
Oracle Linux Automation Manager 2.1
Installation Guide

F80482-05
November 2024

Oracle Linux Automation Manager 2.1 Installation Guide,

F80482-05

Copyright © 2022, 2024, Oracle and/or its affiliates.

Contents

 Preface

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 Oracle Linux Automation Manager Requirements

Oracle Linux Automation Manager Hardware Requirements 1-1

2 Planning the Installation

Oracle Linux Automation Manager Node Architecture 2-1

Installation Options 2-2

Service Mesh Topology Examples 2-4

Tuning Instances for Playbook Duration 2-7

3 Preparing the Database and Hosts

Setting Up the Network 3-1

Setting Up the Firewall Rules 3-1

Enabling Access to the Oracle Linux Automation Manager Packages 3-1

Enabling Channels with ULN 3-1

Enabling Repositories with the Oracle Linux Yum Server 3-2

Setting Up a Local or Remote Database 3-3

Setting up Hosts 3-4

4 Installing Oracle Linux Automation Manager on a Single-Host Deployment

Installing on a Single Host 4-1

5 Installing Oracle Linux Automation Manager in a Clustered Deployment

Configuring and Starting the Control Plane Service Mesh 5-1

iii

Configuring and Starting the Execution Plane Service Mesh 5-2

Configuring and Starting the Hop Nodes 5-4

Configuring the Control, Execution, and Hop Nodes 5-5

Starting the Control, Execution, and Hop Nodes 5-7

Configuring TLS Verification and Signed Work Requests 5-8

6 Adding or Removing Nodes to an Existing Cluster

Adding a New Control Plane Node to a Cluster 6-1

Adding a New Execution Plane Node to a Cluster 6-1

Adding a New Hop Node to a Cluster 6-2

Removing a Node from a Cluster 6-2

7 Viewing the Service Mesh

Viewing Service Mesh Status for a Cluster Node 7-1

Viewing Service Mesh Cluster Status 7-2

8 Installing Oracle Linux Automation Manager CLI

9 Upgrading Oracle Linux Automation Manager

Upgrading a Release 1.0.X to a Release 2.0 Single Host Deployment 9-1

Upgrading Release 2.0 to Release 2.1 9-7

Migrating a Single Instance Deployment to a Clustered Deployment 9-8

Migrating Playbooks to Oracle Linux Automation Engine Release 2.0 9-10

iv

Preface

Oracle Linux Automation Manager 2.1: Installation Guide describes how to install Oracle Linux
Automation Manager in single-host deployments or clustered deployments.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

v

https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/install2.1/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

1
Oracle Linux Automation Manager
Requirements

This chapter describes the requirements for the systems to be used in an installation of Oracle
Linux Automation Manager.

Oracle Linux Automation Manager Hardware Requirements
You can install Oracle Linux Automation Manager on a single machine or in a clustered setup
in x86-64 Oracle Linux 8 hosts.

Oracle Linux Automation Manager does not require specific hardware; however, certain
operations are memory intensive and require a certain amount of disk space and CPU. A
minimum configuration is:

• 4 GB RAM

• 40 GB disk space (170 GB is recommended)

• Two core CPU

These requirements are for the minimum to run Oracle Linux Automation Manager. You must
determine any additional hardware requirements and capacity based on your operational
needs. For more information, see the upstream documentation.

1-1

2
Planning the Installation

This chapter provides information about planning your installation.

Oracle Linux Automation Manager Node Architecture
Oracle Linux Automation Manager supports a Service Mesh that provides a multi-service
network that links nodes within a secure mesh. The Service Mesh can include up to 20 nodes
that have the following node types:

• Control Nodes: These nodes provide management functions such as launching system
jobs, inventory updates, and project synchronizations. Control nodes use ansible-runner
which in turn uses Podman to run jobs within the Control Plane Execution Environment
execution environments. The Control Plane Execution Environment execution
environment references the olam-ee container image found on the Oracle Linux Container
Registry. Control nodes do not run standard jobs.

• Execution Nodes: These nodes run standard jobs using ansible-runner which in turn uses
Podman to run playbooks within OLAM EE execution environments. The OLAM EE
execution environment references the olam-ee container image found on the Oracle Linux
Container Registry. Execution nodes do not run management jobs. Execution nodes can
also run custom execution environments that you can create using the Builder utility. For
more information about custom execution environments, see Oracle Linux Automation
Manager 2.1: Private Automation Hub Installation Guide. For more information about using
Podman and the Oracle Linux Container Registry, see Oracle Linux: Podman User's
Guide.

• Hybrid Nodes: Hybrid nodes combine the functions of both control nodes and execution
nodes into one node. Hybrid nodes are supported in single host Oracle Linux Automation
Manager deployments, but not in clustered multi-host deployments.

• Hop Nodes: You can use hop nodes to connect control nodes to execution nodes within a
cluster. Hop nodes cannot run playbooks and do not appear in instance groups. However,
they do appear as part of the service mesh.

Oracle Linux Automation Manager can manage a variety of different instance types, such as
devices, servers, databases, network equipment, and so on. In general, Oracle Linux
Automation Manager manages the following instance types:

• Directly Managed Instances: Directly managed instances (nodes) are any virtual,
physical, or software instances that Oracle Linux Automation Manager manages over an
ssh connection.

• Indirectly Managed Instances: Indirectly managed instances (nodes) include any
identifiable instance not directly connected to Oracle Linux Automation Manager, but
managed by a device that is directly connected to Oracle Linux Automation Manager.

For example, the following image illustrates all node and instance types and some of the ways
that they can be related to one another.

2-1

https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/install-private-hub2.1/
https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/install-private-hub2.1/
https://docs.oracle.com/en/operating-systems/oracle-linux/podman/
https://docs.oracle.com/en/operating-systems/oracle-linux/podman/

Installation Options
Oracle Linux Automation Manager provides three installation options:

• Standalone Installation: All components are on the same host, including the database.

Chapter 2
Installation Options

2-2

Figure 2-1 Standalone Installation with Local Database

• Standalone Installation with Remote Database: All components are on the same host, with
the exception of the database which is on a remote host.

Figure 2-2 Standalone Installation with Remote Database

• Clustered Installation with Remote Database: Clustered installation can contain up to 20
nodes with one or more control node, one or more execution nodes, and one or more hop
nodes all connected to one database. For example, the following shows a cluster with two
control plane nodes and two execution plane nodes, each on separate hosts, and all of
them connected to a remote database.

Chapter 2
Installation Options

2-3

Figure 2-3 Clustered Installation with Remote Database

Service Mesh Topology Examples
There are a variety of ways that you can configure the Oracle Linux Automation Manager
Service Mesh topology.

Example 1: Design the Service Mesh such that you have at least one backup control plane
node and one backup execution plane node. For example, two control nodes and two
execution nodes. Each execution plane node would have communication with both control
plane nodes in case one of the control plane node were to fail. If the first execution plane node
were to fail, the control plane node would switch to the second execution plane node.

Chapter 2
Service Mesh Topology Examples

2-4

Figure 2-4 Clustered Installation with Remote Database

The high level steps to configure the Service Mesh are as follows:

1. Configure the /etc/receptor/receptor.conf file with the Node ID, tcp-listener, and tcp-
peer addresses as required for each node. For more information about this task, see
Configuring and Starting the Control Plane Service Mesh and Configuring and Starting the
Execution Plane Service Mesh.

2. From a control plane node, log in as the awx user, and run the awx-manage command to
do the following:

Chapter 2
Service Mesh Topology Examples

2-5

a. Provision each host's IP address or host name, and designate it as a control plane or
execution plane node type. For example, the following commands provision two
control plane and two execution plane nodes as illustrated in the figure above:

awx-manage provision_instance --hostname=192.0.121.28 --
node_type=control
awx-manage provision_instance --hostname=192.0.126.72 --
node_type=control
awx-manage provision_instance --hostname=192.0.113.178 --
node_type=execution
awx-manage provision_instance --hostname=192.0.127.70 --
node_type=execution

b. Register each node to either the controlplane or the execution instance group,
based on the type of node you designated for each node. The awx-manage command
refers to instance groups as queuenames. For example, the following commands
create the controlplane and execution instance groups and associates the two control
plane and two exection plane nodes to each instance group as illustrated in the figure
above:

awx-manage register_queue --queuename=controlplane --
hostnames=192.0.121.28
awx-manage register_queue --queuename=controlplane --
hostnames=192.0.126.72
awx-manage register_queue --queuename=execution --
hostnames=192.0.113.178
awx-manage register_queue --queuename=execution --hostnames=192.0.127.70

c. Register the peer relationship between each node. Note that when you register a peer
relationship between a source IP address to a target IP address, the peer relationship
establishes bidirectional communication. For example, the following commands
registers the host IP address of the execution nodes as the source and each tcp-peer
connection are the targets, which are the control plane nodes:

awx-manage register_peers 192.0.113.178 --peers 192.0.121.28
awx-manage register_peers 192.0.113.178 --peers 192.0.126.172
awx-manage register_peers 192.0.127.70 --peers 192.0.121.28
awx-manage register_peers 192.0.127.70 --peers 192.0.126.172

The command must be run for each link you want to establish between nodes.

d. Register each instance group as the default queuename for either the control plane or
the execution plane. This ensures that only control type jobs go to the control plane
instance group and only Oracle Linux Automation Engine jobs go to execution plane
instance group. To do this, you must edit the /etc/tower/settings.py file with the
DEFAULT_EXECUTION_QUEUE_NAME and the DEFAULT_CONTROL_PLANE_QUEUE_NAME
parameters.

For more information about these steps, see Configuring the Control, Execution, and Hop
Nodes.

Example 2: Deploy as many control and execution plane nodes as you require such that you
build in fail over in case any control or execution plane node fails. Ensure you don't exceed the
20 node limit for your cluster. Additional options you can consider are:

• In some cases you may have an execution node that cannot be directly connected to a
control plane node. In such cases you can connect the execution node to another

Chapter 2
Service Mesh Topology Examples

2-6

execution node that is connected to the control node. This does introduce a risk such that if
the intermediate execution node were to fail, then the connected execution node would
become inaccessible to the control node.

