
Oracle® Java ME Embedded
Developer’s Guide

Release 8.3

E73093-02

July 2016

This document is a resource for software developers and
release engineers who want to build applications for the Oracle
Java ME Embedded software for embedded devices.

Oracle Java ME Embedded Developer’s Guide, Release 8.3

E73093-02

Copyright © 2012, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

This documentation is in preproduction status and is intended for demonstration and preliminary use only.
It may not be specific to the hardware on which you are using the software. Oracle Corporation and its
affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this
documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this
documentation.

The information contained in this document is for informational sharing purposes only and should be
considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement
only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in
making purchasing decisions. The development, release, and timing of any features or functionality
described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions
of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle PartnerNetwork
Agreement, Oracle distribution agreement, or other license agreement which has been executed by you and
Oracle and with which you agree to comply. This document and information contained herein may not be
disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior written consent of
Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual
agreement with Oracle or its subsidiaries or affiliates.

Contents

Preface .. ix

Audience ... ix

Related Documents.. ix

Operating System Commands... ix

Shell Prompts.. ix

Conventions.. ix

1 Developer Migration Guide

Overview.. 1-1

Modified Permission Model.. 1-1

Device I/O Namespace ... 1-2

Generic Connection Framework Changes .. 1-2

2 Java Embedded VM Proxy and Console

Design... 2-1

Starting the VM Proxy on the Desktop.. 2-2

Server Mode Connection... 2-2

Client Mode Connection.. 2-2

VM Proxy Options .. 2-3

Using the Command Line Interface ... 2-4

ams-install.. 2-5

ams-list ... 2-6

ams-info ... 2-7

ams-update.. 2-8

ams-remove... 2-9

ams-run .. 2-10

ams-stop... 2-11

blacklist .. 2-11

properties-list .. 2-12

get-property... 2-13

set-property ... 2-14

save-properties.. 2-15

iii

net-info ... 2-16

net-set ... 2-16

net-reconnect ... 2-17

device-list... 2-18

device-change.. 2-18

shutdown... 2-19

cd... 2-20

delete .. 2-20

get ... 2-21

ls .. 2-22

mkdir .. 2-22

rmdir... 2-23

pwd... 2-24

put... 2-24

exit .. 2-25

ks-delete ... 2-25

ks-export .. 2-26

ks-import ... 2-26

ks-list .. 2-27

ks-clients .. 2-28

dumpheap ... 2-28

3 Security

Overview of Oracle Java ME Embedded Permissions .. 3-1

Accessing Peripherals .. 3-4

Signing the Application with API Permissions ... 3-4

CLDC Permissions.. 3-6

FilePermission... 3-6

RuntimePermission.. 3-6

LoggingPermission .. 3-8

PropertyPermission.. 3-8

Keystore Permissions ... 3-8

KeyStorePermission ... 3-8

Device I/O Permissions... 3-9

ADCPermission .. 3-9

ATPermission.. 3-9

CounterPermission... 3-10

DACPermission .. 3-10

DeviceMgmtPermission .. 3-11

GenericPermission ... 3-11

GPIOPinPermission ... 3-12

GPIOPortPermission.. 3-12

I2CPermission ... 3-13

iv

MMIOPermission ... 3-13

PWMPermission ... 3-14

SPIPermission ... 3-14

UARTPermission.. 3-14

WatchdogTimerPermission .. 3-15

Smart Cards ... 3-15

APDUPermission ... 3-15

Cellular ... 3-16

CellularPermission ... 3-16

Generic Events... 3-16

EventPermission ... 3-16

COMM Protocol .. 3-17

CommProtocolPermission .. 3-17

Connector... 3-18

CBS.. 3-18

File Read .. 3-18

File Write ... 3-19

RTSP ... 3-19

SMS... 3-20

Datagram Protocol.. 3-20

DatagramProtocolPermission... 3-20

DTLSProtocolPermission .. 3-21

DTLSServerPermission.. 3-21

File Protocol ... 3-22

FileProtocolPermission .. 3-22

Hypertext Transfer Protocols.. 3-22

HTTPProtocolPermission.. 3-22

HTTPSProtocolPermission.. 3-23

IMC ... 3-23

IMCProtocolPermission .. 3-23

Multicast Protocols ... 3-24

MulticastProtocolPermission.. 3-24

Push Protocols ... 3-25

PushRegistryPermission.. 3-25

Socket Protocols .. 3-26

SocketProtocolPermission... 3-26

SSLProtocolPermission.. 3-27

Location.. 3-28

LocationPermission.. 3-29

Media .. 3-29

RecordControl... 3-29

VideoControl... 3-29

Auto-Start... 3-29

v

AutoStartPermission.. 3-29

Power.. 3-29

PowerStatePermission ... 3-29

Software Management ... 3-30

SWMPermission ... 3-30

Runtime Update.. 3-31

RuntimeUpdatePermission... 3-31

4 Software Management

SuiteInstallListener Interface... 4-1

SuiteListener Interface.. 4-2

SuiteManager Interface .. 4-2

TaskListener Interface .. 4-2

TaskManager Interface... 4-3

ManagerFactory Class.. 4-4

The Suite Class .. 4-4

SuiteInstaller Class.. 4-6

SuiteManagementTracker Class ... 4-6

SWMPermission Class ... 4-7

Task Class... 4-7

InstallerErrorCode .. 4-8

5 General Purpose Input/Output

Setting a GPIO Output Pin .. 5-1

Working with a Breadboard.. 5-4

Blinking an LED.. 5-8

Testing Output and Input Pins ... 5-10

6 Working with the I2C Bus

Experimenting with a 7-Segment Display .. 6-1

Experimenting with a 16x2 LCD Display.. 6-7

7 The Serial Peripheral Interface (SPI) Bus

Using the SPI Bus to Communicate with an ADC... 7-1

8 Working with Java ME Encryption

Connecting to an SSL Server ... 8-1

Authenticating an SSL Server ... 8-4

Accessing the Keystore .. 8-6

Configuring the Board as a Secure Server... 8-8

A Java ME Optimization Techniques

Design... A-1

vi

Memory.. A-1

Threads .. A-1

System Callbacks .. A-1

Input/Output .. A-2

General Tips... A-2

Application Size .. A-3

B Java ME Embedded Properties

Modifying the Properties File ... B-1

Using the Command-Line Interface... B-1

C Signing an IMlet Suite's JAR File

Instructions for Using JadTool.. C-1

Using the JadTool Utility ... C-2

Handling Expired Certificates .. C-3

Options Summary... C-3

D Managing Keys and Certificates

Running MEKeyTool.. D-1

Using the MEKeyTool Utility.. D-2

ME Keystores... D-2

Working Directory for the Emulator ... D-2

Creating and Managing Multiple ME Keystores... D-3

Importing a Key .. D-3

Listing Available Keys ... D-4

Deleting a Key ... D-5

Replacing a Key... D-6

MEKeyTool Summary.. D-6

E OEM Extensions

Using OEM Extensions .. E-1

F Encryption Algorithms

Supported Algorithms for Windows, Linux, and Raspberry Pi Platforms...................................... F-1

TLSv1.0 - TLSv1.2 ... F-1

Glossary

vii

viii

Preface

This book describes how to create and build Oracle Java ME Embedded software from
its source code.

Audience
This document is intended for developers who want to build Oracle Java ME
Embedded software for embedded devices.

Related Documents
For a complete list of documents with the Oracle Java ME Embedded software, see the
Release Notes.

Operating System Commands
This document does not contain information on basic commands and procedures such
as opening a terminal window, changing directories, and setting environment
variables. See the software documentation that you received with your system for this
information.

Shell Prompts

Shell Prompt

Bourne shell $

Windows directory>

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

ix

Convention Meaning

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

x

1
Developer Migration Guide

Learn the changes between version 3.4 of the Oracle Java ME Embedded and the
current instance, version 8.3 , if you need to port earlier applications to the latest
version of the Oracle Java ME Embedded runtime. You can safely skip this chapter, if
you have not developed IMlets using version 3.4 or earlier of the Oracle Java ME
Embedded platform.

Topics:

• Overview

• Modified Permission Model

• Device I/O Namespace

• Generic Connection Framework Changes

Overview
Java ME 8 is an umbrella terms for two new JSRs: CLDC 8 and MEEP 8. CLDC 8 is a
major evolution of CLDC 1.1, while MEEP 8 is a major evolution of IMP-NG. Java ME
8 also includes support for the new Device I/O API.

CLDC 8 is backwards compatible with CLDC 1.1, but includes alignment with the Java
SE 7 and 8 language, core APIs, and VM functionality, Java SE-style class-based fine-
grain permissions, as well as a significantly enhanced Generic Connection Framework
(GCF).

MEEP 8 allows execution of most IMP-NG applications, and includes significant
enhancements by leveraging the CLDC 8 features, improvements in the application
platform, improved software provisioning and management, footprint scalability
through optional APIs, improved connectivity options, and more flexible
authentication and authorization mechanisms.

The Device I/O API defines an API that allows Java applications running on small
embedded devices to access peripheral devices, from a peripheral device external to
the host device to a peripheral chip embedded in the host device.

It is strongly recommended that developers familiarize themselves with the CLDC 8
specification and API, the MEEP 8 specification and API, and the Device I/O API.

Modified Permission Model
There are a number of new permissions that object methods must obtain before they
can successfully access peripherals. These permissions are covered in more detail in
Chapter 2. However, developers should be aware of the following:

• Java ME 8 now uses Java SE-style class-based fine-grain permissions.

Developer Migration Guide 1-1

• Applications should request the jdk.dio.DeviceMgmtPermission permission
when accessing any devices connected to the board through protocols such as
GPIO, I2C, SPI, or MMIO, in addition to the permissions required by the
communication bus they are using.

• The syntax for the permissions request has changed. The request now includes the
device identifier and any specific actions that are requested, if applicable. Device
identifiers (e.g., GPIO7, SPI) are listed in the appropriate appendix of the Getting
Started Guide for that development board.

• A single request cannot be used for multiple devices; each permissions must be
listed separately. For example, you cannot do the following:

MIDlet-Permission-1: jdk.dio.GPIOPinPermission "GPIO7,GPIO8" "open"

Instead, you must do this:

MIDlet-Permission-1: jdk.dio.GPIOPinPermission "GPIO7" "open"
MIDlet-Permission-2: jdk.dio.GPIOPinPermission "GPIO8" "open"

In some cases, you can use an asterisk as a wildcard.

Device I/O Namespace
The Device Access API of the Oracle Java ME Embedded platform is now referred to
as the Device I/O API, and is no longer part of the com.oracle.deviceaccess
package. Instead, all classes now use the jdk.dio namespace. In addition:

• Classes that contain "Peripheral" have been changed to "Device." So, for example,
PeripheralManager has been replaced by DeviceManager, and
PeripheralPermission has been replaced by DevicePermission.

• Support now exists for pulse width modulation (PWM) on all platforms.

• Almost all of the individual class methods are unchanged.

Generic Connection Framework Changes
The IMP-NG javax.microedition classes are now replaced by the Generic
Connection Framework (GCF) with JSR-360 and Java ME Embedded Profile classes
(MEEP) with JSR-361. There are a large number of changes that are included in these
new profiles. See the specification pages online for more information on each of these
classes.

Device I/O Namespace

1-2 Developer’s Guide

2
Java Embedded VM Proxy and Console

Starting from version 8, the Oracle Java ME Embedded software moves as much CPU
intensive processing away from the embedded Java VM as possible. Instead, a
separate application running on the host side interacts across the network with the
internals of the Java VM. With this design, the VM only sends low-level events to the
host application, such as state change information, methods transition, and objects
information.

The information is then stored and analyzed on host side, and the host application in
turn provides the information to all external profilers, monitors, and managers.
External tools can treat the Java SE host application as if it was the VM itself. Besides
performance and footprint goals, this approach minimizes development efforts on
porting different component communications to new physical transport such as USB,
serial, or Bluetooth. Instead, this VM proxy application (also known as the Developer
Agent) and the VM proxy channel becomes the inter-component tool, and Javacall,
CLDC, MEEP, JSRs and SDK components can all take advantage of it.

Topics:

• Design

• Starting the VM Proxy on the Desktop

• VM Proxy Options

• Using the Command Line Interface

Design
The VM proxy uses a single transport connection to transmit all data for any
subsystem. See Figure 2-1 for an illustration of this design; the VM proxy is the middle
component.

Java Embedded VM Proxy and Console 2-1

Figure 2-1 VM Proxy and Agent Design for Java Embedded

Be sure not to confuse the VM proxy with the VM agent. The VM agent consists of
native code and is located on the embedded device. The VM proxy is written in Java
SE and is launched on the desktop host.

The proxy also provides a software management (SWM) API, similar to the
javax.microedition.swm package, as declared in the Java ME Embedded Profile
(MEEP) specification. This API is an extension of the previous Application
Management System (AMS) API of previous versions of the Oracle Java ME
Embedded platform, and can be leveraged by ME SDK, IDEs, and the CLI to manage
applications with any connected device.

The transport layer between the VM proxy (desktop) and the VM agent (device) is
protocol-agnostic by design. However, it is currently implemented for TCP, Serial
(COM port), and USB. The transport can initiate connection establishment in any
direction, either from device to host or vise versa.

Starting the VM Proxy on the Desktop
To use the VM Proxy, extract the files from your copy of the Oracle Java ME
Embedded ZIP archive on the Windows desktop. The VM Proxy program is found as
a JAR file inside the util directory of the Oracle Java ME Embedded distribution,
named proxy.jar. You can start the VM Proxy on the desktop host computer either
in a server or a client mode as described below.

Server Mode Connection
The server mode is used by default. In this mode, the VM Proxy must be started after
the Java runtime is started on the embedded board. Then do the following.

1. Change to the util directory on your desktop host and enter the following
command. You should see an output similar to the following:

C:\mydir\util> java -jar proxy.jar -socket <Raspberry Pi IP Address>

Channel 8 CLOSED -> AVAILABLE
Trying to open socket connection with device: <IP Address>:2201
Connected to the socket Socket[addr=/<IP address>, port 2201, localport=54784]
Debugger Connection initialized

Client Mode Connection
To switch to a client mode connection, perform the following steps.

Starting the VM Proxy on the Desktop

2-2 Developer’s Guide

1. Edit the jwc_properties.ini file on the embedded board as follows:

• Set the proxy.connection_mode property to the client value.

• Set the proxy.client_connection_address property to the IP address of
the host running the Developer Agent.

2. Start the Java runtime on the embedded board.

3. Change to the lib directory on your desktop host and enter the following
command. You should see an output similar to the following:

C:\mydir\util> java -jar proxy.jar
Starting with default parameters: -ServerSocketPort 2200 -jdbport 2801
Channel 8 CLOSED -> AVAILABLE
Waiting for device connections on port 2200

By default, the proxy listens for CLI connections at 65002 port on the host. The port
can be changed by passing the -cliport option while launching the proxy.

VM Proxy Options
The following options are available when starting the VM Proxy using the java -jar
proxy.jar command.

no options - runs proxy with default transport. The host opens a server socket and
waits for a connection from the embedded device. This means the Java Embedded
runtime should be started on the device with its jwc_properties.ini file
containing the following settings:

proxy.connection_mode=client
proxy.client_conncetion_address=(IP address of VM Proxy)

-socket <IpAddress> - runs the proxy as a client. This means that the device should
open a server socket and wait for a connection from the host. The Java Embedded
runtime should be started on the device with its jwc_properties.ini file
containing the following setting:

proxy.connection_mode=server

-serial <COM_PORT> – Runs the proxy with a serial transport. This means that the
VM proxy communicates with device across the specified serial port.

-debug – Adds additional debugging information when the VM proxy is running.

-i – Runs CLI in the command shell proxy in interactive mode.

-cliAcceptAnyHost – Accepts connections to CLI from any host. By default, only
localhost connections are accepted.

-proxyhost <HOST ADDRESS>– Specifies the HTTP proxy address for outbound IP
connections from the proxy.

-proxyport <PROXY PORT> – Specifies the HTTP proxy port for outbound IP
connections from the proxy.

Use the -help proxy option to preview the list of the available options.

VM Proxy Options

Java Embedded VM Proxy and Console 2-3

Using the Command Line Interface
Once the VM proxy is running on the desktop, you can use the AMS CLI. The easiest
way to do this is to start a PuTTY executable on your desktop computer, and connect
to localhost at port 65002. This is shown in Figure 2-1. See the appropriate Getting
Started Guide for your embedded board for platform-specific information on using the
Command Line Interface.

Figure 2-2 PuTTY Configuration

The window from port 65002 provides a command-line interface (CLI), and is shown
in Figure 2-2:

Using the Command Line Interface

2-4 Developer’s Guide

Figure 2-3 Command-Line Interface

Warning:

The command-line interface (CLI) feature in this Oracle Java ME Embedded
software release is provided only as a concept for your reference. It uses
insecure connections with no encryption, authentication, or authorization.

The following CLI commands are available for developers. When a command is only
available for a specific embedded platform, it is shown in the description.

ams-install
Installs IMlets on the embedded device.

Usage
ams-install <URL> [auth=<username>:<password>] [hostdownload]

Parameters
This command takes the following parameters:

Parameter Description

<URL> Specifies the JAD/JAR location. The URL may contain credentials to access
the JAD/JAR server (e.g. http://username:password@host/...).

hostdownload Downloads the JAR file using HTTP and then installs it to device via the
tooling channel. Applicable for JAR files only.

auth Specifies the user credentials to access the JAD/JAR server.

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-5

Responses
This command may return the following responses:

Response Description

<<ams-install,start install, <URL> Information message about
the start of the installation
process.

<<ams-install, install status: stage
<stage> , %percentage%

Information message about
the installation progress

<<ams-install, OK,install success Information message about
the installation completing.

<<ams-install,FAIL,missing parameters.
see help.

The URL is not specified.

<<ams-install,ERROR,unknown
parameter: '<dummy parameter'. see help.

An unexpected parameter
was found. One or more
parameters were found two
or more times.

<<ams-install,FAIL,credentials must be
specified once: in url or in auth parameter

Credential info specified
twice: in <URL> and in
<auth> parameter.

<<ams-install,FAIL,can't download jar
data from <URL>

An error occurred while
downloading the JAR in
hostdownload mode.

<<ams-install,FAIL,errorCode errorcode,
errorMessage : message

Installation was aborted for
some reason, described in
error message.

<<ams-install,FAIL, error occurred
exception

An unexpected error
occurred. Note that this
response is added for
debugging purposes and to
avoid confusion.

ams-list
Shows a list of installed IMlets on the device or in the specified suite. If no arguments
are specified, the ams-list command will return a list of all installed suites. If a
suite's index or name/vendor combination are used, the command will list the suite's
midlets.

Usage
ams-list [<index> or <name>|<vendor>]

Parameters
This command takes the following parameters:

Parameter Description

<index> Specifies the suite via its index number.

Using the Command Line Interface

2-6 Developer’s Guide

Parameter Description

<name>|<vendor> Specified the suite via its name and vendor

Responses
This command may return the following responses:

Response Description

<<ams-list,FAIL,invalid parameters Unexpected parameters were
found

<<ams-list,OK,0 suites are installed No suites were found on the
device

<<ams-list,0.name|vendor,status
...
<<ams-list,N.name|vendor,status
<<ams-list,OK,N suites are installed

List of installed suites with
details

<<ams-list,FAIL,invalid parameter Parsing the suite's index
failed or the | character was
missed

<<ams-list,FAIL,not found The suite was not found

<<ams-list,1.midlet,status
...
<<ams-list,N.midlet,status
<<ams-list,OK,N midlets are installed in
suiteName|suiteVendor

List of the installed midlets in
the suite. Note that each suite
status can be RUNNING or
STOPPED.

ams-info
Displays information regarding the specified suite.

Usage
ams-info <index>

Parameters
This command takes the following parameters:

Parameter Description

<index> Specifies the suite via its index number.

Responses
This command may return the following responses:

Response Description

<<ams-info,FAIL,missing parameters. see
help.

Number of the specified
parameters is less or more
than 1.

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-7

Response Description

<<ams-info,FAIL,connection is closed Connection to the device is
closed

<<ams-info,FAIL,not found The suite is not found or
removed during command
execution.

<<ams-info,SIZE=<size>
<<ams-info,VERSION=<version>
<<ams-info,NAME=<name>
<<ams-info,VENDOR=<vendor>
<<ams-info,URL=<URL>
<<ams-info,MIDlet-1=<midlet-1>
<<ams-info,OK,success getting info

List of suite-specific
information.

ams-update
Updates the specified suite.

Usage
ams-update <index> or <name|vendor> [auth=<username>[:<password>]]

Parameters
This command takes the following parameters:

Parameter Description

<index> The index of the suite to be updated. To obtain the
suite index, use the ams-list command.

<name>|<vendor> Specifies the suite to be updated via its name and
vendor.

auth Specifies the user credentials to access the JAD/JAR
server.

Note: The suite's <index> or <name|vendor> combination is mandatory and must be
placed first.

Responses
This command may return the following responses:

Response Description

<<ams-update,FAIL,missing parameters.
see help.

Missing parameters (the
suite's index or name|vendor
combination is not specified)

<<ams-update,ERROR,unknown
parameter: parameter. see help.

An unexpected parameter
was found.

<<ams-update,ERROR,duplicate
parameter: parameter. see help.

A duplicate parameter was
found

Using the Command Line Interface

2-8 Developer’s Guide

Response Description

<<ams-update,ERROR,Can't update suite
suiteIndex (suiteName|suiteVendor):
download url is not specified.

The download URL is not
specified. For suites, installed
in hostdownload mode, see
the ams-install command.

<<ams-update,FAIL,not found Suite not found. Either the
suite was removed or the
index / name|vendor
identifier was specified
incorrectly.

<<ams-update,start install, <URL> Information message about
the update process starting.

<<ams-update, install status: stage stage ,
percentage%

Information message about
the update progress

<<ams-update, OK,install success Information message about
the update process
completing.

<<ams-update,FAIL, errorCode errorcode,
errorMessage : message

The update was aborted for
some reason, as described in
the error message.

<<ams-update,FAIL, error occurred
exception

An unexpected error
occurred. Note that this
response is added for
debugging purposes and to
avoid confusion.

ams-remove
Removes the specified suite from device.

Usage
ams-remove <index or name|vendor>

Parameters
This command takes the following parameters:

Parameter Description

<index> The index of the suite to be removed. To obtain the
suite index, use the ams-list command.

<name>|<vendor> Specifies the suite to be removed via its name and
vendor

Responses
This command may return the following responses:

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-9

Response Description

<<ams-update,FAIL,missing parameters.
see help.

Missing parameters (suite's
index or name|vendor not
specified)

<<ams-remove,OK,removed The suite was successfully
removed:

<<ams-remove,FAIL,not found The suite was not found.
Either the suite has been
already removed, or the
<index>/<name|vendor>
identifier was specified
incorrectly.

<<ams-remove,FAIL,locked The suite is locked and cannot
be removed. The suite is
likely in the RUNNING state.
The ams-stop command
must be called first.

<<ams-remove,FAIL,not allowed The user doesn't have
permissions to remove suites.

ams-run
Run default suite's MIDlet or MIDlet, specified wit [MILET_ID] parameter

Usage
ams-run <index or name|vendor> [<id>]

Parameters
This command takes the following parameters:

Parameter Description

<index> Index of suite to be run. To obtain the suite index,
use the ams-list command.

<name>|<vendor> Specifies the suite to be launched via its name and
vendor

<id> The index of midlet in the suite to be run.

Responses
This command may return the following responses:

Response Description

<<ams-run,FAIL,invalid parameters Unexpected parameters were
found.

<<ams-run,FAIL,failed to start Cannot start the midlet. The
index of the suite or midlet
was specified incorrectly.

Using the Command Line Interface

2-10 Developer’s Guide

Response Description

<<ams-run,FAIL,already started The suite has been already
started.

<<ams-run,OK,started The suite was started
successfully.

ams-stop
Stops the default MIDlet, or the MIDlet with the specified ID if given.

Usage
ams-stop <index or name|vendor> [id]

Parameters
This command takes the following parameters:

Parameter Description

<index> Index of suite to be stopped. To obtain the suite
index, use the ams-list command.

<name>|<vendor> Specified the suite to be stopped via its name and
vendor

<id> The ID of midlet in the suite to be stopped.

Responses
This command may return the following responses:

Response Description

<<ams-stop,FAIL,invalid parameters Unexpected parameters were
found

<<ams-stop,FAIL,not found Cannot stop the midlet. The
index of the suite or midlet
was specified incorrectly.

<<ams-stop,OK,started The suite was stopped
successfully

blacklist
Blacklists clients and applications.

Usage
blacklist -client <name>

blacklist -app <name|vendor>

Parameters
This command takes the following parameters:

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-11

Parameter Description

<name> The name of the client to be blacklist.

<name>|<vendor> Specifies the suite to be blacklisted via its name and
vendor

Responses
This command may return the following responses:

Response Description

<<blacklist,FAIL,invalid parameters Unexpected parameters were
found

<<blacklist status OK The command was successful.

properties-list
Shows the list of names of properties which control Java ME runtime, common to the
java_properties.ini file. Note that a property type may be only INT, STRING or
BOOL. The read/write flag value may be only read/write or read only, and a BOOL
property value may be only true or false.

Usage
properties-list [-l]

Parameters
This command takes the following parameters:

Parameter Description

-l Use the long listing format with properties' types,
values and readonly flags.

Responses
This command may return the following responses:

Response Description

<<properties-
list,AMS_MEMORY_LIMIT_MVM
AMS_MEMORY_RESERVED_MVM
AuthenticationName AuthenticationPwd
btgoep btl2cap btspp cbs ...

The response without the
long listing flag. Shows
property names separated by
a space.

Using the Command Line Interface

2-12 Developer’s Guide

Response Description

<<properties-list,OK
read/write INT
AMS_MEMORY_LIMIT_MVM = -1
read/write INT
AMS_MEMORY_RESERVED_MVM = 100
read/write STRING AuthenticationName
= user
read/write STRING AuthenticationPwd =
password
read only BOOL
microedition.deviceid.isunique = false
read only BOOL
microedition.devicevendor.isunique =
false

The response with the long
listing flag.

<<properties-list,FAIL,invalid parameters
<<properties-list,Usage: properties-list [-l]
<<properties-list,list of properties which
control Java ME runtime
<<properties-list, -l use a long listing
format

An unexpected parameter
was found

<<properties-list,OK,there is no property
found

An empty list of properties
was found.

<<properties-list,FAIL,connection is
closed

An IOException has
occurred.

get-property
Shows the value of requested property. If the property is not defined, the command
shows an empty string as its value.

Usage
get-property <name> [-i]

Parameters
This command takes the following parameters:

Parameter Description

name The property name

-i Displays additional property information

Responses
This command may return the following responses:

Response Description

<<get-property,OK,dio.counter = true The property was found
(without displaying
additional information)

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-13

Response Description

<<get-property,OK,dummy.property = The property value is empty
or not a set (without
additional information)

<<get-property,OK, readonly BOOL
dio.counter = true

The property is found (with -
i flag)

<<get-property,OK, read/write STRING
dummy-property =

The property value is empty
or not a set (with -i flag)

<<get-property,FAIL,illegal argument
[ip.netmask]
<<get-property,Usage: get-property name
[-i]
<<get-property,shows value of string
property 'name'
<<get-property, -i display property info

An unexpected parameter
was found
The wrong flag format was
used(e.g. using -info
instead of -i)

<<get-property,FAIL,connection is closed An IOException has
occurred.

<<get-property,OK,LC_NETWORK = 2 =>
1

The property was modified
with the set-property
command. The new value
will be effective after you
restart the device.

set-property
Sets the new value for the requested property. If the property controls the Java ME
Runtime (i.e., it is defined in the java_properties.ini file), it cannot be rewritten
unless the read-only flag is disabled. Note that properties are verified for type
correctness. The value of a BOOL property may be any string. However, only "true"
(case insensitive) is considered a true value; any other string is considered to be false.

