
Oracle Linux 10
Configuring the Firewall

G14603-01
June 2025

Oracle Linux 10 Configuring the Firewall,

G14603-01

Copyright © 2025, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 About Packet-Filtering Firewalls

2 Configuring the Firewall with Firewalld

firewalld Configuration Tools 2-1

Controlling the firewalld Service 2-2

About Zones and Services 2-2

Displaying Information About Zones 2-3

Displaying Zone Settings 2-3

Configuring firewalld Zones 2-4

Controlling Access to Services 2-4

Controlling Access to Ports 2-4

Assigning a Network Interface to a Zone 2-5

Changing the Default Zone 2-5

Setting a Default Rule for Controlling Incoming Traffic 2-6

Managing Incoming Traffic Based on Sources 2-6

Creating Customized Zones 2-7

Using the firewall-cmd Command 2-7

Using a Zone Configuration File 2-8

3 Configuring the Firewall with nftables

Disabling the firewalld Service 3-1

About Rulesets and Tables 3-2

Managing Rulesets and Tables 3-2

About Hooks and Chains 3-3

iii

Creating Base Chains 3-4

About Rules 3-5

Creating Rules - Examples 3-6

Exporting Configurations to a File 3-7

Loading Configurations from a File 3-8

iv

Preface

Oracle Linux 10: Configuring the Firewall describes how to secure the network by using
firewalld to implement rules that control traffic that flows to and from Oracle Linux 10
systems. The document also describes how to use the nftables framework to further control
network access to these systems.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to

v

https://docs.oracle.com/en/operating-systems/oracle-linux/10/firewall/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

1
About Packet-Filtering Firewalls

A firewall can be configured to:

• Filter incoming and outgoing network packets based on packet header information,

• Redirect packets, such as with network address translation (NAT),

• Perform packet mirroring,

• Perform deep packet inspection,

• Accepted or rejected packets based on rules.

The Oracle Linux kernel uses the Netfilter feature to provide packet filtering functionality for
IPv4, IPv6, inet, arp, bridge, and netdev.

Netfilter consists of the following components:

• A netfilter kernel component consisting of a set of tables in memory for the rules that
the kernel uses to control network packet filtering.

• Utilities to create, maintain, and display the rules that netfilter stores. In Oracle Linux
10, the default firewall utility is the firewall-cmd, which is provided by the firewalld
package.

• The nftables framework is the default network packet filtering framework used by
firewalld in Oracle Linux 10 . nftables functions as the backend for firewalld and
integrates with netfilter. The nftables framework includes packet classification facilities,
added convenience, and improved performance.

The firewalld-based firewall has the following advantages:

• The firewalld-cmd utility doesn't restart the firewall and disrupt established TCP
connections.

• firewalld supports dynamic zones, which enable you to implement different sets of
firewall rules for systems such as laptops that can connect to networks with different levels
of trust. However, this feature isn't typically used on server systems.

• firewalld supports D-Bus for better integration with services that depend on firewall
configuration.

• firewalld covers most basic use cases

For more complex scenarios consider creating and configuring nftables directly instead of
using firewalld. For example, consider configuring nftables directly for scenarios such as:

• Where you need direct control over netfilter,

• Where you require high performance,

• When using complex rules,

• When dealing with specific or advanced networking requirements.

Disable the firewalld service before configuring and using nftables directly to avoid
situations where each service might influence one another.

1-1

2
Configuring the Firewall with Firewalld

This chapter describes the concepts, tools, and methods for configuring the firewall with
firewalld based tools. It also provides examples for displaying the firewall settings that
enforce network security on a system.

firewalld Configuration Tools
You can configure the firewall by using one of the following tools:

• By using the firewall-cmd command and its several options.