• In some cases you may have an execution node that cannot be directly connected to a
control plane node. In such cases you can connect the execution node to a hop node that
is connected to the control node. This does introduce a risk such that if the intermediate
hop node were to fail, then the connected execution node would become inaccessible to
the control node.

• Establishing a peer relationship between control plane nodes. This ensures that control
plane nodes are always directly accessible to one another. If no such relationship is
established, then control plane nodes are aware of each other through connected
execution plane nodes. For example, control A connects to control B through execution A
which is connected to both.

Tuning Instances for Playbook Duration
Oracle Linux Automation Manager monitors jobs for status changes. For example, some job
statuses are Running, Successful, Failed, Waiting, and so on. Normally the playbook being run
triggers status changes as it makes progress in various ways. However, in some cases, the
playbook will get stuck in the Running or Waiting state. When this happens, a reaper process
automatically changes the state of the task from Running or Waiting to Failed. The default
timer for when the reaper changes the status of a stuck job to the Failed state is 60 seconds.

If you have jobs that are designed to run longer than 60 seconds, then modify the
REAPER_TIMEOUT_SEC parameter to the /etc/tower/settings.py file. Specify a time in
seconds that is longer than the duration that your playbooks with the longest duration is
expected to run. This avoids scenarios where the reaper mistakenly sets a long running
playbook to the Failed state because the REAPER_TIMEOUT_SEC value has expired.

A possible scenario could occur if you run many short and long duration playbooks together
with a reaper that has a long timeout value. If one or more of the short duration playbooks run
for longer than expected, (for example, because of a network outage making it impossible for
these playbooks to complete) the reaper continues to track the status of the stuck short
duration playbooks until they either get unstuck and transition to the Successful state or until
the reaper timeout value is reached. This scenario should cause no performance difficulties if
only a few such failures were to occur. However, if hundreds of such failures were to occur at
the same time, Oracle Linux Automation Manager would waste resources on tracking these
stuck jobs and could degrade the performance of the host processing the jobs.

For more information about setting the REAPER_TIMEOUT_SEC parameter, see Setting up
Hosts.

Chapter 2
Tuning Instances for Playbook Duration

2-7

3
Preparing the Database and Hosts

The following chapter provides information about setting up the network firewalls, database,
and hosts for your Oracle Linux Automation Manager installation. This chapter also discusses
how to enable the repositories to install the Oracle Linux Automation Manager packages.

Setting Up the Network
This section contains information about the generic networking requirements for an Oracle
Linux Automation Manager hosts, the database host and shows you an example of how to set
up the network to enable the communication between the Oracle Linux Automation Manager
host and the inventory hosts in an environment.

Setting Up the Firewall Rules
Oracle Linux 8 installs and enables firewalld, by default. Example commands to open the
ports and to set up the firewall rules are provided below.

On the Oracle Linux Automation Manager hosts, run the following firewalld commands:

sudo firewall-cmd --add-port=27199/tcp --permanent
sudo firewall-cmd --add-service=http --permanent
sudo firewall-cmd --add-service=https --permanent
sudo firewall-cmd --reload

Note:

Port 27199 provides a TCP listener port for the Oracle Linux Automation Manager
service mesh and must be open on each node in the mesh. The HTTP and HTTPS
ports are for the Nginx server.

If you choose to install a remote database, open the following port on the host running the
database:

sudo firewall-cmd --add-port=5432/tcp --permanent
sudo firewall-cmd --reload

Enabling Access to the Oracle Linux Automation Manager
Packages

This section contains information on setting up the locations for the operating system on which
you want to install the Oracle Linux Automation Manager software packages.

Enabling Channels with ULN
If you are registered to use ULN, use the ULN web interface to subscribe the system to the
appropriate channels.

3-1

To subscribe to the ULN channels:

1. Log in to https://linux.oracle.com with your ULN user name and password.

2. On the Systems tab, click the link named for the system in the list of registered machines.

3. On the System Details page, click Manage Subscriptions.

4. On the System Summary page, select each required channel from the list of available
channels and click the right arrow to move the channel to the list of subscribed channels.
Subscribe the system to the following channels:

• ol8_x86_64_automation2
• ol8_x86_64_addons
• ol8_x86_64_baseos_latest
• ol8_x86_64_UEKR6 or ol8_x86_64_UEKR7
• ol8_x86_64_appstream

5. Click Save Subscriptions.

Enabling Repositories with the Oracle Linux Yum Server
If you are using the Oracle Linux yum server for system updates, enable the required yum
repositories.

To enable the yum repositories:

1. Use the dnf config-manager tool to enable the ol8_baseos_latest repository.

sudo dnf config-manager --enable ol8_baseos_latest

Note:

This repository is typically enabled by default.

2. Install oraclelinux-automation-manager-release-el8:

sudo dnf install oraclelinux-automation-manager-release-el8-2.1
3. Enable the following yum repositories including the Oracle Linux Automation Manager

release 2 repository:

• ol8_addons
• ol8_UEKR6 or ol8_UEKR7
• ol8_appstream
Use the dnf config-manager tool to enable the yum repositories and do one of the
following:

• If you are using ol8_UEK6, use the following command:

sudo dnf config-manager --enable ol8_addons ol8_UEKR6 ol8_appstream

• If you are using ol8_UEK7, use the following command:

sudo dnf config-manager --enable ol8_addons ol8_UEKR7 ol8_appstream

Chapter 3
Enabling Access to the Oracle Linux Automation Manager Packages

3-2

https://linux.oracle.com

Setting Up a Local or Remote Database
To setup a local or remote Postgresql database instance on Oracle Linux 8 for Oracle Linux
Automation Manager single host or multi-host configurations, do the following:

1. Install and configure Oracle Linux 8 on a host.

2. If the database is remote, open the database port in the firewall as described in Setting Up
the Firewall Rules.

3. Enable the postgresql 12 or postgresql 13 module stream.

sudo dnf module reset postgresql
sudo dnf module enable postgresql:12

or

sudo dnf module reset postgresql
sudo dnf module enable postgresql:13

Note:

For more information about the Postgresql 12 and 13 life cycle, see the appendix
discussing the application life cycle for stream modules in Oracle Linux:
Managing Software on Oracle Linux.

4. Install the database.

sudo dnf install postgresql-server

5. Initialize the database:

sudo postgresql-setup --initdb

6. In the /var/lib/pgsql/data/postgresql.conf file, switch the password storage
mechanism from md5 to scram-sha-256. For example, the following command makes the
switch for you:

sudo sed -i "s/#password_encryption.*/password_encryption = scram-
sha-256/" /var/lib/pgsql/data/postgresql.conf

7. Start the database using the following command that also ensures that the database
restarts in case the host restarts:

sudo systemctl enable --now postgresql

8. Ensure the database is running:

sudo systemctl status postgresql

Chapter 3
Setting Up a Local or Remote Database

3-3

https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/

9. Create the database user accounts. For example:

sudo su - postgres -c "createuser -S -P awx"

10. Enter and confirm the password for the awx user.

Enter password for new role:
Enter it again:

11. Create the database.

sudo su - postgres -c "createdb -O awx awx"

12. As the root user, in the /var/lib/pgsql/data/pg_hba.conf file add the following line:

host all all 0.0.0.0/0 scram-sha-256

13. As the root user, in the /var/lib/pgsql/data/postgresql.conf file in the # CONNECTIONS
AND AUTHENTICATION section, a line with the text listen_addresses = followed by the
IP address or host name of your database in single quotes. For example:

listen_addresses = '<IP address or host name>'

#listen_addresses = 'localhost' # what IP address(es) to listen on;
 # comma-separated list of
addresses;
 # defaults to 'localhost'; use '*'
for all
 # (change requires restart)
#port = 5432 # (change requires restart)

In the previous example, <IP address or hostname> is the IP address or host name of the
database.

14. Restart the database.

sudo systemctl restart postgresql

15. You are now ready to setup your hosts as described in Setting up Hosts.

Setting up Hosts
This section provides information for setting up one or more hosts intended to run Oracle Linux
Automation Manager in any of the configurations listed in Installation Options.

To set up one or more hosts:

1. Install Oracle Linux Automation Manager.

sudo dnf install ol-automation-manager

2. If you are creating a cluster, choose the /etc/tower/SECRET_KEY from one node and
replace the value of the /etc/tower/SECRET_KEY on all other nodes with the value from
your chosen node. Ensure the file user and group ownership is awx:awx on all nodes. The

Chapter 3
Setting up Hosts

3-4

end result should be that all nodes have the same value in their /etc/tower/SECRET_KEY
file.

3. Edit the /etc/redis.conf file to include the following lines:

unixsocket /var/run/redis/redis.sock
unixsocketperm 775

4. Edit the /etc/tower/settings.py file configure the CLUSTER_HOST_ID field:

CLUSTER_HOST_ID = "hostname or ip address"

In the previous example, hostname or ip address is the hostname or IP address of the
system running Oracle Linux Automation Manager. If hostname is used, the host must be
resolvable.

5. Replace the existing DATABASES fields with the following fields:

DATABASES = {
 'default': {
 'ATOMIC_REQUESTS': True,
 'ENGINE': 'awx.main.db.profiled_pg',
 'NAME': 'awx',
 'USER': 'awx',
 'PASSWORD': 'password',
 'HOST': 'database hostname or ip address',
 'PORT': '5432',
 }
}

In the previous example, database hostname or ip address is the hostname or IP address
of the local or remote database. If hostname is used, the host must be resolvable.
password is the password for your database, if you have configured one.

6. If you have playbooks designed to run longer than the default reaper timeout of 60
seconds, change the REAPER_TIMEOUT_SEC parameter to increase the timeout. For
example,

REAPER_TIMEOUT_SEC=<longest_playbook_time>

In the previous example, <longest_playbook_time> is number of seconds that exceeds the
duration of the longest playbook runtime.

7. Run the following commands on all hosts:

sudo su -l awx -s /bin/bash
podman system migrate
podman pull container-registry.oracle.com/oracle_linux_automation_manager/olam-
ee:latest
exit

Chapter 3
Setting up Hosts

3-5

Note:

After you finish installing Oracle Linux Automation Manager, you can configure
whether you want your Execution Environments to always pull the latest olam-ee
container image when running playbooks, or use some other option or custom
image. For more information about these options, see Oracle Linux Automation
Manager 2.1: User's Guide. For more information about Private Automation Hub,
see Oracle Linux Automation Manager 2.1: Private Automation Hub User's
Guide .

