
Oracle Linux 10
Managing Kernels and System Boot

G14597-01
June 2025

Oracle Linux 10 Managing Kernels and System Boot,

G14597-01

Copyright © 2025, Oracle and/or its affiliates.

Contents

 Preface

Documentation License vi

Conventions vi

Documentation Accessibility vi

Access to Oracle Support for Accessibility vi

Diversity and Inclusion vi

1 About System Boot

About UEFI-Based Booting 1-1

About BIOS-Based Booting 1-2

About the GRUB 2 Bootloader 1-2

2 About Linux Kernels

About Kernel Modules 2-2

About Weak Update Modules 2-2

About Virtual File Systems and System Configuration 2-3

About the /etc/sysconfig Files 2-4

About the /proc Virtual File System 2-5

About the /sys Virtual File System 2-6

3 Changing Kernel Boot Parameters Before Booting

4 Changing GRUB 2 Default Kernel Boot Parameters

5 Using grubby to Manage Kernels

Checking Available Kernels on the System 5-1

Comparing the Default Kernel to the Running Kernel 5-1

Changing the Default Kernel 5-2

Changing Kernel Command Line Boot Parameters 5-3

iii

Checking the Kernel Command Line Last Used to Boot The System 5-3

6 Managing Kernel Parameters at Runtime

Listing Configurable Kernel Parameters and Values 6-1

Updating Kernel Parameters 6-3

7 Managing Kernel Modules

Listing Information About Loaded Modules 7-1

Loading and Unloading Modules 7-3

Changing Kernel Module Parameters 7-5

Specifying Modules To Be Loaded at Boot Time 7-5

Preventing Modules From Loading at Boot Time 7-6

Removing Weak Update Modules 7-6

8 Managing Resources Using Control Groups

Verifying cgroups v2 8-2

About Kernel Resource Controllers 8-2

About the Control Group File System 8-3

About Resource Distribution Models 8-4

Managing cgroups v2 Using sysfs 8-5

Preparing the Control Group for Distribution of CPU Time 8-5

Setting CPU Weight to Regulate Distribution of CPU Time 8-7

9 Configuring the Watchdog Service

10

Working With Kernel Dumps

Kdump System Memory Requirements 10-1

Installing Kdump 10-1

Configuring Kdump 10-2

Configuring the Kdump Output Location 10-3

Configuring the Default Kdump Failure State 10-4

Analyzing Kdump Output 10-4

Using Early Kdump 10-5

11

Oracle Linux 10 Kernel Reference

iv

12

Kernel Boot Parameter Reference

Parameters That Control System Performance 12-2

Parameters That Control Kernel Panics 12-4

13

Modprobe Configuration Reference

14

sysfs Directory Reference

15

procfs Directory Reference

v

Preface

Oracle Linux 10: Managing Kernels and System Boot provides information about configuring
the Oracle Linux 10 boot loader, managing kernel boot parameters, loading and unloading
kernel modules and how the kernel creates virtual file systems as an interface to kernel
runtime controls and data.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,

Preface

vi

https://docs.oracle.com/en/operating-systems/oracle-linux/10/boot/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vii

1
About System Boot

Understanding the Oracle Linux boot process can help you troubleshoot problems when
booting a system. The boot process involves several files, and errors in these files are the
usual cause of boot problems. Boot processes and configuration differ depending on whether
the hardware uses UEFI firmware or legacy BIOS to handle system boot.

An installation of Oracle Linux includes the GRUB 2 boot loader, which is installed into a
location on the hard disk that's accessible to the BIOS or UEFI firmware. The GRUB 2 boot
loader is used to load a kernel and the initramfs into memory. After the kernel is fully initialized,
it starts the systemd process that manages the rest of the operating system.

About UEFI-Based Booting
On a UEFI-based system running the Oracle Linux release, the system boot process uses the
following sequence:

1. When the system is powered on, the system performs a power-on self-test (POST) to
detect and check the system's core hardware components such as CPU and memory. The
UEFI firmware is then initialized.

2. The UEFI firmware detects any other hardware, such as peripheral components including
network devices and storage. The UEFI firmware contains its own boot manager, which
can directly interact with boot loaders on various storage devices. The boot manager
stores a set of variables including the priority of different boot devices and any detected
boot loaders.

UEFI searches for a FAT32 formatted GPT partition with a specific globally unique identifier
(GUID) that identifies it as the EFI System Partition (ESP). This partition contains EFI
applications such as boot loaders and other configuration files.

When more than one boot device is present, the UEFI boot manager uses the appropriate
ESP based on the order that's defined in the boot manager. With the efibootmgr tool,
you can define a different order, if you don't want to use the default definition.

3. The UEFI boot manager loads the default boot loader. Oracle Linux uses a 2-stage boot
process to handle the Secure Boot validation process. The 2-stage process includes a first
stage boot loader called the shim boot loader on the ESP, and the second stage boot
loader called GRUB 2. If Secure Boot is disabled, the shim boot loader directly loads the
GRUB 2 boot loader on the ESP, to continue the boot process. Boot loader files are named
according to the system architecture, for example the shim bootloader is named
shimx64.efi on x86_64 systems, and shimaa64.efi on aarch64 systems.

Otherwise, if Secure Boot is enabled, the shim boot loader is validated against keys stored
in the UEFI Secure Boot key database, and in turn, verifies the GRUB 2 boot loader
signature against certificates stored in the UEFI Secure Boot key database or the Machine
Owner Key (MOK) database. If the GRUB 2 signature is valid, the GRUB 2 boot loader
runs and, in turn, validates the kernel that it's configured to load.

See Oracle Linux: Working With UEFI Secure Boot for more information on Secure Boot.

4. The boot loader loads the vmlinuz kernel image file and the initramfs image file into
memory. The kernel extracts the contents of the initramfs image into a temporary,

1-1

https://docs.oracle.com/en/operating-systems/oracle-linux/secure-boot/

memory-based file system (tmpfs). The initramfs contains essential drivers and utilities
needed for booting.

5. The boot loader passes control to the kernel and provides pointers to the initramfs and
any other boot parameters. The kernel continues system initialization, detecting hardware,
loading necessary drivers, and mounting the root file system.

6. The kernel searches for the init process within initramfs and starts the defined process
with a process ID of 1 (PID 1). On Oracle Linux, the default init process is configured as
systemd. See Oracle Linux 10: System Management with systemd for more information.

7. systemd runs any other processes defined for it.

Note:

Specify any other actions to be processed during the boot process by defining
systemd units. This method is preferred to using the /etc/rc.local file.

About BIOS-Based Booting
On a BIOS-based system running the Oracle Linux release, the boot process is as follows:

1. The system's BIOS performs a power-on self-test (POST), and then detects and initializes
any peripheral devices and the hard disk.

2. The BIOS reads the Master Boot Record (MBR) into memory from the boot device. The
MBR stores information about the organization of partitions on that device, the partition
table, and the boot signature which is used for error detection. The MBR also includes the
pointer to the boot loader program (GRUB 2), usually on a dedicated /boot partition on
the same disk device.

3. The boot loader loads the vmlinuz kernel image file and the initramfs image file into
memory. The kernel then extracts the contents of initramfs into a temporary, memory-
based file system (tmpfs).

4. The kernel loads the driver modules from the initramfs file system that are needed to
access the root file system.

5. The kernel searches for the init process within initramfs and starts the defined process
with a process ID of 1 (PID 1). On Oracle Linux, the default init process is configured as
systemd. See Oracle Linux 10: System Management with systemd for more information.

6. systemd runs any other processes defined for it.

Note:

Specify any other actions to be processed during the boot process by defining
systemd units. This method is preferred to using the /etc/rc.local file.

About the GRUB 2 Bootloader
Oracle Linux includes version 2 of the GRand Unified Bootloader (GRUB 2), which loads the
operating system onto a system at boot time.

Chapter 1
About BIOS-Based Booting

1-2

https://docs.oracle.com/en/operating-systems/oracle-linux/10/systemd/
https://docs.oracle.com/en/operating-systems/oracle-linux/10/systemd/

In addition to Oracle Linux, GRUB 2 can load and chain-load many proprietary operating
systems. GRUB 2 understands the formats of many different file systems and kernel
executable files. GRUB 2 requires the full path to the kernel and initramfs relative to the boot
or root device. You can configure this information by using the GRUB 2 menu or by entering it
on the GRUB 2 command line.

The grub2-mkconfig command generates the GRUB 2 configuration file using the template
scripts in /etc/grub.d and menu-configuration settings taken from the configuration
file, /etc/default/grub.

The generated GRUB 2 files are read during system boot from /boot. The main GRUB 2
configuration file is available at /boot/grub2/grub.cfg. On UEFI-based systems, an initial
configuration file at /boot/efi/EFI/redhat/grub.cfg is used to help direct GRUB 2 to
the correct device and location of the main GRUB2 configuration file. Each kernel version's
boot parameters are stored in independent configuration files in /boot/loader/entries.
Each kernel configuration is stored with the file name machine_id-
kernel_version.el10.arch.conf.

Note:

Don't edit the GRUB 2 configuration file in /boot directly.

The default menu entry is set by the value of the GRUB_DEFAULT parameter in /etc/default/
grub. If GRUB_DEFAULT is set to saved, you can use the grub2-set-default and grub2-
reboot commands to specify the default entry. The command grub2-set-default sets the
default entry for all reboots, while grub2-reboot sets the default entry for the next reboot
only.

If you specify a numeric value as the value of GRUB_DEFAULT or as an argument to either
grub2-reboot or grub2-set-default, GRUB 2 counts the menu entries in the
configuration file starting at 0 for the first entry.

The preferred method for updating GRUB 2 boot loader configuration on Oracle Linux is to use
the grubby command to control and manage all boot requirements. This tool offers the benefit
of being scriptable and can abstract bootloader configuration from the user. You run the
grubby command from the command line on a booted instance of Oracle Linux. See Using
grubby to Manage Kernels for more information.

If you need to change some parameters in the configuration at boot time, you can temporarily
change kernel boot parameters in the GRUB 2 boot menu. See Changing Kernel Boot
Parameters Before Booting.

For more information about using, configuring, and customizing GRUB 2, see the GNU GRUB
Manual, which is also installed as /usr/share/doc/grub2-tools-2.00/grub.html.

Chapter 1
About the GRUB 2 Bootloader

1-3

https://www.gnu.org/software/grub/manual/grub/grub.html
https://www.gnu.org/software/grub/manual/grub/grub.html

2
About Linux Kernels

The Linux Foundation provides a hub for open source developers to code, manage, and scale
different open technology projects. It also manages the Linux Kernel Organization that exists to
distribute various versions of the Linux kernel which is at the core of all Linux distributions,
including those used by Oracle Linux. The Linux kernel manages the interactions between the
computer hardware and user space applications that run on Oracle Linux.

You must install and run one of these Linux kernels with Oracle Linux:

• Unbreakable Enterprise Kernel (UEK): UEK is based on a stable kernel branch from the
Linux Foundation, with customer-driven additions, and several UEKs can exist for a
specific Oracle Linux release. Its focus is performance, stability, and minimal backports by
tracking the mainline source code provided by the Linux Kernel Organization, as closely as
is practical. UEK is tested and used to run Oracle Engineered Systems, Oracle Cloud
Infrastructure (OCI), and large enterprise deployments for Oracle customers.
UEK includes some packages or package versions that aren't available in RHCK. Some
examples are btrfs-tools, rds, and rdma related packages, and some kernel tuning tools.

• Red Hat Compatible Kernel (RHCK): RHCK is fully compatible with the Linux kernel that's
distributed in a corresponding Red Hat Enterprise Linux (RHEL) release. You can use
RHCK to ensure full compatibility with applications that run on Red Hat Enterprise Linux.

Kernel packages are purposely built to avoid dependencies on a particular kernel type. Any
kernel that isn't in use can be removed from the system without impact.