The new value for a property that controls the Java ME Runtime will be applied only
after a VM reboot. In this case, only the latest set-property command will have an
effect after reboot. New values for other properties can be read just after the get-
property command has finished.

Usage
set-property <name> <value>

Parameters
This command takes the following parameters:

Parameter Description

<name> The name of the requested property

<value> The new value for the property.

Responses
This command may return the following responses:

Using the Command Line Interface

2-14 Developer’s Guide

Response Description

<<set-property,OK,imc = new.value The operation completed
successfully.

<<set-property,FAIL,illegal number
[hello].

The value type is not a
number when property type
is INT:

<<set-property,FAIL,illegal argument
[microedition.devicevendor.isunique] or
[true].

The property is read-only:

<<set-property,FAIL,invalid parameters. Wrong number of
parameters:

<<set-property,FAIL,connection is closed An IOException has
occurred

When you modify a property by using the set-property command and verify the
change with the get-property command, the CLI response contains both old and
new values as shown in the following example. The new value will be effective after
you restart the device.

10.162.80.150:2201>>get-property LC_NETWORK
<<get-property,OK,LC_NETWORK = 2
10.162.80.150:2201>>set-property LC_NETWORK 1
<<set-property,OK,LC_NETWORK = 1
Changes will take effect after device restart
10.162.80.150:2201>>get-property LC_NETWORK
<<get-property,OK,LC_NETWORK = 2 => 1

save-properties
Saves properties to an internal storage.

Usage
save-properties

Parameters
This command takes no parameters:

Responses
This command may return the following responses:

Response Description

<<save-properties,OK,success Properties have been
successfully saved to the
internal storage

<<save-properties,FAIL An IOException has
occurred.

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-15

net-info
Show the network information of the system. This command only works on
Qualcomm IoE devices.

Usage
net-info

Parameters
This command takes no parameters:

Responses
This command may return the following responses:

Response Description

<<net-info,OK,success getting info Shows network information
in the format <name>=<value>

<<net-info,FAIL, connection is closed An IOException has
occurred.

net-set
Sets a new value for the requested property of the network system. The property is
verified for type correctness. This command only works on Qualcomm IoE devices.

Usage
net-set <name> <value>

Parameters
This command takes the following parameters:

Parameter Description

<name> The name of the requested property

<value> The new value for the property.

Responses
This command may return the following responses:

Response Description

<<net-set,OK,<NAME> = <VALUE> The operation completed
successfully.

Using the Command Line Interface

2-16 Developer’s Guide

Response Description

<<net-set,FAIL,illegal first argument
[<NAME>]
<<net-set ssid <SSID>:set value for WIFI
access
<<net-set passwd <PASSWD>:set
password for WIFI access
<<net-set pref <0|1|2|3|4|5>:set network
mode preference 0:AUTO, 1:NO OP,
2:WLAN Only, 3:GSM/WCDMA only,
4:WCDMA only, 5:GSM/WCDMA/WLAN
<<net-set apn <APN>:set APN
<<net-set pdp_authtype <0|1|2>:set
APN's auth type 0:NONE, 1:PAP, 2:CHAP
<<net-set pdp_username
<USERNAME>:set pdp username
<<net-set pdp_password
<PASSWORD>:set pdp password

An illegal type of property
was encountered. The
response dictates the correct
syntax and property type.

<<net-set,FAIL,illegal value [<VALUE>] The value type was not a
number when the property
type is INT.

<<net-set,FAIL,illegal argument
[<NAME>] or [<VALUE>]

This is returned if any of
arguments are null or if the
property.name has an
incorrect property type.

<<net-set,FAIL,connection is closed An IOException has
occurred.

net-reconnect
Reconnects the network and reboots Java.

Usage
net-reconnect

Parameters
This command takes no parameters:

Responses
This command may return the following responses:

Response Description

<<net-reconnect,OK,VM will reboot.
Device will reconnect to the network

The network reconnect
command completed
successfully. The device will
be rebooted and reconnected
to the network.

<<net-reconnect,FAIL Cannot reconnect the device
to the network

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-17

Response Description

<<net-reconnect,FAIL, connection is closed An IOException has
occurred.

device-list
Prints a list of all connected devices at the current time.

Usage
device-list

Parameters
This command takes no parameters.

Responses
This command may return the following responses:

Response Description

< <<device-list,
0,<IP0>:<port0>,CURRENT<<device-list,
1,<IP1>:<port1>...<<device-
list,<N-1>,<IPN-1>:<portN-1><<device-
list,OK,N devices are connected

Printed list of devices. The
"CURRENT" annotation
indicates the currently seleted
device that all device-related
CLI command are addressed
to.

<<device-list,FAIL,invalid parameters Unexpected parameters were
found. In this case, the
command has no parameters,
but the user has specified
some:

device-change
Switches the currently-selected device. Once changed, all further device-related
commands will be address to the newly selected device.

Usage
device-change <index>

Parameters
This command takes the following parameters:

Parameter Description

<index> An integer index of device, as printed by the
device-list command.

Responses
This command may return the following responses:

Using the Command Line Interface

2-18 Developer’s Guide

Response Description

<<device-change,OK,current device is
changed

The command has been
processed successfully; the
current device was changed.

<<device-change,FAIL,invalid parameters An invalid number of
parameters have been
specified (either no
parameters or more than one
parameter).

<<device-change,FAIL,incorrect device
index

The index is not an integer.

<<device-change,FAIL,device not found There is no such device.

<<device-change,FAIL,the device is
already current

An attempt was made to
switch to a device that is
already the current device.

shutdown
Shutdown or restart the device.

Usage
shutdown [-r]

Parameters
This command takes the following parameters:

Parameter Description

-r Restart the device. Note that restart is not
supported on Win32 platform.

Responses
This command may return the following responses:

Response Description

<<shutdown,OK,device will shutdown! The shutdown command
was processed successfully.
The device will be shutdown
soon.

<<shutdown,OK,device will reboot! The shutdown command
was processed successfully,
device will be restarted soon.

<<shutdown,FAIL,can't reboot device Cannot restart the device

<<shutdown,FAIL,wrong parameters. see
help.

Unexpected parameters were
found.

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-19

Response Description

<<shutdown,FAIL,<Error message> Shutdown command failed
due an unknown reason.

cd
Changes the working directory on the device.

Usage
cd <deviceDirectoryName>

Parameters
This command takes the following parameters:

Parameter Description

<deviceDirectoryName
>

This specifies the directory on the device to which
you want to change. The <deviceDirectoryName> can
be relative to the current working directory, or an
absolute path

Responses
This command may return the following responses:

Response Description

<<cd,OK The command completed
successfully

<<cd,FAIL,invalid parameters Missing or excess parameters
were encountered

<<cd,FAIL,directory not found
<deviceDirectoryName>

Incorrect
<deviceDirectoryName>
specified

<<cd,FAIL,connection is closed An IOException has
occurred

delete
Deletes file on the device.

Usage
delete <deviceFileName>

Parameters
This command takes the following parameters:

Using the Command Line Interface

2-20 Developer’s Guide

Parameter Description

<deviceFileName> Specifies the file to delete. <deviceFileName> can be
relative to the current working directory, or an
absolute path.

Responses
This command may return the following responses:

Response Description

<<delete,OK The command completed
successfully

<<delete,FAIL,invalid parameters Missing or excess parameters
were encountered.

<<delete,FAIL,file not found

<deviceFileName>

Incorrect <deviceFileName>
specified

<<delete,FAIL,connection is

closed

An IOException has
occurred

get
Copies a device file to the host.

Usage
get <deviceFileName> <hostFileName>

Parameters
This command takes the following parameters:

Parameter Description

<deviceFileName> Specifies the file to copy. <deviceFileName> can be
relative to the current working directory, or an
absolute path.

<hostFileName> Specifies the name of the file to use on the host.

Responses
This command may return the following responses:

Response Description

<<get,OK The command completed
successfully

<<get,FAIL,invalid parameters Missing or excess parameters
were encountered

<<get,FAIL,file not found
<deviceFileName>

Incorrect <deviceFileName>
specified

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-21

Response Description

<<get,FAIL,unable to write into file
<hostFileName>

Incorrect <hostFileName>
specified

<<get,FAIL,connection is closed An IOException has
occurred

ls
Displays a list of files and subdirectories in a device directory.

Usage
ls [<deviceDirectoryName>]

Parameters
This command takes the following parameters:

Parameter Description

<deviceDirectoryName
>

Specifies the directory for which you want to see a
listing. <deviceDirectoryName> can be relative to the
current working directory, or an absolute path. If
no directory is specified, the current working
directory on the device is used. In the result listing,
subdirectories are marked by a trailing device file
separator symbol (for example, "\" on Windows,
"/" on RPi).

Responses
This command may return the following responses:

Response Description

<<ls,OK
alljavalist.txt
all_classes.zip
appdb\
bin\
classes\
classes.zip

The command completed
successfully

<<ls,FAIL,invalid parameters Excess or invalid parameters
were encountered

<<ls,FAIL,directory not found
<deviceDirectoryName>

Incorrect
<deviceDirectoryName>
specified

mkdir
Creates a directory on the device.

Using the Command Line Interface

2-22 Developer’s Guide

Usage
mkdir <deviceDirectoryName>

Parameters
This command takes the following parameters:

Parameter Description

<deviceDirectoryName
>

Specifies the name of the new device directory.
<deviceDirectoryName> can be relative to the current
working directory, or an absolute path.

Responses
This command may return the following responses:

Response Description

<<mkdir,OK The command completed
successfully

<<mkdir,FAIL,invalid parameters Missing or excess parameters
were encountered

<<mkdir,FAIL,directory not found
<deviceDirectoryName>

Incorrect
<deviceDirectoryName> was
specified

<<mkdir,FAIL,connection is closed An IOException has
occurred

rmdir
Deletes an empty directory on the device.

Usage
rmdir <deviceDirectoryName>

Parameters
This command takes the following parameters:

Parameter Description

<deviceDirectoryName
>

Specifies the name of the device directory to delete.
<deviceDirectoryName> can be relative to the current
working directory, or an absolute path.

Responses
This command may return the following responses:

Response Description

<<mkdir,OK The command completed
successfully

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-23

Response Description

<<rmdir,FAIL,invalid parameters> Missing or excess parameters
were encountered

<<rmdir,FAIL,directory not found
<deviceDirectoryName>

Incorrect
<deviceDirectoryName> was
specified

<<rmdir,FAIL,unable to delete directory
<deviceDirectoryName>

Unable to delete the
directory, for example, the
directory or a file in it is used
by another application, or the
directory is not empty.

pwd
Prints the current working directory on the device.

Usage
pwd

Responses
This command may return the following responses:

Response Description

<<pwd,OK
c:\Users\abc\javame-sdk\8.0_ea\work
\EmbeddedDevice1\appdb

The command processed
successfully

<<pwd,FAIL,invalid parameters Excess parameters were
encountered

put
Copies a local host file to the device.

Usage
put <hostFileName> <deviceFileName>

Parameters
This command takes the following parameters:

Parameter Description

<hostFileName> Specifies the local host file to copy.

<deviceFileName> Specifies the name to use on the device.
<deviceFileName> can be relative to the current
working directory, or an absolute path.

Responses
This command may return the following responses:

Using the Command Line Interface

2-24 Developer’s Guide

Response Description

<<put,OK The command processed
successfully

<<put,FAIL,invalid parameters Missing or excess parameters

<<put,FAIL,unable to read file
<hostFileName>

Incorrect <hostFileName>
specified

<<put,FAIL,file not found
<deviceFileName>

Incorrect <deviceFileName>
specified

<<put,FAIL,connection is closed An IOException has
occurred

exit
Terminates the current CLI session. The CLI server continues to run and the user can
re-connect again.

Usage
exit

Parameters
The command has no parameters.

Responses
The command returns no response; the terminal application closes.

ks-delete
Deletes a key from the ME device keystore, identified either by its owner or the key
number.

Usage
ks-delete (-owner <ownerName> | -number <keyNumber>) [(-client <name> |
-proxy)]

Parameters
This command takes the following parameters:

Parameter Description

<ownerName> The name of the owner of an ME key.

<keyNumber> The key number (starting at 1) of an ME key
currently in the device keystore.

<name> The name of the target security client.

-proxy Drop the proxy connection security in the next
session.

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-25

Responses
This command may return the following responses:

Response Description

<<ks-delete,OK The command processed
successfully

<<ks-delete,FAIL,bad command or
missing parameters. Type help for
assistance.

An error occurred, either with
the command itself or one of
the parameters.

ks-export
Exports a key from the device keystore identified by its index.

Usage
ks-export -number <keyNumber> -out <filename> [-client <name>]

Parameters
This command takes the following parameters:

Parameter Description

<keyNumber> The key number (starting at 1) of an ME key
currently in the device keystore.

<filename> The complete filename to save the exported key as.

<name> The name of the target security client.

Responses
This command may return the following responses:

Response Description

<<ks-export,OK The command processed
successfully

<<ks-export,FAIL,bad command or
missing parameters. Type help for
assistance.

An error occurred, either with
the command itself or one of
the parameters.

ks-import
Imports a public key from a JCE keystore or a key file into a ME device keystore.

Usage
ks-import [-keystore <filename>] [-storepass <storepass>] [-keypass
<keypass>] [-alias <keyAlias>] [-client <ClientName>] [-proxy]

Parameters
This command takes the following parameters:

Using the Command Line Interface

2-26 Developer’s Guide

Parameter Description

<filename> The complete filename of the JCE keystore or the
key file. The keystore file may be in the following
formats: jks, pkcs12,pem,der

<storepass> The password for the JCA keystore This parameter
is not required when the source file is in the pem or
der format.

<keypass> The password for the private key in a JCA or
PKCS12 keystore. This parameter is not required if
the command is importing only a public certificate.

<keyAlias> The short string ID of a key in a JCA keystore. This
parameter is not required when the source file is in
the pem or der format.

<clientName> The name of the security domain client. If specified,
the certificate will be added to the indicated client
only.

-proxy Enforces the proxy connection security (TLS 1.2)
with the given certificate, starting from the next
session.

Responses
This command may return the following responses:

Response Description

<<ks-import,OK The command processed
successfully

<<ks-import,FAIL,bad command or
missing parameters. Type help for
assistance.

An error occurred, either with
the command itself or one of
the parameters.

ks-list
Lists the owner and validity period of each key in the ME device keystore.

Usage
ks-list [(-proxy | -client <name>)]

Parameters
This command takes the following parameters:

Parameter Description

<name> The name of the target security client.

-proxy Displays the certificate(s) installed for securing the
proxy connection.

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-27

Responses
This command may return the following responses:

Response Description

<<ks-list [<number>]=Owner:<Owner
distinguished name> Valid from <date> to
<date>

A list of each of the installed
keys, following this format.

ks-clients
Presents a list of all the security clients defined in the system that can accept public
keys.

Usage
ks-clients

Responses
This command may return the following responses:

Response Description

<<ks-list [<number>]=<Client name> A list of each of the clients,
following this format.

dumpheap
Dumps Java heap of the connected device.

Usage
dumpheap [-gc]

Parameters
This command takes the following parameters:

Parameter Description

[-gc] Forces full garbage collector (GC) on the device
prior the dump.

Using the Command Line Interface

2-28 Developer’s Guide

3
Security

This chapter discusses security with the Oracle Java ME Embedded environment. Note
that with version 8 of the OJMEE, the security system was changed considerably, and
now uses Java SE-style fine-grain permissions. In addition, a security policy must be
chosen and JAR files, if applicable, must be digitally signed in order for peripherals to
be accessed.

Overview of Oracle Java ME Embedded Permissions
Applications that require access to peripherals or resources must request appropriate
permissions in the JAD file. For more information on using the Device I/O APIs,
please see the Device I/O API 1.1 specification and the associated Javadocs at the
following site:

http://docs.oracle.com/javame

Table 3-1 gives a list of all permissions that can be requested in the Oracle Java ME
Embedded environment, as well as a description of when they are applicable.

Table 3-1 Oracle Java ME Embedded Permissions

Permission Description

com.oracle.crypto.keystore.KeyStorePermi
ssion

Allows access to the keystore

com.oracle.ssl.DTLSServerPermission Allows access to a DTLS server.

com.oracle.runtime.update.RuntimeUpdateP
ermission

Allows remote update of the Java
ME Embedded runtime.

java.io.FilePermission Accessing files

java.lang.RuntimePermission Accessing runtime properties

java.util.logging.LoggingPermission Use of log files

java.util.PropertyPermission Accessing system properties

javax.microedition.apdu.APDUPermission Access to smartcards using the
APDU protocol

javax.microedition.cellular.CellularPerm
ission

Use of cellular telephone
functionality on a board.

javax.microedition.event.EventPermission Reading and posting system-level
events

javax.microedition.io.AccessPointPermiss
ion

Use of access points for network
connections.

Security 3-1

http://docs.oracle.com/javame

Table 3-1 (Cont.) Oracle Java ME Embedded Permissions

Permission Description

javax.microedition.io.CommProtocolPermis
sion

Use of the COMM serial port
protocol

javax.microedition.io.Connector.cbs Use of a Cell Broadcast Service (CBS)
Connector

javax.microedition.io.Connector.file.rea
d

Use of a file read Connector

javax.microedition.io.Connector.file.wri
te

Use of a file write Connector

javax.microedition.io.Connector.rtsp Use of a real-time streaming
protocol (RTSP) Connector

javax.microedition.io.Connector.sms Use of an SMS Connector

javax.microedition.io.DatagramProtocolPe
rmission

Use of the datagram protocol

javax.microedition.io.DTLSProtocolPermis
sion

Use of the Datagram Transport
Layer Security (DTLS) protocol

javax.microedition.io.FileProtocolPermis
sion

Use of a file protocol

javax.microedition.io.HttpProtocolPermis
sion

Use of the HTTP protocol

javax.microedition.io.HttpsProtocolPermi
ssion

Use of the HTTPS protocol

javax.microedition.io.IMCProtocolPermiss
ion

Use of the Inter-MIDlet
communication protocol

javax.microedition.io.MulticastProtocolP
ermission

Use of a multicast protocol

javax.microedition.io.PushRegistryPermis
sion

Use of a push registry

javax.microedition.io.SocketProtocolPerm
ission

Use of a socket protocol

javax.microedition.io.SSLProtocolPermiss
ion

Use of the Secure Sockets Layer
(SSL) protocol

javax.microedition.location.LocationPerm
ission

Obtain the current location

javax.microedition.media.control.RecordC
ontrol

Use of a recording feature on the
device

javax.microedition.media.control.VideoCo
ntrol.getSnapshot

Use of a video snapshot feature on
the device

Overview of Oracle Java ME Embedded Permissions

3-2 Developer’s Guide

Table 3-1 (Cont.) Oracle Java ME Embedded Permissions

Permission Description

javax.microedition.midlet.AutoStartPermi
ssion

A permission to autostart an IMlet
suite on a device

javax.microedition.power.PowerStatePermi
ssion

Access the current power state of the
device

javax.microedition.swm.SWMPermission Access the software management
features of the Java ME Embedded
runtime

javax.wireless.messaging.cbs.receive Receive a Cell Broadcast Service
(CBS) message

javax.wireless.messaging.sms.receive Receive an SMS message

javax.wireless.messaging.sms.send Send an SMS message

jdk.dio.adc.ADCPermission Use of analog-to-digital converter
(ADC)

jdk.dio.atcmd.ATPermission Use of AT communication line

jdk.dio.counter.CounterPermission Use of the hardware counter

jdk.dio.dac.DACPermission Use of digital-to-analog converter
(DAC)

jdk.dio.DeviceMgmtPermission Opening of any Device I/O
peripheral.

jdk.dio.generic.GenericPermission Use of generic Device I/O
connections

jdk.dio.gpio.GPIOPinPermission Use of a General Purpose I/O
(GPIO) pin

jdk.dio.gpio.GPIOPortPermission Use of a General Purpose I/O
(GPIO) port

jdk.dio.i2cbus.I2CPermission Use of the I2C bus on the board

jdk.dio.mmio.MMIOPermission Use of the Memory-Mapped I/O
(MMIO) capabilities on the board

jdk.dio.pwm.PWMPermission Use of the Pulse Width Modulation
(PWM) capabilities on the board

jdk.dio.spibus.SPIPermission Use of the SPI bus on the board

jdk.dio.uart.UARTPermission Use of the UART bus on the board

jdk.dio.watchdog.WatchdogTimerPermission Use of the watchdog timer on the
board

Overview of Oracle Java ME Embedded Permissions

Security 3-3

Accessing Peripherals
Applications that require access to Device I/O APIs must request appropriate
permissions in JAD files. For more information on using the Device I/O APIs, please
see the Device I/O API 1.1 specification and the associated Javadocs at the following
site:

http://docs.oracle.com/javame/

Signing the Application with API Permissions
First, the JAD file must have the proper API permissions. Here is how to sign the
application both in NetBeans and without an IDE.

• In NetBeans, right-click the project name and choose Properties. Select
Application Descriptor, then in the resulting pane, select API Permissions. Click
the Add... button, and add the appropriate permissions, as shown in Figure 3-1.
Click OK to close the project properties dialog.

Figure 3-1 Adding Permissions Using the NetBeans IDE

• If you are not using an IDE, you can manually modify the application descriptor
file to contain the following permissions.

MIDlet-Permission-1: com.oracle.dio.DeviceMgmtPermission "*:*" "open"

Method #1: Signing Application Using the NetBeans IDE

The NetBeans IDE enables developers both to sign the applications with a local
certificate and upload the certificate on the device. See the appropriate Getting Started
Guide for your embedded platform to learn how to use the NetBeans IDE to sign your
application.

Accessing Peripherals

3-4 Developer’s Guide

http://docs.oracle.com/javame/

Method #2: Signing Application Using a Command Line

Signing applications using a command line is the preferred route for applications that
are widely distributed. Here are the instructions on how to setup a keystore with a
local certificate that can be used to sign the applications:

1. Generate a new self-signed certificate with the following command on the desktop,
using the keytool that is shipped with the Oracle Java SE JDK.

keytool -genkey -v -alias mycert -keystore mykeystore.ks -storepass

spass -keypass kpass -validity 360 -keyalg rsa -keysize 2048 -dname

"CN=thehost"

This command generates a 2048-bit RSA key pair and a self-signed certificate,
placing them in a new keystore with a keystore password of spass and a key
password of kpass that is valid for 360 days. You can change both passwords as
desired.

2. Copy the certs directory from the board over to the desktop using an sftp client
or scp command, change into the certs directory, and perform the following
command using the mekeytool.exe command (or alternatively java -jar
MEKeyTool.jar... if your distribution contains only that) that ships with the
Oracle Java ME SDK 8.3 distribution.

{mekeytool} -import -MEkeystore _main.ks -keystore
mykeystore.ks -storepass spass -alias mycert -domain trusted

This command imports the information in mykeystore.ks that you just created
to the _main.ks keystore. After this is completed, copy the certs directory back
to the board by using an sftp client or scp command.

3. Use the following commands to sign your application before deploying it to the
board:

jadtool -addcert -chainnum 1 -alias myalias -keystore mykeystore.ks

-storepass spass -inputkad myjad.jad -outputjad myjad.jad

To sign with the SHA256 signature algorithm, add the -useSha256 parameter. If
not present, the default algorithm SHA1withRSA is used.

jadtool -addjarsig -chainnum 1 -jarfile myjar.jar -alias myalias -

keystore mykeystore.ks -storepass spass -keypass kpass -inputjad

myjad.jad -outputjad myjad.jad -useSha256

Method #3: Using NullAuthenticationProvider

This method allows to bypass a certificate check and execute unsigned applications as
if they were signed and given all requested permissions. This method should be used
only for development and debugging. Final testing must be done using a real
certificate as described in method #1.

To use NullAuthenticationProvider, set the following property in the
jwc_properties.ini file on the board:

[internal]
authentication.provider = com.oracle.meep.security.NullAuthenticationProvider

Note that the Java runtime must not be running when editing the
jwc_properties.ini file.

Accessing Peripherals

Security 3-5

CLDC Permissions
The following permissions are available that affect the use of portions of the CLDC
libraries.

FilePermission
The java.io.FilePermission controls access to a file or directory. A
FilePermission consists of a pathname and a set of actions that are valid for the
resource specified by that pathname.

Resource Name

The resource name is simply the pathname of the file or directory granted the
specified actions. A pathname that ends in "/*" (where "/" is the file separator
character, File.separatorChar) indicates all the files and directories contained in
that directory. A pathname that ends with "/-" indicates all files and all recursive
subdirectories contained in that directory. A pathname consisting of the special token
"<<ALL FILES>>" matches any file.

Note:

A pathname need not have a leading "/". A pathname consisting of a single
"*" indicates all the files in the current directory, while a pathname consisting
of a single "-" indicates all the files in the current directory and recursively all
files and subdirectories contained in the current directory.

Actions

Table 3-5 shows the actions can be requested with this permission, as a list of comma-
separated keywords:

Table 3-2 FilePermission Actions

Value Meaning

read Read permission

write Write permission

execute Execute permission

delete Permission to delete the resource

readlink Read a link permission. This is retained for SE compatibility but
is not currently used.

RuntimePermission
The java.lang.RuntimePermission represents runtime permissions. A
RuntimePermission contains a resource name, but no actions list.

Resource Name

The resource name is the name of the runtime permission. The naming convention
follows the hierarchical property naming convention. Also, an asterisk may appear at

CLDC Permissions

3-6 Developer’s Guide

the end of the name, following a ".", or by itself, to signify a wildcard match. For
example: "loadLibrary.*" and "*" signify a wildcard match, while
"*loadLibrary" and "a*b" do not.

Table 3-3 shows the possible runtime permissions that are allowed, as well as their
effects and possible risks of using them.

Table 3-3 RuntimePermission Actions

Value Effect Risks

exitVM.{exit
status}

Halting of the Java Virtual
Machine (JVM) with the
specified exit status

This allows an attacker to mount
a denial-of-service attack by
automatically forcing the virtual
machine to halt. Note that the
"exitVM.*" permission is
automatically granted to all code
loaded from the application class
path, thus enabling applications
to terminate themselves. Also,
the "exitVM" permission is
equivalent to "exitVM.*".

setSecurityManager Setting of the security
manager (possibly replacing
an existing security manager)

The security manager is a class
that allows applications to
implement a security policy.
Granting the
setSecurityManager
permission would allow code to
change which security manager
is used by installing a different,
possibly less restrictive security
manager, thereby bypassing
checks that would have been
enforced by the original security
manager.

createSecurityMana
ger

Creation of a new security
manager

This gives code access to
protected, sensitive methods that
may disclose information about
other classes or the execution
stack.

setIO Setting of System.out and
System.err

This allows changing the value of
the standard system streams. An
attacker may set System.err to
a null OutputStream, which
would hide any error messages
sent to System.err.

modifyThread Modification of threads,
possibly via calls to perform
thread interrupts, or
setPriority() and
setName() methods

This allows an attacker to modify
the behavior of any thread in the
system.

CLDC Permissions

Security 3-7

LoggingPermission
The java.util.logging.LoggingPermission is a permission which the security
manager will check when code that is running with a security manager calls one of the
logging control methods, such as Logger.setLevel().

Currently there is only one over-arching LoggingPermission, without resources or
actions. This permission simply grants the ability to control the logging configuration,
for example by adding or removing handlers, by adding or removing filters, or by
changing logging levels.

PropertyPermission
The java.util.PropertyPermission is for general Java property permissions.

Resource Name

The resource name is the name of the property (for example, "java.home" or
"os.name"). The naming convention follows the hierarchical property naming
convention. Also, an asterisk may appear at the end of the name, following a ".", or by
itself, to signify a wildcard match. For example: "java.*" and "*" signify a wildcard
match, while "*java" and "a*b" do not.

