
Oracle Linux 10
Setting Up Load Balancing

G11375-01
June 2025

Oracle Linux 10 Setting Up Load Balancing,

G11375-01

Copyright © 2025, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 About Load Balancing

About HAProxy 1-1

About Keepalived 1-1

Using Keepalived With VRRP 1-2

Combining Keepalived With HAProxy for High-Availability Load Balancing 1-2

About NGINX 1-2

2 Setting Up Load Balancing by Using HAProxy

Installing and Configuring HAProxy 2-1

HAProxy Configuration Directives 2-1

Configuring Round Robin Load Balancing by Using HAProxy 2-2

Using Weighted Round Robin Load Balancing With HAProxy 2-5

Adding Session Persistence for HAProxy 2-6

3 Setting Up Load Balancing by Using Keepalived

Installing and Configuring Keepalived 3-1

Keepalived Configuration Directives 3-2

Setting Up Load Balancing in NAT Mode 3-3

Configuring Firewall Rules for Keepalived NAT-Mode Load Balancing 3-8

Configuring Backend Server Routing for Keepalived NAT-Mode Load Balancing 3-10

Enhancing Load Balancing by Using Keepalived With HAProxy 3-11

iii

4 Setting Up Load Balancing by Using NGINX

Installing NGINX 4-1

NGINX Configuration Directives 4-2

Configuring Round Robin Load Balancing by Using NGINX 4-3

Using Weighted Round Robin Load Balancing With NGINX 4-4

Using Least-Connected Load Balancing With NGINX 4-5

Adding Session Persistence for NGINX 4-5

iv

Preface

Oracle Linux 10: Setting Up Load Balancing describes how to configure the Keepalived,
HAProxy, and NGINX load balancer technologies for balanced access to network services.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and

v

https://docs.oracle.com/en/operating-systems/oracle-linux/10/balancing/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

1
About Load Balancing

The term load balancing refers to the efficient distribution of incoming network traffic across a
group of backend servers. The use of load balancing ensures that an infrastructure is highly
available, reliable, and that performance isn't degraded. Load balancers can typically handle
traffic for the HTTP, HTTPS, TCP, and UDP protocols.

Load balancers manage network traffic by routing client requests across all the servers that
can fulfill those requests. This routing maximizes speed and capacity use so that no one
particular server becomes overloaded, thereby improving overall performance. In situations
where a server might become unavailable or goes down, the load balancer redirects any
incoming traffic to other servers that are online. In this way, server downtime is minimized.
When a new server is added to the server group, the load balancer automatically redistributes
the workload and starts to send requests to that new server.

In Oracle Linux, load balancing of network traffic is primarily handled by two integrated
software components: HAProxy and Keepalived. The HAProxy feature provides load balancing
and high-availability services to TCP and HTTP, while Keepalived performs load balancing and
failover tasks on both active and passive routers. The NGINX feature can also be used in
Oracle Linux for load balancing.

About HAProxy
HAProxy, or High Availability Proxy, is an application layer (Layer 7) load balancer and high-
availability solution that you can use to implement a reverse proxy for HTTP and TCP-based
Internet services. An application layer load balancer often includes many features. It can
inspect the content of the traffic that it's routing and can either change content within each
packet, as required, or can decide how to handle each packet based on its content. Therefore,
HAProxy can implement session persistence, TLS, ACLs, and HTTP rewrites and redirection.

The configuration file for the haproxy daemon is /etc/haproxy/haproxy.cfg. This file must
be present on each server on which you configure HAProxy for load balancing or high
availability.

For more information, see http://www.haproxy.org/#docs, the /usr/share/doc/haproxy-
version documentation, and the haproxy(1) manual page.

About Keepalived
Keepalived uses the IP Virtual Server (IPVS) kernel module to provide transport layer (Layer 4)
load balancing by redirecting requests for network-based services to individual members of a
server cluster. IPVS monitors the status of each server and uses the Virtual Router
Redundancy Protocol (VRRP) to implement high availability. A load balancer that functions at
the transport layer is less aware of the content of the packets that it reroutes, which has the
advantage of being able to perform this task faster than a reverse proxy system functioning at
the application layer.

The configuration file for the keepalived daemon is /etc/keepalived/keepalived.conf.
This file must be present on each server on which you configure Keepalived for load balancing
or high availability.

1-1

http://www.haproxy.org/#docs

For more information, see https://www.keepalived.org/documentation.html, the /usr/
share/doc/keepalived-version documentation, and the keepalived(8) and
keepalived.conf(5) manual pages.

Using Keepalived With VRRP
Virtual Router Redundancy Protocol (VRRP) is a networking protocol that automatically
assigns routers that are available to handle inbound traffic. A detailed standard document for
this protocol can be found at https://tools.ietf.org/html/rfc5798.

Keepalived uses VRRP to ascertain the current state of all the routers on the network. The
protocol enables routing to switch between primary and backup routers automatically. The
backup routers detect when the primary router becomes unavailable and then sends multicast
packets to each other until one of the routers is "elected" as the new primary router A floating
virtual IP address can be used to always direct traffic to the primary router. When the original
primary router is back online, it detects the new routing state and returns to the network as a
backup router.

The benefit of using VRRP is that you can rely on several routers to provide high availability
and redundancy without requiring a separate software service or hardware device to manage
this process. On each router, Keepalived configures the VRRP settings and ensures that the
network routing continues to function correctly.

For more information, see https://www.keepalived.org/documentation.html, the /usr/
share/doc/keepalived-version documentation, and the keepalived(8) and
keepalived.conf(5) manual pages.

Combining Keepalived With HAProxy for High-Availability Load
Balancing

You can combine the Keepalived and HAProxy load balancer features to achieve a high-
availability, load-balancing environment. HAProxy provides scalability, application-aware
functionality, and ease of configuration when configuring load balancing services. Keepalived
provides failover services for backup routers, and the ability to distribute loads across servers
for increased availability.

