
Oracle Linux 7
Working With LXC

F32445-04
December 2024

Oracle Linux 7 Working With LXC,

F32445-04

Copyright © 2022, 2024, Oracle and/or its affiliates.

Contents

 Preface

Conventions iv

Documentation Accessibility iv

Access to Oracle Support for Accessibility iv

Diversity and Inclusion v

1 About Linux Containers

About Linux Containers 1-1

Supported Oracle Linux Container Versions 1-3

2 Administering Linux Containers

Configuring Operating System Containers 2-1

Installing and Configuring the Software 2-1

Setting up the File System for the Containers 2-2

Creating and Starting a Container 2-2

About the lxc-oracle Template Script 2-5

About Veth and Macvlan 2-6

Modifying a Container to Use Macvlan 2-8

Modifying a Container to Use a Static IP Address 2-8

Logging in to Containers 2-9

Creating Additional Containers 2-9

Monitoring and Shutting Down Containers 2-10

Starting a Command Inside a Running Container 2-12

Controlling Container Resources 2-13

Configuring ulimit Settings for an Oracle Linux Container 2-13

Configuring Kernel Parameter Settings for Oracle Linux Containers 2-14

Deleting Containers 2-15

Running Application Containers 2-15

iii

Preface

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

Oracle® Linux 7: Working With LXC describes how to use Linux Containers to isolate
applications and entire operating system images from the other processes that are running on
a host system. The version of LXC described here is 1.0.7 or later, which has some significant
enhancements over previous versions.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Preface

iv

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/oracle-linux/7/containers/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

v

1
About Linux Containers

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

This chapter provides an overview of Linux Containers (LXC) and the supported Oracle Linux
container versions.

Information about Linux Containers are also available in the following sources:

• Oracle Cloud Native Environment documentation.

• Oracle Linux: Oracle Container Runtime for Docker User's Guide that describes how to
use the Docker Engine to create application containers.

For more information, see https://wiki.archlinux.org/index.php/Linux_Containers and the LXC
manual pages.

About Linux Containers

Note:

Prior to UEK R3, LXC was a Technology Preview feature that was made available for
testing and evaluation purposes, but was not recommended for production systems.
LXC is a supported feature with UEK R3 and UEK R4.

The LXC feature is a lightweight virtualization mechanism that does not require you to set up a
virtual machine on an emulation of physical hardware. This feature takes the cgroups resource
management facilities as its basis and adds POSIX file capabilities to implement process and
network isolation. You can run a single application within a container (an application container)
whose name space is isolated from the other processes on the system in a similar manner to a
chroot jail. However, the main use of LXC is to allow you to run a complete copy of the Linux
operating system in a container (a system container) without the overhead of running a level-2
hypervisor such as VirtualBox. In fact, the container is sharing the kernel with the host system,
so its processes and file system are completely visible from the host. When you are logged into
the container, you only see its file system and process space. Because the kernel is shared,
you are limited to the modules and drivers that it has loaded.

Typical use cases for Linux Containers are:

• Running Oracle Linux 5, Oracle Linux 6, and Oracle Linux 7 containers in parallel. You can
run an Oracle Linux 5 container on an Oracle Linux 7 system with the UEK R3 or UEKR4

1-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf
https://docs.oracle.com/en/operating-systems/olcne/
https://docs.oracle.com/en/operating-systems/oracle-linux/docker/
https://wiki.archlinux.org/index.php/Linux_Containers

kernel, even though UEK R3 and UEK R4 are not supported for Oracle Linux 5. You can
also run an i386 container on an x86_64 kernel. For more information, see Supported
Oracle Linux Container Versions.

• Running applications that are supported only by Oracle Linux 5 in an Oracle Linux 5
container on an Oracle Linux 7 host. However, incompatibilities might exist in the modules
and drivers that are available.

• Running many copies of application configurations on the same system. An example
configuration would be a LAMP stack, which combines Linux, Apache HTTP server,
MySQL, and Perl, PHP, or Python scripts to provide specialised web services.

• Creating sandbox environments for development and testing.

• Providing user environments whose resources can be tightly controlled, but which do not
require the hardware resources of full virtualization solutions.

• Creating containers where each container appears to have its own IP address. For
example you can use the lxc-sshd template script to create isolated environments for
untrusted users. Each container runs an sshd daemon to handle logins. By bridging a
container's Virtual Ethernet interface to the host's network interface, each container can
appear to have its own IP address on a LAN.

When you use the lxc-start command to start a system container, by default the copy of /
sbin/init (for an Oracle Linux 6 or earlier container) or /usr/lib/systemd/systemd (for an
Oracle Linux 7 container) in the container is started to spawn other processes in the
container's process space. Any system calls or device access are handled by the kernel
running on the host. If you need to run different kernel versions or different operating systems
from the host, use a full virtualization solution such as Oracle VM or Oracle VM VirtualBox
instead of Linux Containers.

For a container to run correctly, ensure that the following steps are completed:

• Disable any init or systemd scripts that load modules to access hardware directly.

• Disable udev and instead create static device nodes in /dev for any hardware that needs to
be accessible from within the container.

• Configure the network interface so that it is bridged to the network interface of the host
system.

