
Oracle Linux 8
Setting Up Networking

F21491-26
January 2025

Oracle Linux 8 Setting Up Networking,

F21491-26

Copyright © 2022, 2025, Oracle and/or its affiliates.

Contents

 Preface

Documentation License vi

Conventions vi

Documentation Accessibility vi

Access to Oracle Support for Accessibility vi

Diversity and Inclusion vi

1 Configuring the System's Network

Network Configuration Tools 1-1

Configuring Network Interfaces 1-2

About Network Interface Names 1-2

Using the Network Connection Editor GUI 1-3

Using the Text Based User Interface 1-5

Using the Command Line 1-7

Configuring Network Routing 1-9

Using the Network Connection Editor 1-9

Using the Command Line 1-10

Using the Command Line in Interactive Mode 1-11

Using NetworkManager Connection Profiles 1-12

Creating a keyfile Connection Profile in Offline Mode Using nmcli 1-13

Creating a keyfile Connection Profile Manually 1-14

Renaming Process Differences Between Connection Profile Formats 1-16

Converting Connection Profile Formats From ifcfg to keyfile 1-16

Running Scripts When Network Events Occur 1-17

2 Optimizing Network Servers for High Availability

Working With Network Bonding 2-1

Configuring Network Bonding 2-2

Using the Command Line 2-2

Using the Network Connections Editor 2-3

Verifying the Network Bond Status 2-5

Working With Network Interface Teaming 2-5

iii

Configuring Network Interface Teaming 2-6

Adding Ports to and Removing Ports from a Team 2-7

Changing the Configuration of a Port in a Team 2-7

Removing a Team 2-7

Displaying Information About Teams 2-8

Configuring VLANs With Untagged Data Frames 2-9

3 Configuring DHCP Services

Setting Up the Server's Network Interfaces 3-1

Understanding DHCP Declarations 3-3

Activating the DHCP Services 3-7

Recovering From a Corrupted Lease Database 3-8

4 About Network Address Translation

5 Configuring the Name Service

About DNS and BIND 5-1

Types of Name Servers 5-2

Installing and Configuring a Name Server 5-2

Working With DNS Configuration Files 5-3

Configuring the named Daemon 5-4

About Resource Records in Zone Files 5-7

About Resource Records for Reverse-Name Resolution 5-9

Administering the Name Service 5-10

Performing DNS Lookups 5-10

6 Configuring Network Time

About the chrony Suite 6-1

About the chronyd Service Daemon 6-1

Using the chronyc Service Utility 6-1

Configuring the chronyd Service 6-3

Editing the chronyd Configuration File 6-3

Converting From ntp to chrony 6-4

About PTP 6-5

Configuring the PTP Service 6-6

Using PTP as a Time Source for NTP 6-9

iv

7 Configuring Virtual Private Networks

v

Preface

Oracle Linux 8: Setting Up Networking provides information about configuring networking for
Oracle Linux 8 systems.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and

Preface

vi

https://docs.oracle.com/en/operating-systems/oracle-linux/8/network/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vii

1
Configuring the System's Network

To enable the system to connect to the network, transmit and receive traffic with other systems,
you would need to configure the system to have identifiable names, IP addresses, routes, and
so on. Depending on the system's available resources, you can further optimize the network
configuration to attain high availability and improved performance by implementing added
network technologies such as network bonds, teams, and multipathing.

Note:

In Oracle Linux 8, network configuration is managed by NetworkManager. If the
system still uses network scripts from previous Oracle Linux releases, migrate them
to NetworkManager.

Network Configuration Tools
Different tools are available to configure the network. All them typically perform the same
functions. You can select any tool or a combination of tools to manage the network.

• Cockpit is a web-based configuration tool for managing network configuration, including
network interfaces, bonds, teams, bridges, virtual VLANs, and the firewall. For more
information, see https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/.

• GNOME based tools
If you selected the default System With GUI installation profile or environment to install
Oracle Linux, these tools are automatically included. For more information on installation
profiles, see the Oracle Linux release's installation guide.

– The GNOME settings application enables you to perform various system
configurations, including networking. To access this application, click the network icon
at the upper right of the desktop and select Settings. Alternatively, click Activities on
the desktop's menu bar, select Show Applications, then select Settings. From the list
on the left panel, select the type of configuration you want to do.

– The Network Connection Editor is a subset of the GNOME settings application which
you can use to directly perform network configurations. To start the editor, type the nm-
connection-editor command on a terminal window.

• NetworkManager command line tools
Use these tools if you didn't select the Server With GUI installation profile to install Oracle
Linux.

– To start NetworkManager's text based user interface (TUI), type the nmtui command on
a terminal window. Navigate through the interface by using keyboard keys instead of
the mouse device.

– NetworkManager's command line consists of the nmcli command with different
subcommands and options. With a combination of subcommands, options, and
arguments, you can complete network configurations in a single command syntax.
Other commands, such as ip and ethtool, complement nmcli for configuring and

1-1

https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/

managing network settings. Optionally, to avoid entering long commands, you can use
nmcli in interactive mode.
For more information, see the nmcli(1), ip(8), and ethtool(8) manual pages.

Configuring Network Interfaces
The following information describes how to configure a NIC by using the tools that were
described in previous sections.

To configure NICs by using Cockpit, see Oracle Linux: Using the Cockpit Web Console .

About Network Interface Names
Traditionally, early kernel versions assigned names to network interface devices by assigning a
prefix, which is typically based on the device driver, and a number, such as eth0. With the
availability of different types of devices, this naming schema is no longer efficient. The names
don't necessarily correspond to the chassis labels and the names themselves might be
inconsistent across existing network interfaces. The inconsistency would affect embedded
adapters on the system, including add-in adapters. Server platforms with several network
adapters could have problems managing these interfaces.

Oracle Linux implements a consistent naming scheme for all network interfaces through the
udev device manager. The scheme offers the following advantages:

• The names of the devices are predictable.

• Device names persist across system reboots or after changes are made to the hardware.

• Defective hardware can easily be identified and thus replaced.

The feature that implements consistent naming on devices is enabled in Oracle Linux 8 by
default. Network interface names are based on information that's derived from the system
BIOS. Alternatively, they can be based on a device's firmware, system path, or MAC address.

Network interfaces are identified by a name that combines a prefix and a suffix. The prefix
depends on the type of network interface:

• Ethernet network interfaces: en
• Wireless local area network (LAN) interfaces: wl
• Wireless wide area network (WAN) interfaces: ww
The suffix contains any of the following information:

• An on-board index number on , and thus, eno0 .

• A hot-plug slot index number sn , and thus, ens1.

This naming schema can also include ffunction and ddevice-id that are added to the
suffix.

• The bus and slot number pbussn , and thus. enp0s8.

This naming schema can also include ffunction and ddevice-id that are added to the
suffix.

• The MAC address xMAC-addr , and thus, enx0217b08b.

Note that this naming format isn't used by Oracle Linux by default. However, administrators
can implement it as an option.

Chapter 1
Configuring Network Interfaces

1-2

https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/

Using the Network Connection Editor GUI
1. If not already installed, install the nm-connection-editor package.

sudo dnf install -y nm-connection-editor

2. Start the editor:

sudo nm-connection-editor

The editor detects the network devices that are on the system and lists them and their
current states:

Figure 1-1 Network Connections

3. To add or remove a connection, use the plus (+) or minus (-) buttons at the bottom of the
editor window.

If you add a connection, a window that prompts you for the connection type opens. Select
a type, such as Ethernet, from the drop down list, then click Create. The Interface Editor
window opens.

Chapter 1
Configuring Network Interfaces

1-3

Note:

The same window opens if you edit an existing connection.

Figure 1-2 Interface Editor

4. Click each tab as needed and enter the required information about the interface.

5. Click Save after you have completed the configuration.

You must specify all the required information. Otherwise, the settings can't be saved and
the editor's background terminal window would display messages that indicate the errors.

Chapter 1
Configuring Network Interfaces

1-4

Using the Text Based User Interface
1. If not already installed, install the NetworkManager-tui package.

sudo dnf install -y NetworkManager-tui

2. Open NetworkManager's text-based user interface.

sudo nmtui

Figure 1-3 TUI Main Menu

To navigate the tool, use the up and down arrow keys, then press Enter to make a
selection

3. To add a connection, select Edit a connection, then click Add.

4. After selecting a connection type, the Edit Connection window opens.

Chapter 1
Configuring Network Interfaces

1-5

Figure 1-4 Edit Connection

5. As an option, specify a preferred profile name and the name of the device.

6. By default, IPv4 and IPv6 configurations are set to Automatic. To change the setting, select
the Automatic field and press Enter. From the drop down list, select the type of IP
configuration that you want to implement, such as Manual. Then, select the corresponding
Show field.

The fields that are displayed depend on the type of IP configuration that's selected. For
example, to manually configure an IP address, selecting Show displays an address field,
where you would enter an IP addresses for the interface, as the following figure illustrates.

Figure 1-5 Adding IP Addresses

Chapter 1
Configuring Network Interfaces

1-6

7. Navigate through all the fields on the screen to ensure that the required information is
specified.

8. After you have edited the connection, select OK.

Using the Command Line
To illustrate the different uses of the nmcli command, this procedure describes an example of
adding and configuring a new Ethernet connection for the enp0s2 device. For more information
about the command, see the nmcli(1) manual page.

Tip:

Before adding the connection, prepare the information you would need for the
configuration, such as the following:

• Connection name, for example, My Work Connection. The nmcli command
works by referring to the connection name rather than the device name. If you
don't set a connection name, then the device's name is used as the connection
name.

• IP addresses (IPv4 and, if needed, IPv6)

• Gateway addresses

• Other relevant data you want to set for the connection

1. (Optional): Display the network devices on the system.

sudo nmcli device status

DEVICE TYPE STATE CONNECTION
enp0s1 ethernet connected enp0s1
enp0s2 ethernet disconnected --
lo loopback unmanaged

The command shows whether a device is connected or disconnected, and whether it is
managed or unmanaged.

2. (Optional) Display the connection information about the network devices.

sudo nmcli con show [--active]

NAME UUID TYPE DEVICE
enp0s1 nn-nn-nn-nn-nn ethernet enp0s1
virbr0 nn-nn-nn-nn-nn bridge virbr0
mybond nn-nn-nn-nn-nn bond bond0

The con subcommand is the short form of connection, and can be further shortened to
c. Specifying the --active option would display only active devices.

Note that in the output, NAME represents the connection ID.

Chapter 1
Configuring Network Interfaces

1-7

3. Add a new connection.

sudo nmcli con add {properties} [IP-info] [gateway-info

properties
The connection name as specified by the con-name argument, the type of connection as
specified by the type argument, and the interface name as specified by the ifname
argument.

IP-info
The IPv4 or IPv6 address as specified by either the ip4 or ip6 argument. The address
must be in the format address/netmask. The IPv4 address can be in CIDR form, for
example, 1.2.3.4/24.

gateway-info
The gateway IPv4 or IPv6 address as specified by either the gw4 or gw6 argument.

For example, to add the connection with the information at the beginning of this procedure,
you would type:

sudo nmcli con add type ethernet ifname enp0s2 con-name "My Work
Connection" ip4 192.168.5.10/24 gw4 192.168.5.2

The output would acknowledge that the connection is successfully completed.

4. Activate the interface.

sudo nmcli con up "My Work Connection"

5. (Optional) Display the configuration properties of the new connection.

sudo nmcli [-o] con show "My Work Connection

connection.id: My Work Connection
connection.uuid: nn-nn-nn-nn-nn
connection.type: 802-3-ethernet
connection.interface-name: enp0s2
...
IP4.ADDRESS[1]: 192.168.5.10
IP4.GATEWAY: 192.168.5.2
...