• By using the Firewall Configuration GUI

To use this tool you must install the firewall-config package first, then start it by using
the same command as the package name, for example:

sudo dnf install firewall-config

sudo firewall-config &

The command opens the configuration tool, as shown in the following figure:

Figure 2-1 Firewall Configuration

• Cockpit is a browser-based configuration tool that you can also use to perform firewall
configurations. See Oracle Linux: Using the Cockpit Web Console.

2-1

https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/

Controlling the firewalld Service
In Oracle Linux 10, the firewall service, firewalld, is enabled by default. The service is
controlled by the systemctl command.

To start the service:

sudo systemctl unmask firewalld

sudo systemctl start firewalld

To ensure that the service starts automatically when the system starts, run the following
command after starting the firewall:

sudo systemctl enable firewalld

To stop the firewall service and prevent it from automatically starting when the system starts,
run the following command:

sudo systemctl stop firewalld

sudo systemctl disable firewalld

To prevent the firewall service from being started by other services or through the firewalld
D-Bus interface, run the following command after disabling the firewall:

sudo systemctl mask firewalld

To display the current status of the firewall service:

sudo systemctl status firewalld

firewalld.service - firewalld - dynamic firewall daemon
 Loaded: loaded (/usr/lib/systemd/system/firewalld.service; enabled; vendor preset:
enabled)
 Active: active (running) since Thu 2025-01-04 08:41:36 GMT; 5 days ago
 Docs: man:firewalld(1)
 Main PID: 1155 (firewalld)
 Tasks: 4 (limit: 93659)
 Memory: 32.5M
 CPU: 1.438s
 CGroup: /system.slice/firewalld.service
 └─1155 /usr/bin/python3 -s /usr/sbin/firewalld --nofork --nopid

About Zones and Services
Firewall security is implemented through the concepts of zones and services.

Zones are predefined sets of filtering rules that correspond to levels of trust for network
access. You can add to the default filtering rules of a zone by reconfiguring the zone's settings
and therefore refine the zone's control of traffic flow. When you install Oracle Linux, a default
zone called public is automatically assigned to the system.

Firewall rules are applied through services that are assigned to a zone. The service ports are
the access points of network traffic. Services assigned to a zone automatically have their ports
opened to receive and send network packets.

For more information about zones and firewall-related services, see the firewalld.zone(5)
and the firewalld.service(5) manual pages.

Chapter 2
Controlling the firewalld Service

2-2

Displaying Information About Zones
When you configure the firewall for zones, displaying the current zone and service settings and
other information as part of the configuration steps is a good practice. With this approach you
can monitor the changes you're introducing to the firewall and identify potential errors that
would make the changes invalid.

To display the system's default zone, run the following command:

firewall-cmd --get-default

List all the predefined zones that are included in the installation as follows:

firewall-cmd --get-zones

block dmz drop external home internal nm-shared public trusted work

You can configure any zone in the list. As you change settings of a particular zone, that zone
becomes an active zone. To identify the active zone, type the following:

firewall-cmd --get-active-zone

Note:

By default, all configurations are implemented on the default zone. Note also that an
active zone isn't necessarily the default zone. Therefore, you must specify the zone
name in the command to define settings for that specific zone. Otherwise, the
definitions are applied to the default zone.

Displaying Zone Settings
To obtain the settings of a zone:

sudo firewall-cmd --list-all [--zone=zonename]

Without specifying a zone, the command displays the settings of the default zone. Thus, to list
the settings of the work zone, you would use the following command;

sudo firewall-cmd --list-all --zone=work

work
 target: default
 icmp-block-inversion: no
 interfaces:
 sources:
 services: cockpit dhcpv6-client ssh
 ports:
 protocols:
 forward: yes
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

Chapter 2
About Zones and Services

2-3

Configuring firewalld Zones
The following tasks describe how to use the firewall-cmd command to configure firewall
rules for a zone. The rules are then recorded in the /etc/firewalld hierarchy for firewalld.

Configuring the firewall means setting all or some of a zone settings to specific values to
enable the firewall to control network traffic according to specifications.

