
Oracle Linux 10
Managing System Devices With udev

G14598-01
June 2025

Oracle Linux 10 Managing System Devices With udev,

G14598-01

Copyright © 2025, Oracle and/or its affiliates.

Contents

 Preface

Documentation License iv

Conventions iv

Documentation Accessibility iv

Access to Oracle Support for Accessibility iv

Diversity and Inclusion iv

1 About the udev Device Manager

About Device Files 1-1

2 Querying udev

Prefixes for udevadm Information 2-1

View All Information for a Device 2-1

Limiting Device Information by Query Type 2-2

View Attributes for a Device and Its Parent Devices 2-4

3 Working With udev Rules

Assignment and Comparison Operators 3-2

Pattern-Matching Characters 3-2

Common Match Keys 3-2

Common Assignment Keys 3-3

String Substitutions 3-5

4 Customizing udev Rules

iii

Preface

Oracle Linux 10: Managing Devices with Udev describes how the udev device manager
dynamically creates or removes device node files according to rules. Instructions are provided
to help you query udev and create changes to udev rules, as required.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also

Preface

iv

https://docs.oracle.com/en/operating-systems/oracle-linux/10/udev/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

v

1
About the udev Device Manager

The udev device manager runs as a systemd service to help provide software with predictable
and managed access to system devices exposed by the kernel. Typically. udev manages the
permissions of device nodes, creates symbolic links in the /dev/ directory to make device
names more predictable and easier to identify, or renames network interfaces.

The udev device manager dynamically creates or removes device node files at boot time.
When creating a device node, udev reads the device's /sys directory for attributes such as the
label, serial number, and bus device number.

udev can use persistent device names to guarantee consistent naming of devices across
reboots, regardless of their order of discovery. Persistent device names are especially
important when using external storage devices.

udev also handles device driver events that are triggered by the kernel and uses the rules
defined in its configuration to trigger particular actions. For example, if a USB storage device is
connected to the system, the kernel notifies udev and udev notifies the appropriate handler so
that the device can be mounted. Also, if a network cable is connected to a network interface
card, the kernel notifies udev of the state change and udev notifies NetworkManager so that
the appropriate action can take place to connect to the network.

The configuration file for udev is /etc/udev/udev.conf, in which you can define the
udev_log logging priority, which can be set to err, info and debug. Note that the default value
is err. Further configuration of rules used by udev are handled in individual rules files in /etc/
udev/rules.d/.

For more information, see the udev(7) manual page.

udev is a component of systemd, also see Oracle Linux 10: System Management with
systemd.

For more information about the kernel virtual file systems and device driver modules, see .

About Device Files
The /dev directory contains device files or device nodes that provide access to peripheral
devices such as hard disks, to resources on peripheral devices such as disk partitions, and
pseudo devices such as a random number generator.

The /dev directory has several subdirectory hierarchies, each of which holds device files that
relate to a certain type of device. However, the contents of these subdirectories are
implemented as symbolic links to corresponding files in /dev. Thus, the files can be accessed
either through the linked file in /dev or the corresponding file in the subdirectory.

1-1

https://docs.oracle.com/en/operating-systems/oracle-linux/10/systemd/
https://docs.oracle.com/en/operating-systems/oracle-linux/10/systemd/

Using the ls -l /dev command lists files, some of which are flagged as being either type b
(for block) or type c (for character). These devices have an associated pair of numbers that
identify the device to the system.

