
Oracle Linux
Working With UEFI Secure Boot

F40522-15
January 2024

Oracle Linux Working With UEFI Secure Boot,

F40522-15

Copyright © 2022, 2024, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility vi

Diversity and Inclusion vi

1 About UEFI Secure Boot

How the Secure Boot Process Works 1-1

Secure Boot Limitations 1-2

About Secure Boot Keys 1-3

Description of the Secure Boot Key Implementation 1-6

Description of the Shim First Stage Boot Loader 1-7

How Secure Boot Is Enforced Within Oracle Linux 1-7

Enabling and Disabling Secure Boot 1-8

About the MOK Database 1-9

2 Tools and Applications for Administering Secure Boot

About the pesign Tool 2-1

About the efibootmgr Application 2-1

About the mokutil Utility 2-2

Disabling Secure Boot 2-2

Validating SBAT Status 2-3

About the dbxtool Command 2-4

3 Signing Kernel Images and Kernel Modules for Use With Secure Boot

Requirements for Signing Kernel Images and Kernel Modules 3-2

Installing Required Packages 3-2

Generating a Signing Certificate 3-3

Signing the Kernel for Secure Boot 3-4

iii

Configuring an NSS Database 3-4

Signing the Kernel Image 3-5

Updating the MOK Database 3-5

Signing the Kernel Module for Secure Boot 3-6

Signing the Kernel Module 3-6

Updating the MOK Database with the Kernel Module Certificate 3-8

Setting Kernel Module Certificate Trust for UEK R6 3-8

Signing the Kernel Module 3-9

Inserting the Module Certificate in the Kernel Image 3-10

Signing the Kernel Image 3-11

Updating the MOK Database 3-11

Validating That a Key Is Trusted 3-12

UEK R7 Releases 3-12

UEK R6U3 and Later UEK R6 Updates (Includes RHCK on Oracle Linux 8 and Oracle
Linux 9) 3-13

UEK R6 releases prior to UEK R6U3 3-14

UEK R5 3-14

UEK R4 and RHCK on Oracle Linux 7 3-15

iv

Preface

Oracle Linux: Working With UEFI Secure Boot provides background and other related
information about the UEFI Secure Boot feature and its implementation in Oracle Linux.

Note:

UEFI Secure Boot is also more commonly referred to as "Secure Boot" in this
document.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share
Alike 4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or
an adaptation of it, you must provide attribution to Oracle and retain the original copyright
notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user
interface elements associated with an action,
or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

For information about the accessibility of the Oracle Help Center, see the Oracle Accessibility
Conformance Report at https://www.oracle.com/corporate/accessibility/templates/
t2-11535.html.

v

https://docs.oracle.com/en/operating-systems/oracle-linux/secure-boot/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html
https://www.oracle.com/corporate/accessibility/templates/t2-11535.html

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit https://www.oracle.com/corporate/
accessibility/learning-support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

vi

https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

1
About UEFI Secure Boot

For an operating system to be secure, every layer below the OS layer must also be secure.
Running software on a CPU is unsafe if the software can not be trusted to run code correctly.
Likewise, if the boot loader is tampered with or the firmware itself is compromised, the kernel
that's booted can not be trusted.

UEFI Secure Boot is a platform feature within the UEFI specification that ensures that the
system boots by using only the software that's trusted by the hardware manufacturer. Secure
Boot provides a verification mechanism where the firmware validates a boot loader before
running the loader. This mechanism checks that the code that's run by a system's firmware is
trusted. When the system starts, the firmware checks the signature for each piece of boot
software, including the firmware drivers and the OS itself. If the signatures are valid, the
system boots, and the firmware relinquishes control to the OS.

Secure Boot uses cryptographic checksums and signatures to prevent malicious code from
being loaded and run early in the boot process before the OS has loaded. Every program
that's loaded by the firmware includes a signature and a checksum and undergoes the same
validation by the firmware. Secure Boot stops all untrusted programs from running to prevent
any unexpected or unauthorized code from operating in the UEFI-based environment.

Most UEFI compliant systems ship with Secure Boot enabled. These systems are also
loaded with Microsoft keys. Thus, binaries that are signed by Microsoft are also trusted by the
firmware. By default, these systems don't run any unsigned code. However, you can change
the firmware configuration to either enroll more signing keys or to disable Secure Boot.

Secure Boot doesn't prevent users from controlling their own systems. Users can enroll extra
keys into the system to enable the signing of other programs. Further, on some systems with
Secure Boot enabled by default, users can also remove platform provided keys to force
firmware to trust user signed binaries only.

How the Secure Boot Process Works
Each step in the Secure Boot process checks a cryptographic signature on the executable of
the next step. The BIOS checks a signature on the boot loader and then the boot loader
checks the signatures on all the kernel objects that the boot loader loads.

Objects in the chain are typically signed by the software manufacturer by using private keys
that match the public keys already in the BIOS. Altered modules or objects in the boot chain
would have mismatching signatures, which prevents the device from booting the image.
Otherwise, the platform boots successfully.

The following are required to meet the goals of Secure Boot:

• The Linux boot loader must provide authentication of the Linux kernel.

• The Linux distribution must provide further security enforcement in the kernels that it
distributes.

The Shim first stage boot loader program provides a way to meet both of these goals. For
more explanation, see Description of the Shim First Stage Boot Loader.

1-1

The following figure illustrates the Secure Boot process:

Figure 1-1 Secure Boot Process

Phase 0: The UEFI checks whether Secure Boot is enabled and loads the keys that it
stores for this purpose from the UEFI Secure Boot key database.

Phase 1: The Shim software loads. UEFI first validates the signature that was used to
sign the Shim. If the signature is valid, the Shim loading can continue. Otherwise, the
Shim is unable to load. Thereafter, the loaded Shim is responsible for validating all
code. The Shim maintains its own MOK database, where other keys are stored for
validation purposes.

Phase 2: The Shim software validates the key that's used to sign the GRUB2
secondary bootloader. If validation passes, GRUB2 loads. the Shim can then validate
the keys that are used to sign the kernel images available to GRUB2.

Phase 3: A valid kernel loads. The kernel has read access to the keys in the UEFI
Secure Boot key database and the MOK database. The kernel also has its own set of
trusted keys that are built into the kernel image itself.

Phase 4: The kernel validates the keys that are used to sign all other modules that
need to be loaded, including signed kernel images on kexec operations. Depending
on the kernel implementation, the kernel would trust the keys in the UEFI Secure Boot
database or the MOK database. Or, it would only trust the keys that are built into the
kernel image itself. Note that for kexec signed kernel images signature validation, the
following keys can be used: UEFI, DB/MOK, DB keys, and kernel builtin keys.

Secure Boot Limitations
Secure Boot can implement limitations on the system and its operations. The feature is
purposely designed to restrict the applications that can run before the OS is booted
because after the system is booted, the OS has no way of identifying any programs
that were booted earlier or even whether the system was booted securely. For
example, if a boot kit is injected into the system before the system boot, Secure Boot
could be rendered useless. Or, if an attacker disables Secure Boot and installs
malware that could be interpreted by the OS as platform security, the system is
compromised..

Secure Boot can also have an impact on the use of some features and user actions,
including the activation of the Kernel Lockdown feature. This feature prevents both
direct and indirect access to a running kernel image to protect the kernel image from

Chapter 1
Secure Boot Limitations

1-2

unauthorized modifications and prevent access to the security and cryptographic data in the
kernel's memory.

When Lockdown mode is activated, some features that you typically use to revise the kernel
might be affected, including the following:

• Loading of kernel modules that aren't signed by a trusted key.

• Use of kexec tools to start an unsigned kernel image.

• Hibernation and resume from hibernation modes.

• User space access to physical memory and I/O ports.

• Module parameters that enable you to set memory and I/O port addresses.

• On x86_64 systems only, writing to MSRs through /dev/cpu/*/msr. On Arm
platforms, /dev/cpu/* isn't implemented.

• Use of custom ACPI methods and tables.

• Advanced Configuration and Power Interface (ACPI) and ACPI Platform Error Interface
(APEI) error injection.

If you need to use any of these features, you can disable Secure Boot through the system's
Extensible Firmware Interface (EFI) setup program. For further information, see Enabling and
Disabling Secure Boot.

About Secure Boot Keys
All Secure Boot key types are examples of the Public Key Infrastructure (PKI). Each key
includes two long numbers that are used for encryption and, in the case of Secure Boot, for
data authentication.