LXC provides a number of template scripts in /usr/share/lxc/templates that perform much
of the required configuration of system containers for you. However, it is likely that you will
need to modify the script to allow the container to work correctly as the scripts cannot
anticipate the idiosyncrasies of your system's configuration. You use the lxc-create
command to create a system container by invoking a template script. For example, the lxc-
busybox template script creates a lightweight BusyBox system container.

The example system container in this chapter uses the template script for Oracle Linux (lxc-
oracle). The container is created on a btrfs file system (/container) to take advantage of its
snapshot feature. A btrfs file system allows you to create a subvolume that contains the root
file system (rootfs) of a container, and to quickly create new containers by cloning this
subvolume.

You can use control groups to limit the system resources that are available to applications such
as web servers or databases that are running in the container.

Application containers are not created by using template scripts. Instead, an application
container mounts all or part of the host's root file system to provide access to the binaries and
libraries that the application requires. You use the lxc-execute command to invoke /usr/
sbin/init.lxc (a cut-down version of /sbin/init) in the container. init.lxc mounts any

Chapter 1
About Linux Containers

1-2

required directories such as /proc, /dev/shm, and /dev/mqueue, executes the specified
application program, and then waits for it to finish executing. When the application exits, the
container instance ceases to exist.

Supported Oracle Linux Container Versions
All versions of Oracle Linux 7, running kernel-uek-3.8.13-35.3.1 or later, support the
following container versions:

• Oracle Linux 5.9 or later

• Oracle Linux 6.5 or later

• Oracle Linux 7.0 or later

Note that subsequent versions of Oracle Linux 7 and UEK are tested to support the listed
container versions. Exceptions, if any, are listed in the release notes for the version of Oracle
Linux 7 affected.

Chapter 1
Supported Oracle Linux Container Versions

1-3

2
Administering Linux Containers

WARNING:

Oracle Linux 7 is now in Extended Support. See Oracle Linux Extended Support and
Oracle Open Source Support Policies for more information.

Migrate applications and data to Oracle Linux 8 or Oracle Linux 9 as soon as
possible.

This chapter describes different ways of configuring and customizing Linux Containers
according to your organization's needs and preferences.

Note:

Throughout this documentation, you must run all the commands that are provided on
the host system unless indicated otherwise.

Configuring Operating System Containers
The procedures in the following sections describe how to set up Linux Containers that contain
a copy of the root file system installed from packages on the Oracle Linux yum server.

Installing and Configuring the Software
1. Install the btrfs-progs package.

sudo yum install btrfs-progs
2. Install the lxc and wget packages.

sudo yum install lxc wget

This command installs all of the required packages. The LXC template scripts are installed
in /usr/share/lxc/templates. LXC uses wget to download packages from the Oracle
Linux yum server.

3. Start the LXC network management service, lxc-net, and configure the service to start at
boot time.

sudo systemctl start lxc-net.service
sudo systemctl enable lxc-net.service

LXC includes its own network management service to support network bridging for
containers.

2-1

https://www.oracle.com/a/ocom/docs/linux/oracle-linux-extended-support-ds.pdf
https://www.oracle.com/us/support/library/enterprise-linux-support-policies-069172.pdf

4. If you are going to compile applications that require the LXC header files and libraries,
install the lxc-devel package.

sudo yum install lxc-devel

Setting up the File System for the Containers

Note:

The LXC template scripts assume that containers are created in /container. You
must edit the script if your system's configuration differs from this assumption.

1. Create a btrfs file system on a suitably sized device such as /dev/sdb.

sudo mkfs.btrfs /dev/sdb
2. Mount the /container file system. The /container directory is created automatically when

you install LXC.

sudo mount /dev/sdb /container
3. Add an entry for /container to the /etc/fstab file.

/dev/sdb /container btrfs defaults 0 0
For more information, see About the Btrfs File System in Oracle Linux 7: Managing File
Systems.

Creating and Starting a Container

Note:

The procedure in this section uses the LXC template script for Oracle Linux (lxc-
oracle), which is located in /usr/share/lxc/templates.

An Oracle Linux container requires a minimum of 400 MB of disk space.

1. Create an Oracle Linux 6 container named ol6ctr1 using the lxc-oracle template script.

sudo lxc-create -n ol6ctr1 -B btrfs -t oracle -- --release=6.latest

Host is OracleEverything 7.0
Create configuration file /container/ol6ctr1/config
Yum installing release 6.latest for x86_64
 .
 .
 .
 yum-metadata-parser.x86_64 0:1.1.2-16.el6
 zlib.x86_64 0:1.2.3-29.el6

Complete!
Rebuilding rpm database
Patching container rootfs /container/ol6ctr1/rootfs for Oracle Linux 6.5
Configuring container for Oracle Linux 6.5
Added container user:oracle password:oracle

Chapter 2
Configuring Operating System Containers

2-2

https://docs.oracle.com/en/operating-systems/oracle-linux/7/fsadmin/
https://docs.oracle.com/en/operating-systems/oracle-linux/7/fsadmin/

Added container user:root password:root
Container : /container/ol6ctr1/rootfs
Config : /container/ol6ctr1/config
Network : eth0 (veth) on lxcbr0

Note:

For LXC version 1.0 and later, you must specify the -B btrfs option if you want
to use the snapshot features of btrfs. For more information, see the lxc-
create(1) manual page.

