
Oracle Linux
DTrace Reference Guide

E38608-27
January 2025

Oracle Linux DTrace Reference Guide,

E38608-27

Copyright © 2013, 2025, Oracle and/or its affiliates.

Contents

 Preface

Documentation License xii

Conventions xii

Documentation Accessibility xiii

Access to Oracle Support for Accessibility xiii

Diversity and Inclusion xiii

1 About DTrace

Getting Started With DTrace 1-1

Providers and Probes 1-5

2 The D Programming Language

D Program Structure 2-1

Probe Clauses and Declarations 2-1

Probe Descriptions 2-2

Clause Predicates 2-3

Probe Actions 2-3

Order of Execution 2-3

Use of the C Preprocessor 2-4

Compilation and Instrumentation 2-4

Variables and Arithmetic Expressions 2-6

Predicate Examples 2-8

Output Formatting Examples 2-11

Array Overview 2-13

Associative Array Example 2-14

External Symbols and Types 2-15

Types, Operators, and Expressions 2-16

Identifier Names and Keywords 2-16

Data Types and Sizes 2-17

Constants 2-18

Arithmetic Operators 2-20

Relational Operators 2-20

iii

Logical Operators 2-21

Bitwise Operators 2-22

Assignment Operators 2-22

Increment and Decrement Operators 2-23

Conditional Expressions 2-24

Type Conversions 2-24

Operator Precedence 2-25

Variables 2-27

Scalar Variables 2-28

Associative Arrays 2-29

Thread-Local Variables 2-30

Clause-Local Variables 2-32

Built-In Variables 2-34

External Variables 2-37

Pointers and Scalar Arrays 2-37

Pointers and Addresses 2-37

Pointer Safety 2-38

Array Declarations and Storage 2-39

Pointer and Array Relationship 2-40

Pointer Arithmetic 2-41

Generic Pointers 2-42

Multi-Dimensional Arrays 2-42

Pointers to DTrace Objects 2-42

Pointers and Address Spaces 2-43

DTrace Support for Strings 2-43

String Representation 2-43

String Constants 2-44

String Assignment 2-44

String Conversion 2-45

String Comparison 2-45

Structs and Unions 2-46

Structs 2-46

Pointers to Structs 2-48

Unions 2-49

Member Sizes and Offsets 2-49

Bit-Fields 2-50

Type and Constant Definitions 2-50

typedefs 2-50

Enumerations 2-51

Inlines 2-52

Type Namespaces 2-53

iv

3 Aggregations

Aggregation Concepts 3-1

Basic Aggregation Statement 3-2

Aggregation Examples 3-3

Basic Aggregation 3-3

Using Keys 3-4

Using the avg Function 3-5

Using the stddev Function 3-6

Using the quantize Function 3-7

Using the lquantize Function 3-8

Printing Aggregations 3-11

Data Normalization 3-11

Clearing Aggregations 3-14

Truncating Aggregations 3-15

Minimizing Drops 3-16

4 Actions and Subroutines

Action Functions 4-1

Default Action 4-1

Data Recording Actions 4-2

freopen 4-2

ftruncate 4-2

func 4-2

mod 4-3

printa 4-3

printf 4-3

stack 4-3

sym 4-4

trace 4-4

tracemem 4-5

ustack 4-5

uaddr 4-6

usym 4-6

Destructive Actions 4-7

copyout (Process-Destructive) 4-7

copyoutstr (Process-Destructive) 4-7

raise (Process-Destructive) 4-7

stop (Process-Destructive) 4-7

system (Process-Destructive) 4-8

chill (Kernel-Destructive) 4-9

v

panic (Kernel-Destructive) 4-10

Special Actions 4-10

Speculative Actions 4-10

exit 4-10

setopt 4-10

Subroutine Functions 4-10

alloca 4-11

basename 4-11

bcopy 4-11

cleanpath 4-11

copyin 4-11

copyinstr 4-12

copyinto 4-12

d_path 4-12

dirname 4-12

getmajor 4-13

getminor 4-13

htonl 4-13

htonll 4-13

htons 4-13

index 4-13

inet_ntoa 4-13

inet_ntoa6 4-13

inet_ntop 4-14

lltostr 4-14

mutex_owned 4-14

mutex_owner 4-14

mutex_type_adaptive 4-14

mutex_type_spin 4-14

ntohl 4-15

ntohll 4-15

ntohs 4-15

progenyof 4-15

rand 4-15

rindex 4-15

rw_iswriter 4-15

rw_read_held 4-16

rw_write_held 4-16

speculation 4-16

strchr 4-16

strjoin 4-16

strlen 4-16

vi

strrchr 4-16

strstr 4-17

strtok 4-17

substr 4-17

5 Buffers and Buffering

Principal Buffers 5-1

Principal Buffer Policies 5-1

switch Policy 5-1

fill Policy 5-2

fill Policy and END Probes 5-2

ring Policy 5-3

Other Buffers 5-3

Buffer Sizes 5-3

Buffer Resizing Policy 5-4

6 Output Formatting

printf Action 6-1

Conversion Specifications 6-2

Flag Specifiers 6-2

Width and Precision Specifiers 6-3

Size Prefixes 6-4

Conversion Formats 6-4

printa Action 6-7

trace Default Format 6-9

7 Speculative Tracing

About Speculative Tracing 7-1

Speculation Interfaces 7-1

Creating a Speculation 7-2

Using a Speculation 7-2

Committing a Speculation 7-3

Discarding a Speculation 7-3

Example of a Speculation 7-3

Speculation Options and Tuning 7-5

8 dtrace Command Reference

dtrace Command Description 8-1

vii

dtrace Command Options 8-1

dtrace Command Operands 8-5

dtrace Command Exit Status 8-5

9 Scripting

Interpreter Files 9-1

Macro Variables 9-2

Macro Arguments 9-4

Target Process ID 9-5

10

Options and Tunables

Consumer Options 10-1

Modifying Options 10-9

11

DTrace Providers

dtrace Provider 11-1

BEGIN Probe 11-1

END Probe 11-2

ERROR Probe 11-2

dtrace Stability 11-4

profile Provider 11-4

profile-n Probes 11-4

tick-n Probes 11-5

profile Probe Arguments 11-5

profile Probe Creation 11-5

prof Stability 11-6

fbt Provider 11-6

fbt Probes 11-7

fbt Probe Arguments 11-7

fbt Examples 11-7

Module Loading and fbt 11-8

fbt Stability 11-8

syscall Provider 11-8

syscall Probes 11-9

System Call Anachronisms 11-9

Subcoded System Calls 11-9

New System Calls 11-9

Replaced System Calls 11-10

Large File System Calls 11-10

viii

Private System Calls 11-11

syscall Probe Arguments 11-11

syscall Stability 11-11

sdt provider 11-11

Creating sdt Probes 11-12

Declaring Probes 11-12

sdt Probe Arguments 11-13

sdt Stability 11-13

pid Provider 11-13

Naming pid Probes 11-14

pid Probe Arguments 11-14

pid Stability 11-15

proc Provider 11-15

proc Probes 11-15

proc Probe Arguments 11-17

lwpsinfo_t 11-18

psinfo_t 11-19

proc Examples 11-20

exec 11-20

start and exit Probes 11-21

signal-send 11-22

proc Stability 11-23

sched Provider 11-23

sched Probes 11-23

sched Probe Arguments 11-26

cpuinfo_t 11-26

sched Examples 11-27

on-cpu and off-cpu Probes 11-27

enqueue and dequeue Probes 11-30

sleep and wakeup Probes 11-34

preempt and remain-cpu Probes 11-36

tick 11-37

sched Stability 11-39

io Provider 11-39

io Probes 11-39

io Probe Arguments 11-40

bufinfo_t 11-40

devinfo_t 11-44

fileinfo_t 11-44

io Examples 11-45

io Stability 11-48

fasttrap Provider 11-48

ix

fasttrap Probes 11-48

fasttrap Stability 11-49

12

User Process Tracing

copyin and copyinstr Subroutines 12-1

Avoiding Errors 12-2

Eliminating dtrace Interference 12-3

Using the syscall Provider 12-3

ustack Action 12-4

uregs[] Array 12-5

Using the pid Provider 12-7

User Function Boundary Tracing 12-7

Tracing Arbitrary Instructions 12-8

13

Statically Defined Tracing of User Applications

Choosing the Probe Points 13-1

Adding Probes to an Application 13-2

Defining Providers and Probes 13-2

Adding Probes to Application Code 13-3

Testing if a Probe Is Enabled 13-3

Building Applications With Probes 13-4

Using Statically Defined Probes 13-4

14

Statically Defined Tracing of Kernel Modules

Inserting Static Probe Points 14-2

revdev.h Example 14-2

rev_mod.c Example 14-3

rev_dev.c Example 14-4

Building Modules With Static Probes 14-5

Kbuild Example 14-5

Makefile Example 14-5

testrevdev.c Example 14-6

Using DTrace to Test Modules With Static Probes 14-7

15

Performance Considerations

Limit Enabled Probes 15-1

Using Aggregations 15-1

x

Using Cacheable Predicates 15-2

16

DTrace Stability Features

Stability Levels 16-1

Dependency Classes 16-3

Interface Attributes 16-4

Stability Computations and Reports 16-5

Stability Enforcement 16-7

17

Translators

Translator Declarations 17-1

xlate D Operator 17-3

Process Model Translators 17-4

Stable Translations 17-4

18

DTrace Versioning

Versions and Releases 18-1

Versioning Options 18-3

Provider Versioning 18-4

xi

Preface

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

For more information about DTrace, see Oracle Linux: DTrace Release Notes and
Oracle Linux: Using DTrace for System Tracing.

Oracle Linux: DTrace Reference Guide describes how to use DTrace. The guide also
describes some DTrace providers in detail. Most of the information in this document is generic
and applies to all releases of Oracle Linux 6 and Oracle Linux 7, with support for the
Unbreakable Enterprise Kernel Release 4 (UEK R4) and Unbreakable Enterprise Kernel
Release 5 (UEK R5) kernels. Note that UEK R5 is not supported on Oracle Linux 6.

Note:

This release of DTrace supports systems that use the x86_64 processor architecture,
but not systems that use 32-bit x86 processors.

DTrace support has also been extended to the 64-bit Arm architecture in this release.
However, note that some providers might not be supported on this architecture.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

Preface

xii

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-guide/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Convention Meaning

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

xiii

https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

1
About DTrace

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

For more information about DTrace, see Oracle Linux: DTrace Release Notes and
Oracle Linux: Using DTrace for System Tracing.

DTrace provides dynamic tracing, which is the ability to instrument a running operating system
kernel.

DTrace enables you to associate actions, such as collecting or printing stack traces, function
arguments, timestamps, and statistical aggregates, with probes, which can be runtime events
or source-code locations. The D language is powerful, yet simple. DTrace is dynamic, has low
overhead, and is safe to use on production systems. It enables you to examine the behavior of
user programs and the operating system, to understand how your system works, to track down
performance problems, and to locate the causes of aberrant behavior.

DTrace is a kernel framework that dynamically traces data into buffers that are read by
consumers. On Oracle Linux, you will probably only use one consumer, the dtrace command-
line utility, which contains the D language that grants you full access to the framework's power.

This guide is largely a reference manual. For information about how to use DTrace and step-
by-step examples, see Oracle Linux: DTrace Tutorial.

Getting Started With DTrace

Note:

Most uses of DTrace require root privileges.

Prior to installing the dtrace_utils package, ensure that you are subscribed to the ULN
channel that corresponds to the UEK kernel that you are running. For example, if you are
running Oracle Linux 7 with UEK R5, the dtrace_utils package is available in the ol7_UEKR5
channel. For more information about subscribing to channels on ULN, see Oracle Linux:
Unbreakable Linux Network User's Guide for Oracle Linux 6 and Oracle Linux 7.

For information about updating your Oracle Linux or UEK release, see the documentation at
https://docs.oracle.com/en/operating-systems/linux.html.

Install the dtrace-utils package:

1-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-tutorial/
https://docs.oracle.com/en/operating-systems/oracle-linux/uln-user/
https://docs.oracle.com/en/operating-systems/oracle-linux/uln-user/
https://docs.oracle.com/en/operating-systems/linux.html

yum install dtrace-utils

If you want to implement a libdtrace consumer:

yum install dtrace-utils-devel

If you want to develop a DTrace provider:

yum install dtrace-modules-provider-headers

To confirm that dtrace is properly installed on your system and that you have all of the
required privileges, use the dtrace -l command. Running this command should load any of
the required kernel modules and the output should indicate any available probes.

Note:

The dtrace-utils package installs dtrace in /usr/sbin/dtrace. Make sure your
path detects this path instead of the similarly named utility that is located
in /usr/bin/dtrace, which is installed by the systemtap-sdt-devel package.

A provider is a set of probes with a particular kind of instrumentation.

Chapter 1
Getting Started With DTrace

1-2

Note:

To use a provider's probes, the kernel module that supports that provider must be
loaded. Typically, dtrace automatically handles this for you. Upon first use, it will
load the dtrace module and all of the modules that are listed in /etc/dtrace-
modules, which the system administrator can edit.

In some cases, the kernel module that supports the desired provider must be loaded
manually, for example:

more /etc/dtrace-modules
sdt
systrace
profile
fasttrap
modprobe sdt
modprobe systrace
modprobe profile
modprobe fasttrap

These required modules are different from the modules, if any, that are instrumented
by the provider's probes and are found in the dtrace -l output. For example, while
the module that is required to support proc probes is sdt, the module that these
probes instrument is vmlinux, as shown in the following output:

dtrace -l -P proc
 ID PROVIDER MODULE FUNCTION NAME
 197 proc vmlinux _do_fork lwp-create
 198 proc vmlinux _do_fork create
 225 proc vmlinux do_exit lwp-exit
 226 proc vmlinux do_exit exit
 275 proc vmlinux do_sigtimedwait signal-clear
...

You dynamically assign actions to be taken at probes, which can be runtime events or source-
code locations. Every probe in DTrace has two names: a unique integer ID, which is assigned
as the probes are loaded, and a human-readable string name. You can start learning about
DTrace by building some very simple requests that use the probe named BEGIN. The BEGIN
probe fires once each time you start a new tracing request.

Use the dtrace command with the -n option to enable a probe by specifying its name:

dtrace -n BEGIN
dtrace: description 'BEGIN' matched 1 probe
CPU ID FUNCTION:NAME
 0 1 :BEGIN
^C
#

The default output of the previous example displays the following information: the probes that
were matched, column headers, and then one row each time a probe fires. The default per row
is the CPU where the probe fired and information about which probe fired. DTrace remains
paused, waiting for other probes to fire. To exit, press Ctrl-C.

Chapter 1
Getting Started With DTrace

1-3

You can construct DTrace requests by using arbitrary numbers of probes and actions. For
example, create a simple request using two probes by adding the END probe to the command
shown in the previous example. The END probe fires once when tracing is completed.

Type the following command, and then press Ctrl-C in your shell again, after you see the line
of output for the BEGIN probe:

dtrace -n BEGIN -n END
dtrace: description 'BEGIN' matched 1 probe
dtrace: description 'END' matched 1 probe
CPU ID FUNCTION:NAME
 0 1 :BEGIN
^C
 1 2 :END

Pressing Ctrl-C to exit dtrace triggers the END probe. The dtrace command reports this
probe firing before exiting.

In addition to constructing DTrace experiments on the command line, you can also write
DTrace experiments in text files by using the D programming language.

In a text editor, create a new file named hello.d and type your first D program:

BEGIN
{
 trace("hello, world");
 exit(0);
}

After you save the program, you can run it by using the dtrace -s command, as shown in
the following example:

dtrace -s hello.d
dtrace: script 'hello.d' matched 1 probe
CPU ID FUNCTION:NAME
 0 1 :BEGIN hello, world
#

The dtrace command printed the same output as the previous example, followed by the
text, ”hello, world”. However, unlike the previous example, you did not have to wait and then
press Ctrl-C. These changes were the result of the actions that you specified for the BEGIN
probe in hello.d.

To understand what happened, let us explore the structure of your D program in more detail.

• Each D program consists of a series of clauses, and each clause describes one or more
probes to enable, as well as an optional set of actions to perform when the probes fires.

• The actions are listed as a series of statements that are enclosed in braces ({}) that follow
the probe name. Each statement ends with a semicolon (;).

• The first statement uses the trace() function to indicate that DTrace should record the
specified argument, the string, ”hello, world”, when the BEGIN probe fires and then print it
out.

• The second statement uses the exit() function to indicate that DTrace should cease
tracing and exit the dtrace command.

DTrace provides a set of useful functions such as trace() and exit() for you to call in your D
programs.

Chapter 1
Getting Started With DTrace

1-4

To call a function, you specify its name, followed by a parenthesized list of arguments. See
Actions and Subroutines for the complete set of D functions.

If you are familiar with the C programming language, you probably have noticed that DTrace's
D programming language is very similar to C. Indeed, D is derived from a large subset of C,
combined with a special set of functions and variables to help make tracing easy. These
features are described in more detail in subsequent chapters. If you have written a C program
previously, you should be able to immediately transfer most of your knowledge to building
tracing programs in D. If you have never written a C program, learning D is still relatively easy.
By the end of this chapter, you will understand all of the syntax. First, let us take a step back
from language rules and learn more about how DTrace works. Then, later in this guide, you will
learn how to build more interesting D programs.

Providers and Probes
In the preceding examples, you learned how to use two simple probes named BEGIN and END.
DTrace probes come in sets that are called providers, each of which performs a particular kind
of instrumentation to create probes. When you use DTrace, each provider is given an
opportunity to publish the probes that it can provide to the DTrace framework. You can then
enable and bind your tracing actions to any of the probes that have been published.

You can list all of the available probes on your system by typing the following command:

dtrace -l
 ID PROVIDER MODULE FUNCTION NAME
 1 dtrace BEGIN
 2 dtrace END
 3 dtrace ERROR
 4 syscall vmlinux read entry
 5 syscall vmlinux read return
 6 syscall vmlinux write entry
 7 syscall vmlinux write return
 ...

Note that it might take some time for all of the output to be displayed.

To count all of the probes, type the following command:

dtrace -l | wc -l
4097

Note that you might observe a different total on your system, as the number of probes can
vary, depending on the following: your operating platform, the software you have installed, and
the provider modules you have loaded. Note also that this output is not the complete list. As
will be described later, some providers offer the ability to create new probes on-the-fly, based
on your tracing requests, which makes the actual number of DTrace probes virtually unlimited.
Notice that each probe has the two names previously mentioned: an integer ID and a human-
readable name. The human-readable name is composed of four parts that are displayed as
separate columns in the dtrace output and are as follows:

provider
A name of the DTrace provider that is publishing this probe.

module
If this probe corresponds to a specific program location, the name of the kernel module,
library, or user-space program in which the probe is located.

Chapter 1
Providers and Probes

1-5

function
If this probe corresponds to a specific program location, the name of the program function in
which the probe is located.

name
A name that provides some idea of the probe's semantic meaning, such as BEGIN or END.

When writing the full human-readable name of a probe, write all four parts of the name
separated by colons like this:

provider:module:function:name

Notice that some of the probes in the list do not have a module and function, such as the BEGIN
and END probes that were used previously. Some probes leave these two fields blank because
these probes do not correspond to any specific instrumented program function or location.
Instead, these probes refer to a more abstract concept, such as the idea of the end of your
tracing request.

By convention, if you do not specify all of the fields of a probe name, DTrace matches your
request to all of the probes with matching values in the parts of the name that you do specify.
In other words, when you used the probe name BEGIN in the previous exercise, you were
actually directing DTrace to match any probe with the name field BEGIN, regardless of the value
of the provider, module, and function fields. Because there is only one probe matching that
description, the result is the same. You now know that the true name of the BEGIN probe is
dtrace:::BEGIN, which indicates that this probe is provided by the DTrace framework itself and
is not specific to any function. Therefore, the hello.d program could be written as follows and
would produce the same result:

dtrace:::BEGIN
{
 trace("hello, world");
 exit(0);
}

Chapter 1
Providers and Probes

1-6

2
The D Programming Language

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

For more information about DTrace, see Oracle Linux: DTrace Release Notes and
Oracle Linux: Using DTrace for System Tracing.

The D systems programming language enables you to interface with operating system APIs
and with the hardware. This chapter formally describes the overall structure of a D program
and the various features for constructing probe descriptions that match more than one probe.
The chapter also discusses the use of the C preprocessor, cpp, with D programs.

D Program Structure
A D program, also known as a script, consists of a set of clauses that describe the probes to
enable and the predicates and actions to bind to these probes. D programs can also contain
declarations of variables and definitions of new types. See Variables and Type and Constant
Definitions for more details.

Probe Clauses and Declarations
As shown in the examples in this guide thus far, a D program source file consists of one or
more probe clauses that describe the instrumentation to be enabled by DTrace. Each probe
clause uses the following general form:

probe descriptions
/ predicate /
{
 action statements
}

Note that the predicate and list of action statements may be omitted. Any directives that are
found outside of probe clauses are referred to as declarations. Declarations may only be used
outside of probe clauses. No declarations are permitted inside of the enclosing braces ({}).
Also, declarations may not be interspersed between the elements of the probe clause in
previous example. You can use white space to separate any D program elements and to indent
action statements.

Declarations can be used to declare D variables and external C symbols or to define new types
for use in D. For more details, see Variables and Type and Constant Definitions. Special D
compiler directives, called pragmas, may also appear anywhere in a D program, including
outside of probe clauses. D pragmas are specified on lines beginning with a # character. For

2-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/

example, D pragmas are used to set DTrace runtime options. See Options and Tunables for
more details.

Probe Descriptions
Every program clause begins with a list of one or more probe descriptions, each taking the
following usual form:

provider:module:function:name
If one or more fields of the probe description are omitted, the specified fields are interpreted
from right to left by the D compiler. For example, the probe description foo:bar would match a
probe with the function foo and name bar, regardless of the value of the probe's provider and
module fields. Therefore, a probe description is really more accurately viewed as a pattern that
can be used to match one or more probes based on their names.

You should write your D probe descriptions specifying all four field delimiters so that you can
specify the desired provider on the left-hand side. If you don't specify the provider, you might
obtain unexpected results if multiple providers publish probes with the same name. Similarly,
subsequent versions of DTrace might include new providers with probes that unintentionally
match your partially specified probe descriptions. You can specify a provider but match any of
its probes by leaving any of the module, function, and name fields blank. For example, the
description syscall::: can be used to match every probe that is published by the DTrace
syscall provider.

Probe descriptions also support a pattern-matching syntax similar to the shell globbing pattern
matching syntax that is described in the sh(1) manual page. Before matching a probe to a
description, DTrace scans each description field for the characters *, ?, and [. If one of these
characters appears in a probe description field and is not preceded by a \, the field is regarded
as a pattern. The description pattern must match the entire corresponding field of a given
probe. To successfully match and enable a probe, the complete probe description must match
on every field. A probe description field that is not a pattern must exactly match the
corresponding field of the probe. Note that a description field that is empty matches any probe.

The special characters in the following table are recognized in probe name patterns.

Table 2-1 Probe Name Pattern Matching Characters

Symbol Description

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A
pair of characters separated by - matches any
character between the pair, inclusive. If the
first character after the [is !, any character not
enclosed in the set is matched.

\ Interpret the next character as itself, without
any special meaning.

Pattern match characters can be used in any or all of the four fields of your probe descriptions.
You can also use patterns to list matching probes by them on the command line by using the
dtrace -l command. For example, the dtrace -l -f kmem_* command lists all of the
DTrace probes in functions with names that begin with the prefix kmem_.

Chapter 2
D Program Structure

2-2

If you want to specify the same predicate and actions for more than one probe description, or
description pattern, you can place the descriptions in a comma-separated list. For example, the
following D program would trace a timestamp each time probes associated with entry to
system calls containing the strings “read” or “write” fire:

syscall::*read*:entry, syscall::*write*:entry
{
 trace(timestamp);
}

A probe description can also specify a probe by using its integer probe ID, for example, the
following clause could be used to enable probe ID 12345, as reported by dtrace -l -i
12345:

12345
{
 trace(timestamp);
}

Note:

You should always write your D programs using human-readable probe descriptions.
Integer probe IDs are not guaranteed to remain consistent as DTrace provider kernel
modules are loaded and unloaded or following a reboot.

Clause Predicates
Predicates are expressions that are enclosed in a pair of slashes (//) that are then evaluated
at probe firing time to determine whether the associated actions should be executed.
Predicates are the primary conditional construct that are used for building more complex
control flow in a D program. You can omit the predicate section of the probe clause entirely for
any probe. In which case, the actions are always executed when the probe fires.

Predicate expressions can use any of the D operators and can refer to any D data objects such
as variables and constants. The predicate expression must evaluate to a value of integer or
pointer type so that it can be considered as true or false. As with all D expressions, a zero
value is interpreted as false and any non-zero value is interpreted as true.

Probe Actions
Probe actions are described by a list of statements that are separated by semicolons (;) and
enclosed in braces ({}). An empty set of braces with no statements included, leads to the
default actions, which are to print the CPU and the probe.

Order of Execution
The actions for a probe are executed in program order, regardless of whether those actions are
in the same clause or in different clauses.

No other ordering constraints are imposed. It is not uncommon for the output from two distinct
probes to appear interspersed or in an opposite order from which the probes fired. Also, output
might appear misordered if it came from different CPUs.

Chapter 2
D Program Structure

2-3

Use of the C Preprocessor
The C programming language that is used for defining Linux system interfaces includes a
preprocessor that performs a set of initial steps in C program compilation. The C preprocessor
is commonly used to define macro substitutions, where one token in a C program is replaced
with another predefined set of tokens, or to include copies of system header files. You can use
the C preprocessor in conjunction with your D programs by specifying the dtrace command
with the -c option. This option causes the dtrace command to execute the cpp preprocessor
on your program source file and then pass the results to the D compiler. The C preprocessor is
described in more detail in The C Programming Language by Kernighan and Ritchie, details of
which are referenced in Preface.

The D compiler automatically loads the set of C type descriptions that is associated with the
operating system implementation. However, you can use the preprocessor to include other
type definitions such as the types that are used in your own C programs. You can also use the
preprocessor to perform other tasks such as creating macros that expand to chunks of D code
and other program elements. If you use the preprocessor with your D program, you may only
include files that contain valid D declarations. The D compiler can correctly interpret C header
files that include only external declarations of types and symbols. However, the D compiler
cannot parse C header files that include additional program elements, such as C function
source code, which produces an appropriate error message.

Compilation and Instrumentation
When you write traditional programs, you often use a compiler to convert your program from
source code into object code that you can execute. When you use the dtrace command you
are invoking the compiler for the D language that was used in a previous example to write the
hello.d program. When your program is compiled, it is sent into the operating system kernel
for execution by DTrace. There, the probes named in your program are enabled and the
corresponding provider performs whatever instrumentation is required in order to activate
them.

All of the instrumentation in DTrace is completely dynamic: probes are enabled discretely only
when you are using them. No instrumented code is present for inactive probes, so your system
does not experience any kind of performance degradation when you are not using DTrace.
After your experiment is complete and the dtrace command exits, all of the probes that you
used are automatically disabled and their instrumentation is removed, returning your system to
its exact original state. No effective difference exists between a system where DTrace is not
active and a system where the DTrace software is not installed, other than a few megabytes of
disk space that is required for type information and for DTrace itself.

The instrumentation for each probe is performed dynamically on the live, running operating
system or on user processes that you select. The system is not quiesced or paused in any way
and instrumentation code is added only for the probes that you enable. As a result, the probe
effect of using DTrace is limited to exactly what you direct DTrace to do: no extraneous data is
traced and no one, big “tracing switch” is turned on in the system. All of the DTrace
instrumentation is designed to be as efficient as possible. These features enable you to use
DTrace in production to solve real problems in real time.

The DTrace framework also provides support for an arbitrary number of virtual clients. You can
run as many simultaneous DTrace experiments and commands as you like, limited only by
your system's memory capacity. The commands all operate independently using the same
underlying instrumentation. This same capability also permits any number of distinct users on
the system to take advantage of DTrace simultaneously: developers, administrators, and

Chapter 2
Compilation and Instrumentation

2-4

service personnel can all work together, or on distinct problems, using DTrace on the same
system without interfering with one another.

Unlike programs that are written in C and C++, and similar to programs that are written in the
Java programming language, DTrace D programs are compiled into a safe, intermediate form
that is used for execution when your probes fire. This intermediate form is validated for safety
when your program is first examined by the DTrace kernel software. The DTrace execution
environment also handles any runtime errors that might occur during your D program's
execution, including dividing by zero, dereferencing invalid memory, and so on, and reports
them to you. As a result, you can never construct an unsafe program that would cause DTrace
to inadvertently damage the operating system kernel or one of the processes running on your
system. These safety features enable you to use DTrace in a production environment without
being concerned about crashing or corrupting your system. If you make a programming
mistake, DTrace reports the error to you and disables your instrumentation, enabling you to
correct the mistake and try again. The DTrace error reporting and debugging features are
described later in this guide.

#unique_22/unique_22_Connect_42_dt_archfig_dlang shows the different components of the
DTrace architecture.

Overview of the DTrace Architecture and Components

Now that you understand how DTrace works, let us return to the tour of the D programming
language and start writing some more interesting programs.

Chapter 2
Compilation and Instrumentation

2-5

Variables and Arithmetic Expressions
Our next example program makes use of the DTrace profile provider to implement a simple
time-based counter. The profile provider is able to create new probes based on the
descriptions found in your D program. If you create a probe named profile:::tick- n sec for
some integer n, the profile provider creates a probe that fires every n seconds. Type the
following source code and save it in a file named counter.d:

/*
 * Count off and report the number of seconds elapsed
 */

dtrace:::BEGIN
{
 i = 0;
}

profile:::tick-1sec
{
 i = i + 1;
 trace(i);
}

dtrace:::END
{
 trace(i);
}

When executed, the program counts off the number of elapsed seconds until you press Ctrl-
C, and then prints the total at the end:

dtrace -s counter.d
dtrace: script 'counter.d' matched 3 probes
CPU ID FUNCTION:NAME
 1 638 :tick-1sec 1
 1 638 :tick-1sec 2
 1 638 :tick-1sec 3
 1 638 :tick-1sec 4
 1 638 :tick-1sec 5
 1 638 :tick-1sec 6
 1 638 :tick-1sec 7
^C
 1 638 :tick-1sec 8
 0 2 :END 8

The first three lines of the program are a comment to explain what the program does. Similar to
C, C++, and the Java programming language, the D compiler ignores any characters between
the /* and */ symbols. Comments can be used anywhere in a D program, including both
inside and outside your probe clauses.

The BEGIN probe clause defines a new variable named i and assigns it the integer value zero
using the statement:

i = 0;

Unlike C, C++, and the Java programming language, D variables can be created by simply
using them in a program statement; explicit variable declarations are not required. When a
variable is used for the first time in a program, the type of the variable is set based on the type
of its first assignment. Each variable has only one type over the lifetime of the program, so

Chapter 2
Variables and Arithmetic Expressions

2-6

subsequent references must conform to the same type as the initial assignment. In counter.d,
the variable i is first assigned the integer constant zero, so its type is set to int. D provides the
same basic integer data types as C, including those in the following table.

Data Type Description

char Character or single byte integer

int Default integer

short Short integer

long Long integer

long long Extended long integer

The sizes of these types are dependent on the operating system kernel's data model,
described in Types, Operators, and Expressions. D also provides built-in friendly names for
signed and unsigned integer types of various fixed sizes, as well as thousands of other types
that are defined by the operating system.

The central part of counter.d is the probe clause that increments the counter i:

profile:::tick-1sec
{
 i = i + 1;
 trace(i);
}

This clause names the probe profile:::tick-1sec, which tells the profile provider to create
a new probe that fires once per second on an available processor. The clause contains two
statements, the first incrementing i, and the second tracing (printing) the new value of i. All
the usual C arithmetic operators are available in D. For the complete list, see Types,
Operators, and Expressions. The trace function takes any D expression as its argument, so
you could write counter.d more concisely as follows:

profile:::tick-1sec
{
 trace(++i);
}

If you want to explicitly control the type of the variable i, you can surround the desired type in
parentheses when you assign it in order to cast the integer zero to a specific type. For
example, if you wanted to determine the maximum size of a char in D, you could change the
BEGIN clause as follows:

dtrace:::BEGIN
{
 i = (char)0;
}

After running counter.d for a while, you should see the traced value grow and then wrap
around back to zero. If you grow impatient waiting for the value to wrap, try changing the
profile probe name to profile:::tick-100msec to make a counter that increments once
every 100 milliseconds, or 10 times per second.

Chapter 2
Variables and Arithmetic Expressions

2-7

Predicate Examples
For runtime safety, one major difference between D and other programming languages such as
C, C++, and the Java programming language is the absence of control-flow constructs such as
if-statements and loops. D program clauses are written as single straight-line statement lists
that trace an optional, fixed amount of data. D does provide the ability to conditionally trace
data and modify control flow using logical expressions called predicates. A predicate
expression is evaluated at probe firing time prior to executing any of the statements associated
with the corresponding clause. If the predicate evaluates to true, represented by any non-zero
value, the statement list is executed. If the predicate is false, represented by a zero value,
none of the statements are executed and the probe firing is ignored.

Type the following source code for the next example and save it in a file named countdown.d:

dtrace:::BEGIN
{
 i = 10;
}

profile:::tick-1sec
/i > 0/
{
 trace(i--);
}

profile:::tick-1sec
/i == 0/
{
 trace("blastoff!");
 exit(0);
}

This D program implements a 10-second countdown timer using predicates. When executed,
countdown.d counts down from 10 and then prints a message and exits:

dtrace -s countdown.d
dtrace: script 'countdown.d' matched 3 probes
CPU ID FUNCTION:NAME
 0 638 :tick-1sec 10
 0 638 :tick-1sec 9
 0 638 :tick-1sec 8
 0 638 :tick-1sec 7
 0 638 :tick-1sec 6
 0 638 :tick-1sec 5
 0 638 :tick-1sec 4
 0 638 :tick-1sec 3
 0 638 :tick-1sec 2
 0 638 :tick-1sec 1
 0 638 :tick-1sec blastoff!
#

This example uses the BEGIN probe to initialize an integer i to 10 to begin the countdown.
Next, as in the previous example, the program uses the tick-1sec probe to implement a timer
that fires once per second. Notice that in countdown.d, the tick-1sec probe description is
used in two different clauses, each with a different predicate and action list. The predicate is a
logical expression surrounded by enclosing slashes // that appears after the probe name and
before the braces {} that surround the clause statement list.

Chapter 2
Predicate Examples

2-8

The first predicate tests whether i is greater than zero, indicating that the timer is still running:

profile:::tick-1sec
/i > 0/
{
 trace(i--);
}

The relational operator > means greater than and returns the integer value zero for false and
one for true. All of the C relational operators are supported in D. For the complete list, see
Types, Operators, and Expressions. If i is not yet zero, the script traces i and then
decrements it by one using the -- operator.

The second predicate uses the == operator to return true when i is exactly equal to zero,
indicating that the countdown is complete:

profile:::tick-1sec
/i == 0/
{
 trace("blastoff!");
 exit(0);
}

Similar to the first example, hello.d, countdown.d uses a sequence of characters enclosed in
double quotes, called a string constant, to print a final message when the countdown is
complete. The exit function is then used to exit dtrace and return to the shell prompt.

If you look back at the structure of countdown.d, you will see that by creating two clauses with
the same probe description but different predicates and actions, we effectively created the
logical flow:

i = 10
once per second,
 if i is greater than zero
 trace(i--);
 if i is equal to zero
 trace("blastoff!");
 exit(0);

When you wish to write complex programs using predicates, try to first visualize your algorithm
in this manner, and then transform each path of your conditional constructs into a separate
clause and predicate.

Now let us combine predicates with a new provider, the syscall provider, and create our first
real D tracing program. The syscall provider permits you to enable probes on entry to or
return from any Oracle Linux system call. The next example uses DTrace to observe every
time your shell performs a read() or write() system call. First, open two windows, one to use
for DTrace and the other containing the shell process that you are going to watch. In the
second window, type the following command to obtain the process ID of this shell:

echo $$
2860

Now go back to your first window and type the following D program and save it in a file named
rw.d. As you type in the program, replace the integer constant 2860 with the process ID of the
shell that was printed in response to your echo command.

syscall::read:entry,
syscall::write:entry
/pid == 2860/

Chapter 2
Predicate Examples

2-9

{
}

Notice that the body of rw.d's probe clause is left empty because the program is only intended
to trace notification of probe firings and not to trace any additional data. Once you have typed
in rw.d, use dtrace to start your experiment and then go to your second shell window and
type a few commands, pressing return after each command. As you type, you should see
dtrace report probe firings in your first window, similar to the following example:

dtrace -s rw.d
dtrace: script 'rw.d' matched 2 probes
CPU ID FUNCTION:NAME
 1 7 write:entry
 1 5 read:entry
 0 7 write:entry
 0 5 read:entry
 0 7 write:entry
 0 5 read:entry
 0 7 write:entry
 0 5 read:entry
 0 7 write:entry
 1 7 write:entry
 1 7 write:entry
 1 5 read:entry
...^C

You are now watching your shell perform read() and write() system calls to read a character
from your terminal window and echo back the result. This example includes many of the
concepts described so far and a few new ones as well. First, to instrument read() and write()
in the same manner, the script uses a single probe clause with multiple probe descriptions by
separating the descriptions with commas like this:

syscall::read:entry,
syscall::write:entry

For readability, each probe description appears on its own line. This arrangement is not strictly
required, but it makes for a more readable script. Next the script defines a predicate that
matches only those system calls that are executed by your shell process:

/pid == 2860/

The predicate uses the predefined DTrace variable pid, which always evaluates to the process
ID associated with the thread that fired the corresponding probe. DTrace provides many built-in
variable definitions for useful things like the process ID. The following table lists a few DTrace
variables you can use to write your first D programs.

Variable Name Data Type Meaning

errno int Current errno value for system
calls

execname string Name of the current process's
executable file

pid pid_t Process ID of the current
process

tid id_t Thread ID of the current
thread

probeprov string Current probe description's
provider field

Chapter 2
Predicate Examples

2-10

Variable Name Data Type Meaning

probemod string Current probe description's
module field

probefunc string Current probe description's
function field

probename string Current probe description's
name field

Now that you've written a real instrumentation program, try experimenting with it on different
processes running on your system by changing the process ID and the system call probes that
are instrumented. Then, you can make one more simple change and turn rw.d into a very
simple version of a system call tracing tool like strace. An empty probe description field acts
as a wildcard, matching any probe, so change your program to the following new source code
to trace any system call executed by your shell:

syscall:::entry
/pid == 2860/
{
}

Try typing a few commands in the shell such as cd, ls, and date and see what your DTrace
program reports.

Output Formatting Examples
System call tracing is a powerful way to observe the behavior of many user processes. The
following example improves upon the earlier rw.d program by formatting its output so you can
more easily understand the output. Type the following program and save it in a file called
stracerw.d:

syscall::read:entry,
syscall::write:entry
/pid == $1/
{
 printf("%s(%d, 0x%x, %4d)", probefunc, arg0, arg1, arg2);
}

syscall::read:return,
syscall::write:return
/pid == $1/
{
 printf("\tt = %d\n", arg1);
}

In this example, the constant 2860 is replaced with the label $1 in each predicate. This label
enables you to specify the process of interest as an argument to the script: $1 is replaced by
the value of the first argument when the script is compiled. To execute stracerw.d, use the
dtrace options -q and -s, followed by the process ID of your shell as the final argument. The
-q option indicates that dtrace should be quiet and suppress the header line and the CPU
and ID columns shown in the preceding examples. As a result, you only see the output for the
data that you explicitly trace. Type the following command, replacing 2860 with the process ID
of a shell process, and then press return a few times in the specified shell:

dtrace -q -s stracerw.d 2860
 t = 1

Chapter 2
Output Formatting Examples

2-11

write(2, 0x7fa621b9b000, 1) t = 1
write(1, 0x7fa621b9c000, 22) t = 22
write(2, 0x7fa621b9b000, 20) t = 20
read(0, 0x7fff60f74b8f, 1) t = 1
write(2, 0x7fa621b9b000, 1) t = 1
write(1, 0x7fa621b9c000, 22) t = 22
write(2, 0x7fa621b9b000, 20) t = 20
read(0, 0x7fff60f74b8f, 1) t = 1
write(2, 0x7fa621b9b000, 1) t = 1
write(1, 0x7fa621b9c000, 22) t = 22
write(2, 0x7fa621b9b000, 20) t = 20
read(0, 0x7fff60f74b8f, 1)^C
#

Now let us examine your D program and its output in more detail. First, a clause similar to the
earlier program instruments each of the shell's calls to read() and write(). But for this
example, we use a new function, printf, to trace the data and print it out in a specific format:

syscall::read:entry,
syscall::write:entry
/pid == $1/
{
 printf("%s(%d, 0x%x, %4d)", probefunc, arg0, arg1, arg2);
}

The printf function combines the ability to trace data, as if by the trace function used earlier,
with the ability to output the data and other text in a specific format that you describe. The
printf function tells DTrace to trace the data associated with each argument after the first
argument, and then to format the results using the rules described by the first printf
argument, known as a format string.

The format string is a regular string that contains any number of format conversions, each
beginning with the % character, that describe how to format the corresponding argument. The
first conversion in the format string corresponds to the second printf argument, the second
conversion to the third argument, and so on. All of the text between conversions is printed
verbatim. The character following the % conversion character describes the format to use for
the corresponding argument. Here are the meanings of the three format conversions used in
stracerw.d.

Format Conversion Description

%d Print the corresponding value as a decimal
integer

%s Print the corresponding value as a string

%x Print the corresponding value as a hexadecimal
integer

DTrace printf works just like the C printf() library routine or the shell printf utility. If you
have never seen printf before, the formats and options are explained in detail in Output
Formatting. You should read this chapter carefully even if you are already familiar with printf
from another language. In D, printf is provided as a built-in and some new format
conversions are available to you designed specifically for DTrace.

To help you write correct programs, the D compiler validates each printf format string against
its argument list. Try changing probefunc in the clause above to the integer 123. If you run the
modified program, you will see an error message telling you that the string format conversion
%s is not appropriate for use with an integer argument:

Chapter 2
Output Formatting Examples

2-12

dtrace -q -s stracerw.d
dtrace: failed to compile script stracerw.d: line 5: printf()
argument #2 is incompatible with conversion #1 prototype:
 conversion: %s
 prototype: char [] or string (or use stringof)
 argument: int
#

To print the name of the read or write system call and its arguments, use the printf statement:

printf("%s(%d, 0x%x, %4d)", probefunc, arg0, arg1, arg2);

to trace the name of the current probe function and the first three integer arguments to the
system call, available in the DTrace variables arg0, arg1, and arg2. For more information
about probe arguments, see Built-In Variables. The first argument to read() and write() is a
file descriptor, printed in decimal. The second argument is a buffer address, formatted as a
hexadecimal value. The final argument is the buffer size, formatted as a decimal value. The
format specifier %4d is used for the third argument to indicate that the value should be printed
using the %d format conversion with a minimum field width of 4 characters. If the integer is less
than 4 characters wide, printf inserts extra blanks to align the output.

To print the result of the system call and complete each line of output, use the following clause:

syscall::read:return,
syscall::write:return
/pid == $1/
{
 printf("\tt = %d\n", arg1);
}

Notice that the syscall provider also publishes a probe named return for each system call in
addition to entry. The DTrace variable arg1 for the syscall return probes evaluates to the
system call's return value. The return value is formatted as a decimal integer. The character
sequences beginning with backwards slashes in the format string expand to tab (\t) and
newline (\n) respectively. These escape sequences help you print or record characters that are
difficult to type. D supports the same set of escape sequences as C, C++, and the Java
programming language. For a complete list of escape sequences, see Constants.

Array Overview
D permits you to define variables that are integers, as well as other types to represent strings
and composite types called structs and unions. If you are familiar with C programming, you will
be happy to know you can use any type in D that you can in C. If you are not a C expert, do not
worry: the different kinds of data types are all described in Types, Operators, and Expressions.

D also supports arrays. Linearly indexed scalar arrays, familiar to C programmers, are
discussed in Array Declarations and Storage.

More powerful and commonly used are associative arrays, which are indexed with tuples. Each
associative array has a particular type signature. That is, its tuples all have the same number
of elements, those elements of consistent type and in the same order, and its values are all of
the same type. D associative arrays are described further in Associative Arrays.

Chapter 2
Array Overview

2-13

Associative Array Example
For example, the following D statements access an associative array, whose values must all be
type int and whose tuples must all have signature string,int, setting an element to 456 and
then incrementing it to 457:

a["hello", 123] = 456;
a["hello", 123]++;

Now let us use an associative array in a D program. Type the following program and save it in
a file named rwtime.d:

syscall::read:entry,
syscall::write:entry
/pid == $1/
{
 ts[probefunc] = timestamp;
}
syscall::read:return,
syscall::write:return
/pid == $1 && ts[probefunc] != 0/
{
 printf("%d nsecs", timestamp - ts[probefunc]);
}

As with stracerw.d, specify the ID of the shell process when you execute rwtime.d. If you
type a few shell commands, you will see the time elapsed during each system call. Type in the
following command and then press return a few times in your other shell:

dtrace -s rwtime.d `/usr/bin/pgrep -n bash`
dtrace: script 'rwtime.d' matched 4 probes
CPU ID FUNCTION:NAME
 0 8 write:return 51962 nsecs
 0 8 write:return 45257 nsecs
 0 8 write:return 40787 nsecs
 1 6 read:return 925959305 nsecs
 1 8 write:return 46934 nsecs
 1 8 write:return 41626 nsecs
 1 8 write:return 176839 nsecs
...
^C
#

To trace the elapsed time for each system call, you must instrument both the entry to and
return from read() and write() and measure the time at each point. Then, on return from a
given system call, you must compute the difference between our first and second timestamp.
You could use separate variables for each system call, but this would make the program
annoying to extend to additional system calls. Instead, it is easier to use an associative array
indexed by the probe function name. The following is the first probe clause:

syscall::read:entry,
syscall::write:entry
/pid == $1/
{
 ts[probefunc] = timestamp;
}

This clause defines an array named ts and assigns the appropriate member the value of the
DTrace variable timestamp. This variable returns the value of an always-incrementing

Chapter 2
Array Overview

2-14

nanosecond counter. When the entry timestamp is saved, the corresponding return probe
samples timestamp again and reports the difference between the current time and the saved
value:

syscall::read:return,
syscall::write:return
/pid == $1 && ts[probefunc] != 0/
{
 printf("%d nsecs", timestamp - ts[probefunc]);
}

The predicate on the return probe requires that DTrace is tracing the appropriate process and
that the corresponding entry probe has already fired and assigned ts[probefunc] a non-zero
value. This trick eliminates invalid output when DTrace first starts. If your shell is already
waiting in a read() system call for input when you execute dtrace, the read:return probe
fires without a preceding read:entry for this first read() and ts[probefunc] will evaluate to
zero because it has not yet been assigned.

External Symbols and Types
DTrace instrumentation executes inside the Oracle Linux operating system kernel. So, in
addition to accessing special DTrace variables and probe arguments, you can also access
kernel data structures, symbols, and types. These capabilities enable advanced DTrace users,
administrators, service personnel, and driver developers to examine low-level behavior of the
operating system kernel and device drivers. The reading list at the start of this guide includes
books that can help you learn more about Oracle Linux operating system internals.

D uses the back quote character (`) as a special scoping operator for accessing symbols that
are defined in the operating system and not in your D program. For example, the Oracle Linux
kernel contains a C declaration of a system variable named max_pfn. This variable is declared
in C in the kernel source code as follows:

unsigned long max_pfn

To trace the value of this variable in a D program, you can write the following D statement:

trace(`max_pfn);

DTrace associates each kernel symbol with the type that is used for the symbol in the
corresponding operating system C code, which provides easy source-based access to the
native operating system data structures.

To use external operating system variables, you will need access to the corresponding
operating system source code.

Kernel symbol names are kept in a separate namespace from D variable and function
identifiers, so you do not need to be concerned about these names conflicting with your D
variables. When you prefix a variable with a back quote, the D compiler searches the known
kernel symbols and uses the list of loaded modules to find a matching variable definition.
Because the Oracle Linux kernel supports dynamically loaded modules with separate symbol
namespaces, the same variable name might be used more than once in the active operating
system kernel. You can resolve these name conflicts by specifying the name of the kernel
module that contains the variable to be accessed prior to the back quote in the symbol name.
For example, you would refer to the address of the _bar function that is provided by a kernel
module named foo as follows:

foo`_bar

Chapter 2
External Symbols and Types

2-15

You can apply any of the D operators to external variables, except for those that modify values,
subject to the usual rules for operand types. When required, the D compiler loads the variable
names that correspond to active kernel modules, so you do not need to declare these
variables. You may not apply any operator to an external variable that modifies its value, such
as = or +=. For safety reasons, DTrace prevents you from damaging or corrupting the state of
the software that you are observing.

When you access external variables from a D program, you are accessing the internal
implementation details of another program, such as the operating system kernel or its device
drivers. These implementation details do not form a stable interface upon which you can rely.
Any D programs you write that depend on these details might cease to work when you next
upgrade the corresponding piece of software. For this reason, external variables are typically
used to debug performance or functionality problems by using DTrace. To learn more about the
stability of your D programs, see DTrace Stability Features.

You have now completed a whirlwind tour of DTrace and have learned many of the basic
DTrace building blocks that are necessary to build larger and more complex D programs. The
remaining portions of this chapter describe the complete set of rules for D and demonstrate
how DTrace can make complex performance measurements and functional analysis of the
system easy. Later, you will learn how to use DTrace to connect user application behavior to
system behavior, which provides you with the capability to analyze your entire software stack.

Types, Operators, and Expressions
D provides the ability to access and manipulate a variety of data objects: variables and data
structures can be created and modified, data objects that are defined in the operating system
kernel and user processes can be accessed, and integer, floating-point, and string constants
can be declared. D provides a superset of the ANSI C operators that are used to manipulate
objects and create complex expressions. This section describes the detailed set of rules for
types, operators, and expressions.

Identifier Names and Keywords
D identifier names are composed of uppercase and lowercase letters, digits, and underscores,
where the first character must be a letter or underscore. All identifier names beginning with an
underscore (_) are reserved for use by the D system libraries. You should avoid using these
names in your D programs. By convention, D programmers typically use mixed-case names for
variables and all uppercase names for constants.