Actions

Table 3-4 shows the actions can be requested with this permission, as a list of comma-
separated keywords:

Table 3-4 PropertyPermission Actions

Value Meaning

read Read permission

write Write permission

Care should be taken before granting code permission to access certain system
properties. For example, granting permission to access the "java.home" system
property gives potentially malevolent code sensitive information about the system
environment, such as the Java installation directory. Also, granting permission to
access the "user.name" and "user.home" system properties gives potentially
malevolent code sensitive information about the user environment, including the
user's account name and home directory.

Keystore Permissions
The following permissions are available that allow access to the Java ME keystore.

KeyStorePermission
The com.oracle.crypto.keystore.KeyStorePermission controls the type of
access allowed to the key store.

Resource Name

Table 3-5 shows the resource names that can be requested with this permission:

Keystore Permissions

3-8 Developer’s Guide

Table 3-5 KeyStorePermission Resource Names

Value Meaning

client_only Access to client certificates only

* Access to the entire certificate storage.

Device I/O Permissions
The following are among the more common permissions that can be requested from
most Oracle Java ME Embedded devices, depending on whether the functionality is
supported by the underlying board. See the Getting Started Guide for your embedded
board to determine which Device I/O permissions and resources are available for use.

ADCPermission
The jdk.dio.adc.ADCPermission class defines permissions for Analog-to-Digital
channel access on an embedded board.

Resource Name

The resource name is a numerical channel number. Refer to the Getting Started Guide
of your embedded board to determine which channel numbers are available for ADC
control.

Actions

Table 3-6 shows the actions can be requested with this permission:

Table 3-6 ADCPermission Actions

Value Meaning

open The requested channel is opened and available for use.

powermanage Manage the power saving mode of a device.

ATPermission
The jdk.dio.atcmd.ATPermission class defines permissions AT device access.

Resource Name

The resource name is a numerical channel number. Refer to the Getting Started Guide
of your embedded board to determine which channels are available for AT control.

Actions

Table 3-7 shows the actions can be requested with an ATPermission:

Table 3-7 ATPermission Actions

Value Meaning

open Open AT functions

Device I/O Permissions

Security 3-9

Table 3-7 (Cont.) ATPermission Actions

Value Meaning

data Open data connections

powermanage Manage the power saving mode of a device.

CounterPermission
The jdk.dio.counter.CounterPermission class defines permissions for pulse
counter access.

Resource Name

The resource name is a numerical channel number. Refer to the Getting Started Guide
of your embedded board to determine which channels are available for pulse counter
control.

Actions

Table 3-8 shows the actions can be requested with an ATPermission:

Table 3-8 CounterPermission Actions

Value Meaning

open Open and access pulse counter functions

powermanage Manage the power saving mode of a device.

DACPermission
The jdk.dio.dac.DACPermission class defines permissions for Digital-to-Analog
channel access on an embedded board.

Resource Name

The resource name is a numerical channel number. Refer to the Getting Started Guide
of your embedded board to determine which channel numbers are available for DAC
control.

Actions

Table 3-9 shows the actions can be requested with this permission:

Table 3-9 DACPermission Actions

Value Meaning

open The requested channel is opened and available for use.

powermanage Manage the power saving mode of a device.

Device I/O Permissions

3-10 Developer’s Guide

DeviceMgmtPermission
The jdk.dio.DeviceMgmtPermission class defines permissions for registering
and un-registering devices as well as opening devices using their registered
configurations.

Resource Name

The resource name is a combination of a device name and of a device ID or range of
device IDs. It takes the following form:

{device-name-spec} [":"{device-id-spec}]

{device-name-spec}

The {device-name-spec} string takes the following form:

{device-name} | "*" | ""

The {device-name} string is a device name that is returned by a call to
DeviceDescriptor.getName().

A {device-name-spec} specification consisting of the asterisk ("*") matches all device
names. A {device-name-spec} specification consisting of the empty string ("") designates
an undefined device name that may only be matched by an empty string or an
asterisk.

{device-id-spec}

The {device-id-spec} string takes the following form:

{device-id} | "-"{device-id} | {device-id}"-"[{device-id}] | "*"

The {device-id} string is a device ID that is returned by a call to
DeviceDescriptor.getID(). Note that the characters in the string must all be
decimal digits.

A {device-id-spec} specification of the form "n-" (where n is a device ID) signifies all
device IDs numbered n and above, while a specification of the form "-n" indicates all
device IDs numbered n and below. A single asterisk in the place of the {device-id-spec}
field matches all device IDs.

The name "*:*" matches all device names and all device IDs, as is the name "*".

Actions

Table 3-10 shows the actions can be requested with this permission:

Table 3-10 DeviceMgmtPermission Actions

Value Meaning

open Open a device using its device name or ID

register Register a new device.

unregister Un-register a new device

GenericPermission
The jdk.dio.generic.GenericPermission class defines permissions for generic
device access on an embedded board.

Device I/O Permissions

Security 3-11

Resource Name

The resource name is a numerical channel number. Refer to the Getting Started Guide
of your embedded board to determine which channel numbers are available for
generic devices.

Actions

Table 3-11 shows the actions can be requested with this permission:

Table 3-11 GenericPermission Actions

Value Meaning

open The requested channel is opened and available for use.

powermanage Manage the power saving mode of a generic device.

GPIOPinPermission
The jdk.dio.gpio.GPIOPinPermission class defines permissions for General
Purpose I/O (GPIO) pin access on an embedded board.

Resource Name

The resource name is a numerical pin number. Refer to the Getting Started Guide of
your embedded board to determine which pin numbers are available for GPIO
control.

Actions

Table 3-12 shows the actions can be requested with this permission:

Table 3-12 GPIOPinPermission Actions

Value Meaning

open The requested channel is opened and available for use.

setdirection Request permission to change the GPIO pin direction

powermanage Manage the power saving mode of a GPIO pin.

GPIOPortPermission
The jdk.dio.gpio.GPIOPortPermission class defines permissions for General
Purpose I/O (GPIO) port access on an embedded board. A GPIO port is made up of
several (typically eight) GPIO pins.

Resource Name

The resource name is a numerical port number. Refer to the Getting Started Guide of
your embedded board to determine which port numbers are available for GPIO
control.

Actions

Table 3-13 shows the actions can be requested with this permission:

Device I/O Permissions

3-12 Developer’s Guide

Table 3-13 GPIOPortPermission Actions

Value Meaning

open The requested channel is opened and available for use.

setdirection Request permission to change the GPIO port direction

powermanage Manage the power saving mode of a GPIO port.

I2CPermission
The jdk.dio.i2cbus.I2CPermission class defines permissions for I2C bus access
on an embedded board.

Resource Name

The resource name is a channel number. Refer to the Getting Started Guide of your
embedded board to determine which channel numbers are available for I2C control.

Actions

Table 3-14 shows the actions can be requested with this permission:

Table 3-14 I2CPermission Actions

Value Meaning

open The requested channel is opened and available for use.

powermanage Manage the power saving mode of an I2C bus.

MMIOPermission
The jdk.dio.mmio.MMIOPermission class defines permissions for MMIO bus
access on an embedded board.

Resource Name

The resource name is a memory-address (in hexadecimal format) returned by a call to
MMIODeviceConfig.getAddress(). The characters in the string must all be
hexadecimal digits. Refer to the Getting Started Guide of your embedded board to
determine which addresses are available for MMIO use.

Actions

Table 3-15 shows the actions can be requested with this permission:

Table 3-15 MMIOPermission Actions

Value Meaning

open The requested channel is opened and available for use.

powermanage Manage the power saving mode of an MMIO bus.

Device I/O Permissions

Security 3-13

PWMPermission
The jdk.dio.pwm.PWMPermission class defines permissions for Pulse Width
Modulation (PWM) channel access on an embedded board.

Resource Name

The resource name is a numerical channel number. Refer to the Getting Started Guide
of your embedded board to determine which channel numbers are available for PWM
control.

Actions

Table 3-16 shows the actions can be requested with this permission:

Table 3-16 PWMPermission Actions

Value Meaning

open The requested channel is opened and available for use.

powermanage Manage the power saving mode of a device.

SPIPermission
The jdk.dio.spibus.SPIPermission class defines permissions for SPI bus access
on an embedded board.

Resource Name

The resource name is a channel number. Refer to the Getting Started Guide of your
embedded board to determine which channel numbers are available for SPI control.

Actions

Table 3-17 shows the actions can be requested with this permission:

Table 3-17 SPIPermission Actions

Value Meaning

open The requested channel is opened and available for use.

powermanage Manage the power saving mode of an SPI bus.

UARTPermission
The jdk.dio.uart.UARTPermission class defines permissions for UART bus
access on an embedded board.

Resource Name

The resource name is a channel number. Refer to the Getting Started Guide of your
embedded board to determine which channel numbers are available for UART
control.

Device I/O Permissions

3-14 Developer’s Guide

Actions

Table 3-18 shows the actions can be requested with this permission:

Table 3-18 UARTPermission Actions

Value Meaning

open The requested channel is opened and available for use.

powermanage Manage the power saving mode of an UART bus.

WatchdogTimerPermission
The jdk.dio.watchdog.WatchdogTimerPermission class defines permissions
for the watchdog timer on an embedded board.

Resource Name

The resource name is a channel number. Refer to the Getting Started Guide of your
embedded board to determine which channel number is available for the watchdog
timer.

Actions

Table 3-19 shows the actions can be requested with this permission:

Table 3-19 WatchdogTimerPermission Actions

Value Meaning

open The requested channel is opened and available for use.

powermanage Manage the power saving mode of the watchdog timer..

Smart Cards
The following permission allows access to smart cards on Java ME embedded devices.

APDUPermission
The javax.microedition.apdu.APDUPermission class represents access to a
smart card using the APDU protocol. An APDUPermission contains a resource name
(also called a target name) but no actions list. The target name is the symbolic name of
the APDUPermission.

Resource Name

The resource name can be one of two items, as shown in Table 3-20.

Table 3-20 APDUPermission Target Names

Target Name Permission Allows

aid The ability to communicate with a smart card application
identified by an AID target.

Smart Cards

Security 3-15

Table 3-20 (Cont.) APDUPermission Target Names

Target Name Permission Allows

sat The ability to communicate with a (U)SAT application on
channel 0.

Cellular
The following permissions deal with embedded devices that can connect to a cellular
network.

CellularPermission
The javax.microedition.cellular.CellularPermission class defines
permissions for cellular network resources on an embedded board. It consists only of a
resource name.

Resource Name

The resource name can be one of three items, as shown in Table 3-21.

Table 3-21 CellularPermission Resource Names

Resource Meaning

subscriber Resources that access or modify the cellular subscriber identity,
which is often recorded on a SIM, R-UIM, or CSIM.

network Resources that access the cellular network.

* All available cellular resources.

Generic Events
The following permissions deal with generic events that can be sent from the
underlying runtime operating system to the Oracle Java ME Embedded runtime.

EventPermission
The javax.microedition.event.EventPermission class defines permissions
that allow applications to receive events from the underlying runtime operating
system.

Resource Name

The resource name is the name of the event, such as "BATTERY_LEVEL" or
"com.MyCompany.MyEvent". The naming convention follows a hierarchical property
naming convention. Also, an asterisk may appear at the end of the name, following a
".", or by itself, to signify a wildcard match. For example, "com.MyCompany.*" or "*"
is valid, while "*MyCompany" or "a*b" is not valid.

Cellular

3-16 Developer’s Guide

Actions

The actions to be granted are a list of comma-separated keywords. The possible
keywords are "post", "postsystem", "read" and "register". Table 3-22 gives more
details on these keywords.

Table 3-22 EventPermission Actions

Value Meaning

post Permission to post an event.

postsystem Permission to post a system event. To see which system events
are supported, call
EventManager.getSystemEventNames().

read Permission to read an event.

readregister Permission to register and un-register applications to launch in
response to events.

COMM Protocol
The following permissions deal with embedded devices that can use a COMM
protocol through a serial port.

CommProtocolPermission
The javax.microedition.io.CommProtocolPermission class defines
permissions for COMM resources on an embedded board. It consists only of a
resource name.

Resource Name

The resource name is a base connection string and is typically formatted as:

comm:<port identifier>[<optional parameters>]

An exact BNF grammar for the COMM protocol URI is given in Table 3-23.

Table 3-23 CellularPermission Resource Names

Resource Meaning

base connection string "comm:"<port_id>[<options_list>] |
"comm:"<wildcarded_port_id>

<port_id> A non-empty case-sensitive string of alphanumeric characters

<wildcarded_port_id> All available cellular resources.

<options_list> *(<baud_rate_string>| <bitsperchar>| <stopbits>| <parity>|
<blocking>| <autocts>| <autorts>)

<baud_rate_string> ";baudrate="<baud_rate>

<baud_rate> non-empty string of digits

<bitsperchar> ";bitsperchar="<bit_value>

COMM Protocol

Security 3-17

Table 3-23 (Cont.) CellularPermission Resource Names

Resource Meaning

<bit_value> "7" | "8"

<stopbits> ";stopbits="<stop_value>

<stop_value> "1" | "2"

<parity> ";parity="<parity_value>

<parity_value> "even" | "odd" | "none"

<blocking> ";blocking="<on_off>

<autocts> ";autocts="<on_off>

<autorts> ";autorts="<on_off>

<on_off> "on" | "off"

Connector
The following permissions deal with those associated with the
javax.microedition.io.Connector class, a factory class for creating new
Connection objects.

CBS
The javax.microedition.io.Connector.cbs defines permissions for cellular
broadcast service.

Resource Name

The resource name is a channel number. Refer to the Getting Started Guide of your
embedded board to determine which channel number is available for the CBS.

Actions

Table 3-24 shows the actions can be requested with this permission:

Table 3-24 Connector CBS Actions

Value Meaning

open The requested channel is opened and available for use.

powermanage Manage the power saving mode of the CBS..

File Read
The javax.microedition.io.Connector.file.read defines permissions for
connections that read files.

Connector

3-18 Developer’s Guide

Resource Name

The resource name is a channel number. Refer to the Getting Started Guide of your
embedded board to determine which channel number is available for reading files.

Actions

Table 3-25 shows the actions can be requested with this permission:

Table 3-25 Connector File Read Actions

Value Meaning

open The requested channel is opened and available for use.

powermanage Manage the power saving mode of the file read..

File Write
The javax.microedition.io.Connector.file.write defines permissions for
connections that write files.

Resource Name

The resource name is a channel number. Refer to the Getting Started Guide of your
embedded board to determine which channel number is available.

Actions

Table 3-26 shows the actions can be requested with this permission:

Table 3-26 WatchdogTimerPermission Actions

Value Meaning

open The requested channel is opened and available for use.

powermanage Manage the power saving mode of the file write..

RTSP
The javax.microedition.io.Connector.rtsp defines permissions for
connections that use the real-time streaming protocol (RTSP).

Resource Name

The resource name is a channel number. Refer to the Getting Started Guide of your
embedded board to determine which channel number is available.

Actions

Table 3-27 shows the actions can be requested with this permission:

Table 3-27 WatchdogTimerPermission Actions

Value Meaning

open The requested channel is opened and available for use.

Connector

Security 3-19

Table 3-27 (Cont.) WatchdogTimerPermission Actions

Value Meaning

powermanage Manage the power saving mode of the RTSP..

SMS
The javax.microedition.io.Connector.sms defines permissions for SMS
messaging.

Resource Name

The resource name is a channel number. Refer to the Getting Started Guide of your
embedded board to determine which channel number is available for SMS.

Actions

Table 3-28 shows the actions can be requested with this permission:

Table 3-28 WatchdogTimerPermission Actions

Value Meaning

open The requested channel is opened and available for use.

powermanage Manage the power saving mode of the SMS..

Datagram Protocol
The following permissions deal with embedded devices that can use datagram
protocols.

DatagramProtocolPermission
The javax.microedition.io.DatagramProtocolPermission class represents
access rights to connections via the Datagram protocol. A
DatagramProtocolPermission consists of a URI string, but no actions.

The URI string specifies a connection for sending and receiving datagrams. It takes the
following general form:

datagram://{host}:{portspec} | datagram://[:{portspec}]

The value of the {host} field must be a symbolic hostname, a literal IPv4 address or an
IP-literal as specified by RFC 3986. An IP-literal requires an IPv6Address to bew
surrounded with square brackets ([]). Note that IPvFuture addresses from RFC 3986
are not currently supported.

The {host} field is omitted to indicate an inbound, server-mode connection. Server-
mode URIs may also omit the {portspec} field to request a system-assigned port
number. In such a case, the DatagramProtocolPermission is normalized to the
equivalent URI: datagram://:1024-65535.

If the {host} string is a DNS name, an asterisk may appear in the left-most position to
indicate a match of 1 or more entire domain labels. Partial domain label matches are
not permitted. For example, "*.oracle.com" is valid, but "*oracle.com" is not. An
asterisk by itself matches all hosts in outbound, client-mode connections.

Datagram Protocol

3-20 Developer’s Guide

The {portspec} string takes the following form:

portnumber | -portnumber | portnumber-[portnumber] | "*"

A {portspec} of the form "n-" (where n is a port number) signifies all ports numbered n
and above, while a specification of the form "-n" indicates all ports numbered n and
below. A single asterisk in the place of the {portspec} field matches all ports. Therefore,
the URI "datagram://:*" matches server-mode datagram connections to all ports,
and the URI "datagram://*:*" matches client-mode datagram connections to all
hosts on all ports.

DTLSProtocolPermission
The javax.microedition.io.DTLSProtocolPermission class represents
access rights to connections that use the Datagram Transport Layer Security (DTLS)
protocol. A DTLSProtocolPermission consists of a URI string but no actions
list.The URI string specifies a connection for sending and receiving datagrams. It takes
the following general form:

dtls://{host}:{portspec} The value of the {host} field must be a symbolic hostname, a
literal IPv4 address or an IP-literal as specified by RFC 3986. An IP-literal requires an
IPv6Address to be surrounded with square brackets ([]). Note that IPvFuture
addresses from RFC 3986 are not supported.

If the {host} string is a DNS name, an asterisk may appear in the left-most position to
indicate a match of 1 or more entire domain labels. Partial domain label matches are
not permitted. For example, "*.oracle.com" is valid, but "*oracle.com" is not. An
asterisk by itself matches all hosts in outbound, client-mode connections.

The {portspec} string takes the following form:

portnumber | -portnumber | portnumber-[portnumber] | "*"

A {portspec} of the form "n-" (where n is a port number) signifies all ports numbered n
and above, while a specification of the form "-n" indicates all ports numbered n and
below. A single asterisk in the place of the {portspec} field matches all ports. Therefore,
the URI "dtls://*:*" matches client-mode datagram connections to all hosts on all
ports.

DTLSServerPermission
The javax.microedition.io.DTLSServerPermission class represents access
rights to server connections via the the Datagram Transport Layer Security (DTLS)
protocol protocol. A DTLSServerPermission consists of a URI string but no actions
list. The URI string specifies a connection for sending and receiving datagrams. It
takes the following general form:

dtls://:{portspec}

The exact syntax for the DTLSSrverPermission URI is provided by this BNF.

The {portspec} string takes the following form:

portnumber | -portnumber | portnumber-[portnumber] | "*"

A {portspec} of the form "N-" (where N is a port number) signifies all ports numbered
N and above, while a specification of the form "-N" indicates all ports numbered N
and below. A single asterisk in the place of the {portspec} field matches all ports.
Therefore, the URI "dtls://*" matches secure-mode secure datagram connections to
all ports.

Datagram Protocol

Security 3-21

File Protocol
The following permissions deal with embedded devices that can use files.

FileProtocolPermission
The javax.microedition.io.FileProtocolPermission class represents
access rights to connections via the "file" protocol. A FileProtocolPermission
consists of a URI string indicating a fully-qualified, absolute pathname as well as a set
of actions desired for that pathname.

Resource Name

The URI string takes the following general form:

file://[{host}]{absolute_path} | file:{absolute_path}

The exact syntax is given by RFCs 1738 and 2396. In addition, a pathname that ends in
"/*" matches all the files and directories contained in that directory. A pathname that
ends with "/-" recursively matches all files and subdirectories contained in that
directory.

In addition to the syntax defined by RFC 1738, FileProtocolPermission must
accept and normalize URIs of the form file:{abs_path}. If {host} is omitted, it is
equivalent to using localhost. Also, note that {absolute_path} follows the syntax
defined for {fpath} in RFC 1738.

Actions

Table 3-29 shows the actions can be requested with this permission. Note that multiple
actions can be requested by separating keywords with commas.

Table 3-29 FileProtocolPermission Actions

Value Meaning

read The file can be read from using the protocol.

write The file can be written to using the protocol.

Hypertext Transfer Protocols
The following permissions deal with embedded devices that can use HTTP or HTTPS
protocols.

HTTPProtocolPermission
The javax.microedition.io.HTTPProtocolPermission class represents
access rights to connections via the HTTP protocol. An HttpProtocolPermission
consists of a URI string, but no actions list.

The URI string specifies a data resource accessible via HTTP. It takes the following
general form:

http://{host}[:{portspec}][{pathname}][?{query}][#{fragment}]

The value of the {host} field must be a symbolic hostname, a literal IPv4 address or an
IP-literal as specified by RFC 3986. An IP-literal requires IPv6Address to be

File Protocol

3-22 Developer’s Guide

surrounded with square brackets ([]). IPvFuture addresses from RFC 3986 are not
supported.

If the {host} string is a DNS name, an asterisk may appear in the left-most position to
indicate a match of one or more entire domain labels. Partial domain label matches are
not permitted. For example, "*.oracle.com" is valid, but "*oracle.com" is not. An
asterisk by itself matches all hosts.

The {portspec} string takes the following form:

portnumber | -portnumber | portnumber-[portnumber] | * | empty string

A {portspec} specification of the form "n-" (where n is a port number) signifies all ports
numbered n and above, while a specification of the form "-n" indicates all ports
numbered n and below. A single asterisk in the place of the {portspec} field matches all
ports; therefore, the URI "http://*:*" matches HTTP connections to all hosts on all
ports. If the {portspec} field is omitted, default port 80 is assumed.

HTTPSProtocolPermission
The javax.microedition.io.HTTPSProtocolPermission class represents
access rights to connections via the HTTPS protocol. A HttpsProtocolPermission
consists of a URI string, but no actions list.

The URI string specifies a data resource accessible via secure HTTPS. It takes the
following general form:

http://{host}[:{portspec}][{pathname}][?{query}][#{fragment}]

The value of the {host} field must be a symbolic hostname, a literal IPv4 address or an
IP-literal as specified by RFC 3986. An IP-literal requires IPv6Address to be
surrounded with square brackets ([]). IPvFuture addresses from RFC 3986 are not
supported.

If the {host} string is a DNS name, an asterisk may appear in the left-most position to
indicate a match of one or more entire domain labels. Partial domain label matches are
not permitted. For example, "*.oracle.com" is valid, but "*oracle.com" is not. An
asterisk by itself matches all hosts.

The {portspec} string takes the following form:

portnumber | -portnumber | portnumber-[portnumber] | * | empty string

A {portspec} specification of the form "n-" (where n is a port number) signifies all ports
numbered n and above, while a specification of the form "-n" indicates all ports
numbered n and below. A single asterisk in the place of the {portspec} field matches all
ports; therefore, the URI "https://*:*" matches HTTPS connections to all hosts on
all ports. If the {portspec} field is omitted, default port 443 is assumed.

IMC
The following permissions deal with embedded devices that use the Inter-MIDlet
Communication (IMC) protocol.

IMCProtocolPermission
The javax.microedition.io.IMCProtocolPermission class defines
permissions for inter-MIDlet communication on an embedded board. IMC uses a low-
level asynchronous bi-directional stream connection for communication between
applications. The permission consists only of a resource name.

IMC

Security 3-23

Resource Name

The resource name consists of a number of rules to create a base client connection
string; these rules are shown in Table 3-30.

Table 3-30 IMCProtocolPermission Resource Name Rules

Rule Meaning

Base client connection
string

"imc://" (<Application UID> | "*") ":" <server name> ":"
<server version> ";"

<Application UID> <Application suite vendor>":" <Application suite name>":"
<Application suite version>

<Application suite vendor> :The application suite vendor

<Application suite name> The application suite name

<Application suite version> Formatted application suite version or wildcard character "*"

<server name> IMC server name following the class naming syntax

<server version> The version of the IMC server. Version backward compatibility
is assumed.Versioning follows the format defined for the
MIDlet-Version attribute.

Note that in the first rule, the wildcard "*" may be used instead of a specific
<Application UID> when opening an IMC client connection. When the wildcard
character is used, it allows the client to connect to any applications (even those from
different vendors) if they all provide the same IMC service and meet the authorization
requirements. However, which application's IMC server the client will be connected to
is implementation specific.

Multicast Protocols
The following permissions deal with embedded devices that use the multicast
protocols.

MulticastProtocolPermission
The javax.microedition.io.MulticastProtocolPermission class
represents access rights to connections via the "multicast" protocol. A
MulticastProtocolPermission consists of a URI string but no actions list.

The exact syntax for the MulticastProtocolPermission URI is provided by rules
shown in Table 3-31.

Table 3-31 MulticastProtocolPermission Resource Name Rules

Rule Meaning

base multicast connection
string

<inbound_connection> | <outbound_connection>

<inbound_connection> "multicast://: [<portnumber>] [<auto_join>]

<outbound_connection> "multicast://" <host> ":" <portnumber>

Multicast Protocols

3-24 Developer’s Guide

Table 3-31 (Cont.) MulticastProtocolPermission Resource Name Rules

Rule Meaning

<multicast_permission> "multicast://"[<hostspec>] ":" <portspec>

<host> <host name> | <ipaddr>

<ipaddr> IPv4 address | '[' IPv6 address ']'

<hostspec> <host> | "*" .

<auto_join> "?join="<host>

<portspec> <portnumber> | <portrange> | "*"

<portnumber> numeric port number

<portrange> <portnumber> "-" | "-" <portnumber> | <portnumber> "-"
<portnumber>

The value of the {host} field must be a symbolic hostname, a literal IPv4 multicast
address or a literal IPv6 address surrounded by square brackets ([]), as specified by
RFC 3986. The {hostspec} may be "*" to allow connection to any multicast host group.
The {hostspec} field may also be omitted to indicate an inbound, server-mode
connection.

Server-mode URIs may also omit the <portspec> field to request a system-assigned port
number. In such a case, the MulticastProtocolPermission is normalized to the
equivalent URI "multicast://:1024-65535".

The <portspec> string takes the following form:

portnumber | -portnumber | portnumber-[portnumber] | "*"

A <portspec> specification of the form "n-" (where n is a port number) signifies all ports
numbered n and above, while a specification of the form "-n" indicates all ports
numbered n and below. A single asterisk in the place of the <portspec> field matches
all ports. Therefore, the URI "multicast://<ipaddr>:" matches multicast a host
group to all ports, and the URI "multicast://*:*" matches multicast connections to
all host groups on all ports.

Push Protocols
The following permissions deal with embedded devices that use push protocols.

PushRegistryPermission
The javax.microedition.io.PushRegistryPermission class is used to check
the static and dynamic registration of push connections and for registration of an
alarm. The permission covers static registration via application attributes, and
dynamic registration via PushRegistry.registerConnection(...) and alarm
registration with PushRegistry.registerAlarm().

For the purposes of Push Registration permission, the URI MUST consist only of the
scheme and delimiter (":") as defined by RFC-3986. The scheme may contain the
wildcard character "*", which allows registration of all schemes. For alarm
registration, the URI is "*" and the action is alarm. Push registration and alarm

Push Protocols

Security 3-25

registration can be combined in a single permission. For example, the resource is
"file:" and the actions are "static,dynamic,alarm".

Actions

Table 3-32 shows the actions can be requested with this permission. Note that multiple
actions can be requested by separating keywords with commas.

Table 3-32 PushRegistryPermission Actions

Value Meaning

static Allows registration of a Push Connection in the packaging of
the application suite

dynamic Allows registration of a Push Connection using
PushRegistry.registerConnection

alarm Allows registration of an alarm using
PushRegistry.registerAlarm

Socket Protocols
The following permissions deal with embedded devices that can use HTTP or HTTPS
protocols.

