

6.4.1 Defining the Schema for a Delimited File Structure
A comma-separated value (CSV) file is a common non-XML file structure.

Use the Delimited option in the Native Format Builder wizard, when creating the
XML schema for this native file.

The nxsd:headerLines="1" schema attribute signifies that the first line must be
treated as a header row and skipped in the native data before actually translating the
rest of the data. The nxsd:stream="chars" schema attribute signifies that the data
should be read as characters. If nxsd:stream is set as bytes,

Note: Sampling the data with multi-character delimiter in Native
Format Builder is not supported currently. The same can be achieved
through hand coding the NXSD with the appropriate Delimited By
string.

Use Cases for the Native Format Builder

6-66 Oracle Fusion Middleware User's Guide for Technology Adapters

nxsd:stream="bytes", then this schema attribute signifies that the native data
should be read as bytes. For each of the element declarations, Name, Street, City,
State, and Country, which have a corresponding scalar data, the
nxsd:style="terminated" attribute defines that the corresponding data is stored
in terminated style. The actual terminator is then defined by the
nxsd:terminatedBy="," attribute specified at that construct. See Section 6.2.2.2,
"Defining Terminated Data" for details on the terminated style.

In this use case, the Native Format Builder uses a delimited sample file type that
contains the address details, such as name, street, city, state, and country. Every
element in this sample native file is delimited by a comma (,). You can generate the
corresponding NXSD and also test it. Perform the following steps to run the use case:

1. The data in a sample text file, address-csv.txt, appears as below:

Name,Street1,Street2,City,State,Country
Oracle India Private Limited, Lexington Towers Prestige St. John's Woods, 2nd
Cross Road Chikka Audugodi, Bangalore, Karnataka, India
Intel Technology India Private Limited, Survey #23-56 P Devarabeesanahalli
Village, Outer Ring Road Varthur Hobli, Bangalore, Karnataka, India

2. Navigate to the Adapter Configuration Wizard Messages page, as displayed in
Figure 6–4, and click the Define Schema for Native Format button.

Figure 6–4 Starting the Native Format Builder Wizard

The Native Format Builder Welcome page is displayed, as shown in Figure 6–5.

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-67

Figure 6–5 Native Format Builder Wizard Welcome Page

3. Click Next. The Choose Type page is displayed, as shown in Figure 6–6.

Figure 6–6 Native Format Builder Wizard Choose Type Page

4. Click Next. The Native Format Builder File Description page is displayed.

5. Click Browse and select the address-csv.txt file, as shown in Figure 6–7.

Use Cases for the Native Format Builder

6-68 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–7 Native Format Builder Wizard File Description Page

6. Click Next. The Record Organization page is displayed, as shown in Figure 6–8.

Figure 6–8 Native Format Builder Wizard Record Organization Page

7. Select File contains multiple record instances, then select Multiple records are of
single type, and then click Next. The Specify Elements page is displayed.

8. Enter AddressBook in the Enter name of element containing multiple records
field and enter Address in the Enter a name for element that will represent
record field, as shown in Figure 6–9.

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-69

Figure 6–9 Native Format Builder Wizard Specify Elements Page

9. Click Next. The Specify Delimiters page is displayed, as shown in Figure 6–10.

Figure 6–10 Native Format Builder Wizard Specify Delimiters Page

10. Ensure that the Comma(,) option is selected in the Delimited By field, and click
Next. The Field Properties page is displayed, as shown in Figure 6–11.

Use Cases for the Native Format Builder

6-70 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–11 Native Format Builder Wizard Field Properties Page

11. Select Use the first record as the field names, then click Next. The Generated
Native Format File page is displayed, as shown in Figure 6–12.

Figure 6–12 Native Format Builder Wizard Generated Native Format File Page

The corresponding native schema definition is as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:tns="http://TargetNamespace.com/Read"

Note: The first record is used as the field name, is also treated as a
header record, and is skipped during translation.

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-71

 targetNamespace="http://TargetNamespace.com/Read"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:version="NXSD"
 nxsd:stream="chars"
 nxsd:encoding="ASCII"
 nxsd:hasHeader="true"
 nxsd:headerLines="1"
 nxsd:headerLinesTerminatedBy="${eol}"
>
 <xsd:element name="AddressBook">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Address" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"
 nxsd:style="terminated" nxsd:terminatedBy=","
nxsd:quotedBy=""" />
 <xsd:element name="Street1" type="xsd:string"
 nxsd:style="terminated" nxsd:terminatedBy=","
nxsd:quotedBy=""" />
 <xsd:element name="Street2" type="xsd:string"
 nxsd:style="terminated" nxsd:terminatedBy=","
nxsd:quotedBy=""" />
 <xsd:element name="City" type="xsd:string"
 nxsd:style="terminated" nxsd:terminatedBy=","
nxsd:quotedBy=""" />
 <xsd:element name="State" type="xsd:string"
 nxsd:style="terminated" nxsd:terminatedBy=","
nxsd:quotedBy=""" />
 <xsd:element name="Country" type="xsd:string"
 nxsd:style="terminated" nxsd:terminatedBy="${eol}"
nxsd:quotedBy=""" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

12. Click Test. The Test NXSD Schema dialog is displayed, as shown in Figure 6–13.

Use Cases for the Native Format Builder

6-72 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–13 Test NXSD Schema Dialog

13. Click the Generate XML icon. The resultant XML is displayed on the Result XML
pane of the Test NXSD Schema dialog, as shown in Figure 6–14.

Figure 6–14 Test NXSD Schema Dialog

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-73

The native data using the corresponding native schema format is translated into
the following XML:

<?xml version = '1.0' encoding = 'UTF-8'?>
<AddressBook xmlns="http://TargetNamespace.com/ReadFile">
 <Address>
 <Name>Oracle India Private Limited</Name>
 <Street1> Lexington Towers Prestige St. John's Woods</Street1>
 <Street2> 2nd Cross Road Chikka Audugodi</Street2>
 <City> Bangalore</City>
 <State> Karnataka</State>
 <Country> India</Country>
 </Address>
 <Address>
 <Name>Intel Technology India Private Limited</Name>
 <Street1> Survey #23-56 P Devarabeesanahalli Village</Street1>
 <Street2> Outer Ring Road Varthur Hobli</Street2>
 <City> Bangalore</City>
 <State> Karnataka</State>
 <Country> India</Country>
 </Address>
</AddressBook>

14. Click OK. The Generated Native Format Schema File page is displayed, as shown
in Figure 6–12.

15. Click Next. The Native Format Builder Finish page is displayed, as shown in
Figure 6–15.

Figure 6–15 Native Format Builder Wizard Finish Page

16. Click Finish. The Adapter Configuration Wizard Messages page is displayed, as
shown in Figure 6–16, containing the generated NXSD.

Use Cases for the Native Format Builder

6-74 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–16 Adapter Configuration Wizard Messages Page

6.4.1.1 Defining a Asterisk (*) Separated Value File Structure
The use case defined in the previous example is just one specific case of the *SV class,
where the wildcard can be substituted by any character or string. For example, for the
native data containing a plus (+) separated value, substitute the wildcard with the
plus (+) character.

Use the Delimited type option in the Native Format Builder wizard when creating the
XML schema for this native file.

Native Data Format to Be Translated
The following native data format is provided:

a+b+c+d+e
f+g+h+i+j

Native Schema
The corresponding native schema definition is similar to the one in the previous use
case except that instead of nxsd:terminatedBy="," you now define the terminated
by format as nxsd:terminatedBy="+". See Section 6.2.2.2, "Defining Terminated
Data" for details about the terminated style.

6.4.2 Defining the Schema for a Fixed Length File Structure
In this example, the native data used is the same as in the CSV case, but the data used
is of type fixed length and not CSV.

Use the Fixed Length option in the Native Format Builder wizard, to create the XML
schema for this native file.

In this use case, the Native Format Builder uses a fixed-length file type called
address that contains the address details such as name, street, city, state, and country.

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-75

Every element in this address native file has a fixed length. You can generate the
corresponding NXSD and also test it. Perform the following steps to run the use case:

1. The data in a sample text file, address.txt, appears as below:

Name Street City State Country
ABC Private Limited Street1 Bangalore Karnataka India
XYZ Private Limited Street1 Bangalore Karnataka India

2. Launch the Adapter Configuration Wizard and navigate to the Messages page, as
displayed in Figure 6–4, and click Define Schema For Native Format. The Native
Format Builder Welcome page is displayed, as shown in Figure 6–5.

3. Click Next. The Choose Type page is displayed.

4. Select Fixed Length as the file type, as shown in Figure 6–17.

Figure 6–17 Native Format Builder Wizard Choose Type Page

5. Click Next. The Native Format Builder File Description page is displayed.

6. Click Browse and select the address.txt file, as displayed in Figure 6–18.

Use Cases for the Native Format Builder

6-76 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–18 Native Format Builder Wizard File Description Page

7. Click Next. The Record Organization page is displayed, as shown in Figure 6–19.

Figure 6–19 Native Format Builder Wizard Record Organization Page

8. Select Multiple records are of single type, and click Next. The Specify Elements
page is displayed.

9. Enter AddressBook in the Enter name of element containing multiple records
field, and enter Address in the Enter a name for element that will represent
record field, as shown in Figure 6–20.

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-77

Figure 6–20 Native Format Builder Wizard Specify Elements Page

10. Click Next. The Field Lengths for Multiple Record Files page is displayed.

11. Click the ruler at the desired position to mark fields on the sample text area, as
shown in Figure 6–21 and click Next. The Field Properties page is displayed.

Figure 6–21 Native Format Builder Wizard Field Lengths for Multiple Record Files Page

12. Check Use the first record as the field names, as shown in Figure 6–22.

Use Cases for the Native Format Builder

6-78 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–22 Native Format Builder Wizard Field Properties Page

13. Click Next. The Generated Native Format Schema File page is displayed, as shown
in Figure 6–23.

Figure 6–23 Native Format Builder Wizard Native Format Schema File Page

The corresponding native schema definition is similar to the definition of the CSV,
file but style changes from nxsd:style="terminated" to
nxsd:style="fixedLength" along with the relevant attributes for the
fixed-length style. For the fixed-length style, the one mandatory attribute is the
length: nxsd:length. The value of nxsd:length is the actual length of the
data to be read.

<?xml version="1.0" encoding="UTF-8" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-79

 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:tns="http://TargetNamespace.com/FileIn_1"
 targetNamespace="http://TargetNamespace.com/FileIn_1"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"

 nxsd:version="NXSD"
 nxsd:stream="chars"
 nxsd:encoding="ASCII"
 nxsd:hasHeader="true"
 nxsd:headerLines="1"
 nxsd:headerLinesTerminatedBy="${eol}"

 <xsd:element name="AddressBook">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Address" minOccurs="1" maxOccurs="unbounded"
nxsd:style="array" nxsd:cellSeparatedBy="${eol}">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string"
nxsd:style="fixedLength" nxsd:length="22" />
 <xsd:element name="Street" type="xsd:string"
nxsd:style="fixedLength" nxsd:length="8" />
 <xsd:element name="City" type="xsd:string"
nxsd:style="fixedLength" nxsd:length="12" />
 <xsd:element name="State" type="xsd:string"
nxsd:style="fixedLength" nxsd:length="10" />
 <xsd:element name="Country" type="xsd:string"
nxsd:style="fixedLength" nxsd:length="7" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

14. Click Test. The Test NXSD Schema dialog is displayed, as shown in Figure 6–24.

Use Cases for the Native Format Builder

6-80 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–24 Test NXSD Schema Dialog

15. Click the Generate XML icon. The resultant XML is displayed on the Result XML
pane of the Test NXSD Schema dialog, as shown in Figure 6–25.

Figure 6–25 Test NXSD Schema Dialog

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-81

The native data using the corresponding native schema format is translated into
the following XML:

<?xml version = '1.0' encoding = 'UTF-8'?>
<AddressBook xmlns="http://TargetNamespace.com/Read">
 <Address>
 <Name>ABC Private Limited </Name>
 <Street>Street1 </Street>
 <City> Bangalore </City>
 <State>Karnataka </State>
 <Country>India</Country>
 </Address>
 <Address>
 <Name>XYZ Private Limited </Name>
 <Street>Street1 </Street>
 <City> Bangalore </City>
 <State>Karnataka </State>
 <Country>India </Country>
 </Address>
</AddressBook>

16. Click OK. The Generated Native Format File page is displayed, as shown in
Figure 6–23.

17. Click Next. The Native Format Builder Finish page is displayed, as shown in
Figure 6–15.

18. Click Finish. The Adapter Configuration Wizard Messages page is displayed, as
shown in Figure 6–16, that contains the generated NXSD.

6.4.3 Defining the Schema for a Complex File Structure
The file structure of an invoice is more complex than the structure of CSV, *SV, and
fixed-length files discussed in the preceding use cases. An invoice usually contains
buyer information, seller information, and line items. Each of these elements, in turn,
can be of complex type. For example, the buyer element can be defined as a
partner-type, where partner-type consists of three elements - id, name, and address.

Use the Complex Type option in the Native Format Builder wizard when creating the
XML schema for this native file.

In this use case, the Native Format Builder uses invoice.txt, a complex file type
called invoice, which contains multiple records such as buyer, seller, and items. Also,
using this use case, you can generate the NXSD and test it. Perform the following steps
to run this use case:

1. The data in a sample text file, invoice.txt, appears as below:

6335722^Company One^First Street 999 San Jose
95129USCA650-801-6250
 ^Oracle^Bridge Parkway 1600 Redwood Shores 94065USCA650-506-7000
001|BPEL Process Manager Enterprise Edition|20000,2,+40000+
002|BPEL Process Manager Standard Edition|10000,5,+50000+
003|BPEL Process Manager Developer Edition|1000,20,+20000+#110000

2. Launch the Adapter Configuration Wizard and navigate to the Messages page, as
displayed in Figure 6–4, and click Define Schema For Native Format. The Native
Format Builder Welcome page is displayed, as shown in Figure 6–5.

3. Click Next. The Choose Type page is displayed, as shown in Figure 6–26.

Use Cases for the Native Format Builder

6-82 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–26 Native Format Builder Wizard Choose Type Page

4. Select Complex Type (Contains records whose fields may themselves be records
having multiple delimiter types).

5. Click Next. The Native Format Builder File Description page is displayed.

6. Click Browse and select the invoice.txt file, and enter Invoice in the Root
Element field, as displayed in Figure 6–27.

Figure 6–27 Native Format Builder Wizard File Description Page

7. Click Next. The Native Format Builder Design Schema is displayed, as shown in
Figure 6–28.

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-83

Figure 6–28 Native Format Builder Wizard Design Schema Page

Create the partner-type Complex Type
The schema structure that you can build using the invoice.txt sample is as follows:

Invoice
Buyer => partner-type

Seller => partner-type

Items => item-type

Invoice-total => double

The first line in the native data consists of buyer details, followed by seller details,
followed by line items, and finally the total for the line items. Both buyer and seller
elements have the same complex structure, as follows:

■ The first seven characters are the UID

■ This is followed by the buyer/seller name surrounded by "^".

■ This is followed by the address until the end of the line.

1. Click the Add Complex Type icon. A Complex Type, <new_complex_type> is
created in the Schema Tree under Invoice, as shown in Figure 6–29.

Use Cases for the Native Format Builder

6-84 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–29 Native Format Builder Wizard Design Schema Page

2. Select the first row of the sample text from the right-hand pane of the Sample File
section, and drag and drop it on the <new_complex_type> node. The Complex
Type Details dialog is displayed.

3. Enter partner-type in the Complex Type Name field, as shown in Figure 6–30.

Figure 6–30 Native Format Builder Wizard Design Schema Page - Complex Type Details
Dialog

4. Click the ruler at the desired position to mark fields on the sample text area, and
then click the Generate Fields button. The system tries to interpret the style of
data for the defined fields.

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-85

5. Enter id, name, and address in the Name field, as shown in Figure 6–31.

Figure 6–31 Complex Type Details Dialog

6. Click the pencil icon adjacent to each field to display the corresponding Edit Field
Details dialog that enables you to edit the field properties. For example, click the
pencil icon adjacent to the Name field. The Edit Field Details dialog is displayed,
as shown in Figure 6–32.

Note: For the Fixed Length or Mixed Delimiter type options, a
ruler-based text area is displayed. You have to use the rulers to
identify fields within the sample text. In case of delimited data, select
or enter the appropriate delimiter in the Delimited By field.

Use Cases for the Native Format Builder

6-86 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–32 Edit Field Details Dialog

7. Edit the following field properties, as shown in Figure 6–32.

■ Type: The data type of the sample text. Select String from the Type list.

■ Style: Represents the style of the complex type element. You can select any of
the following four options:

– fixed length

– surrounded

– terminated

– left/right surrounded

In this example, select surrounded.

■ Surrounded By: This option is displayed when you select surrounded in the
Style option. In this example, enter caret (^) in the Surrounded By field.

The field properties displayed on this panel correspond to the NXSD attributes
used in the schema.

8. Click OK. The Complex Type Details dialog is displayed with the field properties
that you selected.

9. Verify or edit the field properties for id and address Name fields.

10. Click OK in the Complex Type Details dialog. The Native Format Builder Design
Schema page is displayed, as shown in Figure 6–33.

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-87

Figure 6–33 Native Format Builder Wizard Design Schema Page - partner-type Complex
Type

Create an address-type Complex Type
The address element can be further defined as another complex-type that contains a
fixed-length street, city, and so on.

1. Create another <new_complex_type> node in the Schema Tree. See Step 1 in
Create the partner-type Complex Type.

2. Drag and drop the address part in the first row of the sample text to the Complex
Type, <new_complex_type>. The Complex Type Details dialog is displayed.

3. Enter address-type in the Complex Type Name field.

4. Click the ruler to mark fields on the sample text area, and then click the Generate
Fields button. Now, enter street1, street2, city, zip, country, state, and phone in
the Name field, as shown in Figure 6–34.

Use Cases for the Native Format Builder

6-88 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–34 Native Format Builder Wizard Design Schema Page - Complex Type Details
Dialog

5. Click OK. The Native Format Builder Design Schema page is displayed, as shown
in Figure 6–35.

Figure 6–35 Native Format Builder Wizard Design Schema Page

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-89

Assign the address-type Complex Type to address field of partner-type Complex
Type
You must assign the address-type complex type to the address field of the partner-type
complex type. You can assign a complex type to an element by using one of the
following methods:

■ Drag and drop the address-type node on the address field node of the
partner-type complex type. This instantly assigns address-type to the address
field element.

■ Select the address field node of the partner-type complex type and then click
the pencil icon.

The Edit Field Details dialog is displayed, as shown in Figure 6–36.

Figure 6–36 Edit Field Details Dialog

6. Select the address-type option in the Type list, and click OK. The address-type
option is assigned to the address field element in the Native Format Builder
Design Schema page, as shown in Figure 6–37.

Figure 6–37 Native Format Builder Wizard Design Schema Page

Use Cases for the Native Format Builder

6-90 Oracle Fusion Middleware User's Guide for Technology Adapters

Create 'buyer' and 'seller' Global Elements
1. Select Invoice, and click the Add Element icon. An element, <new_element>, is

created in the Schema Tree under the root element, Invoice.

2. Rename it to buyer.

3. Again, select Invoice, and click the Add Element icon. An element, <new_
element>, is created in the Schema Tree under Invoice.

4. Rename it to seller.

Now, drag and drop the partner-type node on each of the buyer and seller nodes,
to assign the partner-type complex type to these nodes. The Schema Tree appears,
as shown in Figure 6–38.

Figure 6–38 Native Format Builder Wizard Design Schema Page

Create item-type Complex Type, and items and invoice-total Element Nodes
The items element can be considered an array of item-types. The last line item in the
native file ends with the number sign (#), followed by the line-item total.

1. Select Invoice, and click the Add Element icon. An element, <new_element>, is
created in the Schema Tree under Invoice.

2. Rename it to items.

3. Create the item-type complex type and define the field properties, as shown in
Figure 6–39.

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-91

Figure 6–39 Native Format Builder Wizard Design Schema Page

4. Drag and drop item-type complex type to the items element to assign item-type to
this element.

5. Select items - item-type and click the pencil icon. The Element Details dialog is
displayed.

Figure 6–40 Element Details Dialog

6. Set the following properties in the Element Details dialog, as shown in
Figure 6–40:

1. Set Max. Occurence - UNBOUNDED

2. Select Array. The Cell Separator and Array Separator are enabled.

3. Set Cell Separator - ${eol}

4. Set Array Separator - #

7. Click OK.

Note: The element items is defined as an array of item-type.

Use Cases for the Native Format Builder

6-92 Oracle Fusion Middleware User's Guide for Technology Adapters

8. Create the invoice-total element, and drag and drop the sample text (110000) on
the <new_element> node. The Element Details dialog is displayed.

9. Enter invoice-total in the Element Name field, and click Generate Fields. The
Alert message is displayed, as shown in Figure 6–41.

Figure 6–41 Element Details Dialog - Alert Message

If a single field is identified in the sampled data for a global element, then the
properties of this data are applied to the global element itself.

10. Click OK in the Alert message. The Element Details dialog is displayed.

11. Select double in the Data Type list, and click OK. The Native Format Builder
Design Schema page is displayed, as shown in Figure 6–42.

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-93

Figure 6–42 Native Format Builder Wizard Design Schema Page - Complete Schema Tree

12. Click Next. The Generated Native Format Schema File page is displayed, as shown
in Figure 6–43, which displays the native format file.

Figure 6–43 Native Format Builder Wizard Generated Native Format File Page

The native schema definition corresponding to the preceding native data can be
defined as follows:

<schema attributeFormDefault="qualified" elementFormDefault="qualified"

targetNamespace="http://xmlns.oracle.com/ias/pcbpel/fatransschema/demo"

xmlns:tns="http://xmlns.oracle.com/ias/pcbpel/fatransschema/demo"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 nxsd:version="NXSD" nxsd:stream="chars">

Use Cases for the Native Format Builder

6-94 Oracle Fusion Middleware User's Guide for Technology Adapters

 <element name="invoice" type="tns:invoiceType" />

 <complexType name="invoiceType">
 <sequence>
 <element name="purchaser" type="tns:partnerType" />
 <element name="seller" type="tns:partnerType" />
 <element name="line-item" type="tns:line-itemType"
 maxOccurs="unbounded" nxsd:style="array"
 nxsd:cellSeparatedBy="${eol}" nxsd:arrayTerminatedBy="#"/>
 <element name="total" type="double" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}"/>
 </sequence>
 </complexType>

 <complexType name="partnerType">
 <sequence>
 <element name="uid" type="string" nxsd:style="fixedLength"
 nxsd:length="7" nxsd:padStyle="tail" nxsd:paddedBy=" "/>
 <element name="name" type="string" nxsd:style="surrounded"
 nxsd:surroundedBy="^"/>
 <element name="address" type="tns:addressType" />
 </sequence>
 </complexType>

 <complexType name="addressType">
 <sequence>
 <element name="street1" type="string" nxsd:style="fixedLength"
 nxsd:length="15" nxsd:padStyle="tail" nxsd:paddedBy=" "/>
 <element name="street2" type="string" nxsd:style="fixedLength"
 nxsd:length="10" nxsd:padStyle="tail" nxsd:paddedBy=" "/>
 <element name="city" type="string" nxsd:style="fixedLength"
 nxsd:length="15" nxsd:padStyle="tail" nxsd:paddedBy=" "/>
 <element name="postal-code" type="string" nxsd:style="fixedLength"
 nxsd:length="5" nxsd:padStyle="none"/>
 <element name="country" type="string" nxsd:style="fixedLength"
 nxsd:length="2" nxsd:padStyle="none"/>
 <element name="state" type="string" nxsd:style="fixedLength"
 nxsd:length="2" nxsd:padStyle="none"/>
 <element name="phone" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}"/>
 </sequence>
 </complexType>

 <complexType name="line-itemType">
 <sequence>
 <element name="uid" type="string" nxsd:style="fixedLength"
 nxsd:length="3" nxsd:padStyle="none"/>
 <element name="description" type="string" nxsd:style="surrounded"
 nxsd:surroundedBy="|"/>
 <element name="price" type="double" nxsd:style="terminated"
 nxsd:terminatedBy=","/>
 <element name="quantity" type="integer" nxsd:style="terminated"
 nxsd:terminatedBy=","/>
 <element name="line-total" type="double" nxsd:style="surrounded"
 nxsd:surroundedBy="+"/>
 </sequence>
 </complexType>

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-95

</schema>

13. Click Test. The Test NXSD Schema dialog is displayed, as shown in Figure 6–44.

Figure 6–44 Test NXSD Schema Dialog

14. Click the Generate XML icon. The Result XML is displayed on the right pane of
the Test NXSD Schema dialog, as shown in Figure 6–45.

Use Cases for the Native Format Builder

6-96 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–45 Test NXSD Schema Dialog - Result XML

The translated XML looks as follows:

<invoice xmlns="http://xmlns.oracle.com/pcbpel/demoSchema/invoice-nxsd">
 <purchaser>
 <uid>6335722</uid>
 <name>Company One</name>
 <address>
 <street1>First Street</street1>
 <street2>999</street2>
 <city>San Jose</city>
 <postal-code>95129</postal-code>
 <country>US</country>
 <state>CA</state>
 <phone>650-801-6250</phone>
 </address>
 </purchaser>
 <seller>
 <uid/>
 <name>Oracle</name>
 <address>
 <street1>Bridge Parkway</street1>
 <street2>1600</street2>
 <city>Redwood Shores</city>
 <postal-code>94065</postal-code>
 <country>US</country>
 <state>CA</state>
 <phone>650-506-7000</phone>
 </address>
 </seller>
 <line-item>
 <uid>001</uid>
 <description>BPEL Process Manager Enterprise Edition</description>
 <price>20000</price>

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-97

 <quantity>2</quantity>
 <line-total>40000</line-total>
 </line-item>
 <line-item>
 <uid>002</uid>
 <description>BPEL Process Manager Standard Edition</description>
 <price>10000</price>
 <quantity>5</quantity>
 <line-total>50000</line-total>
 </line-item>
 <line-item>
 <uid>003</uid>
 <description>BPEL Process Manager Developer Edition</description>
 <price>1000</price>
 <quantity>20</quantity>
 <line-total>20000</line-total>
 </line-item>
 <total>110000</total>
</invoice>

15. Click OK. The Generated Native Format File page is displayed, as shown in
Figure 6–43.

16. Click Next. The Native Format Builder Finish page is displayed, as shown in
Figure 6–15.

17. Click Finish. The Adapter Configuration Wizard Messages page is displayed,
containing the generated NXSD, as shown in Figure 6–16.

6.4.4 Removing or Adding Namespaces to XML with No Namespace
When the native data is XML and that XML has no namespace, you can use the Native
Format Translator to add a namespace to an inbound XML document and remove the
namespace from an outbound XML document.

The XML has no namespace when either of the following is true:

■ The XML has a corresponding XML schema, and there is no target namespace
specified in that XML schema.

■ The XML has a corresponding DTD, which was converted to the XML schema.

In both cases, you must create a wrapper schema with targetNamespace specified,
and the wrapper schema must include the actual schema. In addition, the wrapper
schema must also have the nxsd:version attribute set to DTD. For example:

--wrapper.xsd
<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="myNamespace"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 nxsd:version="DTD">
 <include schemaLocation="actual.xsd"/>
</schema>

Note: Ensure that elementFormDefault="qualified" is
specified in the actual schema.

Use Cases for the Native Format Builder

6-98 Oracle Fusion Middleware User's Guide for Technology Adapters

Using this wrapper.xsd file for the original .xsd file would add the myNamespace
namespace to the inbound XML and would remove the myNamespace namespace
from the outbound XML.

6.4.5 Defining the Choice Condition Schema for a Complex File Structure
In this use case, the Native Format Builder uses order.txt, a complex type file, which
contains multiple record types such as order, customer, and items. Also, using this use
case you can generate the NXSD and test it. Perform the following steps to run this use
case:

1. The data in a sample text file, order.txt, appears as below:

Order, ID41678, 20May2000
Item1, GigaWidget, 60, $75
Item2, MegaBucket, 48, $125
Cust1, Hopkins Associates, ID26490
Order, ID41680, 20May2000
Item3, Rt.Clopper, 40, $100
Item4, Lt.Clopper, 50, $100
Cust2, Jersey WebInovaters, ID46786

2. Create the following complex types by dragging one row each of order, customer,
and item native data:

■ OrderType

■ ItemType

■ CustomerType

For more information about creating a complex type, see Section 6.4.3, "Defining
the Schema for a Complex File Structure".

The Native Format Builder Design Schema page is displayed, as shown in
Figure 6–46.

Figure 6–46 Native Format Builder Design Schema Page

3. Click Add Choice Node. The Choice Option Type dialog is displayed.

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-99

4. Set the options in the Choice Option Type dialog, as shown in Figure 6–47, and
then click OK.

Figure 6–47 The Choice Option Type Dialog

5. Select choice and click the Add Element icon. A <new_element> is added to the
choice node.

6. Rename the newly added element to OrderChoice, and then drag and drop the
OrderType complex type element to OrderChoice.

7. Select OrderChoice - string and click the Edit Node icon. The Element Details
dialog is displayed.

8. Enter Order in the Choice Value field, as shown in Figure 6–48, and then click
OK.

Figure 6–48 The Element Details Dialog

9. Follow Step 5 to 8 to create the ItemChoice choice complex type with ItemType
data type and CustomerChoice choice complex type with CustomerType data
type. The Native Format Builder Design Schema dialog is displayed, as shown in

Note: You should specify four characters in Choice Value field as the
Length field has the value 4 in it.

Use Cases for the Native Format Builder

6-100 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–49.

Figure 6–49 Native Format Builder Design Schema Page

10. Click Next. The Generated Native Format Schema File page is displayed, as shown
in Figure 6–50, which displays the native format file.

Figure 6–50 Generated Native Format Schema File Page

Native Schema

The native schema definition corresponding to the preceding native data can be
defined as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-101

 xmlns:tns="http://TargetNamespace.com/test"
 targetNamespace="http://TargetNamespace.com/test"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:version="NXSD"
 nxsd:stream="chars"
 nxsd:encoding="ASCII"
>
 <xsd:element name="Root-Element">
 <xsd:complexType>
 <xsd:choice minOccurs="1" maxOccurs="unbounded"
 nxsd:choiceCondition="fixedLength" nxsd:length="4">
 <xsd:element name="OrderChoice" type="tns:OrderType"
 nxsd:conditionValue="Orde" />
 <xsd:element name="ItemChoice" type="tns:ItemType"
 nxsd:conditionValue="Item" />
 <xsd:element name="CustomerChoice" type="tns:customerType"
 nxsd:conditionValue="Cust" />
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="customerType">
 <xsd:sequence>
 <xsd:element name="C1" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <xsd:element name="C2" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <xsd:element name="C3" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="ItemType">
 <xsd:sequence>
 <xsd:element name="C1" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <xsd:element name="C2" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <xsd:element name="C3" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <xsd:element name="C4" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="OrderType">
 <xsd:sequence>
 <xsd:element name="C1" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <xsd:element name="C2" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <xsd:element name="C3" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

11. Click Test. The Test NXSD Schema dialog is displayed.

12. Click the Generate XML icon. The Result XML is displayed on the right pane of
the Test NXSD Schema dialog, as shown in Figure 6–51.

Use Cases for the Native Format Builder

6-102 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–51 Test NXSD Schema Dialog

Translated XML Using the Native Schema

The translated XML looks as follows:

<?xml version = '1.0' encoding = 'UTF-8'?>
<Root-Element xmlns="http://TargetNamespace.com/test">
 <OrderChoice>
 <C1>r</C1>
 <C2> ID41678</C2>
 <C3> 20May2000</C3>
 </OrderChoice>
 <ItemChoice>
 <C1>1</C1>
 <C2> GigaWidget</C2>
 <C3> 60</C3>
 <C4> $75</C4>
 </ItemChoice>
 <ItemChoice>
 <C1>2</C1>
 <C2> MegaBucket</C2>
 <C3> 48</C3>
 <C4> $125</C4>
 </ItemChoice>
 <CustomerChoice>
 <C1>1</C1>
 <C2> Hopkins Associates</C2>
 <C3> ID26490</C3>
 </CustomerChoice>
 <OrderChoice>
 <C1>r</C1>
 <C2> ID41680</C2>
 <C3> 20May2000</C3>
 </OrderChoice>

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-103

 <ItemChoice>
 <C1>3</C1>
 <C2> Rt.Clopper</C2>
 <C3> 40</C3>
 <C4> $100</C4>
 </ItemChoice>
 <ItemChoice>
 <C1>4</C1>
 <C2> Lt.Clopper</C2>
 <C3> 50</C3>
 <C4> $100</C4>
 </ItemChoice>
 <CustomerChoice>
 <C1>2</C1>
 <C2> Jersey WebInovaters</C2>
 <C3> ID46786</C3>
 </CustomerChoice>
</Root-Element>

13. Click OK. The Generated Native Format File page is displayed.

14. Click Next. The Native Format Builder Finish page is displayed.

6.4.6 Defining Choice Condition With LookAhead for a Complex File Structure
In this use case, the Native Format Builder uses address.txt, a complex type file,
which contains multiple records with different addresses. In this use case, you would
build a schema which has 2 record types. The RecOne record takes data for records
ending with text "YES" and the RecTwo record takes data for records ending with text
"NO ".

Also, using this use case you can generate the NXSD and test it. Perform the following
steps to run this use case:

1. The data in a sample text file, address.txt, appears as below:

Name1,"2 Old Street, Old Town,Manchester",20-08-1954,"0161-499-1718", YES
Name2,"2 Old Street, Old Town,Manchester",20-08-1954,"0161-499-1718", NO
Name3,"2 Old Street, Old Town,Manchester",20-08-1954,"0161-499-1718", NO
Name4,"2 Old Street, Old Town,Manchester",20-08-1954,"0161-499-1718", YES

2. Launch the Adapter Configuration Wizard and navigate to the Messages page,
and click Define Schema For Native Format. The Native Format Builder Welcome
page is displayed.

3. Click Next. The Choose Type page is displayed.

4. Select Complex Type and click Next. The Native Format Builder File Description
page is displayed.

5. Click Browse and select the address.txt file, and enter Address in the Root Element
field.

6. Click Next. The Native Format Builder Design Schema page is displayed.

7. Click the Add Complex Type icon. A Complex Type, <new_complex_type> is
created in the Schema Tree under Address.

8. Select the first row of the sample text from the right-hand pane of the Sample File
section, and drag and drop it on the <new_complex_type> node. The Complex
Type Details dialog is displayed.

Use Cases for the Native Format Builder

6-104 Oracle Fusion Middleware User's Guide for Technology Adapters

9. Enter RECORD1 in the Complex Type Name field and select Comma (,) in the
Delimited By list.

10. Click OK. The Native Format Builder Design Schema page is displayed, as shown
in Figure 6–52.

Figure 6–52 Native Format Builder Design Schema Page

11. Similarly, create another complex type node called RECORD2. The Native Format
Builder Design Schema page is displayed, as shown in Figure 6–53.

Figure 6–53 Native Format Builder Design Schema Page

12. Click Add Choice Node. The Choice Option Type dialog is displayed.

13. Set the options in the Choice Option Type dialog, as shown in Figure 6–54, and
then click OK.

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-105

Figure 6–54 The Choice Option Type Dialog

14. Select choice and click the Add Element icon. A <new_element> is added to the
choice node.

15. Click the Edit Node icon. The Element Details dialog is displayed.

16. Enter RECONE in the Element Name field and select RECORD1 as the Data Type
set choice condition as "YES", and then click OK.

17. Follow Step 14 to 16 to create the RECTWO choice element for the choice node and
set choice condition as "NO ".

The Native Format Builder Design Schema dialog is displayed, as shown in
Figure 6–55.

Note: There is one space after chars "NO", since you must match the
total no. of characters to three.

Use Cases for the Native Format Builder

6-106 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–55 Native Format Builder Design Schema Page

18. Drag and drop the RECORD1 complex type to the RECONE element under choice
and the RECORD2 complex type to the RECTWO element under choice. The
Native Format Builder Design Schema dialog is displayed.

19. Click Next. The Generated Native Format Schema File page is displayed, as shown
in Figure 6–56, which displays the native format file.

Figure 6–56 Generated Native Format Schema File Page

Native Schema

The native schema definition corresponding to the preceding native data can be
defined as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-107

 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:tns="http://TargetNamespace.com/tesNew"
 targetNamespace="http://TargetNamespace.com/tesNew"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:version="NXSD"
 nxsd:stream="chars"
 nxsd:encoding="ASCII"
>
 <xsd:element name="Root-Element">
 <xsd:complexType>
 <xsd:choice minOccurs="1" maxOccurs="unbounded"
 nxsd:choiceCondition="${X}" nxsd:lookAhead="70" nxsd:scanLength="3"
 nxsd:assignTo="${X}">
 <xsd:element name="RECTWO" type="tns:RECORD2" nxsd:conditionValue="NO "
 />
 <xsd:element name="RECONE" type="tns:RECORD1" nxsd:conditionValue="YES"
 />
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="RECORD2">
 <xsd:sequence>
 <xsd:element name="C1" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <xsd:element name="C2" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <xsd:element name="C3" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <xsd:element name="C4" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <xsd:element name="C5" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="RECORD1">
 <xsd:sequence>
 <xsd:element name="C1" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <xsd:element name="C2" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <xsd:element name="C3" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <xsd:element name="C4" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <xsd:element name="C5" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

20. Click Test. The Test NXSD Schema dialog is displayed.

21. Click the Generate XML icon. The Result XML is displayed on the right pane of
the Test NXSD Schema dialog, as shown in Figure 6–57.

Use Cases for the Native Format Builder

6-108 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–57 Test NXSD Schema Dialog

Translated XML Using the Native Schema

The translated XML looks as follows:

<?xml version = '1.0' encoding = 'UTF-8'?>
<Root-Element xmlns="http://TargetNamespace.com/tesNew">
 <RECONE>
 <C1>Name1</C1>
 <C2>2 Old Street, Old Town,Manchester</C2>
 <C3>20-08-1954</C3>
 <C4>0161-499-1718</C4>
 <C5> YES</C5>
 </RECONE>
 <RECTWO>
 <C1>Name2</C1>
 <C2>2 Old Street, Old Town,Manchester</C2>
 <C3>20-08-1954</C3>
 <C4>0161-499-1718</C4>
 <C5> NO </C5>
 </RECTWO>
 <RECTWO>
 <C1>Name3</C1>
 <C2>2 Old Street, Old Town,Manchester</C2>
 <C3>20-08-1954</C3>
 <C4>0161-499-1718</C4>
 <C5> NO </C5>
 </RECTWO>
 <RECONE>
 <C1>Name4</C1>
 <C2>2 Old Street, Old Town,Manchester</C2>
 <C3>20-08-1954</C3>
 <C4>0161-499-1718</C4>
 <C5> YES</C5>

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-109

 </RECONE>
</Root-Element>

22. Click OK. The Generated Native Format File page is displayed.

23. Click Next. The Native Format Builder Finish page is displayed.

6.4.7 Defining Array Type Schema for a Complex File Structure
In this use case, the Native Format Builder uses array.txt, a complex type file, which
contains an array of items. The sample data has four names which are separated by a
semicolon and ending with a period. In this use case, you would create a schema with
array type which has member names separated by a semicolon and array terminated
by a period. Also, using this use case you can generate the NXSD and test it.

Perform the following steps to run this use case:

1. The data in a sample text file, array.txt, appears as below:

John;Steve;Paul;Todd.

2. Launch the Adapter Configuration Wizard and navigate to the Messages page and
click Define Schema For Native Format. The Native Format Builder Welcome
page is displayed.

3. Click Next. The Choose Type page is displayed.

4. Select Complex Type and click Next. The Native Format Builder File Description
page is displayed.

5. Click Browse and select the array.txt file, as shown in Figure 6–58. The Native
Format Builder File Description page is displayed.

Note: There are 2 recordtypes: RECONE and RECTWO. RECONE
takes records that end with character YES and RECTWO takes records
that end with character NO.

Use Cases for the Native Format Builder

6-110 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–58 Native Format Builder File Description Page

6. Click Next. The Native Format Builder Design Schema Page is displayed.

7. Create a global element called NewArray and drag and drop the native data to the
newly created global element.

8. Select NewArray, as shown in Figure 6–59, and click the Edit Node icon. The
Element Details dialog is displayed.

Figure 6–59 Native Format Builder Design Schema Page

9. Set the options in the Element Details dialog, as shown in Figure 6–60, and then
click OK.

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-111

Figure 6–60 Element Details Dialog

The Native Format Builder Design Schema dialog is displayed.

10. Click Next. The Generated Native Format Schema File page is displayed, as shown
in Figure 6–61, which displays the native format file.

Figure 6–61 Generated Native Format Schema File Page

Native Schema

The native schema definition corresponding to the preceding native data can be
defined as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:tns="http://TargetNamespace.com/testnewArray"
 targetNamespace="http://TargetNamespace.com/testnewArray"

Use Cases for the Native Format Builder

6-112 Oracle Fusion Middleware User's Guide for Technology Adapters

 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:version="NXSD"
 nxsd:stream="chars"
 nxsd:encoding="ASCII"
>
 <xsd:element name="Root-Element">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="NewArray" type="xsd:string" maxOccurs="unbounded"
 nxsd:style="array" nxsd:cellSeparatedBy=";" nxsd:arrayTerminatedBy="." />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

11. Click Test. The Test NXSD Schema dialog is displayed.

12. Click the Generate XML icon. The Result XML is displayed on the right pane of
the Test NXSD Schema dialog, as shown in Figure 6–62.

Figure 6–62 Test NXSD Schema Dialog

Translated XML Using the Native Schema

The translated XML looks as follows:

<?xml version = '1.0' encoding = 'UTF-8'?>
<Root-Element xmlns="http://TargetNamespace.com/testnewArray">
 <NewArray>John</NewArray>
 <NewArray>Steve</NewArray>
 <NewArray>Paul</NewArray>
 <NewArray>Todd</NewArray>
</Root-Element>

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-113

13. Click OK. The Generated Native Format File page is displayed.

14. Click Next. The Native Format Builder Finish page is displayed.

6.4.8 Defining the Schema for a DTD File Structure
This use case takes you through the procedure for defining the schema for the native
data type, DTD file.

Use the DTD to be converted to XSD option in the Native Format Builder wizard
when creating the XML schema for this native file.

In this use case, the Native Format Builder uses a DTD file type *.dtd. You can
generate the corresponding NXSD and also test it. Perform the following steps to run
the use case:

1. Use any DTD file.

2. Launch the Adapter Configuration Wizard and navigate to the Messages page, as
displayed in Figure 6–4, and click Define Schema For Native Format. The Native
Format Builder Welcome page is displayed, as shown in Figure 6–5.

3. Click Next. The Choose Type page is displayed, as shown in Figure 6–26.

4. Select DTD to be converted to XSD. The Choose Type page is displayed, as shown
in Figure 6–63.

Figure 6–63 Native Format Builder Wizard Choose Type Page

5. Click Next. The Native Format Builder DTD Description page is displayed.

6. Click Browse and select the db.dtd file, and select DatabaseInventory from the
Root Element list, as displayed in Figure 6–64.

Use Cases for the Native Format Builder

6-114 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–64 Native Format Builder Wizard File Description Page

7. Click Next. The Generated Native Format File page is displayed, as shown in
Figure 6–65.

Figure 6–65 Native Format Builder Wizard Field Properties Page

The following is the sample native schema that is generated:

<?xml version="1.0" encoding="UTF-8" ?>
<!--This Schema has been generated from a DTD. A target namespace has been
added to the schema.-->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://TargetNamespace.com/ReadUI"
xmlns="http://TargetNamespace.com/ReadUI" nxsd:version="DTD"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd">
 <xs:element name="GlobalDatabaseName" type="xs:string"/>

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-115

 <xs:element name="DatabaseAttributes">
 <xs:complexType>
 <xs:attribute name="Type" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="Production"/>
 <xs:enumeration value="Development"/>
 <xs:enumeration value="Testing"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="Version" use="optional" default="9i">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="7"/>
 <xs:enumeration value="8"/>
 <xs:enumeration value="8i"/>
 <xs:enumeration value="9i"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 <xs:element name="Comments" type="xs:string"/>
 <xs:element name="Administrator">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="EmailAlias" use="required"
 type="xs:string"/>
 <xs:attribute name="Extension" use="optional" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="OracleSID" type="xs:string"/>
 <xs:element name="DatabaseName">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="GlobalDatabaseName"/>
 <xs:element ref="OracleSID"/>
 <xs:element ref="DatabaseDomain"/>
 <xs:element maxOccurs="unbounded" ref="Administrator"/>
 <xs:element ref="DatabaseAttributes"/>
 <xs:element ref="Comments"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="DatabaseDomain" type="xs:string"/>
 <xs:element name="DatabaseInventory">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" ref="DatabaseName"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

8. Click Next. The Native Format Builder Finish page is displayed.

Use Cases for the Native Format Builder

6-116 Oracle Fusion Middleware User's Guide for Technology Adapters

9. Click Finish. The Adapter Configuration Wizard Messages page is displayed
containing the generated NXSD.

6.4.9 Defining the Schema for a COBOL Copybook File Structure
This use case shows how the Oracle File and FTP Adapters process a file in COBOL
Copybook format (through use of the Native Format Builder wizard) to create a native
schema file for translation.

The following COBOL Copybook examples are provided:

■ Multiple Root Levels

■ Single Root Level, Virtual Decimal, Fixed-Length Array

■ Variable Length Array

■ Numeric Types

Multiple Root Levels
A COBOL Copybook can have multiple root levels. If all root levels are at 01 level,
then each such group implicitly redefines the other.

In this use case, the Native Format Builder uses a fixed-length file type, po-ccb.cpy,
that contains the purchase order details such as buyer name, address, and items. Every
element in this po-ccb.cpy native file has a fixed length. The data in the sample text
file, po-ccb.cpy, appears as follows:

05 PO-RECORD.
10 PO-BUYER.
15 PO-UID PIC 9(7).
15 PO-NAME PIC X(15).
15 PO-ADDRESS.
20 PO-STREET PIC X(15).
20 PO-CITY PIC X(10).
20 PO-ZIP PIC 9(5).
20 PO-STATE PIC X(2).
10 PO-ITEM.
15 POITEM OCCURS 3 TIMES.
20 PO-LINE-ITEM.
25 PO-ITEM-ID PIC 9(3).
25 PO-ITEM-NAME PIC X(40).
25 PO-ITEM-QUANTITY PIC 9(2).
25 PO-ITEM-PRICE PIC 9(5)V9(2).
10 PO-TOTALPIC 9(7)V9(2).

You can generate the corresponding NXSD and also test it. Perform the following steps
to run the use case:

1. Get the following files from the artifacts.zip file contained in the
Adapters-105CobolCopyBook sample.

■ artifacts/samples/po-ccb.cpy

■ artifacts/samples/po-ebcdic.data

You can obtain the Adapters-105CobolCopyBook sample by accessing the
Oracle SOA Sample Code site.

Copy these files to your samples directory.

2. Launch the Adapter Configuration Wizard and navigate to the Messages page, as
displayed in Figure 6–4, and click Define Schema For Native Format. The Native

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-117

Format Builder Welcome page is displayed, as shown in Figure 6–5.

3. Click Next. The Choose Type page is displayed, as shown in Figure 6–26.

4. Select Cobol Copybook to be converted to native format. The Choose Type page
is displayed, as shown in Figure 6–66.

Figure 6–66 Native Format Builder Wizard Choose Type Page

5. Click Next. The Native Format Builder Cobol Copybook Description page is
displayed.

6. Click Browse and select the po-ccb.cpy file, as shown in Figure 6–67.

Figure 6–67 Native Format Builder Wizard File Description Page

Use Cases for the Native Format Builder

6-118 Oracle Fusion Middleware User's Guide for Technology Adapters

7. Enter PurchaseOrder in the Root-Element field, and click Next. The Generated
Native Format File page is displayed, as shown in Figure 6–68.

Figure 6–68 Native Format Builder Wizard Generated Native Format File Page

The top level payroll records are enclosed in a choice model group. Each payroll
record also has two attributes, nxsd:lookAhead and nxsd:lookFor that help
identify the type of record during run-time processing of the data file. So, you
must add values for these attributes. For example, assume PAYROLL-F-RECORD
occurs when the PAYROLL-F-TRANS-CODE field has a value of FR. The record
element then looks as follows:

<xsd:element name="PAYROLL-F-RECORD" nxsd:lookAhead="10" nxsd:lookFor="FR">

The value 10 indicates the position of the lookahead field. The following COBOL
Copybook has multiple root elements at the 05 level:

05 ORG-NUM PIC 99.
05 EMP-RECORD.
 10 EMP-SSN PIC 9(4)V(6).
 10 EMP-WZT PIC 9(6).

Native Schema

<?xml version="1.0" encoding="UTF-8" ?>
<!--Native format was generated from COBOL copybook : C:\Documents and
 Settings\vdinesh\Desktop\sample_files\po-ccb.cpy-->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:extn="http://xmlns.oracle.com/pcbpel/nxsd/extensions"
 targetNamespace="http://TargetNamespace.com/Read"
xmlns:tns="http://TargetNamespace.com/Read" elementFormDefault="qualified"
 attributeFormDefault="unqualified" nxsd:version="NXSD" nxsd:encoding="cp037"
 nxsd:byteOrder="bigEndian" nxsd:stream="chars">
 <xsd:element name="PurchaseOrder">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 05 PO-RECORD-->
 <xsd:element name="PO-RECORD" minOccurs="1" maxOccurs="unbounded">

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-119

 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 10 PO-BUYER-->
 <xsd:element name="PO-BUYER">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 15 PO-UID PIC 9(7)-->
 <xsd:element name="PO-UID" type="xsd:long"
 nxsd:style="fixedLength" nxsd:padStyle="head"
 nxsd:paddedBy="0"
 nxsd:length="7"/>
 <!--COBOL declaration : 15 PO-NAME PIC X(15)-->
 <xsd:element name="PO-NAME" type="xsd:string"
 nxsd:style="fixedLength" nxsd:padStyle="tail"
 nxsd:paddedBy=" "
 nxsd:length="15"/>
 <!--COBOL declaration : 15 PO-ADDRESS-->
 <xsd:element name="PO-ADDRESS">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 20 PO-STREET PIC
X(15)-->
 <xsd:element name="PO-STREET"
 type="xsd:string"
 nxsd:style="fixedLength"
 nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="15"/>
 <!--COBOL declaration : 20 PO-CITY PIC
X(10)-->
 <xsd:element name="PO-CITY"
 type="xsd:string"
 nxsd:style="fixedLength"
 nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="10"/>
 <!--COBOL declaration : 20 PO-ZIP PIC
9(5)-->
 <xsd:element name="PO-ZIP"
 type="xsd:long"
 nxsd:style="fixedLength"
 nxsd:padStyle="head"
 nxsd:paddedBy="0" nxsd:length="5"/>
 <!--COBOL declaration : 20 PO-STATE PIC
 X(2)-->
 <xsd:element name="PO-STATE"
 type="xsd:string"
 nxsd:style="fixedLength"
 nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="2"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <!--COBOL declaration : 10 PO-ITEM-->
 <xsd:element name="PO-ITEM">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 15 POITEM OCCURS 3
TIMES-->

Use Cases for the Native Format Builder

6-120 Oracle Fusion Middleware User's Guide for Technology Adapters

 <xsd:element name="POITEM" minOccurs="3"
maxOccurs="3">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 20
PO-LINE-ITEM-->
 <xsd:element name="PO-LINE-ITEM">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 25 PO-ITEM-ID PIC
9(3)-->
 <xsd:element name="PO-ITEM-ID"
 type="xsd:long"
 nxsd:style="fixedLength" nxsd:padStyle="head"
 nxsd:paddedBy="0" nxsd:length="3"/>
 <!--COBOL declaration : 25 PO-ITEM-NAME PIC
X(40)-->
 <xsd:element name="PO-ITEM-NAME"
 type="xsd:string"
 nxsd:style="fixedLength"
 nxsd:padStyle="tail"
 nxsd:paddedBy="
 " nxsd:length="40"/>
 <!--COBOL declaration : 25 PO-ITEM-QUANTITY PIC
9(2)-->
 <xsd:element name="PO-ITEM-QUANTITY"
 type="xsd:long"
 nxsd:style="fixedLength"
 nxsd:padStyle="head"
 nxsd:paddedBy="0"
 nxsd:length="2"/>
 <!--COBOL declaration : 25 PO-ITEM-PRICE PIC
9(5)V9(2)-->
 <xsd:element name="PO-ITEM-PRICE"
 type="xsd:decimal"
 nxsd:style="virtualDecimal"
 extn:assumeDecimal="5" extn:picSize="7"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <!--COBOL declaration : 10 PO-TOTAL PIC 9(7)V9(2)-->
 <xsd:element name="PO-TOTAL"
 type="xsd:decimal"
 nxsd:style="virtualDecimal" extn:assumeDecimal="7"
extn:picSize="9"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

8. Click Test. The Test NXSD Schema dialog is displayed.

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-121

9. Click Browse and select the po-ebcdic.data file in the File Name field. The
Test NXSD Schema dialog is displayed, as shown in Figure 6–69.

Figure 6–69 Test NXSD Schema Dialog

10. Click the Generate XML icon. The Result XML is displayed on the right pane of
the Test NXSD Schema dialog, as shown in Figure 6–70.

Use Cases for the Native Format Builder

6-122 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–70 Test NXSD Schema Dialog

The native data using the corresponding native schema format is translated to the
following XML:

<?xml version = '1.0' encoding = 'UTF-8'?>
<PurchaseOrder xmlns="http://TargetNamespace.com/Read">
 <PO-RECORD>
 <PO-BUYER>
 <PO-UID>6335722</PO-UID>
 <PO-NAME>Company One</PO-NAME>
 <PO-ADDRESS>
 <PO-STREET>First Street</PO-STREET>
 <PO-CITY>San Jose</PO-CITY>
 <PO-ZIP>95129</PO-ZIP>
 <PO-STATE>CA</PO-STATE>
 </PO-ADDRESS>
 </PO-BUYER>
 <PO-ITEM>
 <POITEM>
 <PO-LINE-ITEM>
 <PO-ITEM-ID>1</PO-ITEM-ID>
 <PO-ITEM-NAME>BPEL Process Manager Enterprise
 Edition</PO-ITEM-NAME>
 <PO-ITEM-QUANTITY>2</PO-ITEM-QUANTITY>
 <PO-ITEM-PRICE>40000.0</PO-ITEM-PRICE>
 </PO-LINE-ITEM>
 </POITEM>
 <POITEM>
 <PO-LINE-ITEM>
 <PO-ITEM-ID>2</PO-ITEM-ID>
 <PO-ITEM-NAME>BPEL Process Manager Standard
 Edition</PO-ITEM-NAME>
 <PO-ITEM-QUANTITY>5</PO-ITEM-QUANTITY>

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-123

 <PO-ITEM-PRICE>50000.0</PO-ITEM-PRICE>
 </PO-LINE-ITEM>
 </POITEM>
 <POITEM>
 <PO-LINE-ITEM>
 <PO-ITEM-ID>3</PO-ITEM-ID>
 <PO-ITEM-NAME>BPEL Process Manager Developer
 Edition</PO-ITEM-NAME>
 <PO-ITEM-QUANTITY>20</PO-ITEM-QUANTITY>
 <PO-ITEM-PRICE>20000.0</PO-ITEM-PRICE>
 </PO-LINE-ITEM>
 </POITEM>
 </PO-ITEM>
 <PO-TOTAL>730000.0</PO-TOTAL>
 </PO-RECORD>
</PurchaseOrder>

In this (non-01 level) case, an unbounded sequence of the root level items is
generated.

11. Click OK. The Generated Native Format File page is displayed.

12. Click Next. The Native Format Builder Finish page is displayed.

13. Click Finish. The Adapter Configuration Wizard Messages page is displayed,
containing the generated NXSD.

Single Root Level, Virtual Decimal, Fixed-Length Array
The following COBOL Copybook has a single root level item PO-RECORD. In a single
root level case, the level number does not matter because the converter works in the
same way. This COBOL Copybook also shows an example of a field declared as a
virtual decimal (PO-ITEM-PRICE).

05 PO-RECORD.
 10 PO-BUYER.
 15 PO-UID PIC 9(7).
 15 PO-NAME PIC X(15).
 15 PO-ADDRESS.
 20 PO-STREET PIC X(15).
 20 PO-CITY PIC X(10).
 20 PO-ZIP PIC 9(5).
 20 PO-STATE PIC X(2).
 10 PO-ITEM.
 15 POITEM OCCURS 3 TIMES.
 20 PO-LINE-ITEM.
 25 PO-ITEM-ID PIC 9(3).
 25 PO-ITEM-NAME PIC X(40).
 25 PO-ITEM-QUANTITY PIC 9(2).
 25 PO-ITEM-PRICE PIC 9(5)V9(2).
 10 PO-TOTAL PIC 9(7)V9(2).

The generated schema looks as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<!--Native format was generated from COBOL copybook : D:\work\
jDevProjects\CCB\Copybooks\po-ccb.cpy-->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:extn="http://xmlns.oracle.com/pcbpel/nxsd/extensions"
 targetNamespace="http://TargetNamespace.com/ccb/singleRoot"
 xmlns:tns="http://TargetNamespace.com/ccb/singleRoot"

Use Cases for the Native Format Builder

6-124 Oracle Fusion Middleware User's Guide for Technology Adapters

 elementFormDefault="qualified" attributeFormDefault="unqualified"
 nxsd:version="NXSD" nxsd:encoding="cp037" nxsd:byteOrder="bigEndian"
 nxsd:stream="chars">
 <xsd:element name="Root-Element">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 05 PO-RECORD -->
 <xsd:element name="PO-RECORD" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 10 PO-BUYER-->
 <xsd:element name="PO-BUYER">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 15 PO-UID PIC 9(7)-->
 <xsd:element name="PO-UID" type="xsd:long"
 nxsd:style="fixedLength" nxsd:padStyle="head"
 nxsd:paddedBy="0" nxsd:length="7"/>
 <!--COBOL declaration : 15 PO-NAME PIC X(15)-->
 <xsd:element name="PO-NAME" type="xsd:string"
 nxsd:style="fixedLength" nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="15"/>
 <!--COBOL declaration : 15 PO-ADDRESS-->
 <xsd:element name="PO-ADDRESS">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 20 PO-STREET PIC X(15)-->
 <xsd:element name="PO-STREET" type="xsd:string"
 nxsd:style="fixedLength"
 nxsd:padStyle="tail" nxsd:paddedBy=" "
 nxsd:length="15"/>
 <!--COBOL declaration : 20 PO-CITY PIC X(10)-->
 <xsd:element name="PO-CITY" type="xsd:string"
 nxsd:style="fixedLength"
 nxsd:padStyle="tail" nxsd:paddedBy=" "
 nxsd:length="10"/>
 <!--COBOL declaration : 20 PO-ZIP PIC 9(5)-->
 <xsd:element name="PO-ZIP" type="xsd:long"
 nxsd:style="fixedLength"
 nxsd:padStyle="head" nxsd:paddedBy="0"
 nxsd:length="5"/>
 <!--COBOL declaration : 20 PO-STATE PIC X(2)-->
 <xsd:element name="PO-STATE" type="xsd:string"
 nxsd:style="fixedLength"
 nxsd:padStyle="tail" nxsd:paddedBy=" "
 nxsd:length="2"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <!--COBOL declaration : 10 PO-ITEM-->
 <xsd:element name="PO-ITEM">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 15 POITEM OCCURS 3 TIMES-->
 <xsd:element name="POITEM" minOccurs="3" maxOccurs="3">
 <xsd:complexType>
 <xsd:sequence>

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-125

 <!--COBOL declaration : 20 PO-LINE-ITEM-->
 <xsd:element name="PO-LINE-ITEM">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 25 PO-ITEM-ID PIC 9(3)-->
 <xsd:element name="PO-ITEM-ID" type="xsd:long"
 nxsd:style="fixedLength"
 nxsd:padStyle="head"
 nxsd:paddedBy="0" nxsd:length="3"/>
 <!--COBOL declaration : 25 PO-ITEM-NAME PIC X(40)-->
 <xsd:element name="PO-ITEM-NAME"
 type="xsd:string"
 nxsd:style="fixedLength"
 nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="40"/>
 <!--COBOL declaration : 25 PO-ITEM-QUANTITY PIC 9(2)-->
 <xsd:element name="PO-ITEM-QUANTITY"
 type="xsd:long"
 nxsd:style="fixedLength"
 nxsd:padStyle="head"
 nxsd:paddedBy="0" nxsd:length="2"/>
 <!--COBOL declaration : 25 PO-ITEM-PRICE PIC 9(5)V9(2)-->
 <xsd:element name="PO-ITEM-PRICE"
 type="xsd:decimal"
 nxsd:style="virtualDecimal"
 extn:assumeDecimal="5"
 extn:picSize="7"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <!--COBOL declaration : 10 PO-TOTAL PIC 9(7)V9(2)-->
 <xsd:element name="PO-TOTAL" type="xsd:decimal"
 nxsd:style="virtualDecimal" extn:assumeDecimal="7"
 extn:picSize=" "/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Variable Length Array
05 EMP-RECORD .
 10 EMP-NAME PIC X(30).
 10 EMP-DIV-NUM PIC 9(5).
 10 DIV-ENTRY OCCURS 1 TO 50 TIMES
 DEPENDING ON EMP-DIV-NUM.
 20 DIV-CODE PIC X(30).

The generated schema looks as follows:

<?xml version="1.0" encoding="UTF-8" ?>

Use Cases for the Native Format Builder

6-126 Oracle Fusion Middleware User's Guide for Technology Adapters

<!--Native format was generated from COBOL copybook : D:\work\
jDevProjects\CCB\Copybooks\odo.cpy-->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:extn="http://xmlns.oracle.com/pcbpel/nxsd/extensions"
 targetNamespace="http://TargetNamespace.com/ccb/varLengthArray"
 xmlns:tns="http://TargetNamespace.com/ccb/varLengthArray"
 elementFormDefault="qualified" attributeFormDefault="unqualified"
 nxsd:version="NXSD" nxsd:encoding="cp037" nxsd:byteOrder="bigEndian"
 nxsd:stream="chars">
 <xsd:element name="Root-Element">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration :05 EMP-RECORD -->
 <xsd:element name="EMP-RECORD" minOccurs="1" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:appinfo>
 <nxsd:variables>
 <nxsd:variable name="DIV-ENTRY_var0"/>
 </nxsd:variables>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 10 EMP-NAME PIC X(30)-->
 <xsd:element name="EMP-NAME" type="xsd:string"
 nxsd:style="fixedLength" nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="30"/>
 <!--COBOL declaration : 10 EMP-DIV-NUM PIC 9(5)-->
 <xsd:element name="EMP-DIV-NUM" type="xsd:long"
 nxsd:style="fixedLength" nxsd:padStyle="head"
 nxsd:paddedBy="0" nxsd:length="5">
 <xsd:annotation>
 <xsd:appinfo>
 <nxsd:variables>
 <nxsd:assign name="DIV-ENTRY_var0" value="${0}"/>
 </nxsd:variables>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 <!--COBOL declaration : 10 DIV-ENTRY OCCURS 1 TO 50 TIMES DEPENDING ON
 EMP-DIV-NUM-->
 <xsd:element name="DIV-ENTRY" nxsd:style="array"
 nxsd:arrayLength="${DIV-ENTRY_var0}" minOccurs="1"
 maxOccurs="50">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 20 DIV-CODE PIC X(30)-->
 <xsd:element name="DIV-CODE" type="xsd:string"
 nxsd:style="fixedLength" nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="30"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

Use Cases for the Native Format Builder

Native Format Builder Wizard 6-127

</xsd:schema>

Numeric Types
01 NUMERIC-FORMATS.
 05 Salary PIC 9(5) COMP-3.
 05 Rating PICTURE S9(5).
 05 Age PIC 9(3) USAGE COMP.
 05 Revenue PIC 9(3)V9(2).
 05 Growth PIC S9(3) SIGN IS LEADING.
 05 Computation COMP-1.

The generated schema looks as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<!--Native format was generated from COBOL copybook :
D:\work\jDevProjects\CCB\Copybooks\numeric.cpy-->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:extn="http://xmlns.oracle.com/pcbpel/nxsd/extensions"
 targetNamespace="http://TargetNamespace.com/ccb/numeric"
 xmlns:tns="http://TargetNamespace.com/ccb/numeric"
 elementFormDefault="qualified" attributeFormDefault="unqualified"
 nxsd:version="NXSD" nxsd:encoding="cp037" nxsd:byteOrder="bigEndian"
 nxsd:stream="bytes">
 <xsd:element name="Numerics">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration :01 NUMERIC-FORMATS-->
 <xsd:element name="NUMERIC-FORMATS" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 05 Salary PIC 9(5) COMP-3-->
 <xsd:element name="Salary" type="xsd:long" nxsd:style="comp3"
 extn:sign="unticked" extn:picSize="5"/>
 <!--COBOL declaration : 05 Rating PICTURE S9(5)-->
 <xsd:element name="Rating" type="xsd:string"
 nxsd:style="signZoned" extn:sign="ticked"
 extn:picSize="5" extn:signPosn="tailUpperNibble"/>
 <!--COBOL declaration : 05 Age PIC 9(3) USAGE COMP-->
 <xsd:element name="Age" type="xsd:long" nxsd:style="comp"
 extn:picSize="3" extn:sign="unticked"/>
 <!--COBOL declaration : 05 Revenue PIC 9(3)V9(2)-->
 <xsd:element name="Revenue" type="xsd:decimal"
 nxsd:style="virtualDecimal" extn:assumeDecimal="3"
 extn:picSize="5"/>
 <!--COBOL declaration : 05 Growth PIC S9(3) SIGN IS LEADING-->
 <xsd:element name="Growth" type="xsd:string"
 nxsd:style="signZoned" extn:sign="ticked"
 extn:picSize="3" extn:signPosn="headUpperNibble"/>
 <!--COBOL declaration : 05 Computation COMP-1-->
 <xsd:element name="Computation" type="xsd:float"
 nxsd:style="comp1" extn:sign="ticked"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Command Line Tool for Testing NXSD Translator

6-128 Oracle Fusion Middleware User's Guide for Technology Adapters

In this case, all the numeric types follow formats specified according to IBM COBOL
formats. If the data file originates from a different system by using different layouts,
the generated schema requires modification.

6.5 Command Line Tool for Testing NXSD Translator
You might want to test your nXSD schema to ensure that nXSD annotations are correct
and that generated XML/native data conforms to your business semantics. If you
want to do that currently, you must write a BPEL process with an inbound or
outbound File Adapter partner link, or both, configured with the appropriate nXSD
schema and test them on the SOA server. This is both time-consuming and error
prone.

A simple standalone test client is available that can enable you to verify your nXSD
schemas. You can download the test tool jar from
http://download.oracle.com/otndocs/test-translator.jar

6.5.1 Prerequisites
Before you use the test client to verify your NXSD schemas, add the following jars in
the classpath. These jars (except for test-translator.jar) are available as a part
of your SOA installation. You must use Java 6 to run the test client.

■ bpm-infra.jar. This is the nXSD run-time jar available under $SOA_
HOME/soa/modules/oracle.soa.fabric_11.1.1

■ xmlparserv2.jar. This is the Oracle XDK library for parsing available under
$FMW_HOME/oracle_common/modules/oracle.xdk_11.1.0

■ xml.jar This is the Oracle XDK library for schema validation available under
$FMW_HOME/oracle_common/modules/oracle.xdk_11.1.0

■ mail.jar .This is the Java mail API.

■ test-translator.jar. You must rename the extension from jarr to jar.

6.5.2 Running the Test Tool
Now you can run java xlator.util.Translate -help and the usage should be
displayed as shown below. When supply the -help option, the tool supplies a list of
options and defaults.

Figure 6–71 Running java xlator.util.Translate -help

Command Line Tool for Testing NXSD Translator

Native Format Builder Wizard 6-129

The following example sample execution of the test client converts the
address-csv.txt file to address-csv.xml.

The command is:java xlator.util.Translate -inbound -schema
address-csv.xsd -root Root-Element -input address-csv.txt
-output address-csv.xml

Figure 6–72 Using the Test Tool to Convert txt to xml

Sample execution of the test client to convert address-csv.xml to
address-csv.txt:

java xlator.util.Translate -outbound -schema address-csv.xsd -root Root-Element
-input address-csv.xml -output address-csv.txt

Figure 6–73 Using the Test Tool to Convert xml to txt

The following sample execution of the test client converts address-csv.txt to a
series of address-csv.xml_batch_%SEQ%.xml files using de-batching.

java xlator.util.Translate -inbound -debatch 1 -schema address-csv.xsd -root
Root-Element -input address-csv.txt -output address-csv.xml

Command Line Tool for Testing NXSD Translator

6-130 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 6–74 Using the Test Tool to Convert address-csv.txt to a Series of batch xml
Files

Part II
Part II Message Adapters

Part II contains the following chapters:

■ Chapter 7, "Oracle JCA Adapter for AQ"

■ Chapter 8, "Oracle JCA Adapter for JMS"

■ Chapter 9, "Oracle JCA Adapter for Database"

■ Chapter 10, "Oracle JCA Adapter for MQ Series"

■ Appendix A, "Oracle JCA Adapter Properties"

■ Appendix B, "Oracle JCA Adapter Valves"

7

Oracle JCA Adapter for AQ 7-1

7Oracle JCA Adapter for AQ

[1] This chapter describes how to use the Oracle JCA Adapter for AQ (Oracle AQ
Adapter), which enables an Oracle BPEL Process Manager (Oracle BPEL PM) or an
Oracle Mediator to interact with a single consumer or a multiconsumer queue.

This chapter includes the following sections:

■ Section 7.1, "Introduction to the Oracle AQ Adapter"

■ Section 7.2, "Oracle AQ Adapter Features"

■ Section 7.3, "Deployment"

■ Section 7.4, "Oracle AQ Adapter Use Cases"

7.1 Introduction to the Oracle AQ Adapter
Oracle Streams Advanced Queuing (AQ) provides a flexible mechanism for
bidirectional, asynchronous communication between participating applications.
Advanced queues are an Oracle database feature, and are therefore scalable and
reliable. Other features of Oracle database, such as backup and recovery (including
any-point-in-time recovery), logging, transactional services, and system management,
are also inherited by advanced queues. Multiple queues can also service a single
application, partitioning messages in a variety of ways and providing another level of
scalability through load balancing.

This section includes the following sections:

■ Section 7.1.1, "Oracle AQ Adapter Integration with Oracle BPEL Process Manager"

■ Section 7.1.2, "Oracle AQ Adapter Integration with Oracle Mediator"

For more information on Oracle AQ, see "Introduction to Oracle Streams AQ" in the
Oracle Streams Advanced Queuing User's Guide.

7.1.1 Oracle AQ Adapter Integration with Oracle BPEL Process Manager
JCA Binding Component is used for the bidirectional integration of the JCA 1.5
resource adapters with Oracle BPEL Process Manager. JCA Binding Component is
based on standards and employs the Web service Invocation Framework (WSIF)
technology for exposing the underlying JCA interactions as Web services.

For more information about Oracle AQ Adapter architecture, adapter integration with
Oracle BPEL Process Manager, and adapter deployments, see Chapter 3, "Adapter
Integration with Oracle Application Server Components."

Oracle AQ Adapter Features

7-2 Oracle Fusion Middleware User's Guide for Technology Adapters

7.1.2 Oracle AQ Adapter Integration with Oracle Mediator
The Mediator Server supports Oracle AQ Adapter and enables you to define inbound
and outbound adapter services for each. An inbound adapter service receives data
from an Oracle AQ Adapter and transforms it into an XML message. An outbound
adapter service sends data to a target application by transforming an XML message
into the native format of the given adapter.

Using the Mediator Server, you can send or receive messages from Oracle Advanced
Queuing single or multiconsumer queues.

7.2 Oracle AQ Adapter Features
The Oracle AQ Adapter is both a producer and a consumer of AQ messages. The
enqueue operation is exposed as a JCA outbound interaction. The dequeue operation
is exposed as a JCA inbound interaction.

The Oracle AQ Adapter supports ADT (Oracle object type), XMLType, and RAW queues
as payloads. It also supports extracting a payload from one ADT member column.

The Oracle AQ Adapter supports normalized properties for enqueue and dequeue
operations.

For more information about the properties supported by Oracle AQ Adapter, see
Appendix A.3, "Oracle AQ Adapter Properties."

You can obtain the Oracle AQ Adapter samples by accessing the Oracle SOA Sample
Code site.

This section includes the following topics:

■ Section 7.2.1, "Enqueue-Specific Features (Message Production)"

■ Section 7.2.2, "Dequeue and Enqueue Features"

■ Section 7.2.3, "Supported ADT Payload Types"

■ Section 7.2.4, "Native Format Builder Wizard"

■ Section 7.2.5, "Normalized Message Support"

■ Section 7.2.6, "Is DOM 2 Compliant"

■ Section 7.2.7, "Is Message-Size Aware"

■ Section 7.2.8, "Multiple Receiver Threads"

■ Section 7.2.9, "DequeueTimeout Property"

■ Section 7.2.10, "Control Dequeue Timeout and Multiple Inbound Polling Threads"

■ Section 7.2.11, "Stream Payload Support"

■ Section 7.2.12, "Oracle AQ Adapter Inbound Retries"

■ Section 7.2.13, "Error Handling Support"

■ Section 7.2.14, "Performance Tuning"

Note: Oracle BPEL PM pre-dates Mediator and most of this guide
and the samples implicitly assume use with Oracle BPEL PM.
However, the Oracle AQ Adapter works equally well with either
Oracle BPEL PM or Mediator. For any mention of Oracle BPEL PM
here, you may substitute Mediator, instead.

Oracle AQ Adapter Features

Oracle JCA Adapter for AQ 7-3

7.2.1 Enqueue-Specific Features (Message Production)
The Oracle AQ Adapter supports the following features of Oracle Streams AQ:

■ Correlation Identifier

In the Adapter Configuration Wizard, you can specify a correlation identifier
when defining an enqueue operation, which you use to retrieve specific messages.

■ Multiconsumer Queue

In Oracle Streams AQ, multiple consumers can process and consume a single
message. To use this feature, you must create multiconsumer queues and enqueue
the messages into these queues. In this configuration, a single message can be
consumed by multiple AQ consumer (dequeue operation), either through the
default subscription list or with an override recipient list. Under this scenario, a
message remains in the queue until it is consumed by all of its intended consumer
agents. The Oracle AQ Adapter enqueue header property
(jca.aq.RecipientList) enables you to specify the override recipient list (string
values separated by commas) that can retrieve messages from a queue. All
consumers that are added as subscribers to a multiconsumer queue must have
unique values for the Recipient parameter. Two subscribers cannot have the same
values for the NAME, ADDRESS, and PROTOCOL attributes.

■ Message Priority

If you specify the priority of enqueued messages, then the messages are dequeued
in priority order. If two messages have the same priority, then the order in which
they are dequeued is determined by the enqueue time. You can also create a
first-in, first-out (FIFO) priority queue by specifying the enqueue time priority as
the sort order of the messages. This priority is a property of the Oracle AQ
Adapter enqueue header. The enqueue time is set automatically by the underlying
AQ application.

Here is an example of how to create the FIFO queue:

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE(\
queue_table => 'OE_orders_pr_mqtab', \
sort_list =>'priority,enq_time', \
comment => 'Order Entry Priority \
MultiConsumer Orders queue table',\
multiple_consumers => TRUE, \
queue_payload_type => 'BOLADM.order_typ', \
compatible => '8.1', \
primary_instance => 2, \
secondary_instance => 1);
EXECUTE DBMS_AQADM.CREATE_QUEUE (\
queue_name => 'OE_bookedorders_que', \
queue_table => 'OE_orders_pr_mqtab');

■ Time Specification and Scheduling

In Oracle Streams AQ, you can specify a delay interval and an expiration interval.
The delay interval determines when an enqueued message is marked as available
to the dequeuers after the message is enqueued. When a message is enqueued
with a delay time set, the message is marked in a WAIT state. Messages in a WAIT
state are masked from the default dequeue calls. The expiration time property is
used to specify an expiration time, and the message is automatically moved to an
exception queue if the message is not consumed before its expiration.

Oracle AQ Adapter Features

7-4 Oracle Fusion Middleware User's Guide for Technology Adapters

7.2.2 Dequeue and Enqueue Features
Oracle Streams AQ provides the following dequeuing options:

■ Poll option

■ Notification option

The poll option involves processing the messages as they arrive and polling repeatedly
for messages. The Oracle AQ Adapter supports a polling mechanism for consuming
AQ messages.

The Oracle AQ Adapter supports the following features of Oracle Streams AQ:

■ Multiconsumer Queue

The Oracle AQ Adapter can retrieve messages from a multiconsumer queue.

■ Navigation of Messages for Dequeuing

Messages do not have to be dequeued in the same order in which they were
enqueued. You can use a correlation identifier to specify dequeue order. The
Adapter Configuration Wizard defines the correlation ID for the dequeue
operation.

■ Retries with Delays

The number of retries is a property of the Oracle AQ Adapter dequeue header. If
the number of retries exceeds the limit, then the message is moved to an exception
queue that you specify. The exception queue is a property of the Oracle AQ
Adapter enqueue header.

■ Rule-Based Subscription

Oracle Streams AQ provides content-based message filtering and subject-based
message filtering. A rule defines one or more consumers' interest in subscribing to
messages that conform to that rule. For a subject-based rule, you specify a Boolean
expression using syntax similar to the WHERE clause of a SQL query. This Boolean
expression can include conditions on message properties (current priority and
correlation ID), user data properties (object payloads only), and functions (as
specified in the WHERE clause of a SQL query).

■ Oracle AQ Adapter Header Properties

For more information about Oracle AQ Adapter header properties, see
Appendix A.3, "Oracle AQ Adapter Properties."

■ Dequeue Condition

The Dequeue condition is an advanced queuing product feature that Oracle AQ
Adapter uses. If a dequeue condition is specified and no messages meet the
specified condition, then no dequeue happens.

A dequeue condition element is a Boolean expression using syntax similar to the
WHERE clause of a SQL query. This Boolean expression can include conditions on
message properties, user object payload data properties, and PL/SQL or SQL
functions. Message properties include priority, corrid, and other columns in the
queue table.

When a dequeue is performed from a multisubscriber queue, it is sometimes
necessary to screen the messages and accept only those that meet certain
conditions. These conditions may concern header information, such as in selecting
messages of only priority 1, or some aspect of the message payload, such as in
selecting only loan applications above $100,000.

Oracle AQ Adapter Features

Oracle JCA Adapter for AQ 7-5

The Message Selector Rule field is displayed in Step 15 if you select a
multisubscriber queue. Enter a subscription rule in the form of a Boolean
expression using syntax similar to a SQL WHERE clause, such as priority = 1, or
TAB.USER_DATA.amount > 1000. The adapter dequeues only those messages for
which this Boolean expression is true.

You must select the Access to non-payload fields also needed check box to access
header information.

When this check box is selected, the generated WSDL file has additional code in
the type section:

<?xml version = '1.0' encoding = 'UTF-8'?>
<?binding.jca Inbound_aq.jca?>
<definitions name="Inbound"
targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/"
xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:obj1="http://xmlns.oracle.com/xdb/SCOTT"
xmlns:imp1="http://www.oracle.com/ipdemo">
 <types>
 <schema attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/"
xmlns:hdr="http://xmlns.oracle.com/pcbpel/adapter/aq/inbound/"
xmlns:obj1="http://xmlns.oracle.com/xdb/SCOTT">
 <import namespace="http://xmlns.oracle.com/xdb/SCOTT"
schemaLocation="xsd/SCOTT_MAGAZINE_TYPE.xsd"/>
 <import
namespace="http://xmlns.oracle.com/pcbpel/adapter/aq/inbound/"
schemaLocation="xsd/aqAdapterInboundHeader.xsd"/>
 <complexType name="HeaderCType">
 <sequence>
 <element name="QueueHeader" type="hdr:HeaderType"/>
 <element name="PayloadHeader" type="obj1:MAGAZINE_TYPE"/>
 </sequence>
 </complexType>
 <element name="Header" type="tns:HeaderCType"/>
 </schema>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://www.oracle.com/ipdemo"
schemaLocation="xsd/simpleMagazine.xsd"/>
 </schema>
 </types>
 <message name="simpleMagazine_msg">
 <part name="simpleMagazine" element="imp1:simpleMagazine"/>
 </message>
 <message name="Header_msg">
 <part name="Header" element="tns:Header"/>
 </message>
 <portType name="Dequeue_ptt">
 <operation name="Dequeue">
 <input message="tns:simpleMagazine_msg"/>
 </operation>
 </portType>
 <plt:partnerLinkType name="Dequeue_plt">
 <plt:role name="Dequeue_role">
 <plt:portType name="tns:Dequeue_ptt"/>
 </plt:role>

Oracle AQ Adapter Features

7-6 Oracle Fusion Middleware User's Guide for Technology Adapters

 </plt:partnerLinkType>
</definitions>

Note that PayloadHeader is the type for the whole ADT of the queue. The payload
contains only the chosen payload field. If you selected Access to non-payload
fields also needed, then the PayloadHeader (. jca.aq.HeaderDocument) contains
the whole ADT (including the payload field, which is also present in the header,
but ignored by the adapter.)

For more information about Oracle AQ Adapter architecture, adapter integration
with Oracle BPEL Process Manager, and adapter deployments, see Chapter 1,
"Introduction to Oracle JCA Adapters."

7.2.3 Supported ADT Payload Types
The Oracle AQ Adapter supports the following RAW types:

■ BLOB

■ CHAR

■ CLOB

■ DATE

■ DECIMAL

■ DOUBLE PRECISION

■ FLOAT

■ INTEGER

■ NUMBER

■ REAL

■ SMALLINT

■ TIMESTAMP

■ VARCHAR2

In addition to the RAW types mentioned in the preceding list, the Oracle AQ Adapter
supports primitive types and varrays of objects.

If you choose a payload field instead of the whole ADT, then choose one of the
following data types as the payload field:

■ CLOB, either XSD or opaque schema

■ VARCHAR2, either XSD or opaque schema

■ BLOB, opaque schema only

■ XMLTYPE, either XSD or opaque schema

Note: The Oracle AQ Adapter does not currently support the
following data types for ADT columns: TIMESTAMP WITH LOCAL
TIMEZONE and TIMESTAMP WITH TIMEZONE.

Oracle AQ Adapter Features

Oracle JCA Adapter for AQ 7-7

7.2.4 Native Format Builder Wizard
JDeveloper BPEL Designer provides the Native Format Builder Wizard to define XSD
files of various formats, including for the AQ RAW payload.

For more information about the Native Format Builder wizard, see Chapter 6, "Native
Format Builder Wizard."

To obtain sample code that demonstrates usage of the Native Format Builder access
the Oracle SOA Sample Code site.

Payload Schema
The payload schemas depend on the payload type. In the whole ADT case, the schema
is completely generated by the Adapter Configuration Wizard. In an ADT case where
the payload case selected is BLOB, an opaque schema as defined in the following
example must be used:

<element name="opaqueElement" type="base64Binary" />

In all other cases, you can either provide a schema or use an opaque schema, as shown
in Table 7–1.

If you do not have an XSD file but the payload data is formatted (for example, in a
comma-delimited value (CSV) format), you can use the Native Format Builder wizard
to generate an appropriate XSD. The Adapter Configuration Wizard is integrated with
the Native Format Builder wizard. In the Adapter Configuration Wizard Messages
window, click Define Schema for Native Format to access the Native Format Builder
wizard.

7.2.5 Normalized Message Support
Header manipulation and propagation is a key business integration messaging
requirement. Oracle BPEL PM, Mediator, Oracle JCA, and B2B rely extensively on
header support to solve customers' integration needs. For example, you can preserve a
file name from the source directory to the target directory by propagating it through
message headers. In Oracle BPEL PM and Mediator, you can access, manipulate, and
set headers with varying degrees of UI support.

Table 7–1 Payload Schema

Payload Type Supported Schema

RAW User-provided schema or opaque schema.

Whole ADT Must use a schema generated by the Adapter
Configuration Wizard, which is based on the queue
structure.

ADT with VARCHAR2 picked as payload User-provided schema or opaque schema.

ADT with CLOB picked as payload
user-provided schema or opaque schema

User-provided schema or opaque schema.

ADT with BLOB picked as payload opaque
schema

Opaque schema.

XMLTYPE User-provided schema or opaque schema.

Note: AQ Adapter inbound and outbound headers supported in the
10.1.3 release are supported in 11g through normalized message
properties.

Oracle AQ Adapter Features

7-8 Oracle Fusion Middleware User's Guide for Technology Adapters

For more information, see Section 2.14, "Correlation Support Within Adapters"

Propagating Headers in a Normalized Message:

A normalized message is simplified to have only two parts, properties and
payload.Typically, properties are name-value pairs of scalar types. To fit the existing
complex headers into properties, properties are flattened into scalar types.

Manipulating Headers in Design Time:

The user experience is simplified while manipulating headers in design time, because
the complex properties are predetermined. In the Mediator or BPEL designer, you can
manipulate the headers with some reserved key words. For example, currently in
Mediator, you can access an inbound File adapter, fileName header using the following
expression:

$nmproperty.InboundFileHeaderType.fileName

However, this method does not address the properties that are dynamically generated
based on your input. For example, in the AQ Adapter Wizard, you can propagate
some fields from an AQ object as headers. Based on your choice, the header definitions
are defined. These definitions are not predetermined and hence cannot be accounted
for in the list of predetermined property definitions. You cannot design header
manipulation of the dynamic properties before they are defined. To address this
limitation, you must generate all the necessary services (composite entry points) and
references. This restriction applies to services that are expected to generate dynamic
properties. Once dynamic properties are generated, they must be stored for each
composite. Only then you can manipulate the dynamic properties in Mediator or BPEL
designer.

Identifying Properties That Must Be Propagated over the Life Cycle of the
Normalized Message:

Some properties must be propagated across the life cycle of the message, whereas
some must not be propagated. The properties that must be propagated are referred to
as propagatable properties, whereas properties that must not be propagated are referred
to as non-propagatable properties.

7.2.6 Is DOM 2 Compliant
Oracle AQ Adapter is Document Object Model Level 2 (DOM 2) compliant, that is, the
AQ adapter can generate document objects that are compliant with DOM2
specification.

7.2.7 Is Message-Size Aware
Oracle AQ Adapter is message-size aware, that is, Oracle AQ Adapter calculates the
message size and reports the size back to JCA Binding Component. The API, related to
size, exposed by JCA Binding Component can be used for reporting purposes.

7.2.8 Multiple Receiver Threads
Oracle AQ Adapter supports an activation endpoint property,
"adapter.aq.dequeue.threads". Setting this property is a preferred way to spawn
multiple threads for the inbound message flow between the adapter and the
Enterprise Information System (EIS). Earlier versions of the Oracle AQ Adapter relied
on the activationInstances endpoint property, which was used by JCA Binding
Component to initiate multiple endpoints.

Oracle AQ Adapter Features

Oracle JCA Adapter for AQ 7-9

7.2.9 DequeueTimeout Property
The DequeueTimeOut property supports multiple inbound dequeue threads. The value
for this property determines how many seconds the dequeue() API waits for messages
before it returns and the next polling cycle begins.

Add this property to the composite.xml file, as shown in the following example:

<service name="Inbound" ui:wsdlLocation="Inbound.wsdl">
<interface.wsdl interface="http://xmlns.oracle.com/pcbpel/adapter/aq/AQ_
InboundRetry_Mediator/AQ2JMSInboundRetry/Inbound%2F#wsdl.interface(Dequeue_ptt)"/>
<binding.jca config="Inbound_aq.jca">
<property name="DequeueTimeOut" type="xs:integer" many="false"override="may">10
</property>
</binding.jca>
</service>

7.2.10 Control Dequeue Timeout and Multiple Inbound Polling Threads
Oracle AQ Adapter provides system properties to control dequeue timeout and
multiple inbound polling threads for each Java Virtual Machine (JVM), systemwide,
instead of for each process.

The system property provided by Oracle AQ Adapter to control dequeue timeout is
oracle.adapter.aq.wait, and the property that controls inbound polling threads is
adapter.aq.dequeue.threads.

7.2.11 Stream Payload Support
Oracle AQ Adapter provides support to stream payload. When you enable this
feature, the payload is streamed to a database instead of getting manipulated in SOA
run time as in a memory DOM. You use this feature while handling large payloads. To
enable support to stream payload, you must select the Enable Streaming check box
while defining the dequeue operation parameters in Oracle JDeveloper (JDeveloper).
When you select the Enable Streaming check box, a corresponding Boolean property
EnableStreaming is appended to the ActivationSpec properties defined in the
respective .jca file, as shown in the following example. If the EnableStreaming
property does not exist, then the default value false is assumed. The property is
applicable when processing Raw messages, XMLType messages, and ADT type messages
for which a payload is specified though an ADT attribute.

<activation-spec
className="oracle.tip.adapter.aq.inbound.AQDequeueActivationSpec">
 <property name="QueueName" value="RAW_IN_QUEUE"/>
 <property name="DatabaseSchema" value="SCOTT"/>
 <property name="EnableStreaming" value="true"/>
</activation-spec>

7.2.12 Oracle AQ Adapter Inbound Retries
If you configure the Oracle AQ Adapter inbound retries to retry for more than 5 times
by using the jca.retry.count service binding property for a retryable exception, then
ensure that the queue is created with max_retries value that is greater then the value
used for jca.retry.count. If nothing is specified, then the queue is created with a
max_retries value of 5 which would mean that the message ends up in the exception
queue after 5 retries and is not be delivered to adapter for further processing. If

Deployment

7-10 Oracle Fusion Middleware User's Guide for Technology Adapters

jca.retry.count is specified with a value of 5 or less, then you do not have to change
the queue max_retries property.

Use the following code to change the max_retries property when creating a queue:

begin
DBMS_AQADM.CREATE_QUEUE_TABLE (queue_table => 'RAW_IN_QUEUE_TABLE',queue_payload_
type => 'RAW');
DBMS_AQADM.CREATE_QUEUE (queue_name => 'RAW_IN_QUEUE',queue_table=> 'RAW_IN_
QUEUE_TABLE', max_retries=>1500);
DBMS_AQADM.START_QUEUE (queue_name => 'RAW_IN_QUEUE');
DBMS_AQADM.CREATE_QUEUE_TABLE (queue_table => 'RAW_OUT_QUEUE_TABLE', queue_
payload_type => 'RAW');
DBMS_AQADM.CREATE_QUEUE (queue_name => 'RAW_OUT_QUEUE', queue_table => 'RAW_OUT_
QUEUE_TABLE');
DBMS_AQADM.START_QUEUE (queue_name => 'RAW_OUT_QUEUE');
end;

7.2.13 Error Handling Support
For information about error handling, see Section 2.21, "Error Handling."

7.2.14 Performance Tuning
Oracle AQ Adapter supports performance tuning features.

For more information, see "Oracle AQ Adapter Tuning" in the Oracle Fusion
Middleware Performance and Tuning Guide.

7.3 Deployment
The Oracle AQ Adapter comes deployed to the application server as part of the install.
It contains a single adapter instance entry eis/AQ/aqSample, which points to the data
source jdbc/aqSample. The data source is not created as part of install and must be
created manually. The connection information to the database is inside the data source
definition.

When deploying a SOA project that uses the Oracle AQ Adapter instance
eis/AQ/aqSample that exists at the time of installation, you must first create a data
source at jdbc/aqSample. On the other hand, if a new adapter instance is preferred,
then you must add a new adapter instance and restart the application server. This is
because you want to point to a data source other than the one referred in the existing
adapter instance jdbc/aqSample, or because you chose a name for the adapter instance
that does not yet exist. For instance, if you create a connection in JDeveloper named
DBConnection1, then by default the AQ Adapter service points to
eis/AQ/DBConnection1, as shown in Figure 7–6.

You can also check which adapter instance the service is pointing to by looking at the
.jca file, as shown in the following code snippet:

<connection-factory location="eis/AQ/aqSample" … />

In the preceding example, the location is the JNDI name of the adapter instance at run
time.

You can create a new AQ Adapter instance through the Oracle WebLogic Server
Administration Console, as mentioned in Section 2.18, "Adding an Adapter
Connection Factory" or by directly editing the weblogic-ra.xml file. The following are
the steps to edit weblogic-ra.xml:

Deployment

Oracle JCA Adapter for AQ 7-11

1. Search fmwhome/ for AqAdapter.rar.

2. Unzip the file.

3. Edit META-INF/weblogic-ra.xml (and possibly ra.xml.)

4. Jar the file again.

5. Restart the application server.

The following is a sample adapter instance in weblogic-ra.xml:

<connection-instance>
 <jndi-name>eis/AQ/aqSample</jndi-name>
 <connection-properties>
 <properties>
 <property>
 <name>XADataSourceName</name>
 <value>jdbc/aqSample</value>
 </property>
 <property>
 <name>DataSourceName</name>
 <value></value>
 </property>
 <property>
 <name>ConnectionString</name>
 <value></value>
 </property>
 <property>
 <name>UserName</name>
 <value></value>
 </property>
 <property>
 <name>Password</name>
 <value></value>
 </property>
 <property>
 <name>DefaultNChar</name>
 <value>false</value>
 </property>
 <property>
 <name>UseDefaultConnectionManager</name>
 <value>false</value>
 </property>
 </properties>
 </connection-properties>
</connection-instance>

The mandatory properties are: jndi-name, XADataSourceName or DataSourceName. The
jndi-name property must match the location attribute in the .jca file, and is the name
of the adapter instance. The XADataSourceName or DataSourceName property is the
name of the underlying data source (which has the connection information). Specify
one of the properties XADataSourceName or DataSourceName. The usage depends on if
the scenario involves and would require adapter to participate in global transaction or
if local transaction semantics are sufficient. In the former case XADataSourceName must
be specified while in the latter case DataSourceName must be specified. When
specifying XADataSourceName property ensure that the physical data source it refers to
is XA enabled while when specifying DataSourceName property the physical data
source it refers to might or might not be XA enabled.

Oracle AQ Adapter Use Cases

7-12 Oracle Fusion Middleware User's Guide for Technology Adapters

Most Common Mistakes
The following are the two most common mistakes with deployment:

■ Not creating an adapter instance entry that matches the location attribute in your
.jca file (or not creating one at all.)

■ Setting the location attribute in the .jca file to the name of the data source directly.

For the latter, there is a level of indirection in that you give the name of the adapter
instance (eis/AQ/...), which itself points to the data source pool (jdbc/...). It is a
common mistake to miss this indirection and give the name jdbc/... directly in the
location attribute.

Additional Adapter Instance Properties
There are additional properties in the AQ Adapter instance beyond
xADataSourceName, dataSourceName.

For information about the Oracle AQ Adapter instance properties, see Appendix A.3,
"Oracle AQ Adapter Properties."

7.4 Oracle AQ Adapter Use Cases
This section includes the following topics:

■ Section 7.4.1, "Generic Use Case"

■ Section 7.4.2, "Oracle AQ Adapter ADT Queue"

■ Section 7.4.3, "Oracle AQ Adapter RAW Queue"

7.4.1 Generic Use Case
The following use cases include a general walkthrough of the Adapter Configuration
Wizard, followed by examples of how you can modify the general procedure in
different situations. Each example shows relevant parts of the generated WSDL and
JCA files.

This section includes the following topics:

■ Section 7.4.1.1, "The Adapter Configuration Wizard Walkthrough"

■ Section 7.4.1.2, "Dequeuing and Enqueuing Object and ADT Payloads"

■ Section 7.4.1.3, "Dequeuing One Column of the Object Payload"

■ Section 7.4.1.4, "Configuring the Enqueue/Dequeue Operation Type"

■ Section 7.4.1.5, "Using Correlation ID for Filtering Messages During Dequeue"

■ Section 7.4.1.6, "Enqueuing and Dequeuing from Multisubscriber Queues"

7.4.1.1 The Adapter Configuration Wizard Walkthrough
In this example, you create an Oracle AQ Adapter service that dequeues messages to
the service_in_queue queue, with a payload that is one field within the service_type
object, and with a user-defined schema.

This section describes the tasks required to configure Oracle AQ Adapter by using the
Adapter Configuration Wizard in JDeveloper.

This section includes the following topics:

■ Section 7.4.1.1.1, "Meeting Prerequisites"

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-13

■ Section 7.4.1.1.2, "Creating an Application and an SOA Project"

■ Section 7.4.1.1.3, "Defining an Oracle AQ Adapter Service"

■ Section 7.4.1.1.4, "Generated WSDL and JCA Files"

7.4.1.1.1 Meeting Prerequisites

This example assumes that you are familiar with basic BPEL constructs, such as
activities and partner links, and JDeveloper environment for creating and deploying
BPEL composite.

You must have access to a database with the SCOTT schema.

To perform this use case, you require the following files from the artifacts.zip file
contained in the adapters-aq-103-adtclobpayload sample:

■ artifacts/sql/setup_user.sql

■ artifacts/sql/create_type_service.sql

■ artifacts/sql/create_queues.sql

■ artifacts/sql/dequeue_service.sql

■ artifacts/sql/enqueue_service.sql

To obtain the adapters-aq-103-adtclobpayload sample, access the Oracle Sample
SOA Code site.

7.4.1.1.2 Creating an Application and an SOA Project

You must create a JDeveloper application to contain the SOA composite. Perform the
following steps to create an application, a SOA project:

1. Open JDeveloper.

2. In the Application Navigator, click New Application. The Create Generic
Application Name your application page is displayed, as shown in Figure 7–1.

3. Enter a name for the application in the Application Name field.

4. In the Application Template list, choose Generic Application.

Oracle AQ Adapter Use Cases

7-14 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 7–1 The Create Generic Application Name your application Page

5. Click Next.

The Create Generic Application Name your project page is displayed, as shown in
*** 'The Create Generic Application Name your Generic project Page' on page 15
***.

6. In the Project Name field, enter a descriptive name.

For example, SOAComposite.

7. In the Available list in the Project Technologies tab, double-click SOA to move it
to the Selected list.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-15

Figure 7–2 The Create Generic Application Name your Generic project Page

8. Click Next.

The Create Generic Application Configure SOA settings page is displayed, as
shown in Figure 7–3.

Figure 7–3 The Create Generic Application Configure SOA settings Page

9. Select Composite With BPEL from the Composite Template list, and then click
Finish.

You have created a new application and an SOA project. This automatically creates
an SOA composite.

Oracle AQ Adapter Use Cases

7-16 Oracle Fusion Middleware User's Guide for Technology Adapters

The Create BPEL Process page is displayed, as shown in Figure 7–4.

Figure 7–4 The Create BPEL Process Page

10. Enter a name for the BPEL process in the Name field. For example,
CustomerDetails.

11. Select Define Service Later in the Template list, and then click OK.

You have created the CustomerDetails BPEL process.

7.4.1.1.3 Defining an Oracle AQ Adapter Service

The next step is to define an Oracle AQ Adapter service. Perform the following steps
to create an Oracle AQ Adapter service:

1. In the Component Palette, select SOA.

2. Drag and drop AQ Adapter from the Service Adapters list to the Exposed Services
swim lane in the composite.xml page.

The Adapter Configuration Wizard Welcome page is displayed.

3. Click Next.

The Adapter Configuration Wizard Service Name page is displayed, as shown in
Figure 7–5.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-17

Figure 7–5 The Adapter Configuration Wizard Service Name Page

4. Specify a service name, and then click Next.

The Adapter Configuration Wizard Service Connection page is displayed, as
shown in Figure 7–6.

Figure 7–6 Adapter Configuration Wizard Service Connection Page

5. Click the plus icon to create a database connection.

The Create Database Connection page is displayed.

Oracle AQ Adapter Use Cases

7-18 Oracle Fusion Middleware User's Guide for Technology Adapters

6. Enter the following information:

a. For Create Connection In, choose Application Resources.

b. In the Connection Name field, specify a unique name for the database
connection.

In this example, type DBConnection1.

c. From the Connection Type box, select Oracle (JDBC).

d. In the UserName field, specify the user name to be authorized for access to the
database.

In this example, type scott.

e. In the Role field, enter a role, if applicable.

This must be a specific database role, such as SYSDBA, as defined in the
database. This field is optional. In this example, leave the Role field blank.

f. In the Password field, specify the password to be associated with the specified
user name.

In this example, type tiger.

g. Select Save Password and Deploy Password.

h. From the Driver list, select Thin.

i. In the Host Name field, enter a value to identify the computer running the
Oracle server.

Use an IP address or a host name that can be resolved by TCP/IP, for example,
myserver. The default value is localhost.

j. In the JDBC Port field, enter a value to identify the TCP/IP port. The default
is 1521.

k. In the SID field, enter a value for the unique system identifier (SID) of an
Oracle database instance.

The default is XE.

l. Click Test Connection to determine whether the specified information
establishes a connection with the database.

A Success message is displayed.

m. Click OK.

The Connection you created is displayed in the Connection field in the Service
Name page.

Notice that the Java Naming and Directory Interface (JNDI) name in the JNDI
Name field is populated after you have created the database connection. The
JNDI name acts as a placeholder for the connection used when your service is
deployed to the BPEL server. Using JNDI as a placeholder enables you to use
different databases for development and later production.

The value specified in the JNDI name must exist in the Oracle AQ Adapter
weblogic-ra.xml file to ensure that the adapter runs in managed mode. A

Note: You must connect to the database where Oracle Applications is
running.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-19

default connection instance eis/AQ/aqSample is shipped and can be used as
the default value for this field. To use this connection instance, it would still
require that a data source is created with the JNDI name jdbc/aqSample.

7. Click Next.

The Adapter Configuration Wizard Adapter Interface page is displayed, as shown
in Figure 7–7.

8. In the Adapter Interface page, choose Define from operation and schema
(specified later).

Figure 7–7 The Adapter Configuration Wizard Adapter Interface Page

9. Click Next.

The Operation page is displayed.

10. Oracle AQ Adapter supports three operations:

■ Dequeue: Polls for incoming messages from a queue.

■ Enqueue: Puts outgoing messages in a queue.

■ Enqueue/Dequeue: Puts outgoing messages in a queue and expects response
messages in a queue.

In this example, select Dequeue, as shown in Figure 7–8.

The operation is automatically named after the operation that you selected.
However, you can edit the Operation Name field.

Oracle AQ Adapter Use Cases

7-20 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 7–8 The Adapter Configuration Wizard Operation Page

11. Click Next.

The Adapter Configuration Wizard Queue Name page is displayed, as shown in
Figure 7–9.

Note: When creating an SOA composite that uses Oracle AQ
Adapter with ADT data type if the SchemaValidation property is set
to TRUE, then any NULL data type in dequeue message results in AQ_
INVALID_PAYLOAD error further resulting in message rejection. To avoid
message rejection, you must set the SchemaValidation property to
false.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-21

Figure 7–9 The Adapter Configuration Wizard Queue Name Page

12. Select a database schema from the Database Schema list, or click Browse to browse
for the schema. In this example, click Browse.

The Select Queue dialog is displayed, as shown in Figure 7–10.

Figure 7–10 The Select Queue Dialog

Oracle AQ Adapter Use Cases

7-22 Oracle Fusion Middleware User's Guide for Technology Adapters

13. Select the required queue, and then click OK.

In this example, select SERVICE_IN_QUEUE. The Queue Name page is displayed
again with the Queue Name field populated with SERVICE_IN_QUEUE, as shown
in Figure 7–11.

Figure 7–11 The Adapter Configuration Wizard Queue Name Page

14. Click Next.

The Adapter Configuration Wizard Queue Parameters page is displayed, as
shown in Figure 7–12.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-23

Figure 7–12 The Adapter Configuration Wizard Queue Parameters Page

15. Enter values for the parameters, and then click Next.

■ Correlation ID: Enter an optional correlation ID from 1 to 30 characters in
length. This is used to identify messages that can be retrieved at a later time by
a dequeue activity using the same correlation ID.

The value to enter is agreed upon between the enqueuing sender and the
dequeuing receiver for asynchronous conversations. The correlation ID maps
to an AQ header property. Correlation IDs in the inbound direction enable you
to be selective about the message to dequeue. This field is optional. If you do
not enter a value, then all the messages in the queue are processed.

If you enter a value for the Correlation ID in the outbound direction, then all
outbound messages have the correct ID set to the value entered. You can
override this value on a per message basis in the correlation field of the
outbound header.

■ Dequeue Condition: Displayed only when you select dequeue in the
Operation page.

Enter a Boolean expression similar to the WHERE clause of a SQL query. This
expression can include conditions on message properties, user data properties
(object payloads only), and PL/SQL or SQL functions. If more than one
message satisfies the dequeue condition, then the order of dequeuing is
indeterminate, and the sort order of the queue is not honored.

This field is displayed for inbound single consumer and multiconsumer
queues.

16. Click Next.

The Adapter Configuration Wizard Object Payload page is displayed, as shown in
Figure 7–13.

Oracle AQ Adapter Use Cases

7-24 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 7–13 The Adapter Configuration Wizard Object Payload Page

a. In Business Payload, select Field within the Object.

b. Click Browse in the Payload Fields Options section to select a field that
contains the business payload.

The Select Payload Field dialog is displayed, as shown in Figure 7–14.

Figure 7–14 The Select Payload Field Dialog

17. Select a field, and then click OK.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-25

In this example, select PAYLOAD (CLOB).

The Object Payload field is displayed with all the payload details filled up, as
shown in Figure 7–15.

Figure 7–15 The Adapter Configuration Wizard Object payload Page

18. Select Access to non-payload fields also needed, and then click Next.

The Messages page is displayed.

The Message page has the following options:

■ Native format translation is not required (Schema is Opaque): Select this
option if you do not want to specify a schema. Selecting this option disables all
the other fields under Message Schema.

■ Define Schema for Native Format: Click this to start the Native Format
Builder wizard, which guides you through the process of defining the native
format.

■ URL: You can enter the path for the schema file URL or click Browse to
browse for the path.

■ Schema Element: The name of the schema element.

19. In this example, click the Browse for schema file icon to browse for the schema
file URL.

The Type Chooser dialog is displayed, as shown in Figure 7–16.

Oracle AQ Adapter Use Cases

7-26 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 7–16 The Type Chooser Dialog

20. Select SERVICE from the list, as shown in Figure 7–16, and then click OK.

The Messages page reappears, with the Schema Location and Schema Element
fields populated, as shown in Figure 7–17.