D language keywords are special identifiers that are reserved for use in the programming
language syntax itself. These names are always specified in lowercase and must not be used
for the names of D variables. The following table lists the keywords that are reserved for use
by the D language.

Table 2-2 D Keywords

auto* do* if* register* string+ unsigned
break* double import*+ restrict* stringof+ void
case* else* inline return* struct volatile
char enum int self+ switch* while*
const extern long short this+ xlate+
continue* float offsetof+ signed translator+

Chapter 2
Types, Operators, and Expressions

2-16

Table 2-2 (Cont.) D Keywords

counter*+ for* probe*+ sizeof typedef
default* goto* provider*+ static* union

D reserves for use as keywords a superset of the ANSI C keywords. The keywords reserved
for future use by the D language are marked with “*”. The D compiler produces a syntax error if
you attempt to use a keyword that is reserved for future use. The keywords that are defined by
D but not defined by ANSI C are marked with “+”. D provides the complete set of types and
operators found in ANSI C. The major difference in D programming is the absence of control-
flow constructs. Note that keywords associated with control-flow in ANSI C are reserved for
future use in D.

Data Types and Sizes
D provides fundamental data types for integers and floating-point constants. Arithmetic may
only be performed on integers in D programs. Floating-point constants may be used to initialize
data structures, but floating-point arithmetic is not permitted in D. In Oracle Linux, D provides a
64-bit data model for use in writing programs. However, a 32-bit data model is not supported.
The data model used when executing your program is the native data model that is associated
with the active operating system kernel, which must also be 64-bit.

The names of the integer types and their sizes in the 64-bit data model are shown in the
following table. Integers are always represented in twos-complement form in the native byte-
encoding order of your system.

Table 2-3 D Integer Data Types

Type Name 64-bit Size

char 1 byte

short 2 bytes

int 4 bytes

long 8 bytes

long long 8 bytes

Integer types can be prefixed with the signed or unsigned qualifier. If no sign qualifier is
present, it is assumed that the type is signed. The D compiler also provides the type aliases
that are listed in the following table.

Table 2-4 D Integer Type Aliases

Type Name Description

int8_t 1-byte signed integer

int16_t 2-byte signed integer

int32_t 4-byte signed integer

int64_t 8-byte signed integer

intptr_t Signed integer of size equal to a pointer

Chapter 2
Types, Operators, and Expressions

2-17

Table 2-4 (Cont.) D Integer Type Aliases

Type Name Description

uint8_t 1-byte unsigned integer

uint16_t 2-byte unsigned integer

uint32_t 4-byte unsigned integer

uint64_t 8-byte unsigned integer

uintptr_t Unsigned integer of size equal to a pointer

These type aliases are equivalent to using the name of the corresponding base type listed in
the previous table and are appropriately defined for each data model. For example, the
uint8_t type name is an alias for the type unsigned char. See Type and Constant Definitions
for information about how to define your own type aliases for use in D programs.

Note:

The predefined type aliases cannot be used in files that are included by the
preprocessor.

D provides floating-point types for compatibility with ANSI C declarations and types. Floating-
point operators are not supported in D, but floating-point data objects can be traced and
formatted with the printf function. You can use the floating-point types that are listed in the
following table.

Table 2-5 D Floating-Point Data Types

Type Name 64-bit Size

float 4 bytes

double 8 bytes

long double 16 bytes

D also provides the special type string to represent ASCII strings. Strings are discussed in
more detail in DTrace Support for Strings.

Constants
Integer constants can be written in decimal (12345), octal (012345), or hexadecimal (0x12345)
format. Octal (base 8) constants must be prefixed with a leading zero. Hexadecimal (base 16)
constants must be prefixed with either 0x or 0X. Integer constants are assigned the smallest
type among int, long, and long long that can represent their value. If the value is negative,
the signed version of the type is used. If the value is positive and too large to fit in the signed
type representation, the unsigned type representation is used. You can apply one of the
suffixes listed in the following table to any integer constant to explicitly specify its D type.

Chapter 2
Types, Operators, and Expressions

2-18

Suffix D type

u or U unsigned version of the type selected by the
compiler

l or L long
ul or UL unsigned long
ll or LL long long
ull or ULL unsigned long long

Floating-point constants are always written in decimal format and must contain either a decimal
point (12.345), an exponent (123e45), or both (123.34e-5). Floating-point constants are
assigned the type double by default. You can apply one of the suffixes listed in the following
table to any floating-point constant to explicitly specify its D type.

Suffix D type

f or F float
l or L long double

Character constants are written as a single character or escape sequence that is enclosed in a
pair of single quotes ('a'). Character constants are assigned the int type rather than char and
are equivalent to an integer constant with a value that is determined by that character's value
in the ASCII character set. See the ascii(7) manual page for a list of characters and their
values. You can also use any of the special escape sequences that are listed in the following
table in your character constants. D supports the same escape sequences as those found in
ANSI C.

Table 2-6 Character Escape Sequences

Escape Sequence Represents Escape Sequence Represents

\a alert \\ backslash

\b backspace \? question mark

\f form feed \' single quote

\n newline \" double quote

\r carriage return \0oo octal value 0oo

\t horizontal tab \xhh hexadecimal value
0xhh

\v vertical tab \0 null character

You can include more than one character specifier inside single quotes to create integers with
individual bytes that are initialized according to the corresponding character specifiers. The
bytes are read left-to-right from your character constant and assigned to the resulting integer in
the order corresponding to the native endianness of your operating environment. Up to eight
character specifiers can be included in a single character constant.

Strings constants of any length can be composed by enclosing them in a pair of double quotes
("hello"). A string constant may not contain a literal newline character. To create strings
containing newlines, use the \n escape sequence instead of a literal newline. String constants

Chapter 2
Types, Operators, and Expressions

2-19

can contain any of the special character escape sequences that are shown for character
constants previously. Similar to ANSI C, strings are represented as arrays of characters
terminated by a null character (\0) that is implicitly added to each string constant you declare.
String constants are assigned the special D type string. The D compiler provides a set of
special features for comparing and tracing character arrays that are declared as strings. See
DTrace Support for Strings for more information.

Arithmetic Operators
D provides the binary arithmetic operators that are described in the following table for use in
your programs. These operators all have the same meaning for integers that they do in ANSI
C.

Table 2-7 Binary Arithmetic Operators

Operator Description

+ Integer addition

- Integer subtraction

* Integer multiplication

/ Integer division

% Integer modulus

Arithmetic in D may only be performed on integer operands or on pointers. See Pointers and
Scalar Arrays. Arithmetic may not be performed on floating-point operands in D programs. The
DTrace execution environment does not take any action on integer overflow or underflow. You
must specifically check for these conditions in situations where overflow and underflow can
occur.

However, the DTrace execution environment does automatically check for and report division
by zero errors resulting from improper use of the / and % operators. If a D program executes an
invalid division operation, DTrace automatically disables the affected instrumentation and
reports the error. Errors that are detected by DTrace have no effect on other DTrace users or
on the operating system kernel. You therefore do not need to be concerned about causing any
damage if your D program inadvertently contains one of these errors.

In addition to these binary operators, the + and - operators can also be used as unary
operators as well, and these operators have higher precedence than any of the binary
arithmetic operators. The order of precedence and associativity properties for all of the D
operators is presented in Table 2-12. You can control precedence by grouping expressions in
parentheses (()).

Relational Operators
D provides the binary relational operators that are described in the following table for use in
your programs. These operators all have the same meaning that they do in ANSI C.

Table 2-8 D Relational Operators

Operator Description

< Left-hand operand is less than right-operand

Chapter 2
Types, Operators, and Expressions

2-20

Table 2-8 (Cont.) D Relational Operators

Operator Description

<= Left-hand operand is less than or equal to right-
hand operand

> Left-hand operand is greater than right-hand
operand

>= Left-hand operand is greater than or equal to
right-hand operand

== Left-hand operand is equal to right-hand
operand

!= Left-hand operand is not equal to right-hand
operand

Relational operators are most frequently used to write D predicates. Each operator evaluates
to a value of type int, which is equal to one if the condition is true, or zero if it is false.

Relational operators can be applied to pairs of integers, pointers, or strings. If pointers are
compared, the result is equivalent to an integer comparison of the two pointers interpreted as
unsigned integers. If strings are compared, the result is determined as if by performing a
strcmp() on the two operands. The following table shows some example D string comparisons
and their results.

D string comparison Result

"coffee" < "espresso" Returns 1 (true)

"coffee" == "coffee" Returns 1 (true)

"coffee"" >= "mocha" Returns 0 (false)

Relational operators can also be used to compare a data object associated with an
enumeration type with any of the enumerator tags defined by the enumeration. Enumerations
are a facility for creating named integer constants and are described in more detail in Type and
Constant Definitions.

Logical Operators
D provides the binary logical operators that are listed in the following table for use in your
programs. The first two operators are equivalent to the corresponding ANSI C operators.

Table 2-9 D Logical Operators

Operator Description

&& Logical AND: true if both operands are true

|| Logical OR: true if one or both operands are
true

^^ Logical XOR: true if exactly one operand is true

Logical operators are most frequently used in writing D predicates. The logical AND operator
performs the following short-circuit evaluation: if the left-hand operand is false, the right-hand
expression is not evaluated. The logical OR operator also performs the following short-circuit

Chapter 2
Types, Operators, and Expressions

2-21

evaluation: if the left-hand operand is true, the right-hand expression is not evaluated. The
logical XOR operator does not short-circuit. Both expression operands are always evaluated.

In addition to the binary logical operators, the unary ! operator can be used to perform a logical
negation of a single operand: it converts a zero operand into a one and a non-zero operand
into a zero. By convention, D programmers use ! when working with integers that are meant to
represent boolean values and == 0 when working with non-boolean integers, although the
expressions are equivalent.

The logical operators may be applied to operands of integer or pointer types. The logical
operators interpret pointer operands as unsigned integer values. As with all logical and
relational operators in D, operands are true if they have a non-zero integer value and false if
they have a zero integer value.

Bitwise Operators
D provides the binary operators that are listed in the following table for manipulating individual
bits inside of integer operands. These operators all have the same meaning as in ANSI C.

Table 2-10 D Bitwise Operators

Operator Description

& Bitwise AND
| Bitwise OR
^ Bitwise XOR
<< Shift the left-hand operand left by the number

of bits specified by the right-hand operand

>> Shift the left-hand operand right by the number
of bits specified by the right-hand operand

The binary & operator is used to clear bits from an integer operand. The binary | operator is
used to set bits in an integer operand. The binary ^ operator returns one in each bit position,
exactly where one of the corresponding operand bits is set.

The shift operators are used to move bits left or right in a given integer operand. Shifting left
fills empty bit positions on the right-hand side of the result with zeroes. Shifting right using an
unsigned integer operand fills empty bit positions on the left-hand side of the result with
zeroes. Shifting right using a signed integer operand fills empty bit positions on the left-hand
side with the value of the sign bit, also known as an arithmetic shift operation.

Shifting an integer value by a negative number of bits or by a number of bits larger than the
number of bits in the left-hand operand itself produces an undefined result. The D compiler
produces an error message if the compiler can detect this condition when you compile your D
program.

In addition to the binary logical operators, the unary ~ operator may be used to perform a
bitwise negation of a single operand: it converts each zero bit in the operand into a one bit, and
each one bit in the operand into a zero bit.

Assignment Operators
D provides the binary assignment operators that are listed in the folloiwng table for modifying D
variables. You can only modify D variables and arrays. Kernel data objects and constants may

Chapter 2
Types, Operators, and Expressions

2-22

not be modified using the D assignment operators. The assignment operators have the same
meaning as they do in ANSI C.

Table 2-11 D Assignment Operators

Operator Description

= Set the left-hand operand equal to the right-
hand expression value.

+= Increment the left-hand operand by the right-
hand expression value

-= Decrement the left-hand operand by the right-
hand expression value.

*= Multiply the left-hand operand by the right-
hand expression value.

/= Divide the left-hand operand by the right-hand
expression value.

%= Modulo the left-hand operand by the right-
hand expression value.

|= Bitwise OR the left-hand operand with the
right-hand expression value.

&= Bitwise AND the left-hand operand with the
right-hand expression value.

^= Bitwise XOR the left-hand operand with the
right-hand expression value.

<<= Shift the left-hand operand left by the number
of bits specified by the right-hand expression
value.

>>= Shift the left-hand operand right by the number
of bits specified by the right-hand expression
value.

Aside from the assignment operator =, the other assignment operators are provided as
shorthand for using the = operator with one of the other operators that were described earlier.
For example, the expression x = x + 1 is equivalent to the expression x += 1, except that the
expression x is evaluated one time. These assignment operators adhere to the same rules for
operand types as the binary forms described earlier.

The result of any assignment operator is an expression equal to the new value of the left-hand
expression. You can use the assignment operators or any of the operators described thus far in
combination to form expressions of arbitrary complexity. You can use parentheses () to group
terms in complex expressions.

Increment and Decrement Operators
D provides the special unary ++ and -- operators for incrementing and decrementing pointers
and integers. These operators have the same meaning as they do in ANSI C. These operators
can only be applied to variables and they may be applied either before or after the variable
name. If the operator appears before the variable name, the variable is first modified and then
the resulting expression is equal to the new value of the variable. For example, the following
two code fragments produce identical results:

Chapter 2
Types, Operators, and Expressions

2-23

x += 1; y = x;

y = ++x;

If the operator appears after the variable name, then the variable is modified after its current
value is returned for use in the expression. For example, the following two code fragments
produce identical results:

y = x; x -= 1;

y = x--;

You can use the increment and decrement operators to create new variables without declaring
them. If a variable declaration is omitted and the increment or decrement operator is applied to
a variable, the variable is implicitly declared to be of type int64_t.

The increment and decrement operators can be applied to integer or pointer variables. When
applied to integer variables, the operators increment or decrement the corresponding value by
one. When applied to pointer variables, the operators increment or decrement the pointer
address by the size of the data type that is referenced by the pointer. Pointers and pointer
arithmetic in D are discussed in Pointers and Scalar Arrays.

Conditional Expressions
Although D does not provide support for if-then-else constructs, it does provide support for
simple conditional expressions by using the ? and : operators. These operators enable a triplet
of expressions to be associated, where the first expression is used to conditionally evaluate
one of the other two.

For example, the following D statement could be used to set a variable x to one of two strings,
depending on the value of i:

x = i == 0 ? "zero" : "non-zero";

In the previous example, the expression i == 0 is first evaluated to determine whether it is true
or false. If the expression is true, the second expression is evaluated and its value is returned.
If the expression is false, the third expression is evaluated and its value is returned.

As with any D operator, you can use multiple ?: operators in a single expression to create
more complex expressions. For example, the following expression would take a char variable c
containing one of the characters 0-9, a-f, or A-F, and return the value of this character when
interpreted as a digit in a hexadecimal (base 16) integer:

hexval = (c >= '0' && c <= '9') ? c - '0' : (c >= 'a' && c <= 'f') ? c + 10 - 'a' : c +
10 - 'A';

To be evaluated for its truth value, the first expression that is used with ?: must be a pointer or
integer. The second and third expressions can be of any compatible types. You may not
construct a conditional expression where, for example, one path returns a string and another
path returns an integer. The second and third expressions also may not invoke a tracing
function such as trace or printf. If you want to conditionally trace data, use a predicate
instead. See Predicate Examples for more information.

Type Conversions
When expressions are constructed by using operands of different but compatible types, type
conversions are performed to determine the type of the resulting expression. The D rules for

Chapter 2
Types, Operators, and Expressions

2-24

type conversions are the same as the arithmetic conversion rules for integers in ANSI C.
These rules are sometimes referred to as the usual arithmetic conversions.

A simple way to describe the conversion rules is as follows: each integer type is ranked in the
order char, short, int, long, long long, with the corresponding unsigned types assigned a
rank higher than its signed equivalent, but below the next integer type. When you construct an
expression using two integer operands such as x + y and the operands are of different integer
types, the operand type with the highest rank is used as the result type.

If a conversion is required, the operand with the lower rank is first promoted to the type of the
higher rank. Promotion does not actually change the value of the operand: it simply extends
the value to a larger container according to its sign. If an unsigned operand is promoted, the
unused high-order bits of the resulting integer are filled with zeroes. If a signed operand is
promoted, the unused high-order bits are filled by performing sign extension. If a signed type is
converted to an unsigned type, the signed type is first sign-extended and then assigned the
new, unsigned type that is determined by the conversion.

Integers and other types can also be explicitly cast from one type to another. In D, pointers and
integers can be cast to any integer or pointer types, but not to other types. Rules for casting
and promoting strings and character arrays are discussed in DTrace Support for Strings.

An integer or pointer cast is formed using an expression such as the following:

y = (int)x;

In this example, the destination type is enclosed in parentheses and used to prefix the source
expression. Integers are cast to types of higher rank by performing promotion. Integers are
cast to types of lower rank by zeroing the excess high-order bits of the integer.

Because D does not permit floating-point arithmetic, no floating-point operand conversion or
casting is permitted and no rules for implicit floating-point conversion are defined.

Operator Precedence
Table 2-12 lists the D rules for operator precedence and associativity. These rules are
somewhat complex, but they are necessary to provide precise compatibility with the ANSI C
operator precedence rules. The following entries in the following table are in order from highest
precedence to lowest precedence.

Table 2-12 D Operator Precedence and Associativity

Operators Associativity

() [] -> . Left to right

! ~ ++ -- + - * & (type) sizeof
stringof offsetof xlate

Right to left

* / % Left to right

+ - Left to right

<< >> Left to right

< <= > >= Left to right

== != Left to right

& Left to right

^ Left to right

Chapter 2
Types, Operators, and Expressions

2-25

Table 2-12 (Cont.) D Operator Precedence and Associativity

Operators Associativity

| Left to right

&& Left to right

^^ Left to right

|| Left to right

?: Right to left

= += -= *= /= %= &= ^= ?= <<= >>= Right to left

, Left to right

Several operators listed in the previous table that have not been discussed yet. These
operators are described in subsequent chapters. The following table lists several
miscellaneous operators that are provided by the D language.

Operators Description For More Information

sizeof Computes the size of an object. Structs and Unions

offsetof Computes the offset of a type
member.

Structs and Unions

stringof Converts the operand to a
string.

DTrace Support for Strings

xlate Translates a data type. Translators

unary & Computes the address of an
object.

Pointers and Scalar Arrays

unary * Dereferences a pointer to an
object.

Pointers and Scalar Arrays

-> and . Accesses a member of a
structure or union type.

Structs and Unions

The comma (,) operator that is listed in the table is for compatibility with the ANSI C comma
operator. It can be used to evaluate a set of expressions in left-to-right order and return the
value of the right most expression. This operator is provided strictly for compatibility with C and
should generally not be used.

The () entry listed in the table of operator precedence represents a function call. For examples
of calls to functions, such as printf and trace, see Output Formatting. A comma is also used
in D to list arguments to functions and to form lists of associative array keys. Note that this
comma is not the same as the comma operator and does not guarantee left-to-right evaluation.
The D compiler provides no guarantee regarding the order of evaluation of arguments to a
function or keys to an associative array. Note that you should be careful of using expressions
with interacting side-effects, such as the pair of expressions i and i++, in these contexts.

The [] entry listed in the table of operator precedence represents an array or associative array
reference. Examples of associative arrays are presented in Associative Arrays. A special kind
of associative array, called an aggregation, is described in Aggregations. The [] operator can
also be used to index into fixed-size C arrays as well. See Pointers and Scalar Arrays.

Chapter 2
Types, Operators, and Expressions

2-26

Variables
D provides two basic types of variables for use in your tracing programs: scalar variables and
associative arrays. An aggregation is a special kind of array variable. See Aggregations for
more information about aggregations.

To understand the scope of variables, consider the following figure.

Scope of Variables

In the figure, system execution is illustrated, showing elapsed time along the horizontal axis
and thread number along the vertical axis. D probes fire at different times on different threads,
and each time a probe fires, the D script is run. Any D variable would have one of the scopes
that are described in the following table.

Scope Syntax Initial Value Thread-safe? Description

global myname 0 No Any probe that
fires on any
thread accesses
the same instance
of the variable.

Thread-local self->myname 0 Yes Any probe that
fires on a thread
accesses the
thread-specific
instance of the
variable.

Clause-local this->myname Not defined Yes Any probe that
fires accesses an
instance of the
variable specific
to that particular
firing of the
probe.

Chapter 2
Variables

2-27

Note:

Note the following additional information:

• Scalar variables and associative arrays have a global scope and are not multi-
processor safe (MP-safe). Because the value of such variables can be changed
by more than one processor, there is a chance that a variable can become
corrupted if more than one probe modifies it.

• Aggregations are MP-safe even though they have a global scope because
independent copies are updated locally before a final aggregation produces the
global result.

Scalar Variables
Scalar variables are used to represent individual, fixed-size data objects, such as integers and
pointers. Scalar variables can also be used for fixed-size objects that are composed of one or
more primitive or composite types. D provides the ability to create arrays of objects, as well as
composite structures. DTrace also represents strings as fixed-size scalars by permitting them
to grow to a predefined maximum length. Control over string length in your D program is
discussed further in DTrace Support for Strings.

Scalar variables are created automatically the first time you assign a value to a previously
undefined identifier in your D program. For example, to create a scalar variable named x of
type int, you can simply assign it a value of type int in any probe clause, for example:

BEGIN
{
 x = 123;
}

Scalar variables that are created in this manner are global variables: each one is defined once
and is visible in every clause of your D program. Any time that you reference the x identifier,
you are referring to a single storage location associated with this variable.

Unlike ANSI C, D does not require explicit variable declarations. If you do want to declare a
global variable and assign its name and type explicitly before using it, you can place a
declaration outside of the probe clauses in your program, as shown in the following example:

int x; /* declare an integer x for later use */
BEGIN
{
 x = 123;
 ...
}

Explicit variable declarations are not necessary in most D programs, but sometimes are useful
when you want to carefully control your variable types or when you want to begin your program
with a set of declarations and comments documenting your program's variables and their
meanings.

Unlike ANSI C declarations, D variable declarations may not assign initial values. You must
use a BEGIN probe clause to assign any initial values. All global variable storage is filled with
zeroes by DTrace before you first reference the variable.

The D language definition places no limit on the size and number of D variables. Limits are
defined by the DTrace implementation and by the memory that is available on your system.

Chapter 2
Variables

2-28

The D compiler enforces any of the limitations that can be applied at the time you compile your
program. See Options and Tunables for more about how to tune options related to program
limits.

Associative Arrays
Associative arrays are used to represent collections of data elements that can be retrieved by
specifying a name, which is called a key. D associative array keys are formed by a list of scalar
expression values, called a tuple. You can think of the array tuple as an imaginary parameter
list to a function that is called to retrieve the corresponding array value when you reference the
array. Each D associative array has a fixed key signature consisting of a fixed number of tuple
elements, where each element has a given, fixed type. You can define different key signatures
for each array in your D program.

Associative arrays differ from normal, fixed-size arrays in that they have no predefined limit on
the number of elements: the elements can be indexed by any tuple, as opposed to just using
integers as keys, and the elements are not stored in preallocated, consecutive storage
locations. Associative arrays are useful in situations where you would use a hash table or other
simple dictionary data structure in a C, C++, or Java language program. Associative arrays
provide the ability to create a dynamic history of events and state captured in your D program,
which you can use to create more complex control flows.

To define an associative array, you write an assignment expression of the following form:

name [key] = expression ;

where name is any valid D identifier and key is a comma-separated list of one or more
expressions.

For example, the following statement defines an associative array a with key signature [int,
string] and stores the integer value 456 in a location named by the tuple [123, "hello"]:

a[123, "hello"] = 456;

The type of each object that is contained in the array is also fixed for all elements in a given
array. Because it was first assigned by using the integer 456, every subsequent value that is
stored in the array will also be of type int. You can use any of the assignment operators that
are defined in Types, Operators, and Expressions to modify associative array elements,
subject to the operand rules defined for each operator. The D compiler produces an
appropriate error message if you attempt an incompatible assignment. You can use any type
with an associative array key or value that can be used with a scalar variable.

You can reference an associative array by using any tuple that is compatible with the array key
signature. The rules for tuple compatibility are similar to those for function calls and variable
assignments. That is, the tuple must be of the same length and each type in the list of actual
parameters and must be compatible with the corresponding type in the formal key signature.
For example, for an associative array x that is defined as follows:

x[123ull] = 0;

The key signature is of type unsigned long long and the values are of type int. This array can
also be referenced by using the expression x['a'] because the tuple consisting of the
character constant 'a', of type int and length one, is compatible with the key signature
unsigned long long, according to the arithmetic conversion rules. These rules are described in
Type Conversions.

Chapter 2
Variables

2-29

If you need to explicitly declare a D associative array before using it, you can create a
declaration of the array name and key signature outside of the probe clauses in your program
source code, for example:

int x[unsigned long long, char];
BEGIN
{
 x[123ull, 'a'] = 456;
}

Storage is allocated only for array elements with a nonzero value.

Note:

When an associative array is defined, references to any tuple of a compatible key
signature are permitted, even if the tuple in question has not been previously
assigned. Accessing an unassigned associative array element is defined to return a
zero-filled object. A consequence of this definition is that underlying storage is not
allocated for an associative array element until a non-zero value is assigned to that
element. Conversely, assigning an associative array element to zero causes DTrace
to deallocate the underlying storage.

This behavior is important because the dynamic variable space out of which
associative array elements are allocated is finite; if it is exhausted when an allocation
is attempted, the allocation fails and an error message indicating a dynamic variable
drop is generated. Always assign zero to associative array elements that are no
longer in use. See Options and Tunables for information about techniques that you
can use to eliminate dynamic variable drops.

Thread-Local Variables
DTrace provides the ability to declare variable storage that is local to each operating system
thread, as opposed to the global variables demonstrated earlier in this chapter. Thread-local
variables are useful in situations where you want to enable a probe and mark every thread that
fires the probe with some tag or other data. Creating a program to solve this problem is easy in
D because thread-local variables share a common name in your D code, but refer to separate
data storage that is associated with each thread.

Thread-local variables are referenced by applying the -> operator to the special identifier self,
for example:

syscall::read:entry
{
 self->read = 1;
}

This D fragment example enables the probe on the read() system call and associates a
thread-local variable named read with each thread that fires the probe. Similar to global
variables, thread-local variables are created automatically on their first assignment and
assume the type that is used on the right-hand side of the first assignment statement, which is
int in this example.

Each time the self->read variable is referenced in your D program, the data object that is
referenced is the one associated with the operating system thread that was executing when
the corresponding DTrace probe fired. You can think of a thread-local variable as an

Chapter 2
Variables

2-30

associative array that is implicitly indexed by a tuple that describes the thread's identity in the
system. A thread's identity is unique over the lifetime of the system: if the thread exits and the
same operating system data structure is used to create a new thread, this thread does not
reuse the same DTrace thread-local storage identity.

When you have defined a thread-local variable, you can reference it for any thread in the
system, even if the variable in question has not been previously assigned for that particular
thread. If a thread's copy of the thread-local variable has not yet been assigned, the data
storage for the copy is defined to be filled with zeroes. As with associative array elements,
underlying storage is not allocated for a thread-local variable until a non-zero value is assigned
to it. Also, as with associative array elements, assigning zero to a thread-local variable causes
DTrace to deallocate the underlying storage. Always assign zero to thread-local variables that
are no longer in use. For other techniques to fine-tune the dynamic variable space from which
thread-local variables are allocated, see Options and Tunables.

Thread-local variables of any type can be defined in your D program, including associative
arrays. The following are some example thread-local variable definitions:

self->x = 123; /* integer value */

self->s = "hello"; /* string value */

self->a[123, 'a'] = 456; /* associative array */

Like any D variable, you do not need to explicitly declare thread-local variables prior to using
them. If you want to create a declaration anyway, you can place one outside of your program
clauses by pre-pending the keyword self, for example:

self int x; /* declare int x as a thread-local variable */
syscall::read:entry
{
 self->x = 123;
}

Thread-local variables are kept in a separate namespace from global variables so that you can
reuse names. Remember that x and self->x are not the same variable if you overload names
in your program.

The following example shows how to use thread-local variables. In an editor, type the following
program and save it in a file named rtime.d:

syscall::read:entry
{
 self->t = timestamp;
}

syscall::read:return
/self->t != 0/
{
 printf("%d/%d spent %d nsecs in read()\n", pid, tid, timestamp - self->t);
 /*
 * We are done with this thread-local variable; assign zero to it
 * to allow the DTrace runtime to reclaim the underlying storage.
 */
 self->t = 0;
}

Next, in your shell, start the program running. Wait a few seconds and you should begin to see
some output. If no output appears, try running a few commands:

Chapter 2
Variables

2-31

dtrace -q -s rtime.d
3987/3987 spent 12786263 nsecs in read()
2183/2183 spent 13410 nsecs in read()
2183/2183 spent 12850 nsecs in read()
2183/2183 spent 10057 nsecs in read()
3583/3583 spent 14527 nsecs in read()
3583/3583 spent 12571 nsecs in read()
3583/3583 spent 9778 nsecs in read()
3583/3583 spent 9498 nsecs in read()
3583/3583 spent 9778 nsecs in read()
2183/2183 spent 13968 nsecs in read()
2183/2183 spent 72076 nsecs in read()
...
^C
#

The rtime.d program uses a thread-local variable that is named to capture a timestamp on
entry to read() by any thread. Then, in the return clause, the program prints the amount of
time spent in read() by subtracting self->t from the current timestamp. The built-in D
variables pid and tid report the process ID and thread ID of the thread that is performing the
read(). Because self->t is no longer needed after this information is reported, it is then
assigned 0 to enable DTrace to reuse the underlying storage that is associated with t for the
current thread.

Typically, you see many lines of output without doing anything because server processes and
daemons are executing read() all the time behind the scenes. Try changing the second clause
of rtime.d to use the execname variable to print out the name of the process performing a
read(), for example:

printf("%s/%d spent %d nsecs in read()\n", execname, tid, timestamp - self->t);

If you find a process that is of particular interest, add a predicate to learn more about its read()
behavior, as shown in the following example:

syscall::read:entry
/execname == "Xorg"/
{
 self->t = timestamp;
}

Clause-Local Variables
The value of a D variable can be accessed whenever a probe fires. Variables describes how
variables could have a different scope. For a global variable, the same instance of the variable
is accessed from every thread. For thread-local, the instance of the variable is thread-specific.

Meanwhile, for a clause-local variable, the instance of the variable is specific to that particular
firing of the probe. Clause-local is the narrowest scope. When a probe fires on a CPU, the D
script is executed in program order. Each clause-local variable is instantiated with an undefined
value the first time it is used in the script. The same instance of the variable is used in all
clauses until the D script has completed execution for that particular firing of the probe.

Clause-local variables can be referenced and assigned by prefixing with this->:

BEGIN
{
 this->secs = timestamp / 1000000000;
 ...
}

Chapter 2
Variables

2-32

If you want to declare a clause-local variable explicitly before using it, you can do so by using
the this keyword:

this int x; /* an integer clause-local variable */
this char c; /* a character clause-local variable */

BEGIN
{
 this->x = 123;
 this->c = 'D';
}

Note that if your program contains multiple clauses for a single probe, any clause-local
variables remain intact as the clauses are executed, as shown in the following example. Type
the following source code and save it in a file named clause.d:

int me; /* an integer global variable */
this int foo; /* an integer clause-local variable */

tick-1sec
{
 /*
 * Set foo to be 10 if and only if this is the first clause executed.
 */
 this->foo = (me % 3 == 0) ? 10 : this->foo;
 printf("Clause 1 is number %d; foo is %d\n", me++ % 3, this->foo++);
}

tick-1sec
{
 /*
 * Set foo to be 20 if and only if this is the first clause executed.
 */
 this->foo = (me % 3 == 0) ? 20 : this->foo;
 printf("Clause 2 is number %d; foo is %d\n", me++ % 3, this->foo++);
}

tick-1sec
{
 /*
 * Set foo to be 30 if and only if this is the first clause executed.
 */
 this->foo = (me % 3 == 0) ? 30 : this->foo;
 printf("Clause 3 is number %d; foo is %d\n", me++ % 3, this->foo++);
}

Because the clauses are always executed in program order, and because clause-local
variables are persistent across different clauses that are enabling the same probe, running the
preceding program always produces the same output:

dtrace -q -s clause.d
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11
Clause 3 is number 2; foo is 12
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11
Clause 3 is number 2; foo is 12
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11
Clause 3 is number 2; foo is 12
Clause 1 is number 0; foo is 10
Clause 2 is number 1; foo is 11

Chapter 2
Variables

2-33

Clause 3 is number 2; foo is 12
^C

While clause-local variables are persistent across clauses that are enabling the same probe,
their values are undefined in the first clause executed for a given probe. Be sure to assign
each clause-local variable an appropriate value before using it or your program might have
unexpected results.

Clause-local variables can be defined using any scalar variable type, but associative arrays
may not be defined using clause-local scope. The scope of clause-local variables only applies
to the corresponding variable data, not to the name and type identity defined for the variable.
When a clause-local variable is defined, this name and type signature can be used in any
subsequent D program clause.

You can use clause-local variables to accumulate intermediate results of calculations or as
temporary copies of other variables. Access to a clause-local variable is much faster than
access to an associative array. Therefore, if you need to reference an associative array value
multiple times in the same D program clause, it is more efficient to copy it into a clause-local
variable first and then reference the local variable repeatedly.

Built-In Variables
The following table provides a complete list of built-in D variables. All of these variables are
scalar global variables.

Table 2-13 DTrace Built-In Variables

Variable Description

args[] The typed arguments, if any, to the current
probe. The args[] array is accessed using an
integer index, but each element is defined to be
the type corresponding to the given probe
argument. For information about any typed
arguments, use dtrace -l with the verbose
option -v and check Argument Types.

int64_t arg0, ..., arg9 The first ten input arguments to a probe,
represented as raw 64-bit integers. Values are
meaningful only for arguments defined for the
current probe.

uintptr_t caller The program counter location of the current
kernel thread at the time the probe fired.

chipid_t chip The CPU chip identifier for the current physical
chip.

processorid_t cpu The CPU identifier for the current CPU. See
sched Provider for more information.

cpuinfo_t *curcpu The CPU information for the current CPU. See
sched Provider.

lwpsinfo_t *curlwpsinfo The process state of the current thread. See proc
Provider.

psinfo_t *curpsinfo The process state of the process associated with
the current thread. See proc Provider.

Chapter 2
Variables

2-34

Table 2-13 (Cont.) DTrace Built-In Variables

Variable Description

task_struct *curthread Is a vmlinux data type, for which members can
be found by searching for "task_struct" on the
Internet.

string cwd The name of the current working directory of
the process associated with the current thread.

uint_t epid The enabled probe ID (EPID) for the current
probe. This integer uniquely identifies a
particular probe that is enabled with a specific
predicate and set of actions.

int errno The error value returned by the last system call
executed by this thread.

string execname The name that was passed to execve() to
execute the current process.

fileinfo_t fds[] The files that the current process has opened in
an fileinfo_t array, indexed by file descriptor
number. See fileinfo_t.

Note:

You must load the
sdt kernel module
for fds[] to be
available.

gid_t gid The real group ID of the current process.

uint_t id The probe ID for the current probe. This ID is
the system-wide unique identifier for the
probe, as published by DTrace and listed in the
output of dtrace -l.

Chapter 2
Variables

2-35

Table 2-13 (Cont.) DTrace Built-In Variables

Variable Description

uint_t ipl The interrupt priority level (IPL) on the current
CPU at probe firing time.

Note:

This value is non-
zero if interrupts
are firing and zero
otherwise. The non-
zero value depends
on whether
preemption is
active, as well as
other factors, and
can vary between
kernel releases and
kernel
configurations.

lgrp_id_t lgrp The latency group ID for the latency group of
which the current CPU is a member. This value
is always zero.

pid_t pid The process ID of the current process.

pid_t ppid The parent process ID of the current process.

string probefunc The function name portion of the current
probe's description.

string probemod The module name portion of the current
probe's description.

string probename The name portion of the current probe's
description.

string probeprov The provider name portion of the current
probe's description.

psetid_t pset The processor set ID for the processor set
containing the current CPU. This value is
always zero.

string root The name of the root directory of the process
that is associated with the current thread.

uint_t stackdepth The current thread's stack frame depth at
probe firing time.

id_t tid The task ID of the current thread.

uint64_t timestamp The current value of a nanosecond timestamp
counter. This counter increments from an
arbitrary point in the past and should only be
used for relative computations.

uintptr_t ucaller The program counter location of the current
user thread at the time the probe fired.

Chapter 2
Variables

2-36

Table 2-13 (Cont.) DTrace Built-In Variables

Variable Description

uid_t uid The real user ID of the current process.

uint64_t uregs[] The current thread's saved user-mode register
values at probe firing time. Use of the uregs[]
array is discussed in uregs[] Array.

uint64_t vtimestamp The current value of a nanosecond timestamp
counter that is virtualized to the amount of
time that the current thread has been running
on a CPU, minus the time spent in DTrace
predicates and actions. This counter
increments from an arbitrary point in the past
and should only be used for relative time
computations.

int64_t walltimestamp The current number of nanoseconds since
00:00 Universal Coordinated Time, January 1,
1970.

Functions that are built into the D language such as trace are discussed in Actions and
Subroutines.

External Variables
The D language uses the back quote character (`) as a special scoping operator for accessing
variables that are defined in the operating system and not in your D program. For more
information, see External Symbols and Types.

Pointers and Scalar Arrays
Pointers are memory addresses of data objects in the operating system kernel or in the
address space of a user process. D provides the ability to create and manipulate pointers and
store them in variables and associative arrays. This section describes the D syntax for
pointers, operators that can be applied to create or access pointers, and the relationship
between pointers and fixed-size scalar arrays. Also discussed are issues relating to the use of
pointers in different address spaces.

Note:

If you are an experienced C or C++ programmer, you can skim most of this section
as the D pointer syntax is the same as the corresponding ANSI C syntax. Howevver,
you should read Pointers and Addresses and Pointers to DTrace Objects, as these
sections describe features and issues that are specific to DTrace.

Pointers and Addresses
The Linux operating system uses a technique called virtual memory to provide each user
process with its own virtual view of the memory resources on your system. A virtual view of
memory resources is referred to as an address space. An address space associates a range of

Chapter 2
Pointers and Scalar Arrays

2-37

address values, either [0 ... 0xffffffff] for a 32-bit address space or [0 ...
0xffffffffffffffff] for a 64-bit address space, with a set of translations that the operating
system and hardware use to convert each virtual address to a corresponding physical memory
location. Pointers in D are data objects that store an integer virtual address value and
associate it with a D type that describes the format of the data stored at the corresponding
memory location.

You can explicitly declare a D variable to be of pointer type by first specifying the type of the
referenced data and then appending an asterisk (*) to the type name. Doing so indicates you
want to declare a pointer type, as shown in the following statement:

int *p;

This statement declares a D global variable named p that is a pointer to an integer. The
declaration means that p is a 64-bit integer with a value that is the address of another integer
located somewhere in memory. Because the compiled form of your D code is executed at
probe firing time inside the operating system kernel itself, D pointers are typically pointers
associated with the kernel's address space. You can use the arch command to determine the
number of bits that are used for pointers by the active operating system kernel.

If you want to create a pointer to a data object inside of the kernel, you can compute its
address by using the & operator. For example, the operating system kernel source code
declares an unsigned long max_pfn variable. You could trace the address of this variable by
tracing the result of applying the & operator to the name of that object in D:

trace(&`max_pfn);

The * operator can be used to refer to the object addressed by the pointer, and acts as the
inverse of the & operator. For example, the following two D code fragments are equivalent in
meaning:

q = &`max_pfn; trace(*q);

trace(`max_pfn);

In this example, the first fragment creates a D global variable pointer q. Because the max_pfn
object is of type unsigned long, the type of &`max_pfn is unsigned long * (that is, pointer to
unsigned long), implicitly setting the type of q. Tracing the value of *qfollows the pointer back
to the data object max_pfn. This fragment is therefore the same as the second fragment, which
directly traces the value of the data object by using its name.

Pointer Safety
If you are a C or C++ programmer, you might be a bit apprehensive after reading the previous
section because you know that misuse of pointers in your programs can cause your programs
to crash. DTrace, however, is a robust, safe environment for executing your D programs. Take
note that these types of mistakes cannot cause program crashes. You might write a buggy D
program, but invalid D pointer accesses do not cause DTrace or the operating system kernel to
fail or crash in any way. Instead, the DTrace software detects any invalid pointer accesses,
disables your instrumentation, and reports the problem back to you for debugging.

If you have previously programmed in the Java programming language, you are probably
aware that the Java language does not support pointers for precisely the same reasons of
safety. Pointers are needed in D because they are an intrinsic part of the operating system's
implementation in C, but DTrace implements the same kind of safety mechanisms that are
found in the Java programming language to prevent buggy programs from damaging

Chapter 2
Pointers and Scalar Arrays

2-38

themselves or each other. DTrace's error reporting is similar to the runtime environment for the
Java programming language that detects a programming error and reports an exception.

To observe DTrace's error handling and reporting, you could write a deliberately bad D
program using pointers. For example, in an editor, type the following D program and save it in
a file named badptr.d:

BEGIN
{
 x = (int *)NULL;
 y = *x;
 trace(y);
}

The badptr.d program creates a D pointer named x that is a pointer to int. The program
assigns this pointer the special invalid pointer value NULL, which is a built-in alias for address 0.
By convention, address 0 is always defined as invalid so that NULL can be used as a sentinel
value in C and D programs. The program uses a cast expression to convert NULL to be a
pointer to an integer. The program then dereferences the pointer by using the expression *x,
assigns the result to another variable y, and then attempts to trace y. When the D program is
executed, DTrace detects an invalid pointer access when the statement y = *x is executed
and reports the following error:

dtrace -s badptr.d
dtrace: script 'badptr.d' matched 1 probe
dtrace: error on enabled probe ID 1 (ID 1: dtrace:::BEGIN):
invalid address (0x0) in action #2 at DIF offset 4
^C
#

Notice that the D program moves past the error and continues to execute; the system and all
observed processes remain unperturbed. You can also add an ERROR probe to your script to
handle D errors. For details about the DTrace error mechanism, see ERROR Probe.

Array Declarations and Storage
In addition to the dynamic associative arrays that are described in Variables, D supports scalar
arrays. Scalar arrays are a fixed-length group of consecutive memory locations that each store
a value of the same type. Scalar arrays are accessed by referring to each location with an
integer, starting from zero. Scalar arrays correspond directly in concept and syntax with arrays
in C and C++. Scalar arrays are not used as frequently in D as associative arrays and their
more advanced counterparts aggregations. You might, however, need to use scalar arrays to
access existing operating system array data structures that are declared in C. Aggregations
are described in Aggregations.

A D scalar array of 5 integers is declared by using the type int and suffixing the declaration
with the number of elements in square brackets, for example:

int a[5];

#unique_31/unique_31_Connect_42_dt_arrayfig_dlang shows a visual representation of the
array storage:

Scalar Array Representation

Chapter 2
Pointers and Scalar Arrays

2-39

The D expression a[0] refers to the first array element, a[1] refers to the second, and so on.
From a syntactic perspective, scalar arrays and associative arrays are very similar. You can
declare an associative array of integers referenced by an integer key as follows:

int a[int];

You can also reference this array using the expression a[0]. But, from a storage and
implementation perspective, the two arrays are very different. The static array a consists of five
consecutive memory locations numbered from zero, and the index refers to an offset in the
storage that is allocated for the array. On the other hand, an associative array has no
predefined size and does not store elements in consecutive memory locations. In addition,
associative array keys have no relationship to the corresponding value storage location. You
can access associative array elements a[0] and a[-5] and only two words of storage are
allocated by DTrace, and these might or might not be consecutive. Associative array keys are
abstract names for the corresponding values and have no relationship to the value storage
locations.

If you create an array using an initial assignment and use a single integer expression as the
array index , for example, a[0] = 2, the D compiler always creates a new associative array,
even though in this expression a could also be interpreted as an assignment to a scalar array.
Scalar arrays must be predeclared in this situation so that the D compiler can recognize the
definition of the array size and infer that the array is a scalar array.

Pointer and Array Relationship
Pointers and scalar arrays have a special relationship in D, just as they do in ANSI C. A scalar
array is represented by a variable that is associated with the address of its first storage
location. A pointer is also the address of a storage location with a defined type. Thus, D
permits the use of the array [] index notation with both pointer variables and array variables.
For example, the following two D fragments are equivalent in meaning:

p = &a[0]; trace(p[2]);

trace(a[2]);

In the first fragment, the pointer p is assigned to the address of the first element in scalar array
a by applying the & operator to the expression a[0]. The expression p[2] traces the value of
the third array element (index 2). Because p now contains the same address associated with a,
this expression yields the same value as a[2], shown in the second fragment. One
consequence of this equivalence is that C and D permit you to access any index of any pointer
or array. Array bounds checking is not performed for you by the compiler or the DTrace runtime
environment. If you access memory beyond the end of a scalar array's predefined size, you
either get an unexpected result or DTrace reports an invalid address error, as shown in the
previous example. As always, you cannot damage DTrace itself or your operating system, but
you do need to debug your D program.

The difference between pointers and arrays is that a pointer variable refers to a separate piece
of storage that contains the integer address of some other storage. Whereas, an array variable
names the array storage itself, not the location of an integer that in turn contains the location of
the array. #unique_64/unique_64_Connect_42_dt_arrptrfig_dlang illustrates this difference.

Pointer and Array Storage

Chapter 2
Pointers and Scalar Arrays

2-40

This difference is manifested in the D syntax if you attempt to assign pointers and scalar
arrays. If x and y are pointer variables, the expression x = y is legal; it copies the pointer
address in y to the storage location that is named by x. If x and y are scalar array variables, the
expression x = y is not legal. Arrays may not be assigned as a whole in D. However, an array
variable or symbol name can be used in any context where a pointer is permitted. If p is a
pointer and a is a scalar array, the statement p = a is permitted. This statement is equivalent to
the statement p = &a[0].

Pointer Arithmetic
Because pointers are just integers that are used as addresses of other objects in memory, D
provides a set of features for performing arithmetic on pointers. However, pointer arithmetic is
not identical to integer arithmetic. Pointer arithmetic implicitly adjusts the underlying address by
multiplying or dividing the operands by the size of the type referenced by the pointer.

The following D fragment illustrates this property:

int *x;

BEGIN
{
 trace(x);
 trace(x + 1);
 trace(x + 2);
}

This fragment creates an integer pointer x and then traces its value, its value incremented by
one, and its value incremented by two. If you create and execute this program, DTrace reports
the integer values 0, 4, and 8.

Since x is a pointer to an int (size 4 bytes), incrementing x adds 4 to the underlying pointer
value. This property is useful when using pointers to refer to consecutive storage locations
such as arrays. For example, if x was assigned to the address of an array a, similar to what is
shown in #unique_64/unique_64_Connect_42_dt_arrptrfig_dlang, the expression x + 1 would
be equivalent to the expression &a[1]. Similarly, the expression *(x + 1) would refer to the
value a[1]. Pointer arithmetic is implemented by the D compiler whenever a pointer value is
incremented by using the +, ++, or =+ operators. Pointer arithmetic is also applied as follows;
when an integer is subtracted from a pointer on the left-hand side, when a pointer is subtracted
from another pointer, or when the -- operator is applied to a pointer.

For example, the following D program would trace the result 2:

int *x, *y;
int a[5];

BEGIN
{
 x = &a[0];
 y = &a[2];

Chapter 2
Pointers and Scalar Arrays

2-41

 trace(y - x);
}

Generic Pointers
Sometimes it is useful to represent or manipulate a generic pointer address in a D program
without specifying the type of data referred to by the pointer. Generic pointers can be specified
by using the type void *, where the keyword void represents the absence of specific type
information, or by using the built-in type alias uintptr_t, which is aliased to an unsigned
integer type of size that is appropriate for a pointer in the current data model. You may not
apply pointer arithmetic to an object of type void *, and these pointers cannot be
dereferenced without casting them to another type first. You can cast a pointer to the
uintptr_t type when you need to perform integer arithmetic on the pointer value.

Pointers to void can be used in any context where a pointer to another data type is required,
such as an associative array tuple expression or the right-hand side of an assignment
statement. Similarly, a pointer to any data type can be used in a context where a pointer to
void is required. To use a pointer to a non-void type in place of another non-void pointer type,
an explicit cast is required. You must always use explicit casts to convert pointers to integer
types, such as uintptr_t, or to convert these integers back to the appropriate pointer type.

Multi-Dimensional Arrays
Multi-dimensional scalar arrays are used infrequently in D, but are provided for compatibility
with ANSI C and are for observing and accessing operating system data structures that are
created by using this capability in C. A multi-dimensional array is declared as a consecutive
series of scalar array sizes enclosed in square brackets [] following the base type. For
example, to declare a fixed-size, two-dimensional rectangular array of integers of dimensions
that is 12 rows by 34 columns, you would write the following declaration:

int a[12][34];

A multi-dimensional scalar array is accessed by using similar notation. For example, to access
the value stored at row 0 and column 1, you would write the D expression as follows:

a[0][1]

Storage locations for multi-dimensional scalar array values are computed by multiplying the
row number by the total number of columns declared and then adding the column number.

Be careful not to confuse the multi-dimensional array syntax with the D syntax for associative
array accesses, that is, a[0][1], is not the same as a[0,1]). If you use an incompatible tuple
with an associative array or attempt an associative array access of a scalar array, the D
compiler reports an appropriate error message and refuses to compile your program.

Pointers to DTrace Objects
The D compiler prohibits you from using the & operator to obtain pointers to DTrace objects
such as associative arrays, built-in functions, and variables. You are prohibited from obtaining
the address of these variables so that the DTrace runtime environment is free to relocate them
as needed between probe firings . In this way, DTrace can more efficiently manage the
memory required for your programs. If you create composite structures, it is possible to
construct expressions that do retrieve the kernel address of your DTrace object storage. You
should avoid creating such expressions in your D programs. If you need to use such an
expression, do not rely on the address being the same across probe firings.