Secure Boot uses a private key and a public key.

• The private key is used to sign a file, which is an EFI program. That signature is then
appended to the program.

• The public key must be publicly available. For Secure Boot, this key is embedded in the
firmware itself or is stored in NVRAM. You can use the public key along with the signature
to verify that the file hasn't been revised and also to verify that the file was signed with a
key that matches the public key that's being used.

For more information about PKI, see Oracle Linux: Managing Certificates and Public Key
Infrastructure.

The following figure more illustrates Secure Boot's key signing and verification process.

Chapter 1
About Secure Boot Keys

1-3

https://docs.oracle.com/en/operating-systems/oracle-linux/certmanage/
https://docs.oracle.com/en/operating-systems/oracle-linux/certmanage/

Figure 1-2 Secure Boot Key Signing and Verification Process

The data is signed with a private key. This process generates a hash of the data and
uses the signer's private key to encrypt the hash. When the data needs validation, the
signer's public key is used to decrypt the signature to obtain the hash of the data that
was signed. The hash of the data is generated and compared with the hash that was
decrypted from the signature. A match between the hashes indicates that the data is
unchanged from when the was signed.

Although UEFI specification handles several key types, the X.509 key is commonly
used. X.509 is a standard format for public key certificates and digital documents that
securely associate cryptographic key pairs with identities, individuals, and
organizations. The platform key (PK) must be an X.509 key. The X.509 key is stored in
DER (Distinguished Encoding Rules) format. The DER key can be base64 encoded
and stored as text in a PEM file.

The X.509 certificate includes a public key, a digital signature, and information about
the identity that's associated with the certificate and its issuing certificate authority
(CA). The public key and a private key form a key pair. The private key is kept secure,
while the public key is included in the certificate. With the key pair, the owner of the
private key can digitally sign documents that can be verified by anyone with the
corresponding public key. By using the key pair, third parties can send messages that
are encrypted with the public key that only be decrypted by the owner of the private
key.

Chapter 1
About Secure Boot Keys

1-4

Note:

UEFI specifications use the terms key and public key to mean the public part of the
key pair, or the X.509 certificate. However, in OpenSSL, the term key is the private
key that's used for signing. Thus, all Secure Boot keys must be X.509 keys and not
OpenSSL keys.

More recent kernel images use the PKCS#7 key type. PKCS (Public Key Cryptography
Standards) is a set of standards for the generation and verification of digital signatures and
certificates. PKCS#7 is a method of storing signed or encrypted data, including X.509
certificates. This point can be confusing because the key that's stored within a PKCS#7
structured DER or PEM formatted file is still an X.509 key. However, the type, and therefore
the expected format when processing the file, is different. You must be aware of this
distinction when signing kernel modules because the correct tool must be used when you
perform the signing operation.

Four types of Secure Boot keys are built into the firmware. However, a fifth key can be used
by the Secure Boot Shim, while a sixth key can be built into Oracle Linux kernel image:

Platform Key (PK)
Top level key type that's used in Secure Boot. The PK offers complete control of the secure
boot key hierarchy. The holder of the PK can install a new PK and update the Key Encryption
Key (KEK). UEFI Secure Boot handles a single PK that's typically provided by the
motherboard manufacturer. Thus, only the motherboard manufacturer has complete control
over the system. You can control the Secure Boot process by replacing the PK with a version
that you generate yourself.

Key Exchange Key (KEK)
Signs keys so that the firmware accepts the keys as valid when entering them into the
database. Without the KEK, the firmware can't detect whether a new key is valid or
introduced by Malware. If KEK were absent, Secure Boot would require that the databases
remain static. However, because DBX is a critical point of Secure Boot, a static database
would become unworkable. Hardware often ships with two KEKs: one from Microsoft and
one from the motherboard manufacturer. Thus, either party can issue KEK updates.

UEFI Secure Boot Database Key (DB)
Often associated with Secure Boot because this key is used to sign or verify the binaries that
you run, such as boot loaders, boot managers, shells, drivers, and so. Most hardware is
shipped with two Microsoft keys installed, one for Microsoft use and the other for signing
third-party software, such as Shim. Some hardware is also shipped with keys that are
created by the computer manufacturer or other parties. Note that the database can hold
multiple keys for different purposes. Moreover, the database can contain both public keys
that are matched to private keys, which can be used to sign several binaries, and hashes
that describe individual binaries.

Forbidden Signature Database Key (DBX)
Contains keys and hashes that correspond to known Malware or other unwanted software. If
a binary matches a key or hash that's in both the UEFI Secure Boot key database and the
DBX, the DBX takes precedence. This facility prevents the use of a single binary even if the
binary is signed by a key that you don't want to revoke because it has been used to sign
several legitimate binaries.

Chapter 1
About Secure Boot Keys

1-5

Machine Owner Key (MOK)
Equivalent of DBX, this key type signs boot loaders and other EFI executables and
can also be used to store hashes that correspond to individual programs. MOKs aren't
a standard part of Secure Boot. However, they're used by the Shim and PreLoader
programs to store keys and hashes. The MOK facility is an ideal way to test newly
generated key pairs and the kernel modules that are signed with them. MOK keys are
stored in the MOK database. See About the MOK Database.

Public Key in the kernel
Keys that can be built into the OS for checking the signatures as kernel modules are
loaded. Normally, when the CONFIG_MODULE_SIG_KEY parameter is unchanged from
the default, the kernel build automatically generates a new key pair by using
OpenSSL, if one doesn't exist. Then, when vmlinux is built, the public key is built into
the kernel. Note that the Secure Boot implementation in UEK R6 up to UEK R6U2
requires that all modules are signed using a key that's built into the kernel. These
earlier UEK R6 kernels don't apply the same level of trust to kernel modules that are
signed using a key that's only present in the MOK database.

Description of the Secure Boot Key Implementation
The following figure shows how the Secure Boot key implementation works in Oracle
Linux.

Secure Boot Key Implementation

Chapter 1
Description of the Secure Boot Key Implementation

1-6

At the UEFI firmware level, the Platform Key (PK) is used to validate the Key Exchange Key
(KEK), which is in turn used to validate all Database Keys (DB) and all DBX Keys (DBX). The
DB keys are used with the DBX keys to validate the the key used to sign the Shim binary.
After the Shim is validated, keys stored within the MOK list and loaded by the Shim can be
trusted to perform validation for the later loading operations that follow. The GRUB2
secondary bootloader is validated by using a key within the MOK list and by the MokListX
that contain the forbidden MOK keys. Simlarly, before the kernel is loaded, validation of the
kernel image binary is first performed against the keys in the MOK list. Finally, after the kernel
is loaded, the Linux kernel modules or Linux kernel images that are used for kexec
operations can be validated, either against the MOK list or against any public keys that are
compiled directly into the Linux kernel.

On UEK R6 releases before UEK R6U3, the implementation is slightly varied. At the final
stage when the kernel modules are loaded, the Secure Boot implementation doesn't trust
kernel modules that are signed only with the keys that are stored in the MOK list or in the
UEFI Secure Boot key database. Instead, all kernel modules must be signed with a key that's
compiled into the kernel before the kernel can load the module. More information on this
process is provided in #unique_15. From UEK R6U3 onward, kernel modules signed with
keys stored in the MOK list are trusted.

Description of the Shim First Stage Boot Loader
Shim is a basic software package that's designed to work as a first-stage boot loader on
UEFI-based systems.

Systems that can use UEFI Secure boot typically ship with the following two keys:

• Microsoft Windows Production PCA 2011

• Microsoft Corporation UEFI CA 2011

When Secure Boot is enabled on the system, only those programs that are signed with either
of the previous two keys would boot. For the Shim first stage boot loader, Oracle uses a
process that's agreed upon with Microsoft to sign Oracle’s version of Shim with the Microsoft
Corporation UEFI CA 2011 CA key. Embedded certificates within the Oracle shim validate the
signed 2nd stage boot loader and the kernel. See Description of the Secure Boot Key
Implementation.

How Secure Boot Is Enforced Within Oracle Linux
The enforcement of Secure Boot within Oracle Linux includes certain restrictions, most of
which are implemented to prevent Oracle Linux from being used as a boot loader through the
kexec tool and thus would break the Secure Boot chain of trust. The restrictions, which were
originally referred to as securelevel and more recently referred to as lockdown, prevent
access to Ring-0 when Secure Boot is enabled, even by the root user.

