
Oracle Linux
Oracle Container Runtime for Docker User's
Guide

E87205-31
December 2024

Oracle Linux Oracle Container Runtime for Docker User's Guide,

E87205-31

Copyright © 2012, 2024, Oracle and/or its affiliates.

Contents

 Preface

Documentation License vii

Conventions vii

Documentation Accessibility viii

Access to Oracle Support for Accessibility viii

Diversity and Inclusion viii

1 About Oracle Container Runtime for Docker

Technical Preview Releases 1-2

Notable Updates 1-2

Oracle Container Runtime for Docker 19.03 1-2

Oracle Container Runtime for Docker 18.09 1-3

Oracle Container Runtime for Docker 18.03 1-3

Oracle Container Runtime for Docker 17.06 1-4

Docker 17.03 1-5

Docker 1.12 1-6

2 Installing Oracle Container Runtime for Docker

Setting Up the Unbreakable Enterprise Kernel 2-1

Enabling Access to the Oracle Container Runtime for Docker Packages 2-2

Removing the docker Package 2-2

Installing Oracle Container Runtime for Docker 2-2

Configuring a Proxy Server 2-3

Configuring IPv6 Networking 2-3

Configuring Docker Storage 2-4

Configuring Docker Storage Automatically 2-6

Configuring Docker Storage Manually 2-6

Configuring a Docker Storage Driver 2-7

Excluding Docker Container Files From locate Output 2-8

iii

3 Upgrading Oracle Container Runtime for Docker

Upgrade Preqrequisites 3-1

Updating the Unbreakable Enterprise Kernel 3-1

Checking the Storage Driver 3-2

Upgrading the Docker Engine 3-4

4 Managing the Docker Engine Service

Configuring the Docker Engine Service 4-1

Reloading or Restarting the Docker Engine 4-1

Enabling Non-root Users to Run Docker Commands 4-2

Configuring User Namespace Remapping 4-2

Enabling Live Restore for Containers 4-4

Setting Container Registry Options 4-4

Adding Registries 4-4

Blocking Registries 4-5

Setting the Default Registry 4-5

Adding Insecure Registries 4-5

5 Working With Containers and Images

Pulling Oracle Linux Images From a Container Registry 5-1

Enabling or Disabling Docker Content Trust 5-2

Enabling FIPS Mode in Containers 5-2

For Oracle Linux 7 Containers: 5-3

For Oracle Linux 8 Containers: 5-3

Creating and Running Docker Containers 5-3

Configuring How Docker Restarts Containers 5-5

Controlling Capabilities and Making Host Devices Available to Containers 5-6

Accessing the Host's Process ID Namespace 5-7

Mounting a Host's root File System in Read-Only Mode 5-7

Creating a Docker Image From an Existing Container 5-7

Creating a Docker Image From a Dockerfile 5-9

Creating Multi-Stage Docker Image Builds 5-12

About Docker Networking 5-13

About Multihost Networking 5-14

Communicating Between Docker Containers 5-14

Accessing External Files From Docker Containers 5-16

Creating and Using Data Volume Containers 5-17

Moving Data Between Docker Containers and the Host 5-19

Using Labels to Define Metadata 5-20

iv

Defining the Logging Driver 5-21

About Image Digests 5-21

Specifying Control Groups for Containers 5-22

Limiting CPU Usage by Containers 5-22

Enabling a Container to Use the Host's UTS Namespace 5-22

Setting ulimit Values on Containers 5-22

Building Images With Resource Constraints 5-23

Committing, Exporting, and Importing Images 5-23

6 Using Docker Registries

Pulling Images From the Oracle Container Registry 6-2

Using Oracle Container Registry Notary for Content Trust 6-2

Pulling Licensed Software From the Oracle Container Registry 6-3

Using the Oracle Container Registry Mirrors 6-4

Using Third-Party Registries 6-4

GitHub Container Registry 6-4

Docker Hub 6-5

Setting Up a Local Docker Registry 6-5

Creating a Registry File System 6-5

Setting Up Transport Layer Security for the Docker Registry 6-7

Creating the Registry 6-7

Setting Up the Registry Port 6-8

Distributing X.509 Certificates 6-8

Importing Images Into a Registry 6-8

7 Security Recommendations

Best Practices for Docker Components 7-1

Host 7-1

Docker Engine 7-2

Docker Images 7-3

Docker Containers 7-4

Containerized Applications 7-6

Additional Deployment and Development Tools 7-7

8 Known Issues

WARNING: bridge-nf-call-iptables Is Disabled 8-1

Starting the Docker Engine With User Namespace Remapping Set To Default Can Fail 8-1

Issue Pulling aarch64 Images From Oracle Container Registry 8-2

v

9 Oracle Linux Container Image Tagging Conventions

The slim Tag 9-1

General Oracle Linux release Tags 9-2

Oracle Linux Update Level Tags 9-2

The latest Tag 9-2

vi

Preface

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

Oracle Linux: Oracle Container Runtime for Docker User's Guide describes how to use Oracle
Container Runtime for Docker, which is an open-source, distributed-application platform that
leverages Linux kernel technology to provide resource isolation management. Detail is
provided on the advanced features of Docker and how it can be installed, configured and used
on Oracle Linux 7.

Note that Oracle recommends that you consider using Podman, Buildah and Skopeo on Oracle
Linux 8 for your container requirements.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

vii

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/docker/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

viii

https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

1
About Oracle Container Runtime for Docker

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

Oracle Container Runtime for Docker allows you to create and distribute applications across
Oracle Linux systems and other operating systems that support Docker. Oracle Container
Runtime for Docker consists of the Docker Engine, which packages and runs the applications,
and integrates with the Docker Hub and Oracle Container Registry to share the applications in
a Software-as-a-Service (SaaS) cloud.

The Docker Engine is designed primarily to run single applications in a similar manner to LXC
application containers that provide a degree of isolation from other processes running on a
system.

Important:

Oracle Container Runtime for Docker releases 17.03 and later are only available on
Oracle Linux 7 (x86_64). Oracle Linux 6 is not supported for Oracle Container
Runtime for Docker version 17.03 and later.

The Docker Hub hosts applications as Docker images and provides services that allow you to
create and manage a Docker environment. If you register for an account with the Docker Hub,
you are able to use it to store your own private images. You do not need an account at Docker
to access publicly accessible images on the Docker Hub. The Docker Hub also hosts
enterprise-ready applications that are certified as trusted and supported. These applications
are made available by the verified publishers. Some applications shipped on the Docker Hub
may require payment.

Note:

The Docker Hub is owned and maintained by Docker, Inc. Oracle makes Docker
images available on the Docker Hub that you can download and use with the Docker
Engine. Oracle does not have any control otherwise over the content of the Docker
Hub Registry site or its repositories.

For more information, see https://docs.docker.com.

1-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.docker.com

The Oracle Container Registry contains images for licensed commercial, and open source,
Oracle software products. Images may also be used for development and testing purposes.
The commercial license covers both production and non-production use. The Oracle Container
Registry provides a web interface where customers are able to select Oracle images, and, if
required, agree to terms of use, before pulling the images using the standard Docker client
software. More information on this service is provided in Pulling Images From the Oracle
Container Registry.

Technical Preview Releases
Oracle makes interim releases of Oracle Container Runtime for Docker available as technical
previews. These releases are not supported by Oracle and are not intended for production
use.

Preview releases can be obtained by subscribing to the ol7_preview repository on the Oracle
Linux yum server. You can install the appropriate package to obtain the correct repository
configuration before enabling the repository:

sudo yum install oraclelinux-developer-release-el7
sudo yum-config-manager --enable ol7_preview

The installation and upgrade procedures described in this guide should continue to apply for
each preview release.

Notable Updates
Changes to the Docker Engine tend to retain backward compatibility as far as possible.
Changes are usually well documented and a detailed changelog is maintained at https://
docs.docker.com/release-notes/. In this section, changes that are considered significant, or of
interest to users of the Docker Engine on Oracle Linux systems, are highlighted for
convenience.

Oracle Container Runtime for Docker 19.03
The current release of Oracle Container Runtime for Docker is based on the upstream Docker
19.03 release and incorporates the changes present in subsequent upstream releases since
the previous release. The notable changes in this release are:

• The docker run and docker create commands now include an option to set the
domain name, using the --domainname option.

• The docker image pull command now includes an option to quietly pull an image,
using the --quiet option.

• Faster context switching using the docker context command.

• Added ability to list kernel capabilities with --capabilities instead of --capadd and --
capdrop.

• Added ability to define sysctl options with --sysctl list, --sysctl-add list, and --
sysctl-rm list.

• Added inline cache support to builder with the --cache-from option.

• The IPVLAN driver is now supported and no longer considered experimental.

• Deprecated image manifest v2 schema 1 in favor of v2 schema 2.

• Removed v1.10 migrator.

Chapter 1
Technical Preview Releases

1-2

https://docs.docker.com/release-notes/
https://docs.docker.com/release-notes/

• CVE-2020-13401 is resolved in the 19.03.11 errata release package.

Oracle Container Runtime for Docker 18.09
This release of Oracle Container Runtime for Docker was based on the upstream Docker
18.09 release and incorporated the changes present in subsequent upstream releases since
the 18.03 release.

Notably, multi-registry support is no longer in technical preview and is enabled as a feature
within this release. Additionally, Oracle introduces the --default-registry option, which can
be used to change the default registry to point to an alternate registry to the standard Docker
Hub registry. See Setting Container Registry Options for more information.

This release of Docker introduces an integrated SSH connection helper that allows any Docker
client to connect to a remote Docker engine daemon securely over SSH. You can connect to a
remote daemon using the -H ssh://user@host syntax. For example:

docker -H ssh://docker_user@host1.example.com run -it --rm busybox

To configure a client to use the same remote daemon always, you can set the DOCKER_HOST
environment variable to contain the appropriate SSH URI. The SSH connection helper
respects SSH options set for a host within the user's local SSH configuration file.

The Docker client application can now be installed as an independent package, docker-cli,
so that the Docker engine daemon does not need to be installed on a system that may be used
to manage a remote Docker daemon instance. The client package is automatically installed as
a dependency when you install the Docker engine daemon package.

Docker 18.09 also introduces BuildKit, an overhaul of the build architecture used to build
Docker images. The BuildKit mode is backward compatible with legacy build architecture, so
that the Dockerfile format used to build previous images can continue to be used. BuildKit can
be enabled on a system by setting the DOCKER_BUILDKIT environment variable to the value of 1.
BuildKit build output is enhanced to include progress and build times and many build
processes can be run in parallel to greatly enhance performance and build time. The new
Docker build architecture also includes improvements to security, including options to pass
secret information to builds in a more secure manner. See the upstream documentation at
https://docs.docker.com/develop/develop-images/build_enhancements/ for more information.
This feature is available as a technical preview in this release of Oracle Container Runtime for
Docker.

Docker 18.09 uses a new version of containerd, version 1.2.0. This version of the containerd
package includes many enhancements for greater compatibility with the most recent
Kubernetes release.

Oracle Container Runtime for Docker 18.03
This release of Oracle Container Runtime for Docker was based on the upstream Docker
18.03 release and incorporated the changes present in subsequent upstream releases since
the 17.06 release.

Most notably, Oracle has implemented multi-registry support that makes it possible to run the
daemon with the --add-registry flag, to include a list of additional registries to query when
performing a pull operation. This functionality, enables Oracle Container Runtime for Docker to
use the Oracle Container Registry as the default registry to search for container images, before
falling back to alternate registry sources such as a local mirror, the Docker Hub. Other
functionality available in this feature includes the --block-registry flag which can be used to
prevent access to a particular Docker registry. Registry lists ensure that all images are prefixed

Chapter 1
Notable Updates

1-3

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13401
https://docs.docker.com/develop/develop-images/build_enhancements/

with their source registry automatically, so that a listing of Docker images always indicates the
source registry from which an image was pulled. See Setting Container Registry Options for
more information.

Important:

Docker registry list functionality is available as a technology preview and is not
supported. As a technology preview, this feature is still under development but is
made available for testing and evaluation purposes.

The --insecure-registry option is also included in this release and allows use of a registry
over HTTPS without certificate-based authentication. This can be useful when working in
development or testing environments, but should not be used in production.

Docker 18.03 introduces enhancements that allow for better integration with Kubernetes
orchestration as an alternative to Docker Swarm, including changes to follow namespace
conventions used across a variety of other containerization projects.

The --chown option is now supported for the ADD and COPY commands in a Dockerfile, giving
users more control over file ownership when building images.

The Dockerfile can also now exist outside of the build-context, allowing you to store Dockerfiles
together and to reference their paths in the docker build command on stdin.

Several improvements to logging and access to docker logs have been added, including the --
until flag to limit the log lines to those that occurred before the specified timestamp.

Experimental Docker trust management commands have been added to better handle trust
management on Docker images. See the docker trust command for more information.

Docker Swarm changes and improvements have gone into this release. Customers are
reminded that Docker Swarm remains in technical preview in this release.

The deprecated --enable-api-cors daemon flag, which allowed cross-origin resource sharing
to expose the API, has been removed in favor of the --api-cors-header option, which takes a
string value to set the Access Control Allow Origin headers for the API and to determine
access control for cross-origin resource sharing.

The deprecated docker daemon command, which was kept for backward compatibility, has
been removed in this release.

Oracle Container Runtime for Docker 17.06
This release disables communication with legacy registries, running the v1 protocol, by default.
While it is possible to allow communication using this version of the protocol by setting the --
disable-legacy-registry=false daemon option, you should be aware that support for this is
deprecated.

The --graph daemon option is also deprecated in favor of the --data-root option, as this is
more descriptive and less confusing. The option indicates the path of the parent directory that
contains data for images, volumes, containers, networks, swarm cluster state and swarm node
certificates.

One of the most significant changes in this release is the addition of support for multi-stage
builds. This allows users to create Dockerfiles that pull intermediate build images that may be
used to compile the final image, but which do not need to be included in the final image, itself.

Chapter 1
Notable Updates

1-4

This can help to reduce image sizes and improve load times and performance of running
containers. More information on multi-stage builds can be found in Creating Multi-Stage
Docker Image Builds.

Other changes to the build environment include the ability to use build-time arguments in the
form of ARG instructions in a Dockerfile, which allows you to pass environment variables into
each image. FROM instructions support variables defined in ARG instructions that precede them
in the Dockerfile.

Changes and improvements for Docker logging and networking are largely focused on
improving Docker Swarm functionality. Numerous Docker Swarm changes and improvements
have gone into this release. Customers are reminded that Docker Swarm remains in technical
preview in this release.

In this release, the overlay2 storage driver is supported in conjunction with SELinux. In
previous releases, the Docker Engine did not start when SELinux was enabled and an overlay
file system was in use. This check has been dropped as newer kernels have support for this
combination and the packages for SELinux support have been updated.

Also included in this release is the docker-storage-config utility, that can be used to help
new users correctly set up Docker storage for a new installation, so that the configuration
follows Oracle guidelines. See Configuring Docker Storage Automatically for more information.

Docker 17.03
Changes to the upstream Docker release cycle bring about a new versioning scheme that uses
date variables (YY.MM) in the version name to indicate when a version was released upstream.

The 17.03 release includes bug fixes for the 1.13 release and does not include any major
feature changes. There are several improvements to the Docker Swarm functionality.

SELinux must be set to permissive mode or disabled when running the Docker Engine while
using the overlay2 storage driver.

Note that on XFS-formatted file systems, where dtype support is disabled, the default storage
driver in this release is overridden from overlay2 and is set to devicemapper for compatibility
reasons. Storage driver override is only implemented on fresh installations of Docker and only
where the underlying file system is detected as XFS without dtype support. See Configuring
Docker Storage for more information.

The upstream default storage driver for Docker was changed from devicemapper to overlay2.
This change can cause problems on systems where overlay is used in conjunction with a file
system that does not have dtype support enabled. Since the root partition on Oracle Linux 7 is
automatically formatted with -n ftype=0 (disabling dtype support), where XFS is selected as
the file system, the package installer checks the filesystem for dtype support and if this is not
enabled the default storage driver is set to use devicemapper. This ensures that Docker is
ready-to-use on newly installed systems and is achieved by setting the storage driver in the
storage options in /etc/sysconfig/docker-storage.

It is possible to reconfigure Docker to use an alternate storage driver, by using the --storage-
driver flag when running the Docker Engine daemon, or by setting the storage-driver option
in the daemon.json configuration file. Oracle recommends that you use dedicated storage,
formatted using Btrfs, for Docker. If you intend to use the overlay2 storage driver with an XFS-
formatted file system, you must ensure that dtype support is enabled. See Configuring Docker
Storage for more information. Remember that if you wish to change the storage driver from
devicemapper, you must remove the option set in /etc/sysconfig/docker-storage.

Chapter 1
Notable Updates

1-5

Other improvements were made to the Docker remote API and to the Docker client to add
consistency to the command set. Also runtime improvements were made to the Docker
Engine. Further developments on Docker Swarm mode are also noted.

Docker 1.12
The focus of this release was to simplify and improve container orchestration, providing
facilities such as load-balancing, service discovery, high availability and scalability out of the
box. Features to handle multi-host and multi-container orchestration have been built right into
the Docker Engine to allow administrators to deploy and manage applications on a group of
Docker Engines called a swarm. Docker swarm mode provides much of the functionality
included in the original standalone Docker Swarm service that ran separately to the Docker
Engine itself and includes additional features such as built-in load-balancing. By integrating this
technology into the Docker Engine, deployment of a high availability clustering technology is
simplified and these features are unified within a single API and CLI. All communications within
the Docker swarm are encrypted using Transport Layer Security (TLS) and cluster nodes are
protected using cryptographic node fingerprint key technology to prevent node spoofing.

