
Oracle Linux 8
Debugging the Kernel With Drgn and
Corelens

G18177-04
January 2025

Oracle Linux 8 Debugging the Kernel With Drgn and Corelens,

G18177-04

Copyright © 2024, 2025, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 About the drgn and corelens Kernel Debugging Utilities

2 (Optional) Installing DebugInfo Packages

3 Installing drgn

4 Installing drgn-tools

5 Getting Started With drgn

6 drgn Command Reference

7 Using the drgn Library With Python

8 Getting Started With corelens

9 corelens Command Reference

Selecting Modules for corelens Command Output 9-1

iii

Generating Reports With corelens 9-4

iv

Preface

Oracle Linux 8: Debugging the Kernel With Drgn and Corelens describes how to install and
use the drgn and corelens kernel debugging utilities to analyze crash logs and troubleshoot
system problems.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,

v

https://docs.oracle.com/en/operating-systems/oracle-linux/8/drgn/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

1
About the drgn and corelens Kernel Debugging
Utilities

Drgn is a tool and a programming library that can be used to extract debug information from
both the live kernel of the running machine and memory crash dumps from halted systems
(vmcore).

Drgn can be used as part of a root cause analysis to provide extra metrics that aren't already
exposed through existing dashboards and interfaces.

For more information, see https://drgn.readthedocs.io/.

Corelens is provided through a separate drgn-tools package and provides the same
functionality as Drgn, but requires no prior knowledge of the kernel implementation, data
structures, or Python programming.

For more information, see the corelens(1) manual pages.

1-1

https://drgn.readthedocs.io/

2
(Optional) Installing DebugInfo Packages

You can optionally install *-debuginfo packages to add extra DWARF debugging information
in generated core dumps. They're intended for development purposes only, so we recommend
that you only install them in development environments.

Before installing *-debuginfo packages, enable the Oracle Linux 8 debuginfo repository by
creating the /etc/yum.repos.d/debuginfo.repo file with root privileges and the following
contents:

[debuginfo]
name=Oracle Linux 8 Debuginfo Packages
baseurl=https://oss.oracle.com/ol8/debuginfo/
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-oracle
gpgcheck=1
enabled=1

sudo dnf update -y

For more information, see Oracle Linux: Managing Software on Oracle Linux.

1. If you're running Oracle Linux with the Unbreakable Enterprise Kernel (UEK), install the
kernel-uek-debuginfo package by using the dnf command:

sudo dnf install -y kernel-uek-debuginfo-$(uname -r)

If you're running Oracle Linux with the Red Hat Compatible Kernel (RHCK), install the
kernel-debuginfo package instead:

sudo dnf install -y kernel-debuginfo-$(uname -r)

Run the install command each time the kernel is updated through the package manager.
The DebugInfo package is only functional when it matches the running kernel, and it's not
replaced automatically when a newer kernel version is installed on the system.

2. Use the package manager to search for DebugInfo packages to install:

dnf search *-debuginfo

The selected *-debuginfo packages are installed.

2-1

https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/

3
Installing drgn

Install the drgn package on Oracle Linux 8.

Before installing the drgn package, enable the ol8_addons repository:

sudo dnf config-manager --enable ol8_addons

sudo dnf update -y

For more information, see Oracle Linux: Managing Software on Oracle Linux.

1. (Optional) Install relevant DebugInfo packages on the system.

For more information, see (Optional) Installing DebugInfo Packages.

2. Install the drgn package:

sudo dnf install -y drgn

The drgn package is installed.

3-1

https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/

4
Installing drgn-tools

Install the drgn-tools package on Oracle Linux 8.

Before installing the drgn-tools package, enable the ol8_addons repository:

sudo dnf config-manager --enable ol8_addons

sudo dnf update -y

For more information, see Oracle Linux: Managing Software on Oracle Linux.

1. (Optional) Install relevant DebugInfo packages on the system.

For more information, see (Optional) Installing DebugInfo Packages.

2. Install the drgn-tools package:

sudo dnf install -y drgn-tools

The drgn-tools package is installed.

4-1

https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/

5
Getting Started With drgn

Debugging a live running kernel by using the drgn command.

Install the drgn package. For more information, see Installing drgn.

The drgn command can be used to troubleshoot system problems by analyzing the contents of
system images and crash dumps.

1. To debug the running kernel, use the drgn command to analyze the contents of the /
proc/kcore live system image:

drgn

2. Type exit() or press the Ctrl + D keys to exit the Python shell.

3. For more information about how to use the drgn command, use the -h option:

drgn -h

A Python shell was started, provided access to live kernel debugging information, and was
then stopped.

