
Oracle Cloud Native Environment
Kubernetes for Release 2

F96196-05
April 2025

Oracle Cloud Native Environment Kubernetes for Release 2,

F96196-05

Copyright © 2024, 2025, Oracle and/or its affiliates.

Contents

 Preface

Documentation License v

Conventions v

Documentation Accessibility v

Access to Oracle Support for Accessibility v

Diversity and Inclusion vi

1 Introduction to Kubernetes

2 Kubernetes Architecture

Network Planes 2-1

Management Plane 2-1

Control Plane 2-1

Data Plane 2-1

Storage 2-2

Cloud Native Storage 2-2

Persistent Storage 2-2

Container Storage Interface Plugins 2-3

Cloud Native Networking 2-3

Highly Available Clusters 2-3

Load Balancer 2-4

Highly Available Cluster with External Load Balancer 2-4

Highly Available Cluster with Internal Load Balancer 2-4

Container Runtimes 2-4

Authentication 2-4

3 Kubernetes Components

Nodes 3-1

Control Plane Nodes 3-1

Control Plane Replica Nodes 3-2

Worker Nodes 3-2

iii

Pods 3-3

ReplicaSet, Deployment, and StatefulSet Controllers 3-3

Services 3-3

Volumes 3-4

Namespaces 3-5

CRI-O 3-5

4 Using Kubernetes

Getting Node Information 4-1

Running an Application in a Pod 4-2

Scaling a Pod Deployment 4-4

Deleting a Service or Deployment 4-4

Viewing Pods in Namespaces 4-4

5 Creating Kata Containers

Checking Hardware 5-1

Setting Runtime Classes 5-2

Creating Kata Containers 5-3

iv

Preface

This book describes how to use Kubernetes, which is an implementation of the open source,
containerized application management platform from the upstream Kubernetes release. Oracle
provides extra tools, testing, and support to deliver this technology with confidence.
Kubernetes integrates with container products to handle more complex deployments where
clustering might be used to improve the scalability, performance, and availability of
containerized applications. Detail is provided on the basic features of Kubernetes and how it
can be used in Oracle Cloud Native Environment (Oracle CNE).

This document describes functionality and usage available in the most current release of the
product.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

v

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vi

1
Introduction to Kubernetes

Introduces Kubernetes in Oracle Cloud Native Environment (Oracle CNE).

Kubernetes is an open source system for automating the deployment, scaling, and
management of containerized applications. Kubernetes provides the tools to create a cluster of
systems across which containerized applications can be easily deployed and scaled as
required.

The Kubernetes project is maintained at:

https://kubernetes.io/

Kubernetes is fully tested on Oracle Linux and includes extra tools developed at Oracle to ease
configuration and deployment of a Kubernetes cluster.

1-1

https://kubernetes.io/

2
Kubernetes Architecture

The version of Kubernetes used in Oracle CNE is based on the upstream Kubernetes project,
and released under the CNCF Kubernetes Certified Conformance program. Oracle Container
Host for Kubernetes (OCK) simplifies the configuration and set up of Kubernetes to create a
Kubernetes cluster and includes backup. Kubernetes integrates with CRI-O to provide a
comprehensive container and orchestration environment for the delivery of microservices and
next-generation application development.

The core component in Oracle CNE is Kubernetes. Kubernetes includes:

• Flannel: The default overlay network for a Kubernetes cluster.

• CoreDNS: The DNS server for a Kubernetes cluster.

• CRI-O: Manages the container runtime for a Kubernetes cluster.

• runC: The default lightweight, portable container runtime for a Kubernetes cluster.

• Kata Containers: An optional lightweight virtual machine runtime for a Kubernetes cluster.

For more information about using Kubernetes, see Oracle Cloud Native Environment:
Kubernetes.

Network Planes
This chapter contains information about the Oracle CNE management, control, and data
planes.

Management Plane
Communication between the components is secured using Transport Layer Security (TLS).
You can configure the cipher suites to use for TLS for the management plane.

You can set up the X.509 certificates used for TLS before you create a cluster, or use private,
automatically generated, certificates.

Control Plane
The control plane contains the Kubernetes components and any load balancer.

Kubernetes has a sophisticated networking model with many options that lets users finely tune
the networking configuration. Oracle CNE simplifies the Kubernetes networking by setting
network defaults that align with community best practices. By default, all Kubernetes services
are bound to the network interface that handles the default route for the system. The default
route is used for both the Kubernetes control plane and the data plane.

Data Plane
The data plane is the network used by the pods running on Kubernetes.

The same algorithm to decide the default control plane interface is used when instantiating the
Kubernetes pod network. The network interface is used for both the Kubernetes control plane

2-1

https://docs.oracle.com/en/operating-systems/olcne/2/kubernetes/
https://docs.oracle.com/en/operating-systems/olcne/2/kubernetes/

and the data plane. In environments with many networks, this might not be the best choice.
Oracle CNE lets you customize the network interface used for pod networking when you create
the Kubernetes module. When the CNI is brought up, it uses the network interface you specify
for the pod network.