Specifying the -o option displays only properties that have configured values.

After you have created the connection, a corresponding profile is created. For more information
on connection profiles, see Using NetworkManager Connection Profiles.

ls -lrt /etc/sysconfig/network-scripts/ifcfg*

...
-rw-r--r--. 1 root root 266 Aug 6 11:03 /etc/sysconfig/network-scripts/ifcfg-
My_Work_Connection

Chapter 1
Configuring Network Interfaces

1-8

Configuring Network Routing
A system uses its routing table to identify which network interface to use when sending packets
to remote systems. For a system with only a single interface, configuring the IP address of a
gateway system on the local network suffices to route packets to other networks. For example,
see the image Figure 1-5, which shows a field where you can enter the IP address of the
default gateway.

On systems that have several IP interfaces, you can define static routes so that traffic for a
special host or network is forwarded to that network through the default gateway. You use the
same tools to configure routing as you do to configure network interfaces.

Using the Network Connection Editor
To create a static route to the 192.0.2.0/24 network through the gateway 198.51.100.1, ensure
first that the default gateway 198.51.100.1 is reachable on the interface. Then, complete the
following steps:.

1. Start the editor.

nm-connection-editor

2. From the list of connections, select the device under the connection name for which you
want to create a static route. For example, under myconnection, you would select the
device ens3.

3. Click the settings icon (gear wheel) to edit the connection settings.

4. Click the IPv4 Settings tab.

5. Click Routes.

6. Click Add.

7. Enter the network's address and netmask for which the route is created, and specify the
gateway IP address through which the route is established. You can optionally enter a
metric value and select the other available options on display.

8. Clcik OK and then save.

9. Back at the terminal window, restart the connection.

Chapter 1
Configuring Network Routing

1-9

This step causes the connection to temporarily drop.

sudo nmcli connection up myconnection

10. Optionally, verify that the new route is active.

ip route

...
192.0.2.0/24 via 198.51.100.1 dev myconnection proto static metric 100

Using the Command Line
To configure static routes with the nmcli command, use the following syntax:

nmcli connection modify connection_name +ipv4.routes "ip[/prefix] options(s)
attribute(s)"[next_hop] [metric] [attribute=value] [attribute=value] ..."

+ipv4.routes
The plus (+) sign indicates that you're creating an IPv4 route. Without the sign, the command
changes an existing IPv4 setting.

connection-name
Connection name or label for which you're creating a static route.

ip[/prefix]
IP address of the static route that you're creating. The IP address can also be in CIDR
notation.

options
Options include next hop addresses and optional route metrics. These options are separated
by spaces. For more information, see the nm-settings-nmcli(5) manual pages.

attributes
Attributes are entered as attribute=value and are also separated by spaces. Some attributes
are mtu, src, type, cwnd, and so on. For more information, see the nm-settings-nmcli(5)
manual pages.

Suppose that you have the following configurations:

• Name of the connection: myconnection
• Default gateway address: 198.51.100.1

• Network to which you want to create a statci route: 192.0.2.0/24

To create the route, ensure first that the default gateway for the route is directly reachable on
the interface. Then, do the following:

1. Create the static route.

sudo nmcli connection modify myconnection +ipv4.routes "192.0.2.0/24
198.51.100.1"

Chapter 1
Configuring Network Routing

1-10

To create several static routes in a single command, separate the route gateway entries
with commas, for example:

sudo nmcli connection modify myconnection +ipv4.routes "192.0.2.0/24
198.51.100.1, 203.0.113.0/24 198.51.100.1"

2. Verify the new routing configuration.

nmcli connection show myconnection

–-
ipv4.routes: { ip = 192.0.2.0/24, nh = 198.51.100.1 }
–-

3. Restart the network connection.
This step causes the connection to temporarily drop.

sudo nmcli connection up myconnection

4. Optionally, verify that the new route is active.

ip route

...
192.0.2.0/24 via 198.51.100.1 dev example proto static metric 100

Using the Command Line in Interactive Mode
You can also use the nmcli command in interactive mode to configure network settings,
including configuring static routes. When in interactive mode, the nmcli> prompt appears
where you can run commands to configure static routes for a specific connection profile.

The procedure in this section assumes the following network settings for creating the static
route:

• Name of the connection: myconnection
• Default gateway address: 198.51.100.1

• Network to which you want to create a statci route: 192.0.2.0/24

To create the route, ensure first that the default gateway for the route is directly reachable on
the interface. Then, do the following:

1. Start the command's interactive mode.

sudo nmcli connection modify myconnection

nmcli>

2. Create the static route.

nmcli> set ipv4.routes 192.0.2.0/24 198.51.100.1

Chapter 1
Configuring Network Routing

1-11

3. Optionally, display the new configuration.

nmcli> print

...
ipv4.routes: { ip = 192.0.2.1/24, nh = 198.51.100.1 }
...

4. Save the configuration.

nmcli> save persistent

5. Restart the network connection.
This step causes the connection to temporarily drop.

nmcli> activate myconnection

6. Exit the interactive mode.

nmcli> quit

7. Optionally, verify that the new route is active.

ip route

...
192.0.2.0/24 via 198.51.100.1 dev example proto static metric 100

Using NetworkManager Connection Profiles
Each network connection configuration that you create becomes a NetworkManager connection
profile on the system. In Oracle Linux 8, profiles recognize both the key file format and the
ifcfg format so that network scripts from previous Oracle Linux releases continue to work.
However, network scripts are deprecated in Oracle Linux 8. If you manually create connection
profiles, use the key file format instead.

Depending on its purpose, a NetworkManager connection profile can be stored in one of the
following locations:

• /etc/NetworkManager/system-connections/: Default location of persistent profiles
that are created by the user. Profiles in this directory can also be edited.

• /run/NetworkManager/system-connections/: Location of temporary profiles that
are automatically removed when you reboot the system.

• /usr/lib/NetworkManager/system-connections/: Location of predeployed and
permanent connection profiles. If you edit one of these profiles by using the
NetworkManager API, then the profile is copied either to the persistent or the temporary
directory.

For more information about configuring NetworkManager connection profiles, see:

• Creating a keyfile Connection Profile in Offline Mode Using nmcli
• Creating a keyfile Connection Profile Manually

Chapter 1
Using NetworkManager Connection Profiles

1-12

• Renaming Process Differences Between Connection Profile Formats

• Converting Connection Profile Formats From ifcfg to keyfile

Creating a keyfile Connection Profile in Offline Mode Using nmcli
When creating or updating NetworkManager profile connections, we recommend using its CLI
tool in offline mode (nmcli --offline). In offline mode, nmcli operates without the
NetworkManager service, which offers user enhanced editing control and the ability to create
various connection profiles in keyfile format. For example, you can create the following type
of connection profiles in keyfile format:

• static Ethernet connection

• dynamic Ethernet connection

• network bond

• network bridge

• VLAN or any kind of enabled connections

To create a keyfile connection profile using nmcli in offline mode, follow these steps:

1. Use the required NetworkManager configuration properties to create a profile connection in
offline mode.

For example, the following syntax creates a keyfile connection profile in offline mode for an
Ethernet device with a manually assigned IPv4 address and DNS address.

nmcli --offline connection add type ethernet con-name Example-Connection
ipv4.addresses ###.#.#.#/# ipv4.dns ###.#.#.### ipv4.method manual > /etc/
NetworkManager/system-connections/outputmconnection

where:

• nmcli --offline = ncmi mode property, which instructs nmcli to operate in offline
mode.

• connection add type ethernet = add connection and type properties, which is used
to create a connecton profile and specify a connection type value (in this example:
Ethernet).

• con-name = connection name property, which is saved into the id variable for the
generated connection profile.
When you manage this connection later, using nmcli, note the following id variable
usages:

– In cases where the id variable is provided, use the connection name. For
example: Example-Connection.

– In cases where the id variable is omitted, use the file name without
the .nmconnection suffix, for example output.

Note:

For more information about connection profile properties and their settings,
see the nm-settings(5) manual page.

Chapter 1
Using NetworkManager Connection Profiles

1-13

2. Set permissions to the configuration file so that only the root user can read and update it.
For example:

chmod 600 /etc/NetworkManager/system-connections/outputmconnection
chown root:root /etc/NetworkManager/system-connections/outputmconnection

3. Start the NetworkManager service:

systemctl start NetworkManager.service

4. If you set the autoconnect variable in the profile to false, activate the connection:

nmcli connection up Example-Connection

5. (Optional) To verify the profile configuration, perform these steps:

a. Verify that the NetworkManager service is running, for example:

systemctl status NetworkManager
● NetworkManager.service - Network Manager
 Loaded: loaded (/usr/lib/systemd/system/NetworkManager.service
enabled vendor preset: enabled)
 Active: active (running) because Wed -03 13:08:32 CEST ago

b. Verify that NetworkManager can read the profile from the configuration file, for example:

nmcli -f TYPE,FILENAME,NAME connection
TYPE FILENAME
NAME
ethernet /etc/NetworkManager/system-connections/outputmconnection
Example-Connection
ethernet /etc/sysconfig/network-scripts/ifcfg-enp0 enp0

If the output doesn't display the newly created connection, verify that the keyfile
permissions and the syntax used are correct.

c. To display the connection profile use the nmcli connection show command, for
example:

nmcli connection show Example-Connection
connection.id: Example-Connection
connection.uuid: ce8d4422-9603-4d6f-
b602-4f71992c49c2
connection.stable-id: --
connection.type: 802-3-ethernet
connection.interface-name: --
connection.autoconnect: yes

Creating a keyfile Connection Profile Manually
To manually create a NetworkManager connection profile in a keyfile format, follow these steps:

Chapter 1
Using NetworkManager Connection Profiles

1-14

Note:

Manually creating or updating the configuration files can result in an unexpected
network configuration. Another option would be to use nmcli in offline mode. See

1. If you're creating a profile for a hardware interface, such as Ethernet, display the
hardware's MAC address.

ip address show ens3

2: ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc pfifo_fast state
UP group default qlen 1000
 link/ether 02:00:17:03:b9:ae brd ff:ff:ff:ff:ff:ff
 ...

2. Use any text editor to create a connection profile that contains the network settings that
you want to define for the connection.
For example, if the connection uses DHCP, the profile would contain settings similar to the
following example:

[connection]
id=myconnection
type=ethernet
autoconnect=true

[ipv4]
method=auto

[ipv6]
method=auto

[ethernet]
mac-address=02:00:17:03:b9:ae

3. Save the profile to /etc/NetworkManager/system-connections/filname.nmconnection.
In this current procedure, the profile would be /etc/NetworkManager/system-
connections/myconnection.nmconnection.

Note:

The defined ID variable, such as myconnection, doesn't need to be identical with
the profile's file name, for example myethernet.nmconnection. When you change
the profile by using the nmcli command, you can identify the profile by the
defined ID (myconnection) or by the file name, but excluding the file extension
name (myethernet).

