
Oracle Linux 8
Enhancing System Security

F22907-29
April 2025

Oracle Linux 8 Enhancing System Security,

F22907-29

Copyright © 2019, 2025, Oracle and/or its affiliates.

Contents

 Preface

Documentation License vi

Conventions vi

Documentation Accessibility vi

Access to Oracle Support for Accessibility vi

Diversity and Inclusion vi

1 Overview of Security Principles

Minimize and Secure the Software Footprint 1-1

Keep Software Up-to-date 1-3

Restrict Network Access to Critical Services 1-3

Control Authentication Mechanisms and Enforce Password Restrictions 1-4

Follow the Principle of Least Privilege 1-4

Monitor System Activity 1-4

Keep Up-to-date With the Latest Security Information 1-5

2 Planning for a Secure Oracle Linux Environment

Recommended Deployment Configurations 2-1

Component Security 2-2

3 Managing System Security

Understanding the Importance of Updates 3-1

Installing and Updating Errata RPM Packages 3-2

Understanding RPM Errata Packages and Cumulative Updates 3-2

About Security Errata and CVEs 3-4

About Bug and Enhancement Errata 3-4

Obtaining Errata and CVE Notices 3-5

About Premier Backports 3-5

About Certificate Management 3-6

About Data Encryption 3-6

About the Packet Filtering Firewall 3-7

iii

About SELinux 3-7

4 Implementing Extra Security Features and Best Practices

Working with Core Dumps 4-1

Working with the Automatic Bug Reporting Tool 4-2

Configuring and Using Kernel Security Mechanisms 4-3

Address Space Layout Randomization 4-3

Data Execution Prevention or No eXecute 4-4

Position Independent Executables 4-4

Configuring System Cryptograpic Policies 4-4

About Predefined Policies 4-5

Reviewing the Current System-Wide Policy 4-5

Setting the System-Wide Policy 4-6

Extending a Policy By Using Modules 4-6

Creating a New System-Wide Cryptographic Policy 4-6

Checking User Accounts and Privileges 4-7

Configuring User Authentication and Password Policies 4-9

Configuring File System Mounts, File Permissions, and File Ownerships 4-10

Restricting Access to SSH Connections 4-11

Using System Auditing and Monitoring 4-11

Using Advanced Intrusion Detection Environment 4-11

Implementing System Process Accounting 4-12

Protecting the Root Directory by Using chroot Jails 4-12

Running DNS and FTP Services in a Chroot Jail 4-13

Creating a Chroot Jail 4-13

Using a Chroot Jail 4-14

5 FIPS 140-2 Compliance in Oracle Linux 8

Configuring FIPS Mode in Oracle Linux 8 5-1

Installing Oracle Linux 8 in FIPS Mode 5-1

Enabling and Disabling FIPS Mode for Existing Oracle Linux 8 Installations 5-2

FIPS 140-2 Validated Modules in Oracle Linux 8 5-3

Information About Modules That Have Received FIPS 140-2 Validation 5-3

Installing FIPS Validated Cryptographic Modules for Oracle Linux 8 5-4

Yum Repositories and ULN Channels for FIPS Validated Cryptographic Modules 5-4

6 Oracle Linux 8 Common Criteria Certification

iv

7 Security Considerations for Developers

Design Principles for Secure Coding 7-1

General Guidelines for Secure Coding 7-2

General Guidelines for Network Programs 7-3

v

Preface

Oracle Linux 8: Enhancing System Security describes features in Oracle Linux 8 that can
enhance the security of systems. The guide also includes guidelines and recommendations for
best security practices when working with Oracle Linux.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also

Preface

vi

https://docs.oracle.com/en/operating-systems/oracle-linux/8/security/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vii

1
Overview of Security Principles

This section provides a brief overview of system security and includes some principles for how
to enhance security on Oracle Linux systems.

Oracle Linux is a secure enterprise-class OS that can provide the performance, data integrity,
and the application uptime necessary for business-critical production environments.

Thousands of production systems at Oracle run Oracle Linux, and many internal developers
use it as their development platform. Oracle Linux is at the heart of Oracle Cloud Infrastructure
and several Oracle engineered systems, including the Oracle Exadata Database Machine,
Oracle Private Cloud Appliance, and Oracle Database Appliance. Oracle Linux is also used
across Oracle cloud, whether it's infrastructure, database services, or other Software-as-a-
Service (SaaS).

Backed by Oracle Support, these mission-critical systems, and deployments depend
fundamentally on the built-in security and reliability features of Oracle Linux.

Oracle has been a regular participant in the Linux community, contributing code enhancements
for the mainline Linux kernel. Oracle also contributes to many open source initiatives, such as
Oracle Cluster File System and the Btrfs file system. From a security perspective, having roots
within open source is a significant advantage.

The Linux community, which includes many experienced developers and security experts,
reviews posted Linux code extensively before it's tested and released. The open source Linux
community has supplied many security improvements over time, including access control lists
(ACLs), cryptographic libraries, and trusted utilities. Oracle builds on such tools to provide a
solid and secure OS.

Oracle recommends that you follow some fundamental security principles when using Oracle
Linux. These principles are guidelines that administrators can use to build security policies.

Minimize and Secure the Software Footprint
Planning an Oracle Linux system's purpose, deployment configuration, and software
requirements in advance is essential to minimizing attack vectors. During the design phase of
a deployment you can uninstall or disable any components and services that aren't needed or
used in a particular configuration or deployment scenario, including any peripheral functionality
or components. Because deployment requirements can vary over time, you also need
processes in place to uninstall and disable any features that aren't needed or used in specific
configuration or deployment scenarios. You might also consider using the minimal install base
environment that only installs the essential components of the OS by default. If you're using a
kickstart configuration file to install Oracle Linux, the minimal install includes the @base and
@core packages.

For more information about these installation options, see Oracle Linux 8: Installing Oracle
Linux.

Find more information about the various base environments available by running the dnf
group list -v command. This command displays the same list of base environments
available on the Software Selection screen of the Oracle Linux GUI installer. For example:

dnf group list -v

1-1

https://docs.oracle.com/en/operating-systems/oracle-linux/8/install/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/install/

Last metadata expiration check: 0:55:03 ago on Tue 18 Jul 2023 12:19:06 PM GMT.
Available Environment Groups:
 Server with GUI (graphical-server-environment)
 Server (server-product-environment)
 Minimal Install (minimal-environment)
...
Installed Environment Groups:
 Server with GUI (graphical-server-environment)
Installed Groups:
 Container Management (container-management)
...
Available Groups:
 Legacy UNIX Compatibility (legacy-unix)
...

To review what the minimal-environment group includes, run the dnf group info command.
For example:

dnf group info minimal-environment

Last metadata expiration check: 0:04:29 ago on Tue 18 Jul 2023 12:55:49 PM GMT.
Environment Group: Minimal Install
 Description: Basic functionality.
 Mandatory Groups:
 Core
 Optional Groups:
 Guest Agents
 Standard

Use the same command to find out what packages are included in the core group. For
example:

dnf info core

Last metadata expiration check: 0:04:46 ago on Tue 18 Jul 2023 12:55:49 PM GMT.

Group: Core
 Description: Smallest possible installation
 Mandatory Packages:
 NetworkManager
 audit
 basesystem
 bash
...
 Default Packages:
 NetworkManager-team
 NetworkManager-tui
...
 Optional Packages:
 dracut-config-generic
...

To review more information about the individual packages, run the dnf info command on the
packages. For example:

dnf info bash

Last metadata expiration check: 0:10:14 ago on Tue 18 Jul 2023 12:55:49 PM GMT.
Installed Packages
Name : bash
Version : 4.4.20
Release : 4.el8_6

Chapter 1
Minimize and Secure the Software Footprint

1-2

Architecture : x86_64
Size : 6.5 M
Source : bash-4.4.20-4.el8_6.src.rpm
Repository : @System
From repo : ol8_baseos_latest
Summary : The GNU Bourne Again shell
URL : https://www.gnu.org/software/bash
License : GPLv3+
Description : The GNU Bourne Again shell (Bash) is a shell or command language
 : interpreter that is compatible with the Bourne shell (sh). Bash
 : incorporates useful features from the Korn shell (ksh) and the C shell
 : (csh). Most sh scripts can be run by bash without modification.

Another important way to ensure that Oracle Linux systems are secure is to only install those
software packages that are essential for performing necessary functions. Extra functions and
components can increase the security risk, so they can be removed or uninstalled as needed.

Installing software from secure, known, and trusted sources is considered good security
practice. Oracle signs packages with GPG keys so that administrators can confirm the
provenance and authenticity of software packages. Oracle also uses TLS to secure the
networking actions of the software installation and update tools provided with Oracle Linux.

Keep Software Up-to-date
One of the principles of good security practice is to keep all software versions and patches up-
to-date. Oracle maintains software and releases errata and patch updates using the Oracle
Linux yum server and the Unbreakable Linux Network (ULN).

Updating the installed software on Oracle Linux to patch any vulnerabilities and minimize the
attack surface as often as possible is considered good security practice. For more information,
see Understanding the Importance of Updates.

Also consider using Oracle Ksplice in addition to regular system updates to automatically patch
the running kernel and common userspace libraries such as openSSL and glibc without any
required system downtime. For more information about Ksplice, see Oracle Linux: Ksplice
User's Guide.

Restrict Network Access to Critical Services
Keeping both middle-tier applications and databases behind a firewall restricts access to those
systems to a known network route that you can monitor and restrict, or you can use a firewall
router as a substitute for several independent firewalls.

If you can't use firewalls, you can access based on IP address. Restricting database access by
IP address often causes application client/server programs to fail for DHCP clients. To resolve
that problem, consider using static IP addresses, a software/hardware VPN or Windows
Terminal Services or similar.

See About the Packet Filtering Firewall and Restricting Access to SSH Connections for more
information on how to restrict and secure network access.

Chapter 1
Keep Software Up-to-date

1-3

https://docs.oracle.com/en/operating-systems/oracle-linux/ksplice-user/
https://docs.oracle.com/en/operating-systems/oracle-linux/ksplice-user/

Control Authentication Mechanisms and Enforce Password
Restrictions

You can choose different authentication mechanisms to control access to a system. In
environments where many systems are involved, consider using a centralized authentication
tool so that you don't need to maintain accounts across many different systems.