For example, to remove RHCK from a system that's running UEK, you can run:

sudo dnf remove kernel-core

If a system is using RHCK, you can remove UEK by running:

sudo dnf remove kernel-uek-core

See Checking Available Kernels on the System to see what kernels are installed on the
system. See Changing the Default Kernel to learn how to change the default kernel, for
example from RHCK to UEK, or from UEK to RHCK.

Important:

Linux kernels are critical for running applications in the Oracle Linux user space.
Therefore, you must keep the kernel current with the latest bug fixes, enhancements,
and security updates provided by Oracle. To do so, implement a continuous update
and upgrade strategy. See Oracle Linux: Ksplice User's Guide for information on how
to keep the kernel updated without any requirement to reboot the system. See Oracle
Linux: Managing Software on Oracle Linux for general information about keeping
software on the system up-to-date.

See Unbreakable Enterprise Kernel documentation for more information about UEK.

2-1

https://docs.oracle.com/en/operating-systems/oracle-linux/ksplice-user/
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/
https://docs.oracle.com/en/operating-systems/uek/

For more information about available kernels, see Oracle Linux 10 Kernel Reference.

About Kernel Modules
The boot loader loads the kernel into memory. You can add new code to the kernel by including
the source files in the kernel source tree and recompiling the kernel. Kernel modules provide
device drivers that enable the kernel to access new hardware, support different file system
types, and extend its functionality in other ways. The modules can be dynamically loaded and
unloaded on demand. To avoid wasting memory on unused device drivers, Oracle Linux
supports loadable kernel modules (LKMs), which enable a system to run with only the device
drivers and kernel code that are required to be loaded into memory. See Managing Kernel
Modules to see more information on how to manage kernel modules on Oracle Linux.

Note:

From UEK 8 onward, kernel packaging changes are applied to provide a more
streamlined kernel. The minimal number of core kernel modules and supporting files,
such as the files generated by depmod, are provided in the kernel-uek-modules-
core package. Kernel modules that are required for most server configurations are
provided in the kernel-uek-modules package, while optional kernel modules for
hardware less often found in server configurations, such as Bluetooth, Wi-Fi, and
video capture cards, can be found in the kernel-uek-modules-extra package. Note
that both of these packages require the linux-firmware package to be installed.

You can view the contents of these packages by running:

dnf repoquery -l kernel-uek-modules-core
dnf repoquery -l kernel-uek-modules
dnf repoquery -l kernel-uek-modules-extra

To install all available kernel modules, run:

sudo dnf install -y kernel-uek-modules-core kernel-uek-modules kernel-
uek-modules-extra linux-firmware

See Unbreakable Enterprise Kernel 8: Release Notes (6.12.0-0.20.20).

Kernel modules can be signed to protect the system from running malicious code at boot time.
When UEFI Secure Boot is enabled, only kernel modules that contain the correct signature
information can be loaded. See Oracle Linux: Working With UEFI Secure Boot for more
information.

About Weak Update Modules
External modules, such as drivers that are installed by using a driver update disk or that are
installed from an independent package, are typically installed in the /lib/modules/kernel-
version/extra directory. Modules that are stored in this directory are preferred over any
matching modules that are included with the kernel when these modules are being loaded.
Installed external drivers and modules can override existing kernel modules to resolve
hardware issues. For each kernel update, these external modules must be made available to

Chapter 2
About Kernel Modules

2-2

https://docs.oracle.com/en/operating-systems/uek/8/relnotes8.0/
https://docs.oracle.com/en/operating-systems/oracle-linux/secure-boot/

each compatible kernel so that potential boot issues resulting from driver incompatibilities with
the affected hardware can be avoided.

Because the requirement to load the external module with each compatible kernel update is
system critical, a mechanism exists for external modules to be loaded as weak update
modules for compatible kernels.

You make weak update modules available by creating symbolic links to compatible modules in
the /lib/modules/kernel-version/weak-updates directory. The package manager
handles this process automatically when it detects driver modules that are installed in
the /lib/modules/kernel-version/extra directories for any compatible kernels.

For example, if a newer kernel is compatible with a module that was installed for the previous
kernel, an external module (such as kmod-kvdo) is automatically added as a symbolic link in
the weak-updates directory as part of the installation process, as shown in the following
command output:

ls -l /lib/modules/6.12.0-100.28.2.el10.x86_64/weak-updates/kmod-kvdo/uds

lrwxrwxrwx. 1 root root 68 Jul 8 07:57 uds.ko ->
/lib/modules/6.12.0-100.28.2.el10.x86_64/extra/kmod-kvdo/uds/uds.ko

ls -l /lib/modules/6.12.0-100.28.2.el10.x86_64/weak-updates/kmod-kvdo/vdo

lrwxrwxrwx. 1 root root 68 Jul 8 07:57 uds.ko ->
/lib/modules/6.12.0-100.28.2.el10.x86_64/extra/kmod-kvdo/uds/uds.ko

The symbolic link enables the external module to load for kernel updates.

Weak updates are beneficial and ensure that no extra work is required to carry an external
module through kernel updates. Any potential driver-related boot issues after kernel upgrades
are prevented, so this approach provides a more predictable running of a system and its
hardware.

You can remove weak update modules if a kernel version provides a superior or preferred
driver or module version. See Removing Weak Update Modules for more information.

For more information about external driver modules and driver update disks, see Oracle Linux
10: Installing Oracle Linux.

About Virtual File Systems and System Configuration
After the system completes the boot process, virtual file systems provide an interface to the
running kernel and to processes and hardware that are available on the system. Two virtual file
systems are available:

• procfs: is mounted at /proc and provides an interface to kernel data structures, mostly
related to processes and hardware.

• sysfs: is mounted at /sys and provides information about devices, kernel modules, file
systems, and other kernel components.

These virtual file systems are used to control and report on the running kernel, so that the
system configuration can be monitored and adjusted while the operating system is live.

Chapter 2
About Virtual File Systems and System Configuration

2-3

https://docs.oracle.com/en/operating-systems/oracle-linux/10/install/
https://docs.oracle.com/en/operating-systems/oracle-linux/10/install/

Although not part of the kernel virtual file system collection, the /etc/sysconfig system
configuration file path is also important because it provides an interface to many core system
configuration variables that are read when the system boots.

Also see Explore System Configuration Files and Kernel Tunables on Oracle Linux for a
hands-on tutorial on how to configure system settings as described in this chapter.

About the /etc/sysconfig Files
The /etc/sysconfig directory contains some files that control the system's configuration
after boot. The contents of this directory depend on the packages that you have installed on
the system. The /etc/sysconfig directory largely provides a single view of many
configuration files that are used by systemd and related components that control system
configuration, such as Network Manager. In newer releases of Oracle Linux, the number of
configuration files in this directory is diminishing because configuration is better handled by
systemd and other configuration units. For more information about systemd, see Oracle Linux
10: System Management with systemd .

Certain files that you might find in the /etc/sysconfig directory include the following:

atd
Specifies command line arguments for the atd daemon.

crond
Passes arguments to the crond daemon at boot time.

chronyd
Passes arguments to the chronyd daemon used for NTP services at boot time.

firewalld
Passes arguments to the firewall daemon (firewalld) at boot time.

named
Passes arguments to the name service daemon at boot time. The named daemon is a Domain
Name System (DNS) server that's part of the Berkeley Internet Name Domain (BIND)
distribution. This server maintains a table that associates host names with IP addresses on
the network.

samba
Passes arguments to the smbd, nmbd, and winbindd daemons at boot time to support file-
sharing connectivity for Windows clients, NetBIOS-over-IP naming service, and connection
management to domain controllers.

selinux
Controls the state of SELinux on the system. This file is a symbolic link to /etc/selinux/
config.
For more information, see Oracle Linux: Administering SELinux.

snapper
Defines a list of btrfs file systems and thinly provisioned LVM volumes whose contents can be
recorded as snapshots by the snapper utility.

sysstat
Configures logging parameters for system activity data collector utilities such as sar.

Chapter 2
About Virtual File Systems and System Configuration

2-4

https://docs.oracle.com/en/learn/ol-sysctl/
https://docs.oracle.com/en/operating-systems/oracle-linux/10/systemd/
https://docs.oracle.com/en/operating-systems/oracle-linux/10/systemd/
https://docs.oracle.com/en/operating-systems/oracle-linux/selinux/

About the /proc Virtual File System
The files in the /proc directory hierarchy contain information about the system hardware and
the processes that are running on the system. You can change the configuration of the kernel
by writing to certain files that have write permission.

Files that are under the /proc directory are virtual files that the kernel creates on demand to
present a view of the underlying data structures and system information. As such, /proc is an
example of a virtual file system. Most virtual files are listed as 0 bytes in size, but they contain
large amount of information when viewed.

Virtual files such as /proc/interrupts, /proc/meminfo, /proc/mounts, and /proc/
partitions provide a view of the system's hardware. Other files, such as /proc/
filesystems and the files under /proc/sys, provide information about the system's
configuration and through which you can change configurations as needed.

Files that contain information about related topics are grouped into virtual directories. A
separate directory exists in the /proc directory for each process that's running on the system.
The directory's name corresponds to the numeric process ID. For example, /proc/1
corresponds to the systemd process that has a PID of 1.

To examine virtual files, you can use commands such as cat, less, and view, as shown in
the following example:

cat /proc/cpuinfo

processor : 0
vendor_id : GenuineIntel
cpu family : 6
model : 42
model name : Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz
stepping : 7
cpu MHz : 2393.714
cache size : 6144 KB
physical id : 0
siblings : 2
core id : 0
cpu cores : 2
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 5
wp : yes
...

Chapter 2
About Virtual File Systems and System Configuration

2-5

For files that contain non human-readable content, you can use utilities such as lspci, free,
top, and sysctl to access information. For example, the lspci command lists PCI devices
on a system:

sudo lspci

00:00.0 Host bridge: Intel Corporation 440FX - 82441FX PMC [Natoma] (rev 02)
00:01.0 ISA bridge: Intel Corporation 82371SB PIIX3 ISA [Natoma/Triton II]
00:01.1 IDE interface: Intel Corporation 82371AB/EB/MB PIIX4 IDE (rev 01)
00:02.0 VGA compatible controller: InnoTek Systemberatung GmbH VirtualBox
Graphics Adapter
00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet
Controller (rev 02)
00:04.0 System peripheral: InnoTek Systemberatung GmbH VirtualBox Guest
Service
00:05.0 Multimedia audio controller: Intel Corporation 82801AA AC'97 Audio
Controller (rev 01)
00:06.0 USB controller: Apple Inc. KeyLargo/Intrepid USB
00:07.0 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 08)
00:0b.0 USB controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family)
USB2 EHCI Controller
00:0d.0 SATA controller: Intel Corporation 82801HM/HEM (ICH8M/ICH8M-E) SATA
Controller [AHCI mode]
 (rev 02)
...

See procfs Directory Reference for more information about the different directories available
under /proc. See Managing Kernel Parameters at Runtime for information on how you can
view and change kernel parameters in /proc/sys to control system runtime behavior.

About the /sys Virtual File System
In addition to the /proc file system, the kernel exports information to the /sys virtual file
system (sysfs). Programs such as the dynamic device manager (udev), use /sys to access
device and device driver information. See Oracle Linux 10: Managing Devices with Udev for
more information about device management.

Note:

/sys exposes kernel data structures and control points, which implies that the
directory contains circular references, where a directory links to an ancestor directory.
Thus, a find command used on /sys might never stop.

See sysfs Directory Reference to see more information about the directories that you can find
in /sys.

Chapter 2
About Virtual File Systems and System Configuration

2-6

https://docs.oracle.com/en/operating-systems/oracle-linux/10/udev/

3
Changing Kernel Boot Parameters Before
Booting

To make a temporary change to the boot parameters before booting a kernel, follow these
steps:

1. Select the kernel in the GRUB boot menu.

When the GRUB boot menu appears at the beginning of the boot process, use the arrow
keys to highlight the required kernel and press the space bar.