Note:

The previous command assumes that you are pulling the olam-ee image directly
from the Oracle Container Registry. If you are using Private Automation Hub or
have setup a custom container registry, you can pull the image from there
instead. In addition, you can configure Oracle Linux Automation Manager to
always pull from that container registry by replacing Oracle Container Registry
path to your custom container registry path in the following fields in the /etc/
tower/settings.py file:

GLOBAL_JOB_EXECUTION_ENVIRONMENTS = [{'name': 'OLAM EE (latest)',
'image': 'container-registry.oracle.com/
oracle_linux_automation_manager/olam-ee:latest'}]
CONTROL_PLANE_EXECUTION_ENVIRONMENT = 'container-
registry.oracle.com/oracle_linux_automation_manager/olam-ee:latest'

8. Run the following commands on one control host (in a clustered deployment) or on the
single host (in single host deployment):

sudo su -l awx -s /bin/bash
awx-manage migrate
awx-manage createsuperuser --username admin --email email

In the previous example, email is the email address of the admin user.

9. Enter and repeat the password for the admin user.

Password:
Password (again):

10. Exit the awx user .

exit

11. On all hosts, generate SSL certificates for NGINX:

Chapter 3
Setting up Hosts

3-6

https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2.1/user-guide/
https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2.1/user-guide/
https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/user-guide-private-hub2.1/
https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/user-guide-private-hub2.1/

Note:

The following instruction explains how to create a self-signed certificate for use
by NGINX as part of Oracle Linux Automation Manager. It is recommended that
on production systems you use CA signed certificates for this purpose. For more
information on working with SSL certificates, see Oracle Linux: Managing
Certificates and Public Key Infrastructure.

sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout /etc/tower/
tower.key -out /etc/tower/tower.crt

12. Remove any default configuration for NGINX. Edit /etc/nginx/nginx.conf to contain the
following configuration:

user nginx;
worker_processes auto;
error_log /var/log/nginx/error.log;
pid /run/nginx.pid;

Load dynamic modules. See /usr/share/doc/nginx/README.dynamic.
include /usr/share/nginx/modules/*.conf;

events {
 worker_connections 1024;
}

http {
 log_format main '$remote_addr - $remote_user [$time_local] "$request" '
 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for"';

 access_log /var/log/nginx/access.log main;

 sendfile on;
 tcp_nopush on;
 tcp_nodelay on;
 keepalive_timeout 65;
 types_hash_max_size 2048;

 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 # Load modular configuration files from the /etc/nginx/conf.d directory.
 # See http://nginx.org/en/docs/ngx_core_module.html#include
 # for more information.
 include /etc/nginx/conf.d/*.conf;
}

Note:

For advanced NGINX users, the Oracle Linux Automation Manager NGINX
configuration file is located in /etc/nginx/conf.d/ol-automation-manager-
nginx.conf. For example, you may use a different version of TLS or have
different ciphers configured. If you have an existing customized NGINX setup,
ensure that you also apply the ol-automation-manager-nginx.conf settings.

Chapter 3
Setting up Hosts

3-7

https://docs.oracle.com/en/operating-systems/oracle-linux/certmanage/
https://docs.oracle.com/en/operating-systems/oracle-linux/certmanage/

13. You are now ready to install Oracle Linux Automation Manager in a cluster or on a single
host. For more information, see Installing Oracle Linux Automation Manager on a Single-
Host Deployment and Installing Oracle Linux Automation Manager in a Clustered
Deployment.

Chapter 3
Setting up Hosts

3-8

4
Installing Oracle Linux Automation Manager
on a Single-Host Deployment

This chapter shows you how to set up a host and install the Oracle Linux Automation Manager
software and includes an option for using a remote or local database.

Installing on a Single Host
This section provides instructions for installing the Oracle Linux Automation Manager on a
single host where the database is local or on a remote host.

To set up the host:

1. On the Oracle Linux Automation Manager host, run the following commands:

sudo su -l awx -s /bin/bash

2. Enter the following command:

awx-manage provision_instance --hostname=<hostname or IP address> --node_type=hybrid

In the previous example, hostname or IP address is the hostname or IP address of the
system running Oracle Linux Automation Manager. If hostname is used, the host must be
resolvable.

3. Run the following command to register the default execution environments, which are:

• Control Plane Execution Environment

• OLAM EE: (Latest)

awx-manage register_default_execution_environments

4. Run the following command to create the default queue for standard jobs that run
playbooks:

awx-manage register_queue --queuename=default --hostnames=<hostname or IP address>
5. Run the following command to create the controlplane queue for Oracle Linux Automation

Manager management type jobs.

awx-manage register_queue --queuename=controlplane --hostnames=<hostname
or IP address>

6. Exit the awx shell environment.

exit
7. Remove any default configuration for Receptor. Edit /etc/receptor/receptor.conf to

contain the following configuration:

- node:
 id: <IP address>

4-1

- log-level: debug

- tcp-listener:
 port: port_number

- control-service:
 service: control
 filename: /var/run/receptor/receptor.sock

- work-command:
 worktype: local
 command: /var/lib/ol-automation-manager/venv/awx/bin/ansible-runner
 params: worker
 allowruntimeparams: true
verifysignature: true

In the previous example, hostname or IP address is the IP address of the host and
port_number is the port number that this node is listening on. For example, you can call the
host single1-192.0.121.30 where you provide a node name and the IP address of the
node. And you could configure the tcp-listener list listen on port 27199.

8. Start the service:

sudo systemctl enable --now ol-automation-manager.service
9. Run the following command to preload data, such as:

• Demo Project

• Default Galaxy Credentials

• Demo Organization

• Demo Inventory

• Demo Job template

• And so on

sudo su -l awx -s /bin/bash
awx-manage create_preload_data

10. Exit the awx shell environment.

exit
11. The host is now ready. Using a browser, you can now log in as the admin user.

https://<hostname or IP address>

Chapter 4
Installing on a Single Host

4-2

5
Installing Oracle Linux Automation Manager in
a Clustered Deployment

This chapter discusses how to prepare hosts in an Oracle Linux Automation Manager multi-
host deployment. When you prepare the hosts, you must install the Oracle Linux Automation
Manager software packages and configure them as part of the Oracle Linux Automation
Manager service mesh. Configure and start the Service Mesh nodes before configuring and
starting the control plane and execution plane nodes.

Configuring and Starting the Control Plane Service Mesh
You configure each node in the control plane of a cluster by editing the /etc/receptor/
receptor.conf file. This file contains the following elements:

• node ID: The node ID must be the IP address or host name of the host.

• log-level: Available options are: Error, Warning, Info and Debug. Log level options
provide increasing verbosity, such that Error generates the least information and Debug
generates the most.

• tcp-listener port: This is the port that the node listens for incoming tcp peer connections
configured on other nodes. For example, if the node ID represents a control node that
listens on port 27199, then all other nodes that want to establish a connection to this
control node would have to specify port 27199 in the tcp-peer element they configure in
their /etc/receptor/receptor.conf file.

• control-service: All nodes in a cluster run the control service which reports status and
launches and monitors work.

• work-command: This element defines the type of work that can be done on a node. For
control plane nodes, the work type is always Local. The command it runs is the Ansible
Runner tool which provides an abstraction layer for running Ansible and Ansible playbook
tasks and can be configured to send status and event data to other systems. For more
information about Ansible Runner, see https://ansible-runner.readthedocs.io/en/stable/.

On each host intended for use as a control plane node, do the following:

1. Remove any default configuration for Receptor and edit /etc/receptor/receptor.conf to
contain the following configuration control plane specific information:

- node:
 id: <IP address or host name>

- log-level: info

- tcp-listener:
 port: <port_number>

- control-service:
 service: control
 filename: /var/run/receptor/receptor.sock

5-1

https://ansible-runner.readthedocs.io/en/stable/

- work-command:
 worktype: local
 command: /var/lib/ol-automation-manager/venv/awx/bin/ansible-runner
 params: worker
 allowruntimeparams: true
 verifysignature: false

In the previous example, IP address or hostname is the IP address or hostname of the
node and port_number is the port number that this node is listening on. For example, you
can use something like control1-192.0.121.28 where you provide a node name and the IP
address of the node. And you could configure the tcp-listener list listen on port 27199. The
worktype parameter must be local in control plane nodes.

2. Start the Oracle Linux Automation Manager mesh service.

sudo systemctl start receptor-awx

3. Verify the Service Mesh. For more information, see Viewing Service Mesh Status for a
Cluster Node.

Note:

At this point in the process, the peer relationships between service mesh nodes
have not been established yet. Status information only exists for the individual
servers running the Service Mesh.

Configuring and Starting the Execution Plane Service Mesh
You configure each node in the execution plane of a cluster by editing the /etc/receptor/
receptor.conf file. This file contains the following elements:

• node ID: The node ID must be the IP address or hostname of the host.

• log-level: Available options are: Error, Warning, Info and Debug. Log level options
provide increasing verbosity, such that Error generates the least information and Debug
generates the most.

• tcp-listener port: This is the port that the node listens for incoming tcp peer connections
configured on other nodes. For example, if the node ID represents an execution node that
listens on port 27199, then all other nodes that want to establish a connection to this
execution node would have to specify port 27199 in the tcp-peer element they configure in
their /etc/receptor/receptor.conf file.

• tcp-peer port: This element must include the hostname and port number of the host it is
connecting with. For example, if this execution node needs to connect to more than one
control plane node to provide redundancy, you would need to add tcp-peer elements for
each control plane node that the execution node connects with. In the address field, enter
the host name or IP address of the control plane node, followed by the port number. The
redial element, if enabled, attempts to periodically reestablish a connection to the host if
connectivity fails.
You can also configure tcp-peer elements to include the hostnames and port numbers of
other execution nodes or hop nodes based on your service mesh topology requirements.

• control-service: All nodes in a cluster run the control service which reports status and
launches and monitors work.

Chapter 5
Configuring and Starting the Execution Plane Service Mesh

5-2

• work-command: This element defines the type of work that can be done on a node. For
execution plane nodes, the work type is always ansible-runner. The command it runs is
the Ansible Runner tool which provides an abstraction layer for running Ansible and
Ansible playbook tasks and can be configured to send status and event data to other
systems. For more information about Ansible Runner, see https://ansible-
runner.readthedocs.io/en/stable/.