ls -l /dev

total 0
crw-r--r--. 1 root root 10, 235 Aug 20 08:36 autofs
drwxr-xr-x. 2 root root 240 Sep 20 07:37 block
drwxr-xr-x. 2 root root 100 Aug 20 08:36 bsg
drwxr-xr-x. 3 root root 60 Nov 4 2019 bus
lrwxrwxrwx. 1 root root 3 Aug 20 08:36 cdrom -> sr0
drwxr-xr-x. 2 root root 2720 Sep 20 07:37 char
crw-------. 1 root root 5, 1 Aug 20 08:36 console
lrwxrwxrwx. 1 root root 11 Aug 20 08:36 core -> /proc/kcore
drwxr-xr-x. 3 root root 60 Nov 4 2019 cpu
crw-------. 1 root root 10, 62 Aug 20 08:36 cpu_dma_latency
drwxr-xr-x. 7 root root 140 Aug 20 08:36 disk
brw-rw----. 1 root disk 253, 0 Aug 20 08:36 dm-0
brw-rw----. 1 root disk 253, 1 Aug 20 08:36 dm-1
brw-rw----. 1 root disk 253, 2 Aug 20 08:36 dm-2
lrwxrwxrwx. 1 root root 13 Aug 20 08:36 fd -> /proc/self/fd
crw-rw-rw-. 1 root root 1, 7 Aug 20 08:36 full
crw-rw-rw-. 1 root root 10, 229 Aug 20 08:36 fuse
crw-------. 1 root root 10, 228 Aug 20 08:36 hpet
drwxr-xr-x. 2 root root 0 Aug 20 08:36 hugepages
crw-------. 1 root root 10, 183 Aug 20 08:36 hwrng
lrwxrwxrwx. 1 root root 12 Aug 20 08:36 initctl -> /run/initctl
drwxr-xr-x. 3 root root 220 Aug 20 08:36 input
crw-r--r--. 1 root root 1, 11 Aug 20 08:36 kmsg
lrwxrwxrwx. 1 root root 28 Aug 20 08:36 log -> /run/systemd/journal/
dev-log
brw-rw----. 1 root disk 7, 0 Sep 23 01:28 loop0
crw-rw----. 1 root disk 10, 237 Sep 20 07:37 loop-control
drwxr-xr-x. 2 root root 120 Aug 20 08:36 mapper
crw-------. 1 root root 10, 227 Aug 20 08:36 mcelog
crw-r-----. 1 root kmem 1, 1 Aug 20 08:36 mem
crw-------. 1 root root 10, 59 Aug 20 08:36 memory_bandwidth
drwxrwxrwt. 2 root root 40 Nov 4 2019 mqueue
drwxr-xr-x. 2 root root 60 Aug 20 08:36 net
crw-------. 1 root root 10, 61 Aug 20 08:36 network_latency
crw-------. 1 root root 10, 60 Aug 20 08:36 network_throughput
crw-rw-rw-. 1 root root 1, 3 Aug 20 08:36 null
crw-------. 1 root root 10, 144 Aug 20 08:36 nvram
drwxr-xr-x. 2 root root 100 Aug 20 08:36 ol_ca-virtdoc-oltest1
crw-r-----. 1 root kmem 1, 4 Aug 20 08:36 port
crw-------. 1 root root 108, 0 Aug 20 08:36 ppp
crw-rw-rw-. 1 root tty 5, 2 Oct 7 08:10 ptmx
drwxr-xr-x. 2 root root 0 Aug 20 08:36 pts
crw-rw-rw-. 1 root root 1, 8 Aug 20 08:36 random
drwxr-xr-x. 2 root root 60 Nov 4 2019 raw
lrwxrwxrwx. 1 root root 4 Aug 20 08:36 rtc -> rtc0
crw-------. 1 root root 251, 0 Aug 20 08:36 rtc0
brw-rw----. 1 root disk 8, 0 Aug 20 08:36 sda
brw-rw----. 1 root disk 8, 1 Aug 20 08:36 sda1

Chapter 1
About Device Files

1-2

brw-rw----. 1 root disk 8, 2 Aug 20 08:36 sda2
brw-rw----. 1 root disk 8, 16 Aug 20 08:36 sdb
brw-rw----. 1 root disk 8, 17 Aug 20 08:36 sdb1
crw-rw----. 1 root cdrom 21, 0 Aug 20 08:36 sg0

Block Devices

Block devices enable random access to data, seeking media for data, and typically buffers data
while data is being written or read. Examples of block devices include hard disks, CD-ROM
drives, flash memory, and other addressable memory devices.

Character Devices

Character devices enable the streaming of data to or from a device. The data isn't typically
buffered nor is random access granted to data on a device. The kernel writes data to or reads
data from a character device 1 byte at a time. Examples of character devices include
keyboards, mice, terminals, pseudo terminals, and tape drives. tty0 and tty1 are character
device files that correspond to terminal devices so users can log in from serial terminals or
terminal emulators.