Chapter 2
Pointers and Scalar Arrays

2-42

In ANSI C, pointers can also be used to perform indirect function calls or to perform
assignments, such as placing an expression using the unary * dereference operator on the
left-hand side of an assignment operator. In D, these types of expressions using pointers are
not permitted. You may only assign values directly to D variables by specifying their name or
by applying the array index operator [] to a D scalar or associative array. You may only call
functions that are defined by the DTrace environment by name, as specified in Actions and
Subroutines. Indirect function calls using pointers are not permitted in D.

Pointers and Address Spaces
A pointer is an address that provides a translation within some virtual address space to a piece
of physical memory. DTrace executes your D programs within the address space of the
operating system kernel itself. The Linux system manages many address spaces: one for the
operating system kernel and one for each user process. Because each address space
provides the illusion that it can access all of the memory on the system, the same virtual
address pointer value can be reused across address spaces, but translate to different physical
memory. Therefore, when writing D programs that use pointers, you must be aware of the
address space corresponding to the pointers you intend to use.

For example, if you use the syscall provider to instrument entry to a system call that takes a
pointer to an integer or array of integers as an argument, for example, pipe(), it would not be
valid to dereference that pointer or array using the * or [] operators because the address in
question is an address in the address space of the user process that performed the system
call. Applying the * or [] operators to this address in D would result in kernel address space
access, which would result in an invalid address error or in returning unexpected data to your
D program, depending on whether the address happened to match a valid kernel address.

To access user-process memory from a DTrace probe, you must apply one of the copyin,
copyinstr, or copyinto functions that are described in Actions and Subroutines to the user
address space pointer. To avoid confusion, take care when writing your D programs to name
and comment variables storing user addresses appropriately. You can also store user
addresses as uintptr_t so that you do not accidentally compile D code that dereferences
them. Techniques for using DTrace on user processes are described in User Process Tracing.

DTrace Support for Strings
DTrace provides support for tracing and manipulating strings. This section describes the
complete set of D language features for declaring and manipulating strings. Unlike ANSI C,
strings in D have their own built-in type and operator support to enable you to easily and
unambiguously use them in your tracing programs.

String Representation
In DTrace, strings are represented as an array of characters terminated by a null byte (that is,
a byte whose value is zero, usually written as '\0'). The visible part of the string is of variable
length, depending on the location of the null byte, but DTrace stores each string in a fixed-size
array so that each probe traces a consistent amount of data. Strings cannot exceed the length
of the predefined string limit. However, the limit can be modified in your D program or on the
dtrace command line by tuning the strsize option. See Options and Tunables for more
information about tunable DTrace options. The default string limit is 256 bytes.

The D language provides an explicit string type rather than using the type char * to refer to
strings. The string type is equivalent to char *, in that it is the address of a sequence of
characters, but the D compiler and D functions such as trace provide enhanced capabilities

Chapter 2
DTrace Support for Strings

2-43

when applied to expressions of type string. For example, the string type removes the ambiguity
of type char * when you need to trace the actual bytes of a string.

In the following D statement, if s is of type char *, DTrace traces the value of the pointer s,
which means it traces an integer address value:

trace(s);

In the following D statement, by the definition of the * operator, the D compiler dereferences
the pointer s and traces the single character at that location:

trace(*s);

These behaviors enable you to manipulate character pointers that refer to either single
characters, or to arrays of byte-sized integers that are not strings and do not end with a null
byte.

In the next D statement, if s is of type string, the string type indicates to the D compiler that
you want DTrace to trace a null terminated string of characters whose address is stored in the
variable s:

trace(s);

You can also perform lexical comparison of expressions of type string. See String Comparison.

String Constants
String constants are enclosed in pairs of double quotes ("") and are automatically assigned the
type string by the D compiler. You can define string constants of any length, limited only by
the amount of memory DTrace is permitted to consume on your system. The terminating null
byte (\0) is added automatically by the D compiler to any string constants that you declare. The
size of a string constant object is the number of bytes associated with the string, plus one
additional byte for the terminating null byte.

A string constant may not contain a literal newline character. To create strings containing
newlines, use the \n escape sequence instead of a literal newline. String constants can also
contain any of the special character escape sequences that are defined for character
constants. See Table 2-6.

String Assignment
Unlike the assignment of char * variables, strings are copied by value and not by reference.
The string assignment operator = copies the actual bytes of the string from the source operand
up to and including the null byte to the variable on the left-hand side, which must be of type
string. You can create a new string variable by assigning it an expression of type string.

For example, the D statement:

s = "hello";

would create a new variable s of type string and copy the six bytes of the string "hello" into
it (five printable characters, plus the null byte). String assignment is analogous to the C library
function strcpy(), with the exception that if the source string exceeds the limit of the storage
of the destination string, the resulting string is automatically truncated by a null byte at this
limit.

You can also assign to a string variable an expression of a type that is compatible with strings.
In this case, the D compiler automatically promotes the source expression to the string type

Chapter 2
DTrace Support for Strings

2-44

and performs a string assignment. The D compiler permits any expression of type char * or of
type char[n], that is, a scalar array of char of any size, to be promoted to a string.

String Conversion
Expressions of other types can be explicitly converted to type string by using a cast
expression or by applying the special stringof operator, which are equivalent in the following
meaning:

s = (string) expression;

s = stringof (expression);

The expression is interpreted as an address to the string.

The stringof operator binds very tightly to the operand on its right-hand side. Typically,
parentheses are used to surround the expression for clarity. Although, they are not strictly
necessary.

Any expression that is a scalar type, such as a pointer or integer, or a scalar array address
may be converted to string. Expressions of other types such as void may not be converted to
string. If you erroneously convert an invalid address to a string, the DTrace safety features
prevents you from damaging the system or DTrace, but you might end up tracing a sequence
of undecipherable characters.

String Comparison
D overloads the binary relational operators and permits them to be used for string
comparisons, as well as integer comparisons. The relational operators perform string
comparison whenever both operands are of type string or when one operand is of type
string and the other operand can be promoted to type string. See String Assignment for a
detailed description. See also Table 2-14, which lists the relational operators that can be used
to compare strings.

Table 2-14 D Relational Operators for Strings

Operator Description

< Left-hand operand is less than right-operand.

<= Left-hand operand is less than or equal to right-
hand operand.

> Left-hand operand is greater than right-hand
operand.

>= Left-hand operand is greater than or equal to
right-hand operand.

== Left-hand operand is equal to right-hand
operand.

!= Left-hand operand is not equal to right-hand
operand.

As with integers, each operator evaluates to a value of type int, which is equal to one if the
condition is true or zero if it is false.

The relational operators compare the two input strings byte-by-byte, similarly to the C library
routine strcmp(). Each byte is compared by using its corresponding integer value in the ASCII

Chapter 2
DTrace Support for Strings

2-45

character set until a null byte is read or the maximum string length is reached. See the
ascii(7) manual page for more information. Some example D string comparisons and their
results are shown in the following table.

D string comparison Result

"coffee" < "espresso" Returns 1 (true)

"coffee" == "coffee" Returns 1 (true)

"coffee"" >= "mocha" Returns 0 (false)

Note:

Seemingly identical Unicode strings might compare as being different if one or the
other of the strings is not normalized.

Structs and Unions
Collections of related variables can be grouped together into composite data objects called
structs and unions. You define these objects in D by creating new type definitions for them. You
can use your new types for any D variables, including associative array values. This section
explores the syntax and semantics for creating and manipulating these composite types and
the D operators that interact with them.

Structs
The D keyword struct, short for structure, is used to introduce a new type that is composed of
a group of other types. The new struct type can be used as the type for D variables and
arrays, enabling you to define groups of related variables under a single name. D structs are
the same as the corresponding construct in C and C++. If you have programmed in the Java
programming language previously, think of a D struct as a class that contains only data
members and no methods.

Suppose you want to create a more sophisticated system call tracing program in D that records
a number of things about each read() and write() system call that is executed by your shell,
for example, the elapsed time, number of calls, and the largest byte count passed as an
argument.

You could write a D clause to record these properties in three separate associative arrays, as
shown in the following example:

int maxbytes[string]; /* declare maxbytes */
syscall::read:entry, syscall::write:entry
/pid == 12345/
{
 ts[probefunc] = timestamp;
 calls[probefunc]++;
 maxbytes[probefunc] = arg2 > maxbytes[probefunc] ?
 arg2 : maxbytes[probefunc];
}

This clause, however, is inefficient because DTrace must create three separate associative
arrays and store separate copies of the identical tuple values corresponding to probefunc for

Chapter 2
Structs and Unions

2-46

each one. Instead, you can conserve space and make your program easier to read and
maintain by using a struct.

First, declare a new struct type at the top of the D program source file:

struct callinfo {
 uint64_t ts; /* timestamp of last syscall entry */
 uint64_t elapsed; /* total elapsed time in nanoseconds */
 uint64_t calls; /* number of calls made */
 size_t maxbytes; /* maximum byte count argument */
};

The struct keyword is followed by an optional identifier that is used to refer back to the new
type, which is now known as struct callinfo. The struct members are then enclosed in a set
of braces {} and the entire declaration is terminated by a semicolon (;). Each struct member is
defined by using the same syntax as a D variable declaration, with the type of the member
listed first followed by an identifier naming the member and another semicolon (;).

The struct declaration simply defines the new type. It does not create any variables or
allocate any storage in DTrace. When declared, you can use struct callinfo as a type
throughout the remainder of your D program. Each variable of type struct callinfo stores a
copy of the four variables that are described by our structure template. The members are
arranged in memory in order, according to the member list, with padding space introduced
between members, as required for data object alignment purposes.

You can use the member identifier names to access the individual member values using the “.”
operator by writing an expression of the following form:

 variable-name.member-name

The following example is an improved program that uses the new structure type. In a text
editor, type the following D program and save it in a file named rwinfo.d:

struct callinfo {
 uint64_t ts; /* timestamp of last syscall entry */
 uint64_t elapsed; /* total elapsed time in nanoseconds */
 uint64_t calls; /* number of calls made */
 size_t maxbytes; /* maximum byte count argument */
};

struct callinfo i[string]; /* declare i as an associative array */

syscall::read:entry, syscall::write:entry
/pid == $1/
{
 i[probefunc].ts = timestamp;
 i[probefunc].calls++;
 i[probefunc].maxbytes = arg2 > i[probefunc].maxbytes ?
 arg2 : i[probefunc].maxbytes;
}

syscall::read:return, syscall::write:return
/i[probefunc].ts != 0 && pid == $1/
{
 i[probefunc].elapsed += timestamp - i[probefunc].ts;
}

END
{

Chapter 2
Structs and Unions

2-47

 printf(" calls max bytes elapsed nsecs\n");
 printf("------ ----- --------- -------------\n");
 printf(" read %5d %9d %d\n",
 i["read"].calls, i["read"].maxbytes, i["read"].elapsed);
 printf(" write %5d %9d %d\n",
 i["write"].calls, i["write"].maxbytes, i["write"].elapsed);
}

When you have typed the program, run the dtrace -q -s rwinfo.d command, specifying
one of your shell processes. Then, type a few commands in your shell. When you have
finished typing the shell commands, type Ctrl-C to fire the END probe and print the results:

dtrace -q -s rwinfo.d `pgrep -n bash`
 ^C
 calls max bytes elapsed nsecs
------ ----- --------- -------------
 read 25 1024 8775036488
 write 33 22 1859173

Pointers to Structs
Referring to structs by using pointers is very common in C and D. You can use the operator ->
to access struct members through a pointer. If struct s has a member m, and you have a
pointer to this struct named sp, where sp is a variable of type struct s *, you can either use
the * operator to first dereference the sp pointer to access the member:

struct s *sp;
(*sp).m

Or, you can use the -> operator as shorthand for this notation. The following two D fragments
are equivalent if sp is a pointer to a struct:

(*sp).m
sp->m

DTrace provides several built-in variables that are pointers to structs. For example, the pointer
curpsinfo refers to struct psinfo and its content provides a snapshot of information about
the state of the process associated with the thread that fired the current probe. The following
table lists a few example expressions that use curpsinfo, including their types and their
meanings.

Example Expression Type Meaning

curpsinfo->pr_pid pid_t Current process ID

curpsinfo->pr_fname char [] Executable file name

curpsinfo->pr_psargs char [] Initial command-line
arguments

For more information, see psinfo_t.

The next example uses the pr_fname member to identify a process of interest. In an editor,
type the following script and save it in a file named procfs.d:

syscall::write:entry
/ curpsinfo->pr_fname == "date" /
{
 printf("%s run by UID %d\n", curpsinfo->pr_psargs, curpsinfo->pr_uid);
}

Chapter 2
Structs and Unions

2-48

This clause uses the expression curpsinfo->pr_fname to access and match the command
name so that the script selects the correct write() requests before tracing the arguments.
Notice that by using operator == with a left-hand argument that is an array of char and a right-
hand argument that is a string, the D compiler infers that the left-hand argument should be
promoted to a string and a string comparison should be performed. Type the command
dtrace -q -s procs.d in one shell and then type the date command several times in
another shell. The output that is displayed by DTrace is similar to the following:

dtrace -q -s procfs.d
date run by UID 500
/bin/date run by UID 500
date -R run by UID 500
...
^C
#

Complex data structures are used frequently in C programs, so the ability to describe and
reference structs from D also provides a powerful capability for observing the inner workings of
the Oracle Linux operating system kernel and its system interfaces.

Unions
Unions are another kind of composite type that is supported by ANSI C and D and are closely
related to structs. A union is a composite type where a set of members of different types are
defined and the member objects all occupy the same region of storage. A union is therefore an
object of variant type, where only one member is valid at any given time, depending on how
the union has been assigned. Typically, some other variable or piece of state is used to
indicate which union member is currently valid. The size of a union is the size of its largest
member. The memory alignment that is used for the union is the maximum alignment required
by the union members.

Member Sizes and Offsets
You can determine the size in bytes of any D type or expression, including a struct or union,
by using the sizeof operator. The sizeof operator can be applied either to an expression or to
the name of a type surrounded by parentheses, as illustrated in the following two examples:

sizeof expression
sizeof (type-name)

For example, the expression sizeof (uint64_t) would return the value 8, and the expression
sizeof (callinfo.ts) would also return 8, if inserted into the source code of the previous
example program. The formal return type of the sizeof operator is the type alias size_t, which
is defined as an unsigned integer that is the same size as a pointer in the current data model
and is used to represent byte counts. When the sizeof operator is applied to an expression,
the expression is validated by the D compiler, but the resulting object size is computed at
compile time and no code for the expression is generated. You can use sizeof anywhere an
integer constant is required.

You can use the companion operator offsetof to determine the offset in bytes of a struct or
union member from the start of the storage that is associated with any object of the struct or
union type. The offsetof operator is used in an expression of the following form:

offsetof (type-name, member-name)

Chapter 2
Structs and Unions

2-49

Here, type-name is the name of any struct or union type or type alias, and member-name is
the identifier naming a member of that struct or union. Similar to sizeof, offsetof returns a
size_t and you can use it anywhere in a D program that an integer constant can be used.

Bit-Fields
D also permits the definition of integer struct and union members of arbitrary numbers of bits,
known as bit-fields. A bit-field is declared by specifying a signed or unsigned integer base type,
a member name, and a suffix indicating the number of bits to be assigned for the field, as
shown in the following example:

struct s
{
 int a : 1;
 int b : 3;
 int c : 12;
};

The bit-field width is an integer constant that is separated from the member name by a trailing
colon. The bit-field width must be positive and must be of a number of bits not larger than the
width of the corresponding integer base type. Bit-fields that are larger than 64 bits may not be
declared in D. D bit-fields provide compatibility with and access to the corresponding ANSI C
capability. Bit-fields are typically used in situations when memory storage is at a premium or
when a struct layout must match a hardware register layout.

A bit-field is a compiler construct that automates the layout of an integer and a set of masks to
extract the member values. The same result can be achieved by simply defining the masks
yourself and using the & operator. The C and D compilers attempt to pack bits as efficiently as
possible, but they are free to do so in any order or fashion they desire. Therefore, bit-fields are
not guaranteed to produce identical bit layouts across differing compilers or architectures. If
you require stable bit layout, you should construct the bit masks yourself and extract the values
by using the & operator.

A bit-field member is accessed by simply specifying its name in combination with the “.” or ->
operators, like any other struct or union member. The bit-field is automatically promoted to the
next largest integer type for use in any expressions. Because bit-field storage cannot be
aligned on a byte boundary or be a round number of bytes in size, you may not apply the
sizeof or offsetof operators to a bit-field member. The D compiler also prohibits you from
taking the address of a bit-field member by using the & operator.

Type and Constant Definitions
This section describes how to declare type aliases and named constants in D. It also discusses
D type and namespace management for program and operating system types and identifiers.

typedefs
The typedef keyword is used to declare an identifier as an alias for an existing type. Like all D
type declarations, typedef is used outside of probe clauses in a declaration of the following
form:

typedef existing-type new-type ;

where existing-type is any type declaration and new-type is an identifier to be used as the alias
for this type. For example, the D compiler uses the following declaration internally to create the
uint8_t type alias:

Chapter 2
Type and Constant Definitions

2-50

typedef unsigned char uint8_t;

You can use type aliases anywhere that a normal type can be used, such as the type of a
variable or associative array value or tuple member. You can also combine typedef with more
elaborate declarations such as the definition of a new struct, as shown in the following
example:

typedef struct foo {
 int x;
 int y;
} foo_t;

In the previous example, struct foo is defined using the same type as its alias, foo_t. Linux
C system headers often use the suffix _t to denote a typedef alias.

Enumerations
Defining symbolic names for constants in a program eases readability and simplifies the
process of maintaining the program in the future. One method is to define an enumeration,
which associates a set of integers with a set of identifiers called enumerators that the compiler
recognizes and replaces with the corresponding integer value. An enumeration is defined by
using a declaration such as the following:

enum colors {
 RED,
 GREEN,
 BLUE
};

The first enumerator in the enumeration, RED, is assigned the value zero and each subsequent
identifier is assigned the next integer value.

You can also specify an explicit integer value for any enumerator by suffixing it with an equal
sign and an integer constant, as shown in the following example:

enum colors {
 RED = 7,
 GREEN = 9,
 BLUE
};

The enumerator BLUE is assigned the value 10 by the compiler because it has no value
specified and the previous enumerator is set to 9. When an enumeration is defined, the
enumerators can be used anywhere in a D program that an integer constant is used. In
addition, the enumeration enum colors is also defined as a type that is equivalent to an int.
The D compiler allows a variable of enum type to be used anywhere an int can be used and
will allow any integer value to be assigned to a variable of enum type. You can also omit the
enum name in the declaration, if the type name is not needed.

Enumerators are visible in all subsequent clauses and declarations in your program. Therefore,
you cannot define the same enumerator identifier in more than one enumeration. However, you
can define more than one enumerator with the same value in either the same or different
enumerations. You may also assign integers that have no corresponding enumerator to a
variable of the enumeration type.

The D enumeration syntax is the same as the corresponding syntax in ANSI C. D also provides
access to enumerations that are defined in the operating system kernel and its loadable
modules. Note that these enumerators are not globally visible in your D program. Kernel
enumerators are only visible if you specify one as an argument in a comparison with an object

Chapter 2
Type and Constant Definitions

2-51

of the corresponding enumeration type. This feature protects your D programs against
inadvertent identifier name conflicts, with the large collection of enumerations that are defined
in the operating system kernel.

The following example D program displays information about I/O requests. The program uses
the enumerators B_READ and B_WRITE to differentiate between read and write operations:

io:::done,
io:::start,
io:::wait-done,
io:::wait-start
{
 printf("%8s %10s: %d %16s (%s size %d @ sect %d)\n",
 args[1]->dev_statname, probename,
 timestamp, execname,
 args[0]->b_flags & B_READ ? "R" :
 args[0]->b_flags & B_WRITE ? "W" : "?",
 args[0]->b_bcount, args[0]->b_blkno);
}

Inlines
D named constants can also be defined by using inline directives, which provide a more
general means of creating identifiers that are replaced by predefined values or expressions
during compilation. Inline directives are a more powerful form of lexical replacement than the
#define directive provided by the C preprocessor because the replacement is assigned an
actual type and is performed by using the compiled syntax tree and not simply a set of lexical
tokens. An inline directive is specified by using a declaration of the following form:

inline type name = expression;

where type is a type declaration of an existing type, name is any valid D identifier that is not
previously defined as an inline or global variable, and expression is any valid D expression.
After the inline directive is processed, the D compiler substitutes the compiled form of
expression for each subsequent instance of name in the program source.

For example, the following D program would trace the string "hello" and integer value 123:

inline string hello = "hello";
inline int number = 100 + 23;

BEGIN
{
 trace(hello);
 trace(number);
}

An inline name can be used anywhere a global variable of the corresponding type is used. If
the inline expression can be evaluated to an integer or string constant at compile time, then the
inline name can also be used in contexts that require constant expressions, such as scalar
array dimensions.

The inline expression is validated for syntax errors as part of evaluating the directive. The
expression result type must be compatible with the type that is defined by the inline,
according to the same rules used for the D assignment operator (=). An inline expression may
not reference the inline identifier itself: recursive definitions are not permitted.

The DTrace software packages install a number of D source files in the system directory /usr/
lib64/dtrace/installed-version , which contain inline directives that you can use in your D
programs.

Chapter 2
Type and Constant Definitions

2-52

For example, the signal.d library includes directives of the following form:

inline int SIGHUP = 1;
inline int SIGINT = 2;
inline int SIGQUIT = 3;
...

These inline definitions provide you with access to the current set of Oracle Linux signal
names, as described in the sigaction(2) manual page. Similarly, the errno.d library contains
inline directives for the C errno constants that are described in the errno(3) manual page.

By default, the D compiler includes all of the provided D library files automatically so that you
can use these definitions in any D program.

Type Namespaces
In traditional languages such as ANSI C, type visibility is determined by whether a type is
nested inside of a function or other declaration. Types declared at the outer scope of a C
program are associated with a single global namespace and are visible throughout the entire
program. Types that are defined in C header files are typically included in this outer scope.
Unlike these languages, D provides access to types from multiple outer scopes.

D is a language that facilitates dynamic observability across multiple layers of a software stack,
including the operating system kernel, an associated set of loadable kernel modules, and user
processes that are running on the system. A single D program can instantiate probes to gather
data from multiple kernel modules or other software entities that are compiled into independent
binary objects. Therefore, more than one data type of the same name, perhaps with different
definitions, might be present in the universe of types that are available to DTrace and the D
compiler. To manage this situation, the D compiler associates each type with a namespace,
which is identified by the containing program object. Types from a particular program object
can be accessed by specifying the object name and the back quote (`) scoping operator in any
type name.

For example, for a kernel module named foo that contains the following C type declaration:

typedef struct bar {
 int x;
} bar_t;

The types struct bar and bar_t could be accessed from D using the following type names:

struct foo`bar
foo`bar_t

The back quote operator can be used in any context where a type name is appropriate,
including when specifying the type for D variable declarations or cast expressions in D probe
clauses.

The D compiler also provides two special, built-in type namespaces that use the names C and
D, respectively. The C type namespace is initially populated with the standard ANSI C intrinsic
types, such as int. In addition, type definitions that are acquired by using the C preprocessor
(cpp), by running the dtrace -C command, are processed by and added to the C scope. As
a result, you can include C header files containing type declarations that are already visible in
another type namespace without causing a compilation error.

The D type namespace is initially populated with the D type intrinsics, such as int and string,
as well as the built-in D type aliases, such as uint64_t. Any new type declarations that appear
in the D program source are automatically added to the D type namespace. If you create a

Chapter 2
Type and Constant Definitions

2-53

complex type such as a struct in a D program consisting of member types from other
namespaces, the member types are copied into the D namespace by the declaration.

When the D compiler encounters a type declaration that does not specify an explicit
namespace using the back quote operator, the compiler searches the set of active type
namespaces to find a match by using the specified type name. The C namespace is always
searched first, followed by the D namespace. If the type name is not found in either the C or D
namespace, the type namespaces of the active kernel modules are searched in load address
order, which does not guarantee any ordering properties among the loadable modules. To
avoid type name conflicts with other kernel modules, you should use the scoping operator
when accessing types that are defined in loadable kernel modules.

The D compiler uses the compressed ANSI C debugging information that is provided with the
core Linux kernel modules to automatically access the types that are associated with the
operating system source code, without the need to access the corresponding C include files.
Note that this symbolic debugging information might not be available for all kernel modules on
your system. The D compiler reports an error if you attempt to access a type within the
namespace of a module that lacks the compressed C debugging information that is intended
for use with DTrace.

Chapter 2
Type and Constant Definitions

2-54

3
Aggregations

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

For more information about DTrace, see Oracle Linux: DTrace Release Notes and
Oracle Linux: Using DTrace for System Tracing.

When instrumenting the system to answer performance-related questions, it is useful to
consider how data can be aggregated to answer a specific question, rather than thinking in
terms of data gathered by individual probes. For example, if you want to know the number of
system calls by user ID, you would not necessarily care about the datum collected at each
system call. In this cae, you simply want to see a table of user IDs and system calls.
Historically, you would answer this question by gathering data at each system call and post-
processing the data using a tool like awk or perl. Whereas, in DTrace, the aggregating of
data is a first-class operation. This chapter describes the DTrace facilities for manipulating
aggregations.

Aggregation Concepts
An aggregating function is one that has the following property:

func(func(x0) U func(x1) U ... U func(xn)) = func(x0 U x1 U ... U xn)

where xn is a set of arbitrary data, which is to say, applying an aggregating function to subsets
of the whole and then applying it again to the results yields the same result as applying it to the
whole itself. For example, consider the SUM function, which yields the summation of a given
data set. If the raw data consists of {2, 1, 2, 5, 4, 3, 6, 4, 2}, the result of applying SUM to the
entire set is {29}. Similarly, the result of applying SUM to the subset consisting of the first three
elements is {5}, the result of applying SUM to the set consisting of the subsequent three
elements is {12}, and the result of applying SUM to the remaining three elements is also {12}.
SUM is an aggregating function because applying it to the set of these results, {5, 12, 12}, yields
the same result, {29}, as though applying SUM to the original data.

Not all functions are aggregating functions. An example of a non-aggregating function is the
MEDIAN function. This function determines the median element of the set. The median is
defined to be that element of a set for which as many elements in the set are greater than the
element, as those that are less than it. The MEDIAN is derived by sorting the set and selecting
the middle element. Returning to the original raw data, if MEDIAN is applied to the set consisting
of the first three elements, the result is {2}. The sorted set is {1, 2, 2}; {2} is the set consisting of
the middle element. Likewise, applying MEDIAN to the next three elements yields {4} and
applying MEDIAN to the final three elements yields {4}. Thus, applying MEDIAN to each of the
subsets yields the set {2, 4, 4}. Applying MEDIAN to this set yields the result {4}. Note that

3-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/

sorting the original set yields {1, 2, 2, 2, 3, 4, 4, 5, 6}. Thus, applying MEDIAN to this set yields
{3}. Because these results do not match, MEDIAN is not an aggregating function. Nor is MODE,
the most common element of a set.

Many common functions that are used to understand a set of data are aggregating functions.
These functions include the following:

• Counting the number of elements in the set.

• Computing the minimum value of the set.

• Computing the maximum value of the set.

• Summing all of the elements in the set.

• Histogramming the values in the set, as quantized into certain bins.

Moreover, some functions, which strictly speaking are not aggregating functions themselves,
can nonetheless be constructed as such. For example, average (arithmetic mean) can be
constructed by aggregating the count of the number of elements in the set and the sum of all
elements in the set, reporting the ratio of the two aggregates as the final result. Another
important example is standard deviation.

Applying aggregating functions to data as it is traced has a number of advantages, including
the following:

• The entire data set need not be stored. Whenever a new element is to be added to the set,
the aggregating function is calculated, given the set consisting of the current intermediate
result and the new element. When the new result is calculated, the new element can be
discarded. This process reduces the amount of storage that is required by a factor of the
number of data points, which is often quite large.

• Data collection does not induce pathological scalability problems. Aggregating functions
enable intermediate results to be kept per-CPU instead of in a shared data structure.
DTrace then applies the aggregating function to the set consisting of the per-CPU
intermediate results to produce the final system-wide result.

Basic Aggregation Statement
DTrace stores the results of aggregating functions in objects called aggregations. In D, the
syntax for an aggregation is as follows:

@name[keys] = aggfunc(args);

The aggregation name is a D identifier that is prefixed with the special character @. All
aggregations that are named in your D programs are global variables. There are no thread-
local or clause-local aggregations. The aggregation names are kept in an identifier namespace
that is separate from other D global variables. If you reuse names, remember that a and @a are
not the same variable. The special aggregation name @ can be used to name an anonymous
aggregation in simple D programs. The D compiler treats this name as an alias for the
aggregation name @_.

Aggregations are indexed with keys, where keys are a comma-separated list of D expressions,
similar to the tuples of expressions used for associative arrays. Keys can also be actions with
non-void return values, such as stack, func, sym, mod, ustack, uaddr, and usym.

The aggfunc is one of the DTrace aggregating functions, and args is a comma-separated list of
arguments that is appropriate to that function. The DTrace aggregating functions are described
in the following table. Most aggregating functions take just a single argument that represents
the new datum.

Chapter 3
Basic Aggregation Statement

3-2

Table 3-1 DTrace Aggregating Functions

Function Name Arguments Result

count None Number of times called.

sum Scalar expression Total value of the specified
expressions.

avg Scalar expression Arithmetic average of the
specified expressions.

min Scalar expression Smallest value among the
specified expressions.

max Scalar expression Largest value among the
specified expressions.

stddev Scalar expression Standard deviation of the
specified expressions.

quantize Scalar expression [, increment] Power-of-two frequency
distribution (histogram) of the
values of the specified
expressions. An optional
increment (weight) can be
specified.

lquantize Scalar expression, lower
bound, upper bound [, step
value [, increment]]

Lnear frequency distribution
of the values of the specified
expressions, sized by the
specified range.
Note that the default step value
is 1.

llquantize Scalar expression, base, lower
exponent, upper exponent,
number of steps per order of
magnitude [, increment]

Log-linear frequency
distribution. The logarithmic
base is specified, along with
lower and upper exponents
and the number of steps per
order of magnitude.

Aggregation Examples
The following is a series of examples that illustrate aggregations.

Basic Aggregation
To count the number of write() system calls in the system, you could use an informative string
as a key and the count aggregating function and save it to file named writes.d:

syscall::write:entry
{
 @counts["write system calls"] = count();
}

The dtrace command prints aggregation results by default when the process terminates,
either as the result of an explicit END action or when you press Ctrl-C. The following example
shows the result of running this command, waiting a few seconds, and then pressing Ctrl-C:

Chapter 3
Aggregation Examples

3-3

dtrace -s writes.d
dtrace: script './writes.d' matched 1 probe
^C
write system calls 179
#

Using Keys
You can count system calls per process name by specifying the execname variable as the key
to an aggregation and saving it in a file named writesbycmd.d:

syscall::write:entry
{
 @counts[execname] = count();
}

The following example output shows the result of running this command, waiting a few
seconds, and then pressing Ctrl-C:

dtrace -s writesbycmd.d
dtrace: script 'writesbycmd.d' matched 1 probe
^C
 dirname 1
 dtrace 1
 gnome-panel 1
 mozilla-xremote 1
 ps 1
 avahi-daemon 2
 basename 2
 gconfd-2 2
 java 2
 pickup 2
 qmgr 2
 sed 2
 dbus-daemon 3
 rtkit-daemon 3
 uname 3
 w 5
 bash 9
 cat 9
 gnome-session 9
 Xorg 21
 firefox 149
 gnome-terminal 9421
#

Alternatively, you might want to further examine writes that are organized by both executable
name and file descriptor. The file descriptor is the first argument to write(). The following
example uses a key that is a tuple, which consists of both execname and arg0:

syscall::write:entry
{
 @counts[execname, arg0] = count();
}

Running this command results in a table with both executable name and file descriptor, as
shown in the following example:

dtrace -s writesbycmdfd.d
dtrace: script 'writesbycmdfd.d' matched 1 probe
^C

Chapter 3
Aggregation Examples

3-4

 basename 1 1
 dbus-daemon 70 1
 dircolors 1 1
 dtrace 1 1
 gnome-panel 35 1
 gnome-terminal 16 1
 gnome-terminal 18 1
 init 4 1
 ps 1 1
 pulseaudio 20 1
 tput 1 1
 Xorg 2 2
#

A limited set of actions can be used as aggregation keys. Consider the following use of the
mod() and stack() actions:

profile-10
{
 @hotmod[mod(arg0)] = count();
 @hotstack[stack()] = count();
}

Here, the hotmod aggregation counts probe firings by module, using the profile probe's arg0
to determine the kernel program counter. The hotstack aggregation counts probe firings by
stack. The aggregation output reveals which modules and kernel call stacks are the hottest.

Using the avg Function
The following example displays the average time spent in the write() system call, organized
by process name. This example uses the avg aggregating function, specifying the expression
to average as the argument. The example averages the wall clock time spent in the system call
and is saved in a file named writetime.d:

syscall::write:entry
{
 self->ts = timestamp;
}

syscall::write:return
/self->ts/
{
 @time[execname] = avg(timestamp - self->ts);
 self->ts = 0;
}

The following output shows the result of running this command, waiting a few seconds, and
then pressing Ctrl-C:

dtrace -s writetime.d
dtrace: script 'writetime.d' matched 2 probes
^C

 gnome-session 8260
 udisks-part-id 9279
 gnome-terminal 9378
 mozilla-xremote 10061
 abrt-handle-eve 13414
 vgdisplay 13459

Chapter 3
Aggregation Examples

3-5

 avahi-daemon 14043
 vgscan 14190
 uptime 14533
 lsof 14903
 ip 15075
 date 15371
 ...
 ps 91792
 sestatus 98374
 pstree 102566
 sysctl 175427
 iptables 192835
 udisks-daemon 250405
 python 282544
 dbus-daemon 491069
 lsblk 582138
 Xorg 2337328
 gconfd-2 17880523
 cat 59752284
#

Using the stddev Function
Meanwhile, you can use the stddev aggregating function to characterize the distribution of
data points. The following example shows the average and standard deviation of the time that
it takes to exec processes. Save it in a file named stddev.d:

syscall::execve:entry
{
 self->ts = timestamp;
}

syscall::execve:return
/ self->ts /
{
 t = timestamp - self->ts;
 @execavg[probefunc] = avg(t);
 @execsd[probefunc] = stddev(t);
 self->ts = 0;
}

END
{
 printf("AVERAGE:");
 printa(@execavg);
 printf("\nSTDDEV:");
 printa(@execsd);
}

The sample output is as follows:

dtrace -q -s stddev.d
^C
AVERAGE:
 execve 253839

STDDEV:
 execve 260226

Chapter 3
Aggregation Examples

3-6

Note:

The standard deviation is approximated as √((Σ(x2)/N)-(Σx/N)2), which is an
imprecise approximation, but should suffice for most purposes to which DTrace is
put.

Using the quantize Function
The average and standard deviation can be useful for crude characterization, but often do not
provide sufficient detail to understand the distribution of data points. To understand the
distribution in further detail, use the quantize aggregating function, as shown in the following
example, which is saved in a file named wrquantize.d:

syscall::write:entry
{
 self->ts = timestamp;
}

syscall::write:return
/self->ts/
{
 @time[execname] = quantize(timestamp - self->ts);
 self->ts = 0;
}

Because each line of output becomes a frequency distribution diagram, the output of this script
is substantially longer than previous scripts. The following example shows a selection of
sample output:

dtrace -s wrquantize.d
dtrace: script 'wrquantize.d' matched 2 probes
^C
...
 bash
 value ------------- Distribution ------------- count
 8192 | 0
 16384 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 4
 32768 | 0
 65536 | 0
 131072 |@@@@@@@@ 1
 262144 | 0

 gnome-terminal
 value ------------- Distribution ------------- count
 4096 | 0
 8192 |@@@@@@@@@@@@@ 5
 16384 |@@@@@@@@@@@@@ 5
 32768 |@@@@@@@@@@@ 4
 65536 |@@@ 1
 131072 | 0

 Xorg
 value ------------- Distribution ------------- count
 2048 | 0
 4096 |@@@@@@@ 4
 8192 |@@@@@@@@@@@@@ 8
 16384 |@@@@@@@@@@@@ 7
 32768 |@@@ 2

Chapter 3
Aggregation Examples

3-7

 65536 |@@ 1
 131072 | 0
 262144 | 0
 524288 | 0
 1048576 | 0
 2097152 |@@@ 2
 4194304 | 0

 firefox
 value ------------- Distribution ------------- count
 2048 | 0
 4096 |@@@ 22
 8192 |@@@@@@@@@@@ 90
 16384 |@@@@@@@@@@@@@ 107
 32768 |@@@@@@@@@ 72
 65536 |@@@ 28
 131072 | 3
 262144 | 0
 524288 | 1
 1048576 | 1
 2097152 | 0

The rows for the frequency distribution are always power-of-two values. Each row indicates a
count of the number of elements that are greater than or equal to the corresponding value, but
less than the next larger row's value. For example, the previous output shows that firefox had
107 writes, taking between 16,384 nanoseconds and 32,767 nanoseconds, inclusive.

The previous example shows the distribution of numbers of write times. You might also be
interested in knowing which write times are contributing to the overall run time the most. You
can optionally use the increment argument with the quantize function for this purpose. Note
that the default value is 1, but this argument can be a D expression, as well as have negative
values.

The following example shows a modified script:

 syscall::write:entry
{
 self->ts = timestamp;
}

syscall::write:return
/self->ts/
{
 self->delta = timestamp - self->ts;
 @time[execname] = quantize(self->delta, self->delta);
 self->ts = 0;
}

Using the lquantize Function
While quantize is useful for getting quick insight into data, you might want to examine a
distribution across linear values instead. To display a linear value distribution, use the
lquantize aggregating function. The lquantize function takes three arguments in addition to a
D expression: a lower bound, an upper bound, and an optional step. Note that the default step
value is 1.

For example, if you wanted to look at the distribution of writes by file descriptor, a power-of-two
quantization would not be effective. Instead, as shown in the following example, you could use
a linear quantization with a small range, which is saved in a file named wrlquantize.d:

Chapter 3
Aggregation Examples

3-8

syscall::write:entry
{
 @fds[execname] = lquantize(arg0, 0, 100, 1);
}

Note that you could also omit the last argument because 1 is the default step value.

Running this script for several seconds yields a large amount of information. The following
example shows a selection of the typical output:

dtrace -s wrlquantize.d
dtrace: script 'wrlquantize.d' matched 1 probe
^C
 ...
 gnome-session
 value ------------- Distribution ------------- count
 25 | 0
 26 |@@ 9
 27 | 0

 gnome-terminal
 value ------------- Distribution ------------- count
 15 | 0
 16 |@@ 1
 17 | 0
 18 | 0
 19 | 0
 20 | 0
 21 |@@@@@@@@ 4
 22 |@@ 1
 23 |@@ 1
 24 | 0
 25 | 0
 26 | 0
 27 | 0
 28 | 0
 29 |@@@@@@@@@@@@@ 6
 30 |@@@@@@@@@@@@@ 6
 31 | 0
 ...

You can also use the lquantize aggregating function to aggregate on time, starting with some
point of time in the past. This technique enables you to observe a change in behavior over
time.

The following example displays the change in system call behavior over the lifetime of a
process that is executing the date command. Save it in a file named dateprof.d:

syscall::execve:return
/execname == "date"/
{
 self->start = timestamp;
}

syscall:::entry
/self->start/
{
 /*
 * We linearly quantize on the current virtual time minus our
 * process’s start time. We divide by 1000 to yield microseconds
 * rather than nanoseconds. The range runs from 0 to 10 milliseconds
 * in steps of 100 microseconds; we expect that no date(1) process

Chapter 3
Aggregation Examples

3-9

 * will take longer than 10 milliseconds to complete.
 */
 @a["system calls over time"] =
 lquantize((timestamp - self->start) / 1000, 0, 10000, 100);
}

syscall::exit:entry
/self->start/
{
 self->start = 0;
}

This script provides greater insight into system call behavior when many date processes are
being executed. To see this result, run sh -c 'while true; do date >/dev/null;
done' in one window, while executing the D script in another window. The script produces a
profile of the system call behavior of the date command that is similar to the following:

dtrace -s dateprof.d
dtrace: script 'dateprof.d' matched 298 probes
^C

 system calls over time
 value ------------- Distribution ------------- count
 < 0 | 0
 0 |@@ 23428
 100 |@@@@@ 56263
 200 |@@@@@ 61271
 300 |@@@@@ 58132
 400 |@@@@@ 54617
 500 |@@@@ 45545
 600 |@@ 26049
 700 |@@@ 38859
 800 |@@@@ 51569
 900 |@@@@ 42553
 1000 |@ 11339
 1100 | 4020
 1200 | 2236
 1300 | 1264
 1400 | 812
 1500 | 706
 1600 | 764
 1700 | 586
 1800 | 266
 1900 | 155
 2000 | 118
 2100 | 86
 2200 | 93
 2300 | 66
 2400 | 32
 2500 | 32
 2600 | 18
 2700 | 23
 2800 | 26
 2900 | 30
 3000 | 26
 3100 | 1
 3200 | 7
 3300 | 9
 3400 | 3
 3500 | 5
 3600 | 1
 3700 | 6

Chapter 3
Aggregation Examples

3-10

 3800 | 8
 3900 | 8
 4000 | 8
 4100 | 1
 4200 | 1
 4300 | 6
 4400 | 0

The previous output provides a rough idea of the different phases of the date command, with
respect to the services that are required of the kernel. To better understand these phases, you
might want to understand which system calls are being called and when they are called. In this
case, you could change the D script to aggregate on the probefunc variable instead of a
constant string.

The log-linear llquantize aggregating function combines the capabilities of both the log and
linear functions. While the simple quantize function uses base 2 logarithms, with llquantize,
you specify the base, as well as the minimum and maximum exponents. Further, each
logarithmic range is subdivided linearly with a number of steps, as specified.

Printing Aggregations
By default, multiple aggregations are displayed in the order in which they are introduced in the
D program. You can override this behavior by using the printa function to print the
aggregations. The printa function also enables you to precisely format the aggregation data
by using a format string, as described in Output Formatting.

If an aggregation is not formatted with a printa statement in your D program, the dtrace
command snapshots the aggregation data and prints the results after tracing has completed,
using the default aggregation format. If a given aggregation is formatted with a printa
statement, the default behavior is disabled. You can achieve equivalent results by adding the
printa(@aggregation-name) statement to an END probe clause in your program. The default
output format for the avg, count, min, max, and sum aggregating functions displays an integer
decimal value corresponding to the aggregated value for each tuple. The default output format
for the quantize, lquantize, and llquantize aggregating functions displays an ASCII table
with the results. Aggregation tuples are printed as though trace had been applied to each
tuple element.

Data Normalization
When aggregating data over some period of time, you might want to normalize the data, with
respect to some constant factor. This technique enables you to compare disjointed data more
easily. For example, when aggregating system calls, you might want to output system calls as
a per-second rate instead of as an absolute value over the course of the run. The DTrace
normalize action enables you to normalize data in this way. The parameters to normalize are
an aggregation and a normalization factor. The output of the aggregation shows each value
divided by the normalization factor.

The following example shows how to aggregate data by system call:

#pragma D option quiet

BEGIN
{
 /*
 * Get the start time, in nanoseconds.
 */
 start = timestamp;

Chapter 3
Printing Aggregations

3-11

}

syscall:::entry
{
 @func[execname] = count();
}

END
{
 /*
 * Normalize the aggregation based on the number of seconds we have
 * been running. (There are 1,000,000,000 nanoseconds in one second.)
 */
 normalize(@func, (timestamp - start) / 1000000000);
}

Running the previous script for a brief period of time results in the following output:

dtrace -s normalize.d
^C
 memballoon 1
 udisks-daemon 1
 vmstats 1
 rtkit-daemon 2
 automount 2
 gnome-panel 3
 gnome-settings- 5
 NetworkManager 6
 gvfs-afc-volume 6
 metacity 6
 qpidd 9
 hald-addon-inpu 14
 gnome-terminal 19
 Xorg 35
 VBoxClient 52
 X11-NOTIFY 104
 java 143
 dtrace 309
 sh 36467
 date 68142

The normalize action sets the normalization factor for the specified aggregation, but this action
does not modify the underlying data. The denormalize action takes only an aggregation.
Adding the denormalize action to the preceding example returns both raw system call counts
and per-second rates. Type the following source code and save it in a file named denorm.d:

#pragma D option quiet

BEGIN
{
 start = timestamp;
}

syscall:::entry
{
 @func[execname] = count();
}

END
{
 this->seconds = (timestamp - start) / 1000000000;
 printf("Ran for %d seconds.\n", this->seconds);

Chapter 3
Data Normalization

3-12

 printf("Per-second rate:\n");
 normalize(@func, this->seconds);
 printa(@func);
 printf("\nRaw counts:\n");
 denormalize(@func);
 printa(@func);
}

Running the previous script for a brief period of time produces output similar to the following:

dtrace -s denorm.d
^C
Ran for 7 seconds.
Per-second rate:

 audispd 0
 auditd 0
 memballoon 0
 rtkit-daemon 0
 timesync 1
 gnome-power-man 1
 vmstats 1
 automount 2
 udisks-daemon 2
 gnome-panel 2
 metacity 2
 gnome-settings- 3
 qpidd 4
 clock-applet 4
 gvfs-afc-volume 5
 crond 6
 gnome-terminal 7
 vminfo 15
 hald-addon-inpu 32
 VBoxClient 45
 Xorg 63
 X11-NOTIFY 90
 java 126
 dtrace 315
 sh 31430
 date 58724

Raw counts:

 audispd 1
 auditd 4
 memballoon 4
 rtkit-daemon 6
 timesync 8
 gnome-power-man 9
 vmstats 12
 automount 16
 udisks-daemon 16
 gnome-panel 20
 metacity 20
 gnome-settings- 22
 qpidd 28
 clock-applet 34
 gvfs-afc-volume 40
 crond 42
 gnome-terminal 54
 vminfo 105

Chapter 3
Data Normalization

3-13

 hald-addon-inpu 225
 VBoxClient 318
 Xorg 444
 X11-NOTIFY 634
 java 883
 dtrace 2207
 sh 220016
 date 411073

Aggregations can also be renormalized. If normalize is called more than once for the same
aggregation, the normalization factor is the factor specified in the most recent call. The
following example displays only the per-second system call rates of the top ten system-calling
applications in a ten-second period. Type the following source code and save it in a file named
truncagg.d:

#pragma D option quiet

BEGIN
{
 start = timestamp;
}

syscall:::entry
{
 @func[execname] = count();
}

tick-10sec
{
 normalize(@func, (timestamp - start) / 1000000000);
 printa(@func);
}

Clearing Aggregations
When using DTrace to build simple monitoring scripts, you can periodically clear the values in
an aggregation by using the clear function. This function takes an aggregation as its only
parameter. The clear function clears only the aggregation's values, while the aggregation's
keys are retained. Therefore, the presence of a key in an aggregation that has an associated
value of zero indicates that the key had a non-zero value that was subsequently set to zero as
part of a clear. To discard both an aggregation's values and its keys, use the trunc function.
See Truncating Aggregations.

The following example uses clear to show the system call rate only for the most recent ten-
second period:

#pragma D option quiet

BEGIN
{
 last = timestamp;
}

syscall:::entry
{
 @func[execname] = count();
}

tick-10sec
{

Chapter 3
Clearing Aggregations

3-14

 normalize(@func, (timestamp - last) / 1000000000);
 printa(@func);
 clear(@func);
 last = timestamp;
}

Truncating Aggregations
When looking at aggregation results, you often care only about the top several results. The
keys and values that are associated with anything other than the highest values are not of
interest. You might also choose to discard an entire aggregation result, removing both the keys
and values. The DTrace trunc function is used in both of these situations.

The parameters to trunc are an aggregation and an optional truncation value. Without the
truncation value, trunc discards both the aggregation values and the aggregation keys for the
entire aggregation. When a truncation value n is present, trunc discards the aggregation
values and keys, except for those values and keys that are associated with the highest n
values. That is to say, trunc(@foo, 10) truncates the aggregation named foo after the top ten
values, where trunc(@foo) discards the entire aggregation. The entire aggregation is also
discarded if 0 is specified as the truncation value.

To see the bottom n values instead of the top n values, specify a negative truncation value to
trunc. For example, trunc(@foo, -10) truncates the aggregation named foo after the bottom
ten values.

The following example displays only the per-second system call rates of the top ten system-
calling applications in a ten-second period:

#pragma D option quiet

BEGIN
{
 last = timestamp;
}

syscall:::entry
{
 @func[execname] = count();
}

tick-10sec
{
 trunc(@func, 10);
 normalize(@func, (timestamp - last) / 1000000000);
 printa(@func);
 clear(@func);
 last = timestamp;
}

The following example shows the output from running the previous script on a lightly loaded
system:

dtrace -s truncagg.d

 dbus-daemon 0
 NetworkManager 1
 gmain 1
 systemd-logind 1
 sendmail 1
 systemd 1

Chapter 3
Truncating Aggregations

3-15

 httpd 2
 tuned 5
 dtrace 44

 rpcbind 0
 dbus-daemon 0
 gmain 0
 sshd 1
 systemd-logind 1
 sendmail 1
 systemd 1
 httpd 2
 tuned 5
 dtrace 41

 dbus-daemon 0
 gmain 1
 sshd 1
 systemd-logind 1
 sendmail 1
 systemd 1
 httpd 2
 tuned 5
 automount 7
 dtrace 41
^C

#

Minimizing Drops
Because DTrace buffers some aggregation data in the kernel, space might not be available
when a new key is added to an aggregation. In this case, the data is dropped, the counter is
incremented, and dtrace generates a message indicating an aggregation drop. You should
note that this situation rarely occurs because DTrace keeps state information consisting of the
aggregation's key and intermediate results at user level, where space can grow dynamically. In
the unlikely event that an aggregation drop occurs, you can increase the aggregation buffer
size by using the aggsize option, which reduces the likelihood of drops.

You can also use this option to minimize the memory footprint of DTrace. As with any size
option, aggsize can be specified with any size suffix. The resizing policy of this buffer is
dictated by the bufresize option. For more information about buffering, see Buffers and
Buffering.

An alternative method to eliminate aggregation drops is to increase the rate at which
aggregation data is consumed at the user level. This rate defaults to once per second, and
may be explicitly tuned with the aggrate option. As with any rate option, aggrate can be
specified with any time suffix, but defaults to rate-per-second. For more information about the
aggsize option, see Options and Tunables.