Important:

The Docker Swarm functionality is released as a technology preview for Oracle
Linux. As a technology preview, this feature is still under development but is made
available for testing and evaluation purposes.

The Docker Engine has been rearchitected to run on top of a combination of the docker-
containerd and docker-runc binaries. While this change is transparent and docker commands
continue to work as they did in previous releases, the underlying technology further
modularizes the Docker architecture in line with the Open Container Initiative (OCI)
specification. These changes open up new possibilities for container execution backends and
container management, including the potential to perform engine restarts and upgrades without
the need to restart running containers.

Other notable changes in this version of the Docker Engine are:

• Experimental support for the MacVlan and IPVLAN network drivers to take advantage of
existing VLAN networking infrastructure

• Support for AAAA Records (aka IPv6 Service Discovery) in embedded DNS Server, which
allows for IPv6 queries to be resolved locally without being forwarded to external servers

• Multiple A/AAAA records from embedded DNS Server for DNS Round robin to facilitate
load-balancing between containers.

• Source the forwarded DNS queries from the container net namespace

• Better handling of low disk space to allow the device mapper to fail more gracefully in the
case where there is insufficient disk space.

Chapter 1
Notable Updates

1-6

2
Installing Oracle Container Runtime for Docker

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

This chapter describes the steps required to perform an installation of Oracle Container
Runtime for Docker on an Oracle Linux 7 host.

Before you install and configure the Docker Engine on an Oracle Linux 7 system, make sure
you are running an appropriate release of the Unbreakable Enterprise Kernel. Instructions to
install UEK are detailed in Setting Up the Unbreakable Enterprise Kernel.

If you are already running either UEK R4 or UEK R5, you can follow the instructions in
Installing Oracle Container Runtime for Docker to complete your installation.

Setting Up the Unbreakable Enterprise Kernel
Configure the system to use the Unbreakable Enterprise Kernel Release 5 (UEK R5) or later
and boot the system with this kernel. If you are using an earlier Unbreakable Enterprise Kernel
(UEK) release, or the Red Hat Compatible Kernel (RHCK), you must upgrade the kernel.

To install or update UEK:

1. If your system is registered with ULN, disable access to the ol7_x86_64_UEKR3 and
ol7_x86_64_UEKR4 channels, and enable access to the ol7_x86_64_UEKR5 channel.

Log into https://linux.oracle.com with your ULN user name and password and click on the
Systems tab to select the system where you installing Oracle Container Runtime for
Docker. Go to the Manage Subscriptions page and update the channel subscriptions for
the system. Click on Save Subscriptions to save your changes.

2. If you use the Oracle Linux yum server, disable the ol7_UEKR3 and ol7_UEKR4 repositories
and enable the ol7_UEKR5 repository. You can do this easily using yum-config-
manager:

sudo yum-config-manager --disable ol7_UEKR3 ol7_UEKR4
sudo yum-config-manager --enable ol7_UEKR5

3. Run the following command to upgrade the system to the selected UEK release:

sudo yum update
4. Reboot the system, selecting UEK if this is not the default boot kernel.

sudo systemctl reboot

2-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://linux.oracle.com

Enabling Access to the Oracle Container Runtime for Docker
Packages

To access to the Oracle Container Runtime for Docker packages, you must enable the
appropriate ULN channel or yum repositories.

If your system is registered with ULN, enable the ol7_x86_64_addons channel. Use the ULN
web interface to subscribe the system to the appropriate channel:

1. Log in to https://linux.oracle.com with your ULN user name and password.

2. On the Systems tab, click the link named for the system in the list of registered machines.

3. On the System Details page, click Manage Subscriptions.

4. On the System Summary page, select each required channel from the list of available
channels and click the right arrow to move the channel to the list of subscribed channels.

Subscribe the system to the ol7_x86_64_addons channel.

5. Click Save Subscriptions.

If you use the Oracle Linux yum server, enable the ol7_addons channel. To enable a yum
repository on your system, use the yum-config-manager command. For example, run:

sudo yum-config-manager --enable ol7_addons

Removing the docker Package
The latest Docker package is docker-engine, which conflicts with the older docker package. If
you have the older docker package installed, you must remove it before you install Docker
Engine. To check if you have the older docker package installed, run:

sudo rpm -qi docker

If the older docker package is installed, stop the docker service and remove the package. To
stop the docker service:

sudo systemctl stop docker

Remove the docker package.

sudo yum remove docker

You can now install the docker-engine package.

Installing Oracle Container Runtime for Docker
To install the docker-engine and docker-cli packages.

sudo yum install docker-engine docker-cli

Start the docker service and configure it to start at boot time.

sudo systemctl enable --now docker

To check that the docker service is running, use the following command:

Chapter 2
Enabling Access to the Oracle Container Runtime for Docker Packages

2-2

https://linux.oracle.com

sudo systemctl status docker

You can also use the docker info command to display information about the configuration
and version of the Docker Engine.

sudo docker info

For more information, see the docker(1) manual page.

Configuring a Proxy Server
To configure web proxy networking options, create the drop-in file /etc/systemd/system/
docker.service.d/http-proxy.conf that contains the following lines:

[Service]
Environment="HTTP_PROXY=proxy_URL:port"
Environment="HTTPS_PROXY=proxy_URL:port"

Replace proxy_URL and port with the appropriate URLs and port numbers for your web proxy.

After adding or modifying a systemd drop-in file while the docker service is running, you need
to tell systemd to reload the configuration for the service.

sudo systemctl daemon-reload

Restart the docker service for the configuration changes to take effect.

sudo systemctl restart docker

Configuring IPv6 Networking
With IPv6 enabled, Docker assigns the link-local IPv6 address fe80::1 to the bridge docker0.

For more information about configuring Docker networking, see:

https://docs.docker.com/engine/userguide/networking/

To configure IPv6 networking:

1. Create or edit /etc/docker/daemon.json.

If you are creating this file from scratch, it should look like this:

{
 "ipv6": true
}

If this file already exists and contains other entries, be careful that adding a line for the
ipv6 configuration variable conforms with typical JSON formatting.

If you want Docker to assign global IPv6 addresses to containers, additionally specify the
IPv6 subnet for the fixed-cidr-v6 option, for example:

{
 "ipv6": true,
 "fixed-cidr-v6": "2001:db8:1::/64"
}

Similarly, you can also configure the default IPv6 gateway that should be used by Docker,
using the default-gateway-v6 parameter in this configuration file.

Chapter 2
Configuring a Proxy Server

2-3

https://docs.docker.com/engine/userguide/networking/

For more information on the format and options for this configuration file, see:

https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-
file

2. Check that the --ipv6, --fixed-cidr-v6 and default-gateway-v6 options are not being
invoked as command line switches when starting the Docker engine daemon.

You should check that these options do not appear in either the /etc/sysconfig/docker
or /etc/sysconfig/docker-networking files. These files are deprecated and may be
removed in future releases. If these files contain any other configuration parameters,
consider whether you could move these into /etc/docker/daemon.json to future-proof
your configuration.

Also check that these options do not appear in any systemd drop-in files in /etc/systemd/
system/docker.service.d/. While this is a supported configuration option, it is preferable
to keep all Docker Engine configuration in the same place, where possible.

Configuring Docker Storage
The Docker Engine is configured to use overlay2 as the default storage driver to manage
Docker containers. This provides a performance and scalability improvement on earlier
releases that used the device mapper as the default storage driver, but the technology is new
and should be tested properly before use in production environments. For more information on
overlay2, see:

https://docs.docker.com/engine/userguide/storagedriver/overlayfs-driver/

Overlay file systems can corrupt when used in conjunction with any file system that does not
have dtype support enabled.

Note:

For Oracle Linux 7.4 or earlier, the root partition is automatically formatted with -n
ftype=0 (disabling dtype support), where XFS is selected as the file system.

The Docker Engine installer checks the filesystem for dtype support, and if this is not enabled,
the default storage driver is set to use devicemapper. This check is only performed on a fresh
installation of Docker Engine. The configuration of an existing Docker installation is unaffected
during upgrade.

This allows Docker to function on a default Oracle Linux 7 system without any additional
configuration required, immediately after install. However, using the devicemapper is not
recommended for production environments. Performance and scalability can be compromised
by this configuration. Therefore, it is important to consider using dedicated storage for Docker,
and to change the storage driver to use either btrfs or overlay2.

Chapter 2
Configuring Docker Storage

2-4

https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file
https://docs.docker.com/engine/userguide/storagedriver/overlayfs-driver/

Important:

If you continue to use devicemapper as the storage driver, you should be aware that
some Docker images, such as the image for Oracle Database, require that the base
device size is set to 25GB or more. The default base device size for devicemapper is
updated to 25GB, but this only meets a minimum requirement for some containers.
Where additional capacity may be required, the base device size can be changed by
setting the dm.basesize start option for a container or, globally, for the Docker
Engine.

You can change this value globally, by adding it to the storage-opts configuration
parameter in /etc/docker/daemon.json, for example:

{
...
"storage-opts" : ["dm.basesize=50G"],
...
}

The base device size is sparsely allocated, so an image may not initially use all of
this space. You can check how much space is allocated to the Base Device Size by
running the docker info command.

For more information on storage driver options, see:

https://docs.docker.com/engine/reference/commandline/dockerd/#storage-driver-
options

Oracle recommends using Btrfs as a more stable and mature technology than overlayfs.

In most cases, it is advisable to create a dedicated file system to manage Docker containers.
This file system can be mounted at /var/lib/docker at boot time, before the Docker service is
started.

Any unused block device that is large enough to store several containers is suitable. The
suggested minimum size is 1GB but you might require more space to implement complex
Docker applications. If the system is a virtual machine, Oracle recommends that you create,
partition, and format a new virtual disk. Alternatively, convert an existing ext3 or ext4 file
system to Btrfs. For information on converting file systems, see the Oracle® Linux 7:
Administrator's Guide.

If an LVM volume group has available space, you can create a new logical volume and format
it as a Btrfs file system.

Important:

XFS file systems must be created with the -n ftype=1 option enabled for use as an
overlay. The root partition on Oracle Linux 7 is automatically formatted with -n
ftype=0 where XFS is selected as the file system. Therefore, if you intend to use the
overlay2 storage driver in this environment, you must format a separate device for
this purpose.

Chapter 2
Configuring Docker Storage

2-5

https://docs.docker.com/engine/reference/commandline/dockerd/#storage-driver-options
https://docs.docker.com/engine/reference/commandline/dockerd/#storage-driver-options
https://docs.oracle.com/en/operating-systems/oracle-linux/7/admin/
https://docs.oracle.com/en/operating-systems/oracle-linux/7/admin/

Configuring Docker Storage Automatically
The docker-engine package includes a utility that can help you to configure storage correctly
for a new Docker deployment. The docker-storage-config utility can format a new block
device, set up the mount point and correctly configure the Docker Engine to run with the
appropriate storage driver so that your storage configuration follows Oracle guidelines.

For usage instructions, run docker-storage-config with the -h option:

sudo docker-storage-config -h

The docker-storage-config utility requires that you provide the path to a valid block
device to use for Docker storage. The script formats the device with a new file system. This
can be a destructive operation. Any existing data on the device may be lost. Use the lsblk
command to help you correctly identify block devices currently attached to the system.

To automatically set up your Docker storage, before installation, run docker-storage-
config as root:

sudo docker-storage-config -s btrfs -d /dev/sdb1

Substitute /dev/sdb1 with the path to the block device that you attached as dedicated storage.

You can substitute btrfs with overlay2 if you would prefer to use this storage driver. If you do
this, the block device is formatted with XFS and dtype support is enabled.

To overwrite an existing configuration, you can use the -f flag. If your Docker installation has
already been used to set up images and containers, this option is destructive and may make
these images and containers inaccessible to you, so the option should be used with caution.

Configuring Docker Storage Manually
This section discusses manually setting up a file system for Docker containers.

To manually prepare a dedicated file system to manage Docker containers:

1. Configure the Docker Engine to use Btrfs as the storage driver to manage containers. Use
yum to install the btrfs-progs package:

sudo yum install btrfs-progs

If the root file system is not configured as a Btrfs file system, create a Btrfs file system on a
suitable device or partition such as /dev/sdb1 in this example:

sudo mkfs.btrfs /dev/sdb1
2. Configure the Docker Engine to use a block device formatted with XFS in conjunction with

the overlay2 storage driver to manage containers. Format the block device with the XFS
file system, for example to format a partition /dev/sdb1:

sudo mkfs -t xfs -n ftype=1 /dev/sdb1

It is essential that you use the -n ftype=1 option when you create the file system or you
cannot use overlayfs. To check if a mounted XFS partition has been formatted correctly,
run the following command and check the output to make sure that ftype=1:

xfs_info /dev/sdb1 | grep ftype

Chapter 2
Configuring Docker Storage

2-6

3. Use the blkid command to display the UUID and TYPE for the new file system and make
a note of this value, for example:

blkid /dev/sdb1

/dev/sdb1: UUID="26fece06-e3e6-4cc9-bf54-3a353fdc5f82" TYPE="xfs" \
 PARTUUID="ee0d0d72-dc97-40d8-8cd9-39e29fbc660e"

The UUID for the file system on the device /dev/sdb1 in this example is the UUID value
26fece06-e3e6-4cc9-bf54-3a353fdc5f82. You can ignore the PARTUUID value, which is
the UUID of the underlying partition. The TYPE of file system in this example is the TYPE
value xfs.

4. Create an entry in your /etc/fstab file to make sure the file system is mounted at boot.
Open /etc/fstab in an editor and add a line similar to the following:

UUID=UUID_value /var/lib/docker fstype defaults 0 0

Replace UUID_value with the UUID value. Replace fstype with the file system TYPE.

Note:

Previous versions of Docker required that dedicated storage used by Docker was
mounted via a Systemd mount target and a Systemd drop-in file for the Docker
service. This requirement was related to an issue where the storage was
automatically unmounted when the Docker service was stopped. This issue no
longer applies. If your storage is currently mounted using these methods,
consider simplifying your environment by removing the Systemd drop-in and
mount target and replacing this with an fstab entry.

This entry defines a mount for the file system on /var/lib/docker. You might need to
create this directory if you are performing a fresh installation:

sudo mkdir /var/lib/docker

You must mount the file system to start using it:

sudo mount /var/lib/docker

Configuring a Docker Storage Driver
This section discusses setting up a storage driver for Docker.

To configure a Docker storage driver:

1. Create or edit /etc/docker/daemon.json.

If you are creating this file from scratch, it should look like this:

{
 "storage-driver": "btrfs"
}

Replace btrfs with your preferred storage driver. If you are using an XFS, ext3 or ext4 file
system, you might replace btrfs with overlay2.

If this file already exists and contains other entries, be careful that adding a line for the
storage-driver configuration variable conforms with typical JSON formatting.

Chapter 2
Configuring Docker Storage

2-7

For more information on the format and options for this configuration file, see:

https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-
file

2. Check that the --storage-driver option is not being invoked as a command line switch
when starting the Docker Engine daemon.

You should check that this option does not appear in either the /etc/sysconfig/docker
or /etc/sysconfig/docker-storage files. These files are deprecated and may be removed
in future releases. If these files contain any other configuration parameters, move these
into /etc/docker/daemon.json to future-proof your configuration.

Also check that this option does not appear in any systemd drop-in files in /etc/systemd/
system/docker.service.d/. While this is a supported configuration option, it is preferable
to keep all Docker Engine configuration consolidated and in the same place, where
possible.

3. When you have started the Docker Engine and it is running, check that it is using the
storage driver that you have configured:

sudo docker info | grep Storage

You can run the docker info command on its own to get a more detailed view of the
configuration.

Excluding Docker Container Files From locate Output
If you have installed the mlocate package, it is recommended that you modify the PRUNEPATHS
entry in /etc/updatedb.conf to prevent updatedb from indexing directories below /var/lib/
docker, for example:

PRUNEPATHS="/media /tmp /var/lib/docker /var/spool /var/tmp"

This entry prevents locate from reporting files that belong to Docker containers.

Chapter 2
Excluding Docker Container Files From locate Output

2-8

https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file

3
Upgrading Oracle Container Runtime for
Docker

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

This chapter describes the steps required to perform an upgrade of Oracle Container Runtime
for Docker on an Oracle Linux 7 host.

Note:

Docker requires that you configure the system to use the Unbreakable Enterprise
Kernel Release 4 (UEK R4) or later and boot the system with this kernel.

Using the Docker configuration files in /etc/sysconfig is deprecated. Instead, you
should use the /etc/docker/daemon.json configuration file and systemd drop-in
configuration files in /etc/systemd/system/docker.service.d as required.

After adding or modifying a drop-in file while the docker service is running, run the
command systemctl daemon-reload to tell systemd to reload the configuration
for the service.

Upgrade Preqrequisites
Before upgrading, make sure you meet the requirements for the most current version of the
Docker Engine. See the following sections to determine which steps may apply to your existing
environment.

Updating the Unbreakable Enterprise Kernel
Configure the system to use the Unbreakable Enterprise Kernel Release 5 (UEK R5) or later
and boot the system with this kernel. If you are using an earlier Unbreakable Enterprise Kernel
(UEK) release, or the Red Hat Compatible Kernel (RHCK), you must upgrade the kernel.