Pseudo-Terminal Character Devices

Pseudo terminals secondary devices emulate real terminal devices to interact with software.
For example, a user might log in to a terminal device such as /dev/tty1, which then uses the
pseudo terminal primary device, /dev/pts/ptmx, to interact with an underlying pseudo
terminal device. The character device files for pseudo terminal secondary and primary devices
are in the /dev/pts directory, as shown in the following example:

ls -l /dev/pts

total 0
crw--w----. 1 guest tty 136, 0 Mar 17 10:11 0
crw--w----. 1 guest tty 136, 1 Mar 17 10:53 1
crw--w----. 1 guest tty 136, 2 Mar 17 10:11 2
c---------. 1 root root 5, 2 Mar 17 08:16 ptmx

Some device entries, such as stdin for the standard input, are symbolically linked through the
self subdirectory of the proc file system. The pseudo-terminal device file to which they point
depends on the context of the process.

ls -l /proc/self/fd/[012]

lrwx------. 1 root root 64 Oct 7 08:23 /proc/self/fd/0 -> /dev/pts/0
lrwx------. 1 root root 64 Oct 7 08:23 /proc/self/fd/1 -> /dev/pts/0
lrwx------. 1 root root 64 Oct 7 08:23 /proc/self/fd/2 -> /dev/pts/0

null, random, urandom, and zero Character Devices

Character devices, such as null, random, urandom, and zero are examples of pseudo devices
that provide access to virtual functionality implemented in software rather than to physical
hardware.

Chapter 1
About Device Files

1-3

/dev/null is a data sink. Data that you write to /dev/null effectively disappears but the
write operation succeeds. Reading from /dev/null returns EOF (end-of-file).

/dev/zero is a data source of an unlimited number of 0-value bytes.

/dev/random and /dev/urandom are data sources of streams of pseudo random bytes. To
maintain high-entropy output, /dev/random blocks if its entropy pool doesn't contain sufficient
bits of noise. /dev/urandom doesn't block and, therefore, the entropy of its output might not
be as consistently high as that of /dev/random. However, neither /dev/random nor /dev/
urandom are considered to be random enough for the purposes of secure cryptography such
as military-grade encryption.

You can find out the size of the entropy pool and the entropy value for /dev/random from
virtual files under /proc/sys/kernel/random:

cat /proc/sys/kernel/random/poolsize

4096

cat /proc/sys/kernel/random/entropy_avail

3467

For more information, see the null(4), pts(4), and random(4) manual pages.

Chapter 1
About Device Files

1-4

2
Querying udev

You can use the udevadm command to query the udev database. For more information, see
the udevadm(8) manual page.

Prefixes for udevadm Information
Outputs from the udevadm info --query=all command are prefixed to indicate what the
value relates to. Some prefixes are likely to only have a single value, while others might have
several values. For example, the device path is singular in value, but there might be several
symbolic links and device properties. Outputs for the udevadm info command can be
restricted to a specific types of information by changing the --query=<type>. When the query
type is specific, prefixes aren't returned in output.

Table 2-1 udevadm info output prefixes

Prefix Meaning

P: Device path in /sys/
M: Device name in /sys/ (the last component of

"P:")
R: Device number in /sys/ (the numeric suffix of

the last component of "P:")
U: Kernel subsystem
T: Kernel device type within subsystem
D: Kernel device node major/minor
I: Network interface index
N: Kernel device node name
L: Device node symbolic link priority
S: Device node symbolic link
Q: Block device sequence number (DISKSEQ)
V: Attached driver
E: Device property

View All Information for a Device
• To query the entire information for /dev/sda, use the udevadm info --query=all

command.

udevadm info --query=all --name=/dev/sda

P: /devices/pci0000:00/0000:00:04.0/virtio1/host2/target2:0:0/2:0:0:1/
block/sda
M: sda
U: block