The following are details of the how Secure Boot is enforced in Unbreakable Enterprise
Kernel (UEK) and Oracle Linux releases:

• Unbreakable Enterprise Kernel (UEK)

The following information applies to Secure Boot enforcement in UEK releases:

– UEK R4 (Securelevel)

UEK R4 contains out-of-tree patches that are based on the addition of a course-
grained, runtime configuration option for restricting the ability of user space to edit the

Chapter 1
Description of the Shim First Stage Boot Loader

1-7

running kernel with a BSD-style securelevel. It provides a runtime
configuration variable at /sys/kernel/security/securelevel, which
can be written to by root.

– UEK R5 (Lockdown)

The Kernel Lockdown feature is designed to prevent both direct and indirect
access to a running kernel image. The feature protects against unauthorised
modification of the kernel image. It also prevents access to security and
cryptographic data that's stored in kernel memory, while still letting driver
modules to be loaded. When Secure Boot is enabled in UEK R5, lockdown is
automatically enabled.

– UEK R6 and R7 (Lockdown)

UEK R6 uses the Lockdown feature that's contained within the mainline Linux
5.4 kernel . The 5.4 Lockdown contains three different modes: none, integrity,
and confidentiality. If set to integrity, kernel features that enable user space to
edit the running kernel are disabled. If set to confidentiality, kernel features
that enable user space to extract confidential information from the kernel are
also disabled. When Secure Boot is enabled in UEK R6, lockdown integrity
mode is automatically enabled.

Note:

On aarch64 platforms, Secure Boot has been implemented and
kernel images are signed starting with UEK R7 U1.

• Red Hat Compatible Kernel (RHCK)

The following information applies to the Secure Boot implementation on RHCK for
Oracle Linux:

– Oracle Linux 7 (Lockdown)

RHCK for Oracle Linux 7 uses the same course-grained, runtime configuration
option for restringing user space's ability to revise the running kernel with a
BSD-style securelevel, as in UEK R4.

– Oracle Linux 8 (Lockdown)

RHCK for Oracle Linux 8 uses an older implementation of Lockdown than is
enabled in UEK R5, but is more recent than the BSD-style securelevel
implementation in UEK R4.

Enabling and Disabling Secure Boot
You can enable and disable Secure Boot by accessing the system's EFI setup
program. For instructions on enabling and disabling Secure Boot through the EFI
setup program for a specific hardware, see the manufacturer's instructions.

Note that if you're having trouble working with the system UEFI, you can disable any
further validation for Secure Boot at the level of the Shim. Although you can disable
further validation for Secure Boot from user space, you still need physical access to
the system at boot so that you can access the MokManager utility when the Shim
loads. For more information, see Disabling Secure Boot.

Chapter 1
Enabling and Disabling Secure Boot

1-8

About the MOK Database
MOK keys are stored in the MOK list or database. Use the database for adding certificates for
custom built kernels or kernel modules, where either the keys that are used to sign these
components or the CA certificate for those keys aren't present in the UEFI Secure Boot key
database. You can add these keys without requiring the key chain back to another key that's
already in the KEK database. When a key is on the MOK list, it's automatically propagated to
the system key ring on every boot when UEFI Secure Boot is enabled.

To enroll a MOK key, you must manually do so on each target system by using the MOK
Manager Utility on the UEFI system console.

A MOK Forbidden Signature Database (MOKx) that's similar to the DBX also exists. MOKx
features enable a user to forbid a particular kernel or kernel module from being loaded, as
identified by the public key or the signature. The MOKx also forbids any second stage boot
loader or binary that Shim boots, similar to grub2/fwupd/mmx64/mmaa64/etc.

With the MOK database, you can insert keys into the trusted keys within the UEFI Shim
directly from user space. Using the MOK database to insert keys is easier than manually
adding keys to the UEFI Secure Boot Key Database. As an option, you can manually add
keys to the UEFI Secure Boot Key Database. However, with the MOK database approach,
the instructions aren't tied to particular hardware and you don't have to copy keys to storage
that's accessible to UEFI.

The tool to manage the MOK database is the mokutil utility, from which you access the MOK
Manager. See About the mokutil Utility.

Chapter 1
About the MOK Database

1-9

2
Tools and Applications for Administering
Secure Boot

This chapter provides a basic summary of the tools and applications that you can use to
administer Secure Boot in Oracle Linux.

About the pesign Tool
The pesign tool is a command line tool for manipulating signatures and cryptographic
digests of UEFI applications. You can use the pesign tool to sign kernels for both GRUB2
and Shim.

You can also use the pesign tool for printing binary signature information. Note that to be
recognized, the pesign package for v0.112-22 and later, which is available in Oracle Linux 8,
also provides the pesigcheck tool that you can use to verify a signature against an exact
public certificate.

The pesign tool accepts the X.509 certificate/key pair and signs a PE-COFF binary with it.
The Oracle Linux kernel has an EFI boot stub that wraps the bzImage file as a PE-COFF
binary according to standard UEFI implementation. This implementation provides you with
the option to boot the kernel directly from UEFI without requiring a boot loader. In addition,
the pesign can perform the required signing. See About Secure Boot Keys.

Typically, you use the pesign tool in situations such as the following:

• Sign a kernel image with a custom key that you might create to sign custom kernel
modules. See Signing Kernel Images and Kernel Modules for Use With Secure Boot.

• Enroll the hash for a particular kernel within the MOK database so that the kernel can be
loaded at boot, even if the Shim doesn't contain its certificate.

• Extract a kernel hash from the signed kernel binary so that you can enroll it by using the
mokutil tool. See Use mokutil to Update Signature Keys for UEFI Secure Boot.

About the efibootmgr Application
Oracle Linux provides the efibootmgr user space application that you can use to change
the Intel Extensible Firmware Interface (EFI) Boot Manager. You use the application to
perform several tasks, including the following:

• Create and destroy boot entries.

• Change the boot order.

• Change the next running boot option.

This tool is a general usage application and doesn't directly relate to Secure Boot. However,
the tool helps you to manage UEFI boot options directly from user space and makes easier
debugging and resolving some UEFI boot issues directly from the command line. For more
information and examples, see the efibootmgr(8) manual page.

2-1

https://docs.oracle.com/en/operating-systems/oracle-linux/tutorial-mokutils-uefi/

About the mokutil Utility
The Shim design lets users control their own systems. The distribution vendor key is
built into the Shim binary itself. However, an extra database with keys, called Machine
Owner Key (MOK) list or database, is also provided, and which the user can manage
through the MOK Manager Utility.

In Oracle Linux, the MokManager utility is installed in the EFI System Partition (ESP)
within the /boot/efi/EFI/redhat directory. Originally called MokManager.efi, this
file has been renamed to mmx64.efi for x86_64 platforms or mmaa64.efi for Arm
platforms. MOK keys can be placed in the ESP and then installed from the
MokManager during boot.

By running the mokutil command, you can use the MOKManager utility to add and
remove keys in the MOK list, which remain separate from the distribution vendor key.
The mokutil utility enables you to make keys available to the MOK database directly
from user space on the command line. Because keys are often created or extracted in
this space, mokutil is the most appropriate tool to use for managing keys that are
used for Secure Boot.

Note that although mokutil is run from user space, it doesn't update the MOK
database directly. Instead, mokutil makes keys available to the MOK Management
service and triggers the Shim to display the MOK Management menu at boot. This
process ensures that keys or hashes are only enrolled within the MOK database by
somebody who has physical access to the system and prevents a malicious
application or user from changing the MOK database directly from user space.

Typical use case scenarios where you might use the mokutil utility include the
following:

• Adding keys for custom modules that aren't included and signed with the
distribution and which you have needed to sign yourself. See Signing Kernel
Images and Kernel Modules for Use With Secure Boot.

• Adding keys or hashes for custom kernels for which the signing key is either
revoked or you have built from source yourself. See Use mokutil to Update
Signature Keys for UEFI Secure Boot.

• Disabling Secure Boot operations from the Shim upward. See Disabling Secure
Boot.

For more information, see the mokutil(1) manual page.

Disabling Secure Boot
If controlling the Secure Boot state through the EFI setup program is difficult, you can
optionally use the mokutil utility to disable Secure Boot at the level of the Shim so
that, although UEFI Secure Boot is enabled, no further validation takes place after the
Shim is loaded.