Controlling Access to Services
Setting the services of a zone is the default way to configure the firewall. Each zone has
predefined services assigned to it. To configure this setting further, you either add services to
the zone or remove services from the zone.

To list predefined services, use the firewall-cmd --list-services command.

For example, the following command shows that the work zone has the cockpit, dhcpv6-
client, and ssh services assigned to it:

sudo firewall-cmd --list-services --zone=work

cockpit dhcpv6-client ssh

To open access to a new service, use the --add-service service option. Optionally, include the
--permanent option to make the rule persistent across reboots.

For example, to add the HTTP and NFS services to the work zone, you would use the following
command:

sudo firewall-cmd --permanent --zone=work --add-service=http --add-service=nfs
sudo firewall-cmd --list-services --zone=work

cockpit dhcpv6-client ssh http nfs

To remove access to a service, use the --remove-service service option:

sudo firewall-cmd --permanent --zone=work --remove-service=cockpit
sudo firewall-cmd --list-services --zone=work

dhcpv6-client ssh http nfs

Controlling Access to Ports
Network traffic through the zone's services uses the ports of those services. Ports must be
opened to accept traffic. You can open more ports for network access by specifying the port
number and the associated protocol.

The --list-ports option lists the ports and associated protocols to which you have explicitly
allowed access. However, ports that have been opened as a service aren't included in this
command's output. Therefore, when listing ports, the best practice is to use the --list-all
option to obtain more complete information.

Use the --add-port option to allow access to specific ports. Ports must be specified by using
the format port-number/port-type. Port types can be tcp, udp, sctp, or dccp. Ensure that the
type and the network traffic match, for example:

Chapter 2
Configuring firewalld Zones

2-4

sudo firewall-cmd --permanent --zone=work --add-port=5353/udp --add-port=3689/tcp
sudo firewall-cmd --list-all --zone=work

work
 target: default
 icmp-clock-inversion: no
 interfaces:
 sources:
 services: dhcpv6-client ssh http nfs
 ports: 5353/udp 3689/tcp
...

Similarly, the --remove-port option removes access to a port. Remember to use the --
permanent option to make the change persist.

For more information, see the firewall-cmd(1) manual page.

Assigning a Network Interface to a Zone
A system's network interface is automatically assigned to the default zone. In Oracle Linux, you
can configure multiple zones with their specific services, ports, and so on. You then activate a
specific zone's rules to become operative by assigning the interface to that zone. Thus, you
have the flexibility to easily change the firewall rules that are active on the system by
reassigning the network interface.

Suppose that you want to activate the firewall configuration of the work zone. You would assign
the interface to the zone as follows:

sudo firewall-cmd --zone=work --change-interface=enp0s1
firewall-cmd --get-active-zone

work
 interfaces: enp0s1

Note:

You don't need to use the --permanent option to make the setting persist across
reboots. If you set the zone to be the default zone, as explained in Changing the
Default Zone, then the interface reassignment becomes permanent.

Changing the Default Zone
You can change a system's default zone as follows:

sudo firewall-cmd --set-default-zone=work

You can also verify that the changes have been applied:

firewall-cmd --get-default-zone

To display the entire and final results of the configuration:

sudo firewall-cmd --zone=work --list-all

work (active)
 target: default
 interfaces: enp0s1

Chapter 2
Configuring firewalld Zones

2-5

 sources:
 services: dhcpv6-client ssh http nfs
 ports: 5353/udp 3689/tcp
...

Setting a Default Rule for Controlling Incoming Traffic
The target setting establishes the default behavior of the firewall when managing incoming
traffic. This zone setting is automatically configured to default for all the predefined zones. To
change the default behavior of a zone, use the following command;

sudo firewall-cmd --zone=zone-name --set-target=ACCEPT|REJECT|DROP

You can specify the following options:

• ACCEPT accpets all incoming traffic except those you have set to be rejected in another
rule.