SocketProtocolPermission
The javax.microedition.io.SocketProtocolPermission class represents
access rights to connections via the "socket" protocol. A
SocketProtocolPermission consists of a URI string but no actions list.

The URI string specifies a socket stream connection. It takes the following general
form:

socket://{host}:{portspec} | socket://[:{portspec}]

The exact syntax for the SocketProtocolPermission URI is given by the grammar
in Table 3-33.

Table 3-33 SocketProtocolPermission Resource Name Rules

Rule Meaning

base socket connection
string

"socket://"<inbound_connection> |
"socket://"<outbound_connection>

<inbound_connection> ": " | ":" [<porspec>] | empty string

<outbound_connection> <host> ":" <portspec>

<host> <host name> | <ipaddr> | <wildcarded DNS>

<ipaddr> IPv4 address | '[' IPv6 address ']'

<wildcarded_DNS> "*" *("."<domainlabel>) | "*" followed by zero or more internet
domain labels, separated by "."

<domainlabel> internet domain label

Socket Protocols

3-26 Developer’s Guide

Table 3-33 (Cont.) SocketProtocolPermission Resource Name Rules

Rule Meaning

<portspec> <portnumber> | <portrange> | "*"

<portnumber> numeric port number

<portrange> <portnumber> "-" | "-" <portnumber> | <portnumber> "-"
<portnumber>

The value of the {host} field must be a symbolic hostname, a literal IPv4 address or an
IP-literal with an IPv6Address as specified by RFC 3986. An IPv6Address must be
surrounded with square brackets ([]). Note that IPvFuture addresses are not
currently supported.

The {host} field may be omitted to indicate a server-mode connection. Server-mode
URIs may also omit the {portspec} field to indicate a system-assigned port number. In
such a case, the SocketProtocolPermission is normalized to the equivalent URI
"socket://:1024-65535".

If the {host} string is a DNS name, an asterisk may appear in the left-most position to
indicate a match of one or more entire domain labels. Partial domain label matches are
not permitted, therefore "*.oracle.com" is valid, but "*oracle.com" is not. An
asterisk by itself matches all hosts in client-mode connections;

The {portspec} string takes the following form:

portnumber | "-" portnumber | portnumber "-" [portnumber] | "*"

A {portspec} specification of the form "n-" (where n is a port number) signifies all ports
numbered n and above, while a specification of the form "-n" indicates all ports
numbered n and below. A single asterisk may be used in place of the {portspec} field to
indicate all ports. Therefore, the URI "socket://:*" matches server-mode socket
connections to all ports, and the URI "socket://*:*" matches client-mode socket
connections to all hosts on all ports.

Note:

The syntax of URLs accepted by Connector.open() for sockets differs from
the syntax for SocketProtocolPermission. In the socket: protocol, the
":" delimiter must always be present even if there is no port number, whereas
the delimiter must not be present unless there is a port number in
SocketProtocolPermission.

SSLProtocolPermission
The javax.microedition.io.SSLProtocolPermission class represents access
rights to connections that use the Secure Sockets Layer (SSL) protocol. A
SSLProtocolPermission consists of a URI string but no actions list.

The URI string specifies a secure socket stream connection. It takes the following
general form:

ssl://{host}:{portspec} | ssl://[:{portspec}]

The exact syntax for the SSLProtocolPermission URI is given in Table 3-34.

Socket Protocols

Security 3-27

Table 3-34 SSLProtocolPermission Resource Name Rules

Rule Meaning

base SSL connection string "ssl://"<inbound_connection> |
"ssl://"<outbound_connection>

<inbound_connection> ": " | ":" [<portspec>] | empty string

<outbound_connection> <host> ":" <portspec>

<host> <host name> | <ipaddr> | <wildcarded DNS>

<ipaddr> IPv4 address | '[' IPv6 address ']'

<wildcarded_DNS> "*" *("."<domainlabel>) | "*" followed by zero or more internet
domain labels, separated by "."

<domainlabel> internet domain label

<portspec> <portnumber> | <portrange> | "*"

<portnumber> numeric port number

<portrange> <portnumber> "-" | "-" <portnumber> | <portnumber> "-"
<portnumber>

The value of the {host} field must be a symbolic hostname, a literal IPv4 address or an
IP-literal as specified by RFC 3986. An IPv6Address must be surrounded with square
brackets ([]). Note that IPvFuture addresses are not supported.

The {host} field is omitted to indicate a server-mode connection. Server-mode URIs
may also omit the {portspec} field to indicate a system-assigned port number. In such a
case, the SSLProtocolPermission is normalized to the equivalent URI "ssl://:
1024-65535".

If the {host} string is a DNS name, an asterisk may appear in the left-most position to
indicate a match of one or more entire domain labels. Partial domain label matches are
not permitted, therefore "*.oracle.com" is valid, but "*oracle.com" is not. An
asterisk by itself matches all hosts.

The {portspec} string takes the following form:

portnumber | -portnumber | portnumber-[portnumber] | "*"

A {portspec} specification of the form "n-" (where n is a port number) signifies all ports
numbered n and above, while a specification of the form "-n" indicates all ports
numbered n and below. A single asterisk in the place of the {portspec} field matches all
ports. Therefore, the URI "ssl://:*" matches secure server connections to all ports,
and the URI "ssl://*:*" matches secure connections to all hosts on all ports.

Location
The following permissions allow location functionality on an embedded device.

Location

3-28 Developer’s Guide

LocationPermission
The javax.microedition.LocationPermission class is used to allow access to
the location functionality of an embedded device. This permission consists of only the
class, but no targets or actions.

Media
The following permissions deal with embedded devices that have the ability to record
or playback media.

RecordControl
The javax.microedition.media.RecordControl class allows Java ME
embedded applications to control audio recording on an embedded device. This
permission consists of only the class, but no targets or actions.

VideoControl
The javax.microedition.media.VideoControl.getSnapshot permissions
grants Java ME embedded applications the ability to take snapshot pictures on an
embedded device. This permission consists of only the class, but no targets or actions.

Auto-Start
The following permissions allow auto-start functionality on an embedded device.

AutoStartPermission
The javax.microedition.midlet.AutoStartPermission allows applications
in an application suite to assume the auto-start application behavior.

Resource Names

Table 3-35 shows the names that are allowed with this permission.

Table 3-35 AutoStartPermission Actions

Value Meaning

allowed Auto-start of the application is allowed

not allowed Auto-start of the application is not allowed

Power
The following permission allows applications to access the power state functionality of
an embedded device.

PowerStatePermission
The javax.microedition.power.PowerStatePermission allows calls to
PowerManager.setPowerState() method.

Media

Security 3-29

Resource Names

Table 3-36 shows the names that are allowed with this permission.

Table 3-36 PowerStatePermission Actions

Value Meaning

set Calls to setPowerState(..., false) are allowed

setUrgent Calls to setPowerState(..., true) are allowed

Software Management
The following permissions allow applications to use of the software management
(SWM) APIs on an embedded device.

SWMPermission
The javax.microedition.power.SWMPermission provides permission handling
for SWM API permissions. An SWMPermission object contains a resource and
actions.

Resource Names

Table 3-37 shows the resource names that are allowed with this permission.

Table 3-37 SWMPermission Resource Names

Value Meaning

client Permission to perform the listed actions only for applications
assigned to the same client

crossClient Permission to perform the listed actions also for applications
assigned to other clients. Usually this is a permission reserved
for the root client. Granting this permissions to other clients
should carefully considered to avoid security breaches.

Actions

The actions to be granted are a list of comma-separated keywords, as shown in Table
3-38, as well as whether they are permitted on a trusted and non-trusted client.

Table 3-38 SWMPermission Actions

Name and Action Assigned to Trusted Client Assigned to Non-Trusted Client

client,
manageSuite

Permitted Not Permitted.

client,
installation

Permitted. Not Permitted.

client, manageTask Permitted. Not Permitted.

crossClient,
manageSuite

Permitted, but not
recommended

Not Permitted.

Software Management

3-30 Developer’s Guide

Table 3-38 (Cont.) SWMPermission Actions

Name and Action Assigned to Trusted Client Assigned to Non-Trusted Client

crossClient,
installation

Permitted, but not
recommended

Not Permitted.

crossClient,
manageTask

Permitted, but not
recommended

Not Permitted.

Runtime Update
The following permission allows to update the Java ME runtime on an embedded
device remotely.

RuntimeUpdatePermission
The RuntimeUpdatePermission allows calls to the
RuntimeUpdateManager.saveNewRuntime(java.io.InputStream) and
RuntimeUpdateManager.scheduleUpdateAfterReboot() methods.

Resource Names

shows the names that are allowed with this permission.

Table 3-39 RuntimeUpdatePermission Names

Value Meaning

save Calls to saveNewRuntime are allowed

update Calls to scheduleUpdateAfterReboot are allowed

Runtime Update

Security 3-31

Runtime Update

3-32 Developer’s Guide

4
Software Management

This chapter introduces the Software Management (SWM) APIs of the Java ME
Embedded Profile (MEEP) version 8. These APIs provided extended software
management features for Oracle Java ME Embedded applications, as given in the
javax.microedition.swm package. There are five interfaces and six classes in this
package that can be used by applications to enhance software management. In
addition, there are a number of enumerations that are present in the package; these are
documented near the classes and methods that use them throughout this chapter.

SuiteInstallListener Interface
SuiteInstallListener is a sub-interface that provides progress data for an
installer that is downloading an app or a link.

The interface consists of two methods, both of which are called at certain times during
installation. One is the installationDone() method, which provides only a single
code, the definitions of which can be found in the InstallerErrorCode interface.
The other is the updateStatus() method, which identifies the current task as one of
the SuiteInstallStage constants that are shown in Table 4-1, and provides an
integer percentage of completeness.

Table 4-1 SuiteInstallState

Name Description

DONE Installation has completed

DOWNLOADING_BODY Install stage: downloading application body.

DOWNLOADING_DATA Install stage: downloading additional application
data.

DOWNLOADING_DESCRIPTOR Install stage: downloading application descriptor.

STORING Install stage: storing application.

VERIFYING Install stage: verifying downloaded content.

Here are the two method defined in the SuiteInstallListener interface:

• void installationDone(int errorCode)

This method is called by the installer to report that the installation has completed.
The resulting integer code is contained in the InstallerErrorCode class. See
“InstallerErrorCode” for more information about installation error codes.

• void updateStatus(SuiteManagementTracker tracker,
SuiteInstallStage status, int percent)

Software Management 4-1

This method is called by the installer to inform the listener of the current status of
the install. The stage is given by an integer constant as shown in Table 4-1. The
percent is an integer between 0 and 100.

SuiteListener Interface
SuiteListener is an interface that provides a notification that the current state of a
suite has changed.

There is only one method defined in the SuiteListener interface:

• void notifySuiteStateChanged(SuiteManagementTracker tracker,
SuiteState newState)

This method is called to notify a listener that the current state of a suite has
changed. A reference to the current SuiteManagementTracker is included, as
well as an instance of SuiteState, which indicates the new state.

SuiteManager Interface
The SuiteManager interface consists of only seven methods that add or remove
suites, add or remove suite listeners, retrieve a list of the currently installed suites, or
retrieve the current SuiteInstaller.

• void addSuiteListener(SuiteListener theListener)

This method adds a SuiteListener object to the current SuiteManager.

• Suite getSuite(java.lang.String vendor, java.lang.String
name)

This method returns an instance of the currently installed Suite.

• SuiteInstaller getSuiteInstaller(byte[] instData, int offset,
int length, boolean ignoreUpdateLock)

This method returns the current SuiteInstaller.

• SuiteInstaller getSuiteInstaller(java.lang.String
locationUrl, boolean ignoreUpdateLock)

This method returns the current SuiteInstaller

• java.util.List<Suite> getSuites(SuiteType type)

This method requests a list of installed suites of specified type.

• void removeSuite(Suite suite, boolean ignoreRemoveLock)

This method removes a Suite.

• void removeSuiteListener(SuiteListener theListener)

This method removes a SuiteListener.

TaskListener Interface
The TaskListener interface is an interface used to receive updates about a task that
is currently running.

• void notifyStatusUpdate(Task task, TaskStatus newStatus)

SuiteListener Interface

4-2 Developer’s Guide

This method is called when the current task has a new status update to report. The
method passes a reference to the Task in question, as well as a TaskStatus object
reporting the new status.

TaskManager Interface
The TaskManager interface is an interface used to manage the tasks.

• void addTaskListener(TaskListener) throws SecurityException

This method adds a TaskListener.

• Task getCurrentTask() throws SecurityException

This method returns the current task that is running.

• java.util.List<Task> getTaskList(boolean includeSystem)

This method obtains a list of Task objects. If system tasks are to be included, that
can be specified with the boolean parameter.

• void removeTaskListener(TaskListener listener)

This method removes a TaskListener.

• boolean setForegroundTask(Task task) throws
java.lang.IllegalArgumentException

This method assigns the specified task to be the currently running foreground task.
A task is said to be in the foreground if the LUI API or another UI API is supported
and the task is visible on the display, or if the Key API is supported and input
device events will be delivered to it. If none of those packages is supported by the
implementation, a call to this method has no effect.

• boolean setPriority(Task task, TaskPriority priority) throws
java.lang.IllegalArgumentException

Changes the priority for the given task. The method returns true if the change was
successful, or false otherwise.

• Task startTask(Suite suite, String className) throws
java.lang.IllegalArgumentException,
java.lang.IllegalStateException

Starts a Task from the given class name in the given Suite. This method throws
an exception if suite is a library and can therefore not be started. Calling this
method schedules a new application execution. The new task is created with
TaskStatus.STARTING on success or TaskStatus.START_FAILED on failure.

More than one call to this method can be performed with the same arguments. In
this case subsequent calls lead to attempts to re-start the task. In case of
unsuccessful attempt to re-start the task, an appropriate exception is thrown or the
corresponding state TaskStatus.START_FAILED is set to the returned task
object.

• boolean stopTask(Task task) throws java.lang.IllegalArgumentException,
java.lang.IllegalStateException

This method cancels an installation that is in progress. It returns true if the
cancellation was successful, or false otherwise.

TaskManager Interface

Software Management 4-3

ManagerFactory Class
The ManagerFactory class is a global factory that is used to obtain a SuiteManager
or a TaskManager implementation.

• static SuiteManager getSuiteManager()

This method returns an implementation of a SuiteManager.

• static TaskManager getTaskManager()

This method returns an implementation of a TaskManager.

The Suite Class
All IMlet suites maintain a basic set of identification and state information that acts as
a descriptor. This descriptor is represented by the Suite class.

Suites can be one of four types, presented in the SuiteType enumeration, and shown
in Table 4-2:

Table 4-2 SuiteType Enumeration

Suite Type Description

ST_APPLICATION The suite contains one or more MIDlets with an entry point that
can be executed.

ST_LIBRARY The suite is a library that can be used by one or more
applications.

ST_SYSTEM The suite is a system-level application.

ST_INVALID The suite is invalid and cannot be found or executed.

In addition, suites contain binary flags that describe their state, presented in the
SuiteStateFlag enumeration, and shown in Table 4-3:

Table 4-3 SuiteStageFlag Enumeration

State Description

AVAILABLE The suite is available for use.

ENABLED The suite is enabled. When a suite is disabled, any attempt to
run application or use a library from this suite should fail.

SYSTEM The suite is a system-level suite.

PREINSTALLED The suite is a system-level suite that cannot be updated.

REMOVE_DENIED The suite should not be removed.

UPDATE_DENIED The suite should not be updated.

The following are method present in the Suite class.

• java.lang.String getName()

ManagerFactory Class

4-4 Developer’s Guide

This method returns the name for the given suite.

• java.lang.String getVendor()

This method returns the vendor for the given suite.

• java.lang.String getVersion()

This method returns the version of the given suite.

• java.lang.String getDownloadUrl()

This method returns the URL that the JAD or JAR was downloaded from.

• java.util.Iteration<String> getAttributes()

This method returns a String array that provides the names of the available
properties. The properties returned are those from the JAD file and the manifest
combined into a single array.

• java.lang.String getAttributeValue(String name)

This method retrieves the value for the respective attribute name.

• SuiteType getSuiteType()

This method returns the suite type. See Table 4-2 for more information.

• public boolean isSuiteState(SuiteStateFlag state)

This method checks the current state boolean to see if it is true.

• public void setSuiteStateFlag(SuiteStateFlag state, boolean
value) throws java.lang.IllegalArgumentException,
java.lang.IllegalStateException, java.lang.SecurityException

This method sets the specified flag to the specified value. If a Suite has been
created, SuiteStateFlag.ENABLED and SuiteStateFlag.AVAILABLE are
always set to true, while SuiteStateFlag.REMOVE_DENIED and
SuiteStateFlag.UPDATE_DENIED are set to false. These states can be
changed by calling this method. The SuiteStateFlag.SYSTEM and
SuiteStateFlag.PREINSTALLED flags are only set for system suites or pre-
installed suites, respectively, and cannot be unset or set by this method. To be able
to set suite flags, caller application should request
javax.microedition.swm.SWMPermission("client", "manageSuite")
or javax.microedition.swm.SWMPermission ("crossClient",
"manageSuite") permission. See SWMPermission for more details.

• public java.util.Iterator<java.lang.String> getMIDlets()

This method returns a list of the applications (application class names) in this suite.
The first application in the enumeration is the default application as specified in the
MIDlet-1 field of the descriptor.

• public java.util.Iterator<Suite> getDependencies()

This method returns a list of the shared libraries this Suite depends on

• public boolean isTrusted()

Checks if this Suite is trusted or not. The return value is always true if it is a
SYSTEM_SUITE.

• public boolean isInstalled()

The Suite Class

Software Management 4-5

Checks if this Suite is still installed or has been removed.

SuiteInstaller Class
The ManagerFactory class is a global factory that is used to obtain a SuiteManager
or a TaskManager implementation.

• void addInstallationListener(SuiteInstallListener listener)

This method adds a SuiteInstallListener to this suite installer

• void removeInstallationListener(SuiteInstallationListener
listener)

This method removes a SuiteInstallListener to this suite installer.

• SuiteManagementTracker start()

This method starts installation of the suite. The installation can be the first
installation of this suite, or a re-installation (update) of a suite that had been
installed before. A SuiteInstallListener must be added in order to handle
callback requests.This method returns an instance of SuiteManagementTracker;
the caller can observe the progress of the installation via the
SuiteInstallListener added. Please note that the method may not return
quickly. Depending on the provisioning mechanism used in the implementation of
MEEP 8, it may be necessary to download the entire JAR data first in order to
inspect the manifest of the application suite in order to find out whether this is a
new installation or an update of an existing application suite. Depending on the
network connection, this may take some time.In case the previous attempt to install
this suite (initiated by a previous call of the start() method) has not been
finished at the time the new call takes place, the call is queued and the new attempt
to install (in case the first one failed) or the re-installation (in case the first call was
successful), respectively, starts as soon as the first installation attempt or
installation has been finished.A new instance of SuiteManagementTracker will
be created for every call to this method and assigned to the Suite to be installed as
soon as the installation has been completed successfully. In case of an update of an
existing Suite, the SuiteManagementTracker instance is assigned to the
existing Suite object from the beginning.If the initiating application does not have
the right SWMPermission, the installation will fail with
InstallErrorCodes.UNAUTHORIZED_INSTALL.

• void cancel()

Begins installation of the suite.

SuiteManagementTracker Class
An instance of this class is generated as soon as an installation or update of a Suite is
started using SuiteInstaller.start(). Invoking that method creates a new
tracker instance. Whether two trackers refer to the same Suite can be found out by
calling getSuite() for both and compare the returned Suite instances. The tracker
instance created for a management operation is passed to any call of
SuiteListener.notifySuiteStateChanged() in order to inform about the
progress of this operation.

For the installation of a new Suite, as long as the installation hasn't been successfully
completed, an instance of SuiteManagementTracker is not assigned to any Suite
instance yet, as it does not exit yet. In these cases, a call to getSuite() returns null.

SuiteInstaller Class

4-6 Developer’s Guide

In case of an update, the tracker is assigned to the existing Suite from the beginning,
though.

This class has one method.

• Suite getSuite()

This method returns the Suite that this tracker is assigned to, if the installation
has completed successfully

SWMPermission Class
The SWMPermission provides permission handling for SWM API permissions. An
SWMPermission object contains a scope and actions. The scope is the scope of the
permission. Valid scopes are "client" stands for permission to perform the listed
actions only for applications assigned to the same Client. "crossClient" stands for
permission to perform the listed actions also for applications assigned to other Clients.
Usually this is a permission reserved for the Root Client. Granting this permissions to
other Clients should be figured out well in order to avoid security breaches.The
actions to be granted are passed to the constructor in a non-empty string, containing a
list of comma-separated keywords. Trailing and leading white spaces as well as those
between the keywords and commas in the list are not allowed and lead to an
IllegalArgumentException. The possible values can be seen in this table in the
Security Policy Provider chapter of the spec. The actions string is converted to
lowercase before processing.

This class has one constructor and several methods.

• SWMPermission(java.lang.String scope, java.lang.String
actions)

This method creates a new SWMPermission object with the specified name and
actions.

• public boolean implies(java.security.Permission p)

This method checks if the specified permission is "implied" by this object.

• String getActions()

This method returns the permitted actions of this Permission as a comma
separated list in alphabetical order.

• java.security.PermissionCollection newPermissionCollection()

This method creates a new SWMPermissionCollection.

Task Class
The Task class is, in effect, a simple task descriptor. A Task is the abstraction of the
execution of an application (see javax.microedition.midlet.MIDlet). Tasks are
started using the TaskManager.startTask() method, where the arguments
specify the application suite and the class within the suite being the starting point of
the application. Starting a new task attempts to execute corresponding application. A
task has a status, as described in the TaskStatus enumeration, that describes
corresponding application lifecycle state. A task has a priority with possible values as
described in TaskPriority. Depending on whether the implementation supports
multiple VMs, several tasks can run in parallel.There are special tasks called system
tasks. Those tasks cannot be started or stopped via this API, but are started by the

SWMPermission Class

Software Management 4-7

system. The isSystemTask() method can be used to find out whether a task is a
considered a system task.

The Task class contains the following methods.

• String getName()

This is a convenience method for returning the name of the task. The returned
string is the name of the application running in this task.

• TaskPriority getPriority()

This method returns the priority of given task.

• public int getHeapUse()

This method returns the heap use of given task.

• public TaskStatus getStatus()

This method returns the task's status.

• public Suite getSuite()

This method returns the suite information this task executed from.

• public boolean isSystemTask()

This method returns a boolean indicating whether a task is a system task.

InstallerErrorCode
The InstallerErrorCode provides several constants used by the installation
routines. These constants are shown in Table 4-4.

Table 4-4 Installer Error Codes

Constant Description

ALREADY_INSTALLED The JAD matches a version of a suite already
installed.

APP_INTEGRITY_FAILURE_DEPENDENCY
_CONFLICT

Application Integrity Failure: two or more
dependencies exist on the component with the
same name and vendor, but have different
versions or hashs.

APP_INTEGRITY_FAILURE_DEPENDENCY
_MISMATCH

Application Integrity Failure: there is a
component name or vendor mismatch between
the component JAD and IMlet or component
JAD that depends on it.

APP_INTEGRITY_FAILURE_HASH_MISMA
TCH

Application Integrity Failure: hash mismatch.

ATTRIBUTE_MISMATCH A attribute in both the JAD and JAR manifest
does not match.

AUTHORIZATION_FAILURE Application authorization failure, possibly
indicating that the application was not digitally
signed.

InstallerErrorCode

4-8 Developer’s Guide

Table 4-4 (Cont.) Installer Error Codes

Constant Description

CA_DISABLED Indicates that the trusted certificate authority
(CA) for this suite has been disabled for
software authorization.

CANCELED Canceled by user.

CANNOT_AUTH The server does not support basic
authentication.

CIRCULAR_COMPONENT_DEPENDENCY Circular dynamic component dependency.

COMPONENT_DEPS_LIMIT_EXCEEDED Dynamic component dependencies limit
exceeded.

CONTENT_HANDLER_CONFLICT The installation of a content handler would
conflict with an already installed handler.

CORRUPT_DEPENDENCY_HASH A dependency has a corrupt hash code.

CORRUPT_JAR An entry could not be read from the JAR.

CORRUPT_PROVIDER_CERT The content provider certificate cannot be
decoded.

CORRUPT_SIGNATURE The JAR signature cannot be decoded.

DEVICE_INCOMPATIBLE The device does not support either the
configuration or profile in the JAD.

DUPLICATED_KEY Duplicated JAD/manifest key attribute

EXPIRED_CA_KEY The certificate authority's public key has
expired.

EXPIRED_PROVIDER_CERT The content provider certificate has expired.

INSUFFICIENT_STORAGE Not enough storage for this suite to be
installed.

INVALID_CONTENT_HANDLER The MicroEdition-Handler-<n> JAD
attribute has invalid values.

INVALID_JAD_TYPE The server did not have a resource with the
correct type or the JAD downloaded has the
wrong media type.

INVALID_JAD_URL The JAD URL is invalid.

INVALID_JAR_TYPE The server did not have a resource with the
correct type or the JAR downloaded has the
wrong media type.

INVALID_JAR_URL The JAR URL is invalid.

INVALID_KEY A key for an attribute is not formatted
correctly.

InstallerErrorCode

Software Management 4-9

Table 4-4 (Cont.) Installer Error Codes

Constant Description

INVALID_NATIVE_LIBRARY A native library contained within the JAR
cannot be loaded.

INVALID_PAYMENT_INFO Indicates that the payment information
provided with the IMlet suite is incomplete or
incorrect.

INVALID_PROVIDER_CERT The signature of the content provider certificate
is invalid.

INVALID_SIGNATURE The signature of the JAR is invalid.

INVALID_VALUE A value for an attribute is not formatted
correctly.

INVALID_VERSION The format of the version is invalid.

JAD_MOVED The JAD URL for an installed suite is different
than the original JAD URL.

JAD_NOT_FOUND The JAD was not found.

JAD_SERVER_NOT_FOUND The server for the JAD was not found.

JAR_CLASSES_VERIFICATION_FAILED Not all classes within JAR package can be
successfully verified with class verifier.

JAR_IS_LOCKED Component or MIDlet or IMlet suite is locked
by the system.

JAR_NOT_FOUND The JAR was not found at the URL given in the
JAD.

JAR_SERVER_NOT_FOUND The server for the JAR was not found at the
URL given in the JAD.

JAR_SIZE_MISMATCH The JAR downloaded was not the same size as
given in the JAD.

MISSING_CONFIGURATION The configuration is missing from the manifest.

MISSING_DEPENDENCY_HASH A dependency hash code is missing.

MISSING_DEPENDENCY_JAD_URL A dependency JAD URL is missing.

MISSING_JAR_SIZE The JAR size is missing.

MISSING_JAR_URL The URL for the JAR is missing.

MISSING_PROFILE The profile is missing from the manifest.

MISSING_PROVIDER_CERT The content provider certificate is missing.

MISSING_SUITE_NAME The name of MIDlet or IMlet suite is missing.

MISSING_VENDOR The vendor is missing.

InstallerErrorCode

4-10 Developer’s Guide

Table 4-4 (Cont.) Installer Error Codes

Constant Description

MISSING_VERSION The version is missing.

NEW_VERSION This suite is newer that the one currently
installed.

NO_ERROR No error.

OLD_VERSION This suite is older that the one currently
installed.

OTHER_ERROR Other errors.

PROXY_AUTH Indicates that the user must first authenticate
with the proxy.

PUSH_CLASS_FAILURE The class in a push attribute is not in MIDlet-
<n> attribute.

PUSH_DUP_FAILURE The connection in a push entry is already taken.

PUSH_FORMAT_FAILURE The format of a push attribute has an invalid
format.

PUSH_PROTO_FAILURE The connection in a push attribute is not
supported.

REVOKED_CERT The certificate has been revoked.

RMS_INITIALIZATION_FAILURE Failure to import RMS data.