The following steps apply to OSs that are loaded through Shim and GRUB:

1. Disable Secure Boot at the Shim level:

sudo mokutil --disable-validation

Chapter 2
About the mokutil Utility

2-2

https://docs.oracle.com/en/operating-systems/oracle-linux/tutorial-mokutils-uefi/
https://docs.oracle.com/en/operating-systems/oracle-linux/tutorial-mokutils-uefi/

2. Choose a password that's between 8 and 16 characters and then enter the same
password to confirm.

3. Reboot the system.

4. Press a key to perform MOK management, when prompted.

5. Select the Change Secure Boot state option.

6. Type each character for the password that you chose, as requested, to confirm the
change.

You would need to press Return (or Enter) after each character.

7. Select Yes, then select Reboot to reboot the system.

To reenable the Secure Boot state at the Shim level, run the following command:

sudo mokutil --enable-validation

Follow the same prompts that appear as when disabling Secure Boot.

Validating SBAT Status
Starting from version 15.3 of the shim package on Oracle Linux 8 and Oracle Linux 9, Oracle
has been using UEFI Secure Boot Advanced Targeting (SBAT). SBAT is a mechanism for
revoking older versions of core boot components such as grub2 and shim by setting
generation numbers in the .sbat section of the UEFI binary. The generation number set in a
UEFI binary defines its revocation level.

To confirm whether UEFI Secure Boot is active, use the --sb-state option with the mokutil
command:

mokutil --sb-state

Starting from version 0.6.0 of the mokutil package, the mokutil command can be used to
review and update UEFI SBAT revocation status. To review the current UEFI SBAT level on
which the current system is running, use the --list-sbat-revocations option:

mokutil --list-sbat-revocations

You can change the SBAT policy that applies at the next reboot. Setting the SBAT policy to
latest applies the latest SBAT revocations and prevents the system from booting older
grub2 and shim packages that were operating at an earlier SBAT level, and previous falls
back to the previous SBAT revocation level:

mokutil --set-sbat-policy latest

mokutil --set-sbat-policy previous

For systems with UEFI Secure Boot enabled, the default SBAT policy is previous. Both the
latest and previous SBAT policies only set a revocation level that's the same or later than it
was when the latest shim package was installed.

Chapter 2
About the mokutil Utility

2-3

For troubleshooting purposes, you can reset the SBAT policy to the default revocation
level. First, you disable UEFI Secure Boot and then set the delete SBAT policy:

mokutil --set-sbat-policy delete

Note:

You can review the .sbat metadata used by grub2 and shim by using the
objdump command. For example, on an x86_64 system you can run the
following commands:

objdump -s -j .sbat grubx64.efi

objdump -s -j .sbat shimx64.efi

To review the current SBAT policy levels for the provided shim:

objdump -s -j .sbatlevel shimx64.efi

About the dbxtool Command
The dbxtool command combines a command line tool with the systemd service that's
used to apply UEFI Secure Boot DBX updates. With this tool, you can operate on the
UEFI Forbidden Signature Database, also known as the DBX revocation list. For
example, you can use the command to list the current DBX contents and update the
current contents to a newer version.

UEFI DBX files are made available at https://uefi.org/revocationlistfile. The DBX
prevents software that's signed using a compromised key from loading. Thus, it helps
to protect the integrity of the Secure Boot framework and avoids needing to manually
manage a static database of keys.

The most current UEFI DBX files are packaged with the dbxtool package and updates
are present within each later release of this package on the Oracle Linux yum server.
The DBX files are in /usr/share/dbxtool/ and /usr/share/dbxtool-
oracle/. If the dbxtool systemd service is running, DBX updates are handled
automatically. However, if you're notified of a CVE that requires a DBX update, you
might need to use the tool manually.

Chapter 2
About the dbxtool Command

2-4

https://uefi.org/revocationlistfile

3
Signing Kernel Images and Kernel Modules
for Use With Secure Boot

This chapter provides instructions on signing kernel modules for Secure Boot.

NOT_SUPPORTED:

Oracle doesn't support any modules that are built from source directly outside of
Oracle's offical release mechanisms. For aid with these modules, you would need to
contact the hardware vendor.

A system in Secure Boot mode only loads boot loaders and kernels that have been signed by
Oracle. However, you might need to build and install a third-party module to enable particular
hardware on a deployed system. If you still require UEFI Secure Boot, the module must be
signed with a key that can be validated against a certificate within the UEFI Secure Boot key
database or within the Shim MOK Manager key database so that the module is recognized at
boot.

Note that if you're running UEK R6, UEK R6U1, or UEK R6U2 the key that's used to sign the
module must be compiled into the kernel and then the kernel must be signed again. Note also
that the kernel signing key must be added to the either the UEFI or MOK database. As of
UEK R6U3, you can load external modules under Secure Boot if the signing key is already
enrolled in the MOK database.

Important:

Using the MOK utility on a server depends on server firmware implementation and
configuration. Check that the server supports this before manually updating
signature keys used for UEFI Secure Boot. If you're unsure, don't follow the
instructions provided here.

Adding certificates to the MOK database by using the MOK utility requires that you
have physical access to the system so that you can complete the enrollment
request after the Shim is loaded by UEFI. Don't follow the instructions in this
document if you have no physical access to the system.

Because of differences in kernel releases, instructions on how to sign modules differ
depending on the kernel version on the system. In particular, the key signature type within the
module signature has changed from X.509 to PKCS#7. Therefore, although the process to
sign the module by using the kernel-provided sign-file utility is still used, you might be
required to use a utility more appropriate to the specific kernel for which a module is being
signed.

3-1

More importantly, UEK R6 kernels earlier than UEK R6U3 don't offer the same level of
trust for the keys that are available for UEFI or the Shim MokManager key database.
Thus, for systems running UEK R6, UEK R6U1, or UEK R6U2, a different set of
procedures exists for signing kernel images and modules for use with Secure Boot.
See Setting Kernel Module Certificate Trust for UEK R6.

Requirements for Signing Kernel Images and Kernel
Modules

Before you can sign a module, you must install several required packages, including
the kernel source for the kernel where the module is loaded. You also require a signing
certificate for a key pair that you have created for this purpose.

Signing kernel images and kernel modules have the following requirements:

• Installation of required pacakges

• Creation of signing certificates

Installing Required Packages
A standard minimal installation of the latest Oracle Linux 7, Oracle Linux 8, or Oracle
Linux 9 update release suffices for this procedure. The steps assume that the system
is using UEK as the operating environment.

Note:

If the system is running Oracle Linux 7, replace the dnf command in the
steps with the proper yum command syntax.

1. Obtain the package that contains the system's kernel source.

sudo dnf install kernel-uek-devel

If you're using RHCK, the kernel source is in the kernel-devel package.

2. Update the system to ensure that you have the most recent kernel and related
packages.

sudo dnf update

3. Reboot the system.

This step is practical in case the kernel is included in the system update. By
rebooting, you avoid confusion around the kernel version that you're working with
and the kernel running on the system when you begin kernel-signing operations.

4. Oracle Linux 7 systems only: Enable the optional_latest repository in the yum
configuration.

sudo yum-config-manager --enable ol7_optional_latest

Chapter 3
Requirements for Signing Kernel Images and Kernel Modules

3-2

5. Install the required utilities for performing module signing operations.

sudo dnf install openssl keyutils mokutil pesign

6. If you need to build module source, you might install the Development Tools group to
ensure that build tools are available for use, for example:

sudo dnf group install "Development Tools"

Generating a Signing Certificate
If you don't already have a signing certificate to be used for signing third-party modules or
kernel images, you can generate one by using the OpenSSL utilities. For more information
about OpenSSL and the public key infrastructure, see Oracle Linux: Managing Certificates
and Public Key Infrastructure.

1. Create a configuration file that OpenSSL can use to obtain default values when
generating certificates.

As best practice, create the file in /etc/ssl/x509.conf with the rest of the OpenSSL
configuration. The file would resemble the following example:

[req]
default_bits = 4096
distinguished_name = req_distinguished_name
prompt = no
string_mask = utf8only
x509_extensions = extensions

[req_distinguished_name]
O = Module Signing Example
CN = Module Signing Example Key
emailAddress = first.last@example.com

[extensions]
basicConstraints=critical,CA:TRUE
keyUsage=digitalSignature
extendedKeyUsage = codeSigning
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid:always

2. Generate a new key pair using this configuration file:

sudo openssl req -x509 -new -nodes -utf8 -sha512 -days 3650 -batch -
config /etc/ssl/x509.conf -outform DER -out /etc/ssl/certs/pubkey.der -
keyout /etc/ssl/certs/priv.key

This sample command creates a signing certificate that is valid for 10 years (3,650 days).
Ensure that the keys are adequately protected.