• REJECT blocks all incoming traffic except those you have allowed in another rule. The
source machine is informed about the rejecion.

• DROP is similar to REJECT but no notice of the rejection is sent to the source machine.

Managing Incoming Traffic Based on Sources
You can manage incoming traffic to a zone based on the traffic source. The two following two
zone settings enable you to specify the origin of the packets:

• source identifies the sending node or network.

• source-ports identifies the port from which traffic originates.

To accept incoming traffic from a sending node, use the following command:

sudo firewall-cmd --zone=zone-name --add-source=IP-address

Note that the IP address can include the netmask in CIDR notation, such as 192.0.2.0/24.

Run the following command to transform the current runtime ruleset to a permanent ruleset:

sudo firewall-cmd --runtime-to-permanent

Omit this command if you're setting a temporary configuration that's dropped if the system is
rebooted.

The following similar syntax is used to set the source-port setting:

sudo firewall-cmd --zone=<zone-name> --add-source-port=<portid>/<protocol>

In the previous, <zone-name> is the zone name, <portid> is the port number, and <protocol> is
one of the following protocol types:

• tcp
• udp
• sctp
• dccp

Chapter 2
Configuring firewalld Zones

2-6

You can combine different settings to configure the firewall. The trusted zone can be
configured to accept HTTP traffic from the 192.0.2.0 network source, as shown in the
following example:

sudo firewall-cmd --zone=trusted --add-source=192.0.2.0/24
sudo firewall-cmd --zone=trusted --add-service=http
sudo firewall-cmd --zone=trusted --list-all

trusted (active)
 target: ACCEPT
 sources: 192.0.2.0/24
 services: http

Creating Customized Zones
You can create zones and then configure the zone's settings for a customized firewall
protection.

Using the firewall-cmd Command
As shown in the following example, you can use the firewall-cmd CLI to create an empty
zone, which means that no default services are assigned. When configuring a customized
zone, you must always include the --permanent option in the command. Otherwise, an error
message is generated.

sudo firewall-cmd --permanent --new-zone=testzone
sudo firewall-cmd --permanent --get-zones

block dmz drop external home internal nm-shared public testzone trusted work

sudo firewall-cmd --permanent --info-zone=testzone

testzone
 target: default
 icmp-block-inversion: no
 interfaces:
 sources:
 services:
 ports:
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

Without the --permanent option, the --get-zones option does not display the created zone.

The --info-zone=zone-name option generates the same output as the --list-all option.

To make this zone creation persistent, add the following command:

sudo firewall-cmd --runtime-to-permanent

After creating the zone, you can add services, ports, assign interfaces, and so on, by using the
command options that are provided in the previous examples:

sudo firewall-cmd --zone=testzone --add-service=http

Error: INVALID ZONE: testzone

Chapter 2
Creating Customized Zones

2-7

sudo firewall-cmd --permanent --zone=testzone --add-service=http

Ensure that you use the --permanent option when using these commands.

Using a Zone Configuration File
All zones have corresponding configuration files. For the predefined zones that are installed
with the operating system, the configuration files are in the /usr/lib/firewalld/zones
directory.

When you configure a predefined zone, the configuration file is copied to the /etc/
firewalld/zones directory and the changes are stored in that location. If you use a
configuration file to create new zones, you must also use /etc/firewalld/zones as the
working directory.