Chapter 3
Minimizing Drops

3-16

4
Actions and Subroutines

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

For more information about DTrace, see Oracle Linux: DTrace Release Notes and
Oracle Linux: Using DTrace for System Tracing.

You use D function calls such as trace and printf to invoke two different kinds of services
that are provided by DTrace: actions and subroutines. Actions trace data or modify a state that
is external to DTrace, while subroutines affect only the internal DTrace state.

This chapter defines DTrace actions and subroutines and also describes their syntax and
semantics.

Action Functions
Action functions enable your DTrace programs to interact with the system outside of DTrace.
The most common actions record data to a DTrace buffer. Other actions are available, such as
stopping the current process, raising a specific signal on the current process, and ceasing
tracing altogether. Some of these actions are destructive, in that they change the system, albeit
in a well-defined way. These actions may only be used if destructive actions have been
explicitly enabled. By default, data recording actions record data to the principal buffer. For
more information about the principal buffer and buffer policies, see Buffers and Buffering.

Default Action
A clause can contain any number of actions and variable manipulations. If a clause is left
empty, the default action is taken. The default action is to trace the enabled probe identifier
(EPID) to the principal buffer. For more information about epid, see Built-In Variables. From the
EPID, the dtrace command outputs the following information: CPU, probe ID, probe function,
and probe name.

The default action facilitates a simple use of the dtrace command. For example, running the
following command enables all of the probes in the vmlinux module with the default action:

dtrace -m vmlinux

The preceding command might produce output similar to the following:

dtrace -m vmlinux
dtrace: description 'vmlinux' matched 35 probes
CPU ID FUNCTION:NAME
 0 42 __schedule:sleep

4-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/

 0 34 dequeue_task:dequeue
 0 40 __schedule:off-cpu
 0 23 finish_task_switch:on-cpu
 0 24 enqueue_task:enqueue
 0 41 __schedule:preempt
 0 40 __schedule:off-cpu
 0 23 finish_task_switch:on-cpu
 0 11 update_process_times:tick
 0 42 __schedule:sleep
 0 34 dequeue_task:dequeue
 0 40 __schedule:off-cpu
 0 23 finish_task_switch:on-cpu
 0 24 enqueue_task:enqueue
 0 41 __schedule:preempt
 0 40 __schedule:off-cpu
 0 23 finish_task_switch:on-cpu
 0 11 update_process_times:tick
 0 12 try_to_wake_up:wakeup
 0 42 __schedule:sleep
...

Data Recording Actions
Data recording actions are the core DTrace actions. Each of these actions records data to the
principal buffer by default, but each action can also be used to record data to speculative
buffers. See Buffers and Buffering and Speculative Tracing for more details on the principal
buffer and speculative buffers.

The following descriptions refer only to the directed buffer, indicating that data is recorded
either to the principal buffer or to a speculative buffer if the action follows a speculate.

freopen
void freopen(string format, ...)

The freopen action changes the file that is associated with stdout to the file that is specified
by the arguments in printf fashion.

If the "" string is used, the output is again restored to stdout.

Caution:

The freopen action is not only data-recording but also destructive, because you can
use it to overwrite arbitrary files.

ftruncate
void ftruncate(void)

The ftruncate action truncates the output stream on stdout.

func
_symaddr func(uintptr_t address)

Chapter 4
Action Functions

4-2

The func action prints the symbol that corresponds to a specified kernel-space address. For
example, func((uintptr_t) (&vmlinux`max_pfn)) causes vmlinux`max_pfn to be printed.
The func action is an alias for sym.

mod
_symaddr mod(uintptr_t address)

The mod action prints the name of the module that corresponds to a specified kernel-space
address. For example, mod((uintptr_t) (&vmlinux`max_pfn)) prints vmlinux.

printa
void printa(aggregation)
void printa(string format, aggregation)

The printa action enables you to display and format aggregations. See Aggregations for more
details. If format is not specified, printa traces only a directive to the DTrace consumer for
which the specified aggregation should be processed and is displayed using the default format.
If format is specified, the aggregation is formatted. See printa Action for a detailed description
of the printa format string.

When printa traces only a directive that the aggregation should be processed by the DTrace
consumer, it does not process the aggregation in the kernel. Therefore, the time between the
tracing of the printa directive and the actual processing of the directive depends on factors
that affect buffer processing, which include the following: the aggregation rate, the buffering
policy (and if the buffering policy is switching), and the rate at which buffers are switched. See
Aggregations and Buffers and Buffering for detailed descriptions.

printf
void printf(string format, ...)

Like trace, the printf action traces D expressions, but printf enables elaborate printf-style
formatting. The parameters consist of a format string, followed by a variable number of
arguments. By default, the arguments are traced to the directed buffer. The arguments are later
formatted for output by the dtrace command, according to the specified format string, for
example:

printf("execname is %s; priority is %d", execname, curlwpsinfo->pr_pri);

For more information, see printf Action.

stack
stack stack(int nframes)
stack stack(void)

The stack action records a kernel stack trace to the directed buffer. The kernel stack is
nframes in depth. If nframes is not specified, the number of stack frames recorded is the
number that is specified by the stackframes option. The dtrace command reports frames,
either up to the root frame or until the nframes limit has been reached, whichever comes first:

dtrace -n gettimeofday:entry'{stack()}'
dtrace: description 'gettimeofday:entry' matched 1 probe
CPU ID FUNCTION:NAME
 0 196 gettimeofday:entry

Chapter 4
Action Functions

4-3

 vmlinux`pollwake
 vmlinux`dtrace_stacktrace+0x30
 vmlinux`__brk_limit+0x1e1832d7
 vmlinux`__brk_limit+0x1e1913a1
 vmlinux`pollwake
 vmlinux`do_gettimeofday+0x1a
 vmlinux`ktime_get_ts+0xad
 vmlinux`systrace_syscall+0xde
 vmlinux`audit_syscall_entry+0x1d7
 vmlinux`system_call_fastpath+0x16

 0 196 gettimeofday:entry
 vmlinux`dtrace_stacktrace+0x30
 vmlinux`__brk_limit+0x1e1832d7
 vmlinux`__brk_limit+0x1e1913a1
 vmlinux`security_file_permission+0x8b
 vmlinux`systrace_syscall+0xde
 vmlinux`audit_syscall_entry+0x1d7
 vmlinux`system_call_fastpath+0x16

...

The stack action, having a non-void return value, can also be used as the key to an
aggregation, for example:

dtrace -n execve:entry'{@[stack()] = count()}'
dtrace: description 'execve:entry' matched 1 probe
^C

 vmlinux`dtrace_stacktrace+0x30
 vmlinux`__brk_limit+0x1e1832d7
 vmlinux`__brk_limit+0x1e1913a1
 vmlinux`dtrace_execve+0xcd
 vmlinux`audit_syscall_entry+0x1d7
 vmlinux`dtrace_stub_execve+0x6c
 2

 vmlinux`dtrace_stacktrace+0x30
 vmlinux`__brk_limit+0x1e1832d7
 vmlinux`__brk_limit+0x1e1913a1
 vmlinux`do_sigaction+0x13a
 vmlinux`dtrace_execve+0xcd
 vmlinux`audit_syscall_entry+0x1d7
 vmlinux`dtrace_stub_execve+0x6c
 13

...

sym
_symaddr sym(uintptr_t address)

The sym action prints the symbol that corresponds to a specified kernel-space address. For
example, sym((uintptr_t) (&vmlinux`max_pfn)) causes vmlinux`max_pfn to be printed. The
sym action is an alias for func.

trace
void trace(expression)

Chapter 4
Action Functions

4-4

The trace action is the most basic action. This action takes a D expression as its argument
and then traces the result to the directed buffer. The following statements are examples of
trace actions:

trace(execname);
trace(curlwpsinfo->pr_pri);
trace(timestamp / 1000);
trace(‘lbolt);
trace("somehow managed to get here");

If the trace action is used on a buffer, the output format depends on the data type. If the
dtrace command determines that the data is like an ASCII string, it prints it as text and
terminates the output with a null character (0). When dtrace decides that the data is most
likely binary, it prints it in hexadecimal format, for example:

0 342 write:entry
 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef
 0: c0 de 09 c2 4a e8 27 54 dc f8 9f f1 9a 20 4b d1 J.’T..... K.
 10: 9c 7a 7a 85 1b 03 0a fb 3a 81 8a 1b 25 35 b3 9a .zz.....:...%5..
 20: f1 7d e6 2b 66 6d 1c 11 f8 eb 40 7f 65 9a 25 f8 .}.+fm....@.e.%.
 30: c8 68 87 b2 6f 48 a2 a5 f3 a2 1f 46 ab 3d f9 d2 .h..oH.....F.=..
 40: 3d b8 4c c0 41 3c f7 3c cd 18 ad 0d 0d d3 1a 90 =.L.A<.<........

You can force the trace action to always use the binary format by specifying the rawbytes
option.

tracemem
void tracemem(address, size_t nbytes)
void tracemem(address, size_t nbytes, size_t dbytes)

The tracemem action takes a D expression as its first argument, address, and a constant as its
second argument, nbytes. The tracemem action copies the memory from the address specified
by address into the directed buffer for the length specified by nbytes. If only two arguments are
provided, dtrace dumps the entire contents of the buffer.

In the second format, the tracemem action takes an additional, third argument, dbytes, which is
a D expression that is computed dynamically. The result is used to limit the number of bytes
that are displayed. If the result is less than zero or greater than nbytes, the result is ignored
and tracemem behaves as though it is called by using the two-argument form. Otherwise,
dtrace dumps only the dbytes bytes of the directed buffer.

ustack

Note:

If you want to perform symbol lookup in a stripped executable, you must specify the
--export-dynamic option when linking the program. This option causes the linker
to add all symbols to the dynamic symbol table, which is the set of symbols that is
visible from dynamic objects at run time. If you use gcc to link the objects, specify
the option as -Wl,--export-dynamic to pass the correct option to the linker.

Note also that f you want to look up symbols in shared libraries or unstripped
executables, the --export-dynamic option is not required.

Chapter 4
Action Functions

4-5

DTrace supports the use of the ustack action with both 32-bit and 64-bit binaries, for example:

stack ustack(int nframes, int strsize)
stack ustack(int nframes)
stack ustack(void)

The ustack action records a user stack trace to the directed buffer. The user stack is nframes
in depth. If nframes is not specified, the number of stack frames that is recorded is the number
specified by the ustackframes option. While ustack is able to determine the address of the
calling frames when the probe fires, the stack frames are not translated into symbols until the
ustack action is processed at user level by the DTrace consumer. If strsize is specified and is
non-zero, ustack allocates the specified amount of string space and then uses it to perform
address-to-symbol translation directly from the kernel. Such direct user symbol translation is
used only with stacktrace helpers that support this usage with DTrace. If such frames cannot
be translated, the frames appear only as hexadecimal addresses.

The following example traces a stack with no address-to-symbol translation:

dtrace -n syscall::write:entry'/pid == $target/{ustack(); exit(0)}' -c "./
mytestprog -v"
dtrace: description 'syscall::write:entry' matched 1 probe
mytestprog (Version 1.0)
CPU ID FUNCTION:NAME
 2 6 write:entry
 mytestprog`printver+0x2f
 mytestprog`0x401338
 mytestprog`main+0xc7
 mytestprog`0x401338
 libc.so.6`__libc_start_main+0xfd
 mytestprog`main
 mytestprog`0x400ad0
 mytestprog`__libc_csu_init
 mytestprog`0x400ad0
 mytestprog`0x400af9

The ustack symbol translation occurs after the stack data is recorded. Therefore, the
corresponding user process might exit before symbol translation can be performed, making
stack frame translation impossible. If the user process exits before symbol translation is
performed, dtrace outputs a warning message, followed by the hexadecimal stack frames.

uaddr
DTrace supports the use of the uaddr action with both 32-bit and 64-bit binaries.

_usymaddr uaddr(uintptr_t address)

The uaddr action prints the symbol for a specified address, including hexadecimal offset, which
enables the same symbol resolution that ustack provides.

usym
DTrace supports the use of the usym action with both 32-bit and 64-bit binaries.

_usymaddr usym(uintptr_t address)

The usym action prints the symbol for a specified address, which is analogous to how uaddr
works, but without the hexadecimal offsets.

Chapter 4
Action Functions

4-6

Destructive Actions
Some DTrace actions are destructive, in that they change the state of the system in some well-
defined way. Destructive actions may not be used unless they have been explicitly enabled.
When using dtrace, you enable destructive actions by using the -w option. If you attempt to
perform destructive actions without explicitly enabling them, dtrace fails with a message
similar to the following:

dtrace: failed to enable 'syscall': destructive actions not allowed

Process-destructive actions are destructive only to a particular process. Whereas, kernel-
destructive actions are destructive to the entire system. Therefore, these actions must be used
extremely carefully, as such actions affect every process on the system and any other system,
implicitly or explicitly, depending upon the affected system's network services.

The following information pertains to both process-destructive and kernel-destructive actions.

copyout (Process-Destructive)
void copyout(void *buf, uintptr_t addr, size_t nbytes)

The copyout action copies nbytes from the buffer that is specified by buf to the address that is
specified by addr, in the address space of the process that associated with the current thread.
If the user-space address does not correspond to a valid, faulted-in page in the current
address space, an error is generated.

copyoutstr (Process-Destructive)
void copyoutstr(string str, uintptr_t addr, size_t maxlen)

The copyoutstr action copies the string tha tis specified by str to the address that is specified
by addr in the address space of the process associated with the current thread. If the user-
space address does not correspond to a valid, faulted-in page in the current address space, an
error is generated. Note that the string length is limited to the value that is set by the strsize
option. See Options and Tunables.

raise (Process-Destructive)
void raise(int signal)

The raise action sends the specified signal to the currently running process. This action is
similar to using the kill command to send a signal to a process. The raise action can be
used to send a signal at a precise point in the execution of a process.

stop (Process-Destructive)
void stop(void)

The stop action forces the process that is firing the enabled probe to stop when it next leaves
the kernel, as if stopped by a proc action. The stop action can be used to stop a process at
any DTrace probe point. This action can be used to capture a program in a particular state that
would be difficult to achieve with a simple breakpoint and then attach a traditional debugger
such as gdb to the process. You can also use the gcore utility to save the state of a stopped
process in a core file for later analysis.

Chapter 4
Action Functions

4-7

system (Process-Destructive)
void system(string program, ...)

The system action causes the specified program to be executed as though given to the shell as
input. The program string can contain any of the printf or printa format conversions.
Arguments that match the format conversions must be specified. See Output Formatting for
details on valid format conversions.

The following example runs the date command once per second:

dtrace -wqn tick-1sec'{system("date")}'
Tue Oct 16 10:21:34 BST 2012
Tue Oct 16 10:21:35 BST 2012
Tue Oct 16 10:21:36 BST 2012
^C
#

The following example shows a more elaborate use of the action by using printf conversions
in the program string, along with traditional filtering tools such as pipes. Type the following
source code and save it in a file named whosend.d:

#pragma D option destructive
#pragma D option quiet

proc:::signal-send
/args[2] == SIGINT/
{
 printf("SIGINT sent to %s by ", args[1]->pr_fname);
 system("getent passwd %d | cut -d: -f5", uid);
}

Running the previous script results in output similar to the following:

dtrace -s whosend.d
SIGINT sent to top by root
SIGINT sent to bash by root
SIGINT sent to bash by A Nother
^C
SIGINT sent to dtrace by root

The execution of the specified command does not occur in the context of the firing probe.
Rather, it occurs when the buffer containing the details of the system action are processed at
user level. How and when this processing occurs depends on the buffering policy, as described
in Buffers and Buffering. With the default buffering policy, the buffer processing rate is specified
by the switchrate option.

You can see the delay that is inherent in system if you explicitly tune the switchrate higher
than its one-second default, as shown in the following example. Save it in a file named time.d:

#pragma D option quiet
#pragma D option destructive
#pragma D option switchrate=5sec

tick-1sec
/n++ < 5/
{
 printf("walltime : %Y\n", walltimestamp);
 printf("date : ");
 system("date");

Chapter 4
Action Functions

4-8

 printf("\n");
}

tick-1sec
/n == 5/
{
 exit(0);
}

Running the previous script results in output similar to the following:

dtrace -s time.d
walltime : 2012 Oct 16 10:26:07
date : Tue Oct 16 10:26:11 BST 2012

walltime : 2012 Oct 16 10:26:08
date : Tue Oct 16 10:26:11 BST 2012

walltime : 2012 Oct 16 10:26:09
date : Tue Oct 16 10:26:11 BST 2012

walltime : 2012 Oct 16 10:26:10
date : Tue Oct 16 10:26:11 BST 2012

walltime : 2012 Oct 16 10:26:11
date : Tue Oct 16 10:26:11 BST 2012

In the previous output, notice that the walltime values differ, but the date values are identical.
This result reflects the fact that the execution of the date command occurred when the buffer
was processed, not when the system action was recorded.

chill (Kernel-Destructive)
void chill(int nanoseconds)

The chill action causes DTrace to spin for the specified number of nanoseconds. This action
is primarily useful for exploring problems that might be timing related. For example, you can
use this action to open race condition windows or bring periodic events into or out of phase
with one another. Because interrupts are disabled while in DTrace probe context, any use of
the chill action results in an interrupt, scheduling, or dispatch latency. Therefore, chill can
cause unexpected systemic effects and therefore should not be used indiscriminately. Because
system activity relies on periodic interrupt handling, DTrace refuses to execute the chill
action for more than 500 milliseconds out of each one-second interval on any given CPU. If the
maximum chill interval is exceeded, DTrace reports an illegal operation error:

dtrace -w -n syscall::openat:entry'{chill(500000001)}'
dtrace: allowing destructive actions
dtrace: description 'syscall::openat:entry' matched 1 probe
dtrace: 57 errors
CPU ID FUNCTION:NAME
dtrace: error on enabled probe ID 1 (ID 14: syscall::openat:entry): \
illegal operation in action #1

This limit is enforced even if the time is spread across multiple calls to chill or multiple
DTrace consumers of a single probe. For example, the same error would be generated by
running the following command:

dtrace -w -n syscall::openat:entry'{chill(250000000); chill(250000001);}'

Chapter 4
Action Functions

4-9

panic (Kernel-Destructive)
void panic(void)

When triggered, the panic action causes a kernel panic. This action should be used to force a
system crash dump at a time of interest. You can use this action along with ring buffering to
understand a problem. For more information, see Buffers and Buffering . When the panic
action is used, a panic message appears denoting the probe that is causing the panic.
rsyslogd also emits a message upon reboot. The message buffer of the crash dump contains
the probe and event control block (ECB) that is responsible for the panic action.

Special Actions
The following are special actions that are not data recording actions or destructive actions.

Speculative Actions
The actions associated with speculative tracing are speculate, commit, and discard. These
actions are described in more detail in Speculative Tracing.

exit
void exit(int status)

The exit action is used to immediately stop tracing and inform the DTrace consumer that it
should do the following: cease tracing, perform any final processing, and call exit() with the
specified status value. Because exit returns a status to user level, it is considered a data
recording action, However, unlike other data storing actions, exit cannot be speculatively
traced. The exit action causes the DTrace consumer to exit regardless of buffer policy. Note
that because exit is a data recording action, it can be dropped.

When exit is called, only those DTrace actions that are already in progress on other CPUs are
completed. No new actions occur on any CPU. The only exception to this rule is the processing
of the END probe, which is called after the DTrace consumer has processed the exit action,
and indicates that tracing should stop.

setopt
void setopt(const char *opt_name)
void setopt(const char *opt_name, const char *opt_value)

The setopt action enables you to specify a DTrace option dynamically, for example:

setopt("quiet");
setopt("bufsize", "50m");
setopt("aggrate", "2hz");

Subroutine Functions
Subroutine functions differ from actions because they generally only affect the internal DTrace
state. Therefore, no destructive subroutines exist. Also, subroutines never trace data into
buffers. Many subroutines have analogs in the application programming interfaces. See the
Section 3 manual pages for more details.

Chapter 4
Subroutine Functions

4-10

A number of these subroutines require temporary buffers, which persist only for duration of the
clause. Pre-allocated scratch memory is used for such buffers.

alloca
void *alloca(size_t size)

The alloca function allocates size bytes out of scratch memory, and returns a pointer to the
allocated memory. The returned pointer is guaranteed to have 8–byte alignment. Scratch
memory is only valid for the duration of a clause. Memory that is allocated with alloca is
deallocated when the clause completes. If insufficient scratch memory is available, no memory
is allocated and an error is generated.

basename
string basename(char *str)

The basename function creates a string that consists of a copy of the specified string, but
excludes any prefix that ends in /, such as a directory path. The returned string is allocated out
of scratch memory, and is therefore valid only for the duration of the clause. If insufficient
scratch memory is available, basename does not execute and an error is generated.

bcopy
void bcopy(void *src, void *dest, size_t size)

The bcopy function copies size bytes from the memory that is pointed to by src to the memory
that is pointed to by dest. All of the source memory must lie outside of scratch memory, and all
of the destination memory must lie within it. If these conditions are not met, no copying takes
place and an error is generated.

cleanpath
string cleanpath(char *str)

The cleanpath function creates a string consisting of a copy of the path indicated by str, but
with certain redundant elements eliminated. In particular, /./ elements in the path are
removed, and /../ elements are collapsed. The collapsing of /../ elements in the path occurs
without regard to symbolic links. Therefore, it is possible that cleanpath could take a valid path
and return a shorter, invalid path.

For example, if str were “/foo/../bar” and /foo were a symbolic link to /net/foo/export,
cleanpath would return the string “/bar”, even though bar might only exist in /net/foo and not
in /. This limitation is due to the fact that cleanpath is called in the context of a firing probe,
where full symbolic link resolution of arbitrary names is not possible. The returned string is
allocated out of scratch memory and is therefore valid only for the duration of the clause. If
insufficient scratch memory is available, cleanpath does not execute and an error is
generated.

copyin
void *copyin(uintptr_t addr, size_t size)

Chapter 4
Subroutine Functions

4-11

The copyin function copies the specified size in bytes from the specified user address (addr)
into a DTrace scratch buffer and returns the address of this buffer. The user address is
interpreted as an address in the space of the process that is associated with the current
thread. The resulting buffer pointer is guaranteed to have 8-byte alignment. The address in
question must correspond to a faulted-in page in the current process. If the address does not
correspond to a faulted-in page, or if insufficient scratch memory is available, NULL is returned
and an error is generated.

copyinstr
string copyinstr(uintptr_t addr)
string copyinstr(uintptr_t addr, size_t maxlen)

The copyinstr function copies a null-terminated C string from the specified user address
(addr) into a DTrace scratch buffer and returns the address of this buffer. The user address is
interpreted as an address in the space of the process that is associated with the current
thread. The maxlen parameter, if specified, sets a limit on the number of bytes past addr that
are examined (the resulting string is always null-terminated). The resulting string's length is
limited to the value set by the strsize option. See Options and Tunables for details. As with
the copyin function, the specified address must correspond to a faulted-in page in the current
process. If the address does not correspond to a faulted-in page, or if insufficient scratch
memory is available, NULL is returned and an error is generated.

copyinto
void copyinto(uintptr_t addr, size_t size, void *dest)

The copyinto function copies the specified size in bytes from the specified user address (addr)
into the DTrace scratch buffer that is specified by dest. The user address is interpreted as an
address in the space of the process that is associated with the current thread. The address in
question must correspond to a faulted-in page in the current process. If the address does not
correspond to a faulted-in page, or if any of the destination memory lies outside of scratch
memory, no copying takes place and an error is generated.

d_path
string d_path(struct path *ptr)

The d_path function creates a string containing the absolute pathname of the struct path that
is pointed to by ptr. The returned string is allocated out of scratch memory and is therefore
valid only for the duration of the clause. If insufficient scratch memory is available, d_path does
not execute and an error is generated.

dirname
string dirname(char *str)

The dirname function creates a string that consists of all but the last level of the pathname that
is specified by str. The returned string is allocated out of scratch memory and is therefore valid
only for the duration of the clause. If insufficient scratch memory is available, dirname does not
execute and an error is generated.

Chapter 4
Subroutine Functions

4-12

getmajor
dev_t getmajor(dev_t dev)

The getmajor function returns the major device number for the device that is specified by dev.

getminor
dev_t getminor(dev_t dev)

The getminor function returns the minor device number for the device that is specified by dev.

htonl
uint32_t htonl(uint32_t hostlong)

The htonl function converts hostlong from host-byte order to network-byte order.

htonll
uint64_t htonll(uint64_t hostlonglong)

The htonll function converts hostlonglong from host-byte order to network-byte order.

htons
uint16_t htons(uint16_t hostshort)

The htons function converts hostshort from host-byte order to network-byte order.

index
int index(const char *s, const char *subs)
int index(const char *s, const char *subs, int start)

The index function locates the position of the first occurrence of the substring (subs) in the s
string, starting at the optional position start. If the specified value of start is less than 0, it is
implicitly set to 0. If s is an empty string, index returns 0. If no match is found for subs in s,
index returns 1.

inet_ntoa
string inet_ntoa(ipaddr_t *addr)

The inet_ntoa function takes a pointer addr to an IPv4 address and returns it as a dotted,
quad decimal string. The returned string is allocated out of scratch memory and is therefore
valid only for the duration of the clause. If insufficient scratch memory is available, inet_ntoa
does not execute and an error is generated.

inet_ntoa6
string inet_ntoa6(in6_addr_t *addr)

Chapter 4
Subroutine Functions

4-13

The inet_ntoa6 function takes a pointer addr to an IPv6 address and returns it as an RFC
1884 convention 2 string, with lowercase hexadecimal digits. The returned string is allocated
out of scratch memory and is therefore valid only for the duration of the clause. If insufficient
scratch memory is available, inet_ntoa6 does not execute and an error is generated.

inet_ntop
string inet_ntop(int af, void *addr)

The inet_ntop function takes a pointer addr to an IP address and returns a string version that
depends on the provided address family. Supported address families are AF_INET and
AF_INET6, both of which are defined for use in D programs. The returned string is allocated out
of scratch memory and is therefore valid only for the duration of the clause. If insufficient
scratch memory is available, inet_ntop does not execute and an error is generated.

lltostr
string lltostr(int64_t longlong)

The lltostr function converts longlong to a string. The returned string is allocated out of
scratch memory and is therefore valid only for the duration of the clause. If insufficient scratch
memory is available, lltostr does not execute and an error is generated.

mutex_owned
int mutex_owned(kmutex_t *mutex)

The mutex_owned function returns non-zero if the calling thread currently holds the specified
kernel mutex, or zero otherwise.

mutex_owner
kthread_t *mutex_owner(kmutex_t *mutex)

The mutex_owner function returns the thread pointer of the current owner of the specified
adaptive kernel mutex. mutex_owner returns NULL if the specified adaptive mutex is currently
unowned or if the specified mutex is a spin mutex.

mutex_type_adaptive
int mutex_type_adaptive(kmutex_t *mutex)

All mutexes in the Oracle Linux kernel are adaptive, so the mutex_type_adaptive function
always returns 1.

mutex_type_spin
int mutex_type_spin(kmutex_t *mutex)

All mutexes in the Oracle Linux kernel are adaptive, so the mutex_type_spin function always
returns 0.

Chapter 4
Subroutine Functions

4-14

ntohl
uint32_t ntohl(uint32_t netlong)

The ntohl function converts netlong from network-byte order to host-byte order.

ntohll
uint64_t ntohll(uint64_t netlonglong)

The ntohll function converts netlonglong from network-byte order to host-byte order.

ntohs
uint16_t ntohs(uint16_t netshort)

The ntohs function converts netshort from network-byte order to host-byte order.

progenyof
int progenyof(pid_t pid)

The progenyof function returns non-zero if the calling process (the process associated with the
thread that is currently triggering the matched probe) is among the progeny of the specified
process ID pid.

rand
int rand(void)

The rand function returns a pseudo-random integer. Because the number that is returned is a
weak pseudo-random number, it therefore should not be used for any cryptographic
application.

rindex
int rindex(const char *s, const char *subs)
int rindex(const char *s, const char *subs, int start)

The rindex function locates the position of the last occurrence of the substring subs in the
string s, starting at the optional position, start. If the specified value of start is less than 0, it is
implicitly set to 0. If s is an empty string, rindex returns 0. If no match is found for subs in s,
rindex returns -1.

rw_iswriter
int rw_iswriter(krwlock_t *rwlock)

The rw_iswriter function returns non-zero if the specified reader-writer lock (rwlock) is either
held or desired by a writer. If the lock is held only by readers and no writer is blocked, or if the
lock is not held at all, rw_iswriter returns zero.

Chapter 4
Subroutine Functions

4-15

rw_read_held
int rw_read_held(krwlock_t *rwlock)

The rw_read_held function returns non-zero if the specified reader-writer lock (rwlock) is
currently held by a reader. If the lock is held only by writers or is not held at all, rw_read_held
returns zero.

rw_write_held
int rw_write_held(krwlock_t *rwlock)

The rw_write_held function returns non-zero if the specified reader-writer lock (rwlock) is
currently held by a writer. If the lock is held only by readers or is not held at all, rw_write_held
returns zero.

speculation
int speculation(void)

The speculation function reserves a speculative trace buffer for use with speculate and
returns an identifier for this buffer. See Speculative Tracing for details.

strchr
string strchr(const char *s, char c)

The strchr function returns a pointer to the first occurrence of the character c in the string s. If
no match is found, strstr returns 0. Note that this function does not work with wide characters
or multi-byte characters.

strjoin
string strjoin(char *str1, char *str2)

The strjoin functon creates a string that consists of str1 concatenated with str2. The returned
string is allocated out of scratch memory and is therefore valid only for the duration of the
clause. If insufficient scratch memory is available, strjoin does not execute and an error is
generated.

strlen
size_t strlen(string str)

The strlen function returns the length of the specified string str in bytes, excluding the
terminating null byte.

strrchr
string strrchr(const char *s, char c)

Chapter 4
Subroutine Functions

4-16

The strrchr function returns a pointer to the last occurrence of the character c in the string s.
If no match is found, strrstr returns 0. This function does not work with wide characters or
multi-byte characters.

strstr
string strstr(const char *s, const char *subs)

The strstr function returns a pointer to the first occurrence of the substring subs in the string
s. If s is an empty string, strstr returns a pointer to an empty string. If no match is found,
strstr returns 0.

strtok
string strtok(const char *str, const char *delim)

The strtok function parses a string into a sequence of tokens by using delim as the delimiting
string . When you initially call strtok, specify the string to be parsed in str. In each subsequent
call to obtain the next token, specify str as NULL. You can specify a different delimiter for each
call. The internal pointer that strtok uses to traverse str is only valid within multiple enablings
of the same probe, meaning it behaves like an implicit clause-local variable. The strtok
function returns NULL if there are no more tokens.

substr
string substr(const char *s, int index)
string substr(const char *s, int index, int length)

The substr function returns the substring of the s, string, starting at the index position. If length
is specified, substr limits the substring to that length.

Chapter 4
Subroutine Functions

4-17

5
Buffers and Buffering

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

For more information about DTrace, see Oracle Linux: DTrace Release Notes and
Oracle Linux: Using DTrace for System Tracing.

Data buffering and management is an essential service that is provided by the DTrace
framework for it clients, for example, the dtrace command. This chapter explores data
buffering in detail and describes options that you can use to change DTrace's buffer
management policies.

Principal Buffers
By default, the principal buffer is present in every DTrace invocation and is the buffer to which
tracing actions record their data. These actions include the following: printa, printf, stack,
trace, and tracemem.

The principal buffers are always allocated on a per-CPU basis. This policy is not tunable, but
you can restrict tracing and buffer allocation to a single CPU by using the cpu option.

Principal Buffer Policies
DTrace permits tracing in highly constrained contexts in the kernel. In particular, DTrace
permits tracing in contexts in which kernel software might not reliably allocate memory. One
consequence of this flexibility of context is that there always exists a possibility that DTrace
might attempt to trace data when there is no space available. DTrace must have a policy to
deal with such situations as they arise. However, you might choose to tune the policy based on
the needs of a given experiment. Sometimes the appropriate policy might be to discard the
new data. Other times, it might be desirable to reuse the space containing the oldest recorded
data to enable the tracing of new data. Most often, the desired policy is to minimize the
likelihood of running out of available space in the first place. To accommodate these varying
demands, DTrace supports several different buffer policies. This support is implemented with
the bufpolicy option and can be set on a per-consumer basis. See Options and Tunables for
more details.

switch Policy
By default, the principal buffer has a switch buffer policy. Under this policy, per-CPU buffers
are allocated in pairs, where one buffer is active and the other buffer is inactive. When a
DTrace consumer attempts to read a buffer, the kernel first switches the inactive and active

5-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/

buffers. Buffer switching is done in such a manner that there is no window in which tracing data
can be lost. When the buffers are switched, the newly inactive buffer is copied out to the
DTrace consumer. This policy assures that the consumer always sees a self-consistent buffer.
Note that a buffer is never simultaneously traced to and copied out. This technique also avoids
introducing a window of time in which tracing is paused or otherwise prevented. The rate at
which the buffer is switched and read out is controlled by the consumer with the switchrate
option. As with any rate option, switchrate can be specified with the any time suffix, but
defaults to rate-per-second. For more information about switchrate and other options, see
Options and Tunables.

Under the switch policy, if a given enabled probe would trace more data than there is space
available in the active principal buffer, the data is dropped and a per-CPU drop count is
incremented. In the event of one or more drops, dtrace displays a message similar to the
following:

dtrace: 11 drops on CPU 0

If a given record is larger than the total buffer size, the record is dropped, regardless of buffer
policy. You can reduce or eliminate drops, either by increasing the size of the principal buffer
with the bufsize option, or by increasing the switching rate with the switchrate option.

Under the switch policy, scratch memory for DTrace subroutines is allocated out of the active
buffer.

fill Policy
For some problems, you might want to use a single, in-kernel buffer. While this approach can
be implemented with the switch policy and appropriate D constructs by incrementing a
variable in D and predicating an exit action appropriately, such an implementation does not
eliminate the possibility of drops. To request a single, large in-kernel buffer and continue
tracing until one or more of the per-CPU buffers has filled, use the fill buffer policy. Under
this policy, tracing continues until an enabled probe attempts to trace more data than can fit in
the remaining principal buffer space. When insufficient space remains, the buffer is marked as
filled and the consumer is notified that at least one of its per-CPU buffers is filled. When
dtrace detects a single filled buffer, tracing is stopped, all buffers are processed, and dtrace
exits. No further data is traced to a filled buffer even if the data would fit in the buffer.

To use the fill policy, set the bufpolicy option to fill. For example, the following command
traces every system call entry into a per-CPU 2 KB buffer with the buffer policy set to fill:

dtrace -n syscall:::entry -b 2k -x bufpolicy=fill

fill Policy and END Probes
END probes usually do not fire until tracing has been explicitly stopped by the DTrace
consumer. END probes are guaranteed to fire only on one CPU, but the CPU on which the
probe fires is undefined. With fill buffers, tracing is explicitly stopped when at least one of the
per-CPU principal buffers has been marked as filled. If the fill policy is selected, the END
probe might fire on a CPU that has a filled buffer. To accommodate END tracing in fill buffers,
DTrace calculates the amount of space that is potentially consumed by END probes and
subtracts this space from the size of the principal buffer. If the net size is negative, DTrace
does not start and dtrace outputs the following error message:

dtrace: END enablings exceed size of principal buffer

Chapter 5
Principal Buffer Policies

5-2

The reservation mechanism ensures that a full buffer always has sufficient space for any END
probes.

ring Policy
The DTrace ring buffer policy assists with tracing the events leading up to a failure. If
reproducing the failure takes hours or days, you might want to keep only the most recent data.
When a principal buffer has filled, tracing wraps around to the first entry, overwriting older
tracing data. You establish the ring buffer by specifying bufpolicy=ring as follows:

dtrace -s foo.d -x bufpolicy=ring

When used to create a ring buffer, dtrace does not display any output until the process is
terminated. At that time, the ring buffer is consumed and processed. The dtrace command
processes each ring buffer in CPU order. Within a CPU's buffer, trace records are displayed in
order from oldest to youngest. Just as with the switch buffering policy, no ordering exists
between records from different CPUs. If such an ordering is required, you should trace the
timestamp variable as part of your tracing request.

The following example demonstrates the use of a #pragma option directive to enable ring
buffering:

#pragma D option bufpolicy=ring
#pragma D option bufsize=16k

syscall:::entry
/execname == $1/
{
 trace(timestamp);
}

syscall::exit:entry
{
 exit(0);
}

Other Buffers
Principal buffers exist in every DTrace enabling. Beyond principal buffers, some DTrace
consumers might have additional in-kernel data buffers, such as an aggregation buffer, and
one or more speculative buffers. See Aggregations and Speculative Tracing for more details.

Buffer Sizes
The size of each buffer can be tuned on a per-consumer basis. Separate options are provided
to tune each buffer size, as shown in the following table.

Buffer Size Option

Aggregation aggsize
Principal bufsize
Speculative specsize

Each of these options is set with a value that denotes the size. As with any size option, the
value might have an optional size suffix. See Options and Tunables for more details.

Chapter 5
Other Buffers

5-3

For example, you would set the buffer size to 10 megabytes on the dtrace command line as
follows:

dtrace -P syscall -x bufsize=10m

Alternatively, you can use the -b option with the dtrace command:

dtrace -P syscall -b 10m

Finally, you can set bufsize by using a pragma, for example:

#pragma D option bufsize=10m

The buffer size that you select denotes the size of the buffer on each CPU. Moreover, for the
switch buffer policy, bufsize denotes the size of each buffer on each CPU. The default buffer
size is four megabytes.

Buffer Resizing Policy
Occasionally, the system might not have adequate free kernel memory to allocate a buffer of
the desired size, either because not enough memory is available or because the DTrace
consumer has exceeded one of the tunable limits that are described in Options and Tunables.
You can configure the policy for buffer allocation failure by using the bufresize option, which
defaults to auto. Under the auto buffer resize policy, the size of a buffer is halved until a
successful allocation occurs. dtrace generates a message if a buffer, as allocated, is smaller
than the requested size, as shown in the following example:

dtrace -P syscall -b 4g
dtrace: description 'syscall' matched 430 probes
dtrace: buffer size lowered to 128m ...

Or, a message similar to the following is generated:

dtrace -P syscall'{@a[probefunc] = count()}' -x aggsize=1g
dtrace: description 'syscall' matched 430 probes
dtrace: aggregation size lowered to 128m ...

Alternatively, you can require manual intervention after buffer allocation failure by setting
bufresize to manual. Under this policy, an allocation failure prevents DTrace from starting:

dtrace -P syscall -x bufsize=1g -x bufresize=manual
dtrace: description 'syscall' matched 430 probes
dtrace: could not enable tracing: Not enough space
#

The buffer resizing policy for all buffers (principal, speculative and aggregation) is dictated by
the bufresize option.

Chapter 5
Buffer Resizing Policy

5-4

6
Output Formatting

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

For more information about DTrace, see Oracle Linux: DTrace Release Notes and
Oracle Linux: Using DTrace for System Tracing.

DTrace provides the built-in printf and printaformatting functions, which you can use from
your D programs to format output. The D compiler provides features that are not found in the C
library's printf() routine, so be sure to read this chapter even if you are already familiar with
printf.

This chapter also discusses the formatting behavior of the trace function and the default
output format that is used by the dtrace command to display aggregations.

printf Action
The printf action combines the ability to trace data, as if by the trace function, but with the
ability to output the data and other text in a specific format that you describe. The printf
function directs DTrace to trace the data associated with each argument after the first
argument and then format the results using the rules described by the first printf argument,
known as a format string. The format string is a regular string that contains any number of
format conversions, each beginning with a % character, that describe how to format the
corresponding argument. The first conversion in the format string corresponds to the second
printf argument, the second conversion to the third argument, and so on. All of the text
between conversions is printed verbatim. The character following the % conversion character
describes the format to use for the corresponding argument.

Unlike the C library's printf() function, DTrace's printf function is a built-in function that is
recognized by the D compiler. The D compiler provides several useful services for the DTrace
printf function that are not found in printf(), including the following:

• The D compiler compares the arguments to the conversions in the format string. If an
argument's type is incompatible with the format conversion, the D compiler provides an
error message explaining the problem.

• The D compiler does not require the use of size prefixes with printf format conversions.
The C printf routine requires that you indicate the size of arguments by adding prefixes
such as %ld for long, or %lld for long long. The D compiler is aware of the size and type
of your arguments, so these prefixes are not required in your D printf statements.

6-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/

• DTrace provides additional format characters that are useful for debugging and
observability. For example, the %a format conversion can be used to print a pointer as a
symbol name and offset.

To implement these features, you must specify the format string in the DTrace printf function
as a string constant in your D program. Format strings cannot be dynamic variables of type
string.

Conversion Specifications
Each conversion specification in the format string is introduced by the % character, after which
the following information appears in sequence:

• Zero or more flags (in any order), that modify the meaning of the conversion specification,
as described in Flag Specifiers.

• An optional minimum field width. If the converted value has fewer bytes than the field
width, the value is padded with spaces on the left, by default, or on the right, if the left-
adjustment flag (-) is specified. The field width can also be specified as an asterisk (*), in
which case the field width is set dynamically, based on the value of an additional argument
of type int.

• An optional precision specifier that indicates the following:

– The minimum number of digits to appear for the d, i, o, u, x, and X conversions— the
field is padded with leading zeroes—the number of digits to appear after the radix
character for the e, E, and f conversions.

– The maximum number of significant digits for the g and G conversions.

– Or the maximum number of bytes to be printed from a string by the s conversion.

The precision specifier takes the form of a period (.), followed by either an asterisk (*), as
described in Width and Precision Specifiers, or a decimal digit string.

• An optional sequence of size prefixes that indicate the size of the corresponding argument.
Size prefixes are not required in D, but are provided for compatibility with the C printf()
function.

• A conversion specifier that indicates the type of conversion to be applied to the argument.

The C printf() function also supports conversion specifications of the form %n$, where n is a
decimal integer. Note that the DTrace printf function does not support this type of conversion
specification.

Flag Specifiers
The printf conversion flags are enabled by specifying one or more of the following
characters, which can appear in any order, as described in the following table.

Chapter 6
printf Action

6-2

Flag Specifier Description

' The integer portion of the result of a decimal
conversion (%d, %f, %g, %G, %i, or %u) is
formatted with thousands of grouping
characters by using the non-monetary grouping
character. Some locales, including the POSIX C
locale, do not provide non-monetary grouping
characters for use with this flag. (The relevant
locale is the locale in which dtrace is
running.)

- The result of the conversion is left-justified
within the field. The conversion is right-
justified if this flag is not specified.

+ The result of signed conversion always begins
with a sign (+ or -). If this flag is not specified,
the conversion begins with a sign only when a
negative value is converted.

space If the first character of a signed conversion is
not a sign or if a signed conversion results in no
characters, a space is placed before the result.
If the space and + flags both appear, the space
flag is ignored.

The value is converted to an alternate form if
an alternate form is defined for the selected
conversion. The alternate formats for
conversions are described along with the
corresponding conversion.

0 For d, e, E, f, g, G, i, o, u, x, and X conversions,
leading zeroes (following any indication of sign
or base) are used to pad the field width and no
space padding is performed. If the 0 and - flags
both appear, the 0 flag is ignored. For d, i, o, u,
x and X conversions, if a precision is specified,
the 0 flag is ignored. If the 0 and ' flags both
appear, the grouping characters are inserted
before the zero padding.

Width and Precision Specifiers
The minimum field width can be specified as a decimal-digit string following any flag specifier,
in which case the field width is set to the specified number of columns. The field width can also
be specified as asterisk (*) in which case an additional argument of type int is accessed to
determine the field width.

For example, to print an integer x in a field width determined by the value of the int variable w,
you would write the following D statement:

printf("%*d", w, x);

The field width can also be specified with a ? character to indicate that the field width should be
set based on the number of characters required to format an address (in hexadecimal) in the
data model of the operating system kernel. The width is set to 8, if the kernel is using the 32-bit
data model, or to 16, if the kernel is using the 64-bit data model. The precision for the
conversion can be specified as a decimal digit string following a period (.), or by an asterisk (*)

Chapter 6
printf Action

6-3

following a period. If an asterisk is used to specify the precision, an additional argument of type
int before the conversion argument provides the precision. If both width and precision are
specified as asterisks, the order of arguments to printf for the conversion should appear in
the following order: width, precision, value.

Size Prefixes
Size prefixes are required in ANSI C programs that use printf() to indicate the size and type
of the conversion argument. The D compiler performs this processing for your printf calls
automatically, so size prefixes are not required. Although size prefixes are provided for C
compatibility, their use is explicitly discouraged in D programs because they bind your code to
a particular data model when using derived types.

For example, if a typedef is redefined to different integer base types depending on the data
model, it is not possible to use a single C conversion that works in both data models without
explicitly knowing the two underlying types and including a cast expression or defining multiple
format strings. The D compiler solves this problem automatically by enabling you to omit size
prefixes and automatically determining the argument size.

Size prefixes can be placed just prior to the format conversion name and after any flags,
widths, and precision specifiers and are as follows:

• An optional h specifies that a following d, i, o, u, x, or X conversion applies to a short or
unsigned short.

• An optional l specifies that a following d, i, o, u, x, or X conversion applies to a long or
unsigned long.

• An optional ll specifies that a following d, i, o, u, x, or X conversion applies to a long long
or unsigned long long.

• An optional L specifies that a following e, E, f, g, or G conversion applies to a long double.

• An optional l specifies that a following c conversion applies to a wint_t argument, and
that a following s conversion character applies to a pointer to a wchar_t argument.

Conversion Formats
Each conversion character sequence results in fetching zero or more arguments. If insufficient
arguments are provided for the format string, if the format string is exhausted and arguments
remain, or if an undefined conversion format is specified, then the D compiler issues an
appropriate error message. The following table describes the conversion character sequences.

Conversion Characters Description

a The pointer or uintptr_t argument is printed
as a kernel symbol name in the form
module'symbol-name, plus an optional
hexadecimal byte offset. If the value does not
fall within the range that is defined by a known
kernel symbol, the value is printed as a
hexadecimal integer.

A Identical to %a, but is used for user symbols.

c The char, short, or int argument is printed as
an ASCII character.

Chapter 6
printf Action

6-4

Conversion Characters Description

C The char, short, or int argument is printed as
an ASCII character if the character is a
printable ASCII character. If the character is not
a printable character, it is printed by using the
corresponding escape sequence, as shown in
Table 2-6.

d The char, int, long, long long, or short
argument is printed as a decimal (base 10)
integer. If the argument is signed, it is printed
as a signed value. If the argument is unsigned,
it is printed as an unsigned value. This
conversion has the same meaning as i.

e, E The double, float, or long double argument
is converted to the style [-]d.ddde[+-]dd ,
where there is one digit before the radix
character and the number of digits that follow
is equal to the precision. The radix character is
non-zero if the argument is non-zero. If the
precision is not specified, the default precision
value is 6. If the precision is 0 and the # flag is
not specified, no radix character appears. The E
conversion format produces a number with E
introducing the exponent, instead of e. The
exponent always contains at least two digits.
The value is rounded up to the appropriate
number of digits.

f The double, float, or long double argument
is converted to the style [-]ddd.ddd , where
the number of digits after the radix character is
equal to the precision specification. If the
precision is not specified, the default precision
value is 6. If the precision is 0 and the # flag is
not specified, no radix character appears. If a
radix character appears, at least one digit
appears before it. The value is rounded up to
the appropriate number of digits.

g, G The double, float, or long double argument
is printed in the style f or e (or in style E in the
case of a G conversion character), with the
precision specifying the number of significant
digits. If an explicit precision is 0, it is taken as
1. The style that is used depends on the value
converted: style e (or E) is used only if the
exponent resulting from the conversion is less
than -4, or greater than or equal to the
precision. Trailing zeroes are removed from the
fractional part of the result. A radix character
appears only if it is followed by a digit. If the #
flag is specified, trailing zeroes are not
removed from the result.

Chapter 6
printf Action

6-5

Conversion Characters Description

i The char, int, long, long long, or short
argument is printed as a decimal (base 10)
integer. If the argument is signed, it is printed
as a signed value. If the argument is unsigned,
it is printed as an unsigned value. This
conversion has the same meaning as d.

k The stack argument is printed as if by a call to
trace() and handles kernel-level stacks. This
argument is valid only with printa because
stack cannot be called from a D expression, as
a D program context is required.

o The char, int, long, long long, and short
argument is printed as an unsigned octal (base
8) integer. Arguments that are signed or
unsigned may be used with this conversion. If
the # flag is specified, the precision of the result
is increased to force the first digit of the result
to be a zero, if necessary.

p The pointer or uintptr_t argument is printed
as a hexadecimal (base 16) integer. D accepts
pointer arguments of any type. If the # flag is
specified, a non-zero result has 0x prepended to
it.

s The argument must be an array of char or a
string. Bytes from the array or string are
read up to a terminating null character or the
end of the data and interpreted and printed as
ASCII characters. If the precision is not
specified, it is taken to be infinite so that all
characters up to the first null character are
printed. If the precision is specified, only the
portion of the character array that is displayed
in the corresponding number of screen
columns is printed. If an argument of type char
* is to be formatted, it should be cast to string
or prefixed with the D stringof operator to
indicate that DTrace should trace the bytes of
the string and format them.

S The argument must be an array of char or
string. The argument is processed as if by the
%s conversion, but any ASCII characters that
are not printable are replaced by the
corresponding escape sequence, as described in
Table 2-6.

u The char, int, long, long long, or short
argument is printed as an unsigned decimal
(base 10) integer. Arguments that are signed or
unsigned can be used with this conversion. The
result is always formatted as unsigned.

Chapter 6
printf Action

6-6

Conversion Characters Description

wc The int argument is converted to a wide
character (wchar_t) and the resulting wide
character is printed.

ws The argument must be an array of wchar_t.
Bytes from the array are read up to a
terminating null character or the end of the
data and interpreted and printed as wide
characters. If the precision is not specified, it is
taken to be infinite, so all wide characters up to
the first null character are printed. If the
precision is specified, only that portion of the
wide character array that is displayed in the
corresponding number of screen columns is
printed.

x, X The char, int, long, long long, or short
argument is printed as an unsigned
hexadecimal (base 16) integer. Arguments that
are signed or unsigned may be used with this
conversion. If the x form of the conversion is
used, the letter digits abcdef are used. If the X
form of the conversion is used, the letter digits
ABCDEF are used. If the # flag is specified, a non-
zero result has 0x (for %x) or 0X (for %X) that is
prepended to it.