Also consider the different types of authentication mechanisms available. While password-level
access can be convenient, you can secure an environment further by providing more restrictive
mechanisms such as key, certificate, or token based authentication that often use 2-factor
authentication.

When using password-style access, you can enforce restrictions to prevent common, short, or
easily cracked passwords. Consider the NIST 800-63 Digital Identity Guidelines, which suggest
deviating from traditional password policy. Rather than forcing complicated passwords with
frequent expiry and forced system lockout, consider requiring passwords that aren't easy to
guess or crack and are checked against known password dictionaries.

See Configuring User Authentication and Password Policies for more information.

Follow the Principle of Least Privilege
The principle of least privilege suggests that you grant users the bare minimum privileges
required to perform their jobs. The excessive granting of permissions, especially early on in an
organization’s lifespan when few employees must complete work within tight deadlines, can
leave systems wide open for abuse. Reviewing user privileges periodically to match their
current job responsibilities is considered good security practice.

This principle requires that users are assigned their own login accounts. If they require
administrator access for a purpose, use sudo to grant access for that specific purpose.

Distributing the root user password is considered poor security practice. You can enhance the
security of the root password by ensuring that it's long, difficult to guess, and contains a wide
variety of special characters.

See Checking User Accounts and Privileges for more information.

Monitor System Activity
Robust system security relies on three principles: up-to-date security protocols, correct system
configuration, and frequent system monitoring. Auditing and reviewing audit records addresses
the third requirement. Each component within a system often has some degree of monitoring
capability. You can follow the audit advice in this document and monitor audit records.

See Using System Auditing and Monitoring, Using Advanced Intrusion Detection Environment
and Implementing System Process Accounting for more information.

Also consider using the Ksplice known exploit detection feature with systems that have the
Ksplice Enhanced client installed. That feature reports exploitation attempts from known attack
vectors. When new Common Vulnerabilities and Exposures (CVEs) are discovered and
patched by Ksplice, Oracle might add tripwires to the code that log when an erroneous
condition is triggered to ensure that administrators can monitor systems for suspicious activity.
For more information about Ksplice, see Oracle Linux: Ksplice User's Guide.

Chapter 1
Control Authentication Mechanisms and Enforce Password Restrictions

1-4

https://pages.nist.gov/800-63-3/sp800-63-3.html
https://docs.oracle.com/en/operating-systems/oracle-linux/ksplice-user/

Keep Up-to-date With the Latest Security Information
For information about common vulnerabilities, exposures, and errata, you can use ULN or sign
up for one of the Oracle Linux mailing lists. For more information, see Obtaining Errata and
CVE Notices. You can also review Oracle's constantly expanding range of documentation,
tutorials, and blog posts at https://docs.oracle.com/en/operating-systems/oracle-linux/ and
https://blogs.oracle.com/linux/ for the latest information.

Chapter 1
Keep Up-to-date With the Latest Security Information

1-5

https://docs.oracle.com/en/operating-systems/oracle-linux/
https://blogs.oracle.com/linux/

2
Planning for a Secure Oracle Linux
Environment

This section describes how to plan a secure Oracle Linux environment based on specific
security requirements.

To better understand those security requirements, consider the following questions:

Which resources must be protected?
Many resources in the production environment can be protected, such as information in
databases accessed by WebLogic Server and the availability, performance, applications, and
the integrity of a website. You can evaluate the resources that require protection to decide the
level of security to provide for each of them.

From whom must those resources be protected?
For most websites and online services, resources must be protected from everyone on the
Internet. You might also consider restricting employee access on a company intranet to only
the resources to which they need access, and only granting access for highly confidential data
or strategic resources to a few trusted system administrators. In some scenarios it might be
better for system administrators to not have direct access to data and resources until they
switch to a user account with fewer privileges.

What could happen if the protections on strategic resources fail?
A minor fault in a security scheme could be easily detected and considered nothing more than
an inconvenience. In severe cases, a fault might cause significant damage to companies or
individual clients that use the website. Understanding the security ramifications of each
resource can help you to ensure that they're robustly protected.

Recommended Deployment Configurations
This section describes recommended architectures for deploying Oracle products with secure
Internet access.

Figure 2-1 shows a simple deployment architecture.

Figure 2-1 Simple Firewall Deployment Configuration

2-1

This single-computer deployment can be cost effective for small organizations. However, it
can't provide high availability because all components are stored on the same computer.

Figure 2-2 shows a good practice configuration based on an Internet-Firewall-DMZ-Firewall-
Intranet architecture.

Figure 2-2 DMZ Deployment Configuration

A "demilitarized zone" (DMZ) refers to a server that's isolated by firewalls from both the
Internet and the intranet, and which acts a buffer between them. The firewalls that separate
DMZ zones provide two essential functions:

• Blocking any traffic types that aren't allowed.

• Providing intrusion containment if any successful intrusions take over processes or
processors.

Component Security
Each application software component often has its own security considerations that you can
evaluate independently of those that apply to the OS. See the security guidelines for each
component to decide how best to configure it to fit the security requirements for each
environment.

Chapter 2
Component Security

2-2

3
Managing System Security

This section describes Oracle Linux features that administrators can use to manage system
security.

Oracle Linux provides a complete security stack, from network firewall control to access control
security policies, and is configured to be secure by default. Oracle Linux includes features that
can help you to enhance system security, such as real-time patching, automated software
updates, certificate management tools, a built-in firewall, mandatory access controls, and
public key cryptography and data encryption tools. This section describes each of these
features and discuss where you can find more information.

Consider using a combination of these tools and facilities to manage access that's provisioned
on the system and improve the security of the OS, applications that run on the system and
network connectivity.

Understanding the Importance of Updates
Keeping system software up-to-date is an important principle of an overall security strategy as
described in Overview of Security Principles. Updating Oracle Linux is important to avoid and
protect against software vulnerabilities and known attack vectors that malicious hackers can
exploit to gain unauthorized access to systems.

Oracle releases important updates to the Oracle Linux and Oracle VM software as individual
package updates, known as errata.

How often Oracle Linux systems are updated depends on many factors that each system
administrator must assess. One good security practice option to keep systems secure is
accepting the latest available updates, because the more out-of-date a system is, the more
potential vulnerabilities and attack vectors that could be exposed. The older the vulnerabilities
are, the longer that malicious hackers can gather experience and expertise, and the more likely
that systems with those vulnerabilities might be hacked or exploited.

Before you configure the frequency and type of updates that are installed, you must decide the
level of exposure and risk that you consider to be acceptable and still meet security
requirements.

Here are some examples of useful best practices to consider:

• Monitor errata as they're published by Oracle, reviewing errata as they appear and paying
careful attention to security errata. Security errata are listed by severity level from critical to
low.

• Schedule time to test and deploy security, bug, and enhancement errata. Testing and
deploying security and bug errata as soon as possible is considered good security
practice.

• Pay attention to minor releases as they often contain a combination of security patches,
bug fixes, and feature enhancements. As stated before, you must decide the frequency
and timing for testing and deploying the larger set of updates. If you can't update
immediately, Oracle Linux Premier support offers the Premier Backport program for
optional interim backports. For more information, see About Premier Backports.

3-1

• Reduce the number of updates Oracle Linux requires by installing only the minimum
software required to suit business needs. Minimizing the package footprint on systems can
reduce the amount of time needed to perform updates for software while also reducing
exposure to security attack vectors. For more information, see Minimize and Secure the
Software Footprint.

• For systems with mission critical applications where system reboots are disruptive,
consider using tools such as Ksplice to help you prevent zero day attacks by applying
security errata patches with zero downtime in memory without needing a reboot. For more
information about Ksplice, see Oracle Linux: Ksplice User's Guide.

• Also consider using software and automation management tools to apply software updates
and deployments such as Oracle Linux Manager, Oracle Cloud Infrastructure OS
Management, Oracle OS Management Hub, Oracle Linux Automation Manager, Chef, and
Puppet.

Such tools can also run incremental updates to select groups of Oracle Linux systems,
which can be useful when testing the impact of an update on real users in a staging
environment before rolling out to production. Similarly, you can also use these tools to add
RPM packages to base images so that you can tailor Oracle Linux systems and images to
user roles rather than deploying the same configuration for everything.

For more recommendations that could suit highly complex production environments, see
Oracle Linux: Managing Software on Oracle Linux.

Installing and Updating Errata RPM Packages
You can obtain errata information directly from Oracle Linux systems by using Yum or DNF
from any Oracle Linux terminal or from ULN. After assessing the errata information, you can
track, install, and update errata using these tools.

Oracle Linux 8 provides tools to help you update the system often and with minimum
interference. Consider using the dnf-automatic package to download updates on a schedule,
alert you to software upgrade options and even to apply them automatically.

Always use DNF to install, update, or remove RPM packages (don't use the rpm command).
You can use the dnf update --security command to update in the following ways:

• Update by CVE number,

• Update by security errata advisory number,

• Update all kernel packages to the latest kernel version that contains security errata,

• Update all security errata by severity level: critical, important, moderate, and low,

• Update all security errata to the latest release available. This option, from a security
perspective, is often the best choice.

See Oracle Linux: Managing Software on Oracle Linux for more information on how to use
these DNF commands.

Understanding RPM Errata Packages and Cumulative Updates
Oracle Linux is an RPM-based distribution. RPM packages are built cumulatively as Oracle
releases updates consisting of security, bug, or enhancements errata. For example, release 2
for an RPM builds on release 1, and if release 1 is installed but you want to update to release
4, then the contents of releases 2 and 3 are also included in release 4.

Chapter 3
Understanding the Importance of Updates

3-2

https://docs.oracle.com/en/operating-systems/oracle-linux/ksplice-user/
https://docs.oracle.com/en/operating-systems/oracle-linux-manager/
https://docs.oracle.com/en-us/iaas/os-management/
https://docs.oracle.com/en-us/iaas/os-management/
https://docs.oracle.com/en-us/iaas/osmh/doc/
https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/

Errata package RPM binaries include content that you can find by using the dnf info package
command. For example:

dnf info bash

Last metadata expiration check: 0:00:34 ago on Thu 20 Jul 2023 06:42:40 PM GMT.
Installed Packages
Name : bash
Version : 4.4.20
Release : 4.el8_6
Architecture : x86_64
Size : 6.5 M
Source : bash-4.4.20-4.el8_6.src.rpm
Repository : @System
From repo : anaconda
Summary : The GNU Bourne Again shell
URL : https://www.gnu.org/software/bash
License : GPLv3+
Description : The GNU Bourne Again shell (Bash) is a shell or command language
 : interpreter that is compatible with the Bourne shell (sh). Bash
 : incorporates useful features from the Korn shell (ksh) and the C shell
 : (csh). Most sh scripts can be run by bash without modification.