If you're creating a zone with only minor differences from the settings of predefined zones,
copying an existing configuration file to the working directory is the easiest approach. You can
use either of the following commands:

sudo cp /etc/firewalld/zones/existing-conf-file.xml new-zone.xml

sudo cp /usr/lib/firewalld/zones/existing-conf-file.xml /etc/firewalld/zones/new-zone.xml

Then, using a text editor, revise the settings in the new configuration file. The following
example shows what the configuration file of testzone might contain. testzone accepts traffic
for one service (SSH) and one port range for the TCP and UDP protocols:

<?xml version="1.0" encoding="utf-8"?>
<zone>
 <short>testzone</short>
 <description>Put description here</description>
 <service name="ssh"/>
 <port port="1025-65535" protocol="tcp"/>
 <port port="1025-65535" protocol="udp"/>
</zone>

Chapter 2
Creating Customized Zones

2-8

3
Configuring the Firewall with nftables

This chapter describes configuring the firewall with nftables. It also provides examples for
configuring nftables tables, chains, and rules that enforce network security on a system with
the nft command. These examples are appropriate for learning about nftables; however, for
more advanced users, consider editing nftables configurations from a file. For more
information about nftables file syntax, see the nft(8) manual page.

Note:

When you create nftables configurations using nft commands, these configurations
reside in the system's memory until you flush the memory or restart the system. To
make these configurations persistent across system boots, consider exporting the
configurations to an .nft file and setup the system to include the file when starting
the nftables service. For more information about exporting configurations to a file,
see Exporting Configurations to a File. For more information about loading a
configuration file into nftables either manually or automatically, see Loading
Configurations from a File.

Note:

When working with nftables, it's good practice to keep a local connection (for
example, with a serial console if possible) to recover from mistakes that might lock
you out of the system.

Disabling the firewalld Service
In Oracle Linux 10, nftables isn't enabled by default because the firewalld service uses it as
its backend. Disable firewalld before beginning to work with nftables.

Do the following:

1. Disable the firewalld service if it isn't already disabled:

sudo systemctl disable --now firewalld
2. Clear any preexisting rulesets in nftables created by firewalld:

sudo nft flush ruleset

3. Display the current status of the firewalld service and ensure that the service is listed as
inactive (dead):

systemctl status firewalld

3-1

firewalld.service
 Loaded: masked (Reason: Unit firewalld.service is masked.)
 Active: inactive (dead)

Jan 20 16:05:39 localhost.localdomain systemd[1]: Starting firewalld.service -
firewalld - dynamic firewall daemon...
Jan 20 16:05:40 localhost.localdomain systemd[1]: Started firewalld.service -
firewalld - dynamic firewall daemon.
Jan 20 16:08:33 localhost.localdomain systemd[1]: Stopping firewalld.service -
firewalld - dynamic firewall daemon...
Jan 20 16:08:33 localhost.localdomain systemd[1]: firewalld.service: Deactivated
successfully.
Jan 20 16:08:33 localhost.localdomain systemd[1]: Stopped firewalld.service -
firewalld - dynamic firewall daemon.

About Rulesets and Tables
nftables includes rulesets that contain all configuration structures within nftables. Tables are
the top level structure in rulesets within which are contained various objects such as chains,
rules, and so on.

Managing Rulesets and Tables
To manage nftable rulesets and tables in memory, do the following:

1. Create a table for a specific address family type using the following syntax:

sudo nft add table <address_family> <table_name>

In the previous,

• <address_family> can be ip, ip6, inet, arp, bridge, or netdev. All nftables objects
are in one of these address families. For more information about these address
families, see the nft(8) manual page.

• <table_name> is the name of the table. Tables contain chains, which in turn contain
rules.

For example, the following command creates a table called mytable with the inet family,
which includes addresses for IP version 4 and 6:

sudo nft add table inet mytable

2. Do the following:

• To view all rulesets, do the following:

sudo nft list ruleset

• To view a single table, do the following:

sudo nft list table <address_family> <table_name>

Chapter 3
About Rulesets and Tables

3-2

About Hooks and Chains
Hooks are points in a system where packets can be intercepted for processing. These hooks
are where nftables applies chains and rules that decide what happens to a packet. Different
hooks are available depending on the address family applied to a table.

The following table shows the hooks available to each address family.