2. Press E to edit the boot configuration for the kernel.

3. Move the cursor to the line starting with linux.

Use the arrow keys to bring the cursor to the end of the line that starts with linux, which is
the boot configuration line for the kernel.

4. Change the boot parameters.

You can add parameters such as systemd.target=runlevel1.target, which instructs the
system to boot into the rescue shell.

See Kernel Boot Parameter Reference for more information about kernel parameters.

5. Press Ctrl+X to boot the system.

The kernel boots with the new parameters that you specified on the kernel command line. As
noted, the changes are temporary and are only active for the current boot session. If you
reboot the system, the changes are reverted. You might want to update the GRUB
configuration to make changes more permanent. You can edit GRUB configuration after the
system is booted. See Changing GRUB 2 Default Kernel Boot Parameters and Changing
Kernel Command Line Boot Parameters for more information.

3-1

4
Changing GRUB 2 Default Kernel Boot
Parameters

To change the boot parameters for the GRUB 2 configuration so that these parameters are
applied by default at every reboot, follow these steps:

1. Edit /etc/default/grub to add kernel boot parameters.

Edit /etc/default/grub and add parameter settings to the GRUB_CMDLINE_LINUX
definition, for example:

GRUB_CMDLINE_LINUX="vconsole.font=latarcyrheb-sun16 vconsole.keymap=uk
crashkernel=1G-4G:192M,4G-64G:256M,64G-:512M rd.lvm.lv=ol/swap
rd.lvm.lv=ol/root biosdevname=0
rhgb quiet systemd.unit=runlevel3.target"

This example adds the parameter systemd.unit=runlevel3.target so that the system
boots into multiuser, nongraphical mode by default.

See Kernel Boot Parameter Reference for more information about kernel parameters.

2. Rebuild the GRUB 2 configuration.

Rebuild /boot/grub2/grub.cfg:

sudo grub2-mkconfig -o /boot/grub2/grub.cfg

The change takes effect at the next system reboot of all configured kernels.

Note:

For systems that boot with UEFI, the grub.cfg file is in the /boot/efi/EFI/
redhat directory because the boot configuration is stored on a dedicated FAT32-
formatted partition.

After the system has successfully booted, the EFI folder on that partition is mounted
inside the /boot/efi directory on the root file system for Oracle Linux.

4-1

5
Using grubby to Manage Kernels

Use the grubby command to manage the GRUB 2 configuration on the system, including
selecting the default boot kernel or configuring extra kernel command line boot parameters to
be used at boot.

See the grubby(8) manual page for more information.

Checking Available Kernels on the System
Kernels are named to include the upstream version number and the distribution build
numbering. The kernel names on Oracle Linux also include indications of whether they're
standard RHCK or whether they're UEK based. Also, the names identify their system
architecture. For example, the el10 suffix indicates an RHCK, while el10uek indicates a UEK.
See About Linux Kernels for more information.

Several methods are available for checking which kernels are available on a system:

• List the kernels in the /boot directory.

ls -1 /boot/vmlinuz*

The command produces an exact list of kernels available on the system.

• Use the grubby command on specific kernels or using the ALL option.

sudo grubby --info /boot/vmlinuz-6.12.0*
sudo grubby --info ALL

The command provides fuller information about the boot configuration associated with
each kernel in the system's /boot directory. The details are based on the GRUB title
configuration.

Comparing the Default Kernel to the Running Kernel
The running kernel and the kernel configured as the default kernel that GRUB 2 selects to boot
into after a timeout period for the boot menu can differ.

If the default kernel version and the running kernel version aren't identical, the underlying
reasons might be one of the following:

• A newer kernel is installed, but the system hasn't been rebooted.

• During a system reboot, a different kernel was manually selected to be the operative
kernel.

• The default kernel was manually updated but the system hasn't been rebooted after the
update.

To compare the default configured kernel to the running kernel, do the following:

1. Check the default kernel configured in GRUB 2.

5-1

To check which kernel is already configured as the current default kernel to use at boot,
run:

sudo grubby --default-kernel

2. Check the running kernel version.

To check which kernel is running on a system, run:

uname -r

Changing the Default Kernel
Use grubby to set the default kernel that GRUB2 boots into after a timeout period is reached
when displaying the GRUB2 boot menu.

You might change the default kernel from RHCK to UEK, from UEK to RHCK, or to switch to a
specific kernel version.

You can follow one of two options to set the default kernel in GRUB 2, by using the grubby
command, choose either of the following:

• Use the grubby --set-default command to set the default kernel.

To switch to a different default kernel, run the following command making sure to specify
the full path to the selected default kernel:

sudo grubby --set-default /boot/vmlinuz-6.12.0-100.28.2.el10uek.x86_64

The change takes effect immediately and persists across system reboots.

• Use the grubby --set-default-index command to set the default kernel to match
the kernel at a particular index point in the kernel boot list. The index values are displayed
when you run the grubby --info command

For example, you can use the --set-default-index=0 option to set the default kernel to
the first kernel listed in the kernel boot index by running:

sudo grubby --set-default-index=0

Example 5-1 Switch to the Most Recent Available RHCK or UEK Kernel

By using the naming convention to identify UEK kernels and RHCK kernels that are available
in the /boot directory, you can easily switch the default kernel to use the most recent version
of either kernel type.

• To switch to the most recent version of UEK on the system, run:

sudo grubby --set-default $(ls /boot/vmlinuz-* | grep 'uek' | sort -V |
tail -1)

• To switch to the most recent version of RHCK on the system, run:

sudo grubby --set-default $(ls /boot/vmlinuz-* | grep -v 'uek' | sort -V |
tail -1)

Reboot the system after setting the default kernel to switch to that kernel type.

Chapter 5
Changing the Default Kernel

5-2

Changing Kernel Command Line Boot Parameters
Sometimes you might need to edit the GRUB 2 configuration to specify particular kernel boot
parameters on the kernel command line. Setting parameters in the GRUB 2 configuration
means that the parameters are used for the affected kernels at every boot.
You can update the GRUB 2 boot configuration for a specific kernel, or across all kernels that
are installed on the system by doing the following:

1. Use the grubby --update-kernel command to update a kernel entry with --args to
add new arguments or to change existing argument values, or --remove-args to remove
existing arguments.

Multiple arguments can be specified for each option in a quoted space-separated list. You
can add and remove arguments in the same operation. When using the --args option, if
an argument already exists the new value replaces the old values.

To update a specific kernel, run the grubby --update-kernel command with the full
path to the kernel that you want to update. To update all kernel entries to use a specific
kernel boot argument, you can use grubby --update-kernel=ALL.

For example, you can update all kernel entries to change the loglevel and LANG
arguments:

sudo grubby --update-kernel=ALL --args "loglevel=3,LANG=en_GB.UTF-8"

See Kernel Boot Parameter Reference for more information about kernel parameters.

2. Verify that the changes have taken effect and that the command line arguments are correct
for the kernel that you updated.

For example, if you have made a change to all kernels, use the grubby --info ALL
command to check that the change is implemented across all kernels:

sudo grubby --info ALL

Checking the Kernel Command Line Last Used to Boot The
System

The kernel boot parameters that were last used to boot a system are recorded in /proc/
cmdline.

For more information, see the kernel-command-line(7) manual page.

• Check the contents of /proc/cmdline to view the kernel command line that was used to
boot the running system.

cat /proc/cmdline

BOOT_IMAGE=(hd0,gpt2)/vmlinuz-6.12.0-100.28.2.el10.x86_64
root=/dev/mapper/ol-root ro
resume=UUID=b2136352-95d6-4eb7-93db-8f0ca4da7238

Chapter 5
Changing Kernel Command Line Boot Parameters

5-3

rd.luks.uuid=luks-a80f8f10-75b6-45de-b63e-64b8b6a3a94b
crashkernel=1G-4G:192M,4G-64G:256M,64G-:512M rhgb quiet

Chapter 5
Checking the Kernel Command Line Last Used to Boot The System

5-4

6
Managing Kernel Parameters at Runtime

Some virtual files under /proc, and especially under /proc/sys, are writable. You can adjust
settings in the running kernel through these files. For example, to change the hostname, you
can revise the /proc/sys/kernel/hostname file as follows:

echo www.mydomain.com | sudo tee /proc/sys/kernel/hostname

Other files take binary or Boolean values, such as the setting of IP forwarding, which is defined
in /proc/sys/net/ipv4/ip_forward:

cat /proc/sys/net/ipv4/ip_forward

0

echo 1 | sudo tee /proc/sys/net/ipv4/ip_forward
cat /proc/sys/net/ipv4/ip_forward

1

Use the sysctl command to view or change values under the /proc/sys directory.

Note:

Even root can't bypass the file access permissions of virtual file entries under /
proc. If you change the value of a read-only entry such as /proc/partitions, no
kernel code exists to service the write() system call.

For more information, see the sysctl(8) and sysctl.d(5) manual pages.

Listing Configurable Kernel Parameters and Values
Use the sysctl command to browse kernel system parameters that are defined in the /
proc/sys virtual file system. The following methods of viewing kernel parameters and their
values by using the sysctl command are available:

6-1

• Run sysctl -a to view all available kernel parameters and their values for the running
kernel.

sysctl -a

kernel.sched_child_runs_first = 0
kernel.sched_min_granularity_ns = 2000000
kernel.sched_latency_ns = 10000000
kernel.sched_wakeup_granularity_ns = 2000000
kernel.sched_shares_ratelimit = 500000
...

Note:

The delimiter character in the name of a setting is a period (.) rather than a slash
(/) in a path relative to /proc/sys, such as net.ipv4.ip_forward. This setting
represents net/ipv4/ip_forward. As another example, kernel.msgmax
represents kernel/msgmax.

• Display an individual setting or a collection of settings by specifying its name as the
argument to sysctl.

sysctl net.ipv4.ip_forward

net.ipv4.ip_forward = 0

For a broader collection of settings, you can specify the name of a collection of settings
earlier in the naming hierarchy:

sysctl net.ipv4.conf.all

net.ipv4.conf.all.accept_local = 0
net.ipv4.conf.all.accept_redirects = 0
net.ipv4.conf.all.accept_source_route = 0
net.ipv4.conf.all.arp_accept = 0
net.ipv4.conf.all.arp_announce = 0
net.ipv4.conf.all.arp_filter = 0
net.ipv4.conf.all.arp_ignore = 0
net.ipv4.conf.all.arp_notify = 0
net.ipv4.conf.all.bc_forwarding = 0
net.ipv4.conf.all.bootp_relay = 0
net.ipv4.conf.all.disable_policy = 0
net.ipv4.conf.all.disable_xfrm = 0
net.ipv4.conf.all.drop_gratuitous_arp = 0
net.ipv4.conf.all.drop_unicast_in_l2_multicast = 0
net.ipv4.conf.all.force_igmp_version = 0
net.ipv4.conf.all.forwarding = 0
net.ipv4.conf.all.igmpv2_unsolicited_report_interval = 10000
net.ipv4.conf.all.igmpv3_unsolicited_report_interval = 1000

Chapter 6
Listing Configurable Kernel Parameters and Values

6-2

net.ipv4.conf.all.ignore_routes_with_linkdown = 0
net.ipv4.conf.all.log_martians = 0
net.ipv4.conf.all.mc_forwarding = 0
net.ipv4.conf.all.medium_id = 0
net.ipv4.conf.all.promote_secondaries = 0
net.ipv4.conf.all.proxy_arp = 0
net.ipv4.conf.all.proxy_arp_pvlan = 0
net.ipv4.conf.all.route_localnet = 0
net.ipv4.conf.all.rp_filter = 0
net.ipv4.conf.all.secure_redirects = 1
net.ipv4.conf.all.send_redirects = 0
net.ipv4.conf.all.shared_media = 1
net.ipv4.conf.all.src_valid_mark = 0
net.ipv4.conf.all.tag = 0

Updating Kernel Parameters
Use the sysctl command to update kernel system parameters that are defined in the /
proc/sys virtual file system.