4. Restrict the permissions of the profile.

sudo chown root:root /etc/NetworkManager/system-connections/
myconnection.nmconnection

Chapter 1
Using NetworkManager Connection Profiles

1-15

sudo chown 600 /etc/NetworkManager/system-connections/
myconnection.nmconnection

5. Reload the connection profiles.

sudo nmcli connection reload

6. Verify that NetworkManager can read the profile.

sudo nmcli -f NAME,UUID,FILENAME connection

NAME UUID FILENAME
myconnection uuid /etc/NetworkManager/system-connections/
myconnection.nmconnection

7. If you specified false for the profile's autoconnect parameter, then activate the
connection.

sudo nmcli connection up myconnection

Renaming Process Differences Between Connection Profile Formats
In cases when you need to assign a custom name to an interface, the udev service renaming
process works differently depending on the format of the connnection profile. For example,

• ifcfg format interface renaming process involves these steps:

1. The /usr/lib/udev/rules.d/60-net.rulesudev rule calls the /lib/udev/
rename_device helper utility.

2. The helper utility searches for the HWADDR parameter in /etc/sysconfig/network-
scripts/ifcfg-* files.

3. If the value set in the variable matches the MAC address of an interface, the helper
utility renames the interface to the name set in the DEVICE parameter of the file.

• keyfile format interface renaming process involves these steps:

1. To rename an interface, create a systemd link file or a udev rule.

2. In the NetworkManager connection profile, specify the custom name in the interface-
name property.

Converting Connection Profile Formats From ifcfg to keyfile
To convert the NetworkManager legacy ifcfg profile formats to the preferred NetworkManager
keyfile format, follow these steps:

Note:

For more information about the keyfile profile format, see the nm-settings-keyfile(5)
manual page.

1. Ensure that the following prerequisites are met:

Chapter 1
Using NetworkManager Connection Profiles

1-16

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/consistent-network-interface-device-naming_configuring-and-managing-networking#configuring-user-defined-network-interface-names-by-using-systemd-link-files_consistent-network-interface-device-naming
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/consistent-network-interface-device-naming_configuring-and-managing-networking#configuring-user-defined-network-interface-names-by-using-systemd-link-files_consistent-network-interface-device-naming
https://networkmanager.dev/docs/api/latest/nm-settings-keyfile.html

• Existing connection profiles in ifcfg format that are stored in the /etc/sysconfig/
network-scripts/ directory.

• If the connection profiles contain a DEVICE variable that is set to a custom device
name, such as provider or lan, you created a systemd link file or a udev rule for each
of the custom device names.

2. Using the nmcli, migrate the ifcfg connection profiles to the preferred keyfile formats.

nmcli connection migrate

3. (Optional) Verify that all the legacy ifcfg connection profiles migrated successfully:

nmcli -f TYPE,FILENAME,NAME connection

Running Scripts When Network Events Occur
You can configure the system to respond to network events by providing scripts for
NetworkManager-dispatcher to run. Use a script, for example, to mount a remote file system
when a device is brought up or send a notification when a device loses connectivity.

1. Save an executable script in /etc/NetworkManager/dispatcher.d/ or one of its
subdirectories.

When NetworkManager-dispatcher runs a script, it passes two arguments to the script:

• The name of the interface on which an action occurred.

• The action that occurred.

In addition, environment variables related to the network are available for you to use in the
script.

See the NetworkManager-dispatcher (8) manual page for a full list of actions and
environment variables you can use in a script.

Subdirectories within /etc/NetworkManager/dispatcher.d/ provide special
handling of scripts.

Subdirectory Details

pre-up.d Place or symbolically link scripts responding
to pre-up or vpn-pre-up actions in this
subdirectory.

pre-down.d Place or symbolically link scripts responding
to pre-down or vpn-pre-down actions in this
subdirectory.

no-wait.d Create a symbolic link from the script to this
subdirectory if you want the script to run
immediately when an action occurs. These
scripts run in parallel, and don't wait for
scripts already running to end.

Chapter 1
Running Scripts When Network Events Occur

1-17

Note:

Depending on the SELinux policies and security contexts configured on the
system, SELinux might prevent scripts from running if they are symbolic links into
a subdirectory in /etc/NetworkManager/dispatcher.d/. To ensure that
scripts run, either place scripts directly in the subdirectory, or update the SELinux
configuration. For more information, see Oracle Linux: Administering SELinux.

Because NetworkManager-dispatcher runs scripts in /etc/NetworkManager/
dispatcher.d/ in alphabetical order, you can prefix the file name with a number to
enforce the execution order of scripts. For example: /etc/NetworkManager/
dispatcher.d/10-myscript.

2. Set ownership and permissions for the file.

The following settings are required:

a. Change the file owner to root.

sudo chown root /etc/NetworkManager/dispatcher.d/10-myscript

b. Disable write access for group and other, and disable setuid.

sudo chmod 0700 /etc/NetworkManager/dispatcher.d/10-myscript

When network actions occur, NetworkManager.service starts NetworkManager-
dispatcher.service, which runs the scripts in /etc/NetworkManager/dispatcher.d/
following these parameters:

• One script runs at a time.

• Scripts run in sequence based on the order in which network events occur.

• After the dispatcher service queues a script, the script always runs, even if a later action
makes the script unnecessary.

• NetworkManager terminates scripts if they run for too long.

Chapter 1
Running Scripts When Network Events Occur

1-18

https://docs.oracle.com/en/operating-systems/oracle-linux/selinux/

2
Optimizing Network Servers for High
Availability

For systems that provide network services to clients inside the network, network availability
becomes a priority to ensure that the services are continuous and interruptions are prevented.
With virtual local area networks (VLANs), you can also organize the network such that systems
with similar functions are grouped together as though they belong to their own virtual networks.
This feature improves network management and administration.

For a system to avail of these advanced features, it must have several NICs. The more NICs,
the better assurances of network availability that a server can provide.

Working With Network Bonding
A system's physical network interfaces that are connected to a network switch can be grouped
together into a single logical interface to provide better throughput or availability. This grouping,
or aggregation, of physical network interfaces is known as a network bond.

A bonded network interface can increase data throughput by load balancing or can provide
redundancy by activating failover from one component device to another. By default, a bonded
interface appears similar to a normal network device to the kernel, but it sends out network
packets over the available secondary devices by using a round-robin scheduler. You can
configure bonding module parameters in the bonded interface's configuration file to alter the
behavior of load-balancing and device failover.

The network bonding driver within the kernel can be used to configure the network bond in
different modes to take advantage of different bonding features, depending on the
requirements and the available network infrastructure. For example, the balance-rr mode can
be used to provide basic round-robin load-balancing and fault tolerance across a set of
physical network interfaces; while the active-backup mode provides basic fault tolerance for
high availability configurations. Some bonding modes, such as 802.3ad, or dynamic link
aggregation, require particular hardware features and configuration on the switch that the
physical interfaces connect to. Basic load-balancing modes (balance-rr and balance-xor)
work with any switch that supports EtherChannel or trunking. Advanced load-balancing modes
(balance-tlb and balance-alb) don't impose requirements on the switching hardware, but do
require that the device driver for each component interfaces implement certain specific
features such as support for ethtool or the ability to change the hardware address while the
device is active.

For more information on the kernel bonding driver, see the upstream documentation at https://
www.kernel.org/doc/Documentation/networking/bonding.txt or included at /usr/share/doc/
iputils-*/README.bonding.

2-1

https://www.kernel.org/doc/Documentation/networking/bonding.txt
https://www.kernel.org/doc/Documentation/networking/bonding.txt

Note:

For network configurations where systems are directly cabled together for high
availability, a switch is required to support certain network interface bonding features
such as automatic failover. Otherwise, the mechanism might not work.

Configuring Network Bonding
You can configure network bonding either by using the command line or the Network
Connections Editor.

Using the Command Line
For a tutorial, which includes a hands-on lab environment, on configuring network bonds, see
Create Network Bonds using Network Manager CLI .

1. Add a bond interface using the nmcli connection add command.

sudo nmcli connection add type bond con-name "Bond Connection 1" ifname
bond0 bond.options "mode=active-backup"

Take note to set the bond connection name, the bond interface name, and, importantly, the
bond mode option. In this example, the mode is set to active-backup. If you don't set the
bond connection name, then the bond interface name is also used as the connection
name.

2. Optionally configure the IP address for the bond interface using the nmcli connection
modify command. By default the interface is configured to use DHCP, but if you require
static IP addressing, manually configure the address. For example, to configure IPv4
settings for the bond, type:

sudo nmcli connection modify "Bond Connection 1" ipv4.addresses
'192.0.2.2/24'

sudo nmcli connection modify "Bond Connection 1" ipv4.gateway '192.0.2.1'

sudo nmcli connection modify "Bond Connection 1" ipv4.dns '192.0.2.254'

sudo nmcli connection modify "Bond Connection 1" ipv4.method manual

3. Add the physical network interfaces to the bond as secondary-type interfaces using the
nmcli connection add command. For example:

sudo nmcli connection add type ethernet slave-type bond con-name bond0-if1
ifname enp1s0 master bond0

sudo nmcli connection add type ethernet slave-type bond con-name bond0-if2
ifname enp2s0 master bond0

Chapter 2
Working With Network Bonding

2-2

https://docs.oracle.com/en/learn/ol-nmcli-bond/

Give each secondary a connection name, and select the interface name for each interface
that you want to add. You can get a list of available interfaces by running the nmcli
device command. Specify the interface name of the bond to which you want to attach the
secondary network interfaces.

4. Start the bond interface.

sudo nmcli connection up "Bond Connection 1"

5. Verify that the network interfaces have been added to the bond correctly. You can check
this by looking at the device list again.

sudo nmcli device

...
enp1s0 ethernet connected bond0-if1
enp2s0 ethernet connected bond0-if2

Using the Network Connections Editor
1. Start the editor:

sudo nm-connection-editor

The Network Connections window opens.

2. To add a connection, use the plus (+) button at the bottom of the window.

This step opens another window that prompts you for the type of connection to create.

3. From the window's drop down list and under the Virtual section, select Bond, then click
Create.

The Network Bond Editor window opens.

Network Bond Editor

Chapter 2
Working With Network Bonding

2-3

4. Optionally configure a connection name for the bond.

5. Add physical network interfaces to the network bond by clicking on the Add button.

a. A new window that where you can select the type of physical interface to add to the
network bond. For example, you can select the Ethernet type to add an Ethernet
interface to the network bond. Click the Create button to configure the secondary
interface.

b. Optionally configure a name for the secondary interface.

c. In the Device field, select the physical network interface to add as a secondary to the
bond. Note that if a device is already configured for networking it's not listed as
available to configure within the bond.

d. Click Save to add the secondary device to the network bond.

Repeat these steps for all the physical network interfaces that make up the bonded
interface.

Chapter 2
Working With Network Bonding

2-4

6. Configure the bonding mode that you want to use for the network bond.

Select the bonding mode from the Mode drop down list. Note that some modes might
require more configuration on the network switch.

7. Configure other bond parameters such as link monitoring as required if you don't want to
use the default settings.

If you don't intend to use DHCP for network bond IP configuration, set the IP addressing by
clicking on the IPv4 and IPv6 tabs.

8. Click the Save button to save the configuration and to create the network bond.

Verifying the Network Bond Status
1. Run the following command to obtain information about the network bond with device

name bond0:

cat /proc/net/bonding/bond0

The output shows the bond configuration and status, including which bond secondaries are
active. The output also provides information about the status of each secondary interface.

2. Temporarily disconnect the physical cable that's connected to one of the secondary
interfaces. No other reliable method is available to test link failure.

3. Check the status of the bond link as shown in the initial step for this procedure. The status
of the secondary interface would indicate that the interface is down and a link failure has
occurred.

Working With Network Interface Teaming
Network interface teaming is similar to network interface bonding and provides a way of
implementing link aggregation that's relatively maintenance-free, easier to reconfigure, expand,
and debug, compared to bonding.

A lightweight kernel driver implements teaming and the teamd daemon implements load-
balancing and failover schemes termed runners.