Address Family Hook Description

IP, IPv6, inet / Bridge prerouting Processes all incoming packets
before routing decisions.

input Handles packets destined for
the local system.

forward Manages packets being
forwarded to another host.

output Processes packets originating
from the local system.

postrouting Deals with all outgoing packets
after routing.

ingress Manages incoming packets
before the prerouting,
available from Linux kernel
5.10 for inet family.

ARP input Processes packets for the local
system.

output Handles packets sent from the
local system.

Netdev ingress Processes incoming packets
after network taps, such as
tcpdump, before layer 3
handling.

egress Manages outgoing packets
after layer 3 handling but
before final network exit.

Base chains are attached to hooks. When a packet arrives at a hook, configured with a base
chain, the packet then traverses the chain, and each rule in the chain is evaluated in order until
a rule matches, or the end of the chain is reached. nftables includes the following chain types:

• Base Chains: These are chains directly built on a hook. For example, a base chain named
myinput might be linked to the inet input hook for IPv4 or IPv6 packets arriving at the local
system.

• Regular Chains: These are chains that jump from base chains or other regular chains.
They aren't built directly at a hook but can be part of the decision-making process within a
base chain.

Base chains must include the base chain type, hook, and priority parameters. Chain types
include:

• filter: Primarily used for packet filtering, such as whether to permit or block packets
based on various criteria such as source and destination IP, ports, protocols, and so on.
This chain type works with all address families and their hooks.

Chapter 3
About Hooks and Chains

3-3

• nat: Primarily used to change IP addresses, ports, or both in packet headers for NAT
operations. This includes changes to Source NAT (SNAT) for outgoing traffic and
Destination NAT (DNAT) for incoming traffic. This chain type can be configured with ip,
ipv6, and inet address families and can take the prerouting, input, output, and postrouting
hooks.

• route: Primarily used for routing decisions such as altering a routing table or marking
packets for specific routing policies. This chain type can be used with ip and ipv6 address
families and can take the output hook only.

When using the ingress or egress hooks, specify a network interface name as a string with the
device parameter. Any ingress or egress chains only filters traffic from the interface specified
in the device parameter.

The priority parameter uses a signed integer or a standard priority name to determine the order
in which chains with the same hook are processed. Chains process from lower priority values
or names to higher priority values or names.

The following table shows priority names and values for each associated address family and
hook type.

Name Value Family Hooks

raw -300 ip, ip6, inet all

mangle -150 ip, ip6, inet all

dsnat -100 ip, ip6, inet prerouting

filter 0 ip, ip6, inet, arp,
netdev

all

security 50 ip, ip6, inet all

srcnat 100 ip, ip6, inet postrouting

The following table shows priority names and values for the bridge address family and hook
type.

Name Value Hooks

dsnat -300 prerouting

filter -200 all

out 100 output

srcnat 300 postrouting

You can also choose to set a policy on a chain that defines whether to accept or drop a packet
when none of the rules defined on the chain matches the packet. By default, base chains
accept all packets. However, setting a policy to drop all traffic not explicitly allowed by a chain
is good practice for security reasons.

Creating Base Chains
To create nftable base chains in memory, do the following:

1. Create a chain for a specific address family type and table using the following syntax:

sudo nft add chain <address_family> <table_name> <chain_name>{ type <chain_type>
hook <hook_type> device <network_interface_name> priority <priority> policy <policy>
comment <comment> ; }

Chapter 3
About Hooks and Chains

3-4

In the previous,

• <address_family> can be ip, ip6, inet, arp, bridge, or netdev. All nftables objects
are in one of these address family. For more information about these address families,
see the nft(8) manual page.

• <table_name> is the name of the table. Tables are containers for chains, which in turn
are containers for rules.

• <chain_name> is an arbitrary name for the chain. People migrating from iptables
based firewalls often use traditional iptables naming.

• <chain_type> is the chain type. Valid values for base chains are filter, nat, and
route. For more information, see About Hooks and Chains.