Figure 7–17 The Adapter Configuration Wizard Messages Page

21. Click Next.

The Finish screen is displayed. This page shows the path and name of the adapter
file that the wizard creates.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-27

22. Click Finish.

You have created an AQ Adapter service with dequeue operation.

23. Click OK.

7.4.1.1.4 Generated WSDL and JCA Files

The adapter service generates a WSDL and a JCA file to serve as the defined adapter
interface.

The following is the WSDL file generated for the dequeue operation:

<definitions name="Inbound"
targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/"
xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:obj1="http://xmlns.oracle.com/xdb/SCOTT"
xmlns:imp1="http://www.oracle.com/service/contract">
 <types>
 <schema attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/"
xmlns:hdr="http://xmlns.oracle.com/pcbpel/adapter/aq/inbound/"
xmlns:obj1="http://xmlns.oracle.com/xdb/SCOTT">
 <import namespace="http://xmlns.oracle.com/xdb/SCOTT"
schemaLocation="xsd/SCOTT_SERVICE_TYPE.xsd"/>
 <import namespace="http://xmlns.oracle.com/pcbpel/adapter/aq/inbound/"
schemaLocation="xsd/aqAdapterInboundHeader.xsd"/>
 <complexType name="HeaderCType">
 <sequence>
 <element name="QueueHeader" type="hdr:HeaderType"/>
 <element name="PayloadHeader" type="obj1:SERVICE_TYPE"/>
 </sequence>
 </complexType>
 <element name="Header" type="tns:HeaderCType"/>
 </schema>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://www.oracle.com/service/contract"
schemaLocation="xsd/service.xsd"/>
 </schema>
 </types>
 <message name="SERVICE_msg">
 <part name="SERVICE" element="imp1:SERVICE"/>
 </message>
 <message name="Header_msg">
 <part name="Header" element="tns:Header"/>
 </message>
 <portType name="Dequeue_ptt">
 <operation name="Dequeue">
 <input message="tns:SERVICE_msg"/>
 </operation>
 </portType>
 <plt:partnerLinkType name="Dequeue_plt">
 <plt:role name="Dequeue_role">
 <plt:portType name="tns:Dequeue_ptt"/>
 </plt:role>
 </plt:partnerLinkType>
</definitions>

Oracle AQ Adapter Use Cases

7-28 Oracle Fusion Middleware User's Guide for Technology Adapters

7.4.1.2 Dequeuing and Enqueuing Object and ADT Payloads
Dequeuing and enqueuing is covered in Section 7.4.2, "Oracle AQ Adapter ADT
Queue".

To enqueue or dequeue the entire object as the payload, perform the following:

■ Select Enqueue or Dequeue in Step 10.

■ Select Whole Object CUSTOMER_TYPE, and skip to Step 16.

For a working example of an ADT payload use case, refer to any of the following
samples:

■ adapters-aq-102-adt

■ adapters-aq-110-supportedadttypes

You can obtain these samples by accessing the Oracle SOA Sample Code site.

7.4.1.3 Dequeuing One Column of the Object Payload
The walkthrough is an example of dequeuing one field or column within an object
payload.

To create an Oracle AQ Adapter that dequeues one field in an object, you must
perform the following steps in the Adapter Configuration Wizard Object Payload
page:

1. Select Field within the Object.

2. Click Browse at the end of the Field Name field.

The Select Payload Field dialog is displayed.

3. Select a field that contains the business payload, and then click OK.

The Adapter Configuration Wizard Object Payload page with Field Name field
populated with the field that you selected is displayed, as shown in Figure 7–18.

Note: If you modify an ADT type using evolution commands such as
ALTER OBJECT, the AQ Adapter will throw an ORA-25215 SQL
exception.

The workaround to this exception is to use only CREATE OBJECT
(without issuing evolution commands such as ALTER OBJECT) to add
attributes to the ADT TYPES.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-29

Figure 7–18 The Adapter Configuration Wizard Object Payload Page

4. Select Access to non-payload fields also needed, and then click Next.

The following segment of the generated JCA file specifies that one field, in this case the
field named PAYLOAD, is dequeued in addition to payload header fields.

<adapter-config name="Inbound" adapter="AQ Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/AQ/aqSample" UIConnectionName="Connection1"
adapterRef=""/>
 <endpoint-activation portType="Dequeue_ptt" operation="Dequeue">
 <activation-spec
className="oracle.tip.adapter.aq.inbound.AQDequeueActivationSpec">
 <property name="QueueName" value="SERVICE_IN_QUEUE"/>
 <property name="ObjectFieldName" value="PAYLOAD"/>
 <property name="PayloadHeaderRequired" value="true"/>
 <property name="SchemaValidation" value="false"/>
 </activation-spec>
 </endpoint-activation>
</adapter-config>

For a working example of an ADT CLOB use case where one field or column within an
object payload is dequeued, refer to the following samples:

■ adapters-aq-103-adtclobpayload

■ adapters-aq-105-adtclobopaquepayload

You can obtain these samples by accessing the Oracle SOA Sample Code site.

7.4.1.4 Configuring the Enqueue/Dequeue Operation Type
This use case walks you through the procedure for configuring the Enqueue/Dequeue
operation type of the Oracle AQ Adapter, which lets the Oracle AQ Adapter put
outgoing messages on a queue and expect response messages on a different queue.

This section includes the following topics:

Oracle AQ Adapter Use Cases

7-30 Oracle Fusion Middleware User's Guide for Technology Adapters

■ Section 7.4.1.4.1, "Meeting Prerequisites"

■ Section 7.4.1.4.2, "Creating an Application and an SOA Project"

■ Section 7.4.1.4.3, "Defining an Oracle AQ Adapter Service"

■ Section 7.4.1.4.4, "Wiring Services and Activities"

■ Section 7.4.1.4.5, "Deploying with JDeveloper"

■ Section 7.4.1.4.6, "Monitoring Using the Fusion Middleware Control Console"

■ Section 7.4.1.4.7, "Generated WSDL and JCA Files"

7.4.1.4.1 Meeting Prerequisites

To perform this use case, you must have access to a database with the SCOTT schema.
Also, you require the following files from the artifacts.zip file contained in the
adapters-aq-104-requestreply sample:

■ create_queues.sql

■ drop_queues.sql

■ enqueue.sql

■ SendReply.sql

■ setup_user.sql

To obtain the adapters-aq-104-requestreply sample code, access the Oracle SOA
Sample Code site.

7.4.1.4.2 Creating an Application and an SOA Project

You must create a JDeveloper application to contain the SOA composite. Follow the
steps documented in Section 7.4.1.1.2, "Creating an Application and an SOA Project" to
create an application, and an SOA project.

7.4.1.4.3 Defining an Oracle AQ Adapter Service

Perform the following steps to create an Oracle AQ Adapter service to put outgoing
messages on a queue and expect response messages on a queue:

1. In the Component Palette, select SOA.

2. Drag and drop AQ Adapter from the Service Adapters list to the Exposed Services
swim lane in the composite.xml page.

The Adapter Configuration Wizard Welcome page is displayed.

3. Click Next.

The Adapter Configuration Wizard Service Name page is displayed, as shown in
Figure 7–5.

4. Specify a service name, and then click Next.

The Adapter Configuration Wizard Service Connection page is displayed.

5. Click the plus icon to create a database connection.

The Create Database Connection page is displayed.

Note: You must connect to the database where Oracle Applications is
running.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-31

6. Enter the following information:

a. For Create Connection In, choose Application Resources.

b. In the Connection Name field, specify a unique name for the database
connection.

c. From the Connection Type box, select Oracle (JDBC).

d. In the UserName field, specify the user name to be authorized for access to the
database.

In this example, type scott.

e. In the Role field, enter a role, if applicable.

This must be a specific database role, such as SYSDBA, as defined in the
database. This field is optional. In this example, leave the Role field blank.

f. In the Password field, specify the password to be associated with the specified
user name.

In this example, type tiger.

g. Select Save Password and Deploy Password.

h. From the Driver list, select thin.

i. In the Host Name field, enter a value to identify the computer running the
Oracle server.

Use an IP address or a host name that can be resolved by TCP/IP, for example,
myserver. The default value is localhost.

j. In the JDBC Port field, enter a value to identify the TCP/IP port. The default
is 1521.

k. In the SID field, enter a value for the unique system identifier (SID) of an
Oracle database instance.

The default is XE.

l. Click Test Connection to determine whether the specified information
establishes a connection with the database.

A Success message is displayed.

m. Click OK.

The Connection you created is displayed in the Connection field in the Service
Connection page.

Also, the JNDI Name field is populated after you created the database
connection.

The value specified in the JNDI name must exist in the Oracle AQ Adapter
weblogic-ra.xml file to ensure that the adapter runs in managed mode. A
default connection instance eis/AQ/aqSample is shipped and can be used as
the default value for this field. To use this connection instance, it would still
require that a data source is created with the JNDI name jdbc/aqSample.

7. Click Next.

The Adapter Configuration Wizard Adapter Interface page is displayed.

8. In the Adapter Interface page, choose Define from operation and schema
(specified later).

Oracle AQ Adapter Use Cases

7-32 Oracle Fusion Middleware User's Guide for Technology Adapters

9. Click Next.

The Operation page is displayed.

10. Select Enqueue/Dequeue, as shown in Figure 7–8.

Figure 7–19 The Adapter Configuration Wizard Operation Page

11. Click Next.

The Adapter Configuration Wizard Queue Name page is displayed, as shown in
Figure 7–9.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-33

Figure 7–20 The Adapter Configuration Wizard Queue Name Page

12. Click Browse to browse for a request queue.

The Select Queue dialog is displayed, as shown in Figure 7–21.

Figure 7–21 The Select Queue Dialog

Oracle AQ Adapter Use Cases

7-34 Oracle Fusion Middleware User's Guide for Technology Adapters

13. Select the required queue, and then click OK.

In this example, select CORRELATION_REQUEST. The Queue Name page is
displayed with the Queue Name field populated with CORRELATION_REQUEST,
as shown in Figure 7–22.

14. Repeat Step 12 and 13 for the enqueue queue information.

The Queue Name page is displayed, as shown in Figure 7–22.

Figure 7–22 The Adapter Configuration Wizard Queue Name Page

15. Click Next.

The Adapter Configuration Wizard Queue Parameters page is displayed, as
shown in Figure 7–23.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-35

Figure 7–23 The Adapter Configuration Wizard Queue Parameters Page

16. Click Next.

The Adapter Configuration Wizard Object Payload page is displayed, as shown in
Figure 7–24.

Figure 7–24 The Adapter Configuration Wizard Object Payload Page

17. Select the Business Payload options, Whole Object CORRELATIONREQUEST_
TYPE and Whole Object CORRELATIONREPLY_TYPE.

18. Click Next.

Oracle AQ Adapter Use Cases

7-36 Oracle Fusion Middleware User's Guide for Technology Adapters

The Finish screen is displayed. This page shows the path and name of the adapter
file that the wizard creates.

19. Click Finish.

You have created an AQ Adapter service for synchronous enqueue/dequeue
operations.

20. Click OK.

7.4.1.4.4 Wiring Services and Activities

You must assemble or wire the BPEL process and the Outbound adapter reference.
Perform the following steps to wire the components:

1. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in RequestReply in the External References
area.

The JDeveloper Composite.xml appears, as shown in Figure 7–25.

Figure 7–25 The JDeveloper - Composite.xml

2. Click File, Save All.

Add Invoke Activity
1. Double-click BPELProcess1. The BPELProcess1.bpel page is displayed.

2. Drag and drop an Invoke activity from the Component Palette to the design area.

3. Double-click the Invoke activity. The Invoke dialog is displayed.

4. Enter a name for the invoke activity in the Name field.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-37

5. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed, as shown in Figure 7–26.

Figure 7–26 The Partner Link Chooser Dialog

6. Select RequestReply, and click OK.

7. Click the Automatically Create Input Variable icon to the right of the Input
variable field in the Invoke dialog, as shown in Figure 7–27. The Create Variable
dialog is displayed.

Figure 7–27 The Invoke Dialog

8. Select the default variable name and click OK. The Variable field is populated with
the default variable name.

Oracle AQ Adapter Use Cases

7-38 Oracle Fusion Middleware User's Guide for Technology Adapters

9. Click OK. The JDeveloper BPELProcess1.bpel page appears, as shown in *** 'The
JDeveloper - BPELProcess1.bpel Page' on page 38 ***.

Figure 7–28 The JDeveloper - BPELProcess1.bpel Page

Add an Assign Activity
1. Drag and drop an Assign activity from the Component Palette to the design area.

2. Double-click the Assign activity. The Assign dialog is displayed.

3. Enter a name for the Assign activity in the Name field.

4. Click the Copy Operation tab.

5. Select Copy Operation. The Create Copy Operation dialog is displayed.

6. Create a copy operation from inputVariable to outputVariable, as shown in
Figure 7–29.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-39

Figure 7–29 The Create Copy Operation Dialog

7. Click OK in the Create Copy Operation dialog.

8. Create another copy operation from inputVariable to Invoke_1_Enqueue_
InputVariable, as shown in Figure 7–30.

Figure 7–30 The Create Copy Operation Dialog

9. Click OK in the Create Copy Operation dialog.

10. Click OK to return to the JDeveloper BPELProcess1.bpel page, as shown in
Figure 7–31.

Oracle AQ Adapter Use Cases

7-40 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 7–31 The JDeveloper - BPELProcess1.bpel

11. Click File, Save All.

Add a Receive Activity
1. Drag and drop a Receive activity from the Component Palette to the design area.

2. Double-click the Receive activity. The Receive dialog is displayed.

3. Enter a name for the Receive activity in the Name field.

4. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

5. Select RequestReply, and click OK.

6. Click the Auto-Create Variable icon to the right of the Variable field in the Receive
dialog. The Create Variable dialog is displayed.

7. Select the default variable name and click OK. The Variable field is populated with
the default variable name.

8. Check Create Instance, and click OK. The JDeveloper BPELProcess1.bpel page
appears, as shown in *** 'The JDeveloper - BPELProcess1.bpel' on page 41 ***.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-41

Figure 7–32 The JDeveloper - BPELProcess1.bpel

7.4.1.4.5 Deploying with JDeveloper

You must deploy the application profile for the SOA project and the application you
created in the preceding steps.

The following are the steps to deploy the application profile by using JDeveloper:

1. Create an application server connection by using the procedure described in
Chapter 2.6, "Creating an Application Server Connection for Oracle JCA
Adapters."

2. Deploy the application by using the procedure described in Section 2.7,
"Deploying Oracle JCA Adapter Applications from JDeveloper."

7.4.1.4.6 Monitoring Using the Fusion Middleware Control Console

You can monitor the deployed composite by using the Fusion Middleware Control
Console. Perform the following steps:

1. Navigate to http://servername:portnumber/em. The composite you deployed is
displayed in the Application Navigator.

2. Click an instance. The Flow Trace page is displayed.

3. Click the BPEL component instance. The Audit page is displayed.

4. Click the Flow-Debug tab to debug the instance.

Oracle AQ Adapter Use Cases

7-42 Oracle Fusion Middleware User's Guide for Technology Adapters

7.4.1.4.7 Generated WSDL and JCA Files

The following WSDL file is generated for the Enqueue/Dequeue operation:

<?xml version = '1.0' encoding = 'UTF-8'?>
<?binding.jca Inbound_aq.jca?>
<definitions name="Inbound"
targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/"
xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:obj1="http://xmlns.oracle.com/xdb/SCOTT"
xmlns:imp1="http://www.oracle.com/ipdemo">
 <types>
 <schema attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/"
xmlns:hdr="http://xmlns.oracle.com/pcbpel/adapter/aq/inbound/"
xmlns:obj1="http://xmlns.oracle.com/xdb/SCOTT">
 <import namespace="http://xmlns.oracle.com/xdb/SCOTT"
schemaLocation="xsd/SCOTT_MAGAZINE_TYPE.xsd"/>
 <import namespace="http://xmlns.oracle.com/pcbpel/adapter/aq/inbound/"
schemaLocation="xsd/aqAdapterInboundHeader.xsd"/>
 <complexType name="HeaderCType">
 <sequence>
 <element name="QueueHeader" type="hdr:HeaderType"/>
 <element name="PayloadHeader" type="obj1:MAGAZINE_TYPE"/>
 </sequence>
 </complexType>
 <element name="Header" type="tns:HeaderCType"/>
 </schema>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://www.oracle.com/ipdemo"
schemaLocation="xsd/simpleMagazine.xsd"/>
 </schema>
<?xml version = '1.0' encoding = 'UTF-8'?>
 <?binding.jca Inbound_aq.jca?>
 <definitions name="Inbound"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/"
 xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:obj1="http://xmlns.oracle.com/xdb/SCOTT"
 xmlns:imp1="http://www.oracle.com/ipdemo">
 <types>
 <schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/aq/Inbound/"
xmlns:hdr="http://xmlns.oracle.com/pcbpel/adapter/aq/inbound/"

xmlns:obj1="http://xmlns.oracle.com/xdb/SCOTT">
<import namespace="http://xmlns.oracle.com/xdb/SCOTT"
schemaLocation="xsd/SCOTT_MAGAZINE_TYPE.xsd"/>
<import namespace="http://xmlns.oracle.com/pcbpel/adapter/aq/inbound/"

 schemaLocation="xsd/aqAdapterInboundHeader.xsd"/>
<complexType name="HeaderCType">
 <sequence>
<element name="QueueHeader" type="hdr:HeaderType"/>

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-43

<element name="PayloadHeader" type="obj1:MAGAZINE_TYPE"/>
 </sequence>
</complexType>

 <element name="Header" type="tns:HeaderCType"/>
</schema>

 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://www.oracle.com/ipdemo"
 schemaLocation="xsd/simpleMagazine.xsd"/>
</schema>
</types>
<message name="simpleMagazine_msg">

 <part name="simpleMagazine" element="imp1:simpleMagazine"/>
</message>
 <message name="Header_msg">
 <part name="Header" element="tns:Header"/>
</message>
<portType name="Dequeue_ptt">
 <operation name="Dequeue">
 <input message="tns:simpleMagazine_msg"/>
 </operation>
</portType>
 <plt:partnerLinkType name="Dequeue_plt">
 <plt:role name="Dequeue_role">
 <plt:portType name="tns:Dequeue_ptt"/>
 </plt:role>
 </plt:partnerLinkType>
</definitions>

The following JCA file is generated for the Enqueue/Dequeue operation:

<adapter-config name="RequestReply" adapter="AQ Adapter"
wsdlLocation="RequestReply.wsdl"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">

 <connection-factory location="eis/AQ/aqSample" UIConnectionName="aqSample"
adapterRef=""/>
 <endpoint-activation portType="Dequeue_ptt" operation="Dequeue"
UITransmissionPrimitive="Request-response">
 <activation-spec
className="oracle.tip.adapter.aq.inbound.AQDequeueActivationSpec">
 <property name="QueueName" value="CORRELATION_REPLY"/>
 </activation-spec>
 </endpoint-activation>

 <endpoint-interaction portType="Enqueue_ptt" operation="Enqueue"
UITransmissionPrimitive="Request-response">
 <interaction-spec
className="oracle.tip.adapter.aq.outbound.AQEnqueueInteractionSpec">
 <property name="QueueName" value="CORRELATION_REQUEST"/>
 </interaction-spec>
 </endpoint-interaction>

</adapter-config>

Oracle AQ Adapter Use Cases

7-44 Oracle Fusion Middleware User's Guide for Technology Adapters

7.4.1.5 Using Correlation ID for Filtering Messages During Dequeue
Perform the following steps to set up an adapter that dequeues messages with a
certain correlation ID only.

■ Select Dequeue operation in Step 10.

■ Enter the correlation ID in Step 15.

The adapter dequeues messages enqueued with that same correlation ID only.

For a working example of this use case where an Oracle AQ Adapter dequeues
messages enqueued with that same correlation ID, refer to the following samples:

■ adapters-aq-106-messagerejection

■ adapters-aq-109-nativecorrelation

■ adapters-aq-112-prioritymessageselector

■ adapters-aq-113-payloadbasedmessageselector

You can obtain these samples by accessing the Oracle SOA Sample Code site.

7.4.1.6 Enqueuing and Dequeuing from Multisubscriber Queues
Multisubscriber queues are accessible by multiple users, and sometimes, those users
are concerned only with certain types of messages within the queue. For example, you
may have a multiuser queue for loan applications where loans below $100,000 can be
approved by regular loan-approval staff, whereas loans over $100,000 must be
approved by a supervisor. In this case, the BPEL process can use one adapter to
enqueue loan applications for big loans for supervisors, and another adapter to
enqueue loan applications for smaller loans for regular staff in the same
multisubscriber queue.

Specify an adapter that enqueues to a multisubscriber queue, and include queue
parameters in the Recipients field.

In Step 15, specify Bob in the Recipients field.

The following code is from a JCA file generated by defining an Oracle AQ Adapter
that enqueues with a recipient list of Bob:

<adapter-config name="Inbound" adapter="AQ Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/AQ/aqSample" UIConnectionName="aqSample"
adapterRef=""/>
 <endpoint-interaction portType="Enqueue_ptt" operation="Enqueue">
 <interaction-spec
className="oracle.tip.adapter.aq.outbound.AQEnqueueInteractionSpec">
 <property name="QueueName" value="PURCHASEORDER_APPROVAL"/>
 <property name="RecipientList" value="Bob"/>
 </interaction-spec>
 </endpoint-interaction>
</adapter-config>

When dequeuing from a multisubscriber queue, the Queue Parameters window is
displayed.

The Consumer field is where you specify the consumer name, or the name of the
queue subscriber. This must match the Recipient entry on the enqueue process for the
message to be dequeued. When subscribing to a multiconsumer queue, this field is
required.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-45

The following code is from a JCA file generated by defining an Oracle AQ Adapter
with a consumer name:

<adapter-config name="Dequer_Bob" adapter="AQ Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/AQ/manas" UIConnectionName="aqSample"
adapterRef=""/>
 <endpoint-activation portType="Dequeue_ptt" operation="Dequeue">
 <activation-spec
className="oracle.tip.adapter.aq.inbound.AQDequeueActivationSpec">
 <property name="QueueName" value="PURCHASEORDER_APPROVAL"/>
 <property name="Consumer" value="Bob"/>
 <property name="SchemaValidation" value="false"/>
 </activation-spec>
 </endpoint-activation>
</adapter-config>

For a working example of this use case which demonstrates enqueuing and dequeuing
from multisubscriber queues, refer to the following samples:

■ adapters-aq-114-multiconsumeroutbound

You can obtain these samples by accessing the Oracle SOA Sample Code site.

7.4.2 Oracle AQ Adapter ADT Queue
In this sample, the business process receives a message from the AQ Adapter, copies
the payload to an outbound message, and invokes the AQ Adapter with the outbound
message.The queues involved are ADT queues. In this scenario, where the user has
chosen to use whole ADT as the payload, the AQ Adapter Wizard has generated the
schema in SCOTT_CUSTOMER_TYPE.xsd, according to the queue structure. During run
time, an XML file that matches the schema is created by the adapter for each message.

This section includes the following topics:

■ Section 7.4.2.1, "Meeting Prerequisites"

■ Section 7.4.2.2, "Creating an Application and an SOA Project"

■ Section 7.4.2.3, "Creating an Inbound Oracle AQ Adapter"

■ Section 7.4.2.4, "Creating an Outbound Oracle AQ Adapter"

■ Section 7.4.2.5, "Wiring Services and Activities"

■ Section 7.4.2.6, "Configuring Routing Service"

■ Section 7.4.2.8, "Deploying with JDeveloper"

■ Section 7.4.2.7, "Configuring the Data Sources in the Oracle WebLogic Server
Administration Console"

7.4.2.1 Meeting Prerequisites
You must have access to a database with the SCOTT schema.

To perform this use case, you require the following SQL files from the artifacts.zip
file contained in the adapters-aq-102-adt sample. These files are located in the
artifacts/sql subdirectory of the artifacts.zip fle. Execute the SQL files in the
order shown below:

■ setup_user.sql

■ create_type_customer.sql

Oracle AQ Adapter Use Cases

7-46 Oracle Fusion Middleware User's Guide for Technology Adapters

■ create_queues.sql

■ enqueue_customer.sql

■ dequeue_customer.sql

To obtain the adapters-aq-102-adt sample code, access the Oracle SOA Sample Code
site

7.4.2.2 Creating an Application and an SOA Project
You must create an JDeveloper application to contain the SOA composite. Use the
following steps to create an application and an SOA project:

1. In the Application Navigator of JDeveloper, click New Application.

The Create Generic Application Name your application page is displayed.

2. Enter ADT in the Application Name field, and click Next.

The Create Generic Application Name your project page is displayed.

3. Enter ADT in the Project Name field.

4. In the Available list in the Project Technologies tab, double-click SOA to move it to
the Selected list.

5. Click Next.

The Create Generic Application Configure SOA settings page is displayed.

6. Select Composite With Mediator from the Composite Template list, and then click
Finish.

You have created a new application and an SOA project.

The Create Mediator page is displayed, as shown in Figure 7–33.

Figure 7–33 The Create Mediator Page

7. Enter a name for the Mediator component in the Name field. In this example,
retain the default name Mediator1.

8. Select Define Interface Later in the Template list, and then click OK.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-47

You have created a mediator component.

7.4.2.3 Creating an Inbound Oracle AQ Adapter
The following are the steps to create an inbound Oracle AQ Adapter service:

1. In the Component Palette, select SOA.

2. Drag and drop AQ Adapter from the Service Adapters list in the Component
Palette to the Exposed Services swim lane in the composite.xml page.

The Adapter Configuration Wizard is displayed.

3. Click Next.

The Service Name page is displayed.

4. Specify a name for the service in the Service Name page. In this example, type
dequeue.

5. Click Next.

The Service Connection page is displayed. A database connection is required to
configure an Oracle AQ Adapter. You can either create a new connection or select
an existing database connection.

6. Click the Create a new database connection icon to create a database connection.

The Create Database Connection page is displayed.

7. Create a database connection, as mentioned in Step 6 of Section 7.4.1.1.3, "Defining
an Oracle AQ Adapter Service."

8. Click OK to complete the process of creating a new database connection.

The Service Connection page is displayed, providing a summary of the database
connection.

9. Click Next.

The Adapter Interface page is displayed.

10. In the Adapter Interface page, select Define from operation and schema
(specified later).

11. Click Next.

The Operation page is displayed.

12. Select Dequeue.

13. Accept the default operation name, and then click Next.

The Queue Name page is displayed.

14. Select a database schema from the list, or click Browse to browse for the schema.
In this example, click Browse.

The Select Queue dialog is displayed.

15. In the Select Queue dialog, perform the following steps:

a. For Queue Type, select all types.

b. For Database Schema, select Scott.

c. Retain the default values for the other fields.

d. Under Queues, select CUSTOMER_IN_QUEUE.

Oracle AQ Adapter Use Cases

7-48 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 7–34 shows the Select Queue dialog.

Figure 7–34 Selecting a Queue for the Inbound Operation

16. Click OK.

The Queue Name dialog with all the fields populated is displayed, as shown in
Figure 7–35.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-49

Figure 7–35 The Queue Name Page

17. Click Next.

The Queue Parameters page is displayed.

18. In the Queue Parameters page, leave the fields empty, and then click Next.

The Object Payload page is displayed.

19. Select a business payload: either the entire object, or just one field within the
object.

In this example, select Whole Object CUSTOMER_TYPE.

20. Click Next.

The Finish screen is displayed. This page shows the path and name of the adapter
file that the wizard creates.

21. Click Finish.

You have defined an inbound Oracle AQ Adapter

7.4.2.4 Creating an Outbound Oracle AQ Adapter
The following are the steps to create an outbound Oracle AQ Adapter service:

1. In the Component Palette, select SOA.

2. Drag and drop AQ Adapter from the Service Adapters list in the Component
Palette to the Exposed Services swim lane in the composite.xml page.

The Adapter Configuration Wizard is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter enqueue and click Next.

The Service Connection page is displayed.

Oracle AQ Adapter Use Cases

7-50 Oracle Fusion Middleware User's Guide for Technology Adapters

5. For Connection, select MyConnection, and then click Next.

The Adapter Interface page is displayed.

6. In the Adapter Interface page, select Define from operation and schema
(specified later), and then click Next.

The Operation page is displayed.

7. In the Operation page, select Enqueue, and accept the default operation name.

8. Click Next.

The Queue Name page is displayed.

9. In the Queue Name page, select a database schema from the list, or click Browse to
browse for the schema. In this example, click Browse.

The Select Queue dialog is displayed.

10. In the Select Queue dialog, perform the following steps:

a. For Queue Type, select all types.

b. For Database Schema, select Scott.

c. Retain the default values for the other fields.

d. Under Queues, select CUSTOMER_OUT_QUEUE, as shown in Figure 7–36.

Figure 7–36 Selecting a Queue for the Outbound Operation

11. Click OK.

The Queue Name page with all the fields populated is displayed, as shown in
Figure 7–37.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-51

Figure 7–37 The Queue Name Page

12. Click Next.

The Queue Parameters page is displayed.

13. In the Queue Parameters page, leave the fields empty, and then click Next.

The Object Payload page is displayed.

14. Select a business payload, either the entire object, or just one field within the
object. In this example, select Whole Object CUSTOMER_TYPE.

15. Click Next.

The Finish screen is displayed. This page shows the path and name of the adapter
file that the wizard creates.

16. In the Finish window, click Finish.

You have defined an outbound Oracle AQ Adapter.

7.4.2.5 Wiring Services and Activities
You must assemble or wire the three components that you have created: Inbound
adapter service, Mediator component, and Outbound adapter reference. Perform the
following steps to wire the components:

1. Drag the small triangle in the Inbound adapter in the Exposed Services area to the
drop zone that appears as a green triangle in the Mediator component in the
Components area.

2. Drag the small triangle in the Mediator component in the Components area to the
drop zone that appears as a green triangle in the Outbound adapter in the External
References area.

The JDeveloper composite.xml is displayed, as shown in Figure 7–38.

Oracle AQ Adapter Use Cases

7-52 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 7–38 The JDeveloper composite.xml

3. Click File, Save All.

7.4.2.6 Configuring Routing Service
The following are the steps to configure the routing service:

1. Double-click Mediator1.

The Mediator1.mplan window is displayed.

2. Click the Select an existing mapper file or create a new one... icon that is
displayed at the end of the Transform Using field.

The Request Transformation Map dialog is displayed, as shown in Figure 7–39.

Figure 7–39 The Request Transformation Map Dialog

3. Select Create New Mapper File, and then click OK.

The Transformation window is displayed, as shown in Figure 7–40.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-53

Figure 7–40 The Transformation Window

4. Select the source root elements on the left-hand side of the mapper and drag them
over to the destination root elements on the right-hand side to set the map
preferences.

The Auto Map Preferences dialog is displayed, as shown in Figure 7–41.

Figure 7–41 The Auto Map Preferences Dialog

5. Click OK.

The middle pane of the application window appears as shown in Figure 7–42.

Oracle AQ Adapter Use Cases

7-54 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 7–42 The Application Window After Setting the Map Preferences

6. Save and close the tab for the mapper.

7. Save and close the tab for the routing service.

7.4.2.7 Configuring the Data Sources in the Oracle WebLogic Server
Administration Console
1. Navigate to http://servername:portnumber/console.

2. Use the required credentials to open the Home page of the Oracle WebLogic
Server Administration Console.

The Home page of the Oracle WebLogic Server Administration Console is
displayed, as shown in Figure 7–43.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-55

Figure 7–43 Oracle WebLogic Server Administration Console Home Page

3. Under Domain Structure, select Services, JBDC, and then click DataSources.

The Summary of JDBC Data Sources page is displayed, as shown Figure 7–44.

Figure 7–44 The Summary of JDBC Data Sources Page

4. Click New. The Create a New JDBC Data Source page is displayed.

5. Enter the values for the properties to be used to identify your new JDBC data
source, as shown in Figure 7–45.

Oracle AQ Adapter Use Cases

7-56 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 7–45 The Create a New JDBC Data Source Page

6. Click Next. The Create a New JDBC Data Source Transaction Options page is
displayed, as shown in Figure 7–46.

Figure 7–46 The Create a New JDBC Data Source Transaction Options Page

7. Click Next. The Create a New JDBC Data Source Connection Properties page is
displayed, as shown in Figure 7–47.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-57

Figure 7–47 The Create a New JDBC Data Source Connection Properties Page

8. Enter the connection properties in the Connection Properties page.

9. Click Next. The Create a New JDBC Data Source Test Database Connection page is
displayed, as shown in Figure 7–48.

Figure 7–48 The Create a New JDBC Data Source Test Database Connection Page

10. Click Test Configuration to test the database availability and the connection
properties you provided. A message stating that the connection test succeeded is
displayed at the top of the Create a New JDBC Data Source Test Database
Connection page.

Oracle AQ Adapter Use Cases

7-58 Oracle Fusion Middleware User's Guide for Technology Adapters

11. Click Next. The Create a New JDBC Data Source Select Targets page is displayed,
as shown in Figure 7–49.

Figure 7–49 The Create a New JDBC Data Source Select Targets Page

12. Select a target, and then click Finish.

The Summary of JDBC Data Sources page is displayed, as shown in Figure 7–50.
This page summarizes the JDBC data source objects that have been created in this
domain. The data source that you created appears in this list.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-59

Figure 7–50 The Summary of JDBC Data Sources Page

13. Close the Oracle WebLogic Server Administration Console.

7.4.2.8 Deploying with JDeveloper
You must deploy the application profile for the SOA project and the application you
created in the preceding steps.

The following are the steps to deploy the application profile by using JDeveloper:

1. Create an application server connection by using the procedure described in
Chapter 2.6, "Creating an Application Server Connection for Oracle JCA
Adapters."

2. Deploy the application by using the procedure described in Section 2.7,
"Deploying Oracle JCA Adapter Applications from JDeveloper."

7.4.2.9 Monitoring Using the Fusion Middleware Control Console
You can monitor the deployed composite by using the Fusion Middleware Control
Console. Perform the following steps:

Oracle AQ Adapter Use Cases

7-60 Oracle Fusion Middleware User's Guide for Technology Adapters

1. Navigate to http://servername:portnumber/em. The composite you deployed is
displayed in the Application Navigator.

2. In the Last 5 Instances pane, there is an entry of a new instance. This new instance
is the instance that was triggered when you enqueued a message.

3. Click an instance. The Flow Trace page is displayed.

4. Click the Mediator1 component instance. The Audit page is displayed.

5. Click the Flow-Debug tab to debug the instance.

7.4.3 Oracle AQ Adapter RAW Queue
This use case demonstrates how to use Oracle AQ Adapter to dequeue from and
enqueue to an AQ RAW queue.

This section includes the following topics:

■ Section 7.4.3.1, "Prerequisites"

■ Section 7.4.3.2, "Creating an Application and an SOA Project"

■ Section 7.4.3.3, "Creating an Inbound Adapter Service"

■ Section 7.4.3.4, "Creating an Outbound Adapter Service"

■ Section 7.4.3.5, "Wiring Services and Activities"

■ Section 7.4.3.7, "Deploying with JDeveloper"

■ Section 7.4.3.6, "Configuring the Data Sources in the Oracle WebLogic Server
Administration Console"

■ Section 7.4.3.8, "Monitoring Using the Fusion Middleware Control Console"

7.4.3.1 Prerequisites
You must have access to a database with the SCOTT schema.

To perform this use case, you require the following SQL files from the artifacts.zip
file contained in the adapters-aq-101-raw sample. These files are located in the
artifacts/sql subdirectory of the artifacts.zip fle. Execute the SQL files in the
order shown below:

■ setup_user.sql

■ create_queues.sql

■ enqueue_raw.sql

■ dequeue_raw.sql

■ artifacts/schemas/emp.xsd

To obtain the artifacts.zip contained in the adapters-aq-101-raw sample code,
access the Oracle SOA Sample Code site.

To obtain the adapters-aq-101-raw sample code, access the Oracle SOA Sample Code
site.

7.4.3.2 Creating an Application and an SOA Project
You must create an JDeveloper application to contain the SOA composite. To create an
application and an SOA project, perform the following steps:

1. Open JDeveloper.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-61

2. In the Application Navigator, click New Application.

The Create Generic Application Name your Application page is displayed.

3. Enter Rawqueue in the Application Name field.

4. In the Application Template list, select Generic Application.

5. Click Next.

The Create Generic Application Name your project page is displayed.

6. In the Project Name field, enter a descriptive name, for example, Raw.

7. In the Available list in the Project Technologies tab, double-click SOA to move it to
the Selected list.

8. Click Next.

The Create Generic Application Configure SOA settings page is displayed.

9. Select Composite With BPEL from the Composite Template list, and then click
Finish.

You have created a new application and an SOA project. This automatically creates
an SOA composite.

The Create BPEL Process page is displayed.

10. Enter a name for the BPEL process in the Name field. For example, BPELRawqueue.

11. Select Define Service Later in the Template list, and then click OK.

The Rawqueue application and the Raw project appear in the design area.

12. Copy the emp.xsd file to the XSD folder in your project (see Section 7.4.3.1,
"Prerequisites" for the location of this file).

7.4.3.3 Creating an Inbound Adapter Service
Perform the following steps to create an inbound Oracle AQ Adapter service that
dequeues the message to a queue:

1. In the Component Palette, select SOA.

2. Drag and drop AQ Adapter from the Service Adapters list in the Component
Palette to the Exposed Services swim lane in the composite.xml page.

The Adapter Configuration Wizard is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter Raw-Dequeuer, and then click Next.

The Service Connection page is displayed.

5. Create a database connection, as mentioned in Step 6 of Section 7.4.1.1.3, "Defining
an Oracle AQ Adapter Service."

6. Click Next.

The Adapter Interface page is displayed.

7. In the Adapter Interface page, select Define from operation and schema
(specified later), and then click Next.

The Operation page is displayed.

Oracle AQ Adapter Use Cases

7-62 Oracle Fusion Middleware User's Guide for Technology Adapters

8. In the Operation page, select Dequeue, as shown in Figure 7–51.

9. Accept the default operation name, and click Next.

The Queue Name page is displayed.

Figure 7–51 The Adapter Configuration Wizard Operation Page

10. In the Queue Name page, select SCOTT as Database Schema and RAW_IN_
QUEUE as Queue Name, as shown in Figure 7–52.

Figure 7–52 The Adapter Configuration Wizard Queue Name Page

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-63

11. Click Next.

The Queue Parameters page is displayed.

12. Enter the Correlation ID and a Dequeue condition, and then click Next.

The Messages page is displayed.

13. Click Browse at the end of the URL field.

The Type Chooser dialog is displayed.

14. Select Project Schema Files, emp.xsd, and then AQRaw_End2End, as shown in
Figure 7–53.

Figure 7–53 The Type Chooser Dialog

15. Click OK.

The emp.xsd schema file is displayed in the URL field in the Message dialog, as
shown in Figure 7–54.

Oracle AQ Adapter Use Cases

7-64 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 7–54 The Adapter Configuration Wizard Messages Page

16. Click Next. The Finish page is displayed.

17. Click Finish. You have configured the Oracle AQ Adapter service, and the
composite.xml page is displayed, as shown in Figure 7–55.

Figure 7–55 The JDeveloper Window Composite.xml Page

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-65

7.4.3.4 Creating an Outbound Adapter Service
Perform the following steps to create an adapter service that enqueues the request
messages and dequeue the corresponding response messages (report) from a queue:

1. Drag and drop AQ Adapter from the Service Adapters list in the Component
Palette to the Exposed Services swim lane in the composite.xml page.

The Adapter Configuration Wizard Welcome page is displayed.

2. Click Next. The Service Name page is displayed.

3. Enter Raw-Enqueuer in the Service Name field, and click OK.

The Service Connection page is displayed.

4. Select XA Datasource, and then click Next.

The Operation page is displayed.

5. Select Enqueue.

6. Accept the default operation name, and click Next.

The Queue Name page is displayed.

7. Select SCOTT as Database Schema and RAW_OUT_QUEUE as Queue Name, as
shown in Figure 7–56.

Figure 7–56 The Adapter Configuration Wizard Queue Name Page

8. Click Next.

The Queue Parameters page is displayed.

9. Enter the Correlation ID, and then click Next.

The Messages page is displayed.

10. Click Browse for schema file at the end of the URL field.

The Type Chooser dialog is displayed.

Oracle AQ Adapter Use Cases

7-66 Oracle Fusion Middleware User's Guide for Technology Adapters

11. Select Project Schema Files, emp.xsd, and AQRaw_End2End, as shown in
Figure 7–53.

12. Click Next.

The emp.xsd schema file is displayed in the URL field in the Message dialog, as
shown in Figure 7–54.

13. Click Next.

The Finish page is displayed.

14. Click Finish.

You have configured the Oracle AQ Adapter service, and the composite.xml page
is displayed, as shown in Figure 7–57.

Figure 7–57 The JDeveloper Window Composite.xml Page

7.4.3.5 Wiring Services and Activities
You must assemble or wire the three components that you have created: Inbound
adapter service, BPEL process, and Outbound adapter reference. Perform the
following steps to wire the components:

1. Drag the small triangle in the Raw-Dequeuer in the Exposed Services area to the
drop zone that appears as a green triangle in the BPEL process in the Components
area.

2. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in Raw-Enqueuer in the External References
area.

Similarly, drag the small triangle in the BPEL process in the Components area to
the drop zone in OutboundService in the External References.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-67

The JDeveloper composite.xml file is displayed, as shown in Figure 7–58.

Figure 7–58 The JDeveloper- Composite.xml

3. Click File, Save All.

4. Double-click BPELRawqueue.

The BPELRawqueue.bpel page is displayed.

5. Drag and drop the Receive, Assign, and Invoke activities in the order mentioned,
from the Component Palette to the Components area.

The JDeveloper BPELRawqueue.bpel page is displayed, as shown in Figure 7–59.

Oracle AQ Adapter Use Cases

7-68 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 7–59 The BPELRawqueue.bpel Page

6. Double-click the Receive activity.

The Receive dialog is displayed.

7. Click the Browse Partner Links icon at the end of the Partner Link field.

The Partner Link Chooser dialog is displayed.

8. Select Raw-Dequeuer, and then click OK.

The Receive dialog is displayed with the Partner Link field populated with the
value Raw-Dequeuer.

9. Click the Auto-Create Variable icon that is displayed at the end of the Variable
field.

The Create Variable dialog is displayed.

10. Accept the default values, and click OK.

11. Check the Create Instance box, as shown in Figure 7–60, and click OK.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-69

Figure 7–60 The Receive Dialog

12. Double-click the Invoke activity.

The Invoke dialog is displayed.

13. Click the Browse Partner Links icon at the end of the Partner Link field.

The Partner Link Chooser dialog is displayed.

14. Select Raw-Enqueuer, and then click OK.

The Invoke dialog is displayed with the Partner Link field populated with the
value Raw-Enqueuer.

15. Click the Automatically Create Input Variable icon that is displayed at the end of
the Input Variable field.

16. Accept the default values, and click OK.

The Invoke dialog is displayed, as shown in Figure 7–61.

Figure 7–61 The Invoke Dialog

17. Click OK.

18. Double-click the Assign activity.

The Assign dialog is displayed.

Oracle AQ Adapter Use Cases

7-70 Oracle Fusion Middleware User's Guide for Technology Adapters

19. Click the plus icon, and select Copy Operation.

The Create Copy Operation dialog is displayed.

20. Select the variables, as shown in Figure 7–62, and click OK.

Figure 7–62 The Create Copy Operation Dialog

21. Click OK in the Assign dialog.

The JDeveloper BPELRawqueue.bpel page is displayed, as shown in Figure 7–63.

Oracle AQ Adapter Use Cases

Oracle JCA Adapter for AQ 7-71

Figure 7–63 The BPELRawqueue.bpel Page

22. Click File, Save All.

7.4.3.6 Configuring the Data Sources in the Oracle WebLogic Server
Administration Console
1. Navigate to http://servername:portnumber/console.

2. Use the required credentials to open the Home page of the Oracle WebLogic
Server Administration Console.

3. In the Home page, under Domain Structure, select Services, JBDC, and then click
DataSources.

The Summary of JDBC Data Sources page is displayed.

4. Click New. The Create a New JDBC Data Source page is displayed.

5. Enter the values for the properties to be used to identify your new JDBC data
source.

6. Click Next. The Create a New JDBC Data Source Transaction Options page is
displayed.

7. Click Next. The Create a New JDBC Data Source Connection Properties page is
displayed.

8. Enter the connection properties in the Connection Properties page.

9. Click Next. The Create a New JDBC Data Source Test Database Connection page is
displayed.

10. Click Test Configuration to test the database availability and the connection
properties you provided. A message stating that the connection test succeeded is
displayed at the top of the Create a New JDBC Data Source Test Database
Connection page.

11. Click Next. The Create a New JDBC Data Source Select Targets page is displayed.

Oracle AQ Adapter Use Cases

7-72 Oracle Fusion Middleware User's Guide for Technology Adapters

12. Select a target, and then click Finish.

The Summary of JDBC Data Sources page is displayed. This page summarizes the
JDBC data source objects that have been created in this domain. The Data Source
that you created is displayed in this list.

13. Close the Oracle WebLogic Server Administration Console.

7.4.3.7 Deploying with JDeveloper
You must deploy the application profile for the SOA project and the application you
created in the preceding steps.

The following are the steps to deploy the application profile using JDeveloper:

1. Create an application server connection by using the procedure described in
Chapter 2.6, "Creating an Application Server Connection for Oracle JCA
Adapters."

2. Deploy the application by using the procedure described in Section 2.7,
"Deploying Oracle JCA Adapter Applications from JDeveloper."

7.4.3.8 Monitoring Using the Fusion Middleware Control Console
You can monitor the deployed composite by using the Fusion Middleware Control
Console. Perform the following steps:

1. Navigate to http://servername:portnumber/em.

The composite you deployed is displayed in the Application Navigator.

2. In the Last 5 Instances pane, there is an entry of a new instance.

This is the instance that triggered when you enqueued a message.

3. Click an instance.

The Flow Trace page is displayed.

4. Click the BPELRawqueue component instance.

The Audit page is displayed.

5. Click the Flow-Debug tab to debug the instance.

8

Oracle JCA Adapter for JMS 8-1

8Oracle JCA Adapter for JMS

This chapter describes how to use the Oracle JCA Adapter for JMS (Oracle JMS
Adapter), which enables an Oracle BPEL process or an Oracle Mediator component to
interact with Java Messaging Service.

This chapter includes the following topics:

■ Section 8.1, "Introduction to the Oracle JMS Adapter"

■ Section 8.2, "Oracle JMS Adapter Features"

■ Section 8.3, "Oracle JMS Adapter Concepts"

■ Section 8.4, "Oracle JMS Adapter Use Cases"

8.1 Introduction to the Oracle JMS Adapter
The JMS architecture uses one client interface to many messaging servers. The JMS
model has two messaging domains, point-to-point and publish-subscribe. In the
point-to-point domain, messages are exchanged through a queue and each message is
delivered to only one receiver. In the publish-subscribe model, messages are sent to a
topic and can be read by many subscribed clients.

You can obtain JMS adapter sample files by accessing the Oracle SOA Sample Code
site.

This section includes the following topics:

■ Section 8.1.1, "Oracle JMS Adapter Integration with Oracle BPEL Process Manager"

■ Section 8.1.2, "Oracle JMS Adapter Integration with Oracle Mediator"

8.1.1 Oracle JMS Adapter Integration with Oracle BPEL Process Manager
The JCA Binding Component is used for the bidirectional integration of the JCA 1.5
resource adapters with BPEL Process Manager. The JCA Binding Component is based
on standards and employs the Web service Invocation Framework (WSIF) technology
for exposing the underlying JCA interactions as Web services.

For information on Oracle JMS Adapter architecture, adapter integration with Oracle
BPEL Process Manager (Oracle BPEL PM), and adapter deployments, see Chapter 3,
"Adapter Integration with Oracle Application Server Components."

8.1.2 Oracle JMS Adapter Integration with Oracle Mediator
Mediator supports Oracle JCA Adapters and enables you to define inbound and
outbound adapter services for each. An inbound adapter service receives data from an

Oracle JMS Adapter Features

8-2 Oracle Fusion Middleware User's Guide for Technology Adapters

external messaging system and transforms it into an XML message. An outbound
adapter service sends data to a target application by transforming an XML message
into the native format of the given adapter.

In the case of Oracle JMS Adapter service, by using Mediator, you can send or receive
messages from a JMS queue or topic.

Oracle BPEL PM pre-dates Mediator, and most of this guide and the samples
implicitly assume use with Oracle BPEL PM. However, the adapters work equally well
with either Oracle BPEL PM or Mediator. For any mention of Oracle BPEL PM in this
chapter, you may substitute Mediator, instead.

8.2 Oracle JMS Adapter Features
The Oracle JMS Adapter includes the following features:

■ Is based on JMS version 1.0.2b

■ Is a generic Oracle JMS Adapter

Works with any JMS provider. It has been certified against AQ JMS (JMS providers
OJMS 8.1.7, 9.0.1.4, and 9.2), TIBCO JMS, IBM Websphere MQSeries (IBM
MQSeries JMS 6.0), Weblogic JMS, Apache, and Active MQ.

■ Supports JMS topics and queues

■ Supports byte, text, and map message types.

Supports these data types only for this release. The Adapter Configuration Wizard
provides the Native Format Builder wizard for consuming native data payloads at
run time. The Native Format Builder wizard creates XSD definitions for the
underlying native data.

■ Supports JMS headers and properties

■ Supports WebLogic Server Unit-of-Order feature

The WebLogic Server Unit-of-Order feature enables a JMS message producer or
group of message producers acting as one, to group messages into a single unit
that is processed sequentially in the order the messages were created. The message
processing of a single message is complete when a message is acknowledged,
committed, recovered, or rolled back. Until message processing for a message is
complete, the remaining unprocessed messages for that Unit-of-Order are blocked.

This enhancement enables WebLogic Server Unit-of-Order support in SOA JMS
adapter. Messages produced via the SOA JMS adapter would enable the user to
specify a specific unit-of-order.

■ Supports jca.message.encoding property

The Oracle JMS Adapter supports the jca.message.encoding property for
inbound and outbound payloads. If the jca.message.encoding property is
used along with the adapter.jms.encoding property and the
nxsd:encoding attribute, then the jca.message.encoding property takes
precedence over the adapter.jms.encoding property, and the
nxsd:encoding attribute is given the last preference. The nxsd:encoding
value can be UTF-8, which is typically recommended for interoperability and
Unicode support. However, you can specify any legal encoding supported by the
Java run-time environment. For a complete listing of supported encodings, visit
http://www.oracle.com/technetwork/java/index.html. You can
specify the encoding in the (N)XSD associated with the adapter proxy meta data.

Oracle JMS Adapter Features

Oracle JCA Adapter for JMS 8-3

For example, you can specify the following attribute,
nxsd:encoding="iso-8859-1"

The jca.message.encoding property is supported as an endpoint defined in
composite.xml You can define this property using the Properties tab of the
Adapter Configuration Wizard or by editing the composite.xml file. The
jca.message.encoding property can be passed as a normalized message
property for both inbound and outbound interactions.

The following code snippet is an example of setting values in the composite.xml
file for message encoding for an inbound service:

 <service name="jms_inbound" ui:wsdlLocation="jms_inbound.wsdl">
 <interface.wsdl

interface="http://xmlns.oracle.com/pcbpel/adapter/jms/utf8/jcamessageencoding/
 jms_inbound#wsdl.interface(Consume_Message_ptt)" />
 <binding.jca config="jms_inbound_jms.jca">
 <property name="jca.message.encoding" type="xs:string" many="false"
 override="may">GBK</property>
 </binding.jca>
</service>

The following code snippet is an example of setting values in the composite.xml
file for message encoding for an outbound reference:

<reference name="jms_outbound" ui:wsdlLocation="jms_outbound.wsdl">
 <interface.wsdl

interface="http://xmlns.oracle.com/pcbpel/adapter/jms/utf8/jcamessageencoding/
 jms_outbound#wsdl.interface(Produce_Message_ptt)"/>
 <binding.jca config="jms_outbound_jms.jca">
 <property name="jca.message.encoding" type="xs:string" many="false"
 override="may">GBK</property>
 </binding.jca>
</reference>

■ Supports the JMS message selector

Supports the JMS message selector for performing filtering while subscribing to
JMS topics and queues. This parameter is based on the SQL 92 language for
filtering messages based on fields present in the JMS header and properties
section.

■ Is DOM2 compliant

The Oracle JMS Adapter can process and generate document objects that are
compliant with DOM2 specification.

■ Supports normalized message.

Header manipulation and propagation is a key business integration messaging
requirement. Oracle BPEL PM, Mediator, Oracle JCA, and Oracle B2B rely
extensively on header support to solve customers' integration needs. For example,
a user can preserve a file name from the source directory to the target directory by
propagating it through message headers. Another example: the outbound Oracle
JMS Adapter facilitates asynchronous request/response by propagating the
correlationId and the JMSReplyTo address as JMS headers. In Oracle BPEL
PM and Mediator, users can access, manipulate, and set headers with varying
degrees of UI support.

For more information, see Section 2.14, "Correlation Support Within Adapters".

Oracle JMS Adapter Features

8-4 Oracle Fusion Middleware User's Guide for Technology Adapters

Propagating Headers in a Normalized Message:

Normalized Message is simplified to have only two parts, properties and
payload.Typically, properties are name-value pairs of scalar types. To fit the
existing complex headers into properties, they are flattened into scalar types.

Manipulating Headers in Design-Time:

The user experience while manipulating headers in design time is simplified,
because the complex properties are predetermined. In Mediator or Oracle BPEL
designer, you can manipulate the headers with some reserved key words. For
example, in Mediator designer, you can access an inbound Oracle File Adapter,
fileName header by using the following expression:

$nmproperty.InboundFileHeaderType.fileName

However, this method does not address the properties that are dynamically
generated based on your input. For example, in the Oracle AQ Adapter Wizard,
you are allowed to propagate some of the fields from an AQ object as headers.
Based on this user choice, the header definitions are generated. These definitions
are not predetermined and hence cannot be accounted for in the list of
predetermined property definitions. The user cannot design header manipulation
of the dynamic properties before they are defined. To address this limitation, you
must generate all the necessary services (composite entry points) and references.
This restriction applies only to those services that are expected to generate
dynamic properties. Once dynamic properties are generated, they must be
captured in some given location for each composite. Only then can the user
manipulate the dynamic properties in the Oracle Mediator or Oracle BPEL
designer.

■ Supports specifying a durable JMS subscriber

■ Supports persistent and nonpersistent modes of a JMS publisher

■ Does not support connection retry functionality for MQ provider

■ Does not support outbound retry functionality for AQJMS on Solaris

■ The JMS API specifies three types of acknowledgments that can be sent by the JMS
publisher:

– DUPS_OK_ACKNOWLEDGE, for consumers that are not concerned about
duplicate messages

– AUTO_ACKNOWLEDGE, in which the session automatically acknowledges the
receipt of a message

– CLIENT_ACKNOWLEDGE, in which the client acknowledges the message by
calling the message's acknowledge method

Note: When you use the Oracle JMS Adapter to connect to an
AQ-JMS provider, and if the database that hosts the AQ destination is
10.1.0.4, then the adapter retry mechanism on the outbound direction
fails to reconnect to the database server if the database server goes
down. This is because of a client JDBC issue with ojdbc14.jar. To
resolve this you must download the 10.1.0.4 JDBC drivers and use
them in the mid tier by replacing the libraries, specifically ojdbc14.jar
in $MIDTIER_ORACLE_HOME/jdbc. For a detailed explanation about
how to resolve this issue, refer to Metalink Note 317385.1.

Oracle JMS Adapter Features

Oracle JCA Adapter for JMS 8-5

■ Supports tracking message size

The Oracle JMS Adapter is message size aware. The Oracle JMS Adapter calculates
the message size and reports the size back to the JCA Binding Component. The
API, related to size, exposed by the JCA Binding Component can be used for
reporting purposes.

■ Supports MapMessage Data Type

A MapMessage is used to send a set of name-value pairs where names are strings
and values are Java primitive types. The entries can be accessed sequentially or
randomly by name. The order of the entries is undefined. It inherits from a
message and adds a map message body.

Oracle JMS adapter provides support for processing MapMessage. It now
supports one new ActivationSpec and InteractionSpec property each namely
JmsMapMessageConsumeActivationSpec and
JmsMapMessageProduceInteractionSpec.

The PayloadEntry property specifies that the MapMessage entry is used as the
payload. Users have the option to send payload as an attachment if the
AttachmentList property is defined.

All other MapMessage entries are converted to adapter properties identified by
jca.jms.Map.xxxx, where xxxx is name of the MapMessage entry.

If both PayloadEntry and AttachmentList properties are not defined, then
the entire MapMessage is converted to XML and the XML file is transferred as the
payload.

■ Supports Enterprise Information System (EIS) Credentials

The Oracle JMS Adapter supports securing of the Enterprise Information System
(EIS) credentials such as the user name and password, whenever it establishes an
outbound connection with EIS. You can secure the user name and password for
Oracle JMS Adapter by using Oracle WebLogic Server container-managed sign-on.

For more information about support for securing of the Enterprise Information
System (EIS) credentials, see Section 4.2.22, "Securing Enterprise Information
System Credentials."

■ Supports Streaming Large Payload

Oracle JMS Adapter provides support to stream payload. When you enable this
feature, the payload is streamed to a database instead of getting manipulated in
the SOA run time as in a memory DOM. This feature can be used while handling
large payloads. To enable support to stream payload, ensure that you select the
Enable Streaming check box while defining the consume operation parameters on
the Consume Operation Parameters page in Oracle JDeveloper (JDeveloper).
When the Enable Streaming check box is selected, a corresponding Boolean
property EnableStreaming is appended to the ActivationSpec properties
defined in the respective .jca file, as shown in the following example. If the
EnableStreaming property does not exist, then the default value of false is
assumed.

<activation-spec
className="oracle.tip.adapter.jms.inbound.JmsConsumeActivationSpec">
 <property name="DestinationName" value="jms/DemoInQueue"/>
 <property name="UseMessageListener" value="false"/>
 <property name="PayloadType" value="TextMessage"/>
 <property name="EnableStreaming" value="true"/>
</activation-spec>

Oracle JMS Adapter Concepts

8-6 Oracle Fusion Middleware User's Guide for Technology Adapters

■ Supports Transactions

A transaction enables an application to coordinate a group of messages for
production and consumption, treating messages sent or received as a single unit.
When an application commits a transaction, all messages it received within the
transaction are removed by the JMS provider. The messages it sent within the
transaction are delivered as one unit to all JMS consumers. If the application rolls
back the transaction, then the messages it received within the transaction are
returned to the messaging system and the messages it sent are discarded. The
Oracle JMS Adapter supports JMS transactions. A JMS-transacted session supports
transactions that are located within the session. A JMS-transacted session's
transaction does not have any effects outside of the session.

■ Supports Error Handling

For information about error handling, refer to Section 2.21, "Error Handling."

■ Supports Multiple Consumer Threads

The Oracle JMS Adapter supports an activation endpoint property,
"adapter.jms.receive.threads". Setting this property in composite.xml is a
preferred way to spawn multiple poller threads for the inbound message flow
between the adapter and the Enterprise Information System (EIS). This helps
improve performance because multiple poller threads dequeue messages in a
round robin fashion; this assists in Distributed scenarios as well.

■ Supports Performance Tuning

The Oracle JMS Adapter supports performance tuning.

For more information, see "Oracle SOA JMS Adapter Tuning" in the Oracle Fusion
Middleware Performance and Tuning Guide.

8.3 Oracle JMS Adapter Concepts
Messaging is any mechanism that enables communication between programs.
Messages are structured data that one application sends to another. Message-oriented
middleware (MOM) is an infrastructure that supports scalable enterprise messaging.
MOM ensures fast, and reliable asynchronous communication, guaranteed message
delivery, receipt notification, and transaction control. JMS is a Java interface developed
by Sun Microsystems for producing, sending, and receiving messages of an enterprise
messaging system. JMS is an API that JMS vendors implement. Oracle provides two
implementations of JMS, WLS JMS and Oracle JMS based on Oracle advanced queues.
A JMS producer creates JMS messages and a JMS consumer consumes JMS messages.

JMS supports two messaging paradigms, point-to-point (queues) and
publish/subscribe (topics).

This section includes the following topics:

■ Section 8.3.1, "Point-to-Point"

■ Section 8.3.2, "Publish/Subscribe"

■ Section 8.3.3, "Destination, Connection, Connection Factory, and Session"

■ Section 8.3.4, "Structure of a JMS Message"

Note: Oracle JMS Adapter cannot be used programmatically inside
an EJB or JMS client.

Oracle JMS Adapter Concepts

Oracle JCA Adapter for JMS 8-7

■ Section 8.3.5, "Oracle JMS Adapter Header Properties"

8.3.1 Point-to-Point
In point-to-point messaging, the messages are stored in a queue until they are
consumed. One or more producers write to the queue and one or more consumers
extract messages from the queue. The JMS consumer sends an acknowledgment after
consumption of a message; this results in purging of the message from the queue.

8.3.2 Publish/Subscribe
In publish/subscribe messaging, producers publish messages to a topic, and the
consumer subscribes to a particular topic. Many publishers can publish to the same
topic, and many consumers can subscribe to the same topic. All messages published to
the topic by the producers are received by all consumers subscribed to the topic. By
default, subscribers receive messages only when the subscribers are active. However,
JMS API supports durable subscriptions that ensure that consumers receive messages
that were published even when the subscribers are not up and running. The durable
subscription involves registering the consumer with a unique ID for retrieving
messages that were sent when the consumer was inactive. These messages are
persisted by the JMS provider and are either sent to the consumer when it becomes
active again or purged from storage if the message expires. The JMS producer can be
set either to persistent or nonpersistent mode. The messages are not persisted in the
latter case and can be used only for nondurable subscriptions.

For scenarios that requires you to work with durable subscriptions on Oracle
WebLogic Server, a connector factory with ClientID property defined is required, as
shown in the following example:

<FactoryProperties>ClientID=uniquename</FactoryProperties>

When defining multiple durable subscriber it would entail you to define multiple
connector factory each with a unique ClientID property specified. You must take
care to not use the same connector factory for any other adapter interaction (such as
outbound interaction if it is used for processing inbound messages) because Oracle
WebLogic Server allows a clientid to be bound only once. For a scenario in which a
connector factory with ClientId defined is used on the inbound to process incoming
messages a different connector factory should be used for the outbound adapter
interactions.

The JMS API supports both synchronous and asynchronous communication for
message consumption. In the synchronous case, the consumer explicitly calls the
receive() method on the topic or queue. In the asynchronous case, the JMS client
registers a message listener for the topic or queue and the message is delivered by
calling the listener's onMessage() method.

8.3.3 Destination, Connection, Connection Factory, and Session
The destination property contains the addressing information for a JMS queue or
topic.Connections represent a physical connection to the JMS provider. The connection

Note: You must manually remove durable subscribers that are not
used by the BPEL partner link. Oracle JMS Adapter does not
automatically remove these durable subscriptions.

Oracle JMS Adapter Use Cases

8-8 Oracle Fusion Middleware User's Guide for Technology Adapters

factory is used to create JMS connections. A session is used to create a destination, JMS
producer, and JMS consumer objects for a queue or topic.

8.3.4 Structure of a JMS Message
The JMS message has a mandatory standard header element, an optional properties
element, and an optional standard payload element. The payload can be a text
message, byte message, map message, stream message, or object message. The
properties element is JMS provider-specific and varies from one JMS provider to
another.

8.3.5 Oracle JMS Adapter Header Properties
For information about the Oracle JMS Adapter header properties, see Appendix A.4,
"Oracle JMS Adapter Properties."

8.4 Oracle JMS Adapter Use Cases
This section includes the following topics:

■ Section 8.4.1, "Configuring Oracle JMS Adapter"

■ Section 8.4.2, "Configuring Oracle JMS Adapter with TIBCO JMS"

■ Section 8.4.3, "Configuring Oracle JMS Adapter with IBM WebSphere MQ JMS"

■ Section 8.4.5, "WLS JMS Text Message"

■ Section 8.4.6, "Accessing Queues and Topics from WLS JMS Server in a Remote
Oracle WebLogic Server Domain"

■ Section 8.4.7, "Synchronous/Asynchronous Request Reply Interaction Pattern"

■ Section 8.4.8, "AQ JMS Text Message"

■ Section 8.4.9, "Accessing Queues and Topics Created in 11g from the OC4J 10.1.3.4
Server"

■ Section 8.4.10, "Configuring the 11G Server to Access Queues Present in 10.1.3.X
OC4J."

■ Section 8.4.11, "Accessing Distributed Destinations (Queues and Topics) on the
WebLogic Server JMS."

■ Section 8.4.12, "Configuring Oracle JMS Adapter with IBM WebSphere Default
JMS Provider"

■ Section 8.4.13, "Configuring Request-Reply in JMS Adapter."

■ Section 8.4.14, "Using the WLS JMS Unit-Of-Order with the JMS Adapter."

8.4.1 Configuring Oracle JMS Adapter
The following use case demonstrates the procedure for configuring Oracle JMS
Adapter and examines the resulting WSDL files and associated weblogic-ra.xml
files.

This section includes the following topics:

■ Section 8.4.1.1, "Creating an Application and a SOA Project"

■ Section 8.4.1.2, "Using the Adapter Configuration Wizard to Configure Oracle JMS
Adapter"

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-9

■ Section 8.4.1.3, "Generated Files"

■ Section 8.4.1.4, "weblogic-ra.xml file"

■ Section 8.4.1.5, "Produce Message Procedure"

8.4.1.1 Creating an Application and a SOA Project
You must first create an JDeveloper application to contain the SOA composite. Use the
following steps to create a new application and a SOA project:

1. Open JDeveloper.

2. In the Application Navigator, click New Application.

The Create Generic Application - Name your Application page is displayed, as
shown in Figure 8–1.

3. Enter a name for the application in the Application Name field. For example,
AQQueue2Queue.

4. In the Application Template list, choose Generic Application.

Figure 8–1 The Create Generic Application - Name your application Page

5. Click Next.

The Name your project dialog is displayed, as shown in Figure 8–2.

6. In the Project Name field, enter a descriptive name. For example,
AQQueue2Queue.

7. In the Available list in the Project Technologies tab, double-click SOA to move it
to the Selected list.

Oracle JMS Adapter Use Cases

8-10 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 8–2 The Create Generic Application - Name your Generic project Page

8. Click Next.

The Create Generic Application - Configure SOA settings page is displayed, as
shown in Figure 8–3.

Figure 8–3 The Create Generic Application - Configure SOA Settings Page

9. Select Composite With BPEL from the Composite Template list, and then click
Finish.

You have created a new application, and an SOA project. This automatically
creates an SOA composite.

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-11

The Create BPEL Process page is displayed, as shown in Figure 8–4.

Figure 8–4 The Create BPEL Process Page

10. Enter a name for the BPEL process in the Name field. In this example, use the
default name.

11. Select Define Service Later in the Template list, and then click OK.

You have created a BPEL process.

8.4.1.2 Using the Adapter Configuration Wizard to Configure Oracle JMS Adapter
The following are the steps to configure an Oracle JMS Adapter by using the Adapter
Configuration Wizard:

1. In the Component Palette, select SOA.

2. Drag and drop JMS Adapter from the Service Adapters list to the Exposed
Services swim lane in the composite.xml page.

The Adapter Configuration Wizard is displayed.

3. Click Next.

The Adapter Configuration Wizard - Service Name page is displayed, as shown in
Figure 8–5.

Oracle JMS Adapter Use Cases

8-12 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 8–5 Service Name Page

4. Enter a name for the service, and then click Next.

The Adapter Configuration Wizard - JMS Provider page is displayed, as shown in
Figure 8–6.

Figure 8–6 The Adapter Configuration Wizard - JMS Provider Page

5. Select any one operation. In this example, select Oracle Weblogic JMS.

■ Oracle Enterprise Messaging Service (OEMS): This enables you to integrate
with the Weblogic service or Advanced Queueing messaging service.

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-13

■ Third Party: Select this option to integrate with a third party provider.

6. Click Next.

The Adapter Configuration Wizard - Service Connection page is displayed.

7. You must establish connectivity between the design-time environment and the
server you want to deploy it to.

Perform the steps mentioned in Section 2.6, "Creating an Application Server
Connection for Oracle JCA Adapters" to create an application server connection.

8. Click Next. The Adapter Interface page is displayed, as shown in Figure 8–7.

9. In the Adapter Interface page, select Define from operation and schema
(specified later).

Figure 8–7 The Adapter Configuration Wizard - Adapter Interface Page

10. Click Next.

The Adapter Configuration Wizard- Operation page is displayed.

11. Select Consume Message, Produce Message, or Request/Reply. In this example,
select Consume Message.

The operation name is filled in automatically, as shown in Figure 8–8.

Oracle JMS Adapter Use Cases

8-14 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 8–8 The Adapter Configuration Wizard - Operation Page

The Consume Message option enables the adapter to consume (receive) inbound
messages from a JMS destination.

12. Click Next.

The Adapter Configuration Wizard - Consume Operation Parameters page is
displayed, as shown in Figure 8–9.

Figure 8–9 The Adapter Configuration Wizard - Consume Operation Parameters Page

13. Enter values for the following fields:

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-15

■ Destination Name

This is the JNDI name of the JMS queue or topic from which to receive the
message. This is not an editable field. You must click Browse to browse for the
queue or topic. The queue or topic to be chosen is based on the type of JMS
provider you are using.

For more information, see the following sections:

– Section 8.4.2, "Configuring Oracle JMS Adapter with TIBCO JMS"

– Section 8.4.3, "Configuring Oracle JMS Adapter with IBM WebSphere MQ
JMS"

■ Message Body Type

The supported values are TextMessage, BytesMessage, MapMessage. The
StreamMessage message type is not supported in this release.

■ Durable Subscriber ID

This field is optional. If you are setting up a durable subscriber, then the
durable subscriber ID is required. Generally, a subscriber loses messages if the
subscriber becomes disconnected, but a durable subscriber downloads stored
messages when it reconnects.

■ Message Selector

This field is also optional. It filters messages based on header and property
information. The message selector rule is a Boolean expression. If the
expression is true, then the message is consumed. If the expression is false,
then the message is rejected.

For example, you can enter logic, such as:

– JMSPriority > 3. Based on this, messages with a priority greater than 3 are
consumed; all other messages are rejected.

– JMSType = 'car' AND color = 'blue' AND weight > 2500

– Country in ('UK', 'US', 'France')

■ Use MessageListener

This field is always set to False by default.

■ JNDI Name

The value specified in the JNDI name should exist in the Oracle JMS Adapter
weblogic-ra.xml file to ensure that the adapter runs in managed mode.

Note: When the JMS provider is Oracle Weblogic JMS or Oracle
Advanced queueing messaging service, then the Durable Subscriber
option appears only when a topic is selected. However, the Durable
Subscriber option always appears when the JMS provider is a third
party.

Note: This example shows a consume message operation. For a
produce message operation, this page is different. See Section 8.4.1.5,
"Produce Message Procedure" to see how this part of the procedure
differs.

Oracle JMS Adapter Use Cases

8-16 Oracle Fusion Middleware User's Guide for Technology Adapters

After you enter the appropriate parameters, click Next.

14. The Adapter Configuration Wizard - Messages page is displayed, as shown in
Figure 8–10. The settings in this page define the correct schema for the message
payload.

You can perform one of the following:

■ Check Native format translation is not required (Schema is Opaque), which
disables the rest of the fields.

■ Click Define Schema for Native Format to start the Native Format Builder
wizard, which guides you through the process of defining the native format.

■ Enter the path for the schema file URL (or browse for the path).

The following steps demonstrate the last option: browsing for the schema file
URL.

Figure 8–10 The Adapter Configuration Wizard - Messages Page

15. Click the Browse button.

The Type Chooser dialog is displayed, with the Type Explorer navigation tree, as
shown in Figure 8–11.

16. Browse the tree and select the appropriate schema type, and then click OK.

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-17

Figure 8–11 Selecting a Schema from the Type Chooser Dialog

The Messages page is displayed again, this time with the Schema File URL field
and the Schema Element field filled up, as shown in Figure 8–12.

Figure 8–12 Completed Messages Dialog

17. Click Next.

The Finish page is displayed. This box shows the path and name of the adapter
file that the wizard creates.

18. Click Finish.

Oracle JMS Adapter Use Cases

8-18 Oracle Fusion Middleware User's Guide for Technology Adapters

The composite.xml page is displayed.

8.4.1.3 Generated Files
The following composite file is generated by the Adapter Configuration Wizard:

<composite name="AQQueue2Queue" revision="1.0"
label="2007-09-04_11-58-50_914" mode="active" state="on"
xmlns="http://xmlns.oracle.com/sca/1.0"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy">
 <import namespace="http://xmlns.oracle.com/pcbpel/adapter/jms/Inbound/"
location="Inbound.wsdl" importType="wsdl"/>
 <import namespace="http://xmlns.oracle.com/pcbpel/adapter/jms/Outbound/"
location="Outbound.wsdl" importType="wsdl"/>
 <service name="Inbound">
 <interface.wsdl
interface="http://xmlns.oracle.com/pcbpel/adapter/jms/Inbound/#wsdl.interface
(Consume_Message_ptt)"/>
 <binding.jca config="Inbound_jms.jca"/>
 </service>
 <component name="BPELProcess1">
 <implementation.bpel src="BPELProcess1.bpel"/>
 </component>
 <reference name="Outbound">
 <interface.wsdl
interface="http://xmlns.oracle.com/pcbpel/adapter/jms/Outbound/#wsdl.interface
(Produce_Message_ptt)"/>
 <binding.jca config="Outbound_jms.jca"/>
 </reference>
 <wire>
 <source.uri>Inbound</source.uri>
 <target.uri>BPELProcess1/Inbound</target.uri>
 </wire>
 <wire>
 <source.uri>BPELProcess1/Outbound</source.uri>
 <target.uri>Outbound</target.uri>
 </wire>
</composite>

The following code segment defines the name of the adapter and the locations of
various necessary schemas and other definition files.

 <import namespace="http://xmlns.oracle.com/pcbpel/adapter/jms/Inbound/"
location="Inbound.wsdl" importType="wsdl"/>
 <import namespace="http://xmlns.oracle.com/pcbpel/adapter/jms/Outbound/"
location="Outbound.wsdl" importType="wsdl"/>

This code segment imports the necessary namespace.

<definitions name="Inbound"
targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/jms/Inbound/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/jms/Inbound/"
xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:imp1="http://xmlns.oracle.com/pcbpel/samples/expense">
 <types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://xmlns.oracle.com/pcbpel/samples/expense"
schemaLocation="xsd/expense.xsd"/>

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-19

 </schema>
 </types>
 <message name="ExpenseRecord_msg">
 <part name="ExpenseRecord" element="imp1:ExpenseRecord"/>
 </message>
 <portType name="Consume_Message_ptt">
 <operation name="Consume_Message">
 <input message="tns:ExpenseRecord_msg"/>
 </operation>
 </portType>

This code segment defines the message type, name, and the port type for the partner
link.

<adapter-config name="dequeue" adapter="Jms Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/wls/Queue" UIConnectionName="wls3"
UIJmsProvider="WLSJMS" adapterRef=""/>
 <endpoint-activation portType="Consume_Message_ptt" operation="Consume_
Message">
 <activation-spec
className="oracle.tip.adapter.jms.inbound.JmsConsumeActivationSpec">
 <property name="DestinationName" value="jms/DemoInQueue"/>
 <property name="UseMessageListener" value="false"/>
 <property name="PayloadType" value="TextMessage"/>
 </activation-spec>
 </endpoint-activation>
</adapter-config>

8.4.1.4 weblogic-ra.xml file
The weblogic-ra.xml file defines the endpoints for the JMS connection factories.
The connection factories include configuration properties for each endpoint. Endpoints
are added to accommodate different types of connections, as demonstrated in the
following sections. The following example is from the generic weblogic-ra.xml file:

<connection-instance>
 <jndi-name>eis/wls/Queue</jndi-name>
 <connection-properties>
 <properties>
 <property>
 <name>ConnectionFactoryLocation</name>
 <value>weblogic.jms.XAConnectionFactory</value>
 </property>
 <property>
 <name>FactoryProperties</name>
 <value></value>
 </property>
 <property>
 <name>AcknowledgeMode</name>
 <value>AUTO_ACKNOWLEDGE</value>
 </property>
 <property>
 <name>IsTopic</name>
 <value>false</value>
 </property>
 <property>
 <name>IsTransacted</name>
 <value>false</value>
 </property>

Oracle JMS Adapter Use Cases

8-20 Oracle Fusion Middleware User's Guide for Technology Adapters

 <property>
 <name>Username</name>
 <value></value>
 </property>
 <property>
 <name>Password</name>
 <value></value>
 </property>
 </properties>
 </connection-properties>
</connection-instance>

8.4.1.4.1 Creating a New Connection by Using the Oracle WebLogic Server Administration
Console

You can also create a new connection by using the Oracle WebLogic Server
Administration Console. The following are the steps for creating a new connection by
using the Oracle WebLogic Server Administration Console:

1. Navigate to the Oracle WebLogic Server Administration Console:
http://servername:portnumber/console.

2. Use the required credentials to open the Home page of the Oracle WebLogic
Server Administration Console.

The Home page of the Oracle WebLogic Server Administration Console is
displayed.

3. Select Deployments in the Domain Structure pane.

The Oracle WebLogic Server Administration Console - Summary of Deployments
page is displayed.

4. Under Deployments, click any JMS adapter that you have deployed. For example,
click JmsAdapter.

The Oracle WebLogic Server Administration Console - Settings for JmsAdapter
page is displayed.

5. Click the Configuration tab, and then click the Outbound Connection Pools tab.

The Outbound Connection Pool Configuration Table is displayed.

6. Click Next.

The Create a New Outbound Connection page is displayed.

7. Select the default outbound connection group, and then click Next.

8. Click Next.

9. In the JNDI Name field, enter the JNDI name that you want to use to obtain the
new connection instance. For example, eis/wls/Queue.

You can specify any name for the JNDI field. However, you must ensure that you
use the same JNDI name while defining the consume or produce operation
parameters in JDeveloper.

10. Click Finish.

The Save Deployment Plan Assistant page is displayed.

The configuration changes that you made must be stored in a new deployment
plan.

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-21

11. In the Path field, select or enter the path of a deployment plan file. The path must
end with '.xml'.

12. Click OK.

You have created a new connection. After you have done this, you must verify
whether the properties you have created are correct.

13. In the Settings for JmsAdapter page, click the Configuration tab, and then click
the Properties tab.

The connection that you created is listed in this page. Verify whether this value is
correct. For example, if you are connecting to a third-party JMS server, then ensure
that the Connection Factory Location field has the correct value applicable for a
third-party JMS server.

14. Click Save.

8.4.1.4.2 Adding a Third-Party JMS Provider

You can specify that the adapter uses a third-party JMS Provider for non-Web Logic
Server JMS and non-AQJMS connection instances, by supplying a value to the
FactoryProperties parameter in the weblogic-ra.xml file. Specifically, you can provide
the ThirdPartyJMSProvider value to the FactoryProperties parameter. This
property is required only when you deploy an adapter to the WebLogic Server.

When this value is set to true, the JMS Adapter does not use
DestinationAvailabilityListener for creating consumers for processing of
JMS messages. The default is false. You must ensure you employ code similar to the
following snippet:

<property>
 <name>FactoryProperties</name>
 <value>ThirdPartyJMSProvider=true</value>
</property>

8.4.1.5 Produce Message Procedure
A produce message operation has certain differences in the definition procedure,
particularly in Step 13 of Section 8.4.1.2, "Using the Adapter Configuration Wizard to
Configure Oracle JMS Adapter." Instead of specifying consume operation parameters,
you specify the following produce operation parameters. This enables the adapter to
produce (send) outbound messages for a JMS destination. The Produce Operation
Parameters page is shown in Figure 8–13.

Note: In this example, you created a new connection for Oracle JMS
Adapter by using the Oracle WebLogic Server Administration
Console. To create connection for other adapters, you must follow the
same steps. However, ensure that you select the appropriate adapter
for which you want to create a connection in Step 4.

Note: All pre-populated connection instances on a WebLogic Server
reflect the change and consequently, no further tuning is required for
those instances. Only when a new non WLS JMS or AQJMS provider
access is required do you must add new connection instance and
therefore the ThirdPartyJMSProvider property.

Oracle JMS Adapter Use Cases

8-22 Oracle Fusion Middleware User's Guide for Technology Adapters

■ Destination Name:

The JNDI name of the JMS queue or topic to which the message must be delivered.
The name to enter is based on the type of JMS provider you use.

For more information about destination name, see the following:

– Section 8.4.2, "Configuring Oracle JMS Adapter with TIBCO JMS"

– Section 8.4.3, "Configuring Oracle JMS Adapter with IBM WebSphere MQ
JMS"

■ Message Body Type:

The supported values are TextMessage, BytesMessage, and MapMessage.
StreamMessage is not supported in this release.

■ Delivery Mode:

The values are Persistent or Nonpersistent. A persistent delivery mode
specifies a persistent JMS publisher; that is, a publisher that stores messages for
later use by a durable subscriber. A durable subscriber is a consume message with
a durable subscriber ID in the corresponding field in Step 15 of Section 8.4.1.2,
"Using the Adapter Configuration Wizard to Configure Oracle JMS Adapter." A
nondurable subscriber loses any messages that are produced when the adapter is
not active. A durable subscriber downloads messages that have been stored in the
persistent publisher, and therefore does not have to remain active at all time to
receive all the messages.

■ Priority:

Select a priority value, with 9 representing the highest priority and 0 representing
the lowest priority. The default is 4.

■ TimeToLive:

The amount of time before the message expires and is no longer available to be
consumed.

■ Unit of order

This parameter only applies when the selected JMS Provider is a WebLogic Server
JMS provider. It enables a message producer or group of message producers acting
as one, to group messages into a single unit that is processed sequentially in the
order the messages were created. The message processing of a single message is
complete when a message is acknowledged, committed, recovered, or rolled back.
Until message processing for a message is complete, the remaining unprocessed
messages for that Unit of Order are blocked. This Unit of order property
enables you to set the unit-of-order value for the MessageProducer when
producing a message. Refer to the Use Case "UsingtheWLS JMS Unit-of-Order
with the JMS Adapter", and "Using Message Unit-of-Order" in Oracle® Fusion
Middleware Programming JMS for Oracle WebLogic Server.

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-23

Figure 8–13 Produce Operation Parameters Page

8.4.2 Configuring Oracle JMS Adapter with TIBCO JMS
This section describes how to configure Oracle JMS Adapter with Tibco JMS for direct
connection and nondirect connection.

8.4.2.1 NonDirect Connection
Perform the following steps:

1. Copy the following file to the <SOAInstall_DIR>/user_
projects/domains/<DOMAIN_NAME>/lib folder:

■ /<YOUR-TIBCO-INSTALL-LOCATION>/clients/java/tibjms.jar

2. Configure the connector factory by modifying the weblogic-ra.xml file in
AS11gR1SOA/soa/connectors/JmsAdapter.rar, as shown in the following
example:

<connection-instance>
 <jndi-name>eis/tibjms/Topic</jndi-name>
 <connection-properties>
 <properties>
 <property>
 <name>ConnectionFactoryLocation</name>
 <value>TopicConnectionFactory</value>
 </property>
 <property>
 <name>FactoryProperties</name>
 <value>java.naming.factory.initial=
com.tibco.tibjms.naming.TibjmsInitialContextFactory;java.naming.provider.url=ti
bjmsnaming://<HOST>:<PORT>;java.naming.security.principal=<USERNAME>;java.namin
g.security.credentials=;ThirdPartyJMSProvider=true</value>

Oracle JMS Adapter Use Cases

8-24 Oracle Fusion Middleware User's Guide for Technology Adapters

 </property>
 <property>
 <name>AcknowledgeMode</name>
 <value>AUTO_ACKNOWLEDGE</value>
 </property>
 <property>
 <name>IsTopic</name>
 <value>true</value>
 </property>
 <property>
 <name>IsTransacted</name>
 <value>true</value>
 </property>
 <property>
 <name>Username</name>
 <value><USERNAME></value>
 </property>
 <property>
 <name>Password</name>
 <value><PASSWORD></value>
 </property>
 </properties>
 </connection-properties>
</connection-instance>
<connection-instance>
 <jndi-name>eis/tibjms/Queue</jndi-name>
 <connection-properties>
 <properties>
 <property>
 <name>ConnectionFactoryLocation</name>
 <value>QueueConnectionFactory</value>
 </property>
 <property>
 <name>FactoryProperties</name>
<value>java.naming.factory.initial=com.tibco.tibjms.naming.TibjmsInitialContext
Factory;java.naming.provider.url=tibjmsnaming://<HOST>:<PORT>;java.naming.secur
ity.principal=<USERNAME>;java.naming.security.credentials=;ThirdPartyJMSProvide
r=true</value>
 </property>
 <property>
 <name>AcknowledgeMode</name>
 <value>AUTO_ACKNOWLEDGE</value>
 </property>
 <property>
 <name>IsTopic</name>
 <value>false</value>
 </property>
 <property>
 <name>IsTransacted</name>
 <value>true</value>
 </property>
 <property>
 <name>Username</name>
 <value><USERNAME></value>
 </property>
 <property>
 <name>Password</name>
 <value><PASSWORD></value>
 </property>
 </properties>

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-25

 </connection-properties>
</connection-instance>

Note that the default <USERNAME> and <PASSWORD> are admin and
password, respectively.

Alternatively, to configure a new connection factory by using the Oracle WebLogic
Server Administration Console, use the steps mentioned in Section 2.18, "Adding
an Adapter Connection Factory."

8.4.2.2 Direct Connection
Perform the following steps:

1. Copy the following file to the <SOAInstall_DIR>/user_
projects/domains/<DOMAIN_NAME>/lib folder:

■ /<YOUR-TIBCO-INSTALL-LOCATION>/clients/java/tibjms.jar

2. Configure the connector factory by modifying the weblogic-ra.xml file in
AS11gR1SOA/soa/connectors/JmsAdapter.rar, as shown in the following
example:

<connection-instance>
 <jndi-name>eis/tibjmsDirect/Queue</jndi-name>
 <connection-properties>
 <properties>
 <property>
 <name>ConnectionFactoryLocation</name>

<value>com.tibco.tibjms.TibjmsQueueConnectionFactory</value>
 </property>
 <property>
 <name>FactoryProperties</name>

<value>ServerUrl=tcp://<HOST>:<PORT>;UserName=<USERNAME>;UserPassword=<PASSWORD
></value>
 </property>
 <property>
 <name>AcknowledgeMode</name>
 <value>AUTO_ACKNOWLEDGE</value>
 </property>
 <property>
 <name>IsTopic</name>
 <value>false</value>
 </property>
 <property>
 <name>IsTransacted</name>
 <value>true</value>
 </property>
 <property>
 <name>Username</name>
 <value><USERNAME></value>
 </property>
 <property>
 <name>Password</name>
 <value><PASSWORD></value>
 </property>
 </properties>
 </connection-properties>
</connection-instance>
<connection-instance>

Oracle JMS Adapter Use Cases

8-26 Oracle Fusion Middleware User's Guide for Technology Adapters

 <jndi-name>eis/tibjmsDirect/Topic</jndi-name>
 <connection-properties>
 <properties>
 <property>

<name>ConnectionFactoryLocation</name>

<value>com.tibco.tibjms.TibjmsTopicConnectionFactory</value>
 </property>
 <property>
 <name>FactoryProperties</name>

<value>ServerUrl=tcp://<HOST>:<PORT>;UserName=<USERNAME>;UserPassword=<PASSWORD
ThirdPartyJMSProvider=true</value>
 </property>
 <property>
 <name>AcknowledgeMode</name>
 <value>AUTO_ACKNOWLEDGE</value>
 </property>
 <property>
 <name>IsTopic</name>
 <value>true</value>
 </property>
 <property>
 <name>IsTransacted</name>
 <value>true</value>
 </property>
 <property>
 <name>Username</name>
 <value><USERNAME></value>
 </property>
 <property>
 <name>Password</name>
 <value><PASSWORD></value>
 </property>
 </properties>
 </connection-properties>
</connection-instance>

Note that the default <USERNAME> and <PASSWORD> are admin and
password, respectively.

Alternatively, to configure a new connection factory by using the Oracle WebLogic
Server Administration Console, use the steps mentioned in Section 2.18, "Adding
an Adapter Connection Factory."

8.4.3 Configuring Oracle JMS Adapter with IBM WebSphere MQ JMS
This section describes how to configure Oracle JMS Adapter with IBM WebSphere MQ
JMS for non-XA and XA data sources.

8.4.3.1 Non-XA Data Sources
Perform the following steps:

1. Copy the following files to the <SOAInstall_DIR>/user_
projects/domains/<DOMAIN_NAME>/lib folder:

■ /<YOUR-MQSERIES-INSTALL-LOCATION>/java/lib/com.ibm.mq.jar

■ /<YOUR-MQSERIES-INSTALL-LOCATION>/java/lib/com.ibm.mqjms.jar

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-27

■ /<YOUR-MQSERIES-INSTALL-LOCATION>/java/lib/dhbcore.jar

2. Configure the connector factory by modifying the weblogic-ra.xml file in
AS11gR1SOA/soa/connectors/JmsAdapter.rar, as shown in the following
example:

<connection-instance>
<jndi-name>eis/webspheremq/Queue</jndi-name>
 <connection-properties>
 <properties>
 <property>
 <name>ConnectionFactoryLocation</name>
 <value>com.ibm.mq.jms.MQQueueConnectionFactory</value>
 </property>
 <property>
 <name>FactoryProperties</name>
 <value>QueueManager=<QUEUEMANAGER>;TransportType=1;HostName=
<YOUR-HOST>;Port=<YOUR-PORT>;Channel=<CHANNEL>;ThirdPartyJMSProvider=true
</value>
 </property>
 <property>
 <name>AcknowledgeMode</name>
 <value>AUTO_ACKNOWLEDGE</value>
 </property>
 <property>
 <name>IsTopic</name>
 <value>false</value>
 </property>
 <property>
 <name>IsTransacted</name>
 <value>true</value>
 </property>
 <property>
 <name>Username</name>
 <value><USERNAME></value>
 </property>
 <property>
 <name>Password</name>
 <value><PASSWORD></value>
 </property>
 </properties>
 </connection-properties>
</connection-instance>

Note that the default <USERNAME> and <PASSWORD> are MUSR_MQADMIN and
password, respectively.

Alternatively, to configure a new connection factory by using the Oracle WebLogic
Server Administration Console, use the steps mentioned in Section 2.18, "Adding
an Adapter Connection Factory."

8.4.3.2 XA Data Sources
Perform the following steps:

1. Copy the following files to the <SOAInstall_DIR>/user_
projects/domains/<DOMAIN_NAME>/lib folder:

■ /<YOUR-MQSERIES-INSTALL-LOCATION>/java/lib/com.ibm.mq.jar

■ /<YOUR-MQSERIES-INSTALL-LOCATION>/java/lib/com.ibm.mqjms.jar

Oracle JMS Adapter Use Cases

8-28 Oracle Fusion Middleware User's Guide for Technology Adapters

■ /<YOUR-MQSERIES-INSTALL-LOCATION>/java/lib/dhbcore.jar

■ com.ibm.mqetclient.jar

This is an IBM-extended transactional client, which is an optional component
that requires separate licensing.

2. Configure the connector factory by modifying the weblogic-ra.xml file in
AS11gR1SOA/soa/connectors/JmsAdapter.rar, as shown in the following
example:

<connection-instance>
<jndi-name>eis/webspheremq/Queue</jndi-name>
 <connection-properties>
 <properties>
 <property>
 <name>ConnectionFactoryLocation</name>
 <value>com.ibm.mq.jms.MQXAQueueConnectionFactory</value>
 </property>
 <property>
 <name>FactoryProperties</name>
 <value>QueueManager=<QUEUEMANAGER>;TransportType=1;
HostName=<YOUR-HOST>;Port=<YOUR-PORT>;Channel=<CHANNEL>;
ThirdPartyJMSProvider=true</value>
 </property
 <property>
 <name>AcknowledgeMode</name>
 <value>AUTO_ACKNOWLEDGE</value>
 </property>
 <property>
 <name>IsTopic</name>
 <value>false</value>
 </property
 <property>
 <name>IsTransacted</name
 <value>false</value>
 </property
 <property>
 <name>Username</name>
 <value><USERNAME></value>
 </property>
 <property>
 <name>Password</name>
 <value><PASSWORD></value>
 </property>
 </properties>
 </connection-properties>
</connection-instance>

Note that the default <USERNAME> and <PASSWORD> are MUSR_MQADMIN and
password, respectively.

Alternatively, to configure a new connection factory by using the Oracle WebLogic
Server Administration Console, use the steps mentioned in Section 2.18, "Adding
an Adapter Connection Factory."

8.4.4 Configuring Oracle JMS Adapter with Active MQ JMS
This section describes how to configure Oracle JMS Adapter with Active MQ JMS.

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-29

Perform the following steps:

Copy the following files to the <SOAInstall_DIR>/user_
projects/domains/<DOMAIN_NAME>/lib folder:

■ /<YOUR-ACTIVEMQ-INSTALL-LOCATION>//activemq-core-4.1.1.jar

■ /<YOUR-ACTIVEMQ-INSTALL-LOCATION>//backport-util-concurrent-2.1
.jar

■ /<YOUR-ACTIVEMQ-INSTALL-LOCATION>//activeio-core-3.0.0-incubato
r.jar

■ /<YOUR-ACTIVEMQ-INSTALL-LOCATION>//commons-logging-1.1.jar

Configure the connector factory by modifying the weblogic-ra.xml file in
AS11gR1SOA/soa/connectors/JmsAdapter.rar as shown in the following
example:

<connection-instance>
 <jndi-name>eis/activemq/Queue</jndi-name>
 <connection-properties>
 <properties>
 <property>
 <name>ConnectionFactoryLocation</name>
 <value>org.apache.activemq.ActiveMQConnectionFactory</value>
 </property>
 <property>
 <name>FactoryProperties</name>
 <value>BrokerURL=tcp://<YOUR-HOST>:
 <YOUR-PORT>;ThirdPartyJMSProvider=true</value>
 </property>
 <property>
 <name>AcknowledgeMode</name>
 <value>AUTO_ACKNOWLEDGE</value>
 </property>
 <property>
 <name>IsTopic</name>
 <value>false</value>
 </property>
 <property>
 <name>IsTransacted</name>
 <value>true</value>
 </property>
 <property>
 <name>Username</name>
 <value></value>
 </property>
 <property>
 <name>Password</name>
 <value></value>
 </property>
 </properties>
 </connection-properties>
</connection-instance>
Alternatively, to configure a new connection factory by using the Oracle WebLogic
Server Administration Console, use the steps mentioned in Section 2.18, "Adding an
Adapter Connection Factory".

Oracle JMS Adapter Use Cases

8-30 Oracle Fusion Middleware User's Guide for Technology Adapters

8.4.5 WLS JMS Text Message
This WLS JMS text message use case for Oracle BPEL PM demonstrates how the
Oracle JMS Adapter dequeues from and enqueues to the WLS JMS Queue.

In the case of a WLS JMS text message scenario for a Mediator business process, you
need the following files from the artifacts.zip file contained in the
adapters-jms-101-wlsjms-textmessageusingqueues sample:

■ artifacts/schemas/expense.xsd

You can obtain the adapters-jms-101-wlsjms-textmessageusingqueues
sample by accessing the Oracle SOA Sample Code site.

This section includes the following topics:

■ Section 8.4.5.1, "Meeting Prerequisites"

■ Section 8.4.5.2, "Creating an Application Server Connection"

■ Section 8.4.5.3, "Creating an Application and an SOA Project"

■ Section 8.4.5.4, "Creating an Inbound Adapter Service"

■ Section 8.4.5.5, "Creating an Outbound Adapter Service"

■ Section 8.4.5.6, "Wiring Services and Activities"

■ Section 8.4.5.7, "Deploying with JDeveloper"

■ Section 8.4.5.8, "Monitoring Using the Fusion Middleware Control Console"

8.4.5.1 Meeting Prerequisites
You must perform the following prerequisite for the WLS JMS text message use case
for Oracle BPEL PM:

8.4.5.1.1 Creating Queues in the Oracle WebLogic Server Administration Console

Perform the following steps to create queues required for this use case:

1. Navigate to the Oracle WebLogic Server Administration Console:
http://servername:portnumber/console

2. Use the required credentials to open the Home page of the Oracle WebLogic
Server Administration Console.

The Home page of the Oracle WebLogic Server Administration Console is
displayed, as shown in Figure 8–14.

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-31

Figure 8–14 The Oracle WebLogic Server Administration Console Home Page

3. Navigate to Services, Messaging, JMS Modules in the Domain Structure pane.

The Oracle WebLogic Server Administration Console - JMS Modules page is
displayed.

4. Click one of the existing modules. In this example, click SOAJMSModule.

The Oracle WebLogic Server Administration Console - Settings for
SOAJMSModule page is displayed.

5. Under the Summary of Resources section, click New.

The Oracle WebLogic Server Administration Console - Create a New JMS System
Module Resource page is displayed.

6. Select Queue, and then click Next.

7. Enter the following queue details:

■ Name

■ JNDI Name

■ Template

8. Click Next.

9. Select the subdeployment you want to use from the Subdeployments list.

10. Click Finish.

You have created the queue, ReceiveQueue.

11. Repeat steps 1 through 10, and create a queue named SendQueue.

8.4.5.1.2 Creating the Q2Qorders.xsd file

Create the Q2Qorders.xsd file by using the following code:

<?xml version="1.0" ?>

Oracle JMS Adapter Use Cases

8-32 Oracle Fusion Middleware User's Guide for Technology Adapters

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"

targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/extensions/FileInbound"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/nxsd/extensions/FileInbound"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified" nxsd:encoding="US-ASCII"
nxsd:stream="chars" nxsd:version="NXSD">
 <xsd:element name="Items">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="item" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string" nxsd:style="terminated"
nxsd:terminatedBy="," nxsd:quotedBy=""">
 </xsd:element>
 <xsd:element name="Type" type="xsd:string" nxsd:style="terminated"
nxsd:terminatedBy="," nxsd:quotedBy=""">
 </xsd:element>
 <xsd:element name="Quantity" type="xsd:string"
nxsd:style="terminated" nxsd:terminatedBy="," nxsd:quotedBy=""">
 </xsd:element>
 <xsd:element name="Rate" type="xsd:string" nxsd:style="terminated"
nxsd:terminatedBy="${eol}" nxsd:quotedBy=""">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>
<!--NXSDWIZ:C:\errors\inputFiles\orders.txt:-->

8.4.5.2 Creating an Application Server Connection
You must establish connectivity between the design-time environment and the server
you want to deploy to. Perform the steps mentioned in Section 2.6, "Creating an
Application Server Connection for Oracle JCA Adapters" to create an application
server connection.

8.4.5.3 Creating an Application and an SOA Project
You must create an JDeveloper application to contain the SOA composite. Use the
following steps to create an application and an SOA project:

1. Open JDeveloper.

2. In the Application Navigator, click New Application. The Create Generic
Application - Name your Application dialog is displayed.

3. Enter a name for the application in the Application Name field. For example,
queue2queue.

4. In the Application Template list, choose Generic Application.

5. Click Next.

The Name your project page is displayed.

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-33

6. In the Project Name field, enter a descriptive name. For example, queue2queue.

7. In the Available list in the Project Technologies tab, double-click SOA to move it
to the Selected list.

8. Click Next. The Create Generic Application - Configure SOA settings page is
displayed.

9. Select Composite With BPEL from the Composite Template list, and then click
Finish.

You have created a new application, and an SOA project.

The Create BPEL Process page is displayed.

10. Enter a name for the BPEL process in the Name field. For example, queue2queue.

11. Select Define Interface Later in the Template list, and then click OK.

You have created a BPEL process.

The queue2queue application, queue2queue project, and the SOA composite
appear in the design area.

12. Copy the Q2Qorders.xsd file to the XSD folder in your project.

8.4.5.4 Creating an Inbound Adapter Service
Perform the following steps to create an adapter service that dequeues the message to
a queue:

1. Drag and drop JMS Adapter from the Service Adapters list to the Exposed
Services swim lane in the composite.xml page.

The Adapter Configuration Wizard Welcome page is displayed.

2. Click Next.

The Service Name page is displayed.

3. Enter Inbound in the Service Name field, and click OK.

The JMS Provider page is displayed.

4. Select Oracle Weblogic JMS in the Oracle Enterprise Messaging Service (OEMS)
box, as shown in Figure 8–15, and click Next. The Service Connection page is
displayed.

Oracle JMS Adapter Use Cases

8-34 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 8–15 The Adapter Configuration Wizard JMS Provider Page

5. Select the connection created in Section 8.4.5.2, "Creating an Application Server
Connection," as shown in Figure 8–16.

Figure 8–16 The Adapter Configuration Wizard Service Connection Page

6. Click Next. The Adapter Interface page is displayed.

7. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

8. Select Consume Message, as shown in Figure 8–17, and click Next.

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-35

The Consume Operation Parameters page is displayed.

Figure 8–17 The Adapter Configuration Wizard Operation Page

9. Click Browse and select ReceiveQueue in the Destination field.

The Consume Operation Parameters page is displayed.

10. Enter the parameters for the consume operation, and then click Next.

The Messages page is displayed.

11. Click Browse at the end of the URL field.

The Type Chooser dialog is displayed.

12. Select Project Schema Files, Q2Qorders.xsd, and Items, as shown in Figure 8–18.

Note: The value specified in the JNDI name should exist in the
Oracle JMS Adapter weblogic-ra.xml file to ensure that the
adapter runs in managed mode.

Oracle JMS Adapter Use Cases

8-36 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 8–18 The Type Chooser Dialog

13. Click Next. The Q2Qorders.xsd schema file is displayed in the URL in the
Messages page, as shown in Figure 8–19.

Figure 8–19 The Adapter Configuration Wizard - Message Page

14. Click Next. The Finish page is displayed.

15. Click Finish. You have configured a JMS inbound adapter service.

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-37

8.4.5.5 Creating an Outbound Adapter Service
Perform the following steps to create an adapter service to enqueue the request
messages and dequeue the corresponding response messages (report) from a queue:

1. Drag and drop JMS Adapter from the Component Palette into the Exposed
Services swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter Outbound in the Service Name field, and click OK. The JMS Provider page
is displayed.

4. Select Oracle Weblogic JMS in the Oracle Enterprise Messaging Service (OEMS)
box, and click Next. The Service Connection page is displayed.

5. Select the connection created in Section 8.4.5.2, "Creating an Application Server
Connection," and click Next. The Adapter Interface page is displayed.

6. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

7. Select Produce Message, and click Next. The Produce Operation Parameters page
is displayed.

8. Click Browse and select SendQueue in the Destination field. The Produce
Operation Parameters page is displayed.

9. Click Next. The Messages page is displayed.

10. Click Browse at the end of the URL field. The Type Chooser dialog is displayed.

11. Select Project Schema Files, Q2Qorders.xsd, and Items.

12. Click Next. The Q2Qorders.xsd schema file is displayed in the URL in the Message
dialog.

13. Click Next. The Finish page is displayed.

14. Click Finish. You have configured the JMS adapter service, and the composite.xml
page is displayed.

8.4.5.6 Wiring Services and Activities
You must wire the three components that you have created, Inbound adapter service,
BPEL process, and Outbound adapter reference. Perform the following steps to wire
components:

1. Drag the small triangle in the inbound Oracle JMS Adapter component in the
Exposed Services area to the drop zone that appears as a green triangle in the
BPEL process in the Components area.

2. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in the outbound Oracle JMS Adapter in the
External References area.

The JDeveloper Composite.xml is displayed, as shown in Figure 8–20.

Oracle JMS Adapter Use Cases

8-38 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 8–20 The JDeveloper - Composite.xml

3. Click File, Save All.

4. Double-click queue2queue.

The queue2queue.bpel page is displayed.

5. Drag and drop the Receive, Assign, and Invoke activities in the order mentioned
from the Component Palette to the Components area, as shown in Figure 8–21.

Figure 8–21 The queue2queue.bpel Page

6. Double-click Receive.

The Receive dialog is displayed.

7. Click the Browse Partner Links icon at the end of the Partner Link field.

The Partner Link Chooser dialog is displayed.

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-39

8. Select Inbound, and then click OK.

The Receive dialog is displayed with the Partner Link field populated with the
value Inbound.

9. Click the Auto-Create Variable icon that is displayed at the end of the Variable
field.

The Create Variable dialog is displayed.

10. Accept the defaults, and click OK.

11. Select the Create Instance box, as shown in Figure 8–22, and click OK.

Figure 8–22 The Receive Dialog

12. Double-click the Invoke activity.

The Invoke dialog is displayed.

13. Click the Browse Partner Links icon at the end of the Partner Link field.

The Partner Link Chooser dialog is displayed.

14. Select Outbound, and then click OK.

The Invoke dialog is displayed with the Partner Link field populated with the
value Outbound.

15. Click the Automatically Create Input Variable icon that is displayed at the end of
the Input Variable field.

The Create Variable dialog is displayed.

16. Accept the defaults, and click OK.

The Invoke dialog is displayed, as shown in Figure 8–23.

Oracle JMS Adapter Use Cases

8-40 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 8–23 The Invoke Dialog

17. Click OK.

18. Double-click the Assign activity.

The Assign dialog is displayed.

19. Click the plus icon, and select Copy Operation. The Create Copy Operation dialog
is displayed.

20. Select the variables, as shown in Figure 8–24, and click OK.

Figure 8–24 The Create Copy Operation Dialog

21. Click OK in the Assign dialog.

22. Click File, Save All.

8.4.5.7 Deploying with JDeveloper
You must deploy the application profile for the SOA project and the application you
created in the preceding steps. To deploy the application profile using JDeveloper, use
the following steps:

1. Create an application server connection by using the procedure described in
Chapter 2.6, "Creating an Application Server Connection for Oracle JCA
Adapters."

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-41

2. Deploy the application by using the procedure described in Section 2.7,
"Deploying Oracle JCA Adapter Applications from JDeveloper."