To install or update UEK:

1. If your system is registered with ULN, disable access to the ol7_x86_64_UEKR3 and
ol7_x86_64_UEKR4 channels, and enable access to the ol7_x86_64_UEKR5 channel.

3-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf

Log into https://linux.oracle.com with your ULN user name and password and click on the
Systems tab to select the system where you installing Oracle Container Runtime for
Docker. Go to the Manage Subscriptions page and update the channel subscriptions for
the system. Click on Save Subscriptions to save your changes.

2. If you use the Oracle Linux yum server, disable the ol7_UEKR3 and ol7_UEKR4 repositories
and enable the ol7_UEKR5 repository. You can do this easily using yum-config-
manager:

sudo yum-config-manager --disable ol7_UEKR3 ol7_UEKR4
sudo yum-config-manager --enable ol7_UEKR5

3. Run the following command to upgrade the system to the selected UEK release:

sudo yum update
4. Reboot the system, selecting UEK if this is not the default boot kernel.

sudo systemctl reboot

Checking the Storage Driver
The Docker Engine uses overlay2 as the default storage driver to manage Docker containers.
The overlay2 storage driver can run into issues on systems using an XFS formatted file
system that is not created with the -n ftype=1 option enabled. This is because overlay file
systems depend on dtype support to handle metadata such as white outs for file deletion.

The root partition on Oracle Linux 7 is automatically formatted with -n ftype=0 where XFS is
selected as the file system, disabling dtype support. On new installations of Docker, the
package installer checks the file system format options to ensure that dtype support is
available. If dtype support is not enabled, the installer overrides the default storage driver to
use devicemapper to ensure that Docker is ready-to-use on newly installed systems. However,
upgraded versions of Docker continue to use the storage driver that was configured in the
previous release. This means that if you have configured Docker to use overlay2 on an
underlying XFS-formatted file system, you may need to migrate the data to dedicated storage
that has been formatted correctly.

Oracle recommends using Btrfs as a more stable and mature technology than overlayfs.

To check which storage driver and backing file system are configured on a running Docker
Engine and to determine the path to the root Docker storage, run:

sudo docker info |grep 'Storage\|Filesystem\|Root'

If the storage driver is set to overlay2 and the backing file system is set to xfs, check that the
XFS file system is formatted correctly:

xfs_info /var/lib/docker |grep ftype

If necessary, replace /var/lib/docker with the path to the root Docker storage returned in the
previous command. If the information returned by this command includes ftype=0, you must
migrate the data held in this directory to storage that is formatted with support for overlay
filesystems.

To migrate the storage:

1. Attach a block storage device to the system where you are running Docker. Use the lsblk
command to identify the device name and UUID. For example:

lsblk -o 'NAME,TYPE,UUID,MOUNTPOINT'

Chapter 3
Upgrade Preqrequisites

3-2

https://linux.oracle.com

If necessary, you may need to partition the device using a partitioning tool such as fdisk
or parted.

2. Format the block device with the XFS file system, for example to format a partition /dev/
sdb1:

sudo mkfs -t xfs -n ftype=1 /dev/sdb1

It is essential that you use the -n ftype=1 option when you create the file system or you
will not be able to use overlayfs.

3. Temporarily mount the new file system, so that you can copy the contents from the existing
Docker root directory:

sudo mount -t xfs /dev/sdb1 /mnt
4. Stop the Docker Engine, if it is running:

sudo systemctl stop docker
5. Move the existing Docker data to the new file system:

sudo mv /var/lib/docker/* /mnt
6. Unmount the new file system and remount it onto the Docker root directory:

sudo umount /mnt
sudo mount -t xfs /dev/sdb1 /var/lib/docker

7. Create an entry in your fstab to ensure that the file system is mounted at boot. Open /etc/
fstab in an editor and add a line similar to the following:

UUID=UUID_value /var/lib/docker xfs defaults 0 0

Replace UUID_value with the UUID value for the partition that you created. Use the lsblk
or blkid command if you need to check the value.

Tip:

If you do not have additional storage available for this purpose, it is possible to create
an XFS file system image and loopback mount this. For example, to create a 25 GB
image file in the root directory, you could use the following command:

sudo mkfs.xfs -d file=1,name=/DockerStorage,size=25g -n ftype=1

To temporarily mount this file, you can enter:

sudo mount -o loop -t xfs /DockerStorage /mnt

An entry in /etc/fstab, to make a permanent mount for Docker storage, may look
similar to the following:

/DockerStorage /var/lib/docker xfs loop 0 0

This configuration can help as a temporary solution to solve upgrade issues.
However, using a loopback mounted file system image as a form of permanent
storage for Docker is not recommended for production environments.

See Configuring Docker Storage for more information on setting up and configuring storage for
Docker.

Chapter 3
Upgrade Preqrequisites

3-3

Upgrading the Docker Engine
To upgrade the Docker Engine:

1. Stop the docker service if it is running:

sudo systemctl stop docker
2. Update the docker-engine and docker-cli packages:

sudo yum update docker-engine docker-cli
3. Start the docker service:

sudo systemctl start docker

Chapter 3
Upgrading the Docker Engine

3-4

4
Managing the Docker Engine Service

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

This chapter describes common Docker Engine administration and configuration tasks with
specific focus on usage on Oracle Linux 7.

Configuring the Docker Engine Service
It is possible to configure the Docker Engine runtime options in a variety of ways. Where
possible, Oracle recommends using the /etc/docker/daemon.json file to configure these
options. For more information on the format and options for this configuration file, see https://
docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file.

In rare instances, some runtime configuration options may not have an equivalent option that
can be set in /etc/docker/daemon.json. Oracle previously allowed users to set these runtime
options by editing variables in /etc/sysconfig/docker, /etc/sysconfig/docker-network
and /etc/sysconfig/docker-storage. While these files can still be used for this purpose, they
may be deprecated in future releases. Oracle recommends creating an alternate drop-in unit
for the Docker Systemd service where you may need to specify alternate runtime options when
loading the Docker Engine.

For example, you can create /etc/docker/daemon.json to contain the following content:

{
 "selinux-enabled": true
}

When you have finished editing the configuration file, reload to scan for new or changed units:

sudo systemctl daemon-reload

Finally, restart the Docker Engine service:

sudo systemctl restart docker

Reloading or Restarting the Docker Engine
If you change the Docker Engine configuration while the docker service is running, you must
reload the service configuration to make the changes take effect.

To reload the docker service configuration, enter the following command:

sudo systemctl daemon-reload

4-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file

If you do not reload the service configuration, systemd continues to use the original, cached
configuration.

If you need to restart the docker service itself, enter the following command:

sudo systemctl restart docker

Enabling Non-root Users to Run Docker Commands

NOT_SUPPORTED:

Users who can run Docker commands have effective root control of the system.
Only grant this privilege to trusted users.

To enable users other than root and users with sudo access to be able to run Docker
commands:

1. Create the docker group, if it does not already exist:

sudo groupadd docker
2. Restart the docker service:

sudo systemctl restart docker

The UNIX socket /var/run/docker.sock is now readable and writable by members of the
docker group.

3. Add the users that should have Docker access to the docker group:

sudo usermod -a -G docker user1

Configuring User Namespace Remapping
To force processes running in Docker containers to run with an alternate user namespace
mapping on the host system,use the userns-remap option as a startup parameter for the
Docker Engine. This functionality provides an additional layer of security to the host system.
The processes that are running in each container are run with the UIDs and GIDs of a
subordinate mapping defined in /etc/subuid and /etc/subgid. The shadow-utils project
provides subordinate user mappings, which are a function of user namespaces within the Linux
kernel. For more information, see https://docs.docker.com/engine/security/userns-remap/.

To implement user namespace remapping:

1. Create and edit the /etc/subuid file.

Although the Docker documentation suggests that this file is created and populated
automatically, this function is dependent on code available in the usermod command, not
currently included in Oracle Linux. Create the file manually if it does not yet exist, and
populate it with the user mapping that you require.

user:start_uid:uid_count

Add an entry for the dockremap user if you plan to configure default user namespace
remapping. Alternately, add an entry for the unprivileged user that you are going to use for
this purpose. For example:

Chapter 4
Enabling Non-root Users to Run Docker Commands

4-2

https://docs.docker.com/engine/security/userns-remap/

dockremap:100000:65536

In the example above, dockremap represents the unprivileged system user that is used for
the remapping. 100000 represents the first UID in the range of available UIDs that
processes within the container may run with. 65536 represents the maximum number of
UIDs that may be used by a container. Based on this example entry, a process running as
the root user within the container is launched so that on the host system it runs with the
UID 100000. If a process within the container is run as a user with UID 500, on the host
system it would run with the UID 100500.

2. Create and edit the /etc/subgid file. The same principles apply to group ID mappings as
to user ID mappings.

Add an entry for the dockremap group if you plan to configure default user namespace
remapping. Alternately, add an entry for the group that you are going to use for this
purpose. For example:

dockremap:100000:65536
3. Configure the docker service to run with the userns-remap parameter enabled. Create or

edit /etc/docker/daemon.json.

If you are creating this file from scratch, it should look like this:

{
 "userns-remap": "default"
}

When userns-remap is set to default, Docker automatically creates a user and group
named dockremap. Entries for the dockremap user and group must exist in /etc/subuid
and /etc/subgid. Alternately, set the userns-remap option to run using another
unprivileged user and group that already exist on the system. If you select to do this,
replace the dockremap user in the /etc/subuid and /etc/subgid files with the appropriate
user name and group name.

If this file already exists and contains other entries, be careful that adding a line for the
storage-driver configuration variable conforms with typical JSON formatting.

For more information on the format and options for this configuration file, see https://
docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file.

4. Check that the --userns-remap option is not being invoked as a command line switch
when starting the Docker Engine daemon.

You should check that this option does not appear in the /etc/sysconfig/docker file. This
file is deprecated and may be removed in future releases. If this file contains any other
configuration parameters, consider whether you could move these into /etc/docker/
daemon.json to future-proof your configuration.

Also check that this option does not appear in any systemd drop-in files in /etc/systemd/
system/docker.service.d/. While this is a supported configuration option, it is preferable
to keep all Docker Engine configuration in the same place, where possible.

5. Reload the docker service in systemd to activate changes to the service configuration:

sudo systemctl daemon-reload

If you need to restart the docker service itself, enter the following command:

sudo systemctl restart docker

The Docker Engine applies the same user namespace remapping rules to all containers,
regardless of who runs a container or who executes a command within a container.

Chapter 4
Configuring User Namespace Remapping

4-3

https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file

Enabling Live Restore for Containers
Docker has a live-restore option that can be used to keep containers running even if the
Docker Engine daemon becomes unavailable. This option can help reduce container downtime
due to crashes, planned outages and upgrades. To enable this facility you must edit /etc/
docker/daemon.json and set the "live-restore" parameter to true. For more information on
this facility, see https://docs.docker.com/config/containers/live-restore/.

Setting Container Registry Options
Oracle Container Runtime for Docker contains a number of configuration options that can be
applied to the Docker Engine to control and customize the handling of commands to access a
Docker registry.

Adding Registries
Oracle Container Runtime for Docker provides the option to connect to multiple registries to
pull container images by configuring a registry list. By default, the Docker Engine is configured
to pull images directly from the Docker Hub if no additional registries have been defined. You
can configure a registry list to specify multiple registries that can be queried sequentially to pull
an image. This can be used to configure the Docker Engine to first attempt to pull an image
from a local registry and then fall back to an alternate registry, such as the Oracle Container
Registry, before finally using the configured default registry. This is achieved by setting the
add-registry option in /etc/docker/daemon.json.

...
 "add-registry": [
 "container-registry.oracle.com"
],
...

If you are creating this file from scratch with just the add-registry option, it would look like
this:

{
 "add-registry": [
 "container-registry.oracle.com"
]
}

You can add multiple registries by appending the domain or domains you would like to add to
the same list:

...
 "add-registry": [
 "container-registry.oracle.com",
 "registry.example.com"
],
...

Restart the Docker Engine service to apply your change:

sudo systemctl restart docker

Chapter 4
Enabling Live Restore for Containers

4-4

https://docs.docker.com/config/containers/live-restore/

Blocking Registries
Oracle Container Runtime for Docker provides the option to prevent access to specified
registries when attempting to pull container images. This can be used to prevent users from
pulling images from specific external registries. This is achieved by setting the block-registry
option in /etc/docker/daemon.json.

...
 "block-registry": [
 "docker.io"
],
...

You can disable multiple registries by appending the domain or domains you would like to
block to the same line:

...
 "block-registry": [
 "docker.io",
 "registry.example.com"
],
...

When you have finished editing /etc/docker/daemon.json, restart the Docker Engine service:

sudo systemctl restart docker

Setting the Default Registry
By default, the Docker Engine is configured to pull images directly from the Docker Hub if no
additional registries have been defined.

It is possible to change the default registry by setting the default-registry option in /etc/
docker/daemon.json.

...
 "default-registry": "test.registry.com",
...

Finally, restart the Docker Engine service:

sudo systemctl restart docker

When the default registry is changed, image references within the Docker Engine for images
that have been pulled from the Docker Hub are updated to correctly display the docker.io
prefix. For example nginx:latest is updated to reflect docker.io/nginx:latest. Images from
the new default registry are displayed without a prefix.

The default registry determines the last possible registry that Docker Engine checks when you
search for or pull an image. If you have configured multiple registries using the add-registry
option then those registries are checked in sequential order, and if an image is not found in any
of the other registries that you have been configured then the default registry is always used as
the final option.

Adding Insecure Registries
Oracle Container Runtime for Docker provides the option to enable a registry that delivers
containers over HTTPS but without any certificate validation, such as when using self-signed

Chapter 4
Setting Container Registry Options

4-5

certificates for testing purposes, or to enable the use of registry that only uses HTTP. This is
achieved using the insecure-registry option in /etc/docker/daemon.json.

...
 "insecure-registries" : ["insecure-registry.example.com"],
...

The insecure-registry option allows Docker to attempt an HTTPS connection to the registry,
without any validation of the certificates presented by the registry. If the registry is not
accessible via HTTPS, Docker falls back to attempt the connection using HTTP.

Restart the Docker Engine service to apply your changes:

sudo systemctl restart docker

Chapter 4
Setting Container Registry Options

4-6

5
Working With Containers and Images

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

This chapter describes how to use the Docker Engine to run containers and how to obtain the
images that are used to create a container. Other information specific to container and image
configuration is also provided. In this chapter is assumed that images and containers are
hosted on Oracle Linux 7.

Pulling Oracle Linux Images From a Container Registry
You can get Oracle Linux images to run on the Docker Engine from the oraclelinux repository
at the Docker Hub. For a list of the Oracle Linux images that are available, see https://
hub.docker.com/_/oraclelinux/).

An Internet connection is required to pull images from the Docker Hub or the Oracle Container
Registry. If you make use of a proxy server to access the Internet, see Configuring a Proxy
Server.

Oracle Linux images, along with many other Oracle product images, are also hosted on the
Oracle Container Registry at https://container-registry.oracle.com and on the Docker Hub at
https://hub.docker.com. More information on using the Oracle Container Registry to pull
images is covered in Pulling Images From the Oracle Container Registry. See Using Third-
Party Registries for more information on using the Docker Hub.

To download an Oracle Linux image, use the docker pull command. For example, to pull an
Oracle Linux image from the Docker Hub:

docker pull oraclelinux:7-slim

Trying to pull repository docker.io/library/oraclelinux ...
7-slim: Pulling from docker.io/library/oraclelinux
977461c90301: Pull complete
Digest: sha256:0743f72832d8744a89b7be31b38b9fb2e5390044cbb153cd97b3e797723e4704
Status: Downloaded newer image for oraclelinux:7-slim

To display a list of the images that you have downloaded to a system, use the docker
images command, for example:

docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
oraclelinux 7-slim c2b5cb5bcd9d 7 days ago 118MB
oraclelinux 7 31f4bed1dc33 7 days ago 232MB

5-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://hub.docker.com/_/oraclelinux/
https://hub.docker.com/_/oraclelinux/
https://container-registry.oracle.com
https://hub.docker.com

oraclelinux latest 31f4bed1dc33 7 days ago 232MB
oraclelinux 8 8988c7081e1f 5 weeks ago 411MB

Each image in the repository is distinguished by its TAG value and its unique IMAGE ID. In the
example, the tags 7 and latest refer to the same image ID for Oracle Linux 7.

When new images are made available for Oracle Linux updates, the tags 7, 8, and latest are
updated in the oraclelinux repository to refer to the appropriate newest version.

If an image is downloaded from an alternate registry to the default registry, the REPOSITORY
value also indicates the registry from which the image was pulled. For example:

docker images

REPOSITORY TAG IMAGE ID CREATED
SIZE
container-registry.oracle.com/os/oraclelinux latest 31f4bed1dc33 7 days ago
232MB

See Setting Container Registry Options for more information on adding registries and
configuring a default registry.

Enabling or Disabling Docker Content Trust
Content Trust allows you to verify the authenticity, integrity, and publication date of Docker
images that are made available on the Docker Hub Registry.