On each host intended for use as an execution plane node, do the following:

1. Remove any default configuration for Receptor and edit /etc/receptor/receptor.conf to
contain the following configuration execution plane specific information:

- node:
 id: <IP address or hostname>

- log-level: debug

- tcp-listener:
 port: <port_number>

- tcp-peer:
 address: <hostname or IP address>:<target_port_number>
 redial: true

- tcp-peer:
 address: <hostname or IP address>:<target_port_number>
 redial: true

- control-service:
 service: control
 filename: /var/run/receptor/receptor.sock

- work-command:
 worktype: ansible-runner
 command: /var/lib/ol-automation-manager/venv/awx/bin/ansible-runner
 params: worker
 allowruntimeparams: true
 verifysignature: false

In the previous example,

• IP address or hostname is the IP address or hostname of the node.

• port_number is the port number that this node is listening on.

• target_port is the port number of the peer node that you are configuring this node to
connect with.

• hostname or IP address is the hostname or IP address of the execution, control, or
hop node being connected with.

• The worktype parameter must be ansible-runner in execution plane nodes.

If the execution environment is associated with more than one control, execution, or hop
node, enter additional - tcp-peer: nodes for instances that the execution host is
associated with.

2. Start the Oracle Linux Automation Manager mesh service.

sudo systemctl start receptor-awx

Chapter 5
Configuring and Starting the Execution Plane Service Mesh

5-3

https://ansible-runner.readthedocs.io/en/stable/
https://ansible-runner.readthedocs.io/en/stable/

3. Verify the Service Mesh. For more information, see Viewing Service Mesh Status for a
Cluster Node.

Note:

At this point in the process, the peer relationships between service mesh nodes
have not been established yet. Status information only exists for the individual
servers running the Service Mesh.

Configuring and Starting the Hop Nodes
You configure each hop node in the cluster by editing the /etc/receptor/receptor.conf file.
This file contains the following elements:

• node ID: The node ID must be the IP address or hostname of the host.

• log-level: Available options are: Error, Warning, Info and Debug. Log level options
provide increasing verbosity, such that Error generates the least information and Debug
generates the most.

• tcp-listener port: This is the port that the node listens for incoming tcp peer connections
configured on other nodes. For example, if the node ID represents an execution node that
listens on port 27199, then all other nodes that want to establish a connection to this
execution node would have to specify port 27199 in the tcp-peer element they configure in
their /etc/receptor/receptor.conf file.

• tcp-peer port: This element must include the hostname and port number of the host it is
connecting with. For example, you might configure your hop node to connect to a control
node as the intermediate node between the control node and an execution node. In the
address field, enter the host name or IP address of the control plane node, followed by the
port number. The redial element, if enabled, attempts to periodically reestablish a
connection to the host if connectivity fails.

• control-service: All nodes in a cluster run the control service which reports status and
launches and monitors work.

• work-command: This element defines the type of work that can be done on a node. Hop
nodes do not run playbooks. However, you must configure the default fields. The work type
for hop nodes is always ansible-runner.

On each host intended for use as a hop node, do the following:

1. Remove any default configuration for Receptor and edit /etc/receptor/receptor.conf to
contain the following configuration with hop node specific information:

- node:
 id: <node IP address or hostname>

- log-level: debug

- tcp-listener:
 port: <port_number>

- tcp-peer:
 address: <control hostname or IP address>:<target_port_number>
 redial: true

- tcp-peer:

Chapter 5
Configuring and Starting the Hop Nodes

5-4

 address: <control hostname or IP address>:<target_port_number>
 redial: true

- control-service:
 service: control
 filename: /var/run/receptor/receptor.sock

- work-command:
 worktype: local
 command: /var/lib/ol-automation-manager/venv/awx/bin/ansible-runner
 params: worker
 allowruntimeparams: true
 verifysignature: false

In the previous example,

• node IP address or hostname is the IP address or hostname of the node.

• port_number is the port number that this node is listening on.

• target_port is the port number of the peer node that you are configuring this node to
connect with.

• control hostname or IP address is the hostname or IP address of the control nodes
that the hop node is connecting with.

If the hop node is associated to more than one control node, enter additional - tcp-peer:
nodes for each instance that the hop node is associated with.

2. Start the Oracle Linux Automation Manager mesh service.

sudo systemctl start receptor-awx

3. Verify the Service Mesh. For more information, see Viewing Service Mesh Status for a
Cluster Node.

Note:

At this point in the process, the peer relationships between service mesh nodes
have not been established yet. Status information only exists for the individual
servers running the Service Mesh.

Configuring the Control, Execution, and Hop Nodes
To configure the control plane, execution plane, and hop nodes, on one control plane host do
the following steps which applies to all Oracle Linux Automation Manager instances:

1. Run the following commands:

sudo su -l awx -s /bin/bash

2. Do the following:

• Repeat the following command for each host you want to designate as control node
type, changing the IP address or host name each time you run the command:

awx-manage provision_instance --hostname=<control hostname or IP address> --
node_type=control

Chapter 5
Configuring the Control, Execution, and Hop Nodes

5-5

In the previous example, control hostname or IP address is the hostname or IP
address of the system running Oracle Linux Automation Manager. Your choice of host
name or IP address must match with the host name or IP addressed used when you
configured the /etc/receptor/receptor.conf file node ID (see Configuring and
Starting the Control Plane Service Mesh). If hostname is used, the host must be
resolvable.

• Repeat the following command for each host you want to designate as execution node
type, changing the IP address or host name each time you run the command:

awx-manage provision_instance --hostname=<execution hostname or IP address> --
node_type=execution

In the previous example, execution hostname or IP address is the hostname or IP
address of the system running Oracle Linux Automation Manager. Your choice of host
name or IP address must match with the host name or IP addressed used when you
configured the /etc/receptor/receptor.conf file node ID (see Configuring and
Starting the Execution Plane Service Mesh). If hostname is used, the host must be
resolvable.

• Repeat the following command for each host you want to designate as the hop node
type, changing the IP address or host name each time you run the command:

awx-manage provision_instance --hostname=<hop hostname or IP address> --
node_type=hop

In the previous example, hop hostname or IP address is the hostname or IP address of
the system running Oracle Linux Automation Manager. Your choice of host name or IP
address must match with the host name or IP addressed used when you configured
the /etc/receptor/receptor.conf file node ID (see Configuring and Starting the Hop
Nodes). If hostname is used, the host must be resolvable.

3. Run the following command to register the default execution environments, which are:

• Control Plane Execution Environment

• OLAM EE: (Latest)

awx-manage register_default_execution_environments

4. Run the following command to create the controlplane instance groups (specified as a
queue in the command) and associate it to a control plane host. Repeat the command with
the same queue name for each control plane host in your cluster:

awx-manage register_queue --queuename=controlplane --hostnames=<control hostname or
IP address>

5. Run the following command to create instance groups and associate it to an execution
plane host. Repeat the command with the same queue name for each execution plane
host in your cluster:

awx-manage register_queue --queuename=execution --hostnames=<execution hostname or
IP address>

6. Run the awx-manage list_instances command to ensure each host you registered are
available under the correct instance group. For example, the following shows the IP
addresses of two control plane and three execution plane nodes running under the
controlplane and execution instance groups. The nodes are currently not running, and
therefore do not show available capacity or heartbeat information.

awx-manage list_instances
[controlplane capacity=0]

Chapter 5
Configuring the Control, Execution, and Hop Nodes

5-6

 192.0.119.192 capacity=0 node_type=control version=?
 192.0.124.44 capacity=0 node_type=control version=?

[execution capacity=0]
 192.0.114.137 capacity=0 node_type=execution version=ansible-runner-???
 192.0.117.98 capacity=0 node_type=execution version=ansible-runner-???
 192.0.125.241 capacity=0 node_type=execution version=ansible-runner-???

Note:

Hop nodes do not appear in this list because they are not associated to any
instance group.

7. Run the following command to register the Oracle Linux Automation Manager service
mesh peer relationship between each node in the cluster:

awx-manage register_peers <execution or hop hostname or IP address> --
peers <execution, hop, or control hostname or IP address>

This command must be run for each pair of nodes to requiring a peer relationship. For
example, the peer relationships being established in the example described in Service
Mesh Topology Examples shows the command being run twice for each execution node so
that each execution node is connected to a different control node. This ensures that each
execution node always has a backup control node if one of the control nodes were to fail.

Additional topologies are possible, such as those where an isolated execution node must
peer to a hop node, and the hop node must peer to a control node. In this case the
command must be run one time to peer the execution node with the hop node, and again
to peer the hop node with the control node.

8. Exit the awx shell environment.

exit
9. For each control and execution plane host, edit the /etc/tower/settings.py file with the

following:

DEFAULT_EXECUTION_QUEUE_NAME = 'execution'
DEFAULT_CONTROL_PLANE_QUEUE_NAME = 'controlplane'

Starting the Control, Execution, and Hop Nodes
To start the control, execution, and hop nodes, do the following:

1. Start the service on each node:

sudo systemctl enable --now ol-automation-manager.service
2. On one control plane node, run the following command to preload data, such as:

• Demo Project

• Default Galaxy Credentials

• Demo Organization

• Demo Inventory

Chapter 5
Starting the Control, Execution, and Hop Nodes

5-7

• Demo Job template

• And so on

sudo su -l awx -s /bin/bash
awx-manage create_preload_data

Note:

This command only needs to be run one time because the preloaded data
persists in the database that all cluster nodes connect with.

3. Run the awx-manage list_instances command to ensure that the control and execution
plane nodes are now running and show available capacity and display heartbeat
information. For example, the following shows all control and execution plane instances
running, with available capacity, and active heartbeat information.

awx-manage list_instances
[controlplane capacity=270]
 192.0.119.192 capacity=135 node_type=control version=19.5.1
heartbeat="2022-09-22 14:38:29"
 192.0.124.44 capacity=135 node_type=control version=19.5.1
heartbeat="2022-09-22 14:39:09"

[execution capacity=405]
 192.0.114.137 capacity=135 node_type=execution version=19.5.1
heartbeat="2022-09-22 14:40:07"
 192.0.117.98 capacity=135 node_type=execution version=19.5.1
heartbeat="2022-09-22 14:40:35"
 192.0.125.241 capacity=135 node_type=execution version=19.5.1
heartbeat="2022-09-22 14:40:55"

Note:

Hop nodes do not appear in this list because they are not associated to any
instance group.