8.4.5.8 Monitoring Using the Fusion Middleware Control Console
You can monitor the deployed composite by using the Fusion Middleware Control
Console. Perform the following steps:

1. Navigate to http://servername:portnumber/em.

The composite you deployed is displayed in the Application Navigator.

2. In the Last 5 Instances pane, there is an entry of a new instance. This is the instance
that was triggered when you enqueued a message using queue2queue.java.

3. Click one of the instances. The Flow Trace page is displayed.

4. Click the TextMessage component instance. The Audit page is displayed.

5. Click the Flow-Debug tab to debug the instance.

8.4.6 Accessing Queues and Topics from WLS JMS Server in a Remote Oracle
WebLogic Server Domain

You can use the Oracle JMS Adapter to access remote WLS JMS destinations. Remote
destinations refer to queues or topics that are defined in a WLS JMS server, which is
part of a remote Oracle WebLogic Server domain.

To do so, ensure that you use the connector factory configured to interact to the remote
WLS JMS server. You can achieve this by setting the <FactoryProperties> property of
the connector factory defined in weblogic-ra.xml to remote server configuration, as
shown in the following example:

<property>
<name>FactoryProperties</name>
<value>java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory;
java.naming.provider.url= t3://<HOST>:<PORT>;java.naming.security.principal=
<USERNAME>;java.naming.security.credentials=<PASSWORD>
</value>
</property>

To enable Oracle JMS Adapter to read from a remote queue that is present in a remote
WLS JMS server, you must configure the following:

1. You must have a unique domain name and JMS server name in both the servers.

2. You must enable global trust between the two servers.

Refer to the following link for information about how to enable global trust
between servers:

http://download.oracle.com/docs/cd/E13222_
01/wls/docs100/ConsoleHelp/taskhelp/security/EnableGlobalTrus
tBetweenDomains.html

This configuration is appropriate when you connect to queues or topics present in
WLS9.2 server.

Oracle JMS Adapter Use Cases

8-42 Oracle Fusion Middleware User's Guide for Technology Adapters

8.4.6.1 JMS Adapter Limitations When a Remote Server is Used
The JMS Adapter enables you to interact with WebLogic Server JMS destination
locations in a domain that are remote to the WebLogicServer domain where SOA is
installed.

Two options are supported that enable you to access remote destinations via the JMS
adapter:

■ Direct access via specification of the FactoryProperties property in the
weblogic-ra.xml file, with access parameters indicating the remote domain.

■ Configuring the foreign server to access the remote domain.

For inbound use cases, both options are supported. For outbound use cases only, direct
access is supported, but configuring the foreign server is not supported.

8.4.7 Synchronous/Asynchronous Request Reply Interaction Pattern
Oracle JMS Adapter supports both synchronous and asynchronous request reply
interaction pattern.

8.4.7.1 Synchronous Request Reply Pattern
You can use the Adapter Configuration Wizard to model a process that enables Oracle
JMS Adapter to be used in a synchronous request reply interaction pattern. In this
case, the Oracle JMS Adapter sends a request to the request queue and waits for a
response from the reply queue before further execution continues. Underneath, the
Oracle JMS Adapter uses a new interaction pattern
JmsRequestReplyInteractionSpec. This interaction spec allows for a request
and reply destination name to be configured.

A variation, new to 11g Release 1 (11.1.1.4.0), allows usage of temporary destination as
part of the reply queue. Basically, this pattern allows an Oracle JMS Adapter to send a
message to a JMS destination. In turn, the adapter sets the JMSReplyTo header to the
reply destination. This value is then used by a third party client to send the message to
the reply destination which is then dequeued by the Oracle JMS Adapter.

When using the Oracle JMS Adapter in a synchronous pattern ensure that you use a
non-XA connection factory and set the connector factory isTransacted property to
true in weblogic-ra.xml.

When you use the Oracle JMS Adapter in a synchronous pattern with Oracle
WebLogic Server JMS, the connection factory must be
weblogic.jms.ConnectionFactory or any other non-XA connection factory.
Also, if Oracle WebLogic Server JMS is running in the local JVM (the same JVM as the
adapter), then you must ensure that the connector factory isTransacted property is
set to false in weblogic-ra.xml. You can obtain the following samples by
accessing the Oracle sample code site:

■ adapters-jms-106-wlsjms-syncrequestreply

Note: When using the JMS adapter to access WebLogic Server secure
queues (local or remote domains), ensure that
java.naming.security.principal and
java.naming.security.credentials in the 'FactoryProperties'
property are setup correctly with a user who has access to the WLS
secure queues.

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-43

■ adapters-jms-107-wlsjms-syncrequestreplywithtemporaryreplydesti
nation

8.4.7.2 Asynchronous Request Reply Pattern
You can use the Adapter Configuration Wizard to model a process that allows Oracle
JMS Adapter to be used in an asynchronous request reply interaction pattern.

Basically this pattern allows an Oracle JMS Adapter to send a message to a JMS
destination. When a message is received on the reply queue, the Oracle JMS Adapter
can route messages to the correct composite or the component instance. The
correlation is done based on the JMSMessageID of the request message, which
becomes the JMSCorrelationID of the reply message, and the conversation ID of
the underlying component.

For more information, you can obtain the following samples by accessing the Oracle
SOA Sample Code site.

■ adapters-jms-105-wlsjms-nativecorrelation

8.4.8 AQ JMS Text Message
This use case demonstrates how the Oracle JMS Adapter dequeues from and enqueues
to the AQ JMS Queue.

You can obtain the adapters-jms-108-aqjms-textmessageusingqueues
sample by accessing the Oracle SOA Sample Code site.

This section includes the following topics:

■ Section 8.4.8.1, "Meeting Prerequisites"

■ Section 8.4.8.2, "Create an Application Server Connection"

■ Section 8.4.8.3, "Creating an Application and an SOA Project"

■ Section 8.4.8.4, "Creating an Inbound Adapter Service"

■ Section 8.4.8.5, "Creating an Outbound Adapter Service"

■ Section 8.4.8.6, "Wiring Services and Activities"

■ Section 8.4.8.7, "Deploying with JDeveloper"

■ Section 8.4.8.8, "Monitoring Using the Fusion Middleware Control Console"

8.4.8.1 Meeting Prerequisites
You must perform the following prerequisites to complete this use case:

■ Section 8.4.8.1.1, "Configuring AQ JMS in Oracle WebLogic Server Administration
Console"

■ Section 8.4.8.1.2, "Creating Queues in Oracle Database"

8.4.8.1.1 Configuring AQ JMS in Oracle WebLogic Server Administration Console

To configure AQ JMS in Oracle WebLogic Server Administration Console, you must
perform the following steps:

■ Adding an Oracle WebLogic JMS Module

■ Adding an AQJMS Foreign Server to the JMS Module

■ Configuring the AQJMS Foreign Server

Oracle JMS Adapter Use Cases

8-44 Oracle Fusion Middleware User's Guide for Technology Adapters

■ Adding Connection Factories to the AQ JMS Foreign Server

■ Adding Destinations to the AQJMS Foreign Server

Adding an Oracle WebLogic JMS Module
Note that adding an Oracle WebLogic JMS module is optional. You can also create an
AQJMS foreign server in a preexisting JMS module.

1. Navigate to the Oracle WebLogic Server Administration Console:
http://servername:portnumber/console.

2. Use the required credentials to open the Home page of the Oracle WebLogic
Server Administration Console.

The Home page of the Oracle WebLogic Server Administration Console is
displayed.

3. Navigate to Services, Messaging, JMS Modules in the Domain Structure pane.

The Oracle WebLogic Server Administration Console - JMS Modules page is
displayed.

4. Click New to create a new WebLogic JMS module.

The Oracle WebLogic Server Administration Console - Create JMS System Module
page is displayed.

5. Enter a name for the JMS module, and then click Next.

The Oracle WebLogic Server Administration Console - Create JMS System Module
page is displayed.

6. Select a target server where your SOA component is running, and then click Next.

The Oracle WebLogic Server Administration Console - Create JMS System Module
page is displayed.

7. Click Finish.

You have created a JMS module.

Adding an AQJMS Foreign Server to the JMS Module
The next step is to add an AQ JMS foreign server to the JMS module by performing the
following:

1. Click the JMS module that you created.

The Oracle WebLogic Server Administration Console - Settings for AQJMSModule
page is displayed.

2. Click New in the Summary of Resources table to create a new JMS system module
resource.

The Oracle WebLogic Server Administration Console - Create a New JMS System
Module Resource page is displayed.

3. Under Choose the type of resource you want to create, select Foreign Server, and
then click Next.

The Oracle WebLogic Server Administration Console - Create a New JMS System
Module Resource page is displayed.

4. In the Name field, enter a name for the foreign server, and then click Finish.

The Oracle WebLogic Server Administration Console - Settings for <JMS Module
Name> page is displayed.

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-45

Configuring the AQJMS Foreign Server
The next step is to configure the AQJMS foreign server that you created:

1. Click the AQ JMS Foreign Server listed under the Summary of Resources table.

The Oracle WebLogic Server Administration Console - Settings for TestAQJMS_
ForeignServer page is displayed.

2. Enter the following values:

■ JNDI Initial Context Factory:
oracle.jms.AQjmsInitialContextFactory

If the AQJMS Foreign Server is used by the WebLogic server side components,
then you must configure a data source with this AQ JMS Foreign Server, by
specifying the following values:

In the JNDI Properties field, enter datasource=<datasource jndi location>.
Replace the place holder with the JNDI location of your data source.

However, if the AQJMS Foreign Server is used by WebLogic application client,
then you must configure the JDBC URL with the AQ JMS foreign server you
created.

■ JNDI Connection URL: Specify the URL that WebLogic Server uses to contact
the JNDI provider.

This value is required only if the AQJMS foreign server is used by the
WebLogic application client.

■ JNDI Properties Credential: Specify any Credentials that must be set for the
JNDI provider.

This value is required only if the AQJMS foreign server is used by the
Weblogic application client.

Adding Connection Factories to the AQ JMS Foreign Server
To add connection factories to the AQJMS foreign server:

1. In the Connection Factories tab in the Settings for <Foreign Server Name> page,
click the AQJMS foreign server that you created.

2. Click New.

The Oracle WebLogic Server Administration Console - Create a New Foreign JMS
Connection Factory page is displayed.

3. In the Name field, enter a name for this connection factory. This is a logical name
that would be referenced by Oracle WebLogic Server.

4. In the Local JNDI Name field, enter the local JNDI name that you would use in
your application to look up this connection factory.

Note: If you want to use an Oracle RAC database as adapter
endpoint, then the datasource pointed by the JNDI property,
mentioned in the preceding step, must point to a multi data source.

Individual data sources and multi data sources used for such
endpoints must use the recommended setting listed in Section 2.20,
"Recommended Setting for Data Sources Used by Oracle JCA
Adapters."

Oracle JMS Adapter Use Cases

8-46 Oracle Fusion Middleware User's Guide for Technology Adapters

5. In the Remote JNDI Name field, enter one of the following values depending on
your requirement. If you use this connection factory in a global transaction, then
use an XA-based connection factory, else use non-XA based connection factory.

■ QueueConnectionFactory

■ TopicConnectionFactory

■ ConnectionFactory

■ XAQueueConnectionFactory

■ XATopicConnectionFactory

■ XAConnectionFactory

6. Click OK.

Adding Destinations to the AQJMS Foreign Server
To add destinations to the AQJMS foreign server:

1. Click the Destinations tab in the Settings for <Foreign Server Name> page.

2. Click New and specify a name for this destination. This is a logical name that is
referenced by the Oracle WebLogic Server and has nothing to do with the
destination name.

3. In the Local JNDI Name field, enter the local JNDI name you would use in your
application to look up this destination.

4. In the Remote JNDI Name field, enter Queues/<queue name>if the destination
is a queue, or enter Topics/<topic name> if the destination is a topic.

5. Click OK.

6. Restart the Oracle WebLogic Server Administration Console.

You have configured AQJMS in an Oracle WebLogic Server.

8.4.8.1.2 Creating Queues in Oracle Database

To create queues:

1. Run the setup_user.sql script.

2. Run the create_start_queues.sql script.

These scripts are located in the
adapters-jms-108-aqjms-textmessageusingqueues sample
artifacts/sql directory. You can obtain the
adapters-jms-108-aqjms-textmessageusingqueues sample by accessing the
Oracle SOA Sample Code site.

Note: Ensure that you specify
aqjms/XAQueueConnectionFactory for local JNDI name if you
are connecting to a queue with JNDI name eis/aqjms/Queue that is
provided with the sample use case, AQQueuetoQueue.

Else, specify aqjms/XATopicConnectionFactory if you are
connecting to a topic with JNDI name eis/aqjms/Topic.

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-47

8.4.8.2 Create an Application Server Connection
You must establish connectivity between the design-time environment and the server
you want to deploy to. Perform the steps mentioned in Section 2.6, "Creating an
Application Server Connection for Oracle JCA Adapters" to create an application
server connection.

8.4.8.3 Creating an Application and an SOA Project
You must create an JDeveloper application to contain the SOA composite. Use the
following steps to create a new application and an SOA project:

1. Open JDeveloper.

2. In the Application Navigator, click New Application. The Create Generic
Application - Name your Application dialog is displayed.

3. Enter a name for the application in the Application Name field. For example,
AQQueue2Queue.

4. In the Application Template list, choose Generic Application.

5. Click Next.

The Name your project page is displayed.

6. In the Project Name field, enter a descriptive name. For example,
AQQueue2Queue.

7. In the Available list in the Project Technologies tab, double-click SOA to move it
to the Selected list.

8. Click Next. The Create Generic Application - Configure SOA Settings page is
displayed.

9. Select Composite With BPEL from the Composite Template list, and then click
Finish.

You have created a new application and an SOA project.

The Create BPEL Process page is displayed.

10. Enter a name for the BPEL process in the Name field.

11. Select Define Interface Later in the Template list, and then click OK.

You have created a BPEL process.

The AQQueue2Queue application, the AQQueue2Queue project, and the SOA
composite appear in the design area.

12. Copy the expense.xsd file to the XSD folder in your project.

This file is located in the
adapters-jms-108-aqjms-textmessageusingqueues sample
artifacts/schemas directory. You can obtain the
adapters-jms-108-aqjms-textmessageusingqueues sample by accesing
the Oracle SOA Sample Code site, and selecting the Adapters tab.

8.4.8.4 Creating an Inbound Adapter Service
Perform the following steps to create an adapter service to dequeue the message to a
queue:

Oracle JMS Adapter Use Cases

8-48 Oracle Fusion Middleware User's Guide for Technology Adapters

1. Drag and drop JMS Adapter from the Service Adapters list to the Exposed
Services swim lane in the composite.xml page. The Adapter Configuration Wizard
Welcome page is displayed.

2. Click Next. The Service Name page is displayed.

3. Enter Inbound in the Service Name field, and click OK. The JMS Provider page is
displayed.

4. Select Oracle Advanced Queueing in the Oracle Enterprise Messaging Service
(OEMS) box, and click Next. The Service Connection page is displayed.

5. Select the connection created in Section 8.4.5.2, "Creating an Application Server
Connection."

6. Click Next. The Adapter Interface page is displayed.

7. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

8. Select Consume Message, and click Next. The Consume Operation Parameters
page is displayed.

9. Click Browse and select testInQueue in the Destination field.

10. Click Next. The Messages page is displayed.

11. Click Browse at the end of the URL field. The Type Chooser dialog is displayed.

12. Select Project Schema Files, expense.xsd.

13. Click Next. The expenses.xsd schema file is displayed in the URL field in the
Messages page.

14. Click Next. The Finish page is displayed.

15. Click Finish. You have configured a JMS inbound adapter service.

8.4.8.5 Creating an Outbound Adapter Service
Perform the following steps to create an adapter service that enqueues the request
messages and dequeue the corresponding response messages (report) from a queue:

1. Drag and drop JMS Adapter from the Component Palette into the Exposed
Services swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter Outbound in the Service Name field, and click OK. The JMS Provider page
is displayed.

4. Select Oracle Advanced Queueing in the Oracle Enterprise Messaging Service
(OEMS) box, and click Next. The Service Connection page is displayed.

5. Select the connection created in Section 8.4.5.2, "Creating an Application Server
Connection," and click Next. The Adapter Interface page is displayed.

6. Select Define from operation and schema (specified later), and click Next. The
Operation page is displayed.

7. Select Produce Message, and click Next. The Produce Operation Parameters page
is displayed.

8. Click Browse and select testOutQueue in the Destination field. The Produce
Operation Parameters page is displayed.

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-49

9. Click Next. The Messages page is displayed.

10. Click Browse at the end of the URL field. The Type Chooser dialog is displayed.

11. Select Project Schema Files, expense.xsd.

12. Click Next. The expense.xsd schema file is displayed in the URL field in the
Message dialog.

13. Click Next. The Finish page is displayed.

14. Click Finish. You have configured the JMS adapter service, and the composite.xml
page is displayed.

8.4.8.6 Wiring Services and Activities
You must wire the three components that you have created: Inbound adapter service,
BPEL process, and Outbound adapter reference. Perform the following steps to wire
the components:

1. Drag the small triangle in the inbound Oracle JMS Adapter component in the
Exposed Services area to the drop zone that appears as a green triangle in the
BPEL process in the Components area.

2. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in the outbound Oracle JMS Adapter in the
External References area.

The JDeveloper Composite.xml is displayed, as shown in Figure 8–25.

Figure 8–25 JDeveloper - Composite.xml

3. Click File, Save All.

4. Double-click the BPEL process. The BPELProcess1.bpel page is displayed.

Oracle JMS Adapter Use Cases

8-50 Oracle Fusion Middleware User's Guide for Technology Adapters

5. Drag and drop the Receive, Assign, and Invoke activities, in the order mentioned,
from the Component Palette to the Components area.

6. Double-click the Receive activity.

The Receive dialog is displayed.

7. Click the Browse Partner Links icon at the end of the Partner Link field.

The Partner Link Chooser dialog is displayed.

8. Select Inbound, and then click OK.

The Receive dialog is displayed with the Partner Link field populated with the
value Outbound.

9. Click the Auto-Create Variable icon that is displayed at the end of the Variable
field. The Create Variable dialog is displayed.

10. Accept the defaults, and click OK.

11. Check the Create Instance box.

12. Double-click the Invoke activity to Outbound.

The Invoke dialog is displayed.

13. Click the Automatically Create Input Variable icon that is displayed at the end of
the Input Variable field.

14. Click the Browse Partner Links icon at the end of the Partner Link field.

The Partner Link Chooser dialog is displayed.

15. Select Outbound, and then click OK.

The Invoke dialog is displayed with the Partner Link field populated with the
value Outbound.

16. Accept the defaults, and click OK.

17. Click OK.

18. Double-click the Assign activity.

The Assign dialog is displayed.

19. Click the plus icon, and select Copy Operation.

The Create Copy Operation dialog is displayed.

20. Select the variables, and click OK.

21. Click OK in the Assign dialog.

22. Click File, Save All.

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-51

8.4.8.7 Deploying with JDeveloper
You must deploy the application profile for the SOA project and the application you
created in the preceding steps. To deploy the application profile by using JDeveloper,
perform the following steps:

1. Create an application server connection by using the procedure described in
Chapter 2.6, "Creating an Application Server Connection for Oracle JCA
Adapters."

2. Deploy the application by using the procedure described in Section 2.7,
"Deploying Oracle JCA Adapter Applications from JDeveloper."

8.4.8.8 Monitoring Using the Fusion Middleware Control Console
You can monitor the deployed composite by using the Fusion Middleware Control
Console. Perform the following steps:

1. Navigate to http://servername:portnumber/em. The composite you
deployed is displayed in the Application Navigator.

2. In the Last 5 Instances pane, there is an entry of a new instance. This is the instance
that was triggered when you enqueued a message by using
AQQueue2Queue.java.

3. Click one of the instances. The Flow Trace page is displayed.

4. Click the TextMessage component instance. The Audit page is displayed.

5. Click the Flow-Debug tab to debug the instance.

8.4.9 Accessing Queues and Topics Created in 11g from the OC4J 10.1.3.4 Server
This section describes the procedure for accessing queues and topics you created in
Oracle Application Server 11g from OC4J 10.1.3.4. To do this, you must configure
Oracle BPEL PM JMS adapter with Oracle WebLogic Server.

The following are the steps to configure Oracle BPEL PM JMS adapter with Oracle
WebLogic Server:

1. Create the wlfullclient.jar file using the following steps:

a. Change to the server/lib directory, as shown in the following example:

cd WL_HOME/server/lib

b. Use the following command to create the wlfullclient.jar file in the
server/lib directory:

Note: When using Oracle JMS Adapter to dequeue from AQ JMS
Topics with durable subscriptions, if you notice that the dequeue
operation exhibits slow performance, then you can speed up the entire
performance by using multiple inbound threads for each adapter
service.

Oracle JMS Adapter allows multiple inbound threads if you specify an
endpoint property adapter.jms.receive.threads.

However, note that this workaround is not applicable when using
non-durable subscriptions because doing so results in duplicate
messages.

Oracle JMS Adapter Use Cases

8-52 Oracle Fusion Middleware User's Guide for Technology Adapters

java -jar ../../../modules/com.bea.core.jarbuilder_X.X.X.X.jar

where X.X.X.X is the version number of the jarbuilder module in the WL_
HOME/server/lib directory. For example:

java -jar ../../../modules/com.bea.core.jarbuilder_1.0.1.0.jar

2. Copy the wlfullclient.jar file to the 10.1.3.4. server at the following location:

<ORACLEAS_HOME>/j2ee/<OC4J_INSTANCE>/connectors/JmsAdapter/JmsAdapter

3. Configure the connector factory setting in the oc4j-ra.xml file, as shown in the
following example:

<connector-factory location="eis/wlsjms/Queue"
connector-name="Jms Adapter">
 <config-property name="connectionFactoryLocation"
value="weblogic.jms.ConnectionFactory"/>
 <config-property name="factoryProperties"
value="java.naming.factory.initial=weblogic.jndi.
WLInitialContextFactory;java.naming.provider.url=t3://<WLS-SERVER-NAME>:
<WLS-SERVER-PORT>;
java.naming.security.principal=<USER>;java.naming.security.credentials=
<PASSWORD>"/>
 <config-property name="acknowledgeMode" value="AUTO_ACKNOWLEDGE"/>
 <config-property name="isTopic" value="false"/>
 <config-property name="isTransacted" value="false"/>
 <config-property name="username" value=""/>
 <config-property name="password" value=""/>
 <connection-pooling use="none">
 </connection-pooling>
 <security-config use="none">
 </security-config>
</connector-factory>

4. Modify the server.xml file of the 10.1.3.4 server to include the
environment-naming-url-factory-enabled="true" property, as shown
in the following example:

<application-server
...
...
environment-naming-url-factory-enabled="true"
...
>

5. Restart the 10.1.3.4 server to make the changes come into effect.

Note: The isTransacted configuration property value must
typically be set to FALSE. Currently, XA integration with WebLogic
JMS is not supported unless the adapter is deployed on the Oracle
WebLogic Server. Also note that <WLS-SERVER-NAME> must be
replaced by the actual Weblogic Server name hosting the queues, and
<WLS-SERVER-PORT> must be replaced by the actual port value for
Weblogic Server hosting the queues

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-53

8.4.10 Configuring the 11G Server to Access Queues Present in 10.1.3.X OC4J
You can configure your 11G server to access queues present in 10.1.3.x OC4J with the
following steps.

8.4.10.1 Copy Jar Files into the domains Folder of the Web Logic Server
Copy the following jar files under the domains/<DOMAIN_NAME>/lib folder of the
WebLogic Server:

■ $J2EE_HOME/lib/jms.jar

■ $J2EE_HOME/lib/jta.jar

■ $J2EE_HOME/oc4jclient.jar

■ $AS_HOME/opmn/lib/optic.jar

8.4.10.2 Add Connector factory in the weblogic-ra.xml File
The next step is to add the Connector Factory in the weblogic-ra.xml file:

<connection-instance>
 <jndi-name>eis/oc4jjms/Queue</jndi-name>
 <connection-properties>
 <properties>
 <property>
 <name>ConnectionFactoryLocation</name>
 <value>jms/XAQueueConnectionFactory</value>
 </property>
 <property>
 <name>FactoryProperties</name>
<value>java.naming.factory.initial=com.evermind.server.rmi.RMIInitialContextFactor
y;java.naming.provider.url= <PROVIDER_
URL>;java.naming.security.principal=oc4jadmin;
java.naming.security.credentials=welcome1</value>
 </property>
 <property>
 <name>AcknowledgeMode</name>
 <value>AUTO_ACKNOWLEDGE</value>
 </property>
 <property>
 <name>IsTopic</name>
 <value>false</value>
 </property>
 <property>
 <name>IsTransacted</name>
 <value>false</value>
 </property>
 <property>
 <name>Username</name>
 <value>oc4jadmin</value>
 </property>
 </property>
 <property>
 <name>Password</name>
 <value>welcome1</value>
 </property>
 </properties>
 </connection-properties>
 </connection-instance>

Oracle JMS Adapter Use Cases

8-54 Oracle Fusion Middleware User's Guide for Technology Adapters

where <PROVIDER_URL>=opmn://localhost:6003 or,
ormi://localhost:12401 to use against a specific node or,
opmn:ormi://localhost:6003:oc4j_soa to use against the

oc4j_soa instance.

8.4.11 Accessing Distributed Destinations (Queues and Topics) on the WebLogic
Server JMS

A distributed destination is a set of destinations (queues, set of physical JMS queue
members, or topics, set of physical JMS topic members) that are accessible as a single,
logical destination to a client.

The JMS Adapter can process messages addressed to a distributed destination member
after receiving available notification; it can process available, unavailable, and failure
notifications related to a distributed destination member.To have the JMS Adapter
process such messages when working with Distributed Topics, you must provide
additional properties.

When you provide additional properties, you can separate multiple FactoryProperty
values with a semicolon. See the following example.

<property>
 <name>FactoryProperties</name>
 <value>ClientID=SOACLient2; TopicMessageDistributionAll=true</value>
</property>

Also, in scenarios where the JMS adapter interacts with multiple WLS-managed
servers in a cluster, you need to specify all servers as part of the
FactoryProperties property. These are in turn used to establish correct context for
lookup of JMS artifacts; see the following example:

<property>
 <name>FactoryProperties</name>
 <value> java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory;
 java.naming.provider.url=t3://<server1>:<port1>,<server2>:<port2>;
 java.naming.security.principal=
 <username>;java.naming.security.credentials=<password>
 </value>
</property>

Replace the brackets <> with values applicable for your environment.

8.4.11.1 Providing JMS Adapter Access to Distributed Topics
You use three FactoryProperty parameter values to provide adapter access to
distributed topics, to specifically enable the Client ID to be shared by multiple
connections, to enable the sharing of Durable subscriptions among multiple
subscribers, and to specify whether you want one copy of a message per application or
per endpoint. The properties include:

■ ClientIDPolicy

Note: For more information on distributed destinations, and a
definition of terms used in this context, visit the Using Distributed
Destinations pages at http://download.oracle.com/docs/cd/E13222_
01/wls/docs103//jms/dds.html

http://download.oracle.com/docs/cd/E13222_01/wls/docs103//jms/dds.html
http://download.oracle.com/docs/cd/E13222_01/wls/docs103//jms/dds.html

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-55

Use the FactoryProperties parameter ClientIDPolicy property with a value of
UNRESTRICTED to enable the Client ID to be shared by multiple connections. The
default, if no value is specified, is UNRESTRICTED. The non-default value is
RESTRICTED. The default is used in almost all cases, so typically you do not have
to set it. See the following example:

</property>
 <name>FactoryProperties</name>
<value>ClientIDPolicy=UNRESTRICTED</value>

 </property>

■ SubscriptionSharingPolicy

Use the FactoryProperties parameter with a value of SHARABLE to enable the
sharing of Durable Subscriptions among multiple subscribers.

A value of SubscriptionSharingPolicy EXCLUSIVE means you cannot share
Durable Subscriptions among multiple subscribers. If you do not specify a value,
the default is SHARABLE; in most cases, you do not have to change the value.

 <property>
 <name>FactoryProperties</name>
 <value>SubscriptionSharingPolicy=SHARABLE</value>
 </property>

■ TopicMessageDistributionAll

See the section on Distirbuted Topics for more information on the
TopicMessageDistributionAll FactoryProperties parameter. You can set it as
in the following example:

<property>
 <name>FactoryProperties</name>
 <value>TopicMessageDistributionAll=true</value>
</property>

8.4.11.2 The JMS Adapter with Distributed Queues and Distributed Topics
Specific inbound and outbound queue and error handling behaviors apply to the JMS
Adapter with WebLogic Server JMS Distributed Queues and Distributed Topics.

For inbound queues, the JMS Adapter creates an inbound poller thread and registers a
notification listener with the WebLogic Server JMS on endpoint activation; it
unregisters notification listener upon endpoint deactivation.

Oracle JMS Adapter Use Cases

8-56 Oracle Fusion Middleware User's Guide for Technology Adapters

The JMS Adapter handles errors in the Distributed environment in the same fashion as
such errors are handled in a non-Distributed environment: retriable exceptions lead to
message retry; non-retriable exceptions lead to message rejection.

There is no change from the behavior of other Adapters to JMS adapter behavior when
the Adapter produces a message to a Distributed Queue.

JMS messages for Distributed Destinations are produced by creating a
MessageProducer for the Distributed Destination and not for a specific member.

Outbound errors are processed based on fault-policies previously defined for the
outbound reference.

For inbound adapters with distributed topics, the JMS Adapter registers a notification
listener with the WebLogic Server JMS on endpoint activation. The JMS Adapter
creates an inbound poller thread for each available notification received from
WebLogic Server JMS for a Distributed Topic member.

The inbound poller thread stops working and necessary cleanup is performed if an
unavailable notification is received for the member for which the poller thread was
created. The durable subscription is maintained in a similar fashion as in a
non-Distributed topic scenario.

The Adapter unregisters the notification listener upon endpoint deactivation. Any
message arriving at a Distributed Topic is processed based on the various settings used
and the type of Distributed Destination in use: either one copy of a message per
application, or one copy of a message per adapter endpoint.

The behaviors for each of these types of Distributed Destination are provided below.

8.4.11.3 One Copy of a Message Per Application (Default Behavior)
The default behavior for WebLogic Server Partitioned Distributed Topics when used
with the JMS Adapter is to provide one copy of a message per application. Each
message must be processed exactly once (that is, there is no duplicate processing.). In
this scenario, where there is one copy of a message per application, the client id and
subscription name are the same for every Distributed Destination and each adapter
instance creates subscriptions on every member. The name is unique and immutable
across server restarts.

Note: Internally, that consumer is pinned to a member of the
Distributed Queue. You need to deploy the adapter with a large
number of threads so that all members of the distributed queues could
be accounted for. From the SOA 11.1.1.4.0 version forward, the JMS
adapter fully supports both Distributed Queues and Topics. Newer
versions of the JMS adapter rely on notifications from the WebLogic
Server JMS to create and remove consumers for the Distributed
Destination members.

Comparing JMS adapter behavior in SOA 11.1.1.3.0 and prior
versions (where a consumer is created randomly for more than one
member of Distributed Queue) with the new behavior in SOA
11.1.1.4.0, there is no change, except that the JMS adapter is now able
to account for all members without relying on your starting the JMS
adapter with large numbers of poller threads at activation.

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-57

When using Partitioned Distributed Topics you must configure the JMS adapter to use
unrestricted clientid and shared subscription policy. These two are the default settings
for the JMS Adapter.

When using Replicated Distributed Topics, you must configure JMS adapter to use the
unrestricted clientid and shared subscription policy, which are the default settings.

In addition, you must specify the following message selector, NOT JMS_WL_
DDForwarded when defining an activation spec.

To achieve better performance, you should use Partitioned Distributed Topics.

Refer to the following example, consisting of a snippet of a connection instance from
the weblogic-ra.xml file for a local cluster:

<property>
 <name>FactoryProperties</name>
 <value>ClientID=SOAClient1;</value>
</property>

8.4.11.4 One Copy Of a Message Per Adapter Endpoint
The second type of scenario you can employ with Distributed Topics is to have one
copy of message per adapter endpoint. In this case, either the client id or the
subscription name is unique for each adapter instance. The unique part of the member
name is immutable across server restarts.

When using Partitioned Distributed Topics you have to configure the JMS adapter to
use unrestricted clientid and shared subscription policy, which are the default settings.
At the same time, to achieve subscription name uniqueness, JMS adapter requires that
the property TopicMessageDistributionAll (default value of false) is set to true.
You can define this property by setting the FactoryProperties property of the
connection instance in the weblogic-ra.xml file. An example usage (a snippet of a
connection instance from a weblogic-ra.xml file for a local cluster) is shown below.

<name>FactoryProperties</name>
<value>ClientID=SOAClient2;TopicMessageDistributionAll=true</value>
</property>

To achieve better performance, you should use Partitioned Distributed Topics.

When using Replicated Distributed Topics, configure the JMS adapter to use
unrestricted clientid and shared subscription policy, which are the default settings. At
the same time, to achieve subscription name uniqueness, the JMS adapter requires that
the property TopicMessageDistributionAll (default value of false) is set to true.
You can define this property by setting the FactoryProperties property of the
connection instance in weblogic-ra.xml. An example usage (snippet of connection
instance from weblogic-ra.xml for a local cluster) is as shown below:

<name>FactoryProperties</name>
<value> ClientID=SOAClient2;TopicMessageDistributionAll=true</value>
</property>

In addition, you must specify the following message selector, NOT JMS_WL_
DDForwarded when defining an activation spec.

8.4.11.4.1 Specifying the Message Selector when Defining an Activation Spec

Specify a message selector when defining an activation spec. The message selector is
required when you create one copy of message per adapter Endpoint.

Oracle JMS Adapter Use Cases

8-58 Oracle Fusion Middleware User's Guide for Technology Adapters

To specify the selector, use the Adapter Wizard when modeling a composite
application that reads from Replicated Distributed Topic The metadata for the message
selector you specify are captured in the .jca file.

Below is an example of a message selector defined in an activation spec.This message
selector filters out the copy of the forwarded message when sending a message to a
destination subscriber. This message selector is only applicable for when using
Replicated Distributed Topics.

<activation-spec
className="oracle.tip.adapter.jms.inbound.JmsConsumeActivationSpec">
 <property name="DestinationName" value="jms/DemoInTopic"/>
 <property name="UseMessageListener" value="false"/>
 <property name="DurableSubscriber" value="dsub1"/>
 <property name="MessageSelector" value="NOT JMS_WL_DDForwarded"/>
 <property name="PayloadType" value="TextMessage"/>
</activation-spec>

With Distributed Topics, retriable exceptions lead to message retry, while non- retriable
exceptions lead to message rejection.

Available/Unavailable/Failure notification does not impact the working of the
outbound adapter reference. The message is produced by creating a MessageProducer
for the Distributed Destination and not for a specific member.

In the Distributed Topics environment, as elsewhere, an error is processed based on
the fault policies defined for the outbound reference.

8.4.11.4.2 Compatibility and Migration

Remote Distributed Queue support is feasible all the way back to WLS JMS version 9.0
using the new DestinationAvailabilityListener API. A remote Distributed Topic cannot
be supported if it is older than WebLogic 10.3.4, as “shared subscriptions”,
“unrestricted client ids”, the “not forwarded” selector, and even “partitioned”
Distributed Topics are not supported. Users will need to instead directly reference a
DT member JNDI name, and deal with the single subscriber per subscription
limitation.

8.4.12 Configuring Oracle JMS Adapter with IBM WebSphere Default JMS Provider
This section describes how to configure Oracle JMS Adapter for IBM WebSphere 7.x
JMS.

1. Copy the following files from under the
<WAS_INSTALL DIR>/fmwwas-nd/websphere/runtimes directory to the
SOAInstall_DIR>/user_projects/domains/<DOMAIN_NAME>/lib folder:

■ com.ibm.jaxws.thinclient_7.0.0.jar

■ com.ibm.ws.admin.client_7.0.0.jar

■ com.ibm.ws.ejb.thinclient_7.0.0.jar

■ com.ibm.ws.jpa.thinclient_7.0.0.jar

■ com.ibm.ws.messagingClient.jar

■ com.ibm.ws.orb_7.0.0.jar

■ com.ibm.ws.sib.client.thin.jms_7.0.0.jar

■ com.ibm.ws.sib.client_ExpeditorDRE_7.0.0.jar

■ com.ibm.ws.webservices.thinclient_7.0.0.jar

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-59

■ ejb3exceptions.jar

■ sibc.jmsra.rar

■ sibc.nls.zip

2. Configure the connector factory by modifying the weblogic-ra.xml file in the
soa/connectors/JmsAdapter.rar, as shown in the following example

<connection-instance>
<jndi-name>eis/webspherejms/Queue</jndi-name>
 <connection-properties>
 <properties>
 <property>
 <name>ConnectionFactoryLocation</name>
 <value><QUEUE_CONECTION_FACTORY></value>
 </property>
 <property>
 <name>FactoryProperties</name>
 <value>java.naming.provider.url=iiop://<HOST_NAME>:<PORT>;
java.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory;
java.naming.security.principal=<USERNAME>;
java.naming.security.credentials=<PASSWORD>;
ThirdPartyJMSProvider=true
 </value>
 </property>
 <property>
 <name>AcknowledgeMode</name>
 <value>AUTO_ACKNOWLEDGE</value>
 </property>
 <property>
 <name>IsTopic</name>
 <value>false</value>
 </property>
 <property>
 <name>IsTransacted</name>
 <value>true</value>
 </property>
 <property>
 <name>Username</name>
 <value><USERNAME></value>
 </property>
 <property>
 <name>Password</name>
 <value><PASSWORD></value>
 </property>
 </properties>
 </connection-properties>
</connection-instance>

<connection-instance>
<jndi-name>eis/webspherejms/Topic</jndi-name>
 <connection-properties>
 <properties>
 <property>
 <name>ConnectionFactoryLocation</name>
 <value><TOPIC_CONECTION_FACTORY></value>
 </property>
 <property>
 <name>FactoryProperties</name>
 <value>java.naming.provider.url=iiop://<HOST_NAME>:<PORT>;
java.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory;

Oracle JMS Adapter Use Cases

8-60 Oracle Fusion Middleware User's Guide for Technology Adapters

java.naming.security.principal=<USERNAME>;
java.naming.security.credentials=<PASSWORD>;
ThirdPartyJMSProvider=true
 </value>
 </property>
 <property>
 <name>AcknowledgeMode</name>
 <value>AUTO_ACKNOWLEDGE</value>
 </property>
 <property>
 <name>IsTopic</name>
 <value>true</value>
 </property>
 <property>
 <name>IsTransacted</name>
 <value>true</value>
 </property>
 <property>
 <name>Username</name>
 <value><USERNAME></value>
 </property>
 <property>
 <name>Password</name>
 <value><PASSWORD></value>
 </property>
 </properties>
 </connection-properties>
</connection-instance>

<QUEUE_CONECTION_FACTORY> and <TOPIC_CONECTION_FACTORY> refer to the
JNDI name of the Queue and Topic connection factory, respectively created in
WebSphere 7.0 for the default JMS provider.

Alternatively, you can configure a new connection factory by using the Oracle
WebLogic Server Administration Console, and use the steps mentioned in Section 2.18,
"Adding an Adapter Connection Factory."

8.4.13 Configuring Request-Reply in JMS Adapter
The Request-Reply configuration feature enables you to perform the following:

■ Combine Request and Reply in a single configuration step. In the prior releases of
the Oracle SOA Suite, you would require to configure two distinct adapters.

■ Automatic correlation without your needing to configure BPEL correlation set.
This works seamlessly in Mediator and BPMN as well.

To configure the JMSAdapter Request-Reply feature:

1. Drag and drop a JMSAdapter onto the External References swim lane in the JDev
composite editor..

Note: The JMS Adapter can only be used in non-XA mode when
interacting with WebSphere 7.x JMS.:

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-61

Figure 8–26 Dragging and Dropping a JMS Adapter into External References Swimlane

2. Enter default values for the first few screens in the JMS Configuration Adapter
wizard until you reach the screen where the JMS Configuration Adapter wizard
prompts you to enter the operation name. Select Request-Reply as the "Operation
Type" and Asynchronous as "Operation Name".

Figure 8–27 Operations Screen for Request/Reply

3. Select the Request and Reply queues in the following screens of the wizard. The
message is enqueued in the "Request" queue and the reply is returned in the
"Reply" queue.

Oracle JMS Adapter Use Cases

8-62 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 8–28 The Request Operation Parameters Screen

Figure 8–29 Reply Operation Parameters Screen

The reason we have used such a selector is that the back-end system that reads
from the request queue and generates the response in the response queue actually
generates more than one response and hence we must use a filter to exclude the
unwanted responses.

4. Select the message schema for and a response.

Oracle JMS Adapter Use Cases

Oracle JCA Adapter for JMS 8-63

Figure 8–30 Selecting Message Schema for Request and for Response

5. Add an <invoke> activity in BPEL corresponding to the JMS Adapter partner link.
An additional header is set as the third-party application we use requires this.

Figure 8–31 Invoke BPEL Properties Dialog Corresponding to the JMS Adapter Link

Add a <receive> activity just after the <invoke> activity, and select the Reply
operation. Please ensure that the Create Instance option is unchecked.

Oracle JMS Adapter Use Cases

8-64 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 8–32 Receive Dialog for Reply Operation

8.4.14 Using the WLS JMS Unit-Of-Order with the JMS Adapter
You can use use the SOA JMS Adapter to produce messages that create a specific
unit-of-order for the messages.The Adapter InteractionSpec supports a property called
UnitOfOrder, which you configured when modelling an adapter reference, through
the Produce Operations page of the JMS Adapter Configuration Wizard. See the
description of this page in the section, "Produce Message Procedure".

You use this UnitOfOrder property to set the unit-of-order value for the
MessageProducer when producing a message. The new field will only be visible if the
JMS provider is WebLogic Server JMS.

The JMS Adapter enables you to override this unit-of-order used when producing a
message to a WLS destination.

To perform this override, the JMS Adapter supports a Normalized message property
called jca.jms.WeblogicUnitOfOrder. This value overrides the value specified
via the property UnitOfOrder for the JmsProduceInteractionSpec.

You can modify the value of the UnitOfOrder spec property from the EM console.
Any outbound interactions after that point will use the new value you supply.

If you define neither the property jca.jms.WeblogicUnitOfOrder nor the
JmsProduceInteractionSpec property UnitOfOrder, no unit-of-order value is
set by JMS Adapter and the default unit-of-order, if specified administratively on the
connection factory and destination, takes effect.

The JMS unit-of-order feature only works with the WebLogic Server. For non Web
Logic Server destinations, the property jca.jms.WeblogicUnitOfOrder (if one
exists) will be ignored.

8.4.14.1 Getting a Unit of Order Property
You can obtain user-specified value from the interaction spec instance.

All JMS message properties are available as Normalized Message properties. You can
get the unit-of-order property by looking up the Normalized message property
jca.jms.JMSProperty.JMS_BEA_UnitOfOrder on the delivered message.

9

Oracle JCA Adapter for Database 9-1

9Oracle JCA Adapter for Database

This chapter describes the Oracle JCA Adapter for Database (Oracle Database
Adapter), which works with Oracle BPEL Process Manager and Oracle Mediator
(Mediator). This chapter also includes support for stored procedures and functions (for
Oracle databases only). In addition, it contains references to use cases for the Oracle
Database Adapter and for stored procedures.

This chapter includes the following topics:

■ Section 9.1, "Introduction to the Oracle Database Adapter"

■ Section 9.2, "Complete Walkthrough of the Adapter Configuration Wizard"

■ Section 9.3, "Oracle Database Adapter Features"

■ Section 9.4, "Oracle Database Adapter Concepts"

■ Section 9.5, "Deployment"

■ Section 9.6, "JDBC Driver and Database Connection Configuration"

■ Section 9.7, "Stored Procedure and Function Support"

■ Section 9.8, "Oracle Database Adapter Use Cases"

9.1 Introduction to the Oracle Database Adapter
The Oracle Database Adapter enables a BPEL process to communicate with Oracle
databases or third party databases through JDBC. The Oracle Database Adapter
service is defined within a BPEL process partner link by using the Adapter
Configuration Wizard of Oracle BPEL Process Manager (Oracle BPEL PM).

This section includes the following topics:

■ Section 9.1.1, "Functional Overview"

■ Section 9.1.2, "Design Overview"

9.1.1 Functional Overview
This section provides a functional overview of the Oracle Database Adapter. The
Oracle Database Adapter enables Oracle SOA Suite and Oracle Fusion Middleware to
communicate with database end points. These include Oracle database servers and
any relational databases that follow the ANSI SQL standard and which provide JDBC
drivers.

The principle of the tables and views in the Oracle Database Adapter is to expose to
SOA tables and SQL as transparently and non-intrusively as possible. From an
integration standpoint, tables and SQL are what relational database products have in

Introduction to the Oracle Database Adapter

9-2 Oracle Fusion Middleware User's Guide for Technology Adapters

common, so a generic solution focused on what is standard has the greatest reach. In
exposing databases to SOA, it is also about combining the technologies of SQL and
XML, the former an ideal language for querying information, the latter an ideal format
for transporting and representing information. While stored procedure support is less
standard across databases, Oracle Database Adapter provides support for stored
procedures as the guide describes.

The Oracle Database Adapter is a JCA 1.5 connector, which runs on the Oracle
Application Server. It relies on an underlying JDBC connector/driver to enact the
database communication. In contrast to JDBC, it is non-programmatic. The interaction
(series of SELECT, UPDATE, INSERT) is loosely modeled using the Adapter
Configuration Wizard. The inputs/outputs are XML, most easily seen as input
parameters and result sets converted to XML. These XML inputs and outputs allow
the Oracle Database Adapter services to be plugged into Oracle Fusion Middleware.

To access an existing relational schema, you must create an application and an SOA
project to use the Adapter Configuration Wizard to perform the following:

■ Import a relational schema (one or more related tables) and map it as an XML
schema (XSD)

For more information, see Section 9.4.1, "Relational-to-XML Mapping."

■ Abstract SQL operations such as SELECT, INSERT, and UPDATE as Web services

For more information, see Section 9.4.2, "SQL Operations as Web Services."

■ Have database events initiate an Oracle Fusion Middleware process.

The Oracle Database Adapter can currently be used only within the context of an SOA
process as Section 9.1.1.1, "Oracle Database Adapter Integration with Oracle BPEL PM"
describes.

Although Oracle Streams Advanced Queuing (Oracle AQ) is an Oracle Database
feature, you use the separate, specialized Oracle JCA Adapter for AQ to integrate with
Oracle AQ. For more information, see Chapter 7, "Oracle JCA Adapter for AQ".

For non-relational and legacy systems (with a few exceptions such as DB2 on AS/400),
application and mainframe adapters are available. For more information about
application and mainframe adapters, see:

■ Section 1.2.2, "Legacy Adapters"

■ Section 1.2.3, "Packaged-Application Adapters"

■ Section 1.2.4, "Oracle Adapter for Oracle Applications"

For more information on the Oracle Database Adapter, see:

■ Section 9.3, "Oracle Database Adapter Features"

■ Section 9.4, "Oracle Database Adapter Concepts"

■ Section 9.2, "Complete Walkthrough of the Adapter Configuration Wizard"

9.1.1.1 Oracle Database Adapter Integration with Oracle BPEL PM
When the Oracle Database Adapter is used to poll for database events (usually an
INSERT operation on an input table) and initiate a process, in a Mediator component
or an SOA composite it is called an exposed service. In Oracle BPEL process it is a
partner link tied to a Receive activity. The expression inbound (from database into
SOA) is commonly used.

When the Oracle Database Adapter is used to invoke a one-time DML statement such
as INSERT or SELECT, in a Mediator component or an SOA composite, it is called a

Introduction to the Oracle Database Adapter

Oracle JCA Adapter for Database 9-3

service reference. In Oracle BPEL process, it is a partner link tied to an Invoke activity.
The expression outbound (from SOA out to the database) is used.

9.1.2 Design Overview
This section provides an overview of the design of the Oracle Database Adapter.
Figure 9–1 shows how the Oracle Database Adapter interacts with the various
design-time and deployment artifacts.

Figure 9–1 How the Oracle Database Adapter Works

The Oracle Database Adapter is a JCA 1.5 connector, which is deployed to the
application server during installation.

The Oracle Database Adapter consists of multiple instances; each instance represents a
connection to a database end point. Different SOA processes may point to the same
adapter instance (database), while different service endpoints in a SOA process may
point to different adapter instances (databases).

Because each adapter instance points to a single database, there is a one-to-one
correspondence from adapter instances to application server data sources. Out of the
box there is a single Oracle Database Adapter instance named eis/DB/SOADemo,
which points to the data source jdbc/SOADataSource.

The list of adapter instances is stored in a deployment descriptor file,
weblogic-ra.xml on Oracle WebLogic Server. (It is inside of DbAdapter.rar,
which contains also the Java class files in DBAdapter.jar). Configuring an Oracle
Database Adapter instance is more about creating the underlying data source: getting
the correct JDBC driver and connection URL.

 JCA
Binding

Component

Data Source

Database

SCA
Runtime

JDeveloper
SOA

Studio

JDeveloper Project File (.JPR)
.properties

Application Server

JCA

JNDI MyDBConnection1
eis/DB/SOADemo

Fabric

or_mappings.xml
· WSDL
· _db.JCA
· XSD

Deployment

weblogic-ra.xml

DBAdapter

composite.xml
Adapter
Configuration
Wizard

SOA
Artifacts Design Time

sessions.xml

jdbc/SOADemo

JDBC

Complete Walkthrough of the Adapter Configuration Wizard

9-4 Oracle Fusion Middleware User's Guide for Technology Adapters

For more information, see Section 9.6, "JDBC Driver and Database Connection
Configuration."

However weblogic-ra.xml entries occasionally have more than simply the name of
the underlying data source. These properties are detailed further under Section 9.5,
"Deployment".

While at run time you have Oracle Database Adapter instances, at design time you
have the Adapter Configuration Wizard (link). You can run it once to generate a single
adapter service end point, and then multiple times in edit mode to make incremental
changes to each. It generates all the adapter related artifacts needed when deploying a
SOA composite as Table 9–1 lists.

9.2 Complete Walkthrough of the Adapter Configuration Wizard
This section describes the Adapter Configuration Wizard and how you can define an
Oracle Database Adapter by using the Adapter Configuration Wizard.

This section describes the various Oracle Database Adapter concepts through a use
case, which is, a complete walkthrough of the Adapter Configuration Wizard. In
addition, this use case also describes how by using the Adapter Configuration Wizard,
you can import tables from the database, specify relationships spanning multiple
tables, generate corresponding XML schema definitions, and create services to expose
the necessary SQL or database operations. These services are consumed to define
partner links that are used in the BPEL process. You use the Adapter Configuration
Wizard to both create and edit adapter services.

■ Section 9.2.1, "Creating an Application and an SOA Project"

■ Section 9.2.2, "Defining an Oracle Database Adapter"

■ Section 9.2.3, "Connecting to a Database"

Table 9–1 Adapter Configuration Wizard Generated SOA Composite Adapter Artifacts

File Description

<serviceName>.wsdl This is an abstract WSDL, which defines the service end point in
terms of the name of the operations and the input and output
XML elements.

<serviceName>_table.xsd This contains the XML file schema for these input and output
XML elements. Both these files form the interface to the rest of
the SOA project.

<serviceName>_or-mappings.xml This is an internal file. It is a TopLink specific file, which is used
to describe the mapping between a relational schema and the
XML schema. It is used at run time.

<serviceName>_db.jca This contains the internal implementation details of the abstract
WSDL. It has two main sections, location and operations.
Location is the JNDI name of an adapter instance, that is,
eis/DB/SOADemo. Operations describe the action to take
against that end point, such as INSERT, UPDATE, SELECT, and
POLL. The contents of the db.jca file are wholly determined by
choices made while running the Adapter Configuration Wizard.

<serviceName>.properties This is also an internal file. It is created when tables are
imported, and information about them is saved. It is used only
at design time.

At run time, the location is used to look up the adapter instance
which executes the service. Based on the properties in the
db.jca file and the linked or-mappings.xml file,
<seviceName>.properties file generates the correct SQL to
execute, parses the input XML, and builds an output XML file
matching the XSD file. To execute the SQL, it obtains a pooled
SQL connection from the underlying data source.

Complete Walkthrough of the Adapter Configuration Wizard

Oracle JCA Adapter for Database 9-5

■ Section 9.2.4, "Selecting the Operation Type"

■ Section 9.2.5, "Selecting and Importing Tables"

■ Section 9.2.6, "Defining Primary Keys"

■ Section 9.2.7, "Creating Relationships"

■ Section 9.2.8, "Creating the Attribute Filter"

■ Section 9.2.9, "Defining a WHERE Clause"

■ Section 9.2.10, "Choosing an After-Read Strategy"

■ Section 9.2.11, "Specifying Polling Options"

■ Section 9.2.12, "Specifying Advanced Options"

■ Section 9.2.13, "Entering the SQL String for the Pure SQL Operation"

9.2.1 Creating an Application and an SOA Project
You must create an Oracle JDeveloper (JDeveloper) application to contain the SOA
composite. Perform the following steps to create an application, and an SOA project:

1. Open JDeveloper.

2. In the Application Navigator, click New Application.

The Create Generic Application - Name your application page is displayed, as
shown in Figure 9–2.

3. Enter a name for the application in the Application Name field.

4. In the Application Template list, choose Generic Application.

Figure 9–2 The Create Generic Application - Name your application Page

5. Click Next.

The Create Generic Application - Name your project page is displayed, as shown
in Figure 9–3.

Complete Walkthrough of the Adapter Configuration Wizard

9-6 Oracle Fusion Middleware User's Guide for Technology Adapters

6. In the Project Name field, enter a descriptive name.

7. In the Available list in the Project Technologies tab, double-click SOA to move it
to the Selected list.

Figure 9–3 The Create Generic Application - Name your Generic project Page

8. Click Next. The Create Generic Application - Configure SOA settings page is
displayed, as shown in Figure 9–4.

Figure 9–4 The Create Generic Application - Configure SOA Settings Page

9. Select Composite With BPEL from the Composite Template list, and then click
Finish.

Complete Walkthrough of the Adapter Configuration Wizard

Oracle JCA Adapter for Database 9-7

You have created a new application and an SOA project. This automatically creates
an SOA composite.

The Create BPEL Process page is displayed, as shown in Figure 9–5.

Figure 9–5 The Create BPEL Process Page

10. Enter a name for the BPEL process in the Name field.

11. Select Define Service Later in the Template list, and then click OK.

You have created a BPEL process.

9.2.2 Defining an Oracle Database Adapter
The next step is to define an Oracle Database Adapter service. Perform the following
steps to create an Oracle Database Adapter service:

1. In the Component Palette, select SOA.

2. Drag and drop Database Adapter from the Service Adapters list to the Exposed
components swim lane in the composite.xml page.

The Adapter Configuration Wizard is displayed.

3. Click Next. The Service Name page is displayed, as shown in Figure 9–6. Enter the
following information:

Note: To create an Oracle Database Adapter service as part of a BPEL
process, drag and drop a BPEL process from Service Components onto
Components. Double-click it. Then, in the BPEL Component Palette,
drag and drop Database Adapter from BPEL Services onto a Partner
Links swim lanes.

Complete Walkthrough of the Adapter Configuration Wizard

9-8 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 9–6 Specifying the Service Name

4. In the Service Name field, enter a service name, and then click Next. The Service
Connection page is displayed.

See Section 9.2.3, "Connecting to a Database" to continue using the Adapter
Configuration Wizard.

9.2.3 Connecting to a Database
Figure 9–7 shows where you select the database connection that you are using with the
service. This is the database from which you import tables to configure the service.
This is the database from which you import tables to configure the service. You can
re-create it here in each new JDeveloper application you create.

You can provide a Java Naming and Directory Interface (JNDI) name to identify the
database connection, as the default name that is provided is
eis/DB/<ConnectionNameInJDev>.

For more information, see Section 9.5, "Deployment."

Complete Walkthrough of the Adapter Configuration Wizard

Oracle JCA Adapter for Database 9-9

Figure 9–7 The Adapter Configuration Wizard: Service Connection Page

Note the following:

■ In production environments, it is recommended that you add the JNDI entry to the
adapter deployment descriptor (weblogic-ra.xml). This way, the Oracle
Database Adapter is more performant by working in a managed mode.

For information about creating a data source and an outbound connection pool,
see Section 2.18, "Adding an Adapter Connection Factory."

■ When you click Next, a connection to the database is attempted. If a connection
cannot be made, you cannot proceed to the next window, even if you are editing
an existing partner link.

See Section 9.2.4, "Selecting the Operation Type" to continue using the Adapter
Configuration Wizard.

9.2.4 Selecting the Operation Type
Figure 9–8 shows where you indicate the type of operation you want to configure for
this service.

Complete Walkthrough of the Adapter Configuration Wizard

9-10 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 9–8 The Adapter Configuration Wizard: Operation Type Page

The following operation types are available:

■ Call a Stored Procedure or Function

Select this option if you want the service to execute a stored procedure or function.
For more information, see Section 9.7, "Stored Procedure and Function Support."

■ Perform an Operation on a Table

Select this option for outbound operations. You can select Insert or Update, Insert
Only, Update Only, Delete, Select, or any combination of the six. These
operations loosely translate to SQL MERGE, INSERT, UPDATE, DELETE, and
SELECT operations.

For more information, see Section 9.4.2.1, "DML Operations."

■ Poll for New or Changed Records in a Table

Select this option for an inbound operation (that is, an operation that is associated
with a Receive activity). This operation type polls a specified table and returns for
processing any new rows that are added. You can also specify the polling
frequency.

For more information, see Section 9.4.2.2, "Polling Strategies."

The following is a list of polling operations that you can perform after the data is
read from the database, as shown in Figure 9–9:

– Delete the Row(s) that were Read

Note: The operation Update Only sometimes performs
inserts/deletes for child records. That is, an update to Master could
involve a new or deleted detail. So if the input to update contains only
one detail record, then the other detail records in the table are deleted.

Complete Walkthrough of the Adapter Configuration Wizard

Oracle JCA Adapter for Database 9-11

– Update a Field in the [Table_Name] Table (Logical Delete)

– Update a Sequencing Table

– Update an External Sequencing Table on a Different Database

– Control Table Strategy

Figure 9–9 Polling Operations

■ Execute Pure SQL

Useful when dealing with arbitrarily complex statements, aggregate queries
(result is not row-based), and XMLType columns. See Section 9.3.2, "Pure SQL -
XML Type Support" to follow this usage of the Adapter Configuration Wizard.

Otherwise, see Section 9.2.5, "Selecting and Importing Tables" to continue using the
Adapter Configuration Wizard.

9.2.5 Selecting and Importing Tables
Figure 9–10 shows where you select the root database table for your operation. If you
are using multiple related tables, then this is the highest-level table (or highest parent
table) in the relationship tree.

Note: Schema Bound XML tables are not supported.

Complete Walkthrough of the Adapter Configuration Wizard

9-12 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 9–10 The Adapter Configuration Wizard: Select Table

Selecting Import Tables launches a sub-wizard, which lets you search for and select
multiple tables to import from the database. Removing a table removes (or undoes)
any relationships on related tables that remain. If any underlying tables have changed
when running this wizard in edit mode, you get a warning showing you what changes
have occurred. To reconcile, import the tables again. If you click Import Tables and
select multiple tables, then relationships between these tables are inferred based on the
foreign key constraints. However if you launch Import Tables once for each table
imported, then no relationships are inferred.

See Section 9.2.6, "Defining Primary Keys" to continue using the Adapter
Configuration Wizard.

9.2.6 Defining Primary Keys
If any of the tables you have imported do not have primary keys defined on the
database, you are prompted to provide a primary key for each one, as shown in
Figure 9–11. You must specify a primary key for all imported tables. You can select
multiple fields to specify a multipart primary key.

Note: If you reimport a table, you lose any custom relationships you
may have defined on that table and any custom WHERE clauses (if the
table being imported was the root table).

Complete Walkthrough of the Adapter Configuration Wizard

Oracle JCA Adapter for Database 9-13

Figure 9–11 The Adapter Configuration Wizard: Define Primary Keys Page

The primary key that you specify here is recorded on the offline database table and is
not persisted back to the database schema; the database schema is left untouched.

See Section 9.2.7, "Creating Relationships" to continue using the Adapter
Configuration Wizard.

9.2.7 Creating Relationships
Figure 9–12 shows the relationships defined on the root database table and any other
related tables. You can click Create Relationships… to create a relationship between
two tables, or click Remove Relationship to remove it. To rename a relationship, click
Rename Relationship.

Note: Note that the Oracle Database Adapter only supports tables
where there is a primary key defined. If primary key constraints have
not been defined on a table explicitly, then you must provide one at
design time while defining the Oracle Database Adapter by using the
Adapter Configuration Wizard. If you do not provide a valid primary
key, then the unique constraint is not guaranteed, and this could result
in possible loss of messages at run time. That is, rows with duplicate
primary key values are likely to be lost.

Note: Oracle recommends that you use varchar instead of char for
primary key columns, otherwise you must set the weblogic-ra.xml
property shouldTrimStrings to false. The truncation of trailing
spaces could cause the primary key to be read incorrectly, making it
impossible to update read rows as processed.

Complete Walkthrough of the Adapter Configuration Wizard

9-14 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 9–12 The Adapter Configuration Wizard: Relationships Page

Note the following regarding creating relationships:

■ If foreign key constraints between tables exist on the database, then two
relationships are created automatically when you import the tables, a one-to-one
(1:1) from the source table (the table containing the foreign key constraints) to the
target table, and a one-to-many (1:M) from the target table to the source table.

■ As Figure 9–12 shows, you see only the relationships that are reachable from the
root database table. If, after removing a relationship, other relationships are no
longer reachable from the root table, then they are not shown in the Relationships
window. Consider the following set of relationships:

A --1:1--> B --1:1--> C --1:M--> D --1:1--> E --1:M--> F

(1) (2) (3) (4) (5)

If you remove relationship 3, then you see only:

A --1:1--> B

B --1:1--> C

If you remove relationship 2, then you see only:

A --1:1--> B

If you remove relationship 1, you no longer see any relationships.

Figure 9–13 shows where you can create a relationship.

Complete Walkthrough of the Adapter Configuration Wizard

Oracle JCA Adapter for Database 9-15

Figure 9–13 The Create Relationship Dialog

To create a relationship:

1. Select the parent and child tables.

2. Select the mapping type (one-to-many, one-to-one, or one-to-one with the foreign
key on the child table).

3. Associate the foreign key fields to the primary key fields.

4. Optionally name the relationship (a default name is generated).

9.2.7.1 What Happens When Relationships Are Created or Removed
When tables are initially imported into the Adapter Configuration Wizard, a TopLink
direct-to-field mapping corresponding to each field in the database is created.
Consider the schemas shown in Figure 9–14 and Figure 9–15:

Figure 9–14 EMPLOYEE Schema

Figure 9–15 ADDRESS Schema

Immediately after importing these two tables, the following mappings in the
Employee descriptor are created:

Employee:

Note: Only tables that are reachable from the root table can be
selected as a parent.

Complete Walkthrough of the Adapter Configuration Wizard

9-16 Oracle Fusion Middleware User's Guide for Technology Adapters

■ id (direct mapping to the ID field, for example, 151)

■ name (direct mapping to the NAME field, for example, Stephen King)

■ addrId (direct mapping to the ADDR_ID field, for example, 345)

When creating a relationship mapping, the direct-to-field mappings to the foreign key
fields are removed and replaced with a single relationship (one-to-one, one-to-many)
mapping. Therefore, after creating a one-to-one relationship between Employee and
Address called homeAddress, the Employee descriptor appears, as shown in the
following example:

Employee:

■ id

■ name

■ homeAddress (one-to-one mapping to the ADDRESS table; this attribute now
represents the entire Address object.)

When a relationship is removed, the direct mappings for the foreign keys are restored.

9.2.7.2 Different Types of One-to-One Mappings
When relationships are auto created, the one-to-many relationship is from the table
without the foreign key. However, you can declare this mapping, which is technically
1-many, as a 1-1. For that, choose 1-1 (foreign key on target).

9.2.7.3 When Foreign Keys Are Primary Keys
Not all tables imported are in the third normal form (3NF). In rare cases, you may have
two or more tables which share the same primary key but no separate foreign key
columns exist. It is recommended to create 1-1 (foreign key on target) relationships
from the root table to all related tables. The reason is two fold. First, if you were to
declare the primary key on the root as a foreign key (1-1, foreign key on source), then
that mapping would be removed, so you would not see the primary key in the root
record, only in the child record. Second, a foreign key can only point to a single table.
Once you declare a column to be part of a foreign key, it is removed, so it cannot be
used again in a new relationship. Creating a 1-1 (foreign key on source) on the root
table not only makes the primary key column disappear but prevents you from joining
the root table to the remaining tables.

9.2.8 Creating the Attribute Filter
Figure 9–16 shows the attribute filter that is created from the imported table
definitions, including any relationships that you may have defined.

Complete Walkthrough of the Adapter Configuration Wizard

Oracle JCA Adapter for Database 9-17

Figure 9–16 The Adapter Configuration Wizard: Attribute Filtering Page

If your object filter contains self-relationships (for example, the employee-to-employee
manager relationship), then you see these as loops in the tree. These loops are not
present in the XSD file. This is the descriptor object model, not the XSD file.

In this page, you select those columns that appear in the XML file, whether for input
(MERGE, INSERT) or output (SELECT). Columns you are not interested in or which are
to be read-only (should not be modified) can be deselected here.

See Section 9.2.9, "Defining a WHERE Clause" to continue using the Adapter
Configuration Wizard.

9.2.9 Defining a WHERE Clause
If your service contains a SELECT query (that is, inbound polling services, or
outbound services that contain a SELECT), then you can customize the WHERE clause
of the SELECT statement.

Figure 9–17 shows where you define a WHERE clause for an outbound service.

Note: When using polling with Sequencing Table/Update an
External Sequencing Table, ensure that the name of the table in
the SELECT query matches the case of the data in the sequencing
table.

Complete Walkthrough of the Adapter Configuration Wizard

9-18 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 9–17 The Adapter Configuration Wizard: Define Selection Criteria Page

The most basic expression in a WHERE clause can be one of the following three cases,
depending on what the right-hand side (RHS) is:

1. EMP.ID = 123

In this case, the RHS is a literal value. This RHS is the Literal option shown in
Figure 9–18.

2. EMP.ADDR_ID = ADDR.ID

In this case, the RHS is another database field. This RHS is the Query Key option
shown in Figure 9–18.

3. EMP.ID = ?

In this case, the RHS value must be specified at run time. This is the Parameter
option shown in Figure 9–18.

You can create the parameters that you need in the WHERE clause by clicking Add
before you move on to build the WHERE clause. To build the WHERE clause, click Edit…
to launch the Expression Builder, as shown in Figure 9–18.

Note: The WHERE clause applies to SELECT operations only (that is,
polling for new or changed records or performing a SELECT operation
on a table). It does not apply to INSERT, UPDATE, and DELETE
operations.

Complete Walkthrough of the Adapter Configuration Wizard

Oracle JCA Adapter for Database 9-19

Figure 9–18 Expression Builder

To model more complex WHERE clauses (sub selects and functions), and to add ORDER
BY clauses, you can edit the SQL procedure manually and click Next. However, this
creates maintenance overhead later on, due to hard-coded SQL, and you may lose
platform independence.

You can change the columns listed in the FROM clause when the number of columns
and the types of each remain unchanged. For more complex changes consider using
the Execute Pure SQL option directly where you can type any SQL.

Return Single Result Set
You must select Use Outer Joins to return a Single Result Set for both Master and
Detail Tables in the Define Selection Criteria page to use an advanced feature that
influences how many total statements TopLink uses when querying against multiple
related tables. The safest method is to use the default (1 per table), and this feature
attempts 1 total, by outer joining all related tables into a single result set.

See Section 9.2.10, "Choosing an After-Read Strategy" to continue using the Adapter
Configuration Wizard.

9.2.10 Choosing an After-Read Strategy
If you selected Perform an Operation on a Table, then you can skip ahead to the
Section 9.2.12, "Specifying Advanced Options.".

When configuring an inbound operation, you have the following options about what
to do after a row or rows have been read:

■ Section 9.2.10.1, "Delete the Rows That Were Read"

■ Section 9.2.10.2, "Update a Field in the Table (Logical Delete)"

■ Section 9.2.10.3, "Update a Sequencing Table"

■ Section 9.2.10.4, "Update an External Sequencing Table on a Different Database"

■ Section 9.2.10.5, "Update a Sequencing File"

Complete Walkthrough of the Adapter Configuration Wizard

9-20 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 9–19 shows these options.

Figure 9–19 The Adapter Configuration Wizard: After Read Page

See Section 9.4.2.2, "Polling Strategies" to continue using the Adapter Configuration
Wizard.

9.2.10.1 Delete the Rows That Were Read
With this option, the rows are deleted from the database after they have been read and
processed by the adapter service.

9.2.10.2 Update a Field in the Table (Logical Delete)
With this option, you update a field in the root database table to indicate that the rows
have been read. The WHERE clause of the query is updated automatically after you
complete the configuration, as shown in Figure 9–20.

Complete Walkthrough of the Adapter Configuration Wizard

Oracle JCA Adapter for Database 9-21

Figure 9–20 The Adapter Configuration Wizard: Logical Delete Page

When you use this approach, your database table appears, as shown in Figure 9–21.

Figure 9–21 Updating Fields in a Table

Note the following:

■ Rows 150 and 153 have been previously read and processed.

■ At the next polling event, row 152 is read and processed because it contains
UNPROCESSED in the Status column. Because an explicit Unread Value was
provided, row 151 is not read.

■ Row 154 has been flagged as LOCKED and is not read. You can use this reserved
value if your table is used by other processes.

9.2.10.3 Update a Sequencing Table
With this option, you are keeping track of the last-read rows in a separate sequence
table. Figure 9–22 shows the information you provide. The WHERE clause of your query
is updated automatically after you complete the configuration.

Complete Walkthrough of the Adapter Configuration Wizard

9-22 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 9–22 The Adapter Configuration Wizard: Sequencing Table Page

When you use these settings, your sequence table appears, as shown in Figure 9–23.

Figure 9–23 Updating a Sequence Table

Whenever a row is read, this table is updated with the ID that was just read. Then,
when the next polling event occurs, it searches for rows that have an ID greater than
the last-read ID (154).

Typical columns used are event_id, transaction_id, scn (system change
number), id, or last_updated. These columns typically have (monotonically)
increasing values, populated from a sequence number or sysdate.

9.2.10.4 Update an External Sequencing Table on a Different Database
Choose this operation to employ the sequencing table: last updated strategy.
Figure 9–24 shows the Adapter Configuration Wizard - External Sequencing Table
page in which you specify the details required to perform this operation.

Complete Walkthrough of the Adapter Configuration Wizard

Oracle JCA Adapter for Database 9-23

Figure 9–24 The Adapter Configuration Wizard - External Sequencing Table page

9.2.10.5 Update a Sequencing File
Use this option to update a sequencing file. Figure 9–25 shows the Adapter
Configuration Wizard - Update a Sequencing File page where you specify the details
for performing this operation.

Figure 9–25 Adapter Configuration Wizard - Update a Sequencing File Page

Complete Walkthrough of the Adapter Configuration Wizard

9-24 Oracle Fusion Middleware User's Guide for Technology Adapters

9.2.11 Specifying Polling Options
You can specify additional polling options, if any, in this page. Figure 9–26 shows the
Adapter Configuration Wizard - Polling Options page.

Figure 9–26 Specifying Polling Options

In this page, you specify details about how to poll the database table for new rows or
events.

From the Polling Frequency list, select how frequently to poll for new records or
events.

In the Database Rows per XML Document field, specify the number of rows per XML
document when sending events to Oracle BPEL PM or Mediator. This is the batch
setting between the database adapter and its consumer: Oracle BPEL PM or Mediator.

In the Database Rows per Transaction field, select Unlimited or enter a value to
indicate the number of table rows to process during a single transaction.

When polling the database for events, you can order the returned rows by the selected
column by using the Order By list. The best practice is to choose <No Ordering>, as
message ordering regardless is not guaranteed without extra configuration.

In the SQL field, if the SQL syntax is incorrect, then a message is displayed in red.

For more information about specifying polling options, click Help in the Polling
Options page or press F1.

9.2.12 Specifying Advanced Options
You can specify advanced options, if any. Figure 9–27 shows the Adapter
Configuration Wizard - Advanced Options page. In this page, you can specify
advanced JDBC and DBAdapter options, configure retries, and configure native
sequencing.

Complete Walkthrough of the Adapter Configuration Wizard

Oracle JCA Adapter for Database 9-25

Figure 9–27 Specifying Advanced Options

You must specify JDBC options in the JDBC Options section. Set low-level JDBC
options on calls to the database. The operation you selected determines which options
may appear here.

In the Auto-Retries section, specify the value for auto-retry incase of time out. In case
of a connection related fault, the Invoke activity can be automatically retried a limited
number of times. You can specify the following values in the fields in this section:

■ To retry indefinitely, type unlimited in the Attempts field.

■ Interval is the delay between retries.

■ Backoff Factor: x allows you to wait for increasing periods of time between retries.
9 attempts with a starting interval of 1 and a back off of 2 leads to retries after 1, 2,
4, 8, 16, 32, 64, 128, and 256 (28) seconds.

In the Interaction Options, specify the interaction options, as follows:

■ GetActiveUnitOfWork . Set GetActiveUnitOfWork to true when making
multiple incremental changes to the same record across multiple invokes in the
same SOA instance.

GetActiveUnitOfWork ensures that all Database Adapter invokes which
participate by setting the option to true, and which are within the same JTA
transaction, and to the same eis/DB/ instance, will use the same EclipseLink
session for all operations. For EclipseLink-based operations (excluding stored
procedures and pure SQL) all writes will be deferred until JTA before Completion.

This means if you insert/merge the same object in two invokes, it will be written
once. Since EclipseLink-based writes are deferred, a select all may not conform to
previous invokes which did writes. Selects by primary key will conform, however.
As writes happen inside the JTA callbacks, there is no way to handle exceptions
which occur at that time and BPEL's global transaction will unexpectedly
fail.GetActiveUnitOfWork is frequently used to guarantee that operations on
two invokes used the same physical SQL connection, since a connection is pinned

Complete Walkthrough of the Adapter Configuration Wizard

9-26 Oracle Fusion Middleware User's Guide for Technology Adapters

to the EclipseLink session for the duration of a transaction. However, most
application server data sources provide the same guarantee however. WebLogic
also has a similar Pinned-To-Thread property and GridLink has XA affinity, which
ensures that all writes in an XA transaction happen on the same node in an Oracle
RAC cluster. Setting this will not resolve lock contention between different SOA
instances.

If you have multiple operations on related data (such as parent-child,) try to have
them occur in the same SOA instance or even invoke. Nor will this ensure
connection reuse if the two invokes are across transaction boundaries. Make sure
in BPEL if the second DbAdapter invoke is within a sub-process, that BPEL
property bpel.config.transaction is set to required on the callee
composite level.

■ Detect Omissions allows the MERGE and INSERT operations to ignore empty or
missing XML elements in the input payload. For a MERGE operation, this prevents
valid but unspecified values from being overwritten with NULL. For INSERT
operations, they are omitted from the INSERT statement, allowing default values
to take effect.

■ Optimize Merge should always be set to true, as it is a general enhancement to
MERGE performance (using an in query for the primary key existence check).

Native Sequencing (Oracle only) allows you to specify that the primary key are
assigned from a sequence on any insert. Click Search and then select a sequence from
the Sequence list, or type the name and click Create.

For more information about specifying advanced options, click Help in the Advanced
Options page or press F1.

9.2.13 Entering the SQL String for the Pure SQL Operation
You can enter a SQL string for performing the Execute Pure SQL operation in the
Custom SQL page. Figure 9–28 shows the Adapter Configuration Wizard - Custom
SQL page.

Oracle Database Adapter Features

Oracle JCA Adapter for Database 9-27

Figure 9–28 Entering a SQL String

In the SQL field, enter a custom SQL string. An XSD schema of your SQL input is
automatically created in the XSD field.

The XSD field displays the XSD schema of the custom SQL string you entered. You can
directly edit the resulting XSD. However, if you make subsequent changes to the SQL
string, then your XSD changes are lost.

For more information about entering a SQL string, click Help in the Custom SQL page
or press F1.

9.3 Oracle Database Adapter Features
This section discusses the Oracle Database Adapter features.

It includes the following topics:

■ Section 9.3.1, "Transaction Support"

■ Section 9.3.2, "Pure SQL - XML Type Support"

■ Section 9.3.3, "Row Set Support Using a Strongly or Weakly Typed XSD"

■ Section 9.3.4, "Proxy Authentication Support"

■ Section 9.3.5, "Streaming Large Payload"

■ Section 9.3.6, "Schema Validation"

■ Section 9.3.7, "High Availability"

Oracle Database Adapter Features

9-28 Oracle Fusion Middleware User's Guide for Technology Adapters

■ Section 9.3.8, "Scalability"

■ Section 9.3.9, "Performance Tuning"

■ Section 9.3.10, "detectOmissions Feature"

■ Section 9.3.11, "OutputCompletedXml Feature"

■ Section 9.3.12, "QueryTimeout for Inbound and Outbound Transactions"

■ Section 9.3.13, "Doing Synchronous Post to BPEL (Allow In-Order Delivery)"

9.3.1 Transaction Support
The Oracle Database Adapter enables transaction support, which, along with the
inherent data processing, ensures that each modification has a clearly defined
outcome, resulting in either success or failure, thus preventing potential corruption of
data, executes independently from other changes, and, once completed, leaves
underlying data in the same state until another transaction takes place.

There are two types of transaction support, XA Transaction support and Local
Transaction support. XA transaction support allows a transaction to be managed by a
transaction manager external to a resource adapter, whereas, a local transaction
support allows an application server to manage resources that are local to the resource
adapter.

To ensure two Oracle Database Adapter invokes commit or rollback as a unit, you
must perform the following:

■ Both Oracle Database Adapter invokes must be configured to participate in global
transactions.

■ Both Oracle Database Adapter invokes must participate in the same global
transaction.

■ The failure of either invoke must cause the global transaction to roll back.

9.3.1.1 Configuring Oracle Database Adapter for Global Transaction Participation
In the deployment descriptor (weblogic-ra.xml file), you must set the
xADataSourceName parameter. Additionally, the referenced DataSource must be
configured for transaction participation by creating a data source in Oracle WebLogic
Server Console.

You must create a data source and choose a XA data sources from the list.

For information about the recommended setting for non-XA and XA data sources used
by Oracle JCA Adapters, see Section 2.20, "Recommended Setting for Data Sources
Used by Oracle JCA Adapters."

Note: You must use a non-XA driver with the
SOALocalTxDataSource parameter. Switching to an XA driver
breaks product functionality.

Note: True Database XA is only certified on Oracle 10.2.0.4 or
11.1.0.7. For earlier versions, you are safer picking a non-XA data
source implementation and selecting Emulated Two-phase commit on
the next page.

Oracle Database Adapter Features

Oracle JCA Adapter for Database 9-29

You cannot edit the data-sources.xml file in the Oracle WebLogic Server. You must
create a data source by using the Oracle WebLogic Server Administration Console, as
mentioned in Section 2.18.1, "Creating a Data Source."

9.3.1.2 Both Invokes in Same Global Transaction
Once both the Oracle Database Adapter invokes participate in global transactions, to
commit or rollback as a unit, they must be participating in the same global transaction.
In BPEL, this requires the understanding of where the transaction boundaries are, at
what points does a checkpoint have to write to the dehydration store, commit the
current global transaction, and start a new one.

The transaction boundaries in a BPEL process occur either before a Receive activity or
wait activity, or before an onMessage or pick activity. This may also occur when
invoking a synchronous child BPEL process, unless the bpel.config.transaction
property is set on the partnerlink, as shown in the following code sample.

<property name="bpel.config.transaction">required</property>

Otherwise, the parent process is broken into two transactions and the child process
runs in its own transaction.

9.3.1.3 Failure Must Cause Rollback
Finally, even if both Oracle Database Adapter invokes participate in the same global
transaction, the failure of either invoke may not cause the global transaction to
rollback.

The only cases where a failure can actually cause a global rollback are:

■ A Oracle Database Adapter operation that inserts/updates multiple tables as part
of one invoke fails after having succeeded in some writes but not others. In this
case, the Oracle Database Adapter marks the global transaction as rollback only,
because the invoke operation was not atomic and a commit could cause data
corruption.

■ The invoke retries multiple times in a database down scenario, until the global
transaction times out and is rolled back.

■ An explicit bpelx:rollback fault is thrown from within the BPEL process.

9.3.1.3.1 Using the Same Sessions for Both Invokes

You must set the GetActiveUnitOfWork JCA parameter to true to enable using the
same sessions or connections for both the Oracle Database Adapter invokes.

GetActiveUnitOfWork is an advanced JCA property you can set on any
DBInteractionSpec. It causes the invoke to register itself with the two-phase
commit callbacks, and all writes to the database are performed as part of the
two-phase commit. By setting this property on any failure, the transaction is
automatically rolled back, as there is no way to handle a fault at this late stage.
Similarly, the same underlying TopLink session is used for both invokes, meaning if
you merge the same object twice, it is inserted/updated once. All merge invokes that
set GetActiveUnitOfWork as true are cumulative.

9.3.1.4 Transaction/XA Support
To make two Oracle Database Adapter invokes commit or roll back as a unit requires
the following: both Oracle Database Adapter invokes must be configured to
participate in global transactions, both invokes must participate in the same global

Oracle Database Adapter Features

9-30 Oracle Fusion Middleware User's Guide for Technology Adapters

transaction, and the failure of either invoke must cause the global transaction to
rollback.

9.3.1.4.1 Configuring an Oracle Database Adapter for Global Transaction Participation

In the deployment descriptor (weblogic-ra.xml), you must set xADataSourceName.
The matching data source entry must be configured for global transaction
participation.

True XA: Two-Phase (XA) Versus One-Phase (Emulated) Commit
XA is a two-phase commit protocol, which is more robust than a one-phase commit or
emulated protocol. The difference is that with a one-phase protocol, you may very
rarely still see message loss or other rollback/commit inconsistency, on the order of
one per one thousand generally.

Oracle RAC Configuration
For more information about Oracle RAC configuration, see the Oracle Database High
Availability Overview guide.

True XA Configuration with Third Party Drivers
When configuring true XA for third party drivers (that is, Microsoft SQL Server 2008,
IBM DB2), see if the driver jars contain a class that implements
javax.sql.XADataSource.

For data direct drivers, the naming happens to be
com.oracle.ias.jdbcx.db2.DB2DataSource, or
com.oracle.ias.jdbcx.sqlserver.SQLServerDataSource.

9.3.1.4.2 Failure Must Cause Rollback

Finally, even if both invokes participate in the same global transaction, the failure of
either invoke may not cause the global transaction to roll back.

The only cases where a failure can actually cause a global roll back are:

■ An Oracle Database Adapter operation that inserts/updates multiple tables as
part of one invoke fails after having succeeded in some writes but not others. In
this case, the adapter marks the global transaction rollback only, as the invoke
operation was not atomic and a commit could cause data corruption.

■ The invoke retries multiple times in a database down scenario, until the global
transaction times out and is rolled back.

■ An explicit bpelx:rollback fault is thrown from within the BPEL process.
GetActiveUnitOfWork="true" in WSDL.

9.3.2 Pure SQL - XML Type Support
Pure SQL Adapter is an option in the Oracle Database Adapter Wizard that allows you
to type the SQL string directly and have an XSD/Web service generated automatically.
The database tables are introspected dynamically in the Adapter Configuration Wizard
to test the SQL and populate the XSD file better (that is, with valid return types.)

The Pure SQL support allows the Oracle Database Adapter to deal with tables/views
as entities and for dealing directly with SQL. You can use Pure SQL:

■ for simple data projection style report queries

■ in cases where the result set is not table oriented, such as select count(*)

Oracle Database Adapter Features

Oracle JCA Adapter for Database 9-31

■ to perform an update or delete all

■ when working with XMLType columns and xquery

■ when using complex SQL, which are not modeled in the Adapter Configuration
Wizard expression builder

You can use the Pure SQL Adapter with Oracle XMLTypes. It is a natural fit for
inserting XML into XMLType tables and columns, and retrieving XML using xquery
selects. Pure SQL is a natural fit for the Oracle Database Adapter that provides a
relational-xml mapping that parallels XML DB(XDB) support. So, when using XDB the
adapter should be as lightweight and transparent as possible, to let you focus on XDB
and XQuery.

If your data is in XML (unstructured/semi-structured) format, and you have no
relational schema at all that you can map your data to, then you could use XDB. The
conventional Oracle Database Adapter allows you to import an existing relational
schema as an XML schema to be used with Web services. XDBs XML shredding
algorithm can generate a relational schema from an existing XML schema for
persistent storage.

For more information, see:

■ Section 9.2.4, "Selecting the Operation Type"

9.3.3 Row Set Support Using a Strongly or Weakly Typed XSD
Currently a REF CURSOR by nature can support any arbitrary result set, so the XSD
generated at design time allows this and looks like the XSD that Example 9–1 shows.

Example 9–1 Weakly Typed XSD

<refCursorOutputParam>
<Row>

<Column name="DEPTNO" sqltype="NUMBER">20</Column>
...

</Row>
</refCursorOutputParam>

However the XML output from this is hard to use. It is very difficult to write an Xpath
expression or XSL based on a weakly typed XSD and column names as attribute values
instead of element names.

Although a row set can represent any result set, it is possible to assume for some
procedures that it has the same structure each time, and hence can be described with a
strongly typed XSD. A strongly typed XSD is almost a necessity to transform the result
set to another XSD later on. A strongly typed XSD looks like the XSD that Example 9–2

Note: Use of schema bound XMLTypes requires the oci driver,
which is not certified in the 11g release. Therefore, you must use
non-schema bound XMLTypes at run time, though you can use
schema bound XMLTypes at design time to import a representative
XSD.

Note: Oracle Database stored procedures return result sets that are
referred to as RefCursors, whereas third-party databases result sets
that are returned are referred to as RowSets.

Oracle Database Adapter Features

9-32 Oracle Fusion Middleware User's Guide for Technology Adapters

shows.

Example 9–2 Strongly Typed XSD

<refCursorOutputParam>
<dept>

<deptno>20</deptno>
...

</dept>
</refCursorOutputParam>

You can use the Adapter Configuration Wizard to create a strongly typed XSD for a
row set returned by a stored procedure or function REF CURSOR variable. An Oracle
Database function is a special stored procedure that always has one out variable, and
can be inlined - for example, inside select statements - and so traditionally does not do
updates.

Using this feature, you can select a stored procedure (or stored function), enter its
arguments, and perform a test execution to retrieve an actual row set. The Adapter
Configuration Wizard then introspects the returned row set and generates a strongly
typed XSD. You can enter arguments easily through the wizard. For example, you can
enter numbers and strings directly, dates as literals (2009/11/11), and you can even
enter structs like MYOBJ('a', 'b').

The Adapter Configuration Wizard row set support using a strongly typed XSD has
the following restrictions:

■ Oracle Database PL/SQL record or boolean types are not supported.

■ Oracle Database PL/SQL varray is not supported.

■ Oracle Database PL/SQL %rowtype is not supported.

■ Oracle Database PL/SQL table types are not supported.

■ Oracle Database PL/SQL procedures with IN only REF CURSOR parameters are
not supported.

For an Oracle Database PL/SQL procedure with REF CURSOR as an IN/OUT
parameter, the Adapter Configuration Wizard ignores the IN and generates the
strongly typed XSD based on the OUT parameter.

■ Referencing an element in the XSD using ref is not supported.

■ SQL Server 2008 table valued functions and CLR functions are not supported.

The Oracle Database Adapter supports strongly typed XSD for the following
third-party databases:

■ Microsoft SQL Server 2005

■ Microsoft SQL Server 2008

■ IBM DB2 UDB 9.7

The Oracle Database Adapter does not support strongly typed XSD for the following
third-party databases:

■ IBM DB2 AS/400

Note: Functions are not supported for IBM DB2 UDB. Only SQL
stored procedures are supported.

Oracle Database Adapter Features

Oracle JCA Adapter for Database 9-33

■ MySQL

■ Informix Dynamic Server

■ Sybase 15.0.2

For more information, see:

■ Section 9.7, "Stored Procedure and Function Support"

■ Section 9.7.7.1, "Row Set Support Using a Strongly Typed XSD"

■ Section 9.7.7.2, "Row Set Support Using a Weakly Typed XSD"

9.3.4 Proxy Authentication Support
You can connect to your Oracle data store by using Proxy Authentication. On a
per-invoke basis, you can set a combination of the following new header properties:

■ jca.db.ProxyUserName: to use the OracleConnection.PROXYTYPE_USER_
PASSWORD proxy type, set this property to the proxy user name as a
java.lang.String.

■ jca.db.ProxyPassword: to use the OracleConnection.PROXYTYPE_USER_
PASSWORD proxy type, set this property to the proxy user password as a
java.lang.String.

■ jca.db.ProxyCertificate: to use the OracleConnection.PROXYTYPE_
CERTIFICATE proxy type, set this property to a base64Binary encoded byte[]
array containing a valid certificate.

This is a more encrypted way of passing the credentials of the user, who is to be
proxied, to the database. The certificate contains the distinguished name encoded
in it. One way of generating the certificate is by creating a wallet and then
decoding the wallet to get the certificate. The wallet can be created using runutl
mkwallet. It is then necessary to authenticate using the generated certificate.

■ jca.db.ProxyDistinguishedName: to use the
OracleConnection.PROXYTYPE_DISTINGUISHED_NAME proxy type, set this
property to the proxy distinguished name as a java.lang.String.

This is a global name in lieu of the password of the user being proxied for.

■ jca.db.ProxyRoles: regardless of what proxy type you use, you can optionally
set this property to define the roles associated with the proxy user as a String[]
array where each java.lang.String corresponds to a role name.

■ jca.db.ProxyIsThickDriver: if you are using the OCI driver, set this
property to a value of true to accommodate differences in the JDBC-level API
between the thick and thin drivers.

To run the invoke, a proxy connection is obtained from the data source.

For more information, see Chapter 10, "Proxy Authentication", in the Oracle Database
JDBC Developer's Guide and Reference

9.3.5 Streaming Large Payload
To enable support to stream payload, you must select the Enable Streaming check box
while specifying polling options, as shown in Figure 9–26. When you enable this
feature, the payload is streamed to a database instead of getting manipulated in SOA
run time as in a memory DOM. You use this feature while handling large payloads.
When you select the Enable Streaming check box, a corresponding Boolean property

Oracle Database Adapter Features

9-34 Oracle Fusion Middleware User's Guide for Technology Adapters

StreamPayload is appended to the ActivationSpec properties defined in the
respective .jca file.

9.3.6 Schema Validation
The SchemaValidation [false/true] property is a new activation specification
property that has been added, and this can be configured in a .jca file. When set to
true, all XML files produced by the polling Oracle Database Adapter (for Receive
activities) is validated against the XSD file. On failure, the XML record is rejected but
still marked as processed by the Oracle Database Adapter.

Databases provide structured storage and the XSD file is generated by the Oracle
Database Adapter Wizard itself. However, if you edit the auto generated XSD and add
your own restrictions, you may want to start validation. For instance, if you import a
VARCHAR(50) field, the auto-generated XSD has the max-length 50 restriction.
However, if your BPEL process for some reason can only handle values of fixed length
22, it may want to validate the XML file.

9.3.7 High Availability
The Oracle Database Adapter supports high availability in an active-active setup. In an
active-active setup, distributed polling techniques can be used for inbound Database
Adapters to ensure that the same data is not retrieved more than once. For more
information, see Section 9.3.8.1, "Distributed Polling First Best Practice: SELECT FOR
UPDATE (SKIP LOCKED)." Similar to other adapters, an Oracle Database Adapter can
also be configured for singleton behavior within an active-passive setup. This allows a
high performance multithreaded inbound Oracle Database Adapter instance running
in an active-passive setup, to follow a fan out pattern and invoke multiple composite
instances across a cluster. The Oracle Database Adapter also supports the high
availability feature when there is a database failure or restart. The DB adapter picks up
again without any message loss.

9.3.8 Scalability
The following sections describe best practice for multiple Oracle Database Adapter
process instances deployed to multiple Oracle BPEL PM or Mediator nodes, including:

■ Section 9.3.8.1, "Distributed Polling First Best Practice: SELECT FOR UPDATE
(SKIP LOCKED)"

■ Section 9.3.8.2, "Distributed Polling Second Best Practice: Tuning on a Single Node
First"

9.3.8.1 Distributed Polling First Best Practice: SELECT FOR UPDATE (SKIP
LOCKED)
The first best practice for multiple Oracle Database Adapter process instances
deployed to multiple Oracle BPEL PM or Mediator nodes is to use the Adapter
Configuration Wizard to set both the Distributed Polling check box in the Adapter
Configuration Wizard and to set MaxTransactionSize. Increase concurrency by
setting the adapter _db.JCA property NumberOfThreads.

On an Oracle database, this automatically uses the syntax SELECT FOR UPDATE
SKIP LOCKED. Concurrent threads each try to select and lock the available rows, but
the locks are only obtained on fetch. If an about to be fetched row is locked, the next
unlocked row are locked and fetched instead. If many threads all execute the same
polling query at the same time, they should all relatively quickly obtain a disjoint
subset of unprocessed rows.

Oracle Database Adapter Features

Oracle JCA Adapter for Database 9-35

On a non-Oracle database the SELECT FOR UPDATE safely ensures that the same row
cannot be processed multiple times, however you may get less scalability. You should
consider either using additionally a partition field or the second best practice which is
essentially multi-threading on a single node with fan-out (see Section 9.3.8.2,
"Distributed Polling Second Best Practice: Tuning on a Single Node First").

When configuring this best practice, consider the following:

■ Section 9.3.8.1.1, "Configuring PollingInterval, MaxTransactionSize, and
ActivationInstances"

■ Section 9.3.8.1.2, "Partition Field"

■ Section 9.3.8.1.3, "activationInstances"

■ Section 9.3.8.1.4, "Indexing and Null Values"

■ Section 9.3.8.1.5, "Disabling Skip Locking"

■ Section 9.3.8.1.6, "MarkReservedValue"

■ Section 9.3.8.1.7, "SequencingPollingStrategy (Last Read or Last Updated)"

9.3.8.1.1 Configuring PollingInterval, MaxTransactionSize, and ActivationInstances

In a distributed scenario, each polling instance tries to balance the load by not greedily
attempting to process all unprocessed rows by itself. What that means is that at a time,
an instance only fetches at most MaxTransactionSize rows.

When using skip locking, if a full MaxTransactionSize rows are fetched, the next
MaxTransactionSize rows can be immediately fetched continuously. This is
because concurrent threads do no block each other when using skip locking, so there is
no danger of one instance fetching all the rows.

However, with skip locking disabled, all threads tries to lock the same rows, and only
one succeeds. Consequently, once this thread has processed MaxTransactionSize
rows, it pauses until the next polling interval, to allow other threads to also lock and
process rows.

Hence, the maximum throughput with distributed polling enabled but uses
SkipLocking disabled is:

NumberOfThreads x MaxTransactionSize/PollingInterval

For load balancing purposes, it is dangerous to set the MaxTransactionSize too
low in a distributed environment with skip locking disabled (where
MaxTransactionSize becomes a speed limit). It is best to set the
MaxTransactionSize close to the per CPU throughput of the entire business
process. This way, load balancing occurs only when you need it.

Note: A distributed approach is required to insure that multiple
activation instances do not process the same rows.

Note: Although you may want to increase MaxTransactionSize,
if you increase it too high, you may start to see transaction timeouts.
Table 9-2 lists safe values for MaxTransactionSize.

Oracle Database Adapter Features

9-36 Oracle Fusion Middleware User's Guide for Technology Adapters

For load balancing purposes, it is dangerous to set the MaxTransactionSize too
low in a distributed environment (where it becomes a speed limit). It is best to set the
MaxTransactionSize close to the per CPU throughput of the entire business
process. This way, load balancing occurs only when you need it.

If distributed polling is not set, then the adapter tries to process all unprocessed rows
in a single polling interval.

9.3.8.1.2 Partition Field In a distributed scenario there are polling instances on multiple
servers, however, per server there can be multiple threads configured. You can
configure these activation instances to cooperate somewhat by processing separate
rows, possibly improving scaling.

To so, simply add the property PartitionField to your db.jca file:

<property name="PartitionField" value="ID"/>

If you set activationInstances to 2, then activation instances 1 and 2 (or 0 and 1)
would respectively execute:

SELECT ... WHERE ... AND MOD (ID, 2) = 0 FOR UPDATE SKIP LOCKED

and

SELECT ... WHERE ... AND MOD (ID, 2) = 1 FOR UPDATE SKIP LOCKED

Activation instance 0 still conflicts with other activation instances with this ID on other
servers, but at least it does not conflict with other activation instances with ID 1.

Ensure that the partition field is numeric and that applying mod evenly distribute the
rows (that is, in this case make sure all the IDs are not either even or odd).

On Oracle Database, you can set the partition field to be rowid by setting db.jca file
property PartitionField as follows:

 <property name="PartitionField" value="rowid"/>

Then the SQL is in fact converted to:

SELECT ... WHERE ... AND MOD (dbms_rowid.rowid_row_number(rowid), 2) = [0/1] FOR
UPDATE SKIP LOCKED

Because Oracle Database skip locking provides scalability, setting a partition field is
not recommended. There is a cost of increased database CPU usage with more
complex SQL.

9.3.8.1.3 activationInstances T

The adapter framework level property activationInstances (configured in
composite.xml) is interchangeable with NumberOfThreads for distributed
scenarios.

Table 9–2 MaxTransactionSize and MaxRaiseSize Values

MaxTransactionSize MaxRaiseSize Description

10 1 When using sequential routing.

For 10 rows you have 10 individual instances and 10
XML records passing through SOA.

100 When using parallel routing.

>= 100 MaxTransactionSize When using the adapter to stream rows through as fast
as possible.

Oracle Database Adapter Features

Oracle JCA Adapter for Database 9-37

Setting activationInstances to 5 and NumberOfThreads to 5 is equal to setting
one to 25 and the other to 1. As the extra work instances are created outside of the
DbAdapter, they do not cooperate in any way. Hence, in a multi-threaded single node
scenario, always configure NumberOfThreads only. Without database level
concurrency control through enabling distributed polling, duplicates are read.

For more information, see Section 2.13, "Singleton (Active/Passive) Inbound Endpoint
Lifecycle Support Within Adapters".

9.3.8.1.4 Indexing and Null Values Try to index (and/or add explicit constraints on the
database for) the primary and all foreign keys to joined tables. If using Logical delete
polling, try to index the status column. Try to configure a non-null
MarkUnreadValue and MarkReadValue.

For optimal performance all operations (excluding INSERT) on the outbound Database
Adapter, you should create an index in the database on the column that is selected as
the primary key for the Database Adapter.

If you have no indexes at all and prefer to have none, you can proceed with the single
node multi-threaded approach (see Section 9.3.8.2, "Distributed Polling Second Best
Practice: Tuning on a Single Node First"). That way the polling query is executed once,
which might be a full table scan, but multiple threads help to exhaust the entire result
set until all rows are processed. With a distributed approach all work must be done
while the rows are exclusively locked, which means locked in a timed transaction. In a
distributed scenario there are many repeated selects, which may harm performance if
each one is doing a full table scan.

9.3.8.1.5 Disabling Skip Locking Skip locking has been available on Oracle Database
since Oracle 8 but is documented in Oracle 11. You rarely come across an incompatible
feature and have to disable it. In that case you can set the Oracle Database Adapter
connector property usesSkipLocking to false in the ra.xml file you deploy with
your application as Example 9–3 shows.

Example 9–3 Configuring usersSkipLocking in ra.xml

<?xml version="1.0" encoding="UTF-8"?>
<connector xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd" version="1.5">

...
<resourceadapter>

<outbound-resourceadapter>
<connection-definition>

...
<config-property>

Note: In a distributed cluster scenario configuring
NumberOfThreads or activationInstances has the same effect.
For a non distributed scenario, you must use NumberOfThreads.
Hence it is safe to always use NumberOfThreads and disregard
activationInstances.

Note: Performance is very slow if MarkUnreadValue is configured
as null.

Oracle Database Adapter Features

9-38 Oracle Fusion Middleware User's Guide for Technology Adapters

<config-property-name>usesSkipLocking</config-property-name>
<config-property-type>java.lang.Boolean</config-property-type>

<config-property-value>false</config-property-value>
</config-property>

...
</connection-definition>

...
</outbound-resourceadapter>

</resourceadapter>
</connector>

For more information on how to configure connector-level properties, see:

■ "Configuring the ra.xml File" in the Oracle Fusion Middleware Programming Resource
Adapters for Oracle WebLogic Server

■ "Packaging and Deploying Resource Adapters" in the Oracle Fusion Middleware
Programming Resource Adapters for Oracle WebLogic Server

9.3.8.1.6 MarkReservedValue If you are using Logical Delete polling and you set
MarkReservedValue, skip locking is not used.

Formerly, the best practice for multiple Oracle Database Adapter process instances
deployed to multiple Oracle BPEL Process Manager or Oracle Mediator nodes was
essentially using LogicalDeletePollingStrategy or
DeletePollingStrategy with a unique MarkReservedValue on each polling
node, and setting MaxTransactionSize.

However with the introduction of skip locking in this release, that approach has now
been superseded. If you were using this approach previously, you can simply remove
(in db.jca) or clear (Logical Delete Page of wizard) the MarkReservedValue, and
you automatically get skip locking.

The benefits of using skip locking over a reserved value include:

■ Skip locking scales better in a cluster and under load.

■ All work is in one transaction (as opposed to update/reserve, then commit, then
select in a new transaction), so the risk of a non-recoverable situation in an HA
environments is minimized.

■ No unique MarkReservedValue must be specified. For this to work you had to
configure a complex variable like
R${weblogic.Name-2}-${IP-2}-${instance}.

9.3.8.1.7 SequencingPollingStrategy (Last Read or Last Updated)

This distributed approach works with Delete or Logical Delete based polling
strategies.

The work of the sequencing polling based strategies cannot be distributed as records
are initially processed in order.

For example, the second row cannot be marked as processed ahead of the first (setting
last read ID to 2 means not just that 2 has been processed but 1 also).

However, as the sequencing polling strategies are non-intrusive, requiring no post
updates or deletes to the source tables, they are extremely fast.

Use sequencing polling strategies with a single node and with fan-out on a cluster. It is
still safe to use in a cluster; however, the select for update is instead applied on
accessing the last read ID in the helper table.

Oracle Database Adapter Features

Oracle JCA Adapter for Database 9-39

9.3.8.2 Distributed Polling Second Best Practice: Tuning on a Single Node First
The next best practice for multiple Oracle Database Adapter process instances
deployed to multiple Oracle BPEL PM or Mediator nodes is to tune on a single node
first.

For an Oracle Database Adapter intensive process, such as a database-database
integration, performance can be improved by a factor 10 or 100 just by tuning on a
single Java Virtual Machine (JVM), scaling |NumberOfThreads|, and setting high
values for MaxTransactionSize and MaxRaiseSize.

As Section 9.3.8.1, "Distributed Polling First Best Practice: SELECT FOR UPDATE
(SKIP LOCKED)" describes, there may be times where it is best to improve
performance on a single node, and then optionally do fan-out to multiple nodes in a
cluster. Relying on concurrency control features of the database such as locking can be
great, but these are often designed more for preserving data integrity than for high
performance scalability.

Cases where it may be best to do polling on a single node in the cluster include using
the non-intrusive Sequencing Polling strategy, polling large un-indexed tables, or
using a non-Oracle back-end database that does not provide high concurrency locks
like skip locks.

You can also refer to Section 2.13, "Singleton (Active/Passive) Inbound Endpoint
Lifecycle Support Within Adapters".

9.3.9 Performance Tuning
The Oracle Database Adapter is preconfigured with many performance optimizations.
You can, however, make some changes to reduce the number of round trips to the
database by implementing performance tuning.

For information about performance tuning, see:

■ "Oracle JCA Adapter for Database Tuning" in the Oracle Fusion Middleware
Performance and Tuning Guide

■ "Inbound Database Adapter Tuning" in the Oracle Fusion Middleware
Performance and Tuning Guide

9.3.10 detectOmissions Feature
The following are the features of the detectOmission feature:

Available Since
Release 10.1.3

Configurable
Yes

Default Value
Design Time: true, unless explicitly set to false

Note: For the Oracle Database Adapter with polling operation in a
clustered environment, you must use the option of distributed polling
by selecting the Distributed Polling check box in the Adapter
Configuration Wizard.

Oracle Database Adapter Features

9-40 Oracle Fusion Middleware User's Guide for Technology Adapters

Use Case
Users may pass incomplete or partial XML to a merge, update, or insert, and see that
every column they left unspecified in XML is set to null in the database.

It allows DBAdapter merge, insert, or update to differentiate between null value and
the absence of a value (omission) in XML documents. On a case by case basis, it
determines which information in XML is meaningful and which is not. In this way
XML is seen as a partial representation of a database row, as opposed to a complete
representation. The following table lists examples for null values, and values that can
be omitted.

A value considered omitted is omitted from UPDATE or INSERT SQL. For an update
operation, existing (meaningful) values on the database are not overwritten. For an
insert operation, the default value on the database is used, as no explicit value is
provided in the SQL string.

A DBAdapter receive is not able to produce XML with omissions, and makes use of
xsi:nil="true". If you are unable to produce input XML with xsi:nil="true",
or are concerned about the difference between <director /> and
<director></director>, then it is best to set DetectOmissions="false" in the
JCA file.

When you are expecting an update, you can improve performance, by omitting 1-1
and 1-M relationships. Because the merge operation can skip considering the detail
records completely.

Alternatively, map only those columns that you are interested in, and create separate
mappings for different invokes. If two updates should update two different sets of
columns, create two separate partnernlinks.

