
Oracle Cloud Native Environment
Oracle Container Host for Kubernetes Image
Builder for Release 2

G17139-02
March 2025

Oracle Cloud Native Environment Oracle Container Host for Kubernetes Image Builder for Release 2,

G17139-02

Copyright © 2024, 2025, Oracle and/or its affiliates.

Contents

 Preface

Documentation License iv

Conventions iv

Documentation Accessibility iv

Access to Oracle Support for Accessibility iv

Diversity and Inclusion iv

1 Introduction

2 Installation

3 Command Reference

4 Build OCK Images

The ock-forge Script 4-1

Configuration Files 4-1

Destination Devices 4-2

Partition Layout 4-2

Building OCK Images Examples 4-3

5 OCK Builder Utilities

iii

Preface

This document includes information on the Oracle Container Host for Kubernetes Image
Builder (OCK Image Builder). This is a tool that builds bootable media for Oracle Container
Host for Kubernetes (OCK), based on a treefile configuration.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also

Preface

iv

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

v

1
Introduction

Describes the Oracle Container Host for Kubernetes Image Builder utility.

The Oracle Container Host for Kubernetes Image Builder (OCK Image Builder) is a tool that
builds Oracle Container Host for Kubernetes (OCK) images for Oracle Cloud Native
Environment (Oracle CNE) deployments.

For more information about OCK images, see Oracle Cloud Native Environment: Kubernetes
Clusters.

Use OCK Image Builder to build custom OCK images for situations where the standard OCK
image isn't adequate. For example, consider creating a custom OCK image if you require:

• A different partition layout to the standard OCK image partition layout.

• Extra packages not included in the standard OCK image.

• Device drivers for devices that aren't available in the standard OCK image.

OCK Image Builder consists of a set of shell scripts, the main one of which is ock-forge, and
image-specific configuration files that can be used and edited as necessary.

For a specific configuration, OCK Image Builder can generate:

• A bootable Qcow2 image, to create cluster nodes.

• An OSTree container image, which Oracle CNE uses to update nodes in a running cluster.

OCK images are configured using rpm-ostree treefiles and therefore require knowledge of
OSTree and rpm-ostree.

For more information about OCK Image Builder, see the OCK Image Builder GitHub repository.

1-1

https://docs.oracle.com/en/operating-systems/olcne/2.0/clusters/
https://docs.oracle.com/en/operating-systems/olcne/2.0/clusters/
https://ostreedev.github.io/ostree/
https://coreos.github.io/rpm-ostree/treefile/
https://github.com/oracle-cne/ock

2
Installation

Describes how to install the OCK Image Builder utility.

OCK Image Builder must be installed on Oracle Linux 9, from the OCK Image Builder GitHub
repository. The prerequisites are Podman, and the qemu-img utility.

1. Install Podman.

For information on installing Podman, see the Oracle Linux: Podman User's Guide.

2. Install qemu-img.

The qemu-img utility is used to manipulate Qcow2 images. Install qemu-ing from the
ol9_kvm_utils repository.

First, enable the repository:

sudo dnf config-manager --enable ol9_kvm_utils

Then, install qemu-img:

sudo dnf install qemu-img

3. Install Git.

Install the Git client:

sudo dnf install git -y

4. Install OCK Image Builder.

Clone the OCK Image Builder GitHub repository:

git clone https://github.com/oracle-cne/ock-forge

5. Install the OCK Configuration files:

Clone the OCK Configuration GitHub repository. The examples in this guide assume that
the configuration files are in the configs directory within the OCK Image Builder
installation, so perform the clone from within the ock-forge directory.

cd ock-forge
git clone https://github.com/oracle-cne/ock

2-1

https://docs.oracle.com/en/operating-systems/oracle-linux/podman/

3
Command Reference

Command reference for the ock-forge utility.