This complex configuration scenario illustrates how you can use different load balancing
applications with each other to achieve better redundancy and take advantage of features at
different layers of the stack. While this example shows how Keepalived can be used to provide
redundancy for HAProxy, you can also achieve similar results by using Keepalived with other
application layer proxy systems, such as NGINX.

For more details, see Enhancing Load Balancing by Using Keepalived With HAProxy.

About NGINX
NGINX is an HTTP server that provides modular functionality for reverse proxying, traffic
routing, and application-layer load balancing for HTTP, HTTPS, or TCP/UDP connections. You
can use NGINX load balancing and proxy services to distribute traffic for improved
performance, scalability, and reliability of applications.

NGINX provides capability for the following load balancing methods:

• Round Robin: Distributes requests to application servers by going down the list of the
servers that are within the group, then forwarding client requests to each server, in turn.

Chapter 1
Using Keepalived With VRRP

1-2

https://www.keepalived.org/documentation.html
https://tools.ietf.org/html/rfc5798
https://www.keepalived.org/documentation.html

After reaching the end of the list, the load balancer repeats this same sequence. Round
Robin is the default method used by NGINX.

• Least Connected. Assigns the next request to the server that has the least number of
active connections. With the least-connected method, the load balancer compares the
number of active connections to each server, then sends the request to the server with the
fewest connections. You set the configuration by using the least_conn directive.

• IP Hash. Uses a hash-function to decide which server to select for the next request, which
is based on the client's IP address. You set the configuration by using the ip_hash
directive.

For more information, see Setting Up Load Balancing by Using NGINX.

See also https://docs.nginx.com/nginx/.

Chapter 1
About NGINX

1-3

https://docs.nginx.com/nginx/

2
Setting Up Load Balancing by Using HAProxy

This chapter describes how to configure load balancing by using HAProxy. The chapter also
includes configuration scenarios and examples.

Installing and Configuring HAProxy
Before you can set up load balancing by using HAProxy, you must first install and configure the
feature.

1. Install the haproxy package on each front-end server.

Run the following command:

sudo dnf install haproxy

2. Edit the /etc/haproxy/haproxy.cfg file to configure HAProxy on each server.

See HAProxy Configuration Directives for more information.

3. Configure the firewall to enable access to the services or ports that you want HAProxy to
handle.

To accept incoming TCP requests on port 80, run the following commands:

sudo firewall-cmd --permanent --zone=public --add-port=80/tcp
sudo systemctl reload firewalld

4. Enable and start the haproxy service on each server.

Run the following command:

sudo systemctl enable --now haproxy

If you change the HAProxy configuration, reload the haproxy service:

sudo systemctl reload haproxy

HAProxy Configuration Directives
The /etc/haproxy/haproxy.cfg configuration file is divided into the following sections:

global
Defines global settings, such as the syslog facility and level to use for logging, the maximum
number of concurrent connections that are allowed, and how many processes to start in
daemon mode.

defaults
Defines the default settings for the other sections.

2-1

listen
Defines a complete proxy, which implicitly includes the frontend and backend components.

frontend
Defines the ports that accept client connections.

backend
Defines the servers to which the proxy forwards client connections.

Configuring Round Robin Load Balancing by Using HAProxy
The following example uses HAProxy to implement a front-end server that balances incoming
requests between two backend web servers, and which also handles service outages on the
backend servers.

The following figure shows an HAProxy server (10.0.0.10), which is connected to an
externally facing network (10.0.0.0/24) and to an internal network (192.168.1.0/24). Two
web servers, websrv1 (192.168.1.71) and websrv2 (192.168.1.72), are accessible on the
internal network. The IP address 10.0.0.10 is in the private address range 10.0.0.0/24, which
can't be routed on the Internet. An upstream Network Address Translation (NAT) gateway or a
proxy server provides access to and from the Internet.

Chapter 2
Configuring Round Robin Load Balancing by Using HAProxy

2-2

Figure 2-1 Example HAProxy Configuration for Load Balancing

Chapter 2
Configuring Round Robin Load Balancing by Using HAProxy

2-3

1. Update the configuration on the HAProxy server.

The following is an example configuration in /etc/haproxy/haproxy.cfg on the server:

global
 daemon
 log 127.0.0.1 local0 debug
 maxconn 50000
 nbthread 1

defaults
 mode http
 timeout connect 5s
 timeout client 25s
 timeout server 25s
 timeout queue 10s

Handle Incoming HTTP Connection Requests
listen http-incoming
 mode http
 bind 10.0.0.10:80
Use each server in turn, according to its weight value
 balance roundrobin
Verify that service is available
 option httpchk
 http-check send meth HEAD ver HTTP/1.1 hdr Host www
Insert X-Forwarded-For header
 option forwardfor
Define the back-end servers, which can handle up to 512 concurrent
connections each
 server websrv1 192.168.1.71:80 maxconn 512 check
 server websrv2 192.168.1.72:80 maxconn 512 check

This configuration balances HTTP traffic between the two backend web servers websrv1
and websrv2, whose firewalls are configured to accept incoming TCP requests on port 80.
The traffic is distributed equally between the servers and each server can handle a
maximum of 512 concurrent connections. A health-check is also configured and this
performs a request for the HTTP headers on a request for the web root on each backend
server.

