
Oracle Linux Automation Manager 2.3
Private Automation Hub Installation Guide

G32924-01
June 2025

Oracle Linux Automation Manager 2.3 Private Automation Hub Installation Guide,

G32924-01

Copyright © 2022, 2025, Oracle and/or its affiliates.

Contents

 Preface

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion v

1 Preparing to Install Private Automation Hub

Private Automation Hub Hardware Requirements 1-1

Installation Options 1-1

Set Up Passwordless SSH 1-2

Enabling Access to the Private Automation Hub Packages 1-3

Enabling Repositories with the Oracle Linux Yum Server 1-3

Enabling Channels with ULN and Setting up a Local Mirror 1-4

2 Installing Private Automation Hub

Setting Up a Remote Database 2-1

Installing on a Single Host 2-3

Configuring the Installation Parameter File 2-5

Configuring LDAP Parameters 2-7

3 Installing the Builder Utility

About the Builder Utility 3-1

Installing Builder 3-1

4 Backing up and Restoring Private Automation Hub

Offline Backing up Private Automation Hub 4-1

Offline Backing up Private Automation Hub with a Remote Database 4-2

Offline Restoring Private Automation Hub 4-3

Offline Restoring Private Automation Hub with a Remote Database 4-4

Offline Restoring Private Automation Hub to a New Host 4-5

iii

Offline Restoring Private Automation Hub to a New Host with Remote Database 4-6

5 Upgrading Private Automation Hub

Upgrading 2.2 to 2.3 on Oracle Linux 8 5-1

Upgrading Builder Utility 2.2 to 2.3 5-3

iv

Preface

Oracle Linux Automation Manager 2.3: Private Automation Hub Installation Guide describes
how to install Oracle Linux Automation Manager Private Automation Hub in single-host
deployments.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

v

https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/install-private-hub2.3/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

1
Preparing to Install Private Automation Hub

This chapter describes the requirements for the systems to be used in an installation of Private
Automation Hub.

Private Automation Hub Hardware Requirements
You can install Private Automation Hub on a single machine in x86-64 Oracle Linux 8 hosts.

Certain operations are memory intensive and require a certain amount of disk space and CPU.
A minimum configuration is:

• 4 GB RAM

• 40 GB disk space (170 GB is recommended)

• Two core CPU

These are the minimum requirements to run Private Automation Hub. You must determine any
other hardware requirements and capacity based on operational needs.

Hosts must be configured to establish and accept an ssh connection. Consider setting up
passwordless login between the deployment host and target hosts to simplify the installation
process. For more information, see Set Up Passwordless SSH.

Installation Options
Private Automation Hub provides the following installation options:

• Standalone installation: All components of are on the same host, including the database
deployed from the deployment host. The deployment host is a separate system from which
you install Private Automation Hub and the database.

Figure 1-1 Standalone Installation with Local Database

1-1

• Standalone installation with remote database: All components are on the same host,
except for the database which is on a remote host. The deployment host is a separate
system from which you install Private Automation Hub and the remote database.

Figure 1-2 Standalone Installation with Remote Database

Set Up Passwordless SSH
Set up passwordless SSH connections from the deployment host to the target hosts.

Passwordless SSH is used to copy the CA certificates to the nodes. Set up this feature for the
user on the deployment host that installs Private Automation Hub, for example, for the opc or
oracle user.

Set up passwordless SSH between the deployment host and all target hosts.

For example, one way to set up passwordless SSH to the target hosts, is as follows:

1. On the deployment host, use ssh-keygen to generate a public and private key pair. For
example:

ssh-keygen

Generating public/private rsa key pair.
Enter file in which to save the key (/home/user/.ssh/id_rsa): <Enter>
Created directory '/home/user/.ssh'.
Enter passphrase (empty for no passphrase): <Enter>
Enter same passphrase again: <Enter>
...

Press Enter each time you're prompted to enter a passphrase.

2. Copy the public key into the ~/.ssh/authorized_keys file for each target host.

3. To avoid authentication verification prompts, add authenticated hosts to the ~/.ssh/
known_hosts file. For example,

ssh-keyscan -H <host> >> ~/.ssh/known_hosts

4. To verify that the deployment host can access the target system without supplying a
password, use ssh to log each target system. For example:

Chapter 1
Set Up Passwordless SSH

1-2

ssh <remote_user>@<host>
For more information on setting up passwordless SSH, see Oracle Linux: Connecting to
Remote Systems With OpenSSH.

Enabling Access to the Private Automation Hub Packages
This section contains information on setting up the locations for the operating system on which
you want to install the Private Automation Hub software packages.

Enabling Repositories with the Oracle Linux Yum Server
If you're using the Oracle Linux yum server for system updates, enable the required yum
repositories.