Storage
Every meaningful workload in the computing industry requires some sort of data storage.
Persistent storage is essential when working with stateful applications such as databases, as
it's important that you can retain data beyond the lifecycle of the container, or even of the pod
itself.

Persistent storage in Kubernetes is handled in the form of PersistentVolume objects which are
bound to pods using a PersistentVolumeClaim. You can host a PersistentVolume locally or on
networked storage devices or services.

A typical Kubernetes environment involves many hosts and includes some type of networked
storage. Using networked storage helps to ensure resilience and lets you take full advantage of
a clustered environment. In the case where the node where a pod is running fails, a new pod
can be started on another node and storage access can be resumed. This is important for
database environments where replica setup has been configured.

Cloud Native Storage
Several storage projects are associated with the CNCF foundation, and the providers are
included by default in Kubernetes. Storage integration is provided using plugins, referred to as
the Container Storage Interface (CSI). The plugins adhere to a standard specification.

Persistent Storage
Persistent storage is provided in Kubernetes using the PersistentVolume subsystem. To
configure persistent storage, you must be familiar with the following terms:

• PersistentVolume

A PersistentVolume defines the type of storage that's being used and the method used to
connect to it. This is the real disk or networked storage service that's used to store data.

• PersistentVolumeClaim

A PersistentVolumeClaim defines the parameters that a consumer, such as a pod, uses to
bind the PersistentVolume. The claim might specify quota and access modes to be applied
to the resource for a consumer. A pod can use a PersistentVolumeClaim to gain access to
the volume and mount it.

• StorageClass

A StorageClass is an object that specifies a volume plugin, known as a provisioner, that
lets users to define PersistentVolumeClaims without needing to preconfigure the storage
for a PersistentVolume. This can be used to provide access to similar volume types as a
pooled resource that can be dynamically provisioned for the lifecycle of a
PersistentVolumeClaim.

PersistentVolumes can be provisioned either statically or dynamically.

Static PersistentVolumes are manually created and contain the details required to access real
storage and can be consumed directly by any pod that has an associated
PersistentVolumeClaim.

Chapter 2
Storage

2-2

Dynamic PersistentVolumes can be automatically generated if a PersistentVolumeClaim
doesn't match an existing static PersistentVolume and an existing StorageClass is requested in
the claim. A StorageClass can be defined to host a pool of storage that can be accessed
dynamically. Creating a StorageClass is an optional step that's only required if you intend to
use dynamic provisioning.

The process to provision persistent storage is as follows:

1. Create a PersistentVolume or StorageClass.

2. Create PersistentVolumeClaims.

3. Configure a pod to use the PersistentVolumeClaim.

The process for adding and configuring NFS and iSCSI volumes is described in detail in the
upstream documentation.

Container Storage Interface Plugins
The Container Storage Interface (CSI) is an Open Container Initiative standard for controlling
storage workloads from container engines. Kubernetes implements this interface to provide
automated control for storage workloads inside Kubernetes clusters. For a list of the
Kubernetes storage provisioners, see the upstream documentation.

Cloud Native Networking
The Container Network Interface (CNI) project, incubating under CNCF, seeks to simplify
networking for container workloads by defining a common network interface for containers. The
CNI plugin is included with Oracle CNE.

Highly Available Clusters
This chapter contains high level information about the types of highly available (HA)
Kubernetes clusters you can deploy using Oracle CNE.

Kubernetes can be deployed with more than one replica of the control plane node. Automated
failover to those replicas provides a more scalable and resilient service. This type of cluster
deployment is referred to in this document as an HA cluster.

Important:

To create an HA cluster you need at least three control plane nodes and two worker
nodes.

Creating an HA cluster with three control plane nodes ensures replication of configuration data
between them through the distributed key store, etcd, so an HA cluster is resilient to a single
control plane node failing without any loss of data or up time. If more than one control plane
node fails, you can restore the control plane nodes in the cluster from a backup file to avoid
data loss.

Oracle CNE implements the Kubernetes stacked etcd topology, where etcd runs on the control
plane nodes. For more information on this topology, see the upstream documentation.

Chapter 2
Cloud Native Networking

2-3

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/#stacked-etcd-topology

Load Balancer
An HA cluster needs a load balancer to provide high availability of the control plane nodes. A
load balancer communicates with the Kubernetes API Server to maintain high availability of the
control plane nodes.

You can use an external load balancer instance, or have the CLI install a load balancer on the
control plane nodes.

Highly Available Cluster with External Load Balancer
When you set up an HA cluster to use an external load balancer, the load balancer is used to
manage the resource availability and efficiency of control plane nodes to ensure instances of
the Kubernetes API Server on control plane nodes can fail without impacting cluster availability.

To use an external load balancer, it must be set up and ready to use before you perform an HA
cluster deployment. The load balancer hostname and port is entered as an option with the CLI
when you create the Kubernetes cluster.

Highly Available Cluster with Internal Load Balancer
When you set up an HA cluster to use an internal load balancer, the CLI installs NGINX and
Keepalived on the control plane nodes as a systemd service to enable the deployment of the
load balancer. The internal load balancer configures the native active-active high availability
solution for the Kubernetes API Server.