• <hook_type> is the hook type. Possible values depend on the selected address family
and chain type. For more information, see About Hooks and Chains.

• <network_interface_name> is the network interface name for the device parameter.
This parameter is only required when using the ingress or egress hooks.

• <priority> is the priority value or name for the chain. Priority depends on the selected
address family and hook type. For more information, see About Hooks and Chains.

• <policy> is the action taken if all rules defined on the chain fail to match the packet.
Valid values are accept or drop. If not specified, the default value is accept.

For example, the following command creates a chain in the mytable table called mychain
with the inet family. The chain type is filter, the hook is input, and the priority is 0.
Finally, the policy is set to drop all packets that don't match a rule:

sudo nft add chain inet mytable mychain "{ type filter hook input priority
0 ; policy drop ; }"

2. Do the following:

• To view all chains, do the following:

sudo nft list chains

• To view a single chain, do the following:

sudo nft list chain <address_family> <table_name> <chain_name>

About Rules
You can add rules to chains in a table. Rules are made up of instructions that match packets
based on various criteria and apply actions such as accept, drop, reject, and so on. These
instructions include elements such as:

• Sets, which are collections of elements used for the matching.

• Expressions, which are building blocks for rules that define how packets are matched or
manipulated. Examples include:

– Protocol-specific matches (for example, ip, ip6, tcp, udp).

– Address matching (saddr, daddr).

– Port matching (sport, dport).

– Network interface matches (iifname, oifname).

Chapter 3
About Rules

3-5

• Maps, which are similar to sets but can map one value to another. Maps are used for more
complex matching or transformation scenarios.

• Verdict maps, which can change verdicts based on packet content, enable more dynamic
policy decisions.

• Counters, which track the number of packets matching a rule and display when running a
list nft command that includes the rule. Counters are a useful way to test whether a rule is
working.

• Quotas, which limit the amount of data that can pass through a rule before an action
changes (for example, from accept to drop).

• Flowtables, which allows fast path packet forwarding, improving performance by bypassing
regular packet processing for certain traffic.

• Statements, which includes operations such as log, reject, jump, goto which change
packet handling behavior.

Rules added to a chain are evaluated from top to bottom and from left to right.

For more information about configuring these instructions, see the nft(8) manual page.

Creating Rules - Examples
This section includes some common example of rules created within chains.

Allow local traffic

The following command creates a rule in mytable within mychain for the inet family that allows
local traffic to enter through the loopback interface (iff lo):

sudo nft add rule inet mytable mychain iif lo accept

Allow incoming traffic for an existing connection or related to an existing connection

This command adds a rule to the mytable's mychain chain that accepts all incoming traffic that
are part of or related to an existing connection:

sudo nft add rule inet mytable mychain ct state established, related accept

In the previous example,

• ct is a connection tracking helper for IPv4, IPv6, or inet which is part of the nf_conntrack
module. This module is typically loaded by default on most systems. You can list the state
of all connections to the system using the following command:

sudo cat /proc/net/nf_conntrack

Possible connection states are:

– NEW: The packet has started a new connection, or is associated with a connection that
hasn't received and sent packets.

– ESTABLISHED: The packet is associated with a connection which has received and sent
packets.

– RELATED: The packet is starting a new connection, but is associated with an existing
connection.

Chapter 3
About Rules

3-6

– INVALID: The packet is associated with no known connection.

• state established, related indicates that the command applies only to connections in
the ESTABLISHED or RELATED state.

• accept indicates that any packet with the appropriate state can be accepted.

This is a common rule in firewall configurations to ensure that responses to outgoing traffic are
allowed back in, enabling normal operations of network services such as web browsing, SSH
connectivity, and so on, without needing to explicitly open all ports for incoming connections.

Allow incoming SSH traffic

The following adds a rule to the mytable's mychain chain that accepts all incoming TCP traffic
on destination port 22.

sudo nft add rule inet mytable mychain tcp dport 22 accept

This port is typically used for SSH traffic and assumes that the SSH daemon is setup and
running on the system.