If a matching DebugInfo package isn't installed for the running kernel, you might see an error
message. Drgn can still be used on a production system to debug a kernel dump that was
generated by a separate development system that has DebugInfo packages installed.

Note:

Kernel dumps generated on systems without DebugInfo packages installed can be
debugged by using the corelens command, as that uses Common Type Format
(CTF) debug information when DWARF debug information isn't present. For more
information, see Getting Started With corelens.

5-1

6
drgn Command Reference

This table provides information about the drgn command.

Action Command Description

Start a Python shell to analyze
the contents of the /proc/
kcore live system image.

sudo drgn Provides information for
debugging the running live
kernel.

Start a Python shell to analyze
the contents of a different
dump file for a running kernel
or vmcore crash dump.

sudo drgn -c path/to/
dumpfile

Provides information for
debugging a running kernel or
generated crash dump.

Start a Python shell to analyze
the contents of a dump file and
specify the vmlinux and
module symbols.

sudo drgn -c path/to/
dumpfile -s path/to/
vmlinux

Provides information for
debugging a running kernel, or
generated crash dump, filtered
by relevant kernel modules.

Review further options
provided with the drgn
command.

sudo drgn -h Provides a listing of command
line options for the drgn
command.

Note:

Type exit() or press the Ctrl + D keys to exit the Python shell.

For example, to debug /proc/kcore for a live kernel and specify kernel drivers, run the
following command:

sudo drgn -c /proc/kcore -s /usr/lib/debug/lib/modules/$(uname -r)/vmlinux \
 -s /lib/modules/$(uname -r)/kernel/net/netfilter/xt_comment.ko.xz

To perform the same operation on a vmcore crash dump file:

sudo drgn -c /var/crash/127.0.0.1-2023-06-02-09:33:07/vmcore \
 -s /usr/lib/debug/lib/modules/5.15.0-101.103.2.1.el8uek.x86_64/vmlinux \
 -s /lib/modules/5.15.0-101.103.2.1.el8uek.x86_64/kernel/net/netfilter/
xt_comment.ko.xz

6-1

7
Using the drgn Library With Python

Debug live kernels and vmcore crash dumps in a Python shell, and Python scripts, by importing
the drgn library.

Before you can start using drgn with Python scripts, ensure that Python is correctly installed on
the system. For more information, see Oracle Linux 8: Installing and Managing Python.

If the script runs on Python 3.6, also install the drgn package. For more information, see
Installing drgn.

Note:

To import the drgn library in scripts that run on newer versions of Python 3, enable
the ol8_addons repository, then specify the version in the package name.

For example, you could install the python3.12-drgn package to import the drgn
library in a script that runs on Python 3.12:

sudo dnf config-manager --enable ol8_addons

sudo dnf install python3.12-drgn

If no matching packages are available in the ol8_addons yum repository, then that
Python version might no longer be supported. For more information, see Oracle
Linux: Product Life Cycle Information.

You can optionally run the drgn command with Python 3.12 as the interpreter by
running the following command:

python3.12 -m drgn

Unlike the crash utility, Drgn wasn't originally designed to be a standalone kernel debugging
tool. Drgn is a Python programming library that exposes debugging information for scripting
and review purposes.

1. The prog array variable contains the information about the kernel that you're debugging.
For example, to return the data collected for slab_caches, run the following statements in
the drgn shell:

prog["slab_caches"]

(struct list_head){
 .next = (struct list_head *)0xffff8b831d972260,

7-1

https://docs.oracle.com/en/operating-systems/oracle-linux/8/python/
https://docs.oracle.com/en/operating-systems/oracle-linux/product-lifecycle/
https://docs.oracle.com/en/operating-systems/oracle-linux/product-lifecycle/

 .prev = (struct list_head *)0xffff8b8007c02060,
}

2. Standard python structures can also be used to iterate through debug information:

slab_caches = prog["slab_caches"]

slab_caches.next

*(struct list_head *)0xffff8b831d972260 = {
 .next = (struct list_head *)0xffff8b831d972460,
 .prev = (struct list_head *)slab_caches+0x0 = 0xffffffff836e3da0,
}

3. For more information about the drgn API and script syntax, see https://
drgn.readthedocs.io/. Or, run the following command in the Python shell:

help(drgn)

The Python script loaded an array of kernel debugging information and crash data.

Chapter 7

7-2

https://drgn.readthedocs.io/
https://drgn.readthedocs.io/

8
Getting Started With corelens

Debug a running kernel or vmcore crash dump file by using the corelens command.

Install the drgn-tools package. For more information, see Installing drgn-tools.

The corelens command requires kernel debugging information to function. That can be
provided by installing a kernel DebugInfo package. For more information, see (Optional)
Installing DebugInfo Packages.

