
Oracle Cloud Native Environment
Kubernetes Clusters for Release 2

F96197-16
April 2025

Oracle Cloud Native Environment Kubernetes Clusters for Release 2,

F96197-16

Copyright © 2024, 2025, Oracle and/or its affiliates.

Contents

 Preface

Documentation License vi

Conventions vi

Documentation Accessibility vi

Access to Oracle Support for Accessibility vi

Diversity and Inclusion vi

1 Introduction

2 Cluster Configuration Files

Cluster Configuration File Options 2-1

libvirt Provider Options 2-7

OCI Provider Options 2-9

Bring Your Own Provider Options 2-11

Configuration File Examples 2-11

3 Oracle Container Host for Kubernetes Image

OCK Image User 3-1

Custom Images 3-3

OSTree Archive Images 3-3

4 Application Catalog Mirrors

Mirroring an Application Catalog 4-2

5 Proxy Servers

Setting a Proxy Server for the CLI 5-1

Setting a Proxy Server for the Kubernetes Cluster 5-2

Setting a Proxy Server for the UI 5-3

iii

6 libvirt Provider

Setting Up the libvirt Provider 6-4

Creating a libvirt Cluster 6-6

Connecting to a Cluster 6-8

Deleting a Cluster 6-9

7 OCI Provider

Setting Up the OCI Provider 7-3

Cluster API Templates 7-4

Cluster API Template Files 7-5

Creating a Cluster API Template 7-7

Using an Existing VCN 7-7

OCI Compute Images 7-9

Creating an OCK Image for the OCI Provider 7-11

Create a Cluster on OCI 7-12

Creating an OCI Cluster 7-13

Monitoring a Cluster Installation 7-15

OCI Components 7-16

Connecting to a Cluster 7-17

Scale a Cluster 7-17

Scaling Worker Nodes in an OCI Cluster 7-18

Scaling Control Plane Nodes in an OCI Cluster 7-18

Upgrading to a Kubernetes Minor Release 7-19

Delete a Cluster 7-21

Deleting an OCI Cluster 7-21

8 Bring Your Own Provider

OS Image 8-3

Oracle Linux ISO Images 8-5

OSTree Archive Server 8-5

Creating an OSTree Image for the Bring Your Own Provider 8-6

Creating a Bring Your Own Cluster 8-7

Connecting to a Cluster 8-13

Migrate Cluster Nodes 8-13

Migrating a Cluster Node 8-15

Deleting a Cluster 8-16

9 UI

Creating an Access Token 9-1

iv

Exposing the UI Using Port Forwarding 9-1

Adding the UI and Application Catalogs into a Cluster 9-2

10

Cluster Administration

Cluster Updates 10-1

Best Practices for Cluster Updates 10-2

Kubernetes Patch Updates 10-3

Installing a Kubernetes Patch Release 10-3

Kubernetes Minor Updates 10-4

Upgrading to a Kubernetes Minor Release 10-5

Cluster Backups 10-6

Backing Up a Cluster 10-7

Analyzing a Cluster 10-7

OS Console 10-9

Accessing a Node's OS Console 10-9

v

Preface

This document includes information on using the Oracle Cloud Native Environment (Oracle
CNE) Command Line Interface (CLI) to create and manage Kubernetes clusters using the
available cluster providers.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also

Preface

vi

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vii

1
Introduction

Learn about the high level options available to create Kubernetes clusters in Oracle Cloud
Native Environment (Oracle CNE).

Oracle CNE includes a Command Line Interface (CLI) that can manage the life cycle of
Kubernetes clusters, using OSTree based container images. The container images include
both the host Oracle Linux OS, and the Kubernetes software distribution. These images are
deployed to hosts or Virtual Machines (VMs) to create nodes in a Kubernetes cluster. These
images are referred to in this documentation set as Oracle Container Host for Kubernetes
(OCK) images.

Kubernetes clusters are created and managed using the CLI ocne cluster command. For the
complete ocne cluster command options and syntax, see Oracle Cloud Native Environment:
CLI.

Oracle CNE includes several provider types you can use to create a Kubernetes cluster. These
providers use the OCK image to provision nodes in a cluster. Create clusters for:

• Kernel-based Virtual Machines (KVM) using the libvirt provider.

• Oracle Cloud Infrastructure (OCI) using the oci provider.

• Custom installations for bare metal or other platforms using the byo provider.

The libvirt provider is the default cluster provider, and can be used to provision Kubernetes
clusters using Kernel-based Virtual Machines (KVM). The default KVM stack includes libvirt,
and is included, by default, with Oracle Linux.

Kubernetes clusters are deployed to OCI using the oci provider. The oci provider uses the
Kubernetes Cluster API Provider for OCI to perform the deployment. This is an implementation
of the Kubernetes Cluster API. The Kubernetes Cluster API is implemented as Kubernetes
Custom Resources (CRs), that are serviced by applications running in a Kubernetes cluster.
The Kubernetes Cluster API has a large interface and is explained in the upstream
documentation. For information on the Kubernetes Cluster API, see the Kubernetes Cluster
API documentation. For information on the Cluster API implementation for OCI, see the
Kubernetes Cluster API Provider for OCI documentation.

You can make custom installations of the Oracle Container Host for Kubernetes (OCK) image
on arbitrary platforms. This means you can create a Kubernetes cluster using bare metal or
other virtual instances, not provided explicitly by Oracle CNE. These installations are known as
Bring Your Own (BYO) installations. You use the byo provider to perform these installations.

Configuration information used to create a cluster can be specified in several locations:

• Global defaults in the default configuration file, set in the $HOME/.ocne/defaults.yaml
file.

• Kubernetes cluster configuration files. These files set the options for individual clusters and
can be any name.

• Options provided with the ocne command.

For information on the default configuration file and the inheritance of each setting, see Oracle
Cloud Native Environment: CLI, and for information on cluster configuration files, see Cluster
Configuration Files.

1-1

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/
https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/
https://cluster-api.sigs.k8s.io/
https://cluster-api.sigs.k8s.io/
https://oracle.github.io/cluster-api-provider-oci/
https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/
https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

To provide High Availability of control plane nodes, you can specify the location of an external
load balancer. Or you can use an internal deployment of Keepalived and NGINX as the load
balancer. When using the internal load balancer, specify the IP address that the Kubernetes
API Server should use as the virtual IP address, or an IP address can be set automatically
using the subnet of the control plane nodes.

In addition to the CLI, Oracle CNE also includes a web-based UI which can be used to manage
the maintenance and installation of Kubernetes cluster resources, and applications. You can
opt to install this, or install a headless cluster and only use the CLI.

Kubernetes applications are delivered and installed using an application catalog. A default
Oracle catalog is installed when you create a cluster. You can install applications using both
the CLI and the UI. You can also add other application catalogs, such as the Artifact Hub. For
information on application catalogs, and applications, see Oracle Cloud Native Environment:
Applications.

Chapter 1

1-2

https://docs.oracle.com/en/operating-systems/olcne/2.0/applications/
https://docs.oracle.com/en/operating-systems/olcne/2.0/applications/

2
Cluster Configuration Files

Describes Kubernetes cluster configuration files in Oracle CNE.

Most deployments contain at least some details that are unique to that deployment. A cluster
configuration file can be used to provide those customizations without specifying them on the
command line.

Cluster configuration files set the options to customize a cluster. The contents of a cluster
configuration file override any defaults set in the CLI default configuration file ($HOME/.ocne/
defaults.yaml). For information on the default configuration file, see Oracle Cloud Native
Environment: CLI.

A cluster configuration file is a YAML file, and can be anywhere on the localhost, for
example, $HOME/.ocne/mycluster.yaml. Use this file by including the --config option
when creating a cluster with the ocne cluster start command.

A cluster configuration file can be overridden by providing options on the command line when
you use the ocne cluster start command to create a cluster.

Cluster Configuration File Options
Lists the options that can be included in cluster configuration files to customize Kubernetes
clusters.

Many of the options in a cluster configuration file can also be set in the defaults file
($HOME/.ocne/defaults.yaml). If a setting is included in a cluster configuration file, it
overrides the defaults file. A cluster configuration file can contain any of the following options:

applications
A list of applications to deploy to the target cluster after it's instantiated. The fields you can use
are:

• application: The name of the application to install from a catalog.

• name: Sets a deployment name for the application. This is useful for applications that might
benefit from having several installations in a single cluster.

• catalog: The name of the catalog from which to install the application.

• config: Sets the URL of a configuration file for the application.

For example:

applications:
 - application: multus
 name: mymultus
 catalog: oracle
 config: git://gitlab.example.com/configs/multus.yaml

2-1

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/
https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

autoStartUI
Sets whether a tunnel to the Oracle CNE UI service is created when a cluster is instantiated,
and starts the default browser to load the UI. For example:

autoStartUI: true

bootVolumeContainerImage
The container image registry and tag that contains an Oracle Container Host for Kubernetes
(OCK) bootable image. The default is container-registry.oracle.com/olcne/ock:1.31. For
example:

bootVolumeContainerImage: container-registry.oracle.com/olcne/ock:1.31

catalogs
A list of catalogs to deploy to the target cluster after it's instantiated. The name field indicates
the name of the catalog. This is used by other Oracle CNE interfaces to refer to the catalog.
The uri field sets the source of the catalog. Depending on the source, a pod might be
deployed into the cluster that serves the catalog content. For example:

catalogs:
 - name: mycatalog
 uri: https://mycatalog.example.com/catalog

clusterDefinition
The path to a cluster configuration file. Provide this extra layer of configuration for clusters that
use complex configuration that isn't provided by this default configuration file. For example:

clusterDefinition: mycluster.yaml

clusterDefinitionInline
Specifies in-line configuration options. Provide this extra layer of configuration for clusters that
use complex configuration that isn't provided by this default configuration file. This option can't
be used with clusterDefinition. For example:

clusterDefinitionInline: |
 key1: value1
 key2: value2

cni
The Container Networking Interface (CNI) provider to install when the cluster is instantiated.
The value can be any CNI available with Oracle CNE, or none if another CNI is to be deployed
either manually or using an application catalog.

Note:

Multus can't be used as the primary CNI. Multus is available as an application in the
default application catalog. If you install the Multus application, set this option to
none.

Chapter 2
Cluster Configuration File Options

2-2

For example:

cni: flannel

cni: none

communityCatalog
Sets whether the Artifact Hub application catalog is installed. If this is set to true, the catalog
is installed. If this is set to false, the catalog isn't installed. The default is false. For example:

communityCatalog: true

controlPlaneNodes
Sets the number of control plane nodes to spawn. The default is 1. For example:

controlPlaneNodes: 3

ephemeralCluster
Allows customization of any short-lived clusters that might be spawned to perform tasks that
can't be completed on the host system. This is often used for changing boot OCK images or
deploying Kubernetes Cluster API resources. The options you can use are:

name
The name of the cluster. For example:

ephemeralCluster:
 name: mycluster

preserve
Sets whether the ephemeral cluster is automatically deleted after the work is complete.
The default is false, so ephemeral clusters are deleted after they're used. For example:

ephemeralCluster:
 preserve: true

node
Sets the configuration for the VMs. For example:

ephemeralCluster:
 node:
 cpus: 2
 memory: 4GB
 storage: 15GB

extraIgnition
The path to an Ignition file that includes extra Ignition information to include when creating a
cluster, or joining nodes to a cluster. The Ignition information must comply with the Ignition
specification v3.4.0, as listed in the upstream Ignition documentation, and written in YAML

Chapter 2
Cluster Configuration File Options

2-3

https://coreos.github.io/ignition/configuration-v3_4/

using the Butane Fedora CoreOS Specification v1.5.0, as described in the upstream Butane
documentation. For example:

extraIgnition: /home/username/.ocne/ignition.ign

extraIgnitionInline
Extra Ignition information to include when creating a cluster, or joining nodes to a cluster. The
Ignition information must comply with the Ignition specification v3.4.0, as listed in the upstream
Ignition documentation, and written in YAML using the Butane Fedora CoreOS Specification
v1.5.0, as described in the upstream Butane documentation. The format must be:

extraIgnitionInline: |
 key1: value1
 key2: value2
 ...

headless
Sets whether the Oracle CNE UI is installed. If this is set to true, the UI isn't installed. The
default is false. For example:

headless: true

kubeApiServerBindPort
Sets the port on which the Kubernetes API Server is exposed. The default is 6443. For
example:

kubeApiServerBindPort: 6443

kubeApiServerBindPortAlt
Sets the port on which the Kubernetes API Server listens when deploying a Highly Available
cluster using the Keepalived and NGINX load balancer. The default is 6444. For example:

kubeApiServerBindPortAlt: 6444

kubeconfig
The path to the kubeconfig file to use for operations that require a running cluster. For
example:

kubeconfig: /home/username/.kube/kubeconfig.utilitycluster

kubeProxyMode
The mode for kube-proxy. This can be set to either iptables or ipvs. The default is
iptables. For example:

kubeProxyMode: ipvs

For more information on the kube-proxy modes, see the upstream Kubernetes
documentation.

Chapter 2
Cluster Configuration File Options

2-4

https://coreos.github.io/butane/config-fcos-v1_5/
https://coreos.github.io/butane/config-fcos-v1_5/
https://coreos.github.io/ignition/configuration-v3_4/
https://coreos.github.io/ignition/configuration-v3_4/
https://coreos.github.io/butane/config-fcos-v1_5/
https://kubernetes.io/docs/reference/networking/virtual-ips/
https://kubernetes.io/docs/reference/networking/virtual-ips/

kubernetesVersion
This defines the Kubernetes version. The default is the latest version. For example:

kubernetesVersion: 1.31

loadBalancer
The hostname or IP address of an external load balancer for the Kubernetes API Server. Don't
use this if the virtualIp option is used. For example:

loadBalancer: 100.100.1.1

name
The name of the cluster. The default is ocne. For example:

name: mycluster

osRegistry
Combined with osTag, this identifies an OSTree image in a container registry. It specifies the
OSTree transport and the container registry URI.
Possible prefixes for the transport are:

ostree-image-signed
ostree-remote-image
ostree-unverified-image
ostree-unverified-registry

The default value is:

osRegistry: ostree-unverified-registry:container-registry.oracle.com/olcne/
ock-ostree

osTag
Combined with osRegistry, this identifies an OSTree image in a container registry. It specifies
the tag for the image. For example:

osTag: 1.31

password
A hashed password for the OCK image user (ocne) to authenticate with cluster nodes. For
example:

password: 6jfkldjfsd$n1YMnpdxlGXO...