The ock-forge utility builds bootable media and OSTree container images for OCK, based on
an rpm-ostree treefile configuration.

ock-forge
[{-s|--source} URI]
[{-b|--branch} branch-name]
[{-d|--device} block-device]
[{-D|--disk} image-path]
[{-f|--filesystem} filesystem]
[{-i|--image} container-image]
[{-s|--source} URI]
[{-b|--branch}]
[{-C|--configs-dir} path]
[{-c|--config-dir} path]
[{-o|--os-name} name]
[{-O|--ostree-image-path} path]
[{-n|--no-clean}]
[{-P|--partition}]
[{-p|--provider} ignition-provider]
[{-I|--ignition} path]
[{-B|--build-image} container-image]
[[--karg key=value]...]
[[--karg-append key=value]...]
[[--karg-delete key=value]...]

Where:

{-s|--source} URI
The path to either a Git repository or a directory. The contents of the location is copied to the
build directory. If this option is omitted, the default configuration is used.

{-b|--branch} branch-name
The name of a Git branch. If this option is provided, the indicated branch is cloned. Without
this option, the default branch is cloned.

{-d|--device} block-device
The path to an existing block device. This device is the installation target. All operations
performed by OCK Image Builder are run against this device.

{-D|--disk} image-path
The path to a disk image file. This value is only necessary if the installation target is a file
rather than a raw device. The disk image file is attached to the device specified with the --
device option.

{-f|--filesystem} filesystem
The file system to use when formatting the root partition. This must be xfs.

3-1

{-i|--image} container-image
A fully qualified container image name, including a tag. This argument is used in several ways.
If provided alone, this container image is used as the base image to deploy the OS. In this
case, building the OSTree is skipped entirely. If provided with the --config-dir option, and
the --ostree-image-path option, it generates an OSTree container image that can be used
for later installations or upgrades.

{-s|--source} URI
The URI of an OCK configuration. The configuration is copied from this location into the value
of the --configs-dir argument. If the URI ends with .git, the assumption is that it refers to a
Git repository. Otherwise, the URI is assumed to be a directory on the local file system.

{-b|--branch}
If --source refers to a Git repository, the specified branch is checked out after cloning.

{-C|--configs-dir} path
A directory containing a set of rpm-ostree configurations.

{-c|--config-dir} path
A directory containing the rpm-ostree configuration to build. This must be a subdirectory of --
configs-dir, at whatever depth is required to ensure all symlinks can be resolved. If this
option is specified, a complete rpm-ostree build is performed and optionally packaged into an
Open Container Initiative (OCI) archive.

{-o|--os-name} name
The name of the OSTree deployment.

{-O|--ostree-image-path} path
The path to write the Open Container Initiative (OCI) archive generated by the installation
process. If this value isn't specified, no archive is generated. If the --config-dir option isn't
provided, this option is ignored. If the --image option is provided and points to a valid OSTree
container image, it's used as the reference for generating a chunked image.

{-n|--no-clean}
If this option is provided, don't perform any post install cleanup steps such as unmounting
partitions, or detaching virtual block devices.

{-P|--partition}
If this option is provided, the block device specified using the --device option has its partition
table wiped and repopulated with the default geometry.

{-p|--provider} ignition-provider
Sets the ignition provider. The default value is qemu, unless the --ignition option is used, in
which case the default value is file.
This can also be set to oci when creating images for OCI. The oci provider reads Ignition
information from the metadata user_data key/value pair in the Instance metadata service,
when creating a compute instance.

{-I|--ignition} path
The path to an ignition file, which ock-forge can install directly to the boot disk. This is the
complete ignition file from the output of an ocne cluster start or ocne cluster join
command. The file is embedded into the initramfs on the deployment. If the --provider option
isn't specified, the --provider option is set to file.

Chapter 3

3-2

{-B|--build-image} container-image
The name of a container image to use when building the OCK boot media. The default value
is ock-builder:latest.

--karg key=value
Set a kernel argument to pass to the ostree command. This overrides any existing argument
with the same key. See the ostree-admin-deploy(1) man page for usage. Each kernel
argument requires a separate --karg option.

--karg-append key=value
Append a kernel argument to pass to the ostree command. See the ostree-admin-deploy(1)
man page for usage. Each kernel argument appended requires a separate --karg-append
option.