2. Reload the HAProxy systemd service.

sudo systemctl reload haproxy

3. Validate that round-robin load balancing is working.

Assuming that the web servers are each configured to serve a web page, use curl to test
connectivity. You can use a while loop in the shell to repeat the test over a period. To
cancel out of the loop, use the Ctrl-C key combination:

while true; do curl http://10.0.0.10; sleep 1; done

Chapter 2
Configuring Round Robin Load Balancing by Using HAProxy

2-4

The following output shows how HAProxy balances the traffic between the servers and
how it handles the httpd service stopping on websrv1:

This is HTTP server websrv1 (192.168.1.71).
This is HTTP server websrv2 (192.168.1.72).
This is HTTP server websrv1 (192.168.1.71).
This is HTTP server websrv2 (192.168.1.72).
...
This is HTTP server websrv2 (192.168.1.72).
<html><body><h1>503 Service Unavailable</h1>
No server is available to handle this request.
</body></html>
This is HTTP server websrv2 (192.168.1.72).
This is HTTP server websrv2 (192.168.1.72).
This is HTTP server websrv2 (192.168.1.72).
...
This is HTTP server websrv2 (192.168.1.72).
This is HTTP server websrv2 (192.168.1.72).
This is HTTP server websrv1 (192.168.1.71).
This is HTTP server websrv2 (192.168.1.72).
This is HTTP server websrv1 (192.168.1.71).
...

In this example, HAProxy detected that the httpd service had restarted on websrv1 and
resumed using that server in addition to websrv2.

Note:

In these examples the web servers are configured to serve a page that describes
the web server name and IP address. The outputs in a real world configuration
are likely to differ.

By combining the load balancing capability of HAProxy with the high-availability capability of
Keepalived, you can configure a backup load balancer that ensures continuity of service if the
primary load balancer fails. See Enhancing Load Balancing by Using Keepalived With
HAProxy for more information on how this configuration can be extended.

Using Weighted Round Robin Load Balancing With HAProxy
HAProxy can also be configured to use the weighted round-robin algorithm to distribute traffic.
This algorithm selects servers in turns, according to their weights, and distributes the server
load without implementing certain other factors such as server response time. With weighted
round-robin, you can balance traffic proportionally between servers based on processing power
and resources available to a server.

1. Configure the server for standard round robin load balancing.

See Configuring Round Robin Load Balancing by Using HAProxy for more information.

2. Edit the HAProxy configuration to append weight values to each server in the
configuration.

Chapter 2
Using Weighted Round Robin Load Balancing With HAProxy

2-5

For example, to distribute twice the amount of traffic to websrv1, change the configuration
to include different weight ratios, as follows:

server websrv1 192.168.1.71:80 weight 2 maxconn 512 check
server websrv2 192.168.1.72:80 weight 1 maxconn 512 check

3. Reload the HAProxy systemd service.

sudo systemctl reload haproxy

Adding Session Persistence for HAProxy
HAProxy provides a multitude of load balancing algorithms, some of which provide features
that automatically ensure that web sessions have persistent connections to the same backend
server. You can configure a balance algorithm such as hdr, rdp-cookie, source, uri, or
url_param to ensure that traffic is always routed to the same web server for a particular
incoming connection during the session. For example, the source algorithm creates a hash of
the source IP address and maps it to a particular backend server. If you use the rdp-cookie, or
url_param algorithms, you might need to configure the backend web servers or the web
applications for these mechanisms to run efficiently.

If the implementation requires the use of the leastconn, roundrobin, or static-rr algorithm,
you can achieve session persistence by using server-dependent cookies.

1. Configure the server for standard or weighted round robin load balancing.

See Configuring Round Robin Load Balancing by Using HAProxy and Using Weighted
Round Robin Load Balancing With HAProxy for more information.

2. Edit the HAProxy configuration to append the cookie directive to each server in the
configuration.

To enable session persistence for all pages on a web server, use the cookie directive to
define the name of the cookie to be inserted and add the cookie option and server name
to the server lines, for example:

cookie WEBSVR insert
server websrv1 192.168.1.71:80 weight 1 maxconn 512 cookie 1 check
server websrv2 192.168.1.72:80 weight 1 maxconn 512 cookie 2 check

HAProxy includes the Set-Cookie: header that identifies the web server in its response to
the client, for example: Set-Cookie: WEBSVR=N; path=page_path . If a client specifies the
WEBSVR cookie in a request, HAProxy forwards the request to the web server whose server
cookievalue matches the value of WEBSVR.

To enable persistence selectively on a web server, use the cookie directive to configure
the HAProxy to expect the specified cookie, typically a session ID cookie or other existing
cookie, to be prefixed with the server cookie value and a ~ delimiter, for example:

cookie SESSIONID prefix
server websrv1 192.168.1.71:80 weight 1 maxconn 512 cookie 1 check
server websrv2 192.168.1.72:80 weight 1 maxconn 512 cookie 2 check

If the value of SESSIONID is prefixed with a server cookie value, for example: Set-Cookie:
SESSIONID=N~Session_ID;, HAProxy strips the prefix and delimiter from the SESSIONID

Chapter 2
Adding Session Persistence for HAProxy

2-6

cookie before forwarding the request to the web server whose server cookie value
matches the prefix.

3. Reload the HAProxy systemd service.

sudo systemctl reload haproxy

4. Verify that session persistence is working.

The following example shows how to use curl to test session persistence by including a
cookie in the curl request. You can use a while loop in the shell to repeat the test over a
period. To cancel out of the loop, use the Ctrl-C key combination:

while true; do curl http://10.0.0.10 --cookie "SESSIONID=1~1234;"; sleep
1; done

The output shows that even though the request is passing through a load balancer that's
configured for weighted round-robin load balancing, the request is always directed to the
same web server because session persistence is maintained.

This is HTTP server websrv1 (192.168.1.71).
This is HTTP server websrv1 (192.168.1.71).
This is HTTP server websrv1 (192.168.1.71).
...

Note:

In these examples the web servers are configured to serve a page that describes
the web server name and IP address. The outputs in a real world configuration
are likely to differ.

A real web application would typically set the session ID on the server side, in which case
the first HAProxy response would include the prefixed cookie in the Set-Cookie: header.