Available Packages
Name : bash
Version : 4.4.20
Release : 4.el8_6
Architecture : src
Size : 9.0 M
Source : None
Repository : ol8_baseos_latest
Summary : The GNU Bourne Again shell
URL : https://www.gnu.org/software/bash
License : GPLv3+
Description : The GNU Bourne Again shell (Bash) is a shell or command language
 : interpreter that is compatible with the Bourne shell (sh). Bash
 : incorporates useful features from the Korn shell (ksh) and the C shell
 : (csh). Most sh scripts can be run by bash without modification.

• Name, version, and release information: When you update a package, the release
number of the RPM changes and the version number can change if the RPM is rebased
(this happens infrequently).

You can use the dnf updateinfo --list --installed package command to see a list of
installed RPMs for a specific package with their version, release, and associated errata
introduced. For example, this command lists all the errata applied to the bash package that
also lists the name, version, release, and architecture of the package:

dnf updateinfo --list --installed bash

Last metadata expiration check: 0:05:41 ago on Thu 20 Jul 2023 06:42:40 PM GMT.
ELBA-2019-3594 bugfix bash-4.4.19-10.el8.x86_64
ELBA-2020-4586 bugfix bash-4.4.19-12.el8.x86_64
ELSA-2021-1679 Low/Sec. bash-4.4.19-14.el8.x86_64
ELBA-2021-2030 bugfix bash-4.4.19-14.el8_3.x86_64
ELBA-2019-2707 bugfix bash-4.4.19-8.el8_0.x86_64
ELBA-2021-1988 bugfix bash-4.4.20-1.el8_4.x86_64
ELBA-2021-4495 bugfix bash-4.4.20-2.el8.x86_64
ELBA-2022-1993 bugfix bash-4.4.20-3.el8.x86_64
ELBA-2022-5815 bugfix bash-4.4.20-4.el8_6.x86_64

Chapter 3
Understanding the Importance of Updates

3-3

Note that the bash package was rebased from version 4.4.19 to version 4.4.20 when
bugfix ELBA-2021-1988 was applied.

• Informational metadata: This metadata includes information such as a summary,
description, license, and so on.

• Cryptographic signature: All Oracle Linux RPM packages are signed and customers can
use this signature to verify the provenance and authenticity of an RPM as it's being
downloaded. The person and company who builds the binary provides this signature.
Enabling gpgcheck=1 as a global default in the /etc/dnf/dnf.conf file ensures that all
RPMs are authentic and have a valid GPG signature before the dnf command downloads
or installs them. This is an important way to ensure that RPMs come from a trusted source
and haven't been changed. All Oracle Linux images have the Oracle GPG keys installed
and the gpgcheck option enabled by default.

Note:

If you're migrating an existing system from a compatible Linux distribution to
Oracle Linux, you can replace their GPG keys with Oracle keys. For example, the
following script migrates a system from CentOS 8 or Rocky Linux 8 to Oracle
Linux 8 and provides the option to replace their GPG keys with Oracle Linux
GPG keys: https://github.com/oracle/centos2ol.

Ensuring RPM package security is one aspect of an overall data encryption strategy. For
more information, see About Data Encryption.

• Dependency information: This provides details about RPMs and versions of other
packages that an RPM depend upon. For example, you can use the following command to
list the direct dependencies for the bash RPM package:

dnf deplist bash
• A series of scripts that can be run at various stages during update or installation.

About Security Errata and CVEs
A security errata is a corrective action intended to address security vulnerabilities identified in
one or more Common Vulnerabilities and Exposures (CVEs).

CVE numbers are unique, common identifiers for publicly known information about security
vulnerabilities. Oracle uses CVE numbers to identify and track corrective actions driven by a
reported security vulnerability. The CVE program is co-sponsored by the office of Cybersecurity
and Communications at the US Department of Homeland Security and is managed by the
MITRE corporation.

About Bug and Enhancement Errata
A bug is a corrective action generated from an issue discovered by a customer or a vendor.
Oracle normally provides the bug ID involved in the event in the errata notification. Including
bug updates in a maintenance policy is considered good security practice because they can
prevent issues that haven't already been planned for or affected the system yet. For example,
a bug errata might prevent a problem that isn't exposed until a combination of events occur
that destabilizes a system. Therefore it's important to keep Oracle Linux systems updated with
bug errata.

Enhancements are incremental new features or updates provided by Oracle.

Chapter 3
Understanding the Importance of Updates

3-4

https://github.com/oracle/centos2ol

Obtaining Errata and CVE Notices
To be notified when Oracle releases new errata packages, you can subscribe to the Oracle
Linux and Oracle VM errata mailing lists at https://oss.oracle.com/mailman/listinfo/el-errata and
https://oss.oracle.com/mailman/listinfo/oraclevm-errata.

If you're logged in to ULN, you can also subscribe to these mailing lists by following the
Subscribe to Enterprise Linux Errata mailing list and Subscribe to Oracle VM Errata
mailing list links that are provided in the Errata tab.

Oracle publishes a complete list of errata made available on ULN at https://linux.oracle.com/
errata. You can also see a published listing of Common Vulnerabilities and Exposures (CVEs)
and explore their details and status at https://linux.oracle.com/cve.

You can also track updates to Oracle Linux yum server repositories by visiting https://
yum.oracle.com/whatsnew.html, where you can see which packages were updated within each
repository for the previous six months.

About Premier Backports
You can request through the premier backport program that errata available on a later release
be backported to a previous release that you're using. The previous release you're using can
qualify for a backport up to six months from the time when a new release becomes "generally
available".

For example, the following table shows glibc packages available based on a package version
with a hypothetically latest release of June 19, 2022:

RPM Release Date Backports available until

glibc-2.28-164.0.3.el8.x86_64 18-Feb-2022 18-Aug-2022

(Based on 08-Mar-2022 plus 6 months)

glibc-2.28-164.0.5.el8.x86_64 08-Mar-2022 08-Sept-2022

(Based on 16-Mar-2022 plus 6 months)

glibc-2.28-164.0.5.el8_5.3.x86_64 16-Mar-2022 16-Sept-2022

(Based on 19-Jun-2022 plus 6 months)

glibc-2.28-189.5.0.1.el8_6.x86_64 19-Jun-2022 Latest release in this example

Oracle publishes a list of RPMs that can qualify for a backport here: https://linux.oracle.com/
backport-schedule.html. To determine when premier backport availability expires, add six
months to the packages release date listed in the Release Date column. For additional
information, see the description of Oracle Linux Premier support levels in the Oracle Linux and
Oracle VM Support Policies.

Chapter 3
Understanding the Importance of Updates

3-5

https://oss.oracle.com/mailman/listinfo/el-errata
https://oss.oracle.com/mailman/listinfo/oraclevm-errata
https://linux.oracle.com/errata
https://linux.oracle.com/errata
https://linux.oracle.com/cve
https://yum.oracle.com/whatsnew.html
https://yum.oracle.com/whatsnew.html
https://linux.oracle.com/backport-schedule.html
https://linux.oracle.com/backport-schedule.html
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf

About Certificate Management
Public key cryptography provides secure communication on an insecure public network and
verification of the identity of the entity at the other end of a network connection. Public key
cryptography is based on establishing asymmetric pairs of secret and public keys.

OpenSSL includes an open source implementation of the TLS and SSL protocols. If a
hierarchy of trust is confined to an organization's intranet, you can use OpenSSL to generate a
root certificate and set up a Certificate Authority (CA) for that domain. Alternately, you can use
OpenSSL to generate a certificate signing request that can be provided to a recognized CA to
obtain a signed certificate that you can use in an application configuration. Low-cost domain
validation certificate signing is now more obtainable if you use the IETF standardized
Automatic Certificate Management Environment (ACME) protocol as described in RFC 8555,
reducing the requirement for costly expenditure around certificate signing and running a self-
hosted CA.

For more detailed information, see Oracle Linux: Managing Certificates and Public Key
Infrastructure.

About Data Encryption
Cryptographic libraries included with Oracle Linux can be used by software to provide data
encryption facilities. You can use data encryption to protect data that's stored or being
transmitted. Data on storage devices and media can be at risk of theft or device loss. Data
being transmitted over local area networks and the Internet can be intercepted or altered. By
encrypting data, you can help protect it while it's in storage or in transmission, thereby
providing a safer infrastructure. In addition, data encryption to protect privacy and personal
data is increasingly being made a mandatory requirement in corporate security policies and by
governmental regulations (for example, HIPAA, GLBA, SOX, and PCI DSS).

Oracle Linux systems provide the following strategies for protecting data:

• When installing systems and application software, only accept RPM packages that have
been digitally signed by a trusted source.

To ensure that downloaded software packages are signed, set gpgcheck=1 in the
repository configuration file and import the GPG key provided by the software supplier.
Oracle Linux images normally have this setting enabled as a global default in
the /etc/dnf/dnf.conf file. You can also install RPMs using the Secure Sockets Layer
(SSL) protocol, which uses encryption to protect the communications channel.

For more information, see Oracle Linux: Managing Software on Oracle Linux.

• To protect against data theft, consider using full-disk encryption, especially on laptops,
external hard drives, or removable devices such as USB memory sticks. Oracle Linux
provides block device encryption by using the dm-crypt kernel module and the Linux
Unified Key Setup (LUKS) format. The cryptsetup administration command is available
in the cryptsetup package.

These technologies encrypt device partitions so that the data is inaccessible when a
system is turned off. When the system boots and you supply the appropriate passphrase,
the device is decrypted and its data is accessible. See Oracle Linux 8: Managing Storage
Devices for more information about encrypting block devices. Also see the cryptsetup(8)
manual page for general usage instructions.