To enable the yum repositories:

1. Do one of the following:

• For Oracle Linux 8, use the dnf config-manager tool to enable the
ol8_baseos_latest repository.

sudo dnf config-manager --enable ol8_baseos_latest
• For Oracle Linux 9, use the dnf config-manager tool to enable the

ol9_baseos_latest repository.

sudo dnf config-manager --enable ol9_baseos_latest
2. Do one of the following:

• For Oracle Linux 8, install oraclelinux-automation-manager-release-el8:

sudo dnf install oraclelinux-automation-manager-release-el8-2.3
• For Oracle Linux 9, install oraclelinux-automation-manager-release-el9:

sudo dnf install oraclelinux-automation-manager-release-el9-2.3
3. Enable the following yum repositories:

• For Oracle Linux 8, enable the following:

– ol8_addons
– ol8_UEKR6 or ol8_UEKR7
– ol8_appstream
Use the dnf config-manager tool to enable the yum repositories and do one of the
following:

– If you're using ol8_UEK6, use the following command:

sudo dnf config-manager --enable ol8_addons ol8_UEKR6 ol8_appstream

– If you're using ol8_UEK7, use the following command:

sudo dnf config-manager --enable ol8_addons ol8_UEKR7 ol8_appstream

• For Oracle Linux 9, enable the following:

– ol9_addons

Chapter 1
Enabling Access to the Private Automation Hub Packages

1-3

https://docs.oracle.com/en/operating-systems/oracle-linux/openssh/
https://docs.oracle.com/en/operating-systems/oracle-linux/openssh/

– ol9_UEKR7 or ol9_UEKR8
– ol9_appstream
Use the dnf config-manager tool to enable the yum repositories and do one of the
following:

– If you're using ol9_UEK7, use the following command:

sudo dnf config-manager --enable ol9_addons ol9_UEKR7 ol9_appstream

– If you're using ol9_UEK8, use the following command:

sudo dnf config-manager --enable ol9_addons ol9_UEKR8 ol9_appstream

4. Ensure that no version of ansible is present on the system. If any are, uninstall them. For
example, the following shows that no versions of ansible are installed:

rpm -q ansible

The following response should appear:

package ansible is not installed

Enabling Channels with ULN and Setting up a Local Mirror
If you're registered to use ULN, use the ULN web interface to subscribe the system to the
appropriate channels.

To subscribe to the ULN channels:

1. Sign in to https://linux.oracle.com with your ULN username and password.

2. On the Systems tab, click the link named for the system in the list of registered machines.

3. Register the deployment and target hosts on ULN. For more information, see Oracle Linux:
Managing Software on Oracle Linux.

4. On the System Details page, click Manage Subscriptions.

5. On the System Summary page, select each required channel from the list of available
channels and click the right arrow to move the channel to the list of subscribed channels.
Subscribe the system to the following channels:

• For Oracle Linux 8 instances, subscribe to the following:

– ol8_x86_64_automation2.3
– ol8_x86_64_addons
– ol8_x86_64_baseos_latest
– ol8_x86_64_UEKR6 or ol8_x86_64_UEKR7
– ol8_x86_64_appstream

• For Oracle Linux 9 instances, subscribe to the following:

– ol9_x86_64_automation2.3
– ol9_x86_64_addons

Chapter 1
Enabling Access to the Private Automation Hub Packages

1-4

https://linux.oracle.com
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/

– ol9_x86_64_baseos_latest
– ol9_x86_64_UEKR7 or ol9_x86_64_UEKR8
– ol9_x86_64_appstream

6. Click Save Subscriptions.

7. Setup a local ULN mirror for the ol8_x86_64_automation2 channel as described in Oracle
Linux: Managing Software on Oracle Linux.

Note:

Ensure that you set the pulp_pkg_repo variable to point to the location of the
ULN mirror. For more information, see Installing Private Automation Hub.

Chapter 1
Enabling Access to the Private Automation Hub Packages

1-5

https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/

2
Installing Private Automation Hub

This chapter shows you how to set up a host and install the Private Automation Hub software
and includes an option for using a remote or local database.

Setting Up a Remote Database
To setup a remote Postgresql database instance on Oracle Linux 8 for Oracle Linux
Automation Manager single host configuration, do the following:

1. Install Oracle Linux 8 or 9 on a host.

2. Open the database port in the firewall:

sudo firewall-cmd --add-port=5432/tcp --permanent
sudo firewall-cmd --reload

3. Enable the postgresql 16 module stream.

sudo dnf module reset postgresql
sudo dnf module enable postgresql:16

Note:

For more information about the Postgresql 16 life cycle, see the appendix
discussing the application life cycle for stream modules in Oracle Linux:
Managing Software on Oracle Linux.

4. Install the database.

sudo dnf install postgresql-server postgresql-contrib

5. Initialize the database:

sudo postgresql-setup --initdb

6. In the /var/lib/pgsql/data/postgresql.conf file, switch the password storage
mechanism from md5 to scram-sha-256. For example, the following command makes the
switch for you:

sudo sed -i "s/#password_encryption.*/password_encryption = scram-
sha-256/" /var/lib/pgsql/data/postgresql.conf

7. Start the database using the following command that also ensures that the database
restarts in case the host restarts:

sudo systemctl enable --now postgresql

2-1

https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/
https://docs.oracle.com/en/operating-systems/oracle-linux/software-management/

8. Ensure the database is running:

sudo systemctl status postgresql

9. Create the database user accounts. For example:

sudo su - postgres -c "createuser -S -P pulp"

10. Enter and confirm the password for the pulp user.

Enter password for new role:
Enter it again:

11. Create the database.

sudo su - postgres -c "createdb -O pulp pulp"

12. As the root user, in the /var/lib/pgsql/data/pg_hba.conf file add the following line:

host all all 0.0.0.0/0 scram-sha-256

13. As the root user, in the /var/lib/pgsql/data/postgresql.conf file in the # CONNECTIONS
AND AUTHENTICATION section, a line with the text listen_addresses = followed by the IP
address or host name of the database in single quotes. For example:

listen_addresses = '<IP address or host name>'

#listen_addresses = 'localhost' # what IP address(es) to listen on;
 # comma-separated list of
addresses;
 # defaults to 'localhost'; use '*'
for all
 # (change requires restart)
#port = 5432 # (change requires restart)

In the previous example, <IP address or hostname> is the IP address or host name of the
database.