Y The uint64_t argument is interpreted to be the
number of nanoseconds, since 00:00 Universal
Coordinated Time, January 1, 1970, and is
printed in the following format: "%Y %a %b %e %T
%Z". The current number of nanoseconds since
00:00 UTC, January 1, 1970 is available as the
walltimestamp variable.

% Print a literal % character. No argument is
converted. The entire conversion specification
must be %%.

printa Action
The printa action enables you to format the results of aggregations in a D program. The
function is invoked by using one of following two forms:

printa(@aggregation-name);
printa(format-string, @aggregation-name);

If the first form of the function is used, the dtrace command takes a consistent snapshot of
the aggregation data and produces output that is equivalent to the default output format used
for aggregations. See Aggregations. If the second form of the function is used, the dtrace
command takes a consistent snapshot of the aggregation data and produces output according
to the conversions that are specified in the format string, according to the following rules:

• The format conversions must match the tuple signature that is used to create the
aggregation. Each tuple element can only appear once. For example, if you aggregate a
count by using the following D statements:

Chapter 6
printa Action

6-7

@a["hello", 123] = count();
@a["goodbye", 456] = count();

Then, you add the D statement printa(format-string, @a) to a probe clause, dtrace
takes a snapshot of the aggregation data and produces output as though you entered
these statements:

printf(format-string, "hello", 123);
printf(format-string, "goodbye", 456);

Then, continue similarly on for each tuple defined in the aggregation.

• Unlike printf, the format string that you use for printa does not need to include all
elements of the tuple: you can have a tuple of length 3 and only one format conversion.
Therefore, you can omit any tuple keys from your printa output by changing your
aggregation declaration to move the keys you want to omit to the end of the tuple and then
omit any corresponding conversion specifiers for them in the printa format string.

• The aggregation result is included in the output by using the additional @ format flag
character, which is only valid when used with printa. The @ flag can be combined with any
appropriate format conversion specifier. Also, the flag can appear more than once in a
format string so that your tuple result can appear anywhere in the output, as well as appear
more than once. The set of conversion specifiers that can be used with each aggregating
function are implied by the aggregating function's result type. The aggregation result types
are listed in the following table.

Aggregation Result Type

avg uint64_t
count uint64_t
llquantize int64_t
lquantize int64_t
max uint64_t
min uint64_t
quantize int64_t
sum uint64_t

For example, to format the results of avg, you can apply the %d, %i, %o, %u, or %x format
conversions. The quantize, lquantize, and llquantize functions format their results as an
ASCII table rather than as a single value.

The following D program shows an example of printa using the profile provider to sample the
value of caller, then formatting the results as a simple table. Type the following source code
and save it in a file named printa.d:

profile:::tick-1000
{
 @myagg[caller] = count();
}

END
{
 printa("%@8u %a\n", @myagg);
}

Chapter 6
printa Action

6-8

If you use the dtrace command to execute this program, wait a few seconds, then press
Ctrl-C. You should see output similar to the following:

dtrace -qs printa.d
 ^C
 1 vmlinux`do_syscall_64+0x2f
 1 vmlinux`___bpf_prog_run+0x528
 1 vmlinux`page_frag_free+0x3e
 1 vmlinux`__legitimize_mnt
 1 vmlinux`seq_printf+0x1b
 1 vmlinux`selinux_sb_show_options+0x39
 1 vmlinux`strchr+0x1f
 1 ip6_tables`ip6t_do_table+0xbb
 2 vmlinux`__raw_callee_save___pv_queued_spin_unlock+0x10
 14 libata`__dta_ata_sff_pio_task_1036+0x9e
 12975 vmlinux`native_safe_halt+0x6

trace Default Format
If you use trace rather than printf to capture data, the dtrace command formats the results
by using a default output format. If the data is 1, 2, 4, or 8 bytes in size, the result is formatted
as a decimal integer value. If the data is any other size, and is a sequence of printable
characters if interpreted as a sequence of bytes, it is printed as an ASCII string. If the data is
any other size, and is not a sequence of printable characters, it is printed as a series of byte
values that is formatted as hexadecimal integers.

Chapter 6
trace Default Format

6-9

7
Speculative Tracing

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

For more information about DTrace, see Oracle Linux: DTrace Release Notes and
Oracle Linux: Using DTrace for System Tracing.

This chapter describes how to use the DTrace facility for speculative tracing, which includes
the ability to tentatively trace data and then later decide whether to commit the data to a tracing
buffer or discard it.

About Speculative Tracing
In DTrace, the primary mechanism for filtering out uninteresting events is the predicate
mechanism, which is described in more detail in D Program Structure. Predicates are useful
when you know whether a probe event is of interest at the time that it fires. For example, if you
are only interested in activity that is associated with a certain process or a certain file
descriptor, you know when the probe fires if it is associated with the process or file descriptor
of interest. Note that in other situations, you might not know whether a given probe event is of
interest until some time after the probe fires.

Take the example of a system call that is occasionally failing with a common error code such
as EIO or EINVAL. In this instance, you might want to examine the code path leading to the
error condition. To capture the code path, you could enable every probe, but only if the failing
call can be isolated in such a way that a meaningful predicate can be constructed. If the
failures are sporadic or non-deterministic, you would be forced to trace all of the events that
might be interesting, then later post-process the data to filter out the events that were not
associated with the failing code path. In this case, even though the number of interesting
events might be reasonably small, the number of events that must be traced is very large,
making post-processing difficult.

In such situations, you can use speculative tracing facility to tentatively trace data at one or
more probe locations. You can then decide to commit the data to the principal buffer at another
probe location. The result is that your trace data only contains the output that is of interest; no
post-processing is required and the DTrace overhead is minimized.

Speculation Interfaces
The following table describes DTrace speculation functions.

7-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/

Table 7-1 DTrace Speculation Functions

Function Args Description

speculation None Returns an identifier for a new
speculative buffer.

speculate ID Denotes that the remainder of
the clause should be traced to
the speculative buffer specified
by ID.

commit ID Commits the speculative buffer
that is associated with ID.

discard ID Discards the speculative buffer
that is associated with ID.

Creating a Speculation
The speculation function allocates a speculative buffer and returns a speculation identifier.
The speculation identifier should be used in subsequent calls to the speculate function.
Speculative buffers are a finite resource. If no speculative buffer is available when speculation
is called, an ID of zero is returned and a corresponding DTrace error counter is incremented.
An ID of zero is always invalid, but it can be passed to the speculate, commit and discard
functions. If a call to speculation fails, dtrace generates a message similar to the following:

dtrace: 2 failed speculations (no speculative buffer space available)

The number of speculative buffers defaults to one but can be optionally tuned higher. See
Speculation Options and Tuning.

Using a Speculation
To use a speculation, an identifier that is returned from speculation must be passed to the
speculate function in a clause prior to any data-recording actions. All subsequent data-
recording actions in a clause containing a speculate are speculatively traced. The D compiler
generates a compile-time error if a call to speculate follows data-recording actions in a D
probe clause. Therefore, clauses might contain speculative tracing or non-speculative tracing
requests, but not both.

Aggregating actions, destructive actions, and the exit action may never be speculative. Any
attempt to take one of these actions in a clause containing a speculate results in a compile-
time error. Also, a speculate may not follow a speculate. Only one speculation is permitted
per clause. A clause that contains only a speculate speculatively traces the default action,
which is defined to trace only the enabled probe ID. See Actions and Subroutines for a
description of the default action.

Typically, you assign the result of speculation to a thread-local variable and then use that
variable as a subsequent predicate to other probes, as well as an argument to speculate, as
shown in the following example:

syscall::openat:entry
{
 self->spec = speculation();
}

Chapter 7
Creating a Speculation

7-2

syscall:::
/self->spec/
{
 speculate(self->spec);
 printf("this is speculative");
}

Committing a Speculation
You commit speculations by using the commit function. When a speculative buffer is
committed, its data is copied into the principal buffer. If there is more data in the specified
speculative buffer than there is available space in the principal buffer, no data is copied and the
drop count for the buffer is incremented. If the buffer has been speculatively traced on more
than one CPU, the speculative data on the committing CPU is copied immediately, while
speculative data on other CPUs is copied some time after the commit. Thus, some time might
elapse between a commit that begins on one CPU, while the data is being copied from
speculative buffers to principal buffers on all CPUs. This length of time is guaranteed to be no
longer than the time dictated by the cleaning rate. See Speculation Options and Tuning.

A committing speculative buffer is not made available to subsequent speculation calls until
each per-CPU speculative buffer has been completely copied into its corresponding per-CPU
principal buffer. Similarly, subsequent calls to speculate to the committing buffer are silently
discarded, and subsequent calls to commit or discard silently fail. Finally, a clause containing a
commit cannot contain a data recording action. However, a clause can contain multiple commit
calls to commit disjoint buffers.

Discarding a Speculation
You discard speculations by using the discard function. When a speculative buffer is
discarded, its contents are also discarded. If the speculation has only been active on the CPU
calling discard, the buffer is immediately available for subsequent calls to speculation. If the
speculation has been active on more than one CPU, the discarded buffer will be available for
subsequent speculation some time after the call to discard. The length of time between a
discard on one CPU and the buffer being made available for subsequent speculations is
guaranteed to be no longer than the time that is dictated by the cleaning rate. If, at the time
speculation is called, no buffer is available because all speculative buffers are currently being
discarded or committed, dtrace generates a message similar to the following:

dtrace: 905 failed speculations (available buffer(s) still busy)

You can reduce the likelihood of all buffers being unavailable by tuning the number of
speculation buffers or the cleaning rate. See Speculation Options and Tuning.

Example of a Speculation
One potential use for speculations is to highlight a particular code path. The following example
shows the entire code path under the open() system call when the call fails. Type the following
source code and save it in a file named specopen.d:

#!/usr/sbin/dtrace -Fs

syscall::open:entry
{
 /*
 * The call to speculation() creates a new speculation. If this fails,

Chapter 7
Committing a Speculation

7-3

 * dtrace will generate an error message indicating the reason for
 * the failed speculation(), but subsequent speculative tracing will be
 * silently discarded.
 */
 self->spec = speculation();
 speculate(self->spec);

 /*
 * Because this printf() follows the speculate(), it is being
 * speculatively traced; it will only appear in the data buffer if the
 * speculation is subsequently committed.
 */
 printf("%s", copyinstr(arg0));
}

syscall::open:return
/self->spec/
{
 /*
 * To balance the output with the -F option, we want to be sure that
 * every entry has a matching return. Because we speculated the
 * open entry above, we want to also speculate the open return.
 * This is also a convenient time to trace the errno value.
 */
 speculate(self->spec);
 trace(errno);
}

syscall::open:return
/self->spec && errno != 0/
{
 /*
 * If errno is non-zero, we want to commit the speculation.
 */
 commit(self->spec);
 self->spec = 0;
}

syscall::open:return
/self->spec && errno == 0/
{
 /*
 * If errno is not set, we discard the speculation.
 */
 discard(self->spec);
 self->spec = 0;
}

Running the previous script produces output similar to the following:

./specopen.d
dtrace: script ’./specopen.d’ matched 4 probes
CPU FUNCTION
 1 => open /var/ld/ld.config
 1 <= open 2
 1 => open /images/UnorderedList16.gif
 1 <= open 4
...

Chapter 7
Example of a Speculation

7-4

Speculation Options and Tuning
If a speculative buffer is full when a speculative tracing action is attempted, no data is stored in
the buffer and a drop count is incremented. In this situation, dtrace generates a message
similar to the following:

dtrace: 38 speculative drops

Speculative drops do not prevent the full speculative buffer from being copied into the principal
buffer when it is committed. Similarly, speculative drops can occur even if drops were
experienced on a speculative buffer that were ultimately discarded. Speculative drops can be
reduced by increasing the speculative buffer size, which is tuned by using the specsize option.
The specsize option can be specified with any size suffix. The resizing policy of this buffer is
dictated by the bufresize option.

Speculative buffers might be unavailable when speculation is called. If buffers that have not
yet been committed or discards exist, dtrace generates a message similar to the following:

dtrace: 1 failed speculation (no speculative buffer available)

You can reduce the likelihood of failed speculations of this nature by increasing the number of
speculative buffers by specifying the nspec option. The value of nspec defaults to 1.

Also, speculation can fail if all speculative buffers are busy. In this case, an error message
similar to the following is displayed:

dtrace: 1 failed speculation (available buffer(s) still busy)

This error message indicates that speculation was called after commit was called for a
speculative buffer, but before that buffer was actually committed on all CPUs. You can reduce
the likelihood of failed speculations of this nature by increasing the rate at which CPUs are
cleaned by using the cleanrate option. The value of cleanrate defaults to 101.

Chapter 7
Speculation Options and Tuning

7-5

8
dtrace Command Reference

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

For more information about DTrace, see Oracle Linux: DTrace Release Notes and
Oracle Linux: Using DTrace for System Tracing.

The dtrace command is a generic front-end utility for the DTrace facility. The command
implements a simple interface to invoke the D language compiler. The dtrace command also
has the ability to retrieve buffered trace data from the DTrace kernel facility and a includes a
set of basic routines to format and print traced data. This chapter provides a complete
reference for the dtrace command.

dtrace Command Description
The dtrace command provides a generic interface to all of the essential services that are
provided by the DTrace facility, including options to do the following:

• List the set of probes and providers currently published by DTrace.

• Enable probes directly by using any of the probe description specifiers (provider, module,
function, name).

• Run the D compiler and compile one or more D program files or programs written directly
on the command line.

• Generate program stability reports. See DTrace Stability Features.

• Modify DTrace tracing and buffering behavior and enable additional D compiler features.
See Options and Tunables.

You can also use the dtrace command to create D scripts by using the command in a #!
declaration to create an interpreter file. See Scripting. Finally, you can use the -e option to
dtrace to compile D programs and determine their properties without actually enabling any
tracing.

dtrace Command Options
The dtrace command accepts the following options:

dtrace [-CeFGhHlqSvVwZ]
[-b bufsz] [-c command] [-D name[=value]] [-I pathname] [-L pathname]
[-o pathname] [-p PID] [-s source_pathname]
[-U name] [-x option[=value]] [-X a|c|s|t]

8-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/

[-P provider[[predicate]action]]
[-m [[provider:]module[[predicate]action]]]
[-f [[provider:]module:]function[[predicate]action]]
[-n [[[provider:]module:]function:]name[[predicate]action]]
[-i probe-id[[predicate]action]]

where predicate is any D predicate enclosed in slashes // and action is any D statement list
enclosed in braces {}, according to the D language syntax.

If D program code is provided as an argument to the -P, -m, -f, -n, or -i options, this text
must be appropriately quoted to avoid interpretation by the shell.

The options are as follows:

-b bufsize
Set the principal trace buffer size, which can include any of the size suffixes k (kilobyte), m
(megabyte), g (gigabyte), or t (terabyte). If the buffer space cannot be allocated, dtrace
attempts to reduce the buffer size or exits, depending on the setting of the bufresize property.

-c command
Run the specified command and exit upon its completion. If you specify more than one -
c option, dtrace exits when all of the commands have exited, and then
reports the exit status for each child process as it terminates. The dtrace command makes
the process ID of the first command available to D programs as the $target macro variable.

-C
Run the C preprocessor (cpp) on D programs before compiling them. You can pass
options to the C preprocessor by using the -D, -H, -I, and -U options. Use the -X option to
select the degree of conformance with the C standard.

-D name[=value]
Define the specified macro name and optional value when invoking cpp with the -C option.
You can specify the -D option to the command multiple times.

-e
Exit after compiling any requests and before enabling any probes. You can combine this
option with the -D option to verify that your D
programs compile without executing them or enabling the corresponding instrumentation.

-f [[provider:]module:] function [[predicate]action]
Specify a function (optionally specifying the provider and module) that you want
to trace or list. You can append an optional D-probe clause. You can specify the -f option
multiple times to the command.

-F
Reduce trace output by combining the output for function and system call entry and return
points. The dtrace command indents entry probe reports and leaves
return probe reports unindented. The command prefixes the output from function entry probe
reports with -> and the output from function return probe reports with <-. The dtrace
command prefixes the output from system call entry probe reports with => and the output from
system call return probe reports with <=.

-G
Generate an ELF file that contains an embedded D program. The command saves the DTrace
probes that are specified in the program by using a relocatable ELF
object that can be linked with another program. If you specify the -o option, dtrace

Chapter 8
dtrace Command Options

8-2

saves the ELF file to the specified path name. If you do not specify the -o option,
the ELF file is assigned the same name as the source file for the D program, except with a .o
extension rather than the .s extension. Otherwise, the ELF file is saved with the name d.out.

-h
Create a header file based on probe definitions in the file that is specified as the argument to
the -s option. If you specify the -o option, the command saves the header file to the specified
path name. If you do not specify the -o option, the header file is assigned the same name as
the source file for the D program, except with a .h extension rather than a .d extension. You
should amend the source file of the program to be traced so that it includes this header file.

-H
Print the path names of included files on stderr when you invoke cpp with the -C option.

-i probe_ID [[predicate]action]
Specify a probe identifier that you want to trace or list. You must specify the probe ID as
a decimal integer, as displayed by dtrace -l. You can append an optional D-probe clause.
You can specify the -i option multiple times to the command.

-I pathname
Add the specified directory path to the search path for #include files when you invoke cpp
with the -C option. The specified directory is inserted at the head of the default directory list.

-l
List probes instead of enabling them. The dtrace command filters the list of probes based
on the arguments to the -f, -i, -m, -n, -P, and -s options. If no options are specified, the
command lists all of the probes.

-L pathname
Add the specified directory path to the end of the library search path. Use this option to specify
the path to DTrace libraries, which contain common definitions for D programs.

-m [[provider:]module [[predicate]action]]
Specify a module that you want to trace or list. You can optionally specify the provider. You
can append an optional D-probe clause. You can specify the -m option multiple times to
the command.

-n [[[provider:]module:] function:]name [[predicate]action]
Specify a probe name that you want to trace or list. You can append an optional D-
probe clause. You can optionally specify the provider, module, and function. You can specify
the -n option multiple times to the command.

-o pathname
Specify the output file for the -G and -l options, or for traced data.

-p PID
Grab a process by specifying its process ID, cache its symbol tables, and exit
upon its completion. If you specify more than one -p option, dtrace exits when all of the
processes have exited. In addition, the command reports the exit status for each
process as it terminates. The dtrace command makes the first process ID that is specified
available to D programs as the macro variable $target.

-P provider['D-probe_clause']
Specify a provider that you want to trace or list. You can append an optional D-probe clause.
You can specify the -P option multiple times to the command.

Chapter 8
dtrace Command Options

8-3

-q
Set quiet mode. The dtrace command suppresses informational messages,
column headers, CPU ID, probe ID, and additional newlines. Only the data that
is traced and formatted by the printa(), printf(), and trace() D program
statements is displayed on stdout. This option is equivalent to specifying #pragma D option
quiet in a D program.

-s source_pathname
Specify the name of a D program source file to be compiled by the dtrace command, as
follows:

• If you specify the -h option, dtrace creates a header file using the probe definitions in
the file.

• If you specify the -G option, dtrace generates a relocatable ELF
object that can be linked with another program.

• If you specify the -e option, dtrace compiles the program, but does not
enable any instrumentation.

• If you specify the -l option, dtrace compiles the program and lists the set of matching
probes, but it does not enable any instrumentation.

• If you do not specify an option, dtrace enables the instrumentation that is
specified by the D program and begins tracing.

-S
Show the D compiler intermediate code. The D compiler writes a
report of the intermediate code that was generated for each D program to stderr.

-U name
Undefine the specified name when invoking cpp with the -C option. You can specify the -U
option multiple times to the command.

-v
Set verbose mode. The dtrace command produces a
program stability report showing the minimum interface stability and dependency level
for any specified D programs.

-V
Write the highest D programming interface version that is supported by dtrace to stdout.
The combination -vV adds other version information, such as the version of the user-space
binaries from the dtrace-utils package.

-w
Permit destructive actions by D programs. Note that if you do not specify this option, the
command does not compile or enable a D program that contains destructive actions. This
option is equivalent to specifying #pragma D option destructive in a D program.

-x option[=value]
Enable or modify a DTrace runtime option or D compiler option.

-X a|c|t
Include the option -std=gnu99 (conformance with 1999 C standard including GNU
extensions) when invoking cpp with the -C option.

Chapter 8
dtrace Command Options

8-4

-Xs
Include the option -traditional-cpp (conformance with K&R C) when invoking cpp with
the -C option.
Regardless of the -X mode, the following additional C preprocessor definitions are always
specified and valid in all modes:

• __linux
• __unix
• __SVR4
• __`uname -s` (for example, __Linux)

• __SUNW_D=1
• __SUNW_D_64
• __SUNW_D_VERSION=0xMMmmmuuu

where MM is the Major release value in hexadecimal, mmm is the Minor release value in
hexadecimal, and uuu is the Micro release value in hexadecimal. See DTrace Versioning
for more information about DTrace versioning.

-Z
Permit probe descriptions that do not match any probes. If you do not specify this option, the
dtrace command reports an error and exits if a probe description
does not match a known probe.

dtrace Command Operands
You can specify zero or more additional arguments on the dtrace command line to define a
set of macro variables, such as $1, $2, and so on, to be used in any D programs that are
specified with the -s option or on the command line. The use of macro variables is described
further in Scripting.

dtrace Command Exit Status
The following exit values are returned by the dtrace command:

0
Indicates that the specified requests were completed successfully. For D program requests,
the 0 exit status indicates that programs were successfully compiled, probes were successfully
enabled, or an anonymous state was successfully retrieved. The dtrace command returns 0
even if the specified tracing requests encountered errors or drops.

1
Indicates that a fatal error occurred. For D program requests, the 1 exit status indicates that
program compilation failed or that the specified request could not be satisfied.

2
Indicates that invalid command-line options or arguments were specified.

Chapter 8
dtrace Command Operands

8-5

9
Scripting

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

For more information about DTrace, see Oracle Linux: DTrace Release Notes and
Oracle Linux: Using DTrace for System Tracing.

You can use the dtrace command to create interpreter files from D programs, which are
similar to shell scripts that can be installed as reusable interactive DTrace tools. The D
compiler and the dtrace command provide a set of macro variables that are expanded by the
D compiler to make it easy to create DTrace scripts. This chapter provides a reference for the
macro variable facility and tips for creating persistent scripts.

Interpreter Files
Similar to your shell and utilities such as awk and perl, you can use the dtrace command to
create executable interpreter files.

An interpreter file begins with a line of the following form:

#!pathname [arg]

where pathname is the path of the interpreter and arg is a single, optional argument. When an
interpreter file is executed, the system invokes the specified interpreter. If arg was specified in
the interpreter file, it is passed as an argument to the interpreter. The path to the interpreter file
and any additional arguments that were specified when it was executed are then appended to
the interpreter argument list. Therefore, you always need to create DTrace interpreter files with
at least the following arguments:

#!/usr/sbin/dtrace -s

When your interpreter file is executed, the argument to the -s option is the pathname of the
interpreter file. The dtrace command then reads, compiles, and executes this file as if you
had typed the following command in your shell:

dtrace -s interpreter-file

The following example shows how you would create and execute a dtrace interpreter file.
First, type the following D source code and save it in a file named interp.d:

#!/usr/sbin/dtrace -s
BEGIN
{
 trace("hello");

9-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/

 exit(0);
}

Then, make the interp.d file executable and execute it as follows:

chmod a+rx interp.d
./interp.d
dtrace: script './interp.d' matched 1 probe
CPU ID FUNCTION:NAME
 0 1 :BEGIN hello
#

Remember that the #! directive must comprise the first two characters of your file with no
intervening or preceding white space. The D compiler automatically ignores this line when it
processes the interpreter file.

The dtrace command uses getopt() to process command-line options so that you can
combine multiple options in your single interpreter argument. For example, to add the -q
option to the previous example you could change the interpreter directive to the following:

#!/usr/sbin/dtrace -qs

Note:

If you specify multiple options, the -s option must always end the list of options so
that the next argument, the interpreter file name, is correctly processed as the
argument to the -s option.

If you need to specify more than one option that requires an argument in your interpreter file,
use the #pragma D option directive to set your options. Several dtrace command-line
options have #pragma equivalents that you can use. See Options and Tunables.

Macro Variables
The D compiler defines a set of built-in macro variables that you can use when writing D
programs or interpreter files. Macro variables are identifiers that are prefixed with a dollar sign
($) and are expanded once by the D compiler when processing your input file. The following
table describes the macro variables that the D compiler provides.

Table 9-1 D Macro Variables

Name Description Reference

$[0-9]+ Macro arguments Macro Arguments

$egid Effective group ID See the getegid(2) manual
page.

$euid Effective user ID See the geteuid(2) manual
page.

$gid Real group ID See the getgid(2) manual
page.

$pid Process ID See the getpid(2) manual
page.

Chapter 9
Macro Variables

9-2

Table 9-1 (Cont.) D Macro Variables

Name Description Reference

$pgid Process group ID See the getpgid(2) manual
page.

$ppid Parent process ID See the getppid(2) manual
page.

$sid Session ID See the getsid(2) manual
page.

$target Target process ID Target Process ID

$uid Real user ID See the getuid(2) manual
page

With the exception of the $[0-9]+ macro arguments and the $target macro variable, all of the
macro variables expand to integers that correspond to system attributes, such as the process
ID and the user ID. The variables expand to the attribute value associated with the current
dtrace process or whatever process is running the D compiler.

Using macro variables in interpreter files enables you to create persistent D programs that you
do not need to edit every time you want to use them. For example, to count all system calls,
except those that are executed by the dtrace command, you would use the following D
program clause containing $pid:

syscall:::entry
/pid != $pid/
{
 @calls = count();
}

This clause always produces the desired result, even though each invocation of the dtrace
command has a different process ID. Macro variables can be used in a D program anywhere
that an integer, identifier, or string can be used.

Macro variables are expanded only one time when the input file is parsed, not recursively.

Except in probe descriptions, each macro variable is expanded to form a separate input token
and cannot be concatenated with other text to yield a single token.

For example, if $pid expands to the value 456, the D code in the following example would
expand to the two adjacent tokens 123 and 456, resulting in a syntax error, rather than the
single integer token 123456:

123$pid

However, in probe descriptions, macro variables are expanded and concatenated with adjacent
text. For example, the following clause uses the DTrace pid provider to instrument the dtrace
command:

dtrace -c ./a.out -n 'pid$target:libc.so::entry'

Macro variables are only expanded one time within each probe description field and they may
not contain probe description delimiters (:).

Chapter 9
Macro Variables

9-3

Macro Arguments
The D compiler also provides a set of macro variables corresponding to any additional
argument operands that are specified as part of the dtrace command invocation. These
macro arguments are accessed by using the built-in names $0, for the name of the D program
file or dtrace command, $1, for the first additional operand, $2 for the second operand, and
so on. If you use the -s option, $0 expands to the value of the name of the input file that is
used with this option. For D programs that are specified on the command line, $0 expands to
the value of argv[0], which is used to execute the dtrace command itself.

Macro arguments can expand to integers, identifiers, or strings, depending on the form of the
corresponding text. As with all macro variables, macro arguments can be used anywhere
integer, identifier, and string tokens can be used in a D program.

All of the following examples could form valid D expressions assuming appropriate macro
argument values:

execname == $1 /* with a string macro argument */

x += $1 /* with an integer macro argument */

trace(x->$1) /* with an identifier macro argument */

Macro arguments can be used to create DTrace interpreter files that act like real Linux
commands and use information that is specified by a user or by another tool to modify their
behavior.

For example, the following D interpreter file traces write() system calls that are executed by a
particular process ID and saved in a file named tracewrite:

#!/usr/sbin/dtrace -s
syscall::write:entry
/pid == $1/
{
}

If you make this interpreter file executable, you can specify the value of $1 by using an
additional command-line argument to your interpreter file, for example:

chmod a+rx ./tracewrite
./tracewrite 12345

The resulting command invocation counts each write() system call that is executed by the
process ID 12345.

If your D program references a macro argument that is not provided on the command line, an
appropriate error message is printed and your program fails to compile, as shown in the
following example:

./tracewrite
dtrace: failed to compile script ./tracewrite: line 4:
 macro argument $1 is not defined

D programs can reference unspecified macro arguments if you set the defaultargs option. If
defaultargs is set, unspecified arguments have the value 0. See Options and Tunables for
more information about D compiler options. The D compiler also produces an error message if
additional arguments that are not referenced by your D program are specified on the command
line.

Chapter 9
Macro Arguments

9-4

The macro argument values must match the form of an integer, identifier, or string. If the
argument does not match any of these forms, the D compiler reports an appropriate error
message. When specifying string macro arguments to a DTrace interpreter file, you should
surround the argument in an extra pair of single quotes to avoid interpretation of the double
quotes and string contents by your shell:

./foo '"a string argument"'

If you want your D macro arguments to be interpreted as string tokens, even if they match the
form of an integer or identifier, prefix the macro variable or argument name with two leading
dollar signs, for example, $$1, which forces the D compiler to interpret the argument value as if
it were a string surrounded by double quotes. All of the usual D string escape sequences, per
Table 2-6, are expanded inside of any string macro arguments, regardless of whether they are
referenced by using the $arg or $$arg form of the macro. If the defaultargs option is set,
unspecified arguments that are referenced with the $$arg form have the value of the empty
string ("").

Target Process ID
Use the $target macro variable to create scripts to be applied to the user process of interest
that you specify with the -p option or that you create by using the dtrace command with the -
c option. The D programs that you specify on the command line or by using the -s option are
compiled after processes are created or grabbed, and the $target variable expands to the
integer process ID of the first such process.

For example, you could use the following D script to determine the distribution of system calls
that are executed by a particular subject process. Save it in a file named syscall.d:

syscall:::entry
/pid == $target/
{
 @[probefunc] = count();
}

To determine the number of system calls executed by the date command, save the script in
the file named syscall.d, then run the following command:

dtrace -s syscall.d -c date
dtrace: script 'syscall.d' matched 296 probes
Tue Oct 16 15:12:07 BST 2012

 access 1
 arch_prctl 1
 clock_gettime 1
 exit_group 1
 getrlimit 1
 lseek 1
 rt_sigprocmask 1
 set_robust_list 1
 set_tid_address 1
 write 1
 futex 2
 rt_sigaction 2
 brk 3
 munmap 3
 read 5
 open 6
 mprotect 7
 close 8

Chapter 9
Target Process ID

9-5

 newfstat 8
 mmap 16

Chapter 9
Target Process ID

9-6

10
Options and Tunables

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

For more information about DTrace, see Oracle Linux: DTrace Release Notes and
Oracle Linux: Using DTrace for System Tracing.

To enable customization, DTrace affords its consumers several important degrees of freedom.
To minimize the likelihood of requiring specific tuning, DTrace is implemented with reasonable
default values and flexible default policies, but situations might arise that require tuning the
behavior of DTrace on a consumer-by-consumer basis. This chapter describes DTrace options
and tunables and the interfaces that you can use to modify them.

Consumer Options
DTrace is tuned by setting or enabling options. The available options for tuning DTrace are
described in the following table. For some options, a corresponding dtrace command-line
option is also provided.

Table 10-1 DTrace Consumer Options

Option Name Type Value Description

aggpercpu Compile-time Aggregate per CPU.
See Aggregations.

aggrate Dynamic runtime time Rate of aggregation
reading.
See Aggregations.

aggsize Runtime size Aggregation buffer
size/
See Aggregations.

aggsortkey Dynamic runtime false or true Sort aggregations by
key.
See Aggregations.

aggsortkeypos Dynamic runtime scalar Number of the
aggregation key on
which to sort.
See Aggregations.

10-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/

Table 10-1 (Cont.) DTrace Consumer Options

Option Name Type Value Description

aggsortpos Dynamic runtime scalar Number of the
aggregation variable
on which to sort
See Aggregations.

aggsortrev Dynamic runtime false or true Sort aggregations in
reverse order.
See Aggregations.

amin Compile-time string Stability attribute
minimum.
See Stability
Enforcement

argref Compile-time Do not require all
macro arguments to be
used.

bufpolicy Runtime fill, ring, or switch Buffer policy.
See Buffers and
Buffering .

bufresize Runtime auto or manual Buffer resizing policy.
See Buffers and
Buffering .

bufsize Runtime size Principal buffer size
(equivalent to the
dtrace -b).

See Buffers and
Buffering .

cleanrate Runtime time Cleaning rate.
See Speculative Tracing.

core Compile-time Enable core dumping
by dtrace.

cpp Compile-time Use cpp to pre-process
the input file.

cpphdrs Compile-time Specify the -H option
to cpp to print the
name of each header
file that is used.

cpppath Compile-time string Specify the path name
of cpp.

cpu Runtime scalar CPU on which to
enable tracing.
See Buffers and
Buffering.

Chapter 10
Consumer Options

10-2

Table 10-1 (Cont.) DTrace Consumer Options

Option Name Type Value Description

ctypes Compile-time string Write out Compact
Type Format (CTF)
definitions of all C
types used in a
program at the end of
a D compilation run.

debug Compile-time Enable DTrace
debugging mode
(equivalent to setting
the environment
variable
DTRACE_DEBUG).

defaultargs Compile-time Allow references to
unspecified macro
arguments. Use 0 as
the value for an
unspecified argument.
See Scripting.

define Compile-time string Define a macro name
and optional value in
the form name[=value].
(equivalent to dtrace
-D).

destructive Runtime Allow destructive
actions (equivalent to
dtrace -w).

See Actions and
Subroutines.

droptags Compile-time Specifies that drop tags
are used.

dtypes Compile-time string Write out CTF
definitions of all D
types that are used in a
program at the end of
a D compilation run.

dynvarsize Runtime size Dynamic variable
space size.
See Variables.

empty Compile-time Permit compilation of
empty D source files.

errtags Compile-time Prefix default error
message with error
tags.

Chapter 10
Consumer Options

10-3

Table 10-1 (Cont.) DTrace Consumer Options

Option Name Type Value Description

evaltime Compile-time exec, main, postinit,
or preinit

Control when DTrace
starts tracing a new
process. For
dynamically linked
binaries, tracing starts:

exec
After exec().

preinit
After initialization of
the dynamic linker to
load the binary.

postinit (default)
After constructor
execution.

main
Before main() starts.
Same as postinit.

For statically linked
binaries, preinit is
equivalent to exec.

For stripped, statically
linked binaries,
postinit and main are
equivalent to preinit.

flowindent Dynamic runtime Indent function entry
and prefix with ->.

Unindent function
return and prefix with
<-.

Indent system call
entry and prefix with
=>.

Unindent system call
return and prefix with
<=.

Equivalent to dtrace
-F.

See dtrace Command
Reference.

incdir Compile-time string Add a #include
directory to the
preprocessor search
path (equivalent to
dtrace -I).

Chapter 10
Consumer Options

10-4

Table 10-1 (Cont.) DTrace Consumer Options

Option Name Type Value Description

iregs Compile-time scalar Size of the DTrace
Intermediate Format
(DIF) integer register
set. The default value
is 8.

kdefs Compile-time Do not permit
unresolved kernel
symbols.

knodefs Compile-time Permit unresolved
kernel symbols.

late Compile-time dynamic or static Specify whether
references to dynamic
translators are
permitted:

dynamic
Allow references to
dynamic translators.

static
Require translators to
be statically defined.

lazyload Compile-time false or true Specify that the DTrace
Object Format (DOF)
should be lazily loaded
rather than actively
loaded.

ldpath Compile-time string Specify the path of the
dynamic linker loader
(ld).

libdir Compile-time string Add a library directory
to the library search
path.

Chapter 10
Consumer Options

10-5

Table 10-1 (Cont.) DTrace Consumer Options

Option Name Type Value Description

linkmode Compile-time dynamic, kernel, or
static

Specify the symbol
linking mode that is
used by the assembler
when processing
external symbol
references:

dynamic
All symbols are treated
as dynamic.

kernel
Kernel symbols are
treated as static and
user symbols are
treated as dynamic.

static
All symbols are treated
as static.

linktype Compile-time dof or elf Specify the output file
type:

dof
Produce a standalone
DOF file.

elf
Produce an ELF file
that contains DOF.

modpath Compile-time string Module path. The
default path is /lib/
modules/ version.

nolibs Compile-time Do not process D
system libraries.

nspec Runtime scalar Number of
speculations.
See Speculative Tracing.

pgmax Compile-time scalar Limit on the number
of threads that DTrace
can grab for tracing.
The default value is 8.

preallocate Compile-time scalar Amount of memory to
preallocate.

procfspath Compile-time string Path to the procfs file
system. The default
path is /proc.

pspec Compile-time Interpret ambiguous
specifiers as probe
names.

Chapter 10
Consumer Options

10-6

Table 10-1 (Cont.) DTrace Consumer Options

Option Name Type Value Description

quiet Dynamic runtime Output only explicitly
traced data (equivalent
to dtrace -q).

See dtrace Command
Reference.

quietresize Dynamic runtime Suppress buffer-resize
messages.
See Buffers and
Buffering.

rawbytes Dynamic runtime Always print trace
output in hexadecimal.
See Actions and
Subroutines.

specsize Runtime size Speculation buffer
size.
See Speculative Tracing.

stackframes Runtime scalar Number of stack
frames.
See Actions and
Subroutines.

stackindent Dynamic runtime scalar Number of white space
characters to use when
indenting stack and
ustack output.

See Actions and
Subroutines.

statusrate Runtime time Rate of status checking.

stdc Compile-time a, c, s, or t Specify ISO C
conformance settings
for the preprocessor
when
invoking cpp with the
-C option.

The a, c, and t settings
include the-
std=gnu99 option
(conformance with
1999 C standard
including GNU
extensions).
The s setting includes
the -traditional-
cpp option
(conformance with
K&R C).

Chapter 10
Consumer Options

10-7

Table 10-1 (Cont.) DTrace Consumer Options

Option Name Type Value Description

strip Compile-time Strip non-loadable
sections from the
program.

strsize Runtime size String size.
See DTrace Support for
Strings.

switchrate Dynamic runtime time Rate of buffer
switching.
See Buffers and
Buffering .

syslibdir Compile-time string Path name of system
libraries.

tree Compile-time scalar Value of the DTrace
tree dump bitmap.

tregs Compile-time scalar Size of the DIF tuple
register set. The
default value is 8.

udefs Compile-time Do not permit
unresolved user
symbols.

undef Compile-time string Undefine a symbol
when invoking the
preprocessor.
Equivalent to dtrace
-U.

unodefs Compile-time Permit unresolved
user symbols.

ustackframes Runtime scalar Number of user-land
stack frames.
See Actions and
Subroutines.

verbose Compile-time DIF verbose mode,
which shows each
compiled DIF object
(DIFO).

version Compile-time string Request a specific
version of the native
DTrace library.

zdefs Compile-time Permit probe
definitions that match
zero probes.

Values that denote sizes can be given an optional suffix of k, m, g, or t to denote kilobytes,
megabytes, gigabytes, and terabytes, respectively. Values that denote times can be given an
optional suffix of ns, us, ms, s or hz to denote nanoseconds, microseconds, milliseconds,
seconds, and number per second, respectively.

Chapter 10
Consumer Options

10-8

Modifying Options
You can set options in a D script by using #pragma D followed by the string option and the
option name. If the option takes a value, the option name should be followed by an equal sign
(=) and the option value. The following are examples of valid option settings:

#pragma D option nspec=4

#pragma D option bufsize=2g

#pragma D option switchrate=10hz

#pragma D option aggrate=100us

#pragma D option bufresize=manual

The dtrace command also accepts option settings on the command line as an argument to
the -x option, for example:

dtrace -x nspec=4 -x bufsize=2g \
-x switchrate=10hz -x aggrate=100us -x bufresize=manual

If an invalid option is specified, dtrace indicates that the option name is invalid and exits, as
shown in the following example:

dtrace -x wombats=25
dtrace: failed to set option -x wombats: Invalid option name

Similarly, if a value is not valid for the given option, dtrace indicates that the value is invalid,
as shown here:

dtrace -x bufsize=100wombats
dtrace: failed to set option -x bufsize: Invalid value for specified option

If an option is set more than once, subsequent settings overwrite earlier settings. Some options
can only be set. The presence of such an option sets it, and you cannot subsequently unset it.

Chapter 10
Modifying Options

10-9

11
DTrace Providers

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

For more information about DTrace, see Oracle Linux: DTrace Release Notes and
Oracle Linux: Using DTrace for System Tracing.

This chapter describes some of the existing DTrace providers. Note that the list of providers
discussed in this chapter is not exhaustive. To display the providers that are available on your
system, use the dtrace -l command. Detailed information about translators for important
data structures can be found in /usr/lib64/dtrace/version/*.d files.

dtrace Provider
The dtrace provider includes several probes that are related to DTrace itself. You can use
these probes to initialize state before tracing begins, process state after tracing has completed,
and to handle unexpected execution errors in other probes.

BEGIN Probe
The BEGIN probe fires before any other probe. No other probe fires until all BEGIN clauses have
completed. This probe can be used to initialize any state that is needed in other probes. The
following example shows how to use the BEGIN probe to initialize an associative array to map
between mmap() protection bits and a textual representation:

BEGIN
{
 prot[0] = "---";
 prot[1] = "r--";
 prot[2] = "-w-";
 prot[3] = "rw-";
 prot[4] = "--x";
 prot[5] = "r-x";
 prot[6] = "-wx";
 prot[7] = "rwx";
}

syscall::mmap:entry
{
 printf("mmap with prot = %s", prot[arg2 & 0x7]);
}

11-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/

The BEGIN probe fires in an unspecified context, which means the output of stack or ustack,
and the value of context-specific variables such as execname, are all arbitrary. These values
should not be relied upon or interpreted to infer any meaningful information. No arguments are
defined for the BEGIN probe.

END Probe
The END probe fires after all other probes. This probe will not fire until all other probe clauses
have completed. This probe can be used to process state that has been gathered or to format
the output. The printa action is therefore often used in the END probe. The BEGIN and END
probes can be used together to measure the total time that is spent tracing, for example:

BEGIN
{
 start = timestamp;
}

/*
 * ... other tracing actions...
 */

END
{
 printf("total time: %d secs", (timestamp - start) / 1000000000);
}

See Data Normalization and printa Action for other common uses of the END probe.

As with the BEGIN probe, no arguments are defined for the END probe. The context in which the
END probe fires is arbitrary and should not be depended upon.

When tracing with the bufpolicy option set to fill, adequate space is reserved to
accommodate any records that are traced in the END probe. See fill Policy and END Probes for
details.

Note:

The exit action causes tracing to stop and the END probe to fire. However, there is
some delay between the invocation of the exit action and when the END probe fires.
During this delay, no probes will fire. After a probe invokes the exit action, the END
probe is not fired until the DTrace consumer determines that exit has been called
and stops tracing. The rate at which the exit status is checked can be set by using
statusrate option. For more information, see Options and Tunables.

ERROR Probe
The ERROR probe fires when a runtime error occurs during the execution of a clause for a
DTrace probe. As shown in the following example, if a clause attempts to dereference a NULL
pointer, the ERROR probe fires. Save it in a file named error.d:

BEGIN
{
 *(char *)NULL;
}

Chapter 11
dtrace Provider

11-2

ERROR
{
 printf("Hit an error!");
}

When you run this program, output similar to the following is displayed:

dtrace -s error.d
dtrace: script 'error.d' matched 2 probes
CPU ID FUNCTION:NAME
 1 3 :ERROR Hit an error!
dtrace: error on enabled probe ID 1 (ID 1: dtrace:::BEGIN):
invalid address (0x0) in action #1 at DIF offset 16
^C

The previous output indicates that the ERROR probe fired and that dtrace reported the error.
dtrace has its own enabling of the ERROR probe so that it can report errors. Using the ERROR
probe, you can create your own custom error handling.

The arguments to the ERROR probe are described in the following table.

Argument Description

arg1 The enabled probe identifier (EPID) of the
probe that caused the error.

arg2 The index of the action that caused the fault.

arg3 The DIF offset into the action or -1 if not
applicable.

arg4 The fault type.

arg5 Value that is particular to the fault type.

The following table describes the various fault types that can be specified in arg4 and the
values that arg5 can take for each fault type.

arg4 Value Description arg5 Meaning

DTRACEFLT_UNKNOWN Unknown fault type None

DTRACEFLT_BADADDR Access to unmapped or invalid
address

Address accessed

DTRACEFLT_BADALIGN Unaligned memory access Address accessed

DTRACEFLT_ILLOP Illegal or invalid operation None

DTRACEFLT_DIVZERO Integer divide by zero None

DTRACEFLT_NOSCRATCH Insufficient scratch memory to
satisfy scratch allocation

None

DTRACEFLT_KPRIV Attempt to access a kernel
address or property without
sufficient privileges

Address accessed or 0 if not
applicable

DTRACEFLT_UPRIV Attempt to access a user
address or property without
sufficient privileges

Address accessed or 0 if not
applicable

DTRACEFLT_TUPOFLOW DTrace internal parameter
stack overflow

None

Chapter 11
dtrace Provider

11-3

arg4 Value Description arg5 Meaning

DTRACEFLT_BADSTACK Invalid user process stack Address of invalid stack
pointer

If the actions that are taken in the ERROR probe cause an error, that error is silently dropped.
The ERROR probe is not recursively invoked.

dtrace Stability
The dtrace provider uses DTrace's stability mechanism to describe its stabilities. These values
are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Stable Stable Common

Module Private Private Unknown

Function Private Private Unknown

Name Stable Stable Common

Arguments Stable Stable Common

For more information about the stability mechanism, see DTrace Stability Features.

profile Provider
The profile provider includes probes that are associated with an interrupt that fires at some
regular, specified time interval. Such probes are not associated with any particular point of
execution, but rather with the asynchronous interrupt event. You can use these probes to
sample some aspect of the system state and then use the samples to infer system behavior. If
the sampling rate is high or the sampling time is long, an accurate inference is possible. Using
DTrace actions, you can use the profile provider to sample practically any aspect of the
system. For example, you could sample the state of the current thread, the state of the CPU, or
the current machine instruction.

profile-n Probes
The profile-n probes fire at a fixed interval, at a high-interrupt level on all active CPUs. The
units of n default to a frequency that is expressed as a rate of firing per second, but the value
can also have an optional suffix , as shown in Table 11-1, which specifies either a time interval
or a frequency. The following table describes valid time suffixes for a tick- n probe.

Table 11-1 Valid Time Suffixes

Suffix Time Units

nsec or ns nanoseconds

usec or us microseconds

msec or ms milliseconds

sec or s seconds

Chapter 11
profile Provider

11-4

Table 11-1 (Cont.) Valid Time Suffixes

Suffix Time Units

min or m minutes

hour or h hours

day or d days

hz hertz (frequency expressed as rate per second)

tick-n Probes
The tick-n probes fire at fixed intervals, at a high interrupt level on only one CPU per interval.
Unlike profile-n probes, which fire on every CPU, tick-n probes fire on only one CPU per
interval and the CPU on which they fire can change over time. The units of n default to a
frequency expressed as a rate of firing per second, but the value can also have an optional
time suffix as shown in Table 11-1, which specifies either a time interval or a frequency.

The tick-n probes have several uses, such as providing some periodic output or taking a
periodic action.

Note:

By default, the highest supported tick frequency is 5000 Hz (tick-5000).

profile Probe Arguments
The following table describes the arguments for the profile probes.

Table 11-2 profile Probe Arguments

Probe arg0 arg1 arg2
profile-n pc upc nsecs
tick-n pc upc —

The arguments are as follows:

• pc: kernel program counter

• upc: user-space program counter

• nsecs: elapsed number of nanoseconds

profile Probe Creation
Unlike other providers, the profile provider creates probes dynamically on an as-needed
basis. Thus, the desired probe might not appear in a listing of all probes, for example, when
using the dtrace -l -P profile command, but the probe is created when it is explicitly
enabled.

Chapter 11
profile Provider

11-5

A time interval that is too short causes the machine to continuously field time-based interrupts
and denies service on the machine. The profile provider silently refuses to create a probe
that would result in an interval of less than two hundred microseconds.

prof Stability
The profile provider uses DTrace's stability mechanism to describe its stabilities. These
stability values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving Common

Module Unstable Unstable Unknown

Function Private Private Unknown

Name Evolving Evolving Common

Arguments Evolving Evolving Common

For more information, see DTrace Stability Features.

fbt Provider
The fbt (Function Boundary Tracing) provider includes probes that are associated with the
entry to and return from most functions in the Oracle Linux kernel. Therefore, there could well
be tens of thousands of fbt probes.

To confirm that the fbt provider is available on your processor's architecture, you should be
able to load the module that provides fbt instrumentation and successfully list several probes.
Note that this process could take several seconds due to the large number of such probes. For
example, consider the following command, which is executed as root:

dtrace -l -P fbt | wc -l
dtrace: failed to match fbt:::: No probe matches description
1
modprobe fbt
dtrace -l -P fbt | wc -l
88958

In the previous example, the first dtrace command automatically loads modules that are
listed in /etc/dtrace-modules, but also confirms that fbt was not among them. After fbt is
loaded manually, many fbt probes appear. For more information, see Module Loading and fbt.

Like other DTrace providers, Function Boundary Tracing (FBT) has no probe effect when not
explicitly enabled. When enabled, FBT only induces a probe effect in probed functions. While
the FBT implementation is highly specific to the instruction set architecture, FBT has been
implemented on both x86 and 64-bit Arm platforms. For each instruction set, there are a small
number of leaf functions that do not call other functions and are highly optimized by the
compiler, which cannot be instrumented by FBT. Probes for these functions are not present in
DTrace.

An effective use of FBT probes requires knowledge of the operating system implementation. It
is therefore recommended that you use FBT only when developing kernel software or when
other providers are not sufficient. You can use other DTrace providers such as syscall, sched,
proc, and io to answer most system analysis questions without requiring operating system
implementation knowledge.

Chapter 11
fbt Provider

11-6

fbt Probes
FBT provides a probe at the entry and return of most functions in the kernel, named entry and
return, respectively. All FBT probes have a function name and module name.

fbt Probe Arguments
The arguments to entry probes are the same as the arguments to the corresponding operating
system kernel function. These arguments can be accessed as int64_t values by using the
arg0, arg1, arg2, ... variables.