1. Use the sysctl -w command to set the value for a kernel parameter.

for example, to change the value of the net.ipv4.ip_forward setting to enabled, use the
following command format:

sudo sysctl -w net.ipv4.ip_forward=1

Changes that you make in this way remain in force only until the system is rebooted.

2. To make configuration changes persist after the system is rebooted, add them to
the /etc/sysctl.d directory as a configuration file.

Any changes that you make to the files in this directory take effect when the system
reboots or if you run the sysctl --system command, for example:

echo 'net.ipv4.ip_forward=1' | sudo tee /etc/sysctl.d/ip_forward.conf
grep -r ip_forward /etc/sysctl.d

/etc/sysctl.d/ip_forward.conf:net.ipv4.ip_forward=1

3. To reset the system to use only the values that are configured to load at boot time, use the
sysctl --system command.

sudo sysctl --system

* Applying /usr/lib/sysctl.d/00-system.conf ...
net.bridge.bridge-nf-call-ip6tables = 0
net.bridge.bridge-nf-call-iptables = 0
net.bridge.bridge-nf-call-arptables = 0
* Applying /usr/lib/sysctl.d/50-default.conf ...
kernel.sysrq = 16
kernel.core_uses_pid = 1
net.ipv4.conf.default.rp_filter = 1

Chapter 6
Updating Kernel Parameters

6-3

net.ipv4.conf.all.rp_filter = 1
net.ipv4.conf.default.accept_source_route = 0
net.ipv4.conf.all.accept_source_route = 0
net.ipv4.conf.default.promote_secondaries = 1
net.ipv4.conf.all.promote_secondaries = 1
fs.protected_hardlinks = 1
fs.protected_symlinks = 1
* Applying /etc/sysctl.d/99-sysctl.conf ...
* Applying /etc/sysctl.d/ip_forward.conf ...
net.ipv4.ip_forward = 1
* Applying /etc/sysctl.conf ...

Note that any configuration entries that you added to /etc/sysctl.d are read by the
system and applied.

Chapter 6
Updating Kernel Parameters

6-4

7
Managing Kernel Modules

Use the lsmod command to view which modules are loaded into the running kernel. Use the
modinfo command to find out information about a kernel module. Use the modprobe
command to load a module into the running kernel or to change kernel module parameters.
You can also create configuration files in /etc/modprobe.d/ to control parameters that are
used when kernel modules are loaded. You can also configure whether modules load at boot
time, by editing configuration in /etc/modules-load.d/.

Listing Information About Loaded Modules
Use the lsmod command to list modules that are loaded into the kernel and use the modinfo
command to find out more information about each module. For more information, see the
lsmod(5) and modinfo(8) manual pages.

• Run the lsmod command to list the modules that are loaded into the kernel.

lsmod

Module Size Used by
udp_diag 16384 0
ib_core 311296 0
tcp_diag 16384 0
inet_diag 24576 2 tcp_diag,udp_diag
nfsv3 49152 0
nfs_acl 16384 1 nfsv3
...
dm_mirror 24576 0
dm_region_hash 20480 1 dm_mirror
dm_log 20480 2 dm_region_hash,dm_mirror
...

The output shows the module name, the amount of memory it uses, the number of
processes using the module and the names of other modules on which it depends. The
module dm_log, for example, depends on the dm_region_hash and dm_mirror modules.
The example also shows that two processes are using all three modules.

• Use the modinfo command to show detailed information about a module.

modinfo ahci

filename: /lib/modules/6.12.0-100.28.2.el10uek.x86_64/kernel/
drivers/ata/ahci.ko.xz
version: 3.0
license: GPL
description: AHCI SATA low-level driver
author: Jeff Garzik

7-1

srcversion: 1DC2CDA088C5DC03187A5E0
alias: pci:v*d*sv*sd*bc01sc06i01*
...
depends: libata,libahci
intree: Y
name: ahci
retpoline: Y
vermagic: 6.12.0-100.28.2.el10uek.x86_64 SMP preempt mod_unload
modversions
sig_id: PKCS#7
signer: Oracle CA Server
sig_key: 7B:38:D7:DC:38:51:E7:C7:F1:61:C5:5D:8D:CC:6B:1C:90:82:4D:05
sig_hashalgo: sha512
signature:
64:05:FC:CC:B1:D3:88:91:B6:C9:A2:39:A3:A9:BB:8C:95:11:36:20:

62:9C:95:D9:8B:B8:F6:5F:CC:D2:93:4E:7D:59:E1:80:DB:70:FA:4C:

9B:8D:75:E3:98:AB:9D:BD:94:93:A7:72:0B:28:3B:15:4E:96:0D:E3:

9F:FE:24:1A:09:B5:31:27:F2:EE:45:61:C8:4A:D3:4B:82:07:23:66:

A1:06:F4:DF:B9:FF:D2:78:08:1D:AA:EC:DE:3C:E4:17:BD:69:6A:A5:

 ...

64:F0:4F:E2:4E:F3:47:A5:40:E8:F7:07:68:3F:58:25:32:BA:13:E9:
 00:46:7A:2F:30:73:B4:32:48:76:6B:1E
parm: marvell_enable:Marvell SATA via AHCI (1 = enabled) (int)
parm: mobile_lpm_policy:Default LPM policy for mobile chipsets
(int)
...

The output includes the following information:

filename
Absolute path of the kernel object file.

version
Version number of the module. Note that the version number might not be updated for
patched modules and might be missing or removed in newer kernels.

license
License information for the module.

description
Short description of the module.

author
Author credit for the module.

srcversion
Hash of the source code used to create the module.

Chapter 7
Listing Information About Loaded Modules

7-2

alias
Internal alias names for the module.

depends
Comma-separated list of any modules on which this module depends.

retpoline
A flag indicating that the module is built that includes a mitigation against the Spectre
security vulnerability.

name
The name of the module.

intree
A flag indicating that the module is built from the kernel in-tree source and isn't tainted.

vermagic
Kernel version that was used to compile the module, which is checked against the current
kernel when the module is loaded.

sig_id
The method used to store signing keys that might have been used to sign a module for
Secure Boot, typically PKCS#7

signer
The name of the signing key used to sign a module for Secure Boot.

sig_key
The signature key identifier for the key used to sign the module.

sig_hashalgo
The algorithm used to generate the signature hash for a signed module.

signature
The signature data for a signed module.

parm
Module parameters and descriptions.

• Use the modinfo -n command to find the file path to the module on the file system.

Modules are loaded into the kernel from kernel object files (/lib/modules/
kernel_version/kernel/*ko*). To display the absolute path of a kernel object file,
specify the -n option, for example:

modinfo -n parport

/lib/modules/6.12.0-100.28.2.el10uek.x86_64/kernel/drivers/parport/
parport.ko.xz

Loading and Unloading Modules
Modules are loaded and unloaded by using the modprobe command. For more information,
see the modprobe(8) and modules.dep(5) manual pages.

Chapter 7
Loading and Unloading Modules

7-3

• Load a kernel module using the modprobe command.

The modprobe command loads kernel modules, for example:

sudo modprobe nfs
sudo lsmod | grep nfs

nfs 266415 0
lockd 66530 1 nfs
fscache 41704 1 nfs
nfs_acl 2477 1 nfs
auth_rpcgss 38976 1 nfs
sunrpc 204268 5 nfs,lockd,nfs_acl,auth_rpcgss

Include the -v (verbose) option to show whether any other modules are loaded to resolve
dependencies.

sudo modprobe -v nfs

insmod /lib/modules/6.12.0-100.28.2.el10uek.x86_64/kernel/net/sunrpc/
auth_gss/auth_rpcgss.ko
insmod /lib/modules/6.12.0-100.28.2.el10uek.x86_64/kernel/fs/nfs_common/
nfs_acl.ko
insmod /lib/modules/6.12.0-100.28.2.el10uek.x86_64/kernel/fs/fscache/
fscache.ko
...

Note:

The modprobe command doesn't reload modules that are already loaded. You
must first unload a module before you can load it again.

• Unload a module by using the modprobe -r command.

Use the -r option to unload kernel modules:

sudo modprobe -rv nfs

rmmod /lib/modules/6.12.0-100.28.2.el10uek.x86_64/kernel/fs/nfs/nfs.ko
rmmod /lib/modules/6.12.0-100.28.2.el10uek.x86_64/kernel/fs/lockd/lockd.ko
rmmod /lib/modules/6.12.0-100.28.2.el10uek.x86_64/kernel/fs/fscache/
fscache.ko
...

Modules are unloaded in reverse order in which they were first loaded. Modules aren't
unloaded if a process or another loaded module requires them.

Chapter 7
Loading and Unloading Modules

7-4

Changing Kernel Module Parameters
Kernel modules, such as hardware drivers, often have custom parameters that can be set to
change the behavior of the driver or module. Several mechanisms are available to update
module parameters.

• Use sysfs to update module parameters immediately.

You can change the values of some parameters for loaded modules and built-in drivers by
writing the new value to a file under /sys/module/module_name/parameters, for
example:

echo 0 | sudo tee /sys/module/ahci/parameters/skip_host_reset

See About the /sys Virtual File System and sysfs Directory Reference.

Note that changes aren't persistent and don't apply automatically after reboot.

• Use the modprobe command to change the running configuration for a module.

To change a module's behavior, specify parameters for the module in the modprobe
command:

sudo modprobe module_name parameter=value ...

Separate parameter and value pairs with spaces. Array values are represented by a
comma-separated list, for example:

sudo modprobe foo parm=bar arrayparm=1,2,3,4

• Update the modprobe configuration for more permanent module configuration changes.

Configuration files (/etc/modprobe.d/*.conf) specify module options, create module
aliases, and override the usual behavior of modprobe for modules with special
requirements. The /etc/modprobe.conf file that was used with earlier versions of
modprobe is also valid if it exists. Entries in the /etc/modprobe.conf and /etc/
modprobe.d/*.conf files use the same syntax. See Modprobe Configuration Reference
for more information.

Specifying Modules To Be Loaded at Boot Time
The system loads most modules automatically at boot time. You can also add modules to be
loaded by creating a configuration file for the module in the /etc/modules-load.d directory.
The file name must have the extension .conf.

Changes to the /etc/modules-load.d directory persist across reboots.

1. To force a module to load at boot time, create a configuration file in /etc/modules-
load.d for the module.

For example to force the bnxt_en.conf to load at boot time, run the following command:

echo bnxt_en | sudo tee /etc/modules-load.d/bnxt_en.conf

Chapter 7
Changing Kernel Module Parameters

7-5

2. Verify that the file exists and contains the module name.

cat /etc/modules-load.d/bnxt_en.conf

If the module isn't already loaded, you can load it manually by using the modprobe
command, or you can reboot the system and it loads automatically using the configuration
that you have provided.

Preventing Modules From Loading at Boot Time
You can prevent modules from loading at boot time by adding a deny rule in a configuration file
in the /etc/modprobe.d directory and then rebuilding the initial ramdisk used to load the
kernel at boot time.

WARNING:

Disabling modules can have unintended consequences and can prevent a system
from booting or from being fully functional after boot. As a best practice, create a
backup ramdisk image before making changes and ensure that the configuration is
correct.

1. Create a configuration file to prevent the module from loading.

For example:

sudo tee /etc/modprobe.d/bnxt_en-deny.conf <<'EOF'
#DENY bnxt_en
blacklist bnxt_en
install bnxt_en /bin/false
EOF

2. Rebuild the initial ramdisk image.

sudo dracut -f -v

3. Reboot the system for the changes to take effect.

sudo reboot

Removing Weak Update Modules
In certain cases, you might remove weak update modules in place of a newer kernel, for
example, in the case where an issue with a shipped driver has been resolved in a newer
kernel. In this case, you might prefer to use the new driver rather than the external module that
you installed as part of a driver update. See About Weak Update Modules for more information.

Two different approaches can be used to remove a weak update module.