4. Exit the awx shell environment.

exit

Configuring TLS Verification and Signed Work Requests
Oracle recommends that you secure your Service Mesh communication within your cluster with
TLS verification and signed work requests sent between cluster nodes. TLS verification
ensures secure communication in the Service Mesh network and signed work requests ensure
secure job execution.

The following procedure enables TLS for an existing Oracle Linux Automation Manager cluster.
Complete the following tasks before doing this procedure:

• Setting up Hosts

• Configuring and Starting the Control Plane Service Mesh

Chapter 5
Configuring TLS Verification and Signed Work Requests

5-8

• Configuring and Starting the Execution Plane Service Mesh

• Configuring and Starting the Hop Nodes

• Configuring the Control, Execution, and Hop Nodes

• Starting the Control, Execution, and Hop Nodes

To configure TLS verification and signed work requests, do the following:

1. On each host in the cluster (each execution, hop, and control plane nodes), to enable
signed work requests, add the following text to the /etc/tower/settings.py file.

RECEPTOR_NO_SIG = False

2. From one of your control nodes, in the /etc/tower folder, do the following:

• If you are using IP addresses for the node_id field, run the following commands to
create the certs folder and generate TLS certificates:

sudo mkdir -p certs
sudo receptor --cert-init commonname="test CA" bits=2048 outcert=certs/
ca.crt outkey=certs/ca.key
node=<node_id>; sudo receptor --cert-makereq bits=2048
commonname="$node test cert" ipaddress=$node nodeid=$node
outreq=certs/$node.csr outkey=certs/$node.key
node=<node_id>; sudo receptor --cert-signreq req=certs/$node.csr
cacert=certs/ca.crt cakey=certs/ca.key outcert=certs/$node.crt

In the previous example, node_id is the IP address of the node you are creating keys
for that you set in the /etc/receptor/receptor.conf file for the execution, hop, or
control plane nodes.

• If you are using a host name for the node_id field, run the following commands to
create the certs folder and generate TLS certificates:

sudo mkdir -p certs
sudo receptor --cert-init commonname="test CA" bits=2048 outcert=certs/
ca.crt outkey=certs/ca.key
node=<node_id>; sudo receptor --cert-makereq bits=2048
commonname="$node test cert" dnsname=$node nodeid=$node
outreq=certs/$node.csr outkey=certs/$node.key
node=<node_id>; sudo receptor --cert-signreq req=certs/$node.csr
cacert=certs/ca.crt cakey=certs/ca.key outcert=certs/$node.crt

In the previous example, node_id is the host name of the node you are creating the
keys for that you set in the /etc/receptor/receptor.conf file for the execution, hop,
or control plane nodes.

3. After the second command, type yes to confirm that you want to sign the certificate.
For example, the following generates certificates for a cluster with two hosts:

node=192.0.250.40; sudo receptor --cert-makereq bits=2048
commonname="$node test cert" ipaddress=192.0.250.40 nodeid=$node
outreq=certs/$node.csr outkey=certs/$node.key
node=192.0.250.40; sudo receptor --cert-signreq req=certs/$node.csr
cacert=certs/ca.crt cakey=certs/ca.key outcert=certs/$node.crt
Requested certificate:

Chapter 5
Configuring TLS Verification and Signed Work Requests

5-9

 Subject: CN=192.0.250.40 test cert
 Encryption Algorithm: RSA (2048 bits)
 Signature Algorithm: SHA256-RSA
 Names:
 IP Address: 192.0.250.40
 Receptor Node ID: 192.0.250.40
Sign certificate (yes/no)? yes

node=192.0.251.206; sudo receptor --cert-makereq bits=2048
commonname="$node test cert" ipaddress=192.0.251.206 nodeid=$node
outreq=certs/$node.csr outkey=certs/$node.key
node=192.0.251.206; sudo receptor --cert-signreq req=certs/$node.csr
cacert=certs/ca.crt cakey=certs/ca.key outcert=certs/$node.crt
Requested certificate:
 Subject: CN=192.0.251.206 test cert
 Encryption Algorithm: RSA (2048 bits)
 Signature Algorithm: SHA256-RSA
 Names:
 IP Address: 192.0.251.206
 Receptor Node ID: 192.0.251.206
Sign certificate (yes/no)? yes

4. From the /etc/tower/certs folder, run the following commands to generate certificates for
work request signing and verification:

sudo openssl genrsa -out signworkprivate.pem 2048
sudo openssl rsa -in signworkprivate.pem -pubout -out signworkpublic.pem

5. From the cd /etc/tower/ folder, run the following command to change the certs folder
ownership and all files within the folder:

sudo chown -R awx:awx certs

6. Check that you have all the files you need in the /etc/tower/certs folder. For example,
the following shows the generated key information for a four node cluster.

ls -al
total 68
drwxr-xr-x. 2 awx awx 4096 Sep 12 18:26 .
drwxr-xr-x. 4 awx awx 132 Sep 12 16:49 ..
-rw-------. 1 awx awx 1180 Sep 12 18:19 192.0.113.178.crt
-rw-------. 1 awx awx 1001 Sep 12 18:19 192.0.113.178.csr
-rw-------. 1 awx awx 1679 Sep 12 18:19 192.0.113.178.key
-rw-------. 1 awx awx 1176 Sep 12 18:20 192.0.121.28.crt
-rw-------. 1 awx awx 1001 Sep 12 18:20 192.0.121.28.csr
-rw-------. 1 awx awx 1675 Sep 12 18:20 192.0.121.28.key
-rw-------. 1 awx awx 1180 Sep 12 18:20 192.0.126.172.crt
-rw-------. 1 awx awx 1001 Sep 12 18:19 192.0.126.172.csr
-rw-------. 1 awx awx 1679 Sep 12 18:19 192.0.126.172.key
-rw-------. 1 awx awx 1176 Sep 12 18:19 192.0.127.70.crt
-rw-------. 1 awx awx 1001 Sep 12 18:19 192.0.127.70.csr
-rw-------. 1 awx awx 1675 Sep 12 18:19 192.0.127.70.key
-rw-------. 1 awx awx 1107 Sep 12 16:54 ca.crt
-rw-------. 1 awx awx 1679 Sep 12 16:54 ca.key

Chapter 5
Configuring TLS Verification and Signed Work Requests

5-10

-rw-------. 1 awx awx 1675 Sep 12 18:26 signworkprivate.pem
-rw-r--r--. 1 awx awx 451 Sep 12 18:26 signworkpublic.pem

7. On each node in the cluster, in the /etc/tower folder, create a certs folder and change the
ownership and group of the certs folder to awx:awx:

sudo mkdir -p certs
sudo chown -R awx:awx certs

8. Copy over the ca.crt, node specific .crt, csr, and key files, and the signworkprivate.pem,
and signworkpublic.pem files to each node in the cluster.

9. For each control plane node, add the following lines to the /etc/receptor/receptor.conf
file:

- node:
 id: <IP address or host name>

- log-level: debug

Add the tls: control that specifies the tls-server name for the listener
- tcp-listener:
 port: 27199
 tls: controller

Add the TLS server configuration
- tls-server:
 name: controller
 cert: /etc/tower/certs/<IP address or host name>.crt
 key: /etc/tower/certs/<IP address or host name.key
 requireclientcert: true
 clientcas: /etc/tower/certs/ca.crt

- control-service:
 service: control
 filename: /var/run/receptor/receptor.sock

Add the work-signing and work-verification elements
- work-signing:
 privatekey: /etc/tower/certs/signworkprivate.pem
 tokenexpiration: 30m

- work-verification:
 publickey: /etc/tower/certs/signworkpublic.pem

Set verifysignature to true.
- work-command:
 worktype: local
 command: /var/lib/ol-automation-manager/venv/awx/bin/ansible-runner
 params: worker
 allowruntimeparams: true
 verifysignature: true

Chapter 5
Configuring TLS Verification and Signed Work Requests

5-11

In the previous example, IP address or host name is the host name or IP address of the
control plane host. If host name is used, the host must be resolvable.

10. For each execution plane node, add the following lines to the /etc/receptor/
receptor.conf file:

- node:
 id: <execution IP address or host name>

- log-level: debug

- tcp-listener:
 port: 27199

Add tls: client that specifies the tls-client name.
- tcp-peer:
 address: <hostname or IP address>:27199
 redial: true
 tls: client

- tcp-peer:
 address: <hostname or IP address>:27199
 redial: true
 tls: client

Add the tls-client element.
- tls-client:
 name: client
 rootcas: /etc/tower/certs/ca.crt
 insecureskipverify: false
 cert: /etc/tower/certs/<execution IP address or host name>.crt
 key: /etc/tower/certs/<execution IP address or host name.key

- control-service:
 service: control
 filename: /var/run/receptor/receptor.sock

Add the work-verification element.
- work-verification:
 publickey: /etc/tower/certs/signworkpublic.pem

Set verifysignature to true.
- work-command:
 worktype: ansible-runner
 command: /var/lib/ol-automation-manager/venv/awx/bin/ansible-runner
 params: worker
 allowruntimeparams: true
 verifysignature: true

In the previous example,

• execution IP address or host name is the IP address or host name of the node

• hostname or IP address is the host name or IP address of the execution, control, or
hop node you are peering with.