Surrounding the password with quotes is optional.
You can use the openssl utility to create a hashed password. For example, to generate a
hashed password with the SHA512 algorithm and an automatic salt:

openssl passwd -6 -salt password

Chapter 2
Cluster Configuration File Options

2-5

To generate a SHA512 hashed password using the provided salt phrase:

openssl passwd -6 -salt saltphrase password

podSubnet
The subnet to use for the pod network. The CNI is automatically configured to use this subnet.
For example:

podSubnet: 10.244.0.0/16

provider
Sets the provider to use when creating a cluster. The options are:

• libvirt (the default)

• oci
• byo
• none
For example:

provider: byo

providers
Specifies provider configuration options. For example:

providers:
 libvirt:
 options
 oci:
 options
 byo:
 options
 none:
 options

The options for each provider are listed in:

• libvirt Provider Options

• OCI Provider Options

• Bring Your Own Provider Options

proxy
The proxy server information. This information is configured on the Kubernetes nodes. For
example:

proxy:
 httpsProxy: http://myproxy.example.com:2138
 httpProxy: http://myproxy.example.com:2138

Chapter 2
Cluster Configuration File Options

2-6

noProxy: .example.com,127.0.0.1,localhost,169.254.169.254,10.96.0.0/12,10.244.
0.0/16

quiet
Sets whether to reduce the messages printed by the ocne command. If this is set to true, the
messages are reduced. If set to false, the messages aren't reduced. The default is false. For
example:

quiet: true

registry
Sets the registry from which to provision container images. The default is container-
registry.oracle.com. For example:

registry: myregistry.example.com

serviceSubnet
The subnet to use for the service network. The default is 10.96.0.0/12. For example:

serviceSubnet: 10.96.0.0/12

sshPublicKey
The public key of an RSA key pair for the OCK image user (ocne). Paste the contents of the
public key file.
For example:

sshPublicKey: |
 ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAA...

sshPublicKeyPath
The path to the public key of an RSA key pair for the OCK image user (ocne) to authenticate
with cluster nodes.

sshPublicKeyPath: /home/username/.ssh/id_rsa.ocne

virtualIp
Sets the virtual IP address to use when using the built-in Keepalived and NGINX load
balancer. If no IP address is provided, one is generated from the subnet of the control plane
nodes. Don't use this if the loadBalancer option is used. For example:

virtualIp: 192.168.0.100

workerNodes
Sets the number of worker nodes to spawn. The default is 0. For example:

workerNodes: 5

libvirt Provider Options
The options for the libvirt provider are:

Chapter 2
Cluster Configuration File Options

2-7

controlPlaneNode
Sets the configuration options for control plane nodes. To specify sizes, use:

• M: megabytes

• G: gigabytes

• Mi: mebibytes

• Gi: gibibytes

For example:

providers:
 libvirt:
 controlPlaneNode:
 cpu: 2
 memory: 16Gi
 storage: 8Gi

network
The name of the virtual network to use for domains. For example:

providers:
 libvirt:
 network: bridge-1

sshKey
The path to an SSH key to use for SSH connections. For example:

providers:
 libvirt:
 sshKey: /home/username/.ssh/id_rsa.ocne

storagePool
The name of the storage pool to use for OCK images. For example:

providers:
 libvirt:
 storagePool: mypool

uri
The default value for the libvirt connection URI. For example, for a local connection:

providers:
 libvirt:
 uri: qemu:///system

And for a remote connection:

providers:
 libvirt:
 uri: qemu+ssh://user@host/system

Chapter 2
Cluster Configuration File Options

2-8

workerNode
Sets the configuration options for worker nodes. To specify sizes, use:

• M: megabytes

• G: gigabytes

• Mi: mebibytes

• Gi: gibibytes

For example:

providers:
 libvirt:
 workerNode:
 cpu: 2
 memory: 16Gi
 storage: 8Gi

OCI Provider Options
The options for the oci provider are:

compartment
The OCI compartment in which to deploy resources. This can be either the path to a
compartment (for example, mytenancy/mycompartment), or the OCID of a compartment. For
example:

providers:
 oci:
 compartment: OCID

controlPlaneShape
The name of the shape to use for compute instances when creating control plane nodes. For
example:

providers:
 oci:
 controlPlaneShape:
 shape: VM.Standard.E4.Flex
 ocpus: 2

imageBucket
The OCID or name of a bucket to use to store OCK boot images when they're uploaded to
OCI object storage. The default name is ocne-images. For example:

providers:
 oci:
 imageBucket: ocne-images

Chapter 2
Cluster Configuration File Options

2-9

images
The OCI OCIDs of the OCK images to use as the initial disk image for any compute
resources. Sets the options for the amd64 and arm64 architectures. For example:

providers:
 oci:
 images:
 amd64: OCID
 arm64: OCID

kubeconfig
The path to the kubeconfig file to use for the target management cluster. For example:

providers:
 oci:
 kubeconfig: /home/username/.kube/kubeconfig.mgmtcluster

loadBalancer
The OCIDs for subnets to use when provisioning OCI load balancers for default deployments.
For example:

providers:
 oci:
 loadBalancer:
 subnet1: OCID
 subnet2: OCID

namespace
The Kubernetes namespace where the Kubernetes Cluster API resources are to be deployed.

providers:
 oci:
 namespace: mynamespace

selfManaged
Sets whether a cluster is self-managing. If set to true, the cluster contains the necessary
controllers and resources to manage its own life cycle. If set to false, or not set, those
resources remain in the initial administration cluster. For example:

providers:
 oci:
 selfManaged: true

profile
Sets the OCI CLI profile to use. This is the name of the profile in the OCI CLI configuration file.
The default profile is DEFAULT. For example:

providers:
 oci:
 profile: MYTENANCY

Chapter 2
Cluster Configuration File Options

2-10

vcn
The OCID of the Virtual Cloud Network to use when creating load balancers for default
deployments.

providers:
 oci:
 vcn: OCID

workerShape
The name of the shape to use for compute instances when creating worker nodes. For
example:

providers:
 oci:
 workerShape:
 shape: VM.Standard.E4.Flex
 ocpus: 2

Bring Your Own Provider Options
The options for the byo provider are:

automaticTokenCreation
If set to true, any time a join token is required it's created automatically as part of the
command. If it's set to false, the token must be created manually. For example:

providers:
 byo:
 automaticTokenCreation: false

networkInterface
Sets the network interface to which the CNI and other Kubernetes services bind. This option is
required. For example:

providers:
 byo:
 networkInterface: enp1s0

Configuration File Examples
Provides example configuration files.

Example 2-1 Set some default options to create remote libvirt clusters

This example uses a specific SSH key to connect to a remote system to create clusters,
includes the proxy server configuration, and doesn't install the UI.

providers:
 libvirt:
 uri: qemu+ssh://myuser@host.example.com/system
 sshKey: /home/username/.ssh/id_rsa.ocne
proxy:
 httpsProxy: http://myproxy.example.com:2138

Chapter 2
Configuration File Examples

2-11

 httpProxy: http://myproxy.example.com:2138

noProxy: .example.com,127.0.0.1,localhost,169.254.169.254,10.96.0.0/12,10.244.
0.0/16
headless: true

Example 2-2 Set some default options to create local libvirt clusters

This example sets several options, including the sizes for the Kubernetes nodes in a libvirt
cluster.

provider: libvirt
name: mycluster
workerNodes: 2
controlPlaneNodes: 1
providers:
 libvirt:
 controlPlaneNode:
 cpu: 2
 memory: 8Gi
 storage: 20Gi
 workerNode:
 cpu: 2
 memory: 8Gi
 storage: 20Gi

Chapter 2
Configuration File Examples

2-12

3
Oracle Container Host for Kubernetes Image

Describes the Oracle Container Host for Kubernetes (OCK) image used to create nodes in a
Kubernetes cluster.

Oracle CNE includes a CLI that can manage the life cycle of Kubernetes clusters, using
OSTree based container images. The container image includes both the host Oracle Linux OS,
and the Kubernetes software distribution. The image is deployed to hosts or Virtual Machines
(VMs) to create nodes in a Kubernetes cluster. This image is referred to in this documentation
as the Oracle Container Host for Kubernetes (OCK) image.

The OCK image is distributed on the Oracle Container Registry in the following formats:

Bootable image
This is a container image in the Qcow2 format, available at:
container-registry.oracle.com/olcne/ock
The bootable image contains a single VM image in the Qcow2 format, and is used to create
boot media for virtualized platforms. This image is used as the boot media for clusters created
with the libvirt and OCI providers.
By default, the image is configured to work with the libvirt provider. A conversion of the boot
image to the appropriate format for OCI can be performed automatically when you upload the
image to OCI.

OSTree image
This is an OSTree commit based container image, available at:
container-registry.oracle.com/olcne/ock-ostree
This image is used as the basis for an OSTree archive for customized installations using the
Bring Your Own provider.
This image is also used for updating cluster nodes to stage patch updates, and to update to
the next Kubernetes minor release.
For information on OSTree containers, see the upstream OSTree documentation.

Both images use the container label for the Kubernetes version they match, for example, 1.31.

OCK Image User
Describes the ocne user set up in the OCK image, and how to configure it.

To interact directly with a node, use its console. For information on connecting to a node's
console, see Accessing a Node's OS Console.

If a node fails and its console is inaccessible, you can SSH into the node as the ocne user. The
ocne user is predefined in the OCK image.

Important:

When you SSH into a node, it returns the node's kubeconfig file and the SSH
connection immediately closes. Full access to the node is only possible using its
console.

3-1

https://coreos.github.io/rpm-ostree/container/

By default, the ocne user authenticates with the cluster nodes through SSH using an RSA
public key in $HOME/.ssh/id_rsa.pub.

To create an SSH2 RSA key pair, run the following command:

ssh-keygen

Follow the prompts to generate and store the RSA key pair:

Generating public/private rsa key pair.
 Enter file in which to save the key (/home/user/.ssh/id_rsa): <Enter>
 Created directory '/home/user/.ssh'.
 Enter passphrase (empty for no passphrase): password
 Enter same passphrase again: password
 Your identification has been saved in /home/user/.ssh/id_rsa.
 Your public key has been saved in /home/user/.ssh/id_rsa.pub.
 The key fingerprint is:
 5e:d2:66:f4:2c:c5:cc:07:92:97:c9:30:0b:11:90:59 user@host01
 The key's randomart image is:
 +--[RSA 2048]----+
 | .=Eo++.o |
 | o ..B=. |
 | o.= . |
 | o + . |
 | S * o |
 | . = . |
 | . |
 | . |
 | |
 +-----------------+

To authenticate using a different method, configure one of the following options in either the
CLI defaults configuration file, or a cluster configuration file:

password
A hashed password for the OCK image user (ocne) to authenticate with cluster nodes. For
example:

password: 6jfkldjfsd$n1YMnpdxlGXO...

Surrounding the password with quotes is optional.
You can use the openssl utility to create a hashed password. For example, to generate a
hashed password with the SHA512 algorithm and an automatic salt:

openssl passwd -6 -salt password

To generate a SHA512 hashed password using the provided salt phrase:

openssl passwd -6 -salt saltphrase password

Chapter 3
OCK Image User

3-2

sshPublicKey
The public key of an RSA key pair for the OCK image user (ocne). Paste the contents of the
public key file.
For example:

sshPublicKey: |
 ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAA...

sshPublicKeyPath
The path to the public key of an RSA key pair for the OCK image user (ocne) to authenticate
with cluster nodes.

sshPublicKeyPath: /home/username/.ssh/id_rsa.ocne

For information about these configuration file options, see Cluster Configuration Files and
Oracle Cloud Native Environment: CLI.

Custom Images
Describes custom OCK images used to create Kubernetes cluster nodes.

To create custom images, use the ocne image create command. The resulting image is in the
appropriate format for the target platform and saved to the $HOME/.ocne/images directory on
the localhost. Use the ocne image upload command to upload the image to a location where
you can use the image to create VMs.

Creating images requires access to a Kubernetes cluster. Any running cluster can be used. To
specify which cluster to use, set the KUBECONFIG environment variable, or use the --
kubeconfig option of ocne commands. If no cluster is available, an ephemeral cluster is
created automatically using the libvirt provider, with the default configuration.

Image conversion requires a significant amount of space. We recommend you allocate at least
20 G of storage to any cluster nodes. You can set the storage for the ephemeral and libvirt
clusters in a configuration file, for example, you could add the following to the CLI defaults file:

ephemeralCluster:
 node:
 storage: 20G
providers:
 libvirt:
 workerNode:
 storage: 20G
 controlPlaneNode:
 storage: 20G

OSTree Archive Images
Describes custom images in OSTree archive format to create Kubernetes nodes in Bring Your
Own clusters.

Custom installations of OCK are done using the Anaconda and Kickstart automatic installation
options of Oracle Linux. Anaconda requires OSTree content to be available in a particular
format to install onto the root file system of the target host (an OSTree archive served over

Chapter 3
Custom Images

3-3

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

HTTP). The OCK container image used for updates isn't in this format. To use the content with
Anaconda, it must be converted to an archive and made available using an HTTP server.

Images can be created using the ocne image create command with the --type ostree
option. The resulting container image is stored in the Open Container Initiative archive format
and can be imported to the local cache or pushed to a container registry. Building the container
image pulls a base image from within the Kubernetes cluster (this is either the existing cluster
set using a kubeconfig file, or an ephemeral cluster that's started for this purpose).

By default, the image is created for the architecture of the system where the command is run.
Images can be created for other architectures using the --arch option.

Typically, OSTree archive images are copied to a container registry. You can copy the image to
any target that works with the Open Container Initiative transports and formats. See
containers-transports(5) for available options.

Chapter 3
OSTree Archive Images

3-4

4
Application Catalog Mirrors

Learn how to mirror an application catalog to a private container registry, using the CLI.

A typical Kubernetes deployment requires many container images to function. When these
Kubernetes deployments don't have internet access, such as those in air-gapped
environments, it's time-consuming to move these images from the public container registry to
another location that's accessible to the cluster nodes. The ocne catalog mirror command
simplifies this process, by enabling users to migrate images used by applications in application
catalogs between container registries.

The ocne catalog mirror command can clone either all the images that are available in an
application catalog, or a subset of images based on a list of applications and their configuration
in a cluster configuration file. For example, the following cluster configuration file pulls specific
application images and their configuration settings from the Oracle Cloud Native
Environment Application Catalog container registry:

applications:
 - application: headlamp
 name: myheadlamp
 catalog: Oracle Cloud Native Environment Application Catalog
 namespace: example-namespace-headlamp
 - application: oci-capi
 name: myoci-capi
 catalog: Oracle Cloud Native Environment Application Catalog
 configFrom: /home/opc/exampleValues.yaml
 namespace: example-namespace-capi
 config:
 authConfig:
 tenancy: exampleTenancy
 user: exampleUser
 fingerprint: exampleFingerprint
 release: 13

The host that runs the ocne catalog mirror command must have access to all the relevant
registries, using the public internet, internal networks, or a combination. A private container
registry must be on a host that's accessible to all nodes within the cluster.

You can use an existing container registry on the network, or create one for this specific
purpose. Oracle provides tools which can be used to create container registries. For example,
see the instructions in the Setting up a Local Container Registry section in Oracle® Linux:
Podman User's Guide.

Images are only mirrored when you specify the --push option in the ocne catalog mirror
command. Run the ocne catalog mirror command without the --push option to see a list of
the images that would be mirrored by the command.