Note:

If no DebugInfo packages are installed, for example because the system being
debugged is deployed in a production environment, the corelens command instead
uses the more lightweight Common Type Format (CTF) debugging information if
that's available.

CTF is available if the system is running Oracle Linux 8 with the Unbreakable
Enterprise Kernel (UEK).

The corelens command can be used to troubleshoot system problems by analyzing the
contents of system images and crash dumps.

1. To debug /proc/kcore for a live kernel, run the following command:

sudo corelens /proc/kcore

2. For more information about how to use the corelens command, use the -h option:

corelens -h

A brief summary of the system state is provided as output from the corelens command.

8-1

9
corelens Command Reference

This table provides information about the corelens command.

Action Command Description

Review a summary of the
system state for a running
kernel or vmcore crash dump.

sudo corelens path/to/
dumpfile

Provides information for
debugging the running live
kernel or generated crash
dump.

Run a corelens module to
analyze the contents of a
running kernel or vmcore
crash dump, and then review
the results.

sudo corelens path/to/
dumpfile -M module

Provides information for
debugging a running kernel or
generated crash dump filtered
by module.

Review a list of modules that
can be specified.

corelens -L Provides a listing of module
filters for use with the -M
option.

Create a report based on the
output from the corelens
command.

sudo corelens path/to/
dumpfile -a -o report

Generates a diagnostic report
containing all the debugging
information captured by the
corelens command.

Review further options
provided with the corelens
command.

corelens -h Provides a listing of command
line options for the drgn
command.

For example, to debug /proc/kcore for a live kernel, run the following command:

sudo corelens /proc/kcore

To perform the same operation on a vmcore crash dump file:

sudo corelens /var/crash/127.0.0.1-2024-06-28-09:33:07/vmcore

Selecting Modules for corelens Command Output
Use the -M option to filter the output from corelens commands.

The corelens command can also filter output based on the parts of the system that require
diagnosis by using the -M option. For example, to reproduce the full output for a live kernel,
activate the sys module:

sudo corelens /proc/kcore -M sys

9-1

Similarly, to display a list of I/O requests that are still in progress, activate the inflight-io
module:

sudo corelens /proc/kcore -M inflight-io

More than one module can be specified by reusing the -M option for each module. For
example, to reproduce the full output for a live kernel and all the mounted directories that are
now present, activate the sys and mounts modules:

sudo corelens /proc/kcore -M sys -M mounts

Example output follows:

warning: Running corelens against a live system.
 Data may be inconsistent, or corelens may crash.

====== MODULE sys ======
MODE : Live kernel
DATE : Fri Jul 12 18:18:12 2024
NODENAME : oracle-example-ol8
RELEASE : 5.15.0-206.153.7.el8uek.x86_64
VERSION : #2 SMP Thu May 9 15:52:29 PDT 2024
MACHINE : x86_64
UPTIME : 10 days, 0:35:16
LOAD AVERAGE: 0.12 , 0.04 , 0.01
JIFFIES : 5160783970
MEMORY : 7.47 GiB
TASKS : 275 R:1 D:0 S:184 I:90
PLATFORM : QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.6.6 08/22/2023
X86_HYPER_KVM
CPU VENDOR: GenuineIntel
MODEL NAME: Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz
CPU FAMILY: 6
CPUS : 2
CPUS NUMA0: 0-1
MICROCODE : 0x1
CSTATES : 9

====== MODULE mounts ======
DEVNAME TYPE DIRNAME
------- ------ -------
none rootfs /
sysfs sysfs /sys
proc proc /proc
devtmpfs devtmpfs /dev
securityfs securityfs /sys/kernel/security
tmpfs tmpfs /dev/shm
devpts devpts /dev/pts
tmpfs tmpfs /run
tmpfs tmpfs /sys/fs/cgroup
cgroup cgroup /sys/fs/cgroup/systemd
pstore pstore /sys/fs/pstore
efivarfs efivarfs /sys/firmware/efi/efivars
bpf bpf /sys/fs/bpf