SUITE_NAME_MISMATCH The MIDlet or IMlet suite name does not match
the one in the JAR manifest.

TOO_MANY_PROPS Indicates that either the JAD or manifest has
too many properties to fit into memory.

TRUSTED_OVERWRITE_FAILURE Indicates that the user tried to overwrite a
trusted suite with an untrusted suite during an
update.

UNAUTHORIZED Web server authentication failed or is required.

UNKNOWN_CA The certificate authority (CA) that issued the
content provider certificate is unknown.

UNKNOWN_CERT_STATUS The certificate is unknown to OCSP server.

UNSUPPORTED_CERT The content provider certificate has an
unsupported version.

UNSUPPORTED_CHAR_ENCODING Indicates that the character encoding specified
in the MIME type is not supported.

UNSUPPORTED_PAYMENT_INFO Indicates that the payment information
provided with the MIDlet or IMlet suite is
incompatible with the current implementation.

InstallerErrorCode

Software Management 4-11

Table 4-4 (Cont.) Installer Error Codes

Constant Description

UNTRUSTED_PAYMENT_SUITE Indicates that the MIDlet or IMlet suite has
payment provisioning information but it is not
trusted.

VENDOR_MISMATCH The vendor does not match the one in the JAR
manifest.

VERSION_MISMATCH The version does not match the one in the JAR
manifest.

InstallerErrorCode

4-12 Developer’s Guide

5
General Purpose Input/Output

This chapter describes the General Purpose Input/Output (GPIO) functionality in the
Oracle Java ME Embedded product. GPIO typically refers a generic pin on an
embedded board whose behavior, including whether it is an input or output pin, can
be programmed by the user at runtime.

GPIO pins are often lined up in rows. By design, they have no dedicated purpose, and
are used by programmers for a wide variety of tasks. For example:

• GPIO pins can be enabled or disabled.

• GPIO pins can be configured to be input or output.

• Input values are readable, often with a 1 representing a high voltage, and a 0
representing a low voltage.

• Input GPIO pins can be used as "interrupt" lines, which allow a peripheral board
connected via multiple pins to signal to the primary embedded board that it
requires attention.

• Output pin values are both readable and writable.

Warning:

Be sure to observe manufacturer's specifications and warnings carefully. For
example, with the Raspberry Pi board, the voltage value that represents a
"high" value on an input pin may be 3.3 volts (+3.3V). However, other pins
may output 5 volts (+5V). Be sure to check the manufacturer's specifications to
ensure that you are not placing too much voltage on an input GPIO line, as the
board may not have an overvoltage protection.

GPIO pins have much greater functionality than this, but it is important to start with
the basics.

Setting a GPIO Output Pin
For this example, you will need the following hardware:

Table 5-1 Hardware for GPIO Example

Hardware Where to Obtain

Raspberry Pi 512 MB Rev
B, B+, or Raspberry Pi 2

Various third-party sellers

Multimeter Various. Sinometer DT830B used in the example.

General Purpose Input/Output 5-1

Perhaps the simplest example of working with the GPIO functionality in the Oracle
Java ME Embedded product is to set the high/low value of an arbitrary output pin
and read its voltage with a multimeter. In this example, we set the value of GPIO pin 7
to alternate between high (3.3V) and low (0V) at intervals of 10 seconds and 5 seconds,
respectively. The following example shows the source code.

import jdk.dio.UnavailablePeripheralException;
import jdk.dio.DeviceManager;
import jdk.dio.gpio.GPIOPin;
import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.microedition.midlet.MIDlet;

public class GPIOExample1 extends MIDlet {

 GPIOPin pin;

 public void startApp() {

 try {

 pin = (GPIOPin) DeviceManager.open(7);
 System.out.println("--");
 Thread.sleep(5000);

 for (int i = 0; i < 20; i++) {
 System.out.println("Setting pin to true...");
 pin.setValue(true);
 Thread.sleep(10000);
 System.out.println("Setting pin to false...");
 pin.setValue(false);
 Thread.sleep(5000);
 System.out.println("--");

 }

 } catch (IOException ex) {
 Logger.getLogger(GPIOExample1.class.getName()).
 log(Level.SEVERE, null, ex);
 } catch (InterruptedException ex) {
 Logger.getLogger(GPIOExample1.class.getName()).
 log(Level.SEVERE, null, ex);
 }
 }

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {

 try {
 pin.close();
 } catch (IOException ex) {
 Logger.getLogger(GPIOExample1.class.getName()).
 log(Level.SEVERE, null, ex);
 }

 }
}

Setting a GPIO Output Pin

5-2 Developer’s Guide

The following permissions must be added to the Application Descriptor of the IMlet
so that it will execute without any security exceptions from the Oracle Java ME
Embedded runtime.

Table 5-2 Permissions for GPIO Example

Permission Device Operation

jdk.dio.DeviceMgmtPermission GPIO7:7 open

Note that if you're using an IDE such as NetBeans as the development environment,
you will need to access the project properties of the project and set API permissions
under the application descriptor, as shown in Figure 5-1.

Figure 5-1 API Permissions in the Application Descriptor in NetBeans

After running the application, set your multimeter to read DC voltage with a
maximum of 20V, then connect one of the leads of the multimeter to GPIO 7, and the
other to GND (ground). As the application is running, note that the voltage that is read
by the multimeter will jump from its low value of around 0V after a call to
pin.setValue(false) to its high value of around 3.3V after a call to
pin.setValue(true). This is shown in Figure 5-2 and Figure 5-3.

Warning:

Remember that the GPIO pin assignments on the Raspberry Pi do not match
the pin numbers on the board. For example, GPIO 7 is not mapped to pin 7,
but instead pin 26. See Appendix A (or the hardware-appropriate Getting
Started Guide) for the pin assignments for the target boards of the Oracle Java
ME Embedded software.

Setting a GPIO Output Pin

General Purpose Input/Output 5-3

Figure 5-2 Raspberry Pi Pin 7 with Low (0V) Voltage

Figure 5-3 Raspberry Pi Pin 7 with High (3.3V) Voltage

Working with a Breadboard
When prototyping circuits, it is often helpful to have a way of connecting wires
without having to perform soldering. In some cases, if there are only a few
connections, you can use jumper wires. However, when layout out more complex
circuits, it's helpful to use a breadboard. A typical breadboard is shown in Figure 5-4.

Working with a Breadboard

5-4 Developer’s Guide

Figure 5-4 A Typical Breadboard

A breadboard consists of a large number of holes, each of which are wired together on
the bottom using a standardized pattern, such as the one shown in Figure 5-5. Note
that the two columns on both the left and the right of the breadboard are wired
vertically--these provide power (+) and ground (-) connections that can be tapped into
to. The horizontal rows on either side of the center line, on the other hand, are used to
create circuits. Circuits can be created using small wires with metal tips on each end
that can "plug into" the holes.

Working with a Breadboard

General Purpose Input/Output 5-5

Figure 5-5 Wiring Pattern for a Typical Breadboard

For the Raspberry Pi, we can connect the GPIO pins on the Pi to a breadboard using a
device called a T-Cobbler Extension Board. This device attaches a ribbon cable to the
GPIO pins, which in turn connects to the T-cobbler board. The T-cobbler board is then
inserted into the top of the breadboard, as shown in Figure 5-6.

Working with a Breadboard

5-6 Developer’s Guide

Figure 5-6 T-Cobbler Extension Board for the Raspberry Pi

Once connected to the Pi, you can use any of the holes running along the red stripe on
the left side of the breadboard to provide +3.3 volts (3V3), or any of the holes running
along the red stripe on the right side of the breadboard to provide +5 volts (5V0). In
addition, any of the holes running along the blue stripes on either side of the board
connect to the ground (GND) on the Raspberry Pi.

The GPIO pins on the Raspberry Pi map to the pins on the T-cobbler (and hence the
respective horizontal rows on the breadboard) as shown in Figure 5-3.

Working with a Breadboard

General Purpose Input/Output 5-7

Table 5-3 Broadcom GPIO to T-Cobbler Conversion

GPIO (Pi Pin Number) Alternate Name

2 (Pin 3) SDA

3 (Pin 5) SCL

4 (Pin 7) P7

7 (Pin 26) CE1

8 (Pin 24) CE0

9 (Pin 21) MISO

10 (Pin 19) MOSI

11 (Pin 23) SCLK

14 (Pin 8) TXD

15 (Pin 10) RXD

18 (Pin 12) P1

22 (Pin 15) P3

23 (Pin 16) P4

24 (Pin 18) P5

25 (Pin 22) P6

27 (Pin 13) P2

Blinking an LED
We can use the code in the first example to create a small circuit on the breadboard
that turns on an off a light-emitting diode (LED). For this example, you will need the
following equipment.

Table 5-4 Equipment Needed for Blinking LED Example

Hardware Where to Obtain

LED Any electronics store

1000 ohm resistor Any electronics store

T-Cobbler and Breadboard Adafruit

Jumper Wires (Male to
Male)

Adafruit

Use the breadboard to connect one end of a 1000-ohm resistor to a row that connects to
GPIO7, which is marked on the T-Cobbler by CE1. Plug the other end of the 1000-ohm

Blinking an LED

5-8 Developer’s Guide

resistor into an unused row further down the breadboard. Then, run an LED from that
row an adjacent row, and then connect that row to the ground (GND). The circuit
should look similar to the schematic in Figure 5-7.

Figure 5-7 Schematic for Wiring an LED to GPIO 7

When completed, you should have a prototype that looks like Figure 5-8. Run the first
example again, and you should see the LED light blinking off an on whenever the
setValue(true) call is made on the GPIOPin object.

Note:

Remember that an LED is a diode, which by definition only allows current to
travel one way through it. If your LED does not light up when the voltage is
applied, try flipping the connections so that the current travels the reverse
direction through the diode.

Blinking an LED

General Purpose Input/Output 5-9

Figure 5-8 Wiring an LED to GPIO Pin 7

Testing Output and Input Pins
Our next GPIO example will take the output voltage from one pin and redirect it back
to an adjacent input pin, while creating a listener on the input pin that reacts
accordingly. For this example, you will need the following hardware:

Testing Output and Input Pins

5-10 Developer’s Guide

Table 5-5 Hardware for Example 1-1

Hardware Where to Obtain

Raspberry Pi 512 MB Rev B Various third-party sellers

Multimeter Various. Sinometer DT830B used in the example.

Here, we use GPIO 8 and 11 on the Raspberry Pi due to their proximity to each other.
These pins are right next to GPIO 7 and GND, which was used in the previous
example. In the example below, we've added a listener to an input pin that will trigger
whenever the input voltage changes in both directions (high-to-low and low-to-high).

import jdk.dio.UnavailablePeripheralException;
import jdk.dio.DeviceManager;
import jdk.dio.gpio.GPIOPin;
import jdk.dio.gpio.PinEvent;
import jdk.dio.gpio.PinListener;
import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.microedition.midlet.MIDlet;

public class GPIOExample2 extends MIDlet {

 GPIOPin pin8;
 GPIOPin pin11;

 public void startApp() {

 try {

 pin8 = (GPIOPin) DeviceManager.open(8); // Output pin by default
 pin11 = (GPIOPin) DeviceManager.open(11); // Input pin by default
 pin11.setInputListener(new MyPinListener());

 System.out.println("--");
 Thread.sleep(5000);

 for (int i = 0; i < 20; i++) {
 System.out.println("Setting pin 8 to true...");
 pin8.setValue(true);
 Thread.sleep(10000);
 System.out.println("Setting pin 8 to false...");
 pin8.setValue(false);
 Thread.sleep(5000);
 System.out.println("--");

 }

 } catch (IOException ex) {
 Logger.getLogger(GPIOExample2.class.getName()).
 log(Level.SEVERE, null, ex);
 } catch (InterruptedException ex) {
 Logger.getLogger(GPIOExample2.class.getName()).
 log(Level.SEVERE, null, ex);
 }
 }

Testing Output and Input Pins

General Purpose Input/Output 5-11

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {

 try {
 pin8.close();
 pin11.close();
 } catch (IOException ex) {
 Logger.getLogger(GPIOExample2.class.getName()).
 log(Level.SEVERE, null, ex);
 }

 }

 class MyPinListener implements PinListener {

 @Override
 public void valueChanged(PinEvent event) {
 try {
 System.out.println("Pin listener for pin 11 has been called!");
 System.out.println("Pin 11 is now " + pin11.getValue());
 } catch (IOException ex) {
 Logger.getLogger(GPIOExample2.class.getName()).
 log(Level.SEVERE, null, ex);
 }
 }

 }
}

Table 5-6 shows the permission that must be added to the Application Descriptor of
the IMlet so that it will execute without any security exceptions from the Oracle Java
ME Embedded runtime.

Table 5-6 Permissions for Example 1-2

Permission Device Operation

jdk.dio.DeviceMgmtPermission *:* open

After running the application, either connect one of the leads of the multimeter to the
GPIO 8 pin and the other to the GPIO 11 pin of the Raspberry Pi (or create a
compatible circuit on a breadboard). Set your multimeter to read DCV with a
maximum of 200 mV. As the application is running, note that the voltage that is read
by the multimeter will jump from its low value to its high voltage, although the
voltages will be much smaller than that from GPIO 7. Try disconnecting the lead from
GPIO 11 momentarily and reconnecting it when GPIO 8 is high. The output of the
program should reflect that the listener is called both when the lead is released, and
when it is reconnected.

Warning:

Remember that the GPIO pin assignments on the Raspberry Pi do not match
the pin numbers on the board. For example, GPIO 8 is not mapped to pin 8,
but instead pin 24. Likewise, GPIO 11 is mapped to pin 23. See Appendix A

Testing Output and Input Pins

5-12 Developer’s Guide

and Appendix B for the pin assignments for the target boards of the Oracle
Java ME Embedded software.

The output of the application when running in NetBeans is shown in Figure 5-9.

Figure 5-9 Output of Example 1-2

Testing Output and Input Pins

General Purpose Input/Output 5-13

Testing Output and Input Pins

5-14 Developer’s Guide

6
Working with the I2C Bus

The I2C bus, often referred to as "i-2-c" or "i-squared-c", is a low-speed bus frequently
used between micro-controllers and peripherals. I2C uses only two bi-directional lines,
Serial Data Line (SDA) and Serial Clock (SCL), often pulled-up with resistors. Typical
voltages used are +5 V or +3.3 V, although systems with other voltages are permitted.

When using the Raspberry Pi, be sure to check the manufacturer's specifications as to
which voltages are acceptable for powering the peripheral. The Raspberry Pi provides
both 3.3V and 5V pins.

To enable I2C on the Raspberry Pi, add the following lines to the /etc/modules files
and reboot. Note that the file will need to be edited with root privileges.

 i2c-bcm2708
 i2c-dev

Experimenting with a 7-Segment Display
For this exercise, you will need the following hardware:

Table 6-1 Hardware for 7-Segment Display Example

Hardware Where to Obtain

Raspberry Pi 512 MB Rev
B, B+, or Raspberry Pi 2

Various third-party sellers

Adafruit .56" 4-digit 7-
segment display with
HT16K33 I2C Backpack

Adafuit or Amazon. Requires a small amount of soldering of
the LED display unit to I2C logic board, as well as 4 I2C
connector pins.

Jumper Wires - Female to
Female (x4)

Electronics store. We used SchmartBoard P/N 920-0065-01 Rev
A

Our first example allows us to use the GPIO2 and GPIO3 pins for the I2C data and
clock connections. Using these connections, we will write a simple program that
allows us to set the display using an I2C connection.

In order to hook up the 7-Segment display to the Raspberry Pi properly, the jumper
wires must be connected as shown in Table 6-2. Note that because there are only four
connections, we opted not to use a T-cobber and a breadboard in this example.

Table 6-2 Raspberry Pi to HT16K33 Jumper Connections

Pins on Raspberry Pi HT16K33 Board

5V (Pin 2) VCC

Working with the I2C Bus 6-1

Table 6-2 (Cont.) Raspberry Pi to HT16K33 Jumper Connections

Pins on Raspberry Pi HT16K33 Board

Ground (Pin 6) GND

GPIO 2 (Pin 3) SDA (Serial Data)

GPIO 3 (Pin 5) SCL (Serial Clock)

First, we need a basic class that communicates with the HT16K33 "LED backpack" that
is soldered to the actual 7-segment LED display. The following example shows the
source code for the 7-segment I2C display driver.

import jdk.dio.DeviceManager;
import jdk.dio.i2cbus.I2CDevice;
import jdk.dio.i2cbus.I2CDeviceConfig;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.logging.Level;
import java.util.logging.Logger;

public class LEDBackpack {

 I2CDeviceConfig LEDBackpackConfig;
 int[] displaybuffer = new int[10];

 byte[] OSCILLATOR_ON = {0x21};
 byte BRIGHTNESS = (byte) 0xE0;

 static byte HT16K33_BLINK_CMD = (byte) 0x80;
 static byte HT16K33_BLINK_DISPLAYON = (byte) 0x01;

 static byte HT16K33_BLINK_OFF = (byte) 0;
 static byte HT16K33_BLINK_2HZ = (byte) 1;
 static byte HT16K33_BLINK_1HZ = (byte) 2;
 static byte HT16K33_BLINK_HALFHZ = (byte) 3;

 static byte LETTER_J = 0x1E;
 static byte LETTER_A = 0x77;
 static byte LETTER_V = 0x3E;

 static final byte numbertable[] = {
 0x3F, /* 0 */
 0x06, /* 1 */
 0x5B, /* 2 */
 0x4F, /* 3 */
 0x66, /* 4 */
 0x6D, /* 5 */
 0x7D, /* 6 */
 0x07, /* 7 */
 0x7F, /* 8 */
 0x6F, /* 9 */
 0x77, /* a */
 0x7C, /* b */
 0x39, /* C */
 0x5E, /* d */
 0x79, /* E */

Experimenting with a 7-Segment Display

6-2 Developer’s Guide

 0x71, /* F */};

 public LEDBackpack() {
 LEDBackpackConfig = new I2CDeviceConfig(1, 0x70, 7, 100000);
 }

 void begin() {

 try (I2CDevice slave = DeviceManager.open(LEDBackpackConfig)) {

 ByteBuffer oscOnCmd = ByteBuffer.wrap(OSCILLATOR_ON);
 slave.write(oscOnCmd);
 slave.close();

 } catch (IOException ioe) {
 Logger.getLogger(LEDBackpack.class.getName()).
 log(Level.SEVERE, null, ioe);
 }

 setBlinkRate(HT16K33_BLINK_OFF);
 setBrightness(15);

 }

 void setBrightness(int b) {

 if (b > 15) {
 b = 15;
 } else if (b < 0) {
 b = 0;
 }

 byte[] ea = {(byte) (BRIGHTNESS | b)};

 try (I2CDevice slave = DeviceManager.open(LEDBackpackConfig)) {

 ByteBuffer brightnessCmd = ByteBuffer.wrap(ea);
 slave.write(brightnessCmd);
 slave.close();

 } catch (IOException ioe) {
 Logger.getLogger(LEDBackpack.class.getName()).
 log(Level.SEVERE, null, ioe);
 }
 }

 void setBlinkRate(int b) {

 if (b > 3) {
 b = 0; // turn off if not sure
 } else if (b < 0) {
 b = 0;
 }

 byte[] ea =
 {(byte) (HT16K33_BLINK_CMD | HT16K33_BLINK_DISPLAYON | (b << 1))};

 try (I2CDevice slave = DeviceManager.open(LEDBackpackConfig)) {

 ByteBuffer blinkRateCmd = ByteBuffer.wrap(ea);
 slave.write(blinkRateCmd);

Experimenting with a 7-Segment Display

Working with the I2C Bus 6-3

 slave.close();

 } catch (IOException ioe) {
 Logger.getLogger(LEDBackpack.class.getName()).
 log(Level.SEVERE, null, ioe);
 }
 }

 void writeDisplay() {

 try (I2CDevice slave = DeviceManager.open(LEDBackpackConfig)) {

 byte start[] = {0x00};

 ByteBuffer startCmd = ByteBuffer.wrap(start);
 slave.write(0x00, 1, startCmd);

 for (int i = 0; i < displaybuffer.length; i++) {

 byte b1a[] = {(byte) (displaybuffer[i] & 0xFF)};
 ByteBuffer b1Cmd = ByteBuffer.wrap(b1a);
 slave.write(i, 1, b1Cmd);

 }

 slave.close();

 } catch (IOException ioe) {
 Logger.getLogger(LEDBackpack.class.getName()).
 log(Level.SEVERE, null, ioe);
 }

 }

 void clear() {
 for (int i = 0; i < displaybuffer.length; i++) {
 displaybuffer[i] = 0;
 }
 }

}

This driver class contains five methods: begin(), setBrightness(),
setBlinkRate(), writeDisplay(), and clear(). Let's cover each of these in
more detail.

The begin() method will initialize the display. There are three operations that must
be performed to do this properly. First, the oscillator on the HT16K33 LED backboard
must be turned on. We can do this by sending a byte value of hex 0x21 across the bus.
Next, we set the blink rate of the 7-segment display to one of four values: OFF, 2 Hz, 1
Hz, or .5 Hz. Finally, we can set the brightness of the display using a value of 1 to 15.
For the latter two operations, we make use of the next two methods which can also be
called independently.

The setBlinkRate() and setBrightness() methods simply take an input value,
perform bounds checking, and calculate the correct byte value to send across the bus.
Just like turning on the oscillator, we only need to send one byte across the bus to
modify the blink rate or brightness to any level we choose.

The writeDisplay() method, on the other hand, is a little more complex. Here, the
class makes use of an array of 10 integers, declared as a field, that serves as a display

Experimenting with a 7-Segment Display

6-4 Developer’s Guide

buffer. In reality, the writeDisplay() method will truncate any value larger then
255 before sending it across the bus, but making it an array of integers is helpful for
the user.

Each of the entries in the array will map to an address on the HT16K33 "LED
backpack" that can be written to using the I2C bus. The purpose of each of the
addresses is shown in Table 6-3. Note that since the HT16K33 can drive different types
of LED displays, several of the addresses are ignored when using this particular 4-
character 7-segment display.

Table 6-3 HT16K33 7-Segment Display Addresses

Address Purpose

0x00 7-Segment Display Character 1 and Period

0x01 Ignored

0x02 7-Segment Display Character 2 and Period

0x03 Ignored

0x04 Colon (0xFF for colon on; 0x00 for colon off)

0x05 Ignored

0x06 7-Segment Display Character 3 and Period

0x07 Ignored

0x08 7-Segment Display Character 4 and Period

0x09 Ignored

Each address can have one byte written to it. The contents of each byte is mapped out
in binary as shown in Figure 6-1. As such, the number 7 with a decimal point is
represented in binary as 10000111, which is equal to 0x87 in hexadecimal. Note that
address 0x04 is reserved for the colon that appears between the first two numbers and
the second two numbers in the display; it does not represent character 3.

Figure 6-1 Binary Encoding for 7-Segment Display

The following example shows a sample IMlet that will write the word "JAVA",
without any decimal points or colon, to the display (even though the "V" looks the
same as a "U" in the 7-segment display).

import javax.microedition.midlet.MIDlet;

Experimenting with a 7-Segment Display

Working with the I2C Bus 6-5

public class I2CExample1 extends MIDlet {

 public void startApp() {

 LEDBackpack backpack = new LEDBackpack();

 backpack.begin();
 backpack.setBrightness(10);
 backpack.setBlinkRate(LEDBackpack.HT16K33_BLINK_OFF);

 backpack.clear();
 backpack.writeDisplay();

 backpack.displaybuffer[0] = LEDBackpack.LETTER_J;
 backpack.displaybuffer[2] = LEDBackpack.LETTER_A;
 backpack.displaybuffer[4] = 0x00; // No colon
 backpack.displaybuffer[6] = LEDBackpack.LETTER_V;
 backpack.displaybuffer[8] = LEDBackpack.LETTER_A;
 backpack.writeDisplay();

 }

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {
 }
}

The following permissions must be added to the Application Descriptor of the project
so that it will execute without any security exceptions from the Oracle Java ME
Embedded runtime.

Table 6-4 API Permissions for 7-Segment Display Project

Permission Device Operation

jdk.dio.DeviceMgmtPermission *:* open

jdk.dio.i2cbus.I2CPinPermission *:* open

After running the application, you should see the display as shown in Figure 6-2.

Experimenting with a 7-Segment Display

6-6 Developer’s Guide

Figure 6-2 Result of Running the 7-Segment Display IMlet

Experimenting with a 16x2 LCD Display
For this exercise, you will need the following hardware:

Table 6-5 Hardware for Example 2-2

Hardware Where to Obtain

Raspberry Pi 512 MB Rev
B, B+, or Raspberry Pi 2

Various third-party sellers

16x2 LCD Display with an
HD44780 Controller

Amazon. Requires a small amount of soldering for the 16
connector pins that run on the top of the logic board.

PCF8574N 8-bit I/O
Expander Chip

Mouser Electronics.

T-Cobbler and Breadboard Electronics store.

Jumper Wires Electronics store

This example uses the I2C bus to interface to an LCD display with a Hitachi HD44780
backboard. The HD44780-based 16x2 character LCDs are inexpensive and widely
available. However, in addition to the LCD display, we must also use a PCF8574-
based IC, which is an general purpose bidirectional 8 bit I/O port expander that uses
the I2C protocol.

The first step is to hook up the Raspberry Pi to the PCF8574 chip. Typically, an IC chip
is installed on a breadboard vertically along the center aisle, with the pins from the IC

Experimenting with a 16x2 LCD Display

Working with the I2C Bus 6-7

connecting to the holes adjacent to the center. The pinouts for the PCF8574N IC are
shown in Figure 6-3.

Figure 6-3 Pinout Diagram for PCF8574N IC

Once the chip is on the breadboard, there are several pins on the chip that must be
connected to the T-Cobbler using jumper wires, as shown in Table 6-6.

Table 6-6 Raspberry Pi to PCF8574N Jumper Connections

Pins on T-Cobbler (Pi) PCF8574N Pins

+5V (Pin 2) VCC

GND (Pin 6) GND

SDA / GPIO 2 (Pin 3) SDA (Serial Data)

SCL / GPIO 3 (Pin 5) SCL (Serial Clock)

GND (Pin 6) A0

GND (Pin 6) A1

GND (Pin 6) A2

The first four pins shown in are the standard I2C connections that are required of any
slave device that wishes to use the I2C bus. However, the remaining 3 pins are used to
set the slave address on I2C bus #1, represented as a binary digit from 0-7 (A0=1,
A1=2, A2=4) that is added to the hexidecimal value of 0x20. Because we are not
running voltage on any of these pins, the address of the PCF8574N chip on the I2C bus
should remain 0x20. If you'd like to verify this, login to the Raspberry Pi and issue the
command shown in Figure 6-4. Here, the i2cdetect command shows that on bus 1
there is a device at address 0x20. To change the address, try connecting a 10K resistor
between the 5V pin and one of the Ax pins and rerunning the command. The address
that is reported should change accordingly.

Experimenting with a 16x2 LCD Display

6-8 Developer’s Guide

Figure 6-4 Running the i2cdetect Command

The remaining pins P0-P7 and INT (high) on the PCF8574N are used to communicate
with other devices, in this case the HD44780 chip that drives the 16x2 LCD display.
Table 6-7 shows the connections to and the PCF8574N chip.

Table 6-7 Connections to PCF8574N Chip

Raspberry Pi (T-Cobbler) PCF8574N

SCL / GPIO 3 (Pin 5) SCL

SDA / GPIO 2 (Pin 3) SDA

GND (Pin 6) A0 (see discussion on I2C address above)

GND (Pin 6) A1

GND (Pin 6) A2

+5V (Pin 2) VDD

GND (Pin 6) VSS

Table 6-8 shows the connections between the PCF8574N chip and the HD44780
controller.