4-1

https://docs.oracle.com/en/operating-systems/oracle-linux/podman/
https://docs.oracle.com/en/operating-systems/oracle-linux/podman/

Mirroring an Application Catalog
Mirror images used by applications in an application catalog to a private container registry.

Use the ocne catalog mirror command to mirror the container images to a local container
registry. The syntax to use is:

ocne catalog mirror
[{-a|--archive} path]
[{-c|--config} path]
{-d|--destination} URI
[{-o|--download}]
{-N|--name} name
[{-p|--push}]
[{-s|--source} registry]
[{-q|--quiet}]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

Example 4-1 Mirror the Oracle catalog

To mirror the Oracle catalog to a private container registry:

ocne catalog mirror --destination myregistry.example.io --push

Example 4-2 Mirror the embedded Oracle catalog

To mirror the Oracle catalog embedded in the CLI to a private container registry:

ocne catalog mirror --name embedded --destination myregistry.example.io --push

Example 4-3 Mirror specific applications

To mirror only those images that are used by the applications listed in a cluster configuration
file to a private container registry:

ocne catalog mirror --destination myregistry.example.io --config
mycluster.yaml --push

Chapter 4
Mirroring an Application Catalog

4-2

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

5
Proxy Servers

Describes the configuration options for deploying a Kubernetes cluster in an environment with
a proxy server.

If a proxy server is included in the deployment environment, proxy server configuration might
be needed for communication between:

• CLI to the Oracle Container Registry.

• CLI to the Kubernetes API Server endpoint.

• CLI to the Kubernetes Cluster API management cluster (management cluster) Kubernetes
API Server endpoint.

• CLI to the cloud service gateway.

• Management cluster to Oracle Container Registry.

• Kubernetes Cluster API cloud controllers (cloud controllers) to the Internet.

• Cloud controllers to the Kubernetes API Server endpoint.

• Cloud controllers to the cloud service gateway.

No proxy configuration might need to be set for:

• Cloud controllers to the Kubernetes service network.

• Cloud controllers to the Kubernetes pod network.

Proxy server configuration can be set in:

• Environment variables on the host where the CLI is installed.

• The default configuration file ($HOME/.ocne/defaults.yaml).

• Cluster configuration files.

• Kubernetes applications.

Setting a Proxy Server for the CLI
Set up the proxy configuration for the Oracle CNE CLI.

If a proxy server is part of the environment in which a Kubernetes cluster is to be deployed,
you might need to set up the proxy server configuration for the CLI. This configuration might be
required for the CLI to access the Oracle Container Registry and the Kubernetes API Server.
This must be performed on the host that has the CLI installed.

1. Set up the HTTPS_PROXY configuration.

Configure the host so container images can be pulled from the Oracle Container Registry
using HTTPS. Use the format:

export HTTPS_PROXY=proxy_server:port

5-1

For example:

export HTTPS_PROXY=https://proxy.example.com:3128

2. Set up the NO_PROXY configuration.

Configure the host so the CLI can communicate with the Kubernetes API Server. Use the
format:

export NO_PROXY=exclusion_list

For example:

export NO_PROXY=.example.com,127.0.0.1,localhost,169.254.169.254

The 169.254.169.254 IP address is reserved by many cloud providers, including OCI, as
the endpoint for compute instances to access their own metadata. For more information on
this IP address and how it's used, see the OCI documentation.

Setting a Proxy Server for the Kubernetes Cluster
Set up the proxy configuration for the Kubernetes cluster.

If a proxy server is part of the environment in which a Kubernetes cluster is to be deployed,
you might need to set up the proxy server configuration for the cluster. This configuration is set
in the default configuration file ($HOME/.ocne/defaults.yaml), or in a cluster configuration
file.

Use a configuration file (either the default configuration file, or a cluster configuration file) to set
the proxy server information for the cluster. This information is used to set up CRI-O on the
Kubernetes nodes.

Use the format:

proxy:
 httpsProxy: proxy_server:port
 httpProxy: proxy_server:port
 noProxy: exclusion_list

For example:

proxy:
 httpsProxy: http://myproxy.example.com:2138
 httpProxy: http://myproxy.example.com:2138

noProxy: .example.com,127.0.0.1,localhost,169.254.169.254,10.96.0.0/12,10.244.
0.0/16

The 169.254.169.254 IP address is reserved by many cloud providers, including OCI, as the
endpoint for compute instances to access their own metadata. For more information on this IP
address and how it's used, see the OCI documentation.

The 10.96.0.0/12 CIDR is the default range for the Kubernetes service subnet. The
10.244.0.0/16 CIDR is the default range for the Kubernetes pod network.

Chapter 5
Setting a Proxy Server for the Kubernetes Cluster

5-2

https://docs.oracle.com/iaas/Content/Compute/Tasks/gettingmetadata.htm
https://docs.oracle.com/iaas/Content/Compute/Tasks/gettingmetadata.htm

Setting a Proxy Server for the UI
Set the proxy server configuration to use with the UI.

If you have installed a non default application catalog, such as the Artifact Hub catalog, and the
deployment network uses a proxy server, you might need to update the ui application to
include the proxy server information. Use the same proxy information used in a configuration
file to create the cluster.

1. Create a proxy configuration file.

Create a YAML file that includes the proxy information. Use the format:

env:
 - name: https_proxy
 value: proxy_server:port
 - name: http_proxy
 value: proxy_server:port
 - name: no_proxy
 value: exclusion_list

For example:

env:
 - name: https_proxy
 value: http://myproxy.example.com:2138
 - name: http_proxy
 value: http://myproxy.example.com:2138
 - name: no_proxy
 value:
".example.com,127.0.0.1,localhost,169.254.169.254,10.96.0.0/12,10.244.0.0/1
6"

2. Update the ui application.

Use the ocne application update command to update the ui application in the ocne-
system namespace. Use the syntax:

ocne application update
{-b|--built-in-catalog}
[{-c|--catalog} name]
[{-n|--namespace} namespace]
{-r|--release} name
[--reset-values]
[{-u|--values} URI]
[{-v|--version} version]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

For example:

ocne application update --namespace ocne-system --release ui --values
myproxy.yaml

Chapter 5
Setting a Proxy Server for the UI

5-3

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

6
libvirt Provider

Learn about the libvirt provider used to create KVM based Kubernetes clusters with libvirt.

The libvirt provider is the default cluster provider, and can be used to provision Kubernetes
clusters using Kernel-based Virtual Machines (KVM). The default KVM stack includes libvirt,
and is included, by default, with Oracle Linux.

Note:

We recommend the Oracle KVM stack as this KVM version offers many more
features for Oracle Linux systems. For information on the Oracle KVM stack and
libvirt, see the Oracle Linux: KVM User's Guide.

The system used to create libvirt clusters must be a 64-bit x86 or 64-bit ARM system running
Oracle Linux 8 or 9, and include the Unbreakable Enterprise Kernel Release 7 (UEK R7).

The libvirt provider provisions Kubernetes clusters using libvirt on a single host, and is
useful for creating and destroying Kubernetes clusters for testing and development. While the
libvirt provider can be used for test and development clusters, it does deploy a production
worthy cluster configuration.

Important:

As all libvirt cluster nodes are running on a single host, be aware that if the host
running the cluster goes down, so do all the cluster nodes.

6-1

https://docs.oracle.com/en/operating-systems/oracle-linux/kvm-user/

Figure 6-1 libvirt Cluster Architecture

The libvirt cluster architecture has the following components:

• CLI: The CLI used to create and manage Kubernetes clusters. The ocne command.

• Default configuration: A YAML file that contains configuration for all ocne commands.

• Cluster configuration: A YAML file that contains configuration for a specific Kubernetes
cluster.

• Container registry: A container registry used to pull the images used to create nodes in a
Kubernetes cluster. The default is the Oracle Container Registry.

• OCK image: The OCK image pulled from the container registry, which is used to create
Kubernetes nodes.

• Control plane load balancer: A load balancer used for High Availability (HA) of the
control plane nodes.

• Control plane nodes: Control plane nodes in a Kubernetes cluster.

• Worker nodes: Worker nodes in a Kubernetes cluster.

The libvirt provider is also used to provision Kubernetes clusters when using some CLI
commands. This cluster type is often referred to as an ephemeral cluster. An ephemeral
cluster is a single node cluster that lives for a short time and is created and destroyed as
needed by the CLI. An existing cluster can also be used as an ephemeral cluster by including
the location of a kubeconfig file as an option with CLI commands.

Chapter 6

6-2

Figure 6-2 libvirt Ephemeral Cluster

The ephemeral cluster architecture has the following components:

• CLI: The CLI used to create and manage Kubernetes clusters. The ocne command.

• Default configuration: A YAML file that contains configuration for all ocne commands.

• Cluster configuration: A YAML file that contains configuration for a specific Kubernetes
cluster.

• Cluster API template: A YAML file that contains Cluster Resources for the Kubernetes
Cluster API to create a cluster.

• Container registry: A container registry used to pull the images used to create nodes in a
Kubernetes cluster. The default is the Oracle Container Registry.

• OCK image: The OCK image pulled from the container registry, which is used to create
Kubernetes nodes.

• Ephemeral cluster: A temporary Kubernetes cluster used to perform a CLI command. The
default for this is a single node cluster created with the libvirt provider on the localhost.
This might also be an external cluster.

Single and multi node clusters can be created on Oracle Linux 8 and 9, on both 64-bit x86 and
64-bit ARM systems. Because all cluster nodes run on a single host, it's not possible to create
hybrid clusters. However, it's possible to use an ARM system to create a remote cluster on x86
hardware and, conversely, x86 hardware can be used to create a remote cluster on ARM.

The libvirt provider requires the target system to be running libvirt and requires that the user
be configured to have access to libvirt. Oracle CNE implements a libvirt connection using the
legacy single-socket client. If local libvirt clusters are created, the UNIX domain socket is used.

Chapter 6

6-3

To create Kubernetes clusters on a remote system, enable a remote transport mechanism for
libvirt. We recommend you set up SSH key-based authentication to the remote system as a
normal user, and that you configure the user with the privilege to run libvirt. You can, however,
use any of the libvirt remote transport options. For more information on libvirt remote
transports, see the upstream libvirt documentation.

Most remote cluster deployments leverage the qemu+ssh transport, which uses SSH to tunnel
the UNIX domain socket back to the CLI. Oracle CNE doesn't configure the libvirt transports or
system services. This must be set up correctly, according to the documentation for the OS.

Clusters created with the libvirt provider create a tunnel so the cluster can be accessed
through a port on the host where the cluster is deployed. The port range starts at 6443 and
increments from there. As clusters are deleted, the ports are freed. If a cluster is created on a
remote system, ensure a range of ports are accessible through the system firewall, starting at
6443.

Important:

You can disable the firewall in a testing environment, however we don't recommend
this for production systems.

Use the ocne cluster start command to create a Kubernetes cluster using the libvirt
provider. As this provider is the default, you don't need to specify the provider type. For
example:

ocne cluster start

This command creates a single node cluster using all the default options, and installs the UI
and application catalog.

You can add extra command line options to the ocne cluster start command to set up the
cluster with non default settings, such as the number of control plane and worker nodes. For
information on these command options, see Oracle Cloud Native Environment: CLI.

You can also customize the default settings by adding options to the default configuration file,
or a configuration file specific to the cluster you want to create. For information on these
configuration files, see Cluster Configuration Files and Oracle Cloud Native Environment: CLI.

For clusters started on systems with access to privileged libvirt instances, two kubeconfig files
are created when you create a cluster, one for access to the local cluster, and one that can be
used on the remote cluster host.

Setting Up the libvirt Provider
Set up an Oracle Linux host to create Kubernetes clusters using the libvirt provider.

Clusters can be created on the localhost, or on a remote system. Perform these steps on the
system to be used to create the cluster, whether that's the localhost for local clusters, or on a
remote host if you're creating clusters on a remote system.

By default, KVM is built into the Oracle Linux kernel. You can use the default KVM stack, which
includes libvirt. We recommend you use the Oracle KVM stack which is available in Oracle
Linux 8 or 9 with the Unbreakable Enterprise Kernel (UEK). For Oracle Linux 9, the latest UEK

Chapter 6
Setting Up the libvirt Provider

6-4

https://libvirt.org/remote.html
https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/
https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

Release 7 (UEK R7) must be installed. For Oracle Linux 8, UEK R6 or UEK R7 must be
installed.

Important:

Existing Virtual Machines created with one KVM stack might not be compatible, and
might not start, after switching to another KVM stack.

For more information on installing and configuring KVM, see the Oracle Linux: KVM User's
Guide.

1. (Optional) Install the Oracle KVM stack.

• Oracle Linux 9:

If you have an existing installation of the default KVM stack, remove it:

sudo dnf remove -y libvirt qemu-kvm edk2

Install the Oracle KVM stack:

sudo dnf config-manager --enable ol9_kvm_utils
sudo dnf group install -y "Virtualization Host"
sudo dnf install -y virt-install virt-viewer

Start the virtualization daemons.

for drv in qemu network nodedev nwfilter secret storage interface
proxy
 do
 sudo systemctl enable virt${drv}d.service
 sudo systemctl enable virt${drv}d{,-ro,-admin}.socket
 sudo systemctl start virt${drv}d{,-ro,-admin}.socket
 done

• Oracle Linux 8:

If you have an existing installation of the default KVM stack, remove it:

sudo dnf module remove -y virt --all
sudo dnf module reset virt

Install the Oracle KVM stack:

sudo dnf config-manager --enable ol8_kvm_appstream
sudo dnf module enable virt:kvm_utils3
sudo dnf module install -y virt:kvm_utils3

Enable and start the libvirtd.service:

sudo systemctl enable --now libvirtd.service

Chapter 6
Setting Up the libvirt Provider

6-5

https://docs.oracle.com/en/operating-systems/oracle-linux/kvm-user/
https://docs.oracle.com/en/operating-systems/oracle-linux/kvm-user/

2. Validate the host.

Validate the host is set up for hardware virtualization, and can be used as a KVM host:

virt-host-validate qemu

3. Configure the user.

Configure the user to have privileged access to libvirt, add the user to the libvirt and
qemu groups.

sudo usermod -a -G libvirt,qemu $USER

To enable the change to the user, log out, and log back into the host or terminal session.

4. (Optional) Open a range of ports in the firewall.

If you're installing libvirt on a remote host, open a series of firewall ports so you can access
nodes in the cluster from the localhost. You don't need to do this if you're installing libvirt on
the localhost. Use the format:

sudo firewall-cmd --add-port 6443-endrange/tcp
sudo firewall-cmd --add-port 6443-endrange/tcp --permanent

Replace endrange with the highest port number you want to open. For example, to open
20 ports, use:

sudo firewall-cmd --add-port 6443-6463/tcp
sudo firewall-cmd --add-port 6443-6463/tcp --permanent

Restart firewalld.service

sudo systemctl restart firewalld.service

Creating a libvirt Cluster
Create a Kubernetes cluster using the libvirt provider.