Chapter 2
Adding Session Persistence for HAProxy

2-7

3
Setting Up Load Balancing by Using
Keepalived

This chapter includes tasks and examples that describe how to configure load balancing NAT
mode by using Keepalived. The chapter also includes a configuration scenario that shows how
to combine the use of Keepalived and HAProxy for high-availability load balancing.

Installing and Configuring Keepalived
Before you can set up load balancing by using Keepalived, install and configure the feature.

1. Install the keepalived package on each server.

Run the following command:

sudo dnf install keepalived

2. Edit /etc/keepalived/keepalived.conf to configure Keepalived on each server.

See Keepalived Configuration Directives for more information.

3. Validate the configuration file.

sudo keepalived -t

4. Enable IP forwarding on each server.

Create /etc/sysctl.d/ip-forward.conf and add the following line:

net.ipv4.ip_forward = 1

5. Verify that the IP forwarding has been applied.

Run the following command:

sudo sysctl --system

Confirm that the command output contains the following line:

net.ipv4.ip_forward = 1

6. Add firewall rules to accept VRRP communication by using the multicast IP address
224.0.0.18 and the VRRP protocol (112) on each network interface that Keepalived
controls.

3-1

For example, run the following commands on each server:

sudo firewall-cmd --direct --permanent --add-rule ipv4 filter INPUT 0 \
 --in-interface enp0s8 --destination 224.0.0.18 --protocol vrrp -j ACCEPT

sudo firewall-cmd --direct --permanent --add-rule ipv4 filter OUTPUT 0 \
 --out-interface enp0s9 --destination 224.0.0.18 --protocol vrrp -j ACCEPT

sudo firewall-cmd --reload

7. Enable and start the keepalived service on each server.

Run the following command:

sudo systemctl enable --now keepalived

If you change the Keepalived configuration, reload the keepalived service:

sudo systemctl reload keepalived

Keepalived Configuration Directives
The /etc/keepalived/keepalived.conf configuration file is divided into the following sections:

global_defs
Defines global settings such as the email addresses for sending notification messages, the IP
address of an SMTP server, the timeout value for SMTP connections in seconds, a string that
identifies the host machine, the VRRP IPv4 and IPv6 multicast addresses, and whether SNMP
traps are enabled.

static_ipaddress
static_routes
Define static IP addresses and routes, which VRRP can't change. These sections aren't
required if the addresses and routes are already defined on the servers and these servers
already have network connectivity.

vrrp_sync_group
Defines a VRRP synchronization group of VRRP instances that fail over together.

vrrp_instance
Defines a moveable virtual IP address for a member of a VRRP synchronization group's
internal or external network interface, which follows other group members during a state
transition. Each VRRP instance must have a unique value of virtual_router_id, which
identifies which interfaces on the primary and backup servers can be assigned a specified
virtual IP address. You can also specify scripts that are run on state transitions to BACKUP,
MASTER, and FAULT, and whether to trigger SMTP alerts for state transitions.

vrrp_script
Defines a tracking script that Keepalived can run at regular intervals to perform monitoring
actions from a vrrp_instance or vrrp_sync_group section.

Chapter 3
Keepalived Configuration Directives

3-2

virtual_server_group
Defines a virtual server group, through a real server can be configured to be a member of
several virtual server groups.

virtual_server
Defines a virtual server for load balancing, which is composed of several real servers.

For more information about setting up load balancing with Keepalived, see Setting Up Load
Balancing by Using Keepalived

Setting Up Load Balancing in NAT Mode
The following procedure describes how to configure Keepalived in NAT mode to implement a
basic failover and load balancing configuration on two servers. One server acts as the primary,
the other acts as a backup, with the primary server having a higher priority than the backup
server. Both servers use VRRP to monitor the current routing state. For more information about
VRRP, see Using Keepalived With VRRP.

In this procedure, the example servers each have two network interfaces. The first interface is
connected to an external network (192.168.1.0/24). The second interface is connected to an
internal network (10.0.0.0/24), on which two web servers are accessible.

The following figure shows that the Keepalived primary server has the following network
addresses: 192.168.1.10, 192.168.1.1 (virtual), 10.0.0.10, and 10.0.0.100 (virtual).

The Keepalived backup server has the following network addresses: 192.168.1.11 and
10.0.0.11.

For IP addresses, websrv1 has 10.0.0.71 and websrv2 has 10.0.0.72.

Chapter 3
Setting Up Load Balancing in NAT Mode

3-3

Figure 3-1 Keepalived Configuration for Load Balancing in NAT Mode

1. Configure the primary server.

Chapter 3
Setting Up Load Balancing in NAT Mode

3-4

The following is an example of the configuration in the /etc/keepalived/keepalived.conf
file on the primary server:

global_defs {
 notification_email {
 root@example.com
 }
 notification_email_from srv1@example.com
 smtp_server localhost
 smtp_connect_timeout 30
}

vrrp_sync_group VRRP1 {
Group the external and internal VRRP instances so they fail over
together
 group {
 external
 internal
 }
}

vrrp_instance external {
 state MASTER
 interface enp0s8
 virtual_router_id 91
 priority 200
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1215
 }
Define the virtual IP address for the external network interface
 virtual_ipaddress {
 192.168.1.1/24
 }
}

vrrp_instance internal {
 state MASTER
 interface enp0s9
 virtual_router_id 92
 priority 200
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1215
 }
Define the virtual IP address for the internal network interface
 virtual_ipaddress {
 10.0.0.100/24
 }
}

Define a virtual HTTP server on the virtual IP address 192.168.1.1
virtual_server 192.168.1.1 80 {
 delay_loop 10

Chapter 3
Setting Up Load Balancing in NAT Mode

3-5

 protocol TCP
Use round-robin scheduling in this example
 lb_algo rr
Use NAT to hide the back-end servers
 lb_kind NAT
Persistence of client sessions times out after 2 hours
 persistence_timeout 7200

 real_server 10.0.0.71 80 {
 weight 1
 TCP_CHECK {
 connect_timeout 5
 connect_port 80
 }
 }

 real_server 10.0.0.72 80 {
 weight 1
 TCP_CHECK {
 connect_timeout 5
 connect_port 80
 }
 }
}

The configuration includes both a vrrp_sync_group section so that the network interfaces
are assigned together on failover, and a virtual_server section to define the real
backend servers that Keepalived uses for load balancing. The value of lb_kind is set to
use NAT, which means the Keepalived server handles both inbound and outbound network
traffic from and to the client on behalf of the backend servers.