1. Remove the symbolic link manually.

Chapter 7
Preventing Modules From Loading at Boot Time

7-6

Because weak update modules are symbolically linked for each kernel version on the
system, you can remove the symbolic link for the module from each kernel where you don't
want it to apply. For example:

sudo rm -rf /lib/modules/6.12.0-100.28.2.el10uek.x86_64/weak-updates/kmod-
kvdo

In this example, the weak update module, kmod-kvdo, is removed from the kernel,
6.12.0-100.28.2.el10uek.x86_64.

2. Use the weak-modules command to remove the module.

You can use the weak-modules command to remove a specified weak update module for
all compatible kernels or use the command to remove the weak update module for the
current kernel. You can also use the weak-modules command similarly to add weak
update modules. For more information on this command, run:

weak-modules -h

You can also use the weak-modules command with the dry-run option to test the results
without making actual changes, for example:

weak-modules --remove-kernel --dry-run --verbose

Chapter 7
Removing Weak Update Modules

7-7

8
Managing Resources Using Control Groups

Control groups, referred to as cgroups, are an Oracle Linux kernel feature that organizes
processes (PIDs) into hierarchical groups for resource allocation. For example, if you have
identified three sets of processes that need to be allocated CPU time in a ratio of 150:100:50,
you can create three cgroups, each with a CPU weight corresponding to one of the three
values in the ratio, and then assign the appropriate processes to each cgroup.

By default, systemd creates a cgroup for the following:

• Each systemd service set up on the host.

For example, a server might have control group NetworkManager.service to group
processes owned by the NetworkManager service, and control group firewalld.service to
group processes owned by the firewalld service, and so on.

• Each user (UID) on the host.

The cgroup functionality is mounted as a virtual file system under /sys/fs/cgroup. Each
cgroup has a corresponding directory within /sys/fs/cgroup file system. For example, the
cgroups created by systemd for the services it manages can be seen by running the command
ls -l /sys/fs/cgroup/system.slice | grep ".service" as shown in the following sample
code block:

ls -l /sys/fs/cgroup/system.slice | grep ".service"
 ...root root 0 Mar 22 10:47 atd.service
 ...root root 0 Mar 22 10:47 auditd.service
 ...root root 0 Mar 22 10:47 chronyd.service
 ...root root 0 Mar 22 10:47 crond.service
 ...root root 0 Mar 22 10:47 dbus-broker.service
 ...root root 0 Mar 22 10:47 dtprobed.service
 ...root root 0 Mar 22 10:47 firewalld.service
 ...root root 0 Mar 22 10:47 httpd.service
 ...

You can also create custom cgroups by creating directories under the /sys/fs/cgroup
virtual file system and assigning process IDs (PIDs) to different cgroups according to system
requirements. However, the recommended practice is to use systemd to configure cgroups
instead of creating the cgroups manually under /sys/fs/cgroup. See Oracle Linux 10:
System Management with systemd for the recommended method of managing cgroups
through systemd.

8-1

https://docs.oracle.com/en/operating-systems/oracle-linux/10/systemd/
https://docs.oracle.com/en/operating-systems/oracle-linux/10/systemd/

Note:

Use systemd to configure cgroups.

This topic describes the manual creation of cgroup directories in the /sys/fs/cgroup
file system to provide background knowledge of the kernel cgroup feature to which
systemd provides access. We recommend configuring cgroups by using systemd.

Oracle Linux 10 provides control groups version 2 (cgroups v2). These groups provide a
single control group hierarchy against which all resource controllers are mounted. In this
hierarchy, you can obtain better proper coordination of resource uses across different resource
controllers. This version is an improvement over cgroups v1 whose over flexibility prevented
proper coordination of resource use among the system consumers.

Note that cgroups v1 is deprecated and isn't available on Oracle Linux 10. The cgroups v2
functionality is enabled and mounted by default.

For more information about control groups, see the cgroups(7) and sysfs(5) manual pages.

Verifying cgroups v2
At boot time, Oracle Linux 10 mounts cgroups v2 by default.

1. Verify that cgroups v2 is enabled and mounted on the system.

sudo mount -l | grep cgroup

cgroup2 on /sys/fs/cgroup type cgroup2
(rw,nosuid,nodev,noexec,relatime,seclabel,nsdelegate,memory_recursiveprot)

2. Optionally, check the contents of /sys/fs/cgroup directory, which is also called the root
control group.

ls -l /sys/fs/cgroup/

For cgroups v2, the files in the directory should have prefixes to their file names, for
example, cgroup.*, cpu.*, memory.*, and so on. See About the Control Group File System.

About Kernel Resource Controllers
Control groups manage resource use through kernel resource controllers. A kernel resource
controller represents a single resource, such as CPU time, memory, network bandwidth, or disk
I/O.

Chapter 8
Verifying cgroups v2

8-2

To identify mounted resource controllers in the system, check the contents of the /procs/
cgroups file, for example:

less /proc/cgroups

#subsys_name hierarchy num_cgroups enabled
cpuset 0 103 1
cpu 0 103 1
cpuacct 0 103 1
blkio 0 103 1
memory 0 103 1
devices 0 103 1
freezer 0 103 1
net_cls 0 103 1
perf_event 0 103 1
net_prio 0 103 1
hugetlb 0 103 1
pids 0 103 1
rdma 0 103 1
misc 0 103 1

For a detailed explanation of the kernel resource controllers of cgroups, see the cgroups(7)
manual page.

About the Control Group File System
cgroup functionality is mounted as a hierarchical file system in /sys/fs/cgroup.

The directory /sys/fs/cgroup is also called the root control group. The directory contents
might look as follows::

ls /sys/fs/cgroup

cgroup.controllers cpuset.mems.effective memory.stat
cgroup.max.depth cpu.stat misc.capacity
cgroup.max.descendants dev-hugepages.mount sys-fs-fuse-connections.mount
cgroup.procs dev-mqueue.mount sys-kernel-config.mount
cgroup.stat init.scope sys-kernel-debug.mount
cgroup.subtree_control io.pressure sys-kernel-tracing.mount
cgroup.threads io.stat system.slice
cpu.pressure memory.numa_stat user.slice
cpuset.cpus.effective memory.pressure

You can use the mkdir command to create cgroup subdirectories within the root control group.
For example, you might create the following cgroup subdirectories:

• /sys/fs/cgroup/MyGroups/
• /sys/fs/cgroup/MyGroups/cgroup1
• /sys/fs/cgroup/MyGroups/cgroup2

Chapter 8
About the Control Group File System

8-3

Note:

Best practice is to create child cgroups at least 2 levels deep inside the /sys/fs/
cgroup. The examples in the preceding list follow this practice by using the first child
group, MyGroups, as a parent that contains the different cgroups needed for the
system.

Each cgroup in the hierarchy contains the following files:

cgroup.controllers
This read-only file lists the controllers available in the current cgroup. The contents of this file
match the contents of the cgroup.subtree_control file in the parent cgroup.

cgroup.subtree_control
This file contains those controllers in the cgroup.controllers file that are enabled for the
current cgroup's immediate child cgroups.
When a controller (for example, pids) is present in the cgroup.subtree_control file, the
corresponding controller-interface files (for example, pids.max) are automatically created in
the immediate children of the current cgroup.

For a sample procedure that creates child groups where you can implement resource
management for an application, see Setting CPU Weight to Regulate Distribution of CPU Time.

To remove a cgroup, ensure that the cgroup doesn't contain other child groups, and then
remove the directory. For example, to remove child group /sys/fs/cgroup/MyGroups/cgroup1
you can run the following command:.

sudo rmdir /sys/fs/cgroup/MyGroups/cgroup1

About Resource Distribution Models
The following distribution models provide you ways of implementing control or regulation in
distributing resources for use by cgroups v2:

Weights
In this model, the weights of all the control groups are totaled. Each group receives a fraction
of the resource based on the ratio of the group's weight against the total weight.
Consider 10 control groups, each with a weight of 100 for a combined total of 1000. In this
case, each group can use a tenth of a specified resource.
Weight is typically used to distribute stateless resources. To apply this resource, the
CPUWeight option is used.

Limits
In this model, a group can use up to the configured amount of a resource. If a resource such
as memory usage for a process exceeds the limit, the kernel might stop the process with an
out-of-memory (oom) message.
You can also overcommit resources so that the sum of the subgroups limits can exceed the
limit of the parent group. Overcommitment assumes that resources in all subgroups aren't
likely to all reach their limits at the same time.
To implement this distribution model, the MemoryMax option is often used.

Chapter 8
About Resource Distribution Models

8-4

Protections
In this model, a group is assigned a protected boundary. If the group's resource usage
remains within the protected amount, the kernel can't deprive the group of the use of the
resource in favor of other groups that are competing for the same resource. In this model, an
overcommitment of resources is allowed.
To implement this model, the MemoryLow option is often used.

Allocations
In this model, a specific absolute amount is allocated for the use of finite type of resources,
such as real-time budget.

Managing cgroups v2 Using sysfs
This section shows you how to create and configure cgroups to manage the distribution of
resources amongst processes running on the system by using the sysfs interface.

Important:

We recommend that you use systemd to handle all resource management. See
Oracle Linux 10: System Management with systemd for more information. The
examples provided here provide the context for actions that systemd performs on a
system and show the functionality outside of systemd. The information provided can
be helpful when debugging issues with cgroups.

The example procedure involves allocating CPU time between cgroups that each have
different application PIDs assigned to them. The CPU time and application PID values are set
in each group's cpu.weight and cgroup.procs files.

The example also includes the steps required to ensure the cpu controller and its associated
files, including the cpu.weight file, are available in the cgroups you need to create
under /sys/fs/cgroup.

Preparing the Control Group for Distribution of CPU Time
This procedure describes how to manually prepare a control group to manage the distribution
of CPU time. Note that the recommended approach to configuring control groups is to use
systemd.

1. Verify that the cpu controller is available at the top of the hierarchy, in the root control
group.

Printing the contents of the /sys/fs/cgroup/cgroup.controllers file on the screen:

sudo cat /sys/fs/cgroup/cgroup.controllers

cpuset cpu io memory hugetlb pids rdma misc

You can add any controllers listed in the cgroup.controllers file to the
cgroup.subtree_control file in the same directory to make them available to the group's
immediate child cgroups.

Chapter 8
Managing cgroups v2 Using sysfs

8-5

https://docs.oracle.com/en/operating-systems/oracle-linux/10/systemd/

2. Add the cpu controller to the cgroup.subtree_control file to make it available to
immediate child cgroups of the root.

By default, only the memory and pids controllers are in the file. To add the cpu controller,
type:

echo "+cpu" | sudo tee /sys/fs/cgroup/cgroup.subtree_control

3. Optionally, verify that the cpu controller has been added as expected.

sudo cat /sys/fs/cgroup/cgroup.subtree_control

cpu memory pids

4. Create a child group under the root control group to become the new control group for
managing CPU resources on applications.

sudo mkdir /sys/fs/cgroup/MyGroups

5. Optionally, list the contents of the new subdirectory, or child group, and confirm that the cpu
controller is present as expected.

ls -l /sys/fs/cgroup/MyGroups

-r—r—r--. 1 root root 0 Jun 1 10:33 cgroup.controllers
-r—r—r--. 1 root root 0 Jun 1 10:33 cgroup.events
-rw-r—r--. 1 root root 0 Jun 1 10:33 cgroup.freeze
-rw-r—r--. 1 root root 0 Jun 1 10:33 cgroup.max.depth
-rw-r—r--. 1 root root 0 Jun 1 10:33 cgroup.max.descendants
-rw-r—r--. 1 root root 0 Jun 1 10:33 cgroup.procs
-r—r—r--. 1 root root 0 Jun 1 10:33 cgroup.stat
-rw-r—r--. 1 root root 0 Jun 1 10:33 cgroup.subtree_control
…
-r—r—r--. 1 root root 0 Jun 1 10:33 cpu.stat
-rw-r—r--. 1 root root 0 Jun 1 10:33 cpu.weight
-rw-r—r--. 1 root root 0 Jun 1 10:33 cpu.weight.nice
…
-r—r—r--. 1 root root 0 Jun 1 10:33 memory.events.local
-rw-r—r--. 1 root root 0 Jun 1 10:33 memory.high
-rw-r—r--. 1 root root 0 Jun 1 10:33 memory.low
…
-r—r—r--. 1 root root 0 Jun 1 10:33 pids.current
-r—r—r--. 1 root root 0 Jun 1 10:33 pids.events
-rw-r—r--. 1 root root 0 Jun 1 10:33 pids.max

6. Enable the cpu controller in cgroup.subtree_control file in the MyGroups directory to
make it available to its immediate child cgroups.

echo "+cpu" | sudo tee /sys/fs/cgroup/MyGroups/cgroup.subtree_control

Chapter 8
Managing cgroups v2 Using sysfs

8-6

7. Optionally, verify that the cpu controller is enabled for child groups under MyGroups.

sudo cat /sys/fs/cgroup/MyGroups/cgroup.subtree_control

cpu

Setting CPU Weight to Regulate Distribution of CPU Time
This procedure describes how to set CPU weight for three different processes by using a
control group to manage the distribution of CPU time. Note that the recommended approach to
configuring control groups is to use systemd.