Performance
By default, XML is not used as an input to the Oracle Database Adapter containing
omissions. Until an XML with omissions is detected, there is no performance overhead.
Once omissions are detected, a TopLink descriptor event listener is added.
This event listener has some overhead, and every modifyRow about to become a
SQLUpdate or SQLInsert must be iterated over, to check for omissions. Hence,

Table 9–3 Examples for Null Values

Element Type Omission Null

Column <director></director>

<director />

<!-- director>…</director
-->

<director xsi:nil="true" />

1-1 <!-- dept> … </dept --> <dept xsi:nil="true" />

1-M <!-- empCollection>…

</empCollection -->

</empCollection>

</empCollection> (empty)

Note: The 1-1 representation <dept /> denotes an empty
department object and should not be used. For 1-M,
<empCollection /> actually means a collection of 0 elements and
is considered a meaningful value.For columns,
<director></director> is not considered an omission in cases
where it represents an empty string.

Oracle Database Adapter Features

Oracle JCA Adapter for Database 9-41

every column value sent to the database is checked. If the input XML has mostly
omissions, then the cost overhead should be more than compensated by sending fewer
values to the database.

Incompatible Interactions
DirectSQL="true" and DetectOmissions="true" - DetectOmissions takes
precedence. The following are some examples for incompatible interactions:

■ DetectOmissionsMerge

■ IgnoreNullsMerge

■ OptimizeMerge

See the following for more information:

You can also access the forums from Oracle Technology Network at

■ The Oracle BPEL Process Manager forum at

http://forums.oracle.com/forums/forum.jspa?forumID=212

■ The TopLink forum at

http://forums.oracle.com/forums/forum.jspa?forumID=48

This site contains over 2,000 topics, such as implementing native sequencing,
optimistic locking, and JTA-managed connection pools with TopLink

http://www.oracle.com/technology

9.3.11 OutputCompletedXml Feature
OutputCompletedXml is a feature of the outbound insert activity. The following
are some of the features of the OutputCompletedXml feature:

Available Since
Release 10.1.2.0.2

Configurable
OutputCompletedXml appears in the JCA file only when default is true.

Default Value
It is true when TopLink sequencing is configured to assign primary keys on insert
from a database sequence, otherwise it is false.

Issue
You can have primary keys auto-assigned on insert from a database sequence.
However, the usefulness of this feature is diminished, because insert/merge have
no output message, so there is no way to tell which primary keys were assigned.

Note: For migrated old BPEL project, you must re-run the Database
Adapter Wizard to regenerate the JCA file. When re-run the Database
Adapter Wizard, the DetectOmissions and OptimizeMerge
options appear in the JCA file with default values as
DetectOmissions="false" and OptimizeMerge="false".

Oracle Database Adapter Concepts

9-42 Oracle Fusion Middleware User's Guide for Technology Adapters

Performance
An output XML is provided only when the output XML would be significantly
different, so if TopLink sequencing is not used, then this feature is disabled and there
is no performance hit. Further, this feature can be explicitly disabled. Likewise, the
original input XML is updated and returned; a completely new XML is not built. Also
only a shallow update of the XML is performed; if primary keys were assigned to detail
records, then these are not reflected in the output XML.

Incompatible Interactions
DirectSQL="true" and "OutputCompletedXml" - OutputCompletedXml takes
precedence.

9.3.12 QueryTimeout for Inbound and Outbound Transactions
You can configure QueryTimeout from the Adapter Configuration Wizard-
Advanced Options page. This feature exposes the java.sql.Statement level
property of the same name. Essentially, QueryTimeout allows you to configure a
timeout on the call.

9.3.13 Doing Synchronous Post to BPEL (Allow In-Order Delivery)
In this feature, the entire invocation is in a single thread and global transaction. By
default, initiation is asynchronous and the BPEL process is invoked in a separate
global transaction. With Oracle Mediator, it is generally a synchronous invoke so this
is only specific to an Oracle BPEL process.

To enable this feature, click the Do Synchronous Post to BPEL (Allow In-Order
Delivery) option in the Adapter Configuration Wizard - Operation page.

9.4 Oracle Database Adapter Concepts
This section includes the following topics related to Oracle Database Adapter
Concepts:

■ Section 9.4.1, "Relational-to-XML Mapping"

■ Section 9.4.2, "SQL Operations as Web Services"

9.4.1 Relational-to-XML Mapping
This section includes the following topics related to Relational-to-XML mapping:

■ Section 9.4.1.1, "Relational Types to XML Schema Types"

■ Section 9.4.1.2, "Mapping Any Relational Schema to Any XML Schema"

■ Section 9.4.1.3, "Querying over Multiple Tables"

For a flat table or schema, the relational-to-XML mapping is easy to see. Each row in
the table becomes a complex XML element. The value for each column becomes a text
node in the XML element. Both column values and text elements are primitive types.

Note: After configuring sequencing (link), run the Adapter
Configuration Wizard again so that the insert/merge WSDL
operations can be regenerated with an output message, and WSDL
property OutputCompletedXml="true".

Oracle Database Adapter Concepts

Oracle JCA Adapter for Database 9-43

Table 9–4 shows the structure of the MOVIES table. This table is used in the use cases
described in this chapter. See Oracle Database Adapter Use Cases for more
information.

The corresponding XML schema definition (XSD) is as follows:

<?xml version = '1.0' encoding = 'UTF-8'?>
<xs:schema targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/db/top
/ReadS1" xmlns="http://xmlns.oracle.com/pcbpel/
adapter/db/top/ReadS1" elementFormDefault=
"qualified" attributeFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="MoviesCollection" type="MoviesCollection"/>
 <xs:complexType name="MoviesCollection">
 <xs:sequence>
 <xs:element name="Movies" type="Movies" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Movies">
 <xs:sequence>
 <xs:element name="title">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="50"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="director" minOccurs="0" nillable="true">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="20"/>
 </xs:restriction>

Table 9–4 MOVIES Table Description

Name Null? Type

TITLE NOT NULL VARCHAR2(50)

DIRECTOR -- VARCHAR2(20)

STARRING -- VARCHAR2(100)

SYNOPSIS -- VARCHAR2(255)

GENRE -- VARCHAR2(70)

RUN_TIME -- NUMBER

RELEASE_DATE -- DATE

RATED -- VARCHAR2(6)

RATING -- VARCHAR2(4)

VIEWER_RATING -- VARCHAR2(5)

STATUS -- VARCHAR2(11)

TOTAL_GROSS -- NUMBER

DELETED -- VARCHAR2(5)

SEQUENCENO -- NUMBER

LAST_UPDATED -- DATE

Oracle Database Adapter Concepts

9-44 Oracle Fusion Middleware User's Guide for Technology Adapters

 </xs:simpleType>
 </xs:element>
 <xs:element name="starring" minOccurs="0" nillable="true">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="100"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="synopsis" minOccurs="0" nillable="true">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="255"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="genre" minOccurs="0" nillable="true">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="70"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="runTime" type="xs:decimal" minOccurs="0"
 nillable="true"/>
 <xs:element name="releaseDate" type="xs:dateTime" minOccurs="0"
 nillable="true"/>
 <xs:element name="rated" minOccurs="0" nillable="true">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="6"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="rating" minOccurs="0" nillable="true">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="4"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="viewerRating" minOccurs="0" nillable="true">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="5"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="status" minOccurs="0" nillable="true">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="11"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="totalGross" type="xs:decimal" minOccurs="0"
 nillable="true"/>
 <xs:element name="deleted" minOccurs="0" nillable="true">
 <xs:simpleType>
 <xs:restriction base="xs:string">

Oracle Database Adapter Concepts

Oracle JCA Adapter for Database 9-45

 <xs:maxLength value="5"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="sequenceno" type="xs:decimal" minOccurs="0"
 nillable="true"/>
 <xs:element name="lastUpdated" type="xs:dateTime" minOccurs="0"
 nillable="true"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

As the preceding code example shows, MOVIES is not just a single CLOB or XMLTYPE
column containing the entire XML string. Instead, it is an XML complexType
comprising elements, each of which corresponds to a column in the MOVIES table. For
flat tables, the relational-to-XML mapping is straightforward.

Table 9–5 and Table 9–6 show the structure of the EMP and DEPT tables, respectively.
These tables are used in the MasterDetail use case. See Oracle Database Adapter
Use Cases for more information.

As the preceding table definitions show, and as is typical of a normalized relational
schema, an employee's department number is not stored in the EMP table. Instead, one
of the columns of EMP (DEPTNO) is a foreign key, which equals the primary key
(DEPTNO) in DEPT.

However, the XML file equivalent has no similar notion of primary keys and foreign
keys. Consequently, in the resulting XML file, the same data is represented in a
hierarchy, thereby preserving the relationships by capturing the detail record
embedded inside the master.

An XML element can contain elements that are either a primitive type (string,
decimal), or a complex type, that is, another XML element. Therefore, an employee
element can contain a department element.

Table 9–5 EMP Table Description

Name Null? Type

EMPNO NOT NULL NUMBER(4)

ENAME -- VARCHAR2(10)

JOB -- VARCHAR2(9)

MGR -- NUMBER(4)

HIREDATE -- DATE

SAL -- NUMBER(7,2)

COMM -- NUMBER(7,2)

DEPTNO -- NUMBER(2)

Table 9–6 DEPT Table Description

Name Null? Type

DEPTNO NOT NULL NUMBER(2)

DNAME -- VARCHAR2(14)

LOC -- VARCHAR2(13)

Oracle Database Adapter Concepts

9-46 Oracle Fusion Middleware User's Guide for Technology Adapters

The corresponding XML shows how the relationship is materialized, or shown inline.
DEPTNO is removed from EMP, and instead you see the DEPT itself.

<EmpCollection>
 <Emp>
 <comm xsi:nil = "true" ></comm>
 <empno >7369.0</empno>
 <ename >SMITH</ename>
 <hiredate >1980-12-17T00:00:00.000-08:00</hiredate>
 <job >CLERK</job>
 <mgr >7902.0</mgr
 <sal >800.0</sal>
 <dept>
 <deptno >20.0</deptno>
 <dname >RESEARCH</dname>
 <loc >DALLAS</loc>
 </dept>
 </Emp>
 ...
</EmpCollection>

Materializing the relationship makes XML human readable and allows the data to be
sent as one packet of information. No cycles are allowed in the XML file; therefore, an
element cannot contain itself. This is handled automatically by the Oracle Database
Adapter. However, you may see duplication (that is, the same XML detail record
appearing more than once under different master records). For example, if a query
returned two employees, both of whom work in the same department, then, in the
returned XML, you see the same DEPT record inline in both the EMP records.

Therefore, when you import tables and map them as XML, it is recommended that you
avoid excessive duplication, although the Oracle Database Adapter does not print an
element inside itself. The Oracle Database Adapter prints the following:

<Emp>
 <name>Bob</name>
 <spouse>
 <name>June</name>
 </spouse
</Emp>

But not:

<Emp>
 <name>Bob</name>
 <spouse>
 <name>June</name>
 <spouse>
 <name>Bob</name>
 <spouse>
 ...
 </spouse>
 </spouse>
 </spouse>
</Emp>

To avoid duplication, you can do the following:

■ Import fewer tables. If you import only EMP, then DEPT does not appear.

■ Remove the relationship between EMP and DEPT in the Adapter Configuration
Wizard. This removes the relationship, but the foreign key column is put back.

Oracle Database Adapter Concepts

Oracle JCA Adapter for Database 9-47

In both these cases, the corresponding XML is as follows:

<EmpCollection>
 <Emp>
 <comm xsi:nil = "true" ></comm>
 <empno >7369.0</empno>
 <ename >SMITH</ename>
 <hiredate >1980-12-17T00:00:00.000-08:00</hiredate>
 <job >CLERK</job>
 <mgr >7902.0</mgr>
 <sal >800.0</sal>
 <deptno >20.0</deptno>
 </Emp>
 ...
</EmpCollection>

Either preceding solution is feasible only if returning foreign key suffices, as opposed
to getting back the complete detail record in its entirety.

9.4.1.1 Relational Types to XML Schema Types
Table 9–7 shows how database data types are converted to XML primitive types when
you import tables from a database.

Table 9–7 Mapping Database Data Types to XML Primitive Types

Database Type XML Type (Prefixed with xs:)

VARCHAR, VARCHAR2, CHAR, NCHAR,
NVARCHAR, NVARCHAR2, MEMO, TEXT,
CHARACTER, CHARACTER VARYING,
UNICHAR, UNIVARCHAR, SYSNAME,
NATIONAL CHARACTER, NATIONAL CHAR,
NATIONAL CHAR VARYING, NCHAR
VARYING, LONG, CLOB, NCLOB,
LONGTEXT, LONGVARCHAR, NTEXT

string

BLOB, BINARY, IMAGE,
LONGVARBINARY, LONG RAW,
VARBINARY, GRAPHIC, VARGRAPHIC,
DBCLOB, BIT VARYING

base64Binary

BIT, NUMBER(1) DEFAULT 0, SMALLINT
DEFAULT 0, SMALLINT DEFAULT 0

boolean

TINYINT, BYTE byte

SHORT, SMALLINT short

INT, SERIAL int

INTEGER, BIGINT integer

NUMBER, NUMERIC, DECIMAL, MONEY,
SMALLMONEY, UNIQUEIDENTIFIER

decimal

FLOAT FLOAT16, FLOAT(16), FLOAT32,
FLOAT(32), DOUBLE, DOUBLE PRECIS,
REAL

double

TIME, DATE, DATETIME, TIMESTAMP,
TIMESTAMP(6), SMALLDATETIME,
TIMESTAMPTZ, TIMESTAMPLTZ,
TIMESTAMP WITH TIME ZONE,
TIMESTAMP WITH LOCAL TIME ZONE

dateTime

Oracle Database Adapter Concepts

9-48 Oracle Fusion Middleware User's Guide for Technology Adapters

Essentially, NUMBER goes to DECIMAL, the most versatile XML data type for numbers,
VARCHAR2 and CLOB to string, BLOB to base64Binary (to meet the plain-text
requirement), and date types to dateTime.

Any type not mentioned in this discussion defaults to java.lang.String and
xs:string. Time Stamp support is basic, because only the xs:dateTime format is
supported. The BFILE type is specifically not supported.

Because XML is plain text, BLOB and byte values are base 64/MIME encoded so that
they can be passed as character data.

9.4.1.2 Mapping Any Relational Schema to Any XML Schema
The Oracle Database Adapter supports mapping any relational schema on any
relational database to an XML schema, although not any XML schema of your choice,
because the Adapter Configuration Wizard generates the XML schema with no explicit
user control over the layout of the elements. You can control how you map the schema
in both the Adapter Configuration Wizard and later in TopLink Workbench. By pairing
the Oracle Database Adapter with a transformation step, you can map any relational
schema to any XML schema.

9.4.1.3 Querying over Multiple Tables
When executing a SQL select statement against multiple related tables there are the
following three methods to build the SQL. These ways relate to how to pull in the
detail records when the query is against the master record:

■ Section 9.4.1.3.1, "Using Relationship Queries (TopLink Default)"

■ Section 9.4.1.3.2, "Twisting the Original Select (TopLink Batch-Attribute Reading)"

■ Section 9.4.1.3.3, "Returning a Single Result Set (TopLink Joined-Attribute
Reading)"

■ Section 9.4.1.3.4, "Comparison of the Methods Used for Querying over Multiple
Tables"

The following sections contain an outline of these three methods and their
comparison. When selecting rows from a single table there are no issues different from
selecting from multiple tables.

9.4.1.3.1 Using Relationship Queries (TopLink Default)

Having selected a Master row, TopLink can always query separately to get all the
details belonging to that Master table. These hidden queries (relationship queries) are
cached in the TopLink metadata and must be prepared only once.

Consider the SQL statement in following sample scenario:

SELECT DIRECTOR, ..., VIEWER_RATING
 FROM MOVIES
WHERE RATING = 'A';

For each master, the SQL statement is as follows:

SELECT CRITIC, ..., TITLE
 FROM MOVIE_REVIEWS

Note: The user-defined Object, Struct and VARRAY, and REF
types are supported in 11g.

Oracle Database Adapter Concepts

Oracle JCA Adapter for Database 9-49

WHERE (TITLE = ?)

It enables you to bring in all the data with 1 + n query executions, where n is the
number of master rows returned by the first query.

This approach is safe but slow, as a large number of round trips to the database are
required to pull in all the data.

For configuring using the relationship Queries (TopLink default) approach, you must
edit or_mappings.xml outside of JDeveloper. In addition, change the batch-reading
elements value to false.

9.4.1.3.2 Twisting the Original Select (TopLink Batch-Attribute Reading)

This is a default feature that allows TopLink to alter the original SQL select
statement to read all the details in a second select statement, as shown in the
following example:

SELECT DIRECTOR, ..., VIEWER_RATING
FROM MOVIES
WHERE RATING = 'A'
SELECT DISTINCT t0.CRITIC, ..., t0.TITLE
FROM MOVIE_REVIEWS t0, MOVIES t1
WHERE ((t1.RATING = 'A') AND (t0.TITLE = t1.TITLE))

By considering the original select statement in pulling in the details, a total of two (1
+ 1 = 2) query executions must be performed.

Advantages

Batch attribute reading has the following advantages:

■ All data read in two round trips to database

■ The is a default feature in the 10.1.2.0.2 release

Disadvantages

Batch attribute reading has the following disadvantages:

■ When using maxTransactionSize (on polling receive) or maxRows (on invoke
select) to limit the number of rows loaded into memory at a time, these settings do
not easily carry over to the batch attribute query. It is easier to work with a
cursored result when there is only a single result set. (Multiple cursors can be used
with difficulty, if the original query has an order by clause).

■ TopLink can alter a SQL statement, only when it is in a format it can understand.
If you use the hybrid SQL approach and set custom SQL for the root select, then
TopLink cannot interpret that SQL to build the batch select.

■ The DISTINCT clause is used on the batch query, to avoid returning the same
detail twice if two masters happen to both point to it. The DISTINCT clause
cannot be used when returning LOBs in the resultset.

Configuration

Configuration is on a per 1-1 or 1-M mapping basis. By default, all such mappings
since the 10.1.2.0.2 release have this property set. To configure, edit or_
mappings.xml outside JDeveloper and edit the <batch-reading> elements to true
(default) or false.

9.4.1.3.3 Returning a Single Result Set (TopLink Joined-Attribute Reading)

Oracle Database Adapter Concepts

9-50 Oracle Fusion Middleware User's Guide for Technology Adapters

The detail tables are outer-joined to the original SQL select statement, returning
both master and detail in a single result set, as shown in the following example:

SELECT DISTINCT t1.DIRECTOR, ..., t1.VIEWER_RATING, t0.CRITIC, ..., t0.TITLE
FROM MOVIE_REVIEWS t0, MOVIES t1
WHERE ((t1.RATING = 'A') AND (t0.TITLE (+) = t1.TITLE))

This requires one query execution in total.

Advantages

The advantages include the following:

■ In case of using maxTransactionSize while polling, the benefits of dealing with
a single cursor can be great.

■ When following the hybrid SQL route and entering custom SQL statements, you
only have to deal with a single SQL statement, whereas TopLink normally uses a
series of additional hidden SQL statements to bring in related rows.

■ read consistency: Enables you to read all related rows at the same time, and not at
different instances in time for the different tables.

■ Performance can be ideal as only a single round trip to the database is required,
whereas batch attribute reading requires one for each table queried.

Disadvantages

There are some drawbacks, however, namely the cost of returning duplicate data. For
example, consider that you read the Master and Detail tables; Master has 100
columns in each row, and Detail has 2 columns in each row. Each row in the table,
Master also, typically has 100 related Detail rows.

With one query in each table, the result sets for the preceding example appears, as
shown in the following example:

Master
Column1 column2 ….. column100

Master1 ...

Detail

Detail
Column1 column2
Detail1 ...
Detail2
...
Detail100 ...

In this example, 300 column values are returned as shown:

(columns in master + columns in detail x details per master) =
(100 + 2 x 100
) = 300

With one query for all tables, the result set appears, as shown in the following
example:

Master Detail

Column1 Column2 ... Column100 Column1 Column2
Master1 ... Detail1 ...
Master1 ... Detail2 ...

Oracle Database Adapter Concepts

Oracle JCA Adapter for Database 9-51

Master1 ... Detail100 ...

When there is one query for all tables, 10,200 column values are returned in a single
result set, versus 300 in two result sets, as shown here:

((columns in master + columns in detail) x details per master) =
((100 + 2) x 100) = 10,200

This can have a serious drain on network traffic and computation because 97 percent
of the data returned is duplicate data. Also, if the master had two related tables
detail1 and detail2 and there were 100 each in each master, then the number of
column values returned would be over 10 million per master row.

In general, you can use the following simple formula to estimate the relative cost of
returning all rows in a single result set:

 (Master columns + Detail1 columns + Detail2 columns + ...) x
 Detail1s per Master x
 Detail2s per Master x ...
bloat = ___

 (Master columns + Detail1 columns X Detail1s per Master +
 Detail2 columns X Detail2s per Master + ...)

For 1-1 relationships, this value is always 1, and if in the same example each master
had two columns only and the details had 100 columns instead, and each master had
only 3 or 4 details each, then the bloat would be

 (2 + 100) x 4 408
bloat = ____________ = ___________ ~= 1
 (2 + 100 x 4) 402

Another disadvantage is that this setting could distort the meaning of the maxRows
setting on an outbound select.

Configuration

To configure, select Use Outer Joins to return a Single Result Set for both Master and
Detail Tables on the Adapter Configuration Wizard - Define Selection Criteria page.

Oracle Database Adapter Concepts

9-52 Oracle Fusion Middleware User's Guide for Technology Adapters

9.4.1.3.4 Comparison of the Methods Used for Querying over Multiple Tables

Superficially, returning a single result set looks best (1 query), followed by batch
attribute reading (altering the select statement: 2 queries), and finally by default
relationship reading (n + 1 queries). However, there are several pitfalls to both of the
more advanced options, as explained below:

Altering User-Defined SQL

If you specify custom/hybrid SQL, the TopLink cannot alter that SQL string to
build the details select. For this reason, you must avoid using hybrid SQL and
build selects using the wizards' visual expression builder as often as
possible.

Show Me the SQL

The additional queries executed by TopLink in both, the default and the batch
attribute reading cases can be somewhat of a mystery to users. For this reason, the raw
SQL shown to users in the Adapter Configuration Wizard assumes returning a single
result set, to make things clearer and also to improve manageability.

Returning Too Many Rows At Once

Databases can store vast quantities of information, and a common pitfall of select
statements which return too much information at once. On a DBAdapter receive, a

Note:

When you create a SQL query such as the following by using the
TopLink Expression Builder, the result may not be as expected:

SELECT DISTINCT t1.TABLE1_ID, t1.COLUMN_A FROM TABLE2 t0,
TABLE1 t1 WHERE ((t0.STATUS = 1) AND (t0.TABLE1_ID = t1.
TABLE1_ID))

The expected result for this query is that only rows with Table 1's and
their owned Table 2's with status = 1 be returned.

However, what this query actually translates to is "table 1's, where any
of its table 2's have status = 1," resulting in the return of table 1's that
match the selection criteria, and ALL of the table 2's they own,
including those with other statuses, whether or not their statuses =1.
The DISTINCT keyword ensures the table 1's are not repeated and the
join happens across table 2.

The misunderstanding happens in the way Toplink works. Through
the Expression Builder, you can only specify a selection criteria for
Table 1 and have no control over the Table 2's they own, this part is
automatically done.

However, you can get the expected result by using either of the
following two approaches:

1.) Query directly for table 2 using the selection criteria of status = 1,
that is, do not go through table 1 and get the table 2's they own.

2.) Use direct (custom SQL), as shown in the following example:

SELECT TABLE1.TABLE1_ID, TABLE1.COLUMN_A, TABLE2.STATUS
FROM TABLE2, TABLE1 WHERE TABLE2.STATUS=1 AND TABLE1.
TABLE1_ID = TABLE2.TABLE1_ID

Oracle Database Adapter Concepts

Oracle JCA Adapter for Database 9-53

maxTransactionSize property can be set to limit the number of rows which are
read from a cursored result set and processed in memory at a time. A similar
max-rows setting exists for one time invoke select statements. However, this
setting is very risky.

9.4.2 SQL Operations as Web Services
After mapping a relational schema as XML, you must also map basic SQL operations
as Web services. Each operation discussed in the following sections has a
corresponding tutorial and a readme file. It is recommended that you start with these
and try to run one or more as you read this section. As the tutorials demonstrate, some
operations translate directly to the SQL equivalent, while others are more complex.

This section includes the following topics:

■ Section 9.4.2.1, "DML Operations"

■ Section 9.4.2.2, "Polling Strategies"

9.4.2.1 DML Operations
Data manipulation language (DML) operations align with basic SQL INSERT,
UPDATE, and SELECT operations. SQL INSERT, UPDATE, DELETE, and SELECT are all
mapped to Web service operations of the same name. The MERGE is either an INSERT
or UPDATE, based on the results of an existence check. A distinction is made between
the data manipulation operations—called outbound writes—and the SELECT
operations—called outbound reads. The connection between the Web service and the
SQL for merge (the default for outbound write) and queryByExample are not as
obvious as for basic SQL INSERT, UPDATE, and SELECT.

This section includes the following topics:

■ Merge

■ querybyExample

Merge
Merge first reads the corresponding records in the database, calculates any changes,
and then performs a minimal update. INSERT, UPDATE, and MERGE make the most
sense when you are thinking about a single row and a single table. However, your
XML can contain complex types and map to multiple rows on multiple tables. Imagine
a DEPT with many EMPS, each with an ADDRESS. In this case, you must calculate
which of possibly many rows have changed and which to insert, update, or delete. If a
specific row did not change or only one field changed, then the DML calls is minimal.

querybyExample
Unlike the SELECT operation, queryByExample does not require a selection criteria
to be specified at design time. Instead, for each invoke, a selection criteria is inferred
from an exemplary input XML record.

For instance, if the output xmlRecord is an employee record, and the input is a
sample xmlRecord with lastName = "Smith", then on execution, all employees
with a last name of Smith are returned.

A subset of queryByExample is to query by primary key, which can be implemented
by passing in sample XML records where only the primary key attributes are set.

Use queryByExample when you do not want to create a query using the visual query
builder and want the flexibility of allowing the input record to share the same XML
schema as the output records.

Oracle Database Adapter Concepts

9-54 Oracle Fusion Middleware User's Guide for Technology Adapters

The queryByExample operation is slightly less performant because a new SELECT
must be prepared for each execution. This is because the attributes that are set in the
example XML record can vary each time, and therefore the selection criteria vary.

Input xmlRecord:

<Employee>
 <id/>
 <lastName>Smith</lastName>
</Employee>

Output xmlRecord:

<EmployeeCollection>
 <Employee>
 <id>5</id>
 <lastName>Smith</lastName>

 </Employee>
 <Employee>
 <id>456</id>
 <lastName>Smith</lastName>

 </Employee>
</EmployeeCollection>

9.4.2.2 Polling Strategies
The inbound receive enables you to listen to and detect events and changes in the
database, which in turn can be the initiators of a business process. This is not a
one-time action, but rather an activation. A polling thread is started, which polls a
database table for new rows or events.

Whenever a new row is inserted into the MOVIES table, the polling operation raises it
to the SCA Run Time. The strategy is to poll every record once. The initial SELECT has
to be repeated over time, to receive the rows that exist at the start and all new rows as
they are inserted over time. However, a new row once read is not likely to be deleted,
and therefore can possibly be read repeatedly with each polling.

The various ways to poll for events, called polling strategies, also known as after-read
strategies or publish strategies, range from simple and intrusive to sophisticated and
nonintrusive. Each strategy employs a different solution for the problem of what to do
after reading a row or event so as not to pick it up again in the next polling interval.
The simplest (and most intrusive) solution is to delete the row so that you do not
query it again.

This section discusses the following polling operations that you can perform after the
data is read from the database. This section also discusses the strategies and factors to
help you determine which strategy to employ for a particular situation:

■ Delete the Row(s) that were Read

■ Update a Field in the [Table_Name] Table (Logical Delete)

■ Update a Sequencing Table

■ Update an External Sequencing Table on a Different Database

■ Control Table Strategy

■ Update a Sequencing File

Oracle Database Adapter Concepts

Oracle JCA Adapter for Database 9-55

Delete the Row(s) that were Read
Choose this operation to employ the physical delete polling strategy. This operation
polls the database table for records and deletes them after processing. Use this strategy
to capture events related to INSERT operations and cannot capture database events
related to DELETE and UPDATE operations on the parent table. This strategy cannot be
used to poll child table events. This strategy allows multiple adapter instances to go
against the same source table. There is zero data replication.

Preconditions: You must have deletion privileges on the parent and associated child
tables to use the delete polling strategy. Table 9–8 describes the requirements for using
the delete polling strategy.

Configuration: You can configure the delete polling strategy to delete the top-level
row, to cascade all, or to cascade on a case-by-case basis. This strategy enables deleting
only the parent rows and not the child rows, cascaded deletes, and optional cascaded
deletes, determined on a case-by-case basis. You can configure the polling interval for
performing an event publish at design time.

Delete Cascade Policy: The optional advanced configuration is to specify the cascade
policy of the DELETE operation. For instance, after polling for an employee with an
address and many phone numbers, the phone numbers are deleted because they are
privately owned (default for one-to-many), but not the address (default for
one-to-one). This can be altered by configuring or_mappings.xml, as in the
following example:

<database-mapping>
 <attribute-name>orders</attribute-name>
 <reference-class>taxonomy.Order</reference-class>
 <is-private-owned>true</is-private-owned>

You can also configure the activation itself to delete only the top level (master row) or
to delete everything.

A receive operation appears in an inbound JCA as follows:

Table 9–8 Delete Polling Strategy Preconditions

Requirements Met Conflicts With

Poll for inserts No delete on source

Shallow delete No updates on source

Cascading delete Poll for updates

Minimal SQL Poll for deletes

Zero data replication Poll for child updates

Default --

Allows raw SQL --

Concurrent polling --

Note: In Shallow delete and Cascading delete, the delete operation can
be configured to delete the top-level row, to cascade all, or to cascade
on a case-by-case basis.

Concurrent polling can be configured for both delete and logical delete
polling strategies.

Oracle Database Adapter Concepts

9-56 Oracle Fusion Middleware User's Guide for Technology Adapters

<connection-factory location="eis/DB/Connection1" UIConnectionName="Connection1"
adapterRef=""/>
 <endpoint-activation portType="dd_ptt" operation="receive">
 <activation-spec className="oracle.tip.adapter.db.DBActivationSpec">
 <property name="DescriptorName" value="dd.Emp"/>
 <property name="QueryName" value="ddSelect"/>
 <property name="MappingsMetaDataURL" value="dd-or-mappings.xml"/>
 <property name="PollingStrategy" value="LogicalDeletePollingStrategy"/>
 <property name="MarkReadColumn" value="STATUS"/>
 <property name="MarkReadValue" value="PROCESSED"/>
 <property name="MarkReservedValue" value="RESERVED-1"/>
 <property name="MarkUnreadValue" value="UNPROCESSED"/>
 <property name="PollingInterval" value="5"/>
 <property name="MaxRaiseSize" value="1"/>
 <property name="MaxTransactionSize" value="10"/>
 <property name="ReturnSingleResultSet" value="false"/>
 </activation-spec>
 </endpoint-activation>
</adapter-config>

Update a Field in the [Table_Name] Table (Logical Delete)
Choose this operation to employ the logical delete polling strategy. This strategy
involves updating a special field on each row processed and updating the WHERE
clause at run time to filter out processed rows. It mimics logical delete, wherein
applications rows are rarely deleted but instead a status column isDeleted is set to
true. The status column and the read value must be provided, but the modified WHERE
clause and the post-read update are handled automatically by the Oracle Database
Adapter.

Preconditions: You must have the logical delete privilege or a one-time alter schema
(add column) privilege on the source table. Table 9–9 describes the requirements for
using the logical delete polling strategy.

Table 9–9 Logical Delete Polling Strategy Preconditions

Requirements Met Conflicts With

Poll for inserts No updates on source

No delete on source Poll for deletes

Minimal SQL --

Zero data replication --

Minimal configuration --

Allows raw SQL --

Poll for updates --

Poll for child updates --

Concurrent polling --

Oracle Database Adapter Concepts

Oracle JCA Adapter for Database 9-57

Configuration: The logical delete polling strategy requires minimal configuration. You
must specify the mark read column and the value that indicates a processed record.

A receive operation appears in an inbound WSDL as follows:

<operation name="receive">
 <jca:operation
 ActivationSpec="oracle.tip.adapter.db.DBActivationSpec"
 …
 PollingStrategyName="LogicalDeletePollingStrategy"
 MarkReadField="STATUS"
 MarkReadValue="PROCESSED"

Given the configuration for logical delete, the Oracle Database Adapter appends the
following WHERE clause to every polling query:

AND (STATUS IS NULL) OR (STATUS <> 'PROCESSED')

Database Configuration: A status column on the table being polled must exist. If it
does not exist already, you can add one to an existing table.

Support for Polling for Updates: Given that rows are not deleted with each read, it is
possible to repetitively read a row multiple times. You must add a trigger to reset the
mark read field whenever a record is changed, as follows:

create trigger Employee_modified
before update on Employee
for each row
begin
 :new.STATUS := 'MODIFIED';
end;

Support for Concurrent Access Polling: Just as a single instance should never process
an event more than once, the same applies to a collection of instances. Therefore,
before processing a record, an instance must reserve that record with a unique value.
Again, the status column can be used:

<operation name="receive">
 <jca:operation
 ActivationSpec="oracle.tip.adapter.db.DBActivationSpec"
 …
 PollingStrategyName="LogicalDeletePollingStrategy"
 MarkReadField="STATUS"
 MarkUnreadValue="UNPROCESSED"
 MarkReservedValue="RESERVED${IP-2}-${weblogic.Name-1}-${instance}"
 MarkReadValue="PROCESSED"

The polling query instead appears, as shown in the following example:

Update EMPLOYE set STATUS = 'RESERVED65-1-1' where (CRITERIA) AND (STATUS =
'UNPROCESSED');

Note: The requirements of the following are met, as follows:

■ Poll for updates: By adding a trigger

■ Poll for child updates: By adding a trigger

■ Concurrent polling: By specifying additional mark unread and
reserved values.

Oracle Database Adapter Concepts

9-58 Oracle Fusion Middleware User's Guide for Technology Adapters

Select … from EMPLOYEE where (CRITERIA) AND (STATUS = 'RESERVED65-1-1');

The after-read UPDATE is faster because it can update all:

Update EMPLOYEE set STATUS = 'PROCESSED' where (CRITERIA) AND (STATUS =
'RESERVED65-1-1');

Update a Sequencing Table
Choose this operation to employ the sequencing table: last-read Id strategy. This
polling strategy involves using a helper table to remember a sequence value. The
source table is not modified; instead, rows that have been read in a separate helper
table are recorded. A sequence value of 1000, for example, means that every record
with a sequence less than that value have been processed. Because many tables have
some counter field that is always increasing and maintained by triggers or the
application, this strategy can often be used for noninvasive polling. No field on the
processed row must be modified by the Oracle Database Adapter.

Native sequencing with a preallocation size of 1 can ensure that rows are inserted with
primary keys that are always increasing over time.

This strategy is also called a nondestructive delete because no updates are made to the
source rows, and you can use a sequencing strategy such as the sequence field to
order the rows in a sequence for processing. When the rows are ordered in a line, the
Oracle Database Adapter knows which rows are processed and which are not with a
single unit of information.

Preconditions: You must have a sequencing table or create table privilege on the
source schema. The source table has a column that is monotonically increasing with
every INSERT (an Oracle native sequenced primary key) or UPDATE (the last-modified
timestamp). Table 9–10 describes the requirements for using the sequencing polling
strategy.

Configuration: A separate helper table must be defined. On the source table, you must
specify which column is ever increasing.

<adapter-config name="ReadS" adapter="Database Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/DB/DBConnection1"
UIConnectionName="DBConnection1" adapterRef=""/>
 <endpoint-activation portType="ReadS_ptt" operation="receive">
 <activation-spec className="oracle.tip.adapter.db.DBActivationSpec">
 <property name="DescriptorName" value="ReadS.PerfMasterIn"/>
 <property name="QueryName" value="ReadSSelect"/>

Table 9–10 Sequencing Polling Strategy Preconditions

Requirements Met Conflicts With

Poll for inserts Poll for deletes

Poll for updates Allows raw SQL

No delete on source Concurrent polling

No updates on source --

One extra SQL select --

Zero data replication --

Moderate configuration --

Poll for child updates --

Oracle Database Adapter Concepts

Oracle JCA Adapter for Database 9-59

 <property name="MappingsMetaDataURL" value="ReadS-or-mappings.xml"/>
 <property name="PollingStrategy" value="SequencingPollingStrategy"/>
 <property name="SequencingTable" value="PC_SEQUENCING"/>
 <property name="SequencingColumn" value="PK"/>
 <property name="SequencingTableKeyColumn" value="TABLE_NAME"/>
 <property name="SequencingTableValueColumn" value="LAST_READ_ID"/>
 <property name="SequencingTableKey" value="PERF_MASTER_IN"/>
 <property name="PollingInterval" value="60"/>
 <property name="MaxRaiseSize" value="1"/>
 <property name="MaxTransactionSize" value="10"/>
 <property name="ReturnSingleResultSet" value="false"/>
 </activation-spec>
 </endpoint-activation>
</adapter-config>

The sequencing field type can be excluded if it is actually a number.

Database Configuration: A sequencing table must be configured once for a given
database. Multiple processes can share the same table. Given the ActivationSpec
specified in the preceding example, the CREATE TABLE command looks as follows:

CREATE TABLE SEQUENCING_HELPER
(
TABLE_NAME VARCHAR2(32) NOT NULL,
LAST_READ_DATE DATE
)
;

Polling for Updates: In the preceding example, the polling is for new objects or
updates, because every time an object is changed, the modified time is updated.

A sample trigger to set the modified time on every insert or update is as follows:

create trigger Employee_modified
before insert or update on Employee
for each row
begin
 :new.modified_date := sysdate;
end;

Using a Sequence Number: A sequence number can be used for either insert or
update polling. Native sequencing returns monotonically increasing primary keys,
when an increment by 1 is used. You can also use the sequence number of a
materialized view log.

Update an External Sequencing Table on a Different Database
Choose this operation to employ the sequencing table: last updated strategy. This
polling strategy involves using a helper table to remember a last_updated value. A
last_updated value of 2005-01-01 12:45:01 000, for example, means that
every record last updated at that time or earlier have been processed. Because many
tables have rows with a last_updated or creation_time column maintained by
triggers or the application, this strategy can often be used for noninvasive polling.
Fields on the processed row never require modification by the Oracle Database
Adapter.

This strategy is also called a nondestructive delete because no updates are made to the
source rows, and you can use a sequencing strategy such as the last_updated field
to order the rows in a sequence for processing. When the rows are ordered in a line,
the Oracle Database Adapter knows which rows are processed and which are not with
a single unit of information.

Oracle Database Adapter Concepts

9-60 Oracle Fusion Middleware User's Guide for Technology Adapters

See Update a Sequencing Table for information about preconditions and configuration.

Update a Sequencing File
This strategy works similar to Update an External Sequencing Table on a Different
Database, the only difference is that the control information is stored in a file instead of
a table.

Control Table Strategy
Choose this operation to employ the control table polling strategy. This polling
strategy involves using a control table to store the primary key of every row that has
yet to be processed. With a natural join between the control table and the source table
(by primary key), polling against the control table is practically the same as polling
against the source table directly. However, an extra layer of indirection allows the
following:

■ Destructive polling strategies such as the delete polling strategy can be applied to
rows in the control table alone while shielding any rows in the source table.

■ Only rows that are meant to be processed have their primary key appear in the
control table. You can use information that is not in the rows themselves to control
which rows to process (a good WHERE clause may not be enough).

■ The entire row is not copied to a control table, and any structure under the source
table, such as detail rows, can also be raised without copying.

Streams and materialized view logs make good control tables.

Preconditions: You must have the create/alter triggers privilege on the source table.
Table 9–11 describes the requirements for using the control table polling strategy.

Using triggers, whenever a row is modified, an entry is added to a control table,
containing the name of the master table, and the primary keys. At design time, the
control table is defined to be the root table, with a one-to-one mapping to the master
table, based on the matching primary keys. The control table can contain extra control
information, such as a time stamp, and operation type (INSERT, UPDATE, and so on).

The delete polling strategy is useful with this setup. It is important to keep the control
table small, and if the option shouldDeleteDetailRows="false" is used, then

Table 9–11 Control Table Polling Strategy Preconditions

Requirements Met Conflicts With

Poll for inserts Advanced configuration: the native XML from the database has
control header, and triggers are required.

Poll for updates --

Poll for deletes --

Poll for child updates Minimal data replication (primary keys are stored in control
table)

No delete on source --

No updates on source --

No extra SQL selects --

Concurrent polling --

Allows raw SQL --

Auditing --

Deployment

Oracle JCA Adapter for Database 9-61

only the control rows are deleted, giving you a nondestructive delete (the DELETE is
not cascaded to the real tables).

It is possible to reuse the same control table for multiple master tables. In TopLink, you
can map the same table to multiple descriptors by mapping the control table as one
abstract class with multiple children. Each child has a unique one-to-one mapping to a
different master table. The advantage of this approach is that you can specify for each
child a class indicator field and value so that you do not need an explicit WHERE clause
for each polling query.

The following are sample triggers for polling for changes both to a department table
and any of its child employee rows:

CREATE OR REPLACE TRIGGER EVENT_ON_DEPT
 AFTER INSERT OR UPDATE ON DEPARTMENT
 REFERENCING NEW AS newRow
 FOR EACH ROW
 DECLARE X NUMBER;
BEGIN
 SELECT COUNT(*) INTO X FROM DEPT_CONTROL WHERE (DEPTNO = :newRow.DEPTNO);
 IF X = 0 then
 insert into DEPT_CONTROL values (:newRow. DEPTNO);
 END IF;
END;
CREATE OR REPLACE TRIGGER EVENT_ON_EMPLOYEE
 AFTER INSERT OR UPDATE ON EMPLOYEE
 REFERENCING OLD AS oldRow NEW AS newRow
 FOR EACH ROW
 DECLARE X NUMBER;
BEGIN
 SELECT COUNT(*) INTO X FROM DEPT_CONTROL WHERE (DEPTNO = :newRow.DEPTNO);
 IF X = 0 then
 INSERT INTO DEPT_CONTROL VALUES (:newRow.DEPTNO);
 END IF;
 IF (:oldRow.DEPTNO <> :newRow.DEPTNO) THEN
 SELECT COUNT(*) INTO X FROM DEPT_CONTROL WHERE (DEPTNO = :oldRow.DEPTNO);
 IF (X = 0) THEN
 INSERT INTO DEPT_CONTROL VALUES (:oldRow.DEPTNO);
 END IF;
 END IF;
END;

9.5 Deployment
The Oracle Database Adapter comes deployed to the application server by the install.
It contains a single adapter instance entry eis/DB/SOADemo, which points to the data
source jdbc/SOADataSource. The connection information to the database is inside
the data source definition.

When deploying a SOA project that uses the OracleAS Adapter for Databases, you
might have to add a new adapter instance and restart the application server first. This
could be because you want to point to a database other than the one referred in
jdbc/SOADataSource, or because you chose a name for the adapter instance that
does not yet exist. For instance, if you create a connection in JDeveloper named
Connection1, then by default the DB Adapter service points to
eis/DB/Connection1, as shown in Figure 9–7.

You can also check which adapter instance the service is pointing to by looking at the
db.jca file, as shown in the following code snippet:

Deployment

9-62 Oracle Fusion Middleware User's Guide for Technology Adapters

<connection-factory location="eis/DB/Connection1" UIConnectionName="Connection1"
adapterRef="" />

In the preceding example, the location is the JNDI name of the adapter instance at run
time, and UIConnectionName is the name of the connection used in JDeveloper.

You can create a DB Adapter instance through the Oracle WebLogic Server
Administration Console, as mentioned in Section 2.18, "Adding an Adapter
Connection Factory" or by directly editing the weblogic-ra.xml file. Following
these steps are screenshots that show how to create an adapter instance through the
Oracle WebLogic Administration Console. The following are the steps to edit
weblogic-ra.xml:

1. Search fmwhome/ for DbAdapter.rar.

2. Unzip the file.

3. Edit META-INF/weblogic-ra.xml (and possibly ra.xml.)

4. Jar the file again.

5. Restart the application server.

The following is a sample adapter instance in weblogic-ra.xml:

<connection-instance>
 <jndi-name>eis/DB/SOADemo</jndi-name>
 <connection-properties>
 <properties>
 <property>
 <name>xADataSourceName</name>
 <value>jdbc/SOADataSource</value>
 </property>
 <property>
 <name>dataSourceName</name>
 <value> </value>
 </property>
 <property>
 <name>platformClassName</name>
 <value>Oracle10Platform</value>
 </property>
 </properties>
 </connection-properties>
</connection-instance>

The four mandatory properties are: jndi-name, xADataSourceName,
dataSourceName, and platformClassName. The jndi-name property must
match the location attribute in the db.jca file, and is the name of the adapter
instance.

The xADataSourceName property is the name of the underlying data source (which
has the connection information).

The platformClassName indicates which SQL to generate. For information about
PlatformClassName, see Table 9–13, " Database Platform Names".

The following screenshots show how to edit Database Adapter properties using the
Oracle WebLogic Administration Console

The first screenshot shows navigation to the Outbound Connection Pools within the
WebLogic Administration Console. This is the actual Database Adapter Configuration,
from where you can go to the subsequent page to edit the Database Adapter
properties.

Deployment

Oracle JCA Adapter for Database 9-63

Figure 9–29 The Outbound Connection Pools Tab of the WebLogic Console

The second screenshot shows editing properties from the WebLogic Console that you
edit accordingly and as needed. Name, Type and Value are displayed on a
per-property basis.

Deployment

9-64 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 9–30 Database Adapter Properties in the Oracle WebLogic Administration Console

Most Common Mistakes
The following are the two most common mistakes with deployment:

■ Not creating an adapter instance entry that matches the location attribute in your
db.jca file (or not creating one at all.)

■ Setting the location attribute in the db.jca file to the name of the data source
directly.

■ Not changing platformClassName when connecting to a database other than
Oracle.

For the latter, there is a level of indirection in that you give the name of the adapter
instance (eis/DB/...), which itself points to the data source pool (jdbc/...). It is a
common mistake to miss this indirection and give the name jdbc/... directly in the
location attribute.

Data Source Configuration
For the relevant Data Source configuration for your application server, see Section 9.6,
"JDBC Driver and Database Connection Configuration." When configuring an Oracle
data source, ensure that you use the thin XA option.

Additional Adapter Instance Properties
This section briefly describes additional properties in the DB Adapter instance beyond
xADataSourceName, dataSourceName, and platformClassName. When adding
a property to weblogic-ra.xml, you must ensure that the property is also declared
in ra.xml (also in DbAdapter.rar). For example, the following is a code snippet of
the ra.xml file for the property xADataSourceName in weblogic-ra.xml:

<config-property>
<config-property-name>xADataSourceName </config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value></config-property-value>
</config-property>

Deployment

Oracle JCA Adapter for Database 9-65

For information about the Oracle Database Adapter instance properties, see
Appendix A.5, "Oracle Database Adapter Properties." Apart from the properties
mentioned there, you can also add the properties listed in the following table:

The preceding properties appear in the
oracle.toplink.sessions.DatabaseLogin object. See TopLink API reference
information on DBConnectionFactory Javadoc and DatabaseLogin Javadoc at
http://download.oracle.com/docs/cd/B10464_
02/web.904/b10491/index.html.

9.5.1 Deployment with Third Party Databases
Table 9–13 lists databases and their advanced properties, which are database platform
variables. Set the platformClassName name to a listed variable. Setting
platformClassName is mandatory if you are using an advanced database.features
that are not uniform across databases, such as native sequencing or stored procedures.

As an example, to execute a stored procedure on DB2 versus SQL Server, the
DbAdapter must generate and send different SQL.Use the example below for use with
the SQLServer Platform:

execute <procedure> @<arg1>=? ...

when using the DB2 Platform:

call <procedure>(?, ...)

The platformClassName setting indicates which SQL to generate. Since most
databases offer non-uniform features (that is, variants on the ANSI SQL 92 language
specification), it is safest to configure platformClassName accurately.The default

Table 9–12 Oracle Database Adapter Properties Listed in Toplink DatabaseLogin Object

Property Name Type

usesNativeSequencing Boolean

usesSkipLocking Boolean

usesStringBinding Boolean

usesByteArrayBinding Boolean

usesStreamsForBinding Boolean

eventListenerClass String

logTopLinkAll Boolean

maxBatchWritingSize Integer

nonRetriableSQLErrorCodes String

shouldOptimizeDataConversion Boolean

shouldTrimStrings Boolean

driverClassName String

sequencePreallocationSize Integer

tableQualifier String

usesBatchWriting Boolean

JDBC Driver and Database Connection Configuration

9-66 Oracle Fusion Middleware User's Guide for Technology Adapters

value is Oracle10Platform, and should be changed to the appropriate variable if
you are connecting to a different database vendor.

9.6 JDBC Driver and Database Connection Configuration
In this release, Oracle JCA Adapters are certified against the following third-party
databases using Oracle WebLogic Server Type 4 JDBC drivers:

■ Microsoft SQL Server 2005 and 2008 (all SP levels included)

■ Sybase 15

■ Informix 11.5

■ DB2 9.7 and later FixPaks

■ MySQL 5.x+

For more information, see the following topics:

■ Section 9.6.1, "Creating a Database Connection Using a Native or Bundled Oracle
WebLogic Server JDBC Driver"

■ Section 9.6.2, "Creating a Database Connection Using a Third-Party JDBC Driver"

Note: Providing the qualified class name with package is not
necessary if it starts with org.eclipse.persistence.platform.database

Table 9–13 Database Platform Names

Database PlatformClassName

Oracle10+ (including 11g) org.eclipse.persistence.platform.database.Oracle10Platform

Oracle9+ (optional) org.eclipse.persistence.platform.database.Oracle9Platform

DB2 org.eclipse.persistence.platform.database.DB2Platform

DB2 on AS400e oracle.tip.adapter.db.toplinkext.DB2AS400Platform

Informix org.eclipse.persistence.platform.database.InformixPlatform

SQLServer org.eclipse.persistence.platform.database.SQLServerPlatform

MySQL org.eclipse.persistence.platform.database.MySQLPlatform

Any other database org.eclipse.persistence.platform.database.DatabasePlatform

Note: Only major databases and versions are certified. Working with
other databases should be feasible when they provide a working JDBC
driver, and you rely on core ANSI SQL relational features, such as
Create, Read, Update, and Delete (CRUD) operations on tables and
views. Issues tend to be more prevalent due to the fact that not all
JDBC drivers implement database metadata introspection the same
way. However, it should be possible to import matching tables on a
certified database and then point to the uncertified database at
runtime. The information provided in this section for uncertified
databases is meant as a guide only.

JDBC Driver and Database Connection Configuration

Oracle JCA Adapter for Database 9-67

■ Section 9.6.3, "Summary of Third-Party JDBC Driver and Database Connection
Information"

■ Section 9.6.4, "Location of JDBC Driver JAR Files and Setting the Class Path"

9.6.1 Creating a Database Connection Using a Native or Bundled Oracle WebLogic
Server JDBC Driver

To create a database connection when using a native or bundled Oracle WebLogic
Server JDBC driver:

1. Ensure that the appropriate JDBC driver JAR files are installed and set the class
path.

For more information, see:

■ Oracle Fusion Middleware Configuring and Managing JDBC Data Sources for Oracle
WebLogic Server

■ Oracle Fusion Middleware Type 4 JDBC Drivers for Oracle WebLogic Server

■ Oracle Fusion Middleware Programming JDBC for Oracle WebLogic Server

2. In the File menu, click New.

The New Gallery page is displayed.

3. In the All Technologies tab, under General categories, select Connections.

A list of the different connections that you can make is displayed in the Items pane
on the right side of the New Gallery page.

4. Select Database Connection, and then click OK.

The Create Database Connection page is displayed.

5. For Create Connection In, select IDE Connections.

6. Enter a name for this connection in the Connection Name field.

For example, SQLServer.

7. Select the appropriate driver from the Connection Type menu.

8. Enter your credentials (such as user name, password, and role, if applicable).

9. Enter your connection information.

For example,
jdbc:sqlserver://HOST-NAME:PORT;databaseName=DATABASE-NAME

For more information, see:

■ Table 9–14, " Database Driver Selection (from Weblogic Server Console)"

■ Sample entries in the deployment descriptor file (weblogic-ra.xml).

10. Click Test Connection.

11. If the connection is successful, click OK.

9.6.2 Creating a Database Connection Using a Third-Party JDBC Driver
To create a database connection when using a third-party JDBC driver:

1. Install the appropriate JDBC driver JAR files and set the class path.

JDBC Driver and Database Connection Configuration

9-68 Oracle Fusion Middleware User's Guide for Technology Adapters

For more information, see Section 9.6.4, "Location of JDBC Driver JAR Files and
Setting the Class Path".

2. In the File menu, click New.

The New Gallery page is displayed.

3. In the All Technologies tab, under General categories, select Connections.

A list of the different connections that you can make is displayed in the Items pane
on the right side of the New Gallery page.

4. Select Database Connection, and then click OK.

The Create Database Connection page is displayed.

5. For Create Connection In, select IDE Connections.

6. Enter a name for this connection in the Connection Name field.

For example, SQLServer.

7. Select Generic JDBC from Connection Type.

8. Enter your user name, password, and role information.

9. Click New for Driver Class.

The Register JDBC Driver dialog is displayed.

Perform Steps 10, 11 and 19 in the Register JDBC Driver dialog.

10. Enter the driver name (for example, some.jdbc.Driver) for Driver Class.

For example, com.microsoft.sqlserver.jdbc.SQLServerDriver.

11. Click Browse for Library.

The Select Library dialog is displayed.

Perform Steps 12 and 18 in the Select Library dialog.

12. Click New to create a library.

The Create Library dialog is displayed.

Perform Steps 13 through 17 in the Create Library dialog.

13. Specify a name in the Library Name field.

For example, SQL Server JDBC.

14. Click Class Path, and then click Add Entry to add each JAR file of your driver to
the class path.

The Select Path Entry dialog is displayed.

15. Select a JDBC class file and click Select.

For example, select sqljdbc.jar.

16. Click OK when you have added all the class files to the Class Path field.

17. Click OK to exit the Create Library dialog.

18. Click OK to exit the Select Library dialog.

19. Click OK to exit the Register JDBC Driver dialog.

20. Enter your connection string name for JDBC URL and click Next.

JDBC Driver and Database Connection Configuration

Oracle JCA Adapter for Database 9-69

For example,
jdbc:sqlserver://HOST-NAME:PORT;databaseName=DATABASE-NAME

For more information, see:

■ Table 9–14, " Database Driver Selection (from Weblogic Server Console)"

■ Sample entries in the deployment descriptor file (weblogic-ra.xml).

21. Click Test Connection.

22. If the connection is successful, click OK.

9.6.3 Summary of Third-Party JDBC Driver and Database Connection Information
Table 9–14, " Database Driver Selection (from Weblogic Server Console)" summarizes
the connection information for common third-party databases.

For information about PlatformClassName, see Table 9–13, " Database Platform
Names".

For more information, see:

■ Section 9.6.3.1, "Using a Microsoft SQL Server"

■ Section 9.6.3.2, "Using a Sybase Database"

■ Section 9.6.3.3, "Using an Informix Database"

■ Section 9.6.3.4, "Using an IBM DB2 Database"

■ Section 9.6.3.5, "Using a MySQL Database"

9.6.3.1 Using a Microsoft SQL Server
You must note the following when connecting to a SQL Server database:

■ User name and password

– SQL Server 2005 installs with Windows authentication as the default.
Therefore, you do not log in with a user name and password; rather, your
Windows user account either has privilege or does not. JDBC requires you to
provide a user name and password.

■ Connect string

From the sqlcmd login, you can deduce what your connect string is, as in the
following examples:

Table 9–14 Database Driver Selection (from Weblogic Server Console)

Database JDBC Driver

Microsoft SQL Server ■ Oracle's MS SQL Server Driver (Type 4 XA)

■ Oracle's MS SQL Server Driver (Type 4)

Sybase ■ Oracle's Sybase Driver (Type 4 XA)

■ Oracle's Sybase Driver (Type 4)

Informix ■ Oracle's Informix Driver (Type 4 XA)

■ Oracle's Informix Driver (Type 4)

IBM DB2 ■ Oracle's DB2 Driver (Type 4 XA)

■ Oracle's DB2 Driver (Type 4)

MySQL MySQL's Driver (Type 4)

Versions: using com.mysql.jdbc.Driver

JDBC Driver and Database Connection Configuration

9-70 Oracle Fusion Middleware User's Guide for Technology Adapters

Example 1:

sqlcmd
1>
jdbc:microsoft:sqlserver://localhost:1433

Example 2:

sqlcmd -S user.example.com\SQLExpress
1>
jdbc:microsoft:sqlserver://user.example.com\SQLExpress:1433

Example 3:

sqlcmd -S user.example.com\SQLExpress -d master
1>
jdbc:microsoft:sqlserver://user.example.com\SQLExpress:1433;databasename=
master

A full URL is as follows:

jdbc:microsoft:sqlserver://serverName[\instanceName]:tcpPort[;SelectMethod=curs
or][;databasename=databaseName]

■ Database name

If you must explicitly supply the database name, but do not know it, go to

C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data

If you see a file named master.mdf, then one database name is master.

■ TCP port

Ensure that SQL Server Browser is running and that your SQL Server service has
TCP/IP enabled and is listening on static port 1433. Disable dynamic ports. In SQL
Native Client Configuration/Client Protocols, ensure that TCP/IP is enabled and
that the default port is 1433.

■ JDBC drivers

You must download the JDBC drivers separately. From www.microsoft.com,
click Downloads and search on jdbc. You can also try using the DataDirect driver.

9.6.3.2 Using a Sybase Database
This section includes the following topics:

■ Section 9.6.3.2.1, "Using a Sybase JConnect JDBC Driver"

9.6.3.2.1 Using a Sybase JConnect JDBC Driver URL:
jdbc:sybase:Tds:SERVER-NAME:PORT/DATABASE-NAME

Driver Class: com.sybase.jdbc.SybDriver

Driver Jar: jConnect-6_0\classes\jconn3.jar

For information about the Sybase JConnect JDBC driver, refer to the following link:

http://www.sybase.com/products/allproductsa-z/softwaredeveloperk
it/jconnect.

9.6.3.3 Using an Informix Database
This section includes the following topics:

JDBC Driver and Database Connection Configuration

Oracle JCA Adapter for Database 9-71

■ Section 9.6.3.3.1, "Using an Informix JDBC Driver"

9.6.3.3.1 Using an Informix JDBC Driver URL:
jdbc:informix-sqli://HOST-NAME-OR-IP:PORT-OR-SERVICE-NAME/DATABA
SE-NAME:INFORMIXSERVER=SERVER-NAME

Driver Class: com.informix.jdbc.IfxDriver

Driver Jar: ifxjdbc.jar

For information about the Informix JDBC driver, refer to the following link:

http://www-01.ibm.com/software/data/informix/tools/jdbc/.

9.6.3.4 Using an IBM DB2 Database
This section includes the following topics:

■ Section 9.6.3.4.1, "IBM DB2 Driver"

■ Section 9.6.3.4.2, "JT400 Driver (AS400 DB2)"

■ Section 9.6.3.4.3, "IBM Universal Driver"

9.6.3.4.1 IBM DB2 Driver URL: jdbc:db2:localhost:NAME

Driver Class: com.ibm.db2.jcc.DB2Driver

Driver Jar (v8.1): db2jcc.jar, db2jcc_javax.jar, db2jcc_license_cu.jar

For information about DataDirect driver, refer to the following link:

http://www.datadirect.com/techres/jdbcproddoc/index.ssp

9.6.3.4.2 JT400 Driver (AS400 DB2) URL: jdbc:as400://hostname;translate
binary=true

Driver Class: com.ibm.as400.access.AS400JDBCDriver

Driver Jar: jt400.jar

For correct character set translation, use translate binary=true.

9.6.3.4.3 IBM Universal Driver URL: jdbc:db2://hostname:port/schemaname

Driver Class: com.ibm.db2.jcc.DB2Driver

Driver Jar: db2jcc.jar, db2jcc4.jar and db2java.zip

9.6.3.5 Using a MySQL Database
Use the following information:

URL: jdbc:mysql://hostname:3306/dbname

Driver Class: com.mysql.jdbc.Driver

Driver Jar: mysql-connector-java-3.1.10-bin.jar

9.6.4 Location of JDBC Driver JAR Files and Setting the Class Path
This section describes the location of JDBC JAR files and setting the class path at run
time and design time.

Stored Procedure and Function Support

9-72 Oracle Fusion Middleware User's Guide for Technology Adapters

Run Time
For both Windows and Linux, you must perform the following steps:

1. Drop the vendor-specific driver JAR files to the user_
projects/domains/soainfra/lib directory.

2. Drop the vendor-specific driver JAR files to the <Weblogic_
Home>/server/lib.

3. Edit the classpath to include the vendor-specific jar file in <Weblogic_
HOME>/common/bin/commEnv.sh

Design Time
For both Windows and Linux, drop the JDBC JAR to the
Oracle/Middleware/jdeveloper/jdev/lib/patches directory.

9.7 Stored Procedure and Function Support
This section describes how the Oracle Database Adapter supports the use of stored
procedures and functions.

This section includes the following topics:

■ Section 9.7.1, "Design Time: Using the Adapter Configuration Wizard"

■ Section 9.7.2, "Supported Third-Party Databases"

■ Section 9.7.3, "Design Time: Artifact Generation"

■ Section 9.7.4, "Run Time: Before Stored Procedure Invocation"

■ Section 9.7.5, "Run Time: After Stored Procedure Invocation"

■ Section 9.7.6, "Run Time: Common Third-Party Database Functionality"

■ Section 9.7.7, "Advanced Topics"

9.7.1 Design Time: Using the Adapter Configuration Wizard
The Adapter Configuration Wizard – Stored Procedures is used to generate an adapter
service WSDL and the necessary XSD. The adapter service WSDL encapsulates the
underlying stored procedure or function as a Web service with a WSIF JCA binding.
The XSD file describes the procedure or function, including all the parameters and
their types. This XSD provides the definition used to create instance XML that is
submitted to the Oracle Database Adapter at run time.

This section includes the following topics:

■ Section 9.7.1.1, "Using Top-Level Standalone APIs"

■ Section 9.7.1.2, "Using Packaged APIs and Overloading"

9.7.1.1 Using Top-Level Standalone APIs
This section describes how to use the Adapter Configuration Wizard with APIs that
are not defined in PL/SQL packages. You use the Adapter Configuration Wizard –
Stored Procedures to select a procedure or function and generate the XSD file. See
Section 9.8, "Oracle Database Adapter Use Cases" if you are not familiar with how to
start the Adapter Configuration Wizard.

The following are the steps to select a stored procedure or function by using the
Adapter Configuration Wizard:

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-73

1. Drag and drop Database Adapter from the Service Adapters list to the Exposed
Services swim lane in the composite.xml page.

The Adapter Configuration Wizard is displayed, as shown in Figure 9–31.

Figure 9–31 The Adapter Configuration Wizard

2. Click Next. The Service Name page is displayed, as shown in Figure 9–32.

Note: Note that the name of stored procedures or packages that
refers to database or user-defined data types must not include the
character $ in it. The presence of $ in the name would cause the XSD
file generation to fail.

Stored Procedure and Function Support

9-74 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 9–32 Specifying the Service Name

3. In the Service Name field, enter a service name, and then click Next. The Service
Connection page is displayed.

You associate a connection with the service, as shown in Figure 9–33. A database
connection is required to configure the adapter service. Select an existing
connection from the list or create a new connection.

Figure 9–33 Setting the Database Connection in the Adapter Configuration Wizard

4. Click Next. The Operation Type page is displayed.

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-75

5. For the Operation Type, select Call a Stored Procedure or Function, as shown in
Figure 9–34.

Figure 9–34 Calling a Stored Procedure or Function in the Adapter Configuration Wizard

6. Click Next. The Specify Stored Procedure page is displayed, as shown in
Figure 9–35. This is where you specify a stored procedure or function.

Figure 9–35 The Specify Stored Procedure Page

Stored Procedure and Function Support

9-76 Oracle Fusion Middleware User's Guide for Technology Adapters

7. Next, you select the schema and procedure or function. You can select a schema
from the list or select <Default Schema>, in which case the schema associated
with the connection is used. If you know the procedure name, enter it in the
Procedure field. If the procedure is defined inside a package, then you must
include the package name, as in EMPLOYEE.GET_NAME.

If you do not know the schema and procedure names, click Browse to access the
Stored Procedures window, as shown in Figure 9–36.

Figure 9–36 Searching for a Procedure or Function

Select a schema from the list or select <Default Schema>. A list of the available
procedures is displayed in the left window. To search for a particular API in a long
list of APIs, enter search criteria in the Search field. For example, to find all APIs
that begin with XX, enter XX% and click the Search button. Clicking the Show All
button displays all available APIs.

Figure 9–37 shows how you can select the FACTORIAL function. The Arguments
tab displays the parameters of the function, including their names, type, mode
(IN, IN/OUT or OUT) and the numeric position of the parameter in the definition of
the procedure. The return value of a function has no name and is always an OUT
parameter at position zero (0).

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-77

Figure 9–37 Viewing the Arguments of a Selected Procedure

Figure 9–38 shows how the Source tab displays the code that implements the
function. Text that matches the name of the function is highlighted.

Figure 9–38 Viewing the Source Code of a Selected Procedure

8. Click OK after selecting a procedure or function. Information about the API is
displayed, as shown in Figure 9–39. Click Back or Browse to make revisions.

Stored Procedure and Function Support

9-78 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 9–39 Viewing Procedure or Function Details in the Adapter Configuration Wizard

9. Click Next. If the stored procedure or function has an output parameter of type
row set (REF CURSOR on Oracle Database), as Figure 9–40 shows, you can define a
strongly or weakly typed XSD for this ref cursor.

Figure 9–40 Viewing Procedure or Function Details in the Adapter Configuration Wizard:
Row Set Type

For more information, see:

■ Section 9.7.7.1, "Row Set Support Using a Strongly Typed XSD"

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-79

■ Section 9.7.7.2, "Row Set Support Using a Weakly Typed XSD"

10. Click Next. The Advanced Options page is displayed, as shown in Figure 9–41.
Enter any advanced options, such as the JDBC QueryTimeout value. Other
options include retry parameters, such as the number of retry attempts and the
interval between them.

Figure 9–41 The Advanced Options Page

11. After specifying all options, click Next, and then click Finish to complete the
Adapter Configuration Wizard.

When you have finished using the Adapter Configuration Wizard, three files are
added to the existing project:

■ servicename.wsdl (for example, Factorial.wsdl)

■ service_name_db.jca (for example, Factorial_db.jca)

■ schema_package_procedurename.xsd (for example, SCOTT_
FACTORIAL.xsd)

9.7.1.2 Using Packaged APIs and Overloading
Using APIs defined in packages is similar to using standalone APIs. The only
difference is that you can expand the package name to see a list of all the APIs defined
within the package, as shown in Figure 9–42.

APIs that have the same name but different parameters are called overloaded APIs. As
shown in Figure 9–42, the package called PACKAGE has two overloaded procedures
called OVERLOAD.

Stored Procedure and Function Support

9-80 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 9–42 A Package with Two Overloaded Procedures

As Figure 9–43 shows, the code for the entire PL/SQL package is displayed, regardless
of which API from the package is selected when you view the Source tab. Text that
matches the name of the procedure is highlighted.

Figure 9–43 Viewing the Source Code of an Overloaded Procedure

After you select a procedure or function and click OK, information about the API is
displayed, as shown in Figure 9–44. The schema, procedure name, and a list of
arguments are displayed. Note how the procedure name is qualified with the name of
the package (PACKAGE.OVERLOAD). Click Back or Browse to make revisions, or

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-81

Next. Enter values for any of the advanced options. Click Next followed by Finish to
conclude.

Figure 9–44 Viewing Procedure or Function Details in the Adapter Configuration Wizard

When you have finished using the Adapter Configuration Wizard, the following files
are added to the existing project:

■ Overload.wsdl, Overload_db.jca

■ SCOTT_PACKAGE_OVERLOAD_2.xsd.

The _2 appended after the name of the procedure in the XSD filename
differentiates the overloaded APIs. Numeric indexes are used to differentiate
between overloaded APIs.

9.7.2 Supported Third-Party Databases
For stored procedures the following databases are supported: Oracle, DB2, Informix
Dynamic Server, MySQL, Microsoft SQL Server, and Sybase Adaptive Server
Enterprise. Contact support for specific versions that have been certified. If your
particular version is more recent than one mentioned here it is probably supported.

For more information on Oracle JCA Adapters support for third-party JDBC drivers
and databases, see Section 9.6, "JDBC Driver and Database Connection Configuration".

This section includes the following topics:

■ Section 9.7.2.1, "Terms Used."

■ Section 9.7.2.2, "Supported Third-Party Databases"

■ Section 9.7.2.3, "Creating Database Connections"

Stored Procedure and Function Support

9-82 Oracle Fusion Middleware User's Guide for Technology Adapters

9.7.2.1 Terms Used

ProductName
This is the name of the database.

DriverClassName
This is the name of the JDBC Driver Class.

ConnectionString
This is the JDBC Connection URL.

Username
This is the database user name.

Password
This is the password associated with the user name.

ProcedureName
This is the name of the stored procedure or the function.

ServiceName
This is the service name for the desired operation.

DatabaseConnection
This is the JNDI name of the connection. For example,
eis/DB/<DatabaseConnection>.

Destination
This is the destination directory for the generated files. For example, C:\Temp.

Database Name Supported Database

IBM DB2 IBM DB2 v 9.x

Microsoft SQL Server SQLServer 2000 or 2005

MySQL MySQL v5.6

Database Name JDBC Driver

IBM DB2 com.ibm.db2.jcc.DB2Driver

Microsoft SQL Server com.microsoft.sqlserver.jdbc.SQLServerDriver

MySQL com.mysql.jdbc.Driver

Database Name Connection String

IBM DB2 jdbc:db2://hostname:port/database-name

Microsoft SQL Server jdbc:sqlserver://hostname:port;databaseName=name

MySQL jdbc:mysql://host:port/database-name

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-83

Parameters
The parameters of the stored procedure (for versions of MySQL before 5.2.6 only.)

QueryTimeout
The JDBC query timeout value (in seconds.) The QueryTimeout property specifies
the maximum number of seconds that the JDBC driver should wait for the specified
stored procedure or function to execute. When the threshold is exceeded,
SQLException is thrown. If the value is zero, then the driver waits indefinitely.

9.7.2.2 Supported Third-Party Databases
The Adapter Configuration Wizard supports Oracle Database, IBM DB2, AS/400,
Microsoft SQL Server, and MySQL v5.2.6 or higher.

This section includes the following topics:

■ Section 9.7.2.2.1, "Microsoft SQL Server"

■ Section 9.7.2.2.2, "DB2 Data Types"

■ Section 9.7.2.2.3, "IBM DB2 AS/400"

■ Section 9.7.2.2.4, "MySQL"

9.7.2.2.1 Microsoft SQL Server

Table 9–15 lists the supported data types for SQL Server stored procedures and
functions:

Table 9–15 Data Types for SQL Server Stored Procedures and Functions

SQL Data Type XML Schema Type

BIGINT long

BINARY

IMAGE

TIMESTAMP

VARBINARY

base64Binary

BIT boolean

CHAR

SQL_VARIANT

SYSNAME

TEXT

UNIQUEIDENTIFIER

VARCHAR

XML (2005 only)

string

DATETIME

SMALLDATETIME

dateTime

DECIMAL

MONEY

NUMERIC

SMALLMONEY

decimal

Stored Procedure and Function Support

9-84 Oracle Fusion Middleware User's Guide for Technology Adapters

Besides, the data types mentioned in the preceding table, alias data types are also
supported. Alias data types are created by using the sp_addtype database engine
stored procedure or the CREATE TYPE Transact-SQL statement (only for SQL Server
2005.) The use of the Transact-SQL statement is the preferred method for creating alias
data types. The use of sp_addtype is being deprecated.

9.7.2.2.2 DB2 Data Types

Table 9–16 lists the supported data types for DB2 SQL stored procedures:

The names of other data types are also supported implicitly. For example, NUMERIC is
equivalent to DECIMAL (as is DEC and NUM as well.)

IBM DB2 supports structured data types (user-defined). However, there is no support
for these types in the JDBC drivers. Consequently, a structured data type may not be
used as the data type of a parameter in a stored procedure. IBM DB2 also supports
user-defined functions. The adapter, however, does not support these functions.

In the Adapter Configuration Wizard, stored procedures are grouped by database user.
A schema in IBM DB2 is equivalent to a schema in Oracle. Both represent the name of a
database user.

FLOAT

REAL

float

INT int

SMALLINT short

TINYINT unsignedByte

Table 9–16 Data Types for DB2 SQL Stored Procedures

SQL Data Type XML Schema Type

BIGINT long

BLOB

CHAR FOR BIT DATA

VARCHAR FOR BIT DATA

base64Binary

CHARACTER

CLOB

VARCHAR

string

DATE

TIME

TIMESTAMP

dateTime

DECIMAL decimal

DOUBLE double

INTEGER int

REAL float

SMALLINT short

Table 9–15 (Cont.) Data Types for SQL Server Stored Procedures and Functions

SQL Data Type XML Schema Type

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-85

For IBM DB2, <Default Schema> refers to the current database user.

Click <Default Schema> to select a different database user. The stored procedures in
the Browse page are those that the database user created in the database specified as
<database> in the JDBC Connection URL.

The Adapter Configuration Wizard does not support changing to a different database.

Select the stored procedure in the Stored Procedures dialog, as shown in Figure 9–45.
The arguments are shown in the Arguments tab. Click Search to find database stored
procedures that the user created in the specified database. For example, 'd%' or 'D%'
would both find the DEMO stored procedure. Clicking Show All reveals all of the
procedures that the current user created in the specified database.

Figure 9–45 The Stored Procedures Dialog

You can view the source code of the stored procedure by clicking the Source tab, as
shown in Figure 9–46.

Stored Procedure and Function Support

9-86 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 9–46 The Source Code of the Stored Procedure

9.7.2.2.3 IBM DB2 AS/400

Table 9–17 lists the supported data types for IBM DB2 AS/400 stored procedures:

Distinct types are also supported for data types that are created using the CREATE
DISTINCT TYPE statement. These data types work in the same way as they do in IBM
DB2.

Table 9–17 Data Types for IBM DB2 AS/400 Stored Procedures

SQL Data Type XML Schema Type

BINARY

BINARY LARGE OBJECT

BINARY VARYING

base64Binary

CHARACTER

CHARACTER LARGE OBJECT

CHARACTER VARYING

string

DATE

TIME

TIMESTAMP

dateTime

DECIMAL

NUMERIC

decimal

DOUBLE PRECISION double

BIGINT long

INTEGER int

REAL float

SMALLINT short

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-87

The IBM DB2 AS/400 implementation is based on queries from catalog tables in the
QSYS2 schema. The adapter tries to determine whether the QSYS2.SCHEMATA table
exists. If it does, then the Adapter Configuration Wizard queries tables in the QSYS2
schema. Therefore, if your IBM DB2 AS/400 database supports the QSYS2 schema,
then the Adapter Configuration Wizard and the adapter run time should both work.

The Adapter Configuration Wizard checks the SYSCAT schema first, and then the
QSYS2 schema. The adapter does not support the catalog tables in the SYSIBM
schema.

9.7.2.2.4 MySQL

Use the Adapter Configuration Wizard to access stored procedures on MySQL v5.6 or
later using catalog tables in the INFORMATION_SCHEMA schema. Versions of MySQL
before v5.6 lack a PARAMETERS table in the INFORMATION_SCHEMA schema.

Without a PARAMETERS table, the MySQL database does not provide any information
about the parameters of a stored procedure. It is therefore necessary to supply this
information using a required property in the properties file. The Parameters
property contains the signature of the stored procedure.

The value of the Parameters property is a comma-delimited list of parameters, each
of which has the following syntax

Parameter ::= {IN | INOUT | OUT} Parameter_Name SQL_Datatype

All three elements of a parameter definition are required.

Consider the following MySQL stored procedure:

CREATE PROCEDURE demo
(IN x VARCHAR (10), INOUT y INT, OUT z CHAR (20))
BEGIN
...
END

The Parameters property must be specified as shown in the following example:

Parameters=IN x VARCHAR (10), INOUT y INT, OUT z CHAR (20)

The generated XSD for the stored procedure is invalid unless the parameters are
specified correctly in the parameters property. The following is a sample of a
properties file for MySQL:

ProductName=MySQL
DriverClassName=com.mysql.jdbc.Driver
ConnectionString=jdbc:mysql://<host>:<port>/<database>
Username=<username>
Password=<password>
SchemaName=<database>
ProcedureName=demo
Parameters=IN x VARCHAR(10),INOUT y INT,OUT z TEXT(20)
ServiceName=MySQLDemoService
DatabaseConnection=mysql

Property Description

IsFunction Determines whether the API is a function or a procedure

SchemaName The name of the database where the API is defined

Parameters The parameters of the stored procedure

Stored Procedure and Function Support

9-88 Oracle Fusion Middleware User's Guide for Technology Adapters

Table 9–18 lists the supported data types for MySQL stored procedures:

Note: For MySQL, the SchemaName, Parameters, and
IsFunction properties are all required properties.

Table 9–18 Data Types for MySQL Stored Procedures

SQL Data Type XML Schema Type

BINARY

BLOB

LONGBLOB

MEDIUMBLOB

TINYBLOB

VARBINARY

base64Binary

BOOLEAN boolean

CHAR

LONGTEXT

MEDIUMTEXT

TEXT

TINYTEXT

VARCHAR

string

DATE

DATETIME

TIMESTAMP

dateTime

DECIMAL

NUMERIC

REAL

decimal

DOUBLE double

FLOAT float

TINYINT byte

TINYINT UNSIGNED unsigned_byte

SMALLINT short

SMALLINT UNSIGNED unsigned_short

INTEGER

INT

MEDIUMINT

int

INTEGER UNSIGNED

INT UNSIGNED

MEDIUMINT UNSIGNED

unsigned_int

BIGINT long

BIGINT UNSIGNED unsigned_long

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-89

The character length for any SQL data type that corresponds with STRING can be
specified using the '(#)' notation in the Parameters property, for example, VARCHAR
(20). Specifying the length of any other SQL data type does not have any effect.

UNSIGNED integer data types are treated as though they were SIGNED integer data
types when using the Adapter Configuration Wizard.

Stored procedures in MySQL are grouped by database specified by <database> in the
JDBC Connection URL. For MySQL, <Default Schema> refers to the database that the
user is connected to (usually specified in the JDBC connection URL.) Click <Default
Schema> to select a different database. Click Search to search for specific stored
procedures in the current database specified in the JDBC Connection URL. For
example, 'd%' or 'D%' would both find stored procedures beginning with 'd' or 'D.'
Click Show All to reveal all procedures in the current database.

9.7.2.3 Creating Database Connections
Database connections must be created in JDeveloper to access catalog tables necessary
for the Adapter Configuration Wizard to work.

The following are the steps to create a database connection by using JDeveloper:

1. Select Database Navigator from View.

2. Right-click the application name, then click New followed by Connections. Select
Database Connection.

The Create Database Connection page is displayed, as shown in Figure 9–47.

Figure 9–47 The Create Database Connection

3. Enter a connection name in the Connection Name field. For example, sqlserver.

4. Select Generic JDBC as the Connection Type from the Connection Type list.

Stored Procedure and Function Support

9-90 Oracle Fusion Middleware User's Guide for Technology Adapters

5. Enter your Username, Password, and role information.

6. Click New for Driver Class. The Register JDBC Driver dialog is displayed, as
shown in Figure 9–48.

Figure 9–48 The Register JDBC Driver Dialog

7. Enter the Driver Class (for example,
com.microsoft.sqlserver.jdbc.SQLServerDriver).

8. Create a library or edit an existing one by using the following steps:

a. Click Browse in the Register JDBC Driver dialog.

b. Click New in the Select Library dialog.

The Select Library dialog is displayed, as shown in Figure 9–49.

Figure 9–49 The Select Library Dialog

c. Select an existing library or click New to create one.

The Create Library dialog is displayed.

d. Enter a library name, for example, SQL Server JDBC.

e. Click Add Entry to add JDBC jar files to the class path.

f. Click OK twice to exit the Create Library windows.

g. Click OK to exit the Register JDBC Driver window.

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-91

9. Enter your connection string name for JDBC URL.

10. Click Test Connection.

11. If the connection is successful, then a screen, as shown in Figure 9–50 is displayed.

Figure 9–50 The Create Database Connection Dialog

12. Click OK followed by Finish.

9.7.3 Design Time: Artifact Generation
The Adapter Configuration Wizard – Stored Procedures is capable of creating a WSDL
file and a valid XSD file that describes the signature of a stored procedure or function.
The following sections describe the relevant structure and content of both the WSDL
and the XSD files, and their relationship with each other.

This section includes the following topics:

■ Section 9.7.3.1, "The WSDL–XSD Relationship"

■ Section 9.7.3.2, "JCA File"

■ Section 9.7.3.3, "Oracle Data Types"

■ Section 9.7.3.4, "Generated XSD Attributes"

■ Section 9.7.3.5, "User-Defined Types"

■ Section 9.7.3.6, "Complex User-Defined Types"

■ Section 9.7.3.7, "Object Type Inheritance"

■ Section 9.7.3.8, "Object References"

■ Section 9.7.3.9, "Referencing Types in Other Schemas"

Stored Procedure and Function Support

9-92 Oracle Fusion Middleware User's Guide for Technology Adapters

■ Section 9.7.3.10, "XSD Pruning Optimization"

9.7.3.1 The WSDL–XSD Relationship
In the paragraphs that follow, the operation name, Factorial, and procedure name,
Factorial, are taken from an example cited previously (see Figure 9–39). The
generated WSDL imports the XSD file.

<types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import
namespace="http://xmlns.oracle.com/pcbpel/adapter/db/SCOTT/FACTORIAL/"
 schemaLocation="xsd/SCOTT_FACTORIAL.xsd"/>
 </schema>
</types>

The namespace is derived from the schema, package, and procedure name, and
appears as the targetNamespace in the generated XSD.

A root element called InputParameters is created in the XSD file for specifying
elements that correspond to the IN and IN/OUT parameters of the stored procedure.
Another root element called OutputParameters is also created in the XSD file for
specifying elements only if there are any IN/OUT or OUT parameters. IN/OUT
parameters appear in both root elements.

These root elements are represented in the XSD file as an unnamed complexType
definition whose sequence includes one element for each parameter. If there are no IN
or IN/OUT parameters, then the InputParameters root element is still created;
however, complexType is empty. A comment in the XSD file indicates that there are
no such parameters. An example of a root elements follows.

<element name="InputParameters"
 <complexType>
 <sequence>
 <element …>
 …
 </sequence>
 </complexType>
</element>

The WSDL defines message types whose parts are defined in terms of these two root
elements.

<message name="args_in_msg"
 <part name="InputParameters" element="InputParameters"/>
</message>
<message name="args_out_msg"
 <part name="OutputParameters" element="OutputParameters"/>
</message>

The db namespace is equal to the targetNamespace of the generated XSD. The
args_in_msg message type always appears in the WSDL while args_out_msg is
included only if the OutputParameters root element is generated in the XSD file.

An operation is defined in the WSDL whose name is identical to the adapter service
and whose input and output messages are defined in terms of these two message
types.

<portType name="Factorial_ptt">
 <operation name="Factorial">
 <input message="tns:args_in_msg"/>

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-93

 <output message="tns:args_out_msg"/>
 </operation>
</portType>

The input message always appears while the output message depends on the existence
of the OutputParameters root element in the XSD file. The tns namespace is
derived from the operation name and is defined in the WSDL as

xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/db/Factorial/"

The root elements in the XSD file define the structure of the parts used in the messages
that are passed into and sent out of the Web service encapsulated by the WSDL.

The input message in the WSDL corresponds to the InputParameters root element
from the XSD file. The instance XML supplies values for the IN and IN/OUT
parameters of the stored procedure. The output message corresponds to the
OutputParameters root element. This is the XML file that gets generated after the
stored procedure has executed. It holds the values of any IN/OUT and OUT
parameters.

9.7.3.2 JCA File
The JCA file provides adapter configuration information for the service. A connection
factory is specified so that the adapter run time can connect to the database, as shown
in the following example. Non-managed connection properties should not be specified
directly in the JCA file. Instead you should create a connection factory on the
application server, and refer to it by name in the JCA file (<connection-factory
location).

<connection-factory location="eis/DB/oracle" UIConnectionName="oracle"
adapterRef="">
</connection-factory>

The JNDI name, eis/DB/oracle, was earlier specified as the service connection in the
Adapter Configuration Wizard.

End point properties for the interaction are also specified. The name of the schema,
package, and procedure are specified, as shown in the following example. The
operation name ties the JCA file back to the service WSDL.

<connection-factory location="eis/db/oracle" UIConnectionName="oracle"
adapterRef=""/>
<endpoint-interaction portType="Factorial_ptt" operation="Factorial">
 <interaction-spec
 className="oracle.tip.adapter.db.DBStoredProcedureInteractionSpec">
 <property name="ProcedureName" value="FACTORIAL"/>
 <property name="GetActiveUnitOfWork="false"/>
 </interaction-spec>
 </output>
</endpoint-interaction>

Note the operation name and procedure name. If an explicit schema had been chosen
or if the procedure had been defined in a package, then values for these properties
would also be listed here.

Stored Procedure and Function Support

9-94 Oracle Fusion Middleware User's Guide for Technology Adapters

9.7.3.3 Oracle Data Types
Many primitive data types have well-defined mappings and therefore are supported
by both the design-time and run-time components. In addition, you can use
user-defined types such as VARRAY, nested tables, and OBJECT.

Table 9–19 lists the supported data types for Oracle stored procedures and functions.

9.7.3.4 Generated XSD Attributes
Table 9–20 lists the attributes used in the generated XSDs.

Note: Non-managed connection details are not created in the
DBAdapter.jca files when you start JDeveloper in the normal mode.
However, non-managed connection details are created in the
DBAdapter .jca files when you start JDeveloper in the preview
mode.

Table 9–19 Data Types for Oracle Stored Procedures and Functions

SQL or PL/SQL Type XML Schema Type

BINARY_DOUBLE

DOUBLE PRECISION

double

BINARY_FLOAT

FLOAT

REAL

float

BINARY_INTEGER

INTEGER

PLS_INTEGER

SMALLINT

int

BLOB

LONG RAW

RAW

base64Binary

CHAR

CLOB

LONG

STRING

VARCHAR2

string

DATE

TIMESTAMP

TIMESTAMP WITH TIME ZONE

dateTime

DECIMAL

NUMBER

decimal

Table 9–20 Generated XSD Attributes

Attribute Example Purpose

name name="param" Name of an element

type type="string" XML schema type

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-95

The db namespace is used to distinguish attributes used during run time from
standard XML schema attributes. The db:type attribute is used to indicate what the
database type is so that a suitable JDBC type mapping can be obtained at run time. The
db:index attribute is used as an optimization by both the design-time and run-time
components to ensure that the parameters are arranged in the proper order. Parameter
indexes begin at 1 for procedures and 0 for functions. The return value of a function is
represented as an OutputParameter element whose name is the name of the
function and whose db:index is 0. The db:default attribute is used to indicate
whether or not a parameter has a default clause.

The minOccurs value is set to 0 to allow for an IN parameter to be removed from the
XML file. This is useful when a parameter has a default clause defining a value for the
parameter (for example, X IN INTEGER DEFAULT 0). At run time, if no element is
specified for the parameter in the XML file, the parameter is omitted from the
invocation of the stored procedure, thus allowing the default value to be used. Each
parameter can appear at most once in the invocation of a stored procedure or function.
Therefore, maxOccurs, whose default value is always 1, is always omitted from
elements representing parameters.

The nillable attribute is always set to true to allow the corresponding element in
the instance XML to have a null value (for example, <X/> or <X></X>). In some cases,
however, to pass an element such as this element, which does have a null value, you
must state this explicitly (for example, <X xsi:nil="true"/>). The namespace,
xsi, used for the nillable attribute, must be declared explicitly in the instance XML
(for example, xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance").

9.7.3.5 User-Defined Types
The Adapter Configuration Wizard can also generate valid definitions for user-defined
types such as collections (VARRAY and nested tables) and OBJECT. These are created as
complexType definitions in the XSD file.

For VARRAY, the complexType definition defines a single element in its sequence,
called name_ITEM, where name is the name of the VARRAY element. All array
elements in the XML file are so named. Given the following VARRAY type definition,

SQL> CREATE TYPE FOO AS VARRAY (5) OF VARCHAR2 (10);

and a VARRAY element, X, whose type is FOO, the following complexType is
generated:

<complexType name="FOO">
 <sequence>
 <element name="X_ITEM" db:type="VARCHAR2" minOccurs="0" maxOccurs="5"
nillable="true"/>
 <simpleType>

db:type db:type="VARCHAR2" SQL or PL/SQL type

db:index db:index="1" Position of a parameter

db:default db:default="true" Has a default clause

minOccurs minOccurs="0" Minimum occurrences

maxOccurs maxOccurs="1" Maximum occurrences

nillable nillable="true" Permits null values

Table 9–20 (Cont.) Generated XSD Attributes

Attribute Example Purpose

Stored Procedure and Function Support

9-96 Oracle Fusion Middleware User's Guide for Technology Adapters

 <restriction base="string">
 <maxLength value="10"/>
 </restriction>
 </simpleType>
 </sequence>
</complexType>

The minOccurs value is 0 to allow for an empty collection. The maxOccurs value is
set to the maximum number of items that the collection can hold. The db:index
attribute is not used. Having nillable set to true allows individual items in the
VARRAY to be null.

Note the use of the restriction specified on the element of the VARRAY, FOO. This is
used on types such as CHAR and VARCHAR2, whose length is known from the
declaration of the VARRAY (or nested table). It specifies the type and maximum length
of the element. An element value that exceeds the specified length causes the instance
XML to fail during schema validation.

The attribute values of a parameter declared to be of type FOO look as follows in the
generated XSD:

<element name="X" type="db:FOO" db:type="Array" db:index="1" minOccurs="0"
nillable="true"/>

The type and db:type values indicate that the parameter is represented as an array
defined by the complexType called FOO in the XSD file. The value for db:index is
whatever the position of that parameter is in the stored procedure.

A nested table is treated almost identically to a VARRAY. The following nested table
type definition,

SQL> CREATE TYPE FOO AS TABLE OF VARCHAR2 (10);

is also generated as a complexType with a single element in its sequence, called
name_ITEM. The element has the same attributes as in the VARRAY example, except
that the maxOccurs value is unbounded because nested tables can be of arbitrary size.

<complexType name="FOO">
 <sequence>
 <element name="X_ITEM" … maxOccurs="unbounded" nillable="true">
 …
 </element>
 </sequence>
</complexType>

An identical restriction is generated for the X_ITEM element in the VARRAY. The
attributes of a parameter, X, declared to be of this type, are the same as in the VARRAY
example.

 collections (Varray and nested table) are not supported if they are defined inside
of a PL/SQL package specification. For example:

SQL> create package pkg as
 > type vary is varray(10) of number;
 > type ntbl is table of varchar2(100;
 > procedure test(v in vary, n in ntbl);
 > end;
 > /

If a user selects the test procedure in the Adapter Configuration Wizard for stored
procedures, an error occurs stating that the types are not supported. However, if the

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-97

vary and ntbl type definitions were defined at the root level, outside of the package,
then choosing the test procedure works without issue. The supported way to use
collection types (Varray and nested table) is shown in the following example:

SQL> create type vary as varray(10) of number;
SQL> create type ntbl as table of varchar2(10);
SQL> create package pkg as
 > procedure test(v in vary, n in ntbl);
 > end;
 /

An OBJECT definition is also generated as a complexType. Its sequence holds one
element for each attribute in the OBJECT.

The following OBJECT,

SQL> CREATE TYPE FOO AS OBJECT (X VARCHAR2 (10), Y NUMBER);

is represented as a complexType definition called FOO with two sequence elements.

<complexType name="FOO">
 <sequence>
 <element name="X" db:type="VARCHAR2" minOccurs="0" nillable="true"/>
 <simpleType>
 <restriction base="string">
 <maxLength value="10"/>
 </restriction>
 </simpleType>
 <element name="Y" type="decimal" db:type="NUMBER" minOccurs="0"
nillable="true"/>
 </sequence>
</complexType>

The minOccurs value is 0 to allow for the element to be removed from the XML file.
This causes the value of the corresponding attribute in the OBJECT to be set to null at
run time. The nillable value is true to allow empty elements to appear in the XML
file, annotated with the xsi:nil attribute, to indicate that the value of the element is
null. Again, the db:index attribute is not used.

Note the use of a restriction on the VARCHAR2 attribute. The length is known from the
declaration of the attribute in the OBJECT.

9.7.3.6 Complex User-Defined Types
User-defined types can be defined in arbitrarily complex ways. An OBJECT can
contain attributes whose types are defined as any of the user-defined types mentioned
in the preceding section. The type of an attribute in an OBJECT can be another
OBJECT, VARRAY, or a nested table, and so on. The base type of a VARRAY or a nested
table can also be an OBJECT. Allowing the base type of a collection to be another
collection supports multidimensional collections.

9.7.3.7 Object Type Inheritance
The Adapter Configuration Wizard is capable of generating a valid XSD for
parameters whose types are defined using OBJECT-type inheritance. Given the
following type hierarchy,

SQL> CREATE TYPE A AS OBJECT (A1 NUMBER, A2 VARCHAR2 (10)) NOT FINAL;
SQL> CREATE TYPE B UNDER A (B1 VARCHAR2 (10));

and a procedure containing a parameter, X, whose type is B,

Stored Procedure and Function Support

9-98 Oracle Fusion Middleware User's Guide for Technology Adapters

SQL> CREATE PROCEDURE P (X IN B) AS BEGIN … END;

the Adapter Configuration Wizard generates an InputParameters element for
parameter X as

<element name="X" type="db:B" db:index="1" db:type="Struct" minOccurs="0"
nillable="true"/>

where the definition of OBJECT type B in the XSD file is generated as the following
complexType.

<complexType name="B">
 <sequence>
 <element name="A1" type="decimal" db:type="NUMBER" minOccurs="0"
nillable="true"/>
 <element name="A2" db:type="VARCHAR2" minOccurs="0" nillable="true">
 ...
 </element>
 <element name="B1" db:type="VARCHAR2" minOccurs="0" nillable="true">
 ...
 </element>
 </sequence>
</complexType>

Restrictions on the maximum length of attributes A2 and B1 are added appropriately.
Notice how the OBJECT type hierarchy is flattened into a single sequence of elements
that corresponds to all of the attributes in the entire hierarchy.

9.7.3.8 Object References
The Adapter Configuration Wizard can also generate a valid XSD for parameters that
are references to OBJECT types (for example, object references) or are user-defined
types that contain an object reference somewhere in their definition. In this example,

SQL> CREATE TYPE FOO AS OBJECT (…);
SQL> CREATE TYPE BAR AS OBJECT (F REF FOO, …);
SQL> CREATE PROCEDURE PROC (X OUT BAR, Y OUT REF FOO) AS BEGIN … END;

the Adapter Configuration Wizard generates complexType definitions for FOO and
BAR as indicated, except that for BAR, the element for the attribute, F, is generated as

<element name="F" type="db:FOO" db:type="Ref" minOccurs="0" nillable="true"/>

where the type and db:type attribute values indicate that F is a reference to the
OBJECT type FOO.

For a procedure PROC, the following elements are generated in the
OutputParameters root element of the XSD file:

<element name="X" type="db:BAR" db:index="1" db:type="Struct" minOccurs="0"
nillable="true"/>
<element name="Y" type="db:FOO" db:index="2" db:type="Ref" minOccurs="0"
nillable="true"/>

For Y, note the value of the db:type attribute, Ref. with the type attribute, the
element definition indicates that Y is a reference to FOO.

There is a restriction on the use of object references that limits their parameter mode to
OUT only. Passing an IN or IN/OUT parameter into an API that is either directly a REF
or, if the type of the parameter is user-defined, contains a REF somewhere in the
definition of that type, is not permitted.

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-99

9.7.3.9 Referencing Types in Other Schemas
You can refer to types defined in other schemas if the necessary privileges to access
them have been granted. For example, suppose type OBJ was declared in SCHEMA1:

SQL> CREATE TYPE OBJ AS OBJECT (…);

The type of a parameter in a stored procedure declared in SCHEMA2 can be type OBJ
from SCHEMA1:

CREATE PROCEDURE PROC (O IN SCHEMA1.OBJ) AS BEGIN … END;

This is possible only if SCHEMA1 granted permission to SCHEMA2 to access type OBJ:

SQL> GRANT EXECUTE ON OBJ TO SCHEMA2;

If the required privileges are not granted, an error occurs when trying to create
procedure PROC in SCHEMA2:

PLS-00201: identifier "SCHEMA1.OBJ" must be declared

Because the privileges have not been granted, type OBJ from SCHEMA1 is not visible to
SCHEMA2; therefore, SCHEMA2 cannot refer to it in the declaration of parameter O.

9.7.3.10 XSD Pruning Optimization
Some user-defined object types can have a very large number of attributes. These
attributes can also be defined in terms of other object types that also have many
attributes. In short, one object type can become quite large depending on the depth
and complexity of its definition.

Depending on the situation, many attributes of a large object type may not even be
necessary. It is sometimes desirable to omit these attributes from the object's schema
definition. This can be done by physically removing the unwanted XSD elements from
the definition of the object type.

See the following example where a stored procedure has a parameter whose type is a
complex user-defined type:

SQL> CREATE TYPE OBJ AS OBJECT (A, NUMBER, B <SqlType>, C <SqlType>, ...);
SQL> CREATE PROCEDURE PROC (O OBJ) AS BEGIN ... END;

The InputParameters root element contains a single element for the parameter, O
from the API's signature. A complexType definition is to be added to the generated
XSD for the object type, as shown in the following code snippet:

<complexType name="OBJ">
 <sequence>
 <element name="A" type="decimal" db:type="NUMBER" minOccurs="0"
nillable="true"/>
 <element name="B" .../>
 <element name="C" .../>
 ...
 </sequence>
</complexType>

If attributes B and C are not required, then their element in the complexType
definition of OBJ can be removed regardless of its type. Values are not required for
these attributes in the instance XML. If parameter O had been an output parameter,
then elements corresponding with the pruned attributes are also omitted in the
generated XML.

Stored Procedure and Function Support

9-100 Oracle Fusion Middleware User's Guide for Technology Adapters

Suppose that the type of parameter A was also a user-defined object type and that the
definition of OBJ changed accordingly, as shown in the following example:

SQL> CREATE TYPE FOO AS OBJECT (X NUMBER, Y NUMBER, Z NUMBER);
SQL> CREATE TYPE OBJ AS OBJECT (A FOO, B <SqlType>, C <SqlType, ...);

In such a case, the API remains unchanged. Elements corresponding to unwanted
attributes in the definition of FOO can also be removed regardless of their type. So, for
example, if Y is not required, then its element in the complexType definition of FOO
can be removed in the XSD file.

Pruning the XSD file in this fashion improves the run-time performance of the adapter
and can significantly reduce memory consumption, as well.

9.7.4 Run Time: Before Stored Procedure Invocation
This section discusses important considerations of stored procedure support and a
brief overview of some important details regarding what happens before the
invocation of a stored procedure or function.

This section includes the following topics:

■ Section 9.7.4.1, "Value Binding"

■ Section 9.7.4.2, "Data Type Conversions"

9.7.4.1 Value Binding
Consider the extraction of values from the XML file and how the run time works given
those values. The possible cases for data in the XML file corresponding to the value of
a parameter whose type is a supported primitive data type are as follows:

1. The value of an element is specified (for example, <X>100</X>, here X=100.)

2. The value of an element is not specified (for example, <X/>, here X=null.)

3. The value is explicitly specified as null (for example, <X xsi:nil="true"/>,
here X=null.)

4. The element is not specified in the XML file at all (for example, X = <default
value>).

In the first case, the value is taken from the XML file as is and is converted to the
appropriate object according to its type. That object is then bound to its corresponding
parameter during preparation of the stored procedure invocation.

Note: Only attributes in user-defined object types can be pruned.
You cannot prune (remove) a parameter of the stored procedure by
removing its element from the InputParameters root element. This
can result in an error at run time unless the parameter has a default
clause.

Note: There is one notable difference that distinguishes Microsoft
SQL Server from IBM DB2, MySQL, and AS/400. SQL Server supports
parameters that can include a default value in the definition of a
stored procedure. Because IBM DB2, MySQL, and AS/400 do not
support parameter defaults, every parameter must be represented as
an element in the instance XML.

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-101

In the second and third cases, the actual value extracted from the XML file is null. The
type converter accepts null and returns it without any conversion. The null value is
bound to its corresponding parameter regardless of its type. Essentially, this is equal to
passing null for parameter X.

The fourth case has two possibilities. The parameter either has a default clause or it
does not. If the parameter has a default clause, then the parameter can be excluded
from the invocation of the stored procedure. This allows the default value to be used
for the parameter. If the parameter is included, then the value of the parameter is used,
instead. If the parameter does not have a default clause, then the parameter must be
included in the invocation of the procedure. Elements for all parameters of a function
must be specified. If an element in the instance XML is missing, then the function is
invoked with fewer arguments than is expected.

A null value is bound to the parameter by default:

SQL> CREATE PROCEDURE PROC (X IN INTEGER DEFAULT 0) AS BEGIN … END;

Here, no value is bound to the parameter. In fact, the parameter can be excluded from
the invocation of the stored procedure. This allows the value of 0 to default for
parameter X.

To summarize, the following PL/SQL is executed in each of these three cases:

1. "BEGIN PROC (X=>?); END;" - X = 100

2. "BEGIN PROC (X=>?); END;" - X = null

3. There are two possibilities:

a. "BEGIN PROC (); END;" - X = 0 (X has a default clause)

b. "BEGIN PROC (X=>?); END;" - X = null (X does not have a default
clause)

With the exception of default clause handling, these general semantics also apply to
item values of a collection or attribute values of an OBJECT whose types are a
supported primitive data types. The semantics of <X/> when the type is user-defined
are, however, quite different.

For a collection, whether it is a VARRAY or a nested table, the following behavior can
be expected, given a type definition such as

SQL> CREATE TYPE ARRAY AS VARRAY (5) OF VARCHAR2 (10);

and XML for a parameter, X, which has type ARRAY, that appears as follows:

<X>
 <X_ITEM xsi:nil="true"/>
 <X_ITEM>Hello</X_ITEM>
 <X_ITEM xsi:nil="true"/>
 <X_ITEM>World</X_ITEM>
</X>

The first and third elements of the VARRAY are set to null. The second and fourth are
assigned their respective values. No fifth element is specified in the XML file;
therefore, the VARRAY instance has only four elements.

Assume an OBJECT definition such as

SQL> CREATE TYPE OBJ AS OBJECT (A INTEGER, B INTEGER, C INTEGER);

and XML for a parameter, X, which has type OBJ, that appears as

Stored Procedure and Function Support

9-102 Oracle Fusion Middleware User's Guide for Technology Adapters

<X>
 <A>100
 <C xsi:nil="true"/>
</X>

The value 100 is assigned to attribute A, and null is assigned to attributes B and C.
Because there is no element in the instance XML for attribute B, a null value is
assigned.

The second case, <X/>, behaves differently if the type of X is user-defined. Rather than
assigning null to X, an initialized instance of the user-defined type is created and
bound instead.

In the preceding VARRAY example, if <X/> or <X></X> is specified, then the value
bound to X is an empty instance of the VARRAY. In PL/SQL, this is equivalent to
calling the type constructor and assigning the value to X. For example,

X := ARRAY();

Similarly, in the preceding OBJECT example, an initialized instance of OBJ, whose
attribute values have all been null assigned, is bound to X. Similar to the VARRAY case,
this is equivalent to calling the type constructor. For example,

X := OBJ(NULL, NULL, NULL);

To specifically assign a null value to X when the type of X is user-defined, add the
xsi:nil attribute to the element in the XML file, as in

<X xsi:nil="true"/>

9.7.4.2 Data Type Conversions
This section describes the conversion of data types such as CLOB, DATE, TIMESTAMP,
and binary data types including RAW, LONG RAW and BLOB, and similar data types
supported by third-party databases.

Microsoft SQL Server, IBM DB2, AS/400, and MySQL support binding various forms
of binary and date data types to parameters of a stored procedure, as summarized in
Table 9–21.

For a CLOB parameter, if the length of the CLOB parameter is less than 4 kilobytes, then
the text extracted from the XML file is bound to the parameter as a String type with

Table 9–21 Third-Party Database: Binding Binary and Date Values to Parameters of a
Stored Procedure

XML Schema
Type

IBM DB2 Data
Type

AS/400 Data
Type

Microsoft SQL
Server Data Type

MySQL Data
Type

base64Binary BLOB

CHAR FOR BIT
DATA

VARCHAR FOR
BIT DATA

BINARY

BINARY LARGE
OBJECT

BINARY
VARYING

BINARY

IMAGE

TIMESTAMP

VARBINARY

BINARY

TINYBLOB

BLOB

MEDIUMBLOB

LONGBLOB

VARBINARY

dateTime DATE

TIME

TIMESTAMP

DATE

TIME

TIMESTAMP

DATETIME

SMALLDATETIME

DATE

DATETIME

TIMESTAMP

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-103

no further processing. If the length of the CLOB parameter is greater than 4 kilobytes or
if the mode of the parameter is IN/OUT then a temporary CLOB parameter is created.
The XML file data is then written to the temporary CLOB before the CLOB is bound to
its corresponding parameter. The temporary CLOB parameter is freed when the
interaction completes. For other character types, such as CHAR and VARCHAR2, the
data is simply extracted and bound as necessary. It is possible to bind an XML
document to a CLOB parameter (or VARCHAR2 if it is large enough). However,
appropriate substitutions for <, >, and so on, must first be made (for example, <
for < and > for >).

A few data types require special processing before their values are bound to their
corresponding parameters. These include data types represented by the XML Schema
types base64Binary and dateTime.