By default, Content Trust is disabled. To enable Content Trust for signing and verifying Docker
images that you build, push to, or pull from the Docker Hub, set the DOCKER_CONTENT_TRUST
environment variable, for example:

export DOCKER_CONTENT_TRUST=1

If you use sudo to run Docker commands, specify the -E option to preserve the environment
or use visudo to add the following line to /etc/sudoers:

Defaults env_keep += "DOCKER_CONTENT_TRUST"

For individual docker build, docker push, or docker pull commands, you can specify
the --disable-content-trust=false and --disable-content-trust=true options
to enable or disable Content Trust.

For more information, see https://docs.docker.com/engine/security/trust/content_trust/.

Enabling FIPS Mode in Containers
To run containers in FIPS mode, you must first enable FIPS mode on your Oracle Linux host
system.

For more information about Oracle Linux 7 releases that have FIPS validated cryptographic
modules available for installation, see Oracle Linux 7: Security Guide.

Chapter 5
Pulling Oracle Linux Images From a Container Registry

5-2

https://docs.docker.com/engine/security/trust/content_trust/
https://docs.oracle.com/en/operating-systems/oracle-linux/7/security/

Note:

Oracle provides FIPS compliant container images by using the slim-fips tag.
Container images tagged as FIPS compliant include compliant cryptographic
package versions and initial image setup required for container FIPS mode. See The
slim Tag for more information.

For Oracle Linux 7 Containers:
To enable FIPS mode in an Oracle Linux 7 container, install the dracut-fips package or
mount /etc/system-fips from the host. For more information about mounting host files and
directories from inside a container, see Accessing External Files From Docker Containers.

For Oracle Linux 8 Containers:
To enable FIPS mode in an Oracle Linux 8 container, mount /etc/system-fips from the host.
For more information about mounting host files and directories from inside a container, see
Accessing External Files From Docker Containers.

Additionally, bind mount FIPS cryptographic policies within the container from /usr/share/
crypto-policies/back-ends/FIPS to /etc/crypto-policies/back-ends:

mount --bind /usr/share/crypto-policies/back-ends/FIPS /etc/crypto-policies/back-
ends

Creating and Running Docker Containers
You use the docker run command to run an application inside a container, for example:

docker run -i -t --name guest oraclelinux:7-slim

bash-4.2# cat /etc/oracle-release
Oracle Linux Server release 7.7
bash-4.2# exit

This example runs an interactive bash shell using the Oracle Linux 7 image named
oraclelinux:7-slim to provide the container. The /bin/bash command is the default
command run for all oraclelinux base images. The -t and -i options allow you to use a
pseudo-terminal to run the container interactively.

The following examples may use the prompt [root@host ~] and [root@guest ~] (or similar)
to represent the prompts shown by the host and by the container respectively. The actual
prompt displayed by the container may be different.

The --name option specifies the name guest for the container instance.

Docker does not remove the container when it exits and we can restart it at a later time, for
example:

[root@host ~]# docker start guest
guest

If an image does not already exist on your system, the Docker Engine performs a docker
pull operation to download the image from the Docker Hub (or from another repository that
you specify) as shown in the following example:

Chapter 5
Creating and Running Docker Containers

5-3

[root@host ~]# docker run -i -t --rm container-registry.oracle.com/os/oraclelinux:7-slim

Unable to find image 'container-registry.oracle.com/os/oraclelinux:7-slim' locally
Trying to pull repository container-registry.oracle.com/os/oraclelinux ...
7-slim: Pulling from container-registry.oracle.com/os/oraclelinux
Digest: sha256:267f37439471f1c5eae586394c85e743b887c7f97e4733e10e466158083c021e
Status: Downloaded newer image for container-registry.oracle.com/os/oraclelinux:7-slim
[root@guest /]# cat /etc/oracle-release
Oracle Linux Server release 7.7
[root@guest /]# exit
exit
[root@host ~]#

Because we specified the --rm option instead of naming the container, Docker removes the
container when it exits and we cannot restart it.

From another shell window, you can use the docker ps command to display information
about the containers that are currently running, for example:

[root@host ~]# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
68359521c0b7 oraclelinux:7-slim "/bin/bash" 2 hours ago Up 8 minutes guest

The container named guest with the ID 68359521c0b7 is currently running the command /bin/
bash. It is more convenient to manage a container by using its name than by its ID.

To display the processes that a container is running, use the docker top command:

[root@host ~]# docker top guest
UID PID PPID C STIME TTY TIME CMD
root 31252 31235 0 05:59 pts/0 00:00:00 /bin/bash

You can use the docker exec command to run additional processes in a container that is
already running, for example:

[root@host ~]# docker exec -i -t guest bash
[root@guest ~]#

You can also use the docker create command to set up a container that you can start at a
later time, for example:

[root@host ~]# docker create -i -t --name newguest oraclelinux:7-slim
b4c224f83e35927f67b973febb006b0af4d037f41c30e1f4bdcc4b822e12fd0f
[root@host ~]# docker start -a -i newguest
[root@newguest ~]#

The -a and -i options to docker start attach the current shell's standard input, output, and
error streams to those of the container and also cause all signals to be forwarded to the
container.

You can exit a container by typing Ctrl-D or exit at the bash command prompt inside the
container or by using the docker stop command:

[root@host ~]# docker stop guest

The -a option to docker ps displays all containers that are currently running or that have
exited.

[root@host ~]# docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
b4c224f83e35 oraclelinux:7-slim Exited (0) About a minute ago

Chapter 5
Creating and Running Docker Containers

5-4

newguest
68359521c0b7 oraclelinux:7-slim Exited (137) 45 seconds ago
guest

You can use docker start to restart a stopped container. After reattaching to it, the contents
remain unchanged from the last time that you used the container.

[root@host ~]# docker start -a -i guest
[root@guest ~]# touch /tmp/foobar
[root@guest ~]# exit
[root@host ~]# docker start -a -i guest
[root@guest ~]# ls -l /tmp/foobar
-rw-r--r-- 1 root root 0 Nov 26 06:27 /tmp/foobar

Because the container preserves any changes that you make to it, you can reconfigure files
and install packages in the container without worrying that your changes will disappear.

You can use the docker logs command to watch what is happening inside a container, for
example:

[root@host ~]# docker logs -f guest
bash-4.2# exit
exit
bash-4.2# ls -l /tmp/foobar
-rw-r--r-- 1 root root 0 Nov 26 06:33 /tmp/foobar

The -f option causes the command to update its output as events happen in the container.
Type Ctrl-C to exit the command.

You can obtain full information about a container in JSON format by using the docker
inspect command. This command also allows you to retrieve specified elements of the
configuration, for example:

[root@host ~]# docker inspect --format='{{ .State.Running }}' guest

If you need to remove a container permanently so that you can create a new container with the
same name, use the docker rm command:

[root@host ~]# docker rm guest

Note:

If you specify the --rm option when you run a container, Docker removes the
container when the container exits. You cannot combine the --rm option with the -d
option.

Specifying the -f option to docker rm kills a running container before removing it.
In previous versions, the same command stops the container before removing it. If
you want to stop a container safely, use docker stop.

Configuring How Docker Restarts Containers
To specify how you want Docker to handle a container when it exits, you can use the --
restart option with docker run and docker create:

Chapter 5
Creating and Running Docker Containers

5-5

--restart=always
Docker always attempts to restart the container when the container exits.

--restart=no
Docker does not attempt to restart the container when the container exits. This is the default
policy.

--restart=on-failure[:max-retry]
Docker attempts to restarts the container if the container returns a non-zero exit code. You
can optionally specify the maximum number of times that Docker will try to restart the
container.

Controlling Capabilities and Making Host Devices Available to Containers
If you specify the --privileged=true option to docker create or docker run, the
container has access to all the devices on the host, which can present a security risk. For more
precise control, you can use the --cap-add and --cap-drop options to restrict the
capabilities of a container, for example:

[root@host ~]# docker run --cap-add=ALL --cap-drop=NET_ADMIN -i -t --rm
oraclelinux:7
[root@guest /]# ip route del default
RTNETLINK answers: Operation not permitted

This example grants all capabilities except NET_ADMIN to the container so that it is not able to
perform network-administration operations. For more information, see the capabilities(7)
manual page.

To make only individual devices on the host available to a container, you can use the --
device option with docker run and docker create:

--device=host_devname [:container_devname [:permissions]]
host_devname is the name of the host device.
container_devname is an optional name for the name of the device in the container.
permissions optionally specifies the permissions that the container has on the device, which is
a combination of the following codes:

m
Grants mknod permission. For example, you can use mknod to set permission bits or the
SELinux context for the device file.

r
Grants read permission.

w
Grants write permission. For example, you can use a command such as mkfs to format
the device.

For example, --device=/dev/sdd:/dev/xvdd:r would make the host device /dev/sdd
available to the container as the device /dev/xvdd with read-only permission.

Chapter 5
Creating and Running Docker Containers

5-6

NOT_SUPPORTED:

Do not make block devices that can easily be removed from the system available to
untrusted containers.

Accessing the Host's Process ID Namespace
You can make the host's process ID namespace visible from inside a container by specifying
the --pid=host option to docker run. A suggested use of this mode is to debug host
processes by using containerized debugging tools.

NOT_SUPPORTED:

Host mode is inherently insecure as it gives a container full access to D-Bus and
other system services on the host.

Mounting a Host's root File System in Read-Only Mode
You can mount the host's root file system in read-only mode from a container by specifying the
--read-only=true option to docker create or docker run. You can use this mode to
restrict write access by a containerized application.

Creating a Docker Image From an Existing Container
If you modify the contents of a container, you can use the docker commit command to save
the current state of the container as an image.

The following example demonstrates how to modify a container based on the oraclelinux:7-
slim image so that it can run an Apache HTTP server. After stopping the container, the image
mymod/httpd:v1 is created from it.

Tip:

The oraclelinux:7-slim and oraclelinux:8-slim images provide the bare
minimum operating system required for Oracle Linux 7 and Oracle Linux 8. Using
these images can help to reduce resource usage when running containers based on
them. You can also ensure that the image that you create is limited to the base
requirements for your application.

To create an Apache server image from an oraclelinux:7-slim container:

1. Run the bash shell inside a container named httpd1:

docker run -i -t --name httpd1 oraclelinux:7-slim /bin/bash

[root@httpd1 ~]#

Chapter 5
Creating a Docker Image From an Existing Container

5-7

2. If you use a web proxy, edit the yum configuration on the guest as described in Oracle
Linux 7: Managing Software.

3. Install the httpd package:

[root@httpd1 ~]# yum -y install httpd
4. If required, create the web content to be displayed under the /var/www/html directory

hierarchy on the guest.

5. Exit the guest by simply using the exit command from within the interactive guest
session:

[root@httpd1 ~]# exit
exit

Or by using the docker stop command on the host:

docker stop httpd1
6. Create the image mymod/httpd with the tag v1 using the ID of the container that you

stopped:

docker commit -m "ol7-slim + httpd" -a "A N Other" \
 `docker ps -l -q` mymod/httpd:v1

sha256:b03fbc3216882a25e32c92caa2e797469a1ac98e5fc90affa07263b8cb0aa799

Use the -m and -a options to document the image and its author. The command returns
the full version of the new image's ID.

Tip:

The docker ps -l -q command returns the ID of the last created container.
We used this command in the example to obtain the ID of the container that we
wanted to use to generate the image. You may, alternatively, specify the ID
directly or use an alternate variation on this command to obtain the correct ID.

If you use the docker images command, the new image now appears in the list:

docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
mymod/httpd v1 b03fbc321688 2 minutes ago 426MB
oraclelinux 7-slim c2b5cb5bcd9d 7 days ago 118MB

7. Remove the container named httpd1.

docker rm httpd1
You can now use the new image to create a container that works as a web server, for example:

docker run -d --name newguest -p 8080:80 mymod/httpd:v1 /usr/sbin/httpd -D FOREGROUND

The -d option runs the command non-interactively in the background and displays the full
version of the unique container ID. The -p 8080:80 option maps port 80 in the guest to port
8080 on the host. You can view the port mapping by running docker ps, for example:

docker ps

Chapter 5
Creating a Docker Image From an Existing Container

5-8

https://docs.oracle.com/en/operating-systems/oracle-linux/7/yum/
https://docs.oracle.com/en/operating-systems/oracle-linux/7/yum/

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
154f05ea464e mymod/httpd:v1 "/usr/sbin/httpd -D …" 2 minutes ago Up 2 minutes
0.0.0.0:8080->80/tcp newguest

Alternately, use the docker port command, for example:

docker port newguest 80

0.0.0.0:8080

Note:

The docker ps command displays the short version of the container ID. You can
use the --no-trunc option to display the long version.

The default IP address value of 0.0.0.0 means that the port mapping applies to all network
interfaces on the host. You can restrict the IP addresses to which the remapping applies by
using multiple -p options, for example:

docker run -d --name newguest -p 127.0.0.1:8080:80 -p 192.168.1.2:8080:80 \
 mymod/httpd:v1 /usr/sbin/httpd -D FOREGROUND

You can view the web content served by the guest by pointing a browser at port 8080 on the
host. If you access the content from a different system, you might need to allow incoming
connections to the port on the host, for example:

firewall-cmd --zone=public --permanent --add-port=8080/tcp

If you need to remove an image, use the docker rmi command:

docker rmi mymod/httpd:v1

Untagged: mymod/httpd:v1
Deleted: sha256:b03fbc3216882a25e32c92caa2e797469a1ac98e5fc90affa07263b8cb0aa799
Deleted: sha256:f10c5b69ca9c3df53412238eefac72522720bc7c1a6a8eb6d21801c23a81c126

Note:

You cannot remove the image of a running container.

In a production environment, using the docker commit command to create an image does
not provide a convenient record of how you created the image so you might find it difficult to
recreate an image that has been lost or become corrupted. The preferred method for creating
an image is to set up a Dockerfile, in which you define instructions that allow Docker to build
the image for you. See Creating a Docker Image From a Dockerfile.

Creating a Docker Image From a Dockerfile
You use the docker build command to create a Docker image from the definition contained
in a Dockerfile.

Chapter 5
Creating a Docker Image From a Dockerfile

5-9

The following example demonstrates how to build an image named mymod/httpd with the tag
v2 based on the oraclelinux:7-slim image so that it can run an Apache HTTP server.

To create a Docker image from a Dockerfile:

1. Make a directory where you can create the Dockerfile, for example:

mkdir -p /var/docker_projects/mymod/httpd

Note:

You do not need to create the Dockerfile on the same system on which you want
to deploy containers that you create from the image. The only requirement is that
the Docker Engine can access the Dockerfile.

2. In the new directory, create the Dockerfile, which is usually named Dockerfile. The
following Dockerfile contents are specific to the example:

Dockerfile that modifies oraclelinux:7-slim to include an Apache HTTP server
FROM oraclelinux:7-slim
MAINTAINER A N Other <another@example.com>
RUN sed -i -e '/^\[main\]/aproxy=http://proxy.example.com:80' /etc/yum.conf
RUN yum -y install httpd
RUN echo "HTTP server running on guest" > /var/www/html/index.html
EXPOSE 80
ENTRYPOINT /usr/sbin/httpd -D FOREGROUND

The # prefix in the first line indicates that the line is a comment. The remaining lines start
with the following instruction keywords that define how Docker creates the image:

ENTRYPOINT
Specifies the command that a container created from the image always runs. In this
example, the command is /usr/sbin/httpd -D FOREGROUND, which starts the HTTP
server process.

EXPOSE
Defines that the specified port is available to service incoming requests. You can use the
-p or -P options with docker run to map this port to another port on the host.
Alternatively, you can use the --link option with docker run to allow another container
to access the port over Docker's internal network (see Communicating Between Docker
Containers).

FROM
Defines the image that Docker uses as a basis for the new image.

MAINTAINER
Defines who is responsible for the Dockerfile.

RUN
Defines the commands that Docker runs to modify the new image. In the example, the RUN
lines set up the web proxy, install the httpd package, and create a simple home page for
the server.

For more information about other instructions that you can use in a Dockerfile, see https://
docs.docker.com/engine/reference/builder/.

3. Use the docker build command to create the image :

Chapter 5
Creating a Docker Image From a Dockerfile

5-10

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/

docker build --tag="mymod/httpd:v2" /var/docker_projects/mymod/httpd/

Sending build context to Docker daemon 2.048kB
Step 1/6 : FROM oraclelinux:7-slim
Trying to pull repository docker.io/library/oraclelinux ...
7-slim: Pulling from docker.io/library/oraclelinux
a8d84c1f755a: Pull complete
Digest: sha256:d574213fa96c19ae00269730510c4d81a9979ce2a432ede7a62b62d594cc5f0b
Status: Downloaded newer image for oraclelinux:7-slim
 ---> c3d869388183
Step 2/6 : MAINTAINER A N Other <another@example.com>
 ---> Running in 26b0ba9f45e8
Removing intermediate container 26b0ba9f45e8
 ---> f399f426b849
Step 3/6 : RUN yum -y install httpd
 ---> Running in d75a9f312202
Loaded plugins: ovl
Resolving Dependencies
--> Running transaction check
---> Package httpd.x86_64 0:2.4.6-88.0.1.el7 will be installed
...
Complete!
Removing intermediate container d75a9f312202
 ---> aa3ab87bcae3
Step 4/6 : RUN echo "HTTP server running on guest" > /var/www/html/index.html
 ---> Running in dddedfc56849
Removing intermediate container dddedfc56849
 ---> 8fedc8516013
Step 5/6 : EXPOSE 80
 ---> Running in 6775d6e3996f
Removing intermediate container 6775d6e3996f
 ---> 74a960cf0ae9
Step 6/6 : ENTRYPOINT /usr/sbin/httpd -D FOREGROUND
 ---> Running in 8b6e6f61a2c7
Removing intermediate container 8b6e6f61a2c7
 ---> b29dea525f0a
Successfully built b29dea525f0a
Successfully tagged mymod/httpd:v2

Having built the image, you can test it by creating a container instance named httpd2:

docker run -d --name httpd2 -P mymod/httpd:v2

Note:

You do not need to specify /usr/sbin/httpd -D FOREGROUND as this command
is now built into the container.