3. Export the certificate in PEM format:

sudo openssl x509 -inform DER -in /etc/ssl/certs/pubkey.der -out /etc/ssl/
certs/pubkey.pem

Chapter 3
Requirements for Signing Kernel Images and Kernel Modules

3-3

https://docs.oracle.com/en/operating-systems/oracle-linux/certmanage/
https://docs.oracle.com/en/operating-systems/oracle-linux/certmanage/

Signing the Kernel for Secure Boot
UEFI Secure Boot requires that kernels are signed with a trusted certificate to prevent
attackers from installing and running unauthorized OSs.

Oracle signs kernel releases that are provided through official software channels to
verify their origin and integrity. For a custom kernel to perform the boot or kexec
operations, you must sign the kernel image by using the signing certificate that you
created and confirm that you trust kernel images that are signed with that certificate.

Signing the kernel for Secure Boot involves the following tasks:

1. Configuring an NSS Database

2. Signing the Kernel Image

3. Updating the MOK Database

Configuring an NSS Database
The NSS database stores complete sets of keys to which the tool for signing kernels
refers to obtain the kernel signing key.

1. Configure an NSS database.

sudo certutil -d . -N

2. Create a password for the database as prompted.

3. Export a PKCS#2 version of the kernel signing key.

NSS utilities are only capable of working with PKCS#12 formatted key files. Thus,
you need to perform this step so that you can sign the kernel image.

sudo openssl pkcs12 -export -inkey /etc/ssl/certs/priv.key -
in /etc/ssl/certs/pubkey.pem -name cert -out /etc/ssl/certs/cert.p12

4. Enter the export password as prompted.

The password refers to the password for the PKCS#12 archive. To be practical,
make this password match the password for the NSS database.

5. Add or import the PKCS#12 version of the kernel signing key to the new database.

sudo pk12util -d . -i cert.p12

6. Enter the passwords as prompted.

Two password prompts are displayed: first, for the NSS database, then for the
PKCS#12 archive.

Enter Password or Pin for "NSS Certificate DB":
Enter password for PKCS12 file:
pk12util: PKCS12 IMPORT SUCCESSFUL

Chapter 3
Signing the Kernel for Secure Boot

3-4

Signing the Kernel Image
In this task, you use the pesign utility to re-sign the kernel with a new signature by using the
signing key in the NSS database.

1. Remove the existing PE signature.

sudo pesign -u 0 -i /boot/vmlinuz-$(uname -r) --remove-signature -o
vmlinuz.unsigned

2. Assign a new signature based on the kernel signing key in the NSS database.

sudo pesign -n . -c cert -i vmlinuz.unsigned -o vmlinuz.signed -s

3. Enter the password as prompted.

The password of the NSS certificate database is the one that you created in Configuring
an NSS Database.

4. Copy the signed kernel back to /boot.

sudo cp -bf vmlinuz.signed /boot/vmlinuz-$(uname -r)

The -b option in the command creates a backup of the original kernel image.

Updating the MOK Database
Because the key that you created isn't included in the UEFI Secure Boot Key Database, you
must enroll it into the MOK database in the Shim.

1. Import the key with the following command:

sudo mokutil --import /etc/ssl/certs/pubkey.der

The command prompts you for a single use password that you use when the MOK
Management service enrolls the key after you reboot the system.

2. Reboot the system.

The UEFI Shim automatically starts the Shim UEFI key manager at boot. Ensure that you
hit a key within 10 seconds to interrupt the boot process to enroll the MOK key you
created.

3. Press any key to perform MOK Management.

4. Select Enroll MOK from the menu.

5. Select View key 0 from the menu to display the key details.

6. Verify that the values presented match the key that you used to sign the module and that
you inserted into the kernel image, then press any key to return to the Enroll MOK menu.

7. Select Continue from the menu.

The Enroll the key(s)? screen is displayed.

8. Select Yes to enroll the key.

Chapter 3
Signing the Kernel for Secure Boot

3-5

9. At the password prompt, enter the password that you used when you imported the
key at the beginning of this procedure.

The key is enrolled within the UEFI Secure Boot key database.

10. When the Perform MOK management screen is displayed, select Reboot from the
menu.

Signing the Kernel Module for Secure Boot

Note:

If you're running UEK R6, UEK R6U1, or UEK R6U2, go instead to Setting
Kernel Module Certificate Trust for UEK R6. That section contains added
tasks to complete Secure Boot setup for these UEK R6 kernels.

UEFI Secure Boot requires that kernel modules are signed with a trusted certificate to
prevent attackers from installing and running unauthorized OSs and malicious drivers.

Oracle signs kernel releases that are provided through official software channels to
verify their origin and integrity. However, to install other drivers, you must create
signing certificates for them, sign the relevant kernel modules, and confirm that you
trust the kernel modules that are signed with that certificate.

The secure boot implementation in UEK R6U3 is updated to trust modules signed
using platform certificates that are available in the UEFI and MOK databases. Thus,
beginning with UEK R6U3, the key for signing the module itself is enrolled into the
database.

For UEK versions except UEK R6, UEK R6U1, and UEK R6U2, signing the kernel
module involves the following tasks:

1. Signing the Kernel Module

2. Updating the MOK Database with the Kernel Module Certificate

Signing the Kernel Module
The sign-file utility ensures that the module is signed correctly for the kernel. This
utility is provided within the kernel source.

Caution:

The instructions provided here assume that you're signing a module for the
currently running kernel. If you're signing a module for a different kernel, you
must provide the path to the sign-file utility within the correct kernel
version source. Otherwise, the signature type for the module for that kernel
might not align correctly with the expected signature type.

1. Ensure that module is already installed in /lib/modules/.

Chapter 3
Signing the Kernel Module for Secure Boot

3-6

2. Run the sign-file utility for the currently running kernel.

sudo /usr/src/kernels/$(uname -r)/scripts/sign-file sha512 /etc/ssl/certs/
priv.key /etc/ssl/certs/pubkey.der /lib/modules/$(uname -r)/path/to/
module.ko

3. (Optional) Check the signature information of the module.

modinfo module

For example, a module named hello might display the following output:

filename: /lib/modules/5.4.17-2036.103.3.1.el8uek.x86_64/extra/
hello.ko
description: Hello World Linux Kernel Module
author: A.Developer
license: GPL
srcversion: D51FB4CF0B86314953EE797
depends:
retpoline: Y
name: hello
vermagic: 5.4.17-2036.103.3.1.el8uek.x86_64 SMP mod_unload
modversions
sig_id: PKCS#7
signer: Module Signing Example Key
sig_key: AB:2C:E3:AB:87:D9:9C:6A:31:B8:80:20:D4:92:25:F3:9A:26:DC
sig_hashalgo: sha512
signature: 9F:B0:25:CB:14:C1:C7:10:7F:60:1E:E6:66:82:64:58:91:1F:01:A5:
 D9:03:1B:9C:2D:42:00:45:78:2B:FA:70:F8:C7:3B:1A:A2:42:00:09:
 33:E0:81:1D:C6:E6:46:A5:FE:8B:9F:8C:3D:4E:A1:3A:05:52:ED:F6:
 25:F9:88:98:D3:70:78:1D:7E:63:F3:73:C8:C8:14:C2:3A:52:B4:8F:
 4C:8D:80:D9:0D:24:F8:C9:B1:28:82:B6:A9:27:56:C6:86:80:25:A5:
 75:C8:78:A9:30:BD:01:4C:DD:43:7F:FD:41:98:2C:59:21:7D:39:17:
 EC:2C:C1:65:1D:95:F0:09:C7:F6:45:10:83:15:78:A2:EE:D4:73:79:
 B2:F0:57:C1:96:B3:4C:43:B8:D1:87:94:50:61:D6:EC:50:2B:6A:6C:
 5C:C1:3E:8C:CB:6F:19:DC:EF:6C:12:07:03:99:B7:B3:22:0B:F6:AC:
 CB:40:C6:34:15:EA:1F:88:D4:4E:1C:87:2D:5A:92:F7:12:A6:E7:91:
 B3:80:AA:80:8F:49:B7:F0:F0:97:05:09:7A:65:30:4A:AE:10:BE:9F:
 6A:E4:B2:24:BE:1A:21:D0:F6:15:05:DA:2C:64:EA:B2:8E:AC:6F:18:
 40:65:21:F6:AA:17:31:AE:3F:3A:43:DB:A8:BC:71:79:EF:11:18:DE:
 86:EE:74:2A:E0:44:FC:B3:FF:CB:CB:F0:CA:BD:7B:A1:57:84:D8:A6:
 91:E5:B8:EF:1B:8A:63:16:43:03:AF:C4:C7:BF:52:9A:A9:23:75:C6:
 42:54:69:4E:3D:51:56:5A:9D:9B:C7:11:5E:9A:30:87:5F:F3:5E:C3:
 AE:2C:1D:6F:C9:4D:15:E5:CF:EC:46:0E:EF:D9:BB:2F:DF:DF:54:EA:
 F3:B6:9C:A3:6F:80:19:B9:DF:FA:2A:30:4E:2E:70:74:11:F9:5C:F6:
 EE:1A:DF:86:C4:2B:36:7E:B4:A4:D4:7E:30:19:1A:D1:92:D3:A7:FB:
 53:BF:67:C3:65:9E:4B:92:F0:6C:D4:6C:05:9B:0F:BF:D1:5B:CB:86:
 AE:68:00:AE:43:53:8B:7D:7E:18:20:CD:65:68:6C:4A:0D:93:A4:54:
 09:39:9C:D3:BD:CD:17:B6:8A:D3:62:0C:CA:A8:FD:1A:52:CE:29:A0:
 93:BF:AD:D2:58:3F:EA:4E:4B:50:31:6F:F6:B2:1E:87:C4:0A:9D:E4:
 43:E9:C7:CA:E9:CB:EF:A6:61:5B:DA:01:33:37:66:DB:16:8D:7C:D7:
 30:39:57:D4:0C:1A:54:AE:91:7B:FE:35:10:CC:34:03:99:EA:5A:57:
 E0:95:61:02:42:95:A2:F5:2E:72:30:95