The following standard runners are defined:

activebackup
Monitors the link for changes and selects the active port that's used to send packets.

broadcast
Sends packets on all member ports.

lacp
Provides load balancing by implementing the Link Aggregation Control Protocol 802.3ad on
the member ports.

loadbalance
In passive mode, uses the Berkeley Packet Filter (BPF) hash function to select the port that's
used to send packets.
In active mode, uses a balancing algorithm to distribute outgoing packets over the available
ports.

Chapter 2
Working With Network Interface Teaming

2-5

random
Selects a port at random to send each outgoing packet.

roundrobin
Sends packets over the available ports in a round-robin fashion.

For specialized applications, you can create customized runners that teamd can interpret. Use
the teamdctl command to control the operation of teamd.

For more information, see the teamd.conf(5) manual page.

Configuring Network Interface Teaming
You can configure a teamed interface by creating JSON-format definitions that specify the
properties of the team and each of its component interfaces. The teamd daemon then interprets
these definitions. You can use the JSON-format definitions to create a team interface by
starting the teamd daemon manually, by editing interface definition files in /etc/sysconfig/
network-scripts, by using the nmcli command, or by using the Network Configuration
editor (nm-connection-editor). The following task describes the first of these methods.

1. Create a JSON-format definition file for the team and its component ports. For sample
configurations, see the files under /usr/share/doc/teamd/example_configs/.

The following example from activebackup_ethtool_1.conf defines an active-backup
configuration where eth1 is configured as the primary port and eth2 as the backup port
and these ports are monitored by ethtool.

{
 "device": "team0",
 "runner": {"name": "activebackup"},
 "link_watch": {"name": "ethtool"},
 "ports": {
 "eth1": {
 "prio": -10,
 "sticky": true
 },
 "eth2": {
 "prio": 100
 }
 }
}

2. Bring down the component ports.

sudo ip link set eth1 down

sudo ip link set eth2 down

Note:

Active interfaces can't be added to a team.

Chapter 2
Working With Network Interface Teaming

2-6

3. Start an instance of the teamd daemon and have it create the teamed interface by reading
the configuration file.

In the following example, /root/team_config/team0.conf is used.

sudo teamd -g -f /root/team_config/team0.conf -d

Using team device "team0".
Using PID file "/var/run/teamd/team0.pid"
Using config file "/root/team_config/team0.conf"

where the -g option displays debugging messages and can be omitted.

4. Set the IP address and network mask prefix length of the teamed interface.

sudo ip addr add 10.0.0.5/24 dev team0

For more information, see the teamd(8) manual page.

Adding Ports to and Removing Ports from a Team
To add a port to a team, use the teamdctl command:

sudo teamdctl team0 port add eth3

To remove a port from a team:

sudo teamdctl team0 port remove eth3

For more information, see the teamdctl(8) manual page.

Changing the Configuration of a Port in a Team
Use the teamdctl command to update the configuration of a constituent port of a team, for
example:

sudo teamdctl team0 port config update eth1 '{"prio": -10, "sticky": false}'

Enclose the JSON-format definition in single quotes and don't split it over several lines.

For more information, see the teamdctl(8) manual page.

Removing a Team
Use the following command to halt the teamd daemon:

sudo teamd -t team0 -k

For more information, see the teamd(8) manual page.

Chapter 2
Working With Network Interface Teaming

2-7

Displaying Information About Teams
Display the network state of the teamed interface as follows:

sudo ip addr show dev team0

7: team0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP
 link/ether 08:00:27:15:7a:f1 brd ff:ff:ff:ff:ff:ff
 inet 10.0.0.5/24 scope global team0
 valid_lft forever preferred_lft forever
 inet6 fe80::a00:27ff:fe15:7af1/64 scope link
 valid_lft forever preferred_lft forever

Use the teamnl command to display information about the component ports of the team:

sudo teamnl team0 ports

 5: eth2: up 1000Mbit FD
 4: eth1: up 1000Mbit FD

To display the current state of the team, use the teamdctl command:

sudo teamdctl team0 state

setup:
 runner: activebackup
ports:
 eth1
 link watches:
 link summary: down
 instance[link_watch_0]:
 name: ethtool
 link: down
 eth2
 link watches:
 link summary: up
 instance[link_watch_0]:
 name: ethtool
 link: up
runner:
 active port: em4

Chapter 2
Working With Network Interface Teaming

2-8

You can also use the teamdctl command to display the JSON configuration of the team and
each of its constituent ports:

sudo teamdctl team0 config dump

{
 "device": "team0",
 "link_watch": {
 "name": "ethtool"
 },
 "mcast_rejoin": {
 "count": 1
 },
 "notify_peers": {
 "count": 1
 },
 "ports": {
 "eth1": {
 "prio": -10,
 "sticky": true
 },
 "eth2": {
 "prio": 100
 }
 },
 "runner": {
 "name": "activebackup"
 }
}

For more information, see the teamdctl(8) and teamnl(8) manual pages.

Configuring VLANs With Untagged Data Frames
A VLAN is a group of machines that can communicate as though they're attached to the same
physical network. With a VLAN, you can group systems regardless of their actual physical
location on a LAN. In a VLAN that uses untagged data frames, you create the broadcast
domain by assigning the ports of network switches to the same permanent VLAN ID or PVID
(other than 1, which is the default VLAN). All the ports that you assign with this PVID are in a
single broadcast domain. Broadcasts between devices in the same VLAN aren't visible to other
ports with a different VLAN, even if they exist on the same switch.

You can use the Network Settings editor or the nmcli command to create a VLAN device for
an Ethernet interface.

To create a VLAN device from the command line:

sudo nmcli con add type vlan con-name bond0-pvid10 ifname bond0-pvid10 dev
bond0 id 10

Running the previous command sets up the VLAN device bond0-pvid10 with a PVID of 10 for
the bonded interface bond0. In addition to the regular interface, bond0, which uses the physical

Chapter 2
Configuring VLANs With Untagged Data Frames

2-9

LAN, you now have a VLAN device, bond0-pvid10, which can use untagged frames to access
the virtual LAN.

Note:

You don't need to create virtual interfaces for the component interfaces of a bonded
interface. However, you must set the PVID on each switch port to which they
connect.

You can also use the command to set up a VLAN device for a non bonded interface, for
example:

sudo nmcli con add type vlan con-name en1-pvid5 ifname en1-pvid5 dev en1 id 5

To obtain information about the configured VLAN interfaces, view the files in the /proc/net/
vlan directory.

You can also use the ip command to create VLAN devices. However, such devices don't
persist across system reboots.

For example, you would create a VLAN interface en1.5 for en1 with a PVID of 5 as follows:

sudo ip link add link eth1 name eth1.5 type vlan id 5

For more information, see the ip(8) manual page.

Chapter 2
Configuring VLANs With Untagged Data Frames

2-10

3
Configuring DHCP Services

The Dynamic Host Configuration Protocol (DHCP) enables client systems to obtain network
configuration information from a DHCP server each time they connect to the network. The
DHCP server is configured with a range of IP addresses and other network configuration
parameters that clients need.

When you configure an Oracle Linux system as a DHCP client, the client daemon, dhclient,
contacts the DHCP server to obtain the networking parameters. As DHCP is broadcast-based,
the client must be on the same subnet as either a server or a relay agent. If a client can't be on
the same subnet as the server, a DHCP relay agent can be used to pass DHCP messages
between subnets.

The server provides a lease for the IP address that it assigns to a client. The client can request
specific terms for the lease, such as the duration. You can configure a DHCP server to limit the
terms that it can grant for a lease. If a client remains connected to the network, dhclient
automatically renews the lease before it expires. You can configure the DHCP server to
provide the same IP address to a client, based on the MAC address of its network interface.

The advantages of using DHCP include the following:

• Centralized management of IP addresses

• Ease of adding new clients to a network

• Reuse of IP addresses reducing the total number of IP addresses that are required

• Reconfiguration of the IP address space on the DHCP server without needing to
reconfigure each client

For more information about DHCP, see RFC 2131. Likewise, see the following manual pages:

• dhcpd(8)
• dhcp-options(5)

Setting Up the Server's Network Interfaces
By default, the dhcpd service processes requests on those network interfaces that connect
them to subnets that are defined in the DHCP configuration file.

Suppose that a DHCP server has mutliple interfaces. Through its interface enp0s1, the server
is connected to the same subnet as the clients that the server is configured to serve. In this
case, enp0s1 must be set in the DHCP service to enable the server to monitor and process
incoming requests on that interface.

Before proceeding to either of the following procedures, ensure that you meet the following
requirements:

• You have the proper administrative privileges to configure DHCP.

• You have installed the dhcp-server package.

3-1

https://datatracker.ietf.org/doc/html/rfc2131

If not, install the package with the following command:

sudo dnf install dhcp-server

Configure the network interfaces as follows:

• For IPv4 networks:

1. Copy the /usr/lib/systemd/system/dhcpd.service file to the /etc/
systemd/system/ directory.

sudo cp /usr/lib/systemd/system/dhcpd.service /etc/systemd/system/

2. Edit the /etc/systemd/system/dhcpd.service by locating the line that defines
the ExecStart parameter.

3. Append the interface names on which the dhcpd service should listen.

See the sample entries in bold.

ExecStart=/usr/sbin/dhcpd -f -cf /etc/dhcp/dhcpd.conf -user dhcpd -
group dhcpd --no-pid $DHCPDARGS int1-name int2-name

4. Reload the systemd manager configuration.

sudo systemctl daemon-reload

5. Restart the dhcpd service configuration.

sudo systemctl restart dhcpd.service

Alternatively, you can also type:

sudo systemctl restart dhcpd

• For IPv6 networks:

1. Copy the /usr/lib/systemd/system/dhcpd6.service file to the /etc/
systemd/system/ directory.

sudo cp /usr/lib/systemd/system/dhcpd6.service /etc/systemd/system/

2. Edit the /etc/systemd/system/dhcpd6.service file by locating the line that
defines the ExecStart parameter.

3. Append the names of the interfaces on which the dhcpd6 service should listen.

See the sample entries in bold.

ExecStart=/usr/sbin/dhcpd -f -cf /etc/dhcp/dhcpd6.conf -user dhcpd -
group dhcpd --no-pid $DHCPDARGS int1-name int2-name

4. Reload the systemd manager configuration.

sudo systemctl daemon-reload

Chapter 3
Setting Up the Server's Network Interfaces

3-2

5. Restart the dhcpd service configuration.

sudo systemctl restart dhcpd6.service

Alternatively, you can also type:

sudo systemctl restart dhcpd6

Understanding DHCP Declarations
The way the DHCP provides services to its clients is defined through parameters and
declarations in the /etc/dhcp/dhcpd.conf file for IPv4 networks and /etc/dhcp/
dhcpd6.conf file for IPv6 networks. The file would contain details such as client networks,
address leases, IP address pools, and so on.

Note:

In a newly installed Oracle Linux system, both the dhcpd.conf and dhcpd6.conf files
are empty. If the server is being configured for DHCP for the first time, then you can
use the templates so you can be guided in configuring the files. Type one of the
following commands:

• For IPv4

cp /usr/share/doc/dhcp-server/dhcpd.conf.example /etc/dhcp/
dhcpd.conf

• For IPv6

cp /usr/share/doc/dhcp-server/dhcpd6.conf.example /etc/dhcp/
dhcpd6.conf

Then when you open either file, examples, and explanations are available for
reference.

The information in the configuration file consists of a combination of the following declarations:

• Global Settings

• Subnet Declarations

• Shared-network Declarations

• Host Declarations

• Group Declarations

Global Settings

Global parameters define settings that apply to all networks that are supported or serviced by
the DHCP server.