The -P option specifies that Docker should map the ports exposed by the guest to a random
available high-order port (higher than 30000) on the host.

You can use docker inspect to return the host port that Docker maps to TCP port 80:

docker inspect --format='{{ .NetworkSettings.Ports }}' httpd2

map[80/tcp:[map[HostIp:0.0.0.0 HostPort:49153]]]

In this example, TCP port 80 in the guest is mapped to TCP port 49153 on the host.

Chapter 5
Creating a Docker Image From a Dockerfile

5-11

You can view the web content served by the guest by pointing a browser at port 49153 on the
host. If you access the content from a different system, you might need to allow incoming
connections to the port on the host.

You can open the port by updating the firewall:

firewall-cmd --add-port=49153/tcp
firewall-cmd --permanent --add-port=49153/tcp

You can also use curl to test that the server is working:

curl http://localhost:49153

HTTP server running on guest

Creating Multi-Stage Docker Image Builds
From Oracle Container Runtime for Docker 17.06, it is possible to perform multi-stage builds
from a single Dockerfile. This allows you to perform interim build or compilation steps during
the creation of the final image, without including all of the build tools and artifacts in the final
image. This helps to reduce image sizes, and improves performance. It also allows you to
deliver an image containing only the required binary and not all of the layers that were required
to produce the binary.

In this section, we provide a very simple example scenario, where the source of a program is
built in an interim compiler image and the resulting binary is copied into a separate image to
produce the final target image. This entire build is handled by a single Dockerfile.

Create a simple "hello world" style program in C, by pasting the following text into a file named
hello.c:

#include <stdio.h>

int
main (void)
{
 printf ("Hello, world!\n");
 return 0;
}

Create a Dockerfile that contains the following text:

FROM gcc AS BUILD
COPY . /usr/src/hello
WORKDIR /usr/src/hello
RUN gcc -Wall hello.c -o hello

FROM oraclelinux:7-slim
COPY --from=BUILD /usr/src/hello/hello hello
CMD ["./hello"]

Note that there are two FROM lines in this Dockerfile. The first FROM statement pulls the latest
gcc image from the Docker hub and uses the AS syntax to assign it a name that we can refer to
later when copying elements from this temporary build environment to our target image.

In the build environment, the source file is copied into the image and the gcc compiler is run
against the source file to produce a hello binary.

Chapter 5
Creating Multi-Stage Docker Image Builds

5-12

The second FROM statement pulls the oraclelinux:7-slim image. This image is used to host
the hello binary, which is copied into it directly from the build environment. By doing this, the
source, the compiler and any other build artifacts can be excluded from the final image.

To build the new image and run it, try running the following:

docker build -t hello-world ./

Sending build context to Docker daemon 35.38MB
Step 1/7 : FROM gcc AS BUILD
 ---> 7d9419e269c3
Step 2/7 : COPY . /usr/src/hello
 ---> ee7310cc4464
Removing intermediate container 1d51e6f16833
Step 3/7 : WORKDIR /usr/src/hello
 ---> 2c0298733ba0
Removing intermediate container 46a09ccc06d6
Step 4/7 : RUN gcc -Wall hello.c -o hello
 ---> Running in f003deeebc20
 ---> 67c85367cac1
Removing intermediate container f003deeebc20
Step 5/7 : FROM oraclelinux:7-slim
 ---> da5e55a16f7a
Step 6/7 : COPY --from=BUILD /usr/src/hello/hello hello
 ---> 8bd284b0d7eb
Removing intermediate container d71eee578325
Step 7/7 : CMD ./hello
 ---> Running in d6051d9e0a9d
 ---> dac5aa2d651d
Removing intermediate container d6051d9e0a9d
Successfully built dac5aa2d651d
Successfully tagged hello-world:latest

docker run hello-world

Hello, world!

The hello-world image is generated to contain and run the hello binary, but doesn't contain
any of the components that were required to build the binary. The final image has less layers,
is smaller and excludes any of the build steps in its history.

About Docker Networking
The Docker networking features allow you to create secure networks of web applications that
can communicate while running in separate containers. By default, Docker configures two
types of network (as displayed by the docker network ls command):

host
If you specify the --net=host option to the docker create or docker run commands,
Docker uses the host's network stack for the container. The network configuration of the
container is the same as that of the host and the container shares the service ports that are
available to the host. This configuration does not provide any network isolation for a container.

bridge
By default, Docker attaches containers to a bridge network named bridge. When you run a
command such as ip link show on the host, the bridge is visible as the docker0 network
interface. You can use the bridge network to connect separate application containers. The
docker network inspect bridge command allows you to examine the network

Chapter 5
About Docker Networking

5-13

configuration of the bridge, which is displayed in JSON format. Docker sets up a default
subnet address, network mask, and gateway for the bridge network and automatically assigns
subnet addresses to containers that you add to the bridge network. Containers on the default
bridge network can communicate with each other on this network directly, although there is
domain name resolution within this network to make containers specifically aware of each
other.
A container can communicate with other containers on a bridge network but not with other
networks unless you also attach it to those networks. To define the networks that a container
should use, specify a --net= bridge-network-name option for each network to the docker
create or docker run commands. To attach a running container to a network, you can use
the docker network connect network-name container-name command.
You can use the docker network create --driver bridge bridge-network-name
command to create user-defined bridge networks that expose container network ports that can
be accessed by external networks and other containers. You specify --net= bridge-network-
name to docker create or docker run to attach the container to this network. More
information on user-defined networking is provided in Communicating Between Docker
Containers.

About Multihost Networking
A bridge network provides network isolation but it limits container connections to a single host
system unless you use a complex user-defined bridge. Docker includes the VXLAN-based
overlay network driver that supports multihost networking, where you can attach separate
application containers running on multiple Docker hosts to the same virtual overlay network.
Before you can create an overlay network, you must configure a key-value (KV) service such
as Consul, Etcd, or ZooKeeper that the Docker hosts can access to share configuration
information. You can then configure the Docker daemon on each host to access the KV server
by specifying appropriate values to the –cluster-advertise and --cluster-store
options. Next you use the docker network create -driver overlay multihost-
network-name command on one of the hosts to create the overlay network. Having created the
overlay network, you can attach the container to this network by specifying --net= multihost-
network-name to docker create or docker run.

For more information, see https://docs.docker.com/engine/userguide/networking/.

Communicating Between Docker Containers
All containers are automatically added to the default bridge network and assigned IP
addresses by the Docker Engine. This means that containers are effectively able to
communicate directly using the bridge network. However there is no automatic service
discovery on the default bridge network. If containers need to be able to resolve IP addresses
by container name, you should use a user-defined network instead.

You can use the --link option with docker run to make network connection information
about a server container available to a client container. For example to link a client container,
client1, to a server container, httpd_server, you could run:

docker run --rm -t -i --name client1 --link http-server:server oraclelinux /bin/
bash

The client container uses a private networking interface to access the exposed port in the
server container. Docker sets environment variables about the server container in the client
container that describe the interface and the ports that are available. The server container
name and IP address are also set in /etc/hosts in the client container, to facilitate easy
access.

Chapter 5
Communicating Between Docker Containers

5-14

https://docs.docker.com/engine/userguide/networking/

The --link option is considered a legacy feature and may be deprecated in future releases. It
is not recommended in most cases.

The preferred approach to setting up communications between containers is to create user-
defined networks. These networks provide better isolation and can perform DNS resolution of
container names to IP addresses. A variety of network drivers are available, but the most
commonly used is the bridged network which behaves similarly to the default bridge network
but which provides additional features.

The following example shows how to create a simple user-defined network bridge and how to
connect containers to it, to allow them to communicate easily with each other.

1. Create a network using the bridge driver.

docker network create --driver bridge http_network

In the example, the network is named http_network.

You can check that the network has been created and which driver it is using:

docker network ls

NETWORK ID NAME DRIVER SCOPE
094c50739e14 bridge bridge local
7eff8115af9a host host local
4a03450bf054 http_network bridge local
457c4070f5a2 none null local

You can also inspect the network object to discover more information:

docker network inspect http_network

[
 {
 "Name": "http_network",
 "Id": "4a03450bf054a6d4d4db52da36eab8d934d35bf961b3b3adb4fe20be54c0fdac",
 "Created": "2019-02-06T04:40:47.177691733-08:00",
 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": {},
 "Config": [
 {
 "Subnet": "172.18.0.0/16",
 "Gateway": "172.18.0.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {},
 "Options": {},
 "Labels": {}
 }
]

Chapter 5
Communicating Between Docker Containers

5-15

2. Connect existing containers to the user-defined network.

docker network connect http_network http-server
docker network connect http_network client1

In this example, http-server and client1 are existing containers that are connected to the
newly created http_network bridge network.

3. Connect a new container to the user-defined network, using the --network option.

docker run --rm -t -i --name client2 --network http_network oraclelinux:7 /bin/bash

You can check that domain name resolution is working from within the container by pinging
any other container on the network by its container name:

[root@client1 ~]# ping -c 1 http-server

PING http-server (172.18.0.2) 56(84) bytes of data.
64 bytes from http-server.http_network (172.18.0.2): icmp_seq=1 ttl=64 time=0.162 ms

--- http-server ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.162/0.162/0.162/0.000 ms

You can access services on containers within the network using their container names. For
example:

[root@client1 ~]# curl http://http-server
HTTP server running on guest

For more information, see https://docs.docker.com/engine/userguide/networking/.

Accessing External Files From Docker Containers
You can use the -v option with docker run to make a file or file system available inside a
container. The following example demonstrates how to make web pages on the host available
to an HTTP server running in a container.

Create the file /var/www/html/index.html on the host and run an HTTP server container that
mounts this file:

echo "This text was created in a file on the host" > /var/www/html/index.html
docker run -d --name newguest3 -P \
 -v /var/www/html/index.html:/var/www/html/index.html:ro mymod/httpd:v2

The :ro modifier specifies that a container mounts a file or file system read-only. To mount a
file or file system read-writable, specify the :rw modifier instead or omit the modifier altogether.

Check that the HTTP server is not running on the host:

[root@host ~]# curl http://localhost
curl: (7) couldn't connect to host
[root@host ~]# systemctl status httpd
httpd is stopped

Even though an HTTP server is not running directly on the host, you can display the new web
page served by the newguest3 container:

docker inspect --format='{{ .NetworkSettings.Ports }}' newguest3

map[80/tcp:[map[HostIp:0.0.0.0 HostPort:49153]]]

Chapter 5
Accessing External Files From Docker Containers

5-16

https://docs.docker.com/engine/userguide/networking/

[root@host ~]# curl http://localhost:49153
This text was created in a file on the host

Any changes that you make to the /var/www/html/index.html file on the host are reflected in
the mounted file in the container:

echo "Change the file on the host" > /var/www/html/index.html

[root@host ~]# curl http://localhost:49153
Change the file on the host

Even if you delete the file on the host, it is still visible in the container:

rm -f /var/www/html/index.html

[root@host ~]# ls -l /var/www/html/index.html
ls: cannot access /var/www/html/index.html: No such file or directory
[root@host ~]# curl http://localhost:49153
Change the file on the host

It is not possible to use a Dockerfile to define how to mount a file or file system from a host.
Docker applications are intended to be portable and it is unlikely that a file or file system that
exists on the original host would be available on another system. If you want external file data
to be portable, you can encapsulate it in a data volume container. See Creating and Using
Data Volume Containers.

Creating and Using Data Volume Containers
If you specify a single directory argument to the -v option of docker run, Docker creates the
directory in the container and marks it as a data volume that other containers can mount. You
can also use the VOLUME instruction in a Dockerfile to create this data volume in an image. A
container that contains such a data volume is called a data volume container. After populating
the data volume with files, you can use the --volumes-from option of docker run to have
other containers mount the volume and access its data.

Note:

When you use docker rm to remove a container that has associated data volumes,
specify the -v option to remove these volumes. Unassociated volumes waste disk
space and are difficult to remove.

The following example creates a data volume container that an HTTP server container can use
as the source of its web content.

To create a data volume container image and an instance of a data volume container from this
image:

1. Make a directory where you can create the Dockerfile for the data volume container image,
for example:

mkdir -p /var/docker_projects/mymod/dvc
2. In the new directory, create a Dockerfile named Dockerfile that defines the image for a

data volume container:

Chapter 5
Creating and Using Data Volume Containers

5-17

Dockerfile that modifies oraclelinux:7-slim to create a data volume container
FROM oraclelinux:7-slim
MAINTAINER A N Other <another@example.com>
RUN mkdir -p /var/www/html
RUN echo "This is the content for file1.html" > /var/www/html/file1.html
RUN echo "This is the content for file2.html" > /var/www/html/file2.html
RUN echo "This is the content for index.html" > /var/www/html/index.html
VOLUME /var/www/html
ENTRYPOINT /usr/bin/tail -f /dev/null

The RUN instructions create a /var/www/html directory that contains three simple files.

The VOLUME instruction makes the directory available as a volume that other containers can
mount by using the --volumes-from option to docker run.

The ENTRYPOINT instruction specifies the command that a container created from the image
always runs. To prevent the container from exiting, the /usr/bin/tail -f /dev/null
command blocks until you use a command such as docker stop dvc1 to stop the
container.

3. Use the docker build command to create the image:

docker build --tag="mymod/dvc:v1" /var/docker_projects/mymod/dvc/

Sending build context to Docker daemon 2.048kB
Step 1/8 : FROM oraclelinux:7-slim
 ---> c2b5cb5bcd9d
Step 2/8 : MAINTAINER A N Other <another@example.com>
 ---> Running in 56c7b79c246e
Removing intermediate container 56c7b79c246e
 ---> 620ff82e21cb
Step 3/8 : RUN mkdir -p /var/www/html
 ---> Running in ac91306f3d74
Removing intermediate container ac91306f3d74
 ---> 379c58d9eab9
Step 4/8 : RUN echo "This is the content for file1.html" > /var/www/html/file1.html
 ---> Running in 981773ba0210
Removing intermediate container 981773ba0210
 ---> 2ee97d83b582
Step 5/8 : RUN echo "This is the content for file2.html" > /var/www/html/file2.html
 ---> Running in 36e8550c9a8b
Removing intermediate container 36e8550c9a8b
 ---> 4ba8d28df981
Step 6/8 : RUN echo "This is the content for index.html" > /var/www/html/index.html
 ---> Running in 6f15a403b4f6
Removing intermediate container 6f15a403b4f6
 ---> 550bb92c154b
Step 7/8 : VOLUME /var/www/html
 ---> Running in 1806e5d6e643
Removing intermediate container 1806e5d6e643
 ---> 0e3de4ac4c9c
Step 8/8 : ENTRYPOINT /usr/bin/tail -f /dev/null
 ---> Running in 6cde4f965504
Removing intermediate container 6cde4f965504
 ---> 5e4e2780503b
Successfully built 5e4e2780503b
Successfully tagged mymod/dvc:v1

4. Create an instance of the data volume container, for example dvc1:

docker run -d --name dvc1 mymod/dvc:v1 tail -f /dev/null

Chapter 5
Creating and Using Data Volume Containers

5-18

To test that other containers can mount the data volume (/var/www/html) from dvc1, create a
container named websvr that runs an HTTP server and mounts its data volume from dvc1.

docker run -d --volumes-from dvc1 --name websvr -P mymod/httpd:v2

After finding out the correct port to use on the host, use curl to test that websvr correctly
serves the content of all three files that were set up in the image. For example:

[root@host ~]# docker port websvr 80
0.0.0.0:32769
[root@host ~]# curl http://localhost:32769
This is the content for index.html
[root@host ~]# curl http://localhost:32769/file1.html
This is the content for file1.html
[root@host ~]# curl http://localhost:32769/file2.html
This is the content for file2.html

Moving Data Between Docker Containers and the Host
You can use the -v option of docker run to copy volume data between a data volume
container and the host. For example, you might want to back up the data so that you can
restore it to the same data volume container or to copy it to a different data volume container.

The examples in this section assume that Docker is running two instances of the data volume
container image mymod/dvc:v1 that is described in Creating and Using Data Volume
Containers. You can use the following commands to start these containers:

docker run -d --name dvc1 mymod/dvc:v1
docker run -d --name dvc2 mymod/dvc:v1

To copy the data from a data volume to the host, mount the volume from another container and
use the cp command to copy the data to the host, for example:

docker run --rm --volumes-from dvc1 -v /var/tmp:/host:rw oraclelinux:7-slim \
 cp -r /var/www/html /host/dvc1_files

The container mounts the host directory /var/tmp read-writable as /host, mounts all the
volumes, including /var/www/html, that dvc1 exports, and copies the file hierarchy
under /var/www/html to /host/dvc1_files, which corresponds to /var/tmp/dvc1_files on
the host.