The lxc-create command runs the template script lxc-oracle to create the container
in /container/ol6ctr1 with the btrfs subvolume /container/ol6ctr1/rootfs as its root
file system. The command then uses yum to install the latest available update of Oracle
Linux 6 from the Oracle Linux yum server. It also writes the container's configuration
settings to the file /container/ol6ctr1/config and its fstab file to /container/ol6ctr1/
fstab. The default log file for the container is /container/ol6ctr1/ol6ctr1.log.

You can specify the following template options after the -- option to lxc-create:

-a | --arch=i386|x86_64
Specifies the architecture. The default value is the architecture of the host.

--baseurl=pkg_repo
Specify the file URI of a package repository. You must also use the --arch and --
release options to specify the architecture and the release, for example:

mount -o loop OracleLinux-R7-GA-Everything-x86_64-dvd.iso /mnt
lxc-create -n ol70beta -B btrfs -t oracle -- -R 7.0 -a x86_64 --baseurl=file:///mnt/
Server

-P | --patch=path
Patch the rootfs at the specified path.

--privileged[=rt]
Allows you to adjust the values of certain kernel parameters under the /proc hierarchy.

The container uses a privilege configuration file, which mounts /proc read-only with some
exceptions. See Configuring Kernel Parameter Settings for Oracle Linux Containers.

This option also enables the CAP_SYS_NICE capability, which allows you to set negative
nice values (that is, more favored for scheduling) for processes from within the container.

If you specify the =rt (real-time) modifier, you can configure the
lxc.cgroup.cpu.rt_runtime_us setting in the container's configuration file or when you
start the container. This setting specifies the maximum continuous period in microseconds
for which the container has access to CPU resources from the base period set by the
system-wide value of cpu.rt_period_us. Otherwise, a container uses the system-wide
value of cpu.rt_runtime_us, which might cause it to consume too many CPU resources.
In addition, this modifier ensures that rebooting a container terminates all of its processes
and boots it to a clean state.

Chapter 2
Configuring Operating System Containers

2-3

-R | --release=major.minor
Specifies the major release number and minor update number of the Oracle release to
install. The value of major can be set to 4, 5, 6, or 7. If you specify latest for minor, the
latest available release packages for the major release are installed. If the host is running
Oracle Linux, the default release is the same as the release installed on the host.
Otherwise, the default release is the latest update of Oracle Linux 6.

-r | --rpms=rpm_name
Install the specified RPM in the container.

-t | --templatefs=rootfs
Specifies the path to the root file system of an existing system, container, or Oracle VM
template that you want to copy. Do not specify this option with any other template option.
See Creating Additional Containers.

-u | --url=repo_URL
Specifies a yum repository other than Oracle Public Yum. For example, you might want to
perform the installation from a local yum server. The repository file in configured in /etc/
yum.repos.d in the container's root file system. The default URL is https://
yum.oracle.com.

2. If you want to create additional copies of the container in its initial state, create a snapshot
of the container's root file system, for example:

sudo btrfs subvolume snapshot /container/ol6ctr1/rootfs /container/ol6ctr1/
rootfs_snap

See About the Btrfs File System in Oracle® Linux 7: Managing File Systems and Creating
Additional Containers.

3. Start the container ol6ctr1 as a daemon that writes its diagnostic output to a log file other
than the default log file.

sudo lxc-start -n ol6ctr1 -d -o /container/ol6ctr1_debug.log -l DEBUG

Note:

If you omit the -d option, the container's console opens in the current shell.

The following logging levels are available: FATAL, CRIT, WARN, ERROR, NOTICE,
INFO, and DEBUG. You can set a logging level for all lxc-* commands.

If you run the ps -ef --forest command on the host system and the process tree
below the lxc-start process shows that the /usr/sbin/sshd and /sbin/mingetty
processes have started in the container, you can log in to the container from the host. See
Logging in to Containers.

Chapter 2
Configuring Operating System Containers

2-4

https://docs.oracle.com/en/operating-systems/oracle-linux/7/fsadmin/

About the lxc-oracle Template Script

Note:

If you amend a template script, you alter the configuration files of all containers that
you subsequently create from that script. If you amend the config file for a container,
you alter the configuration of that container and all containers that you subsequently
clone from it.

The lxc-oracle template script defines system settings and resources that are assigned to a
running container, including the following:

• Default passwords for the oracle and root users, which are set to oracle and root
respectively

• Host name (lxc.utsname), which is set to the name of the container

• Number of available terminals (lxc.tty), which is set to 4

• Location of the container's root file system on the host (lxc.rootfs)

• Location of the fstab mount configuration file (lxc.mount)

• All of the system capabilities that are not available to the container (lxc.cap.drop)

• Local network interface configuration (lxc.network)

• All of the allowed cgroup devices (lxc.cgroup.devices.allow)

The template script sets the virtual network type (lxc.network.type) and bridge
(lxc.network.link) to veth and lxcbr0. If you want to use a macvlan bridge or Virtual
Ethernet Port Aggregator that allows external systems to access your container via the
network, you must modify the container's configuration file. See About Veth and Macvlan and
Modifying a Container to Use Macvlan.