14. Calculate and update the memory requirements parameters using the following:

max_connections = 1024
shared_buffers = total_mem_mb*0.3
work_mem = total_mem_mb*0.03
maintenance_work_mem = total_mem_mb*0.04

In the previous example, total_mem_mb is the total memory size in megabytes of the
system hosting the database server. For example, if the total available memory on the
system were 18 000 MB, then this worksheet would include the following:

max_connections = 1024
shared_buffers = 18000*0.3
work_mem = 18000*0.03
maintenance_work_mem = 18000*0.04

Chapter 2
Setting Up a Remote Database

2-2

The final numbers to add are as follows:

max_connections = 1024
shared_buffers = 5400MB
work_mem = 540MB
maintenance_work_mem = 720MB

15. Add the calculated values to the /var/lib/pgsql/data/postgresql.conf file.

16. Restart the database.

sudo systemctl restart postgresql

17. You're now ready to set up hosts as described in Installing on a Single Host.

Installing on a Single Host
This section provides instructions for installing the Private Automation Hub on a single host
where the database is local or on a remote host and assumes that you have setup a
passwordless SSH connection.

To set up the host:

1. On the deployment host, login as the user configured with Passwordless SSH to the target
host. For more information, see Set Up Passwordless SSH.

2. If you are running Oracle Linux 8, ensure python 3.6 is installed on your host. If python 3.6
isn't installed, run the following command:

sudo dnf install python36

3. Install the Private Automation Hub software:

sudo dnf install ol-private-automation-hub-installer

4. Copy the contents of the /single-node folder to a working directory.

cp -r /usr/share/ansible/collections/ansible_collections/oraclelinux/
private_automation_hub/playbooks/single-node/ ~/single_node

5. From the working directory, create a hosts file from the hosts.singlenode.example. For
example,

cd ~/single_node
cp hosts.singlenode.example hosts

6. Edit the hosts file as follows:

all:
 hosts:
 hub:
 ansible_host: <ip_address_or_hostname>
 ansible_user: <username>

In the previous example,

Chapter 2
Installing on a Single Host

2-3

• <ip_address_or_hostname> is the IP address or host name of the target node where
you want to install Private Automation Hub. This host must be reachable using SSH
from the deployment host.

Note:

Valid characters for hostnames are a to z, 0 to 9, and the hyphen (-). A
hostname may not start with a hyphen.

• <username> is the username running the installer playbook commands on the target
node where you want to install Private Automation Hub. This user must have sudo
privileges.

7. To configure other installation parameters to use during the installation, setup the
installation parameter file as described in Configuring the Installation Parameter File.

8. Do one of the following:

• To install a local database on the same host running Private Automation Hub, run the
following command:

ansible-playbook single-node-install.yml -i hosts -e
"olpah_admin_password=<admin_password> olpah_db_password=<db_password>"

In the previous example, <admin_password> and <db_password> are the passwords
for the default admin user and the database user account.

Note:

To use the parameter file, add the following to the end of the command:

-e "@single-node-vars.yml"

• To use an existing database on a remote host, run the following command:

a. Log into the remote database.

b. Install the following database extension.

sudo dnf install postgresql-contrib

c. Restart the database.

sudo systemctl restart postgresql

d. Create the database user accounts. For example:

sudo su - postgres -c "createuser -S -P pulp"

e. Enter and confirm the password for the pulp user.

Chapter 2
Installing on a Single Host

2-4

Note:

This must be the same <db_password> as specified in the previous step.

Enter password for new role:
Enter it again:

f. Create the database instance. For example:

sudo su - postgres -c "createdb -O pulp pulp"

g. From the single-node-install.yml file, remove the pulp_database role.

h. Set the database hostname or IP address for the remote database
(existing_db_host: <db_hostname_or_ip_address>) in the "@single-node-
vars.yml" variables file. For more information about installing using the parameter
file, see Configuring the Installation Parameter File.

i. Return to the deployment host and run the following command:

ansible-playbook single-node-install.yml -i hosts -e
"olpah_admin_password=<admin_password>
olpah_db_password=<db_password>" -e "@single-node-vars.yml"

In the previous example, <admin_password> and <db_password> are the
passwords for the default admin user and the database user account.

9. The host is now ready. Using a browser, you can now log in as the admin user.

https://<ip_address_or_hostname>

Configuring the Installation Parameter File
Sometimes, you might want to configure extra parameters when installing Private Automation
Hub. If you're configuring extra parameters for a single host installation, edit the single-node-
vars.yml parameter file.