--karg-delete key=value
Delete an existing kernel argument to the ostree command. See the ostree-admin-
deploy(1) man page for usage. Each kernel argument deleted requires a separate --karg-
delete option.

Chapter 3

3-3

4
Build OCK Images

Learn how to use the OCK Image Builder's ock-forge utility to build custom images.

This chapter contains information and examples for building OCK images with the ock-forge
utility.

The ock-forge Script
Describes the capabilities of the ock-forge shell script.

The primary component of OCK Image Builder is the ock-forge script. The ock-forge script
generates a bootable OCK image from an rpm-ostree treefile. It requires that the target is a
single block device using the standard partition layout. For more information, see Partition
Layout.

NOT_SUPPORTED:

Although the ock-forge script can build an image from any arbitrary treefile, it's only
intended for use with OCK images.

The ock-forge script can output generated images in three different formats:

• A Qcow2 image.

• A Raw ISO image.

• To a block device (physical disk).

In addition to generating the bootable image, ock-forge creates an OSTree container image.
This container image is used by Oracle CNE to update nodes in a running cluster.

Configuration Files
Describes OCK image configuration files.

The ock-forge script requires an rpm-ostree treefile configuration that specifies what the
generated image contains. Because the script generates OCK images that are intended for
Oracle CNE deployments, the treefile must contain the base configuration that's required to
work in that environment. These configuration files are available for different target Kubernetes
versions in the OCK Configuration GitHub repository.

We recommend that you don't edit these configuration files directly, but include any custom
configuration in separate files. This prevents custom configuration from being overwritten by
future updates to the OCK image configuration files.

4-1

https://github.com/oracle-cne/ock/tree/main/configs

The initial configuration file that the ock-forge script reads is called manifest.yaml. Use an
existing configuration for the target Kubernetes version and customize it by including extra
configuration files in the manifest.yaml file as follows:

manifest.yaml
include:
- base.yaml
- ux.yaml
- ocne.yaml
- removals.yaml
- custom/myconfig.yaml
...

For example, to make the Vim editor available in the custom OCK image, add the following to
the myconfig.yaml file:

packages:
- vim

For more information on the available parameters in an rpm-ostree treefile, see the rpm-ostree
Treefile reference.

Destination Devices
Describes the devices that OCK images can be written to.

OCK Image Builder can generate a bootable OCK image in Qcow2 format, or as a raw disk
image, or directly to a physical disk. The utility mounts Qcow2 images on a Network Block
Device (NBD). Raw disk images are mounted either to a physical disk, or a loopback device,
depending on the options specified.

So that OCK Image Builder can mount Qcow2 images to an NBD, you must first load the nbd
kernel module, using the following syntax, where max_partitions is the maximum number of
partitions that the resulting Qcow2 image requires. The default is 8, which is enough for most
images:

sudo modprobe nbd max_part=max_partitions

Partition Layout
Describes the standard partition layout required by OCK images.

Installing to a disk with existing partitions requires at least the following partitions:

• An EFI partition.

• A boot partition labelled boot.

• A root partition labelled root.

We recommend the disk contains only these three partitions and that the root partition is the
last partition on the disk. The root partition must be last so that the partition can be
automatically expanded to fill the entire disk when the OS boots for the first time. Other layouts
are possible, but these have limited applicability and require a good understanding of how
partitions are laid out and used.

Chapter 4
Destination Devices

4-2

https://coreos.github.io/rpm-ostree/treefile/
https://coreos.github.io/rpm-ostree/treefile/

Building OCK Images Examples
Provides examples of using the ock-forge script to build OCK images.