2-1

T: disk
D: b 8:0
N: sda
L: 0
S: disk/by-path/pci-0000:00:04.0-scsi-0:0:0:1
S: oracleoci/oraclevda
S: disk/by-id/wwn-0x601666418e094990a94f6e388025315b
S: disk/by-diskseq/1
S: disk/by-id/scsi-3601666418e094990a94f6e388025315b
Q: 1
E: DEVPATH=/devices/pci0000:00/0000:00:04.0/virtio1/host2/
target2:0:0/2:0:0:1/block/sda
E: DEVNAME=/dev/sda
E: DEVTYPE=disk
E: DISKSEQ=1
E: MAJOR=8
E: MINOR=0
E: SUBSYSTEM=block
E: USEC_INITIALIZED=21284275
E: ID_SCSI=1
E: ID_VENDOR=ORACLE
E: ID_VENDOR_ENC=ORACLE\x20\x20
E: ID_MODEL=BlockVolume
E: ID_MODEL_ENC=BlockVolume\x20\x20\x20\x20\x20
E: ID_REVISION=1.0
E: ID_TYPE=disk
E: ID_SERIAL=3601666418e094990a94f6e388025315b
E: ID_SERIAL_SHORT=601666418e094990a94f6e388025315b
E: ID_WWN=0x601666418e094990
E: ID_WWN_VENDOR_EXTENSION=0xa94f6e388025315b
E: ID_WWN_WITH_EXTENSION=0x601666418e094990a94f6e388025315b
E: ID_BUS=scsi
E: ID_PATH=pci-0000:00:04.0-scsi-0:0:0:1
E: ID_PATH_TAG=pci-0000_00_04_0-scsi-0_0_0_1
E: ID_PART_TABLE_UUID=e361a5bb-fab3-4d47-bacd-05f1689be8f0
E: ID_PART_TABLE_TYPE=gpt
E: SCSI_TPGS=0
E: SCSI_TYPE=disk
E: SCSI_VENDOR=ORACLE
E: SCSI_VENDOR_ENC=ORACLE\x20\x20
E: SCSI_MODEL=BlockVolume
E: SCSI_MODEL_ENC=BlockVolume\x20\x20\x20\x20\x20
E: SCSI_REVISION=1.0
E: ID_SCSI_INQUIRY=1
E: SCSI_IDENT_LUN_NAA_REGEXT=601666418e094990a94f6e388025315b
E: DEVLINKS=/dev/disk/by-path/pci-0000:00:04.0-scsi-0:0:0:1 /dev/oracleoci/
oraclevda /dev/disk/by-id/w>
E: TAGS=:systemd:
E: CURRENT_TAGS=:systemd:

Limiting Device Information by Query Type
The following examples show how to limit device information by query type.

• Get the relative sysfs device path for a device.

Chapter 2
Limiting Device Information by Query Type

2-2

To query the sysfs device path relative to /sys that corresponds to the device file /dev/
sda:

udevadm info --query=path --name=/dev/sda

/devices/pci0000:00/0000:00:0d.0/host0/target0:0:0/0:0:0:0/block/sda

• Get all symbolic links for the device.

To query the symbolic links that point to /dev/sda, use the following command:

udevadm info --query=symlink --name=/dev/sda

block/8:0
disk/by-id/ata-VBOX_HARDDISK_VB6ad0115d-356e4c09
disk/by-id/scsi-SATA_VBOX_HARDDISK_VB6ad0115d-356e4c09
disk/by-path/pci-0000:00:0d.0-scsi-0:0:0:0

• Get the properties of a device.

To query the properties of /dev/sda, use the following command:

udevadm info --query=property --name=/dev/sda

DEVPATH=/devices/pci0000:00/0000:00:04.0/virtio1/host2/target2:0:0/2:0:0:1/
block/sda
DEVNAME=/dev/sda
DEVTYPE=disk
DISKSEQ=1
MAJOR=8
MINOR=0
SUBSYSTEM=block
USEC_INITIALIZED=21284275
ID_SCSI=1
ID_VENDOR=ORACLE
ID_VENDOR_ENC=ORACLE\x20\x20
ID_MODEL=BlockVolume
ID_MODEL_ENC=BlockVolume\x20\x20\x20\x20\x20
ID_REVISION=1.0
ID_TYPE=disk
ID_SERIAL=3601666418e094990a94f6e388025315b
ID_SERIAL_SHORT=601666418e094990a94f6e388025315b
ID_WWN=0x601666418e094990
ID_WWN_VENDOR_EXTENSION=0xa94f6e388025315b
ID_WWN_WITH_EXTENSION=0x601666418e094990a94f6e388025315b
ID_BUS=scsi
ID_PATH=pci-0000:00:04.0-scsi-0:0:0:1
ID_PATH_TAG=pci-0000_00_04_0-scsi-0_0_0_1
ID_PART_TABLE_UUID=e361a5bb-fab3-4d47-bacd-05f1689be8f0
ID_PART_TABLE_TYPE=gpt
SCSI_TPGS=0
SCSI_TYPE=disk
SCSI_VENDOR=ORACLE