Chapter 5
Configuring TLS Verification and Signed Work Requests

5-12

11. (If required) For each hop node, add the following lines to the /etc/receptor/
receptor.conf file:

- node:
 id: <node IP address or hostname>

- log-level: debug

Add the tls: control that specifies the tls-server name for the listener
- tcp-listener:
 port: 27199
 tls: controller

Add tls: client that specifies the tls-client name.
- tcp-peer:
 address: <control hostname or IP address>:27199
 redial: true
 tls: client

Add the tls-client element.
- tls-client:
 name: client
 rootcas: /etc/tower/certs/ca.crt
 insecureskipverify: false
 cert: /etc/tower/certs/<node IP address or hostname>.crt
 key: /etc/tower/certs/<node IP address or hostname>.key

- work-verification:
 publickey: /etc/tower/certs/signworkpublic.pem

Add the work-signing and work-verification elements
- work-signing:
 privatekey: /etc/tower/certs/signworkprivate.pem
 tokenexpiration: 30m

Add the TLS server configuration
- tls-server:
 name: controller
 cert: /etc/tower/certs/<node IP address or hostname>.crt
 key: /etc/tower/certs/<node IP address or hostname>.key
 requireclientcert: true
 clientcas: /etc/tower/certs/ca.crt

- control-service:
 service: control
 filename: /var/run/receptor/receptor.sock

Set verifysignature to true.
- work-command:
 worktype: local
 command: /var/lib/ol-automation-manager/venv/awx/bin/ansible-runner
 params: worker

Chapter 5
Configuring TLS Verification and Signed Work Requests

5-13

 allowruntimeparams: true
 verifysignature: true

In the previous example,

• node IP address or host name is the IP address or host name of the node

• control hostname or IP address is the host name or IP address of the control plane
host you are peering with.

12. On each node, restart the Service Mesh and Oracle Linux Automation Manager.

sudo systemctl restart receptor-awx
sudo systemctl restart ol-automation-manager

13. Verify the Service Mesh. See Viewing the Service Mesh for more information.

Chapter 5
Configuring TLS Verification and Signed Work Requests

5-14

6
Adding or Removing Nodes to an Existing
Cluster

This chapter provides instructions for adding or removing nodes to and from an existing cluster.

Adding a New Control Plane Node to a Cluster
To add new control node to a cluster, do the following:

1. Prepare the new hosts, as described in Setting Up the Network and Enabling Access to the
Oracle Linux Automation Manager Packages.

2. Configure the host, following the instructions in Setting up Hosts. Do not run the awx-
manage migrate or awx-manage createsuperuser. These only need to be run when initially
creating the cluster.

3. Set up the service mesh for the control plane node, by following the instructions in
Configuring and Starting the Control Plane Service Mesh.

4. Set up the service mesh for the execution plane nodes you want to connect to your new
control plane node, by following the instructions in Configuring and Starting the Execution
Plane Service Mesh.

5. Set up the hop nodes you want to connect to your new control plane node, by following the
instructions in Configuring and Starting the Hop Nodes .

6. Provision the node as the control node type, register the node to an appropriate instance
group (called a queuename in the command), and establish the peer relationships between
the execution, hop, and the control nodes as described in Configuring the Control,
Execution, and Hop Nodes.

7. Start the control plane node as described in Starting the Control, Execution, and Hop
Nodes. Do not run the command to create preloaded data.

8. If required, apply TLS verification and signed work requests as described in Configuring
TLS Verification and Signed Work Requests.

Adding a New Execution Plane Node to a Cluster
To add a new execution node to a cluster, do the following:

1. Prepare the new hosts, as described in Setting Up the Network and Enabling Access to the
Oracle Linux Automation Manager Packages.

2. Configure the host, following the instructions in Setting up Hosts. Do not run the awx-
manage migrate or awx-manage createsuperuser. These only need to be run when initially
creating the cluster.

3. Set up the service mesh for the execution plane node, by following the instructions in
Configuring and Starting the Execution Plane Service Mesh.

4. Provision the node as the execution node type, register the node to an appropriate
instance group (called a queuename in the command), and establish the peer relationships

6-1

between the execution node and the control plane nodes or between the execution node
and the hop nodes as described in Configuring the Control, Execution, and Hop Nodes.

5. Start the execution plane node as described in Starting the Control, Execution, and Hop
Nodes. Do not run the command to create preloaded data.

6. If required, apply TLS verification and signed work requests as described in Configuring
TLS Verification and Signed Work Requests.

Adding a New Hop Node to a Cluster
To add new hop node to a cluster, do the following:

1. Prepare the new hosts, as described in Setting Up the Network and Enabling Access to the
Oracle Linux Automation Manager Packages.

2. Configure the host, following the instructions in Setting up Hosts. Do not run the awx-
manage migrate or awx-manage createsuperuser. These only need to be run when initially
creating the cluster.

3. Set up the hop nodes you want to connect to your control plane nodes, by following the
instructions in Configuring and Starting the Hop Nodes .

4. Set up the execution nodes you want to connect to your new hop node, by following the
instructions in Configuring and Starting the Execution Plane Service Mesh.

5. Provision the node as the hop node type, and for any new execution nodes, register the
execution node to the execution instance group (called a queuename in the command),
and establish the peer relationships between the execution, hop, and the control nodes as
described in Configuring the Control, Execution, and Hop Nodes.

6. Start the hop node and execution nodes as described in Starting the Control, Execution,
and Hop Nodes. Do not run the command to create preloaded data.

7. If required, apply TLS verification and signed work requests as described in Configuring
TLS Verification and Signed Work Requests.

Removing a Node from a Cluster
To remove a node from a cluster, do the following:

1. Log on the node you want to remove.

2. Stop Oracle Linux Automation Manager on the node.

sudo systemctl stop ol-automation-manager.service

3. Stop the service mesh.

sudo systemctl stop receptor-awx

4. Delete the /etc/tower/SECRET_KEY file.

5. Open the /etc/tower/settings.py file and remove the database password from
DATABASES node or remove any configuration that provides a password for your
database, if you are using alternative approaches.

Chapter 6
Adding a New Hop Node to a Cluster

6-2

6. From any control plane node, verify that the node you want to remove no longer shows
capacity or heartbeat information. For example, the following shows the node with IP
address 192.0.124.44 has zero capacity and no heartbeat information.

sudo su -l awx -s /bin/bash
awx-manage list_instances
[controlplane capacity=126]
 192.0.119.192 capacity=126 node_type=control version=19.5.1
heartbeat="2022-10-20 06:55:44"
 192.0.124.44 capacity=0 node_type=control version=19.5.1

[execution capacity=126]
 192.0.114.137 capacity=126 node_type=execution version=19.5.1
heartbeat="2022-10-20 06:56:20"

7. Deprovision the instance from the cluster.

awx-manage deprovision_instance --hostname=<IP address or host name>

In the previous example, <IP address or host name> is the host you want to remove from
the cluster.

8. Check the status of the remaining control and execution plane nodes to verify that the
deprovisioned instance no longer appears. For example, the deprovisioned node with IP
address 192.0.124.44 from the previous example no longer appears:

awx-manage list_instances
[controlplane capacity=126]
 192.0.119.192 capacity=126 node_type=control version=19.5.1
heartbeat="2022-10-20 06:55:44"

[execution capacity=126]
 192.0.114.137 capacity=126 node_type=execution version=19.5.1
heartbeat="2022-10-20 06:56:20"

9. Exit the awx shell environment.

exit

10. If required, remove any tcp-peer nodes pointing to the deprovisioning node in the /etc/
receptor/receptor.conf files of the remaining cluster nodes, the restart the nodes.

sudo systemctl restart receptor-awx

Chapter 6
Removing a Node from a Cluster

6-3

7
Viewing the Service Mesh

This chapter describes methods to view service mesh information.

Viewing Service Mesh Status for a Cluster Node
This section provides instructions for obtaining Service Mesh status information about a node
in an Oracle Linux Automation Manager cluster, such as:

• Node ID: The node ID must be the IP address of the host.

• System Information: Such as CPU count and system memory.

• Connections: A list of IP address or host names that the node is connected with and the
number of hops required to reach them, listed as the cost. Cost is defined by each
customer.

• Known Node and Known Node Connections: A list of all known nodes in the cluster and
the further connections known to each node listed.

• Route: This parameter list the route by which a node connects to another node. If the node
is the same, then node is directly connected. If the nodes are different, then there is one or
more hop or execution plane nodes between the nodes.

• Node Service: The Control Service run on every node in the cluster. It reports node status
and monitors work being performed on the node.

• Node Work Types: The work types are Local for control plane nodes and ansible-runner
for execution plane nodes.

To view service mesh status, from any host in the cluster, do the following:

1. Run the following command to obtain status information about the service mesh:

sudo receptorctl --socket /var/run/receptor/receptor.sock status

For example, the following command shows the status for a four host cluster where peer
relationships have been established:

sudo receptorctl --socket /var/run/receptor/receptor.sock status
Node ID: 192.0.121.28
Version: +g
System CPU Count: 4
System Memory MiB: 15583

Connection Cost
192.0.113.178 1
192.0.127.70 1

Known Node Known Connections
192.0.113.178 {'192.0.121.28': 1, '192.0.126.172': 1}
192.0.121.28 {'192.0.113.178': 1, '192.0.127.70': 1}
192.0.126.172 {'192.0.113.178': 1, '192.0.127.70': 1}

7-1

192.0.127.70 {'192.0.121.28': 1, '192.0.126.172': 1}

Route Via
192.0.113.178 192.0.113.178
192.0.126.172 192.0.113.178
192.0.127.70 192.0.127.70

Node Service Type Last Seen Tags
192.0.113.178 control Stream 2022-09-02 18:06:14 {'type':
'Control Service'}
192.0.121.28 control Stream 2022-09-02 18:06:33 {'type':
'Control Service'}
192.0.126.172 control Stream 2022-09-02 18:06:20 {'type':
'Control Service'}
192.0.127.70 control Stream 2022-09-02 18:06:25 {'type':
'Control Service'}

Node Work Types
192.0.113.178 ansible-runner
192.0.121.28 local
192.0.126.172 local
192.0.127.70 ansible-runner

Viewing Service Mesh Cluster Status
Using the api/v2/mesh_visualizer/ API call, you can view status information about each node in
your service mesh cluster and details about available links setup between each node from the
perspective of Oracle Linux Automation Manager.

To get cluster node and link details, do the following:

1. Log in to your Oracle Linux Automation Manager server with a user account.

 https://<hostname or IP address>/api/login/

Note:

In the previous example, <hostname or ip address> is the hostname or IP
address of the system running Oracle Linux Automation Manager . If hostname is
used, the host must be resolvable.