This procedure is based on the following assumptions:

• The application that's consuming CPU resources excessively is sha1sum, as shown in the
following sample output of the top command:

sudo top

...
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+
COMMAND
33301 root 20 0 18720 1756 1468 R 99.0 0.0 0:31.09
sha1sum
33302 root 20 0 18720 1772 1480 R 99.0 0.0 0:30.54
sha1sum
33303 root 20 0 18720 1772 1480 R 99.0 0.0 0:30.54
sha1sum
1 root 20 0 109724 17196 11032 S 0.0 0.1 0:03.28
systemd
2 root 20 0 0 0 0 S 0.0 0.0 0:00.00
kthreadd
3 root 0 -20 0 0 0 I 0.0 0.0 0:00.00
rcu_gp
4 root 0 -20 0 0 0 I 0.0 0.0 0:00.00
rcu_par_gp
 ...

• The sha1sum processes have PIDs 33301, 33302, and 33303, as listed in the preceding
sample output.

Important:

As a prerequisite to the following procedure, you must complete the preparations of
cgroup-v2 as described in Preparing the Control Group for Distribution of CPU Time.
If you skipped those preparations, you can't complete this procedure.

Chapter 8
Managing cgroups v2 Using sysfs

8-7

1. Create 3 child groups in the MyGroups subdirectory.

sudo mkdir /sys/fs/cgroup/MyGroups/g1
sudo mkdir /sys/fs/cgroup/MyGroups/g2
sudo mkdir /sys/fs/cgroup/MyGroups/g3

2. Configure the CPU weight for each child group.

echo "150" | sudo tee /sys/fs/cgroup/MyGroups/g1/cpu.weight
echo "100" | sudo tee /sys/fs/cgroup/MyGroups/g2/cpu.weight
echo "50" | sudo tee /sys/fs/cgroup/MyGroups/g3/cpu.weight

3. Apply the application PIDs to their corresponding child groups.

echo "33301" | sudo tee /sys/fs/cgroup/Example/g1/cgroup.procs
echo "33302" | sudo tee /sys/fs/cgroup/Example/g2/cgroup.procs
echo "33303" | sudo /sys/fs/cgroup/Example/g3/cgroup.procs

These commands set the selected applications to become members of the MyGroups/g*/
control groups. The CPU time for each sha1sum process depends on the CPU time
distribution as configured for each group.

The weights of the g1, g2, and g3 groups that have running processes are summed up at
the level of MyGroups, which is the parent control group.

With this configuration, when all processes run at the same time, the kernel allocates to
each of the sha1sum processes the proportionate CPU time based on their respective
cgroup's cpu.weight file, as follows:

Child group cpu.weight setting Percent of CPU time
allocation

g1 150 ~50% (150/300)
g2 100 ~33% (100/300)
g3 50 ~16% (50/300)

If one child group has no running processes, then the CPU time allocation for running
processes is recalculated based on the total weight of the remaining child groups with
running processes. For example, if the g2 child group doesn't have any running processes,
then the total weight becomes 200, which is the weight of g1+g3. In this case, the CPU
time for g1 becomes 150/200 (~75%) and for g3, 50/200 (~25%)

4. Check that the applications are running in the specified control groups.

sudo cat /proc/33301/cgroup /proc/33302/cgroup /proc/33303/cgroup

0::/MyGroups/g1
0::/MyGroups/g2
0::/MyGroups/g3

Chapter 8
Managing cgroups v2 Using sysfs

8-8

5. Check the current CPU consumption after you have set the CPU weights.

top

...
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+
COMMAND
33301 root 20 0 18720 1748 1460 R 49.5 0.0 415:05.87
sha1sum
33302 root 20 0 18720 1756 1464 R 32.9 0.0 412:58.33
sha1sum
33303 root 20 0 18720 1860 1568 R 16.3 0.0 411:03.12
sha1sum
760 root 20 0 416620 28540 15296 S 0.3 0.7 0:10.23 tuned
1 root 20 0 186328 14108 9484 S 0.0 0.4 0:02.00 systemd
2 root 20 0 0 0 0 S 0.0 0.0 0:00.01 kthread
...

Chapter 8
Managing cgroups v2 Using sysfs

8-9

9
Configuring the Watchdog Service

Watchdog is an Oracle Linux service that runs in the background to monitor host availability
and processes and reports back to the kernel. If the Watchdog service fails to notify the kernel
that the system is healthy, the kernel typically automatically reboots the system.

To install the Watchdog package, run:

sudo dnf install watchdog

To configure the Watchdog service, edit the /etc/watchdog.conf file. The
watchdog.conf file includes all Watchdog configuration properties. For information on how to
edit this file, see the watchdog.conf(5) manual page.

To enable and start the Watchdog service, run:

sudo systemctl enable --now watchdog

The Watchdog service immediately starts and runs in the background.

Note:

The Watchdog service starts and runs immediately after a power reset.

9-1

10
Working With Kernel Dumps

The Kdump feature provides a kernel crash information dumping mechanism in Oracle Linux.
The kdump service saves the contents of the system’s memory for later analysis. Kdump
includes a second kernel that resides in a reserved part of the system memory, so that Kdump
can capture information about a stopped kernel.

Kdump uses the kexec system call to boot into the second kernel, called a capture kernel,
without the need to reboot the system, and then captures the contents of the stopped kernel’s
memory as a kernel crash dump (vmcore) and saves it. The vmcore kernel crash dump can
help with finding the cause of the malfunction.

Enabling the Kdump feature is highly recommended because a crash dump might be the only
information source that's available if a system failure occurs. Kdump is vital in many mission-
critical environments.

Before enabling Kdump, ensure that the system meets all the memory requirements for using
Kdump. To capture a kernel crash dump and save it for further analysis, reserve part of the
system's memory permanently for that purpose. When you do so, that part of the system's
memory is no longer available to the main kernel.

For information about configuring Kdump by using the Cockpit web console, see Oracle Linux:
Using the Cockpit Web Console

Kdump System Memory Requirements
The following table lists the minimum amount of reserved memory that's required to use
Kdump, based on the system's architecture and the amount of available memory.

Table 10-1 Kdump Memory Requirements

Architecture Available Memory Minimum Reserved Memory

x86_64 1 GB to 64 GB 448 MB of RAM

64 GB and more 512 MB of RAM

Arm (aarch64) 2 GB to 8 GB 256 MB of RAM

8 GB and more 1 GB of RAM

Installing Kdump
During an Oracle Linux interactive installation with the graphical installer, you have the option
to enable Kdump and specify how much system memory is reserved for Kdump. The installer
screen is titled Kdump and is available from the main Installation Summary screen of the
installer. If you don't enable Kdump at installation time, or it's not enabled by default during an
installation, as in the case of a custom kickstart installation, you can install and enable the
feature by using the command line.

Before you install and configure Kdump by using the command line, ensure that:

10-1

https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/
https://docs.oracle.com/en/operating-systems/oracle-linux/cockpit/

• The system meets all the necessary memory specifications. For details, see Kdump
System Memory Requirements.

• You understand how Kdump reserves memory and have made the appropriate memory
reservation for the system. For details, see #unique_53

To install and enable Kdump, follow these steps:

1. Install the kdump package.

Install Kdump by executing the following command:

sudo dnf install kexec-tools

2. Configure the Kdump output location.

For instructions, see Configuring the Kdump Output Location.

3. Configure where Kdump saves the dump data.

For instructions, see Configuring the Default Kdump Failure State.

4. Start and enable the kdump service.

Run the following command to start the kdump service, and enable it to start automatically
on system boot:

sudo systemctl enable --now kdump.service

Configuring Kdump
When you install and configure Kdump, the following files are changed:

• /boot/grub2/grub.cfg: Appends the crashkernel option to the kernel line to specify
the amount of reserved memory and any offset value.

• /etc/kdump.conf: Sets the location in which the dump file can be written, the filtering
level for the makedumpfile command, and the default behavior to take if the dump fails.
See the comments in the file for information about the enabled parameters.

When you edit these files, you must reboot the system for the changes to take effect.

For more information, see the kdump.conf(5) manual page.

Chapter 10
Configuring Kdump

10-2

Configuring the Kdump Output Location
After installing and enabling Kdump, you can define the location in which the resulting output is
saved. For Oracle Linux, Kdump files are stored in the /var/crash directory by default, or in
the /var/oled/crash directory on Oracle Cloud Infrastructure compute instances.

Important:

Make sure that the Kdump output path is at a location that has sufficient disk space
to store the kernel crash dump file.

On systems with memory of 1 TB or more, such as the larger bare metal shapes on
Oracle Cloud Infrastructure, you should cater to around 20 GB disk space at
minimum.

1. Edit the configuration file at /etc/kdump.conf file and remove the # comment character
at the beginning of each line that you want to enable.

For example, to add a new directory location, prefix it with the path keyword:

path /usr/local/cores

Use raw to output directly to a specific device in the /dev directory.

You can also manually specify the output file system for a particular device by using its
label, name, or UUID. For example:

ext4 UUID=5b065be6-9ce0-4154-8bf3-b7c4c7dc7365

Kernel crash dump files can also be transferred over a secure shell connection, as shown
in the following example:

ssh user@example.com
sshkey /root/.ssh/mykey

You can also set the Kernel crash dump files to be exported to a compatible network
share:

nfs example.com:/output

See the kdump.conf(5) manual page for more information.

2. Restart the Kdump service.

When you have finished configuring the output location for Kdump, restart the kdump
service.

sudo systemctl restart kdump.service

Chapter 10
Configuring Kdump

10-3

Configuring the Default Kdump Failure State
By default, if kdump fails to send its result to the configured output locations, it reboots the
server. This action deletes any data that has been collected for the dump. To prevent this
outcome, change the Kdump configuration.

1. Edit /etc/kdump.conf to uncomment and change the default value in the file as
follows:

default dump_to_rootfs

The dump_to_rootfs option tries to save the result to a local directory, which can be useful
if a network share is unreachable. You can use shell instead to copy the data manually
from the command line.

Note:

The poweroff, restart, and halt options are also valid for the default kdump
failure state. However, performing these actions causes you to lose the collected
data if those actions are performed.

2. Restart the Kdump service.

When you have finished configuring the output location for Kdump, restart the kdump
service.

sudo systemctl restart kdump.service

Analyzing Kdump Output
You can use the crash utility to analyze the contents of kdump core dumps in a shell prompt,
which is useful when troubleshooting problems. For more detailed information about using the
crash utility, see the crash(8) manual page.

1. Install the crash package:

sudo dnf install crash

2. Provide the location of the kernel debuginfo module and the location of the core dump as
parameters to the crash utility, for example:

sudo crash /usr/lib/debug/lib/modules/$(uname -r)/vmlinux \
 /var/crash/127.0.0.1-2025-05-03-12:38:25/vmcore

In the previous command, we use $(uname -r) to identify the running kernel version
within the command and 127.0.0.1-2025-05-03-12:38:25 represents the ipaddress-
timestamp.