To enhance security, you can uncomment lxc.cap.drop capabilities to prevent root in the
container from performing certain actions. For example, dropping the sys_admin capability
prevents root from remounting the container's fstab entries as writable. However, dropping
sys_admin also prevents the container from mounting any file system and disables the
hostname command. By default, the template script drops the following capabilities:
mac_admin, mac_override, setfcap, setpcap, sys_module, sys_nice, sys_pacct, sys_rawio,
and sys_time.

For more information, see the capabilities(7) and lxc.conf(5) manual pages.

When you create a container, the template script writes the container's configuration settings
and mount configuration to /container/name/config and /container/name/fstab, and sets
up the container's root file system under /container/name/rootfs.

Unless you specify to clone an existing root file system, the template script installs the
following packages under rootfs (by default, from the Oracle Linux Yum Server at https://
yum.oracle.com):

• chkconfig: chkconfig utility for maintaining the /etc/rc*.d hierarchy.

• dhclient: DHCP client daemon (dhclient) and dhclient-script.

Chapter 2
Configuring Operating System Containers

2-5

• initscripts: /etc/inittab file and /etc/init.d scripts.

• openssh-server: Open source SSH server daemon, /usr/sbin/sshd.

• oraclelinux-release: Oracle Linux release and information files.

• passwd: passwd utility for setting or changing passwords using PAM.

• policycoreutils: SELinux policy core utilities.

• rootfiles: Basic files required by the root user.

• rsyslog: Enhanced system logging and kernel message trapping daemons.

• vim-minimal: Minimal version of the VIM editor.

• yum: yum utility for installing, updating and managing RPM packages.

The template script edits the system configuration files under rootfs to set up networking in
the container and to disable unnecessary services including volume management (LVM),
device management (udev), the hardware clock, readahead, and the Plymouth boot system.

About Veth and Macvlan
By default, the lxc-oracle template script sets up networking by setting up a veth bridge. In
this mode, a container obtains its IP address from the dnsmasq server that the lxc-net service
runs on the private virtual bridge network (lxcbr0) between the container and the host. The
host allows a container to connect to the rest of the network by using NAT rules in iptables,
but these rules do not allow incoming connections to the container. Both the host and other
containers on the veth bridge have network access to the container via the bridge.

Figure 2-1 illustrates a host system with two containers that are connected via the veth bridge
lxcbr0.

Figure 2-1 Network Configuration of Containers Using a Veth Bridge

If you want to allow network connections from outside the host to be able to connect to the
container, the container needs to have an IP address on the same network as the host. One
way to achieve this configuration is to use a macvlan bridge to create an independent logical
network for the container. This network is effectively an extension of the local network that is

Chapter 2
Configuring Operating System Containers

2-6

connected the host's network interface. External systems can access the container as though it
were an independent system on the network, and the container has network access to other
containers that are configured on the bridge and to external systems. The container can also
obtain its IP address from an external DHCP server on your local network. However, unlike a
veth bridge, the host system does not have network access to the container.

Figure 2-2 illustrates a host system with two containers that are connected via a macvlan
bridge.

Figure 2-2 Network Configuration of Containers Using a Macvlan Bridge

If you do not want containers to be able to see each other on the network, you can configure
the Virtual Ethernet Port Aggregator (VEPA) mode of macvlan. Figure 2-3 illustrates a host
system with two containers that are separately connected to a network by a macvlan VEPA. In
effect, each container is connected directly to the network, but neither container can access the
other container nor the host via the network.

Figure 2-3 Network Configuration of Containers Using a Macvlan VEPA

Chapter 2
Configuring Operating System Containers

2-7

For information about configuring macvlan, see Modifying a Container to Use Macvlan and the
lxc.conf(5) manual page.

Modifying a Container to Use Macvlan
To modify a container so that it uses the bridge or VEPA mode of macvlan, edit /container/
name/config and replace the following lines:

lxc.network.type = veth
lxc.network.link = lxcbr0
lxc.network.flags = up

with these lines for bridge mode:

lxc.network.type = macvlan
lxc.network.macvlan.mode = bridge
lxc.network.flags = up
lxc.network.link = eth0

or these lines for VEPA mode:

lxc.network.type = macvlan
lxc.network.macvlan.mode = vepa
lxc.network.flags = up
lxc.network.link = eth0

In these sample configurations, the setting for lxc.network.link assumes that you want the
container's network interface to be visible on the network that is accessible via the host's eth0
interface.

Modifying a Container to Use a Static IP Address
By default, a container connected by macvlan relies on the DHCP server on your local network
to obtain its IP address. If you want the container to act as a server, you would usually
configure it with a static IP address. You can configure DHCP to serve a static IP address for a
container or you can define the address in the container's config file.

To configure a static IP address that a container does not obtain using DHCP:

1. Edit /container/name/rootfs/etc/sysconfig/network-scripts/ifcfg-iface , where
iface is the name of the network interface, and change the following line:

BOOTPROTO=dhcp

to read:

BOOTPROTO=none
2. Add the following line to the /container/name/config file:

lxc.network.ipv4 = xxx.xxx.xxx.xxx/prefix_length

In the previous example, xxx.xxx.xxx.xxx/prefix_length is the IP address of the
container in CIDR format, for example: 192.168.56.100/24.

Chapter 2
Configuring Operating System Containers

2-8

Note:

The address must not already be in use on the network or potentially be
assignable by a DHCP server to another system.