• Oracle Linux uses encryption to support Virtual Private Networks (VPNs) and Secure Shell
(SSH). You can use these tools to encrypt network traffic end-to-end, thereby ensuring that

Chapter 3
About Certificate Management

3-6

https://tools.ietf.org/html/rfc8555
https://docs.oracle.com/en/operating-systems/oracle-linux/certmanage/
https://docs.oracle.com/en/operating-systems/oracle-linux/certmanage/
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/stordev/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/stordev/

data is kept safe during transmission. For more information, see Oracle Linux: Connecting
to Remote Systems With OpenSSH and Configuring Virtual Private Networks in Oracle
Linux: Configuring Virtual Private Networks.

• Oracle Linux uses encryption to store system passwords. By default, Oracle Linux uses a
strong password hashing algorithm (SHA-512) and stores hashed passwords in the /etc/
shadow file.

• Oracle Linux takes advantage of hardware-accelerated encryption on Intel CPUs that use
the Advanced Encryption Standard New Instructions (AES-NI) instruction set, which
speeds up the execution of AES and RC4 algorithms on the x86_64 architecture.

About the Packet Filtering Firewall
Firewalls filter incoming and outgoing network packets based on their packet header
information. You can create packet filter rules that decide whether packets are accepted or
rejected. If you create a rule to block a port, any request to that port is automatically rejected
by the firewall and the request is ignored. Any service that's listening on a blocked port no
longer processes network traffic because it doesn't receive any new packets from that port.

You can configure the Netfilter feature to act as a packet-filtering firewall that uses rules to
decide whether network packets are received, dropped, or forwarded. In addition, Netfilter
provides Network Address Translation (NAT) and IP masquerading to alter IP header
information for routed packets. You can also set rule-based packet logging and define a
dedicated log file by changing /etc/syslog.conf.

The nftables framework is the default stateful network packet filtering framework in Oracle
Linux, replacing the iptables framework. The nftables framework provides improved
performance over the iptables framework. The nftables framework uses components of the
Netfilter infrastructure, such as the existing hooks into the networking stack, connection
tracking system, the user-space queueing component, and the logging subsystem. In addition
nftables can also classify packets.

For more information, see Oracle Linux 8: Configuring the Firewall.

About SELinux
By default, SELinux is enabled automatically on new Oracle Linux installations.

Linux security has historically been based on a Discretionary Access Control (DAC) policy,
which provides minimal protection from broken software or from malware that's running as a
normal user or as root. Access to files and devices is based solely on user identity and
ownership. Malware or misconfigured software can do anything with files and resources that
the user that started the process can do. If the user is root or the application is setuid or
setgid to root, the process can have root-access control over the entire file system.

The National Security Agency created Security Enhanced Linux (SELinux) to provide a finer-
grained level of control over files, processes, users, and applications on Linux. The SELinux
enhancement to the Linux kernel implements the Mandatory Access Control (MAC) policy,
which can be used to define a security policy that provides granular permissions for all users,
programs, processes, files, and devices. The kernel's access control decisions are based on all
the security relevant information available, and not solely on the authenticated user identity.

When security-relevant access occurs, such as when a process tries to open a file, SELinux
intercepts the operation at the kernel level. The operation only continues if a MAC policy rule
allows it, otherwise SELinux blocks the operation and returns an error to the process. The

Chapter 3
About the Packet Filtering Firewall

3-7

https://docs.oracle.com/en/operating-systems/oracle-linux/openssh/
https://docs.oracle.com/en/operating-systems/oracle-linux/openssh/
https://docs.oracle.com/en/operating-systems/oracle-linux/vpn/
https://docs.oracle.com/en/operating-systems/oracle-linux/vpn/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/firewall/

kernel checks and enforces DAC policy rules before MAC rules, so it doesn't check SELinux
policy rules if DAC rules have already denied access to a resource.

For more details about SELinux, including task-related information, see Oracle Linux:
Administering SELinux.

See also the SELinux Project Wiki and the selinux(8) manual page.

Chapter 3
About SELinux

3-8

https://docs.oracle.com/en/operating-systems/oracle-linux/selinux/
https://docs.oracle.com/en/operating-systems/oracle-linux/selinux/
http://selinuxproject.org/page/Main_Page

4
Implementing Extra Security Features and
Best Practices

This section describes more ways to enhance the security of an Oracle Linux system and
further information about best practices for securing an environment.

Working with Core Dumps
A core dump is a file that's produced when a process malfunctions and ends prematurely. The
core dump contains an image of the process's memory. You can use a core dump to debug
problems and inspect the stage of the program when it ended. You can produce core dumps
on-demand or they can be created automatically on termination.

The core file, also referred to as core, is created in the current working directory. Note that the
writing of core fails if the directory to which it's to be created is read-only, or if a file exists with
the same name in that location, and that file is read-only or not a regular file.

Core dumps can contain information that an attacker could exploit. Core dumps can also take
up a lot of disk space. Therefore Oracle Linux, by default, disables the core dump function. It
does so by limiting the maximum size of a core dump file to 0. You can find the current core
size for a system using the following ulimit command. For example, this command shows that
the ulimit size for the current terminal user session is set to the default 0 value:

ulimit -c

0

If you experience problems with an application running in the current terminal session, you can
enable core dumps for the session by changing the ulimit -c value to any integer number larger
than 0. For example:

ulimit -c 1000

To make changes persist between reboots you can limit or restrict access to core dumps to
various users or groups. See the limits.conf(5) manual page for details.

By default, the system prevents the setuid and setgid programs, programs that have
changed credentials, and programs containing binaries that don't have read permission from
dumping core. To ensure that this setting is still disabled, run the following command:

sysctl fs.suid_dumpable

A value of fs.suid_dumpable = 0 indicates that the setting is still disabled.

4-1

Note:

Enabling dump files for these programs isn't recommended. If, for some reason, you
need to enable dump files for these programs, you can enable this dump file by
setting the fs.suid_dumpable value to 1 or 2. A value of 1 creates core dumps that
are readable by the owner of the dumping process. A value of 2 creates core dumps
that are only readable by root for debugging purposes.

For more information about temporarily enabling core dumps to troubleshoot a malfunctioning
system, see Oracle Linux 8: Monitoring and Tuning the System.

Working with the Automatic Bug Reporting Tool
If the Automatic Bug Reporting Tool, abrt, is running then core dumps continue to be generated
for a system, even if you have disabled the core dump facility. On a production system, it can
optionally be disabled or uninstalled entirely.

Note:

The Automatic Bug Reporting Tool has been deprecated. Consider using systemd-
coredump feature instead. For more information about using the coredumpctl
command, see Oracle Linux 8: Monitoring and Tuning the System and the systemd-
coredump manual pages.

To stop and disable the abrtd service entirely, run:

sudo systemctl disable --now abrtd

When running the service, you can restrict the service so that it only analyzes core dumps for
binaries installed using signed packages. You can also prevent the service from analyzing
particular binaries that reveal sensitive information in a dump by adding them to a denylist.

For example, edit /etc/abrt/abrt-action-save-package-data.conf to set the following
parameters:

Require a GPG signature for a package
OpenGPGCheck = yes

Add any package names to the Blacklist that contain binaries
that you want abrt to not store dump data for
BlackList = nspluginwrapper, valgrind, strace, mono-core, bash

Disable processing of unpackaged binaries
ProcessUnpackaged = no

Add any paths to the BlackListedPaths that may contain binary
executables that you want abrt to not store dump data for
BlackListedPaths = /usr/share/doc/*, */example*, /usr/bin/nspluginviewer, \
 /usr/lib*/firefox/plugin-container

Note that although the BlackList and BlackListedPaths options can be used to prevent the
service from storing dump data, the dumps are still generated and written to disk for a short

Chapter 4
Working with the Automatic Bug Reporting Tool

4-2

https://docs.oracle.com/en/operating-systems/oracle-linux/8/monitoring/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/monitoring/

time before being removed, so that abrtd can notify system administrators about a crash
without using up disk space.

To prevent the core dumps from being written to disk, and prevent abrtd from detecting
crashes in an application, edit the /etc/abrt/plugins/CCpp.conf file and add the absolute
path of the binary to the IgnoredPaths list. For example:

IgnoredPaths = /path/to/binary

Configuring and Using Kernel Security Mechanisms
The Linux kernel features some extra security mechanisms that enhance the security of a
system. These mechanisms randomize the layout of the address space for a process or
prevent code from being run in non-executable memory.

Address Space Layout Randomization
Address Space Layout Randomization (ASLR) can help defeat certain types of buffer overflow
attacks. ASLR can find the base, libraries, heap, and stack at random positions in a process's
address space, which makes it difficult for an attacking program to predict the memory address
of the next instruction. ASLR is built into the Linux kernel and is controlled by the parameter /
proc/sys/kernel/randomize_va_space. The randomize_va_space parameter can take the
following values:

0
Disable ASLR. This setting is applied if the kernel is booted with the norandmaps boot
parameter.

1
Randomize the positions of the stack, virtual dynamic shared object (VDSO) page, and shared
memory regions. The base address of the data segment is immediately after the end of the
executable code segment.

2
Randomize the positions of the stack, VDSO page, shared memory regions, and the data
segment. This is the default setting.

You can change the setting temporarily by writing a new value to /proc/sys/kernel/
randomize_va_space, for example:

echo value | sudo tee /proc/sys/kernel/randomize_va_space

To change the value permanently, add this setting to /etc/sysctl.conf:

kernel.randomize_va_space = value

Then, run the sysctl -p command.

If you change the value of randomize_va_space, it's considered good practice to test the
application stack to ensure that it's compatible with the new setting.

You can optionally disable ASLR for a specific program and its child processes:

setarch `uname -m` -R program [args ...]

Chapter 4
Configuring and Using Kernel Security Mechanisms

4-3

Data Execution Prevention or No eXecute
The Data Execution Prevention (DEP) feature, also known as No eXecute (NX), prevents an
application or service from executing code in a non-executable memory region. Hardware-
enforced DEP works in conjunction with the NX bit on compatible CPUs to help prevent certain
types of buffer overflow attacks. This feature uses hardware capabilities to protect the system,
so it's enabled by default and can't be disabled.

Oracle Linux doesn't emulate the NX bit in software for CPUs that don't implement the NX bit in
hardware.