3. Use the crash shell to get more information about the core dump.

Chapter 10
Analyzing Kdump Output

10-4

Inside the crash shell, use the help log command for information about how to use the
log command, which displays the kernel log_buf contents in chronological order.

You can also use the bt, ps, vm, and files commands to get more information about the
core dump:

bt
Displays a task's kernel-stack backtrace.

ps
Displays process status for the specified, or all, processes in the system.

vm
Displays basic virtual memory information of a context.

files
Displays information about open files in a context.

4. When you have finished analyzing the core dump, exit the shell.

You can either type the exit command or use the q command as shorthand.

Using Early Kdump
Early Kdump loads the crash kernel and initramfs early enough to capture vmcore information
for early malfunctions.

Because the kdump service starts too late, early malfunctions don't trigger the kdump kernel to
boot, which prevents the capture of diagnostic information. To address that problem, you can
enable early Kdump by adding a dracut module so that the crash kernel and initramfs are
loaded as early as possible.

Note:

The following limitations apply for early Kdump:

• The feature doesn't work with Fadump.

• Early Kdump becomes active the moment the system's initramfs begins to be
processed. Any malfunction that occurs before that moment isn't captured even if
early Kdump is enabled.

For more information about configuring early Kdump, see the step-by-step instructions in
the /usr/share/doc/kexec-tools/early-kdump-howto.txt file.

Chapter 10
Using Early Kdump

10-5

11
Oracle Linux 10 Kernel Reference

The information provided in this reference can help you to understand the different kernel
versions that are available for Oracle Linux 10.

Oracle Linux 10 Kernel Version Matrix

The following tables provide an overview of kernel availability on Oracle Linux 10 releases. You
can use these tables to identify the initial UEK and RHCK kernel package versions for each
release and to see which UEK releases are available for each update level. Never pin a
system to an update level or a particular kernel version for an indefinite period, or the system
becomes insecure as it doesn't receive the latest patches and security updates.

Note:

Oracle Linux 10 releases on aarch64 platforms only include UEK kernel packages.
RHCK isn't provided for this platform architecture.

Table 11-1 Kernel Availability on Oracle Linux 10 Releases for x86_64

Oracle Linux 10
Update Level

Initial UEK Version Initial RHCK Version UEK R8

10.0 kernel-
uek-6.12.0-100.28.2

kernel-6.12.0-55.9.1.0.1 Yes, default

Table 11-2 Kernel Availability on Oracle Linux 10 Releases for aarch64

Oracle Linux 10 Update Level Initial UEK Version

10.0 kernel-uek-6.12.0-100.28.2

UEK Version Mappings

The following table provides the mapping between UEK releases and the kernel versions that
they're associated with. The table is useful when trying to identify a particular UEK update level
against the kernel version reported by the system. Note that to keep a system secure with the
latest patches, always run the latest update level for any UEK release.

Table 11-3 UEK Update Levels and Kernel Versions

UEK Update Level Kernel Major Release Kernel Release Date

UEK 8 U1 6.12.0-100* June, 2025

UEK 8 6.12.0-0* April, 2025

11-1

https://docs.oracle.com/en/operating-systems/uek/8/relnotes8.1/
https://docs.oracle.com/en/operating-systems/uek/8/relnotes8.0/

12
Kernel Boot Parameter Reference

The following table describes some commonly used kernel boot parameters.

Option Description

0, 1, 2, 3, 4, 5, or 6, or
systemd.unit=runlevelN.target

Specifies the nearest systemd-equivalent
system-state target to match a legacy SysV run
level. N can take an integer value between 0
and 6.
Systemd maps system-state targets to mimic the
legacy SysV init system.
For a description of system-state targets, see
Oracle Linux 10: System Management with
systemd .

1, s, S, single, or
systemd.unit=rescue.target

Specifies the rescue shell. The system boots to
single-user mode prompts for the root
password.

3 or systemd.unit=multi-user.target Specifies the systemd target for multiuser,
nongraphical login.

5 or systemd.unit=graphical.target Specifies the systemd target for multiuser,
graphical login.

-b, emergency, or
systemd.unit=emergency.target

Specifies emergency mode. The system boots to
single-user mode and prompts for the root
password. Fewer services are started than
when in rescue mode.

KEYBOARDTYPE=kbtype Specifies the keyboard type, which is written
to /etc/sysconfig/keyboard in the
initramfs.

KEYTABLE=kbtype Specifies the keyboard layout, which is written
to /etc/sysconfig/keyboard in the
initramfs.

LANG=language_territory.codeset Specifies the system language and code set,
which is written to /etc/sysconfig/i18n
in the initramfs.

max_loop=N Specifies the number of loop devices (/dev/
loop*) that are available for accessing files as
block devices. The default and maximum
values of N are 8 and 255.

nouptrack Disables Ksplice Uptrack updates from being
applied to the kernel.

quiet Reduces debugging output.

rd_LUKS_UUID=UUID Activates an encrypted Linux Unified Key Setup
(LUKS) partition with the specified UUID.

rd_LVM_VG=vg/lv_vol Specifies an LVM volume group and volume to
be activated.

12-1

https://docs.oracle.com/en/operating-systems/oracle-linux/10/systemd/
https://docs.oracle.com/en/operating-systems/oracle-linux/10/systemd/

Option Description

rd_NO_LUKS Disables detection of an encrypted LUKS
partition.

rhgb Specifies to use the Red Hat graphical boot
display to indicate the progress of booting.

rn_NO_DM Disables Device-Mapper (DM) RAID detection.

rn_NO_MD Disables Multiple Device (MD) RAID detection.

ro root=/dev/mapper/vg-lv_root Specifies that the root file system is to be
mounted read-only, and specifies the root file
system by the device path of its LVM volume
(where vg is the name of the volume group).

rw root=UUID=UUID Specifies that the root (/) file system is to be
mounted read-writable at boot time, and
specifies the root partition by its UUID.

selinux=0 Disables SELinux and touches
the /.autorelabel file so that SELinux file
contexts are automatically relabeled the next
time you boot with SELinux enabled.
Don't disable SELinux in production
environments. Rather, set SELinux to
permissive mode.

enforcing=0 Sets SELinux to permissive mode until next
rebooted. In permissive mode, file contexts are
automatically labeled and denials are logged,
but applications can continue to function.
Use SELinux permissive mode to debug
SELinux issues.

SYSFONT=font Specifies the console font, which is written
to /etc/sysconfig/i18n in the initramfs.

Parameters That Control System Performance
The following parameters control various aspects of system performance:

Parameter Description

fs.file-max Specifies the maximum number of open files
for all processes. Increase the value of this
parameter if you see messages about running
out of file handles.

Chapter 12
Parameters That Control System Performance

12-2

Parameter Description

kernel.io_uring_disabled Specifies the disabled setting for creating
io_uring instances. io_uring provides an
interface to handle asynchronous I/O
operations that can improve performance for
storage and networking. io_uring is supported
with UEK and is enabled by default when
running UEK on Oracle Linux.
You can set the following values for the
io_uring parameter:

• kernel.io_uring_disabled=0 (default).
This setting specifies all processes can
create io_uring instances.

• kernel.io_uring_disabled=1. This
setting specifies only processes with
CAP_SYS_ADMIN privileges can create
io_uring instances.

• kernel.io_uring_disabled=2. This
setting specifies that io_uring instance
creation is disabled for all users.

net.core.netdev_max_backlog Specifies the size of the receiver backlog queue,
which is used if an interface receives packets
faster than the kernel can process them. If this
queue is too small, packets are lost at the
receiver, rather than on the network.

net.core.rmem_max Specifies the maximum read socket buffer size.
To minimize network packet loss, this buffer
must be large enough to handle incoming
network packets.

net.core.wmem_max Specifies the maximum write socket buffer size.
To minimize network packet loss, this buffer
must be large enough to handle outgoing
network packets.

net.ipv4.tcp_available_congestion_contr
ol

Displays the TCP congestion avoidance
algorithms that are available for use. Use the
modprobe command if you need to load
additional modules such as tcp_htcp to
implement the htcp algorithm.

net.ipv4.tcp_congestion_control Specifies which TCP congestion avoidance
algorithm is used.

net.ipv4.tcp_max_syn_backlog Specifies the number of outstanding SYN
requests that are allowed. Increase the value of
this parameter if you see synflood warnings in
the logs that are caused by the server being
overloaded by legitimate connection attempts.

net.ipv4.tcp_rmem Specifies minimum, default, and maximum
receive buffer sizes that are used for a TCP
socket. The maximum value can't be larger
than net.core.rmem_max.

Chapter 12
Parameters That Control System Performance

12-3

Parameter Description

net.ipv4.tcp_wmem Specifies minimum, default, and maximum
send buffer sizes that are used for a TCP socket.
The maximum value can't be larger than
net.core.wmem_max.

vm.swappiness Specifies how likely the kernel is to write
loaded pages to swap rather than drop pages
from the system page cache. When set to 0,
swapping only occurs to avoid an out of
memory condition. When set to 100, the kernel
swaps aggressively. For a desktop system,
setting a lower value can improve system
responsiveness by decreasing latency. The
default value is 60.

Caution:

This parameter is
intended for use
with laptop
computers to
reduce power
consumption by the
hard disk. Don't
adjust this value on
server systems.

Parameters That Control Kernel Panics
The following parameters control the circumstances under which a kernel panic can occur.

Chapter 12
Parameters That Control Kernel Panics

12-4

Parameter Description

kernel.hung_task_panic If set to 1, the kernel panics if any kernel or
user thread sleeps in the
TASK_UNINTERRUPTIBLE state (D state) for more
than kernel.hung_task_timeout_secs
seconds. A process remains in D state while
waiting for I/O to complete. You can't stop or
interrupt a process in this state.
The default value is 0, which disables the panic.

Tip:

To diagnose a hung
thread, you can
examine /proc/
PID/stack, which
displays the kernel
stack for both
kernel and user
threads.

kernel.hung_task_timeout_secs Specifies how long a user or kernel thread can
remain in D state before a warning message is
generated or the kernel panics, if the value of
kernel.hung_task_panic is 1. The default
value is 120 seconds. A value of 0 disables the
timeout.

kernel.nmi_watchdog If set to 1 (default), enables the nonmaskable
interrupt (NMI) watchdog thread in the kernel.
To use the NMI switch or the OProfile system
profiler to generate an undefined NMI, set the
value of kernel.nmi_watchdog to 0.

kernel.panic Specifies the number of seconds after a panic
before a system automatically resets itself.
If the value is 0, which is the default value, the
system becomes suspended, and you can collect
detailed information about the panic for
troubleshooting.
To enable automatic reset, set a nonzero value.
If you require a memory image (vmcore), leave
enough time for Kdump to create this image.
The suggested value is 30 seconds, although
large systems require a longer time.

kernel.panic_on_io_nmi If set to 0 (default), the system tries to continue
operations if the kernel detects an I/O channel
check (IOCHK) NMI that typically indicates a
uncorrectable hardware error. If set to 1, the
system panics.