NGINX improves the resource availability and efficiency of control plane nodes to ensure
instances of the Kubernetes API Server on control plane nodes can fail without impacting
cluster availability.

If you use the internal load balancer, you must set aside an IP address on the control plane
network to use as a virtual IP address. The Keepalived instance makes sure the virtual IP
address is always reachable by monitoring the health of other control plane nodes and
appropriating the IP address if a node fails. Keepalived is used to fail over automatically to a
standby control plane node if problems occur.

Container Runtimes
Containers are the fundamental infrastructure to deploy modern cloud applications. Oracle
delivers the tools to create and provision Open Container Initiative (OCI)-compliant containers
using CRI-O.

CRI-O, an implementation of the Kubernetes CRI (Container Runtime Interface) to enable
using Open Container Initiative compatible runtimes, is included with Oracle CNE. CRI-O can
run either runC or Kata Containers containers directly from Kubernetes, without any
unnecessary code or tooling.

Authentication
Standard X.509 certificates are used to establish node identity and authentication. Kubernetes
nodes require a valid certificate chain for each component to mutually authenticate. Without
these certificates, connections between the components and nodes are rejected.

Chapter 2
Container Runtimes

2-4

3
Kubernetes Components

Learn about the components in a Kubernetes cluster.

This section outlines the common components of Kubernetes within Oracle CNE. The
descriptions provided are brief, and largely intended to help provide a glossary of terms and an
overview of the architecture of a typical Kubernetes environment. Upstream documentation
can be found at:

https://kubernetes.io/docs/concepts/

Nodes
Introduces the node types in a Kubernetes cluster.

Kubernetes Node architecture is described in detail at:

https://kubernetes.io/docs/concepts/architecture/nodes/

Control Plane Nodes
Describes Kubernetes control plane nodes.

The control plane node is responsible for cluster management and for exposing the API that's
used to configure and manage resources within the Kubernetes cluster. Kubernetes control
plane node components can be run within Kubernetes itself, as a set of containers within a
dedicated pod. These components can be replicated for High Availability (HA) of the control
plane nodes.

The following components are required for a control plane node:

• API Server (kube-apiserver): The Kubernetes REST API is exposed by the API Server.
This component processes and validates operations and then updates information in the
Cluster State Store to trigger operations on the worker nodes. The API is also the gateway
to the cluster.

• Cluster State Store (etcd): Configuration data relating to the cluster state is stored in the
Cluster State Store, which can roll out changes to the coordinating components such as
the Controller Manager and the Scheduler. It's important to have a backup plan in place for
the data stored in the Cluster State Store.

• Cluster Controller Manager (kube-controller-manager): This manager is used to
perform many cluster-level functions and overall application management, based on input
from the Cluster State Store and the API Server.

• Scheduler (kube-scheduler): The Scheduler automatically decides where to run
containers by monitoring availability of resources, quality of service, and affinity
specifications.

The control plane node can be configured as a worker node within the cluster. Therefore, the
control plane node also runs the standard node services: the kubelet service, the container
runtime, and the kube-proxy service. Note that it's possible to taint a node to prevent
workloads from running on an inappropriate node. The kubeadm utility automatically taints the

3-1

https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/architecture/nodes/

control plane node so that no other workloads or containers can run on this node. This ensures
that the control plane node is never placed under any unnecessary load and simplifies the
backup and restore of the control plane node.

If the control plane node becomes unavailable for a period, the ability to change the cluster
state is suspended but the worker nodes continue to run container applications without
interruption.

For single node clusters, when the control plane node is offline, the API is unavailable, so the
environment is unable to respond to node failures and no new operations that affect the overall
cluster state, such as creating new resources or editing or moving existing resources, can be
performed.

An HA cluster, with several control plane nodes, ensures that more requests for control plane
node functionality can be handled, and control plane replica nodes help improve cluster
uptime.

Control Plane Replica Nodes
Describes Kubernetes control plane replica nodes.

Control plane replica nodes are responsible for duplicating the functionality and data contained
on control plane nodes within a Kubernetes cluster configured for HA. To improve uptime and
resilience, you can host control plane replica nodes in different zones, and configure them to
load balance for the Kubernetes cluster.

Replica nodes are designed to mirror the control plane node configuration and the current
cluster state in real time. If the control plane nodes become unavailable, the Kubernetes
cluster can fail over to the replica nodes automatically. If a control plane node fails, the API
remains available so that the cluster can continue to respond automatically to other node
failures and service requests for creating and editing existing resources within the cluster.

Worker Nodes
Describes Kubernetes worker nodes.

Worker nodes within the Kubernetes cluster are used to run containerized applications and
handle networking to route traffic between applications within and outside of the cluster. The
worker nodes perform any actions triggered by the Kubernetes API, which runs on the control
plane node.

All nodes within a Kubernetes cluster must run the following services:

• Kubelet Service (kubelet): The agent that controls communication between each worker
node and the API Server running on the control plane node. This agent is also responsible
for managing pod tasks, such as mounting volumes, starting containers, and reporting
status.