Chapter 3
Signing the Kernel Module for Secure Boot

3-7

Updating the MOK Database with the Kernel Module Certificate
Because the key that you created isn't included in the UEFI Secure Boot Key
Database, you must enroll it into the MOK database in the Shim.

1. Run the following command:

sudo mokutil --import /etc/ssl/certs/pubkey.der

The command prompts you for a single use password that you use when the MOK
Management service enrolls the key after you reboot the system.

2. Reboot the system.

The UEFI Shim automatically starts the Shim UEFI key manager at boot. Ensure
that you hit a key within 10 seconds to interrupt the boot process to enroll the MOK
key you created.

3. Press any key to perform MOK Management.

4. Select Enroll MOK from the menu.

5. Select View key 0 from the menu to display the key details.

6. Verify that the values presented match the key that you used to sign the module
and that you inserted into the kernel image, then press any key to return to the
Enroll MOK menu.

7. Select Continue from the menu.

The Enroll the key(s)? screen is displayed.

8. Select Yes to enroll the key.

9. At the password prompt, enter the password that you used when you imported the
key at the beginning of this procedure.

The key is enrolled within the UEFI Secure Boot key database.

10. When the Perform MOK management screen is displayed, select Reboot from the
menu.

Setting Kernel Module Certificate Trust for UEK R6
The information in this section applies to kernel modules with any UEK R6 kernels
before UEK R6U3, namely:

• UEK R6

• UEK R6U1

• UEK R6U2

With these UEK R6 kernels, after a module is signed, the key that was used to sign it
must be inserted into the compiled kernel image. UEK R6 only trusts modules that are
signed with keys that are listed in the kernel built-in, trusted keyring. Thus, the updated
kernel image must be signed again. Further, the customer owned certificate that's
used to sign the kernel must then be added to the UEFI or MOK database. In this
manner, the kernel image becomes trusted and can boot in Secure Boot mode.

Chapter 3
Setting Kernel Module Certificate Trust for UEK R6

3-8

Setting the kernel module certificate trust for the listed kernels involves the following tasks:

1. Signing the Kernel Module

This task is the same as the first task listed under Signing the Kernel Module for Secure
Boot.

2. Inserting the Module Certificate in the Kernel Image

3. Signing the Kernel Image

4. Updating the MOK database

This task is the same as the second task listed under Signing the Kernel Module for
Secure Boot.

Signing the Kernel Module
The sign-file utility ensures that the module is signed correctly for the kernel. This utility is
provided within the kernel source.

Caution:

The instructions provided here assume that you're signing a module for the
currently running kernel. If you're signing a module for a different kernel, you must
provide the path to the sign-file utility within the correct kernel version source.
Otherwise, the signature type for the module for that kernel might not align correctly
with the expected signature type.

1. Ensure that module is already installed in /lib/modules/.

2. Run the sign-file utility for the currently running kernel.

sudo /usr/src/kernels/$(uname -r)/scripts/sign-file sha512 /etc/ssl/certs/
priv.key /etc/ssl/certs/pubkey.der /lib/modules/$(uname -r)/path/to/
module.ko

3. (Optional) Check the signature information of the module.

modinfo module

For example, a module named hello might display the following output:

filename: /lib/modules/5.4.17-2036.103.3.1.el8uek.x86_64/extra/
hello.ko
description: Hello World Linux Kernel Module
author: A.Developer
license: GPL
srcversion: D51FB4CF0B86314953EE797
depends:
retpoline: Y
name: hello
vermagic: 5.4.17-2036.103.3.1.el8uek.x86_64 SMP mod_unload
modversions

Chapter 3
Setting Kernel Module Certificate Trust for UEK R6

3-9

sig_id: PKCS#7
signer: Module Signing Example Key
sig_key:
AB:2C:E3:AB:87:D9:9C:6A:31:B8:80:20:D4:92:25:F3:9A:26:DC
sig_hashalgo: sha512
signature:
9F:B0:25:CB:14:C1:C7:10:7F:60:1E:E6:66:82:64:58:91:1F:01:A5:
 D9:03:1B:9C:2D:42:00:45:78:2B:FA:70:F8:C7:3B:1A:A2:42:00:09:
 33:E0:81:1D:C6:E6:46:A5:FE:8B:9F:8C:3D:4E:A1:3A:05:52:ED:F6:
 25:F9:88:98:D3:70:78:1D:7E:63:F3:73:C8:C8:14:C2:3A:52:B4:8F:
 4C:8D:80:D9:0D:24:F8:C9:B1:28:82:B6:A9:27:56:C6:86:80:25:A5:
 75:C8:78:A9:30:BD:01:4C:DD:43:7F:FD:41:98:2C:59:21:7D:39:17:
 EC:2C:C1:65:1D:95:F0:09:C7:F6:45:10:83:15:78:A2:EE:D4:73:79:
 B2:F0:57:C1:96:B3:4C:43:B8:D1:87:94:50:61:D6:EC:50:2B:6A:6C:
 5C:C1:3E:8C:CB:6F:19:DC:EF:6C:12:07:03:99:B7:B3:22:0B:F6:AC:
 CB:40:C6:34:15:EA:1F:88:D4:4E:1C:87:2D:5A:92:F7:12:A6:E7:91:
 B3:80:AA:80:8F:49:B7:F0:F0:97:05:09:7A:65:30:4A:AE:10:BE:9F:
 6A:E4:B2:24:BE:1A:21:D0:F6:15:05:DA:2C:64:EA:B2:8E:AC:6F:18:
 40:65:21:F6:AA:17:31:AE:3F:3A:43:DB:A8:BC:71:79:EF:11:18:DE:
 86:EE:74:2A:E0:44:FC:B3:FF:CB:CB:F0:CA:BD:7B:A1:57:84:D8:A6:
 91:E5:B8:EF:1B:8A:63:16:43:03:AF:C4:C7:BF:52:9A:A9:23:75:C6:
 42:54:69:4E:3D:51:56:5A:9D:9B:C7:11:5E:9A:30:87:5F:F3:5E:C3:
 AE:2C:1D:6F:C9:4D:15:E5:CF:EC:46:0E:EF:D9:BB:2F:DF:DF:54:EA:
 F3:B6:9C:A3:6F:80:19:B9:DF:FA:2A:30:4E:2E:70:74:11:F9:5C:F6:
 EE:1A:DF:86:C4:2B:36:7E:B4:A4:D4:7E:30:19:1A:D1:92:D3:A7:FB:
 53:BF:67:C3:65:9E:4B:92:F0:6C:D4:6C:05:9B:0F:BF:D1:5B:CB:86:
 AE:68:00:AE:43:53:8B:7D:7E:18:20:CD:65:68:6C:4A:0D:93:A4:54:
 09:39:9C:D3:BD:CD:17:B6:8A:D3:62:0C:CA:A8:FD:1A:52:CE:29:A0:
 93:BF:AD:D2:58:3F:EA:4E:4B:50:31:6F:F6:B2:1E:87:C4:0A:9D:E4:
 43:E9:C7:CA:E9:CB:EF:A6:61:5B:DA:01:33:37:66:DB:16:8D:7C:D7:
 30:39:57:D4:0C:1A:54:AE:91:7B:FE:35:10:CC:34:03:99:EA:5A:57:
 E0:95:61:02:42:95:A2:F5:2E:72:30:95