2. In the response area, click one of the /api/v2 links. This performs a get request that lists all
available resources.

3. Click the /api/v2/mesh_visualizer/ link.
The Mesh Visualizer get response appears. For example:

HTTP 200 OK
Allow: GET, HEAD, OPTIONS
Content-Type: application/json
Vary: Accept
X-API-Node: 192.0.121.28
X-API-Product-Name: AWX
X-API-Product-Version: 19.5.1

Chapter 7
Viewing Service Mesh Cluster Status

7-2

X-API-Time: 0.019s

{
 "nodes": [
 {
 "id": 1,
 "hostname": "192.0.121.28",
 "node_type": "control",
 "node_state": "healthy"
 },
 {
 "id": 2,
 "hostname": "192.0.127.70",
 "node_type": "execution",
 "node_state": "healthy"
 },
 {
 "id": 3,
 "hostname": "192.0.126.172",
 "node_type": "hop",
 "node_state": "healthy"
 }
],
 "links": [
 {
 "source": "192.0.127.70",
 "target": "192.0.121.28"
 },
 {
 "source": "192.0.126.172",
 "target": "192.0.121.28"
 },
 {
 "source": "192.0.127.70",
 "target": "192.0.126.172"
 }
]
}

Chapter 7
Viewing Service Mesh Cluster Status

7-3

8
Installing Oracle Linux Automation Manager
CLI

You can install the Oracle Linux Automation Manager CLI on the same machine you installed
the Oracle Linux Automation Manager server or on another Oracle Linux 8 machine. For
information about installing the Oracle Linux Automation Manager CLI, see Oracle Linux
Automation Manager 2.1: CLI and API Reference Guide.

8-1

https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/olam-api-cli2.1/
https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/olam-api-cli2.1/

9
Upgrading Oracle Linux Automation Manager

The following chapter provides instructions for upgrading Oracle Linux Automation Manager.

Upgrading a Release 1.0.X to a Release 2.0 Single Host
Deployment

To upgrade a single host instance of Oracle Linux Automation Manager release 1.0.x to a
single host instance of Oracle Linux Automation Manager Release 2.0, do the following:

1. Log in to a terminal for the Oracle Linux Automation Manager Release 1.0.x version you
want to upgrade.

2. Back up the /etc/tower/SECRET_KEY file to a secure location. For example, you can copy
the file to your home directory:

sudo cp /etc/tower/SECRET_KEY ~

3. Stop Oracle Linux Automation Manager.

sudo systemctl stop ol-automation-manager

4. Log in to the user account that controls the database.

sudo su - postgres

5. Export the database using the following command that creates a script file containing all
the necessary SQL commands and input data to restore the databases. For example, this
command creates the olam1.dump file in your database home directory.

pg_dumpall > olamv1.dump

6. Exit the user account that controls the database.

exit

7. Stop the database server.

sudo systemctl stop postgresql

8. Remove (and optionally backup) existing database data directory. For example, the
following command removes and creates a backup file in the home directory.

sudo mv /var/lib/pgsql/data/ ~/data.old

9. Remove the current version of the database.

sudo dnf remove postgresql

9-1

10. Enable the postgresql 12 or postgresql 13 module stream.

sudo dnf module reset postgresql
sudo dnf module enable postgresql:12

or

sudo dnf module reset postgresql
sudo dnf module enable postgresql:13

Note:

For more information about the Postgresql 12 and 13 life cycle, see the appendix
discussing the application life cycle for stream modules in Oracle Linux:
Managing Software on Oracle Linux.

11. Enable the Oracle Linux Automation Manager Yum repos for Release 2 as described in
Enabling Access to the Oracle Linux Automation Manager Packages.

12. Update Oracle Linux Automation Manager.

sudo dnf update ol-automation-manager

Caution:

If you have installed the ansible package from another repository (for example,
EPEL) the installation and upgrade process overwrites this package with the
ansible-core package.

Note:

The following message that is observed during the upgrade process can safely
be ignored as it does not indicate any failure:

ValueError: File context for /var/run/tower(/.*)? already defined

13. Install the database.

sudo dnf install postgresql-server

14. After the update completes, set up the database.

sudo postgresql-setup --initdb
sudo systemctl start postgresql
sudo su - postgres
psql -d postgres -f olamv1.dump
exit

Chapter 9
Upgrading a Release 1.0.X to a Release 2.0 Single Host Deployment

9-2

https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/

15. Run the following command to see if the database is available:

sudo su - postgres -c "psql -l |grep awx"

The output should resemble something like this:

awx | awx | UTF8 | en_US.UTF-8 | en_US.UTF-8 |

16. Replace /etc/tower/settings.py with /etc/tower/settings.py.rpmnew. For example:

sudo mv /etc/tower/settings.py /etc/tower/settingsold.py
sudo mv /etc/tower/settings.py.rpmnew /etc/tower/settings.py

17. In the /etc/tower/settings.py file, set the CLUSTER_HOST_ID as follows:

CLUSTER_HOST_ID = "hostname or ip address"

In the previous example, hostname or ip address is the hostname or IP address of the
system running Oracle Linux Automation Manager. If hostname is used, the host must be
resolvable.

18. In the /etc/nginx/nginx.conf, remove all existing configuration and replace it with the
following text:

user nginx;
worker_processes auto;
error_log /var/log/nginx/error.log;
pid /run/nginx.pid;

Load dynamic modules. See /usr/share/doc/nginx/README.dynamic.
include /usr/share/nginx/modules/*.conf;

events {
 worker_connections 1024;
}

http {
 log_format main '$remote_addr - $remote_user [$time_local] "$request" '
 '$status $body_bytes_sent "$http_referer" '
 '"$http_user_agent" "$http_x_forwarded_for"';

 access_log /var/log/nginx/access.log main;

 sendfile on;
 tcp_nopush on;
 tcp_nodelay on;
 keepalive_timeout 65;
 types_hash_max_size 2048;

 include /etc/nginx/mime.types;
 default_type application/octet-stream;

 # Load modular configuration files from the /etc/nginx/conf.d directory.
 # See http://nginx.org/en/docs/ngx_core_module.html#include
 # for more information.

Chapter 9
Upgrading a Release 1.0.X to a Release 2.0 Single Host Deployment

9-3

 include /etc/nginx/conf.d/*.conf;
}

19. In the /etc/nginx/conf.d/ol-automation-manager-nginx.conf, remove all existing
configuration and replace it with the following text:

upstream uwsgi {
 server unix:/var/run/tower/uwsgi.sock;
}

upstream daphne {
 server unix:/var/run/tower/daphne.sock;
}

server {
 listen 443 default_server ssl;
 listen 127.0.0.1:80 default_server;
 listen [::]:443 default_server ssl;
 listen [::1]:80 default_server;

 # If you have a domain name, this is where to add it
 server_name _;
 keepalive_timeout 65;

 ssl_certificate /etc/tower/tower.crt;
 ssl_certificate_key /etc/tower/tower.key;

 ssl_session_timeout 1d;
 ssl_session_cache shared:SSL:50m;
 ssl_session_tickets off;

 # intermediate configuration. tweak to your needs.
 ssl_protocols TLSv1.2;
 ssl_ciphers 'ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-
SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-
ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-
SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-
SHA256';
 ssl_prefer_server_ciphers on;

 # HSTS (ngx_http_headers_module is required) (15768000 seconds = 6
months)
 add_header Strict-Transport-Security max-age=15768000;
 # add_header Content-Security-Policy "default-src 'self'; connect-src
'self' ws: wss:; style-src 'self' 'unsafe-inline'; script-src 'self'
'unsafe-inline' *.pendo.io; img-src 'self' *.pendo.io data:; report-uri /
csp-violation/";
 # add_header X-Content-Security-Policy "default-src 'self'; connect-
src 'self' ws: wss:; style-src 'self' 'unsafe-inline'; script-src 'self'
'unsafe-inline' *.pendo.io; img-src 'self' *.pendo.io data:; report-uri /
csp-violation/";

 location /favicon.ico { alias /var/lib/awx/venv/awx/lib/python3.8/site-
packages/awx/ui/build/static/media/favicon.ico; }

 location /static/ {

Chapter 9
Upgrading a Release 1.0.X to a Release 2.0 Single Host Deployment

9-4

 alias /var/lib/awx/venv/awx/lib/python3.8/site-packages/awx/ui/
build/static/;
 }

 location /websocket {
 # Pass request to the upstream alias
 proxy_pass http://daphne;
 # Require http version 1.1 to allow for upgrade requests
 proxy_http_version 1.1;
 # We want proxy_buffering off for proxying to websockets.
 proxy_buffering off;
 # http://en.wikipedia.org/wiki/X-Forwarded-For
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 # enable this if you use HTTPS:
 proxy_set_header X-Forwarded-Proto https;
 # pass the Host: header from the client for the sake of redirects
 proxy_set_header Host $http_host;
 # We've set the Host header, so we don't need Nginx to muddle
 # about with redirects
 proxy_redirect off;
 # Depending on the request value, set the Upgrade and
 # connection headers
 proxy_set_header Upgrade $http_upgrade;
 # proxy_set_header Connection $connection_upgrade;
 proxy_set_header Connection upgrade;
 }

 location / {
 # Add trailing / if missing
 rewrite ^(.*[^/])$ $1/ permanent;
 uwsgi_read_timeout 120s;
 uwsgi_pass uwsgi;
 include /etc/nginx/uwsgi_params;
 }
}

20. Remove any default configuration for Receptor. Edit /etc/receptor/receptor.conf to
contain the following configuration:

- node:
 id: <hostname or ip address>

- log-level: debug

- tcp-listener:
 port: 27199

#- work-signing:
privatekey: /etc/receptor/work_private_key.pem
tokenexpiration: 1m

#- work-verification:
publickey: /etc/receptor/work_public_key.pem

#- tcp-peer:
address: 100.100.253.53:27199
redial: true

Chapter 9
Upgrading a Release 1.0.X to a Release 2.0 Single Host Deployment

9-5

#- tls-server:
name: mutual-tls
cert: /etc/receptor/certs/awx.crt
key: /etc/receptor/certs/awx.key
requireclientcert: true
clientcas: /etc/receptor/certs/ca.crt

- control-service:
 service: control
 filename: /var/run/receptor/receptor.sock

- work-command:
 worktype: local
 command: /var/lib/ol-automation-manager/venv/awx/bin/ansible-runner
 params: worker
 allowruntimeparams: true
verifysignature: true

In the previous example, hostname or ip address is the hostname or IP address of the
system running Oracle Linux Automation Manager. If hostname is used, the host must be
resolvable.