• Container Runtime: An environment where containers can be run. In this release, the
container runtimes are either runC or Kata Containers. For more information about the
container runtimes, see Creating Kata Containers.

• Kube Proxy Service (kube-proxy): A service that translates service definitions to
networking rules. These handle port forwarding and IP redirects to ensure that network
traffic from outside the pod network can be transparently proxied to the pods in a service.

In all cases, these services are run from systemd as daemons.

Chapter 3
Nodes

3-2

Pods
Describes Kubernetes pods.

Kubernetes introduces the concept of pods, which are groupings of one or more containers
and their shared storage, and any specific options on how these are to be run together. Pods
are used for tightly-coupled applications that would typically run on the same logical host and
which might require access to the same system resources. Typically, containers in a pod share
the same network and memory space and can access shared volumes for storage. These
shared resources enable the containers in a pod to communicate internally in a seamless way
as if they were installed on a single logical host.

You can easily create or destroy pods as a set of containers. This makes it possible to do
rolling updates to an application by controlling the scaling of the deployment. You can scale up
or down easily by creating or removing replica pods. For more information on pods, see the
upstream Kubernetes documentation.

ReplicaSet, Deployment, and StatefulSet Controllers
Describes Kubernetes ReplicaSets, Deployments, and StatefulSet Controllers.

Kubernetes provides various controllers that define how pods are set up and deployed within
the Kubernetes cluster. These controllers can be used to group pods together according to
their runtime needs, control the order in which the pods start up, and configure pod replication.

Define a set of pods to be replicated with a ReplicaSet, which provides the configuration for
each of the pods in the group and which resources they have access to. Using ReplicaSets
makes it easy to scale or reschedule an application and perform rolling or multi track updates
to an application. For more information on ReplicaSets, see the upstream Kubernetes
documentation.

Use a Deployment to manage pods and ReplicaSets. Deployments make it easy to roll out
changes to ReplicaSets, or rollback to an earlier Deployment revision. Create a newer revision
of a ReplicaSet with a Deployment and then migrate existing pods from a previous ReplicaSet
into the new revision. The Deployment can then manage the cleanup of older unused
ReplicaSets. For more information on Deployments, see the upstream Kubernetes
documentation.

Use StatefulSets to create pods that guarantee start up order and unique identifiers, which are
then used to ensure that the pod maintains its identity across the life cycle of the StatefulSet.
This feature makes it possible to run stateful applications within Kubernetes, as the persistence
of components such as storage and networking are guaranteed. Furthermore, when you create
pods they're always created in the same order and allocated identifiers that are applied to host
names and the internal cluster DNS. Those identifiers ensure stable and predictable network
identities for pods in the environment. For more information on StatefulSets, see the upstream
Kubernetes documentation.

Services
Describes Kubernetes services.

Use services to expose access to one or more mutually interchangeable pods. As pods can be
replicated for rolling updates and for scalability, clients accessing an application must be
directed to a pod running the correct application. Pods might also need access to applications

Chapter 3
Pods

3-3

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

outside of Kubernetes. In either case, you can define a service to make access to these
resources transparent, even if the actual backend changes.

Typically, services consist of port and IP mappings. How services function in network space
depends on the service type.

The default service type is ClusterIP, which exposes the service on the internal IP of the
cluster, so that the service is reachable only from within the cluster. Use this service type to
expose services for applications that need to access each other from within the cluster.

Often, clients outside of the Kubernetes cluster might need access to services within the
cluster. Use the NodePort service type for this. This service type takes advantage of the Kube
Proxy service that runs on every worker node and reroutes traffic to a ClusterIP, which is
created automatically along with the NodePort service. The service is exposed on each node
IP at a static port, called the NodePort. The Kube Proxy routes traffic destined to the NodePort
into the cluster to be serviced by a pod running inside the cluster. This means that if a
NodePort service is running in the cluster, it can be accessed from any node in the cluster,
regardless of where the pod is running.

Building on top of these service types, the LoadBalancer service type can expose a service
externally by using a cloud provider's load balancer. The external load balancer can handle
redirecting traffic to pods directly in the cluster from the Kube Proxy. A NodePort service and a
ClusterIP service are automatically created when a LoadBalancer service is provisioned.

Important:

When adding services for different pods, ensure that the network is configured
appropriately for each service declaration. Any external-facing ports exposed by a
NodePort or LoadBalancer service must also be accessible through any firewalls
running on the nodes.

For more information on services, see the upstream Kubernetes documentation.

Volumes
Describes Kubernetes volumes.

In Kubernetes, a volume is storage that persists across the containers within a pod for the
lifespan of the pod itself. When a container within the pod is restarted, the data in the
Kubernetes volume is preserved. Kubernetes volumes can be shared across containers within
the pod, providing a file store that different containers can access locally.

Kubernetes provides various volume types that define how the data is stored and how it's
persisted, which are described in detail in the upstream Kubernetes documentation.