To copy the backup of dvc1's data from the host to another data volume container dvc2, use a
command such as the following:

docker run --rm --volumes-from dvc2 -v /var/tmp:/host:ro \
 oraclelinux:7-slim cp -a -T /host/dvc1_files /var/www/html

The container mounts the host directory /var/tmp read-only as /host, mounts the volumes
exported by dvc2, and copies the file hierarchy under /host/dvc1_files (/var/tmp/
dvc1_files on the host) to /var/www/html, which corresponds to a volume that dvc2 exports.

You could also use a command such as tar to back up and restore the data as a single
archive file, for example:

docker run --rm --volumes-from dvc1 -v /var/tmp:/host:rw \
 oraclelinux:7-slim tar -cPvf /host/dvc1_files.tar /var/www/html

ls -l /var/tmp/dvc1_files.tar

-rw-r--r--. 1 root root 10240 Aug 31 14:37 /var/tmp/dvc1_files.tar

Chapter 5
Moving Data Between Docker Containers and the Host

5-19

docker run --rm --volumes-from dvc2 -i -t --name guest -v /var/tmp:/host:ro \
 oraclelinux:7-slim /bin/bash

On the guest, run the following commands:

[root@guest ~]# rm /var/www/html/*.html
[root@guest ~]# ls -l /var/www/html/*.html
total 0
[root@guest ~]# tar -xPvf /host/dvc1_files.tar
var/www/html/
var/www/html/file1.html
var/www/html/file2.html
var/www/html/index.html
[root@guest ~]# ls -l /var/www/html
total 12
-rw-r--r--. 1 root root 35 Aug 30 09:02 file1.html
-rw-r--r--. 1 root root 35 Aug 30 09:03 file2.html
-rw-r--r--. 1 root root 35 Aug 30 09:03 index.html
[root@guest ~]# exit
exit

This example uses a transient, interactive container named guest to extract the contents of the
archive to dvc2.

Using Labels to Define Metadata
You can use labels to add metadata to the Docker daemon and to Docker containers and
images. In the Dockerfile, a LABEL instruction defines an image label that can contain one or
more key-value pairs, for example:

LABEL com.mydom.dept="ITGROUP" \
 com.mydom.version="1.0.0-ga" \
 com.mydom.is-final \
 com.mydom.released="June 6, 2015"

In this example, each key name is prefixed by the domain name in reverse DNS form
(com.mydom.) to guard against name-space conflicts. Key values are always expressed as
strings and are not interpreted by Docker. If you omit the value, you can use the presence or
absence of the key in the metadata to encode information such as the release status. The
backslash characters allow you to extend the label definition across several lines.

You can use the docker inspect command to display the labels that are associated with an
image, for example:

docker inspect 7ac15076dcc1
...
"Labels": {
 "com.mydom.dept": "ITGROUP",
 "com.mydom.version": "1.0.0-ga",
 "com.mydom.is-final": "",
 "com.mydom.release-date": "June 6, 2015"
}
...

You can use the --filter "label=key [=value]" option with the docker images and
docker ps commands to list the images and running containers on which a metadata value
has been set, for example:

Chapter 5
Using Labels to Define Metadata

5-20

docker images --filter "label=com.mydom.dept='DEVGROUP'"
docker ps --filter "label=com.mydom.is-beta2"
docker ps --filter "label=env=Oracle\ Linux\ 7"

For containers, you can use --label key=[value] options with the docker create and
docker run commands to define key-value pairs, for example:

docker run -i -t --rm testapp:1.0 --label run="11" --label platform="Oracle Linux
7"

For the Docker Engine, you can use --label key=[value] options if you start docker from
the command line or edit the docker configuration file /etc/sysconfig/docker.

OPTIONS=" --label com.mydom.dept='DEVGROUP'"

Alternately, you can append these options to a list in the /etc/docker/daemon.json file, for
example:

{
 "labels": ["com.mydom.dept='DEVGROUP'", "com.mydom.version='1.0.0-ga'"]
}

Note:

After adding or modifying a configuration file while the docker service is running, run
the command systemctl daemon-reload to tell systemd to reload the
configuration for the service.

As containers and the Docker daemon are transitory and run in a known environment, it is not
usually necessary to apply reverse domain name prefixes to key names.

Defining the Logging Driver
You can use the --log-driver option with the docker create and docker run
commands to specify the logging driver that a container should use:

json-file
Write log messages to a JSON file that you can examine by using the docker logs
command, for example:

docker logs --follow --timestamps=false container_name

This is the default logging driver.

none
Disable logging.

syslog
Write log messages to syslog.

About Image Digests
Registry version 2 or later images can be identified by their digest (for example,
sha256:digest_value_in_hexadecimal). You can list the digest by specifying the --digests

Chapter 5
Defining the Logging Driver

5-21

option to the docker images command. You can use a digest with the docker create,
docker pull, docker rmi, and docker run commands and with the FROM instruction in a
Dockerfile.

Specifying Control Groups for Containers
You can use the --cgroup-parent option with the docker create command to specify the
control group (cgroup) in which a container should run.

Limiting CPU Usage by Containers
To control a container's CPU usage, you can use the --cpu-period and --cpu-quota
options with the docker create and docker run commands.

The --cpu-quota option specifies the number of microseconds that a container has access
to CPU resources during a period specified by --cpu-period. As the default value of --
cpu-period is 100000, setting the value of --cpu-quota to 25000 limits a container to 25%
of the CPU resources. By default, a container can use all available CPU resources, which
corresponds to a --cpu-quota value of -1.

Enabling a Container to Use the Host's UTS Namespace
By default, a container runs with a UTS namespace (which defines the system name and
domain) that is different from the UTS namespace of the host. To make a container use the
same UTS namespace as the host, you can use the --uts=host option with the docker
create and docker run commands. This setting allows the container to track the UTS
namespace of the host or to set the host name and domain from the container.

NOT_SUPPORTED:

As the container has full access to the UTS namespace of the host, this feature is
inherently insecure.

Setting ulimit Values on Containers
The --ulimit option to docker run allows you to specify ulimit values for a container, for
example:

docker run -i -t --rm myapp:2.0 --ulimit nofile=128:256 --ulimit nproc=32:64

This example sets a soft limit of 128 open files and 32 child processes and a hard limit of 256
open files and 64 child processes on the container.

You can set default ulimit values for all containers by specifying default-ulimits options
in a /etc/docker/daemon.json configuration file, for example:

"default-ulimits": {
 "nofile": {
 "Name": "nofile",
 "Hard": 128,
 "Soft": 256
 },

Chapter 5
Specifying Control Groups for Containers

5-22

 "nproc" : {
 "Name": "nproc",
 "Hard": 32,
 "Soft": 64
 }
},

Note:

After adding or modifying the configuration file while the docker service is running,
run the command systemctl daemon-reload to tell systemd to reload the
configuration for the service.

Any ulimit values that you specify for a container override the default values that you set for
the daemon.

Building Images With Resource Constraints
You can specify cgroup resource constraints to docker build, for example:

docker build --cpu-shares=100 --memory=1024m \
 --tag="mymod/myapp:1.0" /var/docker_projects/mymod/myapp/

Any containers that you generate from the image inherit these resource constraints.

You can use the docker stats command to display a container's resource usage, for
example:

docker stats cntr1 cntr2

CONTAINER ID NAME CPU % MEM USAGE/LIMIT MEM % NET
I/O BLOCK I/O PIDS
1ab12958b915 cntr1 0.05% 504 KiB/128 MiB 0.39% 2.033 KiB/40
B 13.7MB/1MB 1
3cf41296a324 cntr2 0.08% 1.756 MiB/128 MiB 1.37% 5.002 KiB/92
B 15.8MB/3MB 1

Committing, Exporting, and Importing Images
You can use the docker commit command to save the current state of a container to an
image.

docker commit \
 [--author="name"] \
 [--change="instructions"]... \
 [--message="text"] \
 [--pause=false] container [repository[:tag]

You can use this image to create new containers, for example to debug the container
independently of the existing container.

You can use the docker export command to export a container to another system as an
image tar file.

docker export [--output="filename"] container

Chapter 5
Building Images With Resource Constraints

5-23

Note:

You need to export separately any data volumes that the container uses. See Moving
Data Between Docker Containers and the Host.

To import the image tar file, use docker import and specify the image URL or read the file
from the standard input.

docker import [--change="instructions"]... URL [repository[:tag]
docker import [--change="instructions"]... - [repository[:tag] < filename

You can use --change options with docker commit and docker import to specify
Dockerfile instructions that modify the configuration of the image, for example:

docker commit --change "LABEL com.mydom.status='Debug'" 7ac15076dcc1 mymod/
debugimage:v1

For docker commit, you can specify the following instructions: ADD, CMD, COPY, ENTRYPOINT,
ENV, EXPOSE, FROM, LABEL, MAINTAINER, RUN, USER, VOLUME, and WORKDIR.

For docker import, you can specify the following instructions: CMD, ENTRYPOINT, ENV, EXPOSE,
ONBUILD, USER, VOLUME, and WORKDIR.

Chapter 5
Committing, Exporting, and Importing Images

5-24

6
Using Docker Registries

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

A Docker registry is a store of Docker images. A Docker image is a read-only template, which
is used to create a Docker container. A Docker registry is used to store Docker images, which
are used to deploy containers as required.

The default Docker registry is the Docker Hub and is available at:

https://hub.docker.com

Oracle makes open source software available on the GitHub Container registry. See https://
github.com/oracle/docker-images and https://docs.github.com/en/packages/guides/about-
github-container-registry for more information.

Oracle also hosts its own Docker registry, the Oracle Container Registry, which contains both
licensed and open source Oracle software. The Oracle Container Registry is located at:

https://container-registry.oracle.com

You can configure multiple registries when pulling images. See Setting Container Registry
Options for more information on using multiple registries.

The Oracle Container Registry provides a web interface that allows an administrator to select
the images for the software that your organization wants to use.

If you want to use licensed Oracle software images, you must first log into the Oracle
Container Registry web interface and accept the Oracle Standard Terms and Restrictions for
the software images.

Open source software images, and all of the software an image contains, is licensed under one
or more open source license, provided in the container image. Your use of the container image
is subject to the terms of those licenses.

You can use one of the Oracle Container Registry mirrors for faster download in your
geographical region.

Enterprise environments may consider setting up a local Docker registry. This provides the
opportunity to convert customized containers into images that can be committed into a local
registry, to be used for future container deployment, reducing the amount of customized
configuration that may need to be performed for mass deployments. A local registry can also
cache and host images pulled from an upstream registry. This can reduce network overhead
and latency when deploying matching containers across a spread of local systems.

6-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://hub.docker.com
https://github.com/oracle/docker-images
https://github.com/oracle/docker-images
https://docs.github.com/en/packages/learn-github-packages/introduction-to-github-packages
https://docs.github.com/en/packages/learn-github-packages/introduction-to-github-packages
https://container-registry.oracle.com

Users of Oracle Cloud Infrastructure can use the Registry service for an Oracle-managed
Docker registry that can serve images to your internal compute instances and can be exposed
as a public registry on the Internet if required. The Oracle Cloud Infrastructure Registry service
includes fine grained policy controls to allow you to control registry access. For complete
documentation around using this service, see https://docs.oracle.com/iaas/Content/Registry/
Concepts/registryoverview.htm

Pulling Images From the Oracle Container Registry
This section discusses pulling an image from the Oracle Container Registry.

If you are pulling a licensed Oracle software image, you must first log into the Oracle Container
Registry and accept the Oracle Standard Terms and Restrictions. For information on pulling
licensed Oracle software from the Oracle Container Registry, see Pulling Licensed Software
From the Oracle Container Registry.

To pull an image from the Oracle Container Registry:

docker pull container-registry.oracle.com/area/image[:tag]

Substitute area with the repository location in the Oracle Container Registry, and image with
the name of the software image. You may optionally specify a particular [:tag] for the image.
For example:

docker pull container-registry.oracle.com/os/oraclelinux:7-slim

The area and image are nearly always specified in lower case. The command to pull an image
is usually provided on the repository information page in the Oracle Container Registry web
interface. Other useful information about the image and how it should be run may also be
available on the same page.

Using Oracle Container Registry Notary for Content Trust
The Oracle Container Registry also includes a Notary service that can be used to validate
signed images that are pulled from the registry. This service helps to improve security and can
mitigate against inadvertently running a compromised image on your infrastructure.

Using the Notary service is straightforward and only requires that you set two environment
variables for the user that runs any Docker commands.

1. Set the DOCKER_CONTENT_TRUST environment variable to enable content trust within Docker:

export DOCKER_CONTENT_TRUST=1

See Enabling or Disabling Docker Content Trust for more information.

2. Set the DOCKER_CONTENT_TRUST_SERVER to point to the Notary service. It is important that
you specify the port number in the value that you provide for this variable:

export DOCKER_CONTENT_TRUST_SERVER="https://container-trust.oci.oraclecloud.com:443"
3. Pull an image from the container registry, as described in Pulling Images From the Oracle

Container Registry to update the Notary metadata cache. If content trust is working
correctly, the image pull will behave normally. If the Notary is unavailable, Docker falls back
to its local cache of signature metadata and issues a warning:

WARN[0015] Error while downloading remote metadata, using cached timestamp
 - this might not be the latest version available remotely

Chapter 6
Pulling Images From the Oracle Container Registry

6-2

https://docs.oracle.com/iaas/Content/Registry/Concepts/registryoverview.htm
https://docs.oracle.com/iaas/Content/Registry/Concepts/registryoverview.htm

If you try to pull an image that is not trusted or not hosted on the Oracle Container Registry
an error is displayed and the image cannot be pulled. For example, when pulling an image
from docker.io with content trust enabled and the content trust server configured for the
Oracle Container Registry Notary service, the following error is returned:

Error: remote trust data does not exist for nginx: container-
trust.oci.oraclecloud.com:443
does not have trust data for docker.io/library/nginx

A user can explicitly disable content trust when running a Docker command by specifying the
--disable-content-trust option or can simply unset the environment variable. Equally,
content trust can be forced, regardless of the environment variable setting by running a
command with --disable-content-trust=false as an option.

Pulling Licensed Software From the Oracle Container Registry
The Oracle Container Registry contains images for licensed commercial Oracle software
products. To pull images for licensed software on the Oracle Container Registry, you must have
an Oracle Account. You can create an Oracle Account using:

https://profile.oracle.com/myprofile/account/create-account.jspx

Note:

You do not need to log into the Oracle Container Registry or accept the Oracle
Standard Terms and Restrictions to pull open source Oracle software images.

To pull a licensed software image from the Oracle Container Registry:

1. In a web browser, log into the Oracle Container Registry using your Oracle Account:

https://container-registry.oracle.com

2. Use the web interface to accept the Oracle Standard Terms and Restrictions for the Oracle
software images you want to pull. Your acceptance of these terms are stored in a database
that links the software images to your Oracle Account. Your acceptance of the Oracle
Standard Terms and Restrictions is valid only for the repositories for which you accept the
terms. You may need to repeat this process if you attempt to pull software from alternate or
newer repositories in the registry. This is subject to change without notice.

3. Use the web interface to browse or search for Oracle software images.

4. On the host system, use the docker login command to authenticate against the Oracle
Container Registry, using the same Oracle Account you used to log into the web interface:

docker login container-registry.oracle.com

You are prompted for the username and password for the Oracle Account.

5. Pull the images your require using the docker pull command. For example:

docker pull container-registry.oracle.com/java/serverjre

For more detailed information on pulling images from the Oracle Container Registry, see
Pulling Images From the Oracle Container Registry.

Chapter 6
Pulling Licensed Software From the Oracle Container Registry

6-3

https://profile.oracle.com/myprofile/account/create-account.jspx
https://container-registry.oracle.com

If your Oracle Account credentials can be verified and the Oracle Standard Terms and
Restrictions have been accepted, the image is pulled from the Oracle Container Registry
and stored locally, ready to be used to deploy containers.

6. After you have pulled images from the Oracle Container Registry, it is good practice to log
out of the registry to prevent unauthorized access, and to remove any record of your
credentials that Docker may store for future operations:

docker logout container-registry.oracle.com

Using the Oracle Container Registry Mirrors
The Oracle Container Registry has many mirror servers located around the world. You can use
a registry mirror in your global region to improve download performance of container images.

To get a list of the available mirrors, and the command to pull the image from the mirror, see
the information page for an image using the Oracle Container Registry web interface. The list
of registry mirrors is available towards the end of the image information page, in the Tags table.
The table heading includes a Download Mirror drop down to select a registry mirror. When you
select a mirror, the Pull Command column changes to show the command to pull the image
from the selected mirror.

Pull an image from an Oracle Container Registry mirror using the URL for that mirror. For
example, to pull the Oracle Linux 7 image from the Sydney mirror, use:

docker pull container-registry-sydney.oracle.com/os/oraclelinux:7-slim

To download licensed Oracle software images from a registry mirror, you must first accept the
Oracle Standard Terms and Restrictions in the Oracle Container Registry web interface.

https://container-registry.oracle.com

To pull licensed Oracle software images, log in to the Oracle Container Registry mirror before
you pull the image. For example:

docker login container-registry-sydney.oracle.com
docker pull container-registry-sydney.oracle.com/java/serverjre
docker logout container-registry-sydney.oracle.com.oracle.com

Using Third-Party Registries
There are several third-party registries that are available for use with Oracle Container
Runtime for Docker, such as the Docker Hub and the GitHub Container Registry. Oracle makes
images for some licensed commercial Oracle software products on some of these third-party
registries.