The XML schema type, dateTime, represents TIME, DATE, and TIMESTAMP. The XML
values for these data types must adhere to the XML schema representation for
dateTime. Therefore, a simple DATE string, 01-JAN-05, is invalid. XML schema
defines dateTime as YYYY-MM-DDTHH:mm:ss. Therefore, the correct DATE value is
2005-01-01T00:00:00. Values for these parameters must be specified using this
format in the instance XML.

Data for binary data types must be represented in a human readable manner. The
chosen XML schema representation for binary data is base64Binary. The type
converter uses the javax.mail.internet.MimeUtility encode and decode APIs
to process binary data. The encode API must be used to encode all binary data into
base64Binary form so that it can be used in an XML file. The type converter uses the
decode API to decode the XML data into a byte array. The decode API is used to
convert the base64Binary data into a byte array.

For a BLOB parameter, if the length of a byte array containing the decoded value is less
than 2 kilobytes, then the byte array is bound to its parameter with no further
processing. If the length of the byte array is greater than 2 kilobytes or if the mode of
the parameter is IN/OUT, then a temporary BLOB is created. The byte array is then
written to the BLOB before it is bound to its corresponding parameter. The temporary
BLOB is freed when the interaction completes. For other binary data types, such as RAW
and LONG RAW, the base64Binary data is decoded into a byte array and bound as
necessary.

Conversions for the remaining data types are straightforward and require no
additional information.

9.7.5 Run Time: After Stored Procedure Invocation
After the procedure (or function) executes, the values for any IN/OUT and OUT
parameters are retrieved. These correspond to the values of the elements in the
OutputParameters root element in the generated XSD.

This section includes the following topics:

■ Section 9.7.5.1, "Data Type Conversions"

■ Section 9.7.5.2, "Null Values"

■ Section 9.7.5.3, "Function Return Values"

9.7.5.1 Data Type Conversions
Conversions of data retrieved are straightforward. However, CLOB (and other
character data), RAW, LONG RAW, and BLOB conversions, and conversions for similar
data types supported by third-party databases, require special attention.

Stored Procedure and Function Support

9-104 Oracle Fusion Middleware User's Guide for Technology Adapters

When a CLOB is retrieved, the entire contents of that CLOB are written to the
corresponding element in the generated XML. Standard DOM APIs are used to
construct the XML file. Hence, character data, for types such as CLOB, CHAR, and
VARCHAR2, is messaged as needed to make any required substitutions so that the
value is valid and can be placed in the XML file for subsequent processing. Therefore,
substitutions for <and>, for example, in an XML document stored in a CLOB are made
so that the value placed in the element within the generated XML for the associated
parameter is valid.

Raw data, such as for RAW and LONG RAW data types, is retrieved as a byte array. For
BLOBs, the BLOB is first retrieved, and then its contents are obtained, also as a byte
array. The byte array is then encoded using the
javax.mail.internet.MimeUtility encode API into base64Binary form. The
encoded value is then placed in its entirety in the XML file for the corresponding
element. The MimeUtility decode API must be used to decode this value back into a
byte array.

Conversions for the remaining data types are straightforward and require no
additional information.

9.7.5.2 Null Values
Elements whose values are null appear as empty elements in the generated XML and
are annotated with the xsi:nil attribute. Thus, the xsi namespace is declared in the
XML file that is generated. Generated XML for a procedure PROC, which has a single
OUT parameter, X, whose value is null, looks as follows:

<OutputParameters … xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <X xsi:nil="true"/>
</OutputParameters>

XML elements for parameters of any type (including user-defined types) appear this
way if their value is null.

9.7.5.3 Function Return Values
The return value of a function is treated as an OUT parameter at position 0 whose
name is the name of the function itself. For example,

CREATE FUNCTION FACTORIAL (X IN INTEGER) RETURN INTEGER AS
BEGIN
 IF (X <= 0) THEN RETURN 1;
 ELSE RETURN FACTORIAL (X - 1);
 END IF;
END;

An invocation of this function with a value of 5, for example, results in a value of 120
and appears as <FACTORIAL>120</FACTORIAL> in the OutputParameters root
element in the generated XML.

9.7.6 Run Time: Common Third-Party Database Functionality
The common third-party database functionality at run time includes the following:

■ Section 9.7.6.1, "Processing ResultSets"

■ Section 9.7.6.2, "Returning an INTEGER Status Value"

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-105

9.7.6.1 Processing ResultSets
All third-party databases share the same functionality for handling ResultSets. The
following is a SQL Server example of an API that returns a ResultSet:

 1> create procedure foo ... as select ... from ...;
 2> go

A RowSet defined in the generated XSD represents a ResultSet. A RowSet consists
of zero or more rows, each having one or more columns. A row corresponds with a
row returned by the query. A column corresponds with a column item in the query.
The generated XML for the API shown in the preceding example after it executes is
shown in the following example:

<RowSet>
 <Row>
 <Column name="<column name>" sqltype="<sql datatype">value</Column>
 ...
 </Row>
 ...
</RowSet>
…

The name attribute stores the name of the column appearing in the query while the
sqltype attribute stores the SQL datatype of that column, for example INT. The value
is whatever the value is for that column.

It is possible for an API to return multiple ResultSets. In such cases, there is one
RowSet for each ResultSet in the generated XML. All RowSets always appear first
in the generated XML.

9.7.6.2 Returning an INTEGER Status Value
Some databases support returning an INTEGER status value using a RETURN statement
in a stored procedure. Microsoft SQL Server and AS/400 both support this feature. In
both cases, the Adapter Configuration Wizard cannot determine whether a stored
procedure returns a status value. Therefore, you must specify that the stored
procedure is returning a value. You can use a check box to make this indication.

After choosing a stored procedure in the Stored Procedures dialog, the Specify Stored
Procedure page appears, as shown in Figure 9–51. The check box appears at the
bottom of the page. Select the box to indicate that the procedure contains a RETURN
statement. You can view the source code of the procedure to determine whether a
RETURN statement exists.

The check box appears only for stored procedures on databases that support this
feature. The check box is not displayed for functions. The value returned by the stored
procedure appears as an element in the OutputParameters root element in the
generated XSD. The name of the element is the name of the stored procedure. The
value of a return statement is lost after the execution of the stored procedure if the
check box is not selected.

Stored Procedure and Function Support

9-106 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 9–51 The Specify Stored Procedure Page

9.7.7 Advanced Topics
This section discusses scenarios for types that are not supported directly using the
stored procedure functionality that the Oracle Database Adapter provides. The
following sections describe workarounds that address the have to use these data types:

■ Section 9.7.7.1, "Row Set Support Using a Strongly Typed XSD"

■ Section 9.7.7.2, "Row Set Support Using a Weakly Typed XSD"

■ Section 9.7.7.3, "Support for PL/SQL Boolean, PL/SQL Record, and PL/SQL Table
Types"

9.7.7.1 Row Set Support Using a Strongly Typed XSD
Currently a REF CURSOR by nature can support any arbitrary result set, so the XSD
generated at design time is weakly typed.

However the XML output from this is hard to use. It is very difficult to write an Xpath
expression or XSL based on a weakly typed XSD and column names as attribute values
instead of element names.

Although a row set can represent any result set, it is possible to assume for some
procedures that it has the same structure each time, and hence can be described with a
strongly typed XSD. A strongly typed XSD is almost a necessity to transform the result
set to another XSD later on. You can use the Adapter Configuration Wizard to generate
a strongly typed XSD for a REF CURSOR.

If a weakly typed XSD is sufficient for your use case, see Section 9.7.7.2, "Row Set
Support Using a Weakly Typed XSD".

This section includes the following topics:

■ Section 9.7.7.1.1, "Design Time"

■ Section 9.7.7.1.2, "Run Time"

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-107

For more information, see Section 9.3.3, "Row Set Support Using a Strongly or Weakly
Typed XSD".

9.7.7.1.1 Design Time

If the stored procedure or function you select contains an output parameter of type
RowSet, you can define a strongly typed XSD for this ref cursor as follows:

1. Using the Adapter Configuration Wizard, select a stored procedure or function
that contains an output parameter of type RowSet.

See steps 1 through 8 in Section 9.7.1.1, "Using Top-Level Standalone APIs".

2. Click Next. The RowSets page is displayed, as shown in Figure 9–52.

By default, the Adapter Configuration Wizard generates a weakly typed XSD for
this ref cursor shown in the XSD text field. Example 9–4 shows this default,
weakly typed XSD.

Figure 9–52 RowSets Page

Example 9–4 Default Weakly Typed XSD

<schema targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/db/SYS/MOVIES_
CURSORS/MOVIES_QUERY/" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:db="http://xmlns.oracle.com/pcbpel/adapter/db/SYS/MOVIES_CURSORS/MOVIES_QUERY/"
elementFormDefault="qualified">
 <element name="InputParameters">
 <complexType>
 <sequence>
 <element name="EXAMPLE" type="db:SYS.MOVIESOBJ" db:index="1" db:type="Struct"
minOccurs="0" nillable="true"/>
 </sequence>
 </complexType>
 </element>
 <element name="OutputParameters">
 <complexType>
 <sequence>
 <element name="MOVIES" type="db:RowSet" db:index="2" db:type="RowSet"

Stored Procedure and Function Support

9-108 Oracle Fusion Middleware User's Guide for Technology Adapters

minOccurs="0" nillable="true"/>
 </sequence>
 </complexType>
 </element>
 <complexType name="RowSet">
 <sequence>
 <element name="Row" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="Column" maxOccurs="unbounded" nillable="true">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="name" type="string" use="required"/>
 <attribute name="sqltype" type="string" use="required"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <complexType name="SYS.MOVIESOBJ">
 <sequence>
 <element name="TITLE" db:type="VARCHAR2" minOccurs="0" nillable="true">
 <simpleType>
 <restriction base="string">
 <maxLength value="30"/>
 </restriction>
 </simpleType>
 </element>
 <element name="DIRECTOR" db:type="VARCHAR2" minOccurs="0" nillable="true">
 <simpleType>
 <restriction base="string">
 <maxLength value="30"/>
 </restriction>
 </simpleType>
 </element>
 <element name="STARRING" db:type="VARCHAR2" minOccurs="0" nillable="true">
 <simpleType>
 <restriction base="string">
 <maxLength value="30"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
</schema>

3. For each of the stored procedure or function arguments:

■ Double-click in the Value column.

■ Enter a valid value for the argument.

Enter numbers and strings directly, dates as literals (for example, 2009/11/11),
and structs as say MYOBJ('a', 'b').

■ Press Enter.

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-109

4. Click Introspect.

The Adapter Configuration Wizard executes the stored procedure or function
using the arguments you specify:

a. If the stored procedure or function returns a row set with at least 1 row, the
RowSets page is updated to display a strongly typed XSD in the XSD text
field. Example 9–5 shows the strongly typed XSD that replaces the default,
weakly typed XSD that Example 9–4 shows.

Figure 9–53 RowSets Page: Successful Introspection

Example 9–5 Strongly Typed XSD

<schema targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/db/SYS/MOVIES_
CURSORS/MOVIES_QUERY/" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:db="http://xmlns.oracle.com/pcbpel/adapter/db/SYS/MOVIES_CURSORS/MOVIES_
QUERY/" elementFormDefault="qualified">
 <element name="InputParameters">
 <complexType>
 <sequence>
 <element name="EXAMPLE" type="db:SYS.MOVIESOBJ" db:index="1"
db:type="Struct" minOccurs="0" nillable="true"/>
 </sequence>
 </complexType>
 </element>
 <element name="OutputParameters">
 <complexType>

Note: You must choose values that are valid for the argument type
and that exist in the database.

Oracle recommends that you specify a value for all arguments to
ensure that the correct stored procedure or function signature is
executed.

Stored Procedure and Function Support

9-110 Oracle Fusion Middleware User's Guide for Technology Adapters

 <sequence>
 <element name="MOVIES" type="db:MOVIES_RowSet" db:index="2"
db:type="RowSet" minOccurs="0" nillable="true"/>
 </sequence>
 </complexType>
 </element>
 <complexType name="MOVIES_RowSet">
 <sequence>
 <element name="MOVIES_Row" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="TITLE" db:type="VARCHAR2" minOccurs="0"
nillable="true">
 <simpleType>
 <restriction base="string">
 <maxLength value="50"/>
 </restriction>
 </simpleType>
 </element>
 <element name="DIRECTOR" db:type="VARCHAR2" minOccurs="0"
nillable="true">
 <simpleType>
 <restriction base="string">
 <maxLength value="20"/>
 </restriction>
 </simpleType>
 </element>
 <element name="STARRING" db:type="VARCHAR2" minOccurs="0"
nillable="true">
 <simpleType>
 <restriction base="string">
 <maxLength value="100"/>
 </restriction>
 </simpleType>
 </element>
 <element name="SYNOPSIS" db:type="VARCHAR2" minOccurs="0"
nillable="true">
 <simpleType>
 <restriction base="string">
 <maxLength value="255"/>
 </restriction>
 </simpleType>
 </element>
 <element name="GENRE" db:type="VARCHAR2" minOccurs="0"
nillable="true">
 <simpleType>
 <restriction base="string">
 <maxLength value="70"/>
 </restriction>
 </simpleType>
 </element>
 <element name="RUN_TIME" type="decimal" db:type="NUMBER"
minOccurs="0" nillable="true"/>
 <element name="RELEASE_DATE" type="dateTime" db:type="DATE"
minOccurs="0" nillable="true"/>
 <element name="RATED" db:type="VARCHAR2" minOccurs="0"
nillable="true">
 <simpleType>
 <restriction base="string">
 <maxLength value="6"/>

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-111

 </restriction>
 </simpleType>
 </element>
 <element name="RATING" db:type="VARCHAR2" minOccurs="0"
nillable="true">
 <simpleType>
 <restriction base="string">
 <maxLength value="4"/>
 </restriction>
 </simpleType>
 </element>
 <element name="VIEWER_RATING" db:type="VARCHAR2" minOccurs="0"
nillable="true">
 <simpleType>
 <restriction base="string">
 <maxLength value="5"/>
 </restriction>
 </simpleType>
 </element>
 <element name="STATUS" db:type="VARCHAR2" minOccurs="0"
nillable="true">
 <simpleType>
 <restriction base="string">
 <maxLength value="11"/>
 </restriction>
 </simpleType>
 </element>
 <element name="TOTAL_GROSS" type="decimal" db:type="NUMBER"
minOccurs="0" nillable="true"/>
 <element name="DELETED" db:type="VARCHAR2" minOccurs="0"
nillable="true">
 <simpleType>
 <restriction base="string">
 <maxLength value="5"/>
 </restriction>
 </simpleType>
 </element>
 <element name="SEQUENCENO" type="decimal" db:type="NUMBER"
minOccurs="0" nillable="true"/>
 <element name="LAST_UPDATED" type="dateTime" db:type="DATE"
minOccurs="0" nillable="true"/>
 <element name="POLLING_STRATEGY" db:type="VARCHAR2"
minOccurs="0" nillable="true">
 <simpleType>
 <restriction base="string">
 <maxLength value="30"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <complexType name="SYS.MOVIESOBJ">
 <sequence>
 <element name="TITLE" db:type="VARCHAR2" minOccurs="0" nillable="true">
 <simpleType>
 <restriction base="string">
 <maxLength value="30"/>

Stored Procedure and Function Support

9-112 Oracle Fusion Middleware User's Guide for Technology Adapters

 </restriction>
 </simpleType>
 </element>
 <element name="DIRECTOR" db:type="VARCHAR2" minOccurs="0"
nillable="true">
 <simpleType>
 <restriction base="string">
 <maxLength value="30"/>
 </restriction>
 </simpleType>
 </element>
 <element name="STARRING" db:type="VARCHAR2" minOccurs="0"
nillable="true">
 <simpleType>
 <restriction base="string">
 <maxLength value="30"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
</schema>

Proceed to step 5.

b. If no rows are returned, the Introspection Failed dialog is displayed, as shown
in Figure 9–54.

Figure 9–54 Introspection Failed Dialog

The Adapter Configuration Wizard generates a weakly typed XSD and
displays it in the XSD text field by default, overwriting any edits you may
have made to a previous version of the XSD.

Go back to step 3 and enter test argument values that returns a row set with at
least 1 row.

c. If the stored procedure or function throws an exception, the Introspection
Error dialog is displayed, as shown in Figure 9–55.

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-113

Figure 9–55 Introspection Error Dialog

The Adapter Configuration Wizard generates a weakly typed XSD and
displays it in the XSD text field by default, overwriting any edits you may
have made to a previous version of the XSD.

Go back to step 3 and enter test argument values that returns a row set with at
least 1 row.

5. Optionally, fine tune the strongly typed XSD by manually editing the schema
shown in the XSD text filed.

6. Proceed to step 10 in Section 9.7.1.1, "Using Top-Level Standalone APIs".

9.7.7.1.2 Run Time

Suppose you have the following package:

CREATE PACKAGE PKG AS
 TYPE REF_CURSOR IS REF CURSOR;
 PROCEDURE TEST(C OUT REF_CURSOR);

END;

CREATE PACKAGE BODY PKG AS
 ROCEDURE TEST(C OUT REF_CURSOR) AS
 BEGIN

 OPEN C FOR SELECT DEPTNO, DNAME FROM DEPT;
 END;

END;

After using the Adapter Configuration Wizard to define a strongly typed XSD, after
the procedure executes, the following XML is generated for parameter, C:

<C>
<C_Row>

<DEPTNO>10</DEPTNO>
<DNAME>ACCOUNTING</DNAME>

</C_Row>
<C_Row>

<DEPTNO>11</DEPTNO>
<DNAME>DEVELOPMENT</DNAME>

</C_Row>
…

</C>

Stored Procedure and Function Support

9-114 Oracle Fusion Middleware User's Guide for Technology Adapters

Using the Oracle Database Adapter, at run time, it does not matter if the XSD
describing the strongly typed ref cursor is inline or imported.

The strongly typed XSD is applied by the SOA runtime and is visible in the Oracle
Enterprise Manager Console, where appropriate. For example, Figure 9–56 shows the
audit trail for an invoke that returns a ref cursor payload using a strongly typed XSD.

Figure 9–56 Audit Trail for Stongly Typed Payload

9.7.7.2 Row Set Support Using a Weakly Typed XSD
Currently a REF CURSOR by nature can support any arbitrary result set, so the XSD
generated at design time is weakly typed. By default, the Adapter Configuration
Wizard generates a weakly typed XSD for a REF CURSOR.

However the XML output from this is hard to use. It is very difficult to write an Xpath
expression or XSL based on a weakly typed XSD and column names as attribute values
instead of element names.

Although a row set can represent any result set, it is possible to assume for some
procedures that it has the same structure each time, and hence can be described with a
strongly typed XSD. A strongly typed XSD is almost a necessity to transform the result
set to another XSD later on.

If a strongly typed XSD is better suited to your use case, see Section 9.7.7.1, "Row Set
Support Using a Strongly Typed XSD".

This section includes the following topics:

■ Section 9.7.7.2.1, "Design Time"

■ Section 9.7.7.2.2, "Run Time"

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-115

For more information, see Section 9.3.3, "Row Set Support Using a Strongly or Weakly
Typed XSD".

9.7.7.2.1 Design Time

If the stored procedure or function you select contains an output parameter of type
ResultSet, you can define a weakly typed XSD for this ref cursor as follows:

1. Using the Adapter Configuration Wizard, select a stored procedure or function
that contains an output parameter of type ResultSet.

See steps 1 through 8 in Section 9.7.1.1, "Using Top-Level Standalone APIs".

2. Click Next. The RowSets page is displayed, as shown in Figure 9–57.

By default, the Adapter Configuration Wizard generates a weakly typed XSD for
this ref cursor shown in the XSD text field.

Figure 9–57 RowSets Page

3. Optionally, fine tune the weakly typed XSD by manually editing the schema
shown in the XSD text filed.

4. Proceed to step 10 in Section 9.7.1.1, "Using Top-Level Standalone APIs".

9.7.7.2.2 Run Time

Suppose you have the following package:

CREATE PACKAGE PKG AS
 TYPE REF_CURSOR IS REF CURSOR;
 PROCEDURE TEST(C OUT REF_CURSOR);

END;

CREATE PACKAGE BODY PKG AS
 ROCEDURE TEST(C OUT REF_CURSOR) AS
 BEGIN

 OPEN C FOR SELECT DEPTNO, DNAME FROM DEPT;

Stored Procedure and Function Support

9-116 Oracle Fusion Middleware User's Guide for Technology Adapters

 END;
END;

The REF_CURSOR is a weakly typed cursor variable because the query is not specified.
After the procedure executes, the following XML is generated for parameter, C:

<C>
<Row>

<Column name="DEPTNO" sqltype="NUMBER">10</Column>
<Column name="DNAME" sqltype="VARCHAR2">ACCOUNTING</Column>

</Row>
<Row>

<Column name="DEPTNO" sqltype="NUMBER">20</Column>
<Column name="DNAME" sqltype="VARCHAR2">RESEARCH</Column>

</Row>
…

</C>

There is a total of four rows, each consisting of two columns, DEPTNO and DNAME.

Ref cursors are represented by Java ResultSets. It is not possible to create a
ResultSet programmatically by using APIs provided by the JDBC driver. Therefore,
ref cursors may not be passed IN to a stored procedure. They can only be passed as
IN/OUT and OUT parameters with one caveat. An IN/OUT ref cursor is treated strictly
as an OUT parameter. Because no IN value can be provided for an IN/OUT parameter,
a null is bound to that parameter when invoking the stored procedure.

9.7.7.3 Support for PL/SQL Boolean, PL/SQL Record, and PL/SQL Table Types
The Adapter Configuration Wizard provides a mechanism that detects when these
types are used and then invokes Oracle JPublisher to generate the necessary wrappers
automatically. Oracle JPublisher generates two SQL files, one to create schema objects,
and another to drop them. The SQL that creates the schema objects is automatically
executed from within the Adapter Configuration Wizard to create the schema objects
in the database schema before the XSD file is generated. For example, suppose the
following package specification is declared:

CREATE PACKAGE PKG AS
 TYPE REC IS RECORD (X NUMBER, Y VARCHAR2 (10));
 TYPE TBL IS TABLE OF NUMBER INDEX BY PLS_INTEGER;
 PROCEDURE PLSQL (R REC, T TBL, B BOOLEAN);
END;

Figure 9–58 shows the step in the Adapter Configuration Wizard that is displayed
when PROC procedure from PKG package is selected.

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-117

Figure 9–58 Specifying a Stored Procedure in the Adapter Configuration Wizard

As Figure 9–58 shows, the original procedure name is fully qualified, PKG.PLSQL. The
type of parameter, R, is the name of the RECORD. The type of T is the name of the
TABLE. The type of B is Boolean. The name of the wrapper package that is generated
is derived from the service name, bpel_ServiceName (for example, bpel_
UseJPub). This is the name of the generated package that contains the wrapper
procedure. You can use the check box to force the Adapter Configuration Wizard to
overwrite an existing package when the schema objects are created.

Clicking Next twice reveals the Finish page of the Adapter Configuration Wizard, as
shown in Figure 9–59.

Stored Procedure and Function Support

9-118 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 9–59 Defining a Database Adapter Service: Finish Page

The contents of this page describe what the Adapter Configuration Wizard has
detected and what actions are performed when the Finish button is clicked. The
following summarizes the contents of this page:

1. The name of the generated WSDL is UseJPub.wsdl.

2. The name of the JCA file is UseJPub_db.jca.

3. Two SQL scripts are created and added to the BPEL process project:

a. BPEL_USEJPUB.sql – Creates the schema objects.

b. BPEL_USEJPUB_drop.sql – Drops the schema objects.

4. The name of the generated XSD is SCOTT_USEJPUB_PKG-24PLSQL.xsd.

When you click Finish, Oracle JPublisher is invoked to generate the SQL files and load
the schema objects into the database. The process of generating wrappers may take
quite some time to complete. Processing times for wrappers that are generated in the
same package usually require less time after an initial wrapper has been generated for
another procedure within the same package.

The following user-defined types are generated to replace the PL/SQL types from the
original procedure:

SQL> CREATE TYPE PKG_REC AS OBJECT (X NUMBER, Y VARCHAR2 (10));
SQL> CREATE TYPE PKG_TBL AS TABLE OF NUMBER;

The naming convention for these types is OriginalPackageName_
OriginalTypeName. Boolean is replaced by INTEGER in the wrapper procedure.

Note: You must execute BPEL_XXXX_drop.sql when re-creating
an Oracle Database Adapter. This is likely due to the JPublisher
functionality, which uses a cache when generating wrappers.

Stored Procedure and Function Support

Oracle JCA Adapter for Database 9-119

Acceptable values for the original Boolean parameter, now that it is an INTEGER are
0 for FALSE and any nonzero INTEGER value for TRUE. Any value other than 1 is
considered false. The generated wrapper procedure uses APIs from the SYS.SQLJUTL
package to convert from INTEGER to Boolean and vice-versa.

A new wrapper package called BPEL_USEJPUB is created that contains the wrapper
for procedure PLSQL, called PKG$PPLSQL, and conversion APIs that convert from the
PL/SQL types to the user-defined types and vice-versa. If the original procedure is a
root-level procedure, then the name of the generated wrapper procedure is
TOPLEVEL$OriginalProcedureName.

The generated XSD represents the signature of wrapper procedure PKG$PLSQL and
not the original procedure. The name of the XSD file is URL-encoded, which replaces $
with -24.

Note the naming conventions for the generated artifacts:

■ The service name is used in the names of the WSDL and SQL files. It is also used
as the name of the wrapper package.

■ The name of the generated XSD is derived from the schema name, service name,
and the original package and procedure names.

■ The name of a SQL object or collection data types are derived from the original
package name and the name of its corresponding PL/SQL type.

■ The name of the wrapper procedure is derived from the original package and
procedure names. TOPLEVEL$ is used for root-level procedures.

The name of the generated wrapper package is limited to 30 characters. The name of
the wrapper procedure is limited to 29 characters. If the names generated by Oracle
JPublisher are longer than these limits, then they are truncated.

When the PartnerLink that corresponds with the service associated with the procedure
is invoked, then the generated wrapper procedure is executed instead of the original
procedure.

9.7.7.3.1 Default Clauses in Wrapper Procedures

If a procedure contains a special type that requires a wrapper to be generated, then the
default clauses on any of the parameters are not carried over to the wrapper. For
example, consider

SQL> CREATE PROCEDURE NEEDSWRAPPER (
 > B BOOLEAN DEFAULT TRUE, N NUMBER DEFAULT 0) IS BEGIN … END;

Assuming that this is a root-level procedure, the signature of the generated wrapper
procedure is

TOPLEVEL$NEEDSWRAPPER (B INTEGER, N NUMBER)

The Boolean type has been replaced by INTEGER. The default clauses on both
parameters are missing in the generated wrapper. Parameters of generated wrapper
procedures never have a default clause even if they did in the original procedure.

In this example, if an element for either parameter is not specified in the instance XML,
then an error occurs stating that an incorrect number of arguments have been
provided. The default value of the parameter that is specified in the original procedure
is not used.

To address this situation, the generated SQL file that creates the wrapper must be
edited, restoring the default clauses to the parameters of the wrapper procedure. The
wrapper and any additional schema objects must then be reloaded into the database

Oracle Database Adapter Use Cases

9-120 Oracle Fusion Middleware User's Guide for Technology Adapters

schema. After editing the SQL file, the signature of the wrapper procedure is as
follows:

TOPLEVEL$NEEDSWRAPPER (B INTEGER DEFAULT 1, N NUMBER DEFAULT 0)

For Boolean parameters, the default value for true is 1, and the default value for false
is 0.

As a final step, the XSD file generated for the wrapper must be edited. A special
attribute must be added to elements representing parameters that now have default
clauses. Add db:default="true" to each element representing a parameter that
now has a default clause. For example,

<element name="B" … db:default="true" …/>
<element name="N" … db:default="true" …/>

This attribute is used at run time to indicate that if the element is missing from the
instance XML, then the corresponding parameter must be omitted from the procedure
call. The remaining attributes of these elements remain exactly the same.

9.8 Oracle Database Adapter Use Cases
This describes the Oracle Database Adapter and Oracle Database Adapter - stored
procedures use cases.

This section includes the following topics:

■ Section 9.8.1, "Use Cases for Oracle Database Adapter"

■ Section 9.8.2, "Use Cases for Oracle Database Adapter - Stored Procedures"

9.8.1 Use Cases for Oracle Database Adapter
To obtain Oracle Database Adapter use cases, access the Oracle SOA Sample Code site.

Table 9–22 summarizes the Database Adapter samples on the Sample Code site.

Table 9–22 Adapter Samples on Sample Page Site

Sample Description

adapters-db-101-MasterDetail.zip The MasterDetail tutorial shows a simple
scenario for replicating data in one set of
tables on one database to tables on
same/another database.

adapters-db-103-File2StoredProcedure.zip This sample illustrates the use of the File
Adapter interfacing with a stored procedure
invocation.

adapters-db-102-Select.zip The Select tutorial shows how to invoke a
DML select/insert/update/delete as part of
a larger BPEL process or independently as a
web service call.

adapters-db-104-InformixStoredProcedure.zip This scenario showcases a Database Adapter
partner link (Outbound Adapter Service)
that invokes a stored procedure on an
Informix instance.

adapters-db-105-SybaseStoredProcedure.zip This scenario showcases a Database Adapter
partner link (Outbound Adapter Service)
that invokes a stored procedure on a Sybase
instance.

Oracle Database Adapter Use Cases

Oracle JCA Adapter for Database 9-121

9.8.2 Use Cases for Oracle Database Adapter - Stored Procedures
This section includes the following use cases:

■ Section 9.8.2.1, "Creating and Configuring a Stored Procedure in JDeveloper BPEL
Designer"

■ Section 9.8.2.2, "File To StoredProcedure Use Case"

In addition to the uses cases documented in this section, refer to the sample Oracle
Database Adapter use cases available by accessing the Oracle SOA Sample Code site.

Table 9–23 shows the Oracle Database Adapter stored procedure samples that are
provided with Oracle BPEL PM, and Mediator.

See Table 9–4 for the structure of the MOVIES table, which is used for many of the use
cases. The readme.txt files that are included with most of the samples provide
instructions.

adapters-db-107-Polling.zip This sample shows the three basic polling
strategies or how to translate events on the
database into initiating instances of a BPEL
or SOA process.

adapters-db-201-MovieImages.zip This sample shows how to read binary files
such as JPGs into a blob column in a
database using SOA, and then to read them
from that table back into a file.

adapters-db-203-RefCursors.zip The Ref Cursor tutorial shows how to work
with stored procedures that return row sets.

adapters-db-207-AdvancedPolling.zip This sample is subsequent to 107-Polling,
and shows more realistic albeit advanced
versions of the core polling strategies.

adapters-db-307-ExpertPolling.zip This bonus sample is subsequent to
207-AdvancedPolling, and shows some ways
to customize polling for events beyond what
is exposed in the UI.

Table 9–23 Oracle Database Adapter Use Cases - Stored Procedures

Tutorial Name Description

JPublisherWrapper Illustrates a workaround for using PL/SQL RECORD types. JPublisher is
used to create a corresponding OBJECT type whose attributes match the
fields of the RECORD, and conversion APIs that convert from RECORD to
OBJECT and vice versa. JPublisher also generates a wrapper procedure (or
function) that accepts the OBJECT and invokes the underlying method
using the conversion APIs in both directions. The invoked methods must
be installed in an Oracle database (not Oracle Lite).

RefCursors Illustrates how to use a REF CURSOR with a strongly typed or weakly
typed XSD. You can use the Adapter Configuration Wizard to create a
strongly typed XSD for a row set returned by an Oracle Database stored
procedure or function REF CURSOR variable. For more information, see
Section 9.3.3, "Row Set Support Using a Strongly or Weakly Typed XSD".

ResultSetConverter Illustrates a workaround for using a REF CURSOR. The solution involves
the use of a Java stored procedure to convert the corresponding
java.sql.ResultSet into a collection (either VARRAY or NESTED
TABLE) of OBJECTs.

Table 9–22 (Cont.) Adapter Samples on Sample Page Site

Sample Description

Oracle Database Adapter Use Cases

9-122 Oracle Fusion Middleware User's Guide for Technology Adapters

9.8.2.1 Creating and Configuring a Stored Procedure in JDeveloper BPEL Designer
This use case describes how to integrate a stored procedure into BPEL Process
Manager with JDeveloper BPEL Designer.

This use case includes of the following sections:

■ Section 9.8.2.1.1, "Prerequisites"

■ Section 9.8.2.1.2, "Creating an Application and an SOA Composite"

■ Section 9.8.2.1.3, "Creating the Outbound Oracle Database Adapter Service"

■ Section 9.8.2.1.4, "Add an Invoke Activity"

■ Section 9.8.2.1.5, "Change the Message Part of the Request Message"

■ Section 9.8.2.1.6, "Change the Message Part of the Response Message"

■ Section 9.8.2.1.7, "Add a Assign Activity for the Input Variable"

■ Section 9.8.2.1.8, "Add an Assign Activity for the Output Variable"

■ Section 9.8.2.1.9, "Deploying with JDeveloper"

■ Section 9.8.2.1.10, "Creating a DataSource in Oracle WebLogic Server
Administration Console"

■ Section 9.8.2.1.11, "Monitoring Using the Fusion Middleware Control Console"

9.8.2.1.1 Prerequisites

To perform this use case, you must define the following stored procedure in the
SCOTT schema:

SQL> CREATE PROCEDURE hello (name IN VARCHAR2, greeting OUT VARCHAR2) AS
 2 BEGIN
 3 greeting := 'Hello ' || name;
 4 END;
 5/

9.8.2.1.2 Creating an Application and an SOA Composite

You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following:

1. In the Application Navigator of JDeveloper, click New Application.

The Create Generic Application - Name your application page is displayed.

2. Enter MyHelloApp in the Application Name field, and click Next.

The Create Generic Application - Name your project page is displayed.

3. Enter HelloProject in the Project Name field.

4. In the Available list in the Project Technologies tab, double-click SOA to move it to
the Selected list.

5. Click Next.

The Create Generic Application - Configure SOA Settings page is displayed.

6. Select Composite With BPEL in the Composite Template box, and click Finish.
The Create BPEL Process page is displayed.

7. Enter Greet in the Name field, and then select Synchronous BPEL Process from
the Template box.

Oracle Database Adapter Use Cases

Oracle JCA Adapter for Database 9-123

8. Click OK.

The Greet BPEL process in the HelloProject of MyHelloApp is displayed in the
design area, as shown in Figure 9–60.

Figure 9–60 The JDeveloper - Composite.xml

9.8.2.1.3 Creating the Outbound Oracle Database Adapter Service

Perform the following steps to create an outbound Oracle Database Adapter service:

1. Drag and drop Database Adapter from the Component Palette to the External
References swim lane.

The Adapter Configuration Wizard Welcome page is displayed.

2. Click Next.

The Service Name page is displayed.

3. Enter Hello in the Service Name field.

4. Click Next.

The Service Connection page is displayed.

Note: Ensure that you have configured the JNDI name in the
weblogic-ra.xml file before deploying this application.

For more information, refer to Section 2.18.1, "Creating a Data Source"
and Section 2.20, "Recommended Setting for Data Sources Used by
Oracle JCA Adapters."

Oracle Database Adapter Use Cases

9-124 Oracle Fusion Middleware User's Guide for Technology Adapters

5. Click the Create a New Database Connection icon.

The Create Database Connection dialog is displayed.

6. Enter the following details in the Create Database Connection dialog:

a. Enter a connection name in the Connection Name field. For example,
Myconnection.

b. Select Oracle (JDBC) for Connection Type.

c. Enter the user name and password as scott/tiger.

d. Enter the host name in the Host Name field and the JDBC port in the JDBC
Port field.

e. Select SID and enter the SID name. Alternatively, select Service Name and
enter the service name.

f. Click Test Connection. A success message is displayed in the Status pane.

g. Click OK.

The Connection field is populated with the MyConnection connection and the
JNDI field is populated with eis/DB/MyConnection.

7. Click Next.

The Operation Type page is displayed.

8. Select Call a Stored Procedure or Function, and then click Next.

The Specify Stored Procedure page is displayed.

9. Click Browse. Select HELLO in the Stored Procedures pane.

The Arguments tab displays the parameters of the stored procedure and the
Source tab displays the source code of the stored procedure.

10. Click OK.

The Specify Stored Procedure page is displayed. The Procedure field is populated
with the HELLO stored procedure and the arguments for the HELLO stored
procedure are also displayed.

11. Click Next.

The Advanced Options page is displayed.

12. Specify any additional advanced options, and then click Next.

The Adapter Configuration Wizard - Finish page is displayed.

13. Click Finish.

The Create Partner Link dialog box is displayed. The name of the partner link is
Hello, which is the same as the service name.

14. Click OK.

The outbound Oracle Database Adapter is now configured and the Greet BPEL
process is displayed.

9.8.2.1.4 Add an Invoke Activity

The following are the steps to add an invoke activity:

1. Drag and drop an Invoke activity from the Component Palette to the design area
between the receiveInput activity and the replyOutput activity.

Oracle Database Adapter Use Cases

Oracle JCA Adapter for Database 9-125

2. Double-click the Invoke activity.

The Edit Invoke dialog is displayed.

3. Enter Input in the Name field.

4. Click the Automatically Create Input Variable icon to the right of the Input
Variable field in the Invoke box.

The Create Variable dialog is displayed.

5. Select the default variable name and click OK.

The Input Variable field is populated with the default variable name. The Invoke
dialog is displayed.

6. Repeat the same procedure to select output variable in the Output Variable field.

In the Variables section of the Edit Invoke dialog the Input and Output variable
names are displayed.

7. Click OK.

A line with a right arrow is connected to the Hello partner link is displayed, as
shown in Figure 9–61.

Figure 9–61 The Greet.bpel Page

9.8.2.1.5 Change the Message Part of the Request Message

When the payload of the request matches the InputParameters, then all of the IN
parameters is included in the request. The only IN parameter in this example is name.

The following are the steps to change the message part for the
GreetRequestMessage message:

Oracle Database Adapter Use Cases

9-126 Oracle Fusion Middleware User's Guide for Technology Adapters

1. In the Structure Pane for the Greet BPEL process, which is beneath the Application
pane, expand Message Types, then Process WSDL - Greet.wsdl, and then
GreetRequestMessage.

2. Select payload, and then click the Edit icon.

The Edit Message Part - payload dialog is displayed.

3. Choose Element and then click the Search icon.

The Type Chooser dialog is displayed.

4. Expand Project Schema Files, then SCOTT_HELLO.xsd, and select
InputParameters.

5. Click OK.

The Edit Message Part - payload dialog is displayed.

6. Click OK.

9.8.2.1.6 Change the Message Part of the Response Message

When the payload of the response matches the OutputParameters, then all of the OUT
parameters is included in the response. The only OUT parameter in this example is
greeting.

The steps for the GreetResponseMessage message part are the same as that of
GreetRequestMessage with the following exceptions:

1. Expand the GreetResponseMessage message type, and then select payload.

2. Expand SCOTT_HELLO.xsd in the Type Chooser dialog and select
OutputParameters.

3. Select OutputParameters.

9.8.2.1.7 Add a Assign Activity for the Input Variable

The following are the steps to add an Assign activity for the input variable:

1. Drag and drop an Assign activity from the Component Palette in between the
receiveInput and Greet invoke activities in the design area.

2. Double-click the Assign activity.

The Assign dialog is displayed.

3. Click General to change the name to NAME in the Name field.

4. In the Copy Operation tab, click the plus icon, and select Copy Operation from
the list of operations displayed.

The Create Copy Operation dialog is displayed.

5. In the From area expand Variables, inputVariable, payload, and then select
ns2:InputParameters.

6. In the To area expand Variables, Input_Hello_InputVariable, InputParameters,
and then select ns2:InputParameters.

7. Click OK.

You have assigned a value to the input parameter.

The Assign dialog is displayed, as shown in Figure 9–62. This dialog shows the
assign from the inputVariable payload to the Input_Hello_InputVariable payload.

Oracle Database Adapter Use Cases

Oracle JCA Adapter for Database 9-127

Figure 9–62 The Create Copy Operation Dialog

8. Click File, Save All.

9.8.2.1.8 Add an Assign Activity for the Output Variable

In the second assign activity, you assign a value to the output parameter.

The steps for assigning a value to the output parameter are the same as assigning
value to the input parameter with the following exceptions:

1. Drag and drop an Assign activity from the Component Palette in between the
Greet invoke and replyOutput activities in the design area.

2. Double-click the Assign activity.

The Assign dialog is displayed.

3. Enter Greeting in the Name field.

4. In the Copy Operation tab, click the plus icon, and select Copy Operation from
the list of operations displayed.

The Create Copy Operation dialog is displayed.

5. In the From pane expand Input_Hello_OutputVariable, OutputParameters, and
then select ns2:OutputParameters, as shown in Figure 9–63.

6. In the To pane expand outputVariable, payload, and then select
ns2:OutputParameters, as shown in Figure 9–63

Oracle Database Adapter Use Cases

9-128 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 9–63 The Create Copy Operation Dialog

7. Click OK.

You have assigned a value to the output parameter.

8. Click File, Save All.

You have completed modeling a BPEL Process. The final BPEL process is
displayed, as shown in Figure 9–64.

Figure 9–64 The Final BPEL Process Screen

9.8.2.1.9 Deploying with JDeveloper

Oracle Database Adapter Use Cases

Oracle JCA Adapter for Database 9-129

You must deploy the application profile for the SOA project and the application you
created in the preceding steps. To deploy the application profile using JDeveloper, use
the following steps:

1. Create an application server connection using the procedure described in
Chapter 2.6, "Creating an Application Server Connection for Oracle JCA
Adapters."

2. Deploy the application using the procedure described in Section 2.7, "Deploying
Oracle JCA Adapter Applications from JDeveloper."

9.8.2.1.10 Creating a DataSource in Oracle WebLogic Server Administration Console

Before you can test the HelloProject you must create a data source using the Oracle
WebLogic Server Administration Console.

The following are the steps:

1. Enter http://<hostname>:<port>/console in your Web browser.

2. Enter a user name and password and click Log In.

The administration console is displayed.

3. In the Services area under JDBC click Data Sources.

A summary of JDBC Data Sources is displayed.

4. Click New.

The Create a New JDBC Data Source page is displayed.

5. In the Create a New JDBC Data Source page, enter the following details:

■ MyDataSource in the Name field.

■ jdbc/MyDataSource in the JNDI Name field.

■ The Database Type is Oracle.

■ The Database Driver is Oracle's Driver (Thin XA) for Instance
Connections; Versions 9.0.1, 9.2.0, 10, 11.

6. Click Next.

A message stating that no other transaction configuration options are available is
displayed.

7. Click Next.

The Create a New Data Source page is displayed.

8. Enter the following details:.

■ Database Name: This is usually the SID.

■ Host Name: Enter the name of the host computer.

■ Port Number: Enter the port number.

The default port is 1521.

■ Database User Name: Enter SCOTT

■ Password: Enter TIGER.

■ Confirm Password: Enter TIGER.

9. Click Next.

Oracle Database Adapter Use Cases

9-130 Oracle Fusion Middleware User's Guide for Technology Adapters

A summary of the data source configuration is displayed.

10. Click Test Configuration.

The Messages area indicates that the connection test succeeded.

11. Click Next. Select AdminServer as the target by selecting the check box.

12. Click Finish.

The summary of JDBC Data Sources now includes the MyDataSource data source
that you created in the preceding steps.

9.8.2.1.11 Monitoring Using the Fusion Middleware Control Console

You can monitor the deployed SOA composite using the Fusion Middleware Control
Console. Perform the following steps:

1. Navigate to http://servername:portnumber/em. A list of SOA composites is
displayed, including the HelloProject[1.0] that you created in the preceding steps.

2. Click the HelloProject[1.0] link. The Dashboard tab is displayed, as shown in
Figure 9–65.

Figure 9–65 The Dashboard Tab of the HelloProject[1.0] Project

3. Click Test. A new browser window is displayed.

4. Enter your name in the NAME field that is marked xsd:string and then click
Invoke.

The browser window displays the Test Result.

5. To view the XML file in readable form, click Formatted XML. Figure 9–66 shows
the formatted XML file.

Oracle Database Adapter Use Cases

Oracle JCA Adapter for Database 9-131

Figure 9–66 The Formatted XML File

9.8.2.2 File To StoredProcedure Use Case
This use case illustrates the execution of an Oracle stored procedure. The input to the
stored procedure is obtained by reading a file using the File Adapter. The stored
procedure executes, populating a table with the data from its input parameter.

To obtain the adapter-db-101-file2storedprocedure use case, access the
Oracle SOA Sample Code site.

This use case includes the following topics:

■ Section 9.8.2.2.1, "Prerequisites"

■ Section 9.8.2.2.2, "Creating an Application and an SOA Project"

■ Section 9.8.2.2.3, "Creating the Outbound Oracle Database Adapter Service"

■ Section 9.8.2.2.4, "Creating an Invoke Activity"

■ Section 9.8.2.2.5, "Creating the Inbound File Adapter Service"

■ Section 9.8.2.2.6, "Adding a Receive Activity"

■ Section 9.8.2.2.7, "Adding an Assign Activity"

■ Section 9.8.2.2.8, "Wiring Services and Activities"

■ Section 9.8.2.2.9, "Deploying with JDeveloper"

■ Section 9.8.2.2.10, "Creating a Data Source"

■ Section 9.8.2.2.11, "Adding a Connection-Instance"

■ Section 9.8.2.2.12, "Testing using the File Adapter Service and SQL*Plus"

■ Section 9.8.2.2.13, "Monitoring Using the Fusion Middleware Control Console"

9.8.2.2.1 Prerequisites

To perform the file to stored procedure use case, the following schema objects and
stored procedure must be defined in the SCOTT/TIGER schema before modeling the
BPEL Composite using JDeveloper.

create type address as object
(
 street varchar2(20),
 city varchar2(15),
 state char(2),
 zip char(5)
);
create type customer as object

Oracle Database Adapter Use Cases

9-132 Oracle Fusion Middleware User's Guide for Technology Adapters

(
 fname varchar2(10),
 lname varchar2(10),
 loc address,
 email varchar2(25),
 phone varchar2(15)
);
create type collection as table of customer;
create table customers
(
 name varchar2(25),
 loc varchar2(45),
 email varchar2(25),
 phone varchar2(15)
);
create procedure add_customers(c in collection) as
begin
 for i in c.first .. c.last loop
 insert into customers values (
 c(i).lname || ', ' || c(i).fname,
 c(i).loc.street || ', ' || c(i).loc.city || ', ' || c(i).loc.state || ' ' ||
 c(i).loc.zip,
 c(i).email,
 c(i).phone);
 end loop;
end;

You can define these schema objects and stored procedure using the
adapters-db-101-file2storedprocedure/artifacts/sql/customers.sql
file from the adapters-db-101-file2storedprocedure sample by accessing the
Oracle SOA Sample Code site.

9.8.2.2.2 Creating an Application and an SOA Project

You must create a JDeveloper application to contain the SOA composite. Use the
following steps to create a new application, an SOA project:

1. Open JDeveloper.

2. In the Application Navigator, click New Application. The Create Generic
Application - Name your Application page is displayed.

3. Enter File2SPApp in the Application Name field.

4. In the Application Template list, select Generic Application.

5. Click Next.

The Create Generic Application - Name your project page is displayed.

6. In the Project Name field, enter a descriptive name. For example,
File2SPProject.

7. In the Available list in the Project Technologies tab, double-click SOA to move it
to the Selected list.

8. Click Next. The Create Generic Application - Configure SOA Settings page is
displayed.

9. Select Composite With BPEL from the Composite Template list, and then click
Finish.

Oracle Database Adapter Use Cases

Oracle JCA Adapter for Database 9-133

You have created a new application, and an SOA project. This automatically
creates an SOA composite.

The Create BPEL Process page is displayed.

10. Enter a name for the BPEL process in the Name field. For example, File2SP.

11. Select Define Service Later in the Template list, and then click OK.

The File2SP BPEL process in the File2SPProject of File2SPApp is
displayed in the design area.

9.8.2.2.3 Creating the Outbound Oracle Database Adapter Service

Perform the following steps to create an outbound Oracle Database Adapter service:

1. Drag and drop Database Adapter from the Service Adapters list to the Exposed
Services swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter File2SPService in the Service Name field.

4. Click Next.

The Service Connection page is displayed.

5. Click the Create a New Database Connection icon.

The Create Database Connection dialog is displayed.

6. Enter the following details in the Create Database Connection dialog:

a. Enter a connection name in the Connection Name field. For example,
MyConnection.

b. Select Oracle (JDBC) for Connection Type.

c. Enter the user name and password as scott/tiger.

d. Enter the host name in the Host Name field and the JDBC port in the JDBC
Port field.

e. Select SID and enter the SID name. Alternatively, select Service Name and
enter the service name.

f. Click Test Connection. A success message is displayed in the Status pane.

g. Click OK.

The Connection field is populated with the MyConnection connection and the
JNDI field is populated with eis/DB/MyConnection.

7. Click Next.

The Adapter Interface page is displayed.

8. In the Adapter Interface page, select Define from operation and schema
(specified later), and the click Next.

The Operation Type page is displayed.

9. Select Call a Stored Procedure or Function, as shown in Figure 9–67, and click
Next.

The Specify Stored Procedure page is displayed.

Oracle Database Adapter Use Cases

9-134 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 9–67 The Adapter Configuration Wizard - Operation Type Page

10. Click Browse. Select ADD_CUSTOMERS in the Stored Procedures pane.

The Arguments tab displays the parameters of the stored procedure and the
Source tab displays the source code of the stored procedure.

11. Click OK.

The Specify Stored Procedure page is displayed.

The Procedure field is populated with the ADD_CUSTOMERS stored procedure and
the arguments for the ADD_CUSTOMERS stored procedure are also displayed.

12. Click Next.

The Advanced Options page is displayed.

13. Specify any additional options, and then click Next.

The Finish page is displayed.

14. Click Finish.

The Create Partner Link dialog is displayed.

The name of the partner link is File2SPService, which is the same as the service
name.

15. Click OK.

The outbound Oracle Database Adapter is now configured and the File2SP BPEL
process is displayed.

9.8.2.2.4 Creating an Invoke Activity

You must complete the BPEL process by creating an Invoke activity. This creates the
input variables.

The following are the steps to create an Invoke activity:

1. Click File, Save All.

Oracle Database Adapter Use Cases

Oracle JCA Adapter for Database 9-135

2. Drag and drop an Invoke activity from the Component Palette to the design area.

3. Drag the right arrow on the right of the Invoke activity and connect it to the
File2SPService partner link.

The Edit Invoke dialog is displayed.

4. Enter Invoke in the Name field.

5. Click the Automatically Create Input Variable icon to the right of the Input
Variable field in the Invoke dialog.

The Create Variable dialog is displayed.

6. Select the default variable name and click OK.

The Input variable name is displayed in the Variables area of the Edit Invoke
dialog.

7. Click OK.

A line with a right arrow connecting to the is File2SPService partner link is
displayed.

9.8.2.2.5 Creating the Inbound File Adapter Service

Perform the following steps to create an inbound File adapter service. This creates the
service that reads input XML from a file directory:

1. Drag and drop the File Adapter from the Component Palette to the External
References swim lane.

The Adapter Configuration Wizard Welcome page is displayed.

2. Click Next. The Service Name page is displayed.

3. Enter ReadCustomers in the Service Name field.

4. Click Next.

The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and then click Next.
The Operation page is displayed.

6. Select Read File as the Operation Type and Read as the Operation Name. Do not
select the other check boxes.

7. Click Next.

The File Directories page is displayed.

8. Select Physical Path, and enter a physical path in the Directory for Incoming Files
field.

9. Select Process files recursively and Delete files after successful delivery, and the
click Next.

The File Filtering page is displayed.

10. Specify File Wildcards, enter customers.xml in the Include Files with Name
Pattern field, and then click Next.

The File Polling page is displayed.

11. Specify any value in the Polling Frequency field, and click Next.

The Message page is displayed.

Oracle Database Adapter Use Cases

9-136 Oracle Fusion Middleware User's Guide for Technology Adapters

12. Click Browse For Schema File that is displayed at the end of the URL field.

The Type Chooser dialog is displayed.

13. Click Project Schema Files, SCOTT_ADD_CUSTOMERS.xsd, and
InputParameters.

14. Click OK.

The Messages page is displayed again. The URL is xsd/SCOTT_ADD_
CUSTOMERS.xsd, and the Schema Element is InputParameters.

15. Click Next.

The Finish page is displayed.

16. Click Finish.

This terminates the inbound File Adapter service.

17. Click OK to complete the partner link.

18. Click File, Save All.

9.8.2.2.6 Adding a Receive Activity

The File Adapter Service provides input to the Receive Activity, which then initiates
the rest of the BPEL Process.

The following are the steps to add a Receive activity:

1. Double-click File2SP. The File2SP.bpel page is displayed.

2. Drag and drop a Receive activity from the Component Palette to the design area.

3. Drag the left arrow on the left of the Receive activity and connect it to the
ReadCustomers partner link.

The Edit Receive dialog is displayed.

4. Enter Receive in the Name field.

5. Click the Automatically Create Input Variable icon to the right of the Variable
field in the Edit Receive dialog.

The Create Variable dialog is displayed.

6. Select the default variable name and click OK.

The Variable field is populated with the default variable name.

7. Select Create Instance, and click OK. The JDeveloper File2SP.bpel page is
displayed.

After adding the Receive activity, the JDeveloper window appears, as shown in
Figure 9–68.

Oracle Database Adapter Use Cases

Oracle JCA Adapter for Database 9-137

Figure 9–68 Adding a Receive Activity

This figure shows the File2SP.bpel page in which a Receive activity is added. On the
left side of the File2SP.bpel page is the ReadCustomers partnerlink and on the right is
the File2SPService partner link.

8. Click File, Save All.

9.8.2.2.7 Adding an Assign Activity

Next, you must assign a value to the input parameter.

The following are the steps to add an Assign activity:

1. Drag and drop an Assign activity from the Component Palette in between the
Receive and Invoke activities in the design area.

2. Double-click the Assign activity.

The Assign dialog is displayed.

3. Click General, and then CUSTOMER in the Name field.

4. Click the Copy Operation tab.

The Assign dialog is displayed, as shown in Figure 9–69.

Oracle Database Adapter Use Cases

9-138 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 9–69 The Assign Dialog - Copy Operation Tab

5. Click the icon with the plus sign, as shown in Figure 9–69, and then select Copy
Operation.

The Create Copy Operation dialog is displayed.

6. In the From area expand Process, Variables, Receive_Read_InputVariable and
then body.

7. Select ns3:InputParameters.

8. In the To area expand Process, Variables, Invoke_File2SPService_InputVariable,
and then InputParameters.

9. Select ns3:InputParameters.

10. Click OK. The Assign dialog is displayed, as shown in Figure 9–70.

Oracle Database Adapter Use Cases

Oracle JCA Adapter for Database 9-139

Figure 9–70 The Assign Dialog

11. Click OK.

The JDeveloper File2SP.bpel page is displayed, as shown in Figure 9–71.

Figure 9–71 The JDeveloper - File2SP.bpel

Oracle Database Adapter Use Cases

9-140 Oracle Fusion Middleware User's Guide for Technology Adapters

12. Click File, Save All.

9.8.2.2.8 Wiring Services and Activities

You must assemble or wire the three components that you have created: Inbound
adapter service, BPEL process, Outbound adapter reference. Perform the following
steps to wire components:

1. Drag the small triangle in ReadCustomer in the Exposed Services area to the
drop zone that appears as a green triangle in the BPEL process in the Components
area.

2. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in File2SPService in the External
References area.

3. Click File, Save All.

9.8.2.2.9 Deploying with JDeveloper

You must deploy the application profile for the SOA project and the application you
created in the preceding steps. To deploy the application profile using JDeveloper, use
the following steps:

1. Create an application server connection using the procedure described in
Chapter 2.6, "Creating an Application Server Connection for Oracle JCA
Adapters."

2. Deploy the application using the procedure described in Section 2.7, "Deploying
Oracle JCA Adapter Applications from JDeveloper."

9.8.2.2.10 Creating a Data Source

Before you can test the File2SPProject you must create a data source using the
Oracle WebLogic Server Administration Console, by using the following steps:

1. Navigate to http://servername:portnumber/console.

2. Use the required credentials to open the Home page of the Oracle WebLogic
Server Administration Console.

The Home page of the Oracle WebLogic Server Administration Console is
displayed, as shown in Figure 9–72.

Oracle Database Adapter Use Cases

Oracle JCA Adapter for Database 9-141

Figure 9–72 Oracle WebLogic Server Administration Console Home Page

3. Under Domain Structure, select Services, JBDC, and then click DataSources.

The Summary of JDBC Data Sources page is displayed, as shown Figure 9–73.

Figure 9–73 The Summary of JDBC Data Sources Page

4. Click New.

The Create a New JDBC Data Source page is displayed.

5. Enter the following values for the properties to be used to identify your new JDBC
data source:

■ Enter MyDataSource in the Name field.

■ Enter jdbc/MyDataSource in the JNDI Name field.

■ Retain the default value Oracle for Database Type.

■ Retain the default value Oracle's Driver (Thin XA) for Instance
Connections; Versions 9.0.1, 9.2.0, 10, 11 for Database Driver.

6. Click Next.

Oracle Database Adapter Use Cases

9-142 Oracle Fusion Middleware User's Guide for Technology Adapters

The Create a New JDBC Data Source - Transaction Options page is displayed. A
message stating, "No other transaction configuration options are available." is
displayed.

7. Click Next.

The Create a New JDBC Data Source - Connection Properties page is displayed.

8. Enter the following connection properties in the Connection Properties page:

■ Enter a name in the Database Name field, which is usually the SID.

■ Enter the host name in the Host Name field.

■ Enter the port number in the Port field.

■ Enter SCOTT in the Database User Name field.

■ Enter TIGER in the Password field.

■ Enter TIGER in the Confirm Password field.

9. Click Next. The Create a New JDBC Data Source - Test Database Connection page
is displayed.

10. Click Test Configuration to test the database availability and the connection
properties you provided. A message stating that the, "Connection test succeeded"
is displayed at the top of the Create a New JDBC Data Source - Test Database
Connection page.

11. Click Next.

The Create a New JDBC Data Source - Select Targets page is displayed.

12. Select AdminServer as target, and then click Finish.

The Summary of JDBC Data Sources page is displayed. This page summarizes the
JDBC data source objects that have been created in this domain. The Data Source
that you created appears in this list.

9.8.2.2.11 Adding a Connection-Instance

The database adapter needs an instance entry, which points to a data source.

The following are the steps to add a connection instance:

1. Search beahome/ for DbAdapter.rar.

2. Unzip the file.

3. Edit META-INF/weblogic-ra.xml (and possibly ra.xml.), as shown in the
following example:

<connection-instance>
 <jndi-name>eis/DB/MyConnection</jndi-name>
 <connection-properties>
 <properties>
 <property>
 <name>xADataSourceName</name>
 <value>jdbc/MyDataSource</value>
 </property>
 </properties>
 </connection-properties>
 </connection-instance>

4. Use the same database connection name, MyConnection, for the JNDI name.

Oracle Database Adapter Use Cases

Oracle JCA Adapter for Database 9-143

5. Use the same data source name, MyDataSource, as the xADataSourceName.

6. Jar the file again.

7. Restart the application server.

You can also create a new database adapter instance using the Oracle WebLogic
Server Administration Console.

9.8.2.2.12 Testing using the File Adapter Service and SQL*Plus

You must test the BPEL process by providing input file for the File Adapter. The
results of the BPEL process are seen using a simple query from a table. The
customers.xml file contains the following input:

<InputParameters xmlns="http://xmlns.oracle.com/pcbpel/adapter/db/SCOTT/ADD_
CUSTOMERS/">
 <C>
 <C_ITEM>
 <FNAME>John</FNAME>
 <LNAME>Doe</LNAME>
 <LOC>
 <STREET>123 Main Street</STREET>
 <CITY>Anytown</CITY>
 <STATE>CA</STATE>
 <ZIP>12345</ZIP>
 </LOC>
 <EMAIL>john.smith@gmail.com</EMAIL>
 <PHONE>567-123-9876</PHONE>
 </C_ITEM>
 <C_ITEM>
 <FNAME>Jane</FNAME>
 <LNAME>Doe</LNAME>
 <LOC>
 <STREET>987 Sunset Blvd</STREET>
 <CITY>Sometown</CITY>
 <STATE>CA</STATE>
 <ZIP>34567</ZIP>
 </LOC>
 <EMAIL>JaneDoe@yahoo.com</EMAIL>
 <PHONE>567-123-9876</PHONE>
 </C_ITEM>
 </C>
</InputParameters>

The following are the steps for testing the BPEL process you created:

1. Place a copy of customers.xml in the input directory that you specified when
you created the inbound File Adapter Service.

2. The Oracle File Adapter polls the directory for new files. The Receive activity
initiates the BPEL process once the file is received by the File Adapter Service.

3. The data for all of the customers is assigned to the InputParameters of the stored
procedure.

4. The stored procedure executes. It transforms the data for each customer and then
inserts the customer data into a table.

5. Query the table to see the following results:

SQL> select * from customers;

Oracle Database Adapter Use Cases

9-144 Oracle Fusion Middleware User's Guide for Technology Adapters

NAME LOC
------------------------- ---
EMAIL PHONE
------------------------- ---------------
Doe, John 123 Main Street, Anytown, CA 12345
john.smith@gmail.com 567-123-9876

Doe, Jane 987 Sunset Blvd, Sometown, CA 34567
JaneDoe@yahoo.com 567-123-9876

9.8.2.2.13 Monitoring Using the Fusion Middleware Control Console

You can monitor the deployed EM Composite using the Fusion Middleware Control
Console. Perform the following steps:

1. Navigate to http://servername:portnumber/em.

A list of SOA composites is displayed, including File2SPProject[1.0] that
you created in the preceding steps.

2. Click File2SPProject[1.0].

The Dashboard is displayed. Note your Instance ID in the Recent Instances area.

3. Click the Instances tab.

A Search dialog is displayed. The default search displays all instances by their
Instance ID.

4. Select the Instance ID that you noted above.

A new window opens. It lists any faults (No faults found) and enables you to view
the Audit Trail of your instance. Your instance trace is displayed in a new window.

5. The instance tree is expanded from ReadCustomers (service) to File2SP (BPEL
Component) to File2SPService (reference).

6. Click File2SP BPEL Component.

The Audit Trail of your process is displayed.

7. Expand the <payload> node to see the input provided to the stored procedure, as
shown in Figure 9–74.

Oracle Database Adapter Use Cases

Oracle JCA Adapter for Database 9-145

Figure 9–74 The Audit Trail Tab

8. Additionally, click the Flow tab to view the process flow, as shown in Figure 9–75.

Figure 9–75 Viewing the Process Flow

Oracle Database Adapter Use Cases

9-146 Oracle Fusion Middleware User's Guide for Technology Adapters

9.8.3 Database Adapter/Coherence Integration
There is a performance improvement when the Database Adapter is used with
Coherence Cache on an Exalogic system. The feature that provides this improvement
is called Database Adapter/Coherence Integration

There are two specific use cases where there is an advantage to using the Database
Adapter with Coherence Cache on an Exalogic system. Specifically, performance can
be improved when performing the following operations:

■ Insert/Update to a database

■ Select by primary key

9.8.3.1 Inserts/Updates to a Database
Inserts and updates to a database using the Database Adapter and Coherence cache
are improved through the internal use of an intermediary Coherence data source, called
a Coherence Cache, basically an in-memory database.

In the typical case, you perform insert/delete/update operations directly on the
database. To improve performance, these operations can first be performed on this
Coherence-fronting in-memory database, called a write-behind map, which enables
read-write operations using the Cache.

Using such a Coherence map improves the latency of BPEL/OSB processes
performing insert/delete/update operations, as these processes can return
immediately to the caller without a trip to the database; the actual and intensive work
of updating the database is done instead by the Coherence Cache intermediary.

You can use Coherence in this manner when processing large batches of records,
which makes record updating more convenient and efficient.

9.8.3.1.1 Select Optimization

The second use case that Database Adapter/Coherence Integration improves is query
performance, specifically in optimizing Select statement use cases. Database
Adapter/Coherence Integration provides benefits to the query performance by
caching data that might be accessed frequently by many different process instances.

When select optimization is used, to optimize queries, the Database
Adapter/Coherence Integration uses a read-only Coherence Cache (also called an
L2-read cache), which the Database Adapter checks first for a cache hit before
proceeding to the database. In other words, queries are optimized by checking to see if
the data being queried against is in the Coherence Cache first; if not found there, the
database is checked for the same data.

When a Coherence miss occurs, the data is read from the database and loaded into the
Coherence Cache. The presumption is that checking the Coherence Cache is faster than

Note: When using the Database Adapter for outbound inserts with
Coherence write-behind make sure the Database table has an index on
the primary key column.

Note: Database Adapter use cases that do not leverage Coherence
Cache include the following operations: inbound polling, pure SQL
invokes, stored procedure calls, and general Selects that return
multiple rows.

Oracle Database Adapter Use Cases

Oracle JCA Adapter for Database 9-147

executing a query on the database, as the ratio of cache visits to cache misses is
typically high.

9.8.3.1.2 Queries that Do Not Benefit from Coherence Database Adapter Integration

Not all queries can benefit from cache visits and hence Coherence Database Adapter
Integration.There is no indication if there was a Coherence cache hit on all records that
meet a specified query criterion, or if there are additional database records that could
have been hit but which were not in cache.

For this reason, the query optimization feature includes a new kind of Database
Adapter operation, which is a Select by Primary Key. Unlike the existing Select and
queryByExample operations, when using Select by Primary Key you can only return a
single row. With the primary key selected to return a single row, you are in effect
requesting more specific records to be returned from the Coherence Cache, thus
improving the performance of the feature against the Cache.

9.8.3.2 Database Adapter/Coherence Integration Architecture
You can choose whether to use Database Adapter/Coherence Integration by making a
simple choice among none, read, or read-write in the Operation Type screen of
the Database Adapter Wizard. However, it is useful to know some of the background
related to the architecture of the Database Adapter/Coherence Integration, as detailed
in the following subsections.

For more information on Eclipselink, see
http://www.oracle.com/technetwork/middleware/toplink/documentation/index.ht
ml

Some background on Coherence can be found at
http://www.oracle.com/technetwork/middleware/coherence/overview/index.html

9.8.3.2.1 Using Coherence Database Adapter Integration with WebLogic Server 10.3.5

You must perform the following steps to use the Coherence Database Adapter with
WebLogic Server 10.3.5.

1. Install Oracle 11.1.1.7.1 SOA Suite with WebLogic Server 10.3.5.

2. Find the DbAdapter.rar in your SOA install.

cd $BEAHOME/AS11gR1SOA/soa/connectors
mkdir tmp

3. Remove the bundled 10.3.6 version of toplink-grid.jar from
DbAdapter.rar:

unzip DbAdapter.rar -d tmp
cd tmp
rm toplink-grid.jar

4. Rebuild DbAdapter.rar with its existing manifest, which looks for shared
library toplink-grid

cd $BEAHOME/AS11gR1SOA/soa
cd $BEAHOME/AS11gR1SOA/soa/connectors
mkdir tmp
jar cvmf META-INF/MANIFEST.MF DbAdapter.rar *
mv DbAdapter.rar ..
cd ..
rm -rf tmp

Oracle Database Adapter Use Cases

9-148 Oracle Fusion Middleware User's Guide for Technology Adapters

5. Deploy $BEAHOME/modules/com.oracle.toplinkgrid_1.0.0.0_11-1-1-5-0.jar as a
shared library named toplink-grid from the WebLogic Server Host console;

From shared library (Deployments > Install) named 'toplink-grid'

6. Restart the WebLogic Server.

9.8.3.2.2 Current Design of the Database Adapter (No Coherence Cache)

With the current design of the Database Adapter, the Adapter performs selects and
inserts to the EclipseLink layer, which directly communicates with the data sources
without the Coherence Cache.

When you choose none in the Cache Usage dropdown on the Operations Type screen
in the Database Configuration Wizard, you indicate you do not want to use cache.

9.8.3.2.3 Read-Write Coherence Cache Database Adapter Integration

You can choose to use read-write cache by choosing read-write from the
Cache-Usage dropdown of the Operation Type screen of the Database Adapter Wizard

Eclipselink is in two layers, with Coherence Cache (a Coherence Cache Store) between
the two layers. There is actually only one Eclipselink project, but two copies of that
project.

■ The top copy of Eclipselink redirects all insert/select queries from the data store to
Coherence Cache.

■ The bottom copy of Eclipselink handles requests by Coherence Cache to load a
particular record by ID from the database, or to store a particular record to the
database.

A Select you execute in the read-write scenario might not uniquely identify the rows to
retrieve.

Such a case could be a SELECT * or SELECT where total gross > ?

The write-behind Coherence Cache can only receive requests to load a record by ID.
Thus, in either of these cases, if all queries were directed to Coherence Cache, no
results would be returned. In this case, the query proceeds to the data source directly,
and then the Coherence Cache is updated.

9.8.3.2.4 Read Coherence Cache Database Adapter Integration

You can choose to use read cache by choosing read from the Cache Usage dropdown
on the Operation Type screen of the Database Adapter Wizard.

With Read Cache, when the Database Adapter inserts a record to the Database or
selects a record from the database, the Coherence Cache is updated. Any query that
identifies a row (that is, by specifying primary key) first checks the Coherence cache,
possibly saving a trip to the database.) As the Coherence Cache is distributed and can
be simply thought of as a hash map, selecting by a specific primary key enables faster
lookups through the Coherence Cache Map.

9.8.3.2.5 Enabling No Cache Using the Operations Type Screen

Figure 9–76 shows the No Caching option as it appears on the Operations type screen
of the Database Adapter Wizard, with none selected.

Oracle Database Adapter Use Cases

Oracle JCA Adapter for Database 9-149

Figure 9–76 The Database Adapter Configuration Wizard Operation Type Screen, with
No Caching Selected

All outbound operations are enabled on this screen with the none option selected.
Once you select this option, and choose Next or Finish, none of the selected
operations contain the property CacheUsage. This absence of a property is equivalent
to the JCA activation property CacheUsage being equal to the value none.

The following options are the only operations pre-selected when you choose the none
option as the cache usage:

■ Merge

■ Insert Only

■ Select

9.8.3.2.6 Enabling Read-Write Caching Using the Operation Type Screen

You can choose to enable read-write caching through the Operation Type screen. See
Figure 9–77. Once you select this option and press Next or Finish, the JCA property
CacheUsage value is set to read-write.

Oracle Database Adapter Use Cases

9-150 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 9–77 Enabling Read-Write Caching Using the Operation Type Screen

Refer to the following list of operations to understand how they are used on this
screen when you choose the read-write option from the Cache Usage dropdown:

■ Insert or Update (Merge) are enabled and have the string uses cache
appended to their label.

■ Insert only is disabled, as the underlying cache store always performs a merge.

■ Update Only is disabled, as the underlying cache store always performs a merge.

■ Delete is selectable but not pre-selected and has the string uses cache
appended to it when it is selected.

■ Select is disabled, as this query is converted into a Coherence filter executed on
a Coherence map.

■ Query by Example is disabled, as the Database Adapter/Coherence
Integration query is converted into a Coherence filter executed on a Coherence
map.

■ Select by Primary Key has the string uses cache appended to the label.

9.8.3.2.7 Enabling Read Caching Using the Operation Type Screen

You can enable read caching using the Cache Usage option on the Operation Type
screen. See Figure 9–78. Once you select this option on the screen and press Next or
Finish, the JCA property CacheUsage value is set to read.

Oracle Database Adapter Use Cases

Oracle JCA Adapter for Database 9-151

Figure 9–78 Enabling Read-Write Caching Using the Operation Type Screen

For the read cache option, only the Select by Primary Key operation is
pre-selected. Select by Primary Key is the only operation that can be
meaningfully executed by the Coherence Database Adapter Integration feature
through the cache, although other operations can update cache. Because read cache is
not intrusive on the cache, any of the operations on the Operation Type on this screen
are disabled.

Select and Query By Example are not disabled, although they do not directly
update the cache. The Database Adapter/Coherence Integration feature executes the
Select against the database, but updates the Coherence Cache with any rows that are
returned.

The general operation of read caching is that if any objects returned exist in the
Coherence Cache, the objects in the cache are returned, rather than the Database
Adapter/Coherence Integration feature building a new copy from the result set.

This operation improves performance where the master database record has several
details; a query on the details does not have to be executed again.

A query behaves the same as a Select. This is true, for example with XML data
where the primary key is set (and it does not get a cache hit).

9.8.3.2.8 XA Transactions, Read-Write and Read Operations with Coherence/Database Adapter
Integration

When using Database Adapter/Coherence Integration, you cannot use XA
transactions with read-write operations. This is because the Database Adapter, with
Coherence Integration, performs inserts to the Coherence Cache and subsequently to
the database, a sequence which breaks the XA transaction contract.

However, you can use XA transactions with read operations using Database
Adapter/Coherence Integration.

Oracle Database Adapter Use Cases

9-152 Oracle Fusion Middleware User's Guide for Technology Adapters

Database transactions using the Database Adapter that do not use Database
Adapter/Coherence Integration can still use the XA transaction model.

9.8.3.2.9 Coherence Cache Lifecycle and Configuration

When you deploy a Database Adapter containing a composite application with
cacheUsage "read" or "read-write", a dedicated Coherence cache is created. Its name
will be DbAdapter/WriteBehindCache/<serviceName>/<tableName> for
read-write cache or DbAdapter/L2Cache/<serviceName>/<tableName> for read
cache.

This cache name is stored in a property in or-mappings.xml:

<properties>
<property name="eclipselink.coherence.cache.name">
<value>DBAdapter/WriteBehindCache/insertReference.Movies</value>
</property>
</properties>

Two Cache configuration templates are defined in
soa-coherence-cache-config.xml, which resides in fabric-runtime.jar.
One template is for all cache names beginning with
DbAdapter/WriteBehindCache/ (read-write) and another for those starting with
DbAdapter/L2Cache (read).

You can edit these definitions or change the cache name within or-mappings.xml
and create new definitions. Below are the two templates as defined in
soa-coherence-cache-config.xml:

<cache-mapping>
<cache-name>DBAdapter/WriteBehindCache/*</cache-name>
<scheme-name>db-adapter-write-behind-cache</scheme-name>
</cache-mapping>
<cache-mapping>
<cache-name>DBAdapter/L2Cache/*</cache-name>
<scheme-name>db-adapter-l2-cache</scheme-name>
</cache-mapping>

<distributed-scheme>
<scheme-name>db-adapter-write-behind-cache</scheme-name>
<backup-count-after-write-behind>0</backup-count-after-write-behind>
<!-- for DbAdapter must be true on SOA nodes and false on dedicated Coherence
nodes.-->
<local-storage>true</local-storage>
<thread-count>1</thread-count>
<task-hung-threshold>20000</task-hung-threshold>
<backing-map-scheme>
<read-write-backing-map-scheme>

<internal-cache-scheme>
<local-scheme>
<eviction-policy>HYBRID</eviction-policy>
<high-units>10000</high-units>
<low-units></low-units>
<unit-calculator>FIXED</unit-calculator>
<expiry-delay>120s</expiry-delay>
</local-scheme>
</internal-cache-scheme>
<cachestore-scheme>

Oracle Database Adapter Use Cases

Oracle JCA Adapter for Database 9-153

<class-scheme>
<class-name>oracle.tip.adapter.db.toplinkext.coherence.DBAdapterCacheStore</class-
name>
<init-params>
<init-param>
<param-type>java.lang.String</param-type>
<param-value>{cache-name}</param-value>
</init-param>
</init-params>
</class-scheme>
</cachestore-scheme>
<write-delay>5s</write-delay>
<write-batch-factor>0.1</write-batch-factor>
<write-requeue-threshold>1000</write-requeue-threshold>
</read-write-backing-map-scheme>
</backing-map-scheme>
<autostart>false</autostart>
</distributed-scheme>

<distributed-scheme>
<scheme-name>db-adapter-l2-cache</scheme-name>
<!-- for DbAdapter must be true on SOA nodes and false on dedicated Coherence
nodes.-->
<local-storage>true</local-storage>
<thread-count>4</thread-count>
<task-hung-threshold>500</task-hung-threshold>
<backing-map-scheme>
<local-scheme>
<eviction-policy>HYBRID</eviction-policy>
<high-units>1000</high-units>
<low-units>1000</low-units>
<unit-calculator>FIXED</unit-calculator>
<expiry-delay>120s</expiry-delay>
</local-scheme>

</backing-map-scheme>
<autostart>true</autostart>
</distributed-scheme>
</caching-schemes>

If you are defining your own definition, you must set local-storage true.

The lifecycle of objects is different with a CacheUsage-enabled project. First, the
EclipseLink project (or-mappings.xml) associated with a composite application is
only loaded once, even if the same composite is redeployed with an updated
or-mappings.xml file. Normally, each redeployment of a composite is a clean
redeploy of all artifacts.

Secondly, a Coherence cache is not destroyed on undeploying a CacheUsage
composite. This must be done manually. This means that you can redeploy a
composite and the underlying Coherence cache will still be there, with the contents it
had before the redeployment. As distinct from other Database Adapter use cases, you
can thus have multiple Database Adapter references, across one or multiple
composites, connecting to the same Coherence-named cache.

Thus, the lifecycle of the EclipseLink project (or-mappings.xml) and Coherence
cache is per WebLogic Application server restart instead of per composite
revision/deployment.

Finally, the Database Adapter uses byte-code generation rather than real Java classes to
represent the objects being inserted into the data store. This makes it difficult to

Oracle Database Adapter Use Cases

9-154 Oracle Fusion Middleware User's Guide for Technology Adapters

connect directly to the same Coherence NamedCache programatically, outside the
Database Adapter. This is because the class definitions are not easily available for
deserialization. As mentioned above, however, multiple Database Adapter references
with similar or-mappings.xml projects can share the same Coherence cache.

10

Oracle JCA Adapter for MQ Series 10-1

10 Oracle JCA Adapter for MQ Series

This chapter describes how to use the Oracle JCA Adapter for MQ Series (Oracle MQ
Series Adapter), which works with Oracle BPEL Process Manager (Oracle BPEL PM)
and Oracle Mediator (Mediator) as an external service. The chapter describes JCA
Adapter for MQ Series concepts, features, configuration and use cases.

This chapter includes the following sections:

■ Section 10.1, "MQ Series Message Queuing Concepts"

■ Section 10.2, "Introduction to Native Oracle MQ Series Adapter"

■ Section 10.3, "Oracle MQ Series Adapter Features"

■ Section 10.4, "Oracle MQ Series Adapter Concepts"

■ Section 10.5, "Configuring the Oracle MQ Series Adapter"

■ Section 10.6, "Oracle MQ Series Adapter Use Cases"

10.1 MQ Series Message Queuing Concepts
Message queuing is a technique for asynchronous program-to-program
communication. It enables application integration by allowing independent
applications on a distributed system to communicate with each other. One application
sends messages to a queue owned by a queue manager, and another application
retrieves the messages from the queue. The communication between applications is
maintained even if the applications run at different times or are temporarily
unavailable.

The basic concepts of message queuing are described in the following list:

■ Messaging

Messaging is the mechanism that allows two entities to communicate by sending
and receiving messages. Messaging can be of two types, synchronous and
asynchronous. In synchronous messaging, the sender of the message places a
message on a message queue and then waits for a reply to its message before
resuming its own processing. In asynchronous messaging, the sender of the
message proceeds with its own processing without waiting for a reply.

■ Message

Messages are structured data sent by one program and intended for another
program.

■ Message Queue

MQ Series Message Queuing Concepts

10-2 Oracle Fusion Middleware User's Guide for Technology Adapters

Message queues are objects that store messages in an application. Applications can
put messages to the queues and get messages from the queues. A queue is
managed by a queue manager.

■ Queue Manager

A queue manager provides messaging and queuing services to applications
through an application programming interface. It provides you with access to the
queues and also transfers messages to other queue managers through message
channels.

■ Message Channel

A message channel provides a communication path between two queue managers.
It connects queue managers. A message channel can transmit messages in one
direction only.

■ Transmission Queue

A transmission queue is used to temporarily store messages that are destined for a
remote queue manager.

■ Message Segment

If a message is very large, then it can be divided into multiple small messages,
called segments. Each segment has a group ID and an offset. All segments of a
message have the same group ID. The last segment of the message is marked with
a flag.

■ Message Group

A message group consists of a set of related messages with the same group ID.
Each message in a message group has a message sequence number. The last
message in a message group is marked with a flag.

■ Cluster

A cluster is a group of queue managers that are logically associated.

■ Enqueue/Dequeue

To enqueue is to put a message in a queue whereas to dequeue is to get a message
from a queue, as shown in Figure 10–1.

Figure 10–1 Enqueue/Dequeue

■ Request/Response

In a request/response interaction, a program sends a message to another program
asking for a reply. The request message contains information about where the
reply should be sent. The receiving program sends a reply message in response to
the request message. The request/response interaction is shown in Figure 10–2.

Program
A

Program
B

Enqueue Dequeue
Queue

MQ Series Message Queuing Concepts

Oracle JCA Adapter for MQ Series 10-3

Figure 10–2 Request/Response Interaction

For more information about the interaction scenarios supported by the Oracle MQ
Series Adapter, see Section 10.4.1.2, "Dequeue Message".

10.1.1 MQ Series Concepts
Messaging and Queuing Series (MQ Series) is a set of products and standards
developed by IBM. MQ Series provides a queuing infrastructure that provides
guaranteed message delivery, security, and priority-based messaging.

The communication process between an MQ Series application and an MQ Series
server is shown in Figure 10–3. An MQ Series client enables an application to connect
to a queue manager on a remote computer.

Figure 10–3 The MQ Series Communication Process

Every queue in MQ Series belongs to a queue manager. A queue manager has a unique
name and provides messaging and queuing services to applications through a
Message Queue Interface (MQI) channel. A queue manager also provides access to the
queues created on it and transfers messages to other queue managers through message
channels.

In MQ Series, data is sent in the form of messages. The sending application constructs
a message and sends it to a queue by using API calls. The message remains in the

Note: The Oracle MQ Series Adapter is certified on IBM WebSphere
MQ V7.5.

Program
A

Program
B

Enqueue
Request

Dequeue
Request

Queue

Reply to
 Q

ueue

Enqueue
Response

Dequeue
Response

21

4 3

MQSeries Queue
Manager

ServerClient

Native MQSeries
Application

MQSeries Client
MQI Channels

Introduction to Native Oracle MQ Series Adapter

10-4 Oracle Fusion Middleware User's Guide for Technology Adapters

queue until the receiving application is ready to receive it. The receiving application
gets the messages from the queue by using API calls.

For sending messages to a remote queue, the remote queue definition must be defined
locally. The remote queue definition consists of the destination queue name and the
transmission queue name.

Figure 10–4 displays the message structure of an MQ Series message.

Figure 10–4 MQ Series Message

An MQ Series message consists of the following parts, as shown in Figure 10–4:

■ Message Header

The message header contains information such as unique message ID, message
type, message priority, and routing information. Every MQ Series message must
have a message header.

■ Optional Header

The optional header is required for communication with specific applications,
such as the CICS application.

For more information, see Section 10.4.8, "Integration with CICS".

■ Application Data

This contains the actual data, for example, a record from an indexed or flat file or a
row or column from a DB2 table.

10.2 Introduction to Native Oracle MQ Series Adapter
Oracle BPEL Process Manager and Mediator include the Oracle MQ Series Adapter.
The Oracle MQ Series Adapter enables applications to connect to MQ Series queue
managers and place MQ Series messages on queues or to remove MQ Series messages
from queues.

This section contains the following topics:

■ Section 10.2.1, "The Need for Oracle MQ Series Adapter"

■ Section 10.2.2, "Oracle MQ Series Adapter Integration with Oracle BPEL Process
Manager"

■ Section 10.2.3, "Oracle MQ Series Adapter Integration with Mediator"

10.2.1 The Need for Oracle MQ Series Adapter
The Oracle MQ Series Adapter provides all native MQ Series functionalities. Although
you can configure the Oracle JCA Adapter for JMS (Oracle JMS Adapter) with MQ
Series provider, it provides only the JMS functionalities provided by MQ Series and
not the native MQ Series functionalities. The following list explains the advantages of
Oracle MQ Series Adapter over the Oracle JMS Adapter:

Message
Header

Optional
Header Application Data

Introduction to Native Oracle MQ Series Adapter

Oracle JCA Adapter for MQ Series 10-5

■ The Oracle MQ Series Adapter supports Positive Action Notification (PAN) and
Negative Action Notification (NAN).

■ The Oracle MQ Series Adapter supports report messages such as confirmation on
delivery, confirmation on arrival, exception report, and expiry report.

■ The Oracle MQ Series Adapter supports sending unwanted or corrupted messages
to a dead-letter queue.

■ The Oracle MQ Series Adapter provides advanced filter options, such as filtering
message belonging to a group.

■ The Oracle MQ Series Adapter is faster and easier to use.

10.2.2 Oracle MQ Series Adapter Integration with Oracle BPEL Process Manager
The Oracle MQ Series Adapter is automatically integrated with Oracle BPEL Process
Manager. When you create a partner link or an MQ adapter service in Oracle
JDeveloper (JDeveloper), the Adapter Configuration Wizard is started.

This wizard enables you to select and configure the Oracle MQ Series Adapter or other
Oracle JCA Adapters. The Adapter Configuration Wizard then prompts you to enter a
service name, as shown in Figure 10–5.

Figure 10–5 The Service Name Page

When the configuration is complete, a WSDL file of the same name is created in the
Application Navigator section of JDeveloper. This WSDL file contains the
configuration information you specify with the Adapter Configuration Wizard.

The Operations page of the Adapter Configuration Wizard prompts you to select an
operation to perform. Based on your selection, different Adapter Configuration
Wizard pages appear and prompt you for configuration information.

Note: The MQ Series version that the Oracle MQ Series Adapter is
certified is 7.5 version, both on Windows and Linux.

Introduction to Native Oracle MQ Series Adapter

10-6 Oracle Fusion Middleware User's Guide for Technology Adapters

Table 10–1 lists the available operations and provides references to sections that
describe the information about these operations.

10.2.3 Oracle MQ Series Adapter Integration with Mediator
The Oracle MQ Series Adapter is automatically integrated with Mediator. When you
create an MQ adapter service in JDeveloper Mediator Designer, the Adapter
Configuration Wizard is started.

This wizard enables you to select and configure the Oracle MQ Series Adapter. When
the configuration is complete, a WSDL file of the same name is created in the
Application Navigator section of JDeveloper. This WSDL file contains the
configuration information you specify in the Adapter Configuration Wizard.

The Operations page of the Adapter Configuration Wizard prompts you to select an
operation to perform. Based on your selection, different Adapter Configuration
Wizard pages appear and prompt you for configuration information. Table 10–2 lists
the available operations and provides references to sections that describe the
configuration information you must provide.

Table 10–1 Supported Operations for Oracle BPEL Process Manager

Operation See Section...

Enqueue Message Section 10.4.1.1, "Enqueue Message"

Dequeue Message Section 10.4.1.2, "Dequeue Message"

Request-Response Section 10.4.1.3, "Asynchronous Request-Response
(Oracle BPEL PM As Client)"

Section 10.4.1.4, "Synchronous Request-Response
(Oracle BPEL PM As Server)"

Section 10.4.1.5, "Asynchronous Request-Response
(Oracle BPEL PM As Server)"

Section 10.4.1.6, "Synchronous Request-Response
(Mediator As Server)"

Section 10.4.1.7, "Synchronous Request-Response
(Oracle BPEL PM As Client)"

Section 10.4.1.8, "Synchronous Request-Response
(Oracle Mediator as Client)"

Section 10.4.1.9, "Asynchronous Request-Response
(Oracle Mediator As Client)"

Outbound Dequeue Section 10.4.1.10, "Outbound Dequeue Scenario"

Table 10–2 Supported Operations for Oracle Mediator

Operation See Section...

Enqueue Message Section 10.4.1.1, "Enqueue Message"

Dequeue Message Section 10.4.1.2, "Dequeue Message"

Request-Response Section 10.4.1.6, "Synchronous Request-Response
(Mediator As Server)"

Section 10.4.1.8, "Synchronous Request-Response
(Oracle Mediator as Client)"

Section 10.4.1.9, "Asynchronous Request-Response
(Oracle Mediator As Client)"

Outbound Dequeue Section 10.4.1.10, "Outbound Dequeue Scenario"

Oracle MQ Series Adapter Features

Oracle JCA Adapter for MQ Series 10-7

10.3 Oracle MQ Series Adapter Features
This section explains the following features of the Oracle MQ Series Adapter:

■ Section 10.3.1, "RFH Version 2 (RFH2) Header"

■ Section 10.3.2, "SSL Enabling"

■ Section 10.3.3, "XA Transactions"

■ Section 10.3.4, "High Availability"

■ Section 10.3.5, "Scalability"

■ Section 10.3.6, "Securing Enterprise Information System Credentials"

■ Section 10.3.7, "Fault Policy"

■ Section 10.3.8, "Inbound Rejection Handler"

■ Section 10.3.9.1, "JCA Inbound Retry Mechanism"

■ Section 10.3.9.2, "Message Backout Queue"

■ Section 10.3.10, "Performance Tuning"

10.3.1 RFH Version 2 (RFH2) Header
The RFH2 header is an extensible header. The RFH2 header enables you to add more
header properties to the payload. The RFH2 header carries JMS-specific data that is
associated with the message content and can also carry additional information that is
not directly associated with JMS.

The RFH2 header consists of two parts, a fixed portion and a variable portion. There
can be multiple RFH2 headers in the same message.

10.3.1.1 Fixed Portion
The fixed portion is modeled on the standard WebSphere MQ header pattern and
consists of the following fields:

StrucId (MQCHAR4)
Structure identifier.

Must be MQRFH_STRUC_ID (value: "RFH ") (initial value).

MQRFH_STRUC_ID_ARRAY (value: "R","F","H"," ") is also defined in the usual way.

Version (MQLONG)
Structure version number.

Must be MQRFH_VERSION_2 (value: 2) (initial value).

StrucLength (MQLONG)
Total length of MQRFH2, including the NameValueData fields.

The value set into StrucLength must be a multiple of 4 (the data in the NameValueData
fields may be padded with space characters to achieve this).

Encoding (MQLONG)
Data encoding.

Oracle MQ Series Adapter Features

10-8 Oracle Fusion Middleware User's Guide for Technology Adapters

Encoding of any numeric data in the portion of the message following MQRFH2 (the
next header, or the message data following this header).

CodedCharSetId (MQLONG)
Coded character set identifier.

Representation of any character data in the portion of the message following MQRFH2
(the next header, or the message data following this header).

Format (MQCHAR8)
Format name.

Format name for the portion of the message following MQRFH2.

Flags (MQLONG)
Flags.

MQRFH_NO_FLAGS =0. No flags set.

NameValueCCSID (MQLONG)
The coded character set identifier (CCSID) for the NameValueData character strings
contained in this header. The NameValueData may be coded in a character set that
differs from the other character strings that are contained in the header (StrucID and
Format).

If the NameValueCCSID field is a 2-byte Unicode CCSID (1200, 13488, or 17584), then
the byte order of the Unicode CCSID is the same as the byte ordering of the numeric
fields in MQRFH2. (For example, Version, StrucLength, and NameValueCCSID itself.)

The NameValueCCSID field may take only values from Table 10–3:

10.3.1.2 Variable Portion
The variable portion follows the fixed portion. The variable portion contains a variable
number of MQRFH2 folders. Each folder can occur multiple times in the same RFH2
header. Other folders such as mqext, mq_usr, mqps and others. can also be part of
the RFH2 header. For more information, refer to the IBM documentation regarding
MQ RFH2 headers.

 The related properties are grouped together. The MQRFH2 header can contain the
following message service folders:

The <mcd> folder
This contains properties that describe the shape or format of the message. For
example, the Msd property identifies the message as being Text, Bytes, Stream. Map,
Object, or Null. This folder is always present in JMS MQRFH2.

Table 10–3 Possible Values for NameValueCCSID Field

Value Meaning

1200 UCS2 open-ended

1208 UTF8

13488 UCS2 2.0 subset

17584 UCS2 2.1 subset (includes the Euro symbol)

Oracle MQ Series Adapter Features

Oracle JCA Adapter for MQ Series 10-9

The <jms> folder
This is used to transport JMS header fields, and JMSX properties that cannot be fully
expressed in the MQMD. This folder is always present in a JMS MQRFH2.

The <usr> folder
This is used to transport any application-defined properties associated with the
message. This folder is only present if the application has set some application-defined
properties.

The <psc> folder
This is used to convey publish/subscribe command messages to the broker. Only one
psc folder is allowed in the NameValueData field.

The <pscr> folder
This is used to contain information from the broker, in response to publish/subscribe
command messages. Only one pscr folder is present in a response message.

Table 10–4 shows a full list of property names.

The syntax used to express the properties in the variable portion is as follows:

NameValueLength (MQLONG)
Length, in bytes, of the NameValueData string that immediately follows this length
field. It does not include its own length. The value set into NameValueLength is
always a multiple of 4. The NameValueData field is padded with space characters to
achieve this.

Table 10–4 MQRFH2 Folders and Properties Used by JMS

JMS Field Name Java Type
MQRFH2 Folder
name Property Name Type/values

JMSDestination Destination jms Dst string

JMSExpiration long jms Exp i8

JMSPriority int jms Pri i4

JMSDeliveryMode int jms Dlv i4

JMSCorrelationID String jms Cid string

JMSReplyTo Destination jms Rto string

JMSTimestamp long jms Tms i8

JMSType String mcd Type, Set, Fmt string

JMSXGroupID String jms Gid string

JMSXGroupSeq int jms Seq i4

xxx (User Defined) Any usr xxx any

mcd Msd jms_none

jms_text

jms_bytes

jms_map

jms_stream

jms_object

Oracle MQ Series Adapter Features

10-10 Oracle Fusion Middleware User's Guide for Technology Adapters

NameValueData (MQCHARn)
A single character string, whose length in bytes is given by the preceding
NameValueLength field. It contains a folder holding a sequence of properties. Each
property is a name/type/value triplet, contained within an XML element whose name
is the folder name, as follows:

<foldername> triplet1 triplet2 tripletn </foldername>

10.3.2 SSL Enabling
Secure Sockets Layer (SSL) is a protocol for transmitting encrypted data over the
Internet or an internal network. SSL works by using public and private keys to encrypt
data that is transferred over the SSL connection. Data that has been encrypted with a
public key can be decrypted only with the corresponding private key. Conversely, data
that has been encrypted with a private key can be decrypted only with the
corresponding public key.

MQ Series supports secure communication, with MQ Series clients using SSL. As a
part of this functionality, the adapter would provide support to put a message on
queue using SSL. To enable Oracle MQ Series Adapter for SSL, the following
properties must be provided:

■ SSLEnable: The true/false value for this property means that the Oracle MQ
Series Adapter is SSL enabled/disabled.

■ KeyStoreLocation: This is the keystore where Oracle MQ Series Adapter has its
private keys. This property is required as the adapter must authenticate itself to
the MQ Series server.

■ KeyStorePassword: This password is required to access keystore.

■ TrustStoreLocation: This is the location where the adapter keeps its trusted
certificates information. This information is required when an adapter must
authenticate to the MQ Series server.

■ Protocol: Key Management Algorithm.

■ KeyStoreProviderName: The name of the keystore provider.

■ KeyStoreType: Type of the key store.

■ KeyStoreAlgorithm: Algorithm used by the key store.

■ CipherSuite: Set CipherSuite to the name matching the CipherSpec set on the
SVRCONN channel. If set to null (default), then no SSL encryption is performed.

■ SSLPeerName: A distinguished name pattern. If CipherSuite is set, then you can
use this variable to ensure that the correct queue manager is used. If set to null
(default), then the DN of the queue manager is not checked. This variable is
ignored if sslCipherSuite is null.

10.3.3 XA Transactions
Oracle MQ Series Adapter enables transaction support, which along with the inherent
data processing, ensures that each modification has a clearly defined outcome,
resulting in either success or failure, thus preventing potential corruption of data,
executes independently from other changes, and, after completion, leaves underlying
data in the same state until another transaction takes place.

The Oracle MQ Series Adapter supports both inbound and outbound XA transaction.
You must set the XATransaction property in the Oracle WebLogic Server

Oracle MQ Series Adapter Features

Oracle JCA Adapter for MQ Series 10-11

Administration Console to enable the XA transaction. To enable XA transaction,
perform the following steps:

1. Log in to the Oracle WebLogic Server Administration Console using your
password credentials.

2. Under Domain Structure, in the left pane, click Deployments. The Summary of
Deployments page is displayed.

3. Click MQSeriesAdapter. The Settings of MQSeriesAdapter page is displayed.

4. Click the Configuration tab. The Configuration submenu options are displayed.

5. Click Outbound Connection Pools. The Outbound Connection Pool
Configuration Table is displayed.

6. Click the + icon next to javax.resource.cci.ConnectionFactory and select
eis/MQ/MQAdapter. The Outbound Connection Properties page is displayed.

7. Select the XATransaction option and click the Property Value row at the end of the
XATransaction.

8. Enter true in the text field, as shown in Figure 10–6, and click Save.

Figure 10–6 Outbound Connection Properties Page

9. Click the Transaction tab. The Settings for
javax.resource.cci.ConnectionFactory page is displayed.

10. Select XA Transaction from the Transaction Support list.

11. Click Save to save your settings. The Save Deployment Plan Assistant page is
displayed.

12. Click OK.

You have successfully enabled XA transaction for the Oracle MQ Series Adapter.

In order to use the XA transaction feature for MQ Series with BPEL for synchronous
inbound request-reply scenario, you must set the bpel.config.transaction
parameter to required. If this parameter is not set, then it causes the transaction to
split at the BPEL boundary and MQ returns MQRC_SYNCPOINT_NOT_AVAILABLE
error code.

<property name="bpel.config.transaction">required
</property>

Note: Click Lock & Edit to enable the options in the console.

Oracle MQ Series Adapter Features

10-12 Oracle Fusion Middleware User's Guide for Technology Adapters

10.3.3.1 XA Recovery
In a scenario involving fail over, such as when the prepare phase completes
successfully before a middleware fails, messages must be recovered within the adapter
without restarting the MQSeries server. You must manually resolve the in-doubt
transactions.

To view all in-doubt transactions for a Queue Manager, you must execute the
following command at the command prompt:

dspmqtrn -m[ourQueueManager]

To backout the messages, use the following command:

rsvmqtrn -m[ourQueueManager] -b [Transaction],[Number]

To commit the messages, use the following command :

rsvmqtrn -m[ourQueueManager] -c [Transaction],[Number]

10.3.4 High Availability
The Oracle MQ Series Adapter supports the high availability feature for the
active-active topology with Oracle BPEL Process Manager (Oracle BPEL PM) and
Mediator service engines. It supports this feature for both inbound and outbound
operations.

10.3.4.1 Prerequisites for High Availability
Before you configure the Oracle MQ Series Adapter for high availability, you must
ensure that the following prerequisites are met:

■ Clustered processes must use the same queue.

■ Fault-policies and fault-bindings must be created for remote faults to ensure that
the adapter acts correctly.

10.3.4.2 High Availability in Inbound/Outbound Operations
The Oracle MQ Series Adapter must ensure that it participates in the XA transaction.
For more information about the XA transaction, see Section 10.3.3, "XA Transactions".

10.3.5 Scalability
The Oracle MQ Series Adapter supports the scalability feature for inbound operations
only. Oracle MQ Series Adapter provides the parameter to control the number of
threads that dequeue the messages from the inbound queue.You must specify the
following property in the.jca file:

InboundThreadCount='N'

where, N is the number of threads to span to dequeue the messages from the inbound
queue. The default setting is 2.

The Oracle MQ adapter creates the back-endconnections at deployment time, that is, at
that time the adapter endpoint starts polling. You can have the application server
prewarm the connection pool, which would provide a small marginal advantage,

Note: You can use the[Transaction] and [Number] from the
output of the dspmqtrn command.

Oracle MQ Series Adapter Features

Oracle JCA Adapter for MQ Series 10-13

although connection creation does not otherwise delay the overall deployment task
itself.

The example syntax for using InboundThreadCount in the .jca file is:

<adapter-config name="ExpressDeathEventListener" adapter="MQSeriesAdapter"
wsdlLocation="ExpressDeathEventListener.wsdl"
<xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/MQ/MQAdapter" adapterRef=""/>
 <endpoint-activation portType="Dequeue_ptt" operation="Dequeue"
UITransmissionPrimitive="Dequeue">
 <activation-spec className="oracle.tip.adapter.mq.inbound.ActivationSpecImpl">
 <property name="QueueName" value="BPMPOC_EXPCLAIMQ"/>
 <property name="InboundThreadCount" value="10"/>
 </activation-spec>
 </endpoint-activation>
</adapter-config>

10.3.6 Securing Enterprise Information System Credentials
The Oracle MQ Series Adapter supports securing of the Enterprise Information System
(EIS) credentials such as the user name and password, whenever it establishes an
outbound connection with EIS. You can secure the user name and password for Oracle
MQ Series Adapter by using Oracle WebLogic Server container-managed sign-on.

For more information, see Section 4.2.22, "Securing Enterprise Information System
Credentials".

10.3.7 Fault Policy
A fault policy file defines fault conditions and their corresponding fault recovery
actions. Each fault condition specifies a particular fault or group of faults, which it
attempts to handle, and the corresponding action for it. A set of actions is identified by
an ID in the fault policy file.

The Oracle MQ Series Adapter supports defining rejection handlers by using fault
policies.

For more information about fault policies, see Section 2.21.1.1, "Configuring Rejection
Handlers".

10.3.8 Inbound Rejection Handler
The Oracle MQ Series Adapter supports inbound message rejection handling. You can
configure the message rejection handler to process translation errors, take corrective
action.

For more information about rejection handlers, Section 2.21.1.1, "Configuring Rejection
Handlers".

10.3.9 Retry Mechanism
The Oracle MQ Series Adapter supports the following two mechanisms for inbound
retry:

■ JCA Inbound Retry Mechanism

■ Message Backout Queue

Oracle MQ Series Adapter Features

10-14 Oracle Fusion Middleware User's Guide for Technology Adapters

The JCA inbound retry mechanism is commonly used by all adapters, in general,
whereas the message backout queue mechanism is used only by the Oracle MQ Series
Adapter. If you specify the BackoutQueueName property in the .jca file, only then the
Oracle MQ Series Adapter uses the message backout queue mechanism to retry. By
default, the JCA inbound retry mechanism is used for retry.

10.3.9.1 JCA Inbound Retry Mechanism
The Oracle MQ Series Adapter supports a pull model for connecting to the back-end
application for receiving events. Connection-related issues are considered recoverable
and most inbound adapters keep retrying until the adapters are able to establish
connection with the EIS.

In case of Oracle MQ Series Adapter, a message not being able to put to a queue is also
retriable.

For more information about retry mechanism, see Section 2.21, "Error Handling".

10.3.9.2 Message Backout Queue
Backout Queue is a queue for putting rejected messages from an inbound queue. The
inbound adapter checks for the backout count of the messages and if this count
exceeds the MaximumBcakoutCount value, then the adapter puts the messages to the
specified Backout Queue. This mechanism is used by the Oracle MQ Series Adapter to
handle inbound retries for the rejected messages.

If you specify the BackoutQueueName property in the .jca file, then Oracle MQ
Series Adapter uses the message backout count for retries. You can specify the
maximum retries using the MaximumBackoutCount property. The default value for
this property is infinite. If you do not specify the MaximumBackoutCount value
along with the BackoutQueueName, then the adapter retries infinitely. The adapter
does not consider JCA retries (specified in composite.xml) when the BackOut Queue
properties are specified.

The BackoutRetries property must be set to specify the number of retries for
delivering the message to the Backout Queue with retry interval set using the
BackoutRetryInterval property. The default value for BackoutRetries is 3 and
BackoutInterval is 5 sec.

If a message gets rejected even after the MaximumBackoutCount value is reached,
then the adapter puts the message to Backout Queue. If Oracle MQ Series Adapter is
cannot put the message to Backout Queue, then the adapter tries till the
BackoutRetries count with the BackoutInterval time delay. If even after the
BackoutRetries the adapter cannot put the message to Backout Queue, then the
adapter deactivates the endpoint.

You must also specify the name of the Queue Manager of the Backout Queue in the
BackoutQueueManagerName property. You must not use this property if the
BackoutQueue resides on the inbound queue QueueManager.

Note: Both these methods of retry in the Oracle MQ Series Adapter
are mutually exclusive operations; the adapter uses one mechanism at
a time. If you specify both options, then the Backout Queue option
takes precedence.

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-15

For more information about configuring Backout Queues, see Section 10.6.6,
"Configuring a Backout Queue."

10.3.10 Performance Tuning
The Oracle MQ Series Adapter supports performance tuning options.

For more information, see "Oracle MQ Adapter Tuning" in the Oracle Fusion
Middleware Performance and Tuning Guide.

10.4 Oracle MQ Series Adapter Concepts
This section explains the following concepts of the Oracle MQ Series Adapter:

■ Section 10.4.1, "Messaging Scenarios"

■ Section 10.4.2, "Message Properties"

■ Section 10.4.3, "Correlation Schemas"

■ Section 10.4.4, "Distribution List Support"

■ Section 10.4.5, "Report Messages"

■ Section 10.4.6, "Message Delivery Failure Options"

■ Section 10.4.7, "Message Segmentation"

■ Section 10.4.8, "Integration with CICS"

■ Section 10.4.9, "Supported Encodings"

■ Section 10.4.10, "Using the MQ Series Client Channel Definition Table Feature,"

10.4.1 Messaging Scenarios
The Oracle MQ Series Adapter supports the following messaging scenarios:

■ Section 10.4.1.1, "Enqueue Message"

■ Section 10.4.1.2, "Dequeue Message"

■ Section 10.4.1.3, "Asynchronous Request-Response (Oracle BPEL PM As Client)"

■ Section 10.4.1.4, "Synchronous Request-Response (Oracle BPEL PM As Server)"

■ Section 10.4.1.5, "Asynchronous Request-Response (Oracle BPEL PM As Server)"

■ Section 10.4.1.6, "Synchronous Request-Response (Mediator As Server)"

■ Section 10.4.1.7, "Synchronous Request-Response (Oracle BPEL PM As Client)"

■ Section 10.4.1.8, "Synchronous Request-Response (Oracle Mediator as Client)"

■ Section 10.4.1.9, "Asynchronous Request-Response (Oracle Mediator As Client)"

■ Section 10.4.1.10, "Outbound Dequeue Scenario"

Note: When using the Backout Queue, consider the following:

■ The Backout Queue options cannot be used for translation
failures.