Chapter 12
Parameters That Control Kernel Panics

12-5

Parameter Description

kernel.panic_on_oops If set to 0, the system tries to continue
operations if the kernel detects an oops or BUG
condition. If set to 1 (default), the system delays
a few seconds to give the kernel log daemon,
klogd, time to record the oops output before
the panic occurs.
In an OCFS2 cluster. set the value to 1 to specify
that a system must panic if a kernel oops
occurs. If a kernel thread required for cluster
operation fails, the system must reset itself.
Otherwise, another node might not detect
whether a node is slow to respond or unable to
respond, causing cluster operations to halt.

kernel.panic_on_unrecovered_nmi If set to 0 (default), the system tries to continue
operations if the kernel detects an NMI that
might indicate an uncorrectable parity or ECC
memory error. If set to 1, the system panics.

kernel.softlockup_panic If set to 0 (default), the system tries to continue
operations if the kernel detects a soft-lockup
error that causes the NMI watchdog thread to
fail to update its timestamp for more than twice
the value of kernel.watchdog_thresh seconds.
If set to 1, the system panics.

kernel.unknown_nmi_panic If set to 1, the system panics if the kernel
detects an undefined NMI. You can generate an
undefined NMI by manually pressing an NMI
switch. As the NMI watchdog thread also uses
the undefined NMI, set the value of
kernel.unknown_nmi_panic to 0 if you set
kernel.nmi_watchdog to 1.

kernel.watchdog_thresh Specifies the interval between generating an
NMI performance monitoring interrupt that the
kernel uses to check for hard-lockup and soft-
lockup errors. A hard-lockup error is assumed
if a CPU is unresponsive to the interrupt for
more than kernel.watchdog_thresh seconds.
The default value is 10 seconds. A value of 0
disables the detection of lockup errors.

vm.panic_on_oom If set to 0 (default), the kernel’s OOM-killer
scans through the entire task list and stops a
memory-hogging process to avoid a panic. If set
to 1, the kernel panics but can survive under
certain conditions. If a process limits
allocations to certain nodes by using memory
policies or cpusets, and those nodes reach
memory exhaustion status, the OOM-killer can
stop one process. No panic occurs in this case
because other nodes’ memory might be free
and the system as a whole might not yet be out
of memory. If set to 2, the kernel always panics
when an OOM condition occurs. Settings of 1
and 2 are for intended for use with clusters,
depending on the defined failover policy.

Chapter 12
Parameters That Control Kernel Panics

12-6

13
Modprobe Configuration Reference

The following are commonly used commands in modprobe configuration files:

alias
Creates an alternative name for a module. The alias can include shell wildcards. To create an
alias for the sd-mod module:

alias block-major-8-* sd_mod

blacklist
Ignore a module's internal alias that's displayed by the modinfo command. This command is
typically used in the following conditions:

• The associated hardware isn't required.

• Two or more modules both support the same devices.

• A module invalidly claims to support a device.

For example, to demote the alias for the frame-buffer driver cirrusfb, type:

blacklist cirrusfb

The /etc/modprobe.d/blacklist.conf file prevents hotplug scripts from loading a
module so that a different driver binds the module instead regardless of which driver happens
to be probed first. If it doesn't already exist, you must create it.

install
Runs a shell command instead of loading a module into the kernel. For example, load the
module snd-emu10k1-synth instead of snd-emu10k1:

install snd-emu10k1 /sbin/modprobe --ignore-install snd-emu10k1 && /sbin/
modprobe snd-emu10k1-synth

options
Defines options for a module. For example, to define the nohwcrypt and qos options for the
b43 module, type:

options b43 nohwcrypt=1 qos=0

remove
Runs a shell command instead of unloading a module. To unmount /proc/fs/nfsd before
unloading the nfsd module, type:

remove nfsd { /bin/umount /proc/fs/nfsd > /dev/null 2>&1 || :; } ;
/sbin/modprobe -r --first-time --ignore-remove nfsd

13-1

For more information, see the modprobe.conf(5) manual page.

Chapter 13

13-2

14
sysfs Directory Reference

The following table describes some useful virtual directories under the /sys directory
hierarchy.

For more information, see https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt.

Table 14-1 Virtual Directories Under /sys

Virtual Directory Description

block Contains subdirectories for block devices. For
example: /sys/block/sda.

bus Contains subdirectories for each physical bus
type, such as pci, pcmcia, scsi, or usb. Under
each bus type, the devices directory lists
discovered devices, and the drivers directory
contains directories for each device driver.

class Contains subdirectories for every class of
device that's registered with the kernel.

dev Contains the char/ and block/ directories.
Inside these two directories are symbolic links
named major:minor. These symbolic links point
to the sysfs directory for the particular device.
The /sys/dev directory provides a quick way
to look up the sysfs interface for a device from
the result of the stat(2) operation.

devices Contains the global device hierarchy of all
devices on the system. The platform directory
contains peripheral devices such as device
controllers that are specific to a particular
platform. The system directory contains non
peripheral devices such as CPUs and APICs. The
virtual directory contains virtual and pseudo
devices. See Oracle Linux 10: Managing Devices
with Udev for more information about device
management.

firmware Contains subdirectories for firmware objects.

fs Contains subdirectories for file system objects.

kernel Contains subdirectories for other kernel objects

module Contains subdirectories for each module loaded
into the kernel. You can alter some parameter
values for loaded modules. See Modprobe
Configuration Reference.

power Contains attributes that control the system's
power state.

14-1

https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt
https://docs.oracle.com/en/operating-systems/oracle-linux/10/udev/
https://docs.oracle.com/en/operating-systems/oracle-linux/10/udev/

15
procfs Directory Reference

The following table describes the most useful virtual files and directories under the /proc
directory hierarchy. For more information, see the proc(5) manual page.

Table 15-1 Useful Virtual Files and Directories Under the /proc Directory

Virtual File or Directory Description

PID (Directory) Provides information about the process with
the process ID (PID). The directory's owner and
group is same as the process's. Useful files
under the directory include:

cmdline
Command path.

cwd
Symbolic link to the process's current working
directory.

environ
Environment variables.

exe
Symbolic link to the command executable.

fd/N
File descriptors.

maps
Memory maps to executable and library files.

root
Symbolic link to the effective root directory for
the process.

stack
The contents of the kernel stack.

status
Run state and memory usage.

buddyinfo Provides information for diagnosing memory
fragmentation.

bus (directory) Contains information about the various buses
(such as pci and usb) that are available on the
system. You can use commands such as lspci,
lspcmcia, and lsusb to display information
for such devices.

cgroups Provides information about the resource
control groups that are in use on the system.

15-1

Table 15-1 (Cont.) Useful Virtual Files and Directories Under the /proc Directory

Virtual File or Directory Description

cmdline Lists parameters passed to the kernel at boot
time.

cpuinfo Provides information about the system's CPUs.

crypto Provides information about all installed
cryptographic cyphers.

devices Lists the names and major device numbers of
all currently configured characters and block
devices.

dma Lists the direct memory access (DMA) channels
that are currently in use.

driver (directory) Contains information about drivers used by the
kernel, such as those for nonvolatile RAM
(nvram), the real-time clock (rtc), and memory
allocation for sound (snd-page-alloc).

execdomains Lists the execution domains for binaries that
the Oracle Linux kernel provides.

filesystems Lists the file system types that the kernel
provides. Entries marked with nodev aren't in
use.

fs (directory) Contains information about mounted file
systems, organized by file system type.

interrupts Records the number of interrupts per interrupt
request queue (IRQ) for each CPU after system
startup.

iomem Lists the system memory map for each physical
device.

ioports Lists the range of I/O port addresses that the
kernel uses with devices.

irq (directory) Contains information about each IRQ. You can
configure the affinity between each IRQ and the
system CPUs.

kcore Presents the system's physical memory in core
file format that you can examine using a
debugger such as crash or gdb. This file isn't
human-readable.

kmsg Records kernel-generated messages, which are
picked up by programs such as dmesg.

loadavg Displays the system load averages (number of
queued processes) for the past 1, 5, and 15
minutes, the number of running processes, the
total number of processes, and the PID of the
process that's running.

Chapter 15

15-2

Table 15-1 (Cont.) Useful Virtual Files and Directories Under the /proc Directory

Virtual File or Directory Description

locks Displays information about the file locks that
the kernel is currently holding on behalf of
processes. The information provided includes:
• lock class (FLOCK or POSIX)
• lock type (ADVISORY or MANDATORY)
• access type (READ or WRITE)
• process ID
• major device, minor device, and inode

numbers
• bounds of the locked region

mdstat Lists information about multiple-disk RAID
devices.

meminfo Reports the system's usage of memory in more
detail than is available using the free or top
commands.

modules Displays information about the modules that
are currently loaded into the kernel. The
lsmod command formats and displays the
same information, excluding the kernel
memory offset of a module.

mounts Lists information about all mounted file
systems.

net (directory) Provides information about networking
protocol, parameters, and statistics. Each
directory and virtual file describes aspects of
the configuration of the system's network.

partitions Lists the major and minor device numbers,
number of blocks, and name of partitions
mounted by the system.

scsi/device_info Provides information about SCSI devices.

scsi/scsi and

scsi/sg/*
Provide information about configured SCSI
devices, including vendor, model, channel, ID,
and LUN data.

self Symbolic link to the process that's examining /
proc.

slabinfo Provides detailed information about slab
memory usage.

softirqs Displays information about software interrupts
(softirqs). A softirq is similar to a hardware
interrupt (hardirq) and configures the kernel
to perform asynchronous processing that
would take too long during a hardware
interrupt.

Chapter 15

15-3

Table 15-1 (Cont.) Useful Virtual Files and Directories Under the /proc Directory

Virtual File or Directory Description

stat Records information about the system from
when it was started, including:

cpu
Total CPU time (measured in jiffies) spent in
user mode, low-priority user mode, system
mode, idle, waiting for I/O, handling hardirq
events, and handling softirq events.

cpuN
Times for CPU N.

swaps Provides information about swap devices. The
units of size and usage are in kilobytes.

sys (directory) Provides information about the system and also
enables you to enable, disable, or modify kernel
features. You can write new settings to any file
that has write permission. See Managing Kernel
Parameters at Runtime.

The following subdirectory hierarchies of /
proc/sys contain virtual files, some of whose
values you can alter:

dev
Device parameters.

fs
File system parameters.

kernel
Kernel configuration parameters.

net
Networking parameters.

sysvipc (directory) Provides information about the usage of System
V Interprocess Communication (IPC) resources
for messages (msg), semaphores (sem), and
shared memory (shm).

tty (directory) Provides information about the available and
currently used terminal devices on the system.
The drivers virtual file lists the devices that
are currently configured.

vmstat Provides information about virtual memory
usage.

Chapter 15

15-4

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About System Boot
	About UEFI-Based Booting
	About BIOS-Based Booting
	About the GRUB 2 Bootloader

	2 About Linux Kernels
	About Kernel Modules
	About Weak Update Modules

	About Virtual File Systems and System Configuration
	About the /etc/sysconfig Files
	About the /proc Virtual File System
	About the /sys Virtual File System

	3 Changing Kernel Boot Parameters Before Booting
	4 Changing GRUB 2 Default Kernel Boot Parameters
	5 Using grubby to Manage Kernels
	Checking Available Kernels on the System
	Comparing the Default Kernel to the Running Kernel
	Changing the Default Kernel
	Changing Kernel Command Line Boot Parameters
	Checking the Kernel Command Line Last Used to Boot The System

	6 Managing Kernel Parameters at Runtime
	Listing Configurable Kernel Parameters and Values
	Updating Kernel Parameters

	7 Managing Kernel Modules
	Listing Information About Loaded Modules
	Loading and Unloading Modules
	Changing Kernel Module Parameters
	Specifying Modules To Be Loaded at Boot Time
	Preventing Modules From Loading at Boot Time
	Removing Weak Update Modules

	8 Managing Resources Using Control Groups
	Verifying cgroups v2
	About Kernel Resource Controllers
	About the Control Group File System
	About Resource Distribution Models
	Managing cgroups v2 Using sysfs
	Preparing the Control Group for Distribution of CPU Time
	Setting CPU Weight to Regulate Distribution of CPU Time

	9 Configuring the Watchdog Service
	10 Working With Kernel Dumps
	Kdump System Memory Requirements
	Installing Kdump
	Configuring Kdump
	Configuring the Kdump Output Location
	Configuring the Default Kdump Failure State

	Analyzing Kdump Output
	Using Early Kdump

	11 Oracle Linux 10 Kernel Reference
	12 Kernel Boot Parameter Reference
	Parameters That Control System Performance
	Parameters That Control Kernel Panics

	13 Modprobe Configuration Reference
	14 sysfs Directory Reference
	15 procfs Directory Reference