Position Independent Executables
The Position Independent Executables (PIE) feature loads executable binaries at random
memory addresses so that the kernel can disallow text relocation. Developers can use this
feature to code applications that load at different memory addresses each time the application
loads, making it more difficult for an attacker to predict where the application is stored in
memory, thereby helping to protect against memory-related exploits.

To generate a position-independent binary:

• Specify the -fpie option to gcc when compiling.

• Specify the -pie option to ld when linking.

To test whether a binary or library has been built with PIE enabled, run the following command:

sudo readelf -d elfname | grep -i flags

The command often indicates whether the PIE flag is set. By default, on Oracle Linux 8
binaries are typically built with this flag set, unless there's a specific reason not to do so, such
as a compile issue resulting from setting this option.

Configuring System Cryptograpic Policies
From Oracle Linux 8 onward, Oracle Linux provides a facility to set a system-wide
cryptographic policy. Many applications implement cryptographic protocols to secure
communications or to encrypt data. Historically, applications have maintained their own
configuration of cryptographic policies in various ways, which meant that changing
cryptographic policy across an entire system needed to be performed for each application and
often the configuration method differed from application to application.

The ability to define a system-wide cryptographic policy that applications can hook into often
reduces administrative overhead and simplifies the process. An administrator can configure the
system-wide cryptographic policy and have confidence that most applications can use the
same policy, by default.

Policies enable an administrator to configure:

• TLS/SSL (and DTLS) versions that are accepted

• Ciphersuites that are accepted and the preferred order

• Parameters that are accepted for certificates and key exchange, including:

– the minimum acceptable size of parameters (DH,ECDH,RSA,DSA,ECDSA),

– the acceptable elliptic curves (ECDH,ECDSA),

Chapter 4
Configuring System Cryptograpic Policies

4-4

– the acceptable signature hash functions.

• Other TLS options including safe-renegotiation

Most of the major cryptographic software on Oracle Linux is already configured to use the
system-wide cryptographic policy by default. Applications that are configured to behave in this
manner include important applications such as OpenSSH and bind, in addition to any
applications that use the OpenSSL, GnuTLS, NSS, libkrb5 libraries and

Configuring system-wide policy doesn't enforce behavior across the system. That policy
provides a common configuration across a wide variety of applications. Any application that's
not designed to use the system-wide policy continues to function according to the different
policy configuration that it uses. Many applications also provide options to override the system-
wide cryptographic policy if required. For example, OpenSSH provides options to set different
cryptographic policies on the server and client applications, and commands such as wget and
curl provide options to define a custom cipher selection and order by using the --ciphers
option, effectively overriding the system-wide policy.

The system-wide policy defines the default cryptographic behavior within applications so that
you can harden a system and remove insecure protocols to match your security requirements.

Oracle Linux includes the update-crypto-policies command that can be used to
configure which cryptographic algorithms, ciphers, and protocols are enabled on a system for
use by applications and services. That command can be used to either relax policy or to
harden it further.

For more information on this tool and the applications that are affected by it, see the crypto-
policies(7) and update-crypto-policies(8) manual pages.

About Predefined Policies
Oracle Linux provides four different built-in predefined cryptographic policies:

• LEGACY: Configures certain legacy protocols to maximize compatibility with legacy
systems. It includes enabling 3DES, RC1, DSA, TLSv1.0 and TLSv1.1. It also sets a 1024
bit minimum parameter size for DH and RSA. Protocols and values specified in this policy
aren't considered highly secure but aren't easily exploitable.

• DEFAULT: Configures standard modern protocols including TLSv1.2 and TLSv1.3 , IKEv2
and SSH2. It sets a 2048 bit minimum parameter size for DH and RSA.

• FIPS: Configures the system to meet FIPS 140-2 requirements for cryptographic policies.
This policy is enabled by the fips-mode-setup command used to enable FIPS mode on an
Oracle Linux system. See Configuring FIPS Mode in Oracle Linux 8 for more information
on using this policy.

• FUTURE: A conservative policy level that disables SHA-1 and CBC and sets a 3072 bit
minimum parameter size for DH and RSA. This policy can disable communications with
many older systems but is worth exploring to decide what actions you can perform in future
to ensure that applications continue to function securely.

Restrictions in these policies can change over time as new secure default values are decided.

You can use the update-crypto-policies tool to view the current system policy and to change
which policy is applied to the system.

Reviewing the Current System-Wide Policy
Any user can review the current system-wide cryptographic policy by running:

Chapter 4
Configuring System Cryptograpic Policies

4-5

update-crypto-policies --show

Setting the System-Wide Policy
Switching between cryptographic policies on Oracle Linux can be achieved using the update-
crypto-policies --set command with the name of the policy. For example, to switch to the
LEGACY policy, run:

sudo update-crypto-policies --set LEGACY

The policy is updated immediately and any applications that are enabled to use the system-
wide cryptographic policy work with the new policy immediately when they're run or restarted.
Because some applications might already be running using a custom policy it's good practice
to reboot the system after changing policy to ensure that all applications are using the correct
policy.

To switch back to the DEFAULT policy, run:

sudo update-crypto-policies --set DEFAULT

Extending a Policy By Using Modules
You can customize the system-wide policy by creating a policy module or a subpolicy. You can
fine-tune a policy without needing to create an entire policy from scratch by creating a module.
For example, if you intended to use the DEFAULT system policy and also disable the weaker
SHA-1 hash functionality in all applications, rather than rewriting the entire DEFAULT system
policy, you can apply a module by setting the DEFAULT policy with an appended module for
example:

sudo update-crypto-policies --set DEFAULT:NO-SHA1

Oracle Linux provides some extra modules that have already been configured and can be used
immediately in the /usr/share/crypto-policies/policies/modules/ directory.

You can create custom modules in the /etc/crypto-policies/policies/modules/ directory.
Modules must be named in uppercase and have a lowercase .pmod extension. For example,
you can create a module named /etc/crypto-policies/policies/modules/NO-AES-128.pmod
to add this content to the file to disable the AES-128 cipher entirely:

Disable the AES-128 cipher
cipher = -AES-128-*

Note that to disable the cipher, you must prefixed it with a - character. To enable a functionality,
specify it without a prefix. In the example, the * character is also used to specify a wildcard so
that the rule matches all modes of the AES-128 cipher.

You can also chain modules together when you set the system-wide cryptograpic policy:

sudo update-crypto-policies --set DEFAULT:NO-SHA1:NO-AES-128

For more information about the syntax for policy definition files, see the crypto-policies(7)
manual pages.

Creating a New System-Wide Cryptographic Policy
You can create a custom cryptographic policy from scratch instead of using any of the
predefined policies provided with Oracle Linux. Policies can be defined in the /etc/crypto-

Chapter 4
Configuring System Cryptograpic Policies

4-6

policies/policies/ directory. Policy file names must be uppercase and end in the lowercase
suffix .pol. Policy files use the INI file format with standard key = value entries.

The predefined policies provided with Oracle Linux are stored in the /usr/share/crypto-
policies/policies/ directory. To define a custom policy, you can copy an existing policy and
then configure it as you need. For example:

sudo cp /usr/share/crypto-policies/policies/DEFAULT.pol /etc/crypto-policies/policies/
MYPOLICY.pol

See the section titled "CRYPTO POLICY DEFINITON FORMAT" in the crypto-policies(7)
manual page for more information about the file format and structure.

When you have finished editing the custom policy, you can enable it with this command:

sudo update-crypto-policies --set MYPOLICY

Remember to reboot the system after enabling a custom system-wide policy so that it's
enabled for all running services.

Note:

Consider whether you can achieve what you need to do by extending an existing
policy using a module. Maintaining a custom system-wide cryptographic policy
requires that you consistently monitor new security standards and research, so by
extending the predefined policies to meet security requirements you can avoid
needing to maintaining an entire policy by yourself.

Checking User Accounts and Privileges
Checking the system for unlocked user accounts often is considered good security practice, for
example by using this command:

for u in $(awk -F: '{print $1}' /etc/passwd;); do sudo passwd -S "$u"; done | sort

The following output is displayed:

adm LK 2023-03-31 0 99999 7 -1 (Alternate authentication scheme in use.)
bin LK 2023-03-31 0 99999 7 -1 (Alternate authentication scheme in use.)
chrony LK 2023-06-20 -1 -1 -1 -1 (Password locked.)
clevis LK 2023-06-20 -1 -1 -1 -1 (Password locked.)
cockpit-wsinstance LK 2023-06-20 -1 -1 -1 -1 (Password locked.)
cockpit-ws LK 2023-06-20 -1 -1 -1 -1 (Password locked.)
...

In the output from this command, the second field shows if a user account is locked (LK),
doesn't have a password (NP), or has a valid password (PS). The third field shows the date on
which the user last changed their password. The remaining fields show the minimum age,
maximum age, warning period, and inactivity period for the password and extra information
about the password's status. The unit of time is days.

You can use the passwd command to set passwords on any accounts that aren't protected.

To lock unused accounts, use the passwd -l command. You can also use the userdel
command to remove the accounts entirely.

Chapter 4
Checking User Accounts and Privileges

4-7

Caution:

System accounts must be preserved. These are any accounts with user IDs that are
less than 1000, and especially any user IDs that are less than 100.

For more information, see the passwd(1) and userdel(8) manual pages.

To specify how users' passwords are aged, edit the settings in the /etc/login.defs file that
are described in the following table.

Setting Description

PASS_MAX_DAYS Maximum number of days for which a
password can be used before it must be
changed. The default value is 99,999 days.

PASS_MIN_DAYS Minimum number of days that's allowed
between password changes. The default value
is 0 days.

PASS_WARN_AGE Number of days' warning that's provided
before a password expires. The default value is
7 days.

For more information, see the login.defs(5) manual page.

To change the length of time a user's account can be inactive before it's locked, use the
usermod command. For example, you would set the inactivity period to 30 days as follows:

sudo usermod -f 30 username

To change the default inactivity period for new user accounts, use the useradd command:

sudo useradd -D -f 30

A value of -1 specifies that user accounts are never locked because of inactivity.

For more information, see the useradd(8) and usermod(8) manual pages.

To verify that no user accounts other than root have a user ID of 0, you would use the
following command:

sudo awk -F":" '$3 == 0 { print $1 }' /etc/passwd

The following is the output of the previous command:

root

If you install software that creates a default user account and password, it's considered good
security practice to change the vendor's default password immediately. Centralized user
authentication using an LDAP implementation such as OpenLDAP can centralize user
authentication and management tasks, and also reduce the risks arising from unused accounts
or accounts without a password.