■ In cases where both JCA and BackOut retries are specified, the
BackOut retries takes precedence.

Oracle MQ Series Adapter Concepts

10-16 Oracle Fusion Middleware User's Guide for Technology Adapters

10.4.1.1 Enqueue Message
In this scenario, the Oracle MQ Series Adapter connects to a specific queue managed
by a queue manager and then writes the message to the queue. For outbound
messages sent from Oracle BPEL PM or Mediator, the Oracle MQ Series Adapter
performs the following operations:

1. Receives message from Oracle BPEL PM or Mediator.

2. Formats the XML content as specified at design time.

3. Sets the properties of the message, such as priority, expiry, message type, and
persistence. These properties are based on the selections that you made in the
Adapter Configuration Wizard.

For more information about message properties, see Section 10.4.2.1, "Messages
Types".

4. Sends the message to the queue specified at design time in the Adapter
Configuration Wizard.

Figure 10–7 displays the operation type that you must select in the Adapter
Configuration Wizard.

Figure 10–7 The Adapter Configuration Wizard: Produce Message Selection

The page that appears after selecting the Put Message into MQ operation type is
shown in Figure 10–8.

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-17

Figure 10–8 Put Message Options

You can specify the following properties in this page:

■ Queue Name: The name of the queue on which the Oracle MQ Series Adapter
enqueues the message. This is a mandatory field.

■ Queue Manager: The name of the queue manager to which the queue belongs.
This field is optional and is necessary when enqueuing message to a remote
queue.

■ Partial Delivery: This is applicable only when you specify multiple queues for
outbound operation, which is also known as the Distribution List scenario. Partial
Delivery takes either true or false. If assigned true, then even if the delivery of
message fails for some queues, it would still go and put the message to the rest of
the queues specified in the distribution list. If assigned false, it means even if
one message fails, then the message is not put to any queue.

■ Message Format: The format of the message.

■ Priority: The priority of the message, ranging from 0 (low) to 9 (high).

■ Persistence: The persistence of the message. You can also specify the persistence of
the message to be taken from the default persistence attribute, as defined by the
destination queue.

■ Delivery Failure: If the delivery of message fails, then either it can be put to a
dead letter queue or it can be discarded.

■ Allow Messages to Be Segmented When Necessary: This is applicable to a
message that is big enough for the queue to accommodate. In that case, if you have

Note: When enqueuing a message, ensure that the various
mandatory values, required for a specific format, are specified
correctly.

Oracle MQ Series Adapter Concepts

10-18 Oracle Fusion Middleware User's Guide for Technology Adapters

specified that it has to be segmented, then the single message can be broken into
that many bytes the queue can take, which results in multiple messages.

■ Expiry: The expiry time of the message. The message is discarded after the expiry
time has elapsed.

For more information about these properties, see Section 10.4.2, "Message Properties".

The next Adapter Configuration Wizard page that appears is the Messages page, as
shown in Figure 10–9. This page enables you to select the XML Schema Definition
(XSD) file for translation.

Figure 10–9 Messages Page

If native format translation is not required (for example, a JPG or GIF image is being
processed), then select the Native format translation is not required check box. The
file is passed through in base-64 encoding.

XSD files are required for translation. To define a new schema or convert an existing
data type description (DTD) or COBOL Copybook, select Define Schema for Native
Format. This starts the Native Format Builder wizard. This wizard guides you through
the creation of a native schema file from file formats, such as delimited by special
characters, comma-delimited value (CSV), fixed-length, DTD, and COBOL Copybook.
After the native schema file is created, you are returned to this Messages page with the
Schema File URL and Schema Element fields filled in.

For more information, see Section 6.1, "Creating Native Schema Files with the Native
Format Builder Wizard".

Note: Ensure that the schema you specify includes a namespace. If
your schema does not have a namespace, an error message appears.

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-19

10.4.1.2 Dequeue Message
In this scenario, the Oracle MQ Series Adapter connects to a specific queue managed
by a queue manager and then removes the message from the queue. For inbound
messages sent to Oracle BPEL PM or Mediator, the Oracle MQ Series Adapter
performs the following operations:

1. Connects to the queue specified at design time.

2. Dequeues the message from the queue when a message arrives.

3. Reads and translates the message based on the translation logic defined at design
time.

4. Publishes the message as an XML message to Oracle BPEL PM or Mediator.

Figure 10–10 displays the operation type that you must select in the Adapter
Configuration Wizard.

Figure 10–10 The Adapter Configuration Wizard: Consume Message Selection

The page that appears after selecting the Get Message from MQ operation type is
shown in Figure 10–11.

Oracle MQ Series Adapter Concepts

10-20 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–11 Get Message from MQ Page

You can specify the following properties in this page:

■ Queue Name: The name of the queue from which the Oracle MQ Series
Adapter dequeues the message. This is a mandatory field.

■ Schema Options: This option enables you to specify the schema for the
message to be dequeued.

– Choose Other Schema: This option enables you to choose your schema for
the message to be dequeued.

– Choose a Predefined Schema: This option enables you to choose a
readymade schema that the adapter provides.

The next Adapter Configuration Wizard that appears is the Messages page, as
shown in Figure 10–9. This page enables you to select the XSD schema file for
translation.

As with specifying the schema for the produce message operation, you can
perform the following tasks in this page:

■ Specify if native format translation is not required.

■ Select the XSD schema file for translation.

■ Start the Native Format Builder wizard to create an XSD file from file formats
such as CSV, fixed-length, DTD, and COBOL Copybook.

For more information about the Messages page, see Section 10.4.1.1, "Enqueue
Message".

10.4.1.3 Asynchronous Request-Response (Oracle BPEL PM As Client)
In this scenario, the Oracle BPEL PM sends a request message and receives the
corresponding response using a non-initiating receive activity. The invoke activity
initiates the outbound invocation of the adapter to send the request. The Oracle MQ
Series Adapter performs the following operations:

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-21

1. Receives message from Oracle BPEL PM.

2. Formats the XML content as specified at design time in the Adapter Configuration
Wizard.

3. Sets properties and a correlation schema on the request message.

4. Sends the message to the queue specified at design time. The third-party
application receives the message, processes it, generates the response, and then
enqueues the response message to the replyTo queue specified in the request
message. The Correlation ID and Message ID of the response message are
generated based on the correlation schema specified in the request message.

5. The Oracle MQ Series Adapter dequeues the message from the replyTo queue.

6. Sends the response to the non-initiating receive activity of Mediator. To ensure that
response is sent to the correct BPEL instance, correlation schemas are used.

Figure 10–12 displays the operation type that you must select in the Adapter
Configuration Wizard.

Figure 10–12 Selecting an Operation Type

The page that appears after selecting the Send Message to MQ and Get
Reply/Reports operation type is shown in Figure 10–13.

Oracle MQ Series Adapter Concepts

10-22 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–13 Send Message to MQ and Get Reply/Reports Page

You can specify the following properties in this page:

■ Message Type: The type of the message. You can either send a normal message or
a request message.

■ Get Reports: Select this option if you want any kind of report. You can specify the
type of report in the next page, as shown in Figure 10–14.

■ Queue Name: The name of the queue to which the Oracle MQ Series Adapter
enqueues the message. This is a mandatory field.

■ Queue Manager: The name of the queue manager to which the queue belongs.
This field is optional.

■ Message Format: The format of the message.

■ Priority: The priority of the message ranging from 0 (low) to 9 (high).

■ Persistence: The persistence of the message. You can also specify the persistence of
the message to be taken from the default persistence attribute, as defined by the
destination queue.

■ Delivery Failure: If the delivery of the message fails, then either it can be put to a
dead letter queue or it can be discarded.

■ Allow Messages to Be Segmented When Necessary: This is applicable to a
message that is big enough for the queue to accommodate. In that case, if you have
specified that it has to be segmented, then the single message can be broken into
that many bytes the queue can take, which results in multiple messages.

■ Expiry: The expiry time of the message. The message is discarded after the expiry
time has elapsed.

For more information about these properties, see Section 10.4.2, "Message Properties"
and Section 10.4.5, "Report Messages".

The page that is displayed when you click Next in the Send Message to MQ and Get
Reply/Reports page can be a Reports page (shown in Figure 10–14) or a Response

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-23

page (shown in Figure 10–15).

The Reports page, shown in Figure 10–14, is displayed only if you have selected the
Get Reports option in the Send Message to MQ and Get Reply/Reports page, as
shown in Figure 10–13.

Figure 10–14 Reports Page

You can select the following types of reports in this page:

■ Confirmation on Arrival

■ Confirmation on Delivery

■ Exception Report

■ Expiry Report

For information about these report types, see Section 10.4.5, "Report Messages".

The Response page shown in Figure 10–15 is displayed when you click Next in the
Reports page.

Oracle MQ Series Adapter Concepts

10-24 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–15 Response Page

You can specify the following properties in the Response page:

■ Reply to Queue Name: The name of the reply queue name.

■ Correlation Scheme: The correlation schema that is necessary for the Oracle MQ
Series Adapter.

For information about correlation schemas, see Section 10.4.3, "Correlation
Schemas".

■ Schema Options: This option enables you to specify the schema for the message to
be dequeued.

– Choose Other Schema: This option enables you to choose your schema for the
message to be dequeued.

– Choose a Predefined Schema: This option enables you to choose a readymade
schema that the adapter provides.

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-25

When you click Next in the Response page, a Messages page, shown in Figure 10–16,
is displayed. This page enables you to select the XSD schema file for translation for
request and as response message.

Figure 10–16 Messages Page

You can perform the following tasks in this page:

■ Specify if native format translation is not required.

■ Select the XSD schema file for translation.

■ Start the Native Format Builder wizard to create an XSD file from file formats such
as CSV, fixed-length, DTD, and COBOL Copybook.

Note: For Oracle MQ Series Adapter in an asynchronous
outbound request/reply scenario, properties are differentiated by an
(Enqueue) or (Dequeue) label in Oracle Enterprise Manager
Console. For example, QueueName(Enqueue) is used for putting a
message and QueueName(Dequeue) is used for dequeuing the reply.

When using Oracle Enterprise Manager Console to edit Oracle MQ
Series Adapter properties in this scenario, note the following:

■ If you change the ReplyToQueueName(Enqueue) property, you
must also change the QueueName(Dequeue) property to the
same value.

■ If you change the MessageId(Dequeue) property, you must
also change the MessageId(Enqueue) property to the same
value.

■ If you change the CorrelationId(Dequeue) property, you
must also change the CorrelationId(Enqueue) property to
the same value.

Oracle MQ Series Adapter Concepts

10-26 Oracle Fusion Middleware User's Guide for Technology Adapters

For more information about the Messages page, see Section 10.4.1.1, "Enqueue
Message".

In the solicit-request-response scenario, the reply message is expected in the reply
queue specified with some correlation scheme that is provided through the request
message. This reply queue, which is used by a particular process (BPEL/Mediator),
should not be used by any other process.

If the same reply queue is used by some other application, then the message might be
picked, irrespective of whether the reply message had the proper correlation or not,
and eventually the message becomes lost.

10.4.1.4 Synchronous Request-Response (Oracle BPEL PM As Server)
In this scenario, the Oracle BPEL PM receives a request, processes it, and sends the
response synchronously by using a reply activity. The Oracle MQ Series Adapter
performs the following operations:

1. Dequeues the request message from the queue when the message arrives.

2. Reads and translates the message based on the translation logic defined at design
time.

3. Publishes the message as an XML message to Oracle BPEL PM. The Oracle BPEL
PM processes the request and sends the response to the Oracle MQ Series Adapter.

4. Receives the response message from the Oracle BPEL PM.

5. Formats the XML content as specified at design time.

6. Sets the properties of the message such as priority, expiry, message type, and
persistence. These properties are based on the selections that you made in the
Adapter Configuration Wizard.

7. Sends the message to the queue specified at design time in the Adapter
Configuration Wizard.

Figure 10–17 shows a sample BPEL process for this scenario.

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-27

Figure 10–17 Synchronous Request-Response Oracle BPEL PM As Server Sample

Figure 10–18 displays the operation type that you must select in the Adapter
Configuration Wizard.

Figure 10–18 Operation Type Page Selection for Request-Response Synchronous
Interaction

The page that appears after you select the Get Message from MQ and Send
Reply/Reports operation type is shown in Figure 10–19. Specify the queue name from
which the Oracle MQ Series Adapter dequeues the message in this page.

Oracle MQ Series Adapter Concepts

10-28 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–19 Get Message from MQ and Send Reply/Reports Page

When you click Next in the Get Message from MQ and send Reply/Reports page, the
Response page shown in Figure 10–20 is displayed.

Figure 10–20 Response Page for Synchronous Request-Response

You can specify the following properties in the Response page:

■ Message Type: The message type of the message to be dequeued. This option
affects the return message type.

■ Message Format: The format of the message.

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-29

■ Priority: The priority of the message.

■ Persistence: The persistence of the message. You can also specify the persistence of
the message to be taken from the default persistence attribute, as defined by the
destination queue.

■ Delivery Failure: If the delivery of the message fails, then either it can be put to a
dead letter queue or it can be discarded.

■ Allow Messages to Be Segmented When Necessary: This is applicable to a
message that is big enough for the queue to accommodate. In that case, if you have
specified that it has to be segmented, then the single message can be broken into
that many bytes the queue can take, which results in multiple messages.

■ Expiry: The expiry time of the message.

For more information about these properties, see Section 10.4.2, "Message Properties".

Click Next in the Response page, the Messages page is displayed, as shown in
Figure 10–16. You can perform the following tasks in this page:

■ Specify if native format translation is not required.

■ Select the XSD schema file for translation.

■ Start the Native Format Builder wizard to create an XSD file from file formats such
as CSV, fixed-length, DTD, and COBOL Copybook.

For more information about the Messages page, see Section 10.4.1.1, "Enqueue
Message".

10.4.1.5 Asynchronous Request-Response (Oracle BPEL PM As Server)
In Oracle BPEL PM initiated request-response interaction, a BPEL process receives a
request as an inbound message, processes it, and then sends the response through an
invoke activity. For asynchronous request-reply scenario, the Oracle MQ Series
Adapter performs the following operations:

1. Dequeues the message from the queue when a message arrives.

2. Reads and translates the message based on the translation logic defined at design
time.

3. Publishes the message as an XML message to Oracle BPEL PM. The Oracle BPEL
PM processes the request and sends the response to the Oracle MQ Series Adapter.

4. Receives messages from Oracle BPEL PM.

5. Formats the XML content as specified at design time.

6. Sets the properties of the message, such as priority, expiry, message type, and
persistence. These properties are based on the selections that you made in the
Adapter Configuration Wizard.

7. Sends the message to the queue specified at design time in the Adapter
Configuration Wizard.

Figure 10–21 shows a sample BPEL process for this scenario.

Oracle MQ Series Adapter Concepts

10-30 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–21 Asynchronous Request-Response Oracle BPEL PM As Server Sample

Figure 10–22 displays the operation type that you must select in the Adapter
Configuration Wizard.

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-31

Figure 10–22 Operation Type Page Selection for Request-Response Asynchronous
Interaction

The page that appears after selecting the Get Message from MQ and send
Reply/Reports operation type is shown in Figure 10–19. Specify the queue name from
which the Oracle MQ Series Adapter dequeues the message in this page.

When you click Next in the Get Message from MQ and send Reply/Reports page, the
Response page shown in Figure 10–20 is displayed.

You can specify the following properties in the Response page:

■ Message Type: The message type of the message to be dequeued. This option
affects the return message type.

■ Message Format: The format of the message.

■ Priority: The priority of the message.

■ Persistence: The persistence of the message. You can also specify the persistence of
the message to be taken from the default persistence attribute, as defined by the
destination queue.

■ Delivery Failure: If the delivery of the message fails, then either it can be put to a
dead letter queue or it can be discarded.

■ Allow Messages to Be Segmented When Necessary: This is applicable to a
message that is big enough for the queue to accommodate. In that case, if you have
specified that it has to be segmented, then the single message can be broken into
that many bytes the queue can take, which results in mulitple messages.

■ Expiry: The expiry time of the message.

For more information about these properties, see Section 10.4.2, "Message Properties".

The page that is displayed when you click Next in the Get Message to MQ and Send
Reply/Reports page is a Response page (shown in Figure 10–23 and Figure 10–24) but
with two different set of options.

Oracle MQ Series Adapter Concepts

10-32 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–23 Response Page (Request Message Type Selected)

The Response page shown in Figure 10–24 is displayed only if you have selected the
Normal option in Message Type field in the Get Message to MQ and Send
Reply/Reports page.

Figure 10–24 Response Page (Normal Message Type Selected)

You can specify the following properties in the Response page:

■ (Optional) Fallback Reply to Queue: Enter a response fallback queue name. The
response message is enqueued to the queue specified with the replyToQueue

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-33

property of the request message. However, if the replyToQueue property is not set
on the request message, then entering a name here ensures that the process does
not fail to enqueue the response.

■ (Optional) Fallback Reply to Queue Manager: Enter a secondary queue name.
This name is used when the primary queue manager that was established when
you specified the JNDI connection name cannot access the queue name entered in
the Queue Name field. This is similar to the functionality described in the Fallback
Reply to Queue field.

To specify the other properties in this Response page, see properties mentioned for
Figure 10–23.

When you click Next in the Response page, the Messages page shown in Figure 10–25
is displayed. You can perform the following tasks in this page:

■ Specify if native format translation is not required.

■ Select the XSD schema file for translation.

■ Start the Native Format Builder wizard to create an XSD file from file formats such
as CSV, fixed-length, DTD, and COBOL Copybook.

Figure 10–25 Messages Page

For more information about the Messages page, see Section 10.4.1.1, "Enqueue
Message".

In asynchronous request-reply interaction, you must map the following properties
from the inbound message header to the outbound message header:

■ MsgID: Refers to the message ID.

■ CorrelID: Refers to the correlation ID of a message.

■ CorrelationScheme: Refers to a combination of both the msgid and the correlid
of the request message.

For more information, see Section 10.4.3, "Correlation Schemas".

Oracle MQ Series Adapter Concepts

10-34 Oracle Fusion Middleware User's Guide for Technology Adapters

■ ReplyToQ : Refers to the name of the response queue name.

■ ReplyToQueueManager: Refers to the name of the response queue manager.

You can use the Assign activity to map these properties.

1. Create a BPEL process and double-click to open the BPEL Designer page.

2. In the vertical menu that appears, click the Variables icon that appears as (x)
grayed out. The Variables dialog is displayed, as shown in Figure 10–26.

Figure 10–26 The Variables Dialog

3. Capture the inbound header messages into these variables, as shown in
Figure 10–27 and Figure 10–28.

Figure 10–27 The Receive Dialog

4. Assign the variables captured in Step 2 for the Outbound Reply message, as
shown in Figure 10–28 and Figure 10–23.

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-35

Figure 10–28 The Invoke Dialog

10.4.1.6 Synchronous Request-Response (Mediator As Server)
In this scenario, the Mediator receives a request, processes it, and sends the response
synchronously. The Oracle MQ Series Adapter performs the following operations:

1. Dequeues the request message from the queue when the message arrives.

2. Reads and translates the message based on the translation logic defined at design
time.

3. Publishes the message as an XML message to Mediator. The Mediator processes
the request and sends the response to the Oracle MQ Series Adapter.

4. Receives the response message from the Mediator.

5. Formats the XML content as specified at design time.

6. Sets the properties of the message such as priority, expiry, message type, and
persistence. These properties are based on the selections that you made in the
Adapter Configuration Wizard.

7. Sends the message to the queue specified at design time in the Adapter
Configuration Wizard.

Figure 10–19 displays the operation type that you must select in the Adapter
Configuration Wizard.

From this page onwards, all the pages are similar to the pages explained in
Section 10.4.1.4, "Synchronous Request-Response (Oracle BPEL PM As Server)".

10.4.1.7 Synchronous Request-Response (Oracle BPEL PM As Client)
The Oracle MQ Series Adapter supports the outbound
synchronous-solicit-request-response scenario. In this scenario, the adapter enqueues a
normal/request message in a queue and expects the report/reply synchronously. The
report/reply message arrives in the ReplyToQueueName queue of the
normal/request message.

Note: The asynchronous request-response pattern is not supported
for Mediator.

Oracle MQ Series Adapter Concepts

10-36 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–29 displays the operation type that you must select in the Adapter
Configuration Wizard.

Figure 10–29 The Operation Type Dialog

The page that appears after selecting the Send Message to MQ and Get Reply/Reports
operation type is shown in Figure 10–13.

You can specify the following properties in this page:

■ Message Type: The type of the message. You can either send a normal message or
a request message.

■ Queue Name: The name of the queue to which the Oracle MQ Series Adapter
enqueues the message. This is a mandatory field.

■ Queue Manager: The name of the queue manager to which the queue belongs.
This field is optional and is necessary when enqueuing message to a remote
queue.

■ Message Format: The format of the message.

■ Priority: The priority of the message ranging from 0 (low) to 9 (high).

■ Persistence: The persistence of the message. You can also specify the persistence of
the message to be taken from the default persistence attribute, as defined by the
destination queue.

■ Delivery Failure: If delivery of the message fails, then either it can be put to a
dead letter queue or it can be discarded.

Note: Outbound synchronous-solicit-responses must be executed in
non-XA modes as the request message does not get enqueued when it
is participating in a global transaction.

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-37

■ Allow Messages to Be Segmented When Necessary: This is applicable to a
message that is big enough for the queue to accommodate. In that case, if you have
specified that it has to be segmented, then the single message can be broken into
that many bytes the queue can take, which results in multiple messages.

■ Expiry: The expiry time of the message. The message is discarded after the expiry
time has elapsed.

Click Next in the Send Message to MQ and Get Reply/Reports page, the Response
page, as shown in Figure 10–30, is displayed.

Figure 10–30 The Response Page

For the Synchronous Request-Response scenario, you must also edit the following
properties in the Response page:

■ Reply to Queue Name: The name of reply queue name.

■ Correlation Scheme: The correlation schema that must be used by the Oracle MQ
Series Adapter.

For more information about correlation schemas, see Section 10.4.3, "Correlation
Schemas".

■ Schema Options: This option enables you to specify the schema for the message to
be dequeued.

– Choose Other Schema: This option enables you to choose your schema for the
message to be dequeued.

– Choose a Predefined Schema: This option enables you to choose a readymade
schema that the adapter provides.

■ Response Wait Interval: The permitted value for this property is any interval
value (>= 0). This is the time in milliseconds during which the adapter waits for
the report/reply to arrive in replyToQueueName. By default, the value of this
property is 0 milliseconds. You can change this value, but the value must be less
than that of the timeout interval for the outbound activity. If the report/reply

Oracle MQ Series Adapter Concepts

10-38 Oracle Fusion Middleware User's Guide for Technology Adapters

message does not arrive in the stipulated time, then the adapter throws an
exception. This property is not mandatory.

10.4.1.8 Synchronous Request-Response (Oracle Mediator as Client)
The Oracle MQ Series Adapter also supports the outbound
synchronous-solicit-request-response scenario. In this scenario, the adapter enqueues a
normal/request message in a queue and expects the report/reply synchronously. The
report/reply message arrives in the Reply to Queue Name queue of the
normal/request message.

The Synchronous Request-Response scenario for Oracle Mediator as client is same as
the Synchronous Request-Response for Oracle BPEL as client. For more information
about the Synchronous Request-Response scenario, see Section 10.4.1.7, "Synchronous
Request-Response (Oracle BPEL PM As Client)".

10.4.1.9 Asynchronous Request-Response (Oracle Mediator As Client)
In this scenario, Oracle Mediator sends a request message and receives the
corresponding response from the Mediator callback handler. Oracle Mediator sends an
outbound invocation to send the request. The Oracle MQ Series Adapter performs the
following operations:

1. Receives message from Oracle Mediator.

2. Formats the XML content as specified at design time in the Adapter Configuration
Wizard.

3. Sets properties and a correlation schema on the request message.

4. Sends the message to the queue specified at design time. The third-party
application receives the message, processes it, generates the response, and then
enqueues the response message to the replyTo queue specified in the request
message. The Correlation ID and Message ID of the response message is generated
based on the correlation schema specified in the request message.

5. The Oracle MQ Series Adapter dequeues the message from the replyTo queue.

6. Sets the properties of the message such as priority, expiry, message type, and
persistence. These properties are based on the selections that you made in the
Adapter Configuration Wizard.

7. Sends the response to the non-initiating receive activity of the BPEL process. To
ensure that response is sent to the correct BPEL instance, correlation schemas are
used.

Figure 10–12 displays the operation type that you must select in the Adapter
Configuration Wizard.

The page that appears after selecting the Send Message to MQ and Get Reply/Reports
operation type is shown in Figure 10–13.

You can specify the following properties in this page:

■ Message Type: The type of the message. You can either send a normal message or
a request message.

Note: The ResponseWaitInterval value must be less than the
timeout interval for the outbound activity. If the
ResponseWaitInterval value exceeds the outbound activity
timeout, then the adapter can behave ambiguously.

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-39

■ Queue Name: The name of the queue to which the Oracle MQ Series Adapter
enqueues the message. This is a mandatory field.

■ Message Format: The format of the message.

■ Queue Manager: The name of the queue manager to which the queue belongs.
This field is optional and is necessary when enqueuing message to a remote
queue.

■ Priority: The priority of the message ranging from 0 (low) to 9 (high).

■ Persistence: The persistence of the message. You can also specify the persistence of
the message to be taken from the default persistence attribute, as defined by the
destination queue.

■ Delivery Failure: If delivery of the message fails, then either it can be put to a
dead letter queue or it can be discarded.

■ Allow Messages to be Segmented When Necessary: This is applicable to a
message that is big enough for the queue to accommodate. In that case, if you have
specified that it has to be segmented, then the single message can be broken into
that many bytes the queue can take, which results in mutliple messages.

■ Expiry: The expiry time of the message. The message is discarded after the expiry
time has elapsed.

For more information about these properties, see Section 10.4.2, "Message Properties"
and Section 10.4.5, "Report Messages".

The page that is displayed when you click Next in the Send Message to MQ and Get
Reply/Reports page can be a Reports page (shown in Figure 10–14) or a Response
page (shown in Figure 10–15).

The Reports page shown in Figure 10–14 is displayed only if you have selected the Get
Reports option in the Send Message to MQ and Get Reply/Reports page shown in
Figure 10–13.

The Response page shown in Figure 10–15 is displayed, irrespective of whether you
select the Request or Normal option. The only difference is that if you select the
Request option, then REPLY is displayed in the Message Type field of the Response
page. On the other hand, if you select the Normal option, then REPORTS is displayed
in the Message Type field of the Response page.

You can select the following types of reports in Figure 10–14:

■ Confirmation on Arrival

■ Confirmation on Delivery

■ Exception Report

■ Expiry Report

For information about these report types, see Section 10.4.5, "Report Messages".

The Response page, shown in Figure 10–15, is displayed when you click Next in the
Reports page.

You can specify the following properties in the Response page:

■ Reply to Queue Name: The name of reply queue name.

■ Correlation Scheme: The correlation schema that is used by the Oracle MQ
Series Adapter.

Oracle MQ Series Adapter Concepts

10-40 Oracle Fusion Middleware User's Guide for Technology Adapters

For information about correlation schemas, see Section 10.4.3, "Correlation
Schemas".

■ Schema Options: This option enables you to specify the schema for the message to
be dequeued.

– Choose Other Schema: This option enables you to choose your schema for the
message to be dequeued.

– Choose a Predefined Schema: This option enables you to choose a readymade
schema that the adapter provides.

When you click Next in the Response page, a Messages page shown in Figure 10–16 is
displayed. This page enables you to select the XSD schema file for translation for
request and as response message.

For more information about the Messages page, see Section 10.4.1.1, "Enqueue
Message".

10.4.1.10 Outbound Dequeue Scenario
The outbound dequeue scenario dequeues a single message from a queue using the
outbound Oracle MQ Series Adapter by using the Get Message from MQ option in
the Operation Type page of the Adapter Configuration Wizard. To enable the
outbound dequeue option, you must select the Synchronous option, as shown in
Figure 10–29.

Click Next in the Send Message to MQ and Get Reply/Reports page, the Response
page, as shown in Figure 10–30, is displayed. You must set the following properties in
the Response page:

■ QueueName: This is the name of the MQ Series queue from which the message is
dequeued. This property is mandatory.

■ Response Wait Interval: This is the time (in milliseconds) that the adapter waits if
the message is not in the queue. The default value for this property is 0
milliseconds. This property is not mandatory. The permitted value for this
property is any integer value (>=0). The value of this property must be less than
that of the timeout for outbound activity.

Note: For Oracle MQ Series Adapter in an asynchronous
outbound request/reply scenario, properties are differentiated by an
(Enqueue) or (Dequeue) label in Oracle Enterprise Manager
Console. For example, QueueName(Enqueue) is used for putting a
message and QueueName(Dequeue) is used for dequeuing the reply.

When using Oracle Enterprise Manager Console to edit Oracle MQ
Series Adapter properties in this scenario, note the following:

■ If you change the ReplyToQueueName(Enqueue) property, you
must also change the QueueName(Dequeue) property to the
same value.

■ If you change the MessageId(Dequeue) property, you must
also change the MessageId(Enqueue) property to the same
value.

■ If you change the CorrelationId(Dequeue) property, you
must also change the CorrelationId(Enqueue) property to
the same value.

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-41

■ Message Id: This property sets the message filter option based on the messageId.
This property is not mandatory. The value provided for this property must be a
hexadecimal-encoded value for some messageId.

■ Correlation Id: This property sets the message filter option based on the
correlationId. This property is not mandatory. The value provided for this
property must be a hexadecimal-encoded value for some correlationId.

10.4.2 Message Properties
The Oracle MQ Series Adapter supports the following message properties:

■ Section 10.4.2.1, "Messages Types"

■ Section 10.4.2.2, "Message Format"

■ Section 10.4.2.3, "Message Expiry"

■ Section 10.4.2.4, "Message Priority"

■ Section 10.4.2.5, "Message Persistence"

10.4.2.1 Messages Types
The Oracle MQ Series Adapter supports the following four types of messages:

■ Normal Message

A normal message is sent by one program to another program without expecting
any response.

■ Request Message

A request message is sent by one program to another program requesting a
response.

■ Reply Message

A reply message is sent by a program in response to a request message.

■ Report Message

A report message is sent by a receiving program to a sending program as
confirmation of successful or unsuccessful delivery of a message. A report
message can be generated for any of the message types, normal message, request
message, or reply message.

For more information about acknowledgment messages supported by the Oracle
MQ Series Adapter, see Section 10.4.5, "Report Messages".

Note: The ResponseWaitInterval value must be less than the
timeout interval for the outbound activity. If the
ResponseWaitInterval value exceeds the outbound activity
timeout, then the adapter can behave ambiguously.

Note: You can filter messages based on the Message Id and
Correlation Id property through headers.

Oracle MQ Series Adapter Concepts

10-42 Oracle Fusion Middleware User's Guide for Technology Adapters

10.4.2.2 Message Format
You can specify the format for an outgoing message through the Adapter
Configuration Wizard, as shown in Figure 10–8. The following message formats are
supported:

■ No format name (Default)

■ Command server request/reply message

■ Type 1 command reply message

■ Type 2 command reply message

■ Dead letter header

■ Event message

■ User-defined message in programmable command format

■ Message consisting entirely of characters

■ Trigger message

■ Transmission queue header

10.4.2.3 Message Expiry
You can specify the expiry time for an outgoing message by using the Adapter
Configuration Wizard, as shown in Figure 10–8. The queue manager discards the
message after the expiry time of a message has elapsed.

If a message has expiration notification set, then a notification is generated when the
message is discarded. The notification is sent to the queue specified in the
replyToQueue parameter. By default, NEVER is set for the expiry field.

10.4.2.4 Message Priority
You can specify the priority of an outgoing message through the Adapter
Configuration Wizard, as shown in Figure 10–8. A priority can be in the range of 0
(low) to 9 (high). You can also specify the priority of the message to be taken from the
default priority attribute, as defined by the destination queue. By default, AS_Q_DEF is
set as message priority.

10.4.2.5 Message Persistence
You can specify the persistence of an outgoing message through the Adapter
Configuration Wizard, as shown in Figure 10–8. If message persistence is not set, then
a message is lost when the queue manager restarts or there is a system failure. If you
set persistence for a message to true, then it means that the message does not get lost
even if there is system failure or the queue manager is restarted. You can also specify
the persistence of the message to be taken from the default priority attribute, as
defined by the destination queue. The Adapter writes persistent messages to log files
and queue data files. If a queue manager is restarted after a failure, it recovers these
persistent messages from these files.

Note: You can specify all these message properties at run time
through message headers. You can use the assign activity to assign
values to these properties.

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-43

10.4.3 Correlation Schemas
Mapping a response to a request in a request-reply interaction requires correlation.
Each MQ Series request message contains a message ID and a correlation ID. When an
application receives a request message from Oracle BPEL PM, it checks for the
correlation schema defined for the response message. Based on the correlation schema,
the application generates the message ID and correlation ID of the response message.

The response page of the Adapter Configuration Wizard shown in Figure 10–15
enables you to specify the correlation schema for the response message.

The Message ID box shown in Figure 10–15 provides the following options for the
message ID of the response message:

■ Generate a new message ID for the response message.

■ Use the message ID of the request message.

Similarly, the Correlation ID box shown in Figure 10–15 provides the following options
for the correlation ID of the response message:

■ Use the message ID of the request message

■ Use the correlation ID of the request message

10.4.4 Distribution List Support
The Oracle MQ Series Adapter enables you to enqueue a message to multiple queues.

When you select the Put Message Into MQ option in the Operation Type page and
multiple queues, then the DistributionList parameter is automatically added to
the JCA file.

10.4.5 Report Messages
The Oracle MQ Series Adapter enables you to set various types of acknowledgment
messages on an outgoing message. These acknowledgment messages are known as
report messages. A report message is generated, only if the criteria for generating that
report message is met. When enqueuing a message on a queue, you can request for
more than one type of report message. When you request for a report message, you
must specify the queue name to which the report message is sent. This queue is known
as replyTo queue. A report message can be generated by a queue manager, a
message channel, or an application.

The Oracle MQ Series Adapter supports the following message reports:

■ Confirmation on Arrival

The Confirmation on Arrival (COA) message indicates that the message has been
delivered to the target queue manager. A COA message is generated by the queue
manager. This message report can be selected in the Reports page of the Adapter
Configuration page shown in Figure 10–14.

■ Confirmation on Delivery

A Confirmation on Delivery (COD) message indicates that the message has been
retrieved by the receiving application. A COD message is generated by the queue
manager. This message report can be selected in the Reports page shown in
Figure 10–14.

■ Exception Report

Oracle MQ Series Adapter Concepts

10-44 Oracle Fusion Middleware User's Guide for Technology Adapters

An exception report is generated when a message cannot be delivered to the
specified destination queue. Exception reports are generated by the message
channel. This message report can be selected in the Reports page of the Adapter
Configuration page shown in Figure 10–14.

■ Expiry Report

An expiry report indicates that the message was discarded because the expiry time
specified for the message elapsed before the message was retrieved. An expiry
report is generated by a queue manager. This message report can be selected in the
Reports page of the Adapter Configuration page shown in Figure 10–14.

■ Positive Action Notification

A Positive Action Notification (PAN) indicates that a request has been successfully
processed. It means that the action requested in the message has been performed
successfully. This type of report is generated by the application.

■ Negative Action Notification

A Negative Action Notification (NAN) indicates that a request has not been
successfully serviced. It means that the action requested in the message has not
been performed successfully. This type of report is generated by the application.

You can specify whether all these report messages except PAN and NAN should
contain the complete original message, a part of the original message, or no part of the
original message. You can select any of the following options in the Adapter
Configuration Wizard:

■ No data from the original message

■ The first 100 bytes of data in the original message

■ The entire original message

10.4.6 Message Delivery Failure Options
The Message Delivery Failure options are supported only for remote queues and not
for normal queues. The Oracle MQ Series Adapter enables you to specify the action
that should be taken in case a message could not be delivered to the destination queue.
You can specify any of:

■ Place message on a dead letter queue

This is the default action. A message is placed on a dead-letter queue if it cannot
be delivered to the destination queue. A report message is generated if requested
by the sender.

■ Discard message

This indicates that the message should be discarded if it cannot be delivered to the
destination queue. A report message is generated if requested by the sender.

You can specify these options by selecting the Put Message To MQ option in the
Adapter Configuration Wizard.

10.4.7 Message Segmentation
The Oracle MQ Series Adapter supports message segmentation for both inbound and
outbound interactions. Segmentation is required when the size of a message is greater
than the message size allowed for a queue. A physical message is divided into two or
more logical messages. All logical messages have the same group ID and a sequence
number, and an offset.

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-45

In the inbound interaction, the segmentation is inherently supported by the Oracle MQ
Series Adapter. The Oracle MQ Series Adapter dequeues all logical messages in the
order of sequence number and then publishes the single message as XML to Oracle
BPEL PM or Mediator.

The Allow Messages to Be Segmented When Necessary option enables you to segment
messages for outbound interactions. This option appears in the Response page of the
Adapter Configuration Wizard.

The message is segmented based on whether the size of the message is larger than the
maximum limit set on the queue.

10.4.8 Integration with CICS
The Oracle MQ Series Adapter provides support for sending and receiving messages
from the CICS server. In the inbound direction, an inbound message from the CICS
server is dequeued in the same way as a normal message. In the outbound direction,
the message should be in the CICS format. A sample schema file for the outbound
CICS message format is shown in the following example:

<?xml version="1.0" ?><schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/cics_mqcih"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"

 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 nxsd:version="NXSD"

 nxsd:encoding="UTF8"
 nxsd:stream="bytes"
 nxsd:byteOrder="bigEndian"

 xmlns:nxsd_extn="http://xmlns.oracle.com/pcbpel/nxsd/extensions"

<element name="MSGForMQCICSBridge">
 <complexType>
 <sequence>
 <element name="MQCIH">
 <complexType>
 <sequence>
 <!--
 MQCHAR4 StrucId;
 Structure identifier
 -->
 <element name="StrucId" type="string"
 nxsd:style="fixedLength" nxsd:length="4" nxsd:padStyle="tail"/>

 <!--
 MQLONG Version;
 Structure version number 1 or 2
 -->
 <element name="Version" type="string"
 nxsd:style="integer" nxsd_extn:octet="4"
 nxsd_extn:align="0" nxsd_extn:sign="unticked" />
 <!--
 MQLONG StrucLength;
 Length of MQCIH structure V1=164 V2=180
 -->
 <element name="StrucLength" type="string"
 nxsd:style="integer" nxsd_extn:octet="4"

Oracle MQ Series Adapter Concepts

10-46 Oracle Fusion Middleware User's Guide for Technology Adapters

 nxsd_extn:align="0" nxsd_extn:sign="unticked" />

 <!--
 MQLONG Encoding;
 Reserved
 -->
 <element name="Encoding" type="string"
 nxsd:style="integer" nxsd_extn:octet="4"
 nxsd_extn:align="0" nxsd_extn:sign="unticked" />

 <!--
 MQLONG CodedCharSetId;
 Reserved -->
 <element name="CodedCharSetId" type="string"
 nxsd:style="integer" nxsd_extn:octet="4" nxsd_extn:align="0"
 nxsd_extn:sign="unticked" />

 <!--
 MQCHAR8 Format;
 MQ Format name
 -->
 <element name="Format" type="string"
 nxsd:style="fixedLength" nxsd:length="8" />

 <!--
 MQLONG Flags;
 Reserved
 -->
 <element name="Flags" type="string"
 nxsd:style="integer" nxsd_extn:octet="4" nxsd_extn:align="0"

 nxsd_extn:sign="unticked" />

 <!--
 MQLONG ReturnCode;
 Return code from bridge
 -->
 <element name="ReturnCode" type="string"
 nxsd:style="integer" nxsd_extn:octet="4" nxsd_extn:align="0"
 nxsd_extn:sign="unticked" />

 <!--
 MQLONG CompCode;
 MQ completion code or CICS EIBRESP
 -->
 <element name="CompCode" type="string"
 nxsd:style="integer" nxsd_extn:octet="4" nxsd_extn:align="0"
 nxsd_extn:sign="unticked" />

 <!--
 MQLONG Reason;
 MQ reason or feedback code, or CICS EIBRESP2
 -->
 <element name="Reason" type="string"
 nxsd:style="integer" nxsd_extn:octet="4" nxsd_extn:align="0"
 nxsd_extn:sign="unticked" />

 <!--
 MQLONG UOWControl;
 Unit-of-work control

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-47

 -->
 <element name="UOWControl" type="string"
 nxsd:style="integer" nxsd_extn:octet="4" nxsd_extn:align="0"
 nxsd_extn:sign="unticked" />

 <!--
 MQLONG GetWaitInterval;
 Wait interval for MQGET call issued by bridge
 -->
 <element name="GetWaitInterval" type="string"
 nxsd:style="integer" nxsd_extn:octet="4" nxsd_extn:align="0"
 nxsd_extn:sign="ticked" />

 <!--
 MQLONG LinkType;
 Link type
 -->
 <element name="LinkType" type="string"
 nxsd:style="integer" nxsd_extn:octet="4" nxsd_extn:align="0"
 nxsd_extn:sign="unticked" />

 <!--
 MQLONG OutputDataLength;
 Output commarea data length
 -->
 <element name="OutputDataLength" type="string"
 nxsd:style="integer" nxsd_extn:octet="4" nxsd_extn:align="0"
 nxsd_extn:sign="ticked" />

 <!--
 MQLONG FacilityKeepTime;
 Bridge facility release time
 -->
 <element name="FacilityKeepTime" type="string"
 nxsd:style="integer" nxsd_extn:octet="4" nxsd_extn:align="0"
 nxsd_extn:sign="unticked" />

 <!--
 MQLONG ADSDescriptor;
 Send/receive ADS descriptor
 -->
 <element name="ADSDescriptor" type="string"
 nxsd:style="integer" nxsd_extn:octet="4" nxsd_extn:align="0"
 nxsd_extn:sign="unticked" />

 <!--
 MQLONG ConversationalTask;
 Whether task can be conversational
 -->
 <element name="ConversationalTask" type="string"
 nxsd:style="integer" nxsd_extn:octet="4" nxsd_extn:align="0"
 nxsd_extn:sign="unticked" />
 <!--
 MQLONG TaskEndStatus;
 Status at end of task
 -->
 <element name="TaskEndStatus" type="string"
 nxsd:style="integer" nxsd_extn:octet="4" nxsd_extn:align="0"
 nxsd_extn:sign="unticked" />

Oracle MQ Series Adapter Concepts

10-48 Oracle Fusion Middleware User's Guide for Technology Adapters

 <!--
 MQBYTE Facility[8];
 BVT token value. Initialise as required.
 -->
 <element name="Facility" type="string"
 nxsd:style="integer" nxsd_extn:octet="8" nxsd_extn:align="0"
 nxsd _extn:sign="unticked" />

 <!--
 MQCHAR4 Function;
 MQ call name or CICS EIBFN function name
 -->
 <element name="Function" type="string"
 nxsd:style="fixedLength" nxsd:length="4" />

 <!--
 MQCHAR4 AbendCode;
 Abend code
 -->
 <element name="AbendCode" type="string"
 nxsd:style="fixedLength" nxsd:length="4" />

 <!--
 MQCHAR8 Authenticator;
 Password or passticket
 -->
 <element name="Authenticator" type="string"
 nxsd:style="fixedLength" nxsd:length="8" />

 <!--
 MQCHAR8 Reserved1;
 Reserved
 -->
 <element name="Reserved1" type="string"
 nxsd:style="fixedLength" nxsd:length="8" />

 <!--
 MQCHAR8 ReplyToFormat;
 MQ format name of reply message
 -->
 <element name="ReplyToFormat" type="string"
 nxsd:style="fixedLength" nxsd:length="8" />

 <!--
 MQCHAR4 RemoteSysId;
 Remote sysid to use
 -->
 <element name="RemoteSysId" type="string"
 nxsd:style="fixedLength" nxsd:length="4" />

 <!--
 MQCHAR4 RemoteTransId;
 Remote transid to attach
 -->
 <element name="RemoteTransId" type="string"
 nxsd:style="fixedLength" nxsd:length="4" />

 <!--
 MQCHAR4 TransactionId;

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-49

 Transaction to attach
 -->
 <element name="TransactionId" type="string"
 nxsd:style="fixedLength" nxsd:length="4" />

 <!--
 MQCHAR4 FacilityLike;
 Terminal emulated attributes
 -->
 <element name="FacilityLike" type="string"
 nxsd:style="fixedLength" nxsd:length="4" />

 <!--
 MQCHAR4 AttentionId;
 AID key
 -->
 <element name="AttentionId" type="string"
 nxsd:style="fixedLength" nxsd:length="4" />

 <!--
 MQCHAR4 StartCode;
 Transaction start code
 -->
 <element name="StartCode" type="string"
 nxsd:style="fixedLength" nxsd:length="4" />

 <!--
 MQCHAR4 CancelCode;
 Abend transaction code
 -->
 <element name="CancelCode" type="string"
 nxsd:style="fixedLength" nxsd:length="4" />

 <!--
 MQCHAR4 NextTransactionId;
 Next transaction to attach
 -->
 <element name="NextTransactionId" type="string"
 nxsd:style="fixedLength" nxsd:length="4" />

 <!--
 MQCHAR8 Reserved2;
 Reserved
 -->
 <element name="Reserved2" type="string"
 nxsd:style="fixedLength" nxsd:length="8" />
 <!--
 MQCHAR8 Reserved3;
 Reserved
 -->
 <element name="Reserved3" type="string"
 nxsd:style="fixedLength" nxsd:length="8" />

 <!--
 MQLONG CursorPosition;
 Cursor position
 -->
 <element name="CursorPosition" type="string"
 nxsd:style="integer" nxsd_extn:octet="4" nxsd_extn:align="0"
 nxsd_extn:sign="unticked" />

Oracle MQ Series Adapter Concepts

10-50 Oracle Fusion Middleware User's Guide for Technology Adapters

 <!--
 MQLONG ErrorOffset;
 Error offset
 -->
 <element name="ErrorOffset" type="string"
 nxsd:style="integer" nxsd_extn:octet="4" nxsd_extn:align="0"
 nxsd_extn:sign="unticked" />

 <!--
 MQLONG InputItem;
 Input item
 -->
 <element name="InputItem" type="string"
 nxsd:style="integer" nxsd_extn:octet="4" nxsd_extn:align="0"
 nxsd_extn:sign="unticked" />

 <!--
 MQLONG Reserved4;
 Reserved
 -->
 <element name="Reserved4" type="string"
 nxsd:style="integer" nxsd_extn:octet="4" nxsd_extn:align="0"
 nxsd_extn:sign="unticked" />
 </sequence>
 </complexType>
 </element>

 <!--
 Application data
 -->
 <element name="ApplicationData" type="string"
 fixed="Nothing" />

 </sequence>
 </complexType>
 </element>
</schema>

10.4.9 Supported Encodings
By default, Oracle MQ Series Adapter supports a list of encodings. It displays a list of
MQ Series message encodings and Java encoding, and also the mapping between the
MQ Series message encoding and Java encoding. The list of supported encodings for
Oracle MQ Series Adapter is as follows:

■ ibm037

■ ibm437

■ ibm500

■ ibm819

■ Unicode

■ UTF8

■ ibm273

■ ibm277

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-51

■ ibm278

■ ibm280

■ ibm284

■ ibm285

■ ibm297

■ ibm420

■ ibm424

■ ibm737

■ ibm775

■ ibm813

■ ibm838

■ ibm850

■ ibm852

■ ibm855

■ ibm856

■ ibm857

■ ibm860

■ ibm861

■ ibm862

■ ibm863

■ ibm864

■ ibm866

■ ibm868

■ ibm869

■ ibm870

■ ibm871

■ ibm874

■ ibm875

■ ibm912

■ ibm913

■ ibm914

■ ibm915

■ ibm916

■ ibm918

■ ibm920

■ ibm921

■ ibm922

Oracle MQ Series Adapter Concepts

10-52 Oracle Fusion Middleware User's Guide for Technology Adapters

■ ibm930

■ SJIS

■ ibm933

■ ibm935

■ ibm937

■ ibm939

■ ibm942

■ ibm948

■ ibm949

■ ibm950

■ EUCJIS

■ ibm964

■ ibm970

■ ibm1006

■ ibm1025

■ ibm1026

■ ibm1089

■ ibm1097

■ ibm1098

■ ibm1112

■ ibm1122

■ ibm1123

■ ibm1124

■ Cp1250

■ Cp1251

■ Cp1252

■ Cp1253

■ Cp1254

■ Cp1255

■ Cp1256

■ Cp1257

■ Cp1258

■ ibm1381

■ ibm1383

■ JIS

■ KSC5601

■ ibm33722813

Oracle MQ Series Adapter Concepts

Oracle JCA Adapter for MQ Series 10-53

■ GB18030

You can add support for the other standard Java encodings that are not provided in
above list, as follows:

1. Extract the MQSeriesAdapter.jar file from the MQSeriesAdapter.rar file.

2. Extract the mq.properties file from the MQSeriesAdapter.jar file.

3. Add the entry in the mq.properties file. For each new encoding, you must add
two lines (properties) to the mq.properties file. One line for the MQ Series
encoding to the corresponding Java encoding and other line for the Java encoding
to the corresponding MQ Series encoding.

For example, to add support for the following ibm037 Java encoding:ibm037 (Java
encoding)<->37 (MQ Series message encoding), you must add the following two
lines to the mq.properties file:

oracle.tip.adapter.mq.encoding.37=ibm037

oracle.tip.adapter.mq.encoding.ibm037=37

10.4.10 Using the MQ Series Client Channel Definition Table Feature
The CCDT provides several advantages when defining properties while configuring
the JNDI for your MQ Series Adapter.

To understand the configuration of the Client Channel Definition Table, you should
understand the following basic terms and concepts:

■ Channel name and Connection name: The channel name for each definition in the
table should be exactly same as the server connection channel of the queue
manager which has a listener running on the Connection name provided. For
example, the first definition in the CCDT below, channel.ccdt_qm1 is the
name of the server connection channel of a queue manager which has its listener
running on localhost(1414).

■ Queue manager name: The queue manager name defined in the CCDT might not
be the actual name of the queue manager with Channel name and Connection
name defined. There can be the following possibilities:

– The Queue manager name defined in the client channel is the actual queue
manager name as in the third definition in the table. Hence, ccdt_qm3 is the
actual name of the queue manager which has the channel.ccdt_qm3 as its
server connection channel and has a listener listening on localhost(3414).

Note: For the outbound UMS Adapter, you can use the property
JCA.UMS.MSG.CONTENT-TYPE, which can be used for specifying
encoding. But if you do not set the value, the outbound UMS adapter
uses server encoding for email by default.

When the SOA server is started in native encoding, for example, with
iso8859-1, it cannot handle ccjk characters. The content will be
garbled. As a workaround, you can set the jca property for the
outbound UMS adapter as:

JCA.UMS.MSG.CONTENT-TYPE = 'text/plain;
charset=utf-8'

Oracle MQ Series Adapter Concepts

10-54 Oracle Fusion Middleware User's Guide for Technology Adapters

– No Queue manager name is defined for a client channel definition. In the
example CCDT, below, this situation can be seen for the fourth definition in
the table which does not have a Queue manager name defined.

– Two or more client channel entries in the CCDT have the same Queue
manager name defined. This name can match with the actual queue manager
name of any of the entries. The first and second definition in the below
example have the same Queue manager name defined as QM though they
actually point to different queue managers.

The figure below shows a standard CCDT which has client channels defined
for connections to four queue managers; that is, ccdt_qm1 to ccdt_qm4.

Figure 10–31 Sample CCDT

Once defined, this CCDT resides, by default, at the following locations:

* For Windows,
<C:\Program Files\IBM\WebSphere MQ\qmgrs\QM_
NAME\@ipcc\AMQCLCHL.TAB>

* For Unix-based systems,
<var/mqm/qmgrs/QM_NAME/@ipcc/AMQCLCHL.TAB>

This feature simplifies what was formerly a task that involved defining the Hostname,
PortNumber, ChannelName and QueueManagerName in ConnectionFactory
properties while you were configuring the JNDI for your MQ Series Adapter.

■ You can use the Client Channel Definition Table feature (CCDT), with only the
URL pointing to a CCDT file and, additionally, a QueueManagerName, as part of
the configuration. The MQ Series Adapter is able to read the rest of the connection
details from the CCDT to create the required connections for your MQ Series
Adapter.

■ You can configure the MQ Series Adapter to dynamically connect to the available
queue manager from a list of queue managers, a few of which might be down.

Configuring the Oracle MQ Series Adapter

Oracle JCA Adapter for MQ Series 10-55

■ You do not have to change the JNDI used for the MQ Adapter in the composite
process and then re-deploy the composite to change the queue manager on which
the MQ adapter was required to connect.

■ Only one ConnectionFactory JNDI entry is required for the queue managers and
the MQ adapter will dynamically connect to the first available queue manager.

■ CCDT can be used to define a list of queue managers with the same Queue
Manager name property for the client channel definition. This list is used by the
MQ Series Adapter to dynamically connect to the first available Queue Manager at
runtime without requiring any configuration changes or redeployment.

You can gain a basic understanding of IBM Websphere MQ and MQ adapter usage
and details about CCDT creation in the IBM MQ Series documentation.

IBM Websphere MQ version 6 is the minimum requirement for the CCDT feature to
work.

10.5 Configuring the Oracle MQ Series Adapter

The prerequisites for using the Oracle MQ Series Adapter are:

■ IBM WebSphere MQ server should be installed and running.

■ A queue manager and a server connection channel should be created.

To configure the Oracle MQ Series Adapter, perform the following:

■ Adding jar Files to the Oracle MQ Series Adapter Classpath: MQ Series 6 and 7

■ Adding JNDI Entry

■ Enabling Binding Mode for Connections

10.5.1 Adding jar Files to the Oracle MQ Series Adapter Classpath: MQ Series 6 and 7
The steps in this section should be performed once, before using the Oracle MQ Series
Adapter.

To add correct jar properties to the classpath for the Oracle MQ Series 6 Adapter,
copy the following jars to <DOMAIN_HOME>/lib folder

■ com.ibm.mq.jar

■ com.ibm.mqetclient.jar (for use with XA)

To add correct jar properties to the classpath for the Oracle MQ Series 7 Adapter,
copy the following jars to <DOMAIN_HOME>/lib folder

■ com.ibm.mq.commonservices.jar

■ com.ibm.mq.jar

■ com.ibm.mq.pcf.jar

■ com.ibm.mq.headers.jar

■ com.ibm.mq.jmqi.jar

■ com.ibm.mqetclient.jar (for use with XA)

Note: You must create queues based on the requirement of the
application.

Configuring the Oracle MQ Series Adapter

10-56 Oracle Fusion Middleware User's Guide for Technology Adapters

In addition, if you are using the Oracle MQ Series 7 Adapter , the new Sharing
Conversation property of the Server Connection Channel has to be to set to zero.

The com.ibm.mqetclient.jar is not required with the MQ Series 7.5 server.

10.5.2 Adding JNDI Entry
You can add a new JNDI entry in the Oracle WebLogic Server Administration Console
by following these steps:

1. Log in to the following URL using the username/password to open the Oracle
WebLogic Server Administration Console:

http://<localhost>:port/console

The Home page is displayed, as shown in Figure 10–32.

Figure 10–32 Oracle WebLogic Administration Console Home Page

2. Under Domain Structure, in the left pane, click Deployments. The Summary of
Deployments page is displayed.

3. Click MQSeriesAdapter. The Settings of MQSeriesAdapter page is displayed, as
shown in Figure 10–33.

Note: TFor the MQAdapter to run on MQSeries 7.5 on the
WebSphere Application Server Platform you need to add the required
jars from MQSeries 7.0.x.

Configuring the Oracle MQ Series Adapter

Oracle JCA Adapter for MQ Series 10-57

Figure 10–33 Settings of MQSeriesAdapter Page

4. Click the Configuration tab. The Configuration submenu options are displayed, as
shown in Figure 10–34.

Figure 10–34 Settings of MQSeriesAdapter Page - Configuration Submenu Options

5. Click Outbound Connection Pools. The Outbound Connection Pool
Configuration Table is displayed, as shown in Figure 10–35.

Figure 10–35 Outbound Connection Pool Configuration Table

6. Click New. The Create a New Outbound Connection page is displayed, as shown
in Figure 10–36.

Configuring the Oracle MQ Series Adapter

10-58 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–36 Create a New Outbound Connection Page

7. Select the javax.resource.cci.ConnectionFactory option, and click Next.

8. Enter a value in the JNDI Name field, for example eis/MQ/MQAdapter, as shown
in Figure 10–37.

Figure 10–37 Create a New Outbound Connection Page - JNDI Name

9. Click Finish. The Save Deployment Plan Assistant page is displayed.

10. Click OK. You have successfully created a JNDI name.

10.5.3 Enabling Binding Mode for Connections
You can enable binding mode for connections for the Oracle MQ Series Adapter by
modifying a few properties in the Oracle WebLogic Server Administration Console:

To enable binding mode, perform the following steps:

1. Log in to the Oracle WebLogic Server Administration Console using your
password credentials.

2. Under Domain Structure, in the left pane, click Deployments. The Summary of
Deployments page is displayed.

3. Click MQSeriesAdapter. The Settings of MQSeriesAdapter page is displayed.

4. Click the Configuration tab. The Configuration submenu options are displayed.

5. Click Outbound Connection Pools. The Outbound Connection Pool
Configuration Table is displayed.

6. Click the + icon next to javax.resource.cci.ConnectionFactory. A list of JNDIs are
displayed.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-59

7. Select, eis/MQ/MQAdapter, the JNDI that you created in the Section 10.5.2,
"Adding JNDI Entry". The Outbound Connection Properties page is displayed, as
shown in Figure 10–38, with a list of 24 properties.

Figure 10–38 Outbound Connection Properties Page

8. Set the following parameters as mentioned below:

■ hostName: This value should always be blank.

■ portNumber: This value should contain some unused port numbers. For
example, 44888.

■ channelName: This value should always be blank.

■ queueManagerName: This value is a valid queue manager name.

You have enabled the binding mode for connections for the Oracle MQ Series Adapter.

10.6 Oracle MQ Series Adapter Use Cases
This section contains the following topics:

■ Section 10.6.1, "Dequeue Enqueue"

■ Section 10.6.2, "Inbound Synchronous Request-Reply"

■ Section 10.6.3, "Inbound-Outbound Synchronous Request-Reply"

■ Section 10.6.4, "Asynchronous-Request-Reply"

■ Section 10.6.5, "Outbound Dequeue"

■ Section 10.6.6, "Configuring a Backout Queue"

■ Section 10.6.7, "CCDT Use Cases"

■ Section 10.6.8, "Reading Single or Multiple RFH2 Rules and Formatting Header
Version 2 Headers"

10.6.1 Dequeue Enqueue
This use case is the end-to-end demonstration of how MQ Adapter dequeues a
message and enqueues the same message after transformation from the MQ Series
queue. This section contains the following topics:

Oracle MQ Series Adapter Use Cases

10-60 Oracle Fusion Middleware User's Guide for Technology Adapters

■ Section 10.6.1.1, "Prerequisites"

■ Section 10.6.1.2, "Designing the SOA Composite"

■ Section 10.6.1.3, "Creating an Inbound Adapter Service"

■ Section 10.6.1.4, "Creating an Outbound Adapter Service"

■ Section 10.6.1.5, "Wiring Services and Activities"

■ Section 10.6.1.6, "Deploying with JDeveloper"

■ Section 10.6.1.7, "Monitoring Using the Oracle Enterprise Manager Fusion
Middleware Control Console (Fusion Middleware Control Console)"

10.6.1.1 Prerequisites
To perform the dequeue enqueue use case, you need the following files from the
artifacts.zip file contained in the Adapters-101MQAdapterDequeueEnqueue
sample:

■ artifacts/schemas/address-csv.xsd

■ artifacts/schemas/address-fixedLength.xsd

■ artifacts/input/data.txt

You can obtain the Adapters-101MQAdapterDequeueEnqueue sample by
accessing the Oracle SOA Sample Code site.

You must also create the following queues:

■ test_in

■ test_out

10.6.1.2 Designing the SOA Composite
You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following:

1. In JDeveloper, click File and select New.

The New Gallery dialog is displayed.

2. Expand the General node, and select the Applications category.

3. In the Items list, select Generic Application and click OK. The Create Generic
Application Wizard is displayed.

4. In the Name Your Application screen, enter De-queueEn-queue in the
Application Name field, as shown in Figure 10–39, and then click Next. The Name
Your Project screen is displayed.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-61

Figure 10–39 The Name Your Application Page

5. In the Project Name field, enter De-queueEn-queueComposite and from the
Available list, select SOA and click the right-arrow button, as shown in
Figure 10–40.

Figure 10–40 The Name Your Project Page

6. Click Next. The Configure SOA Settings screen is displayed.

7. In the Composite Template list, select Composite With BPEL, as shown in
Figure 10–41, and then click Finish. The Create BPEL Process dialog is displayed.

Oracle MQ Series Adapter Use Cases

10-62 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–41 The Configure SOA Settings Page

8. Enter BPELdequeueenqueue in the Name field, and select Define Service Later
from the Template box, as shown in Figure 10–42.

Figure 10–42 The Create BPEL Process Dialog

9. Click OK. The De-queueEn-queue application and the De-queueEn-queue project
appears in the design area, as shown in Figure 10–43.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-63

Figure 10–43 The JDeveloper - Composite.xml

10. Copy the address-csv.xsd and address-fixedLength.xsd files to the xsd
folder in your project (see Section 10.6.1.1, "Prerequisites" for the location of these
files).

10.6.1.3 Creating an Inbound Adapter Service
Perform the following steps to create an adapter service that dequeues the message
from a queue:

1. Drag and drop MQ Adapter from the Component Palette into the Exposed
Services swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter InboundService in the Service Name field, as shown in Figure 10–44, and
click OK. The MQ Series Connection page is displayed.

Oracle MQ Series Adapter Use Cases

10-64 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–44 The Service Name Page

4. Accept the default JNDI name for the MQ Series connection, as shown in
Figure 10–45, and click Next. The Adapter Interface page is displayed.

Figure 10–45 The MQ Series Connection Page

5. Select Define from operation and schema (specified later), as shown in
Figure 10–46, and click Next. The Operation Type page is displayed.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-65

Figure 10–46 The Adapter Interface Page

6. Select Get Message from MQ, as shown in Figure 10–47, and click Next. The Get
Message from MQ page is displayed.

Figure 10–47 The Operation Type Page

7. Enter test_in in the Queue Name field, as shown in Figure 10–48, and click
Next. The Messages page is displayed.

Oracle MQ Series Adapter Use Cases

10-66 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–48 The Get Message From MQ Page

8. Click Browse at the end of the URL field. The Type Chooser dialog is displayed.

9. Select Project Schema Files, address-csv.xsd, and then Root-Element, as shown in
Figure 10–49.

Figure 10–49 The Type Chooser Dialog

10. Click OK. The address-csv.xsd file appears in the URL field in the Messages page,
as shown in Figure 10–50.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-67

Figure 10–50 The Messages Page

11. Click Next. The Finish page is displayed.

12. Click Finish. You have now configured the inbound adapter service, and the
composite.xml page is displayed, as shown in Figure 10–51.

Oracle MQ Series Adapter Use Cases

10-68 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–51 The JDeveloper Page - Composite.xml Page

10.6.1.4 Creating an Outbound Adapter Service
Perform the following steps to create an adapter service that enqueues the messages.

1. Drag and drop MQ Adapter from the Component Palette into the External
References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter OutboundService in the Service Name field, and click OK. The MQ Series
Connection page is displayed.

4. Accept the default JNDI name for the MQ Series connection, as shown in
Figure 10–45, and click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), as shown in
Figure 10–46, and click Next. The Operation Type page is displayed.

6. Select Put Message into MQ, and click Next. The Put Message into MQ page is
displayed.

7. Enter test_out in the Queue Name field, and click Next. The Advanced Options
page is displayed, as shown in Figure 10–52.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-69

Figure 10–52 The Advanced Options Page

8. Accept the defaults and click Next. The Messages page is displayed.

9. Click Browse at the end of the URL field. The Type Chooser dialog is displayed.

10. Select Project Schema Files, address-fixedLength.xsd, and then Root-Element,
and click OK. The address-fixedLength.xsd file appears in the URL field in the
Messages page.

11. Click Next. The Finish page is displayed.

12. Click Finish. You have now configured the outbound adapter service, and the
composite.xml page is displayed, as shown in Figure 10–53.

Oracle MQ Series Adapter Use Cases

10-70 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–53 The JDeveloper Page - Composite.xml Page

10.6.1.5 Wiring Services and Activities
You have to assemble or wire the three components that you have created: Inbound
adapter service, BPEL process, and Outbound adapter reference. Perform the
following steps to wire the components:

1. Drag the small triangle in the InboundService in the Exposed Services area to the
drop zone that appears as a green triangle in the BPEL process in the Components
area.

2. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in OutboundService in the External
References area.

The JDeveloper Composite.xml appears, as shown in Figure 10–54.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-71

Figure 10–54 The JDeveloper - Composite.xml

3. Click File, Save All.

4. Double-click BPELdequeueenqueue. The BPELdequeueenqueue.bpel page is
displayed.

5. Drag and drop the Receive, Transform, and Invoke activities in the order
mentioned from the Component Palette to the Components area.

The JDeveloper BPELdequeueenqueue.bpel page is displayed, as shown in
Figure 10–55.

Oracle MQ Series Adapter Use Cases

10-72 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–55 The BPELdequeueenqueue.bpel Page

6. Drag and drop the Receive activity to InboundService. The Receive dialog is
displayed.

7. Click the Auto Create Variable icon that appears at the end of the Variable field.
The Create Variable dialog is displayed.

8. Accept the defaults, and click OK.

9. Check the Create Instance box, and click OK.

10. Drag and drop the Invoke activity to OutboundService. The Invoke dialog is
displayed.

11. Click the Automatically Create Input Variable icon that appears at the end of the
Input Variable field.

12. Accept the defaults, and click OK. The Invoke dialog is displayed.

13. Click OK.

14. Double-click the Transform activity. The Transform dialog is displayed.

15. Click the Create... (Alt+N) icon. The Source Variable dialog is displayed.

16. Accept the defaults, and click OK.

17. Select the invoke variable as target, and click OK. The Transformation_xsl page is
displayed.

18. Drag and drop tns:Root-Element in the Sources pane to the fix:Root-Element in
the Target pane. The Auto Map Preferences dialog is displayed.

19. Click OK. The Transformation_xsl page is displayed, as shown in Figure 10–56.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-73

Figure 10–56 The Trasformation_xsl Page

The BPELdequeueenqueue.bpel page appears, as shown in Figure 10–57.

Figure 10–57 The BPELdequeueenqueue.bpel Page

10.6.1.6 Deploying with JDeveloper
You must deploy the application profile for the SOA project and application you
created in the earlier steps.

For more information about deploying the application profile using JDeveloper, see
Section 2.7, "Deploying Oracle JCA Adapter Applications from JDeveloper".

You must also create an application server connection. For more information about
creating an application server connection, see Section 2.6, "Creating an Application
Server Connection for Oracle JCA Adapters".

10.6.1.7 Monitoring Using the Oracle Enterprise Manager Fusion Middleware
Control Console (Fusion Middleware Control Console)
You can monitor the deployed SOA composite using the Fusion Middleware Control
Console. Perform the following steps:

1. Log in to http://servername:portnumber/em using your username/password. The
Oracle Enterprise Manager Fusion Middleware Control page is displayed.

2. In the left pane, navigate to SOA, soa-infra (soa_server1). A list of all the
composites that are deployed appears.

Oracle MQ Series Adapter Use Cases

10-74 Oracle Fusion Middleware User's Guide for Technology Adapters

3. Click De-queueEn-queueComposite[1.0]. The De-queueEn-queueComposite[1.0]
page is displayed.

4. Copy the data.txt file and put it in the test_in queue.

5. Wait for some time and then refresh the Fusion Middleware Control Console. An
instance appears on the console. This is the instance that was triggered because of
the processing that occurred.

6. Click the Instances tab.

7. Click the instance associated with this deployment. The Flow Trace page is
displayed.

8. Click the BPELdequeueenqueue component instance. The Audit Trail page is
displayed.

9. Click the Flow tab to debug the instance. The BPEL process instance flow is
displayed.

10. Click an activity to view the relevant payload details.

10.6.2 Inbound Synchronous Request-Reply
In this use case, the inbound Oracle MQ Series Adapter dequeues the request message
from MQ Series inbound queue test_in and publishes it to the BPEL process. The
Oracle MQ Series Adapter waits for the response from the BPEL process. When the
Oracle MQ Series Adapter receives the response, it enqueues the response message to
the MQ Series queue specified in the replyToQueueName queue of the request
message. This use case consists of the following sections:

■ Section 10.6.2.1, "Prerequisites"

■ Section 10.6.2.2, "Designing the SOA Composite"

■ Section 10.6.2.3, "Creating an Inbound Adapter Service"

■ Section 10.6.2.4, "Wiring Services and Activities"

■ Section 10.6.2.5, "Deploying with JDeveloper"

■ Section 10.6.2.6, "Monitoring Using the Fusion Middleware Control Console"

10.6.2.1 Prerequisites
This example assumes that you are familiar with basic BPEL constructs, such as
activities and partner links, and JDeveloper environment for creating and deploying
BPEL Process.

The Oracle MQ Series Adapter must be configured as specified in Section 10.5,
"Configuring the Oracle MQ Series Adapter" and a queue test_in should be created.

To perform the inbound synchronous request-reply use case, you require the following
files from the artifacts.zip file contained in the
Adapters-101MQAdapterDequeueEnqueue sample:

■ artifacts/schemas/address-csv.xsd

■ artifacts/schemas/address-fixedLength.xsd

■ artifacts/input/data.txt

You can obtain the Adapters-101MQAdapterDequeueEnqueue sample by
accessing the Oracle SOA Sample Code site.

You must also create the following queues:

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-75

■ test_in

■ test_reply

10.6.2.2 Designing the SOA Composite
You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following:

1. In JDeveloper, click File and select New.

The New Gallery dialog is displayed.

2. Expand the General node, and select the Applications category.

3. In the Items list, select Generic Application and click OK. The Create Generic
Application Wizard is displayed.

4. In the Name Your Application screen, enter SyncReqRes in the Application
Name field, and then click Next. The Name Your Project screen is displayed.

5. In the Project Name field, enter Sync_ReqRes and from the Available list, select
SOA and click the right-arrow button.

6. Click Next. The Configure SOA Settings screen is displayed.

7. In the Composite Template list, select Composite With BPEL and then click
Finish. The Create BPEL Process dialog is displayed.

The Application Navigator of JDeveloper is updated with the new application and
project and the Design tab contains, a blank palette.

8. Enter BPELsyncreqres in the Name field, select Define Service Later from the
Template box.

9. Click OK. The SyncReqRes application and Sync_ReqRes project appears in the
design area, as shown in Figure 10–58.

Oracle MQ Series Adapter Use Cases

10-76 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–58 The JDeveloper - Composite.xml

10.6.2.3 Creating an Inbound Adapter Service
Perform the following steps to create an adapter service that dequeues the message
from a queue:

1. Drag and drop MQ Adapter from the Component Palette into the Exposed
Services swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter inbound_reqres in the Service Name field, and click Next. The MQ Series
Connection page is displayed.

4. Accept the default JNDI name for the MQ Series connection JNDI name, and click
Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation Type page is displayed.

6. Select Get Message from MQ and Send Reply/Reports, and select Synchronous,
as shown in Figure 10–18, and click Next. The Get Message from MQ and Send
Reply/Reports page is displayed.

7. Select Normal in the Message Type box, and enter test_in in the Queue Name
field.

8. Click Next. The Response page is displayed.

9. Accept the defaults, and click Next. The Messages page is displayed.

10. Select Project Schema Files, address-csv.xsd, and then Root-Element, and click
OK. The address-csv.xsd file appears in the URL field in the Messages page.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-77

11. In the Send Message Schema group, click Browse at the end of the URL field. The
Type Chooser dialog is displayed.

12. Select Project Schema Files, address-fixedLength.xsd, and then Root-Element,
and click OK. The address-fixedLength.xsd file appears in the URL field in the
Messages page.

13. Click Next. The Finish page is displayed.

14. Click Finish. You have now configured the inbound adapter service, and the
composite.xml page is displayed, as shown in Figure 10–59.

Figure 10–59 The JDeveloper Page - Composite.xml Page

15. Click File, Save All.

10.6.2.4 Wiring Services and Activities
Perform the following steps to wire components:

1. Drag and drop the inbound_reqres adapter service to the BPELsyncreqres
BPEL process.

2. Double-click BPELsyncreqres. The BPELsyncreqres.bpel page is displayed.

3. Drag and drop the Receive, Transform, and Reply activities in the order
mentioned from the Component Palette to the Components area.

4. Drag and drop the Receive activity to the inbound_reqres adapter service. The
Receive dialog is displayed.

5. Enter ReadMsg in the Name field.

6. Click the Auto Create Variable icon that appears at the end of the Variable field.
The Create Variable dialog is displayed.

Oracle MQ Series Adapter Use Cases

10-78 Oracle Fusion Middleware User's Guide for Technology Adapters

7. Accept the defaults, and click OK.

8. Check the Create Instance box in the Receive dialog, and click OK.

9. Drag and drop the Reply activity to the inbound_reqres adapter service. The
Reply dialog is displayed.

10. Enter ReplyMsg in the Name field.

11. Click the Auto Create Variable icon that appears at the end of the Variable field.
The Create Variable dialog is displayed.

12. Accept the defaults, and click OK. The variable appears in the Reply dialog.

13. Click OK.

14. Double-click the Transform activity. The Transform dialog is displayed.

15. Click the plus icon. The Source Variable dialog is displayed.

16. From the Source Variable list, select ReadMsg_DequeueEnqueue_InputVariable,
and click OK.

17. From the Target Variable list, select ReplyMsg_DequeueEnqueue_
OutputVariable.

18. Click the Create Mappings icon. The Transformation.xsl page is displayed, as
shown in Figure 10–60.

Figure 10–60 The Transformation.xsl Page

19. Drag the tns:Root-Element from <sources> panel to the fix:Root-Element of the
<target> panel. The Auto Map Preferences dialog is displayed.

20. Click OK. The JDeveloper BPELsyncreqres.bpel page is displayed, as shown in
Figure 10–61.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-79

Figure 10–61 The BPELsyncreqres.bpel Page

10.6.2.5 Deploying with JDeveloper
You must deploy the application profile for the SOA project and application you
created in the earlier steps.

To deploy the application profile using JDeveloper, see Section 2.7, "Deploying Oracle
JCA Adapter Applications from JDeveloper".

You must also create an application server connection. For more information about
creating an application server connection, see Section 2.6, "Creating an Application
Server Connection for Oracle JCA Adapters".

10.6.2.6 Monitoring Using the Fusion Middleware Control Console
You can monitor the deployed SOA composite using the Fusion Middleware Control
Console. Perform the following steps:

1. Log in to http://servername:portnumber/em using your username/password. The
Oracle Enterprise Manager Fusion Middleware Control page is displayed.

2. In the left pane, navigate to SOA, soa-infra (soa_server1). A list of all the
composites that are deployed appears.

3. Click Sync_ReqRes[1.0]. The Sync_ReqRes[1.0] page is displayed.

4. Create an MQ message with the contents of the data.txt file and set
replyToQueueName to test_reply. Put this message in the test_in queue.

5. Wait for some time and then refresh the Fusion Middleware Control Console. An
instance appears on the console. This is the instance that was triggered because of
the processing that occurred.

Oracle MQ Series Adapter Use Cases

10-80 Oracle Fusion Middleware User's Guide for Technology Adapters

6. Click the Instances tab.

7. Click the instance associated with this deployment. The Flow Trace page is
displayed.

8. Click the BPELsyncreqres component instance. The Audit Trail page is displayed.

9. Click the Flow tab to debug the instance. The BPEL process instance flow is
displayed.

10. Click an activity to view the relevant payload details.

10.6.3 Inbound-Outbound Synchronous Request-Reply
This use case is the end-to-end demonstration of the Synchronous Solicit
Request-Reply scenario for MQ Adapter. In this use case, the composite dequeues the
message from an inbound queue. Then, it enqueues a reply message to the
replyToQueue queue as specified in the inbound message. This section contains the
following topics:

■ Section 10.6.3.1, "Prerequisites"

■ Section 10.6.3.2, "Designing the SOA Composite"

■ Section 10.6.3.3, "Creating an Inbound Adapter Service"

■ Section 10.6.3.4, "Creating an Outbound Adapter Service"

■ Section 10.6.3.5, "Wiring Services and Activities"

■ Section 10.6.3.6, "Deploying with JDeveloper"

■ Section 10.6.3.7, "Monitoring Using the Fusion Middleware Control Console"

10.6.3.1 Prerequisites
To perform the inbound synchronous request-reply use case, you require the following
files from the artifacts.zip file contained in the
Adapters-101MQAdapterDequeueEnqueue sample:

■ artifacts/schemas/address-csv.xsd

■ artifacts/schemas/address-fixedLength.xsd

You must also create queues named:

■ test_in

■ test1

■ ReplyQ

■ test_reply

You can obtain the Adapters-101MQAdapterDequeueEnqueue sample by
accessing the Oracle SOA Sample Code site.

10.6.3.2 Designing the SOA Composite
You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following:

1. In JDeveloper, click File and select New.

The New Gallery dialog is displayed.

2. Expand the General node, and select the Applications category.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-81

3. In the Items list, select Generic Application and click OK. The Create Generic
Application Wizard is displayed.

4. In the Name Your Application screen, enter Sync-Req-Rep in the Application
Name field, and then click Next. The Name Your Project screen is displayed.

5. In the Project Name field, enter Sync-Req-RepComposite and from the
Available list, select SOA and click the right-arrow button.

6. Click Next. The Configure SOA Settings screen is displayed.

7. In the Composite Template list, select Composite With BPEL and then click
Finish. The Create BPEL Process dialog is displayed.

8. Enter BPELSyncreqrep in the Name field, select Define Service Later from the
Template box.

9. Click OK. The Sync-Req-Rep application and Sync-Req-RepComposite project
appears in the design area, as shown in Figure 10–62.

Figure 10–62 The JDeveloper - Composite.xml

10.6.3.3 Creating an Inbound Adapter Service
Perform the following steps to create an adapter service that dequeues the message
from a queue:

1. Drag and drop MQ Adapter from the Component Palette into the Exposed
Services swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter InboundReqRepService in the Service Name field, and click Next. The
MQ Series Connection page is displayed.

Oracle MQ Series Adapter Use Cases

10-82 Oracle Fusion Middleware User's Guide for Technology Adapters

4. Accept the default JNDI name for the MQ Series connection, and click Next. The
Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation Type page is displayed.

6. Select Get Message from MQ and Send Reply/Reports and Synchronous in the
Operation Name box, as shown in Figure 10–18, and click Next. The Get Message
from MQ and Send Reply/Reports page is displayed.

7. Select Normal in the Message Type list and enter test_in in the Queue Name
field and select Choose Other Schema in the Schema Options box, and click Next.
The Response page is displayed.

8. Accept the defaults and click Next. The Message page is displayed.

9. Click Browse in the Get Message Schema box that appears at the end of the URL
field. The Type Chooser dialog is displayed.

10. Select Project Schema Files, address-csv.xsd, and Root-Element, and then click
OK. The Message page is populated with the address-csv.xsd file in the Get
Message Schema box.

11. Click Browse in the Send Message Schema box that appears at the end of the URL
field. The Type Chooser dialog is displayed.

12. Select Project Schema Files, address-fixedLength.xsd, and Root-Element, and
then click OK. The Message page is populated with the address-fixedLength.xsd
file in the Send Message Schema box.

13. Click Next. The Finish page is displayed.

14. Click Finish. You have configured the InboundReqRepService adapter service, and
the composite.xml page is displayed, as shown in Figure 10–63.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-83

Figure 10–63 The JDeveloper Page - Composite.xml Page

10.6.3.4 Creating an Outbound Adapter Service
Perform the following steps to create an adapter service that enqueues the request
messages and dequeue the corresponding response messages (report) from a queue:

1. Drag and drop MQ Adapter from the Component Palette into the External
References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter OutboundReqRepService in the Service Name field, and click OK. The
MQ Series Connection page is displayed.

4. Accept the defaults and click Next. The Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation Type page is displayed.

6. Select Send Message to MQ and Get Reply/Reports, select Synchronous in the
Operation Name box, and click Next. The Send Message to MQ and Get
Reply/Reports page is displayed.

7. Enter test1 in the Queue Name field and click Next. The Response page is
displayed.

8. Enter the name of the queue in the Reply To Queue Name field such as ReplyQ,
select the Response Wait Interval option and enter a value, and select the Empty
Response Message Allowed option.

9. Click Next. The Advanced Options page is displayed.

10. Accept the default values and click Next. The Messages page is displayed.

Oracle MQ Series Adapter Use Cases

10-84 Oracle Fusion Middleware User's Guide for Technology Adapters

11. Click Browse in the Get Message Schema box that appears at the end of the URL
field. The Type Chooser dialog is displayed.

12. Select Project Schema Files, address-csv.xsd, and Root-Element, and then click
OK. The Message page is populated with address-csv.xsd file in the Get Message
Schema box.

13. Click Browse in the Send Message Schema box that appears at the end of the URL
field. The Type Chooser dialog is displayed.

14. Select Project Schema Files, address-fixedLength.xsd, and Root-Element, and
then click OK. The Message page is populated with address-fixedLength.xsd file
in the Send Message Schema box.

15. Click Next. The Finish page is displayed.

16. Click Finish. You have configured the OutboundReqRepService service, and the
composite.xml page is displayed, as shown in Figure 10–64.

Figure 10–64 The JDeveloper Page - Composite.xml Page

10.6.3.5 Wiring Services and Activities
You have to assemble or wire the three components that you have created:
InboundReqRepService, BPELSyncreqrep, and OutboundReqRepService. Perform the
following steps to wire the components:

1. Drag the small triangle in the InboundReqRepService service in the Exposed
Services area to the drop zone that appears as a green triangle in BPELSyncreqrep
in the Components area.

2. Drag the small triangle in BPELSyncreqrep in the Components area to the drop
zone that appears as a green triangle in OutboundReqRepService in the External
References area.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-85

3. Similarly, drag the small triangle in BPELSyncreqrep in the Components area to
the drop zone in OutboundReqRepService in the External References area.

The JDeveloper Composite.xml appears, as shown in Figure 10–65.

Figure 10–65 The JDeveloper - Composite.xml

4. Click File, Save All.

5. Double-click BPELSyncreqrep. The BPELSyncreqrep.bpel page is displayed.

6. Drag and drop the Receive, Transform, Invoke, Assign, Reply activities in the
order mentioned from the Component Palette to the Components area. The
JDeveloper BPELSyncreqrep.bpel page is displayed, as shown in Figure 10–66.

Oracle MQ Series Adapter Use Cases

10-86 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–66 The BPELSyncreqrep.bpel Page

7. Drag and drop the Receive activity to InboundReqRepService. The Receive
dialog is displayed.

8. Click the Auto Create Variable icon that appears at the end of the Variable field.
The Create Variable dialog is displayed.

9. Accept the defaults, and click OK.

10. Check the Create Instance box, as shown in Figure 10–67, and click OK.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-87

Figure 10–67 The Receive Dialog

11. Drag and drop the Reply activity to InboundReqRepService. The Reply dialog is
displayed.

12. Click the Auto Create Variable icon to create the variable, and then click OK. The
Reply dialog is displayed, as shown in Figure 10–68.

Figure 10–68 The Reply Dialog

13. Drag and drop the Invoke activity to the OutboundReqRepService service. The
Invoke dialog is displayed.

14. Click the Automatically Create Input Variable icon that appears at the end of the
Input Variable field. The Create Variable dialog is displayed.

15. Click OK.

16. Similarly, create the output variable. Accept the defaults, and click OK. The Invoke
dialog is displayed, as shown in Figure 10–69.

Oracle MQ Series Adapter Use Cases

10-88 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–69 The Invoke Dialog

17. Click OK.

18. Double-click the Transform activity. The Transform dialog is displayed.

19. Click the plus icon, and select Receive_1_DequeueEnqueue_InputVariable as the
source variable. Then, select Invoke_1_EnqueueDequeue_InputVariable for the
target variable, as shown in Figure 10–70.

Figure 10–70 The Transform Dialog

20. Click Create Mapping. The Transformation_1.xsl page is displayed.

21. Drag and drop the tns:Root-Element from the from <sources> panel to
fix:Root-Element in the <target> panel. The Auto Map Preferences dialog is
displayed.

22. Click OK. The mappings appear in the Transformation.xsl page, as shown in
Figure 10–71.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-89

Figure 10–71 The Transformation.xsl Page with Mappings

23. Click the BPELSyncreqrep.bpel tab.

24. Double-click the Assign activity. The Assign dialog is displayed.

25. Click the plus icon, and select Copy Operation. The Create Copy Operation dialog
is displayed.

26. Select the variables, as shown in Figure 10–72, and click OK.

Figure 10–72 The Create Copy Operation Dialog

27. Click OK in the Assign dialog. The JDeveloper BPELSyncreqrep.bpel page is
displayed, as shown in Figure 10–73.

Oracle MQ Series Adapter Use Cases

10-90 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–73 The BPELSyncreqrep.bpel Page

10.6.3.6 Deploying with JDeveloper
You must deploy the application profile for the SOA project and application you
created in the earlier steps.

For more information about deploying the application profile using JDeveloper, see
Section 2.7, "Deploying Oracle JCA Adapter Applications from JDeveloper".

You must also create an application server connection. For more information about
creating an application server connection, see Section 2.6, "Creating an Application
Server Connection for Oracle JCA Adapters".

10.6.3.7 Monitoring Using the Fusion Middleware Control Console
You can monitor the deployed SOA composite using the Fusion Middleware Control
Console. Perform the following steps:

1. Log in to http://servername:portnumber/em using your username/password. The
Oracle Enterprise Manager Fusion Middleware Control page is displayed.

2. In the left pane, navigate to SOA, soa-infra (soa_server1). A list of all the
composites that are deployed appears.

3. Click Sync-Req-RepComposite[1.0]. The Sync-Req-RepComposite[1.0] page is
displayed.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-91

4. Create an MQ message with the contents of the data.txt file and set
replyToQueueName to test_reply. Put this message in the test_in queue.

5. Wait for some time and then refresh the Fusion Middleware Control Console. An
instance appears on the console. This is the instance that was triggered because of
the processing that occurred.

6. Click the Instances tab.

7. Click the instance associated with this deployment. The Flow Trace page is
displayed.

8. Click the BPELSyncreqrep component instance. The Audit Trail page is displayed.

9. Click the Flow tab to debug the instance. The BPEL process instance flow is
displayed.

10. Click an activity to view the relevant payload details.

10.6.4 Asynchronous-Request-Reply
This use case is the end-to-end demonstration of the Asynchronous-Request-Reply
scenario. In this use case, first, the composite dequeues the message from an inbound
queue. Then, it enqueues a request message and dequeues the reply message. Finally,
the composite enqueues the reply message to the other queue. This section contains
the following topics:

■ Section 10.6.4.1, "Prerequisites"

■ Section 10.6.4.2, "Designing the SOA Composite"

■ Section 10.6.4.3, "Creating an Inbound Adapter Service"

■ Section 10.6.4.4, "Creating an Asynchronous Outbound Request Reply Adapter
Service Outbound"

■ Section 10.6.4.6, "Wiring Services and Activities"

■ Section 10.6.4.7, "Deploying with JDeveloper"

■ Section 10.6.4.8, "Monitoring Using the Fusion Middleware Control Console"

10.6.4.1 Prerequisites
The Oracle MQ Series Adapter must be configured as specified in Section 10.5,
"Configuring the Oracle MQ Series Adapter" and create the following queues: test_in,
test_out, and test_demo queues.

10.6.4.2 Designing the SOA Composite
You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following:

1. In JDeveloper, click File and select New.

The New Gallery dialog is displayed.

2. Expand the General node, and select the Applications category.

3. In the Items list, select Generic Application and click OK. The Create Generic
Application Wizard is displayed.

4. In the Name Your Application screen, enter AsynchronousRequestReply in
the Application Name field, and then click Next. The Name Your Project screen is
displayed.

Oracle MQ Series Adapter Use Cases

10-92 Oracle Fusion Middleware User's Guide for Technology Adapters

5. In the Project Name field, enter Async-Req-RepComposite and from the
Available list, select SOA and click the right-arrow button.

6. Click Next. The Configure SOA Settings screen is displayed.

7. In the Composite Template list, select Composite With BPEL and then click
Finish. The Create BPEL Process dialog is displayed.

8. Enter BPELAsyncreqrep in the Name field, select Define Service Later from the
Template box.

9. Click OK. The AsynchronousRequestReply application and the
Async-Req-RepComposite project appear in the design area, as shown in
Figure 10–74.

Figure 10–74 The JDeveloper - Composite.xml

10.6.4.3 Creating an Inbound Adapter Service
Perform the following steps to create an adapter service that dequeues the message
from a queue:

1. Drag and drop MQ Adapter from the Component Palette into the Exposed
Services swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter InboundService in the Service Name field, and click Next. The MQ Series
Connection page is displayed.

4. Accept the default JNDI name for the MQ Series connection, and click Next. The
Adapter Interface page is displayed.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-93

5. Select Define from operation and schema (specified later), and click Next. The
Operation Type page is displayed.

6. Select Get Message from MQ and click Next. The Get Message from MQ page is
displayed.

7. Enter test_in in the Queue Name field and click Next. The Messages page is
displayed.

8. Select Native Format Translation is not required (Schema is Opaque) and click
Next. The Finish page is displayed.

9. Click Finish. You have configured the inbound adapter service, and the
composite.xml page is displayed, as shown in Figure 10–75.

Figure 10–75 The JDeveloper Page - Composite.xml Page

10.6.4.4 Creating an Asynchronous Outbound Request Reply Adapter Service
Outbound
Perform the following steps to create an adapter service that enqueues the request
messages and dequeue the corresponding response messages (report) from a queue:

1. Drag and drop MQ Adapter from the Component Palette into the External
References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter asyn-Req-Res in the Service Name field, and click OK. The MQ Series
Connection page is displayed.

Oracle MQ Series Adapter Use Cases

10-94 Oracle Fusion Middleware User's Guide for Technology Adapters

4. Accept the default JNDI name for the MQ Series connection, and click Next. The
Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation Type page is displayed.

6. Select Send Message to MQ and Get Reply/Reports and select Asynchronous in
the Operation Name box, and then click Next. The Send Message to MQ and Get
Reply/Reports page is displayed.

7. Select Normal in the Message Type box and enter test_out in the Queue Name
field, and then select the Get Reports check box, and click Next. The Reports page
is displayed.

8. Select Confirmation on Arrival, as shown in Figure 10–76, and click Next. The
Response page is displayed.

Figure 10–76 The Adapter Configuration Wizard Reports Page

9. Enter test_out in the Reply To Queue Name field, and click Next. The
Advanced Options page is displayed.

10. Accept the default values, and click Next. The Messages page is displayed.

11. Select Native Format Translation is not Required(Schema is Opaque) in both the
Get Message Schema and Send Message Schema boxes, and click Next. The Finish
page is displayed.

12. Click Finish. You have configured the async-Req-Res service, and the
composite.xml page is displayed, as shown in Figure 10–77.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-95

Figure 10–77 The JDeveloper Page - Composite.xml Page

10.6.4.5 Creating Another Outbound Adapter Service
Perform the following steps to create an adapter service that enqueues the response
(report) messages.

1. Drag and drop MQ Adapter from the Component Palette into the External
References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter OutboundService in the Service Name field, and click OK. The MQ Series
Connection page is displayed.

4. Accept the default JNDI name for the MQ Series connection, and click Next. The
Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation Type page is displayed.

6. Select Put Message into MQ, and click Next. The Put Message into MQ page is
displayed.

7. Enter test_demo in the Queue Name field, and click Next. The Advanced
Options page is displayed.

8. Accept the default values, and click Next. The Messages page is displayed.

9. Select Native Format Translation is not required(Schema is Opaque), and click
Next. The Finish page is displayed.

10. Click Finish. You have configured the OutboundService service, and the
composite.xml page is displayed, as shown in Figure 10–78.

Oracle MQ Series Adapter Use Cases

10-96 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–78 The JDeveloper Page - Composite.xml Page

10.6.4.6 Wiring Services and Activities
You have to assemble or wire the four components that you have created: Inbound
adapter service, BPEL process, async-Req-Res, and Outbound adapter reference.
Perform the following steps to wire the components:

1. Drag the small triangle in the InboundService service in the Exposed Services area
to the drop zone that appears as a green triangle in the BPEL process in the
Components area.

2. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in async-Req-Res in the External References
area.

3. Similarly, drag the small triangle in the BPEL process in the Components area to
the drop zone in OutboundService in the External References area.

The JDeveloper Composite.xml appears, as shown in Figure 10–79.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-97

Figure 10–79 The JDeveloper - Composite.xml

4. Click File, Save All.

5. Double-click BPELAsyncreqrep. TheDequeueEnqueueRFH2.bpel page is
displayed.

6. Drag and drop the Receive, Assign, Invoke, Receive, Assign, Invoke activities in
the order mentioned from the Component Palette to the Components area. The
JDeveloper BPELAsyncreqrep.bpel page is displayed, as shown in Figure 10–80.

Oracle MQ Series Adapter Use Cases

10-98 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–80 The BPELAsyncreqrep.bpel Page

7. Drag and drop the first Receive activity to the InboundService adapter service.
The Receive dialog is displayed.

8. Click the Auto Create Variable icon that appears at the end of the Variable field.
The Create Variable dialog is displayed.

9. Accept the defaults, and click OK.

10. Check the Create Instance box, and click OK.

11. Drag and drop the first Invoke activity to the async-Req-Res service. The Invoke
dialog is displayed.

12. Click the Automatically Create Input Variable icon that appears at the end of the
Input Variable field.

13. Accept the defaults, and click OK. The Invoke dialog is displayed.

14. Click OK.

15. Drag and drop the second Receive activity to the async-Req-Rep service. The
Receive dialog is displayed.

16. Click the Auto Create Variable icon to create variable.

Note: Do not check the Create Instance box.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-99

17. Click OK in the Receive dialog.

18. Drag and drop the second Invoke activity to OutboundService. The Invoke dialog
is displayed.

19. Click the Automatically Create Input Variable icon to create a variable.

20. Click OK in the Invoke dialog.

21. Double-click the first Assign activity. The Assign dialog is displayed.

22. Click the plus icon, and select Copy Operation. The Create Copy Operation dialog
is displayed.

23. Select the variables, as shown in Figure 10–81, and click OK.

Figure 10–81 The Create Copy Operation Dialog

24. Click OK in the Assign dialog.

25. Double-click the second Assign activity. The Assign dialog is displayed.

26. Click the plus icon, and select Copy Operation. The Create Copy Operation dialog
is displayed.

27. Select the variables, as shown in Figure 10–82, and click OK.

Oracle MQ Series Adapter Use Cases

10-100 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–82 The Create Copy Operation Dialog

28. Click OK in the Assign dialog. The JDeveloper BPELAsyncreqrep.bpel page is
displayed, as shown in Figure 10–83.

Figure 10–83 The BPELAsyncreqrep.bpel Page

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-101

10.6.4.7 Deploying with JDeveloper
You must deploy the application profile for the SOA project and application you
created in the earlier steps.

For more information about deploying the application profile using JDeveloper, see
Section 2.7, "Deploying Oracle JCA Adapter Applications from JDeveloper".

You must also create an application server connection. For more information about
creating an application server connection, see Section 2.6, "Creating an Application
Server Connection for Oracle JCA Adapters".

10.6.4.8 Monitoring Using the Fusion Middleware Control Console
You can monitor the deployed SOA composite using the Fusion Middleware Control
Console. Perform the following steps:

1. Log in to http://servername:portnumber/em using your username/password. The
Oracle Enterprise Manager Fusion Middleware Control page is displayed.

2. In the left pane, navigate to SOA, soa-infra (soa_server1). A list of all the
composites that are deployed appears.

3. Click Async-Req-RepComposite[1.0]. The Async-Req-RepComposite[1.0] page is
displayed.

4. Put a message that has the content that conforms to the address-csv.xsd and also
contains the Reply Queue as the header in the test_in queue.

5. Wait for some time and then refresh the Fusion Middleware Control Console. An
instance appears on the console. This is the instance that was triggered because of
the processing that occurred.

6. Click the Instances tab.

7. Click the instance associated with this deployment. The Flow Trace page is
displayed.

8. Click the BPELAsyncreqrep component instance. The Audit Trail page is
displayed.

9. Click the Flow tab to debug the instance. The BPEL process instance flow is
displayed.

10. Click an activity to view the relevant payload details.

10.6.5 Outbound Dequeue
This use case is the end-to-end demonstration of how MQ Adapter dequeues a single
message at a time. This section contains the following topics:

■ Section 10.6.5.1, "Prerequisites"

■ Section 10.6.5.2, "Designing the SOA Composite"

■ Section 10.6.5.3, "Creating an Outbound Dequeue Adapter Service"

■ Section 10.6.5.4, "Wiring Services and Activities"

■ Section 10.6.5.5, "Deploying with JDeveloper"

■ Section 10.6.5.6, "Monitoring Using the Fusion Middleware Control Console"

Oracle MQ Series Adapter Use Cases

10-102 Oracle Fusion Middleware User's Guide for Technology Adapters

10.6.5.1 Prerequisites
To perform the outbound dequeue use case, you require the following files from the
Adapters-101MQAdapterDequeueEnqueue sample:

■ De-queueEn-queue/De-queueEn-queueComposite/xsd/singleString.xsd

You also require the following files from the artifacts.zip file contained in the
Adapters-101MQAdapterDequeueEnqueue sample:

■ artifacts/input/data.txt

You can onbtain the Adapters-101MQAdapterDequeueEnqueue sample by
accessing the Oracle SOA Sample Code site.

You must also create a queue named test_out.

10.6.5.2 Designing the SOA Composite
You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following:

1. In JDeveloper, click File and select New.

The New Gallery dialog is displayed.

2. Expand the General node, and select the Applications category.

3. In the Items list, select Generic Application and click OK. The Create Generic
Application Wizard is displayed.

4. In the Name Your Application screen, enter OutboundDequeue in the
Application Name field, and then click Next. The Name Your Project screen is
displayed.

5. In the Project Name field, enter OutboundDequeueComposite and from the
Available list, select SOA and click the right-arrow button.

6. Click Next. The Configure SOA Settings screen is displayed.

7. In the Composite Template list, select Composite With BPEL and then click
Finish. The Create BPEL Process dialog is displayed.

8. Enter BPELOutboundDequeue in the Name field, select Synchronous BPEL
Process in the Template box.

9. Click Browse at the end of the Input field. The Type Chooser dialog is displayed.

10. Select Project Schema Files, singleString.xsd, singleString, and then click OK.

11. Click Browse at the end of the Output field. The Type Chooser dialog is displayed.

12. Select Project Schema Files, singleString.xsd, singleString, and then click OK.

13. Click OK. The OutboundDequeue application and OutboundDequeueComposite
project appears in the design area, as shown in Figure 10–84.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-103

Figure 10–84 The JDeveloper - Composite.xml

10.6.5.3 Creating an Outbound Dequeue Adapter Service
Perform the following steps to create an adapter service that dequeues the message to
a queue:

1. Drag and drop MQ Adapter from the Component Palette into the External
References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter OutboundDequeueService in the Service Name field, and click OK. The
MQ Series Connection page is displayed.

4. Accept the default JNDI name for the MQ Series connection, and click Next. The
Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation Type page is displayed.

6. Select Get Message from MQ and Synchronous, and click Next. The Get Message
from MQ page is displayed.

7. Enter test_out in the Queue Name field and enter 10 in the Wait Interval field,
and then click Next. The Messages page is displayed.

8. Click Browse at the end of the URL field. The Type Chooser dialog is displayed.

9. Select Project Schema Files, singleString.xsd, and then singleString, and click
OK. The singleString.xsd file appears in the URL field in the Messages page.

10. Click Next. The Finish page is displayed.

Oracle MQ Series Adapter Use Cases

10-104 Oracle Fusion Middleware User's Guide for Technology Adapters

11. Click Finish. You have now configured the inbound adapter service, and the
composite.xml page is displayed, as shown in Figure 10–85.

Figure 10–85 The JDeveloper Page - Composite.xml Page

12. Click File, Save All.

10.6.5.4 Wiring Services and Activities
You have to assemble or wire the three components that you have created: Client,
BPEL process, and Outbound adapter reference. Perform the following steps to wire
the components:

1. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in OutboundDequeueService in the External
References area.

2. Double-click BPELOutboundDequeue. The BPELOutboundDequeue.bpel page is
displayed.

3. Drag and drop the Invoke and Assign activities in the order mentioned from the
Component Palette to the Components area in between the receiveInput and
replyOutput activities.

The composite.xml page is displayed, as shown in Figure 10–86.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-105

Figure 10–86 The JDeveloper - Composite.xml Page

The JDeveloper BPELOutboundDequeue.bpel page is displayed, as shown in
Figure 10–87.

Figure 10–87 The BPELOutboundDequeue.bpel Page

4. Drag and drop the Invoke activity to the OutboundDequeueService adapter
reference. The Invoke dialog is displayed.

Oracle MQ Series Adapter Use Cases

10-106 Oracle Fusion Middleware User's Guide for Technology Adapters

5. Click the Auto Create Variable icon that appears at the end of the Input Variable
field. The Create Variable dialog is displayed.

6. Accept the defaults, and click OK.

7. Repeat the same for the output variable and click OK.

8. Double-click the Assign activity. The Assign dialog is displayed.

9. Click the plus icon and select Copy Operation. The Create Copy Operation dialog
is displayed.

10. Select the variables, as shown in Figure 10–88, and then click OK.

Figure 10–88 Create Copy Operation Dialog

11. Click OK in the Assign dialog.

The BPELOutboundDequeue.bpel page appears, as shown in Figure 10–89.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-107

Figure 10–89 The BPELOutboundDequeue.bpel Page

10.6.5.5 Deploying with JDeveloper
You must deploy the application profile for the SOA project and application you
created in the earlier steps.

For more information about deploying the application profile using JDeveloper, see
Section 2.7, "Deploying Oracle JCA Adapter Applications from JDeveloper".

You must also create an application server connection. For more information about
creating an application server connection, see Section 2.6, "Creating an Application
Server Connection for Oracle JCA Adapters".

10.6.5.6 Monitoring Using the Fusion Middleware Control Console
You can monitor the deployed SOA composite using the Fusion Middleware Control
Console. Perform the following steps:

1. Log in to http://servername:portnumber/em using your username/password.

2. In the left pane, navigate to SOA, soa-infra (soa_server1). A list of all the
composites that are deployed appears.

3. Click OutboundDequeueComposite[1.0]. The OutboundDequeueComposite[1.0]
page is displayed.

4. Click the Test button. The Test Web Service page is displayed.

5. Click the Request tab, and scroll to the Input Arguments pane.

6. Enter Test Outbound Dequeue in the Input field, and then click the Test Web
Service button.

7. Wait for some time and then click the Response tab. The message in the
singleString xsd that you provided appears in the Response tab.

Oracle MQ Series Adapter Use Cases

10-108 Oracle Fusion Middleware User's Guide for Technology Adapters

8. Click the Instances tab.

9. Click the instance associated with this deployment. The Flow Trace page is
displayed.

10. Click the BPELOutboundDequeue component instance. The Audit Trail page is
displayed, as shown in Figure 10–90.

Figure 10–90 Audit Trail Page

11. Click the Flow tab to debug the instance. The BPEL process instance flow is
displayed.

12. Click an activity to view the relevant payload details.

10.6.6 Configuring a Backout Queue
This use case demonstrates how a backout queue must be configured for Oracle MQ
Series Adapter. Oracle MQ Series Adapter dequeues a message and enqueues the
same message after transformation from the MQ Series queue. During this process, a
failure can occur either during an invoke activity or when a response is being sent. You
must configure a Backout Queue to send the rejected messages to a Backout Queue
instead of the default rejected messages folder. This section contains the following
topics:

■ Section 10.6.6.1, "Prerequisites"

■ Section 10.6.6.2, "Designing the SOA Composite"

■ Section 10.6.6.3, "Creating an Inbound Adapter Service"

■ Section 10.6.6.4, "Creating an Outbound Adapter Service"

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-109

■ Section 10.6.6.5, "Wiring Services and Activities"

■ Section 10.6.6.6, "Deploying with JDeveloper"

■ Section 10.6.6.7, "Monitoring Using the Fusion Middleware Control Console"

10.6.6.1 Prerequisites
To perform the use case for configuring a backout queue, you must ensure that the
adapter JNDI is configured for XA. Also, you require the singleString.xsd file,
which you can create using the following code:

<schema attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/singleString"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="singleString">
 <complexType>
 <sequence>
 <element name="input" type="string"/>
 </sequence>
 </complexType>
 </element>
</schema>

10.6.6.2 Designing the SOA Composite
You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following:

1. In JDeveloper, click File and select New.

The New Gallery dialog is displayed.

2. Expand the General node, and select the Applications category.

3. In the Items list, select Generic Application and click OK. The Create Generic
Application Wizard is displayed.

4. In the Name Your Application screen, enter MQ_BackoutQ_Retry in the
Application Name field, and then click Next. The Name Your Project screen is
displayed.

5. In the Project Name field, enter SOA_BackoutQ_Retry and from the Available
list, select SOA and click the right-arrow button.

6. Click Next. The Configure SOA Settings screen is displayed.

7. In the Composite Template list, select Composite With BPEL, and then click
Finish. The Create BPEL Process dialog is displayed.