1. Set up the host to provision clusters using the libvirt provider.

See Setting Up the libvirt Provider.

2. (Optional) Set up a cluster configuration file.

A cluster configuration contains the cluster specific information to use when creating the
cluster. Use a cluster configuration file to override cluster defaults, or you can use ocne
cluster start command options to configure a cluster. A cluster configuration file might
include:

provider: libvirt
name: mycluster
workerNodes: 2
controlPlaneNodes: 1
providers:
 libvirt:

Chapter 6
Creating a libvirt Cluster

6-6

 controlPlaneNode:
 cpu: 2
 memory: 8Gi
 storage: 20Gi
 workerNode:
 cpu: 2
 memory: 8Gi
 storage: 20Gi

For information about cluster configuration files, see Cluster Configuration Files.

3. Create a libvirt cluster.

Use the ocne cluster start command to create a cluster. The syntax is:

ocne cluster start
[{-u|--auto-start-ui} {true|false}]
[{-o|--boot-volume-container-image} URI]
[{-C|--cluster-name} name]
[{-c|--config} path]
[{-n|--control-plane-nodes} integer]
[{-i|--key} path]
[--load-balancer address]
[{-P|--provider} provider]
[{-s|--session} URI]
[{-v|--version} version]
[--virtual-ip IP]
[{-w|--worker-nodes} integer]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

When you create a cluster on a remote system, include the session information in the
format qemu+ssh://user@host/system where host is the name or IP address of the remote
system. For example:

--session qemu+ssh://myuser@myhost.example.com/system

Example 6-1 Create a default cluster using the libvirt provider

To create a libvirt cluster, using all default settings:

ocne cluster start

Example 6-2 Create a libvirt cluster using a configuration file

To create a libvirt cluster using a configuration file:

ocne cluster start --config myconfig.yaml

Chapter 6
Creating a libvirt Cluster

6-7

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

Example 6-3 Create a libvirt cluster with specified nodes and virtual IP

To create a cluster with a specified number of worker and control plane nodes, and a virtual IP
address:

ocne cluster start --control-plane-nodes 3 --worker-nodes 5 --virtual-ip
192.168.0.100

Example 6-4 Create a remote libvirt cluster using a configuration file

To create a cluster on a remote host using a configuration file:

ocne cluster start --session qemu+ssh://myuser@myhost.example.com/system --
config myconfig.yaml

Connecting to a Cluster
Use the kubectl package to connect to a Kubernetes cluster created with the libvirt
provider.

After creating a Kubernetes cluster, two Kubernetes configuration (kubeconfig) files are
created to connect to the cluster using the kubectl command.

One file provides direct access to the true Kubernetes API server endpoint. This kubeconfig
file is saved as $HOME/.kube/kubeconfig.cluster_name.local. You can use this file to access
a cluster created on the localhost, or to access a cluster created on a remote libvirt host.

The second kubeconfig file provides access to a dedicated tunnel implemented with SLiRP to
access the cluster on remote systems. This file is saved as $HOME/.kube/
kubeconfig.cluster_name.vm. If the cluster is started on a remote system, and you want to log
into that remote system to access the cluster, you need to copy this second kubeconfig to the
remote system.

Install kubectl on the host on which you want to access the cluster, either the localhost, or the
remote libvirt system.

These steps, unless explicitly mentioned, are to be performed on the host on which you want
to access the cluster (either the localhost or a remote libvirt system).

1. (Optional) Copy the kubeconfig file.

If you created the cluster on a remote system, and you want to log in to the remote system
to access the cluster, copy the kubeconfig file ending in .vm from the localhost to the
remote system. The file is available on the localhost at:

$HOME/.kube/kubeconfig.cluster_name.vm

Replace cluster_name with the name you used to create the cluster. The default is ocne.

Chapter 6
Connecting to a Cluster

6-8

Tip:

If you copy the file to the remote system as $HOME/.kube/config, you don't need
to set the $KUBECONFIG environment variable to access the cluster on the remote
host.

2. Install the kubectl package.

sudo dnf install kubectl

3. Set the kubeconfig file location using an environment variable.

For a cluster running on the localhost, use:

export KUBECONFIG=$HOME/.kube/kubeconfig.cluster_name.local

4. (Optional) Persist the environment variable.

Add the environment variable to the .bashrc file. For example:

echo 'export KUBECONFIG=$HOME/.kube/kubeconfig.cluster_name'.local
>> $HOME/.bashrc

5. Verify that you can use kubectl to connect to the cluster.

For example:

kubectl get deployments --all-namespaces

Deleting a Cluster
Delete a Kubernetes cluster created using the libvirt provider.

Use the ocne cluster delete command to delete the cluster. They syntax to use is:

ocne cluster delete
[{-C|--cluster-name} name]
[{-c|--config} URI]
[{-P|--provider} provider]
[{-s|--session} URI]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

Example 6-5 Delete the default libvirt cluster

To delete the default libvirt cluster:

ocne cluster delete

Chapter 6
Deleting a Cluster

6-9

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

Example 6-6 Delete a cluster using the cluster name

To delete a cluster named mycluster:

ocne cluster delete --cluster-name mycluster

Example 6-7 Delete a cluster using a configuration file

To delete a cluster created using a configuration file:

ocne cluster delete --config myconfig.yaml

Chapter 6
Deleting a Cluster

6-10

7
OCI Provider

Learn about the oci provider used to create Kubernetes clusters on Oracle Cloud
Infrastructure (OCI).

Kubernetes clusters are deployed to OCI using the oci provider. The oci provider uses the
Kubernetes Cluster API Provider for OCI to perform the deployment. This is an implementation
of the Kubernetes Cluster API. The Kubernetes Cluster API is implemented as Kubernetes
Custom Resources (CRs), that are serviced by applications running in a Kubernetes cluster.
The Kubernetes Cluster API has a large interface and is explained in the upstream
documentation. For information on the Kubernetes Cluster API, see the Kubernetes Cluster
API documentation. For information on the Cluster API implementation for OCI, see the
Kubernetes Cluster API Provider for OCI documentation.

Creating a cluster on OCI requires you to provide the credentials to an existing tenancy. The
required privileges depend on the configuration of the cluster that's created. For some
deployments, it might be enough to have the privileges to create and destroy compute
instances. For other deployments, more privilege might be required.

Clusters are deployed into specific compartments. The oci provider requires that a
compartment is available. Compartments can be specified either by the Oracle Cloud Identifier
(OCID), or by its path in the compartment hierarchy, for example, parentcompartment/
mycompartment.

The controllers that implement the Kubernetes Cluster API run inside a Kubernetes cluster.
These clusters are known as management clusters. Management clusters control the life cycle
of other clusters, known as workload clusters. A workload cluster can be its own management
cluster.

Using the Kubernetes Cluster API to deploy a cluster on OCI requires that a Kubernetes
cluster is available. Any running cluster can be used. To set the cluster to use, set the
KUBECONFIG environment variable, or use the --kubeconfig option of ocne commands. You
could also set this cluster using a configuration file. If no cluster is available, a cluster is
created automatically using the libvirt provider, with the default configuration. This cluster is
known as a bootstrap cluster, or an ephemeral cluster, depending on the context.

When a cluster has been deployed, it's managed using the Kubernetes Cluster API resources
in the management cluster.

A workload cluster can be its own management cluster. This is known as a self-managed
cluster. When the cluster has been deployed by a bootstrap cluster, the Kubernetes Cluster
API resources are migrated from the bootstrap cluster into the new cluster.

7-1

https://cluster-api.sigs.k8s.io/
https://cluster-api.sigs.k8s.io/
https://oracle.github.io/cluster-api-provider-oci/

Figure 7-1 OCI Cluster

The OCI cluster architecture has the following components:

• CLI: The CLI used to create and manage Kubernetes clusters. The ocne command.

• Default configuration: A YAML file that contains configuration for all ocne commands.

• Cluster configuration: A YAML file that contains configuration for a specific Kubernetes
cluster.

• Cluster API template: A YAML file that contains Cluster Resources for the Kubernetes
Cluster API to create a cluster.

• OCI CLI: The OCI CLI is installed on the localhost, including the configuration to read and
write to the tenancy and compartment.

• Container registry: A container registry used to pull the images used to create nodes in a
Kubernetes cluster. The default is the Oracle Container Registry.

• OCI OCK image: The CLI is used to create this image, based on the OCK image, pulled
from the container registry. The CLI is then used to upload this image to OCI.

• Ephemeral, bootstrap, or management cluster: A Kubernetes cluster used to perform a
CLI command. This cluster might also be used to boostrap the cluster services, or to
manage the cluster.

• Compartment: An OCI compartment in which the cluster is created.

• OCK images: The OCK image is loaded into an Object Storage bucket. When the upload
is complete, a custom compute image is created from the OCK image.

• Custom compute images: The OCK image is available as a custom compute image and
can be used to create compute nodes in a Kubernetes cluster.

• Control plane load balancer: A network load balancer used for High Availability (HA) of
the control plane nodes.

• Control plane nodes: Compute instances running control plane nodes in a Kubernetes
cluster.

• Worker nodes: Compute instances running worker nodes in a Kubernetes cluster.

Chapter 7

7-2

Setting Up the OCI Provider
Set up a system to create a Kubernetes cluster on OCI using the oci provider.

To create a Kubernetes cluster on OCI, you need to set up the OCI CLI and create an Object
Storage bucket. You must also provide the location of a kubeconfig file for an existing
Kubernetes cluster, or prepare the localhost to create an ephemeral cluster using the libvirt
provider. The ephemeral cluster starts the Kubernetes Cluster API services used to create a
cluster on OCI.

1. Set up the OCI CLI.

Install and configure the OCI CLI. Ensure you set up the key pair and configuration file. For
information on setting up the CLI, see the OCI documentation.

2. Create an Object Storage bucket.

Create an Object Storage bucket in OCI named ocne-images.

Tip:

You can also specify the name of a bucket with another name in a configuration
file.

For information on creating an Object Storage bucket, see the Oracle Cloud Infrastructure
documentation.

3. Set the required OCI configuration.

Some information about the OCI environment is required before you can create a cluster.
You need to set:

• The compartment in which to deploy resources. This can be a path to a compartment,
or the OCID.

• (Optional) The Virtual Cloud Network (VCN) to use when provisioning the control plane
load balancer.

• (Optional) The subnets to use when provisioning the control plane load balancer.

The VCN and subnet information is used by the OCI Cloud Controller Manager during
deployment to configure the control plane load balancer. This configuration isn't used in the
cluster itself, and doesn't impact the OCI resources deployed by the Kubernetes Cluster
API controller and templates.

If you don't set the control plane load balancer networking options, they're automatically
set. You can set these options in a configuration file, or in a Kubernetes Cluster API
template. If you set this information in the default configuration file ($HOME/.ocne/
defaults.yaml), you might need to create the configuration file as it isn't created by
default. You can also include these options in a cluster configuration file, and not in the
default configuration file, however, you must include the cluster configuration file as a
option when creating a cluster using the ocne cluster start command.

The format to use is:

providers:
 oci:
 compartment: OCID

Chapter 7
Setting Up the OCI Provider

7-3

https://docs.oracle.com/iaas/Content/API/SDKDocs/cliinstall.htm
https://docs.oracle.com/iaas/Content/Object/Tasks/managingbuckets_topic-To_create_a_bucket.htm
https://docs.oracle.com/iaas/Content/Object/Tasks/managingbuckets_topic-To_create_a_bucket.htm

 vcn: OCID
 loadBalancer:
 subnet1: OCID
 subnet2: OCID

For example:

providers:
 oci:
 compartment: ocid1.compartment.oc1..uniqueID

Or to include the networking configuration for the control plane node load balancer:

providers:
 oci:
 compartment: ocid1.compartment.oc1..uniqueID
 vcn: ocid1.vcn.oc1.uniqueID
 loadBalancer:
 subnet1: ocid1.subnet.oc1.uniqueID
 subnet2: ocid1.subnet.oc1.uniqueID

For more information on the default configuration file, see Oracle Cloud Native
Environment: CLI.

4. (Optional) Set the location of the kubeconfig file for an existing cluster.

A Kubernetes cluster is required to perform some steps. You can use an existing cluster for
this purpose by setting the location of the kubeconfig file.

You can set this using the KUBECONFIG environment variable, or using the --kubeconfig
option with ocne commands. You could also set this in a configuration file.

If you don't set the location of the kubeconfig file, an ephemeral cluster is created using
the libvirt provider when required.

5. (Optional) Set up the libvirt provider.

If you don't set the location of an existing Kubernetes cluster, set up the localhost to
provision ephemeral clusters using the libvirt provider. For information on setting up the
libvirt provider, see Setting Up the libvirt Provider.

6. (Optional) Create an Oracle Container Host for Kubernetes (OCK) image.

If you're using customized Kubernetes Cluster API template files, first create an OCK
image for the compute instance architecture, and upload it to OCI. For information on
creating an OCK image, see Creating an OCK Image for the OCI Provider.

Cluster API Templates
Describes Kubernetes Cluster API template files in Oracle CNE.

A default OCI cluster can be created using the oci provider with no extra arguments. For
example:

ocne cluster start --provider oci

Chapter 7
Cluster API Templates

7-4

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/
https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

The default cluster settings create a useful cluster, but, it's likely that extra configuration is
required. To customize a deployment, generate a cluster template to use as a basis for the
cluster.

The ocne cluster template command is used to create a cluster template, and uses the
default configuration and any cluster configuration you set to generate the template. It also
fetches things such as compute image OCIDs from the configured compartment automatically.
You can create a cluster template and save it to a file, for example:

ocne cluster template > mytemplate.yaml

The resulting YAML file contains the Cluster Resources for the Kubernetes Cluster API to
create a cluster, using all the configuration you have on the local system.

For example, you could create a cluster configuration file (named myconfig.yaml in this
example) that includes customization to the deployment, and might include:

provider: oci
name: mycluster
controlPlaneNodes: 3
workerNodes: 3
clusterDefinition: /home/username/mytemplate.yaml
providers:
 oci:
 compartment: ocid1.compartment.oc1..uniqueID

In this example, the clusterDefinition file is the location of a Kubernetes Cluster API
template, which is generated based on the configuration in this cluster configuration file. You
use the template when you create the cluster. You can update the cluster template to use this
new configuration by running the ocne cluster template command again and providing the
configuration file. For example:

ocne cluster template --config myconfig.yaml > $HOME/mytemplate.yaml

Edit the template file to configure any Kubernetes Cluster API options that aren't provided in a
cluster configuration file. When you're satisfied with the template, create the cluster using the
cluster configuration file. As this cluster configuration file includes a link to the cluster template
in the clusterDefinition, the template is used to create the cluster. For example:

ocne cluster start --config myconfig.yaml

Cluster API Template Files
Describes Kubernetes Cluster API template file contents.