The lifetime of a Kubernetes volume typically matches the lifetime of the pod, and data in a
volume persists while the pod using that volume exists. Containers in the pod can be restarted
and the data remains intact. However, if the pod is destroyed, the data is usually destroyed
with it.

For situations in which the volume data must outlive the pod, Kubernetes introduces the
concepts of the PersistentVolume and the PersistentVolumeClaim.

PersistentVolumes are similar to Volumes except that they exist independently of a pod. They
define how to access a storage resource type, such as NFS, or iSCSI. Configure a

Chapter 3
Volumes

3-4

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/volumes/

PersistentVolumeClaim to use the resources available in a PersistentVolume. The
PersistentVolumeClaim specifies the quota and access modes to be applied to the resource for
a consumer. Use the PersistentVolumeClaim to gain access to these resources with the
appropriate access modes and size restrictions applied.

Namespaces
Describes Kubernetes namespaces.

Kubernetes implements and maintains strong separation of resources by using namespaces.
Namespaces effectively run as virtual clusters on the same physical cluster and are intended
for use in environments where Kubernetes resources must be shared across use cases.

Kubernetes uses namespaces to separate cluster management and specific Kubernetes
controls from user-defined resources. All the pods and services specific to the Kubernetes
system are found within the kube-system namespace. All other deployments for which no
namespace has been specified run in the default namespace.

For more information on namespaces, see the upstream Kubernetes documentation.

CRI-O
Describes CRI-O, an implementation of the Kubernetes Container Runtime Interface.

When you deploy Kubernetes worker nodes, CRI-O is also deployed. CRI-O is an
implementation of the Kubernetes Container Runtime Interface (CRI) to enable using Open
Container Initiative (OCI) compatible runtimes. CRI-O is a lightweight alternative to using
Docker as the runtime for Kubernetes. With CRI-O, Kubernetes can use any OCI-compliant
runtime as the container runtime for pods.

CRI-O delegates containers to run on appropriate nodes, based on the configuration set in pod
files. Privileged pods can be run using the runC runtime engine (runc), and unprivileged pods
can be run using the Kata Containers runtime engine (kata-runtime). The status of containers
as trusted or untrusted is configured in the Kubernetes pod or deployment file.

For information on how to set the container runtime, see Creating Kata Containers.

Chapter 3
Namespaces

3-5

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

4
Using Kubernetes

Learn how to use Kubernetes and the Kubernetes CLI (kubectl).

This chapter describes how to get started using Kubernetes to deploy, maintain, and scale
containerized applications. In this chapter, we describe basic usage of the kubectl command
to get you started creating and managing containers and services within a cluster.

The kubectl utility is fully documented in the upstream Kubernetes documentation.

Getting Node Information
Use the kubectl command to display information about nodes in a Kubernetes cluster.

1. List all cluster nodes.

To list all nodes in a cluster and the status of each node, use the kubectl get command.
This command can be used to list any kind of Kubernetes resource. The following example
lists resources that are nodes:

kubectl get nodes

The output looks similar to:

NAME STATUS ROLES AGE VERSION
ocne-control-plane-1 Ready control-plane 1h version
ocne-worker-1 Ready <none> 1h version
ocne-worker-2 Ready <none> 1h version

2. Get details about resources.

You can get more detailed information about any resource using the kubectl describe
command. If you specify the name of the resource, the output is limited to information
about that specific resource. Otherwise, details of all resources are displayed. For
example, to get detailed information about a specific node:

kubectl describe nodes ocne-worker-1

The output looks similar to:

Name: ocne-worker-1
Roles: <none>
Labels: beta.kubernetes.io/arch=amd64
 beta.kubernetes.io/os=linux
 kubernetes.io/arch=amd64
 kubernetes.io/hostname=ocne-worker-1
 kubernetes.io/os=linux
Annotations: flannel.alpha.coreos.com/backend-data:
{"VNI":1,"VtepMAC":"3a:41:1a:ce:e0:d0"}
 flannel.alpha.coreos.com/backend-type: vxlan

4-1

https://kubernetes.io/docs/reference/kubectl/

 flannel.alpha.coreos.com/kube-subnet-manager: true
 flannel.alpha.coreos.com/public-ip: 192.168.122.130
 kubeadm.alpha.kubernetes.io/cri-socket:
unix:///var/run/crio/crio.sock
 node.alpha.kubernetes.io/ttl: 0
 volumes.kubernetes.io/controller-managed-attach-
detach: true
...

Running an Application in a Pod
Use the kubectl command to create a pod running an NGINX container in a Kubernetes
cluster.

1. Create a pod.

To create a pod with a single running container, use the kubectl create command. For
example, to create a pod with the nginx container image from the Oracle Container
Registry:

kubectl create deployment --image container-registry.oracle.com/olcne/
nginx:1.17.7 hello-world

This example uses hello-world as the name for the deployment. The pods are named by
using the deployment name as a prefix.