Chapter 2
Limiting Device Information by Query Type

2-3

SCSI_VENDOR_ENC=ORACLE\x20\x20
SCSI_MODEL=BlockVolume
SCSI_MODEL_ENC=BlockVolume\x20\x20\x20\x20\x20
SCSI_REVISION=1.0
ID_SCSI_INQUIRY=1
SCSI_IDENT_LUN_NAA_REGEXT=601666418e094990a94f6e388025315b
DEVLINKS=/dev/disk/by-id/wwn-0x601666418e094990a94f6e388025315b /dev/
disk/by-diskseq/1 /dev/disk/by-pa>
TAGS=:systemd:
CURRENT_TAGS=:systemd:

View Attributes for a Device and Its Parent Devices
To display all the properties of a device and all parent devices that udev finds in /sys, use the
--attribute-walk option.

• Run udevadm info --attribute-walk against the device.

To view information about /dev/sda and all parent devices, run:

udevadm info --attribute-walk --name=/dev/sda

...
 looking at device '/devices/pci0000:00/0000:00:04.0/virtio1/host2/
target2:0:0/2:0:0:1/block/sda':
 KERNEL=="sda"
 SUBSYSTEM=="block"
 DRIVER==""
 ATTR{alignment_offset}=="0"
 ATTR{capability}=="40"
 ATTR{discard_alignment}=="0"
 ATTR{diskseq}=="1"
 ATTR{events}==""
 ATTR{events_async}==""
 ATTR{events_poll_msecs}=="-1"
 ATTR{ext_range}=="256"
 ATTR{hidden}=="0"
 ATTR{inflight}==" 0 0"
 ATTR{integrity/device_is_integrity_capable}=="0"
 ATTR{integrity/format}=="none"
 ATTR{integrity/protection_interval_bytes}=="0"
 ATTR{integrity/read_verify}=="0"
 ATTR{integrity/tag_size}=="0"
 ATTR{integrity/write_generate}=="0"
...
 ATTR{trace/enable}=="0"
 ATTR{trace/end_lba}=="disabled"
 ATTR{trace/pid}=="disabled"
 ATTR{trace/start_lba}=="disabled"

 looking at parent device '/devices/pci0000:00/0000:00:04.0/virtio1/host2/
target2:0:0/2:0:0:1':
 KERNELS=="2:0:0:1"
 SUBSYSTEMS=="scsi"

Chapter 2
View Attributes for a Device and Its Parent Devices

2-4

 DRIVERS=="sd"
 ATTRS{blacklist}=="TRY_VPD_PAGES"
 ATTRS{delete}=="(not readable)"
 ATTRS{device_blocked}=="0"
 ATTRS{device_busy}=="0"
 ATTRS{dh_state}=="detached"
 ATTRS{eh_timeout}=="10"
 ATTRS{evt_capacity_change_reported}=="0"
 ATTRS{evt_inquiry_change_reported}=="0"
 ATTRS{evt_lun_change_reported}=="0"
 ATTRS{evt_media_change}=="0"
 ATTRS{evt_mode_parameter_change_reported}=="0"
 ATTRS{evt_soft_threshold_reached}=="0"
 ATTRS{inquiry}==""
 ATTRS{iocounterbits}=="32"
 ATTRS{iodone_cnt}=="0x34ad3b"
 ATTRS{ioerr_cnt}=="0x2"
 ATTRS{iorequest_cnt}=="0x34ad3b"
 ATTRS{model}=="BlockVolume "
...
 ATTRS{vpd_pg83}==""
 ATTRS{wwid}=="naa.601666418e094990a94f6e388025315b"

 looking at parent device '/devices/pci0000:00/0000:00:04.0/virtio1/host2/
target2:0:0':
 KERNELS=="target2:0:0"
 SUBSYSTEMS=="scsi"
 DRIVERS==""
 ATTRS{power/control}=="auto"
 ATTRS{power/runtime_active_time}=="2172559026"
 ATTRS{power/runtime_status}=="active"
 ATTRS{power/runtime_suspended_time}=="0"