A Kubernetes Cluster API template file can be generated that contains all the information
required to create a Kubernetes cluster using the Kubernetes Cluster API. The ocne cluster
template command is used to create this file. Save and edit this template to create clusters
using the Kubernetes Cluster API.

Optionally, edit the Custom Resources in the template to suit the cluster you want to create.
The options available are described in the upstream Kubernetes Cluster API Provider for
Oracle Cloud Infrastructure documentation.

Chapter 7
Cluster API Templates

7-5

https://github.com/oracle/cluster-api-provider-oci
https://github.com/oracle/cluster-api-provider-oci

The template file contains Custom Resources for each component of a cluster, and includes:

apiVersion: cluster.x-k8s.io/v1beta1
kind: Cluster
metadata:
 labels:
 cluster.x-k8s.io/cluster-name: "ocne"
 name: "ocne"
 namespace: "ocne"
spec:
...

apiVersion: infrastructure.cluster.x-k8s.io/v1beta2
kind: OCICluster
metadata:
 labels:
 cluster.x-k8s.io/cluster-name: "ocne"
 name: "ocne"
 namespace: "ocne"
spec:
...

kind: KubeadmControlPlane
apiVersion: controlplane.cluster.x-k8s.io/v1beta1
metadata:
 name: "ocne-control-plane"
 namespace: "ocne"
spec:
...

kind: OCIMachineTemplate
apiVersion: infrastructure.cluster.x-k8s.io/v1beta2
metadata:
 name: "ocne-control-plane"
 namespace: "ocne"
spec:
...

apiVersion: infrastructure.cluster.x-k8s.io/v1beta2
kind: OCIMachineTemplate
metadata:
 name: "ocne-md-0"
 namespace: "ocne"
spec:
...

apiVersion: bootstrap.cluster.x-k8s.io/v1beta1
kind: KubeadmConfigTemplate
metadata:
 name: "ocne-md-0"
 namespace: "ocne"
spec:
...

Chapter 7
Cluster API Templates

7-6

Creating a Cluster API Template
Create a Kubernetes Cluster API template using the ocne cluster template command.

A Kubernetes Cluster API template can be used when deploying clusters using the Kubernetes
Cluster API.

You can generate a Cluster API template using the defaults set on the local system, or using a
cluster configuration file.

1. Create a cluster template.

Use the ocne cluster template command to generate a YAML file that contains a
template to create a cluster using the Kubernetes Cluster API. The syntax is:

ocne cluster template
[{-c|--config} path]
[{-P|--provider} provider]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

For example:

ocne cluster template --config myconfig.yaml > mytemplate.yaml

2. (Optional) Edit the template.

Edit the file to suit the requirements of the cluster you want to create. The options available
are described in the upstream Kubernetes Cluster API Provider for Oracle Cloud
Infrastructure documentation.

Using an Existing VCN
Edit a Cluster API template to use an existing OCI Virtual Cloud Network (VCN).

To use an existing VCN when deploying a Kubernetes cluster to OCI, generate and edit a
Cluster API template to include the VCN information. You need to provide OCIDs for:

• VCN. The VCN to use for the cluster nodes.

• Network Security Group. This is the network security group that contains the ingress rules
to the VCN.

• Subnet. This is the subnet of the VCN.

The values provided for the VCN and subnet are also used by the OCI Cloud Controller
Manager during deployment to configure the control plane load balancer.

1. Create a Cluster API template.

Set up the configuration files to create the cluster, including all relevant OCIDs and
generate a Cluster API template. For information on creating a Cluster API template, see
Creating a Cluster API Template.

2. Set the OCIDs as environment variables.

Chapter 7
Cluster API Templates

7-7

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/
https://github.com/oracle/cluster-api-provider-oci
https://github.com/oracle/cluster-api-provider-oci

Replace OCID in each line with the OCID for the network object.

export VCN=OCID
export SECGROUP=OCID
export SUBNET=OCID

3. Create a YAML file with the VCN information.

Generate a file to include the VCN information, using the environment variables.

envsubst > vcn_config.yaml << EOF
 networkSpec:
 skipNetworkManagement: true
 vcn:
 id: $VCN
 networkSecurityGroup:
 skip: true
 list:
 - name: control-plane-endpoint
 role: control-plane-endpoint
 id: $SECGROUP
 - name: control-plane
 role: control-plane
 id: $SECGROUP
 - name: worker
 role: worker
 id: $SECGROUP
 - name: service-lb
 role: service-lb
 id: $SECGROUP
 internetGateway:
 skip: true
 natGateway:
 skip: true
 serviceGateway:
 skip: true
 routeTable:
 skip: true
 subnets:
 - name: control-plane-endpoint
 role: control-plane-endpoint
 id: $SUBNET
 type: private
 - name: control-plane
 role: control-plane
 id: $SUBNET
 type: private
 - name: worker
 role: worker
 id: $SUBNET
 type: private
 - name: service-lb
 role: service-lb
 id: $SUBNET
 type: private
EOF

Chapter 7
Cluster API Templates

7-8

4. Edit the Cluster API template.

Open the file that includes the VCN information (vcn_config.yaml in this example),
copy the content, and paste it into the Cluster API template. The information must be
included in the OCICluster Custom Resource, in the spec section. For example:

apiVersion: infrastructure.cluster.x-k8s.io/v1beta2
kind: OCICluster
metadata:
 labels:
 cluster.x-k8s.io/cluster-name: "mycluster"
 name: "mycluster"
 namespace: "ocne"
spec:
 compartmentId: "ocid1.compartment.oc1..."
 # Paste the VCN information here.
 networkSpec:
 skipNetworkManagement: true
 vcn: ...

5. Create the cluster with the Cluster API template.

Ensure you include the location of the Cluster API template in the cluster configuration file
when you create the cluster. The configuration file must include the location of the template
using the clusterDefinition option. For example:

clusterDefinition: /home/username/mytemplate.yaml

OCI Compute Images
Describes OCK images used to create Kubernetes nodes on OCI.

Creating clusters with the OCI provider requires a custom compute image in the target
compartment. The bootable container image must be customized to work in OCI, and must be
converted into an appropriate format. After an appropriate image has been created, it must be
imported to the target compartment.

Note:

If you're using customized Kubernetes Cluster API template files, you first need to
create an image for the compute instance architecture, and upload it to OCI. If you're
not using customized templates, you don't need to create and upload the image
manually, as it's done for you automatically when you create the Kubernetes cluster.

Bootable OCK images in Qcow2 format can be created using the ocne image create
command with the --type oci option. By default, the image is created for the architecture of
the system where the command is run. Images can be created for other architectures using the
--arch option.

The resulting OCK image can be imported into OCI using the ocne image upload command,
and used as the boot volume for compute instances. When you use the ocne image upload
command to upload a Qcow2 image, the conversion to the appropriate format is performed
automatically.

Chapter 7
OCI Compute Images

7-9

The image is uploaded to an OCI Object Storage bucket. After the upload is complete, the
object is imported as a custom compute image.

The custom compute image can then be used to create compute instances for a Kubernetes
cluster.

Figure 7-2 OCK Images for an OCI Cluster

The architecture has the following components:

• CLI: The CLI used to create and manage Kubernetes clusters. The ocne command.

• Default configuration: A YAML file that contains configuration for all ocne commands.

• Cluster configuration: A YAML file that contains configuration for a specific Kubernetes
cluster.

• Cluster API template: A YAML file that contains Cluster Resources for the Kubernetes
Cluster API to create a cluster.

• OCI CLI: The OCI CLI is installed on the localhost, including the configuration to read and
write to the tenancy and compartment.

• Container registry: A container registry used to pull the images used to create nodes in a
Kubernetes cluster. The default is the Oracle Container Registry.

Chapter 7
OCI Compute Images

7-10

• OCI OCK image: The CLI is used to create this image, based on the OCK image, pulled
from the container registry. The CLI is then used to upload this image to OCI.

• Ephemeral cluster: A temporary Kubernetes cluster used to perform a CLI command.

• OCI Object Storage bucket: The OCK image is loaded into an Object Storage bucket.
When the upload is complete, a custom compute image is created from the OCK image.

• Custom compute image: The OCK image is available as a custom compute image and
can be used to create compute nodes in a Kubernetes cluster.

The CLI uses any configuration files supplied to generate an OCK image. The CLI pulls the
bootable Qcow2 OCK image from the container registry, and coverts it to an image that can be
used for OCI. The CLI loads the OCK image to an OCI Object Storage bucket. The OCK image
is then converted to a custom compute image, which can be used to create compute nodes in
a Kubernetes cluster.

Note:

The object in the bucket isn't automatically removed, and must be cleaned up
manually when no longer required.

Creating an OCK Image for the OCI Provider
Create an Oracle Container Host for Kubernetes (OCK) image for the OCI (oci) provider. Then
upload the image to OCI so it an be used as the boot disk for compute instances.

1. Set up the OCI provider.

For information on setting up the provider, see Setting Up the OCI Provider.

2. (Optional) Set the location of the kubeconfig file for an existing cluster.

A Kubernetes cluster is required to perform some steps. You can use an existing cluster for
this purpose by setting the location of the kubeconfig file.

You can set this using the KUBECONFIG environment variable, or using the --kubeconfig
option with ocne commands. You could also set this in a configuration file.

If you don't set the location of the kubeconfig file, an ephemeral cluster is created using
the libvirt provider when required.

3. Create an OCK image.

Use the ocne image create command to create an OCK image for OCI. The syntax is:

ocne image create
{-a|--arch} arch
[{-t|--type} provider]
[{-v|--version} version]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

For example:

ocne image create --type oci --arch amd64

Chapter 7
OCI Compute Images

7-11

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

The Kubernetes cluster is used to generate the Qcow2 image, and the image is saved to
the $HOME/.ocne/images/ directory.

4. Upload the OCK image to OCI.

Use the ocne image upload command to upload the image to OCI. The syntax is:

ocne image upload
{-a|--arch} arch
[{-b|--bucket} name]
{-c|--compartment} name
[{-d|--destination} path]
{-f|--file} path
{-i|--image-name} name
{-t|--type} provider
{-v|--version} version

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

For example:

ocne image upload --compartment ocid1.compartment.oc1..UniqueID --
file $HOME/.ocne/images/boot.qcow2-1.31-amd64.oci --arch amd64

The Kubernetes cluster is used to upload the Qcow2 image. The image is uploaded to the
Object Bucket store, and then automatically converted to a custom compute image. The
image can now be used to create OCI instances to use in a Kubernetes cluster.

Tip:

Sign in to the OCI console to monitor the upload of the image to the Object
Bucket store, and the creation of a custom compute image.

Create a Cluster on OCI
Learn how to create a Kubernetes cluster on OCI.

When you create a cluster using the oci provider, the following occurs:

1. The CLI detects if a bootstrap cluster is available. If not, it starts an ephemeral cluster to
act as a bootstrap cluster.

2. Any resources required to start the ephemeral cluster are fetched and installed.

3. When the bootstrap cluster is available, the configured OCI compartment is checked for
compatible compute Oracle Container Host for Kubernetes (OCK) images. If no OCK
images are available, they're generated, uploaded to an OCI Object Storage bucket, and
imported into the bootstrap cluster. The OCK image is converted from Qcow2 format to a
bootable compute image and saved as a custom compute image.

4. When this process is complete, all Kubernetes Cluster API providers are installed into the
bootstrap cluster.

5. When the Kubernetes Cluster API providers are started, the Kubernetes Cluster API
resources are installed into the bootstrap cluster.

Chapter 7
Create a Cluster on OCI

7-12

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

6. When the bootstrap cluster is ready, the OCI cluster is created and set up, including the
compute instances, networking, and a network load balancer.

7. If the OCI cluster is set to be self managed, the bootstrap cluster is deleted.

Creating an OCI Cluster
Create a Kubernetes cluster on OCI using the oci provider.

Creating a Kubernetes cluster on OCI using the oci provider requires that you first set up the
localhost to create a bootstrap cluster using the libvirt provider, or have a cluster available to
use as the bootstrap cluster. For information on the bootstrap cluster, see OCI Provider.

You must also install and configure the OCI CLI on the localhost to enable access to the OCI
compartment where the cluster is created.

You can optionally use a cluster configuration file to specify cluster information such as the
number of control plane and worker nodes, the cluster definition file that contains the Cluster
API CRs, the Object Storage bucket name (if the default of ocne-images isn't used), or any
other number of configuration options.

If settings aren't provided in the cluster configuration file options, but are available in the
Cluster API provider, create a cluster template file that contains the CRs for the cluster. You
can then manually edit these CRs with the Cluster API options and include the template in the
cluster configuration file.

Important:

The number of control plane nodes must be an odd number (1, 3, 5, and so on) to
avoid split brain scenarios with High Availability. The default is 1 control plane node
and 0 worker nodes.

1. Set up the localhost to provision clusters using the oci provider.

See Setting Up the OCI Provider.

2. (Optional) Set up a cluster configuration file.

A cluster configuration contains the cluster specific information to use when creating the
cluster. This file overrides any default configuration (set in the $HOME/.ocne/
defaults.yaml file). A cluster configuration file might include:

provider: oci
name: mycluster
providers:
 oci:
 compartment: ocid1.compartment.oc1..uniqueID
 vcn: ocid1.vcn.oc1.uniqueID
 loadBalancer:
 subnet1: ocid1.subnet.oc1.uniqueID
 subnet2: ocid1.subnet.oc1.uniqueID

Chapter 7
Create a Cluster on OCI

7-13

Or a more complex cluster configuration file might include:

provider: oci
proxy:
 httpsProxy: http://myproxy.example.com:2138
 httpProxy: http://myproxy.example.com:2138

noProxy: .example.com,127.0.0.1,localhost,169.254.169.254,10.96.0.0/12,10.2
44.0.0/16
headless: true
name: mycluster
workerNodes: 3
controlPlaneNodes: 3
providers:
 oci:
 profile: MYTENANCY
 selfManaged: false
 imageBucket: my-ocne-images
 compartment: ocid1.compartment.oc1..uniqueID
 vcn: ocid1.vcn.oc1.uniqueID
 loadBalancer:
 subnet1: ocid1.subnet.oc1.uniqueID
 subnet2: ocid1.subnet.oc1.uniqueID
 workerShape:
 shape: VM.Standard.E4.Flex
 ocpus: 2
 controlPlaneShape:
 shape: VM.Standard.E4.Flex
 ocpus: 2

For information on cluster configuration files, see Cluster Configuration Files.

3. (Optional) Set up a cluster template file.

A cluster template contains the Kubernetes Cluster API CRs to create a cluster. You can
generate a template using the configuration in a cluster configuration file, and edit the
resulting CRs to include options that aren't available as an option in the cluster
configuration. For information on creating cluster templates, see Cluster API Templates.

Tip:

To configure the cluster to use an existing VCN in a compartment, see Using an
Existing VCN.