Inserting the Module Certificate in the Kernel Image
1. Go to the directory where the certificates are stored.

cd /etc/ssl/cert

2. Insert the raw DER certificate that was used to sign the module into the
compressed kernel boot image.

sudo /usr/src/kernels/$(uname -r)/scripts/insert-sys-cert -s /boot/
System.map-$(uname -r) -z /boot/vmlinuz-$(uname -r) -c pubkey.der

INFO: Executing: gunzip <vmlinux-8ig4vO >vmlinux-QyW44r
WARNING: Could not find the symbol table.
INFO: sym: system_extra_cert
INFO: addr: 0xffffffff82891616
INFO: size: 8194
INFO: offset: 0x1c91616
INFO: sym: system_extra_cert_used
INFO: addr: 0xffffffff82893618

Chapter 3
Setting Kernel Module Certificate Trust for UEK R6

3-10

INFO: size: 0
INFO: offset: 0x1c93618
INFO: sym: system_certificate_list_size
INFO: addr: 0xffffffff82893620
INFO: size: 0
INFO: offset: 0x1c93620
INFO: Inserted the contents of pubkey.der into ffffffff82891616.
INFO: Used 1481 bytes out of 8194 bytes reserved.
INFO: Executing: gzip -n -f -9 <vmlinux-QyW44r >vmlinux-M5uNR6

Important:

Only a single custom certificate can be added to the kernel because the
compressed size of the kernel's boot image can not increase. Do not add multiple
certificates to the kernel boot image.

Signing the Kernel Image
In this task, you use the pesign utility to re-sign the kernel with a new signature by using the
signing key in the NSS database.

1. Remove the existing PE signature.

sudo pesign -u 0 -i /boot/vmlinuz-$(uname -r) --remove-signature -o
vmlinuz.unsigned

2. Assign a new signature based on the kernel signing key in the NSS database.

sudo pesign -n . -c cert -i vmlinuz.unsigned -o vmlinuz.signed -s

3. Enter the password as prompted.

The password of the NSS certificate database is the one that you created in Configuring
an NSS Database.

4. Copy the signed kernel back to /boot.

sudo cp -bf vmlinuz.signed /boot/vmlinuz-$(uname -r)

The -b option in the command creates a backup of the original kernel image.

Updating the MOK Database
Because the key that you created isn't included in the UEFI Secure Boot Key Database, you
must enroll it into the MOK database in the Shim.

1. Import the key with the following command:

sudo mokutil --import /etc/ssl/certs/pubkey.der

Chapter 3
Setting Kernel Module Certificate Trust for UEK R6

3-11

The command prompts you for a single use password that you use when the MOK
Management service enrolls the key after you reboot the system.

2. Reboot the system.

The UEFI Shim automatically starts the Shim UEFI key manager at boot. Ensure
that you hit a key within 10 seconds to interrupt the boot process to enroll the MOK
key you created.

3. Press any key to perform MOK Management.

4. Select Enroll MOK from the menu.

5. Select View key 0 from the menu to display the key details.

6. Verify that the values presented match the key that you used to sign the module
and that you inserted into the kernel image, then press any key to return to the
Enroll MOK menu.

7. Select Continue from the menu.

The Enroll the key(s)? screen is displayed.

8. Select Yes to enroll the key.

9. At the password prompt, enter the password that you used when you imported the
key at the beginning of this procedure.

The key is enrolled within the UEFI Secure Boot key database.

10. When the Perform MOK management screen is displayed, select Reboot from the
menu.

Validating That a Key Is Trusted
After the system is booted, you can validate whether a key is included in the
appropriate kernel keyring. Validation depends on the kernel version that you're
running. Also, the keyring name that you need to check varies, as the implementation
has changed across kernel versions.

If the key that was generated for signing custom modules is listed within the correct
keyring, you can load modules that are signed with this key while in Secure Boot
mode.

UEK R7 Releases
UEK R7 introduces the .machine keyring. Keys within the .machine keyring are trusted
for use within the Oracle Linux kernel. All of the MOK keys are loaded into this keyring
at boot.

Just like the .builtin_trusted_keys keyring, the new .machine keyring is linked to
the .secondary_trusted_keys keyring. With this link in place, the .machine keyring is
referenced when the kernel uses the .secondary_trusted_keys keyring to validate a
signed kernel module, as illustrated by the following example:

sudo keyctl show %:.secondary_trusted_keys

Keyring
 772746105 ---lswrv 0 0 keyring: .secondary_trusted_keys

Chapter 3
Validating That a Key Is Trusted

3-12

 252396885 ---lswrv 0 0 _ keyring: .builtin_trusted_keys
 660166481 ---lswrv 0 0 | _ asymmetric: Oracle CA Server:
702a35b0d12005e5010c0614f7b8abf7c5bd5f73
 86702374 ---lswrv 0 0 | _ asymmetric: Oracle IMA signing CA:
a2f28976a05984028f7d1a4904ae14e8e468e551
 247354640 ---lswrv 0 0 | _ asymmetric: Oracle America, Inc.:
Ksplice Kernel Module Signing Key: 09010ebef5545fa7c54b626ef518e077b5b1ee4c
 264616160 ---lswrv 0 0 | _ asymmetric: Oracle Linux Kernel
Module Signing Key: 2bb352412969a3653f0eb6021763408ebb9bb5ab
 772320403 ---lswrv 0 0 _ keyring: .machine
 450491670 ---lswrv 0 0 _ asymmetric: Oracle America, Inc.:
7c552922286d66bcb33c53d7ee0f1cd716ecdc63
 100307441 ---lswrv 0 0 _ asymmetric: Oracle America, Inc.:
39bff3f0f578f26e527321cafda2a9cdbd71143c
 688922247 ---lswrv 0 0 _ asymmetric: Oracle America, Inc.:
4ff35c3e09ce586fa776d56468d86b022af272f1

UEK R6U3 and Later UEK R6 Updates (Includes RHCK on Oracle Linux 8
and Oracle Linux 9)

Keys within both the builtin_trusted_keys keyring and the platform keyring are trusted for
both module signing and for the kexec tools. You can follow the standard procedure to sign a
module and add it to the MOK database for the key to appear in the platform keyring. The
keyring is then automatically trusted.

Because a key can be loaded into the builtin_trusted_keys keyring, check both keyrings
for the module signing key, for example:

sudo keyctl show %:.builtin_trusted_keys

Keyring
 441234704 ---lswrv 0 0 keyring: .builtin_trusted_keys
 798307349 ---lswrv 0 0 _ asymmetric: Oracle CA Server:
32a7ceb6c56614c69b4729b455254bfaf09569a4
 277992501 ---lswrv 0 0 _ asymmetric: Oracle Linux RHCK Module
Signing Key: dd995b155c19b3a7c3ef7707b969e25f9639666e
1000618915 ---lswrv 0 0 _ asymmetric: Red Hat Enterprise Linux
kpatch signing key: 4d38fd864ebe18c5f0b72e3852e2014c3a676fc8
 199403819 ---lswrv 0 0 _ asymmetric: Red Hat Enterprise Linux
Driver Update Program (key 3): bf57f3e87362bc7229d9f465321773dfd1f77a80

sudo keyctl show %:.platform

Keyring
 705628740 ---lswrv 0 0 keyring: .platform
 89698906 ---lswrv 0 0 _ asymmetric: Microsoft Corporation UEFI
CA 2011: 13adbf4309bd82709c8cd54f316ed522988a1bd4
 497244381 ---lswrv 0 0 _ asymmetric: Oracle America, Inc.:
d6ee3a06a222bf4244b8986a531046e59c14eeef