 looking at parent device '/devices/pci0000:00/0000:00:04.0/virtio1/
host2':
 KERNELS=="host2"
 SUBSYSTEMS=="scsi"
 DRIVERS==""
 ATTRS{power/control}=="auto"
 ATTRS{power/runtime_active_time}=="2172559046"
 ATTRS{power/runtime_status}=="active"
 ATTRS{power/runtime_suspended_time}=="0"

 looking at parent device '/devices/pci0000:00/0000:00:04.0/virtio1':
 KERNELS=="virtio1"
 SUBSYSTEMS=="virtio"
 DRIVERS=="virtio_scsi"
 ATTRS{device}=="0x0008"

ATTRS{features}=="011000000000000000000000000011001000000000000000000000000
0000000"
 ATTRS{power/control}=="auto"
 ATTRS{power/runtime_active_time}=="0"
 ATTRS{power/runtime_status}=="unsupported"
 ATTRS{power/runtime_suspended_time}=="0"
 ATTRS{status}=="0x0000000f"

Chapter 2
View Attributes for a Device and Its Parent Devices

2-5

 ATTRS{vendor}=="0x108e"

 looking at parent device '/devices/pci0000:00/0000:00:04.0':
 KERNELS=="0000:00:04.0"
 SUBSYSTEMS=="pci"
 DRIVERS=="virtio-pci"
 ATTRS{ari_enabled}=="0"
...
 ATTRS{revision}=="0x00"
 ATTRS{subsystem_device}=="0x0008"
 ATTRS{subsystem_vendor}=="0x108e"
 ATTRS{vendor}=="0x1af4"

 looking at parent device '/devices/pci0000:00':
 KERNELS=="pci0000:00"
 SUBSYSTEMS==""
 DRIVERS==""
 ATTRS{power/control}=="auto"
 ATTRS{power/runtime_active_time}=="0"
 ATTRS{power/runtime_status}=="unsupported"
 ATTRS{power/runtime_suspended_time}=="0"
 ATTRS{waiting_for_supplier}=="0"

The command starts at the device that's specified by the device path and walks the chain
of parent devices. For every device that the command finds, the command displays the
possible attributes for the device and its parent devices by using the match key format for
udev rules.

Chapter 2
View Attributes for a Device and Its Parent Devices

2-6

3
Working With udev Rules

udev uses rules files to identify devices and create device names. The udev service (systemd-
udevd) reads the rules files at system start-up and stores the rules in memory. If the kernel
discovers a new device or an existing device goes offline, the kernel sends an event action
(uevent) notification to udev, which matches the in-memory rules against the device attributes
in the /sys directory to identify the device.

Rules files exist in several different directories. However, you only need to know about /etc/
udev/rules.d/*.rules files because these are the only rules files that you can edit. See
Customizing udev Rules.

udev processes the rules files in lexical order, regardless of the directory of the rule files. Rules
files in /etc/udev/rules.d override rules files of the same name in other locations.

The following rules are extracted from the file /lib/udev/rules.d/50-udev-
default.rules and illustrate the syntax of udev rules:

do not edit this file, it will be overwritten on update

SUBSYSTEM=="block", SYMLINK{unique}+="block/%M:%m"
SUBSYSTEM!="block", SYMLINK{unique}+="char/%M:%m"

KERNEL=="pty[pqrstuvwxyzabcdef][0123456789abcdef]", GROUP="tty", MODE="0660"
KERNEL=="tty[pqrstuvwxyzabcdef][0123456789abcdef]", GROUP="tty", MODE="0660"
...
mem
KERNEL=="null|zero|full|random|urandom", MODE="0666"
KERNEL=="mem|kmem|port|nvram", GROUP="kmem", MODE="0640"
...
block
SUBSYSTEM=="block", GROUP="disk"
...
network
KERNEL=="tun", MODE="0666"
KERNEL=="rfkill", MODE="0644"

CPU
KERNEL=="cpu[0-9]*", MODE="0444"
...
do not delete static device nodes
ACTION=="remove", NAME=="", TEST=="/lib/udev/devices/%k", \
 OPTIONS+="ignore_remove"
ACTION=="remove", NAME=="?*", TEST=="/lib/udev/devices/$name", \
 OPTIONS+="ignore_remove"

For more information, see the udev(7) manual page.