If the function has a return value, the return value is stored in arg1 of the return probe. If a
function does not have a return value, arg1 is not defined.

While a given function only has a single point of entry, it might have many different points
where it returns to its caller. FBT collects a function's multiple return sites into a single return
probe. If you want to know the exact return path, you can examine the return probe arg0
value, which indicates the offset in bytes of the returning instruction in the function text.

fbt Examples
You can easily use the fbt provider to explore the kernel's implementation. The following
example script records the first gettimeofday call from any clock process and then follows the
subsequent code path through the kernel. Type the following D source code and save it in a file
named xgettimeofday.d:

/*
 * To make the output more readable, indent every function entry
 * and unindent every function return. This is done by setting the
 * "flowindent" option.
 */
#pragma D option flowindent

syscall::gettimeofday:entry
/execname == "clock" && guard++ == 0/
{
 self->traceme = 1;
 printf("start");
}

fbt:::
/self->traceme/
{}

syscall::gettimeofday:return
/self->traceme/
{
 self->traceme = 0;
 exit(0);
}

Running this script results in output that is similar to the following:

dtrace -s ./xgettimeofday.d
dtrace: script './xgettimeofday.d' matched 92115 probes
CPU FUNCTION
 0 => gettimeofday start

Chapter 11
fbt Provider

11-7

 0 -> SyS_gettimeofday
 0 -> getnstimeofday64
 0 -> __getnstimeofday64
 0 <- __getnstimeofday64
 0 <- getnstimeofday64
 0 -> _copy_to_user
 0 <- _copy_to_user
 0 <- SyS_gettimeofday
 0 <= gettimeofday

The previous output shows the internal kernel functions that are called when the gettimeofday
system call is made.

Module Loading and fbt
While the Oracle Linux kernel can dynamically load and unload kernel modules, for fbt
probes, the fbt kernel module must be loaded to support the instrumentation. For more
information about loading kernel modules, see the note in Getting Started With DTrace. If fbt
is not listed in /etc/dtrace-modules, or if the dtrace -l command lists no fbt probes, use
the following command:

modprobe fbt

Conversely, you can unload the fbt instrumentation with the following command:

modprobe -r fbt

When the fbt module is loaded, FBT automatically provides probes to instrument all other
loaded modules, including any new modules that are dynamically loaded. If a loaded module
has no enabled FBT probes, the module might be unloaded and the corresponding probes are
destroyed as the module is unloaded. If a loaded module has enabled FBT probes, the module
is considered busy and cannot be unloaded.

fbt Stability
The fbt provider uses DTrace's stability mechanism to describe its stabilities. These stability
values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving Common

Module Private Private Unknown

Function Private Private ISA

Name Evolving Evolving Common

Arguments Private Private ISA

For more information, see DTrace Stability Features.

syscall Provider
The syscall provider makes available a probe at the entry to and return from every system
call in the system. Because system calls are the primary interface between user-level
applications and the operating system kernel, the syscall provider can offer tremendous
insight into application behavior with respect to the system.

Chapter 11
syscall Provider

11-8

syscall Probes
syscall provides a pair of probes for each system call: an entry probe that fires before the
system call is entered, and a return probe that fires after the system call has completed, but
before control has been transferred back to user-level. For all syscall probes, the function
name is set as the name of the instrumented system call.

Often, the system call names that are provided by syscall correspond to names in the Section
2 manual pages. However, some syscall provider probes do not directly correspond to any
documented system call. Some common reasons for this discrepancy are described in the
following sections.

System Call Anachronisms
In some cases, the name of the system call, as provided by the syscall provider, might be a
reflection of an ancient implementation detail.

Subcoded System Calls
Some system calls might be implemented as sub operations of another system call. For
example, socketcall(), is the common kernel entry point for the socket system calls.

New System Calls
Oracle Linux implements at-suffixed system interfaces as individual system calls, for example:

• faccessat()
• fchmodat()
• fchownat()
• fstatat64()
• futimensat()
• linkat()
• mkdirat()
• mknodat()
• name_to_handle_at()
• newfstatat()
• open_by_handle_at()
• openat()
• readlinkat()
• renameat()
• symlinkat()
• unlinkat()
• utimensat()

Chapter 11
syscall Provider

11-9

These system calls implement a superset of the functionality of their old non-at-suffixed
counterparts. They take an additional first argument that is either an open directory file
descriptor. In which case, the operation on a relative pathname is taken relative to the specified
directory, or is the reserved value AT_FDCWD, in which case the operation takes place relative to
the current working directory.

Replaced System Calls
In Oracle Linux, the following older system calls have been replaced and are not called by the
newer glibc interfaces. These legacy interfaces remain, but are reimplemented, not as system
calls in their own right, but as calls to the newer system calls. The following table lists the
legacy call and its new call equivalent.

Legacy System Call New System Call

access(p, m) faccessat(AT_FDCWD, p, m, 0)
chmod(p, m) fchmodat(AT_FDCWD, p, m, 0)
chown(p, u, g) fchownat(AT_FDCWD, p, u, g, 0)
creat(p, m) openat(AT_FDCWD, p, O_WRONLY|O_CREAT|

O_TRUNC, m)
fchmod(fd, m) fchmodat(fd, NULL, m, 0)
fchown(fd, u, g) fchownat(fd, NULL, u, g, 0)
fstat(fd, s) fstatat(fd, NULL, s, 0)
lchown(p, u, g) fchownat(AT_FDCWD, p, u, g,

AT_SYMLINK_NOFOLLOW)
link(p1, p2) linkat(AT_FDCWD, p1, AT_FDCWD, p2, 0)
lstat(p, s) fstatat(AT_FDCWD, p, s,

AT_SYMLINK_NOFOLLOW)
mkdir(p, m) mkdirat(AT_FDCWD, p, m)
mknod(p, m, d) mknodat(AT_FDCWD, p, m, d)
open(p, o, m) openat(AT_FDCWD, p, o, m)
readlink(p, b, s) readlinkat(AT_FDCWD, p, b, s)
rename(p1, p2) renameat(AT_FDCWD, p1, AT_FDCWD, p2)
rmdir(p) unlinkat(AT_FDCWD, p, AT_REMOVEDIR)
stat(p, s) fstatat(AT_FDCWD, p, s, 0)
symlink(p1, p2) symlinkat(p1, AT_FDCWD, p2)
unlink(p) unlinkat(AT_FDCWD, p, 0)

Large File System Calls
A 32-bit program that supports large files that exceed two gigabytes in size must be able to
process 64-bit file offsets. Because large files require the use of large offsets, large files are
manipulated through a parallel set of system interfaces. The following table lists some of the
syscall probes for the large file system call interfaces.

Chapter 11
syscall Provider

11-10

Table 11-3 syscall Large File Probes

Large File syscall Probe System Call

getdents64 getdents()
pread64 * pread()
pwrite64 * pwrite()

Private System Calls
Some system calls are private implementation details of Oracle Linux subsystems that span
the user-kernel boundary.

syscall Probe Arguments
For entry probes, the arguments, arg0 ... argn , are arguments to the system call. For return
probes, both arg0 and arg1 contain the return value. A non-zero value in the D variable errno
indicates a system call failure.

syscall Stability
The syscall provider uses DTrace's stability mechanism to describe its stabilities. These
stability values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving Common

Module Private Private Unknown

Function Private Private Instruction set
architecture (ISA)

Name Evolving Evolving Common

Arguments Private Private ISA

For more information about the stability mechanism, see DTrace Stability Features.

sdt provider
The Statically Defined Tracing (SDT) provider (sdt) creates probes at sites that a software
programmer has formally designated. The SDT mechanism enables programmers to
consciously choose locations of interest to users of DTrace and to convey some semantic
knowledge about each location through the probe name.

Importantly, SDT can act as a metaprovider by registering probes so that they appear to come
from other providers, such as io, proc, and sched, which do not have dedicated modules of
their own. Thus, the SDT provider is chiefly of interest only to developers of new providers.
Most users will access SDT only indirectly by using other providers.

Chapter 11
sdt provider

11-11

Note:

Because the sdt probes that are defined for the Oracle Linux kernel are likely to
change over time, they are not listed here. Both the name stability and the data
stability of the probes are Private, which reflects the kernel's implementation and
should not be interpreted as a commitment to preserve these interfaces. For more
information, see DTrace Stability Features.

Creating sdt Probes
If you are a device driver developer, you might be interested in creating your own sdt probes
for your Oracle Linux driver. The disabled probe effect of SDT is essentially the cost of several
no-operation machine instructions. You are therefore encouraged to add sdt probes to your
device drivers as needed. Unless these probes negatively affect performance, you can leave
them in your shipping code. See Statically Defined Tracing of Kernel Modules.

DTrace also provides a mechanism for application developers to define user-space static
probes. See Statically Defined Tracing of User Applications.

Declaring Probes
The sdt probes are declared by using the DTRACE_PROBE macro from <linux/sdt.h>.

The module name and function name of an SDT-based probe correspond to the kernel module
and function of the probe, respectively. DTrace includes the kernel module name and function
name as part of the tuple identifying a probe, so you do not need to include this information in
the probe name to prevent name space collisions. Use the dtrace -l -m module
command to list the probes that your driver module has installed and the full names that are
seen by DTrace users.

The name of the probe depends on the name that is provided in the DTRACE_PROBE macro. If
the name does not contain two consecutive underscores (__), the name of the probe is as
written in the macro. If the name contains two consecutive underscores, the probe name
converts the consecutive underscores to a single dash (-). For example, if a DTRACE_PROBE
macro specifies transaction__start, the SDT probe is named transaction-start. This
substitution enables C code to provide macro names that are not valid C identifiers without
specifying a string.

SDT can also act as a metaprovider by registering probes so that they appear to come from
other providers, such as io, proc, and sched, which do not have dedicated modules of their
own. For example, kernel/exit.c contains calls to the DTRACE_PROC macro, which are defined
as follows in <linux/sdt.h>:

define DTRACE_PROC(name) \
 DTRACE_PROBE(__proc_##name);

Probes that use such macros appear to come from a provider other than sdt. The leading
double underscore, provider name, and trailing underscore in the name argument are used to
match the provider and are not included in the probe name. Note that the functionality for
creating probes for providers other than those that are hard-coded into DTrace is not currently
available.

Chapter 11
sdt provider

11-12

sdt Probe Arguments
The arguments for each sdt probe are the arguments that are specified in the kernel source
code in the corresponding DTRACE_PROBE macro reference. When declaring your sdt probes,
you can minimize their disabled probe effect by not dereferencing pointers and by not loading
from global variables in the probe arguments. Both pointer dereferencing and global variable
loading may be done safely in D actions that enable probes, so DTrace users can request
these actions only when they are needed.

sdt Stability
The sdt provider uses DTrace's stability mechanism to describe its stabilities. These values
are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Private Private ISA

Arguments Private Private ISA

For more information about the stability mechanism, refer to DTrace Stability Features.

pid Provider
The pid provider enables tracing of any user process, as specified by its pid.

The pid provider enables tracing function entry and return in user programs just like the fbt
provider provides that capability for the kernel. Note that most of the examples in this guide
that use the fbt provider to trace kernel function calls can be modified slightly to apply to user
processes.

The pid provider also enables tracing of any instruction, as specified by an absolute address
or function offset.

The pid provider has no probe effect when probes are not enabled. When probes are enabled,
the probes only induce probe effect on those processes that are traced.

Note:

When the compiler inlines a function, the pid provider's probe does not fire. Use one
of the following methods to compile a particular C function so that it will not be
inlined.

• Sun Studio: #pragma no_inline (funcname[, funcname])
• gcc: funcname __attribute__ ((noinline))
Consult your compiler documentation for updates.

Chapter 11
pid Provider

11-13

Naming pid Probes
The pid provider actually defines a class of providers. Each process can potentially have its
own associated pid provider. For example, a process with ID 123, would be traced by using
the pid123 provider.

The module portion of the probe description refers to an object loaded in the corresponding
process's address space. To see which objects will be loaded for my_exec or are loaded for
process ID 123, use the following commands:

ldd my_exec
...
pldd 123
123: /tmp/my_exec
linux-vdso.so.1
/lib64/libc.so.6
/lib64/ld-linux-x86-64.so.2p

In the probe description, you name the object by the name of the file, not by its full path name.
You can also omit the .6 or so.6 suffix. All of the following examples name the same probe:

pid123:libc.so.6:strcpy:entry
pid123:libc.so:strcpy:entry
pid123:libc:strcpy:entry

The first example is the actual name of the probe. The other examples are convenient aliases
that are replaced with the full load object name internally.

For the load object of the executable, you can use the a.out alias. The following two probe
descriptions name the same probe:

pid123:my_exec:main:return
pid123:a.out:main:return

The function field of the probe description names a function in the module. A user application
binary might have several names for the same function. For example,
__gnu_get_libc_version might be an alternate name for the function gnu_get_libc_version
in libc.so.6. DTrace chooses one canonical name for such a function and uses that name
internally.

The following example illustrates how DTrace internally remaps module and function names to
a canonical form:

dtrace -q -n 'pid123:libc:__gnu_get_libc_version:
 { printf("%s\n%s\n", probemod, probefunc)}'
libc.so.6
gnu_get_libc_version

For examples of how to use the pid provider effectively, see User Process Tracing.

pid Probe Arguments
An entry probe fires when the traced function is invoked. The arguments to entry probes are
the values of the arguments to the traced function.

A return probe fires when the traced function returns or makes a tail call to another function.
The arg1 probe argument holds the function return value.

Chapter 11
pid Provider

11-14

An offset probe fires whenever execution reaches the instruction at the specified offset in the
function. For example, to trace the instruction at the address 4 bytes into function main, you
can use pid123:a.out:main:4. The arguments for offset probes are undefined. The uregs[]
array will help you when examining the process state at these probe sites. See uregs[] Array.

pid Stability
The pid provider uses DTrace's stability mechanism to describe its stabilities. These values
are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private Unknown

For more information about the stability mechanism, see DTrace Stability Features.

proc Provider
The proc provider makes available the probes that pertain to the following activities: process
creation and termination, LWP creation and termination, execution of new program images,
and signal sending and handling.

proc Probes
The probes for the proc provider are listed in the following table.

Table 11-4 proc Probes

Probe Description

create Fires when a process (or process thread) is
created using fork() or vfork(), which both
invoke clone(). The psinfo_t corresponding
to the new child process is pointed to by
args[0].

exec Fires whenever a process loads a new process
image using a variant of the execve() system
call. The exec probe fires before the process
image is loaded. Process variables like
execname and curpsinfo therefore contain the
process state before the image is loaded. Some
time after the exec probe fires, either the exec-
failure or exec-success probe subsequently
fires in the same thread. The path of the new
process image is pointed to by args[0].

Chapter 11
proc Provider

11-15

Table 11-4 (Cont.) proc Probes

Probe Description

exec-failure Fires when an exec() variant has failed. The
exec-failure probe fires only after the exec
probe has fired in the same thread. The errno
value is provided in args[0].

exec-success Fires when an exec() variant has succeeded.
Like the exec-failure probe, the exec-
success probe fires only after the exec probe
has fired in the same thread. By the time that
the exec-success probe fires, process
variables like execname and curpsinfo contain
the process state after the new process image
has been loaded.

exit Fires when the current process is exiting. The
reason for exit, which is expressed as one of the
SIGCHLD <asm-generic/signal.h> codes, is
contained in args[0].

lwp-create Fires when a process thread is created, the
latter typically as a result of
pthread_create(). The lwpsinfo_t
corresponding to the new thread is pointed to
by args[0]. The psinfo_t of the process that
created the thread is pointed to by args[1].

lwp-exit Fires when a process or process thread is
exiting, due either to a signal or to an explicit
call to exit or pthread_exit().

lwp-start Fires within the context of a newly created
process or process thread. The lwp-start
probe fires before any user-level instructions
are executed. If the thread is the first created
for the process, the start probe fires, followed
by lwp-start.

signal-clear Probes that fires when a pending signal is
cleared because the target thread was waiting
for the signal in sigwait(), sigwaitinfo(), or
sigtimedwait(). Under these conditions, the
pending signal is cleared and the signal
number is returned to the caller. The signal
number is in args[0]. signal-clear fires in
the context of the formerly waiting thread.

signal-discard Fires when a signal is sent to a single-threaded
process and the signal is both unblocked and
ignored by the process. Under these conditions,
the signal is discarded on generation. The
lwpsinfo_t and psinfo_t of the target process
and thread are in args[0] and args[1],
respectively. The signal number is in args[2].

Chapter 11
proc Provider

11-16

Table 11-4 (Cont.) proc Probes

Probe Description

signal-handle Fires immediately before a thread handles a
signal. The signal-handle probe fires in the
context of the thread that will handle the
signal. The signal number is in args[0]. A
pointer to the siginfo_t structure that
corresponds to the signal is in args[1]. The
address of the signal handler in the process is
in args[2].

signal-send Fires when a signal is sent to a process or to a
thread created by a process. The signal-send
probe fires in the context of the sending
process or thread. The lwpsinfo_t and
psinfo_t of the receiving process and thread
are in args[0] and args[1], respectively. The
signal number is in args[2]. signal-send is
always followed by signal-handle or signal-
clear in the receiving process and thread.

start Fires in the context of a newly created process.
The start probe fires before any user-level
instructions are executed in the process.

Note:

In Linux, there is no fundamental difference between a process and a thread that a
process creates. The threads of a process are set up so that they can share
resources, but each thread has its own entry in the process table with its own
process ID.

proc Probe Arguments
The following table lists the argument types for the proc probes. See Table 11-4 for a
description of the arguments.

Table 11-5 proc Probe Arguments

Probe args[0] args[1] args[2]
create psinfo_t * — —

exec char * — —

exec-failure int — —

exec-success — — —

exit int — —

lwp-create lwpsinfo_t * psinfo_t * —

Chapter 11
proc Provider

11-17

Table 11-5 (Cont.) proc Probe Arguments

Probe args[0] args[1] args[2]
lwp-exit — — —

lwp-start — — —

signal-clear int — —

signal-discard lwpsinfo_t * psinfo_t * int
signal-handle int siginfo_t * void (*)(void)
signal-send lwpsinfo_t * psinfo_t * int
start — — —

lwpsinfo_t
Several proc probes have arguments of type lwpsinfo_t. Detailed information about this data
structure can be found in /usr/lib64/dtrace/version/procfs.d. The definition of the
lwpsinfo_t structure, as available to DTrace consumers, is as follows:

typedef struct lwpsinfo {
 int pr_flag; /* flags */
 id_t pr_lwpid; /* thread id */
 uintptr_t pr_addr; /* internal address of thread */
 uintptr_t pr_wchan; /* wait addr for sleeping lwp (NULL on Linux) */
 char pr_stype; /* sync event type (0 on Linux) */
 char pr_state; /* numeric thread state */
 char pr_sname; /* printable character for pr_state */
 int pr_pri; /* priority, high value = high priority */
 char pr_name[PRCLSZ]; /* scheduling class name */
 processorid_t pr_onpro; /* processor which last ran this thread */
} lwpsinfo_t;

Note:

Lightweight processes do not exist in Linux. Rather, in Oracle Linux, processes and
threads are represented by process descriptors of type struct task_struct in the
task list. DTrace translates the members of lwpsinfo_t from the task_struct for the
Oracle Linux process.

The pr_flag is set to 1 if the thread is stopped. Otherwise, it is set to 0.

In Oracle Linux, the pr_stype field is unsupported, and hence is always 0.

The following table describes the values that pr_state can take, as well as the corresponding
character values for pr_sname.

Chapter 11
proc Provider

11-18

Table 11-6 pr_state Values

pr_state Value pr_sname Value Description

SRUN (2) R The thread is runnable or is
currently running on a CPU.
The sched:::enqueue probe
fires immediately before a
thread's state is transitioned to
SRUN. The sched:::on-cpu
probe will fire a short time
after the thread starts to run.
The equivalent Oracle Linux
task state is TASK_RUNNING.

SSLEEP (1) S The thread is sleeping. The
sched:::sleep probe will fire
immediately before a thread's
state is transitioned to SSLEEP.

The equivalent Oracle Linux
task state is
TASK_INTERRUPTABLE or
TASK_UNINTERRUPTABLE.

SSTOP (4) T The thread is stopped, either
due to an explicit proc
directive or some other
stopping mechanism.
The equivalent Oracle Linux
task state is __TASK_STOPPED
or __TASK_TRACED.

SWAIT (7) W The thread is waiting on wait
queue. The sched:::cpucaps-
sleep probe will fire
immediately before the
thread's state transitions to
SWAIT.

The equivalent Oracle Linux
task state is TASK_WAKEKILL or
TASK_WAKING.

SZOMB (3) Z The thread is a zombie.
The equivalent Oracle Linux
task state is EXIT_ZOMBIE,
EXIT_DEAD, or TASK_DEAD.

psinfo_t
Several proc probes have an argument of type psinfo_t. Detailed information about this data
structure can be found in /usr/lib64/dtrace/version/procfs.d. The definition of the
psinfo_t structure, as available to DTrace consumers, is as follows:

typedef struct psinfo {
 int pr_nlwp; /* not supported */
 pid_t pr_pid; /* unique process id */
 pid_t pr_ppid; /* process id of parent */

Chapter 11
proc Provider

11-19

 pid_t pr_pgid; /* pid of process group leader */
 pid_t pr_sid; /* session id */
 uid_t pr_uid; /* real user id */
 uid_t pr_euid; /* effective user id */
 uid_t pr_gid; /* real group id */
 uid_t pr_egid; /* effective group id */
 uintptr_t pr_addr; /* address of process */
 size_t pr_size; /* not supported */
 size_t pr_rssize; /* not supported */
 struct tty_struct *pr_ttydev; /* controlling tty (or -1) */
 ushort_t pr_pctcpu; /* not supported */
 ushort_t pr_pctmem; /* not supported */
 timestruc_t pr_start; /* not supported */
 timestruc_t pr_time; /* not supported */
 timestruc_t pr_ctime; /* not supported */
 char pr_fname[16]; /* name of exec'ed file */
 char pr_psargs[80]; /* initial chars of arg list */
 int pr_wstat; /* not supported */
 int pr_argc; /* initial argument count */
 uintptr_t pr_argv; /* address of initial arg vector */
 uintptr_t pr_envp; /* address of initial env vector */
 char pr_dmodel; /* data model */
 taskid_t pr_taskid; /* not supported */
 projid_t pr_projid; /* not supported */
 int pr_nzomb; /* not supported */
 poolid_t pr_poolid; /* not supported */
 zoneid_t pr_zoneid; /* not supported */
 id_t pr_contract; /* not supported */
 lwpsinfo_t pr_lwp; /* not supported */
} psinfo_t;

Note:

Lightweight processes do not exist in Linux. In Oracle Linux, processes and threads
are represented by process descriptors of type struct task_struct in the task list.
DTrace translates the members of psinfo_t from the task_struct for the Oracle
Linux process.

pr_dmodel is set to either PR_MODEL_ILP32, denoting a 32–bit process, or PR_MODEL_LP64,
denoting a 64–bit process.

proc Examples
The following examples illustrate the use of the probes that are published by the proc provider.

exec
The following example shows how you can use the exec probe to easily determine which
programs are being executed, and by whom. Type the following D source code and save it in a
file named whoexec.d:

#pragma D option quiet

proc:::exec
{
 self->parent = execname;

Chapter 11
proc Provider

11-20

}

proc:::exec-success
/self->parent != NULL/
{
 @[self->parent, execname] = count();
 self->parent = NULL;
}

proc:::exec-failure
/self->parent != NULL/
{
 self->parent = NULL;
}

END
{
 printf("%-20s %-20s %s\n", "WHO", "WHAT", "COUNT");
 printa("%-20s %-20s %@d\n", @);
}

Running the example script for a short period of time results in output similar to the following:

dtrace -s ./whoexec.d
^C
WHO WHAT COUNT
abrtd abrt-handle-eve 1
firefox basename 1
firefox mkdir 1
firefox mozilla-plugin- 1
firefox mozilla-xremote 1
firefox run-mozilla.sh 1
firefox uname 1
gnome-panel firefox 1
kworker/u:1 modprobe 1
modprobe modprobe.ksplic 1
mozilla-plugin- plugin-config 1
mozilla-plugin- uname 1
nice sosreport 1
run-mozilla.sh basename 1
run-mozilla.sh dirname 1
run-mozilla.sh firefox 1
run-mozilla.sh uname 1
sh abrt-action-sav 1
sh blkid 1
sh brctl 1
sh cut 1
...

start and exit Probes
If you want to know how long programs are running, from creation to termination, you can
enable the start and exit probes, as shown in the following example. Save it in a file named
progtime.d:

proc:::start
{
 self->start = timestamp;
}

proc:::exit

Chapter 11
proc Provider

11-21

/self->start/
{
 @[execname] = quantize(timestamp - self->start);
 self->start = 0;
}

Running the example script on a build server for several seconds results in output similar to the
following:

dtrace -s ./progtime.d
dtrace: script ’./progtime.d’ matched 2 probes
^C
...
cc
 value ------------- Distribution ------------- count
 33554432 | 0
 67108864 |@@@ 3
 134217728 |@ 1
 268435456 | 0
 536870912 |@@@@ 4
 1073741824 |@@@@@@@@@@@@@@ 13
 2147483648 |@@@@@@@@@@@@ 11
 4294967296 |@@@ 3
 8589934592 | 0

sh
 value ------------- Distribution ------------- count
 262144 | 0
 524288 |@ 5
 1048576 |@@@@@@@ 29
 2097152 | 0
 4194304 | 0
 8388608 |@@@ 12
 16777216 |@@ 9
 33554432 |@@ 9
 67108864 |@@ 8
 134217728 |@ 7
 268435456 |@@@@@ 20
 536870912 |@@@@@@ 26
 1073741824 |@@@ 14
 2147483648 |@@ 11
 4294967296 | 3
 8589934592 | 1
 17179869184 | 0
...

signal-send
The following example shows how you can use the signal-send probe to determine the
sending and receiving of process associated with any signal. Type the following D source code
and save it in a file named sig.d:

#pragma D option quiet

proc:::signal-send
{
 @[execname, stringof(args[1]->pr_fname), args[2]] = count();
}

END
{

Chapter 11
proc Provider

11-22

 printf("%20s %20s %12s %s\n",
 "SENDER", "RECIPIENT", "SIG", "COUNT");
 printa("%20s %20s %12d %@d\n", @);
}

Running this script results in output similar to the following:

dtrace -s sig.d
^C
 SENDER RECIPIENT SIG COUNT
 gnome-panel Xorg 29 1
 kworker/0:2 dtrace 2 1
 Xorg Xorg 29 3
 java Xorg 29 6
 firefox Xorg 29 14
 kworker/0:0 Xorg 29 1135

proc Stability
The proc provider uses DTrace's stability mechanism to describe its stabilities. These values
are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

For more information about the stability mechanism, see DTrace Stability Features.

sched Provider
The sched provider makes available probes that are related to CPU scheduling. Because
CPUs are the one resource that all threads must consume, the sched provider is very useful for
understanding systemic behavior. For example, using the sched provider, you can understand
when and why threads sleep, run, change priority, or wake other threads.

sched Probes
The following table describes the probes for the sched provider.

Table 11-7 sched Probes

Probe Description

change-pri Fires whenever a thread's priority is about to
be changed. The lwpsinfo_t of the thread is
pointed to by args[0]. The thread's current
priority is in the pr_pri field of this structure.
The psinfo_t of the process containing the
thread is pointed to by args[1]. The thread's
new priority is contained in args[2].

Chapter 11
sched Provider

11-23

Table 11-7 (Cont.) sched Probes

Probe Description

dequeue Fires immediately before a runnable thread is
dequeued from a run queue. The lwpsinfo_t
of the thread being dequeued is pointed to by
args[0]. The psinfo_t of the process
containing the thread is pointed to by args[1].
The cpuinfo_t of the CPU from which the
thread is being dequeued is pointed to by
args[2]. If the thread is being dequeued from
a run queue that is not associated with a
particular CPU, the cpu_id member of this
structure will be -1.

enqueue Fires immediately before a runnable thread is
enqueued to a run queue. The lwpsinfo_t of
the thread being enqueued is pointed to by
args[0]. The psinfo_t of the process
containing the thread is pointed to by args[1].
The cpuinfo_t of the CPU to which the thread
is being enqueued is pointed to by args[2]. If
the thread is being enqueued from a run queue
that is not associated with a particular CPU, the
cpu_id member of this structure will be -1. The
value in args[3] is a boolean indicating
whether the thread will be enqueued to the
front of the run queue. The value is non-zero if
the thread will be enqueued at the front of the
run queue, and zero if the thread will be
enqueued at the back of the run queue.

off-cpu Fires when the current CPU is about to end
execution of a thread. The curcpu variable
indicates the current CPU. The curlwpsinfo
variable indicates the thread that is ending
execution. The lwpsinfo_t of the thread that
the current CPU will next execute is pointed to
by args[0]. The psinfo_t of the process
containing the next thread is pointed to by
args[1].

on-cpu Fires when a CPU has just begun execution of a
thread. The curcpu variable indicates the
current CPU. The curlwpsinfo variable
indicates the thread that is beginning
execution. The curpsinfo variable describes
the process containing the current thread.

Chapter 11
sched Provider

11-24

Table 11-7 (Cont.) sched Probes

Probe Description

preempt Fires immediately before the current thread is
preempted. After this probe fires, the current
thread will select a thread to run and the off-
cpu probe will fire for the current thread. In
some cases, a thread on one CPU will be
preempted, but the preempting thread will run
on another CPU in the meantime. In this
situation, the preempt probe will fire, but the
dispatcher will be unable to find a higher
priority thread to run and the remain-cpu
probe will fire instead of the off-cpu probe.

remain-cpu Fires when a scheduling decision has been
made, but the dispatcher has elected to
continue to run the current thread. The curcpu
variable indicates the current CPU. The
curlwpsinfo variable indicates the thread that
is beginning execution. The curpsinfo variable
describes the process containing the current
thread.

sleep Fires immediately before the current thread
sleeps on a synchronization object. The type of
the synchronization object is contained in the
pr_stype member of the lwpsinfo_t pointed
to by curlwpsinfo. The address of the
synchronization object is contained in the
pr_wchan member of the lwpsinfo_t pointed
to by curlwpsinfo. The meaning of this
address is a private implementation detail, but
the address value may be treated as a token
unique to the synchronization object.

surrender Fires when a CPU has been instructed by
another CPU to make a scheduling decision —
often because a higher-priority thread has
become runnable. The lwpsinfo_t of the
current thread is pointed to by args[0]. The
psinfo_t of the process containing the thread
is pointed to by args[1].

tick Fires as a part of clock tick-based accounting. In
clock tick-based accounting, CPU accounting is
performed by examining which threads and
processes are running when a fixed-interval
interrupt fires. The lwpsinfo_t that
corresponds to the thread that is being assigned
CPU time is pointed to by args[0]. The
psinfo_t that corresponds to the process that
contains the thread is pointed to by args[1].

Chapter 11
sched Provider

11-25

Table 11-7 (Cont.) sched Probes

Probe Description

wakeup Fires immediately before the current thread
wakes a thread sleeping on a synchronization
object. The lwpsinfo_t of the sleeping thread
is pointed to by args[0]. The psinfo_t of the
process containing the sleeping thread is
pointed to by args[1]. The type of the
synchronization object is contained in the
pr_stype member of the lwpsinfo_t of the
sleeping thread. The address of the
synchronization object is contained in the
pr_wchan member of the lwpsinfo_t of the
sleeping thread. The meaning of this address is
a private implementation detail, but the
address value may be treated as a token unique
to the synchronization object.

sched Probe Arguments
The following table describes the argument types for the sched probes. See Table 11-7 for
descriptions of the arguments.

Table 11-8 sched Probe Arguments

Probe args[0] args[1] args[2] args[3]
change-pri lwpsinfo_t * psinfo_t * int —

dequeue lwpsinfo_t * psinfo_t * cpuinfo_t * —

enqueue lwpsinfo_t * psinfo_t * cpuinfo_t * int
off-cpu lwpsinfo_t * psinfo_t * — —

on-cpu — — — —

preempt — — — —

remain-cpu — — — —

sleep — — — —

surrender lwpsinfo_t * psinfo_t * — —

tick lwpsinfo_t * psinfo_t * — —

wakeup lwpsinfo_t * psinfo_t * — —

cpuinfo_t
The cpuinfo_t structure defines a CPU. Per the information in Table 11-8, arguments to both
the enqueue and dequeue probes include a pointer to a cpuinfo_t. Additionally, the cpuinfo_t
that corresponds to the current CPU is pointed to by the curcpu variable.

The definition of the cpuinfo_t structure is as follows:

Chapter 11
sched Provider

11-26

typedef struct cpuinfo {
 processorid_t cpu_id; /* CPU identifier */
 psetid_t cpu_pset; /* not supported */
 chipid_t cpu_chip; /* chip identifier */
 lgrp_id_t cpu_lgrp; /* not supported */
 cpuinfo_arch_t *cpu_info; /* CPU information */
} cpuinfo_t;

cpu_id: Is the processor identifier.

cpu_chip: Is the identifier of the physical chip. Physical chips can contain several CPU cores.

cpu_info: Is a pointer to the cpuinfo_arch_t structure that is associated with the CPU.

sched Examples
The following examples show the use of sched probes.

on-cpu and off-cpu Probes
One common question that you might want answered is which CPUs are running threads and
for how long? The following example shows how you can use the on-cpu and off-cpu probes
to easily answer this question on a system-wide basis. Type the following D source code and
save it in a file named where.d:

sched:::on-cpu
{
 self->ts = timestamp;
}

sched:::off-cpu
/self->ts/
{
 @[cpu] = quantize(timestamp - self->ts);
 self->ts = 0;
}

Running the previous script results in output that is similar to the following:

dtrace -s ./where.d
dtrace: script ’./where.d’ matched 2 probes
^C
 0
 value ------------- Distribution ------------- count
 2048 | 0
 4096 |@@ 37
 8192 |@@@@@@@@@@@@@ 212
 16384 |@ 30
 32768 | 10
 65536 |@ 17
 131072 | 12
 262144 | 9
 524288 | 6
 1048576 | 5
 2097152 | 1
 4194304 | 3
 8388608 |@@@@ 75
 16777216 |@@@@@@@@@@@@ 201
 33554432 | 6
 67108864 | 0

Chapter 11
sched Provider

11-27

 1
 value ------------- Distribution ------------- count
 2048 | 0
 4096 |@ 6
 8192 |@@@@ 23
 16384 |@@@ 18
 32768 |@@@@ 22
 65536 |@@@@ 22
 131072 |@ 7
 262144 | 5
 524288 | 2
 1048576 | 3
 2097152 |@ 9
 4194304 | 4
 8388608 |@@@ 18
 16777216 |@@@ 19
 33554432 |@@@ 16
 67108864 |@@@@ 21
 134217728 |@@ 14
 268435456 | 0

The previous output shows that on CPU 1 threads tend to run for less than 131072
nanoseconds (on order of 100 microseconds) at a stretch, or for 8388608 to 134217728
nanoseconds (approximately 10 to 100 milliseconds). A noticeable gap between the two
clusters of data is shown in the histogram. You also might be interested in knowing which
CPUs are running a particular process.

You can also use the on-cpu and off-cpu probes for answering this question. The following
script displays which CPUs run a specified application over a period of ten seconds. Save it in
a file named whererun.d.:

#pragma D option quiet
dtrace:::BEGIN
{
 start = timestamp;
}

sched:::on-cpu
/execname == $$1/
{
 self->ts = timestamp;
}

sched:::off-cpu
/self->ts/
{
 @[cpu] = sum(timestamp - self->ts);
 self->ts = 0;
}

profile:::tick-1sec
/++x >= 10/
{
 exit(0);
}

dtrace:::END
{
 printf("CPU distribution over %d seconds:\n\n",
 (timestamp - start) / 1000000000);
 printf("CPU microseconds\n--- ------------\n");

Chapter 11
sched Provider

11-28

 normalize(@, 1000);
 printa("%3d %@d\n", @);
}

Running the previous script on a large mail server and specifying the IMAP daemon results in
output that is similar to the following:

dtrace -s ./whererun.d imapd
CPU distribution of imapd over 10 seconds:

CPU microseconds
--- ------------
 15 10102
 12 16377
 21 25317
 19 25504
 17 35653
 13 41539
 14 46669
 20 57753
 22 70088
 16 115860
 23 127775
 18 160517

Oracle Linux takes into account the amount of time that a thread has been sleeping when
selecting a CPU on which to run the thread, as a thread that has been sleeping for less time
tends not to migrate. Use the off-cpu and on-cpu probes to observe this behavior. Type the
following source code and save it in a file named howlong.d:

sched:::off-cpu
/curlwpsinfo->pr_state == SSLEEP/
{
 self->cpu = cpu;
 self->ts = timestamp;
}

sched:::on-cpu
/self->ts/
{
 @[self->cpu == cpu ?
 "sleep time, no CPU migration" : "sleep time, CPU migration"] =
 lquantize((timestamp - self->ts) / 1000000, 0, 500, 25);
 self->ts = 0;
 self->cpu = 0;
}

Running the previous script for approximately 30 seconds results in output that is similar to the
following:

dtrace -s ./howlong.d
dtrace: script ’./howlong.d’ matched 2 probes
^C
 sleep time, CPU migration
 value ------------- Distribution ------------- count
 < 0 | 0
 0 |@@@@@@@ 6838
 25 |@@@@@ 4714
 50 |@@@ 3108
 75 |@ 1304
 100 |@ 1557
 125 |@ 1425

Chapter 11
sched Provider

11-29

 150 | 894
 175 |@ 1526
 200 |@@ 2010
 225 |@@ 1933
 250 |@@ 1982
 275 |@@ 2051
 300 |@@ 2021
 325 |@ 1708
 350 |@ 1113
 375 | 502
 400 | 220
 425 | 106
 450 | 54
 475 | 40
 >= 500 |@ 1716

 sleep time, no CPU migration
 value ------------- Distribution ------------- count
 < 0 | 0
 0 |@@@@@@@@@@@@ 58413
 25 |@@@ 14793
 50 |@@ 10050
 75 | 3858
 100 |@ 6242
 125 |@ 6555
 150 | 3980
 175 |@ 5987
 200 |@ 9024
 225 |@ 9070
 250 |@@ 10745
 275 |@@ 11898
 300 |@@ 11704
 325 |@@ 10846
 350 |@ 6962
 375 | 3292
 400 | 1713
 425 | 585
 450 | 201
 475 | 96
 >= 500 | 3946

The previous output reveals that there are many more occurrences of non-migration than
migration. Also, when sleep times are longer, migrations are more likely. The distributions are
noticeably different in the sub-100 millisecond range, but look very similar as the sleep times
get longer. This result would seem to indicate that sleep time is not factored into the scheduling
decision when a certain threshold is exceeded.

enqueue and dequeue Probes
You might want to know on which CPUs processes and threads are waiting to run. You can use
the enqueue probe along with the dequeue probe to answer this question. Type the following
source code and save it in a file named qtime.d:

sched:::enqueue
{
 a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id] =
 timestamp;
}

sched:::dequeue
/a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id]/

Chapter 11
sched Provider

11-30

{
 @[args[2]->cpu_id] = quantize(timestamp -
 a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id]);
 a[args[0]->pr_lwpid, args[1]->pr_pid, args[2]->cpu_id] = 0;
}

Running the previous script for several seconds results in output that is similar to the following:

dtrace -s qtime.d
dtrace: script 'qtime.d' matched 16 probes
^C

 1
 value ------------- Distribution ------------- count
 8192 | 0
 16384 | 1
 32768 |@ 47
 65536 |@@@@@@@ 365
 131072 |@@@@@@@@@@@@ 572
 262144 |@@@@@@@@@@@@ 570
 524288 |@@@@@@@ 354
 1048576 |@ 57
 2097152 | 7
 4194304 | 1
 8388608 | 1
 16777216 | 0

 0
 value ------------- Distribution ------------- count
 8192 | 0
 16384 | 6
 32768 |@ 49
 65536 |@@@@@ 261
 131072 |@@@@@@@@@@@@@ 753
 262144 |@@@@@@@@@@@@ 704
 524288 |@@@@@@@@ 455
 1048576 |@ 74
 2097152 | 9
 4194304 | 2
 8388608 | 0

Rather than looking at wait times, you might want to examine the length of the run queue over
time. Using the enqueue and dequeue probes, you can set up an associative array to track the
queue length. Type the following source code and save it in a file named qlen.d:

sched:::enqueue
{
 this->len = qlen[args[2]->cpu_id]++;
 @[args[2]->cpu_id] = lquantize(this->len, 0, 100);
}

sched:::dequeue
/qlen[args[2]->cpu_id]/
{
 qlen[args[2]->cpu_id]--;
}

Running the previous script on a largely idle dual-core processor system for approximately 30
seconds results in output that is similar to the following:

dtrace -s qlen.d
dtrace: script 'qlen.d' matched 16 probes

Chapter 11
sched Provider

11-31

^C

 1
 value ------------- Distribution ------------- count
 < 0 | 0
 0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 8124
 1 |@@@@@@ 1558
 2 |@ 160
 3 | 51
 4 | 24
 5 | 13
 6 | 11
 7 | 9
 8 | 6
 9 | 0

 0
 value ------------- Distribution ------------- count
 < 0 | 0
 0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 8569
 1 |@@@@@@@@@ 2429
 2 |@ 292
 3 | 25
 4 | 8
 5 | 5
 6 | 4
 7 | 4
 8 | 1
 9 | 0

The output is roughly what you would expect for an idle system: the majority of the time that a
runnable thread is enqueued, the run queues were very short (three or fewer threads in
length). However, given that the system was largely idle, the exceptional data points at the
bottom of each table might be unexpected. For example, why were the run queues as long as
8 runnable threads? To explore this question further, you could write a D script that displays the
contents of the run queue when the length of the run queue is long. This problem is
complicated because D enablings cannot iterate over data structures, and therefore cannot
simply iterate over the entire run queue. Even if D enablings could do so, you should avoid
dependencies on the kernel's internal data structures.

For this type of script, you would enable the enqueue and dequeue probes and then use both
speculations and associative arrays. Whenever a thread is enqueued, the script increments the
length of the queue and records the timestamp in an associative array keyed by the thread.
You cannot use a thread-local variable in this case because a thread might be enqueued by
another thread. The script then checks to see if the queue length exceeds the maximum, and if
so, the script starts a new speculation, and records the timestamp and the new maximum.
Then, when a thread is dequeued, the script compares the enqueue timestamp to the
timestamp of the longest length: if the thread was enqueued before the timestamp of the
longest length, the thread was in the queue when the longest length was recorded. In this
case, the script speculatively traces the thread's information. When the kernel dequeues the
last thread that was enqueued at the timestamp of the longest length, the script commits the
speculation data. Type the following source code and save it in a file named whoqueue.d:

#pragma D option quiet
#pragma D option nspec=4
#pragma D option specsize=100k

int maxlen;
int spec[int];
sched:::enqueue

Chapter 11
sched Provider

11-32

{
 this->len = ++qlen[this->cpu = args[2]->cpu_id];
 in[args[0]->pr_addr] = timestamp;
}

sched:::enqueue
/this->len > maxlen && spec[this->cpu]/
{
 /*
 * There is already a speculation for this CPU. We just set a new
 * record, so we’ll discard the old one.
 */
 discard(spec[this->cpu]);
}

sched:::enqueue
/this->len > maxlen/
{
 /*
 * We have a winner. Set the new maximum length and set the timestamp
 * of the longest length.
 */
 maxlen = this->len;
 longtime[this->cpu] = timestamp;
 /*
 * Now start a new speculation, and speculatively trace the length.
 */
 this->spec = spec[this->cpu] = speculation();
 speculate(this->spec);
 printf("Run queue of length %d:\n", this->len);
}

sched:::dequeue
/(this->in = in[args[0]->pr_addr]) &&
 this->in <= longtime[this->cpu = args[2]->cpu_id]/
{
 speculate(spec[this->cpu]);
 printf(" %d/%d (%s)\n",
 args[1]->pr_pid, args[0]->pr_lwpid,
 stringof(args[1]->pr_fname));
}

sched:::dequeue
/qlen[args[2]->cpu_id]/
{
 in[args[0]->pr_addr] = 0;
 this->len = --qlen[args[2]->cpu_id];
}

sched:::dequeue
/this->len == 0 && spec[this->cpu]/
{
 /*
 * We just processed the last thread that was enqueued at the time
 * of longest length; commit the speculation, which by now contains
 * each thread that was enqueued when the queue was longest.
 */
 commit(spec[this->cpu]);
 spec[this->cpu] = 0;
}

Running the previous script on the same system results in output that is similar to the following:

Chapter 11
sched Provider

11-33

dtrace -s whoqueue.d
Run queue of length 1:
 2850/2850 (java)
Run queue of length 2:
 4034/4034 (kworker/0:1)
 16/16 (sync_supers)
Run queue of length 3:
 10/10 (ksoftirqd/1)
 1710/1710 (hald-addon-inpu)
 25350/25350 (dtrace)
Run queue of length 4:
 2852/2852 (java)
 2850/2850 (java)
 1710/1710 (hald-addon-inpu)
 2099/2099 (Xorg)
Run queue of length 5:
 3149/3149 (notification-da)
 2417/2417 (gnome-settings-)
 2437/2437 (gnome-panel)
 2461/2461 (wnck-applet)
 2432/2432 (metacity)
Run queue of length 9:
 3685/3685 (firefox)
 3149/3149 (notification-da)
 2417/2417 (gnome-settings-)
 2437/2437 (gnome-panel)
 2852/2852 (java)
 2452/2452 (nautilus)
 2461/2461 (wnck-applet)
 2432/2432 (metacity)
 2749/2749 (gnome-terminal)
^C

sleep and wakeup Probes
The following example shows how you might use the wakeup probe to determine what is
waking a particular process, and when, over a given period. Type the following source code
and save it in a file named gterm.d:

#pragma D option quiet

dtrace:::BEGIN
{
 start = timestamp;
}

sched:::wakeup
/stringof(args[1]->pr_fname) == "gnome-terminal"/
{
 @[execname] = lquantize((timestamp - start) / 1000000000, 0, 10);
}

profile:::tick-1sec
/++x == 10/
{
 exit(0);
}

The output from running this script is as follows:

Chapter 11
sched Provider

11-34

dtrace -s gterm.d

 Xorg
 value ------------- Distribution ------------- count
 < 0 | 0
 0 |@@@@@@@@@@@@@@@ 69
 1 |@@@@@@@@ 35
 2 |@@@@@@@@@ 42
 3 | 2
 4 | 0
 5 | 0
 6 | 0
 7 |@@@@ 16
 8 | 0
 9 |@@@ 15
 >= 10 | 0

This output shows that the X server is waking the gnome-terminal process as you interact with
the system.

Additionally, you could use the sleep probe with the wakeup probe to understand which
applications are blocking on other applications, and for how long. Type the following source
code and save it in a file named whofor.d:

#pragma D option quiet
sched:::sleep
{
 bedtime[curlwpsinfo->pr_addr] = timestamp;
}

sched:::wakeup
/bedtime[args[0]->pr_addr]/
{
 @[stringof(args[1]->pr_fname), execname] =
 quantize(timestamp - bedtime[args[0]->pr_addr]);
 bedtime[args[0]->pr_addr] = 0;
}

END
{
 printa("%s sleeping on %s:\n%@d\n", @);
}

The tail of the output from running the previous example script on a desktop system for several
seconds is similar to the following:

dtrace -s whofor.d
 ^C
...
Xorg sleeping on metacity:

 value ------------- Distribution ------------- count
 65536 | 0
 131072 |@@ 2
 262144 | 0

gnome-power-man sleeping on Xorg:

 value ------------- Distribution ------------- count
 131072 | 0
 262144 |@@ 1

Chapter 11
sched Provider

11-35

 524288 | 0
...

preempt and remain-cpu Probes
Because Oracle Linux is a preemptive system, higher priority threads preempt lower priority
threads. Preemption can induce a significant latency bubble in the lower priority thread.
Therefore, you might want to know which threads are being preempted by other threads.