GitHub Container Registry
GitHub is a popular open-source development platform and is one of Oracle's preferred
repositories for open source software. GitHub Container Registry provides an industry
standard registry that you can use to pull images for the containers that you need to run in your
environment.

No authentication is required to pull an image from GitHub Container Registry. For example, to
pull the slim Oracle Linux 8 image from the GitHub Container Registry, use:

docker pull ghcr.io/oracle/oraclelinux:8-slim

Chapter 6
Using the Oracle Container Registry Mirrors

6-4

https://container-registry.oracle.com

For more information on GitHub Container Registry, see https://docs.github.com/en/packages/
guides/about-github-container-registry

Docker Hub
The Docker Hub is available at:

https://hub.docker.com

You are able to browse the Docker Hub, but to access many of the images hosted there, you
must log in with a valid Docker ID. If you do not have a Docker ID, you can register at:

https://hub.docker.com/signup

The Docker Hub provides a web interface that allows you to select the Docker Certified images
that you want to install, and to agree to any terms and conditions that may apply, or to make
payment if required. When you have agreed to the terms and conditions that apply to an
image, the image is stored in the My Content area, so that you can revisit it later.

The Docker Hub may require that you are logged in before you can pull any Docker Certified
images hosted in this registry. This makes sure the terms and conditions that apply to the
image have been accepted, and that any payments have been settled.

Since the Docker Hub is the default registry, you can pull an image by simply specifying its
name and tag. For example, to pull the oraclelinux:7-slim image:

docker pull oraclelinux:7-slim

Trying to pull repository docker.io/library/oraclelinux ...
7-slim: Pulling from docker.io/library/oraclelinux
a61503a3b32e: Pull complete
Digest: sha256:bb7c3969d33b3c2695b11dd705e18ed604ce0f1e3317ef293e8f0d9d125dc90a
Status: Downloaded newer image for oraclelinux:7-slim
oraclelinux:7-slim

Setting Up a Local Docker Registry
This section contains information about setting up a local Docker registry server, which can be
used to host your own images, and can also be used as a mirror for the Oracle Container
Registry.

Users of Oracle Cloud Infrastructure should consider using the Oracle-managed Registry
service to cater to local Docker registry requirements. See https://docs.oracle.com/iaas/
Content/Registry/Concepts/registryoverview.htm.

The registry server is a Docker container application. The host must have an Internet
connection to download the registry image, either from the Docker Hub or, if support is
required, from the Oracle Container Registry.

Creating a Registry File System
The registry server requires at least 15GB of available disk space to store registry data. This is
usually located at /var/lib/registry. It is good practice to create a separate file system
for this. It is recommended you create a Btrfs formatted file system to allow you to easily scale
your registry file system, and to leverage Btrfs features such as snapshotting. The instructions
in this section provide details for setting up a Btrfs file system. The device could be a disk
partition, an LVM volume, a loopback device, a multipath device, or a LUN.

Chapter 6
Setting Up a Local Docker Registry

6-5

https://docs.github.com/en/packages/learn-github-packages/introduction-to-github-packages
https://docs.github.com/en/packages/learn-github-packages/introduction-to-github-packages
https://hub.docker.com
https://hub.docker.com/signup
https://docs.oracle.com/iaas/Content/Registry/Concepts/registryoverview.htm
https://docs.oracle.com/iaas/Content/Registry/Concepts/registryoverview.htm

If you want dedicated storage for the registry file system, create a file system and mount it
at /var/lib/registry. This example uses Btrfs to format the file system.

To create a Btrfs file system for the registry:

1. Create a Btrfs file system with the utilities available in the btrfs-progs package, which
should be installed by default. Create a Btrfs file system on one or more block devices:

mkfs.btrfs [-L label] block_device ...

where -L label is an optional label that can be used to mount the file system.

For example, to create a file system on the partition /dev/sdc1:

sudo mkfs.btrfs -L var-lib-registry /dev/sdc1

The partition must already exist. Use a utility such as fdisk (MBR partitions) or gdisk
(GPT partitions) to create one if needed.

To create a file system on a logical volume named docker-registry in the ol volume
group:

sudo mkfs.btrfs -L var-lib-registry /dev/ol/docker-registry

The logical volume must already exist. Use Logical Volume Manager (LVM) to create one if
needed.

For more information on using mkfs.btrfs, see Oracle Linux 7: Managing File Systems.

2. Obtain the UUID of the device containing the Btrfs file system.

Use the blkid command to display the UUID of the device and make a note of this value,
for example:

sudo blkid /dev/sdc1

/dev/sdc1: LABEL="var-lib-registry" UUID="50041443-b7c7-4675-95a3-bf3a30b96c17" \
UUID_SUB="09de3cb1-2f9b-4bd8-8881-87e591841c75" TYPE="btrfs"

If the Btrfs file system is created across multiple devices, you can specify any of the
devices to obtain the UUID. Alternatively you can use the btrfs filesystem show
command to see the UUID. For a logical volume, specify the path to the logical volume as
the device for example /dev/ol/docker-registry. Ignore any UUID_SUB value displayed.

3. Edit the /etc/fstab file and add an entry to make sure the file system is mounted when
the system boots.

UUID=UUID_value /var/lib/registry btrfs defaults 0 0

Replace UUID_value with the UUID that you found in the previous step. If you created a
label for the Btrfs file system, you can also use the label instead of the UUID, for example:

LABEL=label /var/lib/registry btrfs defaults 0 0
4. Create the /var/lib/registry directory.

sudo mkdir /var/lib/registry
5. Mount all the file systems listed in /etc/fstab.

sudo mount -a
6. Verify that the file system is mounted.

df

Chapter 6
Setting Up a Local Docker Registry

6-6

https://docs.oracle.com/en/operating-systems/oracle-linux/7/fsadmin/

Filesystem 1K-blocks Used Available Use% Mounted on
...
/dev/sdc1 1% /var/lib/registry

Setting Up Transport Layer Security for the Docker Registry
The registry host requires a valid X.509 certificate and private key to enable Transport Layer
Security (TLS) with the registry, similar to using TLS for a web server. This section discusses
adding the host's X.509 certificate and private key to Docker.

If the host already has an X.509 certificate, you can use that with Docker.

If the host does not have an X.509 certificate, you can create a self-signed, private certificate
for testing purposes. For information on creating a self-signed certificate and private key, see
Oracle Linux: Managing Certificates and Public Key Infrastructure.

If you want to disable X.509 certificate validation for testing purposes, see Setting Container
Registry Options.

To use the X.509 Certificate with Docker:

1. If the host's X.509 certificate was issued by an intermediate Certificate Authority (CA), you
must combine the host's certificate with the intermediate CA's certificate to create a
chained certificate so that Docker can verify the host's X.509 certificate. For example:

cat registry.example.com.crt intermediate-ca.pem > domain.crt
2. Create the /var/lib/registry/conf.d directory, into which you need to copy the

certificate and private key.

sudo mkdir -p /var/lib/registry/conf.d
3. Copy the certificate and private key to the /var/lib/registry/conf.d directory.

sudo cp certfile /var/lib/registry/conf.d/domain.crt
sudo cp keyfile /var/lib/registry/conf.d/domain.key

where certfile is the full path to the host's X.509 certificate, and keyfile is the full path to the
host's private key. For example:

sudo cp /etc/pki/tls/certs/registry.example.com.crt /var/lib/registry/conf.d/
domain.crt
sudo cp /etc/pki/tls/private/registry.example.com.key /var/lib/registry/conf.d/
domain.key

4. Make sure the file permissions are correct for the private key:

sudo chmod 600 /var/lib/registry/conf.d/domain.key

Creating the Registry
This section discusses creating the registry server as a Docker container application. Perform
these steps on the registry host.

Create the Docker registry container. For example:

docker run -d -p 5000:5000 --name registry --restart=always \
 -v /var/lib/registry:/registry_data \
 -e REGISTRY_STORAGE_FILESYSTEM_ROOTDIRECTORY=/registry_data \
 -e REGISTRY_HTTP_TLS_KEY=/registry_data/conf.d/domain.key \
 -e REGISTRY_HTTP_TLS_CERTIFICATE=/registry_data/conf.d/domain.crt \
 -e REGISTRY_AUTH="" \
 container-registry.oracle.com/os/registry:latest

Chapter 6
Setting Up a Local Docker Registry

6-7

https://docs.oracle.com/en/operating-systems/oracle-linux/certmanage/

The registry image is pulled from the Oracle Container Registry and the Docker registry
container is started.

The option not processed within --restart=always option starts the registry container when
Docker is started.

You can map an alternate port number for your docker registry, if required, by changing the
5000 in the command above to match the port number that you would prefer to use.

If you do not have an Oracle Account and if you do not require support, you can alternately use
the publicly available Docker registry image at library/registry:latest.

Setting Up the Registry Port
The registry server runs on port 5000 by default. If you run alternative services that use the
same TCP port, such as the OpenStack Keystone service, you may need to change the
configuration to avoid a port conflict. All systems that require access to your registry server
must be able to communicate freely on this port, so adjust any firewall rules that may prevent
this.

If you are running a firewall, make sure the TCP port that you want the Docker registry to listen
on is accessible. If you are running firewalld, add the default rule for the docker-registry
service:

sudo firewall-cmd --zone=public --permanent --add-service=docker-
registry

If you do not run the registry on the default port you can specify the port directly:

sudo firewall-cmd --zone=public --permanent --add-port=5001/tcp

Distributing X.509 Certificates
If the registry host uses a self-signed X.509 certificate, you must distribute the certificate to all
hosts in your deployment that you intend to use the local Docker registry.

Perform the following steps on each host that needs to access the local registry. Substitute
registry_hostname with the name of the registry host, and port with the port number you
selected for your Docker registry server (5000 by default).

To distribute a self signed X.509 certificate:

1. Create the /etc/docker/certs.d/registry_hostname:port directory.

sudo mkdir -p /etc/docker/certs.d/registry_hostname:port
2. Copy the X.509 certificate from the registry host using:

scp root@registry_hostname:/var/lib/registry/conf.d/domain.crt \
/etc/docker/certs.d/registry_hostname:port/ca.crt

3. Restart the docker service.

sudo systemctl restart docker.service

Importing Images Into a Registry
When you have set up a Docker registry server, you can import images into the registry so that
they can be used to deploy containers. You may either pull images from a registry, such as the

Chapter 6
Setting Up a Local Docker Registry

6-8

Oracle Container Registry, and then commit them to your local registry, or you may wish to
create your own images based on upstream images.

To import images into a local Docker registry:

1. Pull an image from a registry. For example, you can pull an image from the Oracle
Container Registry:

docker pull container-registry.oracle.com/os/oraclelinux:latest
2. Tag the image so that it points to the local registry. For example:

docker tag container-registry.oracle.com/os/oraclelinux:latest localhost:5000/
ol7image:v1

In this example, localhost is the hostname where the local registry is located and 5000 is
the port number that the registry listens on. If you are working on a Docker Engine located
on a different host to the registry, you must change the hostname to point to the correct
host. Note the repository and tag name, ol7image:v1 in the example, must all be in lower
case to be a valid tag.

3. Push the image to the local registry. For example:

docker push localhost:5000/ol7image:v1
See Creating a Docker Image From an Existing Container and Creating a Docker Image From
a Dockerfile for information on how you can create your own images. When you have
committed a customized image, you can tag it and push it to your local registry as indicated in
the steps above.

Chapter 6
Setting Up a Local Docker Registry

6-9

7
Security Recommendations

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

Ensure that your infrastructure and containerized applications remain secure by following
security recommendations and guidelines. Oracle recommends that in addition to the
information provided here, you review upstream security guidelines such as those provided at
https://docs.docker.com/engine/security/.

Best Practices for Docker Components
It is important to follow security guidelines at all levels within the infrastructure for an
environment to best mitigate against exploitation. You should follow the best practice
guidelines for each component at play within the environment.

Note that while containerization provides resource separation between applications running on
the same host, the separation is not complete and it is possible to break out of a container or to
exploit a container in such a way that it could affect other containers running on the same host.
If you have different tenancies within your organization or if you have different customers that
are using the same infrastructure, it is imperative that their containers run on different hosts or
on different virtual machines to achieve more complete separation and to prevent the likelihood
of a serious data breach.

Host
• Regularly update the host kernel and operating system software

Oracle regularly releases security patches and bug fixes for the kernel and operating
system software as issues are resolved. It is highly recommended that you keep the
operating system current with the most recent software updates. Subscribe the system to
the latest software channels or repositories; run regular yum update operations; and
consider using Ksplice to keep your system software up to date.

• Use a minimal operating system and ensure that it is following security best
practices

Where possible, use a minimal operating system installation and ensure that it follows the
security best practices described in Oracle Linux 7: Security Guide. Most importantly, you
should reduce the number of services running on the same system. Ideally, move all other
services to reside within containers controlled by Docker or move them to other systems
entirely. This helps to contain damage in the event of container breakout.

• Regularly scrutinize the operating system and kernel for safety

7-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.docker.com/engine/security/
https://docs.oracle.com/en/operating-systems/oracle-linux/7/security/

Be vigilant that the operating system is regularly scrutinized for safety and potential
vulnerabilities.

• Use a mature kernel that provides the best possible security feature set

Oracle requires that you use UEK R5 or later with Oracle Container Runtime for Docker.
This helps to ensure that kernel-based features such as kernel namespaces, private
networking and control groups are mature, reliable and heavily tested. Since the kernel
capabilities that are required for Docker are equally required to support other tools and
features such as LXC (Linux Containers), the required kernel capabilities are all tested
regularly within the supported UEK releases.

Docker Engine
• Restrict who can create and control containers using the Docker engine

The Docker engine is typically run with root privileges on the host system. You must,
therefore, restrict who can create a new container on a system, or who has access to the
Docker engine to start a container. Some operations, such as loading or pulling images
could be potentially exploited through other inputs. Make sure that the users that have
access to perform actions using the Docker engine are all trusted users.

• Regularly update the Docker engine software

As with all software on the operating system, regular updates are critical to ensure that you
are running the latest security patched binaries.

• Use current recommended drivers

Do not use the legacy LXC driver. Oracle strongly recommends using btrfs-based storage
in production environments. OverlayFS is acceptable for testing purposes, but developers
are cautioned that there are known issues due to its lack of maturity. The default device-
mapper option is not recommended as it is very slow and prone to running out of space
inside the container.

• Minimize Docker engine client ports

Run the Docker Daemon with only the single default Unix socket port if possible. If other
sockets must be used, configure them for TLS.

• Ensure sufficient storage capacity for Docker containers and images

Docker stores container and image data in a directory (/var/lib/docker by default). This
space may fill up fast, so to prevent denial-of-service of Docker, the containers, and the
Docker host, ensure sufficient storage capacity.

Create a separate partition (logical volume) for storing Docker files.

• Protect Docker service and configuration files

Set appropriate permissions and ownership for service and configuration files to prevent
unauthorized access. The default values are usually appropriate, but the following
guidelines may help when performing and audit.

Ensure that the following Docker engine system files have secure permissions set (owner/
group is root:root and permissions are 644 or more restrictive):

– /usr/lib/systemd/system/docker.service
– /usr/lib/systemd/system/docker-registry.service
– /usr/lib/systemd/system/docker.socket
– /etc/sysconfig/docker

Chapter 7
Best Practices for Docker Components

7-2

– /etc/default/docker
– /etc/sysconfig/docker-network
– /etc/sysconfig/docker-registry
– /etc/sysconfig/docker-storage
Ensure that the following Docker engine system files have secure permissions set (owner/
group is root:root and permissions are 755 or more restrictive):

– /etc/docker
Ensure that the following Docker engine system files have secure permissions set (owner/
group is root:root and permissions are 444 or more restrictive):

– /etc/docker/certs.d/<registry-name>/*
– TLS CA certificate file (the file given with the --tlscacert parameter)

– Docker server certificate file (the file given with the --tlscert parameter)

Ensure that the following Docker engine system files have secure permissions set (owner/
group is root:root and permissions are 400 or more restrictive):

– Docker server certificate key file (the file given with the --tlskey parameter)

Ensure that the following Docker engine system files have secure permissions set (owner/
group is root:docker and permissions are 460 or more restrictive):

– /var/run/docker.sock
• Monitor and audit Docker system files

Audit all Docker engine activities using a system logging facility like auditd. The service
logging level should be "info" (default). Ensure enough storage space is available for audit
logs to grow. Monitor the following files and directories:

– /var/lib/docker
– /etc/docker
– /usr/lib/systemd/system/docker-registry.service
– /usr/lib/systemd/system/docker.service
– /var/run/docker.sock
– /etc/sysconfig/docker
– /etc/sysconfig/docker-network
– /etc/sysconfig/docker-registry
– /etc/sysconfig/docker-storage
– /etc/default/docker

Docker Images
• Ensure that images come from verified and trusted sources

Verify that Docker images are received and deployed unchanged from a source with a
trusted reputation and which has been authenticated.

When pulling images from remote sources, ensure that the connection is protected and
that you are using HTTPS for the pull request. Do not use insecure image registries that
are not protected by TLS.

Chapter 7
Best Practices for Docker Components

7-3

Ideally, you should pull images by pre-verified hash rather than by tag and if possble,
export these images and host them on more secure media servers under your own control.

Where possible, Docker images should come from and be based on a curated, trusted
collection of image suppliers.