2. Verify that the configuration file is valid.

sudo keepalived -t

3. Configure the backup server.

The configuration of the backup server is the same, except for the values of
notification_email_from, state, priority, and possibly interface, if the system
hardware configuration is different:

global_defs {
 notification_email {
 root@example.com
 }
 notification_email_from srv2@example.com
 smtp_server localhost
 smtp_connect_timeout 30
}

vrrp_sync_group VRRP1 {
Group the external and internal VRRP instances so they fail over
together
 group {
 external
 internal

Chapter 3
Setting Up Load Balancing in NAT Mode

3-6

 }
}

vrrp_instance external {
 state BACKUP
 interface enp0s8
 virtual_router_id 91
 priority 100
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1215
 }
Define the virtual IP address for the external network interface
 virtual_ipaddress {
 192.168.1.1/24
 }
}

vrrp_instance internal {
 state BACKUP
 interface enp0s9
 virtual_router_id 92
 priority 100
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1215
 }
Define the virtual IP address for the internal network interface
 virtual_ipaddress {
 10.0.0.100/24
 }
}

Define a virtual HTTP server on the virtual IP address 192.168.1.1
virtual_server 192.168.1.1 80 {
 delay_loop 10
 protocol TCP
Use round-robin scheduling in this example
 lb_algo rr
Use NAT to hide the back-end servers
 lb_kind NAT
Persistence of client sessions times out after 2 hours
 persistence_timeout 7200

 real_server 10.0.0.71 80 {
 weight 1
 TCP_CHECK {
 connect_timeout 5
 connect_port 80
 }
 }

 real_server 10.0.0.72 80 {
 weight 1

Chapter 3
Setting Up Load Balancing in NAT Mode

3-7

 TCP_CHECK {
 connect_timeout 5
 connect_port 80
 }
 }
}

4. Verify that the configuration file is valid.

sudo keepalived -t

5. Configure firewall rules on each server.

Configure the firewall rules on each Keepalived server (primary and backup) that you're
configuring as a load balancer. See Configuring Firewall Rules for Keepalived NAT-Mode
Load Balancing.

6. Configure the default route on each server to use the virtual IP address of the load
balancer's internal network interface.

Configure a default route for the virtual IP address of the load balancer's internal network
interface on each backend server that you intend to use with the Keepalived load balancer.
See Configuring Backend Server Routing for Keepalived NAT-Mode Load Balancing.

After you complete the configuration steps on all servers, you can run the following command
on one of the keepalived servers to verify the service is running correctly:

sudo journalctl -u keepalived

Configuring Firewall Rules for Keepalived NAT-Mode Load Balancing
If you configure Keepalived to use NAT mode for load balancing with the servers on the
internal network, the Keepalived server handles all inbound and outbound network traffic and
hides the existing backend servers by rewriting the source IP address of the real backend
server in outgoing packets with the virtual IP address of the external network interface.

The following example shows how to move interface enp0s9 to the internal zone, while
interface enp0s8 remains in the public zone.

To configure a Keepalived server to use NAT mode for load balancing:

1. Check the state of any active firewall zones on the system.

Run the following command:

sudo firewall-cmd --get-active-zones

Output similar to the following is displayed:

public
 interfaces: enp0s8 enp0s9

2. Configure firewall interfaces so that they belong to the appropriate zones.

Chapter 3
Setting Up Load Balancing in NAT Mode

3-8

Configure the firewall so that the interfaces on the external network side are in a zone
that's different from the interfaces on the internal network side:

sudo firewall-cmd --zone=public --remove-interface=enp0s9

sudo firewall-cmd --zone=internal --add-interface=enp0s9

sudo firewall-cmd --permanent --zone=public --remove-interface=enp0s9

sudo firewall-cmd --permanent --zone=internal --add-interface=enp0s9

Confirm that the changes have been applied:

sudo firewall-cmd --get-active-zones

Output similar to the following is displayed:

internal
 interfaces: enp0s9
public
 interfaces: enp0s8

3. Configure NAT mode (masquerading) on the external network interface.

For example, run:

sudo firewall-cmd --zone=public --add-masquerade

sudo firewall-cmd --permanent --zone=public --add-masquerade

sudo firewall-cmd --reload

Optionally, you can query each NAT mode to ensure that both of them have been set
correctly. The query for public zone would return a yes response, and the query for
internal zone would return a no response.

sudo firewall-cmd --zone=public --query-masquerade

sudo firewall-cmd --zone=internal --query-masquerade

4. Configure forwarding rules between internal and external interfaces.

Chapter 3
Setting Up Load Balancing in NAT Mode

3-9

If not already enabled for the firewall, configure forwarding rules between the external and
internal network interfaces, for example:

sudo firewall-cmd --direct --permanent --add-rule ipv4 filter FORWARD 0 \
 -i enp0s8 -o enp0s9 -m state --state RELATED,ESTABLISHED -j ACCEPT

sudo firewall-cmd --direct --permanent --add-rule ipv4 filter FORWARD 0 \
 -i enp0s9 -o enp0s8 -j ACCEPT

sudo firewall-cmd --direct --permanent --add-rule ipv4 filter FORWARD 0 \
 -j REJECT --reject-with icmp-host-prohibited

sudo firewall-cmd --reload

5. Enable access to the services or ports that you want Keepalived to handle.

Configuring Backend Server Routing for Keepalived NAT-Mode Load
Balancing

On each server that you intend to use with the Keepalived load balancer, ensure that the
routing table contains a default route for the virtual IP address of the load balancer's internal
network interface. This task shows how to configure the default route for an interface.