Consider the following settings that would globally apply through out the entire network:

• Domain name of the company network: example.com.d

Chapter 3
Understanding DHCP Declarations

3-3

• Network's DNS servers: dn1.example.com and dns2.example.com
• Lease time assigned to all clients: 12 hours (43200 seconds)

• Maximum lease time that can be assigned: 24 hours (86400 seconds)

In this case, you would configure the global settings in the configuration file as follows:

option domain-name "example.com";
default-lease-time 43200;
max-lease-time 86400;

authoritative;

The authoritative parameter identifies the server as an official or primary server for DHCP
services. The parameter is typically used in a setup that has multiple DHCP servers. Servers
with the authoritative parameter have priority to process requests over servers without the
parameter.

Subnet Declarations

A subnet declaration provides details about a subnet to which the DHCP server is directly
connected and where the systems in that subnet are also being served as clients.

Consider the following configuration of a DHCP server:

• The server's enp0s1 interface is directly connected to the 192.0.2.0/24 network.

• The systems in the 192.0.2.0/24 network are DHCP clients.

• The topology of this client subnet is as follows:

– Subnet's DNS server: 192.0.2.1.

– Subnet gateway: 192.0.2.1.

– Broadcast address: 192.0.2.255.

– Address range for clients: 192.0.2.10 through 192.0.2.100.

– Maximum lease time for each client: 86,400 seconds (1 day).

In this case, you would enter the following declaration in dhcp.conf:

subnet 192.0.2.0 netmask 255.255.255.0 {
 range 192.0.2.10 192.0.2.100;
 option domain-name-servers 192.0.2.1;
 option routers 192.0.2.1;
 option broadcast-address 192.0.2.255;
 max-lease-time 86400;
}

On an IPv6 network environment, a subnet declaration in the dhcpd6.conf file would resemble
the following example:

subnet6 2001:db8:0:1::/64 {
 range6 2001:db8:0:1::20 2001:db8:0:1::100;
 option dhcp6.name-servers 2001:db8:0:1::1;

Chapter 3
Understanding DHCP Declarations

3-4

 max-lease-time 172800;
}

Shared-network Declarations

You define a shared-network declaration if the DHCP server needs to provide servers to
clients in other subnets that aren't directly connected to the server.

Consider the following example, which expands but slightly differs from the scenario in the
preceding section:

• The DHCP server belongs to the 192.0.2.0/24 network but doesn't provide services to the
systems in this network.

• The server processes requests from clients in the following remote subnets:

– 192.168.5.0/24.

– 198.51.100.0/24.

• The remote subnets share the same DNS server, but each subnet has its own router and
IP address range.

In this case, you would enter the following declarations in dhcp.conf:

shared-network example {

 option domain-name-servers 192.168.2.1;
 ...

 subnet 192.168.5.0 netmask 255.255.255.0 {
 range 192.168.5.10 192.168.5.100;
 option routers 192.168.5.1;
 }

 subnet 198.51.100.0 netmask 255.255.255.0 {
 range 198.51.100.10 198.51.100.100;
 option routers 198.51.100.1;
 }
 ...
}

subnet 192.0.2.0 netmask 255.255.255.0 {
}

In the preceding example, the final subnet declaration refers to the server's own network and is
outside the shared-network scope. The declaration is called an empty declaration because it
defines the server's subnet. Because the server doesn't provide services to this subnet, no
added entries are added, such as lease, address range, DNS information, and so on. Though
empty, the declaration is required, otherwise, the dhcpd service doesn't start.

On an IPv6 network environment, a shared-network declaration in the dhcpd6.conf file would
resemble the following example:

shared-network example {
 option domain-name-servers 2001:db8:0:1::1:1
 ...

Chapter 3
Understanding DHCP Declarations

3-5

 subnet6 2001:db8:0:1::1:0/120 {
 range6 2001:db8:0:1::1:20 2001:db8:0:1::1:100
 }

 subnet6 2001:db8:0:1::2:0/120 {
 range6 2001:db8:0:1::2:20 2001:db8:0:1::2:100
 }
 ...
}

subnet6 2001:db8:0:1::50:0/120 {
}

Host Declarations

You define a host declaration if a client needs to have a static IP address.

Consider the following example of a client printer in the server's 192.0.2.0/24 network. This
time, the server provides DHCP services to the subnet.

• Printer's MAC address: 52:54:00:72:2f:6e.

• Printer's IP address: 192.0.2.130

Important:

A client's fixed IP address must be outside the pool of dynamic IP addresses
distributed to other clients. Otherwise, address conflicts might occur.

In this case, you would enter the following declaration in dhcp.conf:

host printer.example.com {
 hardware ethernet 52:54:00:72:2f:6e;
 fixed-address 192.0.2.130;
}

Systems are identified by the hardware ethernet address, and not the name in the host
declaration. Thus, the host name might change, but the client continues to receive services
through the ethernet address.

On an IPv6 network environment, a host declaration in the dhcpd6.conf file would resemble
the following example:

host server.example.com {
 hardware ethernet 52:54:00:72:2f:6e;
 fixed-address6 2001:db8:0:1::200;
}

Group Declarations

You define a group declaration to apply the same parameters to multiple shared networks,
subnets, and hosts all at the same time.

Consider this example:

• The DHCP server belongs to and serves the subnet 192.0.2.0/24.

Chapter 3
Understanding DHCP Declarations

3-6

• One client requires a fixed address, while the rest of the clients use dynamic IP addresses
from the server.

• All the clients use the same DNS server.

In this case, you would enter the following declaration in dhcp.conf:

group {
 option domain-name-servers 192.0.2.1;

 host server1.example.com {
 hardware ethernet 52:54:00:72:2f:6e;
 fixed-address 192.0.2.130;
 }

 subnet 192.0.2.0 netmask 255.255.255.0 {
 range 192.0.2.10 192.0.2.100;
 option routers 192.0.2.1;
 option broadcast-address 192.0.2.255;
 max-lease-time 86400;
 }
}

On an IPv6 network environment, a group declaration in the dhcpd6.conf file would resemble
the following example:

group {
 option dhcp6.domain-search "example.com";

 host server1.example.com {
 hardware ethernet 52:54:00:72:2f:6e;
 fixed-address 2001:db8:0:1::200;
 }

 host server2.example.com {
 hardware ethernet 52:54:00:1b:f3:cf;
 fixed-address 2001:db8:0:1::ba3;
 }
}

subnet6 2001:db8:0:1::/64 {
 range6 2001:db8:0:1::20 2001:db8:0:1::100;
 option dhcp6.name-servers 2001:db8:0:1::1;
 max-lease-time 172800;
}

Activating the DHCP Services
All the DHCP services are defined in the server's /etc/dhcp/dhcpd.conf or /etc/dhcp/
dhcpd6.conf file. To configure and then activate the configured services, follow these steps:

• For IPv4 networks:

1. Open the /etc/dhcp/dhcpd.conf file.

Chapter 3
Activating the DHCP Services

3-7

2. Add parameters and declarations to the file.
For guidance, see Understanding DHCP Declarations or to the comments and notes in
the /usr/share/doc/dhcp-server/dhcpd.conf.example template.

3. Optionally, set the dhcpd service to start automatically in a server reboot.

sudo systemctl enable dhcpd

4. Start or restart the dhcpd service.

sudo systemctl start dhcpd

• For IPv6 networks:

1. Open the /etc/dhcp/dhcpd6.conf file.

2. Add parameters and declarations to the file.
For guidance, see Understanding DHCP Declarations or to the comments and notes in
the /usr/share/doc/dhcp-server/dhcpd6.conf.example template.

3. Optionally, set the dhcpd6 service to start automatically in case of a server reboot.

sudo systemctl enable dhcpd6

4. Start or restart the dhcpd service.

sudo systemctl start dhcpd6

Recovering From a Corrupted Lease Database
The dhcpd service maintains lease information, such as IP addresses, MAC addresses, and
lease expiry times, in the following flat-file databases:

• For DHCPv4: /var/lib/dhcpd/dhcpd.leases.

• For DHCPv6: /var/lib/dhcpd/dhcpd6.leases.

To prevent the lease database files from becoming too large with stale data, the dhcpd service
periodically regenerates the files through the following mechanism:

1. The service renames the existing lease files:

• /var/lib/dhcpd/dhcpd.leases is renamed to /var/lib/dhcpd/
dhcpd.leases~

• /var/lib/dhcpd/dhcpd6.leases is renamed to /var/lib/dhcpd/
dhcpd6.leases~

2. The service re-creates brand new dhcpd.leases and dhcpd6.leases files.

If a lease database file is corrupted, you need to restore the lease database from the last
known backup of the database.

Typically, the most recent backup of a lease database is the filename.leases~ file.

Chapter 3
Recovering From a Corrupted Lease Database

3-8

Note:

A backup instance is a snapshot taken at a particular point in time, and therefore
might not reflect the latest state of the system.

Ensure that you have the required administrative privileges and complete the following steps:

• For DHCPv4

1. Stop the dhcpd service:

sudo systemctl stop dhcpd

2. Rename the corrupt lease database:

sudo mv /var/lib/dhcpd/dhcpd.leases /var/lib/dhcpd/dhcpd.leases.corrupt

3. Restore the lease database from its corresponding filename.leases~ backup file.

sudo cp -p /var/lib/dhcpd/dhcpd.leases~ /var/lib/dhcpd/dhcpd.leases

4. Start the dhcpd service:

sudo systemctl start dhcpd

• For DHCPv6

1. Stop the dhcpd service:

sudo systemctl stop dhcpd6

2. Rename the corrupt lease database:

sudo mv /var/lib/dhcpd/dhcpd6.leases /var/lib/dhcpd/
dhcpd6.leases.corrupt

3. Restore the lease database from its corresponding filename.leases~ backup file.

sudo cp -p /var/lib/dhcpd/dhcpd6.leases~ /var/lib/dhcpd/dhcpd6.leases

4. Start the dhcpd6 service:

sudo systemctl start dhcpd6

Chapter 3
Recovering From a Corrupted Lease Database

3-9

4
About Network Address Translation

Network Address Translation (NAT) is a process that assigns a public address to a computer or
a group of computers inside a private network by using a different address scheme. The public
IP address masquerades all the requests as though they're going to one server, rather than
several servers. NAT is useful for limiting the number of public IP addresses that an
organization must finance. NAT also provides extra security by hiding the details of internal
networks.

The netfilter kernel subsystem provides the nat table to implement NAT, in addition to its
tables for packet filtering. The kernel consults the nat table whenever it handles a packet that
creates a new incoming or outgoing connection.

By default, IP forwarding is enabled and the system can route packets among configured
network interfaces. To check whether IP forwarding is enabled, use the following command:

sudo sysctl -a | grep ip_forward

In the ensuing output, a value of 1 for net.ipv4.ip_forward indicates that IP forwarding is
enabled.

You can change the status of IP forwarding on the system by using the following command:

sudo sysctl -w net.ipv4.ip_forward=0|1

The new status is displayed when you run the command. To make the change persist across
system reboots, copy the command output line and add it to the /etc/sysctl.conf file.

You can also use the Firewall Configuration GUI (firewall-config) to configure
masquerading and port forwarding. See Oracle Linux 8: Configuring the Firewall for more
information.

4-1

https://docs.oracle.com/en/operating-systems/oracle-linux/8/firewall/

5
Configuring the Name Service

This chapter describes how to use Berkeley Internet Name Domain (BIND) to set up a Domain
Name System (DNS) name server.