3-1

Assignment and Comparison Operators
A rule either assigns a value to a key or it tries to find a match for a key by comparing its
current value with the specified value. The following table shows the assignment and
comparison operators that you can use.

Operator Description

= Assign a value to a key, overwriting any
previous value.

+= Assign a value by appending it to the key's
current list of values.

:= Assign a value to a key. This value cannot be
changed by any further rules.

== Match the key's current value against the
specified value for equality.

!= Match the key's current value against the
specified value for inequality.

Pattern-Matching Characters
You can use the following shell-style pattern-matching characters in values.

Character Description

? Matches a single character.

* Matches any number of characters, including
zero.

[] Matches any single character or character from
a range of characters specified within the
brackets. For example, tty[sS][0-9] would
match ttys7 or ttyS7.

Common Match Keys
The following table describes commonly used match keys in rules.

Match Key Description

ACTION Matches the name of the action that led to an
event. For example, ACTION=="add" or
ACTION=="remove".

ENV{key} Matches a value for the device property key.
For example, ENV{DEVTYPE}=="disk".

KERNEL Matches the name of the device that's affected
by an event. For example, KERNEL=="dm-*" for
disk media.

NAME Matches the name of a device file or network
interface. For example, NAME=="?*" for any
name that consists of one or more characters.

Chapter 3
Assignment and Comparison Operators

3-2

Match Key Description

SUBSYSTEM Matches the subsystem of the device that's
affected by an event. For example,
SUBSYSTEM=="tty".

TEST Tests wheter the specified file or path exists; for
example, TEST=="/lib/udev/devices/$name",
where $name is the name of the matched device
file.

Other match keys include ATTR{filename}, ATTRS{filename}, DEVPATH, DRIVER, DRIVERS,
KERNELS, PROGRAM, RESULT, SUBSYSTEMS, and SYMLINK.

Common Assignment Keys
The following table describes commonly used assignment keys in rules.

Assignment Key Description

ENV{key} Specifies a value for the device property key,
such as GROUP="disk".

GROUP Specifies the group for a device file, such as
GROUP="disk".

Chapter 3
Common Assignment Keys

3-3

Assignment Key Description

IMPORT{type} Specifies a set of variables for the device
property, depending on type:

cmdline
Import a single property from the boot kernel
command line. For simple flags, udev sets the
value of the property to 1. For example,
IMPORT{cmdline}="nodmraid".

db
Interpret the specified value as an index into
the device database and import a single
property, which must have already been set by
an earlier event. For example,
IMPORT{db}="DM_UDEV_LOW_PRIORITY_FLAG".

file
Interpret the specified value as the name of a
text file and import its contents, which must be
in environmental key format. For example,
IMPORT{file}="keyfile".

parent
Interpret the specified value as a key-name
filter and import the stored keys from the
database entry for the parent device. For
example IMPORT{parent}="ID_*".

program
Run the specified value as an external program
and imports its result, which must be in
environmental key format. For example
IMPORT{program}="usb_id --export %p".

MODE Specifies the permissions for a device file, such
as MODE="0640".

NAME Specifies the name of a device file, such as
NAME="em1".

OPTIONS Specifies rule and device options, such as
OPTIONS+="ignore_remove", which means that
the device file isn't removed if the device is
removed.

OWNER Specifies the owner for a device file, such as
GROUP="root".

RUN Specifies a command to be run after the device
file has been created, such as RUN+="/usr/bin/
eject $kernel", where $kernel is the kernel
name of the device.

SYMLINK Specifies the name of a symbolic link to a
device file, such as SYMLINK+="disk/by-
uuid/$env{ID_FS_UUID_ENC}", where $env{}
is substituted with the specified device
property.

Chapter 3
Common Assignment Keys

3-4

Other assignment keys include ATTR{key}, GOTO, LABEL, RUN, and WAIT_FOR.

String Substitutions
The following table describes the string substitutions that are commonly used with the GROUP,
MODE, NAME, OWNER, PROGRAM, RUN, and SYMLINK keys.