1. Identify the network device that you're configuring.

Use the nmcli device status command to list all devices.

nmcli device status

The device must be connected to the same network that the virtual IP address is
configured for.

You can use the nmcli device show command to show the details for any devices
listed. For example, run:

nmcli device show enp0s8

2. Use the nmcli command to set the default route on the device to match the virtual IP
address that you have configured on the load balancer.

For example, to configure the default gateway on the enp0s8 device to match the virtual IP
address of 10.0.0.100, run:

nmcli connection modify enp0s8 ipv4.gateway 10.0.0.100

3. Reload the network interface connection.

Restart the network connection to pick up the new configuration by running:

nmcli connection down enp0s8
nmcli connection up enp0s8

4. Verify that the device shows the correct default route.

Chapter 3
Setting Up Load Balancing in NAT Mode

3-10

For example, if the virtual IP address is 10.0.0.100 and you have configured this as the
default gateway, use the ip command to examine the routing table:

sudo ip route show

Output similar to the following is displayed.

default via 10.0.0.100 dev enp0s8
10.0.0.0/24 dev enp0s8 proto kernel scope link src 10.0.0.71

Enhancing Load Balancing by Using Keepalived With HAProxy
Keepalived can provide failover services for backup routers, while at the same time also use
HAProxy for load balancing to achieve high availability across distributed servers. The
advantage of this approach is that the packet and application layers are separated, which
means that the health checks that are performed by Keepalived for the load-balancing servers
aren't impacted by the inbound HTTP or TCP traffic that HAProxy is managing. Also, failover
routing, which is achieved by using VRRP, can be activated automatically without waiting for a
client response to timeout. To learn more about the usefulness of VRRP, see Using Keepalived
With VRRP.

The practicality of using this method is that if the public-facing HAProxy load balancer goes
offline, Keepalived automatically detects this event and dynamically switches to another
HAProxy server. If the Keepalived primary router goes offline, the VRRP settings that you
configured ensure that traffic is automatically handled by the Keepalived backup router.

The role of HAProxy in the setup is to provide inbound load balancing and session persistence
to the backend servers: Keepalived is solely responsible for monitoring the status of HAProxy
and providing an alternative routing mechanism. Using both tools in combination provides a
highly available and resilient load-balancing solution.

The following procedure is similar to Setting Up Load Balancing in NAT Mode, however in this
case HAProxy is installed on both the Keepalived primary server and the Keepalived backup
server.

In this procedure, the external virtual IP address is 192.168.1.1 on the 192.168.1.0/24
external network. This IP address is dynamically assigned through NAT between the
Keepalived primary server whose IP address is 192.168.1.10, and the Keepalived backup
server, whose external IP address is 192.168.1.11.

The internal network is hosted on the 10.0.0.0/24 subnet. For IP addresses, websvr1 has
10.0.0.71 while websvr2 has 10.0.0.72.

Chapter 3
Enhancing Load Balancing by Using Keepalived With HAProxy

3-11

Figure 3-2 Keepalived and HAProxy Configuration for High Availability Load Balancing

1. Configure Keepalived on the primary server.

Chapter 3
Enhancing Load Balancing by Using Keepalived With HAProxy

3-12

The following example shows the configuration in the /etc/keepalived/keepalived.conf
file on the primary server

global_defs {

 notification_email {
 root@example.com
 }

 notification_email_from srv1@example.com
 smtp_server localhost
 smtp_connect_timeout 30
}

vrrp_sync_group vg1 {
 group {
 external
 internal
 }
}

vrrp_script chk_haproxy {
 script "killall -0 haproxy" # check the haproxy process
 interval 2 # every 2 seconds
 weight 2 # add 2 points if OK
}

vrrp_instance external {
 state MASTER
 interface enp0s8
 virtual_router_id 91
 priority 200
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1215
 }
 virtual_ipaddress {
 192.168.1.1/24
 }
 track_script {
 chk_haproxy
 }
}

vrrp_instance internal {
 state MASTER
 interface enp0s9
 virtual_router_id 92
 priority 200
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1215
 }
 virtual_ipaddress {

Chapter 3
Enhancing Load Balancing by Using Keepalived With HAProxy

3-13

 10.0.0.100/24
 }
}

2. Verify that the configuration file is valid.

sudo keepalived -t

3. Configure Keepalived on the backup server.

The configuration for the backup Keepalived server is identical, but the state value must
be set to BACKUP. You don't need to set up a virtual_server because in this scenario,
Keepalived is only used to route traffic, not to perform load balancing. An example
configuration for the backup server follows:

global_defs {

 notification_email {
 root@example.com
 }

 notification_email_from srv1@example.com
 smtp_server localhost
 smtp_connect_timeout 30
}

vrrp_sync_group vg1 {
 group {
 external
 internal
 }
}

vrrp_script chk_haproxy {
 script "killall -0 haproxy" # check the haproxy process
 interval 2 # every 2 seconds
 weight 2 # add 2 points if OK
}

vrrp_instance external {
 state MASTER
 interface enp0s8
 virtual_router_id 91
 priority 200
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1215
 }
 virtual_ipaddress {
 192.168.1.1/24
 }
 track_script {
 chk_haproxy
 }
}

Chapter 3
Enhancing Load Balancing by Using Keepalived With HAProxy

3-14

vrrp_instance internal {
 state BACKUP
 interface enp0s9
 virtual_router_id 92
 priority 200
 advert_int 1
 authentication {
 auth_type PASS
 auth_pass 1215
 }
 virtual_ipaddress {
 10.0.0.100/24
 }
}

4. Verify that the configuration file is valid.

sudo keepalived -t

5. Configure firewall rules for Keepalived on each server.

For more information about configuring Keepalived and setting the appropriate firewall
rules, see Setting Up Load Balancing by Using Keepalived.