Note:

You can configure a parameter file before or after you install Private automation Hub.
If you do it after installing Private Automation Hub, then you must complete this step
and rerun the playbook as described in Installing on a Single Host.

To configure extra installation parameters in a parameter file, do the following:

1. In the parameter file, add the extra parameters you need. For example:

existing_db_host: <db_hostname_or_ip_address>
pulp_pkg_repo: "<local_repo_url>"

olpah_require_content_approval: <True or False>

Chapter 2
Configuring the Installation Parameter File

2-5

pulp_api_workers: <Number_of_workers>
connected_olam_controllers: [
 "https://<olam_controller_server_url1>/",
 "https://<olam_controller_server_url2>/",
 ...
]

• To use a remote database, add the following parameter to the parameter file. For
example,

existing_db_host: <db_hostname_or_ip_address>

In the previous example, <db_hostname_or_ip_address> is the host name or IP
address of the remote database.

• To use a remote mirror of ULN or yum repositories, add the following parameter to the
parameter file. For example,

pulp_pkg_repo: "<local_repo_url>"

In the previous example, <local_repo_url> is the URL of the remote mirror repository.
The URL path might look similar to the following:

pulp_pkg_repo: "http://<ip_address>/yum/OracleLinux/OL8/
automation<version>/$basearch/ol8_x86_64_automation<version>/"

In the previous example, <ip_address> is the IP address of the repository and
<version> is the version of the repository.

• To enable the approval process for collection uploads, enable the following parameter
in a parameter file.

olpah_require_content_approval: True

Note:

You can do this step before or after you install Private Automation Hub. If you
do it after installing Private Automation Hub, then you must complete this
step and rerun the playbook as described in this procedure.

• To change the default number of Pulp API workers available for Private Automation
Hub, consider setting this value to the same number as the CPU cores as are
available on the target instance. For example,

pulp_api_workers: 2

• To link one or more Oracle Linux Automation Manager control servers with Private
Automation Hub to enable easier configuration of execution environments in Oracle

Chapter 2
Configuring the Installation Parameter File

2-6

Linux Automation Manager, add one or more URL to the following parameter in a
parameter file.

connected_olam_controllers: [
 "https://<olam_controller_server_url1>/",
 "https://<olam_controller_server_url2>/",
 ...
]

In the previous example, <olam_controller_server_url1> and
<olam_controller_server_url2> are the urls to the control servers. You can add more of
these URLs depending on the number of control servers you want to make available.
The URL must include https://. For more information about this feature, see Oracle
Linux Automation Manager 2.3: Private Automation Hub User's Guide.

• To integrate Private Automation Hub with an LDAP sever, add the LDAP parameters
described in Configuring LDAP Parameters.

Configuring LDAP Parameters
To configure the LDAP parameters in the parameters file, do the following:

1. Edit the parameter file and add the following required LDAP related parameters to the
bottom of the file:

#Enable galaxy_ng LDAP Integration
config_ldap: True

LDAP Binding and Directory Look Up
auth_ldap_server_uri: "<ldap_url>"
auth_ldap_bind_dn: "<ldap_bind>"
auth_ldap_bind_password: "<ldap_bind_password>"
auth_ldap_user_search_base_dn: "cn=users,cn=accounts,dc=example,dc=com"
auth_ldap_user_search_scope: "SUBTREE"
auth_ldap_user_search_filter: "(uid=%(user)s)"
auth_ldap_group_search_base_dn: "cn=groups,cn=accounts,dc=example,dc=com"
auth_ldap_group_search_scope: "SUBTREE"
auth_ldap_group_search_filter: "(objectClass=groupofnames)"
auth_ldap_group_type_class: "django_auth_ldap.config:GroupOfNamesType"
auth_ldap_user_flags_by_group__is_superuser:
"cn=superuserexample,cn=groups,cn=accounts,dc=example,dc=com"
auth_ldap_mirror_groups: False

LDAP Backend
ldap_logging: True
auth_ldap_start_tls: True
use_galaxy_ldap_self_signed_cert: True

In the previous example,

• config_ldap
Set the value of the config_ldap parameter to True to enable LDAP integration.

• auth_ldap_server_uri

Chapter 2
Configuring LDAP Parameters

2-7

https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/user-guide-private-hub2.3/
https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/user-guide-private-hub2.3/

Provide the URI to access the LDAP server in the format: ldap://<host> where
<host> is the host name of the LDAP server. This field is required. For example,

ldap://ldap1.example.com

If the server uses StartTLS functionality, you can set the protocol to ldap within the URI
scheme and enable the auth_ldap_start_tls option.

• auth_ldap_bind_dn
Provide the Distinguished Name (DN) used to authenticate Oracle Linux Automation
Manager against the LDAP server using the Bind operation. This field is required if the
LDAP server doesn't allow anonymous access. For example:

uid=admin,cn=users,cn=accounts,dc=example,dc=com

• auth_ldap_bind_password
Provide the Bind password for the Bind DN that you provided before.

• auth_ldap_user_search_base_dn
Provide the DN where your users are listed within the directory.

• auth_ldap_user_search_scope
Provide the scope to use when performing an LDAP search query on the base DN
where users are listed. Typically, the scope value is set to either one level deep,
ONELEVEL, or to the entire subtree, SUBTREE.