The following example shows how you would use the preempt and remain-cpu probes to
display this information. Type the following source code and save it in a file named
whopreempt.d:

#pragma D option quiet

sched:::preempt
{
 self->preempt = 1;
}

sched:::remain-cpu
/self->preempt/
{
 self->preempt = 0;
}

sched:::off-cpu
/self->preempt/
{
 /*
 * If we were told to preempt ourselves, see who we ended up giving
 * the CPU to.
 */
 @[stringof(args[1]->pr_fname), args[0]->pr_pri, execname,
 curlwpsinfo->pr_pri] = count();
 self->preempt = 0;
}

END
{
 printf("%30s %3s %30s %3s %5s\n", "PREEMPTOR", "PRI",
 "PREEMPTED", "PRI", "#");
 printa("%30s %3d %30s %3d %5@d\n", @);
}

Running the previous script on a desktop system for several seconds results in output that is
similar to the following:

dtrace -s whopreempt.d
^C
 PREEMPTOR PRI PREEMPTED PRI #
 firefox 120 kworker/0:0 120 1
 gnome-panel 120 swapper 120 1
 gnome-panel 120 wnck-applet 120 1
 jbd2/dm-0-8 120 swapper 120 1
 khugepaged 139 kworker/0:0 120 1
 ksoftirqd/1 120 kworker/0:0 120 1
 kworker/0:0 120 gnome-terminal 120 1
 kworker/0:2 120 Xorg 120 1
 kworker/0:2 120 java 120 1
 kworker/1:0 120 Xorg 120 1

Chapter 11
sched Provider

11-36

 nautilus 120 Xorg 120 1
 rtkit-daemon 0 rtkit-daemon 120 1
 rtkit-daemon 120 swapper 120 1
 watchdog/0 0 swapper 120 1
 watchdog/1 0 kworker/0:0 120 1
 wnck-applet 120 Xorg 120 1
 wnck-applet 120 swapper 120 1
 automount 120 kworker/0:0 120 2
 gnome-power-man 120 kworker/0:0 120 2
 kworker/0:0 120 swapper 120 2
 kworker/1:0 120 dtrace 120 2
 metacity 120 kworker/0:0 120 2
 notification-da 120 swapper 120 2
 udisks-daemon 120 kworker/0:0 120 2
 automount 120 swapper 120 3
 gnome-panel 120 Xorg 120 3
 gnome-settings- 120 Xorg 120 3
 gnome-settings- 120 swapper 120 3
 gnome-terminal 120 swapper 120 3
 java 120 kworker/0:0 120 3
 ksoftirqd/0 120 swapper 120 3
 kworker/0:2 120 swapper 120 3
 metacity 120 Xorg 120 3
 nautilus 120 kworker/0:0 120 3
 qpidd 120 swapper 120 3
 metacity 120 swapper 120 4
 gvfs-afc-volume 120 swapper 120 5
 java 120 Xorg 120 5
 notification-da 120 Xorg 120 5
 notification-da 120 kworker/0:0 120 5
 Xorg 120 kworker/0:0 120 6
 wnck-applet 120 kworker/0:0 120 10
 VBoxService 120 swapper 120 13
 dtrace 120 swapper 120 14
 kworker/1:0 120 kworker/0:0 120 16
 dtrace 120 kworker/0:0 120 20
 Xorg 120 swapper 120 90
 hald-addon-inpu 120 swapper 120 100
 java 120 swapper 120 108
 gnome-terminal 120 kworker/0:0 120 110

tick
If NOHZ is set to off, Oracle Linux uses tick-based CPU accounting, where a system clock
interrupt fires at a fixed interval and attributes CPU utilization to the processes that are running
at the time of the tick. The following example shows how you would use the tick probe to
observe this attribution.

dtrace -n sched:::tick'{ @[stringof(args[1]->pr_fname)] = count() }'
dtrace: description 'sched:::tick' matched 1 probe
^C

 VBoxService 1
 gpk-update-icon 1
 hald-addon-inpu 1
 jbd2/dm-0-8 1
 automount 2
 gnome-session 2
 hald 2
 gnome-power-man 3
 ksoftirqd/0 3

Chapter 11
sched Provider

11-37

 kworker/0:2 3
 notification-da 4
 devkit-power-da 6
 nautilus 9
 dbus-daemon 11
 gnome-panel 11
 gnome-settings- 11
 dtrace 19
 khugepaged 22
 metacity 27
 kworker/0:0 41
 swapper 56
 firefox 58
 wnck-applet 61
 gnome-terminal 67
 java 84
 Xorg 227

One deficiency of tick-based accounting is that the system clock that performs accounting is
often also responsible for dispatching any time-related scheduling activity. As a result, if a
thread is to perform some amount of work every clock tick (that is, every 10 milliseconds), the
system either over-accounts or under-accounts for the thread, depending on whether the
accounting is done before or after time-related dispatching scheduling activity. If accounting is
performed before time-related dispatching, the system under-accounts for threads running at a
regular interval. If such threads run for less than the clock tick interval, they can effectively hide
behind the clock tick.

The following example examines whether a system has any such threads. Type the following
source code and save it in a file named tick.d:

sched:::tick,
sched:::enqueue
{
 @[probename] = lquantize((timestamp / 1000000) % 10, 0, 10);
}

The output of the example script is two distributions of the millisecond offset within a ten
millisecond interval, one for the tick probe and another for enqueue:

dtrace -s tick.d
dtrace: script 'tick.d' matched 9 probes
^C

 tick
 value ------------- Distribution ------------- count
 < 0 | 0
 0 |@@@@@ 29
 1 |@@@@@@@@@@@@@@@@@@@ 106
 2 |@@@@@ 27
 3 |@ 7
 4 |@@ 10
 5 |@@ 12
 6 |@ 4
 7 |@ 8
 8 |@@ 9
 9 |@@@ 17
 >= 10 | 0

 enqueue
 value ------------- Distribution ------------- count
 < 0 | 0

Chapter 11
sched Provider

11-38

 0 |@@@@ 82
 1 |@@@@ 86
 2 |@@@@ 76
 3 |@@@ 65
 4 |@@@@@ 101
 5 |@@@@ 79
 6 |@@@@ 75
 7 |@@@@ 76
 8 |@@@@ 89
 9 |@@@@ 75
 >= 10 | 0

The output histogram named tick shows that the clock tick is firing at a 1 millisecond offset. In
this example, the output for enqueue is evenly spread across the ten millisecond interval and
no spike is visible at 1 millisecond, so it appears that the threads are being not being
scheduled on a time basis.

sched Stability
The sched provider uses DTrace's stability mechanism to describe its stabilities. These values
are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

For more information about the stability mechanism, see DTrace Stability Features.

io Provider
The io provider makes available probes that relate to data input and output. The io provider
enables quick exploration of behavior that is observed through I/O monitoring tools such as
iostat. For example, you can use the io provider to understand I/O by device, I/O type, I/O
size, process, or application name .

io Probes
The following table describes the probes for the io provider.

Table 11-9 io Probes

Probe Description

start Fires when an I/O request is about to be made
either to a peripheral device or to an NFS
server.

Chapter 11
io Provider

11-39

Table 11-9 (Cont.) io Probes

Probe Description

done Fires after an I/O request has been fulfilled. The
done probe fires after the I/O completes, but
before completion processing has been
performed on the buffer. As a result B_DONE is
not set in b_flags at the time the done probe
fires.

wait-start Fires immediately before a thread begins to
wait pending completion of a given I/O request.
Some time after the wait-start probe fires,
the wait-done probe fires in the same thread.

wait-done Fires when a thread finishes waiting for the
completion of a given I/O request. The wait-
done probe fires only after the wait-start
probe has fired in the same thread.

The io probes fire for all I/O requests to peripheral devices, and for all file read and file write
requests to an NFS server. Requests for metadata from an NFS server, for example, do not
trigger io probes due to a readdir() request.

io Probe Arguments
The following table describes the arguments for the io probes.

Table 11-10 io Probe Arguments

Argument Type Description

args[0] bufinfo_t * The bufinfo_t for the
corresponding I/O request.

args[1] devinfo_t * The devinfo_t for the device
for the corresponding I/O
request.

args[2] fileinfo_t * The fileinfo_t for the file for
the corresponding I/O request.

Note:

DTrace does not currently support the use of fileinfo_t with io probes. In Oracle
Linux, no information is readily accessible at the level where the io probes fire about
the file where an I/O request originated.

bufinfo_t
The bufinfo_t structure is the abstraction that describes an I/O request. The buffer that
corresponds to an I/O request is pointed to by args[0] in the start, done, wait-start, and

Chapter 11
io Provider

11-40

wait-done probes. Detailed information about this data structure can be found in /usr/lib64/
dtrace/version/io.d. The definition of bufinfo_t is as follows:

typedef struct bufinfo {
 int b_flags; /* flags */
 size_t b_bcount; /* number of bytes */
 caddr_t b_addr; /* buffer address */
 uint64_t b_blkno; /* expanded block # on device */
 uint64_t b_lblkno; /* logical block # on device */
 size_t b_resid; /* not supported */
 size_t b_bufsize; /* size of allocated buffer */
 caddr_t b_iodone; /* I/O completion routine */
 int b_error; /* not supported */
 dev_t b_edev; /* extended device */
} bufinfo_t;

Note:

DTrace translates the members of bufinfo_t from the buffer_head or bio for the
Oracle Linux I/O request structure, depending on the kernel version.

b_flags indicates the state of the I/O buffer, and consists of a bitwise-or of different state
values. The following table describes the values for the supported states.

Chapter 11
io Provider

11-41

Table 11-11 b_flags Values

b_flags Value Description

B_ASYNC 0x000400 Indicates that the I/O request is
asynchronous and is not
waited upon. The wait-start
and wait-done probes do not
fire for asynchronous I/O
requests.

No

te:

So
me
I/Os
dire
cte
d to
be
asy
nch
ron
ous
mig
ht
not
set
B_A
SYN
C.
The
asy
nch
ron
ous
I/O
sub
syst
em
cou
ld
imp
lem
ent
the
asy
nch
ron
ous
req
ues
t by
hav
ing

Chapter 11
io Provider

11-42

Table 11-11 (Cont.) b_flags Values

b_flags Value Description

a
sep
arat
e
wor
ker
thr
ead
per
for
m a
syn
chr
ono
us
I/O
ope
rati
on.

B_PAGEIO 0x000010 Indicates that the buffer is
being used in a paged I/O
request.

B_PHYS 0x000020 Indicates that the buffer is
being used for physical (direct)
I/O to a user data area.

B_READ 0x000040 Indicates that data is to be read
from the peripheral device into
main memory.

B_WRITE 0x000100 Indicates that the data is to be
transferred from main
memory to the peripheral
device.

b_bcount: Is the number of bytes to be transferred as part of the I/O request.

b_addr: Is the virtual address of the I/O request, when known.

b_blkno: Identifies which block on the device is to be accessed.

b_lblkno: Identifies which logical block on the device is to be accessed. The mapping from a
logical block to a physical block (such as the cylinder, track, and so on) is defined by the
device.

b_bufsize: Contains the size of the allocated buffer.

b_iodone: Identifies a specific routine in the kernel that is called when the I/O is complete.

b_edev: Contains the major and minor device numbers of the device accessed. You can use
the D subroutines getmajor and getminor to extract the major and minor device numbers from
the b_edev field.

Chapter 11
io Provider

11-43

devinfo_t
The devinfo_t structure provides information about a device. The devinfo_t structure that
corresponds to the destination device of an I/O is pointed to by args[1] in the start, done,
wait-start, and wait-done probes. Detailed information about this data structure can be
found in /usr/lib64/dtrace/version/io.d. The definition of devinfo_t is as follows:

typedef struct devinfo {
 int dev_major; /* major number */
 int dev_minor; /* minor number */
 int dev_instance; /* not supported */
 string dev_name; /* name of device */
 string dev_statname; /* name of device + instance/minor */
 string dev_pathname; /* pathname of device */
} devinfo_t;

Note:

DTrace translates the members of devinfo_t from the buffer_head for the Oracle
Linux I/O request structure.

dev_major: Is the major number of the device.

dev_minor: Is the minor number of the device.

dev_name: Is the name of the device driver that manages the device.

dev_statname: Is the name of the device as reported by iostat. This field is provided so that
aberrant iostat output can be quickly correlated to actual I/O activity.

dev_pathname: Is the full path of the device. The path that is specified by dev_pathname
includes components expressing the device node, the instance number, and the minor node.
However, note that all three of these elements are not necessarily expressed in the statistics
name. For some devices, the statistics name consists of the device name and the instance
number. For other devices, the name consists of the device name and the number of the minor
node. As a result, two devices that have the same dev_statname migh differ in their
dev_pathname.

fileinfo_t

Note:

DTrace does not currently support the use of fileinfo_t with the args[2] argument
of the io probes. You can use the fileinfo_t structure to obtain information about a
process's open files by using the fds[] array. See Built-In Variables.

The fileinfo_t structure provides information about a file. args[2] in the start, done, wait-
start, and wait-done probes points to the file to which an I/O request corresponds. The
presence of file information is contingent upon the file system providing this information when
dispatching I/O requests. Some file systems, especially third-party file systems, might not

Chapter 11
io Provider

11-44

provide this information. Also, I/O requests might emanate from a file system for which no file
information exists. For example, any I/O from or to file system metadata is not associated with
any one file. Finally, some highly optimized file systems might aggregate I/O from disjoint files
into a single I/O request. In this case, the file system might provide the file information either
for the file that represents the majority of the I/O or for the file that represents some of the I/O.
Alternatively, the file system might provide no file information at all in this case.

Detailed information about this data structure can be found in /usr/lib64/dtrace/version/
io.d. The definition of fileinfo_t is as follows:

typedef struct fileinfo {
 string fi_name; /* name (basename of fi_pathname) */
 string fi_dirname; /* directory (dirname of fi_pathname) */
 string fi_pathname; /* full pathname */
 loff_t fi_offset; /* offset within file */
 string fi_fs; /* file system */
 string fi_mount; /* not supported */
 int fi_oflags; /* open() flags for file descriptor */
} fileinfo_t;

The fi_name field contains the name of the file but does not include any directory components.
If no file information is associated with an I/O, the fi_name field is set to the string <none>. In
some rare cases, the pathname that is associated with a file might be unknown. In this case,
the fi_name field is set to the string <unknown>.

The fi_dirname field contains only the directory component of the file name. As with fi_name,
this string can be set to <none>, if no file information is present, or <unknown> if the pathname
that is associated with the file is not known.

The fi_pathname field contains the full pathname to the file. As with fi_name, this string can be
set to <none>, if no file information is present, or <unknown> if the pathname that is associated
with the file is not known.

The fi_offset field contains the offset within the file , or -1, if either file information is not
present or if the offset is otherwise unspecified by the file system.

The fi_fs field contains the name of the file system type, or <none>, if no information is
present.

The fi_oflags field contains the flags that were specified when opening the file.

io Examples
'The following example script displays information for every I/O as it is issued. Type the
following source code and save it in a file named iosnoop.d.

#pragma D option quiet

BEGIN
{
 printf("%10s %2s\n", "DEVICE", "RW");
}

io:::start
{
 printf("%10s %2s\n", args[1]->dev_statname,
 args[0]->b_flags & B_READ ? "R" : "W");
}

The output from this script is similar to the following:

Chapter 11
io Provider

11-45

dtrace -s ./iosnoop.d
 DEVICE RW
 dm-00 R
 dm-00 R
 dm-00 R
 dm-00 R
 dm-00 R
 dm-00 R
...

You can make the example script slightly more sophisticated by using an associative array to
track the time (in milliseconds) spent on each I/O, as shown in the following example:

#pragma D option quiet

BEGIN
{
 printf("%10s %2s %7s\n", "DEVICE", "RW", "MS");
}

io:::start
{
 start[args[0]->b_edev, args[0]->b_blkno] = timestamp;
}

io:::done
/start[args[0]->b_edev, args[0]->b_blkno]/
{
 this->elapsed = timestamp - start[args[0]->b_edev, args[0]->b_blkno];
 printf("%10s %2s %3d.%03d\n", args[1]->dev_statname,
 args[0]->b_flags & B_READ ? "R" : "W",
 this->elapsed / 10000000, (this->elapsed / 1000) % 1000);
 start[args[0]->b_edev, args[0]->b_blkno] = 0;
}

The modified script adds a MS (milliseconds) column to the output.

You can aggregate on device, application, process ID and bytes transferred, then save it in a
file named whoio.d, as shown in the following example:

#pragma D option quiet

io:::start
{
 @[args[1]->dev_statname, execname, pid] = sum(args[0]->b_bcount);
}

END
{
 printf("%10s %20s %10s %15s\n", "DEVICE", "APP", "PID", "BYTES");
 printa("%10s %20s %10d %15@d\n", @);
}

Running this script for a few seconds results in output that is similar to the following:

dtrace -s whoio.d
 ^C
 DEVICE APP PID BYTES
 dm-00 evince 14759 16384
 dm-00 flush-252:0 1367 45056
 dm-00 bash 14758 131072
 dm-00 gvfsd-metadata 2787 135168

Chapter 11
io Provider

11-46

 dm-00 evince 14758 139264
 dm-00 evince 14338 151552
 dm-00 jbd2/dm-0-8 390 356352

If you are copying data from one device to another, you might want to know if one of the
devices acts as a limiter on the copy. To answer this question, you need to know the effective
throughput of each device, rather than the number of bytes per second that each device is
transferring. For exampe, you can determine throughput by using the following script and
saving it in a file named copy.d:

#pragma D option quiet

io:::start
{
 start[args[0]->b_edev, args[0]->b_blkno] = timestamp;
}

io:::done
/start[args[0]->b_edev, args[0]->b_blkno]/
{
 /*
 * We want to get an idea of our throughput to this device in KB/sec.
 * What we have, however, is nanoseconds and bytes. That is we want
 * to calculate:
 *
 * bytes / 1024
 * ------------------------
 * nanoseconds / 1000000000
 *
 * But we cannot calculate this using integer arithmetic without losing
 * precision (the denominator, for one, is between 0 and 1 for nearly
 * all I/Os). So we restate the fraction, and cancel:
 *
 * bytes 1000000000 bytes 976562
 * --------- * ------------- = --------- * -------------
 * 1024 nanoseconds 1 nanoseconds
 *
 * This is easy to calculate using integer arithmetic.
 */
 this->elapsed = timestamp - start[args[0]->b_edev, args[0]->b_blkno];
 @[args[1]->dev_statname, args[1]->dev_pathname] =
 quantize((args[0]->b_bcount * 976562) / this->elapsed);
 start[args[0]->b_edev, args[0]->b_blkno] = 0;
}

END
{
 printa(" %s (%s)\n%@d\n", @);
}

Running the previous script for several seconds while copying data from a hard disk to a USB
drive yields the following output:

dtrace -s copy.d
^C
sdc1 (/dev/sdc1)

 value ------------- Distribution ------------- count
 32 | 0
 64 | 3
 128 | 1
 256 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 2257

Chapter 11
io Provider

11-47

 512 | 1
 1024 | 0

 dm-00 (/dev/dm-00)

 value ------------- Distribution ------------- count
 128 | 0
 256 | 1
 512 | 0
 1024 | 2
 2048 | 0
 4096 | 2
 8192 |@@@@@@@@@@@@@@@@@@ 172
 16384 |@@@@@ 52
 32768 |@@@@@@@@@@@ 108
 65536 |@@@ 34
 131072 | 0

The previous output shows that the USB drive (sdc1) is clearly the limiting device. The
throughput of sdc1 is between 256K/sec and 512K/sec, while dm-00 delivered I/O at anywhere
from 8 MB/second to over 64 MB/second.

io Stability
The io provider uses DTrace's stability mechanism to describe its stabilities. These values are
listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Evolving Evolving ISA

For more information about the stability mechanism, see DTrace Stability Features

fasttrap Provider
The fasttrap provider performs dynamic instrumentation of arbitrary instructions in user-space
threads. Unlike most other DTrace providers, the fasttrap provider is not designed for tracing
system activity. Rather, this provider is intended as a way for DTrace consumers to inject
information into the DTrace framework by activating the fasttrap probe.

For more information about enabling statically defined probes in user-space programs, see
Statically Defined Tracing of User Applications.

fasttrap Probes
The fasttrap provider makes available a single probe that fires whenever a user-level process
makes a certain DTrace call into the kernel. The DTrace call to activate the probe is not
available

Chapter 11
fasttrap Provider

11-48

fasttrap Stability
The fasttrap provider uses DTrace's stability mechanism to describe its stabilities. These
values are listed in the following table.

Element Name Stability Data Stability Dependency Class

Provider Evolving Evolving ISA

Module Private Private Unknown

Function Private Private Unknown

Name Evolving Evolving ISA

Arguments Private Private Unknown

For more information about the stability mechanism, see DTrace Stability Features.

Chapter 11
fasttrap Provider

11-49

12
User Process Tracing

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

For more information about DTrace, see Oracle Linux: DTrace Release Notes and
Oracle Linux: Using DTrace for System Tracing.

DTrace is a powerful tool for understanding the behavior of user processes. DTrace can be
invaluable when debugging and analyzing performance problems, or for simply understanding
the behavior of a complex application. This chapter focuses on the DTrace facilities that are
relevant to tracing user process activity and provides examples that illustrate their use.

copyin and copyinstr Subroutines
DTrace's interaction with processes is slightly different than most traditional debuggers and
observability tools. Many such tools appear to execute within the scope of the process,
allowing users dereference pointers to program variables directly. Rather than appearing to
execute within or as part of the process itself, DTrace probes execute in the Oracle Linux
kernel. To access process data, a probe uses the copyin or copyinstr subroutines to copy
user process data into the address space of the kernel.

For example, consider the following write() system call:

ssize_t write(int fd, const void *buf, size_t nbytes);

The following D program illustrates an incorrect attempt to print the contents of a string that is
passed to the write() system call:

syscall::write:entry
{
 printf("%s", stringof(arg1)); /* incorrect use of arg1 */
}

If you attempt to run this script, DTrace produces error messages similar to the following:

dtrace: error on enabled probe ID 1 (ID 37: syscall::write:entry): \
invalid address (0x10038a000) in action #1

The arg1 variable, which contains the value of the buf parameter, is an address that refers to
memory in the process executing the system call. To read the string at that address, use the
copyinstr subroutine and record its result with the printf action, for example:

syscall::write:entry
{

12-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/

 printf("%s", copyinstr(arg1)); /* correct use of arg1 */
}

In the previous script, the output shows all of the strings that are being passed to the write()
system call. Occasionally, however, you might see irregular output similar to the following:

 0 37 write:entry mada&^%**&

The copyinstr subroutine acts on an input argument, which is the user address of a null-
terminated ASCII string, but buffers that are passed to the write() system call might refer to
binary data rather than ASCII strings or to ASCII strings that do not include a terminating null
byte. To print only as much of the string as the caller intended, use the two parameter version
of the copyinstr subroutine, which includes the size of the targeted string buffer:

syscall::write:entry { printf("%s", copyinstr(arg1, arg2)); }

Alternatively, you can use the copyin subroutine, which takes an address and size, for
example:

syscall::write:entry
{
 printf("%s", stringof(copyin(arg1, arg2)));
}

Note that the stringof operator is necessary so that DTrace properly converts the user data
that is retrieved by copyin to a string. The use of stringof is not necessary with the copyinstr
subroutine because it always returns the type string.

Avoiding Errors
The copyin and copyinstr subroutines cannot read from user addresses that have not yet
been touched, so even a valid address could cause an error if the page containing that
address has not yet been faulted in by being accessed. Consider the following example:

dtrace -n syscall::open:entry'{ trace(copyinstr(arg0)); }'
dtrace: description 'syscall::open:entry' matched 1 probe
CPU ID FUNCTION:NAME
 1 8 open:entry /dev/sr0
 1 8 open:entry /var/run/utmp
 1 8 open:entry /dev/sr0
dtrace: error on enabled probe ID 2 (ID 8: syscall::open:entry): \
invalid address (0x9af1b) in action #1 at DIF offset 52

In the example output, the application was functioning properly, and the address in arg0 was
valid, but it referred to a page that had not yet been accessed by the corresponding process.
To resolve this issue, you would need to wait for the kernel or an application to use the data
before tracing it.

For example, you might wait until the system call returns to apply copyinstr, as shown here:

dtrace -n syscall::open:entry'{ self->file = arg0; }' \
 -n syscall::open:return'{ trace(copyinstr(self->file)); self->file = 0; }'
dtrace: description 'syscall::open:entry' matched 1 probe
dtrace: description 'syscall::open:return' matched 1 probe
CPU ID FUNCTION:NAME
 0 9 open:return /dev/sr0
 1 9 open:return /usr/lib64/gconv/gconv-modules.cache
 0 9 open:return /dev/sr0
 0 9 open:return public/pickup
 1 9 open:return maildrop

Chapter 12
copyin and copyinstr Subroutines

12-2

 1 9 open:return /dev/sr0
 1 9 open:return /dev/sr0
 1 9 open:return /var/run/utmp
...

Eliminating dtrace Interference
If you trace every call to the write() system call, it causes a cascade of output because each
call causes the dtrace command to call write() as it displays the output, and so on. This
feedback loop is a good example of how the dtrace command can interfere with the desired
data. To prevent this type of unwanted data from being traced, use a simple predicate like the
one that is shown in the following example and save it in a file named stringof.d:

syscall::write:entry
/pid != $pid/
{
 printf("%s", stringof(copyin(arg1, arg2)));
}

In the previous example, the $pid macro variable expands to the process identifier of the
process that enabled the probes. The pid variable contains the process identifier of the
process whose thread was running on the CPU where the probe was fired. Therefore, the
predicate /pid != $pid/ ensures that the script does not trace any events related to itself.

Using the syscall Provider
The syscall provider enables you to trace every system call entry and return. System calls
can be a good starting point for understanding the behavior of a process, especially if the
process seems to be spending a large amount of time executing or blocked in the kernel, as
shown in the output of commands such as ps and top.

For example, consider a process with a process ID of 31337 that is consuming a large amount
of system time. One possible explanation for this behavior is that the process is executing a
large number of system calls. You can specify a simple D program on the command line to see
which system calls are happening most often:

dtrace -n syscall:::entry'/pid == 31337/{ @syscalls[probefunc] = count(); }'
dtrace: description ’syscall:::entry’ matched 215 probes
^C

 kill 1
 clone 4
 pipe 4
 setpgid 4
 rt_sigreturn 6
 sendmsg 7
 socket 7
 access 8
 getegid 8
 geteuid 8
 getgid 8
 getuid 8
 wait4 12
 close 15
 read 23
 newstat 25
 write 42
 ioctl 65

Chapter 12
Eliminating dtrace Interference

12-3

 rt_sigaction 168
 rt_sigprocmask 198
 write 1092

The previous report shows the system calls that are being called most often, which in this
case, is the write() system call.

You can use the syscall provider to further examine the source of all of the write() system
calls, for example:

dtrace -n syscall::write:entry'/pid == 31337/{ @writes = quantize(arg2); }'
dtrace: description ’syscall::write:entry’ matched 1 probe
^C

 value ------------- Distribution ------------- count
 0 | 0
 1 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 1037
 2 |@ 3
 4 | 0
 8 | 0
 16 | 0
 32 |@ 3
 64 | 0
 128 | 0
 256 | 0
 512 | 0
 1024 |@ 5

The previous output shows that the process is executing many write() system calls with a
relatively small amount of data. The ratio could be the source of the performance problem for
this particular process. This example illustrates a general methodology for investigating system
call behavior.

ustack Action

Note:

If you want to perform symbol lookup in a stripped executable, you must specify the
--export-dynamic option when linking the program. This option causes the linker
to add all symbols to the dynamic symbol table (the set of symbols that are visible
from dynamic objects at run time). If you use gcc to link the objects, specify the
option as -Wl,--export-dynamic to pass the correct option to the linker.

If you want to look up symbols in shared libraries or unstripped executables, the --
export-dynamic option is not required.

Tracing a process thread's stack when a particular probe is activated is often useful for
examining a problem in more detail. The ustack action traces the user thread's stack. For
example, if a process that opens many files occasionally fails in the open() system call, you
can use the ustack action to discover the code path that executes the failed open. Type the
following source code and save it in a file named badopen.d:

syscall::open:entry
/pid == $1/
{

Chapter 12
ustack Action

12-4

 self->path = copyinstr(arg0);
}

syscall::open:return
/self->path != NULL && errno != 0/
{
 printf("open for '%s' failed", self->path);
 ustack();
}

This script also illustrates the use of the $1 macro variable, which takes the value of the first
operand that is specified on the dtrace command line:

dtrace -s ./badopen.d 3430
dtrace: script './badopen.d' matched 2 probes
CPU ID FUNCTION:NAME
 1 489 openat:return open for '/usr/lib/foo' failed
 libc.so.6`sleep+0xe0
 ld-linux-x86-64.so.2`do_lookup_x+0x847
 libc.so.6`0x3cb8003630
 libc.so.6`0x3cb8003c48
 libc.so.6`0x3cb800e2c8
 libc.so.6`0x3cb8003c48
 looper`0x400612
 libc.so.6`getenv+0x2a
 looper`0x4003c8
 looper`0x4009b0
 libc.so.6`0x3cb800e2c8
 looper`0x4009b0
 looper`doOpenLoop+0x33
 looper`0x400e9c
 looper`main+0x5f
 looper`0x400ea9
 libc.so.6`__libc_start_main+0xfd
 looper`main
 looper`0x4009b0
 looper`__libc_csu_init

The ustack action records program counter (PC) values for the stack and the dtrace
command resolves the PC values to symbol names by looking though the process's symbol
tables. If dtrace cannot resolve the PC value to a symbol, it prints out the value as a
hexadecimal integer.

If a process exits or is killed before the ustack data is formatted for output, dtrace might be
unable to convert the PC values in the stack trace to symbol names and the command displays
them as hexadecimal integers.

uregs[] Array
The uregs[] array enables you to access individual user registers. See Table 12-1, which lists
the index constants into the uregs[] array for each supported architecture.

The following table lists the index constants into the uregs[] array for each supported
architecture.

Chapter 12
uregs[] Array

12-5

Table 12-1 x86 uregs[] Constants

Constant Register Architecture

R_PC program counter register x86, AMD64

R_SP stack pointer register x86, AMD64

R_R0 first return code x86, AMD64

R_R1 second return code x86, AMD64

R_CS %cs x86, AMD64

R_GS %gs x86, AMD64

R_ES %es x86, AMD64

R_DS %ds x86, AMD64

R_EDI %ed x86, AMD64

R_ESI %es x86, AMD64

R_EBP %ebp x86, AMD64

R_EAX %eax x86, AMD64

R_ESP %esp x86, AMD64

R_EAX %eax x86, AMD64

R_EBX %ebx x86, AMD64

R_ECX %ecx x86, AMD64

R_EDX %edx x86, AMD64

R_TRAPNO %trapno x86, AMD64

R_ERR %err x86, AMD64

R_EIP %eip x86, AMD64

R_CS %cs x86, AMD64

R_EFL %efl x86, AMD64

R_UESP %uesp x86, AMD64

R_SS %ss x86, AMD64

R_RSP %rsp AMD64

R_RFL %rfl AMD64

R_RIP %rip AMD64

R_RAX %rax AMD64

R_RCX %rcx AMD64

R_RDX %rdx AMD64

R_RBP %rbp AMD64

R_RSI %rsi AMD64

R_RDI %rdi AMD64

R_R8 %r8 AMD64

R_R9 %r9 AMD64

Chapter 12
uregs[] Array

12-6

Table 12-1 (Cont.) x86 uregs[] Constants

Constant Register Architecture

R_R10 %r10 AMD64

R_R11 %r11 AMD64

R_R12 %r12 AMD64

R_R13 %r13 AMD64

R_R14 %r14 AMD64

R_R15 %r15 AMD64

Using the pid Provider
The pid provider enables you to trace any instruction in a process. Unlike most other
providers, pid probes are created on demand, based on the probe descriptions that are found
in your D programs. As a result, no pid probes are listed in the output of the dtrace -l
command until you enable them.

User Function Boundary Tracing
The simplest mode of operation for the pid provider is to provide function boundary tracing in
user space. The following example program traces all of the function entries and returns that
are made from a single function. The $1 macro variable, the first operand on the command line,
is the process ID for the process to trace. The $2 macro variable, the second operand on the
command line, is the name of the function from which to trace all function calls. Type the
following source code and save it in a file named userfunc.d:

#!/usr/sbin/dtrace -s
#pragma D option flowindent

pid$1::$2:entry
{
 self->trace = 1;
}

pid$1:::entry,
pid$1:::return
/self->trace/
{
}

pid$1::$2:return
/self->trace/
{
 self->trace = 0;
}

Type the previous example script and save it in a file named userfunc.d, then use the chmod
command to make the file executable. This script produces output with more details on the
principal buffer:

./userfunc.d 123 execute
dtrace: script ’./userfunc.d’ matched 11594 probes

Chapter 12
Using the pid Provider

12-7

 0 -> execute
 0 -> execute
 0 -> Dfix
 0 <- Dfix
 0 -> s_strsave
 0 -> malloc
 0 <- malloc
 0 <- s_strsave
 0 -> set
 0 -> malloc
 0 <- malloc
 0 <- set
 0 -> set1
 0 -> tglob
 0 <- tglob
 0 <- set1
 0 -> setq
 0 -> s_strcmp
 0 <- s_strcmp
...

The pid provider can only be used on processes that are already running. You can use
the $target macro variable (see Scripting) and the dtrace command with the -c and -p
options to create and grab processes of interest and instrument them by using DTrace.

For example, you can use the following D script to determine the distribution of function calls
that are made to libc by a particular subject process. Type the following source code and save
it in a file named libc.d:

pid$target:libc.so::entry
{
 @[probefunc] = count();
}

To determine the distribution of such calls that are made by the date command, save the
script in a file named libc.d and run the following command:

dtrace -s libc.d -c date
dtrace: script ’libc.d’ matched 2476 probes
Fri Jul 30 14:08:54 PDT 2004
dtrace: pid 109196 has exited

 pthread_rwlock_unlock 1
 _fflush_u 1
 rwlock_lock 1
 rw_write_held 1
 strftime 1
 _close 1
 _read 1
 __open 1
 _open 1
 strstr 1
 load_zoneinfo 1
...
 _ti_bind_guard 47
 _ti_bind_clear 94

Tracing Arbitrary Instructions
You can use the pid provider to trace any instruction in any user function. Upon demand, the
pid provider creates a probe for every instruction in a function. The name of each probe is the

Chapter 12
Using the pid Provider

12-8

offset of its corresponding instruction in the function and is expressed as a hexadecimal
integer. For example, to enable a probe that is associated with the instruction at offset 0x1c in
the function foo of the module bar.so in the process with PID 123, you would use the following
command:

dtrace -n pid123:bar.so:foo:1c

To enable all of the probes in the function foo, including the probe for each instruction, you
would use the following command:

dtrace -n pid123:bar.so:foo:

Using the previous command demonstrates an extremely powerful technique for debugging
and analyzing user applications. Infrequent errors can be difficult to debug because they can
be difficult to reproduce. Often, you can identify a problem after the failure has occurred, which
is too late to reconstruct the code path.

The following example demonstrates how to combine the pid provider with speculative tracing
to solve this problem by tracing every instruction in a function. See Speculative Tracing for a
description.

Type the following source code and save it in a file named errorpath.d:

pid$1::$2:entry
{
 self->spec = speculation();
 speculate(self->spec);
 printf("%x %x %x %x %x", arg0, arg1, arg2, arg3, arg4);
}

pid$1::$2:
/self->spec/
{
 speculate(self->spec);
}

pid$1::$2:return
/self->spec && arg1 == 0/
{
 discard(self->spec);
 self->spec = 0;
}

pid$1::$2:return
/self->spec && arg1 != 0/
{
 commit(self->spec);
 self->spec = 0;
}

Executing the errorpath.d script results in output similar to the following:

./errorpath.d 123 _chdir
dtrace: script ’./errorpath.d’ matched 19 probes
CPU ID FUNCTION:NAME
 0 25253 _chdir:entry 81e08 6d140 ffbfcb20 656c73 0
 0 25253 _chdir:entry
 0 25269 _chdir:0
 0 25270 _chdir:4
 0 25271 _chdir:8
 0 25272 _chdir:c
 0 25273 _chdir:10

Chapter 12
Using the pid Provider

12-9

 0 25274 _chdir:14
 0 25275 _chdir:18
 0 25276 _chdir:1c
 0 25277 _chdir:20
 0 25278 _chdir:24
 0 25279 _chdir:28
 0 25280 _chdir:2c
 0 25268 _chdir:return

Chapter 12
Using the pid Provider

12-10

13
Statically Defined Tracing of User Applications

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

For more information about DTrace, see Oracle Linux: DTrace Release Notes and
Oracle Linux: Using DTrace for System Tracing.

DTrace provides a facility for user application developers to define customized probes in
application code to augment the capabilities of the pid provider. These static probes impose
little to no overhead when disabled and are dynamically enabled like all other DTrace probes.
You can use static probes to describe application semantics to users of DTrace without
exposing or requiring implementation knowledge of your applications. This chapter describes
how to define static probes in user applications and how to use DTrace to enable such probes
in user processes.

Note:

DTrace supports statically defined tracing of user applications for both 32-bit and 64-
bit binaries.

For information about using static probes with kernel modules, see Statically Defined Tracing
of Kernel Modules.

Choosing the Probe Points
DTrace enables developers to embed static probe points in application code, including both
complete applications and shared libraries. You can enable these probes wherever the
application or library is running, either in development or production. You should define probes
that have a semantic meaning that is readily understood by your DTrace user community. For
example, you could define query-receive and query-respond probes for a web server that
correspond to a client that is submitting a request and the web server that is responding to the
request. These example probes are easily understood by most DTrace users and correspond
to the highest level abstractions for the application, rather than lower-level implementation
details. DTrace users can use these probes to understand the time distribution of requests. If
your query-receive probe presented the URL request strings as an argument, a DTrace user
could determine which requests were generating the most disk I/O by combining this probe
with the io provider.

13-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/

You should also consider the stability of the abstractions you describe when choosing probe
names and locations. For example, will the probe persist in future releases of the application
even if the implementation changes? Does the probe make sense on all system architectures
or is it specific to a particular instruction set? This chapter discusses how these decisions can
guide your static tracing definitions.

Adding Probes to an Application
DTrace probes for libraries and executables are defined in an ELF section in the corresponding
application binary. The following topics are discussed in more detail in this section: defining
probes, adding probes to your application source code, and augmenting your application's
build process to include the DTrace probe definitions.

Defining Providers and Probes
You define DTrace probes in a .d source file, which is then used when compiling and linking
your application. First, select an appropriate name for your user application provider. The
provider name that you choose is appended with the process identifier for each process that is
executing your application code. For example, if you chose the provider name myserv for a
web server that was executing as process ID 1203, the DTrace provider name that
corresponds to this process would be myserv1203. In a .d source file, you would add a provider
definition similar to the one that is shown the following example:

provider myserv
{
 ...
};

Next, add a definition for each probe and the corresponding arguments. The following example
defines the two probes that are discussed in Choosing the Probe Points. The first probe has
two arguments, both of type char *. The second probe has no arguments. The D compiler
converts two consecutive underscores (__) to a dash (-) in the probe name:

provider myserv
{
 probe query__receive(char *, char *);
 probe query__respond();
};

You can add stability attributes to your provider definition so that consumers of your probes
understand the likelihood of change in future versions of your application. See DTrace Stability
Features for more information on DTrace stability attributes.

The following example illustrates how stability attributes are defined:

#pragma D attributes Evolving/Evolving/Common provider myserv provider
#pragma D attributes Private/Private/Unknown provider myserv module
#pragma D attributes Private/Private/Unknown provider myserv function
#pragma D attributes Evolving/Evolving/Common provider myserv name
#pragma D attributes Evolving/Evolving/Common provider myserv args

provider myserv
{
 probe query__receive(char *, char *);
 probe query__respond();
};

Chapter 13
Adding Probes to an Application

13-2

Adding Probes to Application Code
After you have defined your probes in a .d file, you then need to augment your source code to
indicate the locations that should trigger your probes. Consider the following example C
application source code:

void main_look(void)
{
 ...
 query = wait_for_new_query();
 process_query(query);
 ...
}

To add probes to an application, use the -h option to the dtrace command, which generates
a header file based on the probe definitions. For example, the following command generates
the header file myserv.h, which contains macro definitions corresponding to the probe
definitions in myserv.d:

dtrace -h -s myserv.d

This method is recommended, as the coding is easier to implement and understand. The
method is also compatible with both C and C++. In addition, because the generated macros
depend on the types that you define in the provider definition, the compiler can perform type
checking on them.

For example, you can add a probe site by using the MYSERV_QUERY_RECEIVE macro that
dtrace -h defines in myserv.h:

#include "myserv.h"
...
void main_look(void)
{
 ...
 query = wait_for_new_query();
 MYSERV_QUERY_RECEIVE(query->clientname, query->msg);
 process_query(query);
 ...
}

In the previous example, the name of the macro encodes both the provider name and the
probe name.

Testing if a Probe Is Enabled
The computational overhead of a DTrace probe is usually equivalent to a few no-op
instructions. However, setting up probe arguments can be expensive, particularly in the case of
dynamic languages, where the code has to determine the name of a class or the method at
runtime.

In addition to the probe macro, the dtrace -h command creates an is-enabled probe macro
for each probe that you specify in the provider definition. To ensure that your program
computes the arguments to a DTrace probe only when required, you can use the is-enabled
probe test to verify whether the probe is currently enabled, for example:

if (MYSERV_QUERY_RECEIVE_ENABLED())
 MYSERV_QUERY_RECEIVE(query->clientname, query->msg);

Chapter 13
Adding Probes to an Application

13-3

If the probe arguments are computationally expensive to calculate, the slight overhead that is
incurred by performing the is-enabled probe test is more than offset when the probe is not
enabled.

Building Applications With Probes
You must augment the build process for your application to include the DTrace provider and
probe definitions. A typical build process takes each source file and compiles it to create a
corresponding object file. The compiled object files are then linked to each other to create the
finished application binary, as shown in the following example:

src1.o: src1.c
 gcc -c src1.c

src2.o: src2.c
 gcc -c src2.c

myserv: src1.o src2.o
 gcc -o myserv src1.o src2.o

If you included DTrace probe definitions in your application, you need to add appropriate
Makefile rules to your build process to execute the dtrace command.

The dtrace command post-processes the object files that are created by the preceding
compiler commands and generates the object file myserv.o from myserv.d and the other object
files. The -G option is used to link provider and probe definitions with a user application.

The -Wl,--export-dynamic link options to gcc are required to support symbol lookup in a
stripped executable at runtime, for example, by running ustack().

If you inserted probes in the source code by using the macros that were defined in a header
file created by dtrace -h, you need to include that command in the Makefile:

myserv.h: myserv.d
 dtrace -h -s myserv.d

src1.o: src1.c myserv.h
 gcc -c src1.c

src2.o: src2.c myserv.h
 gcc -c src2.c

myserv.o: myserv.d src1.o src2.o
 dtrace -G -s myserv.d src1.o src2.o

myserv: myserv.o
 gcc -Wl,--export-dynamic,--strip-all -o myserv myserv.o src1.o src2.o

The rules in the Makefile take into account the dependency of the header file on the probe
definition.

Using Statically Defined Probes
The DTrace helper device (/dev/dtrace/helper) enables a user-space application that
contains USDT probes to send probe provider information to DTrace.

If the program that is to be traced is run by a user other than root, change the mode of the
DTrace helper device to allow the user to record tracing information:

Chapter 13
Adding Probes to an Application

13-4

chmod 666 /dev/dtrace/helper

Alternatively, if the acl package is installed on your system, you can use an ACL rule to limit
access to a specific user, as shown in the following example:

setfacl -m u:guest:rw /dev/dtrace/helper
ls -l /dev/dtrace
total 0
crw-rw---- 1 root root 10, 16 Sep 26 10:38 dtrace
crw-rw----+ 1 root root 10, 17 Sep 26 10:38 helper
drwxr-xr-x 2 root root 80 Sep 26 10:38 provider
getfacl /dev/dtrace/helper
getfacl: Removing leading '/' from absolute path names
file: dev/dtrace/helper
owner: root
group: root
user::rw-
user:guest:rw-
group::rw-
mask::rw-
other::---

Note:

You must change the mode on the device before the user runs the program.

The full name of a probe in a user application takes the usual provider PID : module :
function : name form, where:

provider
Is the name of the provider, as defined in the provider definition file.

PID
Is the process ID of the running executable.

module
Is the name of the executable.

function
Is the name of the function where the probe is located.

name
Is the name of the probe, as defined in the provider definition file with any two consecutive
underscores (__) replaced by a dash (-).

For example, for a myserv process with a PID of 1173, the full name of the query-receive
probe would be myserv1173:myserv:main_look:query-receive.

The following simple example shows how to invoke a traced process from dtrace:

dtrace -c ./myserv -qs /dev/stdin <<EOF
 $target:::query-receive
 {
 printf("%s:%s:%s:%s %s %s\n", probeprov, probemod, probefunc, probename,
 stringof(args[0]), stringof(args[1]));
 }

Chapter 13
Adding Probes to an Application

13-5

 $target:::query-respond
 {
 printf("%s:%s:%s:%s\n", probeprov, probemod, probefunc, probename);
 }
EOF

myserv1173:myserv:main_look:query-receive foo1 msg1
myserv1173:myserv:process_query:query-respond
myserv1173:myserv:main_look:query-receive bar2 msg1
myserv1173:myserv:process_query:query-respond
...

Note:

For the query-receive probe, stringof() is used to cast args[0] and args[1] to
type string. Otherwise, a DTrace compilation error similar to the following is
displayed:

dtrace: failed to compile script /dev/stdin: line 7:
printf() argument #5 is incompatible with conversion #4 prototype:
 conversion: %s
 prototype: char [] or string (or use stringof)
 argument: char *

If the probe arguments were defined as type string instead of char * in the probe
definition file, a compilation warning similar to the following would be displayed:

In file included from src1.c:5:
myserv.h:39: warning: parameter names (without types) in function declaration

In this case, casting the probe arguments to the type string would no longer be
required.

The following script illustrates the complete process of instrumenting, compiling and tracing a
simple user-space program. Save it in a file named testscript:

#!/bin/bash

Define the probes
cat > prov.d <<EOF
provider myprog
{
 probe dbquery__entry(char *);
 probe dbquery__result(int);
};
EOF

Create the C program
cat > test.c <<EOF
#include <stdio.h>
#include "prov.h"

int
main(void)
{
 char *query = "select value from table where name = 'foo'";
 /* If the dbquery-entry probe is enabled, trigger it */
 if (MYPROG_DBQUERY_ENTRY_ENABLED())

Chapter 13
Adding Probes to an Application

13-6

 MYPROG_DBQUERY_ENTRY(query);
 /* Pretend to run query and obtain result */
 sleep(1);
 int result = 42;
 /* If the dbquery-result probe is enabled, trigger it */
 if (MYPROG_DBQUERY_RESULT_ENABLED())
 MYPROG_DBQUERY_RESULT(result);
 return (0);
}
EOF

test.o: test.c prov.h
 gcc -c test.c

prov.o: prov.d test.o
 dtrace -G -s prov.d test.o

test: prov.o
 gcc -o test prov.o test.o
EOF

Make the executable
make test

Trace the program
dtrace -c ./test -qs /dev/stdin <<EOF
myprog\$target:::dbquery-entry
{
 self->ts = timestamp;
 printf("Query = %s\n", stringof(args[0]));
}

myprog\$target:::dbquery-result
{
 printf("Query time = %d microseconds; Result = %d\n",
 (timestamp - self->ts) / 1000, args[0]);
}
EOF

The output from running this script shows the compilation steps, as well as the results of
tracing the program:

chmod +x testscript
./testscript
dtrace -h -s prov.d
gcc -c test.c
dtrace -G -s prov.d test.o
gcc -o test prov.o test.o
Query = select value from table where name = 'foo'
Query time = 1000481 microseconds; Result = 42

Chapter 13
Adding Probes to an Application

13-7

14
Statically Defined Tracing of Kernel Modules

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

For more information about DTrace, see Oracle Linux: DTrace Release Notes and
Oracle Linux: Using DTrace for System Tracing.

DTrace provides a facility for developers to define customized probes in kernel modules. These
static probes appear as additional probes of the sdt provider and impose little to no overhead if
the sdt module is not loaded. For example, for x86_64, the overhead is a single-byte NOP,
followed by a 4-byte NOP. This chapter provides a full example of how to define and use static
probes in a kernel module.

The general principles for naming probes and choosing insertion points are the same for kernel
modules as they are for user-space applications. You should define probes that have a
semantic meaning that is readily understood by your DTrace user community. Typically, you
might name probes for the routine in which you place them and their position in that routine.
For example, if your probes provide information about data values on entry to or return from a
routine named foo, you might name them foo-entry and foo-return. The data values that are
returned by such probes could present the routine as a black box, rather than return
intermediate values from the internal implementation of the module. To gather data from
deeper within a module, you might insert additional probes with names such as foo-stage1 or
foo-post-hardware-init.

In one respect, using static probes with kernel modules can be simpler than for user-space
applications. You do not need to modify the build files unless you want to conditionally compile
a module to include the probes. Inserting the probes in the source code is slightly more
complex, as you cannot use the dtrace -h command to generate the probe macros.
However, using a DTRACE_PROBE macro to insert a probe is a relatively simple change to make
to the source code.

You can insert sdt static probes in any Oracle Linux kernel module for which you have the
source files and the necessary build infrastructure, but note that DTrace supports statically
defined tracing of 64-bit kernel modules only.

For more information about the sdt provider, see sdt provider.

For an introduction to the concepts of statically defined tracing as applied to user-space
applications, see Statically Defined Tracing of User Applications.

14-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/

Inserting Static Probe Points
You can embed static probes within the source code for which you want to capture the current
state of a module and its data.

The following example pseudo character device driver consists of three source files:

revdev.h
Is the header file for the module.

rev_mod.c
Defines the module's properties and its init and exit routines.

rev_dev.c
Defines the driver's open, read, release, unlocked_ioctl, and write routines. The static
probes are inserted in the read, unlocked_ioctl, and write routines, although probes could
also be inserted in the other routines, if required.

revdev.h Example
The module header file revdev.h must be prepared, as indicated in bold font in the following
example, by adding lines to include linux/sdt.h and to define probe macros.

#include <asm/uaccess.h>
#include <linux/cdev.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/types.h>
#include <linux/sdt.h>

#define DEVICE "revdev"

#define REVDEV_IOCTL_ENTRY_PROBE(name, file, cmd, arg) \
 DTRACE_PROBE3(ioctl__##name, struct file *, file, \
 unsigned int, cmd, unsigned long, arg)
#define REVDEV_IOCTL_RETURN_PROBE(name, str) \
 DTRACE_PROBE1(ioctl__##name, struct char *, str)
#define REVDEV_READ_ENTRY_PROBE(name,fp,buf) \
 DTRACE_PROBE2(read__##name, file *, fp, char *, buf)
#define REVDEV_READ_RETURN_PROBE(name,buf,n) \
 DTRACE_PROBE2(read__##name, char *, buf, size_t, n)
#define REVDEV_WRITE_ENTRY_PROBE(name,fp,buf,n) \
 DTRACE_PROBE3(write__##name, file *, fp, char *, buf, size_t, n)
#define REVDEV_WRITE_RETURN_PROBE(name,buf,n) \
 DTRACE_PROBE2(write__##name, char *, buf, size_t, n)

The DTRACE_PROBE macros that are defined in /lib/modules/`uname -r`/build/include/
linux/sdt.h support from zero to eight arguments.

You can define your own macros for the inserted probes, as shown in the preceding example.
Unlike user-space static probes, you cannot use the dtrace -h command to create a header
file that includes suitable probe definitions. You do not need to create a provider definition file
for the probes.

Chapter 14
Inserting Static Probe Points

14-2

The probes are named according to the first argument of the DTRACE_PROBE macro. The suffix
N in the macro name DTRACE_PROBEN refers the number of arguments that are passed to the
probe. The first argument to the probe macro is the probe name. As described in Declaring
Probes, two consecutive underscores are converted to a single dash. The remaining macro
arguments are pairs of arguments that define the DTrace argn variables that are assigned
when the probe fires. Each pair of arguments defines the variable type and a variable name,
for example:

#define REVDEV_WRITE_ENTRY_PROBE(name, fp, buf, n) \
 DTRACE_PROBE3(write__##name, file *, fp, char *, buf, size_t, n)

The values of fp, buf, and n are made available by the arg0, arg1, and arg2 variables in
DTrace when the probe fires.