21. Prepare an Oracle Linux Automation Manager deployment as the awx user. Do the
following:

a. Run the following commands:

sudo su -l awx -s /bin/bash
podman system migrate
podman pull container-registry.oracle.com/oracle_linux_automation_manager/olam-
ee:latest
awx-manage makemigrations --merge
awx-manage migrate
awx-manage register_default_execution_environments

Note:

After you finish upgrading Oracle Linux Automation Manager, you can
configure whether you want your Execution Environments to always pull the
latest olam-ee container image when running playbooks, or use some other
option. For more information about these options, see Oracle Linux
Automation Manager 2.1: User's Guide.

b. Exit the awx shell environment.

exit
22. Restore the /etc/tower/SECRET_KEY file. For example:

sudo cp ~/SECRET_KEY /etc/tower/SECRET_KEY

23. In the /etc/tower/settings.py file, add the following lines:

DEFAULT_EXECUTION_QUEUE_NAME = 'tower'
DEFAULT_CONTROL_PLANE_QUEUE_NAME = 'tower'

24. Restart NGINX.

sudo systemctl restart nginx

Chapter 9
Upgrading a Release 1.0.X to a Release 2.0 Single Host Deployment

9-6

https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2.1/user-guide/
https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2.1/user-guide/

25. Start Oracle Linux Automation Manager.

sudo systemctl start ol-automation-manager

Upgrading Release 2.0 to Release 2.1
This upgrade is necessary for Oracle Linux Automation Manager to make use of Private
Automation Hub execution environment container images and collections.

1. On all Oracle Linux Automation Manager 2.0 nodes, log in to a terminal.

2. Run an update:

sudo dnf clean all
sudo dnf update oraclelinux-automation-manager-release-el8
sudo dnf update ol-automation-manager ol-automation-manager-cli uwsgi

3. Pull the latest olam-ee image using.

sudo su -l awx -s /bin/bash
podman pull container-registry.oracle.com/oracle_linux_automation_manager/
olam-ee:latest
exit

4. Add the following parameter to /etc/tower/settings.py file:

OLAM Reaper Job Status Tracking
REAPER_TIMEOUT_SEC = 60

The REAPER_TIMEOUT_SEC parameter specifies the time in seconds befor a job in the
Running or Waiting state is considered stuck and transitioned by the reaper into the Failed
state. You can modify this parameter in cases where you have playbooks that run longer
than 60 seconds. For more information about this parameter, see Oracle Linux Automation
Manager 2.1: Installation Guide.

5. Restart the following services on all nodes:

sudo systemctl restart ol-automation-manager
sudo systemctl restart nginx
sudo systemctl restart receptor-awx

6. If required, you can change the default execution environment location for new custom
execution environment instances to your private automation hub instance. In addition, you
might download olam-ee from container-registry.oracle.com to host it on Private
Automation Hub to use for control plane instances. To set these default settings, do the
following:

a. Edit the /etc/tower/settings.py file as follows:

GLOBAL_JOB_EXECUTION_ENVIRONMENTS = [{'name':
'<customer_execution_environment>)', 'image':
'<private_automation_hub_hostname_or_ip_address>/
<customer_execution_environment>:latest'}]
CONTROL_PLANE_EXECUTION_ENVIRONMENT =
'<private_automation_hub_hostname_or_ip_address>/olam-ee:latest'

Chapter 9
Upgrading Release 2.0 to Release 2.1

9-7

https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/install2.1/
https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/install2.1/

b. Register the new default environments using the following commands:

sudo su -l awx -s /bin/bash
awx-manage register_default_execution_environments
exit

c. Restart Oracle Linux Automation Manager on all nodes.

sudo systemctl restart ol-automation-manager

Migrating a Single Instance Deployment to a Clustered
Deployment

To migrate a single host instance deployment of Oracle Linux Automation Manager to a
clustered deployment, do the following:

1. If you need to upgrade your single instance host to release 2.0, complete the upgrade
procedures in Upgrading a Release 1.0.X to a Release 2.0 Single Host Deployment.

2. Verify that the upgraded instance is working.

3. In a terminal, stop Oracle Linux Automation Manager.

sudo systemctl stop ol-automation-manager

4. Create a database dump file.

sudo su - postgres
pg_dumpall > olamv2upg.dump

5. Open the firewall port on the remote database as described in Setting Up the Firewall
Rules.

6. Complete the procedures for setting up a remote database in Setting Up a Local or
Remote Database with the following exceptions:

a. Before starting the procedure, copy over the dump file to the remote database. For
example, using scp.

b. After starting the database in step 7, import the dump file:

sudo su - postgres
psql -d postgres -f /dirwithbackup/olamv2upg.dump
exit

c. Skip steps 8 through 10 for creating the database user account and creating the
database because these are already part of the dump file.

d. Continue the procedure at step 11.

7. On the remote database, reapply the password to the database user account:

sudo -u postgres psql
\password awx

Chapter 9
Migrating a Single Instance Deployment to a Clustered Deployment

9-8

8. Enter and confirm the password for the awx user.

Enter new password for user "awx":
Enter it again:
exit

9. Restart the database.

sudo systemctl restart postgresql

10. Return to the upgraded instance, and in the /etc/tower/settings.py file, replace the
existing DATABASES fields with the following fields:

DATABASES = {
 'default': {
 'ATOMIC_REQUESTS': True,
 'ENGINE': 'awx.main.db.profiled_pg',
 'NAME': 'awx',
 'USER': 'awx',
 'PASSWORD': 'password',
 'HOST': 'database hostname or ip address',
 'PORT': '5432',
 }
}

In the previous example, database hostname or ip address is the hostname or IP address
of the remote database. If hostname is used, the host must be resolvable. password is the
password for your remote database, if you have configured one.

11. Stop the local database.

sudo systemctl stop postgresql

12. Open the ports used for the Service Mesh.

sudo firewall-cmd --add-port=27199/tcp --permanent
sudo firewall-cmd --reload

13. Start Oracle Linux Automation Manager.

sudo systemctl start ol-automation-manager

14. Remove the local database, because it is no longer needed.

sudo dnf remove postgresql

15. Run the following command:

sudo su -l awx -s /bin/bash

16. Remove the tower instance group (queue name) because this is not used in Oracle Linux
Automation Manager release 2.

awx-manage remove_from_queue --queuename tower --hostname <hostname or IP
address>

Chapter 9
Migrating a Single Instance Deployment to a Clustered Deployment

9-9

In the previous example, hostname or IP address is the hostname or IP address of the
system running Oracle Linux Automation Manager.

17. Run the following commands.

awx-manage provision_instance --hostname=<hostname or IP address> --
node_type=control
awx-manage register_queue --queuename=controlplane --hostnames=<hostname
or IP address>
exit

In the previous example, hostname or IP address is the hostname or IP address of the
system running Oracle Linux Automation Manager. Your choice of host name or IP address
must match with the host name or IP addressed used when you configured the /etc/
receptor/receptor.conf file node ID (see Configuring and Starting the Control Plane
Service Mesh). If hostname is used, the host must be resolvable.

18. In the /etc/tower/settings.py file, replace the following lines.

DEFAULT_EXECUTION_QUEUE_NAME = 'tower'
DEFAULT_CONTROL_PLANE_QUEUE_NAME = 'tower'

with these lines.

DEFAULT_EXECUTION_QUEUE_NAME = 'execution'
DEFAULT_CONTROL_PLANE_QUEUE_NAME = 'controlplane'

19. Restart Oracle Linux Automation Manager.

sudo systemctl restart ol-automation-manager.service

20. The original upgraded node is now converted into a control node. You must now add one
more execute node for the upgraded cluster to be fully functional. For all other members of
the cluster, follow the procedures described in Preparing the Database and Hosts, with the
exception of setting up a remote database, because this is already completed. Then, follow
the procedures for installing and configuring all other hosts as part of the cluster, as
described in Installing Oracle Linux Automation Manager in a Clustered Deployment.

Migrating Playbooks to Oracle Linux Automation Engine Release
2.0

Test your Oracle Linux Automation Engine release 1.0.x playbooks to verify whether they
function properly with Oracle Linux Automation Manager release 2.0. You may need to update
your playbooks because the upstream projects have made changes such as, the number of
modules, some modules have become collections, and some modules have been consolidated
into other modules or collections.

Chapter 9
Migrating Playbooks to Oracle Linux Automation Engine Release 2.0

9-10

	Contents
	Preface
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Oracle Linux Automation Manager Requirements
	Oracle Linux Automation Manager Hardware Requirements

	2 Planning the Installation
	Oracle Linux Automation Manager Node Architecture
	Installation Options
	Service Mesh Topology Examples
	Tuning Instances for Playbook Duration

	3 Preparing the Database and Hosts
	Setting Up the Network
	Setting Up the Firewall Rules

	Enabling Access to the Oracle Linux Automation Manager Packages
	Enabling Channels with ULN
	Enabling Repositories with the Oracle Linux Yum Server

	Setting Up a Local or Remote Database
	Setting up Hosts

	4 Installing Oracle Linux Automation Manager on a Single-Host Deployment
	Installing on a Single Host

	5 Installing Oracle Linux Automation Manager in a Clustered Deployment
	Configuring and Starting the Control Plane Service Mesh
	Configuring and Starting the Execution Plane Service Mesh
	Configuring and Starting the Hop Nodes
	Configuring the Control, Execution, and Hop Nodes
	Starting the Control, Execution, and Hop Nodes
	Configuring TLS Verification and Signed Work Requests

	6 Adding or Removing Nodes to an Existing Cluster
	Adding a New Control Plane Node to a Cluster
	Adding a New Execution Plane Node to a Cluster
	Adding a New Hop Node to a Cluster
	Removing a Node from a Cluster

	7 Viewing the Service Mesh
	Viewing Service Mesh Status for a Cluster Node
	Viewing Service Mesh Cluster Status

	8 Installing Oracle Linux Automation Manager CLI
	9 Upgrading Oracle Linux Automation Manager
	Upgrading a Release 1.0.X to a Release 2.0 Single Host Deployment
	Upgrading Release 2.0 to Release 2.1
	Migrating a Single Instance Deployment to a Clustered Deployment
	Migrating Playbooks to Oracle Linux Automation Engine Release 2.0