You might also need to configure the firewall on the host to allow access to a
network service that is provided by a container.

Logging in to Containers
You can use the lxc-console command to log in to a running container.

sudo lxc-console -n name [-t tty_number]

If you do not specify a tty number, you log in to the first available terminal.

For example, to log in to a terminal on ol6ctr1, type:

sudo lxc-console -n ol6ctr1

To exit an lxc-console session, type Ctrl-A followed by Q.

Alternatively, you can use ssh to log in to a container if you install the lxc-0.9.0-2.0.5
package (or later version of this package).

Note:

To be able to log in using lxc-console, the container must be running an /sbin/
mingetty process for the terminal. Similarly, using ssh requires that the container is
running the SSH daemon (/usr/sbin/sshd).

Creating Additional Containers
To clone an existing container, use the lxc-clone command\, as shown in this example:

sudo lxc-clone -o ol6ctr1 -n ol6ctr2

Alternatively, you can use the lxc-create command to create a container by copying the root
file system from an existing system, container, or Oracle VM template. Specify the path of the
root file system as the argument to the --templatefs template option.

sudo lxc-create -n ol6ctr3 -B btrfs -t oracle -- --templatefs=/container/ol6ctr1/
rootfs_snap

This example copies the new container's rootfs from a snapshot of the rootfs that belongs to
container ol6ctr1. The additional container is created in /container/ol6ctr3 and a new
rootfs snapshot is created in /container/ol6ctr3/rootfs.

Chapter 2
Logging in to Containers

2-9

Note:

For LXC version 1.0 and later, you must specify the -B btrfs option if you want to
use the snapshot features of btrfs. For more information, see the lxc-create(1)
manual page.

To change the host name of the container, edit the HOSTNAME settings in /container/
name/rootfs/etc/sysconfig/network and /container/name/rootfs/etc/
sysconfig/network-scripts/ifcfg-iface , where iface is the name of the network
interface, such as eth0.

Monitoring and Shutting Down Containers
To display the containers that are configured, use the lxc-ls command.

sudo lxc-ls

ol6ctr1
ol6ctr2

To display the containers that are running on the host system, specify the --active option.

sudo lxc-ls --active

ol6ctr1

To display the state of a container, use the lxc-info command on the host.

sudo lxc-info -n ol6ctr1

Name: ol6ctr1
State: RUNNING
PID: 5662
IP: 192.168.122.188
CPU use: 1.63 seconds
BlkIO use: 18.95 MiB
Memory use: 11.53 MiB
KMem use: 0 bytes
Link: vethJHU5OA
 TX bytes: 1.42 KiB
 RX bytes: 6.29 KiB
 Total bytes: 7.71 KiB

A container can be in one of the following states: ABORTING, RUNNING, STARTING, STOPPED, or
STOPPING. Although lxc-info might show your container to be in the RUNNING state, you
cannot log in to it unless the /usr/sbin/sshd or /sbin/mingetty processes have started
running in the container. You must allow time for the init or systemd process in the container
to first start networking and the various other services that you have configured.

To view the state of the processes in the container from the host, either run ps -ef --
forest and look for the process tree below the lxc-start process or use the lxc-attach
command to run the ps command in the container.

sudo ps -ef --forest

UID PID PPID C STIME TTY TIME CMD
...

Chapter 2
Monitoring and Shutting Down Containers

2-10

root 3171 1 0 09:57 ? 00:00:00 lxc-start -n ol6ctr1 -d
root 3182 3171 0 09:57 ? 00:00:00 _ /sbin/init
root 3441 3182 0 09:57 ? 00:00:00 _ /sbin/dhclient -H ol6ctr1 ...
root 3464 3182 0 09:57 ? 00:00:00 _ /sbin/rsyslogd ...
root 3493 3182 0 09:57 ? 00:00:00 _ /usr/sbin/sshd
root 3500 3182 0 09:57 pts/5 00:00:00 _ /sbin/mingetty ... /dev/console
root 3504 3182 0 09:57 pts/1 00:00:00 _ /sbin/mingetty ... /dev/tty1
root 3506 3182 0 09:57 pts/2 00:00:00 _ /sbin/mingetty ... /dev/tty2
root 3508 3182 0 09:57 pts/3 00:00:00 _ /sbin/mingetty ... /dev/tty3
root 3510 3182 0 09:57 pts/4 00:00:00 _ /sbin/mingetty ... /dev/tty4
...

sudo lxc-attach -n ol6ctr1 -- /bin/ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.1 19284 1516 ? Ss 04:57 0:00 /sbin/init
root 202 0.0 0.0 9172 588 ? Ss 04:57 0:00 /sbin/dhclient
root 225 0.0 0.1 245096 1332 ? Ssl 04:57 0:00 /sbin/rsyslogd
root 252 0.0 0.1 66660 1192 ? Ss 04:57 0:00 /usr/sbin/sshd
root 259 0.0 0.0 4116 568 lxc/console Ss+ 04:57 0:00 /sbin/mingett
root 263 0.0 0.0 4116 572 lxc/tty1 Ss+ 04:57 0:00 /sbin/mingetty
root 265 0.0 0.0 4116 568 lxc/tty2 Ss+ 04:57 0:00 /sbin/mingetty
root 267 0.0 0.0 4116 572 lxc/tty3 Ss+ 04:57 0:00 /sbin/mingetty
root 269 0.0 0.0 4116 568 lxc/tty4 Ss+ 04:57 0:00 /sbin/mingetty
root 283 0.0 0.1 110240 1144 ? R+ 04:59 0:00 /bin/ps aux

Tip:

If a container appears not to be starting correctly, examining its process tree from the
host will often reveal where the problem might lie.