About DNS and BIND
DNS is a network-based service that resolves domain names to IP addresses. For a small,
isolated network you can use entries in the /etc/hosts file to provide the name-to-address
mapping. However, most networks that are connected to the Internet use DNS.

DNS is a hierarchical and distributed database.

Consider the fully qualified domain name (FQDN) wiki.us.mydom.com. In this example, the
top-level domain is com, mydom is a subdomain of com, us is a subdomain of mydom, and wiki is
the host name.

Each of these domains are grouped into zones for administrative purposes. A DNS server, or
name server, stores the information that's needed to resolve the component domains inside a
zone. In addition, a zone's DNS server stores pointers to the other DNS servers that are
responsible for resolving each subdomain.

If an external client requests its local name server to resolve a FQDN, such as
wiki.us.mydom.com to an IP address for which that server isn't authoritative, the server queries
a root name server for the address of a name server that's authoritative for the .com domain.
This server then provides the IP address of another name server authoritative for the
mydom.com domain, which in turn provides the IP address of the authoritative name server for
us.mydom.com, and so on.

The querying process ends with the IP address for the FQDN being provided to the external
client that made the request. This process is known as a recursive query, where the local name
server handles each referral from an external name server to another name server on behalf of
the resolver.

Iterative queries rely on the resolver being able to handle the referral from each external name
server to trace the name server that's authoritative for the FQDN. Most resolvers use recursive
queries and so can't use name servers that support only iterative queries.

Most Oracle Linux releases provide the BIND implementation of DNS. The bind package
includes the DNS server daemon (named), tools for working with DNS, such as rndc, and
some configuration files, including the following:

/etc/named.conf
Contains settings for named and lists the location and characteristics of the zone files for the
domain. Zone files are typically stored in /var/named.

/etc/named.rfc1912.zones
Contains several zone sections for resolving local loopback names and addresses.

/var/named/named.ca
Contains a list of the root authoritative DNS servers.

5-1

Types of Name Servers
You can configure several types of name servers by using BIND, including the following:

Master name server
Authoritative for one or more domains, a primary (master) name server maintains its zone
data in several database files, and can transfer this information periodically to any backup
name servers that are also configured in the zone An organization might maintain the
following two primary name servers for a zone: one primary server outside the firewall to
provide restricted information about the zone for publicly accessible hosts and services, and a
hidden or stealth primary server inside the firewall that contains details of internal hosts and
services.

Secondary or backup name server
Acting as a backup to a primary name server, a backup name server maintains a copy of the
zone data, which it periodically refreshes from the primary server's copy.

Stub name server
A primary name server for a zone might also be configured as a stub name server that
maintains information about the primary and backup name servers of child zones.

Caching-only name server
Performs queries on behalf of a client and stores the responses in a cache after returning the
results to the client. This server isn't authoritative for any domains and the information that it
records is limited to the results of queries that it has cached.

Forwarding name server
Forwards all queries to another name server and caches the results, which reduces local
processing, external access, and network traffic.

In practice, a name server can be a combination of several of these types in complex
configurations.

Installing and Configuring a Name Server
By default, you can use the BIND installation to configure a caching-only name server using
the configuration settings that are provided in the /etc/named.conf file and files that it
includes. The following procedure assumes that you either use the default settings or configure
new named configuration and zone files.

To configure a name server:

1. Install the bind package.

sudo dnf install bind

2. If NetworkManager is enabled on the system, edit the /etc/sysconfig/network-
scripts/ifcfg-interface file, and add the following entry:

DNS1=127.0.0.1

Chapter 5
Types of Name Servers

5-2

This line causes NetworkManager to add the following entry to /etc/resolv.conf when
the network service starts:

nameserver 127.0.0.1

This entry points the resolver at the local name server.

3. If you have disabled NetworkManager, edit the /etc/resolv.conf file to include the
nameserver 127.0.0.1 entry.

4. If required, change the named configuration and zone files.

See Configuring the named Daemon more details.

5. Configure the system firewall to accept incoming TCP connections to port 53 and incoming
UDP datagrams on port 53:

sudo firewall-cmd --zone=zone --add-port=53/tcp --add-port=53/udp

sudo firewall-cmd --permanent --zone=zone --add-port=53/tcp --add-
port=53/udp

For more information about securing the firewall, see Oracle Linux 8: Configuring the
Firewall.

6. Restart the NetworkManager service and the named services, and then configure the named
service to start following system reboots:

sudo systemctl restart NetworkManager

sudo systemctl start named

sudo systemctl enable named

Working With DNS Configuration Files
Domains are grouped into zones that are configured through zone files. Zone files store
information about domains in the DNS database. Each zone file contains directives and
resource records. Optional directives apply settings to a zone or instruct a name server to
perform certain tasks. Resource records specify zone parameters and define information about
the systems or hosts in a zone.

Examples of BIND configuration files can be found in the /usr/share/doc/bind/
sample/etc file.

Chapter 5
Working With DNS Configuration Files

5-3

https://docs.oracle.com/en/operating-systems/oracle-linux/8/firewall/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/firewall/

Configuring the named Daemon
The main configuration file for the named service is /etc/named.conf. The following example
comes from the default /etc/named.conf file that's installed with the bind package and
which configures a caching-only name server:

options {
 listen-on port 53 { 127.0.0.1; };
 listen-on-v6 port 53 { ::1; };
 directory "/var/named";
 dump-file "/var/named/data/cache_dump.db";
 statistics-file "/var/named/data/named_stats.txt";
 memstatistics-file "/var/named/data/named_mem_stats.txt";
 secroots-file "/var/named/data/named.secroots";
 recursing-file "/var/named/data/named.recursing";
 allow-query { localnets; };
 recursion yes;

 dnssec-enable yes;
 dnssec-validation yes;

 /* Path to ISC DLV key */
 bindkeys-file "/etc/named.iscdlv.key";

 managed-keys-directory "/var/named/dynamic";

 pid-file "/run/named/named.pid";
 session-keyfile "/run/named/session.key";

 /* https://fedoraproject.org/wiki/Changes/CryptoPolicy */
 include "/etc/crypto-policies/back-ends/bind.config";

};

logging {
 channel default_debug {
 file "data/named.run";
 severity dynamic;
 };
};

zone "." IN {
 type hint;
 file "named.ca";
};

include "/etc/named.rfc1912.zones";
include "/etc/named.root.key";

The options statement defines the global server configuration options and sets defaults for
other statements.

Chapter 5
Working With DNS Configuration Files

5-4

listen-on
Is the port on which named listens for queries.

directory
Specifies the default directory for zone files if a relative pathname is specified.

dump-file
Specifies where named dumps its cache if it crashes.

statistics-file
Specifies the output file for the rndc stats command.

memstatistics-file
Specifies the output file for named memory-usage statistics.

allow-query
Specifies which IP addresses might query the server. localnets specifies all locally attached
networks.

recursion
Specifies whether the name server performs recursive queries.

dnssec-enable
Specifies whether to use secure DNS (DNSSEC).

dnssec-validation
Specifies whether the name server would validate replies from DNSSEC-enabled zones.

dnssec-lookaside
Specifies whether to enable DNSSEC Lookaside Validation (DLV) using the key in /etc/
named.iscdlv.key defined by bindkeys-file.

The logging section activates the logging of messages to /var/named/data/named.run.
The severity parameter controls the logging level, and the dynamic value means that this
level can be controlled by using the rndc trace command.

The zone section specifies the initial set of root servers using a hint zone. This zone specifies
that named consult /var/named/named.ca for the IP addresses of authoritative servers for
the root domain (.).

You can add definitions to the configuration file that are appropriate to the network
environment. The following example defines settings for the service and the top-level
definitions for zones:

include "/etc/rndc.key";

controls {
 inet 127.0.0.1 allow { localhost; } keys { "rndc-key"; }
};

zone "us.mydom.com" {
 type master;
 file "master-data";
 allow-update { key "rndc-key"; };
 notify yes;
};

Chapter 5
Working With DNS Configuration Files

5-5

zone "mydom.com" IN {
 type slave;
 file "sec/slave-data";
 allow-update { key "rndc-key"; };
 masters {10.1.32.1;};
};

zone "2.168.192.in-addr.arpa" IN {
 type master;
 file "reverse-192.168.2";
 allow-update { key “rndc-key”; };
 notify yes;
};

The include statement enables external files to be referenced so that sensitive data such as
key hashes can be placed in a separate file with restricted permissions.

The controls statement defines access information and the security requirements that are
necessary to use the rndc command with the named server:

inet
Specifies which hosts can run rndc to control named. In this example, rndc must be run on
the local host (127.0.0.1).

keys
Specifies the names of the keys that can be used. The example specifies using the key
named rndc-key, which is defined in /etc/rndc.key. Keys authenticate various actions by
named and are the primary method of controlling remote access and administration.

The zone statements define the role of the server in different zones.

The following zone options are used:

type
Specifies that this system is the primary name server for the zone us.mydom.com and a backup
server for mydom.com. 2.168.192.in-addr.arpa is a reverse zone for resolving IP addresses
to host names. See About Resource Records for Reverse-Name Resolution.

file
Specifies the path to the zone file relative to /var/named. The zone file for us.mydom.com is
stored in /var/named/master-data and the transferred zone data for mydom.com is cached
in /var/named/sec/slave-data.

allow-update
Specifies that a shared key must exist on both the primary and backup name servers for a
zone transfer to take place from the primary to the backup. The following is an example record
for a key in the /etc/rndc.key file:

key "rndc-key" {
 algorithm hmac-md5;
 secret "XQX8NmM41+RfbbSdcqOejg==";
};

You can use the rndc-confgen -a command to generate a key file.

Chapter 5
Working With DNS Configuration Files

5-6

notify
Specifies whether to notify the backup name servers when the zone information is updated.

masters
Specifies the primary name server for a backup name server.

For more information, see the named.conf(5) manual page and the BIND documentation
in /usr/share/doc/bind-version/arm.

About Resource Records in Zone Files
A resource record in a zone file contains the following fields, some of which are optional,
depending on the record type:

Name
Domain name or IP address.

TTL (time to live)
The maximum time that a name server caches a record before it checks whether a newer one
is available.

Class
Always IN for the Internet.

Type
Type of record, for example:

A (address)
IPv4 address corresponding to a host.

AAAA (address)
IPv6 address corresponding to a host.

CNAME (canonical name)
Alias name corresponding to a host name.

MX (mail exchange)
Destination for email addressed to the domain.

NS (name server)
Fully qualified domain name of an authoritative name server for a domain.

PTR (pointer)
Host name that corresponds to an IP address for address-to-name lookups (reverse-name
resolution).

SOA (start of authority)
Authoritative information about a zone, such as the primary name server, the email
address of the domain's administrator, and the domain's serial number. All records
following a SOA record relate to the zone that it defines up to the next SOA record.

Data
Information that the record stores, such as an IP address in an A record, or a host name in a
CNAME or PTR record.

Chapter 5
Working With DNS Configuration Files

5-7

The following example shows the contents of a typical zone file such as /var/named/
master-data:

$TTL 86400 ; 1 day
@ IN SOA dns.us.mydom.com. root.us.mydom.com. (
 57 ; serial
 28800 ; refresh (8 hours)
 7200 ; retry (2 hours)
 2419200 ; expire (4 weeks)
 86400 ; minimum (1 day)
)
 IN NS dns.us.mydom.com.

dns IN A 192.168.2.1
us.mydom.com IN A 192.168.2.1
svr01 IN A 192.168.2.2
www IN CNAME svr01
host01 IN A 192.168.2.101
host02 IN A 192.168.2.102
host03 IN A 192.168.2.103
...