Restricting all IPv4 and IPv6 traffic (Panic button)

The following adds a rule to the mytable table that drops all incoming and outgoing IPv4 and
IPv6 and acts as a kind of panic button.

sudo nft add rule inet mytable drop

Exporting Configurations to a File
To keep nftable configurations across boots or to switch from one configuration to another,
you can export an nftable in memory to a file.

To export nftable configurations to a file, do the following:

1. List the rulesets and save the output to a file:

sudo nft list ruleset > /etc/nftables/<export_file_name>.nft

In the previous, <export_file_name> is the name of the file for the exported information.
This file now contains all the tables, chains, and rules available in memory.

2. List a table and save the output to a file:

sudo nft list table <address_family> <table_name> > /etc/nftables/
<export_file_name>.nft

This file now contains a table and all associated chains and rules available in memory.

3. List a chain and save the output to a file:

sudo nft list chain <address_family> <table_name> <chain_name> > /etc/nftables/
<export_file_name>.nft

This file now contains a chain in a table and all associated rules within the chain available
in memory.

4. Ensure the files included in /etc/nftables are executable:

sudo chmod +x /etc/nftables/<export_file_name>.nft

Chapter 3
Exporting Configurations to a File

3-7

Loading Configurations from a File
To load an nftable ruleset, table, or chain from a file into memory, you can perform this task
manually or automatically when rebooting a system.

To manually load an nftables file, do the following:

1. Before loading a new configuration from a file, drop the existing tables:

sudo nft flush ruleset

Note:

This step is crucial to avoid conflicts between the new and old configurations and
ensures a clean and consistent application of the new rules.

2. Run the following command to load the file into memory:

sudo nft -f /etc/nftables/<import_file_name>.nft

In the previous, <import_file_name> is the name of the file with the information to be
imported. This file might contain a ruleset, one or more tables, one or more chains within a
table, and any associated rules.

Note:

The atomic reload is an nftables feature that ensures that connection tracking is
preserved during rule reloading, providing a seamless transition to the new
configuration.

3. List a ruleset to verify that the file imported correctly:

sudo nft list rulesets

To automatically load a ruleset from a file when restarting the system, do the following:

1. Edit the /etc/sysconfig/nftables.conf file to include the .nft table files you want to
include at startup. If this file doesn't exist, create it. For example, the following shows that
the /etc/sysconfig/nftables.conf now includes the exported /etc/nftables/
myruleset.nft file.

Uncomment the include statement here to load the default config sample
in /etc/nftables for nftables service.

include "/etc/nftables/myruleset.nft"

To customize, either edit the samples in /etc/nftables, append further
commands to the end of this file or overwrite it after first service
start by calling: 'nft list ruleset >/etc/sysconfig/nftables.conf'.

2. Enable and start the nftables service:

sudo systemctl enable --now nftables

Chapter 3
Loading Configurations from a File

3-8

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About Packet-Filtering Firewalls
	2 Configuring the Firewall with Firewalld
	firewalld Configuration Tools
	Controlling the firewalld Service
	About Zones and Services
	Displaying Information About Zones
	Displaying Zone Settings

	Configuring firewalld Zones
	Controlling Access to Services
	Controlling Access to Ports
	Assigning a Network Interface to a Zone
	Changing the Default Zone
	Setting a Default Rule for Controlling Incoming Traffic
	Managing Incoming Traffic Based on Sources

	Creating Customized Zones
	Using the firewall-cmd Command
	Using a Zone Configuration File

	3 Configuring the Firewall with nftables
	Disabling the firewalld Service
	About Rulesets and Tables
	Managing Rulesets and Tables

	About Hooks and Chains
	Creating Base Chains

	About Rules
	Creating Rules - Examples

	Exporting Configurations to a File
	Loading Configurations from a File