Table 6-8 Connection Between PCF8574N Chip and HD44780 Controller

PCF8574N HD44780

P0 DB4

P1 DB5

P2 DB6

Experimenting with a 16x2 LCD Display

Working with the I2C Bus 6-9

Table 6-8 (Cont.) Connection Between PCF8574N Chip and HD44780 Controller

PCF8574N HD44780

P3 DB7

P4 RS

P5 R/W

P6 E

Table 6-9 shows connection between the T-Cobbler and the HD44780 controller.

Table 6-9 Connection to HD44780 Chip

Raspberry Pi (T-Cobbler) HD44780

+5V (Pin 2) VDD

0 to +5V VO (variable resistor if desired for dimming
backlit display)

GND (Pin 6) VSS

Before connecting the Px lines on the IC, try placing a resistor and an LED on a line
coming from the P0 pin. Then, run the code shown in the following example.

import javax.microedition.midlet.MIDlet;
import jdk.dio.DeviceManager;
import jdk.dio.i2cbus.I2CDevice;
import jdk.dio.i2cbus.I2CDeviceConfig;
import java.io.IOException;

public class IOExpanderExample extends MIDlet {

 public void startApp() {

 LEDBackpackConfig = new I2CDeviceConfig(1, 0x20, 7, 100000);
 try (I2CDevice slave = DeviceManager.open(LEDBackpackConfig))
 {

 slave.write((byte)0x01);

 } catch (IOException ex) {
 // Handle exception
 }

 }

 public void pauseApp() {

 }

 public void destroyApp(boolean unconditional) {

 }

Experimenting with a 16x2 LCD Display

6-10 Developer’s Guide

}

To understand this example, it helps to look at the data line dialog, as shown in Figure
6-5. Each of the Px lines can be activated or deactivated by writing a binary number to
the slave device, where P7 represents the most-significant digit and P0 represents the
least-significant digit. Writing a value of 0x01 to the slave device will activate only the
P0 line, which should in turn make the LED that is connected to it light up (be sure
that the LED's cathode and anode connected are the right direction and that there is a
resistor in line so the LED does not burn out!). Note that the LED will remain lit until a
new value is written to the bus, or the PCF8574N chip loses power.

Figure 6-5 I/O Data Bus with the PCF8574N chip

Next, complete the circuit according to Table 6-7. The following shows a sample driver
class that will control the HD44780.

import javax.microedition.midlet.MIDlet;
import jdk.dio.DeviceManager;
import jdk.dio.i2cbus.I2CDevice;
import jdk.dio.i2cbus.I2CDeviceConfig;
import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;

public class LCDDisplay {

 I2CDeviceConfig LEDBackpackConfig;
 I2CDevice slave;

 public LCDDisplay()
 throws InterruptedException, IOException {

 LEDBackpackConfig = new I2CDeviceConfig(1, 0x20, 7, 100000);
 slave = DeviceManager.open(LEDBackpackConfig);

 }

 public void begin()
 throws InterruptedException, IOException {

 slave.write(0x03);
 byte result1 = (byte) slave.read();
 Thread.sleep(5);

 slave.write(0x03);
 byte result2 = (byte) slave.read();

 Thread.sleep(1);
 slave.write(0x03);
 byte result3 = (byte) slave.read();

 Thread.sleep(1);

Experimenting with a 16x2 LCD Display

Working with the I2C Bus 6-11

 slave.write(0x02);
 byte result4 = (byte) slave.read();

 writeCommand((byte) 0x28);
 writeCommand((byte) 0x08);
 writeCommand((byte) 0x01);
 writeCommand((byte) 0x06);
 writeCommand((byte) 0x0C);

 Thread.sleep(1);
 byte result5 = (byte) slave.read();

 }

 public void writeCharacter(byte charvalue)
 throws InterruptedException, IOException {

 slave.write((byte) (0x10 | (charvalue >> 4)));
 strobe();
 slave.write((byte) (0x10 | (charvalue & 0x0F)));
 strobe();
 slave.write(0x00);
 Thread.sleep(1);

 }

 public void writeCommand(byte value)
 throws InterruptedException, IOException {

 slave.write((byte) (value >> 4));
 strobe();
 slave.write((byte) (value & 0x0F));
 strobe();
 slave.write(0x00);
 Thread.sleep(5);

 }

 public void writeString(int line, String string)
 throws InterruptedException, IOException {

 if (line == 1) {
 writeCommand((byte) 0x80);
 } else if (line == 2) {
 writeCommand((byte) 0xC0);
 } else if (line == 3) {
 writeCommand((byte) 0x94);
 } else if (line == 4) {
 writeCommand((byte) 0xD4);
 }

 char[] chars = string.toCharArray();

 for (int i = 0; i < chars.length; i++) {
 writeCharacter((byte) chars[i]);
 }
 }

 public void strobe()
 throws InterruptedException, IOException {

Experimenting with a 16x2 LCD Display

6-12 Developer’s Guide

 Thread.sleep(1);

 byte readResult = (byte) slave.read();
 readResult |= 0x40;
 slave.write(readResult);

 Thread.sleep(1);

 readResult = (byte) slave.read();
 readResult &= 0xBF;
 slave.write(readResult);

 }

 public void clear()
 throws InterruptedException, IOException {

 Thread.sleep(5);

 writeCommand((byte) 0x01);
 Thread.sleep(5);

 writeCommand((byte) 0x02);
 Thread.sleep(5);

 }

 public void end()
 throws IOException {

 slave.close();

 }

}

To use the driver class, run the IMlet shown in the following example.

import java.io.IOException;
import javax.microedition.midlet.MIDlet;

public class I2CExample2 extends MIDlet {

 public void startApp() {

 LCDDisplay display;
 try {
 display = new LCDDisplay();
 display.begin();
 display.clear();
 display.writeString(1, "Java ME");
 display.writeString(2, "Embedded");
 display.end();
 } catch (InterruptedException ex) {
 ex.printStackTrace();
 } catch (IOException ex) {
 ex.printStackTrace();
 }

Experimenting with a 16x2 LCD Display

Working with the I2C Bus 6-13

 }

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {
 }
}

The following permissions must be added to the Application Descriptor of the project
so that it will execute without any security exceptions from the Oracle Java ME
Embedded runtime.

Table 6-10 API Permissions for LCD Example

Permission Device Operation

jdk.dio.DeviceMgmtPermission *:* open

jdk.dio.i2cbus.I2CPinPermission *:* open

After running the application, you should see the display as shown in Figure 6-6.

Figure 6-6 LCD Display after Running Example

Experimenting with a 16x2 LCD Display

6-14 Developer’s Guide

7
The Serial Peripheral Interface (SPI) Bus

The Serial Peripheral Interface or SPI bus is a synchronous serial data link that
operates in full duplex mode. In other words, data can be sent and received at the
same time. Devices communicate in master/slave mode, where the master device
initiates the data exchange with one or more slaves. Multiple slave devices are allowed
with individual slave select lines.

The SPI bus specifies four logic signals:

• SCLK : Serial Clock (a clock signal that is sent from the master).

• MOSI : Master Output, Slave Input (data sent from the master to the slave).

• MISO : Master Input, Slave Output (data sent from the slave to the master).

• SS : Slave Select (sent from the master, active on low signal). Often paired with the
Chip Select (CS) line on an integrated circuit that supports SPI.

In order to enable the SPI bus on the Raspberry Pi, uncomment the entry
spi_bcm2708 in the file /etc/modprobe.d/raspi-blacklist.conf. Note that
you will need to have root privileges to edit the file.

Using the SPI Bus to Communicate with an ADC
Because the Raspberry Pi board does not come with a analog-to-digital converter, the
SPI bus can be used to communicate with a peripheral analog-to-digital converter chip
that is reading an analog signal.

For this exercise, you will need the following hardware:

Table 7-1 Hardware for Example 3-1

Hardware Where to Obtain

Raspberry Pi 512 MB Rev B Various third-party sellers

Texas Instruments
TLC549CP 8-bit ADC

Various electronics suppliers. We used mouser.com.

T-Cobbler and Breadboard Adafuit. See Chapter 1 for more information.

Potentiometer Electronics store

Jumper Wires (M/M and
F/F)

Electronics store.

The Serial Peripheral Interface (SPI) Bus 7-1

The data sheet of the TLC549CP shows 8 pins, as shown in Figure 7-1. Note that the
SPI connections reside on the right side of the chip, while the connections for
measuring the analog signal are on the left side of the chip.

Figure 7-1 Pinouts for TLC549CP Analog-to-Digital Converter Chip

In order to connect the TLC549CP chip to the Raspberry Pi, the SPI connections must
be connected as shown in Table 7-2.

Table 7-2 Raspberry Pi to TLC549CP SPI Pins

Pins on Raspberry Pi TLC549CP ADC Board Pins (Right Side)

3.3V VCC

SCLK (GPIO 11 / Pin 23) CLK

MISO (GPIO 9/ Pin 21) Data

CE0 (GPIO 8 / Pin 24) CS

The other four pins must be connected to provide the analog voltage to measure. In
this example, we are using a potentiometer (in effect, a variable resistor) to vary the
amount of voltage being sent into the Analog In pin.

Table 7-3 shows how to connect the remaining pins on the TCL549CP chip.

Table 7-3 TLC549CP to Analog Signal Pins

TLC549CP ADC Board
Pins (Left Side)

Analog Signal

Vref+ Voltage (Side Pin on Potentiometer) / 3.3V

Analog In Variable Voltage Signal (Middle Pin on Potentiometer)

Vref- Voltage (Other Side Pin on Potentiometer)

GND To Ground

Note that in order to complete our circuit and provide power to the potentiometer, the
Vref+ must be also connected to a 3.3V input, and the Vref- must be connected to a
ground. The chip does not provide voltage. You can test the voltage that is being sent
through the potentiometer with a voltmeter to ensure that the circuit is working
properly. The completed circuit on the breadboard is shown in Figure 7-2.

Using the SPI Bus to Communicate with an ADC

7-2 Developer’s Guide

Figure 7-2 Breadboard with the Analog-to-Digital Converter Circuit

Once this is completed, we can use the source code in the following example to test
out the ADC chip.

import jdk.dio.Device;
import jdk.dio.DeviceManager;
import jdk.dio.spibus.SPIDevice;
import jdk.dio.spibus.SPIDeviceConfig;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.logging.Level;
import java.util.logging.Logger;

Using the SPI Bus to Communicate with an ADC

The Serial Peripheral Interface (SPI) Bus 7-3

import javax.microedition.midlet.MIDlet;

public class SPIExample1 extends MIDlet {

 public void startApp() {

 System.out.println("Preparing to open SPI device...");

 SPIDeviceConfig config = new SPIDeviceConfig(0, 0,
 SPIDeviceConfig.CS_ACTIVE_LOW,
 500000,
 3,
 8,
 Peripheral.BIG_ENDIAN);

 try (SPIDevice slave = (SPIDevice)DeviceManager.open(config)) {

 System.out.println("SPI device opened.");

 for (int i = 1; i < 200; i++) {
 ByteBuffer sndBuf = ByteBuffer.wrap(new byte[]{0x00});
 ByteBuffer rcvBuf = ByteBuffer.wrap(new byte[1]);
 slave.writeAndRead(sndBuf,rcvBuf);
 System.out.println("Analog to digital conversion at " +
 i + " is: " + rcvBuf.get(0));
 Thread.sleep(1000);

 }

 } catch (IOException ioe) {
 // handle exception
 } catch (InterruptedException ex) {
 Logger.getLogger(SPIExample1.class.getName()).
 log(Level.SEVERE, null, ex);
 }

 }

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {
 }
}

This program is very simple: it opens up a connection to the Raspbeery Pi SPI bus
using a SPIDeviceConfig and writes a byte to the peripheral device: the ADC chip.
Since there is no input connection being sent from the master (the Raspberry Pi) to the
slave (the ADC chip), this data is effectively ignored. The SPI bus will, concurrently,
attempt to retrieve a byte of data from the chip. This byte is passed along the MISO
line, which returns an 8-bit number that represents the current voltage level. This
process will be repeated 200 times, with a one-second delay between each sampling on
the bus.

The program output looks like the following. As the program is running, try turning
the dial on the potentiometer to vary the voltage that is being sent into the chip. Here,
we are turning the voltage from higher to lower, and the ADC chip is representing this
with a steady drop in the 8-bit value that is returned.

Using the SPI Bus to Communicate with an ADC

7-4 Developer’s Guide

Starting emulator in execution mode
...
About the open device
Device opened...
Value for 1 is: 145
Value for 2 is: 143
Value for 3 is: 120
Value for 4 is: 113
Value for 5 is: 90
Value for 6 is: 75
Value for 7 is: 63

Using the SPI Bus to Communicate with an ADC

The Serial Peripheral Interface (SPI) Bus 7-5

Using the SPI Bus to Communicate with an ADC

7-6 Developer’s Guide

8
Working with Java ME Encryption

Learn about the the encryption functionality available to the Java ME Embedded
programmer with the Oracle Java ME Embedded 8.3 release.

Topics:

• Connecting to an SSL Server

• Authenticating an SSL Server

• Accessing the Keystore

• Configuring the Board as a Secure Server

Connecting to an SSL Server
Creating a connection to an SSL server only requires the programmer to include an
appropriate ConnectionOption object in the call to Connector.open(). This
example requires the following hardware:

Table 8-1 Hardware for Example 1-1

Hardware Where to Obtain

Raspberry Pi 512 MB Rev
B, B+, or Raspberry Pi 2

Various third-party sellers

In this example, we use the Oracle Java ME Embedded runtime to connect to a server
on the network that is running TLSv1.1 or higher on port 443. Note that this example
requires the user to configure a web server that will accept an incoming connection on
that port and uses the proper protocol and is properly signed by a valid certificate
authority. After this is setup, the value of the sTestServerAddr variable should be
changed accordingly. The following example shows the source code.

import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import javax.microedition.io.ConnectionOption;
import javax.microedition.io.Connector;
import javax.microedition.io.SecureConnection;
import javax.microedition.midlet.MIDlet;

public class SSLConnect extends MIDlet {

 @Override

Working with Java ME Encryption 8-1

 public void startApp() {

 SecureConnection sc;
 ConnectionOption<String> protocol;
 InputStream is;
 OutputStream os;
 DataInputStream dis;
 DataOutputStream dos;

 String sTestServerAddr = "example.com:443";

 try {

 protocol = new ConnectionOption<>("Protocol", "TLSv1.1");
 sc = (SecureConnection) Connector.open("ssl://" +
 sTestServerAddr, protocol);

 System.out.println("Connection successful to:");
 System.out.println("Address: " + sc.getAddress());
 System.out.println("Port: " + sc.getPort());
 System.out.println("Cipher Suite: " +
 sc.getSecurityInfo().getCipherSuite());
 System.out.println("Protocol Name: " +
 sc.getSecurityInfo().getProtocolName());
 System.out.println("Protocol Version: " +
 sc.getSecurityInfo().getProtocolVersion());

 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }

 @Override
 public void pauseApp() {
 }

 @Override
 public void destroyApp(boolean unconditional) {
 }

}

The following permissions must be added to the Application Descriptor of the IMlet
so that it will execute without any security exceptions from the Oracle Java ME
Embedded runtime.

Table 8-2 Permissions for Example 4-1

Permission Device

javax.microedition.io.SSLProtocolPermission ssl://*:*

javax.microedition.io.SocketProtocolPermission socket://*:*

Note that if you're using an IDE such as NetBeans as the development environment,
you will need to access the project properties of the project and set API permissions
under the application descriptor, as shown in Figure 8-1.

Connecting to an SSL Server

8-2 Developer’s Guide

Figure 8-1 API Permissions in the Project Properties Dialog in NetBeans

Tip:

If your server does not currently use a certificate from a signed certificate
authority (CA), you can import a server certificate to the Java ME Embedded
device. Locate the MEKeytool executable in the bin directory of the Oracle
Java ME Embedded SDK distribution, and enter the following command
using a Windows command prompt.

C:\SDK\bin> mekeytool.exe -import -Xdevice:EmbeddedExternalDevice1 -keystore
myCert.crt

This command will connect to the keystore on the embedded device currently
recognized by the Device Manager as "EmbeddedExternalDevice1" and install
the certificate with the filename myCert.crt. Note that this certificate must
be identical to the one residing on the server that is authenticating SSL/TLS
connections, or the Java embedded runtime will throw a
javax.microedition.pki.CertificateException when attempting a
secure connection. See Appendix D for more information on using the
MEKeyTool utility.

After running the application, you should see output that identifies a successful
connection to the server at the address and port specified. The program will then
output the address and port, as well as the security connection parameters that were
used to make the connection.

Connection successful to:Address: 192.168.1.125Port: 443Cipher Suite:
TLS_RSA_WITH_AES_256_CBC_SHAProtocol Name: TLSProtocol Version: 3.2

Connecting to an SSL Server

Working with Java ME Encryption 8-3

Authenticating an SSL Server
In this example, we expand on the ConnectionOption objects to provide an option
to authenticate an HTTPS server. As with the previous example, the value of the
serverAddr variable should be modified to point to a properly configured server.
The following example shows the source code.

Note:

Oracle Java ME Embedded 8.2 has removed support for SSLv3 due to a
widely-publicized security vulnerability. However, the source code example is
applicable to other forms of transport-layer security included with Oracle Java
ME Embedded 8.3.

import java.io.DataInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.microedition.io.ConnectionOption;
import javax.microedition.io.Connector;
import javax.microedition.io.HttpConnection;
import javax.microedition.io.HttpsConnection;
import javax.microedition.midlet.MIDlet;
import javax.microedition.rms.RecordStore;

/**
public class AuthenticateServer extends MIDlet {

 public static final int PASSED = 1;
 public static final int FAILED = -1;

 @Override
 public void startApp() {

 String serverAddr = "https://example.com:443";

 HttpsConnection hc;
 ConnectionOption<String> auth;
 ConnectionOption<String> protocol;
 int response = HttpConnection.HTTP_NOT_FOUND;

 try {

 auth = new ConnectionOption<>("AuthenticateServer", "TRUE");
 protocol = new ConnectionOption<>("Protocol", "TLSv1.1");

 hc = (HttpsConnection) Connector.open(serverAddr,
 Connector.READ_WRITE, auth, protocol);
 response = sendReqAndgetResp(hc); //request GET

 if (response == PASSED) {
 System.out.println("Pass");
 } else {
 System.out.println("Failed");

Authenticating an SSL Server

8-4 Developer’s Guide

 }

 } catch (IOException ex) {
 ex.printStackTrace();
 } catch (SecurityException ex) {
 ex.printStackTrace();
 } catch (RuntimeException ex) {
 ex.printStackTrace();
 }
 }

 @Override
 public void destroyApp(boolean unconditional) {
 }

 private int sendReqAndgetResp(HttpsConnection hc) {

 int resCode = -1;
 boolean pass = true;

 OutputStream os;

 try {
 ((HttpsConnection) hc).setRequestMethod(HttpConnection.GET);
 resCode = ((HttpsConnection) hc).getResponseCode();
 System.out.println("Response code is: " + resCode);

 if (resCode == HttpConnection.HTTP_OK) {
 return PASSED;
 } else {
 return FAILED;
 }

 } catch (IOException ex) {
 ex.printStackTrace();
 return FAILED;
 } finally {
 try {
 hc.close();
 } catch (IOException ex) {
 }
 }
 }
}

The following permissions must be added to the Application Descriptor of the IMlet.
Note that because we are using HTTPS, we require the HTTPS protocol permission,
even through the implementing protocol we requested for HTTPS (TLSv1.1) is the
same.

Table 8-3 Permissions for Example 4-2

Permission Device

javax.microedition.io.HTTPSProtocolPermission https://*:*

This example is similar to the previous example. Here, however, we create an HTTPS
connection with requests and responses (instead of a direct SSL connection). An

Authenticating an SSL Server

Working with Java ME Encryption 8-5

additional ConnectionOption object also instructs the Java ME example to
authenticate the server.

auth = new ConnectionOption<>("AuthenticateServer", "TRUE");

Enabling this option will verify that the server certificate is valid and has been signed
by a valid certificate authority, as well as performing a number of verification steps
against the data presented by the certificate. If the test is successful, you should see
output that identifies a connection to the HTTPS server at the address and port
specified.

Pass

Accessing the Keystore
Each Java ME Embedded implementation has one or more keystores, typically located
under the appdb/certs directory. There is one keystore for each application
privilege level (such as untrusted or operator). In order to programmatically
access the keystore, use the classes in the com.oracle.crypto.keystore package.

The following example shows source code used to create five certificates, store them in
the keystore, and then iterate over the contents of the keystore when completed.

import java.io.DataInputStream;
import com.oracle.crypto.cert.X509Certificate;
import com.oracle.crypto.cert.X509CertificateBuilder;
import com.oracle.crypto.keypair.KeyPair;
import com.oracle.crypto.keypair.KeyPairGenerator;
import com.oracle.crypto.keypair.PrivateKey;
import com.oracle.crypto.keypair.spec.RSAKeyGenParameterSpec;
import com.oracle.crypto.keystore.KeyStore;
import com.oracle.crypto.keystore.KeyStoreEntry;
import com.oracle.crypto.keystore.KeyStoreException;
import java.security.spec.AlgorithmParameterSpec;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.microedition.midlet.MIDlet;

public class GenerateKeystore extends MIDlet {

 @Override
 public void startApp() {

 try {

 HashMap<String, KeyStoreEntry> shadow = new HashMap();
 KeyStore ks = KeyStore.getInstance(KeyStore.STORAGE.CLIENT);

 for (int i = 0; i < 5; i++) {

 KeyStoreEntry kse = generateRandomKeyStoreEntry();
 System.out.println("Add entry with certificate serial number: " +
 kse.getCertificate().getSerialNumber());
 ks.addEntry(kse);

 }

Accessing the Keystore

8-6 Developer’s Guide

 List<KeyStoreEntry> list = ks.getEntries();
 Iterator<KeyStoreEntry> iter = list.iterator();

 while (iter.hasNext()) {
 KeyStoreEntry kse = iter.next();
 String subject = kse.getCertificate().getSubject();
 System.out.println("Certificate Subject: " + subject);

 PrivateKey entryKey = kse.getPrivateKey();
 byte[] entryEncoded = entryKey.getEncoded();

 System.out.println("Private Key: " + entryEncoded.toString());

 }

 } catch (SecurityException ex) {
 // Handle exception
 } catch (KeyStoreException ex) {
 // Handle exception
 }

 }

 @Override
 public void destroyApp(boolean unconditional) {
 }

 private KeyStoreEntry generateRandomKeyStoreEntry() {

 KeyStoreEntry entry = null;
 try {

 AlgorithmParameterSpec param;
 param = new RSAKeyGenParameterSpec(512, 3);

 KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA");
 kpg.initialize(param);
 KeyPair kp = kpg.generateKeyPair();

 int serialNumber = (int)(Math.random() * 1000000);

 System.out.println("Create X509 Certificate serial: " + serialNumber);

 X509CertificateBuilder builder = new X509CertificateBuilder(kp);
 builder.setSerialNumber("" + serialNumber);
 builder.setSubject("C=JP;ST=NE;L=Menlo;O=Oracle;OU=Java;CN=Test." +
 serialNumber);
 builder.setValidityInDays(365);
 X509Certificate cert = builder.create();

 entry = new KeyStoreEntry(cert, kp.getPrivate(), "test");

 } catch (Throwable ex) {
 ex.printStackTrace();
 }
 return entry;
 }
}

Accessing the Keystore

Working with Java ME Encryption 8-7

The following permissions must be added to the Application Descriptor of the IMlet to
access the keystore on the Java ME Embedded device.

Table 8-4 Permissions for Example 4-3

Permission Device

com.oracle.crypto.keystore.KeyStorePermission client_only

This example will access the local keystore on the embedded board (client) with the
following call:

KeyStore ks = KeyStore.getInstance(KeyStore.STORAGE.CLIENT);

Note that the keystore that is accessed will depend on the trust level of the application.
If the Java ME embedded application is not signed, it will fall into the untrusted
security domain by default.

We can access the keystore similar to accessing it with the Java SE environment. First,
we create a KeyStoreEntry object and populate it with a certificate. This is, in turn,
added to the embedded keystore via a simple loop and iterated over later in the
program. Here is the output after running the program:

Creating X509 Certificate with serial number: 798364Add keystore entry with
certificate serial number: 4F:53:40Creating X509 Certificate with serial number:
67079Add keystore entry with certificate serial number: 43:07:09Creating X509
Certificate with serial number: 723418Add keystore entry with certificate serial
number: 48:22:12Creating X509 Certificate with serial number: 792956Add keystore
entry with certificate serial number: 4F:1D:38Creating X509 Certificate with serial
number: 661145Add keystore entry with certificate serial number: 42:0B:2D

Certificate Subject: C=JP,ST=NE,L=Menlo,O=Oracle,OU=Java,CN=Test.798364Private Key:
[B@fcd4cfc2Certificate Subject: C=JP,ST=NE,L=Menlo,O=Oracle,OU=Java,CN=Test.
67079Private Key: [B@1c1cc1a5Certificate Subject:
C=JP,ST=NE,L=Menlo,O=Oracle,OU=Java,CN=Test.723418Private Key:
[B@e854b14cCertificate Subject: C=JP,ST=NE,L=Menlo,O=Oracle,OU=Java,CN=Test.
792956Private Key: [B@1d69c567Certificate Subject:
C=JP,ST=NE,L=Menlo,O=Oracle,OU=Java,CN=Test.661145Private Key: [B@1a5796e6

Configuring the Board as a Secure Server
The Java ME Embedded binary contains functionality that enables an embedded board
to function as a server using secure protocols. The functionality is identical to the
configuration of a Java SE server.

The secure server connection requires a server certificate on the device. This certificate
should be imported into the device with a private key.

mekeytool.exe -import -Xdevice:EmbeddedExternalDevice1 -keystore myServertCert.jks -
storepass <store password> -keypass <private key password>

The following example shows source code used to setup the embedded board as a
server.

import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.microedition.io.ConnectionOption;
import javax.microedition.io.Connector;

Configuring the Board as a Secure Server

8-8 Developer’s Guide

import javax.microedition.io.SecureConnection;
import javax.microedition.io.SecureServerConnection;
import javax.microedition.midlet.MIDlet;

public class EmbeddedServer extends MIDlet {

 @Override
 public void startApp() {

 String PORT = "10005";

 SecureServerConnection ssc = null;
 ConnectionOption<String> protocol = null;

 try {

 protocol = new ConnectionOption<>("Protocol", "TLSv1.1");
 ConnectionOption serverCert = new ConnectionOption("Certificate",
<Certificate Subject DN>);
 ssc = (SecureServerConnection) Connector.open("ssl://:"+PORT,
 protocol, serverCert);

 System.out.println("Connection listening on:");
 System.out.println("Address: " + ssc.getLocalAddress());
 System.out.println("Port: " + ssc.getLocalPort());

 ssc.acceptAndOpen();

 System.out.println("Connection made!");

 } catch (SecurityException ex) {
 ex.printStackTrace();
 } catch (RuntimeException ex) {
 ex.printStackTrace();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }

 @Override
 public void destroyApp(boolean unconditional) {
 }
}

Note: In this code example the <Certificate Subject DN> parameter
should be replaced with the Subject DN of the used certificate.

The following permissions must be added to the Application Descriptor of the IMlet to
access the keystore on the Java ME Embedded device.

Table 8-5 Permissions for Example 4-3

Permission Device

javax.microedition.io.SSLProtocolPermission ssl://*:*

javax.microedition.io.SSLProtocolPermission ssl://:*

Configuring the Board as a Secure Server

Working with Java ME Encryption 8-9

This example uses a SecureServerConnection object, which creates a socket at
port 10005 using the SSL protocol. It is essential to include the following line as well:

ssc.acceptAndOpen();

Without this line, the secure socket will never accept an incoming connection, and any
attempt to make a connection will result in a runtime exception. Note that a call to this
method will block until a successful connection is made.

As with the previous examples, the Java ME Embedded keystore must have a valid
server certificate for the trust-level that the application is running under, which will be
validated upon any secure connection. If the certificate is absent, or is not valid, an
exception will be thrown on the server.