A comment on a line is preceded by a semicolon (;).

The $TTL directive defines the default time-to-live value for all resource records in the zone.
Each resource record can define its own time-to-live value, which overrides the global setting.

The SOA record is mandatory and includes the following information:

us.mydom.com
The name of the domain.

dns.us.mydom.com.
The fully qualified domain name of the name server, including a trailing period (.) for the root
domain.

root.us.mydom.com.
The email address of the domain administrator.

serial
A counter that, if incremented, tells named to reload the zone file.

refresh
The time after which a primary name server notifies backup name servers that they should
refresh their database.

retry
If a refresh fails, the time that a backup name server should wait before attempting another
refresh.

expire
The maximum elapsed time that a backup name server has to complete a refresh before its
zone records are no longer considered authoritative and it will stop answering queries.

minimum
The minimum time for which other servers should cache information obtained from this zone.

Chapter 5
Working With DNS Configuration Files

5-8

An NS record declares an authoritative name server for the domain.

Each A record specifies the IP address that corresponds to a host name in the domain.

The CNAME record creates the alias www for svr01.

For more information, see the BIND documentation in /usr/share/doc/bind-version/
arm.

About Resource Records for Reverse-Name Resolution
Forward resolution returns an IP address for a specified domain name. Reverse-name
resolution returns a domain name for a specified IP address. DNS implements reverse-name
resolution by using the special in-addr.arpa and ip6.arpa domains for IPv4 and IPv6.

The characteristics for a zone's in-addr.arpa or ip6.arpa domains are usually defined
in /etc/named.conf, for example:

zone "2.168.192.in-addr.arpa" IN {
 type master;
 file "reverse-192.168.2";
 allow-update { key “rndc-key”; };
 notify yes;
};

The zone's name consists of in-addr.arpa, preceded by the network portion of the IP address
for the domain, with its dotted quads written in reverse order.

If the network doesn't have a prefix length that's a multiple of 8, see RFC 2317 for the format
that you need to use instead.

The PTR records in in-addr.arpa or ip6.arpa domains define host names that correspond to
the host part of the IP address. The following example is take from the /var/named/
reverse-192.168.2 zone file:

$TTL 86400 ;
@ IN SOA dns.us.mydom.com. root.us.mydom.com. (
 57 ;
 28800 ;
 7200 ;
 2419200 ;
 86400 ;
)
 IN NS dns.us.mydom.com.

1 IN PTR dns.us.mydom.com.
1 IN PTR us.mydom.com.
2 IN PTR svr01.us.mydom.com.
101 IN PTR host01.us.mydom.com.
102 IN PTR host02.us.mydom.com.
103 IN PTR host03.us.mydom.com.
...

For more information, see the BIND documentation in /usr/share/doc/bind-version/
arm.

Chapter 5
Working With DNS Configuration Files

5-9

https://datatracker.ietf.org/doc/html/rfc2317

Administering the Name Service
The rndc command enables you to administer the named service. The service is administered
locally. If the service is configured in the controls section of the /etc/named.conf file, then
you can also use the command line to manage named remotely. To prevent unauthorized
access to the service, rndc must be configured to listen on the selected port (by default, port
953), and both named and rndc must have access to the same key. To generate a suitable
key, use the rndc-confgen command:

sudo rndc-confgen -a

The command creates the /etc/rndc.key file.

Check the status of the named service as follows:

sudo rndc status

number of zones: 3
debug level: 0
xfers running: 0
xfers deferred: 0
soa queries in progress: 0
query logging is OFF
recursive clients: 0/1000
tcp clients: 0/100
server is up and running

If you change the named configuration file or zone files, the rndc reload command instructs
named to reload the files:

sudo rndc reload

For more information, see the named(8), rndc(8) and rndc-confgen(8) manual pages.

Performing DNS Lookups
The host utility is recommended for performing DNS lookups. Without any arguments, the
command displays a summary of its command line arguments and options.

For example, look up the IP address for host01:

host host01

Perform a reverse lookup for the domain name that corresponds to an IP address:

sudo host 192.168.2.101

Chapter 5
Administering the Name Service

5-10

Query DNS for the IP address that corresponds to a domain:

sudo host dns.us.mydoc.com

Use the -v and -t options to display verbose information about records of a certain type:

sudo host -v -t MX www.mydom.com

Trying "www.mydom.com"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 49643
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;www.mydom.com. IN MX

;; ANSWER SECTION:
www.mydom.com. 135 IN CNAME www.mydom.com.acme.net.
www.mydom.com.acme.net. 1240 IN CNAME d4077.c.miscacme.net.

;; AUTHORITY SECTION:
c.miscacme.net. 2000 IN SOA m0e.miscacme.net.
hostmaster.misc.com. ...

Received 163 bytes from 10.0.0.1#53 in 40 ms

The -a option, which is equivalent to the -v, -t, and ANY options displays all of the available
records for a zone, for example:

sudo host -a www.us.mydom.com

Trying "www.us.mydom.com"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 40030
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.us.mydom.com. IN ANY

;; ANSWER SECTION:
www.us.mydom.com. 263 IN CNAME www.us.mydom.acme.net.

Received 72 bytes from 10.0.0.1#53 in 32 ms

For more information, see the host(1) manual page.

Chapter 5
Performing DNS Lookups

5-11

6
Configuring Network Time

This chapter describes how to configure a system to use chrony as an implementation of the
Network Time Protocol (NTP) feature, as a replacement for ntp. The chapter also describes
the Precision Time Protocol (PTP) daemons that are used to set the system time.

About the chrony Suite
chrony is a feature that implements NTP to maintain timekeeping accurately on the network. In
Oracle Linux 8, the chrony daemon service replaces ntpd for the management of NTP.

chrony has two components, which are provided in the chrony package:

• chronyd service daemon

• chronyc service utility

For practical exercises in using chrony, see Configure Chrony on Oracle Linux .

About the chronyd Service Daemon
The chronyd service daemon updates the system clock of mobile systems and virtual
machines after a period of suspension or disconnection from a network. The service can also
be used to implement a basic NTP client or NTP server. As an NTP server, chronyd can
synchronize with upper level stratum NTP servers or act as a stratum 1 server using time
signals that are received from the Global Positioning System (GPS) or radio broadcasts such
as DCF77, MSF, or WWVB.

In an Oracle Linux 8 system, this service daemon is enabled by default

Note:

chronyd uses NTP version 3 (RFC 1305), with features that are compatible with NTP
version 4 (RFC 5905). However, chronyd does not support several important features
of NTP version 4, nor does it support the use of PTP.

For more information, see the chrony(1) manual page and files in the /usr/share/doc/
chrony/ directory.

Using the chronyc Service Utility
The chronyc utility is a tool for managing the chronyd service, display information about the
service's operation, or change the service's configuration.

The command operates in two modes:

6-1

https://docs.oracle.com/en/learn/ol-chrony/
https://datatracker.ietf.org/doc/html/rfc1305
https://datatracker.ietf.org/doc/html/rfc5905

• Non interactive mode: In this mode, you use the following syntax:

sudo chronyc subcommand

• Interactive mode: Typing the command by itself activates the interactive mode and displays
the chronyc> prompt. From this prompt you can issue chronyc subcommands.

sudo chronyc

chronyc>

From the prompt, you can issue the different chronyc subcommands as needed. The
following examples show the information that's generated by the sources and sourcestats
subcommands:

chronyc> sources

210 Number of sources = 4
MS Name/IP address Stratum Poll Reach LastRx Last sample
===
====
^+ service1-eth3.debrecen.hp 2 6 37 21 -2117us[-2302us] +/-
50ms
^* ns2.telecom.lt 2 6 37 21 -811us[-997us] +/-
40ms
^+ strato-ssd.vpn0.de 2 6 37 21 +408us[+223us] +/-
78ms
^+ kvm1.websters-computers.c 2 6 37 22 +2139us[+1956us] +/-
54ms

chronyc> sourcestats

210 Number of sources = 4
Name/IP Address NP NR Span Frequency Freq Skew Offset Std
Dev
===
===
service1-eth3.debrecen.hp 5 4 259 -0.394 41.803 -2706us
502us
ns2.telecom.lt 5 4 260 -3.948 61.422 +822us
813us
strato-ssd.vpn0.de 5 3 259 1.609 68.932 -581us
801us
kvm1.websters-computers.c 5 5 258 -0.263 9.586 +2008us
118us
chronyc> tracking
Reference ID : 212.59.0.2 (ns2.telecom.lt)
Stratum : 3
Ref time (UTC) : Tue Sep 30 12:33:16 2014
System time : 0.000354079 seconds slow of NTP time
Last offset : -0.000186183 seconds

Chapter 6
About the chrony Suite

6-2

RMS offset : 0.000186183 seconds
Frequency : 28.734 ppm slow
Residual freq : -0.489 ppm
Skew : 11.013 ppm
Root delay : 0.065965 seconds
Root dispersion : 0.007010 seconds
Update interval : 64.4 seconds
Leap status : Normal

To quit using the interactive mode, type exit.

Note:

Any changes you implement with the chronyc command are effective only until the
next restart of the chronyd daemon. To make the changes permanent, you must
enter these in the /etc/chrony.conf file. See Editing the chronyd Configuration
File.

For more information, see the chronyc(1) manual page and files in the /usr/share/doc/
chrony/ directory.

Configuring the chronyd Service
To configure the chronyd service on a system:

1. Install the chrony package.

sudo dnf install chrony

2. If remote access to the local NTP service is required, configure the system firewall to allow
access to the NTP service in the appropriate zones, for example:

sudo firewall-cmd --zone=zone --add-service=ntp

sudo firewall-cmd --zone=zone --permanent --add-service=ntp

3. Start the chronyd service and configure it to start following a system reboot.

Note that by default, chrony is enabled after installation.

sudo systemctl start chronyd

sudo systemctl enable chronyd

Editing the chronyd Configuration File
In the /etc/chrony.conf file, the default configuration assumes that the system has
network access to public NTP servers with which it can synchronise.

Chapter 6
About the chrony Suite

6-3

The following example configures a system to access three NTP servers:

pool NTP_server_1
pool NTP_server_2
pool NTP_server_3
driftfile /var/lib/chrony/drift
keyfile /etc/chrony.keys
...

To configure chronyd to act as an NTP server for a specified client or subnet, use the allow
directive, as shown in bold in the following example:

pool NTP_server_1
pool NTP_server_2
pool NTP_server_3
allow 192.168.2/24
driftfile /var/lib/chrony/drift
keyfile /etc/chrony.keys
...

To create keys for an authentication mechanism based on public key cryptography, use the
chronyc keygen command.

Note:

Autokey in ntp no longer works in chrony.

If a system has only intermittent access to NTP servers, the following configuration might be
appropriate:

pool NTP_server_1 offline
pool NTP_server_2 offline
pool NTP_server_3 offline
driftfile /var/lib/chrony/drift
keyfile /etc/chrony.keys
...

If you specify the offline keyword, chronyd doesn't poll the NTP servers until it receives
communication that network access is available. You can use the chronyc online and
chronyc offline commands to inform chronyd of the state of network access.

For a more information about the configuration file and its directives, see the chrony.conf(5)
manual page.

Converting From ntp to chrony
The following table shows file, command, and terminology equivalents between ntp and
chrony.

Chapter 6
About the chrony Suite

6-4

ntp chrony

/etc/ntp.conf /etc/chrony.conf
/etc/ntp/keys /etc/chrony.keys
ntpd chronyd
ntpq command chronyc command

ntpd.service chronyd.service
ntp-wait.service chrony-wait.service
ntpdate and sntp utilities chronyd -q and chronyd -t commands

The ntpstat utility which is available in the ntpstat package, now supports chronyd. Thus,
you can still use the utility in Oracle Linux 8. The command generates output that's similar to
when it's used with ntp.