If you were logged into the container such as ol6ctrl, the output from the ps -ef command
would look similar to the following example:

sudo ps -ef

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 11:54 ? 00:00:00 /sbin/init
root 193 1 0 11:54 ? 00:00:00 /sbin/dhclient -H ol6ctr1 ...
root 216 1 0 11:54 ? 00:00:00 /sbin/rsyslogd -i ...
root 258 1 0 11:54 ? 00:00:00 /usr/sbin/sshd
root 265 1 0 11:54 lxc/console 00:00:00 /sbin/mingetty ... /dev/console
root 271 1 0 11:54 lxc/tty2 00:00:00 /sbin/mingetty ... /dev/tty2
root 273 1 0 11:54 lxc/tty3 00:00:00 /sbin/mingetty ... /dev/tty3
root 275 1 0 11:54 lxc/tty4 00:00:00 /sbin/mingetty ... /dev/tty4
root 297 1 0 11:57 ? 00:00:00 login -- root
root 301 297 0 12:08 lxc/tty1 00:00:00 -bash
root 312 301 0 12:08 lxc/tty1 00:00:00 ps -ef

Note that the process numbers differ from those of the same processes on the host, and that
they all descend from process 1, /sbin/init, in the container.

To suspend or resume the execution of a container, use the lxc-freeze and lxc-unfreeze
commands on the host system.

sudo lxc-freeze -n ol6ctr1
sudo lxc-unfreeze -n ol6ctr1

Chapter 2
Monitoring and Shutting Down Containers

2-11

From the host, you can use the lxc-stop command with the --nokill option to shut down
the container in an orderly manner.

sudo lxc-stop --nokill -n ol6ctr1

Alternatively, you can run a command such as halt while logged in to the ol6ctrl container.

sudo halt

Broadcast message from root@ol6ctr1
 (/dev/tty2) at 22:52 ...

The system is going down for halt NOW!
lxc-console: Input/output error - failed to read

As shown in the example, you are returned to the shell prompt on the host.

To shut down a container by terminating its processes immediately, use lxc-stop with the -k
option.

sudo lxc-stop -k -n ol6ctr1

If you are debugging the operation of a container, this is the quickest method as you would
usually destroy the container and create a new version after modifying the template script.

To monitor the state of a container, use the lxc-monitor command.

sudo lxc-monitor -n ol6ctr1

'ol6ctr1' changed state to [STARTING]
'ol6ctr1' changed state to [RUNNING]
'ol6ctr1' changed state to [STOPPING]
'ol6ctr1' changed state to [STOPPED]

To wait for a container to change to a specified state, use the lxc-wait command.

sudo lxc-wait -n $CTR -s ABORTING && lxc-wait -n $CTR -s STOPPED && echo "Container $CTR
terminated with an error."

Starting a Command Inside a Running Container

Note:

The lxc-attach command is supported by UEK R3 with the lxc-0.9.0-2.0.4
package or later.

From the host system, you can use lxc-attach to execute an arbitrary command inside a
container that is already running, for example:

sudo lxc-attach -n ol6ctr1 -- /bin/ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.1 19284 1516 ? Ss 04:57 0:00 /sbin/init
root 202 0.0 0.0 9172 588 ? Ss 04:57 0:00 /sbin/dhclient
root 225 0.0 0.1 245096 1332 ? Ssl 04:57 0:00 /sbin/rsyslogd
root 252 0.0 0.1 66660 1192 ? Ss 04:57 0:00 /usr/sbin/sshd
root 259 0.0 0.0 4116 568 lxc/console Ss+ 04:57 0:00 /sbin/mingett
root 263 0.0 0.0 4116 572 lxc/tty1 Ss+ 04:57 0:00 /sbin/mingetty

Chapter 2
Starting a Command Inside a Running Container

2-12

root 265 0.0 0.0 4116 568 lxc/tty2 Ss+ 04:57 0:00 /sbin/mingetty
root 267 0.0 0.0 4116 572 lxc/tty3 Ss+ 04:57 0:00 /sbin/mingetty
root 269 0.0 0.0 4116 568 lxc/tty4 Ss+ 04:57 0:00 /sbin/mingetty
root 283 0.0 0.1 110240 1144 ? R+ 04:59 0:00 /bin/ps aux

For more information, see the lxc-attach(1) manual page.