Chapter 9
Selecting Modules for corelens Command Output

9-2

cgroup cgroup /sys/fs/cgroup/freezer
cgroup cgroup /sys/fs/cgroup/rdma
cgroup cgroup /sys/fs/cgroup/blkio
cgroup cgroup /sys/fs/cgroup/hugetlb
cgroup cgroup /sys/fs/cgroup/perf_event
cgroup cgroup /sys/fs/cgroup/memory
cgroup cgroup /sys/fs/cgroup/net_cls,net_prio
cgroup cgroup /sys/fs/cgroup/misc
cgroup cgroup /sys/fs/cgroup/pids
cgroup cgroup /sys/fs/cgroup/cpuset
cgroup cgroup /sys/fs/cgroup/cpu,cpuacct
cgroup cgroup /sys/fs/cgroup/devices
none tracefs /sys/kernel/tracing
configfs configfs /sys/kernel/config
/dev/mapper/ocivolume-root xfs /
rpc_pipefs rpc_pipefs /var/lib/nfs/rpc_pipefs
selinuxfs selinuxfs /sys/fs/selinux
systemd-1 autofs /proc/sys/fs/binfmt_misc
mqueue mqueue /dev/mqueue
hugetlbfs hugetlbfs /dev/hugepages
debugfs debugfs /sys/kernel/debug
/dev/sda2 xfs /boot
/dev/mapper/ocivolume-oled xfs /var/oled
/dev/sda1 vfat /boot/efi
fusectl fusectl /sys/fs/fuse/connections
tmpfs tmpfs /run/user/987
/dev/sdb1 ext4 /mnt
tmpfs tmpfs /run/user/1000

To see a full list of all the modules that can be specified, run the corelens command with the -
L option:

corelens -L

For more information about what each corelens module does, use the -h option after
specifying each of them with the -M option:

corelens -M module -h

For example, to learn more about the dentrycache module that outputs the kernel directory
entry cache, use the following command:

corelens -M dentrycache -h

The following output might be displayed:

usage: dentrycache [-h] [--limit LIMIT] [--negative] [--detailed]

List dentries from the dentry hash table

optional arguments:
 -h, --help show this help message and exit
 --limit LIMIT, -l LIMIT

Chapter 9
Selecting Modules for corelens Command Output

9-3

 list at most <number> dentries, 50 by default
 --negative, -n list negative dentries only, disabled by default
 --detailed, -d include inode, super, file type, refcount

Generating Reports With corelens
Use the provided corelens command options to generate reports for later review.

To generate a report from the corelens command, use the -o option and specify the output
directory for that report. For example, to generate a report for the live kernel and output that
report into a folder called report in the current working directory, use the following command:

sudo corelens /proc/kcore -a -o report

If you don't explicitly specify modules by using the -M option, use the -a option to generate a
report using standard modules, or the -A option to generate the report using detailed modules.

Note:

If you generate a report using every module, the final report might contain warnings
that some modules couldn't be run. This is expected behavior, because some
corelens modules require a core dump or can only function when specific kernel
modules are loaded.

Diagnostic information is stored in a plain-text file for each module that was active when the
corelens command was run. For example, to review the mounted directories that were output
from the mounts module, view the contents of the report/mounts file:

cat report/mounts

Example output follows:

DEVNAME TYPE DIRNAME
------- ------ -------
none rootfs /
proc proc /proc
sysfs sysfs /sys
devtmpfs devtmpfs /dev
securityfs securityfs /sys/kernel/security
tmpfs tmpfs /dev/shm
devpts devpts /dev/pts
tmpfs tmpfs /run
cgroup2 cgroup2 /sys/fs/cgroup
pstore pstore /sys/fs/pstore
efivarfs efivarfs /sys/firmware/efi/efivars
bpf bpf /sys/fs/bpf
configfs configfs /sys/kernel/config
/dev/mapper/ocivolume-root xfs /
rpc_pipefs rpc_pipefs /var/lib/nfs/rpc_pipefs
selinuxfs selinuxfs /sys/fs/selinux

Chapter 9
Generating Reports With corelens

9-4

systemd-1 autofs /proc/sys/fs/binfmt_misc
hugetlbfs hugetlbfs /dev/hugepages
mqueue mqueue /dev/mqueue
debugfs debugfs /sys/kernel/debug
tracefs tracefs /sys/kernel/tracing
fusectl fusectl /sys/fs/fuse/connections
none ramfs /run/credentials/systemd-
sysctl.service
none ramfs /run/credentials/systemd-tmpfiles-
setup-dev.service
/dev/mapper/ocivolume-oled xfs /var/oled
/dev/sda2 xfs /boot
/dev/sda1 vfat /boot/efi
none ramfs /run/credentials/systemd-tmpfiles-
setup.service
tmpfs tmpfs /run/user/0
tmpfs tmpfs /run/user/982
tmpfs tmpfs /run/user/1000

Chapter 9
Generating Reports With corelens

9-5

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About the drgn and corelens Kernel Debugging Utilities
	2 (Optional) Installing DebugInfo Packages
	3 Installing drgn
	4 Installing drgn-tools
	5 Getting Started With drgn
	6 drgn Command Reference
	7 Using the drgn Library With Python
	8 Getting Started With corelens
	9 corelens Command Reference
	Selecting Modules for corelens Command Output
	Generating Reports With corelens