Include a link to the cluster template in the cluster configuration file. For example, also
include the option:

clusterDefinition: /path/template.yaml

4. Create the cluster.

Use the ocne cluster start command to create a cluster. The syntax is:

ocne cluster start
[{-u|--auto-start-ui} {true|false}]

Chapter 7
Create a Cluster on OCI

7-14

[{-o|--boot-volume-container-image} URI]
[{-C|--cluster-name} name]
[{-c|--config} path]
[{-n|--control-plane-nodes} integer]
[{-i|--key} path]
[--load-balancer address]
[{-P|--provider} provider]
[{-s|--session} URI]
[{-v|--version} version]
[--virtual-ip IP]
[{-w|--worker-nodes} integer]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

For example:

ocne cluster start --provider oci

ocne cluster start --config myconfig.yaml

Monitoring a Cluster Installation
View the logs for the Kubernetes Cluster API pods to monitor the creation of a Kubernetes
cluster on OCI.

You can monitor the deployment of a Kubernetes cluster on OCI by reviewing the logs of
several Kubernetes Cluster API pods that are created in the ephemeral (bootstrap) cluster.

Tip:

If you set the cluster to be self managed, the ephemeral cluster is deleted after the
deployment succeeds. To view the logs after the ephemeral cluster is deleted, set the
cluster's kubeconfig file to the cluster running on OCI, for example:

export KUBECONFIG=$HOME/.kube/kubeconfig.clustername

1. Set the location of the kubeconfig file for the ephemeral cluster.

In a separate terminal session, set the location of the ephemeral cluster's kubeconfig file.
If you're using the defaults for an ephemeral cluster, this is:

export KUBECONFIG=$HOME/.kube/kubeconfig.ocne-ephemeral.local

2. View the events.

Use the kubectl get events command to get information about the events in the
namespace in which the cluster is created. The default namespace is ocne. For example:

kubectl get events --namespace ocne

3. View the capoci-controller-manager pod logs.

Chapter 7
Create a Cluster on OCI

7-15

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

Use the kubectl logs command to view the logs for the pod.

Copy the command listed and press the Tab key to access the full pod name.

kubectl logs --namespace cluster-api-provider-oci-system capoci-controller-
manager

4. View the control-plane-capi-controller-manager pod logs.

Use the kubectl logs command to view the logs for the pod.

Copy the command listed and press the Tab key to access the full pod name.

kubectl logs --namespace capi-kubeadm-control-plane-system control-plane-
capi-controller-manager

5. View the bootstrap-capi-controller-manager pod logs.

Use the kubectl logs command to view the logs for the pod.

Copy the command listed and press the Tab key to access the full pod name.

kubectl logs --namespace capi-kubeadm-bootstrap-system bootstrap-capi-
controller-manager

OCI Components
Describes the components created in OCI when you create a Kubernetes cluster using the oci
provider.

You can sign in to the OCI console to view the cluster components that are created. The
components created or used are:

• An Object Storage bucket named ocne-images, or another existing bucket set in a
configuration file.

• OCK images are stored in the Object Storage bucket and named ocne_boot.qcow2-
kube_version-arm64.oci, by default. They're tagged with the architecture to which they
apply.

• The OCK bootable compute images are named ock, by default, and copied to the Custom
Images area to use when creating instances.

• A Virtual cloud network (VCN) is created and configured for the cluster. The VCN is named
using the cluster name.

• A Network load balancer is created using the format clustername-apiserver. A listener is
created for the Kubernetes API Server on TCP port 6443. Backend sets are created and
include the control plane nodes.

• Compute instances are created using the bootable OCK custom image for the architecture
of the instance. The instances use the naming format of clustername-md-random_string
for worker nodes, and clustername-control-plane-random_string for control plane
nodes.

Chapter 7
OCI Components

7-16

Connecting to a Cluster
Use the kubectl package to connect to a Kubernetes cluster.

After creating a Kubernetes cluster, a Kubernetes configuration file is created so you can
access the cluster using the kubectl command. Install kubectl on the localhost (the host with
ocne installed on which you created the cluster). If you install kubectl on a different system,
copy the kubeconfig file to the system.

1. Install the kubectl package on the localhost.

sudo dnf install kubectl

2. Set the kubeconfig file location using an environment variable.

export KUBECONFIG=$HOME/.kube/kubeconfig.cluster_name

Replace cluster_name with the name you used to create the cluster. The default is ocne.

3. (Optional) Persist the environment variable.

Add the environment variable to the .bashrc file:

echo 'export KUBECONFIG=$HOME/.kube/kubeconfig.cluster_name'
>> $HOME/.bashrc

4. Verify that you can use kubectl to connect to the cluster.

For example:

kubectl get deployments --all-namespaces

Scale a Cluster
Learn how to scale a Kubernetes cluster on OCI.

You can scale the cluster nodes by using the kubectl scale command, either on the
management cluster, or directly in the OCI cluster if it's self-managed.

Note:

You can also scale cluster nodes by editing the replicas option in the appropriate
Kubernetes Cluster API Custom Resource file, but this approach isn't recommended
in production systems.

Chapter 7
Connecting to a Cluster

7-17

Scaling Worker Nodes in an OCI Cluster
Use the kubectl scale command to scale the number of worker nodes in a Kubernetes cluster
on OCI.

You can scale the worker nodes in a Kubernetes cluster by running the kubectl scale
command, either on the management cluster, or on the OCI cluster if it's self-managed.

1. Get the name of the machinedeployments Custom Resource.

Use the kubectl get command to retrieve this information, for example:

kubectl get machinedeployments --namespace ocne

2. Run the kubectl scale command, specifying the new number of worker nodes.

Set the new number of worker nodes with the --replicas option. In this example, the
name of the machinedeployments Custom Resource is mycluster-md-0:

kubectl scale machinedeployment mycluster-md-0 --replicas 3 --namespace
ocne

3. Wait for the cluster to stabilize before performing any other scaling operations.

You can monitor the status of the nodes by running the following command on the OCI
cluster:

watch kubectl get nodes -A

The cluster is stable when all the cluster nodes show a status of Ready. Exit the command
using Ctrl+C.

The number of worker nodes in the cluster is scaled up or down to the number of replicas
you set.

Scaling Control Plane Nodes in an OCI Cluster
Use the kubectl scale command to scale the number of control plane nodes in a Kubernetes
cluster on OCI.

You can scale the control plane nodes in a Kubernetes cluster by running the kubectl scale
command, either on the management cluster, or on the OCI cluster if it's self-managed.

1. Get the name of the kubeadmcontrolplane Custom Resource.

Use the kubectl get command to retrieve this information, for example:

kubectl get kubeadmcontrolplane --namespace ocne

2. Run the kubectl scale command, specifying the new number of control plane nodes.

Set the new number of control plane nodes with the --replicas option. In this example,
the name of the kubeadmcontrolplane Custom Resource is mycluster-control-plane:

kubectl scale kubeadmcontrolplane mycluster-control-plane --replicas 3 --
namespace ocne

Chapter 7
Scale a Cluster

7-18

3. Wait for the cluster to stabilize before performing any other scaling operations.

You can monitor the status of the nodes by running the following command on the OCI
cluster :

watch kubectl get nodes -A

The cluster is stable when all the cluster nodes show a status of Ready. Exit the command
using Ctrl+C.

The number of control plane nodes in the cluster is scaled up or down to the number of
replicas you set.

Upgrading to a Kubernetes Minor Release
Upgrade an OCI cluster to the next Kubernetes minor release.

For clusters running on OCI, and created using the oci provider, upgrade a Kubernetes cluster
to the next minor Kubernetes version when an OCK image becomes available for that version.
This uses the Kubernetes Cluster API to scale nodes in and out. To perform an in place
upgrade, where nodes aren't reprovisioned, use the steps in Upgrading to a Kubernetes Minor
Release.

1. Set the location of the management cluster.

The management cluster contains the Kubernetes Cluster API controllers. The
management cluster might be the same as the workload cluster. The upgrade is performed
using the management cluster.

Set the kubeconfig file location to the management cluster using an environment variable.
For example:

export KUBECONFIG=$(ocne cluster show --cluster-name cluster-name)

Replace cluster_name with the name of the management cluster.

2. Set the target Kubernetes version.

Use ocne cluster stage command to stage the target Kubernetes version. Use the
configuration file used to create the workload cluster with this command. The syntax to use
is:

ocne cluster stage
[{-c|--config} path]
[{-r|--os-registry} registry]
[{-t|--transport} transport]
{-v|--version} version

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

For example:

ocne cluster stage --version 1.31 --config mycluster.yaml

An OCK image that includes the updated Kubernetes minor version is created, and
uploaded to the OCI Object Bucket store, then converted to a custom image.

Chapter 7
Upgrading to a Kubernetes Minor Release

7-19

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

The output of this command prints important information. For example, the output might
look similar to:

To update KubeadmControlPlane ocne-control-plane in ocne, run:
 kubectl patch -n ocne kubeadmcontrolplane ocne-control-plane --
type=json -p='[{"op":"replace","path":"/spec/version","value":"1.31.5"},
{"op":"replace","path":"/spec/machineTemplate/infrastructureRef/
name","value":"ocne-control-plane-1"},{"op":"add","path":"/spec/
kubeadmConfigSpec/joinConfiguration/patches","value":{"directory":"/etc/
ocne/ock/patches"}}]'

To update MachineDeployment ocne-md-0 in ocne, run:
 kubectl patch -n ocne machinedeployment ocne-md-0 --type=json -
p='[{"op":"replace","path":"/spec/template/spec/version","value":"1.31.5"},
{"op":"replace","path":"/spec/template/spec/infrastructureRef/
name","value":"ocne-md-1"}]'

3. Patch the KubeadmControlPlane for control plane nodes.

Use the kubectl patch command to update the KubeadmControlPlane. Use the command
printed in the output of the ocne cluster stage command. For example:

 kubectl patch -n ocne kubeadmcontrolplane ocne-control-plane --type=json -
p='[{"op":"replace","path":"/spec/version","value":"1.31.5"},
{"op":"replace","path":"/spec/machineTemplate/infrastructureRef/
name","value":"ocne-control-plane-1"},{"op":"add","path":"/spec/
kubeadmConfigSpec/joinConfiguration/patches","value":{"directory":"/etc/
ocne/ock/patches"}}]'

4. Wait for the control plane nodes to upgrade.

The control plane nodes are reprovisioned using the new OCK image, with the new version
of Kubernetes. This might take some time.

Tip:

Monitor new nodes are being provisioned, and old nodes are being removed,
using:

 kubectl --namespace namespace get machine

Confirm all nodes are updated in the workload cluster. Set the kubeconfig file location to
the workload cluster using an environment variable. For example:

export KUBECONFIG=$(ocne cluster show --cluster-name cluster-name)

Replace cluster_name with the name of the workload cluster.

List the nodes in the cluster and confirm the VERSION column lists the new Kubernetes
version number.

kubectl get nodes

Chapter 7
Upgrading to a Kubernetes Minor Release

7-20

5. Update the MachineDeployment for worker nodes.

Set the kubeconfig file location to the management cluster. For example:

export KUBECONFIG=$(ocne cluster show --cluster-name cluster-name)

Replace cluster_name with the name of the management cluster.

Use the kubectl patch command to update the MachineDeployment for worker nodes.
Use the command printed in the output of the ocne cluster stage command. For
example:

kubectl patch -n ocne machinedeployment ocne-md-0 --type=json -
p='[{"op":"replace","path":"/spec/template/spec/version","value":"1.31.5"},
{"op":"replace","path":"/spec/template/spec/infrastructureRef/
name","value":"ocne-md-1"}]'

6. Wait for the worker nodes to update.

The worker nodes are reprovisioned using the new OCK image, with the new version of
Kubernetes. This might take some time.

7. Confirm Kubernetes has been upgraded.

Confirm all nodes are updated in the workload cluster. Set the kubeconfig file location to
the workload cluster using an environment variable. For example:

export KUBECONFIG=$(ocne cluster show --cluster-name cluster-name)

Replace cluster_name with the name of the workload cluster.

List the nodes in the cluster and confirm the VERSION column lists the new Kubernetes
version number.

kubectl get nodes

Delete a Cluster
Learn how to delete a Kubernetes cluster on OCI.

Deleting a self-managed cluster requires that a second cluster is available to run the
controllers. This is because the final stages of cluster destruction terminates any remaining
compute instances, and, by extension, cluster nodes. When this is complete, no compute
instances are available to run the controllers. If a second cluster isn't available, an ephemeral
cluster is created to service this need.

Deleting an OCI Cluster
Delete a Kubernetes cluster on OCI.

1. Delete the Kubernetes cluster running on OCI.

Use the ocne cluster delete command to delete the cluster. They syntax to use is:

ocne cluster delete
[{-C|--cluster-name} name]

Chapter 7
Delete a Cluster

7-21

[{-c|--config} URI]
[{-P|--provider} provider]
[{-s|--session} URI]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

For example:

ocne cluster delete --cluster-name mycluster

If the cluster is self managed, an ephemeral cluster is created and the Kubernetes Cluster
API resources are migrated to the ephemeral cluster. If the cluster isn't self managed, the
ephemeral cluster already contains the Kubernetes Cluster API resources. The ephemeral
cluster deletes the OCI cluster.

Tip:

Monitor the cluster deletion process in a separate terminal session by setting the
KUBECONFIG environment variable to the ephemeral cluster and listing the
clusters. For example:

setenv KUBECONFIG=$HOME/.kube/kubeconfig.ocne-ephemeral.local
kubectl get cluster -A

The cluster object is in the deleting state. When the cluster object is no longer
available, the delete is completed.

2. Delete the ephemeral cluster.

You might also need to delete the ephemeral cluster, depending on the settings in the
environment. Use the ocne cluster delete command to delete the ephemeral cluster.
For example:

ocne cluster delete --cluster-name ocne-ephemeral

3. Delete Oracle Cloud Infrastructure resources.

You might need to manually remove some Oracle Cloud Infrastructure resources. While
the compute instances, Virtual Cloud Networks, and Network load balancers in the cluster
are terminated, any OCK images in the Objects Storage bucket, and custom compute
images aren't removed. If you don't want to retain those objects, sign in to the Oracle
Cloud Infrastructure console and remove them manually.

Chapter 7
Delete a Cluster

7-22

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

8
Bring Your Own Provider

Learn about the byo provider used to create Kubernetes clusters using bare metal or other
virtual instances not provided explicitly by Oracle CNE.

You can make custom installations of the Oracle Container Host for Kubernetes (OCK) image
on arbitrary platforms. This means you can create a Kubernetes cluster using bare metal or
other virtual instances, not provided explicitly by Oracle CNE. These installations are known as
Bring Your Own (BYO) installations. You use the byo provider to perform these installations.

You can install the OCK image into environments that require manual installation of individual
hosts. A common case is a bare metal deployment. Another is a case where a standardized
golden image for an OS is required. This install type is intended to cover all cases where
deploying the standard OS boot image isn't possible.

This installation process is used to create new Kubernetes clusters or expand existing ones.
This installation type leverages the Anaconda and Kickstart installation options of Oracle Linux
to deploy OSTree content onto a host.