Controlling Container Resources
Linux containers use cgroups in their implementation, and you can use the lxc-cgroup
command to control the access that a container has to system resources relative to other
containers. For example, to display the CPU cores to which a container can run on, enter the
following command:

Note:

Run the commands in this section from the host system.

sudo lxc-cgroup -n ol6ctr1 cpuset.cpus

0-7

To restrict a container to cores 0 and 1, you would enter a command such as the following:

sudo lxc-cgroup -n ol6ctr1 cpuset.cpus 0,1

To change a container's share of CPU time and block I/O access, you would enter:

sudo lxc-cgroup -n ol6ctr2 cpu.shares 256
sudo lxc-cgroup -n ol6ctr2 blkio.weight 500

Limit a container to 256 MB of memory when the system detects memory contention or low
memory; otherwise, set a hard limit of 512 MB:

sudo lxc-cgroup -n ol6ctr2 memory.soft_limit_in_bytes 268435456
sudo lxc-cgroup -n ol6ctr2 memory.limit_in_bytes 53687091

To make the changes to a container's configuration permanent, add the settings to the file /
container/name/config, for example:

Permanently tweaked resource settings
lxc.cgroup.cpu.shares=256
lxc.cgroup.blkio.weight=500

For more information about the resources that can be controlled, see the Linux Kernel
documentation at https://www.kernel.org/doc/html/latest/.

Configuring ulimit Settings for an Oracle Linux Container
A container's ulimit setting honors the values of ulimit settings such as memlock and nofile
in the container's version of /etc/security/limits.conf/ provided that these values are
lower than or equal to the values on the host system.

Chapter 2
Controlling Container Resources

2-13

https://www.kernel.org/doc/html/latest/

The values of memlock and nofile determine the maximum amount of address space in
kilobytes that can be locked into memory by a user process and the maximum number of file
descriptors that a user process can have open at the same time.

If you require a higher ulimit value for a container, increase the value of the settings in /etc/
security/limits.conf on the host, for example:

#<domain> <type> <item> <value>
* soft memlock 1048576
* hard memlock 2097152
* soft nofile 5120
* hard nofile 10240

A process can use the ulimit built-in shell command or the setrlimit() system call to raise
the current limit for a shell above the soft limit. However, the new value cannot exceed the hard
limit unless the process is owned by root.

You can use ulimit to set or display the current soft and hard values on the host or from
inside the container.

echo "host: nofile = $(ulimit -n)"

host: nofile = 1024

echo "host: nofile = $(ulimit -H -n)"

host: nofile = 4096

sudo ulimit -n 2048
echo "host: nofile = $(ulimit -n)"

host: nofile = 2048

sudo lxc-attach -n ol6ctr1 -- echo "container: nofile = $(ulimit -n)"

container: nofile = 1024

Note:

Log out and log in again or, if possible, reboot the host before starting the container
in a shell that uses the new soft and hard values for ulimit.

Configuring Kernel Parameter Settings for Oracle Linux
Containers

If you specify the --privileged option with the lxc-oracle template script, you can adjust
the values of certain kernel parameters for a container under the /proc hierarchy.

The container mounts /proc read-only with the following exceptions, which are writable:

• /proc/sys/kernel/msgmax
• /proc/sys/kernel/msgmnb
• /proc/sys/kernel/msgmni

Chapter 2
Configuring Kernel Parameter Settings for Oracle Linux Containers

2-14

• /proc/sys/kernel/sem
• /proc/sys/kernel/shmall
• /proc/sys/kernel/shmmax
• /proc/sys/kernel/shmmni
• /proc/sys/net/ipv4/conf/default/accept_source_route
• /proc/sys/net/ipv4/conf/default/rp_filter
• /proc/sys/net/ipv4/ip_forward
Each of these parameters can have a different value than that configured for the host system
and for other containers running on the host system. The default value is derived from the
template when you create the container. Oracle recommends that you change a setting only if
an application requires a value other than the default value.

Note:

Prior to UEK R3 QU6, the following host-only parameters were not visible within the
container due to kernel limitations:

• /proc/sys/net/core/rmem_default
• /proc/sys/net/core/rmem_max
• /proc/sys/net/core/wmem_default
• /proc/sys/net/core/wmem_max
• /proc/sys/net/ipv4/ip_local_port_range
• /proc/sys/net/ipv4/tcp_syncookies
With UEK R3 QU6 and later, these parameters are read-only within the container to
allow Oracle Database and other applications to be installed. You can change the
values of these parameters only from the host. Any changes that you make to host-
only parameters apply to all containers on the host.

Deleting Containers
To delete a container and its snapshot, use the lxc-destroy command on the host system
as shown in the following example.

sudo lxc-destroy -n ol6ctr2

Delete subvolume '/container/ol6ctr2/rootfs'

This command also deletes the rootfs subvolume.

Running Application Containers
You can use the lxc-execute command to create a temporary application container in which
you can run a command that is effectively isolated from the rest of the system. For example,
the following command creates an application container named guest that runs sleep for 100
seconds.

Chapter 2
Deleting Containers

2-15

sudo lxc-execute -n guest -- sleep 100

While the container is active, you can monitor it by running commands such as lxc-ls --
active and lxc-info -n guest from another window.

sudo lxc-ls --active

sudo lxc-ls --active

guest

sudo lxc-info -n guest

Name: guest
State: RUNNING
PID: 11220
CPU use: 0.02 seconds
BlkIO use: 0 bytes
Memory use: 544.00 KiB
KMem use: 0 bytes

If you need to customize an application container, you can use a configuration file. For
example, you might want to change the container's network configuration or the system
directories that it mounts.