The provider, module, and function elements of the complete probe are named for sdt, the
driver module name (without the .ko), and the driver routine.

The probes inherit the stability attributes of the sdt provider.

rev_mod.c Example
No changes are made in the following example, which does not insert any probes in the
module's init and exit routines. Note that there is no restriction on inserting probes in these
routines.

#include "revdev.h"

MODULE_AUTHOR("DTrace Example");
MODULE_DESCRIPTION("Using DTrace SDT probes with a device driver");
MODULE_VERSION("v1.0");
MODULE_LICENSE("GPL");

extern const struct file_operations revdev_fops;

static struct miscdevice revdev = {
 .minor = 0,
 .name = DEVICE,
 .fops = &revdev_fops,
};

DEFINE_MUTEX(revdev_mutex);

static int revdev_entry(void){ /* Register device */
 int retval;
 retval = misc_register(&revdev);
 if (retval < 0) {
 printk(KERN_ERR "revdev: Could not register device");
 return retval;
 }
 mutex_init(&revdev_mutex);
 return 0;
}

static void revdev_exit(void){
 misc_deregister(&revdev);
}

/* Define module init and exit calls */
module_init(revdev_entry);
module_exit(revdev_exit);

Chapter 14
Inserting Static Probe Points

14-3

rev_dev.c Example
No existing lines of code are modified in this example. Only line insertions are required for the
entry and return probes in each of the read, unlocked_ioctl, and write routines.

The changes in this example appear in bold font.

#include "revdev.h"

static struct device_buffer {
 char data[80];
} devbuf;

static char *oddeven[] = { "Even", "Odd" };

extern struct mutex revdev_mutex;

static long revdev_ioctl(struct file *file, unsigned int cmd,
 unsigned long arg) {
 char *cp;
 REVDEV_IOCTL_ENTRY_PROBE(entry, file, cmd, arg);
 cp = oddeven[arg%2];
 REVDEV_IOCTL_RETURN_PROBE(return, cp);
 return -EAGAIN;
}

static int revdev_open(struct inode *inode, struct file *fp){
 if (!mutex_trylock(&revdev_mutex)){
 printk(KERN_INFO "revdev: Device already in use");
 return -EBUSY;
 }
 return 0;
}

static void revstr(char *s) { /* After Kernighan and Ritchie */
 int i, j, t;
 for (i = 0, j = strlen(s)-1; i < j; i++, j--)
 t = s[i], s[i] = s[j], s[j] = t;
}

static ssize_t revdev_read(struct file *fp, char* buf, size_t n, loff_t *o){
 int retval;
 REVDEV_READ_ENTRY_PROBE(entry, fp, devbuf.data);
 revstr(devbuf.data);
 n = strlen(devbuf.data);
 retval = copy_to_user(buf, devbuf.data, n);
 REVDEV_READ_RETURN_PROBE(return, buf, n);
 if (retval != 0) return -EINVAL;
 return 0;
}

static ssize_t revdev_write(struct file *fp, const char* buf, size_t n, loff_t *o){
 int retval;
 REVDEV_WRITE_ENTRY_PROBE(entry, fp, buf, n);
 retval = copy_from_user(devbuf.data, buf, n);
 devbuf.data[n-retval] = '\0';
 REVDEV_WRITE_RETURN_PROBE(return, devbuf.data, n);
 if (retval != 0) return -EINVAL;
 return 0;
}

Chapter 14
Inserting Static Probe Points

14-4

static int revdev_close(struct inode *inode, struct file *fp){
 mutex_unlock(&revdev_mutex);
 return 0;
}

const struct file_operations revdev_fops = {
 .owner = THIS_MODULE,
 .read = revdev_read,
 .write = revdev_write,
 .unlocked_ioctl = revdev_ioctl,
 .open = revdev_open,
 .release = revdev_close,
};

Building Modules With Static Probes

Note:

The following example requires that you link the module against a UEK version that
supports the DTrace modules, which can be either UEK R5 or UEK R4 for Oracle
Linux 7 or UEK R4 for Oracle Linux 6.

A bug in the current implementation means that a module containing SDT probes
must be built from two or more source files.

The following Kbuild and Makefile are used to build the example pseudo driver module
revdev.ko and a test program named testrevdev.

Kbuild Example
bj-m += revdev.o

revdev-y := rev_dev.o rev_mod.o

Makefile Example

Note:

All of the command lines in the Makefile, such as those beginning with gcc in the
following example, must start with tabs.

KERNEL_DIR = /lib/modules/`uname -r`/build

modules:: testrevdev

install:: modules_install

testrevdev: testrevdev.c
 gcc -o testrevdev testrevdev.c

Chapter 14
Building Modules With Static Probes

14-5

%::
 $(MAKE) -C $(KERNEL_DIR) M=`pwd` $@

The source file for testrevdev is testrevdev.c.

testrevdev.c Example
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define DEVICE_FILE "/dev/revdev"

int main() {
 char buf[81];
 int i, fd, n;

 if ((fd = open(DEVICE_FILE, O_RDWR)) != 0) {
 perror("open");
 exit(1);
 }

 i=0;
 while (1) {
 (i++)%20;
 printf("Write: ");
 scanf(" %80[^\n]", buf);
 n = strlen(buf);
 if (!strncmp(buf, "exit", 4))
 break;
 else if (!strncmp(buf, "ioctl", 5))
 ioctl(fd,128,i);
 else {
 write(fd, buf, n);
 read(fd, buf, n);
 buf[n]='\0';
 printf(" Read: %s\n", buf);
 }
 }

 close(fd);
 exit(0);
}

When run, testrevdev reads a string that you enter, writes the string to the revdev device,
and then reads the reversed string from the device.

If the input string begins with ioctl, the program calls ioctl on the open file descriptor, which
invokes the device's unlocked_ioctl routine. An input string that begins with exit terminates
the program.

To build the module and test program, use the make command:

make
make -C /lib/modules/`uname -r`/build M=`pwd` modules
make[1]: Entering directory `/usr/src/kernels/4.1.12-version.el6uek.x86_64'
 CC [M] /root/revdev/rev_dev.o
 CC [M] /root/revdev/rev_mod.o
 SDTSTB /root/revdev/revdev.sdtstub.S
 AS [M] /root/revdev/revdev.sdtstub.o
 LD [M] /root/revdev/revdev.o

Chapter 14
Building Modules With Static Probes

14-6

 Building modules, stage 2.
 MODPOST 1 modules
 SDTINF /root/revdev/revdev.sdtinfo.c
 CC /root/revdev/revdev.mod.o
 CTF
 LD [M] /root/revdev/revdev.ko
make[1]: Leaving directory `/usr/src/kernels/4.1.12-version.el6uek.x86_64'

Using DTrace to Test Modules With Static Probes
You can use DTrace to display information when one of the embedded static probes in a
module fires.

To test the example module revdev.ko:

1. Set up a udev rule to create the /dev/revdev device file:

echo "KERNEL==\"revdev\", MODE=\"0660\"" > /etc/udev/rules.d/10-
revdev.rules

2. Load the revdev.ko module:

insmod revdev.ko

You can use dtrace to test that the probes are now available:

dtrace -l -m revdev
 ID PROVIDER MODULE FUNCTION NAME
 4 sdt revdev revdev_ioctl ioctl-return
 5 sdt revdev revdev_ioctl ioctl-entry
 6 sdt revdev revdev_write write-return
 7 sdt revdev revdev_write write-entry
 8 sdt revdev revdev_read read-return
 9 sdt revdev revdev_read read-entry

3. Enter the following DTrace script (traceflow):

#!/usr/sbin/dtrace -qs
#pragma D option nspec=10

self int indent;

syscall:::entry
/execname == "testrevdev"/
{
 self->specflag = 0;
 self->spec = speculation();
 self->indent += 2;
 speculate(self->spec);
}

syscall:::entry
/self->spec/
{
 speculate(self->spec);
 printf("%*s ", self->indent, "->");
 printf("%s() entry\n",probefunc);
 self->indent += 2;
}

syscall:::return
/self->spec/

Chapter 14
Using DTrace to Test Modules With Static Probes

14-7

{
 speculate(self->spec);
 self->indent -= 2;
 printf("%*s ", self->indent, "<-");
 printf("%s() return\n",probefunc);
}

syscall:::return
/self->spec && self->specflag == 0/
{
 discard(self->spec);
 self->indent -= 2;
 self->spec = 0;
}

syscall:::return
/self->spec && self->specflag == 1/
{
 commit(self->spec);
 self->indent -= 2;
 self->spec = 0;
}

sdt:revdev::ioctl-entry
/self->spec/
{
 speculate(self->spec);
 self->specflag = 1;
 printf("%*s ", self->indent, "=>");
 printf("%s() entry file: %s cmd: %d arg: %d\n",
 probefunc, d_path(&(((struct file *)arg0)->f_path)), arg1, arg2);
}

sdt:revdev::ioctl-return
/self->spec/
{
 speculate(self->spec);
 printf("%*s ", self->indent, "<=");
 printf("%s() return cpstr: %s\n", probefunc, stringof((char*)arg0));
}

sdt:revdev::read-entry
/self->spec/
{
 speculate(self->spec);
 self->specflag = 1;
 printf("%*s ", self->indent, "=>");
 printf("%s() entry file: %s devbuf: %s\n",
 probefunc, d_path(&(((struct file *)arg0)->f_path)),
 stringof((char *)arg1));
}

sdt:revdev::read-return
/self->spec/
{
 speculate(self->spec);
 printf("%*s ", self->indent, "<=");
 printf("%s() return string: %s len: %d\n",
 probefunc, stringof((char *)arg0), arg1);
}

sdt:revdev::write-entry

Chapter 14
Using DTrace to Test Modules With Static Probes

14-8

/self->spec/
{
 speculate(self->spec);
 self->specflag = 1;
 printf("%*s ", self->indent, "=>");
 printf("%s() entry file: %s string: %s len: %d\n",
 probefunc, d_path(&(((struct file *)arg0)->f_path)),
 stringof((char *)arg1), arg2);
}

sdt:revdev::write-return
/self->spec/
{
 speculate(self->spec);
 printf("%*s ", self->indent, "<=");
 printf("%s() return string: %s len: %d\n",
 probefunc, stringof((char *)arg0), arg1);
}

When one of the inserted probes fires, traceflow displays information about data values
in the module by using the probe argument variables (arg0, arg1, arg2,...).

Note:

Argument variables that return pointer types, such as file * and char *, must
be explicitly cast.

The script uses d_path and stringof to create printable file paths and strings. For
example, (struct file *)arg0 casts the value of arg0 to a file pointer (struct file *).
The f_path member of the struct file contains the path structure (struct path) for a
file. As d_path takes a path pointer (struct path *) as its argument, the & operator is
used to return a pointer to the struct path.

See d_path and String Conversion for more information.

4. Make traceflow executable:

chmod +x traceflow
5. In one window, run traceflow:

./traceflow
6. In another window, run testrevdev and enter input, for example:

./testrevdev
Write: hello
 Read: olleh
Write: world
 Read: dlrow
Write: ioctl
Write: ioctl
Write: exit

In the window that traceflow is running, you should see output similar to the following ,
as DTrace responds to the probes in revdev.ko that are firing:

./traceflow
-> write() entry

Chapter 14
Using DTrace to Test Modules With Static Probes

14-9

 => revdev_write() entry file: /dev/revdev string: hello len: 5
 <= revdev_write() return string: hello len: 5
<- write() return
-> read() entry
 => revdev_read() entry file: /dev/revdev devbuf: hello
 <= revdev_read() return string: olleh len: 5
<- read() return
-> write() entry
 => revdev_write() entry file: /dev/revdev string: world len: 5
 <= revdev_write() return string: world len: 5
<- write() return
-> read() entry
 => revdev_read() entry file: /dev/revdev devbuf: world
 <= revdev_read() return string: dlrow len: 5
<- read() return
-> ioctl() entry
 => revdev_ioctl() entry file: /dev/revdev cmd: 128 arg: 3
 <= revdev_ioctl() return cpstr: Odd
<- ioctl() return
-> ioctl() entry
 => revdev_ioctl() entry file: /dev/revdev cmd: 128 arg: 4
 <= revdev_ioctl() return cpstr: Even
<- ioctl() return

Chapter 14
Using DTrace to Test Modules With Static Probes

14-10

15
Performance Considerations

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

For more information about DTrace, see Oracle Linux: DTrace Release Notes and
Oracle Linux: Using DTrace for System Tracing.

DTrace creates additional work in the system. Therefore, enabling DTrace always affects
system performance in some way. Often, this effect is negligible, but it can become substantial
if many probes with significant enablings are enabled. This chapter describes some techniques
for minimizing the performance effect of DTrace.

Limit Enabled Probes
Dynamic instrumentation techniques enable DTrace to provide unparalleled tracing coverage
of the kernel and arbitrary user processes. While this coverage provides revolutionary new
insight into system behavior, it also can cause enormous probe effect. If tens of thousands or
hundreds of thousands of probes are enabled, the effect on the system can easily be
substantial. Therefore, you should only enable as many probes as you need to solve a
problem. For example, you should not enable all syscall probes if a more concise enabling
can answer your question. Your question might require that you concentrate on a specific
module of interest or a specific function.

Caution:

When using the pid provider, be especially careful. Because the pid provider can
instrument every instruction, you could enable millions of probes in an application
and therefore slow the target process to a crawl.

You can also use DTrace in situations where large numbers of probes must be enabled to
answer a question. Enabling a large number of probes might slow down the system
significantly, but it never induces fatal failure on the system. You should therefore not hesitate
to enable many probes, if so required.

Using Aggregations
As discussed in Aggregations, DTrace aggregations provide a scalable way to aggregate data.
Associative arrays might appear to offer functionality that is similar to aggregations, but

15-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/

because general-purpose variables are global by nature, associative arrays cannot offer the
linear scalability of aggregations. Therefore, the preference is to use aggregations over
associative arrays whenever possible. For example, the following D program uses an
associative array to aggregate data:

syscall:::entry
{
 totals[execname]++;
}

syscall::rexit:entry
{
 printf("%40s %d\n", execname, totals[execname]);
 totals[execname] = 0;
}

Whereas, the following D program is preferred, as it uses an aggregation to achieve the same
result:

syscall:::entry
{
 @totals[execname] = count();
}

END
{
 printa("%40s %@d\n", @totals);
}

Using Cacheable Predicates
You use DTrace predicates to filter unwanted data from the experiment by tracing data only if a
specified condition is found to be true. When enabling many probes, you generally use
predicates of a form that identifies a specific thread, or threads of interest, such as /self-
>traceme/ or /pid == 12345/. Although many of these predicates evaluate to a false value for
most threads in most probes, the evaluation itself can become costly when done for many
thousands of probes. To reduce this cost, DTrace caches the evaluation of a predicate if it
includes only thread-local variables, such as /self->traceme/, or for immutable variables,
such as /pid == 12345/. The cost of evaluating a cached predicate is much less than the cost
of evaluating a non-cached predicate, especially if the predicate involves thread-local
variables, string comparisons, or other relatively costly operations. While predicate caching is
transparent to the user, it does require some guidelines for constructing optimal predicates.
Some guidelines for constructing optimal predicates are outlined in the following table.

Cacheable Uncacheable

self->mumble mumblecurthread
mumblepid
tid

execname curpsinfo->pr_fname
((struct task_struct *)curthread)->comm

pid curpsinfo->pr_pid
((struct task_struct *)curthread)->pid

Chapter 15
Using Cacheable Predicates

15-2

Cacheable Uncacheable

tid curlwpsinfo->pr_lwpid
((struct task_struct *)curthread)->pid

curthread curthread->any_member
curlwpsinfo->any_member
curpsinfo->any_member

The following example uses an associative array in the predicate and is not cacheable:

syscall::read:entry
{
 follow[pid, tid] = 1;
}

lockstat:::
/follow[pid, tid]/
{}

syscall::read:return
/follow[pid, tid]/
{
 follow[pid, tid] = 0;
}

Using a cacheable, thread-local variable, per the following example, is preferable:

syscall::read:entry
{
 self->follow = 1;
}

lockstat:::
/self->follow/
{}

syscall::read:return
/self->follow/
{
 self->follow = 0;
}

For a predicate to be cacheable, it must consist exclusively of cacheable expressions. All of
the following predicates all cacheable:

/execname == "myprogram"/

/execname == $$1/

/pid == 12345/

/pid == $1/

/self->traceme == 1/

The following examples, which use global variables, are not cacheable:

/execname == one_to_watch/

Chapter 15
Using Cacheable Predicates

15-3

/traceme[execname]/

/pid == pid_i_care_about/

/self->traceme == my_global/

Chapter 15
Using Cacheable Predicates

15-4

16
DTrace Stability Features

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

For more information about DTrace, see Oracle Linux: DTrace Release Notes and
Oracle Linux: Using DTrace for System Tracing.

Developers are provided with early access to new technologies, as well as observability tools
that enable them peer into the internal implementation details of user and kernel software.
Unfortunately, new technologies and internal implementation details are prone to changes
because interfaces and implementations evolve and mature when software is upgraded or
patched.

Application and interface stability levels are documented using a set of labels to help set user
expectations for the kinds of changes that might occur in different types of future releases. No
individual stability attribute appropriately describes the arbitrary set of entities and services that
can be accessed from a D program. Therefore, DTrace and the D compiler include features to
dynamically compute and describe the stability levels of the D programs that you create.

This chapter discusses the DTrace features for determining program stability to help you
design stable D programs. You can use these DTrace stability features to inform you of the
stability attributes of your D programs or to produce compile-time errors when your program
has undesirable interface dependencies.

Stability Levels
DTrace provides two types of stability attributes for entities like built-in variables, functions and
probes: a stability level and an architectural dependency class. The DTrace stability level
assists you in making risk assessments when developing scripts and tools that are based on
DTrace by indicating how likely it is for an interface or DTrace entity to change in a future
release or patch. The DTrace dependency class indicates whether an interface is common to
all Oracle Linux platforms and processors or whether it is associated with a particular
architecture. The two types of attributes that are used to describe interfaces can vary
independently.

The stability values that are used by DTrace are described in the following table and are listed
in order, from the lowest stability to the highest stability. Applications that depend only on
Stable interfaces should reliably continue to function on future minor releases and will not be
broken by interim patches. The less stable interfaces allow for experimentation, prototyping,
tuning, and debugging on your current system. These less stable interfaces should be used
with the understanding that they might change and become incompatible or even be dropped
or replaced with alternatives in future minor releases.

16-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/

DTrace stability values also help you understand the stability of the software entities that you
are observing, in addition to the stability of the DTrace interfaces themselves. Therefore,
DTrace stability values also indicate how likely your D programs and layered tools are to
require corresponding changes when you upgrade or change the software stack that you are
observing.

Stability Value Description

Internal The interface is private to DTrace and
represents an implementation detail of DTrace.
Internal interfaces might change in minor or
micro releases.

Private The interface is private to Oracle and
represents an interface developed for use by
other Oracle products that are not yet publicly
documented for use by customers and ISVs
(independent software vendors). Private
interfaces might change in minor or micro
releases.

Obsolete The interface is supported in the current
release but is scheduled to be removed, most
likely in a future minor release. The D compiler
might produce warning messages if you
attempt to use an Obsolete interface.

External The interface is controlled by an entity other
than Oracle. Oracle makes no claims regarding
either source or binary compatibility for
External interfaces between any two releases.
Applications based on these interfaces might
not work in future releases, including patches
that contain External interfaces.

Unstable The interface provides developers early access
to new or rapidly changing technology or to an
implementation artifact that is essential for
observing or debugging system behavior for
which a more stable solution is anticipated in
the future. Oracle makes no claims about either
source or binary compatibility for Unstable
interfaces from one minor release to another.

Evolving The interface might eventually become
Standard or Stable but is still in transition.
When non-upward, compatible changes
become necessary, they occur in minor and
major releases. These changes will be avoided
in micro releases whenever possible. If such a
change is necessary, it will be documented in
the release notes for the affected release. Also,
when feasible, migration aids are provided for
binary compatibility and continued D program
development.

Stable The interface is a mature interface.

Chapter 16
Stability Levels

16-2

Stability Value Description

Standard The interface complies with an industry
standard. The corresponding documentation
for the interface describes the standard to
which the interface conforms. Standards are
typically controlled by a standards
development organization. Changes can be
made to the interface in accordance with
approved changes to the standard. This
stability level can also apply to interfaces that
have been adopted (without a formal standard)
by an industry convention. Support is provided
for only the specified versions of a standard;
support for later versions is not guaranteed.

Dependency Classes
Because Oracle Linux and DTrace support a variety of operating platforms and processors,
DTrace also labels interfaces with a dependency class, which indicates whether an interface is
common to all Oracle Linux platforms and processors or whether the interface is associated
with a particular system architecture. The dependency class is orthogonal to the stability levels
previously described in this document. For example, a DTrace interface can be Stable, but only
supported on x86_64 microprocessors. Or, the interface can be Unstable, but common to all
Oracle Linux platforms. The DTrace dependency classes are described in the following table
and listed in order, from least common (most specific to a particular architecture), to most
common (common to all architectures).

Dependency Class Description

Unknown The interface has an unknown set of
architectural dependencies. DTrace does not
necessarily know the architectural
dependencies of all entities, such as the data
types defined in the operating system
implementation. The Unknown label is
typically applied to interfaces of very low
stability for which dependencies cannot be
computed. The interface might not be available
when using DTrace on any architecture other
than what you are currently using.

CPU The interface is specific to the CPU model of the
current system. Interfaces with CPU model
dependencies might not be available on other
CPU implementations, even if those CPUs
export the same instruction set architecture
(ISA).

Platform The interface is specific to the hardware
platform for the current system. A platform
typically associates a set of system components
and architectural characteristics. To display the
current platform name, use the uname -i
command. The interface might not be available
on other hardware platforms.

Chapter 16
Dependency Classes

16-3

Dependency Class Description

Group The interface is specific to the hardware
platform group for the current system. A
platform group typically associates a set of
platforms with related characteristics together
under a single name. To display the current
platform group name, use the uname -m
command. The interface is available on other
platforms in the platform group, but it might
not be available on hardware platforms that
are not members of the group.

ISA The interface is specific to the ISA that is
supported by the microprocessors on the
current system. The ISA describes a
specification for software that can be executed
on the microprocessor, including details such
as assembly language instructions and
registers. To display the native instruction sets
that are supported by the system, use the
isainfo command. The interface might not
be supported on systems that do not export any
of the same instruction sets.

Common The interface is common to all Oracle Linux
platforms, regardless of the underlying
hardware. DTrace programs and layered
applications that depend only on Common
interfaces can be executed and deployed on
other Oracle Linux platforms with the same
Oracle Linux and DTrace revisions. The
majority of DTrace interfaces are Common, so
you can use them wherever you use Oracle
Linux.

Interface Attributes
DTrace describes interfaces by using a triplet of attributes consisting of two stability levels and
one dependency class. By convention, the interface attributes are written in the following order
and are separated by slashes:

 name_stability / data_stability / dependency_class

The name stability of an interface describes the stability level that is associated with its name,
as it appears in your D program or on the dtrace command line. For example, the execname
D variable is a Stable name.

The data stability of an interface is distinct from the stability that is associated with the interface
name. This stability level describes the commitment to maintain the data formats that are used
by the interface and any associated data semantics.

The dependency class of an interface is distinct from its name and data stability and describes
whether the interface is specific to the current operating platform or microprocessor.

DTrace and the D compiler track the stability attributes for all of the following DTrace interface
entities: providers, probe descriptions, D variables, D functions, types, and program
statements. These interface entities are described later in this chapter. Note that all three

Chapter 16
Interface Attributes

16-4

values can vary independently. For example, the curthread D variable has Stable/Private/
Common attributes: the variable name is Stable and is Common to all Oracle Linux platforms.
Note that this variable provides access to a Private data format that is an artifact of the Oracle
Linux kernel implementation. Most D variables are provided with Stable/Stable/Common
attributes, as are the variables you define.

Stability Computations and Reports
The D compiler performs stability computations for each of the probe descriptions and action
statements in your D programs. You can use the dtrace command with the -v option to
display a report of your program's stability, as shown in the follow example that uses a program
written on the command line:

dtrace -v -n dtrace:::BEGIN'{exit(0);}'
dtrace: description 'dtrace:::BEGIN' matched 1 probe

Stability attributes for description dtrace:::BEGIN:

 Minimum Probe Description Attributes
 Identifier Names: Stable
 Data Semantics: Stable
 Dependency Class: Common

 Minimum Statement Attributes
 Identifier Names: Stable
 Data Semantics: Stable
 Dependency Class: Common

CPU ID FUNCTION:NAME
 0 1 :BEGIN

You can also choose to combine the -v option with the -e option, which directs the dtrace
command to compile, but not execute your D program, so that you can determine program
stability without enabling any probes and executing your program, as shown in the following
stability report:

dtrace -ev -n dtrace:::BEGIN'{trace(curthread->parent);}'

Stability data for description dtrace:::BEGIN:

 Minimum probe description attributes
 Identifier Names: Evolving
 Data Semantics: Evolving
 Dependency Class: Common

 Minimum probe statement attributes
 Identifier Names: Stable
 Data Semantics: Private
 Dependency Class: Common

In this example, notice that in the new program, the D curthread variable is referenced. This
variable has a Stable name, but Private data semantics: if you look at it, you are accessing
Private implementation details of the kernel. This status is now reflected in the program's
stability report. Stability attributes in the program report are computed by selecting the
minimum stability level and class from the corresponding values for each interface attributes
triplet.

Stability attributes are computed for a probe description by taking the minimum stability
attributes of all of the specified probe description fields, according to the attributes that are

Chapter 16
Stability Computations and Reports

16-5

published by the provider. The attributes of the available DTrace providers are shown in the
section corresponding to each provider. DTrace providers export a stability attributes triplet for
each of the four description fields for all of the probes published by that provider. Therefore, a
provider's name can have a greater stability than the individual probes that it exports. For
simplicity, most providers use a single set of attributes for all of the individual module function
name values they publish. Providers also specify attributes for the args[] array because the
stability of any probe arguments varies by provider.

If the provider field is not specified in a probe description, then the description is assigned the
Unstable/Unstable/Common stability attributes because the description might end up matching
probes of providers that do not yet exist when used on a future Oracle Linux release. As such,
Oracle does not provide guarantees about the future stability and behavior of this program. You
should always explicitly specify the provider when writing your D program clauses. In addition,
any probe description fields that contain pattern matching characters or macro variables, such
as $1, are treated as unspecified because these description patterns might expand to match
providers or probes to be released in future versions of DTrace and Oracle Linux. For more
details on pattern matching characters and macro variables, see D Program Structureand
Scripting.

Stability attributes are computed for most D language statements by taking the minimum
stability and class of the entities in the statement. The D language entities and their stability
attributes are listed in the following table.

Entity Attributes

D built-in variable curthread Stable/Private/Common

D user-defined variable x Stable/Stable/Common

For example, if you write the following D program statement, the resulting attributes of the
statement are Stable/Private/Common and the minimum attributes are associated with the
curthread and x operands:

x += curthread->prio;

The stability of an expression is computed by taking the minimum stability attributes of each of
the operands.

Any D variables that you define in your program are automatically assigned the Stable/Stable/
Common attributes. In addition, the D language grammar and D operators are implicitly
assigned these three attributes. References to kernel symbols by using the back quote (`)
operator are always assigned the Private/Private/Unknown attributes because they reflect
implementation artifacts. Types that you define in your D program source code, specifically
those that are associated with the C and D type namespace, are assigned the Stable/Stable/
Common attributes. Types that are defined in the operating system implementation and
provided by other type namespaces are assigned the Private/Private/Unknown attributes. The
D type cast operator yields an expression with stability attributes that are the minimum of the
input expression's attributes and the attributes of the cast output type.

If you use the C preprocessor to include C system header files, these types are associated
with the C type namespace and are assigned the Stable/Stable/Common attributes, as the D
compiler automatically assumes you are taking responsibility for these declarations. It is
therefore possible to be misled about your program's stability if you use the C preprocessor to
include a header file containing implementation artifacts. You should always consult the
documentation corresponding to the header files that you are including so that you can
determine the correct stability levels.

Chapter 16
Stability Computations and Reports

16-6

Stability Enforcement
When developing a DTrace script or layered tool, you might want to identify the specific source
of stability issues or ensure that your program has a desired set of stability attributes. You can
use the -x amin=_attributes_ option with the dtrace command to force the D compiler
to produce an error whenever any attributes computation results in a triplet of attributes less
than the minimum values that you specify on the command line.

The following example demonstrates the use of the -x amin option using a snippet of D
program source. Note that attributes are specified with three labels that are delimited /, in the
usual order:

dtrace -x amin=Evolving/Evolving/Common \
 -ev -n dtrace:::BEGIN’{trace(curthread->parent);}’
dtrace: invalid probe specifier dtrace:::BEGIN{trace(curthread->parent);}: \
 in action list: attributes for scalar curthread (Stable/Private/Common) \
 are less than predefined minimum

Chapter 16
Stability Enforcement

16-7

17
Translators

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

For more information about DTrace, see Oracle Linux: DTrace Release Notes and
Oracle Linux: Using DTrace for System Tracing.

DTrace Stability Features describes how DTrace computes and reports program stability
attributes. Ideally, you should construct your DTrace programs by consuming only Stable or
Evolving interfaces. Unfortunately, when debugging a low-level problem or measuring system
performance, you might need to enable probes that are associated with internal operating
system routines, such as functions in the kernel, rather than probes that are associated with
more stable interfaces, such as system calls. The available data at probe locations deep within
the software stack is often a collection of implementation artifacts rather than more stable data
structures, such as those associated with Oracle Linux system call interfaces. To assist you
with writing stable D programs, DTrace provides a facility for translating implementation
artifacts into stable data structures that are accessible from your D program statements.

Translator Declarations
A translator is a collection of D assignment statements provided by the supplier of an interface.
Translators can be used to translate an input expression into an object of the struct type. To
understand the need for using translators, consider as an example the ANSI C standard library
routines that are defined in stdio.h. These routines operate on a data structure named FILE,
which contains implementation artifacts that are abstracted away from C programmers. A
standard technique for creating a data structure abstraction is to provide only a forward
declaration of a data structure in public header files, while keeping the corresponding struct
definition in a separate and private header file.

If you are writing a C program and want to know the file descriptor corresponding to a FILE
struct, use the fileno() function to obtain the descriptor rather than dereferencing a member
of the FILE struct directly. The Oracle Linux header files enforce this rule by defining FILE as
an opaque forward declaration tag so that it cannot be dereferenced directly by C programs
that include <stdio.h>.

Inside the /lib/libc.so.6 library, consider the following hypothetical example where fileno is
implemented in C, noting that a real-life implementation would not be at all similar to this
example:

int
fileno(FILE *fp)
{
 struct file_impl *ip = (struct file_impl *)fp;

17-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/

 return (ip->fd);
}

In the example, the hypothetical fileno takes a FILE pointer as an argument and casts it to a
pointer that corresponds to the internal libc structure, struct file_impl, then returns the
value of the fd member of the implementation structure.

Unfortunately, observability software like DTrace requires the ability to peer inside the
implementation in order to provide useful results. DTrace cannot call arbitrary C functions that
are defined in Oracle Linux libraries or in the kernel. You could declare a copy of struct
file_impl in your D program to instrument the routines that are declared in stdio.h, but then
your D program would rely on Private implementation artifacts of the library that might break in
a future micro or minor release, or even in a patch. Ideally, you want to provide a construct for
use in D programs that is bound to the implementation of the library and is updated
accordingly, yet still provides an additional layer of abstraction associated with greater stability.

A new translator is created by using a declaration of the following form:

translator output-type < input-type
 input-identifier > {
 member-name = expression ;
 member-name = expression ;
 ...
};

The output-type names a struct that will be the result type for the translation. The input-type
specifies the type of the input expression, is surrounded in angle brackets <>, and followed by
an input-identifier that can be used in the translator expressions as an alias for the input
expression. The body of the translator is surrounded in braces {} and terminated with a
semicolon (;), and consists of a list of member-names and identifiers that correspond to
translation expressions. Each member declaration must name a unique member of the output-
type and must be assigned an expression of a type that is compatible with the member type,
according to the rules for the D assignment (=) operator.

For example, you could define a struct of stable information about stdio files based on some
of the available libc interfaces:

struct file_info {
 int file_fd; /* file descriptor from fileno() */
 int file_eof; /* eof flag from feof() */
};

Then, you could define a hypothetical D translator from FILE to file_info:

translator struct file_info < FILE *F > {
 file_fd = ((struct file_impl *)F)->fd;
 file_eof = ((struct file_impl *)F)->eof;
};

In this hypothetical translator, the input expression is of type FILE * and is assigned the input-
identifier F. The identifier F can then be used in the translator member expressions as a
variable of type FILE * that is only visible within the body of the translator declaration. To
determine the value of the output file_fd member, the translator performs a cast and
dereference similar to the hypothetical implementation of fileno() shown in the previous
example. A similar translation is performed to obtain the value of the EOF indicator.

Chapter 17
Translator Declarations

17-2

xlate D Operator
The xlate D operator is used to perform a translation from an input expression to one of the
defined translation output structures. The xlate operator is used in an expression of the
following form:

xlate <output-type> (input-expression)

For example, to invoke the hypothetical translator for FILE structs that are defined previously
and access the file_fd member, you would write the expression as follows:

xlate <struct file_info *>(f)->file_fd;

where f is a D variable of type FILE *. The xlate expression itself is assigned the type that is
defined by the output-type. When a translator is defined, it can be used to translate input
expressions to either the translator output struct type or to a pointer to that struct.

If you translate an input expression to a struct, you can either dereference a particular
member of the output immediately by using the “.” operator, or you can assign the entire
translated struct to another D variable to make a copy of the values of all the members. If you
dereference a single member, the D compiler only generates code that corresponds to the
expression for that member. You may not apply the & operator to a translated struct to obtain
its address, as the data object itself does not exist until it is copied or one of its members is
referenced.

If you translate an input expression to a pointer to a struct, you can either dereference a
particular member of the output immediately by using the -> operator, or you can dereference
the pointer by using the unary * operator. In the latter case, the result behaves as though you
translated the expression to a struct. If you dereference a single member, the D compiler only
generates code corresponding to the expression for that member. You may not assign a
translated pointer to another D variable, as the data object does not exist until it is copied or
one of its members is referenced, and therefore cannot be addressed.

A translator declaration may omit expressions for one or more members of the output type. If
an xlate expression is used to access a member for which no translation expression is
defined, the D compiler produces an appropriate error message and aborts the program
compilation. If the entire output type is copied by means of a structure assignment, any
members for which no translation expressions are defined are filled with zeroes.

To find a matching translator for an xlate operation, the D compiler examines the set of
available translators in the following order:

• The compiler checks for a translation from the exact input expression type to the exact
output type.

• The compiler resolves the input and output types by following any typedef aliases to the
underlying type names, and then checks for a translation from the resolved input type to
the resolved output type.

• The compiler checks for a translation from a compatible input type to the resolved output
type. The compiler uses the same rules as those used for determining compatibility of
function call arguments with function prototypes in order to determine if an input
expression type is compatible with a translator's input type.

If no matching translator can be found according to these rules, the D compiler produces an
appropriate error message and the program compilation fails.

Chapter 17
xlate D Operator

17-3

Process Model Translators
The DTrace library file, /usr/lib64/dtrace/version/procfs.d, provides a set of translators
for use in your D programs to translate from the operating system kernel implementation
structure for a process descriptor (struct task_struct), to the stable structures, psinfo and
lwpsinfo. These structures define useful Stable information about processes and threads,
such as the process ID, process priority, command name, initial arguments, and other data that
is displayed by the ps command. The following table describes procfs.d translators.

Table 17-1 procfs.d Translators

Input Type Input Type Attributes Output Type Output Type Attributes

struct task_struct
*

Private/Private/
Common

psinfo_t * Stable/Stable/Common

struct task_struct
*

Private/Private/
Common

lwpsinfo_t * Stable/Stable/Common

Stable Translations
Although a translator provides the ability to convert information into a stable data structure, it
does not necessarily resolve all stability issues that can arise in translating data. For example,
if the input expression for an xlate operation references Unstable data, the resulting D
program is also Unstable because program stability is always computed as the minimum
stability of the accumulated D program statements and expressions. Therefore, it is sometimes
necessary to define a specific stable input expression for a translator to permit stable programs
to be constructed. To facilitate such stable translations, you can use the D inline mechanism.

The DTrace procfs.d library provides the curlwpsinfo and curpsinfo variables, which were
previously described as stable translations. For example, the curpsinfo and curlwpsinfo
variables are actually inline and declared as follows:

inline psinfo_t *curpsinfo = xlate <psinfo_t *> (curthread);
#pragma D attributes Stable/Stable/Common curpsinfo

inline lwpsinfo_t *curlwpsinfo = xlate <lwpsinfo_t *> (curthread);
#pragma D attributes Stable/Stable/Common curlwpsinfo

The curpsinfo and curlwpsinfo are both defined as inline translations from the curthread
variable, a pointer to the kernel's Private data structure representing a process descriptor, to
the Stable lwpsinfo_t type. The D compiler processes this library file and caches the inline
declarations, making curpsinfo and curlwpsinfo appear as any other D variable. The
#pragma statement following the declaration is used to explicitly reset the attributes of the
curpsinfo and curlwpsinfo identifiers to Stable/Stable/Common, masking the reference to
curthread in the inline expressions.

Chapter 17
Process Model Translators

17-4

18
DTrace Versioning

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

For more information about DTrace, see Oracle Linux: DTrace Release Notes and
Oracle Linux: Using DTrace for System Tracing.

In the chapter, DTrace Stability Features, the DTrace features for determining the stability
attributes of D programs that you create are described. When you have created a D program
with the appropriate stability attributes, you might also choose to bind this program to a
particular version of the D programming interface.

The D interface version is a label that is applied to a particular set of types, variables,
functions, constants, and translators that are made available to you by the D compiler. If you
specify a binding to a specific version of the D programming interface, you ensure that you can
recompile your program on future versions of DTrace without encountering conflicts between
program identifiers that you define, as well as identifiers that are defined in future versions of
the D programming interface. You should establish version bindings for any D programs that
you want to install as persistent scripts or use in layered tools. See Scripting for more
information about using DTrace scripts.

Note:

DTrace versioning in Oracle Linux is not currently interoperable with DTrace
versioning on other operating system platforms.

Versions and Releases
The D compiler labels sets of types, variables, functions, constants, and translators that
correspond to a particular software release by using a version string. A version string is a
period-delimited sequence of decimal integers that takes one of the following forms:

x
Major release

x.y
Minor release

18-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-relnotes/
https://docs.oracle.com/en/operating-systems/oracle-linux/dtrace-v2-guide/

x.y.z
Micro release

Version comparisons are made by comparing the integers from left to right. If the leftmost
integers are not equal, the string with the greater integer is the greater, and therefore more
recent version. If the leftmost integers are equal, the comparison proceeds to the next integer,
in order, from left to right, to determine the result. All unspecified integers in a version string are
interpreted as having the value zero during a version comparison.

The DTrace version strings correspond to the standard nomenclature for interface versions. A
change in the D programming interface is accompanied by a new version string. The following
table summarizes the version strings that are used by DTrace and the likely significance of the
corresponding DTrace software release.

Table 18-1 DTrace Release Versions

Release Version Significance

Major x.0 A Major release is likely to
contain major feature
additions; adhere to different,
possibly incompatible
Standard revisions; and though
unlikely, could change, drop, or
replace Standard or Stable
interfaces (see DTrace Stability
Features). The initial version of
the D programming interface is
labeled as version 1.0.

Minor x.y Compared to an x.0 or earlier
version (where y is not equal to
zero), a new Minor release is
likely to contain minor feature
additions, compatible Standard
and Stable interfaces, possibly
incompatible Evolving
interfaces, or likely
incompatible Unstable
interfaces. These changes may
include new built-in D types,
variables, functions, constants,
and translators. In addition, a
Minor release may remove
support for interfaces
previously labeled as Obsolete
(see DTrace Stability Features).

Micro x.y.z Micro releases are intended to
be interface compatible with
the previous release (where z
is not equal to zero), but are
likely to include bug fixes,
performance enhancements,
and support for additional
hardware.

In general, each new version of the D programming interface provides a superset of the
capabilities that are offered by the previous version, with the exception of any obsolete
interfaces that have been removed.

Chapter 18
Versions and Releases

18-2

Versioning Options
By default, any D programs that you compile by using the dtrace -s command or that you
specify by using the dtrace -P, -m, -f, -n, or -i command options, are bound to the most
recent D programming interface version offered by the D compiler.

You can determine the current D programming interface version by using the -V option:

dtrace -V
dtrace: Sun D 1.6.4

Note:

Specifying the -Vv combination displays other version information, such as the
version of the user-space binaries from the dtrace-utils package.

dtrace -Vv
dtrace: Sun D 1.6.4
This is DTrace 1.0.4.
dtrace(1) version-control ID: 364a014be59b349d6222991d651d38422f170e7e
libdtrace version-control ID: 364a014be59b349d6222991d651d38422f170e7e

If you want to establish a binding to a specific version of the D programming interface, you can
set the version option to an appropriate version string. Similar to other DTrace options that are
described in Options and Tunables, you can set the version option as follows:

dtrace -x version=1.6 -n 'BEGIN{trace("hello");}'

Alternatively, you can use the #pragma D option syntax to set the option in your D program
source file, for example:

#pragma D option version=1.6

BEGIN
{
 trace("hello");
}

If you use the #pragma D option syntax to request a version binding, you must place this
directive at the top of your D program file, prior to any other declarations and probe clauses. If
the version binding argument is not a valid version string or refers to a version that is not
offered by the D compiler, an appropriate error message is produced and compilation fails. You
can also use the version binding facility to cause the execution of a D script on an older version
of DTrace to fail with an obvious error message.

Before compiling your program declarations and clauses, the D compiler loads the set of D
types, functions, constants, and translators for the appropriate interface version into the
compiler namespaces. Therefore, any version binding options that you specify simply control
the set of identifiers, types, and translators that are visible to your program, in addition to the
variables, types, and translators that your program defines. Version binding prevents the D
compiler from loading newer interfaces that might define identifiers or translators that conflict
with declarations in your program source code and would therefore cause a compilation error.
See Identifier Names and Keywords for tips on selecting identifier names that are unlikely to
conflict with interfaces offered by future versions of DTrace.

Chapter 18
Versioning Options

18-3

Provider Versioning
Unlike interfaces that are offered by the D compiler, interfaces that are offered by DTrace
providers, that is, probes and probe arguments, are not affected by or associated with the D
programming interface or the version binding options previously described. The available
provider interfaces are established as part of loading your compiled instrumentation into the
DTrace software in the operating system kernel. These interfaces vary, depending on the
following: your instruction set architecture, operating platform, processor, the software that is
installed on your Oracle Linux system, and your current security privileges. The D compiler and
DTrace runtime examine the probes that are described in your D program clauses and report
appropriate error messages whenever probes requested by your D program are not available.
These features are orthogonal to the D programming interface version because DTrace
providers do not export interfaces that can conflict with definitions in your D programs, which
means you can only enable probes in D; you cannot define them. Also, probe names are kept
in a separate namespace from other D program identifiers.

Use the dtrace -l command, optionally adding the -v option, to explore the set of providers
and probes that are available on your Oracle Linux system. See DTrace Providers for more
information about common providers and probes.

Chapter 18
Provider Versioning

18-4

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About DTrace
	Getting Started With DTrace
	Providers and Probes

	2 The D Programming Language
	D Program Structure
	Probe Clauses and Declarations
	Probe Descriptions
	Clause Predicates
	Probe Actions
	Order of Execution
	Use of the C Preprocessor

	Compilation and Instrumentation
	Variables and Arithmetic Expressions
	Predicate Examples
	Output Formatting Examples
	Array Overview
	Associative Array Example

	External Symbols and Types
	Types, Operators, and Expressions
	Identifier Names and Keywords
	Data Types and Sizes
	Constants
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Bitwise Operators
	Assignment Operators
	Increment and Decrement Operators
	Conditional Expressions
	Type Conversions
	Operator Precedence

	Variables
	Scalar Variables
	Associative Arrays
	Thread-Local Variables
	Clause-Local Variables
	Built-In Variables
	External Variables

	Pointers and Scalar Arrays
	Pointers and Addresses
	Pointer Safety
	Array Declarations and Storage
	Pointer and Array Relationship
	Pointer Arithmetic
	Generic Pointers
	Multi-Dimensional Arrays
	Pointers to DTrace Objects
	Pointers and Address Spaces

	DTrace Support for Strings
	String Representation
	String Constants
	String Assignment
	String Conversion
	String Comparison

	Structs and Unions
	Structs
	Pointers to Structs
	Unions
	Member Sizes and Offsets
	Bit-Fields

	Type and Constant Definitions
	typedefs
	Enumerations
	Inlines
	Type Namespaces

	3 Aggregations
	Aggregation Concepts
	Basic Aggregation Statement
	Aggregation Examples
	Basic Aggregation
	Using Keys
	Using the avg Function
	Using the stddev Function
	Using the quantize Function
	Using the lquantize Function

	Printing Aggregations
	Data Normalization
	Clearing Aggregations
	Truncating Aggregations
	Minimizing Drops

	4 Actions and Subroutines
	Action Functions
	Default Action
	Data Recording Actions
	freopen
	ftruncate
	func
	mod
	printa
	printf
	stack
	sym
	trace
	tracemem
	ustack
	uaddr
	usym

	Destructive Actions
	copyout (Process-Destructive)
	copyoutstr (Process-Destructive)
	raise (Process-Destructive)
	stop (Process-Destructive)
	system (Process-Destructive)
	chill (Kernel-Destructive)
	panic (Kernel-Destructive)

	Special Actions
	Speculative Actions
	exit
	setopt

	Subroutine Functions
	alloca
	basename
	bcopy
	cleanpath
	copyin
	copyinstr
	copyinto
	d_path
	dirname
	getmajor
	getminor
	htonl
	htonll
	htons
	index
	inet_ntoa
	inet_ntoa6
	inet_ntop
	lltostr
	mutex_owned
	mutex_owner
	mutex_type_adaptive
	mutex_type_spin
	ntohl
	ntohll
	ntohs
	progenyof
	rand
	rindex
	rw_iswriter
	rw_read_held
	rw_write_held
	speculation
	strchr
	strjoin
	strlen
	strrchr
	strstr
	strtok
	substr

	5 Buffers and Buffering
	Principal Buffers
	Principal Buffer Policies
	switch Policy
	fill Policy
	fill Policy and END Probes
	ring Policy

	Other Buffers
	Buffer Sizes
	Buffer Resizing Policy

	6 Output Formatting
	printf Action
	Conversion Specifications
	Flag Specifiers
	Width and Precision Specifiers
	Size Prefixes
	Conversion Formats

	printa Action
	trace Default Format

	7 Speculative Tracing
	About Speculative Tracing
	Speculation Interfaces
	Creating a Speculation
	Using a Speculation
	Committing a Speculation
	Discarding a Speculation
	Example of a Speculation
	Speculation Options and Tuning

	8 dtrace Command Reference
	dtrace Command Description
	dtrace Command Options
	dtrace Command Operands
	dtrace Command Exit Status

	9 Scripting
	Interpreter Files
	Macro Variables
	Macro Arguments
	Target Process ID

	10 Options and Tunables
	Consumer Options
	Modifying Options

	11 DTrace Providers
	dtrace Provider
	BEGIN Probe
	END Probe
	ERROR Probe
	dtrace Stability

	profile Provider
	profile-n Probes
	tick-n Probes
	profile Probe Arguments
	profile Probe Creation
	prof Stability

	fbt Provider
	fbt Probes
	fbt Probe Arguments
	fbt Examples
	Module Loading and fbt
	fbt Stability

	syscall Provider
	syscall Probes
	System Call Anachronisms
	Subcoded System Calls
	New System Calls
	Replaced System Calls
	Large File System Calls
	Private System Calls

	syscall Probe Arguments
	syscall Stability

	sdt provider
	Creating sdt Probes
	Declaring Probes
	sdt Probe Arguments

	sdt Stability

	pid Provider
	Naming pid Probes
	pid Probe Arguments
	pid Stability

	proc Provider
	proc Probes
	proc Probe Arguments
	lwpsinfo_t
	psinfo_t

	proc Examples
	exec
	start and exit Probes
	signal-send

	proc Stability

	sched Provider
	sched Probes
	sched Probe Arguments
	cpuinfo_t

	sched Examples
	on-cpu and off-cpu Probes
	enqueue and dequeue Probes
	sleep and wakeup Probes
	preempt and remain-cpu Probes
	tick

	sched Stability

	io Provider
	io Probes
	io Probe Arguments
	bufinfo_t
	devinfo_t
	fileinfo_t

	io Examples
	io Stability

	fasttrap Provider
	fasttrap Probes
	fasttrap Stability

	12 User Process Tracing
	copyin and copyinstr Subroutines
	Avoiding Errors

	Eliminating dtrace Interference
	Using the syscall Provider
	ustack Action
	uregs[] Array
	Using the pid Provider
	User Function Boundary Tracing
	Tracing Arbitrary Instructions

	13 Statically Defined Tracing of User Applications
	Choosing the Probe Points
	Adding Probes to an Application
	Defining Providers and Probes
	Adding Probes to Application Code
	Testing if a Probe Is Enabled
	Building Applications With Probes
	Using Statically Defined Probes

	14 Statically Defined Tracing of Kernel Modules
	Inserting Static Probe Points
	revdev.h Example
	rev_mod.c Example
	rev_dev.c Example

	Building Modules With Static Probes
	Kbuild Example
	Makefile Example
	testrevdev.c Example

	Using DTrace to Test Modules With Static Probes

	15 Performance Considerations
	Limit Enabled Probes
	Using Aggregations
	Using Cacheable Predicates

	16 DTrace Stability Features
	Stability Levels
	Dependency Classes
	Interface Attributes
	Stability Computations and Reports
	Stability Enforcement

	17 Translators
	Translator Declarations
	xlate D Operator
	Process Model Translators
	Stable Translations

	18 DTrace Versioning
	Versions and Releases
	Versioning Options
	Provider Versioning