Tip:

Deployment, pod, and service names conform to a requirement to match a
DNS-1123 label. These must consist of lowercase alphanumeric characters or -,
and must start and end with an alphanumeric character. The regular expression
that's used to validate names is [a-z0-9]([-a-z0-9]*[a-z0-9])?. If you use a
name for the deployment that doesn't validate, an error is returned.

Many more optional parameters can be used when you run a new application within
Kubernetes. For example, at run time, you can specify how many replica pods are to be
started, or you might apply a label to the deployment to make it easier to identify pod
components. To see a full list of options available to you, use the kubectl run --help
command.

2. List the pods.

To check that a new application deployment has created one or more pods, use the
kubectl get pods command:

kubectl get pods

The output looks similar to:

NAME READY STATUS RESTARTS AGE
hello-world-5db76fbd7d-99s8h 1/1 Running 0 1m

Chapter 4
Running an Application in a Pod

4-2

3. Show details about a pod.

Use kubectl describe to show a more detailed view of pods, including which containers
are running and what image they're based on, including which node is hosting the pod:

kubectl describe pods

The output looks similar to:

Name: hello-world-5db76fbd7d-99s8h
Namespace: default
Priority: 0
Service Account: default
Node: <nodename>/<IP_address>
Start Time: <date> 11:08:37 +0000
Labels: app=hello-world
 pod-template-hash=5db76fbd7d
Annotations: <none>
Status: Running
IP: 10.244.1.26
IPs:
 IP: 10.244.1.26
Controlled By: ReplicaSet/hello-world-5db76fbd7d
Containers:
 nginx:
 Container ID: cri-o://
6f4ce80153cefbaea327dd011b035cfb2112eb31085ca358b9c894fa775...
 Image: container-registry.oracle.com/olcne/nginx:1.17.7
 Image ID: container-registry.oracle.com/olcne/
nginx@sha256:78ce89068e7feb15ec...
 Port: <none>
 Host Port: <none>
 State: Running
 Started: <date> 11:08:43 +0000
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-
d9q4t (ro)
Conditions:
 Type Status
 PodReadyToStartContainers True
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
Volumes:
 kube-api-access-d9q4t:
 Type: Projected (a volume that contains injected
data
 from multiple
sources)
 TokenExpirationSeconds: 3607
 ConfigMapName: kube-root-ca.crt
 ConfigMapOptional: <nil>

Chapter 4
Running an Application in a Pod

4-3

 DownwardAPI: true
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute
op=Exists for 300s
 node.kubernetes.io/unreachable:NoExecute
op=Exists for 300s
Events:
...

Scaling a Pod Deployment
Use the kubectl command to scale a deployment in a Kubernetes cluster.

1. Scale the replicas in a deployment.

To change the number of instances of the same pod that you're running, you can use the
kubectl scale deployment command. For example:

kubectl scale deployment --replicas=3 hello-world

2. Check the deployment is scaled.

You can check that the number of pod instances has been scaled appropriately:

kubectl get pods

The output looks similar to:

NAME READY STATUS RESTARTS AGE
hello-world-5db76fbd7d-99s8h 1/1 Running 0 3m46s
hello-world-5db76fbd7d-g6lrm 1/1 Running 0 15s
hello-world-5db76fbd7d-h496h 1/1 Running 0 15s

Deleting a Service or Deployment
Use the kubectl command to delete a service or deployment in a Kubernetes cluster.

Objects can be deleted easily within Kubernetes so that the environment can be cleaned up.
Use the kubectl delete command to remove an object.

To delete an entire deployment, and all pod replicas running for that deployment, specify the
deployment object and the name that you used to create the deployment. For example:

kubectl delete deployment hello-world

Viewing Pods in Namespaces
Use the kubectl command view pods in a namespace in a Kubernetes cluster.

Namespaces can be used to further separate resource usage and to provide limited
environments for particular use cases. By default, Kubernetes configures a namespace for

Chapter 4
Scaling a Pod Deployment

4-4

Kubernetes system components and a standard namespace called default for all other
deployments for which no namespace is defined.

To view existing namespaces, use the kubectl get namespaces and kubectl describe
namespaces commands.

The kubectl command only displays resources in the default namespace, unless you specify
a different namespace. For example, to view the pods specific to the Kubernetes system, use
the --namespace option to set the namespace to kube-system:

kubectl get pods --namespace kube-system

The output looks similar to:

NAME READY STATUS RESTARTS
AGE
coredns-f7d444b54-bw446 1/1 Running 0
63m
coredns-f7d444b54-tsx8v 1/1 Running 0
63m
etcd-ocne-control-plane-1 1/1 Running 0
63m
kube-apiserver-ocne-control-plane-1 1/1 Running 0
63m
kube-controller-manager-ocne-control-plane-1 1/1 Running 0
63m
kube-proxy-ksl7l 1/1 Running 0
63m
kube-proxy-lzdmr 1/1 Running 0
62m
kube-proxy-t942q 1/1 Running 0
62m
kube-scheduler-ocne-control-plane-1 1/1 Running 0
63m

Chapter 4
Viewing Pods in Namespaces

4-5

5
Creating Kata Containers

Learn about using Kata Containers in Kubernetes.