The BYO installation consists of a handful of components, spread across several Oracle CNE
CLI commands.

• The ocne image create command is used to download OSTree content from official
Oracle CNE sources, and convert them into a format that can be used for a custom
installation. It also creates an OSTree archive server.

• The ocne image upload command is used to copy the OSTree archive server to a
container registry. You can also use Podman to serve the OSTree archive locally if you
don't want to use a container registry. You can load the image into any target available with
the Open Container Initiative transports and formats. See containers-transports(5) for
available options.

• The ocne cluster start command generates Ignition content that's consumed by the
newly installed host during boot. This Ignition information is used to start a new Kubernetes
cluster. You specify what you want to include in the Ignition configuration.

• The ocne cluster join command generates Ignition content that's used to add nodes to
an existing Kubernetes cluster.

For more information on OSTree, see the upstream OSTree documentation.

For more information on Ignition, see the upstream Ignition documentation.

BYO installations of the OCK image use an OSTree archive with Anaconda and Kickstart to
create bootable media. When the base OS installation is complete, Ignition is used to complete
the first-boot configuration and provision Kubernetes services on the host.

8-1

https://ostreedev.github.io/ostree/
https://coreos.github.io/ignition/

Figure 8-1 BYO Cluster

The BYO cluster architecture has the following components:

• CLI: The CLI used to create and manage Kubernetes clusters. The ocne command.

• Default configuration: A YAML file that contains configuration for all ocne commands.

• Cluster configuration: A YAML file that contains configuration for a specific Kubernetes
cluster.

• Container registry: A container registry used to pull the OCK OSTree images. The default
is the Oracle Container Registry.

• OCK OSTree Image: The OCK OSTree image pulled from the container registry.

• Ephemeral cluster: A temporary Kubernetes cluster used to perform a CLI command.

• Container registry/Podman: A container registry or container server, such as Podman,
used to serve the OCK OSTree images.

• Oracle Linux ISO: An ISO file to serve the kernel and initrd to use for the OS on nodes.

• Ignition file: An Ignition file, generated by the CLI, used to join nodes to a cluster.

• Ignition server: The Ignition file, loaded into a method that serves Ignition files.

• Kickstart file: A Kickstart file that provides the location of the OCK OSTree image, Ignition
file, and the OS kernel and initrd.

• Kickstart server: The Kickstart file, loaded into a method that servers Kickstart files.

• Ephemeral cluster: A temporary Kubernetes cluster used to perform a CLI command.

• Control plane load balancer: A load balancer used for High Availability (HA) of the
control plane nodes. This might be the default internal load balancer, or an external one.

• Control plane nodes: Control plane nodes in a Kubernetes cluster.

• Worker nodes: Worker nodes in a Kubernetes cluster.

Chapter 8

8-2

OS Image
Describes the OS images used to create Kubernetes nodes using the byo provider.

You need the following to perform a BYO installation:

• An Oracle Linux kernel to boot.

• An initrd (initial ramdisk) that matches the boot kernel.

• A root file system that can run Anaconda and Kickstart.

• A method to perform an automated installation using Kickstart.

• A method to serve the OCK OSTree archive.

• A method to serve Ignition files.

An easy way to achieve the first four points is to download an Oracle Linux ISO file. For
information about the available ISO files, see Oracle Linux ISO Images.

A Kickstart file defines an automated installation using a local OSTree archive server. For
information on creating a Kickstart file, see Oracle Linux 9: Installing Oracle Linux or Oracle
Linux 8: Installing Oracle Linux.

The CLI can generate a container image that serves an OSTree archive over HTTP. The
container image can be served using a container runtime such as Podman, or inside a
Kubernetes cluster. You can also generate an OSTree archive manually and serve it over any
HTTP server.

Ignition files can be served using any of the platforms listed in the upstream Ignition
documentation. You could also embed the Ignition configuration file directly on to the root file
system of the host if the installation is done reasonably close to when the Ignition configuration
was generated.

Chapter 8
OS Image

8-3

https://docs.oracle.com/en/operating-systems/oracle-linux/9/install/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/install/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/install/
https://coreos.github.io/ignition/supported-platforms/
https://coreos.github.io/ignition/supported-platforms/

Figure 8-2 OCK Images in a Bring Your Own Cluster

• CLI: The CLI used to create and manage Kubernetes clusters. The ocne command.

• Default configuration: A YAML file that contains configuration for all ocne commands.

• Cluster configuration: A YAML file that contains configuration for a specific Kubernetes
cluster.

• Container registry: A container registry used to pull the OCK OSTree images. The default
is the Oracle Container Registry.

• OCK OSTree Image: The OCK OSTree image pulled from the container registry.

• Ephemeral cluster: A temporary Kubernetes cluster used to perform a CLI command.

• Container registry/Podman: A container registry or container server, such as Podman,
used to serve the OCK OSTree images.

• Oracle Linux ISO: An ISO file to serve the kernel and initrd to use for the OS on nodes.

Chapter 8
OS Image

8-4

• Ignition file: An Ignition file, generated by the CLI, used to join nodes to a cluster.

• Ignition server: The Ignition file, loaded into a method that serves Ignition files.

• Kickstart file: A Kickstart file that provides the location of the OCK OSTree image, Ignition
file, and the OS kernel and initrd.

• Kickstart server: The Kickstart file, loaded into a method that servers Kickstart files.

Oracle Linux ISO Images
Describes the Oracle Linux ISO image used for OS images with the byo provider.

You can use any of the available Oracle Linux ISO images as the basis for the OS image. Only
the kernel, initrd, and root file system from the media is used. All installation content comes
from the OCK OSTree archive. The ISO images are available on the Oracle Linux yum server.

We recommend you use a UEK boot ISO file as these are smaller and include all the OS
components required.

OSTree Archive Server
Describes the OSTree archive used for building an OS image with the byo provider.

A container image that contains the OSTree archive can be generated using the ocne image
create command. For example:

ocne image create --type ostree

A Kubernetes cluster is used to download and generate the OSTree archive image. Any
running cluster can be used. To specify which cluster to use, set the KUBECONFIG environment
variable, or use the --kubeconfig option of ocne commands. If no cluster is available, a cluster
is created automatically using the libvirt provider, with the default configuration.

The image might take some time to download and generate. When completed, the image is
available in the $HOME/.ocne/images/ directory.

Use the ocne image upload command to upload the image to a location where it can be used.
Container images can be uploaded using any transport provided by libcontainer. See
containers-transports(5) for the list of transports. A transport is always required.

Typically, the image is uploaded to a container registry. For example:

ocne image upload --type ostree --file $HOME/.ocne/images/ock-1.31-amd64-
ostree.tar --destination docker://myregistry.example.com/ock-ostree:latest --
arch amd64

To load the container image into the local image cache, use the Open Container Initiative
image loading facility built in to a container runtime or other some other tool that performs the
same task. For example, to load the image into Podman:

podman load < $HOME/.ocne/images/ock-1.31-arm64-ostree.tar

Chapter 8
OS Image

8-5

https://yum.oracle.com/oracle-linux-isos.html

Creating an OSTree Image for the Bring Your Own Provider
Create an OSTree image for the Bring Your Own (byo) provider. Then upload the image to a
container registry so it can be used as the boot disk for Virtual Machines (VMs).

You can load the image into several destinations. This example show you how to load the
image into a container registry. For information on setting up a container registry, see Oracle
Linux: Podman User's Guide.

You can load the image into any target available with the Open Container Initiative transports
and formats. See containers-transports(5) for available options.

1. (Optional) Set the location of the kubeconfig file for an existing cluster.

A Kubernetes cluster is required to perform some steps. You can use an existing cluster for
this purpose by setting the location of the kubeconfig file.

You can set this using the KUBECONFIG environment variable, or using the --kubeconfig
option with ocne commands. You could also set this in a configuration file.

If you don't set the location of the kubeconfig file, an ephemeral cluster is created using
the libvirt provider when required.

2. (Optional) Set up the libvirt provider.

If you don't set the location of an existing Kubernetes cluster, set up the localhost to
provision ephemeral clusters using the libvirt provider. For information on setting up the
libvirt provider, see Setting Up the libvirt Provider.

3. Create an OSTree image.

Use the ocne image create command to create a OSTree image. The syntax is:

ocne image create
{-a|--arch} arch
[{-t|--type} provider]
[{-v|--version} version]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

For example:

ocne image create --type ostree --arch arm64

This command might take some time to complete.

The Kubernetes cluster generates the OSTree image, and the image is saved to
the $HOME/.ocne/images/ directory.

4. Upload the OSTree image to a container registry.

Use the ocne image upload command to upload the image to a container registry. The
syntax is:

ocne image upload
{-a|--arch} arch
[{-b|--bucket} name]
{-c|--compartment} name
[{-d|--destination} path]

Chapter 8
OS Image

8-6

https://docs.oracle.com/en/operating-systems/oracle-linux/podman/
https://docs.oracle.com/en/operating-systems/oracle-linux/podman/
https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

{-f|--file} path
{-i|--image-name} name
{-t|--type} provider
{-v|--version} version

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

For example:

ocne image upload --type ostree --file $HOME/.ocne/images/ock-1.31-amd64-
ostree.tar --destination docker://myregistry.example.com/ock-ostree:latest
--arch amd64

The Kubernetes cluster uploads the OSTree image. A sign in prompt is provided if
credentials aren't set for the target container registry. The image is uploaded to the
container registry. The image can now be used to create VMs to use in a Kubernetes
cluster.

Creating a Bring Your Own Cluster
Create a Kubernetes cluster using the byo provider.

These steps provide a high level overview of the process to create a Kubernetes cluster using
the byo provider. Many options are available to perform each step, so we don't provide detailed
steps. You can decide which methods and options to use in many of these steps.

Important:

The steps and commands shown here are provided as examples only and must be
adapted to suit a specific deployment.

1. (Optional) Set the location of the kubeconfig file for an existing cluster.

A Kubernetes cluster is required to perform some steps. You can use an existing cluster for
this purpose by setting the location of the kubeconfig file.

You can set this using the KUBECONFIG environment variable, or using the --kubeconfig
option with ocne commands. You could also set this in a configuration file.

If you don't set the location of the kubeconfig file, an ephemeral cluster is created using
the libvirt provider when required.

2. (Optional) Set up the libvirt provider.

If you don't set the location of an existing Kubernetes cluster, set up the localhost to
provision ephemeral clusters using the libvirt provider. For information on setting up the
libvirt provider, see Setting Up the libvirt Provider.

3. Prepare the automated Oracle Linux installation.

Decide on the method to perform an automated install of Oracle Linux on the hosts using a
Kickstart file. For example, you might want to use a network drive, a web server, or a USB
drive. You only need to provision the kernel and initrd (initial ramdisk) that matches the
boot kernel.

Chapter 8
Creating a Bring Your Own Cluster

8-7

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

We recommend you use an Oracle Linux UEK boot ISO file as the boot media as it
contains the required kernel and initrd, in a smaller file size. Download Oracle Linux ISO
files from the Oracle Linux yum server.

Prepare the Oracle Linux boot media using the method you select.

For more information about the automated installation options for Oracle Linux, see Oracle
Linux 9: Installing Oracle Linux or Oracle Linux 8: Installing Oracle Linux.

4. Create an OSTree archive container image.

Use the ocne image create command to generate an OSTree archive container image,
then upload it to somewhere it can be used during the installation using the ocne image
upload command. For information on creating an OSTree image and uploading it to a
container registry, see Creating an OSTree Image for the Bring Your Own Provider.

If you don't have a container registry, you might prefer to load the OSTree archive image to
a local container runtime. For example, to load an OSTree archive file for an arm64 image
to Podman on the localhost, you might use:

podman load < $HOME/.ocne/images/ock-1.31-arm64-ostree.tar

5. Create a container to serve the OSTree image.

Use any container runtime you like, including on a Kubernetes cluster. For example, to use
an image loaded into Podman on the localhost, you might use:

podman run -d --name ock-content-server -p 8080:80 localhost/ock-
ostree:latest

6. Set up the location of Ignition files.

Decide how you want to make the Kubernetes cluster Ignition files available.

An Ignition file must be available to all hosts during their first boot. Ignition files can be
served using any of the platforms listed in the upstream Ignition documentation, for
example, using a Network File Server (NFS), or a web server. You could also embed the
Ignition configuration file directly on to the root file system of the host if the installation is
done reasonably close to when the Ignition configuration was generated.

7. Create a Kickstart file.

A Kickstart file defines an automated installation of Oracle Linux. Include the information to
use the OSTree in the installation in the Kickstart file. For information on creating a
Kickstart file, see Oracle Linux 9: Installing Oracle Linux or Oracle Linux 8: Installing
Oracle Linux.

The Kickstart file must be made available during the installation. It might be useful to
include the Kickstart file in the same location as the Ignition file, for example, using NFS, or
a web server.

The Kickstart file must include the OSTree image information, and the information about
the location of the Ignition file, if you aren't embedding this information on the root file
system. The Ignition file is created later. For example, a bare metal installation might use
something similar to:

...
services --enabled=ostree-remount
bootloader --append "rw ip=dhcp rd.neednet=1 ignition.platform.id=metal
ignition.config.url=http://myhost.example.com/ignition.ign
ignition.firstboot=1"

Chapter 8
Creating a Bring Your Own Cluster

8-8

https://yum.oracle.com/oracle-linux-isos.html
https://docs.oracle.com/en/operating-systems/oracle-linux/9/install/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/install/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/install/
https://coreos.github.io/ignition/supported-platforms/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/install/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/install/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/install/

ostreesetup --nogpg --osname ock --url http://myregistry.example.com/
ostree --ref ock
%post
%end

For information about OSTree, see the upstream OSTree documentation.

8. Create a Kubernetes cluster configuration file.

Generate a cluster configuration file that defines the Kubernetes cluster to create. Ensure
the provider is set to byo. In this example, a virtual IP of 192.168.124.230 is used. The
virtual IP must be an unused IP address in the network to be used for the Kubernetes
Cluster API Server.

For example:

provider: byo
name: byocluster
virtualIp: 192.168.122.230
providers:
 byo:
 networkInterface: enp1s0

For information on what can be included in the cluster configuration file, see Cluster
Configuration Files.

9. Generate and expose the Kubernetes cluster Ignition information.

The byo provider doesn't provision any infrastructure resources. Unlike other providers that
create Kubernetes cluster nodes automatically, the byo provider generates the Ignition
configuration that applies to the node type and cluster configuration.

Use the ocne cluster start command to generate the Ignition information that starts the
first control plane node. The syntax is:

ocne cluster start
[{-u|--auto-start-ui} {true|false}]
[{-o|--boot-volume-container-image} URI]
[{-C|--cluster-name} name]
[{-c|--config} path]
[{-n|--control-plane-nodes} integer]
[{-i|--key} path]
[--load-balancer address]
[{-P|--provider} provider]
[{-s|--session} URI]
[{-v|--version} version]
[--virtual-ip IP]
[{-w|--worker-nodes} integer]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

Use the cluster configuration file with this command, and save the output to an Ignition file.
For example:

ocne cluster start --config myconfig.yaml > ignition.ign

Chapter 8
Creating a Bring Your Own Cluster

8-9

https://ostreedev.github.io/ostree/
https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

Tip:

The Ignition file can be inspected using the jq utility, for example:

jq . < ignition_file.ign
{
 "ignition": {
 "config": {
 "replace": {
 "verification": {}
 }
 },
 "proxy": {},
 "security": {
 "tls": {}
...