8. Enter BPELProcess_BackoutQ_Retry in the Name field, and select Define
Service Later from the Template box.

9. Click OK. The MQ_BackoutQ_Retry application and the SOA_BackoutQ_Retry
project appears in the design area.

10.6.6.3 Creating an Inbound Adapter Service
Perform the following steps to create an adapter service that dequeues the message
and put the message to a queue:

Oracle MQ Series Adapter Use Cases

10-110 Oracle Fusion Middleware User's Guide for Technology Adapters

1. Drag and drop MQ Adapter from the Component Palette into the Exposed
Services swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter InboundService in the Service Name field, and click Next. The MQ Series
Connection page is displayed.

4. Accept the default JNDI name for the MQ Series connection, and click Next. The
Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation Type page is displayed.

6. Select Get Message from MQ and Send Reply/Reports (Synchronous), and click
Next. The Get Message from MQ and Send Rep page is displayed.

7. Enter INBOUND_QUEUE in the Queue Name field, and click Next. The Response
page is displayed.

8. Accept the defaults, and click Next. The Messages page is displayed.

9. Click Browse at the end of the URL fields. The Type Chooser dialog is displayed.

10. Select Project Schema Files, singleString.xsd, and then singleString.

11. Click OK. The singleString.xsd file appears in the URL fields in the Messages
page.

12. Click Next. The Finish page is displayed.

13. Click Finish. You have now configured the inbound adapter service, and the
composite.xml page is displayed with an inbound adapter added.

14. Add the Backout Queue properties to the corresponding JCA file (ReqReply_
mq.jca), as shown in the following sample:

<property name="BackoutQueueName" value="BACKOUT.QUEUE"/>
<property name="MaximumBackoutCount" value="5"/>
<property name="BackoutRetries" value="3"/>

10.6.6.4 Creating an Outbound Adapter Service
Perform the following steps to create an adapter service that enqueues the messages.

1. Drag and drop MQ Adapter from the Component Palette into the External
References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter EQ in the Service Name field, and click Next. The MQ Series Connection
page is displayed.

4. Accept the default JNDI name for the MQ Series connection, and click Next. The
Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation Type page is displayed.

6. Select Put Message into MQ, and click Next. The Put Message into MQ page is
displayed.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-111

7. Enter a test_out in the Queue Name field, and click Next. The Advanced
Options page is displayed.

8. Accept the defaults and click Next. The Messages page is displayed.

9. Click Browse at the end of the URL field. The Type Chooser dialog is displayed.

10. Select Project Schema Files, singleString.xsd, and then singleString, and click
OK. The singleString.xsd file appears in the URL field in the Messages page.

11. Click Next. The Finish page is displayed.

12. Click Finish. You have now configured the outbound adapter service, and the
composite.xml page is displayed, as shown in Figure 10–91.

Figure 10–91 The JDeveloper Page - Composite.xml Page

10.6.6.5 Wiring Services and Activities
You have to assemble or wire the three components that you have created: Inbound
adapter service, BPEL process, and Outbound adapter reference. Perform the
following steps to wire the components:

1. Drag the small triangle in the InboundService in the Exposed Services area to the
drop zone that appears as a green triangle in the BPEL process in the Components
area.

2. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in OutboundService in the External
References area.

The JDeveloper Composite.xml appears, as shown in Figure 10–92.

Oracle MQ Series Adapter Use Cases

10-112 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–92 The JDeveloper - Composite.xml

3. Click File, Save All.

4. Double-click BPELProcess_BackoutQ_Retry. The BPELProcess_backoutQ_
Retry.bpel page is displayed.

5. Drag and drop the Receive, Assign, Invoke, and Reply activities in the order
mentioned from the Component Palette to the Components area.

6. Drag and drop the Receive activity to ReqReply. The Receive dialog is displayed.

7. Click the Auto Create Variable icon that appears at the end of the Variable field.
The Create Variable dialog is displayed.

8. Accept the defaults, and click OK.

9. Check the Create Instance box, and click OK.

10. Drag and drop the Reply activity to ReqReply. The Reply dialog is displayed.

11. Enter ReplyOutput in the Name field.

12. Click the Browse Variables icon that appears at the end of the Variable field. The
Variable Chooser dialog is displayed.

13. Select replyOutput_DequeueEnqueue_OutputVariable, and click OK. The
variable appears in the Reply dialog.

14. Click OK.

15. Drag and drop the Invoke activity to EQ. The Invoke dialog is displayed.

16. Click the Automatically Create Input Variable icon that appears at the end of the
Input Variable field.

17. Accept the defaults, and click OK. The Invoke dialog is displayed.

18. Click OK.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-113

19. Double-click the Assign activity. The Assign dialog is displayed.

20. Click the plus icon, and select Copy Operation. The Create Copy Operation dialog
is displayed.

21. In the Create Copy Operation dialog, select receiveInput_DequeueEnqueue_
InputVariable as the From Type and select the variable in the To pane to which
the copy operation is being created.

The following is a code snippet from the BPELProcess_BackoutQ_Retry.bpel file,
with the copy operation defined:

<assign name="Assign_1">
 <copy>
 <from variable="receiveInput_DequeueEnqueue_InputVariable"
 part="singleString" query="/ns3:singleString/ns3:input"/>
 <to variable="Invoke_1_Enqueue_InputVariable" part="body"
 query="/ns3:singleString/ns3:input"/>
 </copy>
 <copy>
 <from variable="receiveInput_DequeueEnqueue_InputVariable"
 part="singleString" query="/ns3:singleString/ns3:input"/>
 <to variable="replyOutput_DequeueEnqueue_OutputVariable"
 part="singleString" query="/ns3:singleString/ns3:input"/>
 </copy>
 </assign>

22. Click OK. The BPELdequeueenqueue.bpel page appears, as shown in
Figure 10–93.

Oracle MQ Series Adapter Use Cases

10-114 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–93 The BPELProcess_BackoutQ_Retry.bpel Page

10.6.6.6 Deploying with JDeveloper
You must deploy the application profile for the SOA project and application you
created in the earlier steps.

For more information about deploying the application profile using JDeveloper, see
Section 2.7, "Deploying Oracle JCA Adapter Applications from JDeveloper".

You must also create an application server connection. For more information about
creating an application server connection, see Section 2.6, "Creating an Application
Server Connection for Oracle JCA Adapters".

10.6.6.7 Monitoring Using the Fusion Middleware Control Console
You can monitor the deployed SOA composite using the Fusion Middleware Control
Console. Perform the following steps:

1. Navigate to http://servername:portnumber/em. The composite you
deployed appears in the application navigator.

2. Disable (Put Inhibit) the test_out queue or the reply queue that is provided with
the Inbound message and then put a message to the INBOUND_QUEUE.

3. Wait for some time and then refresh the Fusion Middleware Control Console.
Instances that are triggered because of the processing appear on the console.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-115

4. Click the Instances tab.

5. Click an instance associated with this deployment. The Flow Trace page is
displayed.

6. Click the BPELProcess_BackoutQ_Retry component instance. The Audit Trail
page is displayed.

7. Click the Flow tab to debug the instance. The BPEL process instance flow is
displayed.

8. Click an activity to view the relevant payload details.

10.6.7 CCDT Use Cases
You can configure the MQ Series Adapter to use CCDT for connection details; you can
use the CCDT to connect to the first available queue manager from a list of queue
managers.

For example, in this use case, there are three queue managers QM1, QM2 and QM3
with the basic properties as indicated in the table bekow.

The MQ adapter can, dynamically at runtime, connect to any of the three queue
managers, depending on the one that is available (that is, if QM1 is down, the MQ
adapter automatically connects to QM2; and if QM2 is also down, then the MQ
Adapter must connect to QM3).

10.6.7.1 Example Queue Manager Properties and CCDT Configuration
Example queue manager properties are provided in the table below.

To achieve this, the CCDT needs to configured as follows :

10.6.7.2 Configuringa ConnectionFactoryJNDI
Once you have created a CCDT, a single ConnectionFactory JNDI needs to be
configured to use this CCDT. The following ConnectionFactory properties need to
configured in that JNDI:

■ CCDTurl

Note: The number of instances that are triggered must be equal to
BackoutRetries + 1.

Queue Manager
Name QM1 QM2 QM3

Hostname localhost localhost 10.177.255.25

PortName 1414 2414 1414

Server Connection
Channel Name

channel.QM1 channel.QM2 channel.QM3

Channel name Queue manager name Connection name

channel.QM1 MyQM_group localhost(1414)

channel.QM2 MyQM_group localhost(2414)

channel.QM3 MyQM_group 10.177.255.25(1414)

Oracle MQ Series Adapter Use Cases

10-116 Oracle Fusion Middleware User's Guide for Technology Adapters

■ QueueManagerName

10.6.7.3 Configuring the CCDTurl
The CCDTurl must point to the URL of the CCDT file that is used by the MQ Series
Adapter to supply client connection details. For example, the values provided can be
either of:

■ file:/scratch/username/ccdt/AMQCLCHL.TAB

■ ftp://userName:password@myServer/definitionPath/AMQCLCHL.TAB

10.6.7.4 Configuring the QueueManagerName
In the use case above, the value of the QueueManagerName property must be set to
MyQM_group.

This name indicates that MQ Series Adapter should connect to the first available
queue manager which has a client definition entry in the CCDT having Queue
manager name as MyQM_group.

The property QueueManagerName is matched against the queue manager name
defined in the CCDT and not the actual queue manager name. In general, the
QueueManagerName should be provided appropriate values, using the considerations
listed below:

■ If you only specify a queue manager name, for example QM_default, the CCDT
will be searched in alphabetical order for a client channel that contains in its
definition a QueueManager name that matches exactly (and is case sensitive) to
the one specified

■ If an asterisk is included at the beginning of the specified queue manager name,
for example QM_default, then the CCDTis searched in alphabetical order of
channel name, for an entry that matches the queue manager name with or without
the asterisk. If two or more client channel definitions have the queue manager
names defined as QM_default, then the first available queue manager is connected
to.

■ If the queue manager name is not specified in the CCDT, then the Queue Manager
name in the JNDI should be a "*".

These two properties are the only required configuration for informing the MQ Series
Adapter to use CCDT for connection details. The use of CCDT does not affect the
configuration required for other MQ adapter features such as support for SSL, Exits or
XA

If other ConnectionFactory properties such as Hostname, PortNumber, ChannelName
are configured and the CCDT is also configured, the CCDT will take precedence over
the those properties.

Once these ConnectionFactory properties are set, and this JNDI is used in any
composite process, the MQ Adapter connects to the first available queue manager
from QM1, QM2 and QM3.

10.6.8 Reading Single or Multiple RFH2 Rules and Formatting Header Version 2
Headers

You can dequeue and read MQ messages that contain single or multiple RFH2
headers, in addition to enqueueing messages with multiple RFH2 headers. Ths feature
includes the following functionality:

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-117

■ Reading and writing the properties from the fixed portion of the RFH2 headers.

■ Reading and writing multiple occurrences of any individual folder within any
RFH2 header.

■ Reading and writing multiple RFH2 header occurrences in a single message.

The RFH2 header enables the message producer to add more header properties to the
payload and to provide other additional information.

By providing the MQ adapter the ability to read and write this information as header
properties, you can perform specific processing of the message payload depending on
the RFH2 header properties.

The following use cases provide examples of two types of scenarios.

■ Inbound and Outbound with Multiple RFH2 Headers on Both Sides

■ Outbound Dequeue with Multiple RFH2 Headers

10.6.8.1 Inbound and Outbound with Multiple RFH2 Headers on Both Sides
This sample demonstrates the use of the MQ Adapter for processing MQ messages
containing one or more RFH2 headers.

An MQ message containing two RFH2 headers is dequeued from a queue and a new
message with the same payload, but with updated RFH2 headers is enqueued to
another queue.

 The steps for creating this use case sample include:

■ Section 10.6.8.1.1, "Designing the SOA Composite"

■ Section 10.6.8.1.2, "Creating an Inbound Adapter Service"

■ Section 10.6.8.1.3, "Creating an Outbound Adapter Service"

■ Section 10.6.8.1.4, "Wiring Services and Activities"

■ Section 10.6.8.1.5, "Deploying with JDeveloper"

10.6.8.1.1 Designing the SOA Composite

You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following:

1. In JDeveloper, click File and select New.

The New Gallery dialog is displayed.

2. Expand the General node, and select the Applications category.

3. In the Items list, select Generic Application and click OK. The Create Generic
Application Wizard is displayed.

4. In the Name Your Application screen, enter DequeueEnqueueRFH2 in the
Application Name field, and then click Next. The Name Your Project screen is
displayed.

5. In the Project Name field, enter DequeueEnqueueRFH2 and from the Available
list, select SOA and click the right-arrow button.

6. Click Next. The Configure SOA Settings screen is displayed.

7. In the Composite Template list, select Composite With BPEL, and then click
Finish. The Create BPEL Process dialog is displayed.

Oracle MQ Series Adapter Use Cases

10-118 Oracle Fusion Middleware User's Guide for Technology Adapters

8. Enter DequeueEnqueueRFH2 in the Name field, and select Define Service Later
from the Template box.

9. Click OK. The DequeueEnqueueRFH2 application and the
DequeueEnqueueRFH2 project appears in the design area.

10.6.8.1.2 Creating an Inbound Adapter Service

Perform the following steps to create an adapter service that dequeues the message
and put the message to a queue:

1. Drag and drop MQ Adapter from the Component Palette into the Exposed
Services swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter InboundMQ in the Service Name field, and click Next. The MQ Series
Connection page is displayed.

4. Accept the default JNDI name for the MQ Series connection, and click Next. The
Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation Type page is displayed.

6. Select Get Message from MQ (do not check Synchronous), and click Next. The
Get Message from MQ page is displayed.

7. Enter queue1 in the Queue Name field, select Choose Other Schema, click Next.
The Messages page is displayed.

8. Select Native Format is not required (Schema is opaque), and click Next. The
Finish page is displayed.

9. Click Finish. You have now configured the inbound adapter service, and the
composite.xml page is displayed with an inbound adapter added.

10.6.8.1.3 Creating an Outbound Adapter Service

1. Drag and drop MQ Adapter from the Component Palette into the External
References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter OutboundMQ in the Service Name field, and click Next. The MQ Series
Connection page is displayed.

4. Accept the default JNDI name for the MQ Series connection, and click Next. The
Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation Type page is displayed.

6. Select Put Message into MQ. Click Next. The Put Message into MQ page is
displayed.

7. Enter queue2 in the Queue Name field. Click Next. The Advanced Options page
is displayed.

8. Accept the defaults and click Next. The Messages page is displayed.

9. Select Native Format Translation is Not Required (Schema is
Opaque) and click Next. The Finish page is displayed.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-119

10. Click Finish. You have now configured the outbound adapter service, and the
composite.xml page is displayed, as shown in Figure 10–91.

Figure 10–94 The JDeveloper Page - Composite.xml Page

10.6.8.1.4 Wiring Services and Activities

You have to assemble or wire the three components that you have created: Inbound
adapter service, BPEL process, and Outbound adapter reference. Perform the
following steps to wire the components:

1. Drag the small triangle in the InboundMQ in the ExposedServices area to the drop
zone that appears as a green triangle in DequeueEnqueueRFH2 in the
Components area.

2. Drag the small triangle in DequeuEnqueueRFH2 in the Components area to the
drop zone that appears as a green triangle in OutboundMQ in the External
Refereences area.

The composite.xml page is displayed, as shown in Figure 10–86.

Oracle MQ Series Adapter Use Cases

10-120 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–95 The JDeveloper - Composite.xml Page

3. Click File, Save All.

4. Double-click DequeueEnqueueRFH2. The DequeueEnqueueRFH2.bpel page is
displayed.

5. Drag and drop the Receive, Assign and Invoke activities in the order mentioned
from the Component Palette to the Components area.
The JDeveloper DequeueEnqueueRFH2.bpel page is displayed.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-121

Figure 10–96 The DequeueEnqueueRFH2.bpel Page"

6. Drag and drop the Receive activity to the Inbound Service. The Receive dialog is
displayed.

7. Click the AutoCreate Variable icon that appears at the end of the Variable field.
The Create Variable dialog is displayed.

8. Accept the defaults, and click OK.

9. Click the Create Instance box, and click OK.

10. Drag and drop the Invoke activity to the Outbound Service. The Invoke dialog is
displayed.

11. Click the Automatically Create Input Input Variable icon that appears at the end
of the Input Variable field.

12. Accept the defaults, and click OK. The Invoke dialog is displayed.

13. Click OK.

14. Double-click the Assign activity. The Assign dialog is displayed.

15. Select the variables, and click the Plus icon.

Oracle MQ Series Adapter Use Cases

10-122 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–97 The Assign Activity Dialog

16. Click OK in the Assign dialog. The JDeveloper
DequeueEnqueueRFH2.bpel.html is displayed.

Figure 10–98 The DequeueEnqueueRFH2.bpel page

17. Create temporary variables to store the RFH2 header portions.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-123

1. Open the Source tab of the DequeueEnqueueRFH2.bpel page.

2. Under the <variables> tab add the following new variables:

 <variable name="RFH2.StructId" type="xsd:string"/>
 <variable name="RFH2.Version" type="xsd:string"/>
 <variable name="RFH2.Encoding" type="xsd:string"/>
 <variable name="RFH2.CodedCharSetId" type="xsd:string"/>
 <variable name="RFH2.Format" type="xsd:string"/>
 <variable name="RFH2.Flags" type="xsd:string"/>
 <variable name="RFH2.NameValueCCSID" type="xsd:string"/>
 <variable name="RFH2.JMSFolder" type="xsd:string"/>
 <variable name="RFH2.MCDFolder" type="xsd:string"/>
 <variable name="RFH2.USRFolder" type="xsd:string"/>
 <variable name="RFH2.USRFolder_2" type="xsd:string"/>
 <variable name="RFH2.PSCFolder" type="xsd:string"/>
 <variable name="RFH2extrafolder" type="xsd:string"/>
 <variable name="RFH2_2.StructId" type="xsd:string"/>
 <variable name="RFH2_2.Version" type="xsd:string"/>
 <variable name="RFH2_2.Encoding" type="xsd:string"/>
 <variable name="RFH2_2.CodedCharSetId" type="xsd:string"/>
 <variable name="RFH2_2.Format" type="xsd:string"/>
 <variable name="RFH2_2.Flags" type="xsd:string"/>
 <variable name="RFH2_2.NameValueCCSID" type="xsd:string"/>
 <variable name="RFH2_2.JMSFolder" type="xsd:string"/>
 <variable name="RFH2_2.JMSFolder_2" type="xsd:string"/>
 <variable name="RFH2_2.MCDFolder" type="xsd:string"/>
 <variable name="RFH2_2.USRFolder" type="xsd:string"/>
 <variable name="RFH2_2.USRFolder_2" type="xsd:string"/>
 <variable name="RFH2_2.PSCFolder" type="xsd:string"/>
 <variable name="TotalRFH2" type="xsd:string"/>

18. Configure the Receive Activity to receive RFH2 header properties in the
temporary variables created above.

1. Open the Source tab of the DequeueEnqueueRFH2.bpel page.

2. Under the <receive> tag add the following entries.

<bpelx:property name="jca.mq.RFH2.StructId" variable="RFH2.StructId"/>
 <bpelx:property name="jca.mq.RFH2.Version" variable="RFH2.Version"/>
 <bpelx:property name="jca.mq.RFH2.Encoding" variable="RFH2.Encoding"/>
 <bpelx:property name="jca.mq.RFH2.CodedCharSetId"
variable="RFH2.CodedCharSetId"/>
 <bpelx:property name="jca.mq.RFH2.Format" variable="RFH2.Format"/>
 <bpelx:property name="jca.mq.RFH2.Flags" variable="RFH2.Flags"/>
 <bpelx:property name="jca.mq.RFH2.NameValueCCSID"
variable="RFH2.NameValueCCSID"/>
 <bpelx:property name="jca.mq.RFH2.JMSFolder" variable="RFH2.JMSFolder"/>
 <bpelx:property name="jca.mq.RFH2.MCDFolder" variable="RFH2.MCDFolder"/>
 <bpelx:property name="jca.mq.RFH2.USRFolder" variable="RFH2.USRFolder"/>
 <bpelx:property name="jca.mq.RFH2.USRFolder_2" variable="RFH2.USRFolder_
2"/>
 <bpelx:property name="jca.mq.RFH2.PSCFolder" variable="RFH2.PSCFolder"/>
 <bpelx:property name="jca.mq.RFH2.mq_usr" variable="RFH2extrafolder"/>
 <bpelx:property name="jca.mq.RFH2_2.StructId" variable="RFH2_
2.StructId"/>
 <bpelx:property name="jca.mq.RFH2_2.Version" variable="RFH2_2.Version"/>
 <bpelx:property name="jca.mq.RFH2_2.Encoding" variable="RFH2_
2.Encoding"/>
 <bpelx:property name="jca.mq.RFH2_2.CodedCharSetId" variable="RFH2_
2.CodedCharSetId"/>

Oracle MQ Series Adapter Use Cases

10-124 Oracle Fusion Middleware User's Guide for Technology Adapters

 <bpelx:property name="jca.mq.RFH2_2.Format" variable="RFH2_2.Format"/>
 <bpelx:property name="jca.mq.RFH2_2.Flags" variable="RFH2_2.Flags"/>
 <bpelx:property name="jca.mq.RFH2_2.NameValueCCSID" variable="RFH2_
2.NameValueCCSID"/>
 <bpelx:property name="jca.mq.RFH2_2.JMSFolder" variable="RFH2_
2.JMSFolder"/>
 <bpelx:property name="jca.mq.RFH2_2.JMSFolder_2" variable="RFH2_
2.JMSFolder_2"/>
 <bpelx:property name="jca.mq.RFH2_2.MCDFolder" variable="RFH2_
2.MCDFolder"/>
 <bpelx:property name="jca.mq.RFH2_2.USRFolder" variable="RFH2_
2.USRFolder"/>
 <bpelx:property name="jca.mq.RFH2_2.PSCFolder" variable="RFH2_
2.PSCFolder"/>
 <bpelx:property name="jca.mq.RFH2_2.USRFolder_2" variable="RFH2_
2.USRFolder_2"/>
 <bpelx:property name="jca.mq.RFH2.Total.Headers" variable="TotalRFH2"/>

19. Configure the Invoke activity to push modified RFH2 header properties to the
outbound message.

1. Open the Source tab of the DequeueEnqueueRFH2.bpel page

2. Under the <invoke> tag add the following entries

<bpelx:inputProperty name="jca.mq.MQMD.Format" expression="'RF_HDR_2'"/>
 <bpelx:inputProperty name="jca.mq.RFH2.StructId"
variable="RFH2.StructId"/>
 <bpelx:inputProperty name="jca.mq.RFH2.Version"
variable="RFH2.Version"/>
 <bpelx:inputProperty name="jca.mq.RFH2.CodedCharSetId"
variable="RFH2.CodedCharSetId"/>
 <bpelx:inputProperty name="jca.mq.RFH2.Encoding"
variable="RFH2.Encoding"/>
 <bpelx:inputProperty name="jca.mq.RFH2.Flags" variable="RFH2.Flags"/>
 <bpelx:inputProperty name="jca.mq.RFH2.Format" expression="'MQHRF2
'"/>
 <bpelx:inputProperty name="jca.mq.RFH2.NameValueCCSID"
variable="RFH2.NameValueCCSID"/>
 <bpelx:inputProperty name="jca.mq.RFH2.JMSFolder"
variable="RFH2.JMSFolder"/>
 <bpelx:inputProperty name="jca.mq.RFH2.MCDFolder"
variable="RFH2.MCDFolder"/>
 <bpelx:inputProperty name="jca.mq.RFH2.USRFolder"
variable="RFH2.USRFolder"/>
 <bpelx:inputProperty name="jca.mq.RFH2.mq_usr"
variable="RFH2extrafolder"/>
 <bpelx:inputProperty name="jca.mq.RFH2_2.StructId" expression="'RFH
'"/>
 <bpelx:inputProperty name="jca.mq.RFH2_2.Version" expression="'2'"/>
 <bpelx:inputProperty name="jca.mq.RFH2_2.CodedCharSetId"
expression="'819'"/>
 <bpelx:inputProperty name="jca.mq.RFH2_2.Encoding"
expression="'273'"/>
 <bpelx:inputProperty name="jca.mq.RFH2_2.Flags" expression="'0'"/>
 <bpelx:inputProperty name="jca.mq.RFH2_2.Format" expression="'MQSTR
'"/>
 <bpelx:inputProperty name="jca.mq.RFH2_2.NameValueCCSID"
expression="'1208'"/>
 <bpelx:inputProperty name="jca.mq.RFH2_2.JMSFolder"
expression="'<jms><Dst>MYTOPIC</Dst><Exp>2000</Exp><Pri>4

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-125

</Pri><Cid>22344</Cid><Rto>REPLY.QUEUE</Rto><Gid>3334<
/Gid><Seq>2</Seq><Dlv>1</Dlv><xxx>UserSpace</xxx></jms
>'"/>
 <bpelx:inputProperty name="jca.mq.RFH2_2.JMSFolder_2" variable="RFH2_
2.JMSFolder_2"/>
 <bpelx:inputProperty name="jca.mq.RFH2_2.MCDFolder"
expression="'<mcd><Msd>jms_object</Msd></mcd>'"/>
 <bpelx:inputProperty name="jca.mq.RFH2_2.USRFolder" variable="RFH2_
2.USRFolder"/>
 <bpelx:inputProperty name="jca.mq.RFH2_2.USRFolder_2" variable="RFH2_
2.USRFolder_2"/>

20. Click File, Save All.

10.6.8.1.5 Deploying with JDeveloper

You must deploy the application profile for the SOA project and application you
created in the earlier steps.

For more information about deploying the application profile using JDeveloper, see
Section 2.7, "Deploying Oracle JCA Adapter Applications from JDeveloper".

You must also create an application server connection. For more information about
creating an application server connection, see Section 2.6, "Creating an Application
Server Connection for Oracle JCA Adapters".

You must place the MQ message with the correct RFH2 headers in the inbound queue.

The sample is configured to obtain two RFH2 headers from the inbound message (this
can be changed by configuring the BPEL process as required). The test input MQ
message should have the following:

■ Payload: Any message (any format will be acceptable becaise we are using
Opaque)

■ RFH2 header 1: Should contain 2 USR folders, 1 JMS folder, 1 PSC folder, 1 MCD
folder and 1 mq_usr folder.

■ RFH2 header 2: Should contain 2 USR folders, 2 JMS folders, 1 PSC folder and 1
MCD folder.

Deploy the sample and put the above message to the inbound queue. Check the
outbound queue for a new message having modified RFH2 headers (as configured in
the BPEL invoke activity)

10.6.8.2 Outbound Dequeue with Multiple RFH2 Headers
This sample demonstrates the use of the MQ Adapter for obtaining MQ messages
containing one or more RFH2 headers in an outbound dequeue scenario.

In this sample, an MQ message containing two RFH2 headers is dequeued from a
queue in the outbound queue scenario.

 The steps for creating this use case sample include:

■ Section 10.6.8.2.1, "Designing the SOA Composite"

■ Section 10.6.8.2.2, "Creating an Outbound Dequeue Adapter Service"

■ Section 10.6.8.2.3, "Wiring Services and Activities"

■ Section 10.6.8.2.4, "Deploying with JDeveloper"

10.6.8.2.1 Designing the SOA Composite

Oracle MQ Series Adapter Use Cases

10-126 Oracle Fusion Middleware User's Guide for Technology Adapters

You must create a JDeveloper application to contain the SOA composite. To create an
application and a project for the use case, perform the following:

1. In JDeveloper, click File and select New.

The New Gallery dialog is displayed.

2. Expand the General node, and select the Applications category.

3. In the Items list, select Generic Application and click OK. The Create Generic
Application Wizard is displayed.

4. In the Name Your Application screen, enter OutboundDequeueRFH2 in the
Application Name field, and then click Next. The Name Your Project screen is
displayed.

5. In the Project Name field, enter OutboundDequeueRFH2 and from the Available
list, select SOA and click the right-arrow button.

6. Click Next. The Configure SOA Settings screen is displayed.

7. In the Composite Template list, select Composite With BPEL and then click
Finish. The Create BPEL Process dialog is displayed.

8. Enter OutboundDequeueRFH2 in the Name field, select Synchronous BPEL
Process in the Template box.

9. Click Browse at the end of the Input field. The Type Chooser dialog is displayed.

10. Select Project Schema Files, singleString.xsd, singleString, and then click OK.

11. Click Browse at the end of the Output field. The Type Chooser dialog is displayed.

12. Select Project Schema Files, singleString.xsd, singleString, and then click OK.

13. Click OK. The OutboundDequeueRFH2 application and OutboundDequeueRFH2
Composite project appear in the design area.

10.6.8.2.2 Creating an Outbound Dequeue Adapter Service

Perform the following steps to create an adapter service that dequeues the message to
a queue:

1. Drag and drop MQ Adapter from the Component Palette into the External
References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed.

3. Enter OutboundDQ in the Service Name field, and click OK. The MQ Series
Connection page is displayed.

4. Accept the default JNDI name for the MQ Series connection, and click Next. The
Adapter Interface page is displayed.

5. Select Define from operation and schema (specified later), and click Next. The
Operation Type page is displayed.

6. Select Get Message from MQ and Synchronous, and click Next. The Get Message
from MQ page is displayed.

7. Enter queue1 in the Queue Name field and enter 10 seconds in the Wait
Interval field, and then click Next. The Messages page is displayed.

8. Select Native Form at Translation is not required (Schema is Opaque) and click
OK.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-127

9. Click Next. The Finish page is displayed.

10. Click Finish. You have now configured the inbound adapter service, and the
composite.xml page is displayed, as shown in Figure 10–99.

Figure 10–99 The JDeveloper-composite.xml

11. Click File, Save All.

10.6.8.2.3 Wiring Services and Activities

You must assemble or wire the three components that you have created: Client, BPEL
process, and OutboundDQ adapter reference.

Perform the following steps to wire the components:

1. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in the OutboundDequeueService in the
External References area.

2. Double-click the OutboundDequeueRFH2 bpel process. The
OutboundDequeueRFH2.bpel page is displayed.

The JDeveloper Composite.xml appears, as shown in Figure 10–92.

Oracle MQ Series Adapter Use Cases

10-128 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 10–100 The JDeveloper - Composite.xml

3. Click File, Save All.

4. Double-click OutboundDequeueRFH2.bpel. The OutboundDequeueRFH2.bpel
page is displayed.

5. Drag and drop the Invoke and Assign activities in the order mentioned from the
Component Palette to the Components area in between the receiveInput and
replyOutput activities.

6. Drag and drop the Invoke activity to the OutboundDQ adapter reference. The
Invoke dialog is displayed.

7. Click the Auto Create Variable icon that appears at the end of the Variable field.
The Create Variable dialog is displayed.

8. Accept the defaults, and click OK.

9. Repeat the same for the output variable and click OK.

10. Double-click the Assign activity. The Assign dialog is displayed.

11. Select the variables, and click the Plus icon.

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-129

Figure 10–101 The Assign Activity Dialog

12. .Click OK in the Assign dialog. The JDeveloper BPELOutboundDequeue.bpel
page is displayed.

Figure 10–102 The JDeveloper BPELOutboundDequeue.bpel page

Oracle MQ Series Adapter Use Cases

10-130 Oracle Fusion Middleware User's Guide for Technology Adapters

13. Create temporary variables to store the RFH2 header portions.

1. Open the Source tab of the DequeueEnqueueRFH2.bpel page.

2. Under the <variables> tab add the following new variables.

 <variable name="RFH2.StructId" type="xsd:string"/>
 <variable name="RFH2.Version" type="xsd:string"/>
 <variable name="RFH2.Encoding" type="xsd:string"/>
 <variable name="RFH2.CodedCharSetId" type="xsd:string"/>
 <variable name="RFH2.Format" type="xsd:string"/>
 <variable name="RFH2.Flags" type="xsd:string"/>
 <variable name="RFH2.NameValueCCSID" type="xsd:string"/>
 <variable name="RFH2.JMSFolder" type="xsd:string"/>
 <variable name="RFH2.MCDFolder" type="xsd:string"/>
 <variable name="RFH2.USRFolder" type="xsd:string"/>
 <variable name="RFH2.USRFolder_2" type="xsd:string"/>
 <variable name="RFH2.PSCFolder" type="xsd:string"/>
 <variable name="RFH2extrafolder" type="xsd:string"/>
 <variable name="RFH2_2.StructId" type="xsd:string"/>
 <variable name="RFH2_2.Version" type="xsd:string"/>
 <variable name="RFH2_2.Encoding" type="xsd:string"/>
 <variable name="RFH2_2.CodedCharSetId" type="xsd:string"/>
 <variable name="RFH2_2.Format" type="xsd:string"/>
 <variable name="RFH2_2.Flags" type="xsd:string"/>
 <variable name="RFH2_2.NameValueCCSID" type="xsd:string"/>
 <variable name="RFH2_2.JMSFolder" type="xsd:string"/>
 <variable name="RFH2_2.JMSFolder_2" type="xsd:string"/>
 <variable name="RFH2_2.MCDFolder" type="xsd:string"/>
 <variable name="RFH2_2.USRFolder" type="xsd:string"/>
 <variable name="RFH2_2.USRFolder_2" type="xsd:string"/>
 <variable name="RFH2_2.PSCFolder" type="xsd:string"/>
 <variable name="TotalRFH2" type="xsd:string"/>

14. Configure the Invoke Activity to receive the RFH2 header properties from the
outbound dequeue message.

1. Open the Source tab of the DequeueEnqueueRFH2.bpel page.

2. Under the <invoke> tag add the following entries.

<bpelx:outputProperty name="jca.mq.RFH2.StructId"
variable="RFH2.StructId"/>
 <bpelx:outputProperty name="jca.mq.RFH2.Version"
variable="RFH2.Version"/>
 <bpelx:outputProperty name="jca.mq.RFH2.Encoding"
variable="RFH2.Encoding"/>
 <bpelx:outputProperty name="jca.mq.RFH2.CodedCharSetId"
variable="RFH2.CodedCharSetId"/>
 <bpelx:outputProperty name="jca.mq.RFH2.Format"
variable="RFH2.Format"/>
 <bpelx:outputProperty name="jca.mq.RFH2.Flags"
variable="RFH2.Flags"/>
 <bpelx:outputProperty name="jca.mq.RFH2.NameValueCCSID"
variable="RFH2.NameValueCCSID"/>
 <bpelx:outputProperty name="jca.mq.RFH2.JMSFolder"
variable="RFH2.JMSFolder"/>
 <bpelx:outputProperty name="jca.mq.RFH2.MCDFolder"
variable="RFH2.MCDFolder"/>
 <bpelx:outputProperty name="jca.mq.RFH2.USRFolder"
variable="RFH2.USRFolder"/>
 <bpelx:outputProperty name="jca.mq.RFH2.USRFolder_2"

Oracle MQ Series Adapter Use Cases

Oracle JCA Adapter for MQ Series 10-131

variable="RFH2.USRFolder_2"/>
 <bpelx:outputProperty name="jca.mq.RFH2.PSCFolder"
variable="RFH2.PSCFolder"/>
 <bpelx:outputProperty name="jca.mq.RFH2.mq_usr"
variable="RFH2extrafolder"/>
 <bpelx:outputProperty name="jca.mq.RFH2_2.StructId" variable="RFH2_
2.StructId"/>
 <bpelx:outputProperty name="jca.mq.RFH2_2.Version" variable="RFH2_
2.Version"/>
 <bpelx:outputProperty name="jca.mq.RFH2_2.Encoding" variable="RFH2_
2.Encoding"/>
 <bpelx:outputProperty name="jca.mq.RFH2_2.CodedCharSetId"
variable="RFH2_2.CodedCharSetId"/>
 <bpelx:outputProperty name="jca.mq.RFH2_2.Format" variable="RFH2_
2.Format"/>
 <bpelx:outputProperty name="jca.mq.RFH2_2.Flags" variable="RFH2_
2.Flags"/>
 <bpelx:outputProperty name="jca.mq.RFH2_2.NameValueCCSID"
variable="RFH2_2.NameValueCCSID"/>
 <bpelx:outputProperty name="jca.mq.RFH2_2.JMSFolder" variable="RFH2_
2.JMSFolder"/>
 <bpelx:outputProperty name="jca.mq.RFH2_2.JMSFolder_2"
variable="RFH2_2.JMSFolder_2"/>
 <bpelx:outputProperty name="jca.mq.RFH2_2.MCDFolder" variable="RFH2_
2.MCDFolder"/>
 <bpelx:outputProperty name="jca.mq.RFH2_2.USRFolder" variable="RFH2_
2.USRFolder"/>
 <bpelx:outputProperty name="jca.mq.RFH2_2.PSCFolder" variable="RFH2_
2.PSCFolder"/>
 <bpelx:outputProperty name="jca.mq.RFH2_2.USRFolder_2"
variable="RFH2_2.USRFolder_2"/>
 <bpelx:outputProperty name="jca.mq.RFH2.Total.Headers"
variable="TotalRFH2"/>

15. Click File, Save All.

10.6.8.2.4 Deploying with JDeveloper

You must deploy the application profile for the SOA project and application you
created in the earlier steps.

For more information about deploying the application profile using JDeveloper, see
Section 2.7, "Deploying Oracle JCA Adapter Applications from JDeveloper".

You must also create an application server connection. For more information about
creating an application server connection, see Section 2.6, "Creating an Application
Server Connection for Oracle JCA Adapters".

The MQ message with the correct RFH2 headers must be put to the outbound dequeue
queue. The sample is configured to obtain two RFH2 headers from the message (this
can be changed by configuring the bpel process as required). The test MQ message
should have the following:

■ Payload: Any message (any format will do since Opaque is being employed)

■ RFH2 header 1: Should contain 2 USR folders, 1 JMS folder, 1 PSC folder, 1 MCD
folder and 1 mq_usr folder.

■ RFH2 header 2: Should contain 2 USR folders, 2 JMS folders, 1 PSC folder and 1
MCD folder.

Oracle MQ Series Adapter Use Cases

10-132 Oracle Fusion Middleware User's Guide for Technology Adapters

Deploy the sample and put the above message to the outbound dequeue queue. Open
the Enterprise Manager console and invoke the sample using the Test utility. Wait for
a time and examine the instance audit trail.

11

Oracle JCA Adapter for UMS 11-1

11 Oracle JCA Adapter for UMS

This chapter describes how to use the Oracle User Messaging Service Adapter, which
provides a JCA Adapter that wraps the Oracle User Message Service (UMS), an Oracle
Fusion Middleware Component that enables communication between users and
applications. The chapter also provides information on UMS Adapter concepts,
features, configuration, and error handling.

This chapter includes the following sections:

■ Section 11.1, "UMS and UMS Adapter Concepts"

■ Section 11.1.1, "Oracle UMS Adapter"

■ Section 11.2, "Oracle UMS Adapter Features"

■ Section 11.2.2, "UMS Adapter Error Handling and Transactions"

■ Section 11.2.3, "Configuring the Oracle UMS Adapter"

11.1 UMS and UMS Adapter Concepts
The User Messaging Service is an Oracle Fusion Middleware Component that enables
communication between users and application. It consists of the following:

■ UMS Server: The UMS Server orchestrates message flows between applications
and users. The server routes outbound messages from a client application to the
appropriate driver, and routes inbound messages to the correct client application.
The server also maintains a repository of previously sent messages in a persistent
store, and correlates delivery status information with previously sent messages.

■ UMS Drivers: UMS Drivers connect UMS to the messaging gateways, adapting
content to the various protocols supported by UMS. Drivers can be deployed or
undeployed independently of one another depending on what messaging
channels are available in a given installation.

■ UMS client applications: UMS client applications implement the business logic of
sending and receiving messages. A UMS client application might be a SOA
application that sends messages as one step of a BPEL workflow, or a WebCenter
Spaces application that can send messages from a web interface.

UMS supports various messaging channels such as Email, SMS, Instant Messaging,
and Voice. UMS provides a messaging proxy between the Oracle BPEL or Mediator
products and the external world. The User Messaging Service provides two-way
messaging: Inbound and Outbound messaging, and provides robust message delivery,
including delivering delivery status, and message resend through Enterprise
Messages. UMS also provides support for failover address. In summary, the UMS

Oracle UMS Adapter Features

11-2 Oracle Fusion Middleware User's Guide for Technology Adapters

provides a scalable, highly available solution to communication between users and
applications.

For additional information on the User Messaging Service, see the Oracle® Fusion
Middleware Developer's Guide for Oracle SOA Suite.

11.1.1 Oracle UMS Adapter
The User Messaging Service Adapter implements the Java Enterprise Edition
Connector Architecture (JCA) version 1.5. The UMS Adapter, in effect, wraps the User
Messaging Service, thus enabling communication over messaging channels that
include Email.

The UMS Adapter is part of the overall Adapter architecture.J2EE Applications,
Mediator and BPEL processes communicate with the Oracle WebLogic Server. See the
following diagram.

Figure 11–1 The UMS Adapter as Part of the Adapter Architecture

11.2 Oracle UMS Adapter Features
 The UMS Adapter includes these features

■ Support of Email Messaging Channels.

■ Use of Message Filters-the UMS Adapter enables you to filter email messages in
two ways:

1. Establishing Message filters through the Adapter Configuration Wizard
Messages Filter Screen,. These include Message filters, Blacklist and Whitelist
filters. Message Filters provide the ability to filter incoming messages based on
the Email To address, From address, CC address, Subject, and Mail Headers.
Mails can similarly be ignored using this filtering. Note: there is no filtering
available on the BCC address.

2. Writing and packaging a Java Callout, and providing the name of the callout
through the Adapter Configuration Wizard.

■ Sending Email messages with Subject and Body.

■ Translation Support for the Email message body.

■ SSL/TLS security for the outbound SMTP server (this availability is provided
through the Java Messaging Service).

The UMS Adapter provides the following Inbound features:

Oracle UMS Adapter Features

Oracle JCA Adapter for UMS 11-3

■ Support for Email Messaging channels.

■ Reception of messages with Subject, Body and one or more attachments along
with internet mail and mime headers.

■ A Polling/Listener interface. The Adapter polls mailboxes for incoming email on
various schedules you establish, which can be both sequential and parallel.

■ Translation support for the Email message body

■ XA-enabled transactions with Last Resource Commit (LRC) optimization to
participate in global transactions on inbound messages. Note that the UMS
Adapter does not support XA Transactions on the Outbound message
transactions.

■ IMAP/POP3 servers with SSL (available through the UMS Server)

11.2.1 UMS Adapter Message Concepts
The UMS Adapter enables you to provide different message formats.

For many of your email use cases, you might not want to specify a schema as the
message payload could be plain text and you want it received as is. In that case, you
can then select the Message is String type checkbox on the Messages Screen.

For example, if you want to send an image of binary data, you can specify the
Message is Opaque(Base64Binary)option. If you choose this option, the content
will be base64 encoded before being sent.

XSD files are required for translation of messages. If you want to define a new schema
or convert an existing data type definition (DTD) or COBOL Copybook you must
select Define Schema for Native Format to supply an XSD file.

Selecting Define Schema for Native Format starts the Native Format Builder
wizard. This wizard guides you through the creation of a native schema file from file
formats that include comma-separated value (CSV), fixed-length, DTD, and COBOL
Copybook.

After the native schema file is created, the Messages page is displayed, with the
Schema File URL and Schema Element fields filled in.

Unlike other adapters, the UMS Adapter uses a predefined Message Schema to
represent the message it uses.

An example of the Message Schema that the UMS Adapter uses follows.

<?xml version= "1.0" encoding= "UTF-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://platform.integration.oracle/blocks/adapter/fw/
metadata/Inbound_UMS"
 targetNamespace="http://platform.integration.oracle/blocks/adapter/
 fw/metadata/Inbound_UMS"
 xmlns:imp1="http://xmlns.oracle.com/pcbpel/adapter/opaque/"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
<xsd:import namespace="http://xmlns.oracle.com/pcbpel/adapter/opaque/"
schemaLocation="opaque.xsd"/>
 <xsd:complexType name="MessageType">
 <xsd:sequence>
 <xsd:element ref="imp1:opaqueElement"/>

Note: You cannot set and get headers with Keyword headers when
you use the MS-2010 Mail server with the UMS Adapter

Oracle UMS Adapter Features

11-4 Oracle Fusion Middleware User's Guide for Technology Adapters

 <xsd:element name="attachment" type="AttachmentType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="AttachmentType">
 <xsd:attribute name="href" type="xsd:string"/>
 </xsd:complexType>
 <xsd:complexType name="ResponseType">
 <xsd:sequence>
 <xsd:element name="MessageId" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="message" type="MessageType"/>
 <xsd:element name="response" type="ResponseType"/>
</xsd:schema>Status OpenFixedClosed

You define the schema according to your translation requirement through the UMS
Adapter Configuration Wizard Message screen, and as defined for the message body
content). The UMS Adapter imports the xsd you specify into the message schema used
by the UMS Adapter.

For example, see the schema snippet below, where the user-defined schema
singleString.xsd would be imported through the UMS Adapter Configuration
Wizard and refers to the element singleString, which is defined under
singleString.xsd through the UMS Adapter Configuration Wizard.

<?xml version= '1.0' encoding= 'UTF-8' ?>
<xsd:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/singleString"
 xmlns="http://xmlns.oracle.com/singleString"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 nxsd:encoding="US-ASCII" nxsd:useArrayIdentifiers="true"
 nxsd:stream="chars" nxsd:version="NXSD">
 <xsd:complexType name="singleString">
 <xsd:sequence>
 <xsd:element name="input" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy=";"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="payload" type="singleString"/>
</xsd:schema>

The following snippet illustrates the Interaction Specification:

<adapter-config name="SendEmail" adapter="UMS Adapter"
 wsdlLocation="SendEmail.wsdl"
 xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata">
 <connection-factory location="eis/ums/UMSAdapter"/>
 <endpoint-interaction portType="SendEmail_ptt" operation="SendEmail">
 <interaction-spec
className="oracle.tip.adapter.ums.outbound.UmsInteractionSpec">
 <property name="DeliveryType" value="Email"/>
 <property name="From" value="scott.tiger@example.com"/>
 <property name="To" value="scott.parker@example.com"/>
 <property name="ReplyTo" value=" scott.tiger@example.com"/>
 <property name="Subject" value="Test Email"/>
 </interaction-spec>
 </endpoint-interaction>
</adapter-config>

Oracle UMS Adapter Features

Oracle JCA Adapter for UMS 11-5

11.2.1.1 Custom Java Callout
On the Java Callout Screen you can specify a custom Java class with custom logic that
can be invoked before the Email message is processed by the UMS Adapter.

11.2.1.1.1 Use Cases for Custom Java Callout

One simple use case of the Custom Java Callout is to match the sender address with an
address in the LDAP or that resides in a staging area and which has been recorded
earlier. To provide this use case, you must implement the interface
oracle.tip.pc.services.translation.util.ICustomCallout.

This interface defines a single method execute with a return value of boolean.
Depending on the return value, the message is either processed or rejected:

public Inteface CustomCallout{
 public boolean execute (Message message) throws exception;
}

Where Message is the Message class from the UMS Session Description Protocol
(SDP) Java API, a well-defined Java API provided by the UMS Server, which can be
found at jdeveloper\communications\modules\oracle.sdp.messaging_
11.1.1\sdpmessaging.jar . The Boolean value returned indicates whether to
accept and process the message or to reject the message.

package oracle.adapter.custom;

import java.io.File;
import oracle.sdp.messaging.Message;
import oracle.tip.pc.services.translation.util.ICustomCallout;

public class UMSAdapter_CustomCall implements ICustomCallout{

 @Override
 public boolean execute(Message message) throws exception {
 String emailFromAddress = message.getSenders()[0]
.getValue();

String fileName = "/tmp/OracleStore/staging/".
concat(emailFromAddress).concat(".usr");
 File file = new File(fileName);
 if(file.exists()) {
 return true;
 }
 return false;

Note: For the UMS Adapter, message metadata accompanies the
message file itself. if you examine the message.dat file, you would
see the whole email message including all of the internet and mime
headers and the payload. This is similar to what you would see if you
performed view->message source from any mail client. Message
metadata that are keywords defined and used under user preference
based messaging are also be exposed by the adapter as message
headers. See the Oracle® Fusion Middleware Developer's Guide for
Oracle SOA Suite for more information.)

Oracle UMS Adapter Features

11-6 Oracle Fusion Middleware User's Guide for Technology Adapters

 }
}

In another use case, as provided through the sample code, a user with the email id of
scott.tiger@example.com registers through an internet store web site. The user would
be recorded under a staging area by using a file name scott.tiger@example.com.

An email is sent to the user directly to his email id to reply to the sent email. If the user
replies to the email, the UMS Adapter picks the email. You can subsequently use a Java
Callout to check and ensure the user has registered through the web site.

11.2.1.1.2 Using the Custom Callout Facility

To use the Custom Callout facility, you must

1. Indicate the name of the class on the Java Callout Screen in the UMS Adapter
Configuration Wizard

2. Bundle the class and other required custom classes as a jar file.

3. Place the jar file under your Composite Application, under the SCA-INF/lib
directory.

4. A custom java Class can also be packaged along with the composite and deployed
rather than placing them in domain directory for WebLogic Server by any of the
following two methods:

■ The compiled Java class (.class file) can be directly placed under the
Composite Project Folder \SCA-INF\classes and deployed.

■ Alternatively, the compiled Java class can be made as a JAR and placed under
the Composite Project Folder and deployed \SCA-INF\lib

11.2.2 UMS Adapter Error Handling and Transactions
The UMS Adapter, like other technology adapters, uses the default Adapter rejection
handling mechanism on the inbound side to reject bad messages.

For example, any translation-related error results in message rejection via the standard
handling mechanism. This enables the definition of policies for handling runtime
exceptions to ensure that errors can be analyzed. For more information on policies for
handling exceptions, see the information in Chapter 2 on error handling.

11.2.2.1 Using a JNDI Name Configured to Use XA With LRC Optimization
The UMS Adapter, by default, uses an XA Transaction with an Inbound Scenario. For
this, the Adapter configures a connection factory instance with the property
XATransaction set to true, along with transaction support set to Local
Transaction under the adapter deployment descriptor. This configuration is
required, as the UMS Adapter provides an LRC (Last Resource Commit) optimization
to normal XA. LRC is a performance enhancement option that enables one non-XA
resource to participate in a global transaction

A default JNDI instance is available, by default, which is configured to use XA. The
name of this default JNDI instance is eis/ums/UMSAdapterInbound.

For outbound scenarios, a default JNDI instance, eis/ums/UMSAdapterOutbound is
provided. With this JNDI instance, the transaction support is set to NoTransaction.

You can choose to define your own JNDI instances and use them, but you should keep
in mind the discussion above.

Oracle UMS Adapter Features

Oracle JCA Adapter for UMS 11-7

11.2.2.2 Inbound Error Handling
The UMS Adapter uses the default rejection handling mechanism on the Inbound side
of the Adapter for rejecting bad messages. For example, any translation-related errors
result in message rejection. Refer to the section on creating fault policies in this Guide
for more information on fault policies and adapters.

Under retriable error conditions, and when you specify retry-related endpoint
properties, the Adapter tries to re-publish the Inbound message for the configured
number of retries before rejecting the message. Transactions are then set for rollback
under XA, per the JNDI and XA discussion above.

For non-retriable Inbound error conditions, the message is immediately rejected, with
transaction set for the rollback when XA is used.

11.2.2.3 Outbound Error Handling
The UMS Adapter throws an exception for transient (recoverable) error conditions
such as connection errors. For retriable errors, you can use a retry policy supported by
the Adapter framework; to do this, you can set the binding property
jca.retry.count to a retry count you want. Again, as with other Adapters, if you
do not set the property, the retry is carried through according to the fault policy.

You can define non-retriable connection errors for outbound transactions through a
fault policy. The maximum number of reconnection attempts can be defined through
fault-policy.xml.

Adapters translate data from Native representation to standard XML format and back
based on the metadata captured by your work at design time, through the Adapter
Configuration Wizard. A translation error is thrown when there is an exception
thrown by carrying out the translation, and a corresponding binding fault is also
thrown.

You can set Endpoint properties related to Outbound retriable errors, as shown in
Table 11–1, " UMS Adapter Outbound Endpoint Properties"

11.2.2.3.1 Retry Mechanism for Failed Outgoing Notifications with Status Reporting

 The UMS Adapter makes use of the existing infrastructure provided by UMS for
retrying failed outgoing exceptions. Currently, the UMS Server supports the viewing
of failed notifications from the Oracle Enterprise Manager, in addition to the resending
of messages.

11.2.2.3.2 Outbound Send with TLS (SSL) to Communication with an SMTP Server \

Table 11–1 UMS Adapter Outbound Endpoint Properties

Property Description

jca.retry.count Indicates the maximum number of retries before thrrowing
retriable error conditions back to the invoking service engine.

jca.retry.interval Indicates the time interval between retries, measured in
seconds.

jca.retry.backoff Indicates the retry interval growth factor, measured in
positive integers.

jca.retry.maxInterval Indicates the maximum value of retry interval; that is a cap if
the value is greater than 1.

jca.retry.maxPeriod Indicates the maximum total retry period. Retries do not
occur longer than the value specified in the parameter.

Oracle UMS Adapter Features

11-8 Oracle Fusion Middleware User's Guide for Technology Adapters

 If you want to use Outbound, your use of the UMS Adapter Configuration Wizard has
the same flow as it has with a standard UMS Adapter Configuration Wizard; however,
there is are additional configuration tasks on the UMS Server side that you need to
perform through the Enterprise Manager console.

You need to set the OutgoingMailServerTLS property on the email driver side to true
(the default is false.) In addition to setting the SSL/TLS to true, you need to configure
the Outgoing ports based on the SSL or TLS settings in the Enterprise Manager.This
enables TLS encryption to communicate with the SMTP server.

11.2.2.3.3 Inbound Receive Notification in a Cluster (Through Polling or Through a Listener)

Using the standard Inbound UMS Adapter Configuration Wizard flow, using
additional configuration, you can target a clustered environment for deployment. The
UMS API supports an environment where the UMS Server and its clients are deployed
in a cluster environment.The UMS Adapter also supports high availability in an
active-active setup.

The configuration details for UMS Adapter to work properly in a clustered
environment follows.

All UMS Adapter activations of the same composite application use the same unique
ApplicationName configuration parameters. The UMS Adapter synthesizes the
application name parameter from the Inbox address on which the specific endpoint is
to listen.

This synthesis enables all activations of a specific composite in a cluster to share all
configuration and artifacts such as Access Points and Message Filters

The ApplicationInstanceName configuration parameter is synthesized
automatically through the UMS API implementation and the UMS Adapter depends
on that synthesis.

Additionally, the UMS Adapter API implementation guarantees that in a cluster
environment no two applications will receive the same message.

The UMS Adapter also supports active fail-over of an Inbound service that is
active-passive in a clustered environment. You can enable this active fail-over for UMS
Adapter support through a JCA service binding property (composite.xml)singleton,
set to true.

Listening and Polling work the same way using a UMS adapter in a clustered
environment as they do in a non-clustered environment.

11.2.2.3.4 UMS Adapter Properties and Mime Type Configuration

There are several properties associated with the UMS Adapter that you can use to
provide additional configuration. Some of these are already set for you when you use
the UMS Adapter Configuration Adapter Wizard. All applicable Internet Mail Headers
and Mime headers can be configured through normalized message
properties/headers.

The following table lists the Activation Spec properties applicable to the UMS Adapter.

Table 11–2 UMS Adapter Activation Spec Properties

Property Name Description

JavaCalloutImpl Name of the Java class that defines custom logic for a message
filtering or any other check. This class is a concrete
implementation of the ICustomCallout interface.

Oracle UMS Adapter Features

Oracle JCA Adapter for UMS 11-9

Table 11–3, "UMS Adapter Interaction Specification Properties" provides a list of
interaction specification properties available.

The UMS Adapter exposes all applicable internet messages headers and Mime
message headers and mime part headers (within a multipart construct.)

Mime headers are applicable only for the first body part of the message that is the
UMS Adapter payload.

Mime headers for attachments are stored along with the attachment as normalized
message properties that can be manipulated from within a BPEL process.

Table 11–4, "Message Headers" describes all the applicable headers defined by internet
message format along with mapping and corresponding adapter header.

ConsumeMode Specifies how the adapter will receive messages from UMS. Set
to poller for polling mode Or set to listener for listener mode.

To Address from which to receive incoming messages. One or more
comma separated email address for the Email delivery type.

Delivery Type Email support is provided for receiving and sending outgoing
messages.

PollingInterval Polling interval in seconds for poller consume mode.

MessageFilters Specify one or more message filters. A single filter would
comprise of a Java Pattern String to match the incoming message
against, along with the field type and the action (Accept or
reject) to be taken.

Table 11–3 UMS Adapter Interaction Specification Properties

Property Name Description

Delivery Type Email support for only receive and sending outgoing messages.

Subject Subject of Outgoing Message

From Sender addresses of outgoing message

To One or more recipient addresses

Reply-to Reply-To address

CC One or more cc addresses for email delivery.

Bcc One or more Bcc addresses for email delivery

SendEmailAsAttachment True, to send email as an attachment

Table 11–4 Message Headers

Header Field Name
Minimum
Occurrence

Maximum
Occurrence

Mapped Adapter Header Field
Name

Return-path 0 1 jca.ums.return-path

Received 0 unlimited jca.ums.received

Resent-Date 0 unlimited jca.ums.received

Resent-From 0 unlimited jca.ums.resent-from

Resent-Sender 0 1 jca.ums.resent-sender

Table 11–2 (Cont.) UMS Adapter Activation Spec Properties

Property Name Description

Oracle UMS Adapter Features

11-10 Oracle Fusion Middleware User's Guide for Technology Adapters

Table 11–5, " Mime-Part Message Headers" describes all applicable Mime message
headers.

Resent-To 0 unlimited jca.ums.resent-to

Resent-Cc 0 unlimited jca.ums.resent-cc

Resent-Bcc 0 unlimited jca.ums.resent-bcc

Resent-Message-ID 0 unlimited jca.ums.resent-message-id

Date 1 unlimited jca.ums.date

From 1 unlimited jca.ums.from

Sender 0 1 jca.ums.sender

Reply-to 0 1 jca.ums.reply-to

To 0 1 jca.ums.to

Cc 0 1 jca.ums.cc

Bcc 0 1 jca.ums.bcc

Message-ID 0 1 jca.ums.message-id

In-Reply-To 0 1 jca.ums.in-reply-to

References 0 1 jca.ums.references

Subject 0 1 jca.ums.subject

Comments 0 unlimited jca.ums.comments

Keywords 0 unlimited jca.ums.keywords

Note: For the outbound UMS Adapter, you can use the property
JCA.UMS.MSG.CONTENT-TYPE which can be used for specifying
encoding. But if you do not set the value, the outbound UMS adapter
uses server encoding for email by default.

When the SOA server is started in native encoding, for example, with
iso8859-1, it cannot handle ccjk characters. The content will be
garbled. As a workaround, you can set the jca property for the
outbound UMS adapter as:

JCA.UMS.MSG.CONTENT-TYPE = 'text/plain;
charset=utf-8'

Table 11–5 Mime-Part Message Headers

Header Field Name
Mapped Adapter Header Field
Name Notes

Content-Type jca.ums.part.content-type

Content-Transfer-Encoding jca.ums.part.content-
transfer-encoding

Content-ID jca.ums.part.content-id

Table 11–4 Message Headers

Header Field Name
Minimum
Occurrence

Maximum
Occurrence

Mapped Adapter Header Field
Name

Oracle UMS Adapter Features

Oracle JCA Adapter for UMS 11-11

11.2.2.3.5 Proprietary Headers .

The UMS Adapter enable you to add any proprietary headers. Table below shows the
mechanism for doing so.

11.2.2.4 Email Attachments
The UMS Message XML can contain a list of Attachment elements that have an href
attribute. The Attachment Manager stores other mime details associated with the
attachment as MimeType, Content ID along with a stream object (which is the
attachment content).

Currently, the UMS Adapter supports both inbound and outbound attachments.

See the following example for a sample XML Message with attachment element.

<Receive1_ReceiveEmail_InputVariable>
<part name="body" >
 <Email>
 <payload>This is a test mail.-Sagar</payload>
 <attachment>
 <Attachment href="0DF86C104BF511EoAF5977BAA7C7CFD9"/>
 </attachment>
 </Email>
 </part>
</Receive1_ReceiveEmail_InputVariable>

Content-Description jca.ums.part.content-
description

Content-Disposition jca.ums.part.content-
disposition

Content-Language jca.ums.msg.content-language

Mime-Extension-field jca.ums.part.mime-extension
-headers

Any other mime
header field hat
begins with the string
“Content-“. You can
add more than one
header as
 Content-* :
value CRLF
Content*- :
value

CRLF - \r\n

Table 11–6 Proprietary Headers

Header Name Notes

jca.ums.msg.proprietary-headers More than one proprietary header can be added
in the following format:

Header Name : value CRLF Header Name : value

(Header Name – should be similar to
ums.adapter.xxxxx CRLF - \r\n)

Table 11–5 (Cont.) Mime-Part Message Headers

Header Field Name
Mapped Adapter Header Field
Name Notes

Oracle UMS Adapter Features

11-12 Oracle Fusion Middleware User's Guide for Technology Adapters

On the inbound side, the UMS Adapter sets all mime details before passing the
attachment to the Attachment Manager.

11.2.2.5 Mail Attachment Handling
The UMS Adapter uses the Fabric Attachment Manager to store and retrieve
attachments.

UMS Message schema defines Attachment element with a href attribute as shown
below.

<copy>
 <from expression="ora:readBinaryFromFile(’/home/testuser
 /oracle_sig_log0.gif’)"/>
 <to variable="Invoke1_SendNotification_inputVariable" part="body"
 query="/ns2:message/ns2:attachment[1]"/>
</copy>

UMS Message XML can have list of attachment elements with a href attribute.
Attachment manager stores other mime details associated with attachment as
MimeType; Content ID and others. in addition to a stream object (attachment content).
Sample XML Message with attachment element

On the inbound side, the adapter sets all mime details before passing attachment to
the Attachment Manager, while on the outbound side, the adapter extracts any mime
details received along with attachment object and uses them while creating the
outgoing SDP message notification.

The Fabric Attachment Manager updates the href attribute with a key after storing the
attachment to the database. This key can later be used to retrieve attachment content.

You can examine below the sample Normalized Message payload map with an XML
structure having attachment element, which is passed from UMS Adapter to
BPEL/Mediator service engine.

A sample XML Message with attachment element follows:

<Receive1_ReceiveEmail_InputVariable>
<part name="body" >
 <Email>
 <payload>This is a test mail</payload>
 <attachment href="0DF86C104BF511EoAF5977BAA7C7CFD9"/>
 </Email>
 </part>
</Receive1_ReceiveEmail_InputVariable>

11.2.2.5.1 Retrieving Mime Information Associated with an Attachment in BPEL The snippet
below shows how attachments can be retrieved in BPEL

First, obtain the Mime Information associated with the attachment.

<assign name"Assign1">
<copy>
 <from exporession="oraReadBnaryFromFileWithMimeHeaders(’/home/testuser/oracle_
sig_logo.gif’,’one’,’image/gif’, ", ’7bit’, ’oracle_logo_gif_file’, ’en/ja’)"/>
 <to variable="invoke="1_SendNotification_InputVariable" part="body"
 query=’/ns3:message/ns3:attachment[1]"/>
</copy>
<bpelx:InsertAfter>
 <bpelx:from variable=Invoke1_SendNotification_InputVariable"
 part="body" query=/ns3:message:/ns3:attachment"/>

Oracle UMS Adapter Features

Oracle JCA Adapter for UMS 11-13

<bpelx:to variable=Invoke1_SendNotification_InputVariable" part="body"
 part="body" query=/ns3:message:/ns3:attachment"/>

</bpelx:insertAfter>
<copy>
 <from expression="ora.readBinaryFromFileWithMimeHeaders{’/home/testuser/
 install-mq-7.0.txt’,",","," ’install_mq_file’,’’}"/>
 <to variable="Invoke1_SendNotification_InputVariable" part="body"
 query="/ns3:message/ns3:attachment[2]"/>
</copy>

11.2.2.5.2 Setting Mime Information for Multiple Attachments in BPEL The following snippet
shows how you can set Mime Information for multiple attachments in BPEL.

<assign name="Assign1">
<copy>
<from exporession="oraReadBnaryFromFileWithMimeHeaders(’/home/testuser/oracle_sig_
logo.gif’,’one’,’image/gif’, ", ’7bit’, ’oracle_logo_gif_file’, ’en/ja’)"/>
<to variable="invoke="1_SendNotification_InputVariable" part="body"
 query=’/ns3:message/ns3:attachment[1]"/>

</copy>
<bpelx:InsertAfter>
 <bpelx:from variable=Invoke1_SendNotification_InputVariable"
 part="body" query=/ns3:message:/ns3:attachment"/>
<bpelx:to variable=Invoke1_SendNotification_InputVariable" part="body"
 part="body" query=/ns3:message:/ns3:attachment"/>

</bpelx:insertAfter>
 <from exporession="oraReadBnaryFromFileWithMimeHeaders(’/home/
 testuser/oracle_ sig_logo.gif’,’one’,’image/gif’, ", ’7bit’,
 ’oracle_logo_gif_file’, ’en/ja’)"/>
<copy>
 <to variable="invoke="1_SendNotification_InputVariable" part="body"
 query=’/ns3:message/ns3:attachment[2]"/>

</copy>

11.2.2.6 UMS Adapter Inbound and Outbound Operations
Operations you configure via the UMS Adapter Configuration Wizard include the
following Inbound and Outbound Operations:

■ Inbound Receive Notification

■ Outbound Send Notification

■ Outbound Send Notification (Message ID as Reply)

1)In BPEL, Invoke activity we have properties tab.

11.2.2.6.1 Oracle UMS Adapter Inbound ReceiveNotification Concepts

Note: You can often use the BPE Invoke activity’s property tab to
select jca.properties to set a value from the Invoke activity. However,
you cannot set jca.ums.message-id, as these message IDs are
auto-generated.

Oracle UMS Adapter Features

11-14 Oracle Fusion Middleware User's Guide for Technology Adapters

In this scenario, the UMS Adapter registers an access point on the UMS Server to
consume and process incoming notifications. This section provides an overview of
different configurations and concepts associated with Oracle UMS Adapter Inbound
Receive Notification.

An example of a Receive Email WSDL follows.

<wsdl:definitions name="ReceiveEmail"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/ums/
 UMSAdapter_In_SinglePart_Xlation/
 SOAComposite_email_poller_bpel/ReceiveEmail"
 xmlns:jca="http://xmlns.oracle.com/pcbpel/wsdl/jca/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/ums/
 UMSAdapter_In_SinglePart_Xlation/
 SOAComposite_email_poller_bpel/ReceiveEmail"
 xmlns:pc="http://xmlns.oracle.com/pcbpel/"
 xmlns:imp1="http://platform.integration.oracle/blocks/adapter/
 fw/metadata/UMSAdapter"
 xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05
 /partner-link/">
 <plt:partnerLinkType name="ReceiveEmail_plt">
 <plt:role name="ReceiveEmail_role">
 <plt:portType name="tns:ReceiveEmail_ptt"/>
 </plt:role>

 </plt:partnerLinkType>
 <wsdl:types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://platform.integration.oracle/blocks/adapter
 /fw/metadata/UMSAdapter"
 schemaLocation="xsd/UMS.xsd"/>
 </schema>
 </wsdl:types>
 <wsdl:message name="ReceiveEmail_msg">
 <wsdl:part name="body" element="imp1:Email"/>
 </wsdl:message>
 <wsdl:portType name="ReceiveEmail_ptt">
 <wsdl:operation name="ReceiveEmail">
 <wsdl:input message="tns:ReceiveEmail_msg"/>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

11.2.2.6.2 Oracle UMS Outbound Send Notification Concepts

In this scenario, the UMS Adapter processes outgoing send notifications. This section
provides an overview of different configurations and concepts associated with the
Oracle UMS Adapter Outbound send notification, of which there are two types, the
normal send and the send with Receive Message id as reply request.

11.2.2.6.3 Receive Message id as reply request

A type of outbound synchronous request is the Receive Message id as reply
request. It is a variation of the one way invoke, but with Receive Message id
as reply request, a unique message ID is replied back from the UMS Server. You can
use this type of request if you want to get this message id to check message delivery
status information.

Oracle UMS Adapter Features

Oracle JCA Adapter for UMS 11-15

If you choose to use this type of request, you select the Receive Message Id as a
reply request checkbox when selecting an Operation.

11.2.3 Configuring the Oracle UMS Adapter
You configure the User Message Service using the Enterprise Manager Console and
the Email Adapter Configuration Wizard in JDeveloper to configure the UMS Adapter.

To configure the User Messaging service drivers, you perform the task from the
Enterprise Manager Console. Specifically, to use the Email messaging channel, you
need to configure the Email driver properties. The following section provides
information on configuring the Email driver for the UMS Adapter.

11.2.3.1 Configuring the Email Driver for the UMS Adapter - Outbound Connectivity
In this procedure, you provide the necessary input to setup the UMS Email Driver for
outbound connectivity with the email server.

1. To configure the Email Driver via the Enterprise Manager, click on User
Messaging Email Driver -> Email Driver Properties.

2. Enter the name of the SMTP server in the OutgoingMailServer location.

3. Enter the port number of the SMTP server in the OutgoingMailServerPort.
Typically, this is 25.

4. Enter the type of security you want to use with the SMTP server. Possible values
are None, TLS and SSL. Default value is None.

5. Provide the username used for SMTP authentication in
OutgoingDefaultFromAddr. This is required only if SMTP authentication is
supported by the SMTP server. (An alternative field is OutgoingUsername)

6. Provide the password used for SMTP authentication for OutgoingPassword. This
is required if SMTP authentication is supported by the SMTP server.

Figure 11–2 The Enterprise Manager Console Showing the Email Driver Properties
Screen

Oracle UMS Adapter Features

11-16 Oracle Fusion Middleware User's Guide for Technology Adapters

11.2.3.2 Configuring the Email Driver for UMS Adapter - Inbound Connectivity
The following is the minimum configuration which you need to use to set up the UMS
Email Driver for inbound scenarios.

1. Enter the MailAccessProtocol. This is the E-mail receiving protocol. The possible
values are IMAP and POP3. This value is required only if email receiving is
supported on the driver instance.

2. Enter the value for the ReceiveFolder. The name of the folder the driver is polling
messages from. The default value is INBOX.

3. Enter the value of the IncomingMailServer. This is the host name of the incoming
mail server. Required only if e-mail receiving is supported on the driver instance.

4. Enter the value of the IncomingMailServerPort. This is the port number of IMAP4
that is, 143 or 993) or POP3 (that is, 110 or 995) server.

5. Enter the value of the IncomingMailServerSSL. This indicates if you want to
enable SSL when connecting to the IMAP4 or POP3 server. The default value is
disabled.

6. Enter the email addresses for the IncomingMailIDs. These are the email addresses
corresponding to the user names.This is required only if email receiving is
supported on the driver instance.

7. Enter the list of user name for the IncomingUserIDs. This is the list of user
names of the mail accounts from which the driver instance is polling. Each name
must be separated by a comma, for example, foo,bar. Required only if email
receiving is supported on the driver instance.

8. Enter the IncomingUserPasswords. This is the list of passwords corresponding
to the user names. This is required only if the driver instance supports email
receiving.

For more details on configuration, see Oracle® Fusion Middleware Administrator's
Guide for Oracle SOA Suite and Oracle Business Process Management Suite.

11.2.3.3 Designing the Adapter Service and the BPEL Process for Inbound
Connectivity
Use the UMS Adapter Configuration Wizard within JDeveloper to design the inbound
UMS Adapter reference.

1. Drag and drop UMS Adapter from the Component Palette to the External
References swim lane.The Adapter Configuration Wizard Welcome page is
displayed.

Oracle UMS Adapter Features

Oracle JCA Adapter for UMS 11-17

Figure 11–3 UMS Adapter Configuration Wizard, Welcome Screen

2. Click Next. The Service Name page is displayed

3. Enter the Service Name, for example ReceiveEmail, in the Service Name text
box on the Service Name Screen.

Oracle UMS Adapter Features

11-18 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 11–4 The UMS Adapter Configuration Wizard Service Name Screen

Oracle UMS Adapter Features

Oracle JCA Adapter for UMS 11-19

Figure 11–5 The UMS Adapter Configuration Wizard Connection Screen

4. On the UMS Adapter Connection page, enter the Connection JNDI Name. Here,
eis/ums/UMSAdapterInbound is specified as the JNDI name, which is the
default JNDI name for Inbound Connections.

5. On the Operation Type screen of the UMS Adapter Configuration wizard, select
the operation to perform. Based on your selection, different adapter configuration
wizard pages appear and prompt you for configuration information. For Inbound
connectivity, on the Operation screen, select Inbound Receive
Notification as the operation type and click Next.

Oracle UMS Adapter Features

11-20 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 11–6 The UMS Adapter Configuration Wizard Operation Screen, Inbound Receive
Operation Type Chosen

6. The Notification Details page of the Adapter Configuration Wizard enables you to
specify the mode, Polling or Listener, in which to receive incoming
notifications from the UMS Server.

Oracle UMS Adapter Features

Oracle JCA Adapter for UMS 11-21

Figure 11–7 UMS Adapter Configuration Wizard Notification Details Screen

7. Selecting the Polling mode enables you to specify inbound polling parameters:

■ Polling Frequency. The frequency with which to poll the UMS for new
notifications to retrieve.

■ Frequency unit. Specify seconds, minutes, hours, days or weeks as the unit for
frequency.

■ Inbound Thread Count. Specify the number of polling threads.

The UMS Adapter receives messages until the messages are available in the Inbox.
When there are no more messages, and only then, the UMS Adapter sleeps for the
polling interval you specify on this screen. This sleeping activity avoids mounting
large number of messages in the Inbox, within high-incoming message volume
scenarios. Each polling thread retrieves one message at a time, processes it and
then publishes it.

Oracle UMS Adapter Features

11-22 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 11–8 Notification Details Screen when Polling is Selected for an Inbound Receive
Operation

8. Selecting the Listening Mode enables you to specify Message Listener Threads.
This property controls the number of listener worker threads on the UMS Server
side. The default value is 1. Specifying this property means the UMS Server will
provide multi-threaded asynchronous receiving of incoming notifications.

Oracle UMS Adapter Features

Oracle JCA Adapter for UMS 11-23

Figure 11–9 UMS Adapter Configuration Wizard Notification Details with Listener Mode
Selected

9. The second page of the Notification Details Page of the UMS Adapter
configuration wizard enables you select the type of notification to receive with the
Notification Endpoint Configuration. You can specify more than one
comma-separated email mail box address from which you want to receive email
notifications.

Oracle UMS Adapter Features

11-24 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 11–10 The UMS Adapter Configuration Wizard Inbound Notification Details
Screen, Second Page

10. Click Next to continue, or Finish to complete using the UMS Adapter
Configuration Wizard without configuring message filters against incoming
messages.

11. A Message Filter contains a matching criterion and an action. You can register a
series of message filters. They are applied in order against an incoming (received)
message; if the specified criterion matches the message, the action is taken.

For example, you can implement any required blacklists, by rejecting all messages
from a given sender address.

You can specify three different types of filters on this screen. (For more
information on Java Patterns, or Regular Expressions, see the reference at
http://download.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
and the tutorial at http://download.oracle.com/javase/tutorial/essential/regex)

1. Blacklist Filter-Blacklist filters match against an incoming message's sender
address, and reject the message if the sender address matches the given Java
pattern. (That is, a Java regular expression).

2. Whitelist Filter-Whitelist filters match against an incoming message's sender
address and accepts the message if the sender address matches the given Java
pattern.

3. Message Filter-A message filter matches against any of the fields you indicate
with a given pattern and accepts or rejects the messages depending upon the
action you specify. These fields include: CONTENT, HEADER, METADATA,
RECIPIENT, REPLYTO, SENDER, SUBJECT

There are only two types of Actions that apply to the Message Filters, either
ACCEPT or REJECT the message. Message Filters are applied in the same order in
which you define them on the Message Filter page.

Click Finish to complete the configuration through the Wizard, or click Next to
proceed to the Java Callout Screen to specify a Java class through which you can
apply additional filtering.

Oracle UMS Adapter Features

Oracle JCA Adapter for UMS 11-25

Figure 11–11 UMS Adapter Message Filters Screen

12. On the Java Callout screen, specify the name of the Java class you want the UMS
Adapter to invoke and which will run custom logic you provide.

Oracle UMS Adapter Features

11-26 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 11–12 UMS Adapter Configuration Wizard Custom Java Callout Screen

13. If you want to provide a custom Java callout, select the checkbox and provide a
classname in the text box. See the description in the custom Java Callout class
section in this chapter.

14. Click Finish on the page below to complete configuring the UMS Adapter service.
When you finish configuring the Oracle UMS Adapter, a JCA file is generated for
the inbound service. The file is named after the service name you specified on the
Service Name page of the Adapter Configuration Wizard. You can rerun the
Wizard later to change your operation definitions.

11.2.3.4 Designing the Adapter Service and the BPEL Process for Outbound
Connectivity
Use the UMS Adapter Configuration Wizard within JDeveloper to design the
outbound UMS Adapter reference.

1. Drag and drop Database Adapter from the Component Palette to the External
References swim lane.The Adapter Configuration Wizard Welcome page is
displayed.

Oracle UMS Adapter Features

Oracle JCA Adapter for UMS 11-27

Figure 11–13 UMS Adapter Configuration Wizard Welcome Screen

2. The UMS Adapter Service Name screen is displayed. Enter SendMail for the
Outbound Service Name, for example.

Figure 11–14 UMS Adapter Configuration Wizard Service Name Screen, Outbound Send
Mail Operation

Oracle UMS Adapter Features

11-28 Oracle Fusion Middleware User's Guide for Technology Adapters

3. The UMS Adapter Connection Name screen is displayed,.with the Connection
JNDI Connection Name

Figure 11–15 UMS Adapter Connection JNDI Name

4. On the Operation screen, select Outbound as the Operations type. The Operation
Name defaults to SendNotification.

Oracle UMS Adapter Features

Oracle JCA Adapter for UMS 11-29

Figure 11–16 UMS Adapter Configuration Wizard Operation Screen with Outbound Send
Operation Selected

5. The Outbound Notification Details screen appears. The Email button is selected.
Enter the Endpoint Configuration detail items, or browse to find them. You also
can specify a failover address for any primary address you provide. For example,
scott.tiger@sport.com:failover-id@example.com. This failover
addressing applies to To, CC and Bcc addresses.

You can click on the browse button and browse the identity service using the
Identity Look-up Dialog to search and fill address attributes, as needed.

Click Next to proceed or Finish to complete using the Wizard.

6. Define the message for the UMS Send operation using the Messages Screen. If you
choose Message is Opaque(Base64Binary) or Message is String Type, you do not
have to specify a URL for the Schema and a Schema Element. If you choose a URL
for the Schema, you must specify a Schema Element.

Sample

11-30 Oracle Fusion Middleware User's Guide for Technology Adapters

Figure 11–17 UMS Adapter Configuration Wizard Messages Screen

7. Click Finish to complete using the UMS Adapter Configuration Wizard.

8. The Finish Screen appears. You have completed using the UMS Adapter
Configuration Wizard. Click Finish to complete creating the xsd and WSDL at the
locations indicated on the screen.

11.3 Sample
You can obtain the sample from the Oracle SOA Samples web site. To use the sample,
you need to create a composite, deploy it and configure a mail server to use with an
email client.

11.3.1 Creating the Composite
You must create a JDeveloper Application to contain the SOA Composite for the Umail
Adapter. To create the appropriate application and a project:

1. In the Application Navigator of JDeveloper, click New Application. Select
Application Template as SOA Application.

2. Enter SOA-Email-AutoReply in the Application Name field, and click Next.

3. Enter SOA-Email-AutoReply in the Project Name field.

4. Select Composite With BPEL in the Composite Template box, as shown in the
figure below, and click Finish. The Create BPEL Process - BPEL Process page is
displayed.

5. Enter BPEL_Email_AutoReply in the Name field, select Define Service Later
from the Template box.

Sample

Oracle JCA Adapter for UMS 11-31

6. Click OK. The SOA-Email-AutoReply application and the project appear in the
design area.

11.3.2 Creating the Inbound Oracle UMS Adapter Service
The next group of tasks enables you to create an inbound Oracle UMS Adapter Service
to read incoming emails from a given email inbox address:

1. Drag and drop the Oracle UMS Adapter from the Component Palette to the
Exposed Services swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed

3. Enter ReceiveEmail in the Service Name field

4. Click Next. The Adapter Connection page is displayed

5. Click Next. The Adapter Operation page is displayed.

6. Select Operation type as Inbound Receive Notification as shown below and click
Next. The Inbound Operation Details page is displayed.

7. Select the Operation Mode Polling, the default, and click Next. The Adapter
Inbound Notification Details page is displayed.

8. Enter test2@blr2240893.idc.oracle.com into Email Endpoint
Configuration text box, the email address from which to receive incoming
messages, as shown below. Click Next. The Adapter Messages page is displayed.

9. On the Message Page, Select Message is String type checkbox, as shown below.
Click Next. The Message Filters page is displayed.

10. Click Next on the Message Filters page. The Custom Java Callout page is
displayed.

11. Click Next on the Java Callout page. The Adapter Wizard Finish page is
displayed.

12. Click Finish on the Finish page.

13. The inbound Oracle UMS Adapter is now configured and the composite.xml file
appears.

11.3.3 Creating the Outbound UMS Adapter service
Perform the following steps to create an outbound Oracle UMS Adapter service to
send out an email:

1. Drag and drop the UMS Adapter from the Component Palette to the External
References swim lane. The Adapter Configuration Wizard Welcome page is
displayed.

2. Click Next. The Service Name page is displayed. Enter SendReplyEmail in the
Service Name field.

3. Click Next. The Connection Page is displayed.

4. Click Next. The Operation Page is displayed. Select Outbound Send Notification
as the Operation type.

5. Click Next. The Outbound Notification Details page is displayed. Enter dummy in
the To field.

Sample

11-32 Oracle Fusion Middleware User's Guide for Technology Adapters

6. Click Next. The Message page is displayed. Select the checkbox which says
Message is String type.

11.3.4 Wiring Services and Activities
You have to assemble or wire the three components that you have created: the
Inbound adapter service, the BPEL process, and the outbound adapter reference.
Perform the following steps to wire the components:

1. Drag the small triangle in the ReceiveEmail in the Exposed Services area to the
drop zone that appears as a green triangle in the BPEL process in the Components
area.

2. Drag the small triangle in the BPEL process in the Components area to the drop
zone that appears as a green triangle in the SendEmailReply External References
area. The JDeveloper composite.xml appears.

3. Click File, Save All.

11.3.5 Add a Receive Activity
The next series of steps enables you to add a Receive Activity.

1. Double-click BPEL_Email_AutoReply. The BPEL_Email_AutoReply.bpel page is
displayed.

2. Drag and drop a Receive activity from the JDeveloper Component Palette to the
Design area.

3. Double-click the Receive activity. The Receive dialog is displayed.

4. Enter ReceiveEmail in the Name field.

5. Click Browse Partner Links at the end of the Partner Link field. The Partner Link
Chooser dialog is displayed.

6. Select ReceiveEmail, and click OK.

7. Click the Auto-Create Variable icon to the right of the Variable field in the
Receive dialog. The Create Variable dialog is displayed.

8. Select the default variable name and click OK. The Variable field is populated
with the default variable name.

9. Check Create Instance, and click OK. The JDeveloper BPEL_Email_
AutoReply.bpel page appears, as shown below

11.3.6 Obtaining Email Header Information
Perform the following steps to extract the email header information.Using the Receive
construct, and the properties tab, one can fetch any header properties of the incoming
mail.

This value can be assigned to the already created variables in the Assign activity of
BPEL, and used later.

There is also the ability to set an header property on the Outbound mail.This can be
accomplished also via the Properties tab of the Invoke activity.

Thus, Mail can be received (using the Inbound UMS Adapter) and also sent (using the
Outbound UMS Adapter) and orchestration accomplished via BPEL or Mediator.

Using BPEL/Mediator API's the various headers and payload can be manipulated.

Sample

Oracle JCA Adapter for UMS 11-33

1. Create temporary variables to hold header information. To add new variables,
click the icon, Variables… The Variables Dialog box is displayed. Add a new
variable from of simple type string as below.

2. Following the same step as above, create one more variable, subject.

3. Double-click the Receive activity. The Receive dialog is displayed. Click the
Properties tab.

4. Assign the jca.ums.from property value to the from variable by selecting it
through the Browse Variables Dialog, as shown below.

11.3.7 UMS Adapter Configuration Changes for IBM WebSphere Server
For Poller Mode and Listener Mode to work on the Inbound side of the UMS Adapter
when IBM WebSphere Application Server is installed, you need to create a few settings
on the IBM WebSphere Application Server Console.

1. Configure LRC/Last Participant support for the IBM WebSphere Application
Server.

2. Ensure that JAAS subject propagates from the scheduling thread to the target
thread.

3. Set Heuristic completion direction to COMMIT.

4. Save your changes to the master configuration.

5. Restart the Server.

6. On the composite level, ensure that async persists, as in the following code snippet
within the composite.xml.

<component name="BPELProcess1" version="1.1">
 <implementation.bpel src="BPELProcess1.bpel"/>
 <property name="bpel.config.transaction" type="xs:string"
many="false">requiresNew</property>
 <property name="bpel.config.oneWayDeliveryPolicy" type="xs:string"
 many="false">async.persist</property>

Sample

11-34 Oracle Fusion Middleware User's Guide for Technology Adapters

A

Oracle JCA Adapter Properties A-1

AOracle JCA Adapter Properties

This appendix lists and describes the JCA and binding properties applicable Oracle
JCA Adapters, and is meant to be used with the chapters in this book on the specific
JCA Adapters, to assist in the configuration of the Adapters.

This appendix includes the following sections:

■ Section A.1, "Oracle File and FTP Adapters Properties"

■ Section A.2, "Oracle Socket Adapter Properties"

■ Section A.3, "Oracle AQ Adapter Properties"

■ Section A.4, "Oracle JMS Adapter Properties"

■ Section A.5, "Oracle Database Adapter Properties"

■ Section A.6, "Oracle MQ Series Adapter Properties"

■ Section A.7, "Generic Oracle JCA Adapter Properties"

For more information, see Chapter 33, "Configuring Service and Reference Binding
Components", in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA
Suite and Oracle Business Process Management Suite.

A.1 Oracle File and FTP Adapters Properties
This section describes the properties applicable to the Oracle File and FTP Adapters,
including:

■ Table A–1, " JCA Properties for Oracle File and FTP Adapters"

■ Table A–2, " JCA Properties Specific to Oracle FTP Adapter"

■ Table A–3, " Binding Properties for Oracle File and FTP Adapters"

■ Table A–4, " Binding Properties Specific to Oracle FTP Adapter"

■ Table A–5, " JCA Properties for Oracle File Adapter: Normalized Properties"

■ Table A–6, " JCA Properties for Oracle FTP Adapter: Normalized Properties"

For properties applicable to all Oracle JCA Adapters, see Section A.7, "Generic Oracle
JCA Adapter Properties".

For more information, see:

■ Section 33.1.2.3, "Oracle File Adapter", in the Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management
Suite

Oracle File and FTP Adapters Properties

A-2 Oracle Fusion Middleware User's Guide for Technology Adapters

■ Section 33.1.2.4, "Oracle FTP Adapter", in the Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management
Suite

Table A–1 JCA Properties for Oracle File and FTP Adapters

Property Description

Append If this property is set to true, it causes Oracle File and FTP
Adapters to append to a file on outbound. If the file does not exist, then
a new file is created.

The file name can either be specified in the JCA file for the outbound
operation or in the jca.file.FileName header.

AsAttachment If set to true, it causes the inbound file to be published as an attachment.

BatchSize Set it to the batch size for the batching transformation.

CharacterSet Set it to the character set for the attachment. This parameter is not used
internally by the Oracle File and FTP Adapters, and it is meant for third
party applications that process the attachments published by the Oracle
File and FTP Adapters.

ChunkSize Set it to the chunk size for the chunked interaction operation.

ConcurrentThreshold The maximum number of translation activities that can be allowed to
execute in parallel for a particular outbound scenario. The translation step
during the outbound operation is CPU-intensive and must be guarded
because it might cause other applications or threads to starve. The
maximum value is 100.

ContentType Set it to the mime-type of the attachment. This parameter is not used
internally by the Oracle File and FTP Adapters, and it is meant for third
party applications that process the attachments published by the Oracle
File or FTP Adapter.

DeleteFile If set to true, the Oracle File or FTP Adapter deletes the file after
processing.

DirectorySeparator When you choose multiple directories, the generated JCA files use
semicolon (;) as the separator for these directories. However, you can
change the separator to something else. If you do so, manually add
<property name="DirectorySeparator" value="chosen
separator"/> in the generated JCA file. For example, to use comma (,)
as the separator, you must first change the separator to comma (,) in the
Physical directory and then add <property
name="DirectorySeparator" value=","/> in the JCA file.

ElapsedTime This property is used for outbound batching. When the time specified
elapses, the outgoing file is created. The parameter is of type int and is
not mandatory. The default value is 1.

Encoding Set it to the encoding used for the attachment. This parameter is not used
internally by the Oracle File and FTP Adapters, and it is meant for third
party applications that process the attachments published by the Oracle
File and FTP Adapters.

ExcludeFiles This property specifies the pattern for types of files to be excluded during
polling. The property is of type String and is not mandatory.

FileName Use this parameter to specify a static single file name during the write
operation.

FileNamingConvention This property is used for the naming convention for the outbound write
operation file.

FileSize This property is used for outbound batching. The outgoing file is created
when the file size condition is met. The parameter is of type int and is
not mandatory. The default value is 1000 KB.

Oracle File and FTP Adapters Properties

Oracle JCA Adapter Properties A-3

IncludeFiles This property specifies the pattern for types of files to pick up during
polling. The parameter is of type String and is mandatory.

Lenient If set to true, then the Orcle File Adapter does not complain if it does not
have enough permission to read or write to the inbound directory. The
default value of this property is false.

ListSorter This property specifies the sorter that the Oracle File and FTP Adapters
use to sort files in inbound. You can set this parameter to:

oracle.tip.adapter.file.inbound.listing.TimestampSorte
rAscending to sort the file names by their modified time stamps in
ascending manner or

oracle.tip.adapter.file.inbound.listing.TimestampSorte
rDescending to sort the file names by their modified time stamps in
descending manner

LogicalArchiveDirectory This property specifies the logical directory in which to archive
successfully processed files. The property is of type String and is not
mandatory.

LogicalDirectory This parameter specifies the logical input directory to be polled. The
parameter is of type String.

MaxRaiseSize This property specifies the maximum number of files that the Oracle File
or FTP Adapter submits for processing in each polling cycle. For example,
if the inbound directory has 1000 files and MaxRaiseSize is set to 100
and the polling frequency is one minute, then the Oracle File or FTP
Adapter submits 100 files every minute.

MinimumAge This parameter specifies the minimum age of files to be retrieved. This
specification enables a large file to be completely copied into the input
directory before it is retrieved for processing. The age is determined by
the last modified time stamp. For example, if you know that it takes three
to four minutes for a file to be written, then set the minimum age of
pollable files to five minutes. If a file is detected in the input directory and
its modification time is within five minutes of the current time, then the
file is not retrieved because it is still potentially being written to.

NumberMessages This property is used for outbound batching. The outgoing file is created
when the number of messages condition is met. The parameter is of type
int and is not mandatory. The default value is 1.

PhysicalArchiveDirectory This property specifies where to archive successfully processed files. The
property is of type String and is not mandatory.

PhysicalDirectory This property specifies the physical input directory or directories to be
polled. The parameter is of type String. The inbound directory where
the files appear is mandatory. You must specify the physical directory or
logical directory.

PollingFrequency This parameter specifies how often to poll a given input directory for new
files. The parameter is of type int and is mandatory. The default value is
1 minute.

PublishSize This property indicates whether the file contains multiple messages and
how many messages to publish to the BPEL process at a time. The
parameter is of type int and is not mandatory. The default value is 1.

For example, if a certain file has 11 records and this parameter is set to 2,
then the file processes 2 records at a time and the final record is processed
in the sixth iteration.

Recursive If this property is set to true, then the adapter can process all the
sub-directories under the main input directory recursively.

Table A–1 (Cont.) JCA Properties for Oracle File and FTP Adapters

Property Description

Oracle File and FTP Adapters Properties

A-4 Oracle Fusion Middleware User's Guide for Technology Adapters

SequenceName Specifies the Oracle database sequence name to be used if you have
configured the outbound Oracle File or FTP Adapter for High Availability.

SingleThreadModel If the value is true, the Oracle File or FTP Adapter poller processes files
in the same thread. In other words, it does not use the global in-memory
queue for processing.

SourceFileName The source file for the File I/O operation.

SourcePhysicalDirectory The source directory for the File I/O operation.

SourceSchema Set to the schema for the source file.

SourceSchemaRoot Set to the root element name for the source file.

SourceType Set this to native if the source file is native and xml if the source file is
xml.

TargetFileName The target file for the File I/O operation.

TargetPhysicalDirectory The target directory for the File I/O operation.

TargetSchema Set it to the schema for the target file.

TargetSchemaRoot Set it to the root element name for the target file.

TargetType Set this to native if the target file is native and xml if the source file is
xml.

ThreadCount If this property is available, then the adapter creates its own processor
threads rather than depend on the global thread pool processor threads
(by deafult, 4 of them). In other words, this parameter partitions the
in-memory queue and each composite application gets its own in-memory
queue.

■ If the ThreadCount property is set to 0, then the threading behavior
equals that of the single-threaded model.

■ If the ThreadCount property is set to -1, then the global thread pool
is used, which equals the default threading model.

■ The maximum value for the ThreadCount property is 40.

TriggerFile The name of the trigger file that activates the inbound Oracle File or FTP
Adapter.

TriggerFilePhysicalDirector
y

The directory path where the Oracle File or FTP Adapter looks for the
trigger files.

TriggerFileStrategy This property defines the strategy that the Oracle File or FTP Adapter uses
to look for the specified trigger file in the trigger file directory. The
acceptable values are EndpointActivation, EveryTime, or
OnceOnly.

Type Set it to COPY, MOVE, or DELETE for the File IO interaction.

UseRemoteErrorArchive This property defines where an error is archived during an Inbound Read.
During an Inbound Read operation, if a malformed XML file is read, the
malformed file results in an error. The errored file is by default sent to the
remote file system for archival. The errored file can be archived at a local
file system by specifying the useRemoteErrorArchive property in the jca
file and setting that property to false. The default value for this property is
true.

Table A–1 (Cont.) JCA Properties for Oracle File and FTP Adapters

Property Description

Oracle File and FTP Adapters Properties

Oracle JCA Adapter Properties A-5

UseHeaders This parameter can be set to true or false. If you must read file headers
and skip reading the payload while using inbound Oracle File or FTP
Adapter, then set the UseHeader property to true.

This is typically used in large payload scenarios where the inbound
adapter is used as a notifier.

UseStaging If set to true, then the outbound Oracle File or FTP Adapter writes
translated data to a staging file, and later it streams the staging file to the
target file. If set to false, then the outbound Oracle File or FTP
Adapter does not use an intermediate staging file.

Xsl Set it to the xsl transformer between the source and the target.

Table A–2 JCA Properties Specific to Oracle FTP Adapter

Property Description

FileType Set this property to either ascii or binary depending on the requirement.

SourceIsRemote Set this property to false if you want to notify the Oracle FTP Adapter that the
source for the IO operation is a local file system as opposed to a remote FTP server.

TargetIsRemote Set this property to false if you want to notify the Oracle FTP Adapter that the
target for the IO operation is a local file system as opposed to a remote FTP server.

UseNlst Set this property to true if you want the Oracle FTP Adapter to use the NLST FTP
command instead of the LIST command that the adapter uses by default.

UseRemoteArchive Set this property to true to notify the Oracle FTP Adapter that the archival directory
is on the same FTP server. If set to false, the Oracle FTP Adapter uses a local file
system folder for archival.

Table A–3 Binding Properties for Oracle File and FTP Adapters

Property Description

ignoreListingErrors Lets you control the behavior of the inbound Oracle File Adapter during the
polling operation. If set to true, the Oracle File Adapter does not complain if it
cannot read from a nested folder.

IgnoreZeroByteFile Set it to true if you do not want Oracle File and FTP Adapters to throw an
exception during the outbound read operation, if the file could not be found. This
property is ignored if the schema for the inbound file is anything other than Opaque.

inMemoryTranslation This property is applicable only if UseStaging is set to false .If UseStaging is
set to true, then the translation step occurs in-memory (that is, an in-memory byte
array is created). If set to false, then the adapter creates an output stream to the
target file (FTP, FTPS, and SFTP included) and allows the translator to translate and
write directly to the stream.

jca.message.encodin
g

This property is used to override the encoding specified in the NXSD schema for
inbound Oracle File and FTP Adapters.

notifyEachBatchFail
ure

Setting to true causes the Oracle File or FTP Adapter to call the Notification
Agent's onBatchFailure every time an error occurs in a debatching scenario. If set
to false, Oracle File or FTP Adapter call onBatchFailure only once after
all messages are debatched.

Table A–1 (Cont.) JCA Properties for Oracle File and FTP Adapters

Property Description

Oracle File and FTP Adapters Properties

A-6 Oracle Fusion Middleware User's Guide for Technology Adapters

oracle.tip.adapter.
file.debatching.rej
ection.quantum

This property lets you control the size of rejected messages for inbound Oracle File
or FTP Adapter partner link. For example, if you set it to 100, it causes the
Oracle File or FTP Adapter to reject 100 lines from the file because the actual
file is too large.

oracle.tip.adapter.
file.highavailabili
ty.maxRetry

Number of times that inbound Oracle File and FTP Adapters retry to establish a
database connection in distributed polling scenarios.

oracle.tip.adapter.
file.highavailabili
ty.maxRetryInterval

Number of milliseconds after which inbound Oracle File and FTP Adapters retry to
establish a database connection in distributed polling scenarios.

oracle.tip.adapter.
file.mutex

Set it to the class name that specifies the mutex for the outbound write operation.
This class must extend the oracle.tip.adapter.file.Mutex abstraction.

oracle.tip.adapter.
file.rejectOriginal
Content

Setting to true causes Oracle File or FTP Adapter to reject the original content.
If set to false, the adapter rejects the XML data created because of the translation
step.

oracle.tip.adapter.
file.timeout.recove
rpicked.minutes

This property is used by the inbound highly available adapter when using
FILEADAPTER_IN as the coordinator. Remember that when a file is first claimed
(enqueued) by a node for processing, the FILE_PROCESSED column in
FILEADAPTER_IN is set to 0. At a later point in time, when a decoupled processor
threads picks up the file for processing, the value of the FILE_PROCESSED column is
updated from 0 to 1. And when the file is processed completely, the FILE_
PROCESSED column is updated from 1 to 2. However, if the processor thread picks
up a file but the node crashes before processing the file, then the file is never
processed. This property is used to undo the pick operation. The adapter does this by
deleting the entries in the FILEADAPTER_IN table that have been picked up but not
processed within the value specified here.

oracle.tip.adapter.
file.timeout.recove
runpicked.minutes

This property is used by the inbound highly available adapter when using
FILEADAPTER_IN as the coordinator. Remember that when a file is first claimed by a
node for processing, FILE_PROCESSED column in FILEADAPTER_IN is set to 0.
Later on, when the decoupled-processor thread picks up the file for processing, the
value of the FILE_PROCESSED column is updated from 0 to 1. And when the file is
processed completely, the FILE_PROCESSED column is updated from 1 to 2. If the
node crashes when the FILE_PROCESSED is still 0, it would mean that the file is
enqueued by a node (no other nodes can pick this one up). However, it also means
that the decoupled processor threads have still not picked this one for processing.
This property is used to undo the claim(enqueue_ operation.) The adapter does
this by deleting the entries in the FILEADAPTER_IN table that have been claimed
(for example, FILE_PROCESSED =="0"), but not picked up till now.

recoveryInterval This property is used by the inbound adapter to configure the recovery interval in
case of errors. For example, if the physical directory is nonexistent, then the adapter
uses this value to perform periodic sleep or wakeup checks to check whether the
physical directory has been created and is accessible.

serializeTranslatio
n

If set to true, then the translation step is serialized using a semaphore. The number
of permits for semaphore (guarding the translation step) comes from the
ConcurrentThreshold property. If false, then the translation step occurs outside
the semaphore.

useFileSystem This property is used by inbound Oracle File or FTP Adapter during read-only
polling in a clustered environment. Setting it to true causes the adapter to use the
file system to store the metadata of the processed files. Setting it to false causes the
adapter to use a database table.

Table A–3 (Cont.) Binding Properties for Oracle File and FTP Adapters

Property Description

Oracle Socket Adapter Properties

Oracle JCA Adapter Properties A-7

A.2 Oracle Socket Adapter Properties
This section describes the properties applicable to the Oracle Socket Adapter,
including:

■ Table A–7, " JCA Properties for Oracle Socket Adapter"

For properties applicable to all Oracle JCA Adapters, see Section A.7, "Generic Oracle
JCA Adapter Properties".

For more information, see Section 33.1.2.7, "Oracle Socket Adapter", in the Oracle
Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process
Management Suite.

Table A–4 Binding Properties Specific to Oracle FTP Adapter

Property Description

timestampOffset This property is used by the Oracle FTP Adapter to handle time zone issues, typically
to convert the time difference between the FTP server and the system on which the
Oracle FTP Adapter is running to millisecond.

Table A–5 JCA Properties for Oracle File Adapter: Normalized Properties

Property Description

jca.file.FileName This property specifies the name of the file read from the inbound directory or
written to the outbound directory.

jca.file.Directory This property specifies the name of the directory from which file is read from or
written to.

jca.file.Size This property specifies the size of the file published from the inbound Oracle File
Adapter.

jca.file.Batch This property is used to specify a unique identifier for the file being published from
the inbound adapter.

jca.file.BatchIndex If a file has multiple messages and de-batching is used, then this normalized
property specifies the message (record) number from the same batch. In this case, the
jca.file.Batch remains the same but jca.file.BatchIndex increments by
one for each publish from the same batch.

Table A–6 JCA Properties for Oracle FTP Adapter: Normalized Properties

Property Description

jca.ftp.FileName This property specifies the name of the file read from the inbound directory or
written to the outbound directory.

jca.ftp.Directory This property specifies the name of the directory from which file is read from or
written to.

jca.ftp.Size This property specifies the size of the file published from the inbound Oracle File
Adapter. The size can be zero.

jca.ftp.Batch This property is used to specify a unique identifier for the file being published from
the inbound Oracle FTP Adapter.

jca.ftp.BatchIndex If a file has multiple messages and de-batching is used, then this normalized
property specifies the message (record) number from the match batch. In this case,
the jca.ftp.Batch remains the same but jca.ftp.BatchIndex increments by
one for each publish from the same batch.

Oracle AQ Adapter Properties

A-8 Oracle Fusion Middleware User's Guide for Technology Adapters

A.3 Oracle AQ Adapter Properties
This section describes the properties applicable to the Oracle AQ Adapter, including:

■ Table A–8, " JCA Properties for Oracle AQ Adapter"

■ Table A–9, " JCA Properties for Oracle AQ Adapter: Normalized Properties"

■ Table A–10, " Binding Properties for Oracle AQ Adapter"

For properties applicable to all Oracle JCA Adapters, see Section A.7, "Generic Oracle
JCA Adapter Properties".

For more information, see Section 33.1.2.1, "Oracle AQ Adapter", in the Oracle Fusion
Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process
Management Suite.

Table A–7 JCA Properties for Oracle Socket Adapter

Property Description

ByteOrder Byte order of the remote computer being communicated with.

CustomImpl If CustomImpl is chosen as the TransMode property, then it is the name of the Java class defining
the handshake. This property is a concrete implementation of the ICustomParser interface.

Encoding Character encoding used by the remote computer.

Host In case of outbound, the computer name on which the socket server is running, to which you want
to connect. In case of inbound, it is always localhost.

Port In case of outbound, it is the port number on which a socket server is running, to which the
adapter is connecting.

In case of inbound, it is the port number on which the socket adapter listens for incoming
connections.

ReplyXslt If XSLT is chosen as the TransMode property, then it specifies the path to the style sheet defining
the handshake for inbound reply.

TransMode Mechanism for defining the protocol. Set to XSLT to use style sheets, set to CustomImpl to use
custom Java code, and set to NXSD for plain schema translation.

Xslt If XSLT is chosen as the TransMode property, then it specifies the path to the style sheet defining
the handshake for inbound request, in case of inbound and outbound request or reply.

Table A–8 JCA Properties for Oracle AQ Adapter

Property Description

QueueName The name of the AQ Queue being read from or written to.

DatabaseSchema The schema where the queue resides. If not specified, the schema of the current
connection is used.

SchemaValidation When this property is set to "true", the payload is validated against the schema
specified. If the validation fails, then the message is rejected.

EnableStreaming When this property is set to "true", the payload from the queue is streamed
instead of being processed as an in-memory DOM. You must use this feature while
handling large payloads. This property is applicable when processing RAW
messages, XMLType messages, and ADT type messages for which a payload is
specified through an ADT attribute.

RecipientList Specify the consumer name or names that are the intended recipients for the
messages enqueued by the adapter. The message remains in the queue until all
recipients have dequeued the message. If the field is left empty, then all the
currently active consumers are recipients.

Oracle AQ Adapter Properties

Oracle JCA Adapter Properties A-9

Consumer Applicable only for multiconsumer queues. If specified, only the messages targeted
for the particular consumer are made available for processing.

ObjectFieldName This property is used to identify the field containing the business payload if the
queue is an ADT queue. You can specify an attribute of ADT to constitute a
payload or an entire ADT to represent payload. In former case the
'ObjectFieldName' should be same as the attribute name of the ADT. In latter case
this property is not specified.

PayloadHeaderRequired Only applicable if the ObjectFieldName property specifies a value. If set to
"true", it ensures that all non payload attributes of ADT are available for
processing as Normalized Message property 'jca.aq.HeaderDocument'.

MessageSelectorRule When a dequeue is performed from a multiconsumer queue, it is sometimes
necessary to screen the messages and accept only those that meet certain
conditions. These conditions can be based on payload or queue header values and
is specified using MessageSelectorRule property of the adapter. These
conditions may concern selecting messages of a certain priority, or some aspect of
the message payload, such as in selecting only loan applications above $100,000.