By default, containers are created using the default runc runtime engine. You can also use the
kata-runtime runtime engine to create Kata Containers.

Kata Containers uses lightweight Virtual Machines (VMs) to provide extra security and isolation
of workloads. Kata Containers are quick to develop and deploy, and plug directly into the
container ecosystem.

Kata Containers is a component of Oracle CNE and based on a stable release of the upstream
Kata Containers project. Differences between Oracle versions of the software and upstream
releases are limited to Oracle-specific fixes and patches for specific bugs.

For upstream Kata Containers documentation, see:

https://github.com/kata-containers/documentation

For more information about Kata Containers, see:

https://katacontainers.io/

Checking Hardware
Check whether the hardware can run Kata Containers using the kata-runtime kata-check
command. This requires a running Kubernetes deployment.

1. Start an administration console on a worker node.

Some operations described in this and later steps must be run directly on a worker node,
using an administration console. You can start an administration console on any
Kubernetes node using the ocne cluster console command. The syntax is:

ocne cluster console
[{-d|--direct}]
{-N|--node} nodename
[{-t|--toolbox}]
[-- command]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

Start an administration console on any worker node, chrooted to the root of the node's file
system. Run the following command, replacing ocne-worker-1 with the name of a worker
node:

ocne cluster console --direct --node ocne-worker-1

2. Run the kata-check command on the worker node.

5-1

https://github.com/kata-containers/documentation
https://katacontainers.io/
https://docs.oracle.com/en/operating-systems/olcne/2/cli/

At the administration console prompt on the worker node, run the following command:

sudo kata-runtime kata-check

For more information on using the kata-runtime command, use the kata-runtime --help
command.

3. Exit the administration console on the worker node.

Exit the administration console on the worker node by typing exit at the console prompt.

exit

Setting Runtime Classes
Create a kata-runtime runtime class to run Kata Containers in a Kubernetes cluster.

CRI-O uses the Kubernetes RuntimeClass resource in the pod configuration file to specify
whether to run a pod using the default runtime runc, or using kata-runtime.

The examples in this book use the name native to specify the use of runc, and the name
kata-containers to specify the use of the Kata Containers runtime, but the names aren't
important.

1. Create a runtime class file for Kata Containers.

Create a file for a runtime class for Kata Containers named kata-runtime.yaml with the
following contents:

kind: RuntimeClass
apiVersion: node.k8s.io/v1
metadata:
 name: kata-containers
handler: kata

2. Load the runtime class file.

Load the runtime class to the Kubernetes deployment:

kubectl apply -f kata-runtime.yaml

The runtime class kata-containers can now be used in pod configuration files to specify
that a container is to be run as a Kata Container, using the kata-containers runtime. For
examples of creating pods using this runtime class, see Creating Kata Containers.

3. (Optional) Create a runtime class file for runc.

Use the same approach to specify a runtime for runc. This is an optional configuration
step. As runc is the default runtime, pods automatically run using runc unless you specify
otherwise. This file is named runc-runtime.yaml:

kind: RuntimeClass
apiVersion: node.k8s.io/v1
metadata:
 name: native
handler: runc

Chapter 5
Setting Runtime Classes

5-2

4. (Optional) Load the runtime class file.

Load the runtime class to the Kubernetes deployment:

kubectl apply -f runc-runtime.yaml

The runtime class native can be used in pod configuration files to specify that a container
runs as a runC container, using the runc runtime.

5. List the runtime classes.

You can see a list of the available runtime classes for a Kubernetes cluster using the
kubectl get runtimeclass command:

kubectl get runtimeclass

The output looks similar to:

NAME HANDLER AGE
kata-containers kata 7m29s
native runc 7m7s

Creating Kata Containers
Create an NGINX pod that runs as a Kata Container using a Kubernetes RuntimeClass.

This task shows how to create a container using kata-runtime as the runtime engine. To
create Kata Containers, set up a Kubernetes RuntimeClass resource for kata-runtime. For
information on setting up a RuntimeClass, see Setting Runtime Classes.

This example uses a Kubernetes pod configuration file to create a Kata Container running an
NGINX web server.

1. Create pod configuration file.

On a host that's set up to use the kubectl command to connect to the Kubernetes cluster,
create a Kubernetes pod configuration file. Use the notation runtimeClassName: kata-
containers in the pod file. When CRI-O finds this runtime class in a pod file, it uses kata-
runtime to run the container.