By default, an Oracle Linux 8 system is configured to prevent users from logging in directly as
root. You must log in as a named user before using either the su or sudo command to
perform tasks as the root user so that system accounting can trace the original username of
any user who performs a privileged administrative action. To grant certain users authority to

Chapter 4
Checking User Accounts and Privileges

4-8

perform specific administrative tasks by using the sudo command, use the visudo command
to configure the /etc/sudoers file.

For example, the following entry grants the user user1 the same privileges as root when using
the sudo command, but defines a limited set of privileges to user2 so that they can run
commands such as systemctl, rpm, and dnf:

user1 ALL=(ALL) ALL
user2 ALL= SERVICES, SOFTWARE

For more information about setting up user accounts and authentication, see Oracle Linux 8:
Setting Up System Users and Authentication.

Configuring User Authentication and Password Policies
If you follow traditional digital identity policies, the Pluggable Authentication Modules (PAM)
feature can be used to enforce strong user authentication and password policies, including
rules that decide password complexity, length, age, expiration, and the reuse of previous
passwords. You can configure PAM to block user access after too many failed login attempts,
after normal working hours, or if too many concurrent sessions are open. Note that some of
these policies are no longer considered helpful for security as they can lead users to
implement their own poor security practices when storing passwords or when renewing. See
https://pages.nist.gov/800-63-3/sp800-63-3.html for more information.

PAM is highly customizable by its use of different modules with customizable parameters. For
example, the default password integrity checking module pam_pwquality.so tests password
strength. The PAM configuration file (/etc/pam.d/system-auth) contains the following default
entries for testing a password's strength:

password requisite pam_pwquality.so local_users_only retry=3 authtok_type=
enforce_for_root
password requisite pam_pwhistory.so use_authtok enforce_for_root remember=4
password sufficient pam_unix.so sha512 shadow use_authtok enforce_for_root
remember=4
password sufficient pam_sss.so use_authtok
password required pam_deny.so

The line for pam_pwquality.so defines that a user gets three tries to choose a good password.
From the module's default settings, the password length must a minimum of six characters, of
which three characters can't be the same as a previous password. The module only tests the
quality of passwords for users who are defined in the /etc/passwd file.

The line for pam_unix.so specifies that the module tests the old password that was specified in
the stack before prompting for a new password and uses the SHA-512 password hashing and
the /etc/shadow file to decide access. Note that pam_pwquality will have performed such
checks for users that have been defined in the /etc/passwd file.

You can configure the control flags and module parameters to change the checks that are
performed when a user changes their password:

password required pam_pwquality.so retry=3 minlen=8 difok=5 minclass=-1
password required pam_unix.so use_authtok sha512 shadow remember=5
password required pam_deny.so

The line for pam_pwquality.so specifies that a user is allowed three tries to choose a good
password, with a minimum of eight characters, of which five characters must be different from
the previous password, and which must contain at least one uppercase letter, one lowercase
letter, one numeric digit, and one special character.

Chapter 4
Configuring User Authentication and Password Policies

4-9

https://docs.oracle.com/en/operating-systems/oracle-linux/8/userauth/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/userauth/
https://pages.nist.gov/800-63-3/sp800-63-3.html

The line for pam_unix.so specifies that the module doesn't perform password checking, uses
SHA-512 password hashing and the /etc/shadow file, and saves information about the
previous five passwords for each user in the /etc/security/opasswd file.

For more information, see the pam_deny(8), pam_pwquality(8), and pam_unix(8) manual
pages.

Configuring File System Mounts, File Permissions, and File
Ownerships

Using separate disk partitions for OS and user data can prevent a "file system full" error from
impacting the operation of a server. For example, you can create separate partitions for /
home, /tmp, /oracle, and so on.

Establishing disk quotas can prevent a user from filling up a file system (intentionally or not)
and therefore denying access to other users.

To prevent the OS files and utilities from being altered during an intrusion, you can mount
the /usr file system with read-only permissions. If you need to update any RPMs on the file
system, use the -o remount,rw option with the mount command to remount /usr for both
read and write access. After performing the update, you can use the -o remount,ro option
to return the /usr file system to read-only mode.

To limit user access to non-root local file systems such as /tmp or removable storage
partitions, you can specify the -o noexec, nosuid, nodev options to mount. These
options prevent the execution of binaries (but not scripts), prevent the setuid bit from having
any effect, and prevent the use of device files.

To check for unowned files and directories on each file system, use the find command:

sudo find mount_point -mount -type f -nouser -o -nogroup -exec ls -l {} \;

Unowned files and directories can be associated with a deleted user account, and that might
indicate an error with software installation or removal, or they might a sign of an intrusion on
the system. You can correct the permissions and ownership of the files and directories that you
find, or remove them. Investigating and correcting the problem that led to their creation is
considered good security practice.

To check for world-writable directories on each file system, use the find command:

sudo find mount_point -mount -type d -perm /o+w -exec ls -l {} \;

Investigating any world-writable directory that's owned by a user other than a system user is
considered good security practice. If the user can remove or change any file that other users
write to the directory, you can correct the permissions and ownership of any directories that
you find or remove them.

You can also use the find command to check for setuid and setgid executables.

sudo find path -type f \(-perm -4000 -o -perm -2000 \) -exec ls -l {} \;

If the setuid and setgid bits are set, an executable can perform a task that requires other
rights, such as root privileges. However, buffer overrun attacks can still exploit those
executables to run unauthorized code with the rights of the exploited process.

Chapter 4
Configuring File System Mounts, File Permissions, and File Ownerships

4-10

Restricting Access to SSH Connections
The Secure Shell (SSH) provides protected, encrypted communication with other systems. As
SSH is an entry point into the system, it's considered good security practice to disable it if it's
not required.

You can edit the /etc/ssh/sshd_config file to restrict local access to the root user and
remote access to certain users and groups by configuring the settings. You can also configure
settings in the /etc/ssh/sshd_config file so that the SSH client automatically times out after of
period of inactivity.

Disabling password-based authentication for SSH and to requiring public key authentication
instead is considered good security practice. By doing this, you can limit access to users who
own an authorized private key.

After making any changes to the configuration file, you must restart the sshd service for the
changes to take effect.

For more information, see Oracle Linux: Connecting to Remote Systems With OpenSSH and
the sshd_config(5) manual page.

Using System Auditing and Monitoring
The Auditing service on Oracle Linux collects data at the kernel level that you can analyze to
identify unauthorized activity. Auditing collects more data in greater detail than system logging,
but most audited events are uninteresting and insignificant. The process of examining audit
trails to find events of interest can be a significant challenge that you can automate.

The audit configuration file, /etc/audit/auditd.conf, defines the data retention policy, the
maximum size of the audit volume, the action to take if the capacity of the audit volume is
exceeded, and the locations of local and remote audit trail volumes. The default audit trail
volume is /var/log/audit/audit.log.

For more detailed information about auditing and monitoring Oracle Linux systems, see Oracle
Linux 8: Monitoring and Tuning the System.

Using Advanced Intrusion Detection Environment
Advanced Intrusion Detection Environment (AIDE) is an application that uses various tools to
detect changes to particular files on a system and report on them so that you can maintain
baseline file integrity and detect unauthorized changes and potential tootkits.

This tool is installed as follows:

sudo dnf install -y aide

When AIDE is installed, you can change the configuration in /etc/aide.conf. The
configuration file is used to decide which files and directories are monitored by AIDE and also
how logging and output are handled.

AIDE stores its current information about a system's configuration state in a database stored in
the /var/lib/aide/aide.db. If you store a copy of this database file at an external location
then you can replace it with a known safe state for AIDE when you perform an audit. If the file
doesn't yet exist, you can create one for the current system state by running:

sudo aide --init

Chapter 4
Restricting Access to SSH Connections

4-11

https://docs.oracle.com/en/operating-systems/oracle-linux/openssh/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/monitoring/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/monitoring/

sudo cp /var/lib/aide/aide.db.new.gz /var/lib/aide/aide.db.gz

When you have created a database, you can check file integrity at any time by running:

sudo aide --check

If no differences are found, AIDE returns the results with the following message:

AIDE found NO differences between database and filesystem. Looks okay!!

If you configure this tool to run as an automated cron job, then you can get regular reports to
indicate changes to system configuration and state that could help with early intrusion
detection.

See the aide(1) and aide.conf(5) manual pages for more information.

Implementing System Process Accounting
The psacct package provides the process accounting service in addition to the following
utilities that you can use to monitor process activities:

ac
Displays connection times in hours for a user as recorded in the wtmp file (by
default, /var/log/wtmp).

accton
Turns on process accounting to the specified file. If you don't specify a file name argument,
process accounting is stopped. The default system accounting file is /var/account/pacct.

lastcomm
Displays information about any commands recorded in the system accounting file.

sa
Summarizes information about any commands recorded in the system accounting file.

Note:

Ensure that the file system has enough space to store the system accounting and
wtmp files to monitor process activity. Monitoring the size of the log files and
truncating them if needed is considered good security practice.

For more information, see the ac(1), accton(8), lastcomm(1), and sa(8) manual pages.

Protecting the Root Directory by Using chroot Jails
A chroot command changes the visible root directory for running processes and their
children, so it can be used to run a program with a root directory other than /. The program
can't see or access files outside of the configured directory tree. Such an artificial root directory
is called a "chroot jail", and its purpose is to limit the directory access of malicious processes
and hackers. The chroot jail locks down each process and any user ID that's using it so that all
they can access is the directory in which the process is running. The process is also tricked
into thinking that the directory in which it's running is the root directory.

Chapter 4
Implementing System Process Accounting

4-12

Note:

The chroot mechanism can't defend against intentional tampering or low-level
access to system devices by privileged users. For example, a chroot root user
could create device nodes and mount file systems on them. A program can also gain
access to resources outside of a chroot jail if it can gain root privilege and use
chroot() to change its current working directory to the real root directory. For this
reason, it's considered good security practice to ensure that a chroot jail doesn't
contain any setuid or setgid executables inside it that are owned by root.

For a chroot process to start successfully, you must populate the chroot directory with all
required program files, configuration files, device nodes, and shared libraries at their expected
locations relative to the level of the chroot directory.