6. Configure HAProxy on each server.

The HAProxy settings are configured in the /etc/haproxy/haproxy.cfg file. The settings
are identical for both HAProxy installations because Keepalived dynamically routes from
one configuration to the other automatically, as needed:

global
 daemon
 log 127.0.0.1 local0 debug
 maxconn 4000
 nbthread 1

defaults
 mode http
 retries 3
 timeout connect 5s
 timeout client 25s
 timeout server 25s
 timeout queue 10s

listen http-incoming
 mode http
 bind internal-server-ip:80
 option http-server-close
 option forwardfor
 default_backend app

backend app
 balance roundrobin
 option httpchk
 http-check send meth HEAD ver HTTP/1.1 hdr Host localhost
 option httpclose

Chapter 3
Enhancing Load Balancing by Using Keepalived With HAProxy

3-15

 option forwardfor
 server websrv1 192.168.1.71:80 weight 1 maxconn 512 check
 server websrv2 192.168.1.72:80 weight 1 maxconn 512 check

In the configuration example, the option http-server-close and option httpclose
options are used to stop idle connections. This configuration shows the round-robin, load-
balancing strategy. If no option is specified, then HAProxy defaults to using the option
http-keep-alive option, which keeps any new connections open until every request and
response journey that's associated with them is processed.

For more information about configuring HAProxy and setting the appropriate firewall rules,
see Setting Up Load Balancing by Using HAProxy.

Chapter 3
Enhancing Load Balancing by Using Keepalived With HAProxy

3-16

4
Setting Up Load Balancing by Using NGINX

This chapter describes how to configure NGINX as a load balancer and includes installation
instructions and configuration directives. For an overview of NGINX, see About NGINX.

Installing NGINX
Before you can use NGINX for load balancing, you must first install the software and configure
the environment.

1. Install the nginx package on each server

Run the following command:

sudo dnf install nginx

Depending on the intended configuration, you might need to install more modules. The
nginx-all-modules metapackage installs all the packages. To display the complete listing
of the available modules in the package manager, use the following command:

sudo dnf search nginx-mod*

Note that if you intend to do TCP/UDP load balancing, you must install the nginx-mod-
stream module package. For example, run the following command:

sudo dnf install nginx-mod-stream

2. Configure the firewall to enable access to the services or ports that you want NGINX to
handle.

For example, you would accept incoming TCP requests on port 80 by running the following
commands:

sudo firewall-cmd --zone=zone --add-port=80/tcp
sudo systemctl reload firewalld

3. If SELinux is set to enforcing mode on the system, add a rule to allow NGINX to relay
HTTP traffic to any configured backend servers.

Run the following command:

sudo setsebool httpd_can_network_relay on

4. Enable and start the nginx service on each server.

Run the following command:

sudo systemctl enable --now nginx

4-1

If you change the NGINX configuration, reload the nginx service:

sudo systemctl reload nginx

NGINX Configuration Directives
NGINX configuration can be spread across several files to specify different configuration
directives and set the values for configuration variables. Configuration is stored in /etc/nginx.
The base configuration is stored in /etc/nginx/nginx.conf, while site specific configuration
tends to be created within distinct files in /etc/nginx/conf.d/. By convention, site
configurations tend to use the full domain name for the file name and would have a .conf
suffix.

In these examples, a configuration has the following general format:

http {
 server {
 listen 80;
 listen [::]:80;
 server_name example.com www.example.com;
 location / {
 root /usr/share/nginx/html/example.com;
 index index.html;
 }
 }
}

The previous example shows an HTTP server configuration for a web server that serves
content from the web root directory at /usr/share/nginx/html/example.com.

The following configuration directives are useful for configuring load balancing:

http, https, stream
Defines the protocol for which the settings apply. Use https for TLS connections to the load
balancer and stream for generic TCP/UDP traffic.

server
Defines how to handle incoming traffic from the specified ports for the chosen protocol.
To configure at least one listening port for IPv4, use the listen keyword:

listen 80;

To listen on IPv6 interfaces, prepend the [::]: directive to the port number, for example:

listen [::]:80

Note that the listen lines can be duplicated to specify more than one port for a server{}
block.
Use the server_name keyword to define the hostname or domain name that the server
responds to. If you don't specify this value, the configuration applies to any incoming
connection, however you might need to comment out the default server configuration
within /etc/nginx/nginx.conf to avoid conflicting configuration definitions.

Chapter 4
NGINX Configuration Directives

4-2

location
The location directive defines path mappings and behavior, depending on incoming requests
on the server. At minimum, you must have a value for the web root that's indicated with the
value /. The behavior is defined by setting values within a location block.
For example, to configure a simple web server that serves content from a directory on the
server, use the root keyword and specify the content's directory location.
The proxy_pass directive can be used to implement a reverse proxy service. Traffic is proxied
onto the specified server or group of servers, as defined in an upstream directive.
For example, you would proxy inbound HTTP traffic to a website that's hosted on
websrv1.example.com on port 9090 as follows:

server {
 location / {
 proxy_pass http://websvr1.example.com:9090
 }
}

You can also specify a server group by referencing its defined upstream name.

upstream
An upstream directive is used to define a group of one or more servers where the content is
stored and which can be used by the proxy_pass directive. For example, you can create an
upstream group of servers called backend as follows:

upstream backend {
 server server1.example.com;
 server server2.example.com;
 server server3.example.com;
 }

To use this group, the proxy_pass directive is specified:

proxy_pass http://backend

The upstream directive is the key configuration component that's used to control load-
balancing methods and algorithms. For more information, see http://nginx.org/en/docs/http/
ngx_http_upstream_module.html.