The following example shows settings from a sample configuration file where the rootfs is
mostly not shared except for mount entries to ensure that init.lxc and certain library and
binary directory paths are available.

lxc.utsname = guest
lxc.tty = 1
lxc.pts = 1
lxc.rootfs = /tmp/guest/rootfs
lxc.mount.entry=/usr/lib usr/lib none ro,bind 0 0
lxc.mount.entry=/usr/lib64 usr/lib64 none ro,bind 0 0
lxc.mount.entry=/usr/bin usr/bin none ro,bind 0 0
lxc.mount.entry=/usr/sbin usr/sbin none ro,bind 0 0
lxc.cgroup.cpuset.cpus=1

The mount entry for /usr/sbin is required so that the container can access /usr/sbin/
init.lxc on the host system.

In practice, you should limit the host system directories that an application container mounts to
only those directories that the container needs to run the application.

Note:

To avoid potential conflict with system containers, do not use the /container
directory for application containers.

You must also configure the required directories and symbolic links under the rootfs directory.

sudo TMPDIR=/tmp/guest/rootfs
sudo mkdir -p $TMPDIR/usr/lib $TMPDIR/usr/lib64 $TMPDIR/usr/bin $TMPDIR/usr/sbin
\$TMPDIR/dev/pts $TMPDIR/dev/shm $TMPDIR/proc
sudo ln -s $TMPDIR/usr/lib $TMPDIR/lib
sudo ln -s $TMPDIR/usr/lib64 $TMPDIR/lib64

Chapter 2
Running Application Containers

2-16

sudo ln -s $TMPDIR/usr/bin $TMPDIR/bin
sudo ln -s $TMPDIR/usr/sbin $TMPDIR/sbin

In this example, the directories include /dev/pts, /dev/shm, and /proc in addition to the mount
point entries defined in the configuration file.

You can then use the -f option to specify the configuration file (config) to lxc-execute:

sudo lxc-execute -n guest -f config /usr/bin/bash

At the bash prompt, type the following series of commands:

ps -ef

UID PID PPID C STIME TTY TIME CMD
0 1 0 0 14:17 ? 00:00:00 /usr/sbin/init.lxc -- /usr/bin/bash
0 4 1 0 14:17 ? 00:00:00 /usr/bin/bash
0 5 4 0 14:17 ? 00:00:00 ps -ef

mount

/dev/sda3 on / type btrfs (rw,relatime,seclabel,space_cache)
/dev/sda3 on /usr/lib type btrfs (ro,relatime,seclabel,space_cache)
/dev/sda3 on /usr/lib64 type btrfs (ro,relatime,seclabel,space_cache)
/dev/sda3 on /usr/bin type btrfs (ro,relatime,seclabel,space_cache)
/dev/sda3 on /usr/sbin type btrfs (ro,relatime,seclabel,space_cache)
devpts on /dev/pts type devpts (rw,relatime,seclabel,gid=5,mode=620,ptmxmode=666)
proc on /proc type proc (rw,relatime)
shmfs on /dev/shm type tmpfs (rw,relatime,seclabel)
mqueue on /dev/mqueue type mqueue (rw,relatime,seclabel)

ls -l /

total 16
lrwxrwxrwx. 1 0 0 7 May 21 14:03 bin -> usr/bin
drwxr-xr-x. 1 0 0 52 May 21 14:27 dev
lrwxrwxrwx. 1 0 0 7 May 21 14:03 lib -> usr/lib
lrwxrwxrwx. 1 0 0 9 May 21 14:27 lib64 -> usr/lib64
dr-xr-xr-x. 230 0 0 0 May 21 14:27 proc
lrwxrwxrwx. 1 0 0 8 May 21 14:03 sbin -> usr/sbin
drwxr-xr-x. 1 0 0 30 May 21 12:58 usr

touch /bin/foo

touch: cannot touch '/bin/foo': Read-only file system

echo $?

1

In this example, running the ps command reveals that bash runs as a child of init.lxc.
mount shows the individual directories that the container mounts read-only, such as /usr/lib,
and ls -l / displays the symbolic links that you set up in rootfs.

Attempting to write to the read-only /bin file system results in an error. If you were to run the
same lxc-execute command without specifying the configuration file, it would make the
entire root file system of the host available to the container in read/write mode.

As for system containers, you can set cgroup entries in the configuration file and use the lxc-
cgroup command to control the system resources to which an application container has
access.

Chapter 2
Running Application Containers

2-17

Note:

lxc-execute is intended to run application containers that share the host's root file
system, and not to run system containers that you create using lxc-create. Use
lxc-start to run system containers.

For more information, see the lxc-execute(1) and lxc.conf(5) manual pages.

Chapter 2
Running Application Containers

2-18

	Contents
	Preface
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About Linux Containers
	About Linux Containers
	Supported Oracle Linux Container Versions

	2 Administering Linux Containers
	Configuring Operating System Containers
	Installing and Configuring the Software
	Setting up the File System for the Containers
	Creating and Starting a Container
	About the lxc-oracle Template Script
	About Veth and Macvlan
	Modifying a Container to Use Macvlan
	Modifying a Container to Use a Static IP Address

	Logging in to Containers
	Creating Additional Containers
	Monitoring and Shutting Down Containers
	Starting a Command Inside a Running Container
	Controlling Container Resources
	Configuring ulimit Settings for an Oracle Linux Container
	Configuring Kernel Parameter Settings for Oracle Linux Containers
	Deleting Containers
	Running Application Containers