• auth_ldap_user_search_filter
Provide the search filter to be applied when performing an LDAP search query on the
base DN where users are listed. You can use the %(user)s syntax to match an
attribute or key to the username value that a user provided during authentication.

• auth_ldap_group_search_base_dn
Provide the base DN to use when performing an LDAP search query to decide group
membership for a user.

• auth_ldap_group_search_scope
Provide the scope to use when performing an LDAP search query on the base DN
where groups are listed in the directory. Typically, the scope value is set to either one
level deep, ONELEVEL, or to the entire subtree, SUBTREE.

• auth_ldap_group_search_filter
Provide the search filter to be applied when performing an LDAP search query on the
base DN where groups are listed in the directory.

• auth_ldap_group_type_class
Provide an appropriate LDAP group type to define how the LDAP server decides group
membership for users when performing authorization. LDAP group types map onto the
ObjectClasses that are defined for any groups that are listed on an LDAP server and
can vary depending on the LDAP server implementation. The values for this parameter
are related to the underlying Django framework and the LDAP ObjectClasses that the
framework recognizes. Therefore, values are prefixed with
django_auth_ldap.config:.

• auth_ldap_user_flags_by_group__is_superuser

Chapter 2
Configuring LDAP Parameters

2-8

Any user associated with this group has superuser privileges on Private Automation
Hub.

Caution:

If you make an error with this value, you can't log into Private Automation
Hub after the installation process completes. You must correct the error and
run the installation process again before you can log in. If the LDAP server
hasn't been configured with the specified superuser group yet, you can't log
into Private Automation Hub until the superuser group information has been
added to the LDAP server except for the locally defined admin user.

• auth_ldap_mirror_groups
Enabling this feature mirrors LDAP groups associated with a user in Private
Automation Hub whenever a user logs into Private Automation Hub. Set this value to
True to enable this feature.

• ldap_logging
Set the ldap_logging value to True to retain a log of LDAP activity. Logging can help
debug authentication issues.

• auth_ldap_start_tls
If the LDAP server uses StartTLS functionality, you can set the protocol to 'ldap' within
the URI scheme used in auth_ldap_server_uri and set the auth_ldap_start_tls
value to True.

• use_galaxy_ldap_self_signed_cert
Set the use_galaxy_ldap_self_signed_cert value to True if the certificates used for
TLS or SSL on the LDAP server are self-signed and you want to disable validation of
the certificate against a CA.

Chapter 2
Configuring LDAP Parameters

2-9

3
Installing the Builder Utility

This chapter shows you how to set up the builder utility on a host running x86-64 Oracle Linux
8.

About the Builder Utility
The Builder utility is an ansible-builder based tool used for generating containers that Oracle
Linux Automation Manager can use as execution environments in control or execution nodes
to run playbooks. After creating these custom execution environments, you can upload them to
Private Automation Hub so that Oracle Linux Automation Manager execution and control
nodes can download them when necessary. For more information about creating container
environments and uploading them to Private Automation Hub, see Oracle Linux Automation
Manager 2.3: Private Automation Hub User's Guide.

Installing Builder
To install the Builder utility, do the following:

1. On a host running x86-64 Oracle Linux 8 or 9, setup the repositories as described in
Enabling Access to the Private Automation Hub Packages.

Note:

Don't install the Builder utility on any Oracle Linux Automation Manager host
being used as a control node, execution node, or private automation hub nodes.

2. Install the Builder utility.

sudo dnf install python3.11-ansible-builder

The Builder utility is now installed. For more information about setting up and using the
Builder utility to create new container, see Oracle Linux Automation Manager 2.3: Private
Automation Hub User's Guide.

3-1

https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/user-guide-private-hub2.3/
https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/user-guide-private-hub2.3/
https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/user-guide-private-hub2.3/
https://docs.oracle.com/en/operating-systems/oracle-linux-automation-manager/2/user-guide-private-hub2.3/

4
Backing up and Restoring Private Automation
Hub

The following chapter provides information about backing up and restoring Private Automation
Hub. Perform an offline backup where all relevant services are stopped and the data isn't
changing at the time of the backup; this backup is consistent by definition.

Offline Backing up Private Automation Hub
To do an offline backup Private Automation Hub, do the following:

1. Create a backup directories. Ensure you have enough disk space and consider making the
directory persistent.

Note:

For the purposes of this document, we use a folder in the home directory, which
isn't secure.

sudo mkdir -p ~/backup/etc/pulp ~/backup/var/lib/pulp ~/backup/etc/nginx/
pulp ~/backup/var/lib/pgsql/data

2. Stop the following services in the following order:

sudo systemctl stop pulpcore
sudo systemctl stop nginx
sudo systemctl stop postgresql

3. Copy the following folders into the backup directory.

Note:

cp option r ensures that the backup includes all subdirectories and p ensures that
all permissions are preserved.

sudo cp -rp /etc/pulp/ ~/backup/etc/
sudo cp -rp /var/lib/pulp ~/backup/var/lib/
sudo cp -rp /etc/nginx/pulp ~/backup/etc/nginx/
sudo cp -rp /var/lib/pgsql/data ~/backup/var/lib/pgsql/

4-1

4. Restart the services in the following order:

sudo systemctl start postgresql
sudo systemctl start pulpcore* --all
sudo systemctl start nginx

Note:

Consider testing the backup to ensure it works as expected. For more
information, see Offline Restoring Private Automation Hub.