Running DNS and FTP Services in a Chroot Jail
If the DNS name service daemon (named) runs in a chroot jail, any hacker that accesses a
system by using a BIND exploit is isolated to the files under the chroot jail directory. Installing
the bind-chroot package creates the /var/named/chroot directory, which becomes the chroot
jail for all BIND files.

You can configure the vsftpd FTP server to automatically start chroot jails for clients. By
default, anonymous users are placed in a chroot jail. However, local users that access an
vsftpd FTP server are placed in their home directory. Specify the chroot_local_user=YES
option in the /etc/vsftpd/vsftpd.conf file to place local users in a chroot jail based on their
home directory.

Creating a Chroot Jail
To create a chroot jail:

1. Create the directory that becomes the root directory of the chroot jail, for example:

sudo mkdir /home/oracle/jail
2. Use the ldd command to decide which libraries are required by the command that you

intend to run in the chroot jail, for example /usr/bin/bash:

sudo ldd /usr/bin/bash

The following output is displayed:

linux-vdso.so.1 (0x00007fffa5726000)
libtinfo.so.6 => /lib64/libtinfo.so.6 (0x00007f29127fa000)
libc.so.6 => /lib64/libc.so.6 (0x00007f29125f1000)
/lib64/ld-linux-x86-64.so.2 (0x00007f291298c000)

Note:

Although the path is displayed as /lib64, the actual path is /usr/lib64
because /lib64 is a symbolic link to /usr/lib64. Similarly, /bin is a symbolic
link to /usr/bin. You need to re-create such symbolic links within the chroot jail.

Chapter 4
Protecting the Root Directory by Using chroot Jails

4-13

3. Create subdirectories of the chroot jail's root directory that have the same relative paths as
the command binary and its required libraries in the real root directory, for example:

sudo mkdir -p /home/oracle/jail/usr/bin

sudo mkdir -p /home/oracle/jail/usr/lib64
4. Create the symbolic links that link to the binary and library directories in the same manner

as the symbolic links that exists in the real root directory, for example:

sudo ln -s /home/oracle/jail/usr/bin /home/oracle/jail/bin

sudo ln -s /home/oracle/jail/usr/lib64 /home/oracle/jail/lib64
5. Copy the binary and the shared libraries to the directories under the chroot jail's root

directory, for example:

sudo cp /usr/bin/bash /home/oracle/jail/usr/bin

sudo cp /usr/lib64/{libtinfo.so.5,libdl.so.2,libc.so.6,ld-linux-x86-64.so.2} /home/
oracle/jail/usr/lib64

Using a Chroot Jail
To run a command in a chroot jail within an existing directory (chroot_jail), use the following
command:

sudo chroot chroot_jail command

If you don't specify a command argument, chroot runs with the value of the SHELL
environment variable, or /usr/bin/sh if SHELL isn't set.

For example, you could run the /usr/bin/bash command in a chroot jail as follows:

sudo chroot /home/oracle/jail

Note that you can run built-in shell commands such as pwd in this shell, but not other
commands unless you have copied their binaries and any required shared libraries to the
chroot jail.

For more information, see the chroot(1) manual page.

Chapter 4
Protecting the Root Directory by Using chroot Jails

4-14

5
FIPS 140-2 Compliance in Oracle Linux 8

Oracle Linux provides a set of cryptographic libraries, services, and user-level cryptographic
applications that are compliant with the Federal Information Processing Standard (FIPS)
Publication 140-2.

FIPS Publication 140-2, Security Requirements for Cryptographic Modules, specifies the
security requirements that must be satisfied by a cryptographic module that's used within a
security system to protect sensitive, but unclassified information. The NIST/CSE Cryptographic
Module Validation Program (CMVP) validates cryptographic modules to FIPS 140-2. Validated
products are accepted by the Federal agencies of both the USA and Canada for the protection
of sensitive or designated information.

Note:

CMVP started accepting FIPS 140-3 submissions on September 22, 2020. Existing
FIPS 140-2 validated modules remain compliant until they're sunset on September
21, 2026.

Configuring FIPS Mode in Oracle Linux 8
FIPS mode can be configured during the initial installation of Oracle Linux 8 or after
installation, as described in the following sections.

Installing Oracle Linux 8 in FIPS Mode
Add fips=1 to the kernel command line during system installation to automatically configure a
new Oracle Linux 8 system to run in FIPS mode from the first boot.

The main benefit of setting FIPS mode during the installation stage is that Oracle Linux 8
generates all system keys by using FIPS compliant algorithms and continuous monitoring
tests.

To verify that FIPS mode is enabled, run the following command after Oracle Linux 8 has been
installed:

sudo fips-mode-setup --check

Note:

The method for enabling and disabling FIPS mode in this release has changed
significantly from the method that was used in previous Oracle Linux releases. In
particular, the dracut-fips package no longer exists and doesn't need to be enabled
on Oracle Linux 8. Also, you no longer need to edit the GRUB configuration file.

5-1

Enabling and Disabling FIPS Mode for Existing Oracle Linux 8 Installations
You can configure a preexisting Oracle Linux 8 installation to run in FIPS mode by using the
fips-mode-setup utility, which changes the system-wide cryptographic policy, installs the
FIPS dracut module, regenerates the system ramdisk, and updates the kernel boot
parameters.

Note:

To enable FIPS mode in Oracle Linux containers, see the Managing Containers
chapter in the Oracle Linux: Podman User's Guide.

1. Enable FIPS mode:

sudo fips-mode-setup --enable

The following output is displayed:

Kernel initramdisks are being regenerated. This might take some time.
Setting system policy to FIPS
Note: System-wide crypto policies are applied on application start-up.
It is recommended to restart the system for the change of policies
to fully take place.
FIPS mode will be enabled.
Please reboot the system for the setting to take effect.

You must reboot the system for the setting to take effect.

Note:

Running the previous command configures FIPS mode implicitly by setting the
system-wide cryptographic policy to FIPS. Note that using the update-crypto-
policies command to set FIPS mode isn't enough, as shown in the following
output:

sudo update-crypto-policies --set FIPS

The following output is displayed:

Warning: Using 'update-crypto-policies --set FIPS' is not sufficient for
FIPS compliance.
Use 'fips-mode-setup --enable' command instead.

2. Verify that FIPS mode has been enabled correctly:

sudo fips-mode-setup --check

Chapter 5
Configuring FIPS Mode in Oracle Linux 8

5-2

https://docs.oracle.com/en/operating-systems/oracle-linux/podman/

The following output is displayed:

FIPS mode is enabled.

3. To disable FIPS mode:

sudo fips-mode-setup --disable

The following output is displayed:

Setting system policy to DEFAULT
Note: System-wide crypto policies are applied on application start-up.
It is recommended to restart the system for the change of policies
to fully take place.
FIPS mode will be disabled.
Please reboot the system for the setting to take effect.

You must reboot the system for the setting to take effect.

For more information, see the fips-mode-setup(8) manual pages.

FIPS 140-2 Validated Modules in Oracle Linux 8
The following sections describe how to review FIPS 140-2 certifications and install FIPS 140-2
validated cryptographic modules in Oracle Linux 8.

Information About Modules That Have Received FIPS 140-2 Validation
The Oracle FIPS Certifications website provides the following information for each module:

• Name and description of the module.

• Status of the FIPS 140-2 validation process.

Important:

To achieve compliance with FIPS Publication 140-2, you must use the package
version that the Security Policy document specifies for each respective module
only.

• Package version for the module.

• Certificate number for the module.

After NIST completes its review for each cryptographic module, the status moves from "Review
Pending" or "In Progress" to "Validated." You can then click the certificate number for each
cryptographic module to review its associated FIPS certificate, and each FIPS certificate links
to the relevant Security Policy document for that module. See the "Life-Cycle Assurance"
section of those Security Policy documents for details about each module, and instructions with
which the Cryptographic officer can verify their installation and configuration.

Chapter 5
FIPS 140-2 Validated Modules in Oracle Linux 8

5-3

https://www.oracle.com/corporate/security-practices/assurance/development/external-security-evaluations/fips/certifications.html

Installing FIPS Validated Cryptographic Modules for Oracle Linux 8
After you enable FIPS mode on Oracle Linux 8, you can then install FIPS validated
cryptographic modules, as required. For information about the software channels that provide
packages containing FIPS validated cryptographic modules, see Yum Repositories and ULN
Channels for FIPS Validated Cryptographic Modules.

The following information applies to systems that are running a fully patched Oracle Linux 8
release that can install and enable FIPS cryptographic modules.

To install FIPS validated cryptographic modules, see the "Life-Cycle Assurance" section of the
Security Policy document for the FIPS module that you plan to install.

The Security Policy document explains how to verify that the package is FIPS 140-2 validated,
and how to configure the module for FIPS mode. See the Oracle FIPS Certifications website
for the certificate number, which includes a link to the NIST FIPS 140-2 validation page. This
page provides details about FIPS certification and the Security Policy document. The package
versions that are listed reflect information that's found in the logical cryptographic boundary for
the specific module.

Yum Repositories and ULN Channels for FIPS Validated Cryptographic
Modules

The following are the dedicated Unbreakable Linux Network (ULN) channels and yum
repository containing FIPS validated cryptographic modules for Oracle Linux 8:

x86_64 Platform:

• ol8_x86_64_u4_security_validation ULN channel

• ol8_u4_security_validation yum repository

aarch64 Platform:

• ol8_aarch64_u4_security_validation ULN channel

• ol8_u4_security_validation yum repository

Note that the ol8_u4_security_validation yum repository is a common repository name for
the x86_64 and aarch64 platforms. This repository contains FIPS validated packages for both
platforms and security updates for the gnutls and libgcrypt packages.

The epoch for gnutls and libgcrypt package updates with the _fips suffix is set to 10, so
they supersede any versions of the same package that don't use the _fips suffix and don't
contain FIPS 140-2 compliance patches. Security updates for other cryptographic modules
modules are available from the corresponding yum repositories and ULN channels.

Security updates for the UEK6 and UEK7 cryptographic modules are available in the
corresponding yum repository and ULN channel. For more information, see the Unbreakable
Enterprise Kernel documentation.

For more information about how to manage yum repositories and ULN channels, see Oracle
Linux: Managing Software on Oracle Linux.