This pod file is named kata-nginx.yaml.

apiVersion: v1
kind: Pod
metadata:
 name: kata-nginx
spec:
 runtimeClassName: kata-containers
 containers:
 - name: nginx
 image: container-registry.oracle.com/olcne/nginx:1.17.7
 ports:
 - containerPort: 80

2. Start the pod.

Chapter 5
Creating Kata Containers

5-3

Create the Kata Container using the kata-nginx.yaml file with the kubectl apply
command:

kubectl apply -f kata-nginx.yaml

3. Verify the pod is running.

To check the pod has been created, use the kubectl get pods command:

kubectl get pods

The output looks similar to:

NAME READY STATUS RESTARTS AGE
kata-nginx 1/1 Running 0 40s

4. Show more information about the pod.

Use the kubectl describe command to show a more detailed view of the pod, including
the runtime, which worker node is hosting the pod, and the Container ID.

kubectl describe pod kata-nginx

The output looks similar to:

Name: kata-nginx
Namespace: default
Priority: 0
Runtime Class Name: kata-containers
Service Account: default
Node: ocne-worker-1/<IP_address>
Start Time: Wed, 23 Oct 2024 12:07:35 +0000
Labels: <none>
Annotations: <none>
Status: Running
IP: 10.244.1.29
IPs:
 IP: 10.244.1.29
Containers:
 nginx:
 Container ID: cri-o://
ca0559ab7c77deddb2a5baf681fff39ae620a5a0696ee4535ad53fff...
 Image: container-registry.oracle.com/olcne/nginx:1.17.7
 Image ID: container-registry.oracle.com/olcne/
nginx@sha256:78ce89068e7feb1...
 Port: 80/TCP
 Host Port: 0/TCP
 State: Running

...

5. Start an administration console on the worker node running the Kata Container pod.

Chapter 5
Creating Kata Containers

5-4

You can start an administration console on any Kubernetes node using the ocne cluster
console command. The syntax is:

ocne cluster console
[{-d|--direct}]
{-N|--node} nodename
[{-t|--toolbox}]
[-- command]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

Start an administration console on the worker node running the kata-container pod
identified in the output of the previous step, by entering the following command, replacing
the name of the node as appropriate:

ocne cluster console --direct --node ocne-worker-1

6. List the pods running on a worker node.

List the pods running on a worker node using the crictl pods command by running the
following command at the administration console prompt:

sudo crictl pods

The output looks similar to:

POD ID CREATED STATE NAME
NAMESPACE ...
02ab970089cd1 11 seconds ago Ready console-ocne-worker-1... ocne-
system ...
52af794c70dce 4 minutes ago Ready kata-nginx
default ...
430c83360e934 6 days ago Ready control-plane-capi-cont... capi-
kubeadm-con...
ac94aebe63b51 6 days ago Ready bootstrap-capi-controll... capi-
kubeadm-boo...
...

You can see the kata-nginx container is running on this worker node.

For more information on using the crictl command, use the crictl --help command.

7. List details about the containers running on a worker node.

To get more detailed information about the containers on a worker node, use the crictl
ps command. For example:

sudo crictl ps

The output looks similar to:

CONTAINER IMAGE ... NAME POD
ID ...
43d8e4fba2698 9a7fadacb497dbc... console-ocne-worker-1
2e4655ea682e5 ...

Chapter 5
Creating Kata Containers

5-5

https://docs.oracle.com/en/operating-systems/olcne/2/cli/

ca0559ab7c77d ...nginx@sha256... nginx
52af794c70dce ...
1556b7459a2be container-regis... olcne/kubeadm-control-plane-cont
430c83360e934 ...
...

Note the Container ID is a shortened version of the Container ID shown in the pod
description.

8. List more details about a pod.

To get detailed information about a pod, run the crictl inspectp command using the POD
ID. For example:

sudo crictl inspectp 52af794c70dce

The output looks similar to:

{
 "status": {
 "id":
"52af794c70dce199e1bdab40b9dfe196def5a791266240a11e3477ea66b1421e",
 "metadata": {
 "attempt": 0,
 "name": "kata-nginx",
 "namespace": "default",
 "uid": "331dc2b0-769b-4a5e-b1eb-a521f8c75670"
 },
 "state": "SANDBOX_READY",
 "createdAt": "<date>",
 "network": {
 "additionalIps": [],
 "ip": "<IP_address>"
 },
...

9. Exit the administration console.

Exit the administration console on the worker node by typing exit at the console prompt.

exit

10. Delete the pod.

You can delete the pod using the kubectl delete command on the host:

kubectl delete pod kata-nginx

Chapter 5
Creating Kata Containers

5-6

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Introduction to Kubernetes
	2 Kubernetes Architecture
	Network Planes
	Management Plane
	Control Plane
	Data Plane

	Storage
	Cloud Native Storage
	Persistent Storage
	Container Storage Interface Plugins

	Cloud Native Networking
	Highly Available Clusters
	Load Balancer
	Highly Available Cluster with External Load Balancer
	Highly Available Cluster with Internal Load Balancer

	Container Runtimes
	Authentication

	3 Kubernetes Components
	Nodes
	Control Plane Nodes
	Control Plane Replica Nodes
	Worker Nodes

	Pods
	ReplicaSet, Deployment, and StatefulSet Controllers
	Services
	Volumes
	Namespaces
	CRI-O

	4 Using Kubernetes
	Getting Node Information
	Running an Application in a Pod
	Scaling a Pod Deployment
	Deleting a Service or Deployment
	Viewing Pods in Namespaces

	5 Creating Kata Containers
	Checking Hardware
	Setting Runtime Classes
	Creating Kata Containers