Offline Backing up Private Automation Hub with a Remote
Database

To do an offline backup Private Automation Hub with a remote database, do the following:

1. On the Private Automation Hub server, create a backup directories. Ensure you have
enough disk space and consider making the directory persistent.

Note:

For the purposes of this document, we use a folder in the home directory, which
isn't secure.

sudo mkdir -p ~/backup/etc/pulp ~/backup/var/lib/pulp ~/backup/etc/nginx/
pulp

2. On the database server, create a backup directory for the following folder. Ensure you have
enough disk space and consider making the directory persistent.

sudo mkdir -p ~/backup/var/lib/pgsql/data

3. Stop the following services on the Private Automation Hub server in the following order:

sudo systemctl stop pulpcore
sudo systemctl stop nginx

4. Stop the following service on the database server:

sudo systemctl stop postgresql

5. Copy the following folders into the backup directory from the Private Automation Hub
server.

Chapter 4
Offline Backing up Private Automation Hub with a Remote Database

4-2

Note:

cp option r ensures that the backup includes all subdirectories and p ensures that
all permissions are preserved.

sudo cp -rp /etc/pulp/ ~/backup/etc/
sudo cp -rp /var/lib/pulp ~/backup/var/lib/
sudo cp -rp /etc/nginx/pulp ~/backup/etc/nginx/

6. Copy the following folders into the backup directory from the database server.

sudo cp -rp /var/lib/pgsql/data ~/backup/var/lib/pgsql/

7. Restart the services on the database Server:

sudo systemctl start postgresql

8. Restart the services on Private Automation Hub in the following order:

sudo systemctl start pulpcore* --all
sudo systemctl start nginx

Note:

Consider testing the backup to ensure it works as expected. For more
information, see Offline Restoring Private Automation Hub.

Offline Restoring Private Automation Hub
To do an offline restore of Private Automation Hub, do the following:

Note:

All data entered after taking an offline backup is lost when the backup is restored.

1. If running, stop the following services in the following order:

sudo systemctl stop pulpcore
sudo systemctl stop nginx
sudo systemctl stop postgresql

2. Copy the following folders from the backup directory to the Private Automation Hub server.

Chapter 4
Offline Restoring Private Automation Hub

4-3

Note:

cp option r ensures that the backup includes all subdirectories and p ensures that
all permissions are preserved.

sudo cp -rp ~/backup/etc/pulp /etc/
sudo cp -rp ~/backup/var/lib/pulp /var/lib/
sudo cp -rp ~/backup/etc/nginx/pulp /etc/nginx/
sudo cp -rp ~/backup/var/lib/pgsql/data /var/lib/pgsql/

3. Restart the services in the following order:

sudo systemctl daemon-reload
sudo systemctl start postgresql
sudo systemctl start pulpcore* --all
sudo systemctl start nginx

Offline Restoring Private Automation Hub with a Remote
Database

To do an offline restore of Private Automation Hub with a remote database, do the following:

Note:

All data entered after taking an offline backup is lost when the backup is restored.

1. Stop the following services on the Private Automation Hub server in the following order:

sudo systemctl stop pulpcore
sudo systemctl stop nginx

2. Stop the following service on the database server:

sudo systemctl stop postgresql

3. Copy the following folders from the backup directory to the Private Automation Hub server.

Note:

cp option r ensures that the backup includes all subdirectories and p ensures that
all permissions are preserved.

sudo cp -rp ~/backup/etc/pulp /etc/
sudo cp -rp ~/backup/var/lib/pulp /var/lib/
sudo cp -rp ~/backup/etc/nginx/pulp /etc/nginx/

Chapter 4
Offline Restoring Private Automation Hub with a Remote Database

4-4

4. Copy the following folders from the backup directory to the database Server.

sudo cp -rp ~/backup/var/lib/pgsql/data /var/lib/pgsql/

5. Restart the services on the database Server:

sudo systemctl daemon-reload
sudo systemctl start postgresql

6. Restart the services on Private Automation Hub in the following order:

sudo systemctl daemon-reload
sudo systemctl start pulpcore* --all
sudo systemctl start nginx

Offline Restoring Private Automation Hub to a New Host
To do an offline restore of Private Automation Hub to a new host, do the following:

Note:

All data entered after taking an offline backup is lost when the backup is restored.

1. Ensure the new host is installed with the same configuration and settings as the original
host where the backup was taken. This includes running identical installer playbooks and
the software versions (for example, same database version and Private Automation Hub
version). The host and IP address are the only parameters that need to change when
running the playbook. For more information, see Installing Private Automation Hub.