Chapter 3
Validating That a Key Is Trusted

3-13

 710039804 ---lswrv 0 0 _ asymmetric: Oracle America,
Inc.: c65d1d746ae4cb127762e1dbd7ade48215703c5c
 730271863 ---lswrv 0 0 _ asymmetric: Oracle America Inc.:
2e7c1720d1c5df5254cc93d6decaa75e49620cf8
 535985802 ---lswrv 0 0 _ asymmetric: Oracle America,
Inc.: 795c5945e7cb2b6773b7797571413e3695062514
 607819007 ---lswrv 0 0 _ asymmetric: Oracle America,
Inc.: f9aec43f7480c408d681db3d6f19f54d6e396ff4
 99739320 ---lswrv 0 0 _ asymmetric: Oracle America,
Inc.: 430c85cb8b531c3d7b8c44adfafc2e5d49bb89d4
 231916335 ---lswrv 0 0 _ asymmetric: Microsoft Windows
Production PCA 2011: a92902398e16c49778cd90f99e4f9ae17c55af53
 866576656 ---lswrv 0 0 _ asymmetric: Oracle Linux Test
Certificate: d30dffa37bec20ecfb1d3caee53cd746282e8cad
 230958440 ---lswrv 0 0 _ asymmetric: Module Signing
Example Key: a43b4e638874b0656db2bc26216f56c0ac39f72b

UEK R6 releases prior to UEK R6U3
For UEK R6 releases before UEK R6U3, only those keys that are listed in the kernel
builtin_trusted_keys keyring are trusted for module signing. For this reason, module
signing keys are added to the kernel image as part of the process for signing modules.

To check this keyring whether the module signing key that you created is listed, type:

sudo keyctl show %:.builtin_trusted_keys

Keyring
 892034081 ---lswrv 0 0 keyring: .builtin_trusted_keys
 367808024 ---lswrv 0 0 _ asymmetric: Oracle CA Server:
fbcd3d4d950c6b2b0e01f0a146c5a4e3855ae704
 230958440 ---lswrv 0 0 _ asymmetric: Module Signing
Example Key: a43b4e638874b0656db2bc26216f56c0ac39f72b
 408597579 ---lswrv 0 0 _ asymmetric: Oracle America,
Inc.: Ksplice Kernel Module Signing Key:
09010ebef5545fa7c54b626ef518e077b5b1ee4c
 839574974 ---lswrv 0 0 _ asymmetric: Oracle Linux Kernel
Module Signing Key: 2bb352412969a3653f0eb6021763408ebb9bb5ab

UEK R5
For UEK R5, the built-in kernel keys, the UEFI Secure Boot database keys, and the
MOK database keys all appear in the kernel keyring, which is named
secondary_trusted_keys. Keys in this keyring are trusted for module signing and also
for the kexec tools.

Chapter 3
Validating That a Key Is Trusted

3-14

To check this keyring whether the module signing key that you created is listed, type:

sudo keyctl show %:.secondary_trusted_keys

Keyring
 847333689 --alswrv 0 0 keyring: .secondary_trusted_keys
 304199016 --alswrv 0 0 _ keyring: .builtin_trusted_keys
1008872915 --alswrv 0 0 | _ asymmetric: Oracle CA Server:
911ccad43f8dcc5e169cf7d89af9d28edd7e68aa
 252474061 --alswrv 0 0 | _ asymmetric: Oracle America, Inc.:
Ksplice Kernel Module Signing Key: 09010ebef5545fa7c54b626ef518e077b5b1ee4c
 164249372 --alswrv 0 0 | _ asymmetric: Oracle Linux Kernel
Module Signing Key: 2bb352412969a3653f0eb6021763408ebb9bb5ab
 567204509 --alswrv 0 0 _ asymmetric: Oracle America Inc.:
7b13dad59daa6adeacfff53c9a3b7e4f61fe068a
 202164133 --alswrv 0 0 _ asymmetric: Oracle America Inc.:
9c68fc11b0f85979388df4c8cc2c9c098928eda9
 600928065 --alswrv 0 0 _ asymmetric: Oracle America Inc.:
fe1ea0d2db0446565aec7d637e2509c9900398c1
1023599957 --alswrv 0 0 _ asymmetric: Oracle America Inc.:
bc5971954c749d3d309852ef0f3c236fa498e8f6
 837499579 --alswrv 0 0 _ asymmetric: Microsoft Corporation UEFI
CA 2011: 13adbf4309bd82709c8cd54f316ed522988a1bd4
 230958440 ---lswrv 0 0 _ asymmetric: Module Signing Example
Key: a43b4e638874b0656db2bc26216f56c0ac39f72b
 260150072 --alswrv 0 0 _ asymmetric: Microsoft Windows
Production PCA 2011: a92902398e16c49778cd90f99e4f9ae17c55af53

UEK R4 and RHCK on Oracle Linux 7
For UEK R4 and RHCK (3.10.0) on Oracle Linux 7 the built-in kernel keys, the UEFI Secure
Boot database keys, and the MOK database keys all appear in the kernel keyring, which is
named system_keyring. Keys in this keyring are trusted for module signing and also for the
kexec tools.

To check this keyring whether the module signing key that you created is listed, type:

sudo keyctl show %:.system_keyring

Keyring
 490420691 --alswrv 0 0 keyring: .system_keyring
 985562533 --alswrv 0 0 _ asymmetric: Oracle America, Inc.:
Ksplice Kernel Module Signing Key: 09010ebef5545fa7c54b626ef518e077b5b1ee4c
 117527109 --alswrv 0 0 _ asymmetric: Oracle America Inc.:
7b13dad59daa6adeacfff53c9a3b7e4f61fe068a
 752001237 --alswrv 0 0 _ asymmetric: Oracle America Inc.:
9c68fc11b0f85979388df4c8cc2c9c098928eda9
 405618281 --alswrv 0 0 _ asymmetric: Oracle America Inc.:
fe1ea0d2db0446565aec7d637e2509c9900398c1
1018396318 --alswrv 0 0 _ asymmetric: Oracle America Inc.:
bc5971954c749d3d309852ef0f3c236fa498e8f6
 264415311 --alswrv 0 0 _ asymmetric: Microsoft Corporation UEFI

Chapter 3
Validating That a Key Is Trusted

3-15

CA 2011: 13adbf4309bd82709c8cd54f316ed522988a1bd4
 811847839 --alswrv 0 0 _ asymmetric: Microsoft Windows
Production PCA 2011: a92902398e16c49778cd90f99e4f9ae17c55af53
 38542369 --alswrv 0 0 _ asymmetric: Oracle CA Server:
7efd70c89ee321c6be7098cd17fe7f4eded76a9e
 230958440 ---lswrv 0 0 _ asymmetric: Module Signing
Example Key: a43b4e638874b0656db2bc26216f56c0ac39f72b
 285314597 --alswrv 0 0 _ asymmetric: Oracle Linux Kernel
Module Signing Key: 2bb352412969a3653f0eb6021763408ebb9bb5ab

Chapter 3
Validating That a Key Is Trusted

3-16

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About UEFI Secure Boot
	How the Secure Boot Process Works
	Secure Boot Limitations
	About Secure Boot Keys
	Description of the Secure Boot Key Implementation
	Description of the Shim First Stage Boot Loader
	How Secure Boot Is Enforced Within Oracle Linux
	Enabling and Disabling Secure Boot
	About the MOK Database

	2 Tools and Applications for Administering Secure Boot
	About the pesign Tool
	About the efibootmgr Application
	About the mokutil Utility
	Disabling Secure Boot
	Validating SBAT Status

	About the dbxtool Command

	3 Signing Kernel Images and Kernel Modules for Use With Secure Boot
	Requirements for Signing Kernel Images and Kernel Modules
	Installing Required Packages
	Generating a Signing Certificate

	Signing the Kernel for Secure Boot
	Configuring an NSS Database
	Signing the Kernel Image
	Updating the MOK Database

	Signing the Kernel Module for Secure Boot
	Signing the Kernel Module
	Updating the MOK Database with the Kernel Module Certificate

	Setting Kernel Module Certificate Trust for UEK R6
	Signing the Kernel Module
	Inserting the Module Certificate in the Kernel Image
	Signing the Kernel Image
	Updating the MOK Database

	Validating That a Key Is Trusted
	UEK R7 Releases
	UEK R6U3 and Later UEK R6 Updates (Includes RHCK on Oracle Linux 8 and Oracle Linux 9)
	UEK R6 releases prior to UEK R6U3
	UEK R5
	UEK R4 and RHCK on Oracle Linux 7