• Create reliably reproducible images

When using Dockerfiles to build new images, review base images and installed software
for security. To help ensure that new images use base images and software that you have
properly reviewed for security vulnerabilities:

– Specify a fixed version in the base image in an image Dockerfile.

– Specify fixed versions in package pulls in the build steps of an image Dockerfile (note
that dependencies of dependencies can still be a reliability problem).

– Ensure the that package pulls in the build steps are using trusted and verified sources

• Minimize packages installed on images

Do not install unnecessary packages into new image builds. Review Dockerfiles to remove
unnecessary installation steps so that images remain limited to their function.

• Use Linux security modules

Within your images, use the appropriate security modules where possible:

– Run SELinux on Red Hat distributions

– Run AppArmor on Debian and Ubuntu distributions

• Regularly update images

Containers must be regularly scanned to detect out of date or unpatched software. Since
containers must be immutable, you cannot patch the software, you must instead replace it
with a newly built image. Consider rolling your own new patched image if you are relying
on a third party image to be updated and you can't wait.

Vendors tend to focus on the current stream of development. Instead of patching your
containers and images, rebuild the images from scratch and instantiate new containers
from the newer builds.

Docker Containers
• Run containers as a non-root user

Unless otherwise specified, Docker runs each container as root. Since the UIDs are shared
across the host, the root user in a container is the root user on the host. When possible
ensure that containers are started as a non-root user by using the --user flag. You can
start a container to run as the current user by taking advantage of the id command. For
example, use --user $(id -u):$(id -g) when starting a container.

• Limit container memory and CPU usage

Create and launch containers with limited container memory and CPU boundaries using
the -m and --memory-swap options for memory and swap memory; and the -c option for
CPU.

• Limit container restarts

To prevent potential denial-of-service resulting from a container that spins out of control,
limit container restarts using the --restart=on-failure:N option when creating or
launching a container.

• Monitor container resource usage

Chapter 7
Best Practices for Docker Components

7-4

Docker provides facilities to monitor container resource usage, such as memory
consumption, CPU time, I/O and network usage. Review container resource usage for
performance, error detection and anomalous behavior. Consider using tools to monitor
real-time resource usage for anomalous activity such as utilization of resources, suspicious
traffic and unexpected user activity.

• Limit container file access

When creating and launching containers, limit container file access using the --read-only
flag or the -v <host dir>:<container dir>:ro option. Explicitly create volume(s) for
container applications to write in and monitor changes to files in these volumes. Ensure
that volumes that are dedicated for container write access are reviewed for sprawl and are
cleaned up regularly.

Do not mount sensitive host system directories at container runtime:

– /
– /boot
– /dev
– /etc
– /lib
– /proc
– /sys
– /usr

• Regularly review containers for safety

Consider using tools that help to automate container safety checks and to monitor for
changes within containers. For example, Docker Bench for Security (CIS) and Docker Diff
can be helpful for this purpose. See https://github.com/docker/docker-bench-security and
https://docs.docker.com/engine/reference/commandline/diff/ for more information.

Systematically remove images and containers that are not needed from the host system to
avoid image and container sprawl and to help prevent the accidental usage of an old,
unused image or container that has potentially avoided security scrutiny.

• Limit kernel capabilities in containers

When creating and launching containers, limit kernel capabilities using the --cap-add and
--cap-drop options. Note that you can set the value for either of these options to all. Try
to apply the minimal set of kernel capabilities required by the containerized application.

By default, the following kernel capabilities are granted to a container:

– CHOWN
– DAC_OVERRIDE
– FSETID
– FOWNER
– MKNOD
– NET_RAW
– SETGID
– SETUID
– SETFCAP

Chapter 7
Best Practices for Docker Components

7-5

https://github.com/docker/docker-bench-security
https://docs.docker.com/engine/reference/commandline/diff/

– SETPCAP
– NET_BIND_SERVICE
– SYS_CHROOT
– KILL
– AUDIT_WRITE.

By default, the following notable kernel capabilities are removed from a container:

– SYS_TIME
– NET_ADMIN
– SYS_MODULE
– SYS_NICE
– SYS_ADMIN
Do not use the --privileged option when starting containers.

• Limit kernel file handle and process resources in containers

When creating and launching containers, limit kernel resources by using the --ulimit
option or set container defaults using the --default-ulimit when starting the Docker
service.

• Limit container networking

Limit container networking completely using the --icc=false option when starting the
Docker engine if you do not need your containers to communicate at all. By disabling inter-
container communication, no network traffic is allowed between containers, but they are
still able to publish ports on the host.

When publishing ports to the host, specify the IP address of the interface that you wish the
port to bind to so that the attack surface is reduced to the network interface where the
container should be listening. Docker publishes to all interfaces (0.0.0.0) by default if an IP
address is not specified when using the -p or --publish option.

Do not run SSH inside of containers.

Do not map privileged ports (< 1024) inside of containers.

Do not use the --net=host mode option for containers when they are started or run.

• Do not share host namespaces with your containers

Do not share host namespaces such as the PID or IPC namespaces when starting or
running containers.

• Do not expose host devices into containers

Do not expose host devices into containers when you start or run them.

Containerized Applications
• Minimize kernel calls in containerized applications

Since the kernel is shared between containers, kernel calls increase risk to other
containers running on the host system. Avoid kernel calls within containerized appliactions
wherever possible.

• Run Container applications as a non-root user

Chapter 7
Best Practices for Docker Components

7-6

Unless otherwise specified, Docker runs each container as root. Ensure that containerized
applications run as a non-root user. Since the UIDs are shared across the host, the root
user in a container is the root user on the host.

If you ever need to change the user, consider using gosu instead of sudo because gosu
creates a single process, instead of the two processes that sudo creates. This can avoid
issues where container signals are forwarded. See https://github.com/tianon/gosu for more
information.

• Remove or minimize the use of setuid and setgid in containerized applications

Most applications don’t need any setuid or setgid binaries. If you can, disable or remove
such binaries. By doing so, you remove the chance of them being used for privilege
escalation attacks. If you discover binaries that have setuid or setgid permission flags,
remove them altogether or try to remove the permission flags to remove the risks that are
associated with these permissions on a binary.

• Design containerized applications to be impermanent

As much as is possible, design applications to be stateless, rollable, instantly migrateable
microservices container apps if possible. If using applications outside of your own design,
take this approach into consideration when selecting software that you intend to run within
your containers. This quality can be helpful in maintaining service during and in the time
following a breach or accident in the system.

Additional Deployment and Development Tools
• Avoid deploying or using development tools in production environments

There are many development tools available that can aid in the use of Docker, including
boot2docker, Kitematic, VMware Fusion, and Vagrant. Avoid deploying these to production
environments to reduce the attack surface.

Development tools are often less security hardened so avoid employing them in production
environments.

Chapter 7
Best Practices for Docker Components

7-7

https://github.com/tianon/gosu

8
Known Issues

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

The following sections describe known issues in the current release of Oracle Container
Runtime for Docker.

WARNING: bridge-nf-call-iptables Is Disabled
Warning messages may be displayed by Docker Engine when a user performs some actions,
such as running docker info if the system kernel on a host system is configured to disable
the net.bridge.bridge-nf-call-iptables and net.bridge.bridge-nf-call-ip6tables
options. For example, the user may see an error similar to:

WARNING: bridge-nf-call-iptables is disabled
WARNING: bridge-nf-call-ip6tables is disabled

This is expected behavior. These settings control whether packets traversing a network bridge
are processed by iptables rules on the host system. Typically, enabling these options is not
desirable as this can cause guest container traffic to be blocked by iptables rules that are
intended for the host. This could cause unpredictable behavior for containers that do not
expect traffic to be firewalled at the host level.

If you accept and understand the implications of enabling these options or you have no
iptables rules set on the host, you can enable these options to remove the warning messages.
To temporarily enable these options:

sysctl net.bridge.bridge-nf-call-iptables=1
sysctl net.bridge.bridge-nf-call-ip6tables=1

To make these options permanent, edit /etc/sysctl.conf and add the lines:

net.bridge.bridge-nf-call-iptables = 1
net.bridge.bridge-nf-call-ip6tables = 1

Starting the Docker Engine With User Namespace Remapping
Set To Default Can Fail

Starting the Docker Engine with User Namespace Remapping set to default can fail with an
error during the creation of the dockremap user. For example:

8-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf

dockerd --userns-remap default

Error during "dockremap" user creation: Couldn't create subordinate ID
ranges: Unable to add subuid range to user: "dockremap"; output: usermod:
invalid option -- 'v'
Usage: usermod [options] LOGIN

Creating a manual map file is unaffected by this issue.

Issue Pulling aarch64 Images From Oracle Container Registry
There is an issue pulling images for the Arm (aarch64) platform from Oracle Container
Registry. The issue is under investigation.

Images for aarch64 are available on Docker Hub and work as expected.

Chapter 8
Issue Pulling aarch64 Images From Oracle Container Registry

8-2

9
Oracle Linux Container Image Tagging
Conventions

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

Oracle follows several conventions when tagging container images for Oracle Linux. Users
should be aware of these conventions to ensure that the best image is used for the purpose at
hand to avoid unnecessary breakages in functionality and to help ensure that images continue
to use the most recently patched software.

The slim Tag
Oracle releases minimal compressed versions of each Oracle Linux release. These images
contain just enough operating system to run within a container and to perform installations of
additional packages. These images are the recommended images for general use within builds
and where scripted installation is likely to be used. The images that use this tag are maintained
at the most current update level.

For example, to use the most recent version of an Oracle Linux 7 slim image, use the 7-slim
tag. To use the most recent version of an Oracle Linux 8 slim image, use the 8-slim tag.

docker pull oraclelinux:7-slim

FIPS compliant versions of images are tagged with the slim-fips tag. These images include
compliant cryptographic package versions and most of the initial image setup required for
container FIPS compliance. To use these images, you must enable FIPS mode on the host
system.

The following slim-fips images are available:

• oraclelinux:7-slim-fips:

– The latest FIPS compliant versions Oracle Linux 7 cryptographic packages at the time
of the release of the image are already installed;

– The Oracle Linux 7.8 security validation repository is already enabled in the image
yum configuration file, so that the container can retrieve system updates that include
FIPS compliant cryptographic package versions;

– The dracut-fips package required for container FIPS mode is already installed.

• oraclelinux:8-slim-fips:

9-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf

– The latest FIPS compliant versions Oracle Linux 8 cryptographic packages at the time
of the release of the image are already installed;

– The Oracle Linux 8.4 security validation repository is already enabled in the image
yum configuration file, so that the container can retrieve system updates that include
FIPS compliant cryptographic package versions;

– The /etc/system-fips file required for container FIPS mode in docker is already
created.

– Note that Oracle Linux 8 docker containers still require that you mount FIPS
cryptographic policies from /usr/share/crypto-policies/back-ends/FIPS to /etc/
crypto-policies/back-ends in the container. See Enabling FIPS Mode in Containers.

General Oracle Linux release Tags
Oracle Linux images are tagged at their release level and are maintained to always map to the
latest corresponding update level. If you need a more complete operating system than the
version provided in a slim image, you should use a release tag to obtain the latest image for
that Oracle Linux image.

For example, to get the latest update release image for Oracle Linux 8, use the 8 tag:

docker pull oraclelinux:8

Oracle Linux Update Level Tags
Oracle Linux images are tagged at their update level. The other tags described map onto the
latest or most current update level for an Oracle Linux image.

NOT_SUPPORTED:

Do not directly use update level tags within your Dockerfile or within any of your
builds unless you have a specific use case that requires a particular update level.
Typical use cases involve trying to resolve an issue or bug that is only present at a
particular update level of Oracle Linux.

Using an update level tag can result in your containers running unpatched software
that may expose you to security issues and software bugs.

Update level tags use dot notation to indicate the update level. For example, Oracle Linux 8.2
is indicated using the 8.2 tag:

docker pull oraclelinux:8.2

The latest Tag

Chapter 9
General Oracle Linux release Tags

9-2

Important:

Oracle does not provide this tag for Oracle Linux images. Use a slim image or a
release tag instead. Oracle also recommends that users avoid dependency on this
tag when working with other distribution or software images.

The use of a default often results in significant confusion and regularly breaks builds and
scripted functionality for end users. For this reason, and to help encourage best practice when
working with image tags, Oracle does not provide a latest tag for Oracle Linux images.

The following reasons for Oracle's decision on this help to explain why this tag is not available:

• When the latest tag is used, it can result in significant jumps between distribution
releases rather than simple update levels. This is usually not what a user intends when
selecting the latest tag, or depending on tools to fall back to this tag by not specifying a
tag at all. Expected functionality can change dramatically between releases resulting in
changes to commands, options, configurations and available software.

• There is no easy way to identify which latest image was used for a particular build,
making it difficult to see the differences between two final build images. This problem
tracking changes also makes it difficult to roll back to a known functioning base image if a
new build fails.

• Tagging an image with the latest tag is not automatic and it is possible for a more recent
image to be available while the image tagged as latest has not been updated. This can
lead to unexpected consequences.

• There is no guarantee that all tools treat the latest tag the same. While some tools may
default to always pulling an image tagged as latest from an upstream registry, other tools
may default to a locally stored image also tagged as latest, even if it has fallen out of
date.

This decision may result in errors in some tools that fall back to the latest tag when no tag is
specified for an image. For example:

docker pull docker.io/library/oraclelinux

Trying to pull docker.io/library/oraclelinux...
 manifest unknown: manifest unknown
Error: error pulling image "docker.io/library/oraclelinux": unable to pull docker.io/
library/oraclelinux:
unable to pull image: Error initializing source docker://oraclelinux:latest: Error
reading manifest latest
in docker.io/library/oraclelinux: manifest unknown: manifest unknown

Always specify the appropriate tag for the image that you intend to use! For example:

docker pull oraclelinux:8

Chapter 9
The latest Tag

9-3

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About Oracle Container Runtime for Docker
	Technical Preview Releases
	Notable Updates
	Oracle Container Runtime for Docker 19.03
	Oracle Container Runtime for Docker 18.09
	Oracle Container Runtime for Docker 18.03
	Oracle Container Runtime for Docker 17.06
	Docker 17.03
	Docker 1.12

	2 Installing Oracle Container Runtime for Docker
	Setting Up the Unbreakable Enterprise Kernel
	Enabling Access to the Oracle Container Runtime for Docker Packages
	Removing the docker Package
	Installing Oracle Container Runtime for Docker
	Configuring a Proxy Server
	Configuring IPv6 Networking
	Configuring Docker Storage
	Configuring Docker Storage Automatically
	Configuring Docker Storage Manually
	Configuring a Docker Storage Driver

	Excluding Docker Container Files From locate Output

	3 Upgrading Oracle Container Runtime for Docker
	Upgrade Preqrequisites
	Updating the Unbreakable Enterprise Kernel
	Checking the Storage Driver

	Upgrading the Docker Engine

	4 Managing the Docker Engine Service
	Configuring the Docker Engine Service
	Reloading or Restarting the Docker Engine
	Enabling Non-root Users to Run Docker Commands
	Configuring User Namespace Remapping
	Enabling Live Restore for Containers
	Setting Container Registry Options
	Adding Registries
	Blocking Registries
	Setting the Default Registry
	Adding Insecure Registries

	5 Working With Containers and Images
	Pulling Oracle Linux Images From a Container Registry
	Enabling or Disabling Docker Content Trust
	Enabling FIPS Mode in Containers
	For Oracle Linux 7 Containers:
	For Oracle Linux 8 Containers:

	Creating and Running Docker Containers
	Configuring How Docker Restarts Containers
	Controlling Capabilities and Making Host Devices Available to Containers
	Accessing the Host's Process ID Namespace
	Mounting a Host's root File System in Read-Only Mode

	Creating a Docker Image From an Existing Container
	Creating a Docker Image From a Dockerfile
	Creating Multi-Stage Docker Image Builds
	About Docker Networking
	About Multihost Networking

	Communicating Between Docker Containers
	Accessing External Files From Docker Containers
	Creating and Using Data Volume Containers
	Moving Data Between Docker Containers and the Host
	Using Labels to Define Metadata
	Defining the Logging Driver
	About Image Digests
	Specifying Control Groups for Containers
	Limiting CPU Usage by Containers
	Enabling a Container to Use the Host's UTS Namespace
	Setting ulimit Values on Containers
	Building Images With Resource Constraints
	Committing, Exporting, and Importing Images

	6 Using Docker Registries
	Pulling Images From the Oracle Container Registry
	Using Oracle Container Registry Notary for Content Trust

	Pulling Licensed Software From the Oracle Container Registry
	Using the Oracle Container Registry Mirrors
	Using Third-Party Registries
	GitHub Container Registry
	Docker Hub

	Setting Up a Local Docker Registry
	Creating a Registry File System
	Setting Up Transport Layer Security for the Docker Registry
	Creating the Registry
	Setting Up the Registry Port
	Distributing X.509 Certificates
	Importing Images Into a Registry

	7 Security Recommendations
	Best Practices for Docker Components
	Host
	Docker Engine
	Docker Images
	Docker Containers
	Containerized Applications
	Additional Deployment and Development Tools

	8 Known Issues
	WARNING: bridge-nf-call-iptables Is Disabled
	Starting the Docker Engine With User Namespace Remapping Set To Default Can Fail
	Issue Pulling aarch64 Images From Oracle Container Registry

	9 Oracle Linux Container Image Tagging Conventions
	The slim Tag
	General Oracle Linux release Tags
	Oracle Linux Update Level Tags
	The latest Tag