2. If running, stop the following services on the original host in the following order:

sudo systemctl stop pulpcore
sudo systemctl stop nginx
sudo systemctl stop postgresql

3. Copy the following folders from the backup directory to the new Private Automation Hub
server using whatever method you need. Copy the backup files to the following directories:

Note:

cp option r ensures that the backup includes all subdirectories and p ensures that
all permissions are preserved.

sudo cp -rp ~/backup/etc/pulp /etc/
sudo cp -rp ~/backup/var/lib/pulp /var/lib/
sudo cp -rp ~/backup/etc/nginx/pulp /etc/nginx/
sudo cp -rp ~/backup/var/lib/pgsql/data /var/lib/pgsql/

Chapter 4
Offline Restoring Private Automation Hub to a New Host

4-5

4. Update the /etc/pulp/settings.local.py on the new host with the following parameters:

DATABASES = {'default': {'HOST': '<IP address or host name>', 'ENGINE':
'django.db.backends.postgresql', 'NAME': 'pulp', 'USER': 'pulp',
'PASSWORD': '<db_password>'}}
TOKEN_SERVER = 'https://<<IP address or host name>>/token/'
and
CONTENT_ORIGIN = 'https://<IP address or host name>'

In the previous example, <IP address or host name> is the IP address or host name of the
standalone Private Automation Hub server and <db_password> is the password for the
database.

5. Restart the services in the following order:

sudo systemctl daemon-reload
sudo systemctl start postgresql
sudo systemctl start pulpcore* --all
sudo systemctl start nginx

Offline Restoring Private Automation Hub to a New Host with
Remote Database

To do an offline restore of Private Automation Hub to a new host with remote database, do the
following:

Note:

All data entered after taking an offline backup is lost when the backup is restored.

1. Ensure the new host is installed with the same configuration and settings as the original
host and remote database where the backup was taken. This includes running identical
installer playbooks and the software versions (for example, same database version and
Private Automation Hub version). The host and IP address are the only parameters that
need to change when running the playbook. For more information, see Installing Private
Automation Hub.

2. If running, stop the following services on the Private Automation Hub server in the following
order:

sudo systemctl stop pulpcore
sudo systemctl stop nginx

3. If running, stop the following service on the database server:

sudo systemctl stop postgresql

4. Copy the following folders from the backup directory to the new Private Automation Hub
server using whatever method you need. Copy the backup files to the following directories:

Chapter 4
Offline Restoring Private Automation Hub to a New Host with Remote Database

4-6

Note:

cp option r ensures that the backup includes all subdirectories and p ensures that
all permissions are preserved.

sudo cp -rp ~/backup/etc/pulp /etc/
sudo cp -rp ~/backup/var/lib/pulp /var/lib/
sudo cp -rp ~/backup/etc/nginx/pulp /etc/nginx/

5. Update the /etc/pulp/settings.local.py on the new Private Automation Hub server with
the following parameters:

DATABASES = {'default': {'HOST': '<database IP address or host name>',
'ENGINE': 'django.db.backends.postgresql', 'NAME': 'pulp', 'USER': 'pulp',
'PASSWORD': '<db_password>'}}
TOKEN_SERVER = 'https://<<IP address or host name>>/token/'
and
CONTENT_ORIGIN = 'https://<IP address or host name>'

In the previous example, <database IP address or host name> is the IP address or host
name of the database, <IP address or host name> is the IP address or host name of the
standalone Private Automation Hub server and <db_password> is the password for the
database.

6. Copy the following folders from the backup directory to the new database server using
whatever method you need. Copy the backup files to the following directory:

sudo cp -rp ~/backup/var/lib/pgsql/data /var/lib/pgsql/

7. Restart the services on the database Server:

sudo systemctl daemon-reload
sudo systemctl start postgresql

8. Restart the services on Private Automation Hub in the following order:

sudo systemctl daemon-reload
sudo systemctl start pulpcore* --all
sudo systemctl start nginx

Chapter 4
Offline Restoring Private Automation Hub to a New Host with Remote Database

4-7

5
Upgrading Private Automation Hub

The following chapter provides information about upgrading Private Automation Hub.

Upgrading 2.2 to 2.3 on Oracle Linux 8
To upgrade Private Automation Hub from 2.2 to 2.3 on Oracle Linux 8, do the following:

1. Consider performing an OS backup. Backing up a system is good practice so that the
system can be restored to its former state if the upgrade fails.

2. Create a backup of Private Automation Hub. For more information, see Backing up and
Restoring Private Automation Hub.

3. On the system running Private Automation Hub, stop all the Private Automation Hub
services:

sudo systemctl stop pulpcore

4. Check the status to ensure all services are stopped:

sudo systemctl status pulpcore* -all

5. On the local or remote database host, log in to the user account that controls the database.

sudo su - postgres

6. Verify which version of postgresql is running.

rpm -q postgresql

For example, the following response shows postgresql version 13:

postgresql-13.20-1.module+el8.10.0+90526+050ec11b.x86_64

7. Export the database. Exporting the database creates a script file containing all the
necessary SQL commands and input data to restore the databases. For example, this
command creates the hub.dump file in the database home directory:

pg_dumpall > /var/tmp/hub.dump

8. Exit the database user account:

exit

9. Stop the database server:

sudo systemctl stop postgresql

5-1

10. Remove (and optionally backup) existing database data directory. For example, the
following command removes and creates a backup file in the home directory:

sudo mv /var/lib/pgsql/data/ ~/data.old

11. Remove the current version of the database:

sudo dnf remove postgresql

12. Install the Postgresql 16 database as described in Setting Up a Remote Database and
follow the procedure up to and including the step to restart the database and return to this
step but ignore steps 9 to 11 create user and database pulp as these objects are already in
the dump file.