String Substitution Description

$attr{file} or

%s{file}
Specifies the value of a device attribute from a
file under /sys, such as
ENV{MATCHADDR}="$attr{address}".

$devpath or

%p
The device path of the device in the sysfs file
system under /sys, such as RUN+="keyboard-
force-release.sh $devpath common-
volume-keys".

$env{key} or

%E{key}
Specifies the value of a device property, such as
SYMLINK+="disk/by-id/md-
name-$env{MD_NAME}-part%n".

$kernel or

%k
Specifies the kernel name for the device.

$major or

%M
Specifies the major number of a device, such as
IMPORT{program}="udisks-dm-export %M
%m".

$minor or

%m
Specifies the minor number of a device, such as
RUN+="$env{LVM_SBIN_PATH}/lvm pvscan --
cache --major $major --minor $minor".

$name Specifies the device file of the current device,
such as TEST=="/lib/udev/devices/$name".

udev expands the strings specified for RUN immediately before its program is run, which is after
udev has finished processing all other rules for the device. For the other keys, udev expands
the strings while it's processing the rules.

Chapter 3
String Substitutions

3-5

4
Customizing udev Rules

The order in which rules are evaluated is important. udev processes rules in lexical order. To
add custom rules, you need udev to find and evaluate these rules before the default rules.

The following example procedure shows how to implement a udev rules file that adds a
symbolic link to the disk device /dev/sdb.

1. Create the rule file in /etc/udev/rules.d.

Create a rule file under /etc/udev/rules.d with a file name such as 10-local.rules
that udev reads before any other rules file.

The following rule in 10-local.rules creates the symbolic link /dev/my_disk, which
points to /dev/sdb:

SUBSYSTEM=="block", KERNEL=="sdb", SYMLINK+="my_disk"

Listing the device files in /dev shows that udev hasn't yet applied the rule:

ls /dev/sd* /dev/my_disk

ls: cannot access /dev/my_disk: No such file or directory
/dev/sda /dev/sda1 /dev/sda2 /dev/sdb

2. Test the new rule by using the udevadm test command.

To simulate how udev applies its rules to create a device, you can use the udevadm test
command with the device path of sdb listed under the /sys/class/block hierarchy, for
example:

udevadm test /sys/class/block/sdb

calling: test
version ...
This program is for debugging only, it does not run any program
specified by a RUN key. It may show incorrect results, because
some values may be different, or not available at a simulation run.
...
sdb: /etc/udev/rules.d/10-local.rules:1 SYMLINK+="my_disk": Added device
node symlink "my_disk".
...
creating link '/dev/my_disk' to '/dev/sdb'
creating symlink '/dev/my_disk' to 'sdb
...
ACTION=add
SUBSYSTEM=block
DEVLINKS=/dev/disk/by-id/ata-VBOX_HARDDISK_VB186e4ce2-f80f170d
 /dev/disk/by-uuid/a7dc508d-5bcc-4112-b96e-f40b19e369fe

4-1

 /dev/my_disk
...

3. Restart the systemd-udevd service.

sudo systemctl restart systemd-udevd

4. Trigger a block event for the device that's affected by the new rule:

sudo udevadm trigger /sys/class/block/sdb

5. Verify that the rule is active.

After udev processes the rules files, the symbolic link /dev/my_disk is added:

ls -F /dev/sd* /dev/my_disk

/dev/my_disk@ /dev/sda /dev/sda1 /dev/sda2 /dev/sdb

6. (Optional) Undo the changes so that the rule and the symbolic link are removed.

To undo the changes, remove /etc/udev/rules.d/10-local.rules and /dev/
my_disk, then run systemctl restart systemd-udevd again.

sudo rm /etc/udev/rules.d/10-local.rules
sudo rm /dev/my_disk
sudo systemctl restart systemd-udevd

Chapter 4

4-2

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About the udev Device Manager
	About Device Files

	2 Querying udev
	Prefixes for udevadm Information
	View All Information for a Device
	Limiting Device Information by Query Type
	View Attributes for a Device and Its Parent Devices

	3 Working With udev Rules
	Assignment and Comparison Operators
	Pattern-Matching Characters
	Common Match Keys
	Common Assignment Keys
	String Substitutions

	4 Customizing udev Rules