The client-side code to make the connection is nearly identical to the client-side
example earlier in this chapter, with a slight change to the port and the protocol. A
successful connection should output the following:

Address: 192.168.1.80
Port: 10005
Connection made!

Configuring the Board as a Secure Server

8-10 Developer’s Guide

A
Java ME Optimization Techniques

This appendix covers common optimization techniques when working with Java ME
Embedded devices. Many of these techniques are common to the CLDC VM in both
Java Embedded and traditional Java ME.

Design
Embedded systems are typically designed to perform a specific task, unlike a general-
purpose computer that strives to handle multiple tasks with equal efficiency. Some
embedded systems also have real-time performance constraints for safety and
usability; others may have little or no performance requirements, allowing the system
hardware to be simplified to reduce costs. As such, developers should use the simplest
application design possible to avoid overtaxing the embedded system.

Memory
Resources are frequently limited in embedded devices. Often memory is the most
valuable resource. Many embedded devices have memory that is measured in
megabytes (MB), and some of it is used by the Runtime Operating System (RTOS),
leaving the remainder for use by the Java VM and its applications.

Be aware of how much memory is typically used by your application, the RTOS, and
the Java VM. This will vary from one embedded board to another. By the time a Java
ME embedded application exhausts all memory and is subject to an
OutOfMemoryError, there are few options left: the application must either force the
VM to free any unnecessary memory using a System.gc() call, or if that doesn't
work, crash.

Threads
Java threads are often an expensive resource with embedded Java VMs. Java
embedded applications work best when using minimal application threads. If you
must create multi-threaded code, be sure to minimize the use of synchronized code,
which can be expensive on embedded devices. As a general rule, avoid using the
Timer class, as an extra thread is created for each timer.

A common technique for creating Java ME embedded applications is to create a
background thread in the startApp() method of the MIDlet class and reuse it
throughout the IMlet lifecycle.

System Callbacks
System callback functions should never block and should return as soon as possible to
avoid slowing down the CLDC VM. Pay special attention to the following MIDlet
methods:

• startApp()

Java ME Optimization Techniques A-1

• pauseApp()

• MIDlet constructor

Input/Output
The Record Management System (RMS) is an I/O resource that should be used
carefully. With any application that uses RecordStore objects, opening and closing
operations should be minimized. In addition, strive to group reads and writes in one
section of code as much as possible. Spreading RecordStore read and writes across
the application can slow down the application.

Another common strategy when working with RecordStore objects is to use buffers,
which reside in memory and are often faster. This is a common technique:

• For reading record stores, read the entire record into a buffer, then parse the buffer.

• For writing record stores, write to a single buffer, then write the buffer to a record.

General Tips
Here are some other general hints for optimizing your code that are pervasive
throughout the industry for Java ME code:

• Object creation is very costly with respect to memory and performance overhead.
Create objects only when needed, and reuse any object instances that are created in
a cache.

• Use lazy instantiation if appropriate. However, many Java ME developers will
create all objects outside the main loop of the program and reuse them as the
application runs. With reusable objects, be sure to include a method that returns
them to the original state, independent of the object constructor.

• Avoid auto-boxing when possible.

• Do not perform assertions in tight loops.

• Avoid using variable-length arguments (varargs).

• Use local variables instead of global variables when you can. Local variables are
faster and generate less bytecode.

• Only include system classes that you need. Avoid using wild character imports like
import java.util.* Instead, import classes directly, such as import
java.util.Date.

• Don't perform string concatenations using the "+" operator. Use the
StringBuffer class instead. For example, don't do the following:

String str = new String ("Hello ");str += "World";

Instead, do this:

StringBuffer str = new StringBuffer ("Hello ");str.append("World");

Remember that in Java, String objects are immutable, so performing
concatenation with the "+" operator will in fact create a StringBuffer, copy the
contents of the String over, append the other String, then copy the result back
into a different immutable String object.

Input/Output

A-2 Developer’s Guide

• Divide your multi-dimensional arrays into single-dimensional arrays.
Multidimensional arrays take more time to calculate the proper index in memory.

• Avoid any unnecessary creation and disposal of objects and variables inside loops.
For example, avoid a construct like this:

for (int i = 0; i < length; i++) { MyConstantClass c = new MyConstantClass();
results[i] = c.doSomething();}

• Use a switch-case construct instead of if blocks, as they are compiled into more
optimized bytecode. Remember that starting with Java 8, the switch keyword can
handle strings, which is more efficient that creating a large number of if blocks
that test using the equals() method.

• Use public variables directly instead of using get/set accessors.

• Set variables to null when you don't need them anymore to assist with garbage
collection.

Application Size
Aside from minimizing the number of classes in your application, developers can also
make use of obfuscator tools, which are present in NetBeans and other IDEss. The
original purpose of an obfuscator is to make reverse engineering bytecode more
difficult. However, it can also create smaller and often faster class files. In fact,
obfuscators typically reduce Java ME embedded class file size by 25% to 35%.

The NetBeans IDE contains an option to install the ProGuard obfuscator library. You
can choose this option by right-clicking on your project and bringing up the Project
Properties. Next, expand the Build leaf and select Obfuscating. If ProGaurd is not
already installed, press the button to download and install the NetBeans module, as
shown in Figure A-1.

Application Size

Java ME Optimization Techniques A-3

Figure A-1 Installing the ProGuard Obfuscator Library

Once the obfuscator is installed, choose an obfuscation level by moving the slider
anywhere from Level 1 and Level 9. As shown in Figure A-2, each level presents a
detailed description in the window below that shows what operations the obfuscator
is performing.

Figure A-2 Choosing an Obfuscation Level

Application Size

A-4 Developer’s Guide

B
Java ME Embedded Properties

This appendix documents the configurable options that are found in many ports of the
Oracle Java ME Embedded product. System properties in the Oracle Java ME
Embedded distribution can be configured in one of two ways: by modifying the
jwc_properties.ini file (if available), or by using the VM proxy command-line
interface (CLI).

Modifying the Properties File
Most platforms have a jwc_properties.ini file that can be modified with a text
editor. The jwc_properties.ini file has two distinct sections:

• [application]

Properties that are used by Java applications that are running on the board.

• [internal]

Properties used for internal system configuration.

In addition, each jwc_properties.ini file contains comments that help describe
the purpose of each entry.

It is highly recommend that you read through the original jwc_properties.ini file
for your target embedded board, as it contains essential information about each
property. Note that the Oracle Java ME Embedded runtime may alter the values inside
of the jwc_properties.ini file at any time (especially if the set-property and
save-properties commands are issued in the CLI), and typically without
comments, so it helps to study the original version that comes with each distribution
bundle.

Using the Command-Line Interface
In addition to specifying properties in the jwc_properties.ini file, system
properties can also be modified on the fly using the CLI set-property command.
The set-property command uses the following syntax:

set-property <key> <value>

If you wish to examine the current value of any property, use the get-property
command.

get-property <key>

Note that after any property change, the VM state is unpredictable, and it is necessary
to issue the save-properties command and 'shutdown -r' (or, depending on the
embedded board, cycle the power) to activate the changes. See Chapter 2 for more
information on using the VM proxy CLI.

Java ME Embedded Properties B-1

The list of configurable system properties differs extensively on each platform and
with each release, and may be retrieved by issuing the following command via the CLI
proxy:

> properties-list

For example, the properties list that is generated for the Raspberry Pi would look
similar to the following:

read only STRING xml.rpc.subset.version = 1.0
read/write STRING xml.jaxp.subset.version = 1.0
read/write BOOL vmconfig.system_reboot = false
read only STRING system.storage_root = ../appdb
read/write BOOL system.network.reconnect = false
read/write INT system.jam_space = 4096000
read only STRING system.default_storage = ../appdb
read only STRING socket = com.sun.midp.io.j2me.socket.ProtocolPushImpl
read/write STRING security.providers.jar = null
...
(several lines omitted)
...
read/write INT AMS_MEMORY_LIMIT_MVM = -1

Using the Command-Line Interface

B-2 Developer’s Guide

C
Signing an IMlet Suite's JAR File

Establishing trust is important for IMlet suites that use security-sensitive APIs. Signing
an IMlet suite's JAR file allows the suite to be trusted. A JAR file is signed with the
jadtool utility. A copy of the jadtool utility is provided with the Oracle Java ME
Embedded software bundle.

The jadtool utility signs a JAR file by adding a certificate and the JAR file's digital
signature to a Java Application Descriptor (JAD) file. Adding a certificate and a JAR
file's digital signature to a JAD file are separate steps. You must complete both steps to
sign a JAR file. The steps are in “Instructions for Using JadTool”.

You can also use the jadtool utility to obtain information about a certificate in a JAD
file. The information can include the name of the entity that issued the certificate, the
certificate's serial number, the dates between which it is valid, and its Message Digest
Algorithm 5 (MD5) and Secure Hash Algorithm (SHA) fingerprints.

Instructions for Using JadTool
This section explains how to use the JadTool utility through an example that signs a
hypothetical IMlet suite named ImaginaryIMlet.

Note:

ImaginaryIMlet is not an actual IMlet suite. No ImaginaryIMlet files are
included with this release.

The example uses the key pair provided with the software. The key pair is in the
j2se_test_keystore.bin file, which is a keystore managed with the Java SE
platform's keytool utility. For information on the keytool utility, see http://
download.oracle.com/javase/8/docs/technotes/tools/windows/
keytool.html.

After you build an implementation of the software, j2se_test_keystore.bin is
located in this directory:

{OUTPUT-Dir}/meep/bin/i386

Where {OUTPUT-Dir} is the directory that contains the output of your builds of the
Oracle Java ME Embedded software.

The password for the file is keystorepwd. The alias of the key pair is dummyca. The
private key password is keypwd. The file is provided for testing purposes.

For IMlet suites on end-user devices, use an RSA key pair backed by a certificate or
certificate chain from a certificate authority. You must import the certificate or
certificate chain into a Java SE platform's keystore with the Java SE platform's
keytool utility.

Signing an IMlet Suite's JAR File C-1

http://download.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html
http://download.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html
http://download.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html

The JadTool utility is packaged in a JAR file named JadTool.jar in this directory
where {OJMEE-Dir} is the base directory of the Oracle Java ME Embedded installation:

{OJMEE-Dir}\toolkit-lib\process\jadtool\code

Using the JadTool Utility

1. Open a Windows command prompt.

2. Change your current directory to the directory that holds your IMlet's JAR and
JAD files.

3. Add the certificate for your key pair to the JAD file using the JadTool utility.

The JadTool utility adds the certificate as the value of an attribute named
MIDlet-Certificate-m-n, where m is the number of the certificate chain (it
defaults to one but you can provide a different number with the -chainnum
switch), and n is an integer that, for new certificates, begins at one and increments
by one each time you add a new certificate to the JAD file.

For example, if {OUTPUT-Dir}/binaries is C:\jme\src\output\binaries,
the following command adds the certificate as the value of the attribute MIDlet-
Certificate-1-1 to the example JAD file:

C:\myIMlets>java -jar %OJMEE_HOME%\toolkit-lib\process
\jadtool\code\JadTool.jar -addcert -alias dummyca -storepass
keystorepwd -keystore C:\jme\src\output\midp\bin
\i386\j2se_test_keystore.bin -inputjad ImaginaryIMlet.jad -
outputjad ImaginaryIMlet.jad

4. (Optional) Verify that the certificate is added to the JAD file by using the JadTool
utility to list the certificate in the JAD file.

C:\myIMlets>java -jar %OJMEE_HOME%\toolkit-lib\process
\jadtool\code\JadTool.jar -showcert -certnum 1 -inputjad
ImaginaryIMlet.jad

Subject: C=US, ST=CA, L=Santa Clara, O=dummy CA, OU=JCT, CN=thehost
Issuer : C=US, ST=CA, L=Santa Clara, O=dummy CA, OU=JCT, CN=thehost
Serial number: 3d3ece8a
Valid from Wed Jul 24 08:58:02 PDT 2002 to Sat Jul 21 08:58:02 PDT 2012
Certificate fingerprints:
 MD5: 87:7f:5e:64:c8:dd:b4:bf:35:39:76:87:99:9b:68:82
 SHA: 9d:c0:88:ce:08:83:cd:e6:fe:13:8b:26:f6:b4:df:e2:da:3c:25:98

5. If you have a key pair backed by a certificate chain, import the intermediate
certificates.

Import the intermediate certificates using the JadTool utility with the -addcert
switch shown in Step 3, taking care to use the correct chain order.

For example:

The XXXX company provides a certificate that vouches for your key pair, the
WidgetCertificates company vouches for the XXXX certificate, and VeriSign
vouches for the WidgetCertificates certificate.

Import the XXXX certificate followed by the WidgetCertificate. The XXXX
certificate is MIDlet-Certificate-1-2 and the WidgetCertificate certificate is
MIDlet-Certificate-1-3.

Using the JadTool Utility

C-2 Developer’s Guide

Note:

You do not import the certificate of the root CA. In this example, the certificate
is from VeriSign. The root certificate is on the device.

6. Sign the JAR file using the JadTool utility.

The JadTool utility signs the JAR file, base64 encodes the signature, and stores it
as the value of the MIDlet-Jar-RSA-SHA1 attribute of the output JAD file.

Note:

The key used to sign the JAR file must be from the same Java SE keystore
entry as key pair specified in Step 3. The JadTool utility does not check that
the JAR file is signed with a keystore entry that has a certificate in the JAD file.

For example:

C:\myIMlets>java -jar %OJMEE_HOME%\toolkit-lib\process
\jadtool\code\JadTool.jar -addjarsig -keystore C:\jme\src
\output\midp\bin\i386\j2se_test_keystore.bin -alias dummyca -
storepass keystorepwd -keypass keypwd -jarfile
ImaginaryIMlet.jar -chainnum 2 -inputjad ImaginaryIMlet.jad -
outputjad ImaginaryIMlet.jad

Optionally, you can sign a JAR file with a stronger signature (JAD attribute
MIDlet-Jar-RSA-SHA256) using the -useSha256 command line switch.

For example, java -jar jadtool.jar -addjarsig -useSha256 -keystore
j2se_test_keystore.bin -alias dummyca -storepass keystorepwd -

keypass keypwd -jarfile ImaginaryIMlet.jar -inputjad

ImaginaryIMlet.jad -outputjad ImaginarySignedSha256IMlet.jad

Handling Expired Certificates
A JAD file can have multiple certificate, but it can hold the signature for only one JAR
file. When a certificate in the JAD file expires, you must add a new certificate and re-
sign the JAR file. When re-signing the JAR file, the JadTool utility overwrites the
current digital signature with the new one.

Options Summary
The jadtool utility supports the following options:

• none

Running the tool without options returns the same information as the -help
option.

• -addcert -alias keyAlias [-keystore keystore] [-storepass password]
[-chainnum chainNumber] [-certnum certNumber] [-encoding
encoding] -inputjad inputJadFile -outputjad outputJadFile

Adds a certificate to a JAD file. To add a certificate, this utility first creates the
certificate from the entry identified by keyAlias in keystore. The keystore, if provided,
must be a Java Cryptography Architecture keystore (a file containing data such as key

Handling Expired Certificates

Signing an IMlet Suite's JAR File C-3

entries in a format that the Java SE platform can use). If keystore is not provided, its
default, {User_Home_Dir}/.keystore, is used. If keystore requires a password to
access its contents, password must be provided.

After creating the certificate and attribute name, this utility concatenates the contents
of inputJadFile with the new certificate and writes it as outputJadFile.

You can use the same file for the inputJadFile and outputJadFile.

The certificate is in the JAD file as the value of an attribute named MIDlet-
Certificate-m-n, where:

• m is chainNumber, or 1 if it is not provided. A JAD file can contain multiple
certificate chain.

• n is certNumber. The value certNumber depends on whether the new certificate
replaces an existing certificate. If the certificate is a replacement, then certNumber
must be the number of the certificate to replace. For example, if the new certificate
would replace the one stored as the value of attribute MIDlet-
Certificate-1-3, then certNumber must be 3. If the certificate is new,
certNumber is ignored.

If inputJadFile uses an encoding other than UTF-8 (ASCII with unicode escapes),
encoding must be specified. This utility uses the same encoding for reading
inputJadFile and writing outputJadFile.

• -addjarsig [-useSha256][-jarfile jarFile] -alias keyAlias [-
keystore keystore] -storepass storePassword -keypass keyPassword [-
encoding encoding] [-chainnum chainNumber] -inputjad inputJadFile -
outputjad outputJadFile

Creates a digital signature for jarFile. If jarFile is not specified, the value of the
MIDlet-Jar-URL attribute from inputJadFile is used. The attribute's value must be
a valid HTTP URL.

This utility creates a digital signature for the JAR file using the private key
identified by keyAlias in keystore. If keystore is not provided, its default is
{User_Home_Dir}/.keystore. This utility gets the key from keystore using
storePassword and keyPassword, and creates the signature with it using the EMSA-
PKCS1-v1_5 encoding method of PKCS #1, version 2.2. See RFC 2437 at http://
www.ietf.org/rfc/rfc2437.txt.

After creating the signature, this utility concatenates the contents of inputJadFile
with the signature, and writes it as outputJadFile. The signature is base64 encoded,
and is in the output JAD file as the value of the MIDlet-Jar-RSA-SHA1-m
attribute where m is chainNumber, or 1 if it is not provided. This number
corresponds to the value for m in the MIDlet-Certificate-m-n attribute.

If inputJadFile uses an encoding other than UTF-8 (ASCII with unicode escapes),
encoding must be specified. This utility uses the same encoding for reading
inputJadFile and writing outputJadFile.

• -help

Prints a usage summary.

• -showcert [([-certnum certNumber] [-chainnum chainNumber]) | -
all] [-encoding encoding] -inputjad inputJadFile

Options Summary

C-4 Developer’s Guide

http://www.ietf.org/rfc/rfc2437.txt
http://www.ietf.org/rfc/rfc2437.txt

Prints information about either all certificates, or the certificate that corresponds to
the given certNumber and chainNumber in the inputJadFile. The option -all cannot
be combined with the -certnum and -chainnum options.

The chainNumber of a certificate is the m in the JAD file's MIDlet-Certificate-
m-n attribute, while the certNumber is the n. For example, to show the certificate
that is the value of attribute MIDlet-Certificate-2-3, the chainNumber must
be 2 and certNumber must be 3. If certNumber or chainNumber are not provided (and
the -all option is not used), the utility uses a 1.

The information printed includes the certificate's subject, issuer, serial number,
dates between which it is valid, and fingerprints (md5 and SHA). The attributes in
the subject and issuer names are shown in reverse order from what is in the
certificate (a side effect of using the Java SE platform certificate API). As a result,
the names might not match what is returned from other tools that display a
certificate's subject and issuer names.

If inputJadFile uses an encoding other than UTF-8 (ASCII with unicode escapes),
encoding must be specified. The tool uses the same encoding for reading inputJadFile
and writing outputJadFile.

Options Summary

Signing an IMlet Suite's JAR File C-5

Options Summary

C-6 Developer’s Guide

D
Managing Keys and Certificates

The Oracle Java ME Embedded platform uses public keys from a Certificate Authority
(CA) to validate Web sites and signed IMlet suites. The Oracle Java ME Embedded
implementation also uses private keys from certificates to establish secure connections
with client authentication. When the platform uses a secure protocol to access a Web
site, the site provides a certificate which is typically signed by a CA. In the same
manner, signed IMlet suites also contain a certificate that is signed by a CA. The
Oracle Java ME Embedded platform checks the validity of a certificate by using the
CA's public key. By signing a certificate, a CA certifies the identify of the owner of the
Web site or IMlet suite.

You can manage the CA certificates, public keys, and private keys on the embedded
board by using the MEKeyTool utility. The MEKeyTool utility is provided with the
Java ME SDK distribution, and is similar to the keytool utility provided with the
Java SE platform, except that MEKeyTool will also operate across a network on the
keystores of an embedded device that is currently recognized by the Oracle Java ME
Embedded Device Manager.

This chapter describes how to use MEKeyTool to manage keystores that are used by
the Oracle Java ME Embedded Emulator or recognized by the Oracle Java ME SDK
Device Manager.

Running MEKeyTool
MEKeyTool is an executable that can be found in the following location:

{ME-SDK_Home-Dir}\bin\MEKeyTool.exe

Where ME-SDK-Home-Dir is the base directory of the Oracle Java ME Embedded
installation.

To connect to a keystore on an embedded board instead of the emulator, add the -
Xdevice option to reference a device currently recognized by the Oracle Java ME
Embedded Device Manager:

MEKeyTool.exe -Xdevice:EmbeddedExternalDevice1

Warning:

Each embedded board may only accept a limited subset of commands,
depending on the functionality offered. To list the functionality supported by
the device EmbeddedExternalDevice1, for example, you can use the
emulator's Xquery option:

emulator.exe -Xquery -Xdevice:EmbeddedExternalDevice1

Managing Keys and Certificates D-1

Using the MEKeyTool Utility
1. Open a command prompt or terminal window.

2. Change your current directory to the location of the EXE file shown above, or add
the directory to your current %PATH%.

3. Run MEKeyTool with the options needed.

For example, use the following command to display help:

MEKeyTool.exe -help

ME Keystores
The MEKeyTool utility keeps the CA certificates, public keys, and private keys in an
ME keystore. Depending on the device, the keystore is at the following locations, where
base-dir is the base directory of the Oracle Java ME Embedded or Oracle Java ME SDK
installation.

Table D-1 Location of Keystores

Device Location

Emulator {base_dir}/runtimes/meep/appdb/certs

Embedded Boards [base_dir}/appdb/certs (if file system is accessible)

This keystore directory contains an index file named _main.ks and a set of certificate
files. The platform includes the key of one CA.

Warning:

Oracle does not recommend modifying the default keystore, but instead
modifying a copy, either one that is user-generated or in the working directory
for the appropriate device.

Working Directory for the Emulator
When the Oracle Java ME Embedded emulator is first started, it creates a working
directory in {User_Home_Dir}/javame_sdk/{Version}/work/{device}/appdb/certs.
(Note that this is only the case for emulated devices, such as EmbeddedDevice1, not
devices that map to actual embedded boards such as EmbeddedExternalDevice1.)
Next, it copies all certificates and several other important files there. Be aware that
deleting the working directory removes all device settings and, of course, any
additions to the local keystore.

Note:

The MEKeytool utility enables you to import keys from Java SE keystores.
However, you cannot use the MEKeytool utility directly on a Java SE
keystore. For example, if you try to use the MEKeytool utility to view public
keys in a Java SE keystore, the utility displays an error message that the
keystore is corrupted. An ME keystore has a different format Java SE platform

Using the MEKeyTool Utility

D-2 Developer’s Guide

keystores, which have a format in accordance with the Java Cryptography
Architecture specification.

Creating and Managing Multiple ME Keystores
In addition to managing the public keys in the ME keystore, you can use the
MEKeytool utility to manage additional ME keystores, both with the emulator and
some embedded boards that contain an accessible filesystem. For example, during
testing you might want to have multiple keystores to run against. One keystore could
contain all the necessary testing keys, a second keystore could contain a subset of the
testing keys, and a third keystore could contain an expired key.

Creating Alternate ME Keystores

The MEKeytool utility does not create a new ME keystore directory. The developer
must create an empty keystore first, consisting of a directory and an empty _main.ks
file, which can be copied from the keystore provided with the distribution bundle. See
Importing a Key for instructions on how to import a key.

Managing Alternate ME Keystores

To manage a keystore other than the default, use the -import -MEkeystore option:

MEKeyTool.exe -import -MEkeystore keystoreName ...

For example, if you created an ME keystore, {User_Home_Dir}\myKeys
\set2_test_keys.ks, that contains the keys that are needed to run a particular set
of tests, use the MEKeyTool command to manage that keystore:

MEKeyTool.exe -import -MEkeystore {User_Home_Dir}/myKeys/
set2_test_keys.ks ...

For all MEKeyTool commands, you receive an error message if the file that you
provide as an argument to -MEkeystore does not exist.

Importing a Key
You can add a key to an ME keystore by importing it from the Java Cryptography
Architecture keystore that comes with the Java SE platform or from a keystore that
you create. For more information on the keystore that comes with the Java SE
platform, see http://download.oracle.com/javase/8/docs/technotes/
tools/windows/keytool.html.

The file name for the Java SE keystore is .keystore and the default location is in
your home directory. This file is created if you use the Java SE platform's keytool
utility to create keys and you do not specify a different location. The MEKeyTool
utility references this keystore unless you use the -keystore argument to specify a
different keystore.

Note:

If you use a Java SE keystore other than the default, the new keystore might
require a password.

The -import option imports a key. For example, to add a key with an alias dummyca
from the Java SE keystore j2se_test_keystore.bin that has a password,

Importing a Key

Managing Keys and Certificates D-3

http://download.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html
http://download.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html

keystorepwd, to the ME keystore at {User_Home_Dir}/myKeys/
set2_test_keys.ks:

C:\>MEKeyTool.exe -import -alias dummyca -keystore j2se_test_keystore.bin -
storepass keystorepwd -MEkeystore myKeys/set2_test_keys.ks

If it is necessary to import a certificate with a private key from a file in PKCS12 format
(for example, cert_with_key.p12) with the keystore password storepwd and the
key password keypwd, use the command:

C:\>MEKeyTool.exe -import -keystore cert_with_key.p12 -storepass storepwd -
keypass keypwd -MEkeystore myKeys\set2_test_keys.ks

Listing Available Keys
An ME keystore organizes the keys that it contains by giving each one a number. For
each key, the keystore also holds the name of the entity to whom the public key
belongs, the time over which the key is valid, and the domain associated with the key.
The MEKeyTool -list command displays information for each key in a particular
keystore.

The following example lists the contents of the ME keystore {User_Home_Dir}/
myKeys/set1_test_keys.ks:

C:\>MEKeyTool.exe -list -MEkeystore myKeys/set1_test_keys.ks
Key 1
 Owner: C=US;O=VeriSign, Inc.;OU=Class 3 Public Primary Certification Authority
 Valid from Mon Jan 29 03:00:00 MSK 1996 to Wed Aug 02 03:59:59 MSD 2028
 Security Domain: identified_third_party
 Enabled: true
Key 2
 Owner: O=Oracle;C=myserver
 Valid from Sat Aug 03 00:43:51 PDT 2002 to Tue Jul 31 00:43:51 PDT 2012
 Security Domain: operator
 Enabled: true

The following example lists of the contents of the ME keystore on a Raspberry Pi
device currently listed as EmbeddedExternalDevice1. Again, note that the device
must already be registered with the device manager.