13. After the update completes, set up the database by importing the hub.dump file. Run the
following commands:

sudo su - postgres
psql -d postgres -f /var/tmp/hub.dump
exit

14. On the Private Automation Hub server, restart the Private Automation Hub service:

sudo systemctl start pulpcore* -all

15. Test the Private Automation Hub functionality to ensure everything is working as expected.

16. Shutdown Private Automation Hub server.

sudo systemctl stop pulpcore
sudo systemctl status pulpcore* -all

17. On the Private Automation Hub deployment host, run the following commands:

sudo dnf update oraclelinux-automation-manager-release-el8-2.3
sudo mv /etc/yum.repos.d/oraclelinux-automation-manager-ol8.repo /etc/
yum.repos.d/oraclelinux-automation-manager-ol8.repo.OLD
sudo mv /etc/yum.repos.d/oraclelinux-automation-manager-
ol8.repo.rpmnew /etc/yum.repos.d/oraclelinux-automation-manager-ol8.repo
sudo dnf update

18. On the Private Automation Hub server, run the collect static command:

sudo PULP_SETTINGS=/etc/pulp/settings.py /usr/bin/pulpcore-manager
collectstatic --clear --noinput

19. On the deployment host, run the installer for Private Automation Hub with the same user
account originally used to install Private Automation Hub.

ansible-playbook -i hosts single-node-install.yml -e
"olpah_admin_password=<admin_password> olpah_db_password=<db_password>"

Chapter 5
Upgrading 2.2 to 2.3 on Oracle Linux 8

5-2

Note:

If you used a parameters file when you first created the server, you must use it
again when running this command. For example, add the following to the end of
the command line -e "@single-node-vars.yml".

Upgrading Builder Utility 2.2 to 2.3
To upgrade Private Automation Hub Builder utility from 2.2 to 2.3, do the following:

1. On the host you installed the previous version of the Builder utility, run the following
commands:

sudo dnf install oraclelinux-automation-manager-release-el8-2.3
sudo mv /etc/yum.repos.d/oraclelinux-automation-manager-ol8.repo /etc/
yum.repos.d/oraclelinux-automation-manager-ol8.repo.OLD
sudo mv /etc/yum.repos.d/oraclelinux-automation-manager-
ol8.repo.rpmnew /etc/yum.repos.d/oraclelinux-automation-manager-ol8.repo
sudo dnf update python3.11-ansible-builder

2. Update any execution-environment.yml files to the 2.3 images of olam-ee and olam-
builder. For example, find the following entries:

base_image:
name: container-registry.oracle.com/oracle_linux_automation_manager/olam-
ee:2.2
builder_image:
name: container-registry.oracle.com/oracle_linux_automation_manager/olam-
builder:2.2

Do one of the following:

• If you are creating images with Oracle Linux 8, change 2.2 to 2.3-ol8:

images:
base_image:
name: container-registry.oracle.com/oracle_linux_automation_manager/
olam-ee:2.3-ol8
builder_image:
name: container-registry.oracle.com/oracle_linux_automation_manager/
olam-builder:2.3-ol8

• If you are creating images with Oracle Linux 9, change 2.2 to 2.3-ol9:

images:
base_image:
name: container-registry.oracle.com/oracle_linux_automation_manager/
olam-ee:2.3-ol9
builder_image:
name: container-registry.oracle.com/oracle_linux_automation_manager/
olam-builder:2.3-ol9

Chapter 5
Upgrading Builder Utility 2.2 to 2.3

5-3

3. If using Private Automation Hub to store olam-ee or olam-builder images then update the
images to 2.3 and point the images in execution-environment.yml to the new 2.3
images.

4. Ensure that any execution environments created in previous releases that are intended to
be used in 2.3 are evaluated for changing dependencies. For example, if previous
execution environments were created using older versions of ansible-core, confirm that
collections or modules used in these older execution environments continue to function
with later versions of ansible-core running on Oracle Linux Automation Manager 2.3
nodes.

Chapter 5
Upgrading Builder Utility 2.2 to 2.3

5-4

	Contents
	Preface
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Preparing to Install Private Automation Hub
	Private Automation Hub Hardware Requirements
	Installation Options
	Set Up Passwordless SSH
	Enabling Access to the Private Automation Hub Packages
	Enabling Repositories with the Oracle Linux Yum Server
	Enabling Channels with ULN and Setting up a Local Mirror

	2 Installing Private Automation Hub
	Setting Up a Remote Database
	Installing on a Single Host
	Configuring the Installation Parameter File
	Configuring LDAP Parameters

	3 Installing the Builder Utility
	About the Builder Utility
	Installing Builder

	4 Backing up and Restoring Private Automation Hub
	Offline Backing up Private Automation Hub
	Offline Backing up Private Automation Hub with a Remote Database
	Offline Restoring Private Automation Hub
	Offline Restoring Private Automation Hub with a Remote Database
	Offline Restoring Private Automation Hub to a New Host
	Offline Restoring Private Automation Hub to a New Host with Remote Database

	5 Upgrading Private Automation Hub
	Upgrading 2.2 to 2.3 on Oracle Linux 8
	Upgrading Builder Utility 2.2 to 2.3