Configuring Round Robin Load Balancing by Using NGINX
The default load balancing method that's used by NGINX is the round-robin method. This
method proxies traffic sequentially to each server in a defined group. This task describes how
to configure round-robin load balancing for an example set of servers.

1. Create a configuration file for the load-balancer at /etc/nginx/conf.d/example.com.conf.

Create a configuration file for the load-balancer at /etc/nginx/conf.d/example.com.conf,
where example.com is the name of the external domain where inbound traffic is directed.
The file would contain the following content:

http
{
 upstream backend {

Chapter 4
Configuring Round Robin Load Balancing by Using NGINX

4-3

http://nginx.org/en/docs/http/ngx_http_upstream_module.html
http://nginx.org/en/docs/http/ngx_http_upstream_module.html

 server server1.example.com;
 server server2.example.com;
 server server3.example.com;
 }

 server {
 listen 80;
 server_name example.com
 www.example.com;
 location / {
 proxy_pass http://backend;
 }
 }
}

a. In the upstream backend configuration block, list the backend servers within the
environment.

For example, substitute server1.example.com with the fully qualified domain name or
the hostname of a web server instance.

Set the server_name directive with the domain name or names that you intend to use
publicly for the load balanced service. For example, substitute example.com and
www.example.com to match the company domain.

b. Optionally, append more failover options.

For example, add max_fails and fail_timeout, to the end of each entry to add
resilience in case any of the servers goes offline.

2. Reload the systemd configuration.

After ensuring that the configuration is valid, enable it by reloading NGINX on the public-
facing and backend servers:

sudo systemctl reload nginx

Using Weighted Round Robin Load Balancing With NGINX
When using servers with varying physical locations or differing hardware resources, you can
configure NGINX to allocate more of the traffic to servers that provide less latency and can
handle more of a load. This method is referred to as the weighted round-robin method.

1. Configure weighted round robin load balancing by appending a weight value to each
server entry in the configuration.

You can configure weighted round robin configuration by appending a weight value to the
end of each entry in the server group section of the NGINX site configuration file. Set the
weight of the slowest server to 1, and then set the weight of other servers relative to that
setting.

The following example shows how servers can handle multiple times the load of the base
server. One server receives twice the amount of traffic, while the other server receives four
times the amount:

upstream backend {
 server server1.example.com weight=1;
 server server2.example.com weight=2;

Chapter 4
Using Weighted Round Robin Load Balancing With NGINX

4-4

 server server3.example.com weight=4;
}

2. Reload the NGINX systemd service.

Reload NGINX to apply the new configuration:

sudo systemctl reload nginx

Using Least-Connected Load Balancing With NGINX
The least-connected load balancing method is used to automatically control the load on
application instances, mostly in situations where different inbound requests might take longer
to process than other requests.

If you're using the least-connected load balancing method, NGINX always directs new
incoming requests to the server with the least number of active requests. This load balancing
strategy is intended to ensure that no busy servers are overloaded with new requests, while
other servers that can handle the load remain idle.

1. Configure least-connected load balancing by adding the least-conn directive to the server
group configuration.

You can activate the least-connected load balancing method for NGINX by specifying the
least-conn directive as part of the server group configuration, for example:

upstream backend {
 least_conn;
 server server1.example.com;
 server server2.example.com;
 server server3.example.com;
}

2. Reload the NGINX systemd service.

Reload NGINX to apply the new configuration:

sudo systemctl reload nginx

Adding Session Persistence for NGINX
If you're performing load balancing of a web application, ensure that the same backend server
that handled inbound requests continues to do so for the same source. This configuration is
important in cases where a website or web service must preserve log-in sessions between
requests, cancel an existing request, or monitor the progress of large backend transactions.

1. Configure session persistence by adding the ip-hash directive to the server group
configuration.

To achieve this behavior, activate the IP hash method for NGINX by specifying the ip_hash
directive as part of the server group configuration, for example:

upstream backend {
 ip_hash;
 server server1.example.com;
 server server2.example.com;

Chapter 4
Using Least-Connected Load Balancing With NGINX

4-5

 server server3.example.com;
}

2. Reload the NGINX systemd service.

Reload NGINX to apply the new configuration:

sudo systemctl reload nginx

Chapter 4
Adding Session Persistence for NGINX

4-6

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 About Load Balancing
	About HAProxy
	About Keepalived
	Using Keepalived With VRRP
	Combining Keepalived With HAProxy for High-Availability Load Balancing
	About NGINX

	2 Setting Up Load Balancing by Using HAProxy
	Installing and Configuring HAProxy
	HAProxy Configuration Directives
	Configuring Round Robin Load Balancing by Using HAProxy
	Using Weighted Round Robin Load Balancing With HAProxy
	Adding Session Persistence for HAProxy

	3 Setting Up Load Balancing by Using Keepalived
	Installing and Configuring Keepalived
	Keepalived Configuration Directives
	Setting Up Load Balancing in NAT Mode
	Configuring Firewall Rules for Keepalived NAT-Mode Load Balancing
	Configuring Backend Server Routing for Keepalived NAT-Mode Load Balancing

	Enhancing Load Balancing by Using Keepalived With HAProxy

	4 Setting Up Load Balancing by Using NGINX
	Installing NGINX
	NGINX Configuration Directives
	Configuring Round Robin Load Balancing by Using NGINX
	Using Weighted Round Robin Load Balancing With NGINX
	Using Least-Connected Load Balancing With NGINX
	Adding Session Persistence for NGINX