C:>MEKeyTool.exe -list -Xdevice:EmbeddedExternalDevice1
[1]
Owner CN=AddTrust External CA Root,OU=AddTrust External TTP Network,O=AddTrust
AB,C=SE valid from Tue May 30 03:48:38 PDT 2000 till Sat May 30 03:48:38 PDT 2020

[2]
Owner CN=GlobalSign Root CA,OU=Root CA,O=GlobalSign nv-sa,C=BE valid from Tue Sep
01 05:00:00 PDT 1998 till Fri Jan 28 04:00:00 PST 2028

[3]
Owner CN=GTE CyberTrust Global Root,OU=GTE CyberTrust Solutions\, Inc.,O=GTE
Corporation,C=US valid from Wed Aug 12 17:29:00 PDT 1998 till Mon Aug 13 16:59:00
PDT 2018

[4]
Owner CN=Entrust.net Secure Server Certification Authority,OU=(c) 1999 Entrust.net
Limited,OU=www.entrust.net/CPS incorp. by ref. (limits liab.),O=Entrust.net,C=US
valid from Tue May 25 09:09:40 PDT 1999 till Sat May 25 09:39:40 PDT 2019

[5]

Listing Available Keys

D-4 Developer’s Guide

Owner OU=Class 3 Public Primary Certification Authority,O=VeriSign\, Inc.,C=US
valid from Sun Jan 28 16:00:00 PST 1996 till Tue Aug 01 16:59:59 PDT 2028

[6]
Owner OU=VeriSign Trust Network,OU=(c) 1998 VeriSign\, Inc. - For authorized use
only,OU=Class 3 Public Primary Certification Authority - G2,O=VeriSign\, Inc.,C=US
valid from Sun May 17 17:00:00 PDT 1998 till Tue Aug 01 16:59:59 PDT 2028

[7]
Owner CN=thehost,OU=Unknown,O=TEST,L=Unknown,ST=Unknown,C=US valid from Wed Nov 16
11:40:27 PST 2005 till Sat Nov 14 11:40:27 PST 2015

[8]
Owner CN=GeoTrust CA for UTI,O=Unified Testing Initiative (UTI),C=US valid from
Thu Jan 22 21:00:00 PST 2004 till Tue Jan 23 20:55:00 PST 2024

[9]
Owner
1.2.840.113549.1.9.1=#16197072656d69756d2d736572766572407468617774652e636f6d,
CN=Thawte Premium Server CA,OU=Certification Services Division,O=Thawte Consulting
cc,L=Cape Town,ST=Western Cape,C=ZA valid from Wed Jul 31 17:00:00 PDT 1996 till
Thu Dec 31 15:59:59 PST 2020

[10]
Owner OU=Equifax Secure Certificate Authority,O=Equifax,C=US valid from Sat Aug 22
09:41:51 PDT 1998 till Wed Aug 22 09:41:51 PDT 2018

Deleting a Key
When keys expire, you must delete them from the keystore and add their
replacements. You can also delete unused keys. For example, if you added the public
key of a test site with a self-signed certificate during testing, you can delete that key
when testing is completed.

The -delete command to the MEKeyTool utility removes a key from an ME
keystore. The -delete command requires one of the following options:

• -owner ownerName

Sets the string that describes the owner of the public key in a given keystore. Use
the -list command to print information about each key in the keystore. The
string in the command must match the one printed when you use the -list
command to the MEKeyTool utility. See Listing Available Keys for more
information.

• -number keyNumber

Sets the number that a given keystore has assigned to each of its keys. The number
is greater than or equal to one. Use the -list command to print the number that
the keystore has assigned to each of its keys. See Listing Available Keys for more
information.

The following examples show two ways to delete a key from the ME keystore
{User_Home_Dir}/myKeys/set1_test_keys.ks (the keystore used in Listing
Available Keys):

• Deleting a key by using its key number-

C:\>MEKeyTool.exe -delete -number 1 -MEkeystore myKeys
\set1_test_keys.ks

Deleting a Key

Managing Keys and Certificates D-5

• Deleting a key by using its owner name-

C:\>MEKeyTool.exe -delete -owner "C=US;O=VeriSign,\
Inc.;OU=Class 3 Public Primary Certification Authority" -
\MEkeystore myKeys\set1_test_keys.ks

Replacing a Key
Some situations require that you replace a key (such as when a key expires). To
replace a key, first delete the old key, then import the new key.

Note:

If you import the new key before deleting the old one, the MEKeyTool utility
displays an error message that the owner of the key has a key in the ME
keystore.

MEKeyTool Summary
The MEKeyTool utility supports the following options:

• no option

Runs the tool without options and returns the same information as the -help
option.

• -help

Prints a usage summary.

• -import [-alias keyAlias] [-keystore JavaSEKeystore] [-keypass
keyPassword] [-storepass storePassword] [-client clientName]

Imports a key identified by security client clientName or keyAlias from
JavaSEKeystore into the device keystore. If JavaSEKeystore is not provided, its
default, {User_Home_Dir}/.keystore, is used (where {User_Home_Dir} is the
user's home directory).

If JavaSEKeystore requires a password, you must provide storePassword. If the -
keypass argument is provided, the private key will be imported to the ME
keystore together with public certificate.

• -list [-client clientName]

Lists the number, owner, and validity period, and domain of the key identified by
security client clientName, or all keys if the option is omitted, in the device keystore.

• -delete [-client clientName] (-owner ownerName | -number keyNumber)

Deletes the key identified by security client clientName, ownerName or keyNumber
from the device keystore.

You can provide either ownerName or keyNumber, but not both. You can find the
valid values for them by running the MEKeyTool utility with the -list command.

• -export [-client clientName] (-number keyNumber) (-out outputFile)

Exports a certificate, specified by security client clientName or keyNumber, from the
device keystore to the output file outputFile. The format of the outputFile is:

Replacing a Key

D-6 Developer’s Guide

– PEM in the case of an extracted public key or certificate

– PKCS#12 in the case of an extracted certificate with a private key. The keystore
password of the PKCS#12 file is the same password that was used in the -
keypass parameter of the import command

• -clients

Presents a list of all the security clients defined in the system that can accept public
keys.

MEKeyTool Summary

Managing Keys and Certificates D-7

MEKeyTool Summary

D-8 Developer’s Guide

E
OEM Extensions

This chapter describes the OEM Extensions, which provide a mechanism to add
extensions to the binary runtime of the Oracle Java ME Embedded software.

Using OEM Extensions
The Oracle Java ME Embedded software enables you to extend the binary runtime by
making your own Java packages available to IMlets as OEM extensions. You specify
the location of the JAR files that contain your packages in a configuration file and
IMlets can use those packages at run time.

To make your packages available to IMlets as OEM Extensions, follow these steps:

1. Write the Java classes in your package.

2. Compile your classes.

3. Preverify your classes.

4. Create a JAR file that contains your classes.

5. Add the JAR file to the configuration file jwc_properties.ini.

a. Edit the file jwc_properties.ini. This file is located in runtimes/
meep/bin/jwc_properties.ini in the Windows distribution and in
java/jwc_properties.ini in the distribution for the reference board.

b. Locate the line that contains the configuration setting extraclasspath.

c. Add the location of your JAR file. Use a semicolon between paths if you have
more than one JAR file, for example:

extraclasspath = C:/myjar1.jar;C:/myjar2.jar

Note:

You must use forward slashes in the paths in extraclasspath.

6. Share the JAR file and the details of your packages with the IMlet programmers
that need to use your classes.

OEM Extensions E-1

Using OEM Extensions

E-2 Developer’s Guide

F
Encryption Algorithms

The Java ME 8 product includes the following supported cipher suites and encryption
algorithms, with specified key lengths.

Supported Algorithms for Windows, Linux, and Raspberry Pi Platforms
TLSv1.0-1.2 are supported with the following configurations.

Note:

The following cipher suites are disabled by default but can be enabled in the
jwc_properties.ini file by modifying the
SSL_FORBIDDEN_CIPHERS_FILTER property:

1) TLS_ECDH_anon_* : these are non-secure anonymous cipher suites. In
order to enable these, replace ":!aNULL" with ":aNULL" in the properties file.

2) *_WITH_NULL_* : these are non-secure unencrypted cipher suites. In
order to enable these, replace ":!eNULL" with ":eNULL" in the properties file.

TLSv1.0 - TLSv1.2
Refer to the list of cipher suites in the priority ordering.

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_256_GCM_SHA384
TLS_RSA_WITH_AES_256_CBC_SHA256
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_PSK_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256

Encryption Algorithms F-1

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_128_GCM_SHA256
TLS_RSA_WITH_AES_128_CBC_SHA256
TLS_RSA_WITH_AES_128_CBC_SHA
SSL_RSA_WITH_IDEA_CBC_SHA
TLS_PSK_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA
TLS_PSK_WITH_3DES_EDE_CBC_SHA
SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

Supported Algorithms for Windows, Linux, and Raspberry Pi Platforms

F-2 Developer’s Guide

Glossary

Access Point
A network-connectivity configuration that is predefined on a device. An access point
can represent different network profiles for the same bearer type, or for different
bearer types that may be available on a device, such as WiFi or bluetooth.

ADC
Analog-to-Digital Converter. A hardware device that converts analog signals (time
and amplitude) into a stream of binary numbers that can be processed by a digital
device.

AMS
Application Management System. The system functionality that completes tasks such
as installing applications, updating applications, and managing applications between
foreground and background.

APDU
Application Protocol Data Unit. A communication mechanism used by SIM Cards and
smart cards to communicate with card reader software or a card reader device.

API
Application Programming Interface. A set of classes used by programmers to write
applications that provide standard methods and interfaces and eliminate the need for
programmers to reinvent commonly used code.

ARM
Advanced RISC Machine. A family of computer processors using reduced instruction
set (RISC) CPU technology, developed by ARM Holdings. ARM is a licensable
instruction set architecture (ISA) and is used in the majority of embedded platforms.

AT commands
A set of commands developed to facilitate modem communications, such as dialing,
hanging up, and changing the parameters of a connection. Also known as the Hayes
command set, AT means attention.

Glossary-1

AXF
ARM Executable Format. An ARM executable image generated by ARM tools.

BIP
Bearer Independent Protocol. Allows an application on a SIM Card to establish a data
channel with a terminal, and through the terminal, to a remote server on the network.

CDMA
Code Division Multiple Access. A mobile telephone network standard used primarily
in the United States and Canada as an alternative to GSM.

CLDC
Connected Limited Device Configuration. A Java ME platform configuration for
devices with limited memory and network connectivity. It uses a low-footprint Java
virtual machine such as the CLDC HotSpot Implementation, and several minimalist
Java platform APIs for application services.

Configuration
Defines the minimum Java runtime environment (for example, the combination of a
Java virtual machine and a core set of Java platform APIs) for a family of Java ME
platform devices.

DAC
Digital-to-Analog Converter. A hardware device that converts a stream of binary
numbers into an analog signal (time and amplitude), such as audio playback.

ETSI
European Telecommunications Standards Institute. An independent, non-profit group
responsible for the standardization of information and communication technologies
within Europe. Although based in Europe, it carries worldwide influence in the
telecommunications industry.

GCF
Generic Connection Framework. A part of CLDC, it is a Java ME API consisting of a
hierarchy of interfaces and classes to create connections (such as HTTP, datagram, or
streams) and perform I/O.

GPIO
General Purpose Input/Output. Unassigned pins on an embedded platform that can
be assigned or configured as needed by a developer.

AXF

Glossary-2

GPIO Port
A group of GPIO pins (typically 8 pins) arranged in a group and treated as a single
port.

GSM
Global System for Mobile Communications. A 3G mobile telephone network standard
used widely in Europe, Asia, and other parts of the world.

HTTP
HyperText Transfer Protocol. The most commonly used Internet protocol, based on
TCP/IP that is used to fetch documents and other hypertext objects from remote hosts.

HTTPS
Secure HyperText Transfer Protocol. A protocol for transferring encrypted hypertext
data using Secure Socket Layer (SSL) technology.

ICCID
Integrated Circuit Card Identification. The unique serial number assigned to an
individual SIM Card.

IMP-NG
Information Module Profile Next Generation. A profile for embedded "headless"
devices, the IMP-NG specification (JSR 228) is a subset of MIDP 2.0 that leverages
many of the APIs of MIDP 2.0, including the latest security and networking+, but does
not include graphics and user interface APIs.

IMEI
International Mobile Equipment Identifier. A number unique to every mobile phone. It
is used by a GSM or UMTS network to identify valid devices and can be used to stop a
stolen or blocked phone from accessing the network. It is usually printed inside the
battery compartment of the phone.

IMlet
An application written for IMP-NG. An IMlet does not differ from MIDP 2.0 MIDlet,
except by the fact that an IMlet can not refer to MIDP classes that are not part of IMP-
NG. An IMlet can only use the APIs defined by the IMP-NG and CLDC specifications.

IMlet Suite
A way of packaging one or more IMlets for easy distribution and use. Similar to a
MIDlet suite, but for smaller applications running in an embedded environment.

IMlet Suite

Glossary-3

IMSI
International Mobile Subscriber Identity. A unique number associated with all GSM
and UMTS network mobile phone users. It is stored on the SIM Card inside a phone
and is used to identify itself to the network.

I2C
Inter-Integrated Circuit. A multi-master, serial computer bus used to attach low-speed
peripherals to an embedded platform

ISA
Instruction Set Architecture. The part of a computer's architecture related to
programming, including data type, addressing modes, interrupt and exception
handling, I/O, and memory architecture, and native commands. Reduced instruction
set computing (RISC) is one kind of instruction set architecture.

JAD file
Java Application Descriptor file. A file provided in a MIDlet suite that contains
attributes used by application management software (AMS) to manage the MIDlet's
life cycle, and other application-specific attributes used by the MIDlet suite itself.

JAR file
Java Archive file. A platform-independent file format that aggregates many files into
one. Multiple applications written in the Java programming language and their
required components (class files, images, sounds, and other resource files) can be
bundled in a JAR file and provided as part of a MIDlet suite.

JCP
Java Community Process. The global standards body guiding the development of the
Java programming language.

JDTS
Java Device Test Suite. A set of Java programming language tests developed
specifically for the wireless marketplace, providing targeted, standardized testing for
CLDC and MIDP on small and handheld devices.

Java ME platform
Java Platform, Micro Edition. A group of specifications and technologies that pertain
to running the Java platform on small devices, such as cell phones, pagers, set-top
boxes, and embedded devices. More specifically, the Java ME platform consists of a
configuration (such as CLDC) and a profile (such as MIDP or IMP-NG) tailored to a
specific class of device.

IMSI

Glossary-4

JSR
Java Specification Request. A proposal for developing new Java platform technology,
which is reviewed, developed, and finalized into a formal specification by the JCP
program.

Java Virtual Machine
A software “execution engine" that safely and compatibly executes the byte codes in
Java class files on a microprocessor.

KVM
A Java virtual machine designed to run in a small, limited memory device. The CLDC
configuration was initially designed to run in a KVM.

LCDUI
Liquid Crystal Display User Interface. A user interface toolkit for interacting with
Liquid Crystal Display (LCD) screens in small devices. More generally, a shorthand
way of referring to the MIDP user interface APIs.

MIDlet
An application written for MIDP.

MIDlet suite
A way of packaging one or more MIDlets for easy distribution and use. Each MIDlet
suite contains a Java application descriptor file (.jad), which lists the class names and
files names for each MIDlet, and a Java Archive file (.jar), which contains the class
files and resource files for each MIDlet.

MIDP
Mobile Information Device Profile. A specification for a Java ME platform profile,
running on top of a CLDC configuration that provides APIs for application life cycle,
user interface, networking, and persistent storage in small devices.

MSISDN
Mobile Station Integrated Services Digital Network. A number uniquely identifying a
subscription in a GSM or UMTS mobile network. It is the telephone number to the SIM
Card in a mobile phone and used for voice, FAX, SMS, and data services.

MVM
Multiple Virtual Machines. A software mode that can run more than one MIDlet or
IMlet at a time.

MVM

Glossary-5

Obfuscation
A technique used to complicate code by making it harder to understand when it is
decompiled. Obfuscation makes it harder to reverse-engineer applications and
therefore, steal them.

Optional Package
A set of Java ME platform APIs that provides additional functionality by extending the
runtime capabilities of an existing configuration and profile.

Preemption
Taking a resource, such as the foreground, from another application.

Preverification
Due to limited memory and processing power on small devices, the process of
verifying Java technology classes is split into two parts. The first part is preverification
which is done off-device using the preverify tool. The second part, which is
verification, occurs on the device at runtime.

Profile
A set of APIs added to a configuration to support specific uses of an embedded or
mobile device. Along with its underlying configuration, a profile defines a complete
and self-contained application environment.

Provisioning
A mechanism for providing services, data, or both to an embedded or mobile device
over a network.

Pulse Counter
A hardware or software component that counts electronic pulses, or events, on a
digital input line, for example, a GPIO pin.

Push Registry
The list of inbound connections, across which entities can push data. Each item in the
list contains the URL (protocol, host, and port) for the connection, the entity permitted
to push data through the connection, and the application that receives the connection.

RISC
Reduced Instruction Set Computing. A CPU design based on simplified instruction
sets that provide higher performance and faster execution of individual instructions.
The ARM architecture is based on RISC design principles.

Obfuscation

Glossary-6

RL-ARM
Real-Time Library. A group of tightly coupled libraries designed to solve the real-time
and communication challenges of embedded systems based on ARM processor-based
microcontroller devices.

RMI
Remote Method Invocation. A feature of Java SE technology that enables Java
technology objects running in one virtual machine to seamlessly invoke objects
running in another virtual machine.

RMS
Record Management System. A simple record-oriented database that enables an IMlet
or MIDlet to persistently store information and retrieve it later. MIDlets can also use
the RMS to share data.

RTOS
Real-Time Operating System. An operating system designed to serve real-time
application requests. It uses multi-tasking, an advanced scheduling algorithm, and
minimal latency to prioritize and process data.

RTSP
Real Time Streaming Protocol. A network control protocol designed to control
streaming media servers and media sessions.

SCWS
Smart Card Web Server. A web server embedded in a smart card (such as a SIM Card)
that allows HTTP transactions with the card.

SD card
Secure Digital cards. A non-volatile memory card format for use in portable devices,
such as mobile phones and digital cameras, and embedded systems. SD cards come in
three different sizes, with several storage capacities and speeds.

SIM
Subscriber Identity Module. An integrated circuit embedded into a removable SIM
card that securely stores the International Mobile Subscriber Identity (IMSI) and the
related key used to identify and authenticate subscribers on mobile and embedded
devices.

Slave Mode
Describes the relationship between a master and one or more devices in a Serial
Peripheral Interface (SPI) bus arrangement. Data transmission in an SPI bus is initiated
by the master device and received by one or more slave devices, which cannot initiate
data transmissions on their own.

Slave Mode

Glossary-7

Smart Card
A card that stores and processes information through the electronic circuits embedded
in silicon in the substrate of its body. Smart cards carry both processing power and
information. A SIM Card is a special kind of smart card for use in a mobile device.

SMS
Short Message Service. A protocol allowing transmission of short text-based messages
over a wireless network. SMS messaging is the most widely-used data application in
the world.

SMSC
Short Message Service Center. The SMSC routes messages and regulates SMS traffic.
When an SMS message is sent, it goes to an SMS center first, then gets forwarded to
the destination. If the destination is unavailable (for example, the recipient embedded
board is powered down), the message is stored in the SMSC until the recipient
becomes available.

SOAP
Simple Object Access Protocol. An XML-based protocol that enables objects of any
type to communicate in a distributed environment. It is most commonly used to
develop web services.

SPI
Serial Peripheral Interface. A synchronous bus commonly used in embedded systems
that allows full-duplex communication between a master device and one or more
slave devices.

SSL
Secure Sockets Layer. A protocol for transmitting data over the Internet using
encryption and authentication, including the use of digital certificates and both public
and private keys.

SVM
Single Virtual Machine. A software mode that can run only one MIDlet or IMlet at a
time.

Task
At the platform level, each separate application that runs within a single Java virtual
machine is called a task. The API used to instantiate each task is a stripped-down
version of the Isolate API defined in JSR 121.

TCP/IP
Transmission Control Protocol/Internet Protocol. A fundamental Internet protocol
that provides for reliable delivery of streams of data from one host to another.

Smart Card

Glossary-8

Terminal Profile
Device characteristics of a terminal (mobile or embedded device) passed to the SIM
Card along with the IMEI at SIM Card initialization. The terminal profile tells the SIM
Card what values are supported by the device.

UART
Universal Asynchronous Receiver/Transmitter. A piece of computer hardware that
translates data between serial and parallel formats. It is used to facilitate
communication between different kinds of peripheral devices, input/output streams,
and embedded systems, to ensure universal communication between devices.

UICC
Universal Integrated Circuit Card. The smart card used in mobile terminals in GSM
and UMTS networks. The UICC ensures the integrity and security of personal data on
the card.

UMTS
Universal Mobile Telecommunications System. A third-generation (3G) mobile
communications technology. It utilizes the radio spectrum in a fundamentally
different way than GSM.

URI
Uniform Resource Identifier. A compact string of characters used to identify or name
an abstract or physical resource. A URI can be further classified as a uniform resource
locator (URL), a uniform resource name (URN), or both.

USAT
Universal SIM Application Toolkit. A software development kit intended for 3G
networks. It enables USIM to initiate actions that can be used for various value-added
services, such as those required for banking and other privacy related applications.

USB
Universal Serial Bus. An industry standard that defines the cables, connectors, and
protocols used in a bus for connection, communication, and power supply between
computers and electronic devices, such as embedded platforms and mobile phones.

USIM
Universal Subscriber Identity Module. An updated version of a SIM designed for use
over 3G networks. USIM is able to process small applications securely using better
cryptographic authentication and stronger keys. Larger memory on USIM enables the
addition of thousands of contact details including subscriber information, contact
details, and other custom settings.

USIM

Glossary-9

WAE
Wireless Application Environment. An application framework for small devices,
which leverages other technologies, such as Wireless Application Protocol (WAP).

WAP
Wireless Application Protocol. A protocol for transmitting data between a server and a
client (such as a cell phone or embedded device) over a wireless network. WAP in the
wireless world is analogous to HTTP in the World Wide Web.

Watchdog Timer
A dedicated piece of hardware or software that "watches" an embedded system for a
fault condition by continually polling for a response. If the system goes offline and no
response is received, the watchdog timer initiates a reboot procedure or takes other
steps to return the system to a running state.

WCDMA
Wideband Code Division Multiple Access. A detailed protocol that defines how a
mobile phone communicates with the tower, how its signals are modulated, how
datagrams are structured, and how system interfaces are specified.

WMA
Wireless Messaging API. A set of classes for sending and receiving Short Message
Service (SMS) messages.

XML Schema
A set of rules to which an XML document must conform to be considered valid.

WAE

Glossary-10

	Contents
	Preface
	Audience
	Related Documents
	Operating System Commands
	Shell Prompts
	Conventions

	1 Developer Migration Guide
	Overview
	Modified Permission Model
	Device I/O Namespace
	Generic Connection Framework Changes

	2 Java Embedded VM Proxy and Console
	Design
	Starting the VM Proxy on the Desktop
	Server Mode Connection
	Client Mode Connection

	VM Proxy Options
	Using the Command Line Interface
	ams-install
	ams-list
	ams-info
	ams-update
	ams-remove
	ams-run
	ams-stop
	blacklist
	properties-list
	get-property
	set-property
	save-properties
	net-info
	net-set
	net-reconnect
	device-list
	device-change
	shutdown
	cd
	delete
	get
	ls
	mkdir
	rmdir
	pwd
	put
	exit
	ks-delete
	ks-export
	ks-import
	ks-list
	ks-clients
	dumpheap

	3 Security
	Overview of Oracle Java ME Embedded Permissions
	Accessing Peripherals
	Signing the Application with API Permissions
	Method #1: Signing Application Using the NetBeans IDE
	Method #2: Signing Application Using a Command Line
	Method #3: Using NullAuthenticationProvider

	CLDC Permissions
	FilePermission
	Resource Name
	Actions

	RuntimePermission
	Resource Name

	LoggingPermission
	PropertyPermission
	Resource Name
	Actions

	Keystore Permissions
	KeyStorePermission
	Resource Name

	Device I/O Permissions
	ADCPermission
	Resource Name
	Actions

	ATPermission
	Resource Name
	Actions

	CounterPermission
	Resource Name
	Actions

	DACPermission
	Resource Name
	Actions

	DeviceMgmtPermission
	Resource Name
	Actions

	GenericPermission
	Resource Name
	Actions

	GPIOPinPermission
	Resource Name
	Actions

	GPIOPortPermission
	Resource Name
	Actions

	I2CPermission
	Resource Name
	Actions

	MMIOPermission
	Resource Name
	Actions

	PWMPermission
	Resource Name
	Actions

	SPIPermission
	Resource Name
	Actions

	UARTPermission
	Resource Name
	Actions

	WatchdogTimerPermission
	Resource Name
	Actions

	Smart Cards
	APDUPermission
	Resource Name

	Cellular
	CellularPermission
	Resource Name

	Generic Events
	EventPermission
	Resource Name
	Actions

	COMM Protocol
	CommProtocolPermission
	Resource Name

	Connector
	CBS
	Resource Name
	Actions

	File Read
	Resource Name
	Actions

	File Write
	Resource Name
	Actions

	RTSP
	Resource Name
	Actions

	SMS
	Resource Name
	Actions

	Datagram Protocol
	DatagramProtocolPermission
	DTLSProtocolPermission
	DTLSServerPermission

	File Protocol
	FileProtocolPermission
	Resource Name
	Actions

	Hypertext Transfer Protocols
	HTTPProtocolPermission
	HTTPSProtocolPermission

	IMC
	IMCProtocolPermission
	Resource Name

	Multicast Protocols
	MulticastProtocolPermission

	Push Protocols
	PushRegistryPermission
	Actions

	Socket Protocols
	SocketProtocolPermission
	SSLProtocolPermission

	Location
	LocationPermission

	Media
	RecordControl
	VideoControl

	Auto-Start
	AutoStartPermission
	Resource Names

	Power
	PowerStatePermission
	Resource Names

	Software Management
	SWMPermission
	Resource Names
	Actions

	Runtime Update
	RuntimeUpdatePermission
	Resource Names

	4 Software Management
	SuiteInstallListener Interface
	SuiteListener Interface
	SuiteManager Interface
	TaskListener Interface
	TaskManager Interface
	ManagerFactory Class
	The Suite Class
	SuiteInstaller Class
	SuiteManagementTracker Class
	SWMPermission Class
	Task Class
	InstallerErrorCode

	5 General Purpose Input/Output
	Setting a GPIO Output Pin
	Working with a Breadboard
	Blinking an LED
	Testing Output and Input Pins

	6 Working with the I2C Bus
	Experimenting with a 7-Segment Display
	Experimenting with a 16x2 LCD Display

	7 The Serial Peripheral Interface (SPI) Bus
	Using the SPI Bus to Communicate with an ADC

	8 Working with Java ME Encryption
	Connecting to an SSL Server
	Authenticating an SSL Server
	Accessing the Keystore
	Configuring the Board as a Secure Server

	A Java ME Optimization Techniques
	Design
	Memory
	Threads
	System Callbacks

	Input/Output
	General Tips
	Application Size

	B Java ME Embedded Properties
	Modifying the Properties File
	Using the Command-Line Interface

	C Signing an IMlet Suite's JAR File
	Instructions for Using JadTool
	Using the JadTool Utility
	Handling Expired Certificates
	Options Summary

	D Managing Keys and Certificates
	Running MEKeyTool
	Using the MEKeyTool Utility
	ME Keystores
	Working Directory for the Emulator
	Creating and Managing Multiple ME Keystores
	Creating Alternate ME Keystores
	Managing Alternate ME Keystores

	Importing a Key
	Listing Available Keys
	Deleting a Key
	Replacing a Key
	MEKeyTool Summary

	E OEM Extensions
	Using OEM Extensions

	F Encryption Algorithms
	Supported Algorithms for Windows, Linux, and Raspberry Pi Platforms
	TLSv1.0 - TLSv1.2

	Glossary
	Access Point
	ADC
	AMS
	APDU
	API
	ARM
	AT commands
	AXF
	BIP
	CDMA
	CLDC
	Configuration
	DAC
	ETSI
	GCF
	GPIO
	GPIO Port
	GSM
	HTTP
	HTTPS
	ICCID
	IMP-NG
	IMEI
	IMlet
	IMlet Suite
	IMSI
	I2C
	ISA
	JAD file
	JAR file
	JCP
	JDTS
	Java ME platform
	JSR
	Java Virtual Machine
	KVM
	LCDUI
	MIDlet
	MIDlet suite
	MIDP
	MSISDN
	MVM
	Obfuscation
	Optional Package
	Preemption
	Preverification
	Profile
	Provisioning
	Pulse Counter
	Push Registry
	RISC
	RL-ARM
	RMI
	RMS
	RTOS
	RTSP
	SCWS
	SD card
	SIM
	Slave Mode
	Smart Card
	SMS
	SMSC
	SOAP
	SPI
	SSL
	SVM
	Task
	TCP/IP
	Terminal Profile
	UART
	UICC
	UMTS
	URI
	USAT
	USB
	USIM
	WAE
	WAP
	Watchdog Timer
	WCDMA
	WMA
	XML Schema