DequeueCondition This property is valid for dequeue operations only. Enter a Boolean expression
similar to the WHERE clause of a SQL query. This expression can include conditions
on message properties, user data properties (object payloads only), and PL/SQL or
SQL functions. If multiple messages satisfy the dequeue condition, then the order
of dequeuing is indeterminate, and the sort order of the queue is not honored.

Correlation You can assign an identifier to each message, thus providing a means to retrieve
specific messages at a later time. The value to enter is agreed upon between the
enqueuing sender and the dequeuing receiver for asynchronous conversations.
This can be overridden on a per message basis through the normalized message
property, 'jca.aq.Correlation'. When specified for the dequeue operation, it
only dequeues messages that match the value specified. If none is specified, all
messages in the queue are available to the dequeue operation.

PayloadSizeThreshold This property exposes a configurable control mechanism through which you can
specify the payload size threshold in the adapter layer. The messages that have
sizes beyond the configured threshold limit are rejected. If this property is not
configured, it does not impose any restriction on the size of messages.

Table A–9 JCA Properties for Oracle AQ Adapter: Normalized Properties

Property Description

jca.aq.Attempt
s

The number of failed attempts at dequeuing the message.

jca.aq.Correla
tion

User-assigned correlation ID.

jca.aq.Delay The number of seconds after which the message is available for dequeuing.

jca.aq.Enqueue
Time

The time at which the message was enqueued.

jca.aq.Excepti
onQueue

The exception queue name.

jca.aq.Expirat
ion

The number of seconds before the message expires. This parameter is an offset from the
Delay parameter. Default value of -1(never expires) is used if not specified.

jca.aq.Message
Id

The hexadecimal representation of the message ID for the dequeued message.

jca.aq.OrigMes
sageId

The hexadecimal representation of the original message ID.

Table A–8 (Cont.) JCA Properties for Oracle AQ Adapter

Property Description

Oracle JMS Adapter Properties

A-10 Oracle Fusion Middleware User's Guide for Technology Adapters

A.4 Oracle JMS Adapter Properties
This section describes the properties applicable to the Oracle JMS Adapter, including:

■ Table A–11, " JCA Properties for Oracle JMS Adapter"

■ Table A–12, " JCA Properties for Oracle JMS Adapter: Normalized Properties"

■ Table A–13, " Binding Properties for Oracle JMS Adapter"

For properties applicable to all Oracle JCA Adapters, see Section A.7, "Generic Oracle
JCA Adapter Properties".

For more information, see Section 33.1.2.5, "Oracle JMS Adapter", in the Oracle Fusion
Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process
Management Suite

jca.aq.Priorit
y

Priority of the message. A smaller number indicates a higher priority. The priority can be any
number. The default value is zero.

jca.aq.Recipie
ntList

The list of recipients for this message, separated by commas. This overrides
RecipientList in InteractionSpec.

jca.aq.HeaderD
ocument

Contains string or DOM of current headers (XML DOM representation of payload headers.)

Table A–10 Binding Properties for Oracle AQ Adapter

Property Description

ConnectionRetryDelay The time for which the Oracle AQ Adapter waits before trying to re-create
a connection after a connection is lost. The default value is 15s.

DequeueTimeOut It is the interval after which the dequeue() API times out if no message is
received on the inbound queue. The default value is 1s.

adapter.aq.dequeue.threads Specifies the number of poller threads that are created when an endpoint is
activated. The default value is 1.

Table A–11 JCA Properties for Oracle JMS Adapter

Property Description

DestinationName The name of the queue or topic being read from or written to.

UseMessageListener The only value of this property supported in the current version is false. A
value of false ensures that the JMS adapter uses synchronous mechanism to
poll queues or topics for messages

PayloadType This property specifies the type of JMS message that is being dequeued or
enqueued by the adapter. For Map messages the value is 'MapMessage' and
for Text messages the value is 'TextMessage'.

DurableSubscriber Name used to identify a durable subscription. When working with durable
subscriptions ensure that ClientID is also specified in addition to
DurableSubscriber property. ClientID is specified as part of the
factoryProperties property when defining a Managed Connection
Factory instance. This property is only applicable when working with JMS
Topic scenarios

MessageSelector A string whose syntax is based on a subset of the SQL92 conditional
expression syntax and lets you specify the messages adapter is interested in,
by using header field references and property references. Only messages
whose header and property values match the selector are delivered.

Table A–9 (Cont.) JCA Properties for Oracle AQ Adapter: Normalized Properties

Property Description

Oracle JMS Adapter Properties

Oracle JCA Adapter Properties A-11

PayloadEntry Only applicable when dealing with messages of type MapMessage. This
property is used to identify the field containing the business payload when
dealing with Map messages. All other Map message entries are made
available as normalized message properties accessed using
jca.jms.Map.MapMessage entry name

AttachmentList Only applicable when dealing with message of type MapMessage. This
property is used to identify the field containing the business payload when
dealing with Map messages. Also, the payload in this case is published as an
attachment. You can use either PayloadEntry or AttachmentList. All
other Map message entries are made available as normalized message
properties accessed using jca.jms.Map.MapMessage entry name

RequestDestinationName This property is applicable for a synchronous request-reply scenario and
specify the name of destination for sending a message.

ReplyDestinationName This property is applicable for a synchronous request-reply scenario and
specify the name of destination for receiving a reply.

AllowTemporaryReplyDestinatio
n

This property is applicable for a synchronous request-reply scenario. When
set to true ReplyDestinationName is not required and JMS adapter in
turn uses a temporary destination to recieve a reply from.

EnableStreaming When this property is set to "true", the payload from the queue or topic is
streamed instead of being processed as an in-memory DOM. You must use
this feature while handling large payloads.

DeliveryMode Represents the delivery mode to use. The message producer's default delivery
mode is PERSISTENT. This can be overridden on a per message basis using
normalized message property jca.aq.JMSDeliveryMode

TimeToLive Represents the message's lifetime (in milliseconds). The message producer's
default time to live is unlimited; the message never expires. A value of 0
signifies that the message never expires.

PayloadSizeThreshold This property exposes a configurable control mechanism through which you
can specify the payload size threshold in the adapter layer. The messages that
have sizes beyond the configured threshold limit are rejected. If this property
is not configured, it does not impose any restriction on the size of messages

Priority Represents priority for this message. The message producer's default priority
is 4. This can be overridden on a per message basis using normalized message
property jca.aq.JMSPriority

Table A–12 JCA Properties for Oracle JMS Adapter: Normalized Properties

Property Description

jca.jms.JMSDestinationName This property specifies the destination to which the message
is sent, and is set by the JMS producer.

jca.jms.JMSDestinationProperties This property represents the properties that define the
context used to look up the destination object to which the
message must be sent

jca.jms.JMSCorrelationID This property is set by both producers and consumers for
linking the response message with the request message. This
is an optional attribute.

jca.jms.JMSType This property specifies the JMS message type.

jca.jms.JMSReplyTo This is an optional attribute that indicates the destination to
which a message reply must be sent.

Table A–11 (Cont.) JCA Properties for Oracle JMS Adapter

Property Description

Oracle JMS Adapter Properties

A-12 Oracle Fusion Middleware User's Guide for Technology Adapters

jca.jms.JMSPriority This property is used by the consumer to set a priority
number between 0 and 9. Larger numbers represent a higher
priority.

jca.jms.JMSExpiration This property specifies the duration of the message before
the expiration. When a message's expiration time is reached,
the JMS provider should discard it.

jca.jms.JMSDeliveryMode This property is set to persistent or nonpersistent
mode by the JMS client.

jca.jms.JMSMessageID This property is used to specify a unique message identifier.
The exact scope of uniqueness is provider-defined.

jca.jms.JMSRedelivered This property is used as an indication of whether a message
is being re-delivered. If a client receives a message with the
JMSRedelivered field set, it is likely, but not guaranteed, that
this message was delivered earlier but that its receipt was
not acknowledged at that time.

jca.jms.JMSTimestamp This property is used to specify the time when the message
was handed off to the JMS provider to be sent.

jca.jms.JMSProperty.name This property represents any custom (application-specific)
properties of the message. The supported properties
conforms to the one allowed according to JMS specification.
If an invalid property value is specified, the adapter warns
the user (captured in the log files) and ignores the invalid
property.

jca.jms.Map.name This property represents any MapMessage element that is
not transferred as payload.

jca.jms.WeblogicUnitOfOrder This value overrides the value specified via the property
UnitOfOrder for the JmsProduceInteractionSpec.

Table A–13 Binding Properties for Oracle JMS Adapter

Property Description

adapter.jms.encoding Used to encode inbound text messages. This property is
superseded by the newly supported property called
jca.message.encoding that is applicable for both
inbound and outbound messages.

adapter.jms.receive.threads Specifies the number of poller threads that are created when
an endpoint is activated. The default is 1.

adapter.jms.receive.timeout Timeout value used for the synchronous receive call. It is the
time after which receive() API times out if no message is
received on the inbound queue. The default value is 1s.

adapter.jms.registration.interval This property is not supported anymore.

adapter.jms.retry.interval Used by the inbound connection retry layer. The time for
which the Oracle JMS Adapter waits before trying to
re-create a connection after a connection is lost. The default
value is 30s.

JMSReplyToDestinationProperties Declaratively impose custom property settings on
Destination objects received during inbound request/reply
scenarios.

JMSReplyUseCorrelationIdForCorrelation Used to specify whether you want to use a correlation Id for
correlation. Valid values are true and false. The default
value is false.

Table A–12 (Cont.) JCA Properties for Oracle JMS Adapter: Normalized Properties

Property Description

Oracle Database Adapter Properties

Oracle JCA Adapter Properties A-13

A.5 Oracle Database Adapter Properties
This section describes the properties applicable to the Oracle Database Adapter,
including:

■ Table A–14, " JCA Properties for Oracle Database Adapter: Instance Properties"

■ Table A–15, " JCA Properties for Oracle Database Adapter: Normalized Message
Properties"

For properties applicable to all Oracle JCA Adapters, see Section A.7, "Generic Oracle
JCA Adapter Properties".

For more information, see:

■ Section 33.1.2.2, "Oracle Database Adapter", in the Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management
Suite.

■ Appendix H, "Normalized Message Properties", in the Oracle Fusion Middleware
Developer's Guide for Oracle SOA Suite.

JMSReplyUseMessageIdForCorrelation Used to specify whether message Id for correlation. Valid
values are true and false. The default value if none is
specified is false.

JMSReplyPropagateJMSExpiration The boolean property specifies if the reply message TTL is
set to 0 (message never expires) or some specified value
related to message expiration. The default value is false.

requestReply.cacheReceivers If the same small number of JMS receivers are used for the
same request destination repeatedly, then set this property
to true to improve performance. The default value if none
is specified is false.

requestReply.useCorrelation Applicable for a synchronous request-reply scenario. If set to
true, then it applies a JMS Message selector for obtaining
the reply message. If the request Normalized Message
property, jca.jms.JMSCorrelationID is specified, then
it is used for correlation, otherwise the JMS Message ID
property is used. The JMS adapter uses the following
message selector: "JMSCorrelationID = '<corrId>'
[AND (<wsdlSelector>)]" where the AND branch is
only included if the user specifies a MessageSelector
property. The default value is true.

suppressHeaders Used to bypass headers. For scenarios in which a composite
does not use or produce the headers, the value of true can
be used. It may improve performance for such scenarios.
The default value is false.

Table A–13 (Cont.) Binding Properties for Oracle JMS Adapter

Property Description

Oracle Database Adapter Properties

A-14 Oracle Fusion Middleware User's Guide for Technology Adapters

Table A–14 JCA Properties for Oracle Database Adapter: Instance Properties

Property Description

dataSourceName Either this property or xADataSource name is a mandatory property, or both. Refers
to the JNDI name (jdbc/...) of the tx-level="local" data source connecting to.
All operations using this pool are locally transacted, independent on the global
transaction. If both xADataSourceName and dataSourceName are specified, then
the latter is used for READ operations.

logTopLinkAll The default value is FALSE. You must increase DB Adapter logging to include all
underlying TopLink log messages at maximum granularity. This property provides
maximum visibility, but adapter logging is tuned to show the most relevant TopLink
SQL logging.

platformClassName This is a mandatory property. This points to the type of database being connected to.
The suggested values for this property are:

■ Oracle11Platform

■ Oracle10Platform

■ Oracle9Platform

■ Oracle8Platform

■ DB2Platform

■ InformixPlatform

■ SybasePlatform

■ SQLServerPlatform

■ MySQLPlatform

■ DatabasePlatform

You also can give the full package and class name of a subclass of
oracle.toplink.platform.database.DatabasePlatform. For DB2 on
AS/400, Oracle recommends that you give the value of
oracle.tip.adapter.db.toplinkext.DB2AS400Platform.

usesBatchWriting The default value is TRUE. Multiple identical statements are executed as a single
batch statement. You must only disable this property for certain JDBC drivers that
have known issues.

usesSkipLocking The default value is TRUE. Oracle Database polling statements using SELECT FOR
UPDATE are automatically be upgraded to SELECT FOR UPDATE SKIP LOCKED,
which provides better concurrent performance. Disable this property only for certain
cases where skip locking is not compatible with another feature or your use case.

usesNativeSequencing The default value is TRUE. If any SOA services are configured to automatically assign
sequence numbers on INSERT operation, then a TRUE value indicates that the
sequence values are coming from a database native sequence.

xADataSourceName This is a mandatory property. It specifies the JNDI name (jdbc/...) of the
tx-level="global" data source connecting to the database. All operations using
this pool bind to the global transaction and commit or roll back as a unit.

Table A–15 JCA Properties for Oracle Database Adapter: Normalized Message Properties

Property Description

jca.db.CursorName Inbound/Outbound.

jca.db.DataSourceName Outbound.

jca.db.Password Outbound. You cannot assign values to the jca.db.password
property on Oracle Containers for Java EE because its data source does
not support setting password dynamically to the getConnection
method. Consider using jca.db.ProxyPassword instead.

Oracle MQ Series Adapter Properties

Oracle JCA Adapter Properties A-15

A.6 Oracle MQ Series Adapter Properties
This section describes the properties applicable to the Oracle MQ Series Adapter,
including:

■ Table A–16, " JCA Properties for Oracle MQ Series Adapter"

■ Table A–17, " JCA Properties for Oracle MQ Series Adapter: Normalized
Properties"

■ Table A–18, " Connection Properties for Oracle MQ Series Adapter"

■ Table A–19, " Binding Properties for Oracle MQ Series Adapter"

For properties applicable to all Oracle JCA Adapters, see Section A.7, "Generic Oracle
JCA Adapter Properties".

jca.db.ProxyCertificate1 Outbound. When set, specifies OracleConnection.PROXYTYPE_
CERTIFICATE as the proxy type. The value is a base64Binary
encoded byte[] array that contains the certificate. If set, do not set
jca.db.ProxyDistinguishedName, jca.db.ProxyUser, and
jca.db.ProxyPassword.

jca.db.ProxyDistinguishedName1 Outbound. When set, specifies OracleConnection.PROXYTYPE_
DISTINGUISHED_NAME as the proxy type. The value should be the
proxy distinguished name as a java.lang.String. If set, then set
none of jca.db.ProxyCertificate, jca.db.ProxyUserName and
jca.db.ProxyPassword.

jca.db.ProxyIsThickDriver1 Outbound. Valid values are true and false. Set to true if using the
OCI driver, as there is some discrepancy in the JDBC-level API between
the thick and thin drivers.

jca.db.ProxyPassword1 Outbound. When set, specifies OracleConnection.PROXYTYPE_
USER_PASSWORD as the proxy type. The value should be the password
for the proxy user as a java.lang.String. If set, you must also set
jca.db.ProxyUserName. If set, then set neither
jca.db.ProxyCertificate nor jca.db.ProxyDistinguished
name.

jca.db.ProxyRoles1 Outbound. Set to define the roles associated with the proxy user. The
value should be a String[] array where each java.lang.String
corresponds to a role name. This property is applicable when using any
of OracleConnection.PROXYTYPE_USER_PASSWORD,
OracleConnection.PROXYTYPE_CERTIFICATE, and
OracleConnection.PROXYTYPE_DISTINGUISHED_NAME.

jca.db.ProxyUserName1 Outbound. When set, specifies OracleConnection.PROXYTYPE_
USER_PASSWORD as the proxy type. The value should be the user name
of the proxy user as a java.lang.String. If set, you must also set
jca.db.ProxyPassword. If set, then set neither
jca.db.ProxyCertificate nor jca.db.ProxyDistinguished
name.

jca.db.UserName Outbound. You cannot assign values to the jca.db.userName
property on Oracle Containers for Java EE because its data source does
not support setting user name dynamically to the getConnection
method. Consider using jca.db.ProxyUserName instead.

jca.db.XADataSourceName Outbound.
1 For more information, see Section 9.3.4, "Proxy Authentication Support".

Table A–15 (Cont.) JCA Properties for Oracle Database Adapter: Normalized Message Properties

Property Description

Oracle MQ Series Adapter Properties

A-16 Oracle Fusion Middleware User's Guide for Technology Adapters

For more information, see Section 33.1.2.6, "Oracle MQ Adapter", in the Oracle Fusion
Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process
Management Suite.

Table A–16 JCA Properties for Oracle MQ Series Adapter

Property Description

QueueName This property specifies the name of the MQ Queue for sending or retrieving
messages.

MessageType This property specifies the type of message: Normal, Request, Reply, or Report

MessageFormat This property specifies the type of MQ message format, such as Default, and
Request/Reply.

Priority This property specifies the message priority. Its value ranges from 0 to 9. The
default value is AS_Q_DEF, which uses the value defined in the destination queue.

Persistence This property is used to set the message persistence. The message persists when
this property is set to true. The defaults value is AS_Q_DEF, which uses the value
defined in the destination queue.

OnDeliveryFailure This property is used when message delivery fails. The default value is
DeadLetterQueue, which sends messages to a dead letter queue. If the value is
set to DISCARD, then messages are discarded.

PartialDeliveryForDL This property is used for partial delivery to a distribution list. The default value is
false.

SegmentIfRequired This property is used when the size of the message is larger than the maximum
limit set on the queue.

Expiry This property specifies the time after which the message would be removed by the
Queue Manager. The default value is NEVER.

ReplyToQueueName This property specifies the name of the queue to which the reply or report must be
sent.

ReportCOA If this property is set, a confirmation on arrival report is sent to the replyto
queue on arrival of a message in the destination queue. The default value is WITH_
NO_DATA, and no data is sent in this case.

ReportCO If this property is set, a confirmation on delivery report is sent to the replyto queue
on arrival of a message in the destination queue. The default value is WITH_NO_
DATA, and no data is sent in this case.

ReportException If this property is set, an exception report is sent to the replyto queue when
message delivery to the destination queue fails. The default value is WITH_NO_
DATA, and no data is sent in this case.

ReportExpiry If this property is set, an expiry report is sent to the replyto queue when a message
sent to the destination queue expires. The default value is WITH_NO_DATA, and no
data is sent in this case.

WaitInterval This property specifies the waiting interval for dequeuing the message in
outbound MQ queue.

MessageId This property is used to generate a Message Id for a reply or a report message. By
default a new Message Id is generated.

CorrelationId This property is used to generate a correlation Id for a reply or a report message.
By default the message Id of the request message is used as the correlation Id.

QueueOpenOptions This property specifies the queue open options to use while accessing the queue.

SecondaryQueueManager
Name

This property specifies the queue manager for the enqueue queue. Use this
property only when the outbound enqueue queue resides outside the inbound
queue manager.

Oracle MQ Series Adapter Properties

Oracle JCA Adapter Properties A-17

BackoutQueue This property is used to specify a backout queue to which rejected messages from
an inbound queue are to be sent.

BackoutQueueManagerNa
me

This property is used to specify the queue manager for the backout queue. Use this
property only when the Backout Queue resides outside the inbound queue
manager.

MaximumBackoutCount This property is used to specify the maximum backout retry count after which
rejected message is sent to the backout queue.

BackoutInterval This property is used to specify intervel between the backout retries. The default
value is 5 seconds.

BackoutRetries This property is used to specify the number of backout retries. The default value is
3.

FallbackReplyToQueueN
ame

This property is used for sending the report to the Normal Message Queue.

FallbackReplyToQueueM
anagerName

This property is used when the Primary Queue Manager specified in JNDI
connection cannot access the queue.

DistributionList This property is used to specify the elements of the distribution list for enqueuing
the message.

Table A–17 JCA Properties for Oracle MQ Series Adapter: Normalized Properties

Property Description

jca.mqAccountingToken Inbound/Outbound. Accounting token
information of the message. A
hexadecimal-encoded string.

jca.mq.ApplIdentityData Inbound/Outbound. Provides additional
information about the Identity of the
message or its originator. Accepts any
string.

jca.mq.MQMD.ApplOriginData Inbound/Outbound. Provides additional
information about the origin of this
message. Accepts any string.

jca.mq.MQMD.BackoutCount Inbound/Outbound.Count of the number
of times the message has previously been
returned by an MQQueue.get() call as part
of a unit of work, and subsequently backed
out. Accepts zero and positive integer
values.

jca.mq.MQMD.CorrelId Inbound/Outbound. Correlation identifier
of the message to be retrieved/ to be put.
Accepts a hexadecimal-encoded string.

jca.mq.MQMD.Encoding.Decimal Inbound/Outbound. Representation used
for numeric values in the application
message data. Accepts NORMAL and
REVERSED.

jca.mq.MQMD.Encoding.Float Inbound/Outbound. representation used
for numeric values in the application
message data. Accepts NORMAL,
REVERSED and S390

Table A–16 (Cont.) JCA Properties for Oracle MQ Series Adapter

Property Description

Oracle MQ Series Adapter Properties

A-18 Oracle Fusion Middleware User's Guide for Technology Adapters

jca.mq.MQMD.Expiry Inbound/Outbound. A message's expiry
time has elapsed, and it is eligible to be
discarded by the queue manager. Accepts
NEVER or a non-
Inbound/Outbound.negative integer value

jca.mq.MQMD.Feedback Inbound/Outbound. Used with a message
of type MQC.MQMT_REPORT to indicate
the nature of the report. Accepts any string.

jca.mq.MQMD.Feedback.ApplicationDefined Inbound/Outbound. application defined
feedback.Accepts any string.

jca.mq.MQMD.Format Inbound/Outbound. Format name used by
the sender of the message to indicate the
nature of the data in the message to the
receiver.Accepts following formats NONE,
ADMIN, CHANNEL_COMPLETED, CICS,
CMD1, CMD2, DEAD_LETTER_HDR,
DIST_HDR, EVENT, IMS, IMS_VAR_
STRING, MD_EXTN, PCF, REF_MSG_
HDR, RF_HDR_1, RF_HDR_2, STRING,
TRIGGER, WORK_INFO_HDR, XMIT_Q_
HDR

jca.mq.MQMD.GroupId Inbound/Outbound. Byte string that
identifies the message group to which the
physical message belongs. Accepts
hexadecimal-encoded string.

jca.mq.MQMD.MsgFlags.IsMsgInGroup Inbound/Outbound. Specifies if the
message belongs to a group. Accepts true,
false.

jca.mq.MQMD.MsgFlags.IsLastMsgInGroup Inbound/Outbound. Specifies if the
message is the last message of the group.
Accepts true, false

jca.mq.MQMD.MsgFlags.IsSegment Inbound/Outbound. Specifies if the
message is a segment. Accepts true, false

jca.mq.MQMD.MsgFlags.IsLastSegment Inbound/Outbound. Specifies if message is
the last segment. Accepts true, false

jca.mq.MQMD.MsgId Inbound/Outbound. Message identifier of
the message to be retrieved/ to be put.
Accepts hexadecimal encoded string

jca.mq.MQMD.MsgSeqNumber Inbound/Outbound. Sequence number of a
logical message within a group. Accepts
non- Inbound/Outbound.negative integer
value

jca.mq.MQMD.MsgType Inbound/Outbound. Indicates the type of
the message. Accepts any string.

jca.mq.MQMD.MsgType.ApplicationDefined Inbound/Outbound. Application -defined
message type. Accepts any string.

jca.mq.MQMD.Offset Inbound/Outbound. The offset of data in a
physical message from the start of a logical
message. Accepts non-
Inbound/Outbound.Negative integer
value.

Table A–17 (Cont.) JCA Properties for Oracle MQ Series Adapter: Normalized Properties

Property Description

Oracle MQ Series Adapter Properties

Oracle JCA Adapter Properties A-19

jca.mq.MQMD.OriginalLength Inbound/Outbound. Original length of a
segmented message. Accepts non-Negative
integer value Inbound/Outbound

jca.mq.MQMD.Persistence Inbound/Outbound. message persistence.
Accepts true, false, AS_Q_DEF

jca.mq.MQMD.Priority Inbound/Outbound. Message priority.
Accepts 0- Inbound/Outbound.9, AS_Q_
DEF

jca.mq.MQMD.PutApplName Inbound/Outbound. Name of the
application that Put the message. Accepts
any string

jca.mq.MQMD.PutApplType Inbound/Outbound. Type of application
that Put the message. Accepts any string.

jca.mq.MQMD.PutApplType.UserDefined Inbound/Outbound. User-defined Put
application type. Accepts any string.

jca.mq.MQMD.PutDateTime Inbound/Outbound. Time and date that
the message was Put. Accepts
year:month:date,
year:month:date:hour:minute,
year:month:date:hour:minute:second

jca.mq.MQMD.ReplyToQMgr Inbound/Outbound. Name of the queue
manager to which reply or report messages
should be sent. Accepts any sting.

jca.mq.MQMD.ReplyToQ Inbound/Outbound. Name of the queue to
which reply or report messages should be
sent. Accepts any string

jca.mq.MQMD.Report.Generate.CorrelId Inbound/Outbound. scheme to generate
the CorrelationId of reply or report
message. Accepts PASS_CORREL_ID,
COPY_MSG_ID

jca.mq.MQMD.Report.Generate.MsgId Inbound/Outbound. Scheme to generate
the MessageId of reply or report message.
Accepts NEW_MSG_ID, PASS_MSG_ID

jca.mq.MQMD.Report.Generate.COA Inbound/Outbound. Specifies the content
of COA report. Accepts WITH_NO_DATA,
WITH_PARTIAL_DATA, WITH_FULL_
DATA

jca.mq.MQMD.Report.Generate.COD Inbound/Outbound. Specifies the content
of COD report. Accepts WITH_NO_DATA,
WITH_PARTIAL_DATA, WITH_FULL_
DATA

jca.mq.MQMD.Report.Generate.Exception Inbound/Outbound. Specifies the content
of the Exception report. Accepts WITH_
NO_DATA, WITH_PARTIAL_DATA,
WITH_FULL_DATA

jca.mq.MQMD.Report.Generate.Expiry Inbound/Outbound. Specifies the content
of the Expiry report. Accepts WITH_NO_
DATA, WITH_PARTIAL_DATA, WITH_
FULL_DATA

jca.mq.MQMD.Report.Generate.NAN Inbound/Outbound. Specifies if the
incoming/outgoing message is NAN or
not. Accepts true, false

Table A–17 (Cont.) JCA Properties for Oracle MQ Series Adapter: Normalized Properties

Property Description

Oracle MQ Series Adapter Properties

A-20 Oracle Fusion Middleware User's Guide for Technology Adapters

jca.mq.MQMD.Report.Generate.PAN Inbound/Outbound. specify if
incoming/outgoing message is PAN or not.
Accepts true, false

jca.mq.MQMD.Report.TakeAction.OnMsgDeliveryFailure Inbound/Outbound.

jca.mq.MQMD.Report.TakeAction.OnMsgDeliveryFailure Accepts DISCARD, DEADLETTERQUEUE

jca.mq.MQMD.StrucId Inbound/Outbound. Struct id of MQMD.
Accepts any string

jca.mq.MQMD.UserIdentifier Inbound/Outbound. User who originated
this message. Accepts any string.

jca.mq.MQMD.Version Inbound/Outbound. Version of MQMD.
Accepts VERSION_1, VERSION_2

jca.mq.Inbound.MQMD.CorrelId Outbound. Correlation identifier of the
message retrieved in Async req-reply
scenario. Accepts hexadecimal encoded
string

jca.mq.Inbound.MQMD.MsgId Outbound. Message identifier of the
messageretrieved in Async req-reply
scenario. Accepts hexadecimal-encoded
string.

jca.mq.Inbound.MQMD.MsgType Outbound. Message Type of the message
retrieved in Async req-reply scenario.
Accepts any string.

jca.mq.Inbound.MQMD.Nan Outbound. NAN report option of the
message retrieved in the Async req-reply
scenario. Aceepts true, false

jca.mq.Inbound.MQMD.Pan Outbound. PAN report option of the
message retrieved in the Async req-reply
scenario. Accepts true, false

jca.mq.Inbound.MQMD.ReplyToQMgr Outbound. ReplyToQueueManager of the
message retrieved in the Async req-reply
scenario. Accepts any string.

jca.mq.Inbound.MQMD.ReplyToQ Outbound. ReplyToQueue of the message
retrieved in the Async req-reply scenario.
Accepts any string.

jca.mq.Inbound.MQMD.Report.Generate.CorrelId Outbound. Correlation scheme, for
generation of CorrelationId, of the message
retrieved in Async req-reply scenario.
Accepts PASS_CORREL_ID, COPY_MSG_
ID

jca.mq.Inbound.MQMD.Report.Generate.MsgId Outbound. Correlation scheme, for
generation of MessageId, of the message
retrieved in Async req-reply scenario.
Accepts NEW_MSG_ID, PASS_MSG_ID

jca.mq.ISpec.EnqueueMsgToQMgr Outbound. Queue Manager for outbound
queue. Accepts any string

jca.mq.ISpec.EnqueueMsgToQ Outbound. Queue name of outbound
queue. Accepts any string.

Table A–17 (Cont.) JCA Properties for Oracle MQ Series Adapter: Normalized Properties

Property Description

Oracle MQ Series Adapter Properties

Oracle JCA Adapter Properties A-21

Table A–18 Connection Properties for Oracle MQ Series Adapter

Property Description

hostName Name of the host computer.

portNumber Port number to be used.

channelName Set it to the server connection channel to be used.

queueManagerName A valid queue manager name.

CipherSuite Set CipherSuite to the name matching the CipherSpec set
on the SVRCONN channel. If set to null (default), then no SSL
encryption is performed.

clientEncoding Character encoding used by the client.

connectionFactoryLoc
ation

Location of the connection factory.

hostOSType Operating system used by the host computer.

KeyStoreAlgorithm Algorithm used by the key store.

KeyStoreLocation This value is the keystore where Oracle MQ Series Adapter has
its private keys. This is required when an adapter must
authenticate itself to the MQ Series server.

KeyStorePassword This value is the password that is required to access keystore.

KeyStoreProviderName The name of the keystore provider.

TrustStoreLocation This is the location where the adapter keeps its trusted
certificates information. This information is required when an
adapter must authenticate to the MQ Series server.

TrustStorePassword This property specifies the password of the Trust Store location.

KeyStoreType This property specifies the type of the key store.

Protocol Key Management Algorithm.

SSLPeerName A distinguished name pattern. If CipherSuite is set, you can
use this variable to ensure that the correct queue manager is
used. If set to null (default), then the DN of the queue manager
is not checked. This variable is ignored if sslCipherSuite is
null.

SSLEnable The true or false value for this property means that the Oracle
MQ Series Adapter is SSL enabled or SSL disabled.

userID This property is used if credential mapping is not set.

password This is the password to connect to the queue manager. This
property is used if credential mapping is not set.

XATransaction This property is used to enable or disable XA transactions. If set
to true, then XA transaction is enabled.

receiveExit This is the Receive Exit java class, which gets triggered
when you receive a message on a particular queue.

securityExit This is the Security Exit java class, which enables you to
customize the security flows that occur when an attempt is
made to connect to a queue manager.

sendExit This is the Send Exit java class, which gets triggered when
you send a message to a particular queue.

Generic Oracle JCA Adapter Properties

A-22 Oracle Fusion Middleware User's Guide for Technology Adapters

A.7 Generic Oracle JCA Adapter Properties
This section describes the properties applicable to all Oracle JCA Adapters, including:

■ Table A–20, " JCA Properties for all Oracle JCA Adapters"

For properties specific to each of the Oracle JCA Adapters, see:

■ Section A.1, "Oracle File and FTP Adapters Properties"

■ Section A.2, "Oracle Socket Adapter Properties"

■ Section A.3, "Oracle AQ Adapter Properties"

■ Section A.4, "Oracle JMS Adapter Properties"

■ Section A.5, "Oracle Database Adapter Properties"

■ Section A.6, "Oracle MQ Series Adapter Properties"

For more information, see Section 33.1.2.8, "Oracle JCA Adapters Endpoint Properties",
in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle
Business Process Management Suite.

A.8 Generic Oracle Adapter Binding Properties
This section describes the properties applicable to all Oracle JCA Adapters, including:

■ Table A–21, " Binding Properties for all Oracle JCA Adapters"

For properties specific to each of the Oracle JCA Adapters, see:

■ Section A.1, "Oracle File and FTP Adapters Properties"

■ Section A.2, "Oracle Socket Adapter Properties"

■ Section A.3, "Oracle AQ Adapter Properties"

Table A–19 Binding Properties for Oracle MQ Series Adapter

Property Description

adapter.mq.inbound.queueName This property is used to specify the name of the inbound
MQ queue.

adapter.mq.inbound.binaryNulls This property is used for dequeuing the messages with
binary zero value. The default value for this property is
true.

Table A–20 JCA Properties for all Oracle JCA Adapters

Property Description

wsdlLocation An optional adapter-config attribute of type xs:string.

When set to the name of the WSDL associated with the adapter's JCA file, the Oracle Service
Bus can automatically resolve the WSDL to allow bulk import of JCA files and related WSDL
and schemas.

The example below shows the FulfillmentBatch_jms.jca file with the adapter-config
attribute wsdlLocation set to the name of the corresponding WSDL file
FulFillmentBatch.wsdl.

<adapter-config name="FulfillmentBatch" adapter="Jms Adapter"
xmlns="http://platform.integration.oracle/blocks/adapter/fw/metadata"
wsdlLocation="FulfillmentBatch.wsdl" >
...
</adapter-config>

Generic Oracle Adapter Binding Properties

Oracle JCA Adapter Properties A-23

■ Section A.4, "Oracle JMS Adapter Properties"

■ Section A.5, "Oracle Database Adapter Properties"

■ Section A.6, "Oracle MQ Series Adapter Properties"

For more information, see Section 33.1.2.8, "Oracle JCA Adapters Endpoint Properties",
in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle
Business Process Management Suite.

Table A–21 Binding Properties for all Oracle JCA Adapters

Property Description

useworkManager Supplies a custom work manager instead of the default that is currently used in
adapters

minimumDelayBetweenM
essages

Inbound-only. This property is configured in milliseconds. Ensures that there at
least will be MILLI_SECONDS delay between two consecutive messages being
posted to the downstream composite application.

Note that minimumDelayBetweenMessages is effective per adapter polling thread.
If multiple adapter polling threads have been configured, this setting will control
the delay between messages processed by each thread only.

Generic Oracle Adapter Binding Properties

A-24 Oracle Fusion Middleware User's Guide for Technology Adapters

B

Oracle JCA Adapter Valves B-1

BOracle JCA Adapter Valves

This appendix includes sample valves used by Oracle File and FTP Adapters. A valve
is the primary component of execution in an FTP or File Adapter processing pipeline.
A valve processes the content it receives and forwards the processed content to the
next valve.

This chapter contains the following sections:

■ Section B.1, "A Simple Unzip Valve"

■ Section B.2, "A Simple Decryption Valve That Uses Staging File"

■ Section B.3, "A Valve for Encrypting Outbound Files"

■ Section B.4, "An Unzip Valve for processing Multiple Files"

B.1 A Simple Unzip Valve
The following sample is a simple Unzip Valve:

package valves;

import java.io.*;
import java.util.zip.*;

import oracle.tip.pc.services.pipeline.AbstractValve;
import oracle.tip.pc.services.pipeline.InputStreamContext;
import oracle.tip.pc.services.pipeline.PipelineException;

/**
 * A simple valve to process zip files.
 * The valve processes the first entry from the zip file.
 * If you need to process multiple files, you will need
 * a re-entrant valve
 **/
public class SimpleUnzipValve extends AbstractValve {

 public InputStreamContext execute(InputStreamContext inputStreamContext)
 throws IOException, PipelineException {
 // Get the input stream that is passed to the Valve
 InputStream originalInputStream = inputStreamContext.getInputStream();

 // Create a new ZIP input stream
 ZipInputStream zipStream = null;
 try {
 zipStream = new ZipInputStream(originalInputStream);
 ZipEntry entry = null;
 // In this sample valve, lets pick up the first entry

A Simple Decryption Valve That Uses Staging File

B-2 Oracle Fusion Middleware User's Guide for Technology Adapters

 if ((entry = zipStream.getNextEntry()) != null) {
 System.out.println("Unzipping " + entry.getName());
 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 byte[] buf = new byte[4096];
 int len = 0;
 while ((len = zipStream.read(buf)) > 0) {
 bos.write(buf, 0, len);
 }
 bos.close(); // no-op but still ...
 ByteArrayInputStream bin = new ByteArrayInputStream(bos
 .toByteArray());
 // This is where the Valve returns the inputstream to the
caller
 // Example, Adapter
 // return the newly created inputstream as a part of the
context
 inputStreamContext.setInputStream(bin);

 return inputStreamContext;
 }
 } finally {
 if (zipStream != null) {
 zipStream.close();
 }
 }
 // return null if no data
 return null;

 }

 @Override
 // Not required for this simple valve
 public void finalize(InputStreamContext in) {

 }

 @Override
 // Not required for this simple valve
 public void cleanup() throws PipelineException, IOException {

 }

}

B.2 A Simple Decryption Valve That Uses Staging File
The following is a sample decryption valve that uses a staging file:

package valves;

import java.io.*;
import javax.crypto.*;
import javax.crypto.spec.*;

import oracle.tip.pc.services.pipeline.AbstractStagedValve;
import oracle.tip.pc.services.pipeline.InputStreamContext;
import oracle.tip.pc.services.pipeline.PipelineException;
import oracle.tip.pc.services.pipeline.PipelineUtils;

A Simple Decryption Valve That Uses Staging File

Oracle JCA Adapter Valves B-3

import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;

/**
 * Simple Decryption valve that uses DES algorightm
 *
 * You must note that this class uses AbstractStagedValve. By using the
 * AbstractStagedValve, the valve notifies the pipeline that the valve will take
 * care of its own staging and cleanup
 *
 */
public class SimpleDecryptValve extends AbstractStagedValve {

 // Staging file where the intermediate decrypted content is kept
 private File stagingFile = null;

 /**
 * Called by the adapter. All the binding/reference properties in the
 * composite are available to the pipeline via the pipeline context For
 * example <service name="FlatStructureIn"> <interface.wsdl
 *
interface="http://xmlns.oracle.com/pcbpel/adapter/file/FlatStructureIn/#wsdl.inter
face(Read_ptt)"/>
 * <binding.jca config="FlatStructureIn_file.jca"> <property
 * name="myCipherKey" source="" type="xs:string" many="false"
 * override="may">somekey</property> </binding.jca> </service>
 *
 */
 public InputStreamContext execute(InputStreamContext inputStreamContext)
 throws IOException, PipelineException {

 // Read the cipher key from the adapter binding property 'myCipherKey'
 String cipherKey = (String) getPipeline().getPipelineContext()
 .getProperty("myCipherKey");

 // If key is blank, default to some hard-coded value
 if (PipelineUtils.isBlank(cipherKey)) {
 System.out.println("using default ciper key");
 cipherKey = "desvalve";
 }
 // Create an instance of the Cipher
 byte key[] = cipherKey.getBytes();
 SecretKeySpec secretKey = new SecretKeySpec(key, "DES");
 Cipher decrypt = null;
 try {
 decrypt = Cipher.getInstance("DES/ECB/PKCS5Padding");
 } catch (NoSuchPaddingException nspe) {
 throw new PipelineException("Unable to get cipher instance",
nspe);
 } catch (NoSuchAlgorithmException nsae) {
 throw new PipelineException("Invalid cipher algorithm", nsae);
 }
 try {
 decrypt.init(Cipher.DECRYPT_MODE, secretKey);
 } catch (InvalidKeyException ike) {
 throw new PipelineException("Invalid secret key", ike);
 }
 // original input stream from caller. For example, adapter
 InputStream originalInputStream = null;
 CipherInputStream cis = null;

A Simple Decryption Valve That Uses Staging File

B-4 Oracle Fusion Middleware User's Guide for Technology Adapters

 try {
 originalInputStream = inputStreamContext.getInputStream();
 cis = new CipherInputStream(originalInputStream, decrypt);
 } catch (Exception e) {
 throw new PipelineException("Unable to create cipher stream",
e);
 }
 // Since we're using a staged valve, we will store the decrypted
content
 // in a staging file
 // In this case, we're leveraging the File/Ftp Adapter control
directory
 // to store the content, but, the staging file can be placed anywhere
 this.stagingFile = PipelineUtils.getUniqueStagingFile(getPipeline()
 .getPipelineContext().getStagingDirectory());

 // Write the decrypted content to the staging file
 OutputStream os = new FileOutputStream(this.stagingFile);
 byte[] b = new byte[8];
 int i = cis.read(b);
 while (i != -1) {
 os.write(b, 0, i);
 i = cis.read(b);
 }
 os.flush();
 os.close();
 cis.close();

 // Open a stream to the staging file and return it back to the caller
 InputStream in = new FileInputStream(this.stagingFile);
 // close the input stream passed in this invocation
 inputStreamContext.closeStream();
 // set the input stream to staging file and return
 inputStreamContext.setInputStream(in);
 return inputStreamContext;

 }

 /*
 * (non-Javadoc)
 *
 * @see oracle.tip.pc.services.pipeline.AbstractStagedValve#getStagingFile()
 */
 public File getStagingFile() {
 return stagingFile;
 }

 /*
 * Delete the staging file if there is one (non-Javadoc)
 *
 * @see
oracle.tip.pc.services.pipeline.AbstractValve#finalize(oracle.tip.pc.services.pipe
line.InputStreamContext)
 */
 public void finalize(InputStreamContext ctx) {
 try {
 cleanup();
 } catch (Exception e) {
 }
 }

A Valve for Encrypting Outbound Files

Oracle JCA Adapter Valves B-5

 /*
 * Use this method to delete the staging file (non-Javadoc)
 *
 * @see oracle.tip.pc.services.pipeline.AbstractStagedValve#cleanup()
 */
 public void cleanup() throws PipelineException, IOException {

 if (stagingFile != null && this.stagingFile.exists()) {
 this.stagingFile.delete();
 }
 this.stagingFile = null;
 }

}

B.3 A Valve for Encrypting Outbound Files
The following is a simple encryption valve that extends AbstractValve.

package valves;

import java.io.*;
import javax.crypto.*;
import javax.crypto.spec.*;

import oracle.tip.pc.services.pipeline.AbstractValve;
import oracle.tip.pc.services.pipeline.InputStreamContext;
import oracle.tip.pc.services.pipeline.PipelineException;
import oracle.tip.pc.services.pipeline.PipelineUtils;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;

/**
 * Simple Encryption valve that uses DES algorightm
 *
 */
public class SimpleEncryptValve extends AbstractValve {

/**
 * Called by the adapter. All the binding/reference properties
 * in the composite are available to the pipeline via
 * the pipeline context
 * For example
 * <service name="FlatStructureOut">
 * <interface.wsdl
interface="http://xmlns.oracle.com/pcbpel/adapter/file/FlatStructureOut/#wsdl.inte
rface(Write_ptt)"/>
 * <binding.jca config="FlatStructureOut_file.jca">
 * <property name="myCipherKey" source="" type="xs:string"
many="false" override="may">somekey</property>
 * </binding.jca>
 * </service>
 *
 */
 public InputStreamContext execute(InputStreamContext inputStreamContext)
 throws IOException, PipelineException {

A Valve for Encrypting Outbound Files

B-6 Oracle Fusion Middleware User's Guide for Technology Adapters

 //Read the cipher key from the adapter binding property 'myCipherKey'
 String cipherKey = (String) getPipeline().getPipelineContext()
 .getProperty("myCipherKey");

 //If key is blank, default to some hard-coded value
 if (PipelineUtils.isBlank(cipherKey)) {
 System.out.println("using default ciper key");
 cipherKey = "desvalve";
 }
 //Create an instance of the Cipher

pt.init(Cipher.ENCRYPT_MODE, secretKey);
 } catch (InvalidKeyException ike) {
 throw new PipelineException("Invalid secret key", ike);
 }
 //original input stream from caller. For example, adapter
 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 try {

 encryptStream(inputStreamContext.getInputStream(), bos, encrypt);
 } catch (Exception e) {
 throw new PipelineException("Unable to encrypt", e);
 }
 byte[] bytes = bos.toByteArray();
 InputStream in = new ByteArrayInputStream(bytes);
 //close the input stream passed in this invocation
 inputStreamContext.closeStream();
 //set the input stream and return
 inputStreamContext.setInputStream(in);
 return inputStreamContext;

 }

 private static void encryptStream(InputStream in, OutputStream out, Cipher
encrypt) {
 try {
 byte[] buf = new byte[4096];
 // Bytes written to out will be encrypted
 out = new CipherOutputStream(out, encrypt);

 // Read in the cleartext bytes and write to out to encrypt
 int numRead = 0;
 while ((numRead = in.read(buf)) >= 0) {
 out.write(buf, 0, numRead);
 }
 out.close();
 } catch (java.io.IOException e) {
 }
 }

 /*
 * Delete the staging file if there is one
 * (non-Javadoc)
 * @see
oracle.tip.pc.services.pipeline.AbstractValve#finalize(oracle.tip.pc.services.pipe
line.InputStreamContext)
 */
 public void finalize(InputStreamContext ctx) {
 try {
 cleanup();

An Unzip Valve for processing Multiple Files

Oracle JCA Adapter Valves B-7

 } catch (Exception e) {
 }
 }

 /*Use this method to delete the staging file
 * (non-Javadoc)
 * @see oracle.tip.pc.services.pipeline.AbstractStagedValve#cleanup()
 */
 public void cleanup() throws PipelineException, IOException {

 }

 public static void main(String[] args) throws Exception{
 String cipherKey = "desvalve";

 //Create an instance of the Cipher
 byte key[] = cipherKey.getBytes();
 SecretKeySpec secretKey = new SecretKeySpec(key, "DES");
 Cipher encrypt = null;
 try {
 encrypt = Cipher.getInstance("DES/ECB/PKCS5Padding");
 } catch (NoSuchPaddingException nspe) {
 throw new PipelineException("Unable to get cipher instance", nspe);
 } catch (NoSuchAlgorithmException nsae) {
 throw new PipelineException("Invalid cipher algorithm", nsae);
 }
 try {
 encrypt.init(Cipher.ENCRYPT_MODE, secretKey);
 } catch (InvalidKeyException ike) {
 throw new PipelineException("Invalid secret key", ike);
 }
 //original input stream from caller. for example, adapter

 FileInputStream fin = new FileInputStream(args[0]);
 FileOutputStream fout = new FileOutputStream(args[1]);
 try {

 encryptStream(fin, fout, encrypt);
 } catch (Exception e) {
 throw new PipelineException("Unable to encrypt", e);
 }
 fin.close();
 fout.close();

 }

}

B.4 An Unzip Valve for processing Multiple Files
The following is the sample of an unzip valve for processing multiple files:

package valves;

import java.io.*;
import java.util.zip.*;
import java.util.*;

import oracle.tip.pc.services.pipeline.AbstractStagedValve;

An Unzip Valve for processing Multiple Files

B-8 Oracle Fusion Middleware User's Guide for Technology Adapters

import oracle.tip.pc.services.pipeline.InputStreamContext;
import oracle.tip.pc.services.pipeline.PipelineException;
import oracle.tip.pc.services.pipeline.PipelineUtils;

/**
 * A re-entrant valve is one that can be invoked multiple times
 * and on each invocation it must return a new stream.
 * This concept is used here in this sample to process
 * a zipped file containing multiple entries.
 *
 * If a valve is marked as re-entrant, then the caller (adapter),
 * calls hasNext() on the valve to check if there are more
 * streams available
 */
public class ReentrantUnzipValve extends AbstractStagedValve {

 //member variables
 private boolean initialized = false;

 private List<String> files = null;

 private File currentFile = null;

 private File unzipFolder = null;

 /**
 * On the first invocation, this valve unzips the zip file into
 * a staging area and returns a stream the first unzipped file
 * On subsequent iterations, the valve returns streams to
 * subsequent files.
 */
 public InputStreamContext execute(InputStreamContext inputStreamContext)
 throws IOException, PipelineException {
 String fileName = "";
 //the first time that the valve is invoked, unzip the file into
 //the staging area
 if (!initialized) {
 files = new ArrayList<String>();
 //Get hold of the File/Ftp adapter control directory
 File controlDirectory = getPipeline().getPipelineContext()
 .getStagingDirectory();
 //Create if required
 if (!controlDirectory.exists()) {
 controlDirectory.mkdirs();
 }
 //Generate a unique folder to store the staging files
 String digestPath = "";
 try {
 digestPath = PipelineUtils.genDigest(inputStreamContext
 .getMessageOriginReference());
 } catch (Exception e) {
 digestPath = String.valueOf(inputStreamContext
 .getMessageOriginReference().hashCode());
 }
 unzipFolder = new File(controlDirectory, digestPath);
 if (!unzipFolder.exists())
 unzipFolder.mkdirs();
 //unzip the files into the staging folder
 unzipToDirectory(inputStreamContext.getInputStream(),
unzipFolder);

An Unzip Valve for processing Multiple Files

Oracle JCA Adapter Valves B-9

 //store the file names into the list
 PipelineUtils.listFiles(unzipFolder, files);
 //close the input stream
 inputStreamContext.closeStream();
 }
 initialized = true;
 //return the next one in the list
 if (files != null && files.size() > 0) {
 fileName = files.remove(0);
 currentFile = new File(fileName);
 System.out.println("Returning file[" + fileName + "]");
 //Open a stream to the file and return to caller. For example,
adapter
 FileInputStream fis = new FileInputStream(currentFile);
 inputStreamContext.setInputStream(fis);
 /*For re-entrant valves, setting the message key is
 important since this allows the caller to distinguish
 between parts for the same message. for example, in the
 case of zip file in this example, the
 messageOriginReference will be same, but, the individual
 message keys will vary. For example, the messageOriginReference
 will be "/input/in.zip", whereas message key might be something
 like "dir1/address-csv1.txt", "dir1/address-csv2.txt" and so on
 */
 inputStreamContext.setMessageKey(fileName);
 return inputStreamContext;
 } else {
 //return null if no more files
 return null;
 }
 }

 /*
 * Adapter calls this to check if there are more files
 * @see oracle.tip.pc.services.pipeline.AbstractValve#hasNext()
 */
 public boolean hasNext() {
 return (files != null && files.size() > 0);
 }

 /*
 * Returns the current file being processed
 * @see oracle.tip.pc.services.pipeline.AbstractStagedValve#getStagingFile()
 */
 public File getStagingFile() {
 return currentFile;
 }

 /*
 * delete the current file once the entry has been published to binding
component
 * @see
oracle.tip.pc.services.pipeline.AbstractValve#finalize(oracle.tip.pc.services.pipe
line.InputStreamContext)
 */
 public void finalize(InputStreamContext ctx) {

 if (currentFile != null && currentFile.exists()) {
 currentFile.delete();
 }

An Unzip Valve for processing Multiple Files

B-10 Oracle Fusion Middleware User's Guide for Technology Adapters

 }

 /*
 * Cleanup intermediate files
 * @see oracle.tip.pc.services.pipeline.AbstractStagedValve#cleanup()
 */
 public void cleanup() throws PipelineException, IOException {
 PipelineUtils.deleteDirectory(unzipFolder);
 initialized = false;
 if (currentFile != null && currentFile.exists()) {
 currentFile.delete();
 }
 files = null;
 }

 /*
 * Unzip to the directory
 */
 private void unzipToDirectory(InputStream in, File directory)
 throws IOException {
 ZipInputStream zin = new ZipInputStream(in);
 ZipEntry entry = null;
 if ((entry = zin.getNextEntry()) != null) {
 do {
 String entryName = entry.getName();
 if (!entry.isDirectory()) {
 File file = new File(directory, entryName);
 unzipFile(zin, file);
 }
 } while ((entry = zin.getNextEntry()) != null);
 }
 zin.close();
 }

 private void unzipFile(InputStream in, File file) throws IOException {
 if (!file.getParentFile().exists()) {
 file.getParentFile().mkdirs();
 }
 OutputStream os = new FileOutputStream(file);
 byte[] buf = new byte[4096];
 int len = 0;
 while ((len = in.read(buf)) > 0) {
 os.write(buf, 0, len);
 }
 os.close();
 }

}

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide for Release 11.1.1.9
	Part I Introduction and Concepts
	1 Introduction to Oracle JCA Adapters
	1.1 Features of Oracle JCA Adapters
	1.2 Types of Oracle JCA Adapters
	1.2.1 Oracle Technology Adapters
	1.2.1.1 Architecture
	1.2.1.2 Design-Time Components
	1.2.1.3 Run-Time Components
	1.2.1.4 Deployment

	1.2.2 Legacy Adapters
	1.2.2.1 Architecture
	1.2.2.1.1 Oracle Connect
	1.2.2.1.2 Oracle Studio
	1.2.2.1.3 J2CA Adapter

	1.2.2.2 Design-Time Components
	1.2.2.3 Run-Time Components
	1.2.2.4 Deployment

	1.2.3 Packaged-Application Adapters
	1.2.3.1 Architecture
	1.2.3.1.1 Application Explorer
	1.2.3.1.2 BSE
	1.2.3.1.3 J2CA 1.5 Resource Adapter

	1.2.3.2 Design-Time Components
	1.2.3.3 Run-Time Components
	1.2.3.4 Deployment

	1.2.4 Oracle Adapter for Oracle Applications

	1.3 Types of Oracle JCA Adapters Adapter Services
	1.3.1 Request-Response (Outbound Interaction) Service
	1.3.2 Event Notification (Inbound Interaction) Service
	1.3.3 Metadata Service

	2 ADAPTER Life-Cycle Management
	2.1 Installing Oracle JCA Adapters
	2.2 Starting and Stopping Oracle JCA Adapters
	2.3 Defining Adapter Interface by Importing an Existing WSDL
	2.3.1 Adapter Configuration Wizard for Oracle MQ Series Adapter, Oracle JMS Adapter and the Oracle AQ Adapter
	2.3.1.1 Example of Use of Callbacks

	2.4 Configuring Message Header Properties for Oracle JCA Adapters
	2.5 Physically Deploying Oracle JCA Adapters
	2.5.1 The RAR Deployment Descriptor File and the weblogic-ra.xml Template File

	2.6 Creating an Application Server Connection for Oracle JCA Adapters
	2.7 Deploying Oracle JCA Adapter Applications from JDeveloper
	2.7.1 Deploying an Application Profile for the SOA Project and the Application

	2.8 Manually Deploying an Adapter RAR File that Does Not Have a Jar File Associated With It
	2.8.1 Example of Manual Deployment

	2.9 Handling the Deployment Plan When Working on a Remote Oracle SOA Server
	2.10 Migrating Repositories from Different Environments
	2.11 How Oracle JCA Adapters Ensure No Message Loss
	2.11.1 XA Transaction Support
	2.11.2 Local Transactions and Global (XA) Transactions
	2.11.2.1 Adapter Support of Local Transactions
	2.11.2.2 Adapter Support of Global Transactions
	2.11.2.2.1 Global Transactions, Retries and Rollbacks and Fault Policies

	2.11.3 Basic Concepts of Transactions and Adapters
	2.11.3.1 Asynchronous Transaction Flow
	2.11.3.1.1 Example using JMS, BPEL, DB Adapter and a Database

	2.11.3.2 Synchronous Transaction Flow

	2.11.4 Inbound Transactions
	2.11.5 Outbound Transactions

	2.12 Composite Availability and Inbound Adapters
	2.13 Singleton (Active/Passive) Inbound Endpoint Lifecycle Support Within Adapters
	2.13.1 Multiple Activations of the Same Adapter Endpoint
	2.13.2 Hot-Standby State

	2.14 Correlation Support Within Adapters
	2.14.1 CorrelationID of Receive Message Not Matching Invoke: Log Error Message
	2.14.1.1 Rejecting Nonmatching Native Correlation IDs

	2.15 Setting Payload Size Threshold
	2.15.1 Payload Native Size
	2.15.1.1 Setting the Payload Threshold
	2.15.1.2 Limitations on Payload Size Enforcement
	2.15.1.2.1 Changing Global Payload Size to a Finite Value

	2.16 Streaming Large Payload
	2.17 Batching and Debatching Support
	2.18 Adding an Adapter Connection Factory
	2.18.1 Creating a Data Source
	2.18.2 Creating a Connection Pool

	2.19 Adding or Updating an Adapter Connection Factory
	2.19.1 Modify the JCA File
	2.19.2 Use a Config Plan
	2.19.3 Use the Web Logic Server Console to Create a New Connection

	2.20 Recommended Setting for Data Sources Used by Oracle JCA Adapters
	2.21 Error Handling
	2.21.1 Handling Rejected Messages
	2.21.1.1 Configuring Rejection Handlers
	2.21.1.1.1 Creating Fault Policies

	2.21.1.2 Checking for Rejected Messages
	2.21.1.2.1 Checking from the Database
	2.21.1.2.2 Checking from the Fusion Middleware Control Console
	2.21.1.2.3 Handling Message Errors: A Sample Scenario

	2.21.2 Inbound Interaction Error Handling
	2.21.2.1 Message Error Rejection Handlers
	2.21.2.1.1 Available Rejection Handlers for Message Errors
	2.21.2.1.2 Web Service Handler
	2.21.2.1.3 Custom Java Handler
	2.21.2.1.4 JMS Queue
	2.21.2.1.5 File

	2.21.2.2 Inbound Retryable Errors
	2.21.2.2.1 Configuring Inbound Adapters to Handle Retryable Errors
	2.21.2.2.2 Specifying Inbound Retry Properties in the composite.xml File
	2.21.2.2.3 Changing the Default Value of jca.retry. count for Inbound Adapter Endpoints
	2.21.2.2.4 Global Property Modification using the MBeans Browser

	2.21.2.3 Inbound Non-Retryable Errors
	2.21.2.3.1 Examples of Non-Retryable Errors

	2.21.3 Outbound Adapter Interaction Error Handling
	2.21.3.1 Retryable Errors for Outbound Adapter Error Handling
	2.21.3.1.1 Setting Retryable Properties for Outbound Error Handling in the composite.xml File
	2.21.3.1.2 Example: How to Set Values for Retryable Exceptions for Outbound Interactions

	2.21.3.2 Non-Retryable Errors for Outbound Interaction Handling
	2.21.3.2.1 Fault Propagation
	2.21.3.2.2 Two Cases When the Fault Policy Mechanism Does Not Work
	2.21.3.2.3 Outbound Adapters in XA Mode
	2.21.3.2.4 Outbound Adapter in Mediator Sequential Routing

	2.22 Testing Applications
	2.23 Setting the Trace Level of Oracle JCA Adapters
	2.23.1 How to Set the Trace Level of Oracle JCA Adapters

	2.24 Viewing Adapter Logs
	2.25 Adapter Diagnosability Dumps
	2.26 Creating a Custom Adapter
	2.26.1 Configuring a Custom Adapter
	2.26.1.1 Custom Adapter Screen Flow

	2.26.2 Frequently Asked Questions about Adapters
	2.26.2.1 Why are My Applications Timing Out?
	2.26.2.2 How do Transactional and Non-Transactional Adapters Differ?
	2.26.2.3 What Happened to My Application’s Rejected Messages? Can One Do Anything With Them?

	2.27 Advanced Topic: Using the Execution Context ID Across Technologies
	2.27.1 Placing the ECid
	2.27.2 Configuring Composite Services/References
	2.27.3 Simple Database/File/JMS Example

	3 Adapter Integration with Oracle Application Server Components
	3.1 Adapter Integration with Oracle WebLogic Server
	3.1.1 Oracle WebLogic Server Overview
	3.1.2 Oracle WebLogic Server Integration with Adapters
	3.1.2.1 Design Time
	3.1.2.2 Run Time

	3.2 Adapter Integration with Oracle Fusion Middleware
	3.2.1 Oracle BPEL Process Manager Overview
	3.2.2 Oracle Mediator Overview
	3.2.3 Oracle Fusion Middleware Integration with Adapters
	3.2.3.1 Design Time
	3.2.3.2 Run Time
	3.2.3.3 End-to-End Testing
	3.2.3.4 Oracle BPEL PM Integration with Outbound Interaction
	3.2.3.5 Oracle BPEL PM Integration with Inbound Interaction
	3.2.3.6 Use Case: Integration with Oracle BPEL Process Manager

	3.2.4 Oracle SOA Composite Integration with Adapters
	3.2.4.1 Oracle SOA Composite Overview
	3.2.4.2 Adapters Integration With Oracle SOA Composite

	3.3 Monitoring Oracle JCA Adapters

	4 Oracle JCA Adapter for Files/FTP
	4.1 Introduction to Oracle File and FTP Adapters
	4.1.1 Oracle File and FTP Adapters Architecture
	4.1.2 Oracle File and FTP Adapters Integration with Oracle BPEL PM
	4.1.3 Oracle File and FTP Adapters Integration with Mediator
	4.1.4 Oracle File and FTP Adapters Integration with SOA Composite

	4.2 Oracle File and FTP Adapters Features
	4.2.1 File Formats
	4.2.2 FTP Servers
	4.2.3 Inbound and Outbound Interactions
	4.2.4 File Debatching
	4.2.5 File ChunkedRead
	4.2.6 File Sorting
	4.2.7 Dynamic Outbound Directory and File Name Specification
	4.2.8 Security
	4.2.9 Nontransactional
	4.2.10 Proxy Support
	4.2.11 No Payload Support
	4.2.12 Large Payload Support
	4.2.13 File-Based Triggers
	4.2.14 Pre-Processing and Post-Processing of Files
	4.2.14.1 Mechanism For Pre-Processing and Post-Processing of Files
	4.2.14.2 Configuring a Pipeline
	4.2.14.3 Using a Re-Entrant Valve For Processing Zip Files
	4.2.14.4 Configuring Batch Notification Handler

	4.2.15 Error Handling
	4.2.15.1 Sending a Malformed XML File to a Local File System Folder

	4.2.16 Threading Model
	4.2.16.1 Default Threading Model
	4.2.16.2 Modified Threading Model

	4.2.17 Performance Tuning
	4.2.18 High Availability
	4.2.19 Multiple Directories
	4.2.20 Append Mode
	4.2.21 Recursive Processing of Files Within Directories in Oracle FTP Adapter
	4.2.22 Securing Enterprise Information System Credentials

	4.3 Oracle File and FTP Adapter Concepts
	4.3.1 Oracle File Adapter Read File Concepts
	4.3.1.1 Inbound Operation
	4.3.1.2 Inbound File Directory Specifications
	4.3.1.2.1 Specifying Inbound Physical or Logical Directory Paths in SOA Composite
	4.3.1.2.2 Archiving Successfully Processed Files
	4.3.1.2.3 Deleting Files After Retrieval

	4.3.1.3 File Matching and Batch Processing
	4.3.1.3.1 Specifying a Naming Pattern
	4.3.1.3.2 Including and Excluding Files
	4.3.1.3.3 File Include and Exclude
	4.3.1.3.4 Debatching Multiple Inbound Messages

	4.3.1.4 File Polling
	4.3.1.5 Postprocessing
	4.3.1.6 Native Data Translation
	4.3.1.7 Inbound Service
	4.3.1.8 Inbound Headers

	4.3.2 Oracle File Adapter Write File Concepts
	4.3.2.1 Outbound Operation
	4.3.2.2 Outbound File Directory Creation
	4.3.2.2.1 Specifying Outbound Physical or Logical Directory Paths in Oracle BPEL PM
	4.3.2.2.2 Specifying Outbound Physical or Logical Directory Paths in Mediator
	4.3.2.2.3 Specifying a Dynamic Outbound Directory Name
	4.3.2.2.4 Specifying the Outbound File Naming Convention
	4.3.2.2.5 Specifying a Dynamic Outbound File Name
	4.3.2.2.6 Batching Multiple Outbound Messages

	4.3.2.3 Native Data Translation
	4.3.2.4 Outbound Service Files
	4.3.2.5 Outbound Headers

	4.3.3 Oracle File Adapter Synchronous Read Concepts
	4.3.4 Oracle File Adapter File Listing Concepts
	4.3.4.1 Listing Operation
	4.3.4.2 File Directory Specifications
	4.3.4.2.1 Specifying Inbound Physical or Logical Directory Paths in SOA Composite

	4.3.4.3 File Matching
	4.3.4.3.1 Specifying a Naming Pattern
	4.3.4.3.2 Including and Excluding Files

	4.3.5 Oracle FTP Adapter Get File Concepts
	4.3.6 Oracle FTP Adapter Put File Concepts
	4.3.7 Oracle FTP Adapter Synchronous Get File Concepts
	4.3.8 Oracle FTP Adapter File Listing Concepts

	4.4 Configuring Oracle File and FTP Adapters
	4.4.1 Configuring the Credentials for Accessing a Remote FTP Server
	4.4.2 Configuring Oracle File and FTP Adapters for High Availability
	4.4.2.1 Prerequisites for High Availability
	4.4.2.2 High Availability in Inbound Operations
	4.4.2.3 High Availability in Outbound Operations

	4.4.3 Using Secure FTP with the Oracle FTP Adapter
	4.4.3.1 Secure FTP Overview
	4.4.3.2 Installing and Configuring FTP Over SSL on Solaris and Linux
	4.4.3.2.1 Installing and Configuring OpenSSL
	4.4.3.2.2 Installing and Configuring vsftpd
	4.4.3.2.3 Setting Up the Oracle FTP Adapter

	4.4.3.3 Installing and Configuring FTP Over SSL on Windows
	4.4.3.3.1 Installing OpenSSL
	4.4.3.3.2 Generating OpenSSL Server Key and Certificate
	4.4.3.3.3 Importing the Server Key and Certificate Into FileZilla Server
	4.4.3.3.4 Converting the Server Key From PEM to PKCS12 Format
	4.4.3.3.5 Configuring Oracle FTP Adapter Deployment Descriptor to Use the New Key

	4.4.4 Using SFTP with Oracle FTP Adapter
	4.4.4.1 SFTP Overview
	4.4.4.1.1 Encryption
	4.4.4.1.2 Authentication
	4.4.4.1.3 Integrity
	4.4.4.1.4 Data Compression

	4.4.4.2 Install and Configure OpenSSH for Windows
	4.4.4.3 Set Up Oracle FTP Adapter for SFTP
	4.4.4.3.1 Configuring Oracle FTP Adapter for Password Authentication
	4.4.4.3.2 Configuring Oracle FTP Adapter for Public Key Authentication
	4.4.4.3.3 Configuring OpenSSH for Public-Key Authentication
	4.4.4.3.4 Configuring Oracle FTP Adapter for Public Key Authentication with OpenSSH Running Inside a Firewall
	4.4.4.3.5 Configuring Oracle FTP Adapter for Public Key Authentication with OpenSSH Running Outside a Firewall

	4.4.5 Configuring Oracle FTP Adapter for HTTP Proxy
	4.4.5.1 Configuring for Plain FTP Mode
	4.4.5.1.1 Proxy Definition File

	4.4.5.2 Configuring for SFTP Mode

	4.5 Oracle File and FTP Adapters Use Cases
	4.5.1 Oracle File Adapter XML Debatching
	4.5.1.1 Prerequisites
	4.5.1.2 Designing the SOA Composite
	4.5.1.3 Creating the Inbound Oracle File Adapter Service
	4.5.1.4 Creating the Outbound File Adapter Service
	4.5.1.5 Wiring Services and Activities
	4.5.1.6 Deploying with JDeveloper
	4.5.1.7 Monitoring Using Oracle Enterprise Manager Fusion Middleware Control Console (Fusion Middleware Control Console)

	4.5.2 Flat Structure for Oracle BPEL PM
	4.5.2.1 Prerequisites
	4.5.2.2 Designing the SOA Composite
	4.5.2.3 Creating the Inbound Oracle File Adapter Service
	4.5.2.4 Creating the Outbound Oracle File Adapter Service
	4.5.2.5 Wiring Services and Activities
	4.5.2.6 Deploying with JDeveloper
	4.5.2.7 Monitoring Using Oracle Fusion Middleware Control Console

	4.5.3 Flat Structure for Mediator
	4.5.3.1 Prerequisites
	4.5.3.2 Creating a Mediator Application and Project
	4.5.3.3 Importing the Schema Definition (.XSD) Files
	4.5.3.4 Creating the Inbound Oracle File Adapter Service
	4.5.3.5 Creating the Outbound Oracle FTP Adapter Service
	4.5.3.6 Wiring Services
	4.5.3.7 Creating the Routing Rule
	4.5.3.8 Deploying with JDeveloper
	4.5.3.9 Run-Time Task

	4.5.4 Oracle File Adapter Scalable DOM
	4.5.4.1 Prerequisites
	4.5.4.2 Designing the SOA Composite
	4.5.4.3 Creating the Inbound Oracle File Adapter Service
	4.5.4.4 Creating the Outbound Oracle File Adapter Service
	4.5.4.5 Wiring Services and Activities
	4.5.4.6 Deploying with JDeveloper
	4.5.4.7 Monitoring Using Fusion Middleware Control Console

	4.5.5 Oracle File Adapter ChunkedRead
	4.5.5.1 Prerequisites
	4.5.5.2 Designing the SOA Composite
	4.5.5.3 Creating the Inbound Oracle File Adapter Service
	4.5.5.4 Creating the Outbound Oracle File Adapter Service
	4.5.5.5 Wiring Services and Activities
	4.5.5.6 Deploying with JDeveloper
	4.5.5.7 Monitoring Using Fusion Middleware Control Console

	4.5.6 Oracle File Adapter Read File As Attachments
	4.5.6.1 Prerequisites
	4.5.6.2 Designing the SOA Composite
	4.5.6.3 Creating the Inbound Oracle File Adapter Service
	4.5.6.4 Creating the Outbound Oracle File Adapter Service
	4.5.6.5 Wiring Services and Activities
	4.5.6.6 Deploying with JDeveloper
	4.5.6.7 Monitoring Using Fusion Middleware Control Console

	4.5.7 Oracle File Adapter File Listing
	4.5.7.1 Prerequisites
	4.5.7.2 Designing the SOA Composite
	4.5.7.3 Creating the Outbound Oracle File Adapter Service
	4.5.7.4 Wiring Services and Activities
	4.5.7.5 Deploying with JDeveloper
	4.5.7.6 Monitoring Using Fusion Middleware Control Console

	4.5.8 Oracle File Adapter Complex Structure
	4.5.8.1 Prerequisites
	4.5.8.2 Designing the SOA Composite
	4.5.8.3 Creating the Inbound Oracle File Adapter Service
	4.5.8.4 Creating the Outbound Oracle File Adapter Service
	4.5.8.5 Wiring Services and Activities
	4.5.8.6 Deploying with JDeveloper
	4.5.8.7 Monitoring Using Fusion Middleware Control Console

	4.5.9 Oracle FTP Adapter Debatching
	4.5.9.1 Prerequisites
	4.5.9.2 Designing the SOA Composite
	4.5.9.3 Creating the Inbound Oracle FTP Adapter Service
	4.5.9.4 Creating the Outbound Oracle FTP Adapter Service
	4.5.9.5 Wiring Services and Activities
	4.5.9.6 Deploying with JDeveloper
	4.5.9.7 Monitoring Using Fusion Middleware Control Console

	4.5.10 Oracle FTP Adapter Dynamic Synchronous Read
	4.5.10.1 Prerequisites
	4.5.10.2 Designing the SOA Composite
	4.5.10.3 Creating the Inbound Oracle File Adapter Service
	4.5.10.4 Creating the Outbound Oracle FTP Adapter Service
	4.5.10.5 Wiring Services and Activities
	4.5.10.6 Deploying with JDeveloper
	4.5.10.7 Monitoring Using Fusion Middleware Control Console

	4.5.11 Copying, Moving, and Deleting Files
	4.5.11.1 Moving a File from a Local Directory on the File System to Another Local Directory
	4.5.11.2 Copying a File from a Local Directory on the File System to Another Local Directory
	4.5.11.3 Deleting a File from a Local File System Directory
	4.5.11.4 Using a Large CSV Source File
	4.5.11.5 Moving a File from One Remote Directory to Another Remote Directory on the Same FTP Server
	4.5.11.6 Moving a File from a Local Directory on the File System to a Remote Directory on the FTP Server
	4.5.11.7 Moving a File from a Remote Directory on the FTP Server to a Local Directory on the File System
	4.5.11.8 Moving a File from One FTP Server to another FTP Server

	4.5.12 Creating a Synchronous BPEL Composite using File Adapter
	4.5.12.1 Changing the Connection Factory JNDI Dynamically in Ftp Adapter
	4.5.12.2 Retrieving the Details of the File from an Outbound Write Operation

	4.5.13 Changing the Sequencing Strategy for FILE/Ftp Adapter
	4.5.14 Creating a Synchronous BPEL Composite using the File Adapter
	4.5.15 Controlling the Order in which Files Are Processed

	5 Oracle JCA Adapter for Sockets
	5.1 Introduction to Oracle Socket Adapter
	5.1.1 Oracle Socket Adapter Architecture
	5.1.2 Oracle Socket Adapter Integration with Mediator
	5.1.3 Oracle Socket Adapter Integration with Oracle BPEL PM
	5.1.4 Oracle Socket Adapter Integration with SOA Composite

	5.2 Oracle Socket Adapter Features
	5.3 Oracle Socket Adapter Concepts
	5.3.1 Communication Modes
	5.3.1.1 Inbound Synchronous Request/Response
	5.3.1.2 Outbound Synchronous Request/Response
	5.3.1.3 Inbound Receive
	5.3.1.4 Outbound Invoke

	5.3.2 Mechanisms for Defining Protocols
	5.3.2.1 Protocol with Handshake Mechanism Using Style Sheet
	5.3.2.2 Protocol with Handshake Mechanism Using Custom Java Code
	5.3.2.3 Protocol Without Handshake Mechanism

	5.3.3 Character Encoding and Byte Order
	5.3.4 Performance Tuning
	5.3.4.1 Configuring Oracle Socket Adapter Connection Pooling

	5.4 Configuring Oracle Socket Adapter
	5.4.1 Modifying the weblogic-ra.xml File
	5.4.2 Modeling a Handshake
	5.4.2.1 Modeling an Outbound Handshake
	5.4.2.2 Modeling an Inbound Handshake

	5.4.3 Designing an XSL File Using the XSL Mapper Tool
	5.4.3.1 Designing XSL for Inbound Synchronous Request/Reply
	5.4.3.2 Designing XSL for Outbound Synchronous Request/Reply

	5.4.4 Specifying a TCP Port in a Configuration Plan For an Oracle Socket Adapter

	5.5 Oracle Socket Adapter Use Cases
	5.5.1 Oracle Socket Adapter Hello World
	5.5.1.1 Prerequisites
	5.5.1.2 Designing the SOA Composite
	5.5.1.3 Creating the Inbound Oracle Socket Adapter Service
	5.5.1.4 Creating the Outbound Oracle Socket Adapter Service
	5.5.1.5 Wiring Services and Activities
	5.5.1.6 Deploying with JDeveloper
	5.5.1.7 Monitoring Using the Oracle Enterprise Manager Fusion Middleware Control Console (Fusion Middleware Control Console)

	5.5.2 Flight Information Display System
	5.5.2.1 Prerequisites
	5.5.2.2 Designing the SOA Composite
	5.5.2.3 Creating the Inbound Oracle Socket Adapter Service
	5.5.2.4 Creating Outbound Oracle Socket Adapter Services
	5.5.2.5 Wiring Services and Activities
	5.5.2.6 Deploying with JDeveloper
	5.5.2.7 Monitoring Using the Fusion Middleware Control Console

	6 Native Format Builder Wizard
	6.1 Creating Native Schema Files with the Native Format Builder Wizard
	6.1.1 Supported File Formats
	6.1.1.1 Delimited
	6.1.1.2 Fixed Length (Positional)
	6.1.1.3 Complex Type
	6.1.1.4 DTD
	6.1.1.5 COBOL Copybook

	6.1.2 Editing Native Schema Files

	6.2 Native Schema Constructs
	6.2.1 Understanding Native Schema Constructs
	6.2.2 Using Native Schema Constructs
	6.2.2.1 Defining Fixed-Length Data
	6.2.2.2 Defining Terminated Data
	6.2.2.3 Defining Surrounded Data
	6.2.2.4 Defining Lists
	6.2.2.5 Defining Arrays
	6.2.2.6 Conditional Processing
	6.2.2.7 Defining Dates
	6.2.2.8 Using Variables
	6.2.2.9 Defining Prefixes and Suffixes
	6.2.2.10 Defining Skipping Data
	6.2.2.11 Defining fixed and default Values
	6.2.2.12 Defining write
	6.2.2.13 Defining LookAhead
	6.2.2.14 Defining Complex lookAhead Strategies for Conditional Processing of Record using RegEx Expressions
	6.2.2.15 Defining outboundHeader
	6.2.2.16 Defining Complex Condition in conditionValue
	6.2.2.17 Defining Complex Condition in choiceCondition
	6.2.2.18 Defining dataLines
	6.2.2.19 Defining Date Formats with Time Zone
	6.2.2.20 Implementing Validation During Translation
	6.2.2.20.1 Payload Validation
	6.2.2.20.2 Schema Validation

	6.2.2.21 Processing Files with BOM

	6.2.3 Multi-Byte Translation
	6.2.3.1 Specifying Padded Data
	6.2.3.2 Specifying a Prefix or a Suffix
	6.2.3.3 Translator Behavior
	6.2.3.4 SOSI Support
	6.2.3.5 Outbound Translation Behavior

	6.3 Translator XPath Functions
	6.3.1 Terminologies
	6.3.2 Translator XPath Functions
	6.3.2.1 doTranslateFromNative Function
	6.3.2.2 doTranslateToNative Function
	6.3.2.3 doStreamingTranslate Function
	6.3.2.4 Batching Transformation Features

	6.4 Use Cases for the Native Format Builder
	6.4.1 Defining the Schema for a Delimited File Structure
	6.4.1.1 Defining a Asterisk (*) Separated Value File Structure

	6.4.2 Defining the Schema for a Fixed Length File Structure
	6.4.3 Defining the Schema for a Complex File Structure
	6.4.4 Removing or Adding Namespaces to XML with No Namespace
	6.4.5 Defining the Choice Condition Schema for a Complex File Structure
	6.4.6 Defining Choice Condition With LookAhead for a Complex File Structure
	6.4.7 Defining Array Type Schema for a Complex File Structure
	6.4.8 Defining the Schema for a DTD File Structure
	6.4.9 Defining the Schema for a COBOL Copybook File Structure

	6.5 Command Line Tool for Testing NXSD Translator
	6.5.1 Prerequisites
	6.5.2 Running the Test Tool

	Part II Message Adapters
	7 Oracle JCA Adapter for AQ
	7.1 Introduction to the Oracle AQ Adapter
	7.1.1 Oracle AQ Adapter Integration with Oracle BPEL Process Manager
	7.1.2 Oracle AQ Adapter Integration with Oracle Mediator

	7.2 Oracle AQ Adapter Features
	7.2.1 Enqueue-Specific Features (Message Production)
	7.2.2 Dequeue and Enqueue Features
	7.2.3 Supported ADT Payload Types
	7.2.4 Native Format Builder Wizard
	7.2.5 Normalized Message Support
	7.2.6 Is DOM 2 Compliant
	7.2.7 Is Message-Size Aware
	7.2.8 Multiple Receiver Threads
	7.2.9 DequeueTimeout Property
	7.2.10 Control Dequeue Timeout and Multiple Inbound Polling Threads
	7.2.11 Stream Payload Support
	7.2.12 Oracle AQ Adapter Inbound Retries
	7.2.13 Error Handling Support
	7.2.14 Performance Tuning

	7.3 Deployment
	7.4 Oracle AQ Adapter Use Cases
	7.4.1 Generic Use Case
	7.4.1.1 The Adapter Configuration Wizard Walkthrough
	7.4.1.1.1 Meeting Prerequisites
	7.4.1.1.2 Creating an Application and an SOA Project
	7.4.1.1.3 Defining an Oracle AQ Adapter Service
	7.4.1.1.4 Generated WSDL and JCA Files

	7.4.1.2 Dequeuing and Enqueuing Object and ADT Payloads
	7.4.1.3 Dequeuing One Column of the Object Payload
	7.4.1.4 Configuring the Enqueue/Dequeue Operation Type
	7.4.1.4.1 Meeting Prerequisites
	7.4.1.4.2 Creating an Application and an SOA Project
	7.4.1.4.3 Defining an Oracle AQ Adapter Service
	7.4.1.4.4 Wiring Services and Activities
	7.4.1.4.5 Deploying with JDeveloper
	7.4.1.4.6 Monitoring Using the Fusion Middleware Control Console
	7.4.1.4.7 Generated WSDL and JCA Files

	7.4.1.5 Using Correlation ID for Filtering Messages During Dequeue
	7.4.1.6 Enqueuing and Dequeuing from Multisubscriber Queues

	7.4.2 Oracle AQ Adapter ADT Queue
	7.4.2.1 Meeting Prerequisites
	7.4.2.2 Creating an Application and an SOA Project
	7.4.2.3 Creating an Inbound Oracle AQ Adapter
	7.4.2.4 Creating an Outbound Oracle AQ Adapter
	7.4.2.5 Wiring Services and Activities
	7.4.2.6 Configuring Routing Service
	7.4.2.7 Configuring the Data Sources in the Oracle WebLogic Server Administration Console
	7.4.2.8 Deploying with JDeveloper
	7.4.2.9 Monitoring Using the Fusion Middleware Control Console

	7.4.3 Oracle AQ Adapter RAW Queue
	7.4.3.1 Prerequisites
	7.4.3.2 Creating an Application and an SOA Project
	7.4.3.3 Creating an Inbound Adapter Service
	7.4.3.4 Creating an Outbound Adapter Service
	7.4.3.5 Wiring Services and Activities
	7.4.3.6 Configuring the Data Sources in the Oracle WebLogic Server Administration Console
	7.4.3.7 Deploying with JDeveloper
	7.4.3.8 Monitoring Using the Fusion Middleware Control Console

	8 Oracle JCA Adapter for JMS
	8.1 Introduction to the Oracle JMS Adapter
	8.1.1 Oracle JMS Adapter Integration with Oracle BPEL Process Manager
	8.1.2 Oracle JMS Adapter Integration with Oracle Mediator

	8.2 Oracle JMS Adapter Features
	8.3 Oracle JMS Adapter Concepts
	8.3.1 Point-to-Point
	8.3.2 Publish/Subscribe
	8.3.3 Destination, Connection, Connection Factory, and Session
	8.3.4 Structure of a JMS Message
	8.3.5 Oracle JMS Adapter Header Properties

	8.4 Oracle JMS Adapter Use Cases
	8.4.1 Configuring Oracle JMS Adapter
	8.4.1.1 Creating an Application and a SOA Project
	8.4.1.2 Using the Adapter Configuration Wizard to Configure Oracle JMS Adapter
	8.4.1.3 Generated Files
	8.4.1.4 weblogic-ra.xml file
	8.4.1.4.1 Creating a New Connection by Using the Oracle WebLogic Server Administration Console
	8.4.1.4.2 Adding a Third-Party JMS Provider

	8.4.1.5 Produce Message Procedure

	8.4.2 Configuring Oracle JMS Adapter with TIBCO JMS
	8.4.2.1 NonDirect Connection
	8.4.2.2 Direct Connection

	8.4.3 Configuring Oracle JMS Adapter with IBM WebSphere MQ JMS
	8.4.3.1 Non-XA Data Sources
	8.4.3.2 XA Data Sources

	8.4.4 Configuring Oracle JMS Adapter with Active MQ JMS
	8.4.5 WLS JMS Text Message
	8.4.5.1 Meeting Prerequisites
	8.4.5.1.1 Creating Queues in the Oracle WebLogic Server Administration Console
	8.4.5.1.2 Creating the Q2Qorders.xsd file

	8.4.5.2 Creating an Application Server Connection
	8.4.5.3 Creating an Application and an SOA Project
	8.4.5.4 Creating an Inbound Adapter Service
	8.4.5.5 Creating an Outbound Adapter Service
	8.4.5.6 Wiring Services and Activities
	8.4.5.7 Deploying with JDeveloper
	8.4.5.8 Monitoring Using the Fusion Middleware Control Console

	8.4.6 Accessing Queues and Topics from WLS JMS Server in a Remote Oracle WebLogic Server Domain
	8.4.6.1 JMS Adapter Limitations When a Remote Server is Used

	8.4.7 Synchronous/Asynchronous Request Reply Interaction Pattern
	8.4.7.1 Synchronous Request Reply Pattern
	8.4.7.2 Asynchronous Request Reply Pattern

	8.4.8 AQ JMS Text Message
	8.4.8.1 Meeting Prerequisites
	8.4.8.1.1 Configuring AQ JMS in Oracle WebLogic Server Administration Console
	8.4.8.1.2 Creating Queues in Oracle Database

	8.4.8.2 Create an Application Server Connection
	8.4.8.3 Creating an Application and an SOA Project
	8.4.8.4 Creating an Inbound Adapter Service
	8.4.8.5 Creating an Outbound Adapter Service
	8.4.8.6 Wiring Services and Activities
	8.4.8.7 Deploying with JDeveloper
	8.4.8.8 Monitoring Using the Fusion Middleware Control Console

	8.4.9 Accessing Queues and Topics Created in 11g from the OC4J 10.1.3.4 Server
	8.4.10 Configuring the 11G Server to Access Queues Present in 10.1.3.X OC4J
	8.4.10.1 Copy Jar Files into the domains Folder of the Web Logic Server
	8.4.10.2 Add Connector factory in the weblogic-ra.xml File

	8.4.11 Accessing Distributed Destinations (Queues and Topics) on the WebLogic Server JMS
	8.4.11.1 Providing JMS Adapter Access to Distributed Topics
	8.4.11.2 The JMS Adapter with Distributed Queues and Distributed Topics
	8.4.11.3 One Copy of a Message Per Application (Default Behavior)
	8.4.11.4 One Copy Of a Message Per Adapter Endpoint
	8.4.11.4.1 Specifying the Message Selector when Defining an Activation Spec
	8.4.11.4.2 Compatibility and Migration

	8.4.12 Configuring Oracle JMS Adapter with IBM WebSphere Default JMS Provider
	8.4.13 Configuring Request-Reply in JMS Adapter
	8.4.14 Using the WLS JMS Unit-Of-Order with the JMS Adapter
	8.4.14.1 Getting a Unit of Order Property

	9 Oracle JCA Adapter for Database
	9.1 Introduction to the Oracle Database Adapter
	9.1.1 Functional Overview
	9.1.1.1 Oracle Database Adapter Integration with Oracle BPEL PM

	9.1.2 Design Overview

	9.2 Complete Walkthrough of the Adapter Configuration Wizard
	9.2.1 Creating an Application and an SOA Project
	9.2.2 Defining an Oracle Database Adapter
	9.2.3 Connecting to a Database
	9.2.4 Selecting the Operation Type
	9.2.5 Selecting and Importing Tables
	9.2.6 Defining Primary Keys
	9.2.7 Creating Relationships
	9.2.7.1 What Happens When Relationships Are Created or Removed
	9.2.7.2 Different Types of One-to-One Mappings
	9.2.7.3 When Foreign Keys Are Primary Keys

	9.2.8 Creating the Attribute Filter
	9.2.9 Defining a WHERE Clause
	9.2.10 Choosing an After-Read Strategy
	9.2.10.1 Delete the Rows That Were Read
	9.2.10.2 Update a Field in the Table (Logical Delete)
	9.2.10.3 Update a Sequencing Table
	9.2.10.4 Update an External Sequencing Table on a Different Database
	9.2.10.5 Update a Sequencing File

	9.2.11 Specifying Polling Options
	9.2.12 Specifying Advanced Options
	9.2.13 Entering the SQL String for the Pure SQL Operation

	9.3 Oracle Database Adapter Features
	9.3.1 Transaction Support
	9.3.1.1 Configuring Oracle Database Adapter for Global Transaction Participation
	9.3.1.2 Both Invokes in Same Global Transaction
	9.3.1.3 Failure Must Cause Rollback
	9.3.1.3.1 Using the Same Sessions for Both Invokes

	9.3.1.4 Transaction/XA Support
	9.3.1.4.1 Configuring an Oracle Database Adapter for Global Transaction Participation
	9.3.1.4.2 Failure Must Cause Rollback

	9.3.2 Pure SQL - XML Type Support
	9.3.3 Row Set Support Using a Strongly or Weakly Typed XSD
	9.3.4 Proxy Authentication Support
	9.3.5 Streaming Large Payload
	9.3.6 Schema Validation
	9.3.7 High Availability
	9.3.8 Scalability
	9.3.8.1 Distributed Polling First Best Practice: SELECT FOR UPDATE (SKIP LOCKED)
	9.3.8.1.1 Configuring PollingInterval, MaxTransactionSize, and ActivationInstances
	9.3.8.1.2 Partition Field
	9.3.8.1.3 activationInstances
	9.3.8.1.4 Indexing and Null Values
	9.3.8.1.5 Disabling Skip Locking
	9.3.8.1.6 MarkReservedValue
	9.3.8.1.7 SequencingPollingStrategy (Last Read or Last Updated)

	9.3.8.2 Distributed Polling Second Best Practice: Tuning on a Single Node First

	9.3.9 Performance Tuning
	9.3.10 detectOmissions Feature
	9.3.11 OutputCompletedXml Feature
	9.3.12 QueryTimeout for Inbound and Outbound Transactions
	9.3.13 Doing Synchronous Post to BPEL (Allow In-Order Delivery)

	9.4 Oracle Database Adapter Concepts
	9.4.1 Relational-to-XML Mapping
	9.4.1.1 Relational Types to XML Schema Types
	9.4.1.2 Mapping Any Relational Schema to Any XML Schema
	9.4.1.3 Querying over Multiple Tables
	9.4.1.3.1 Using Relationship Queries (TopLink Default)
	9.4.1.3.2 Twisting the Original Select (TopLink Batch-Attribute Reading)
	9.4.1.3.3 Returning a Single Result Set (TopLink Joined-Attribute Reading)
	9.4.1.3.4 Comparison of the Methods Used for Querying over Multiple Tables

	9.4.2 SQL Operations as Web Services
	9.4.2.1 DML Operations
	9.4.2.2 Polling Strategies

	9.5 Deployment
	9.5.1 Deployment with Third Party Databases

	9.6 JDBC Driver and Database Connection Configuration
	9.6.1 Creating a Database Connection Using a Native or Bundled Oracle WebLogic Server JDBC Driver
	9.6.2 Creating a Database Connection Using a Third-Party JDBC Driver
	9.6.3 Summary of Third-Party JDBC Driver and Database Connection Information
	9.6.3.1 Using a Microsoft SQL Server
	9.6.3.2 Using a Sybase Database
	9.6.3.2.1 Using a Sybase JConnect JDBC Driver

	9.6.3.3 Using an Informix Database
	9.6.3.3.1 Using an Informix JDBC Driver

	9.6.3.4 Using an IBM DB2 Database
	9.6.3.4.1 IBM DB2 Driver
	9.6.3.4.2 JT400 Driver (AS400 DB2)
	9.6.3.4.3 IBM Universal Driver

	9.6.3.5 Using a MySQL Database

	9.6.4 Location of JDBC Driver JAR Files and Setting the Class Path

	9.7 Stored Procedure and Function Support
	9.7.1 Design Time: Using the Adapter Configuration Wizard
	9.7.1.1 Using Top-Level Standalone APIs
	9.7.1.2 Using Packaged APIs and Overloading

	9.7.2 Supported Third-Party Databases
	9.7.2.1 Terms Used
	9.7.2.2 Supported Third-Party Databases
	9.7.2.2.1 Microsoft SQL Server
	9.7.2.2.2 DB2 Data Types
	9.7.2.2.3 IBM DB2 AS/400
	9.7.2.2.4 MySQL

	9.7.2.3 Creating Database Connections

	9.7.3 Design Time: Artifact Generation
	9.7.3.1 The WSDL–XSD Relationship
	9.7.3.2 JCA File
	9.7.3.3 Oracle Data Types
	9.7.3.4 Generated XSD Attributes
	9.7.3.5 User-Defined Types
	9.7.3.6 Complex User-Defined Types
	9.7.3.7 Object Type Inheritance
	9.7.3.8 Object References
	9.7.3.9 Referencing Types in Other Schemas
	9.7.3.10 XSD Pruning Optimization

	9.7.4 Run Time: Before Stored Procedure Invocation
	9.7.4.1 Value Binding
	9.7.4.2 Data Type Conversions

	9.7.5 Run Time: After Stored Procedure Invocation
	9.7.5.1 Data Type Conversions
	9.7.5.2 Null Values
	9.7.5.3 Function Return Values

	9.7.6 Run Time: Common Third-Party Database Functionality
	9.7.6.1 Processing ResultSets
	9.7.6.2 Returning an INTEGER Status Value

	9.7.7 Advanced Topics
	9.7.7.1 Row Set Support Using a Strongly Typed XSD
	9.7.7.1.1 Design Time
	9.7.7.1.2 Run Time

	9.7.7.2 Row Set Support Using a Weakly Typed XSD
	9.7.7.2.1 Design Time
	9.7.7.2.2 Run Time

	9.7.7.3 Support for PL/SQL Boolean, PL/SQL Record, and PL/SQL Table Types
	9.7.7.3.1 Default Clauses in Wrapper Procedures

	9.8 Oracle Database Adapter Use Cases
	9.8.1 Use Cases for Oracle Database Adapter
	9.8.2 Use Cases for Oracle Database Adapter - Stored Procedures
	9.8.2.1 Creating and Configuring a Stored Procedure in JDeveloper BPEL Designer
	9.8.2.1.1 Prerequisites
	9.8.2.1.2 Creating an Application and an SOA Composite
	9.8.2.1.3 Creating the Outbound Oracle Database Adapter Service
	9.8.2.1.4 Add an Invoke Activity
	9.8.2.1.5 Change the Message Part of the Request Message
	9.8.2.1.6 Change the Message Part of the Response Message
	9.8.2.1.7 Add a Assign Activity for the Input Variable
	9.8.2.1.8 Add an Assign Activity for the Output Variable
	9.8.2.1.9 Deploying with JDeveloper
	9.8.2.1.10 Creating a DataSource in Oracle WebLogic Server Administration Console
	9.8.2.1.11 Monitoring Using the Fusion Middleware Control Console

	9.8.2.2 File To StoredProcedure Use Case
	9.8.2.2.1 Prerequisites
	9.8.2.2.2 Creating an Application and an SOA Project
	9.8.2.2.3 Creating the Outbound Oracle Database Adapter Service
	9.8.2.2.4 Creating an Invoke Activity
	9.8.2.2.5 Creating the Inbound File Adapter Service
	9.8.2.2.6 Adding a Receive Activity
	9.8.2.2.7 Adding an Assign Activity
	9.8.2.2.8 Wiring Services and Activities
	9.8.2.2.9 Deploying with JDeveloper
	9.8.2.2.10 Creating a Data Source
	9.8.2.2.11 Adding a Connection-Instance
	9.8.2.2.12 Testing using the File Adapter Service and SQL*Plus
	9.8.2.2.13 Monitoring Using the Fusion Middleware Control Console

	9.8.3 Database Adapter/Coherence Integration
	9.8.3.1 Inserts/Updates to a Database
	9.8.3.1.1 Select Optimization
	9.8.3.1.2 Queries that Do Not Benefit from Coherence Database Adapter Integration

	9.8.3.2 Database Adapter/Coherence Integration Architecture
	9.8.3.2.1 Using Coherence Database Adapter Integration with WebLogic Server 10.3.5
	9.8.3.2.2 Current Design of the Database Adapter (No Coherence Cache)
	9.8.3.2.3 Read-Write Coherence Cache Database Adapter Integration
	9.8.3.2.4 Read Coherence Cache Database Adapter Integration
	9.8.3.2.5 Enabling No Cache Using the Operations Type Screen
	9.8.3.2.6 Enabling Read-Write Caching Using the Operation Type Screen
	9.8.3.2.7 Enabling Read Caching Using the Operation Type Screen
	9.8.3.2.8 XA Transactions, Read-Write and Read Operations with Coherence/Database Adapter Integration
	9.8.3.2.9 Coherence Cache Lifecycle and Configuration

	10 Oracle JCA Adapter for MQ Series
	10.1 MQ Series Message Queuing Concepts
	10.1.1 MQ Series Concepts

	10.2 Introduction to Native Oracle MQ Series Adapter
	10.2.1 The Need for Oracle MQ Series Adapter
	10.2.2 Oracle MQ Series Adapter Integration with Oracle BPEL Process Manager
	10.2.3 Oracle MQ Series Adapter Integration with Mediator

	10.3 Oracle MQ Series Adapter Features
	10.3.1 RFH Version 2 (RFH2) Header
	10.3.1.1 Fixed Portion
	10.3.1.2 Variable Portion

	10.3.2 SSL Enabling
	10.3.3 XA Transactions
	10.3.3.1 XA Recovery

	10.3.4 High Availability
	10.3.4.1 Prerequisites for High Availability
	10.3.4.2 High Availability in Inbound/Outbound Operations

	10.3.5 Scalability
	10.3.6 Securing Enterprise Information System Credentials
	10.3.7 Fault Policy
	10.3.8 Inbound Rejection Handler
	10.3.9 Retry Mechanism
	10.3.9.1 JCA Inbound Retry Mechanism
	10.3.9.2 Message Backout Queue

	10.3.10 Performance Tuning

	10.4 Oracle MQ Series Adapter Concepts
	10.4.1 Messaging Scenarios
	10.4.1.1 Enqueue Message
	10.4.1.2 Dequeue Message
	10.4.1.3 Asynchronous Request-Response (Oracle BPEL PM As Client)
	10.4.1.4 Synchronous Request-Response (Oracle BPEL PM As Server)
	10.4.1.5 Asynchronous Request-Response (Oracle BPEL PM As Server)
	10.4.1.6 Synchronous Request-Response (Mediator As Server)
	10.4.1.7 Synchronous Request-Response (Oracle BPEL PM As Client)
	10.4.1.8 Synchronous Request-Response (Oracle Mediator as Client)
	10.4.1.9 Asynchronous Request-Response (Oracle Mediator As Client)
	10.4.1.10 Outbound Dequeue Scenario

	10.4.2 Message Properties
	10.4.2.1 Messages Types
	10.4.2.2 Message Format
	10.4.2.3 Message Expiry
	10.4.2.4 Message Priority
	10.4.2.5 Message Persistence

	10.4.3 Correlation Schemas
	10.4.4 Distribution List Support
	10.4.5 Report Messages
	10.4.6 Message Delivery Failure Options
	10.4.7 Message Segmentation
	10.4.8 Integration with CICS
	10.4.9 Supported Encodings
	10.4.10 Using the MQ Series Client Channel Definition Table Feature

	10.5 Configuring the Oracle MQ Series Adapter
	10.5.1 Adding jar Files to the Oracle MQ Series Adapter Classpath: MQ Series 6 and 7
	10.5.2 Adding JNDI Entry
	10.5.3 Enabling Binding Mode for Connections

	10.6 Oracle MQ Series Adapter Use Cases
	10.6.1 Dequeue Enqueue
	10.6.1.1 Prerequisites
	10.6.1.2 Designing the SOA Composite
	10.6.1.3 Creating an Inbound Adapter Service
	10.6.1.4 Creating an Outbound Adapter Service
	10.6.1.5 Wiring Services and Activities
	10.6.1.6 Deploying with JDeveloper
	10.6.1.7 Monitoring Using the Oracle Enterprise Manager Fusion Middleware Control Console (Fusion Middleware Control Console)

	10.6.2 Inbound Synchronous Request-Reply
	10.6.2.1 Prerequisites
	10.6.2.2 Designing the SOA Composite
	10.6.2.3 Creating an Inbound Adapter Service
	10.6.2.4 Wiring Services and Activities
	10.6.2.5 Deploying with JDeveloper
	10.6.2.6 Monitoring Using the Fusion Middleware Control Console

	10.6.3 Inbound-Outbound Synchronous Request-Reply
	10.6.3.1 Prerequisites
	10.6.3.2 Designing the SOA Composite
	10.6.3.3 Creating an Inbound Adapter Service
	10.6.3.4 Creating an Outbound Adapter Service
	10.6.3.5 Wiring Services and Activities
	10.6.3.6 Deploying with JDeveloper
	10.6.3.7 Monitoring Using the Fusion Middleware Control Console

	10.6.4 Asynchronous-Request-Reply
	10.6.4.1 Prerequisites
	10.6.4.2 Designing the SOA Composite
	10.6.4.3 Creating an Inbound Adapter Service
	10.6.4.4 Creating an Asynchronous Outbound Request Reply Adapter Service Outbound
	10.6.4.5 Creating Another Outbound Adapter Service
	10.6.4.6 Wiring Services and Activities
	10.6.4.7 Deploying with JDeveloper
	10.6.4.8 Monitoring Using the Fusion Middleware Control Console

	10.6.5 Outbound Dequeue
	10.6.5.1 Prerequisites
	10.6.5.2 Designing the SOA Composite
	10.6.5.3 Creating an Outbound Dequeue Adapter Service
	10.6.5.4 Wiring Services and Activities
	10.6.5.5 Deploying with JDeveloper
	10.6.5.6 Monitoring Using the Fusion Middleware Control Console

	10.6.6 Configuring a Backout Queue
	10.6.6.1 Prerequisites
	10.6.6.2 Designing the SOA Composite
	10.6.6.3 Creating an Inbound Adapter Service
	10.6.6.4 Creating an Outbound Adapter Service
	10.6.6.5 Wiring Services and Activities
	10.6.6.6 Deploying with JDeveloper
	10.6.6.7 Monitoring Using the Fusion Middleware Control Console

	10.6.7 CCDT Use Cases
	10.6.7.1 Example Queue Manager Properties and CCDT Configuration
	10.6.7.2 Configuringa ConnectionFactoryJNDI
	10.6.7.3 Configuring the CCDTurl
	10.6.7.4 Configuring the QueueManagerName

	10.6.8 Reading Single or Multiple RFH2 Rules and Formatting Header Version 2 Headers
	10.6.8.1 Inbound and Outbound with Multiple RFH2 Headers on Both Sides
	10.6.8.1.1 Designing the SOA Composite
	10.6.8.1.2 Creating an Inbound Adapter Service
	10.6.8.1.3 Creating an Outbound Adapter Service
	10.6.8.1.4 Wiring Services and Activities
	10.6.8.1.5 Deploying with JDeveloper

	10.6.8.2 Outbound Dequeue with Multiple RFH2 Headers
	10.6.8.2.1 Designing the SOA Composite
	10.6.8.2.2 Creating an Outbound Dequeue Adapter Service
	10.6.8.2.3 Wiring Services and Activities
	10.6.8.2.4 Deploying with JDeveloper

	11 Oracle JCA Adapter for UMS
	11.1 UMS and UMS Adapter Concepts
	11.1.1 Oracle UMS Adapter

	11.2 Oracle UMS Adapter Features
	11.2.1 UMS Adapter Message Concepts
	11.2.1.1 Custom Java Callout
	11.2.1.1.1 Use Cases for Custom Java Callout
	11.2.1.1.2 Using the Custom Callout Facility

	11.2.2 UMS Adapter Error Handling and Transactions
	11.2.2.1 Using a JNDI Name Configured to Use XA With LRC Optimization
	11.2.2.2 Inbound Error Handling
	11.2.2.3 Outbound Error Handling
	11.2.2.3.1 Retry Mechanism for Failed Outgoing Notifications with Status Reporting
	11.2.2.3.2 Outbound Send with TLS (SSL) to Communication with an SMTP Server
	11.2.2.3.3 Inbound Receive Notification in a Cluster (Through Polling or Through a Listener)
	11.2.2.3.4 UMS Adapter Properties and Mime Type Configuration
	11.2.2.3.5 Proprietary Headers

	11.2.2.4 Email Attachments
	11.2.2.5 Mail Attachment Handling
	11.2.2.5.1 Retrieving Mime Information Associated with an Attachment in BPEL
	11.2.2.5.2 Setting Mime Information for Multiple Attachments in BPEL

	11.2.2.6 UMS Adapter Inbound and Outbound Operations
	11.2.2.6.1 Oracle UMS Adapter Inbound ReceiveNotification Concepts
	11.2.2.6.2 Oracle UMS Outbound Send Notification Concepts
	11.2.2.6.3 Receive Message id as reply request

	11.2.3 Configuring the Oracle UMS Adapter
	11.2.3.1 Configuring the Email Driver for the UMS Adapter - Outbound Connectivity
	11.2.3.2 Configuring the Email Driver for UMS Adapter - Inbound Connectivity
	11.2.3.3 Designing the Adapter Service and the BPEL Process for Inbound Connectivity
	11.2.3.4 Designing the Adapter Service and the BPEL Process for Outbound Connectivity

	11.3 Sample
	11.3.1 Creating the Composite
	11.3.2 Creating the Inbound Oracle UMS Adapter Service
	11.3.3 Creating the Outbound UMS Adapter service
	11.3.4 Wiring Services and Activities
	11.3.5 Add a Receive Activity
	11.3.6 Obtaining Email Header Information
	11.3.7 UMS Adapter Configuration Changes for IBM WebSphere Server

	A Oracle JCA Adapter Properties
	A.1 Oracle File and FTP Adapters Properties
	A.2 Oracle Socket Adapter Properties
	A.3 Oracle AQ Adapter Properties
	A.4 Oracle JMS Adapter Properties
	A.5 Oracle Database Adapter Properties
	A.6 Oracle MQ Series Adapter Properties
	A.7 Generic Oracle JCA Adapter Properties
	A.8 Generic Oracle Adapter Binding Properties

	B Oracle JCA Adapter Valves
	B.1 A Simple Unzip Valve
	B.2 A Simple Decryption Valve That Uses Staging File
	B.3 A Valve for Encrypting Outbound Files
	B.4 An Unzip Valve for processing Multiple Files