Example 4-1 Building a typical Qcow2 image

A typical invocation builds Qcow2 images. The ock-forge script does all the work required.
This example generates a new Qcow2 image, attaches it as a block device, partitions the disk,
formats the partitions, installs the OS, and generates an OSTree archive:

sudo ./ock-forge -d /dev/nbd0 -D out/1.31/boot.qcow2 \
 -i container-registry.oracle.com/olcne/ock-ostree:1.31 \
 -O ./out/1.31/archive.tar \
 -C ./ock -c configs/config-1.31 -P

Example 4-2 Building a Qcow2 image from GitHub

The ock-forge script can copy configurations from inconvenient places to more convenient
places. This example builds a Qcow2 and OSTree image from scratch, using the OCK GitHub
repository as a source of truth. The clone of the repository is retained and can be reused in
later invocations:

sudo ./ock-forge -d /dev/nbd0 -D out/1.31/boot.qcow2 \
 -i container-registry.oracle.com/olcne/ock-ostree:1.31 \
 -O ./out/1.31/archive.tar \
 -C ./ock -c configs/config-1.31 \
 -s https://github.com/oracle-cne/ock.git -P

Example 4-3 Build a raw disk image

This example generates a raw disk image, rather than a Qcow2 image. The generated image
can be dd'ed onto a physical disk, and used to boot a system directly:

sudo ./ock-forge -d /dev/loop0 -D out/1.31/boot.iso \
 -i container-registry.oracle.com/olcne/ock-ostree:1.31 \
 -O ./out/1.31/archive.tar \
 -C ./ock -c configs/config-1.31 -P

Example 4-4 Install to a physical disk

This example installs the image to a physical block device, creating the necessary partitions:

sudo ./ock-forge -d /dev/sdb \
 -i container-registry.oracle.com/olcne/ock-ostree:1.31 \
 -O ./out/1.31/archive.tar \
 -C ./ock -c configs/config-1.31 -P

Example 4-5 Install but don't generate OSTree archive

This example performs a fresh installation of the OS, but doesn't store the contents in an
OSTree container image archive:

sudo ./ock-forge -d /dev/nbd0 -C ./ock -c configs/config-1.31 -P

Chapter 4
Building OCK Images Examples

4-3

Example 4-6 Install from a container image

This example installs the OS using an existing OSTree container image as the source:

sudo ./ock-forge -d /dev/nbd0 -d /dev/loop0 -D out/1.31/boot.iso \
 -i container-registry.oracle.com/olcne/ock-ostree:1.31 -P

Chapter 4
Building OCK Images Examples

4-4

5
OCK Builder Utilities

Lists the individual scripts that the OCK Image Builder tool consists of.

The ock-forge utility is a shell script that relies on other shell scripts to do its work. Each of the
shell scripts can be useful by itself, but probably requires editing to make it so.

WARNING:

Ensure that you understand how these scripts function before changing them. These
utility scripts can be destructive if used incorrectly.

The shell scripts that make up the OCK Image Builder tool are listed in the following table.

Table 5-1 OCK Image Builder Utility Scripts

Script Options Notes

setup-vm-disk.sh -d network-block-device
-D path-to-new-image

Creates a Qcow2 image and
attaches it to a network block
device.

sparsify-image.sh -D path-to-image Re-sparsifies and compresses a
Qcow2 image. It does part of
the job of virt-sparsify and
the result isn't as good.
However, it has the advantage
of not requiring a VM and can
be used in environments
where starting a VM isn't an
option. For example, building
an image inside an ARM VM. It
requires several gigabytes of
storage while running. That
space is released by the time
the script ends.

make-partitions.sh -d path-to-device
-f filesystem

Partitions a disk using a
standard layout. It creates a
small EFI partition as partition
1, a small boot partition as
partition 2, and a root partition
with the rest of the disk as the
last partition.

Example 5-1 Creating and attaching Qcow2 images

To create a Qcow2 image and attach it to /dev/nbd0:

sudo ./setup-vm-disk -d /dev/nbd0 -D mydisk.qcow2

5-1

Example 5-2 Sparsify a Qcow2 image

To sparsify and compress an existing Qcow2 image:

sudo ./sparsify-image.sh -D mydisk.qcow2

Example 5-3 Partition a disk

To partition a physical block device using XFS:

sudo ./make-partitions.sh -d /dev/sdb -f xfs

Chapter 5

5-2

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Introduction
	2 Installation
	3 Command Reference
	4 Build OCK Images
	The ock-forge Script
	Configuration Files
	Destination Devices
	Partition Layout
	Building OCK Images Examples

	5 OCK Builder Utilities