For specific instructions on installing FIPS validated cryptographic modules, see Installing FIPS
Validated Cryptographic Modules for Oracle Linux 8.

Chapter 5
FIPS 140-2 Validated Modules in Oracle Linux 8

5-4

https://www.oracle.com/corporate/security-practices/assurance/development/external-security-evaluations/fips/certifications.html
https://docs.oracle.com/en/operating-systems/uek/
https://docs.oracle.com/en/operating-systems/uek/
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/

6
Oracle Linux 8 Common Criteria Certification

Oracle Linux 8.4 was certified in April 2023 under the Canadian Common Criteria Scheme and
has proven Exact Conformance against the Protection Profile for General Purpose Operating
Systems (OSPP) 4.2.1.

Certificates awarded in Canada and more than 16 other countries are recognized by over 31
countries under the Common Criteria Recognition Arrangement (CCRA).

The certifications include the following evaluated security functionality:

• Security Audit

• Cryptographic support

• Identification and Authentication

• User Data Protection

• Security Management

• Self-protection

• TLS and SSH protocols

Important:

To achieve compliance, the Common Criteria evaluated package set must be
selected at installation time, in accordance with the description that has been
provided in the Common Criteria Guide for the Oracle Linux 8 release that's installed.
For more information, see Common Criteria Guide for Oracle Linux 8.4.

For more information about Common Criteria certification, see the following references:

• External Security Evaluations

• Common Criteria Recognition Arrangement

• Protection Profile for General Purpose Operating Systems

6-1

https://www.oracle.com/a/ocom/docs/oracle-linux-v8.4-common-criteria-guidance.pdf
https://www.oracle.com/corporate/security-practices/assurance/development/external-security-evaluations.html
https://www.commoncriteriaportal.org/ccra/index.cfm
https://www.commoncriteriaportal.org/files/ppfiles/PP_OS_V4.2.1.pdf

7
Security Considerations for Developers

This section provides information for developers about how they can create secure
applications for Oracle Linux, and how to extend Oracle Linux to access external systems
without compromising security.

Design Principles for Secure Coding
Follow these design principles to enhance security at the source code level:

Least privilege
A process or user is granted only those privileges that are necessary to complete a task. User
privileges are assigned according to their role, and all others are denied. To create a minimal
protection domain, assign permissions when a process or thread requires them and removed
after. This principle limits the potential damage that can result from attacks and user errors.

Economy of mechanism
Keep the design straightforward so that fewer things can go wrong, fewer inconsistencies can
emerge, and the code is easier to understand and debug.

Complete mediation
Check every try to access to a resource, rather than only the first. For example, Linux checks
access permissions when a process opens a file but not after. If a file's permissions change
while a process has the file open, this can result in unauthorized access. Permissions could
be checked whenever an open file is accessed but in practice, such checking is considered to
be an unnecessary overhead because of the circumstances under which access was first
obtained.

Open design
Share the code's design or implementation. An open back door to a system is only as secure
as the knowledge of its existence, so empowering others to help you find those back doors
and close them before they're discovered is considered good security practice. This principle
doesn't apply to information such as passwords or cryptographic keys, knowledge of which is
best shared among as few people as possible. For that reason, many secure authentication
schemes also rely on biometric identification or the possession of a physical artifact such a
hardware token or smart card, in addition to knowledge of a PIN code or password.

Separation of privilege
Divide the code into modules, where each module requires a specific, limited set of privileges
to perform a specific task. You can require several privileges to grant access to a sensitive
operation. This principle ensures separation of duty and provides defense in depth. For
example, a main thread that has no privileges can generate a privileged thread to perform a
task. A successful attack against the main thread would only gain minimal access to the
system.

Least common mechanism
Isolate users and their activities from each other. Users sharing processes or threads and
information channels wouldn't be considered good security practice.

7-1

Fail-safe defaults
Deny access to an operation by default. If a user without the necessary privileges tries to
perform an operation it's denied and the system is still as secure as it was before the
operation started.

Accountability
Log the user and their privileges for each action that they try to perform. You can rotate and
archive logs to avoid filling up a file system.

Psychological acceptability
Select security mechanisms that are straightforward to install, configure, and use so that a
user isn't tempted to try to bypass them.

General Guidelines for Secure Coding
Follow these coding practices to enhance security at the source code level:

• Check that input data is what the program expects by performing type, length, and bound
checking. Inputs include command line arguments and environment variables in addition to
data that a user enters.

• Check input data for the inclusion of constructs such as shell commands, SQL statements,
and any XML or HTML code that might be used in an injection attack.

• Check the type, length, and bounds of arguments to system calls and library routines. If
possible, use library routines that guard against buffer overflows.

• Use full pathnames for file-name arguments, don't use files in world-writable directories,
verify that a file being written to isn't a symbolic link, and protect against the unintended
overwriting of existing files.

• Check the type, length, and bounds of values returned by system calls and library routines.
Make the code respond appropriately to any error codes that system calls and library
functions set or return.

• Don't assume the state of the shell environment. Check any settings that a program
inherits from the shell, such as the user file-creation mask, signal handling, file descriptors,
current working directory, and environment variables, especially PATH and IFS . Reset the
settings if needed.

• Perform assert checking on variables that can take a finite set of values.

• Log any information about privileged actions and error conditions. Don't let the program
dump a core file on an end-user system.

• Don't echo passwords to the screen or send or store them as clear text. Before sending or
storing a password, combine it with a salt value and use a secure one-way algorithm such
as SHA-512 to create a hash.

• If the program uses a pseudo random number generating routine, verify that the numbers
that it generates are sufficiently random to match security requirements. Also use a good
random seed that a potential attacker can't be expected to predict. See RFC 4086,
Randomness Requirements for Security, for more information.

• Enable Address Space Layout Randomization (ASLR) on the host system as this feature
can help defeat certain types of buffer overflow attacks. See Address Space Layout
Randomization.

• When compiling and linking a program, use the Position Independent Executables (PIE)
feature to generate a position-independent binary. See Position Independent Executables.

Chapter 7
General Guidelines for Secure Coding

7-2

• Consider using chroot() to confine the operating boundary of a program to a specified
location within a file system.

• Don't run a shell command by calling popen() or syscall() from within a program,
especially from a setuid or setgid program.

The following guidelines apply if a program has its setuid or setgid bit set so that it can
perform privileged actions on behalf of a user who haven't been granted those privileges:

• Don't set the setuid or setgid bit on shell scripts. However, if you use Perl scripts that are
setuid or setgid, you can run perl in "taint mode," which can be more secure than using
similar C code. See the perlsec(1) manual page for details.

• Restrict the use of the privilege that setuid or setgid grants to the functionality that
requires it, and then return the effective UID or GID to that of the user. If possible, perform
the privileged functionality in its own monitored thread or process.

• Don't run a setuid or setgid program inside a child processes using execlp() or
execvp(), which use the PATH environment variable.

General Guidelines for Network Programs
Follow these guidelines to enhance the security of network programs:

• Perform a reverse lookup on an IP address to obtain the fully qualified domain name, and
then use that domain name look up the IP address. Ensure that both IP addresses are
identical.

• Protect a service against Denial of Service (DoS) attacks by pausing the processing of
requests if it becomes overloaded.

• Set timeouts on read and write requests over the network.

• Check the content, bounds, value, and type of data received over the network, and reject
any data that doesn't conform to what the program expects.

• Use certificates or preshared keys to authenticate the local and remote ends of the
network connection.

• Use encryption technology such as TLS or SSL to secure data sent over the network
connection.

• Wherever possible, use existing networking protocols and technologies whose security
characteristics are widely understood.

• Log any information about successful and unsuccessful connection attempts, data
reception, and transmission errors, and changes to the service state.

Chapter 7
General Guidelines for Network Programs

7-3

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Overview of Security Principles
	Minimize and Secure the Software Footprint
	Keep Software Up-to-date
	Restrict Network Access to Critical Services
	Control Authentication Mechanisms and Enforce Password Restrictions
	Follow the Principle of Least Privilege
	Monitor System Activity
	Keep Up-to-date With the Latest Security Information

	2 Planning for a Secure Oracle Linux Environment
	Recommended Deployment Configurations
	Component Security

	3 Managing System Security
	Understanding the Importance of Updates
	Installing and Updating Errata RPM Packages
	Understanding RPM Errata Packages and Cumulative Updates
	About Security Errata and CVEs
	About Bug and Enhancement Errata
	Obtaining Errata and CVE Notices
	About Premier Backports

	About Certificate Management
	About Data Encryption
	About the Packet Filtering Firewall
	About SELinux

	4 Implementing Extra Security Features and Best Practices
	Working with Core Dumps
	Working with the Automatic Bug Reporting Tool
	Configuring and Using Kernel Security Mechanisms
	Address Space Layout Randomization
	Data Execution Prevention or No eXecute
	Position Independent Executables

	Configuring System Cryptograpic Policies
	About Predefined Policies
	Reviewing the Current System-Wide Policy
	Setting the System-Wide Policy
	Extending a Policy By Using Modules
	Creating a New System-Wide Cryptographic Policy

	Checking User Accounts and Privileges
	Configuring User Authentication and Password Policies
	Configuring File System Mounts, File Permissions, and File Ownerships
	Restricting Access to SSH Connections
	Using System Auditing and Monitoring
	Using Advanced Intrusion Detection Environment
	Implementing System Process Accounting
	Protecting the Root Directory by Using chroot Jails
	Running DNS and FTP Services in a Chroot Jail
	Creating a Chroot Jail
	Using a Chroot Jail

	5 FIPS 140-2 Compliance in Oracle Linux 8
	Configuring FIPS Mode in Oracle Linux 8
	Installing Oracle Linux 8 in FIPS Mode
	Enabling and Disabling FIPS Mode for Existing Oracle Linux 8 Installations

	FIPS 140-2 Validated Modules in Oracle Linux 8
	Information About Modules That Have Received FIPS 140-2 Validation
	Installing FIPS Validated Cryptographic Modules for Oracle Linux 8
	Yum Repositories and ULN Channels for FIPS Validated Cryptographic Modules

	6 Oracle Linux 8 Common Criteria Certification
	7 Security Considerations for Developers
	Design Principles for Secure Coding
	General Guidelines for Secure Coding
	General Guidelines for Network Programs