The /usr/share/doc/chrony/ntp2chrony.py script is available to help convert existing
ntp configuration to chrony, for example:

sudo python3 /usr/share/doc/chrony/ntp2chrony.py -b -v

The script supports the conversion of the most common directives in /etc/ntp.conf to
chrony. In the example, the -boption specifies to create backup configuration files before
converting, while the -v option specifies to display verbose messages during the migration
process.

To list the different options that you can use with the script, type the following command:

sudo python3 /usr/share/doc/chrony/ntp2chrony.py --help

About PTP
Use PTP to synchronise system clocks on a LAN more accurately than than NTP. If network
drivers support either hardware or software time stamping, a PTP clock can use the time
stamps in PTP messages to resolve propagation delays across a network. With software time
stamping, PTP synchronises systems to within a few tens of microseconds. With hardware
time stamping, PTP can synchronise systems to within a few tenths of a microsecond. If you
require high-precision time synchronization of systems, use hardware time stamping.

A typical PTP configuration on an enterprise local area network consists of:

• One or more grandmaster clock systems.

A grandmaster clock is typically implemented as specialized hardware that can use high-
accuracy GPS signals or lower-accuracy code division several access (CDMA) signals,
radio clock signals, or NTP as a time reference source. If several grandmaster clocks are
available, the best master clock (BMC) algorithm selects the grandmaster clock based on
the settings of their priority1, clockClass, clockAccuracy, offsetScaledLogVariance,
and priority2 parameters and their unique identifier, in that order.

• Several boundary clock systems.

Each boundary clock is backed up to a grandmaster clock on one subnetwork and relays
PTP messages to one or more added subnetworks. A boundary clock is usually
implemented as a function of a network switch.

Chapter 6
About PTP

6-5

• Several secondary clock systems.

Each secondary clock on a subnetwork is backed up to a boundary clock, which acts as
the master clock for that secondary clock.

For a basic configuration, set up a single grandmaster clock and several secondary clocks on
the same network segment and thus eliminates any need for an intermediate layer of boundary
clocks.

Grandmaster and secondary clock systems that use only one network interface for PTP are
termed ordinary clocks.

Boundary clocks require at least two network interfaces for PTP: one interface acts a
secondary to a grandmaster clock or a higher-level boundary clock; the other interfaces act as
masters to secondary clocks or lower-level boundary clocks.

Synchronization of boundary and secondary clock systems is achieved by sending time
stamps in PTP messages. By default, PTP messages are sent in UDPv4 datagrams. You can
also configure PTP to use UDPv6 datagrams or Ethernet frames as its transport mechanism.

To use PTP on a system, the driver for at least one of the system's network interfaces must
support either software or hardware time stamping. To find out whether the driver for a network
interface supports time stamping, use the ethtool command:

sudo ethtool -T en1

Time stamping parameters for en1:
Capabilities:
 hardware-transmit (SOF_TIMESTAMPING_TX_HARDWARE)
 software-transmit (SOF_TIMESTAMPING_TX_SOFTWARE)
 hardware-receive (SOF_TIMESTAMPING_RX_HARDWARE)
 software-receive (SOF_TIMESTAMPING_RX_SOFTWARE)
 software-system-clock (SOF_TIMESTAMPING_SOFTWARE)
 hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)
...

The output in the example shows that the en1 interface supports both hardware and software
time stamping capabilities.

With software time stamping, ptp4l synchronises the system clock to an external grandmaster
clock.

If hardware time stamping is available, ptp4l can synchronise the PTP hardware clock to an
external grandmaster clock. In this case, you use the phc2sys daemon to synchronise the
system clock with the PTP hardware clock.

Configuring the PTP Service
To configure the PTP service on a system:

1. Install the linuxptp package.

sudo dnf install linuxptp

2. Edit /etc/sysconfig/ptp4l and define the start-up options for the ptp4l daemon.

Grandmaster clocks and secondary clocks require that you define only one interface.

Chapter 6
About PTP

6-6

For example, to use hardware time stamping with interface en1 on a secondary clock:

OPTIONS="-f /etc/ptp4l.conf -i en1 -s"

To use software time stamping instead of hardware time stamping, specify the -S option:

OPTIONS="-f /etc/ptp4l.conf -i en1 -S -s"

Note:

The -s option specifies that the clock operates only as a secondary (slaveOnly
mode). Don't specify this option for a grandmaster clock or a boundary clock.

For a grandmaster clock, omit the -s option, for example:

OPTIONS="-f /etc/ptp4l.conf -i en1"

A boundary clock requires that you define at least two interfaces, for example:

OPTIONS="-f /etc/ptp4l.conf -i en1 -i en2"

You might need to edit the /etc/ptp4l.conf file to customize ptp4l further, for
example:

• For a grandmaster clock, set the value of the priority1 parameter to a value between
0 and 127, where lesser values have greater priority when the BMC algorithm selects
the grandmaster clock. For a configuration that has a single grandmaster clock, a
value of 127 is suggested.

• If you set the value of summary_interval to an integer value N instead of 0, ptp4l
writes summary clock statistics to /var/log/messages every 2N seconds instead of
every second (20 = 1). For example, a value of 10 would correspond to an interval of
210 or 1024 seconds.

• The logging_level parameter controls the amount of logging information that ptp4l
records. The default value of logging_level is 6, which corresponds to LOG_INFO. To
turn off logging, set the value of logging_level to 0. Alternatively, specify the -q
option to ptp4l.

See the ptp4l(8) manual page.

3. Configure the system firewall to accept access by PTP event and general messages to
UDP ports 319 and 320 in the appropriate zone, for example:

sudo firewall-cmd --zone=zone --add-port=319/udp --add-port=320/udp

sudo firewall-cmd --permanent --zone=zone --add-port=319/udp --add-
port=320/udp

Chapter 6
About PTP

6-7

4. Start the ptp4l service and configure it to start following a system reboot.

sudo systemctl start ptp4l

sudo systemctl enable ptp4l

5. To configure phc2sys on a clock system that uses hardware time stamping:

a. Edit the /etc/sysconfig/phc2sys file and define the start-up options for the
phc2sys daemon.

On a boundary clock or secondary clock, synchronise the system clock with the PTP
hardware clock that's associated with the secondary network interface, for example:

OPTIONS="-c CLOCK_REALTIME -s en1 -w"

Note:

The secondary network interface on a boundary clock is the one that it uses
to communicate with the grandmaster clock.

The -w option specifies that phc2sys waits until ptp4l has synchronised the PTP
hardware clock before synchronising the system clock.

On a grandmaster clock, which derives its system time from a reference time source
such as GPS, CDMA, NTP, or a radio time signal, synchronise the network interface's
PTP hardware clock from the system clock, for example:

OPTIONS="-c en1 -s CLOCK_REALTIME -w"

See the phc2sys(8) manual page.

b. Start the phc2sys service and configure it to start following a system reboot.

sudo systemctl start phc2sys

sudo systemctl enable phc2sys

You can use the pmc command to query the status of ptp4l operation. The following example
shows the results of running pmc on a slave clock system that's directly connected to the
grandmaster clock system without any intermediate boundary clocks:

sudo pmc -u -b 0 'GET TIME_STATUS_NP'

sending: GET TIME_STATUS_NP
 080027.fffe.7f327b-0 seq 0 RESPONSE MANAGEMENT TIME_STATUS_NP
 master_offset -98434
 ingress_time 1412169090025854874
 cumulativeScaledRateOffset +1.000000000
 scaledLastGmPhaseChange 0

Chapter 6
About PTP

6-8

 gmTimeBaseIndicator 0
 lastGmPhaseChange 0x0000'0000000000000000.0000
 gmPresent true
 gmIdentity 080027.fffe.d9e453

sudo pmc -u -b 0 'GET CURRENT_DATA_SET'

sending: GET CURRENT_DATA_SET
 080027.fffe.7f327b-0 seq 0 RESPONSE MANAGEMENT CURRENT_DATA_SET
 stepsRemoved 1
 offsetFromMaster 42787.0
 meanPathDelay 289207.0

This output examples include the following useful information:

gmIdentity
The unique identifier of the grandmaster clock, which is based on the MAC address of its
network interface.

gmPresent
Whether an external grandmaster clock is available. This value is displayed as false on the
grandmaster clock itself.

meanPathDelay
An estimate of how many nanoseconds by which synchronization messages are delayed.

offsetFromMaster
The most recent measurement of the time difference in nanoseconds relative to the
grandmaster clock.

stepsRemoved
The number of network steps between this system and the grandmaster clock.

For more information, see the phc2sys(8), pmc(8), and ptp4l(8) manual pages, and IEEE
1588.

Using PTP as a Time Source for NTP
To make the PTP-adjusted system time on an NTP server available to NTP clients, include the
following entries in the /etc/chrony.conf file on the NTP server:

server 127.127.1.0
fudge 127.127.1.0 stratum 0

These entries define the local system clock as the time reference.

Note:

Don't configure any added server lines in the file.

Chapter 6
About PTP

6-9

https://www.nist.gov/el/intelligent-systems-division-73500/ieee-1588
https://www.nist.gov/el/intelligent-systems-division-73500/ieee-1588

7
Configuring Virtual Private Networks

Information about virtual private networks (VPNs) is now contained in a separate
documentation. Go to Oracle® Linux: Configuring Virtual Private Networks.

7-1

https://docs.oracle.com/en/operating-systems/oracle-linux/vpn/

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Configuring the System's Network
	Network Configuration Tools
	Configuring Network Interfaces
	About Network Interface Names
	Using the Network Connection Editor GUI
	Using the Text Based User Interface
	Using the Command Line

	Configuring Network Routing
	Using the Network Connection Editor
	Using the Command Line
	Using the Command Line in Interactive Mode

	Using NetworkManager Connection Profiles
	Creating a keyfile Connection Profile in Offline Mode Using nmcli
	Creating a keyfile Connection Profile Manually
	Renaming Process Differences Between Connection Profile Formats
	Converting Connection Profile Formats From ifcfg to keyfile

	Running Scripts When Network Events Occur

	2 Optimizing Network Servers for High Availability
	Working With Network Bonding
	Configuring Network Bonding
	Using the Command Line
	Using the Network Connections Editor

	Verifying the Network Bond Status

	Working With Network Interface Teaming
	Configuring Network Interface Teaming
	Adding Ports to and Removing Ports from a Team
	Changing the Configuration of a Port in a Team
	Removing a Team
	Displaying Information About Teams

	Configuring VLANs With Untagged Data Frames

	3 Configuring DHCP Services
	Setting Up the Server's Network Interfaces
	Understanding DHCP Declarations
	Activating the DHCP Services
	Recovering From a Corrupted Lease Database

	4 About Network Address Translation
	5 Configuring the Name Service
	About DNS and BIND
	Types of Name Servers
	Installing and Configuring a Name Server
	Working With DNS Configuration Files
	Configuring the named Daemon
	About Resource Records in Zone Files
	About Resource Records for Reverse-Name Resolution

	Administering the Name Service
	Performing DNS Lookups

	6 Configuring Network Time
	About the chrony Suite
	About the chronyd Service Daemon
	Using the chronyc Service Utility
	Configuring the chronyd Service
	Editing the chronyd Configuration File
	Converting From ntp to chrony

	About PTP
	Configuring the PTP Service
	Using PTP as a Time Source for NTP

	7 Configuring Virtual Private Networks