Expose the Ignition file so it's available during the installation.

10. Boot the first control plane node.

Install an Oracle Linux host using the Kickstart file. The Kickstart file uses the Oracle Linux
boot ISO, the OSTree image, and the Kubernetes cluster Ignition file to set up the host.
This host is to be used as the first control plane node to start the Kubernetes cluster.

11. Start the Kubernetes cluster with the control plane node.

Use the ocne cluster start command to start the Kubernetes cluster and install any
configured software into the cluster. The syntax is:

ocne cluster start
[{-u|--auto-start-ui} {true|false}]
[{-o|--boot-volume-container-image} URI]
[{-C|--cluster-name} name]
[{-c|--config} path]
[{-n|--control-plane-nodes} integer]
[{-i|--key} path]
[--load-balancer address]
[{-P|--provider} provider]
[{-s|--session} URI]
[{-v|--version} version]
[--virtual-ip IP]
[{-w|--worker-nodes} integer]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

Use the cluster configuration file to start the cluster. For example:

ocne cluster start --config myconfig.yaml

The control plane node is used to start the cluster, install the UI, application catalog, and
any applications. The control plane node is now a single node Kubernetes cluster,
configured as specified in the cluster configuration file.

Chapter 8
Creating a Bring Your Own Cluster

8-10

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

12. Confirm the control plane node is added to the cluster.

Use the kubectl get nodes command to confirm the control plane node is added to the
cluster. This might take a few moments.

kubectl get nodes

For information on installing kubectl and setting up the kubeconfig file, see Connecting to
a Cluster.

13. Generate and expose an Ignition file for a worker node.

Use the ocne cluster join command to generate the Ignition information that joins a
worker node to the cluster. The syntax is:

ocne cluster join
[{-c|--config} path]
[{-d|--destination} path]
[{-N|--node} name]
[{-P|--provider} provider]
[{-r|--role-control-plane}]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

Use the cluster configuration file and save the output to a file. For example:

ocne cluster join --kubeconfig $HOME/.kube/kubeconfig.byocluster --config
myconfig.yaml > mycluster-join-w.ign

Important:

Set the location of the BYO cluster using the --kubeconfig command option.
This option is required for this command.

A token to join the cluster is generated by this command and the command to use this
token is displayed. The token is included in the Ignition file. You use this token to join the
worker node to the cluster in the next step.

Expose the Ignition file using the same method you used for the first control plane node.
You can either overwrite the Ignition file for the first control plane node, or edit the Kickstart
file to set the location of the worker node Ignition file.

14. Create a Kubernetes bootstrap token for a worker node.

Use the token printed from the ocne cluster join command in the previous step to join
the worker node to the cluster.

echo "chroot /hostroot kubeadm token create token" | ocne cluster console
--node node_name

This command connects to the control plane node's console using the ocne cluster
console command, and creates the token in the single node cluster that's running on that
node. The token is displayed in the output.

Chapter 8
Creating a Bring Your Own Cluster

8-11

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

Tip:

You can reuse this bootstrap token to add more nodes within the token expiration
time allocated by Kubernetes. Or you can create a token for each node.

15. Boot the worker node.

Install an Oracle Linux host using the Kickstart file. This host is to be used as the first
worker node in the Kubernetes cluster.

16. Confirm the worker node is added to the cluster.

Use the kubectl get nodes command to confirm the worker node is added to the cluster.
This might take a few moments.

kubectl get nodes

17. Generate and expose an Ignition file for a second control plane node.

Use the ocne cluster join command to generate the Ignition information that joins a
control plane node to the cluster. For example:

ocne cluster join --kubeconfig $HOME/.kube/kubeconfig.byocluster --role-
control-plane --config myconfig.yaml > mycluster-join-cp.ign

An encrypted certificate bundle and token to join the cluster are generated and displayed
by this command. The token is included in the Ignition file. You use this token and
certificate bundle to join the control plane node to the cluster in the next step.

Expose the Ignition file.

18. Create a Kubernetes bootstrap token for the second control plane node.

When adding a control plane node, two things need to be created: a join token, and an
encrypted certificate bundle. These were dynamically created by the ocne cluster join
command in the previous step.

Create the certificate bundle:

echo "chroot /hostroot kubeadm init phase upload-certs --certificate-key
certificate-key --upload-certs" | ocne cluster console --node node_name

This command connects to the control plane node's console using the ocne cluster
console command, and creates the certificate bundle in the cluster.

Create the join token:

echo "chroot /hostroot kubeadm token create token" | ocne cluster console
--node node_name

19. Boot the second control plane node.

Install an Oracle Linux host using the Kickstart file. This host is to be used as the second
control plane node in the Kubernetes cluster.

Chapter 8
Creating a Bring Your Own Cluster

8-12

20. Confirm the control plane node is added to the cluster.

kubectl get nodes

While control plane nodes are joining the cluster, there might be periodic errors reported by
kubectl as control plane components adapt to the new node. These errors stop after a few
seconds if the node is correctly added to the cluster.

21. Repeat the process to add worker or control plane nodes as needed.

Connecting to a Cluster
Use the kubectl package to connect to a Kubernetes cluster.

After creating a Kubernetes cluster, a Kubernetes configuration file is created so you can
access the cluster using the kubectl command. Install kubectl on the localhost (the host with
ocne installed on which you created the cluster). If you install kubectl on a different system,
copy the kubeconfig file to the system.

1. Install the kubectl package on the localhost.

sudo dnf install kubectl

2. Set the kubeconfig file location using an environment variable.

export KUBECONFIG=$HOME/.kube/kubeconfig.cluster_name

Replace cluster_name with the name you used to create the cluster. The default is ocne.

3. (Optional) Persist the environment variable.

Add the environment variable to the .bashrc file:

echo 'export KUBECONFIG=$HOME/.kube/kubeconfig.cluster_name'
>> $HOME/.bashrc

4. Verify that you can use kubectl to connect to the cluster.

For example:

kubectl get deployments --all-namespaces

Migrate Cluster Nodes
Describes migrating a node between Kubernetes cluster using the byo provider.

Nodes in a Kubernetes cluster can be migrated from one cluster to another.

Migrating a node from one cluster to another is most useful when it's not feasible to coordinate
adding the key material necessary to join a node to an existing cluster at the same time the
host is provisioned. In these cases, the easiest path forward is to create a single node cluster
and move the node to the target cluster. In this way, it's possible to stitch together several small
clusters into a single, larger, cluster.

Chapter 8
Connecting to a Cluster

8-13

Note:

A host running the OCK image always includes a Kubernetes cluster, even if it's a
single node cluster.

Migrating nodes between clusters serves two use cases. Nodes can be reallocated to adjust
cluster capacity based on short term requirements, without the need to fully reprovision the
node. Or, nodes can be provisioned, and added to a cluster at a later time.

Migrating nodes between clusters might be useful where infrastructure management schemes
don't have any service level agreements between when a request to provision a system, or set
of systems, is created, and when that request is fulfilled. For example, a cluster administrator
requires 8 nodes and the IT department fulfills the request for the resources on an unknown
timetable, handing over the access information after the nodes are available. The administrator
isn't necessarily told when the resources are provisioned, or even provided with a timetable.
This means it's difficult to guarantee that any key material required for a node to join a cluster
(certificate keys, and join tokens) is valid when the new systems first boot. Even if coordination
were possible, the IT department must also understand Kubernetes cluster management
enough to perform any manual cluster provisioning. This isn't a feasible work flow for the
typical Bring Your Own (BYO) cluster.

To solve the use case described, the intended path is to ask the IT department to make some
number of nodes. Each of those systems boot automatically to single node clusters. The
administrator then gathers these nodes and builds the cluster topology they require by
migrating each node into the larger cluster.

Two Kubernetes clusters are required. While they can be installed using any method, the
intended use case is to either boot a host with OCK installed, but unconfigured, or to merge
two BYO clusters.

You can migrate nodes with similar configurations, and Kubernetes versions, between clusters.
The Kubernetes version on the source and target clusters doesn't need to be the same, but it
must be close enough. Close enough means that they must be in the same minor Kubernetes
release, or the previous minor release. For example, they must both be running Kubernetes
Release 1.31.x, or running one minor release earlier, such as Release 1.30.x.

The ocne cluster join command is used to migrate a node from one cluster to another. You
provide the source and target cluster configuration information (the kubeconfig file), and the
name of the node to migrate. The name of the node must be the same as displayed when
using the kubectl get nodes command. The name of the node isn't changed when it's
migrated. The node name stays the same.

Nodes are migrated as worker nodes, unless you specify the --role-control-plane node
option of the ocne cluster join command.

You can also use the ocne cluster join command to generate the Ignition information to join
a node to a BYO cluster. For example:

ocne cluster join --kubeconfig $HOME/.kube/kubeconfig.mycluster --config
byo.yaml > worker.ign

Chapter 8
Migrate Cluster Nodes

8-14

Important:

Migrating the last control plane node in a cluster destroys that cluster. Ensure you
migrate, or remove, all worker nodes first.

Migrating a Cluster Node
Migrate a Kubernetes cluster node, created with the byo provider, to another cluster.

Migrating a node from one cluster to another requires the kubeconfig file for each cluster, and
the name of the node to migrate. The name of the node must be the same as displayed using
the kubectl get nodes command.

Set the location of the source cluster using the --kubeconfig command option. This option is
required for this command.

1. Get the kubeconfig files.

You most likely have the kubeconfig file for the target cluster, but in some situations you
might not have this information for the source cluster node (the node to migrate). You can
get the Kubernetes configuration information by logging into the node as the ocne user
using SSH. When you log in, the Kubernetes configuration information for the node is
displayed. Save this information to a local file to use for the source kubeconfig file.

For information the ocne user credentials, see OCK Image User.

2. Join the node to the target cluster.

Use the ocne cluster join command to migrate the node to the target cluster. The
syntax to use is:

ocne cluster join
[{-c|--config} path]
[{-d|--destination} path]
[{-N|--node} name]
[{-P|--provider} provider]
[{-r|--role-control-plane}]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

For example:

To migrate a node from one cluster to another BYO cluster:

ocne cluster join --kubeconfig $HOME/.kube/kubeconfig.mycluster --provider
byo --node source-worker-1 --destination $HOME/.kube/
kubeconfig.targetcluster

To migrate a node from one cluster to another BYO cluster, and assign it as a control plane
node:

ocne cluster join --kubeconfig $HOME/.kube/kubeconfig.mycluster --provider
byo --node source-worker-1 --destination $HOME/.kube/
kubeconfig.targetcluster --role-control-plane

Chapter 8
Migrate Cluster Nodes

8-15

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

Deleting a Cluster
Delete a Kubernetes cluster.

Use the ocne cluster delete command to delete the cluster. They syntax to use is:

ocne cluster delete
[{-C|--cluster-name} name]
[{-c|--config} URI]
[{-P|--provider} provider]
[{-s|--session} URI]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

Example 8-1 Delete a cluster using the cluster name

To delete a cluster named mycluster:

ocne cluster delete --cluster-name mycluster

Example 8-2 Delete a cluster using a configuration file

To delete a cluster created using a configuration file:

ocne cluster delete --config myconfig.yaml

Chapter 8
Deleting a Cluster

8-16

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

9
UI

Introduces the Oracle CNE User Interface (UI).

The Oracle CNE UI provides a web-based interface to manage the maintenance and
installation of Kubernetes cluster resources, and applications.

The UI runs in the Kubernetes cluster as a deployment named ui, running in the ocne-system
namespace. A deployment named ocne-catalog also runs in the ocne-system namespace to
serve the application catalog.

The UI is based on the open source Kubernetes UI Headlamp application. For more
information on the Headlamp project, see the upstream Headlamp documentation.

Creating an Access Token
Create an access token to authenticate a connection to the UI.

The UI is deployed into the cluster as a Kubernetes deployment named ui, running in the
ocne-system namespace. A Kubernetes service to access this deployment is also created. The
service is also named ui and running in the ocne-system namespace. To connect to the
service, generate an access token.

1. Create an access token.

Create an access token for the ui service:

kubectl --namespace ocne-system create token ui

The token is displayed.

2. Save the token.

Save the token in a secure location so you can use it to authenticate a connection when
you access the UI.

Exposing the UI Using Port Forwarding
Expose the UI service using port forwarding.

Port-forwarding is a convenient way of exposing the UI service on the localhost for debugging
and troubleshooting in a development environment.

Important:

We don't recommend you use port-forwarding to expose the UI in a production
environment.

1. Generate UI access token.

9-1

https://headlamp.dev/

Generate the access token needed for authenticating a connection to the UI. For
information on creating an access token, see Creating an Access Token.

2. Set up port forwarding.

Set up port forwarding by running the following command:

kubectl port-forward --namespace ocne-system service/ui 8443:443

Note:

You must let the kubectl port-forward command continue to run for the time
you need access to the UI.

3. Access to the UI.

You can access the UI on the localhost using a web browser. Open a browser session and
enter the following address:

https://127.0.0.1:8443

The Authentication page is displayed.

Tip:

You can access the UI on the localhost from a remote machine by using local
port forwarding. For example, to enable incoming connections to localhost on
port 9898, enter the following command on the remote machine:

ssh -L 9898:127.0.0.1:8443 myuser@myhost.example.com

4. Enter the access token.

Enter the access token into the ID token field on the Security page and click
AUTHENTICATE.

The UI application uses the token to authenticate the connection and the Overview page
appears.

Adding the UI and Application Catalogs into a Cluster
Install the UI and application catalogs into an existing Oracle CNE Release 1 Kubernetes
cluster.

Use these steps to install the UI and default application catalog into an Oracle CNE Release 1
Kubernetes cluster. Any extra catalogs set up in a configuration file are also installed.

The target cluster must be healthy. You must provide the kubeconfig file for the target cluster.

1. Install the UI and catalogs.

Chapter 9
Adding the UI and Application Catalogs into a Cluster

9-2

Use the ocne cluster start with the --provider option set to none and specify the
location of the target cluster's kubeconfig file. The syntax is:

ocne cluster start
[{-u|--auto-start-ui} {true|false}]
[{-o|--boot-volume-container-image} URI]
[{-C|--cluster-name} name]
[{-c|--config} path]
[{-n|--control-plane-nodes} integer]
[{-i|--key} path]
[--load-balancer address]
[{-P|--provider} provider]
[{-s|--session} URI]
[{-v|--version} version]
[--virtual-ip IP]
[{-w|--worker-nodes} integer]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

For example:

ocne cluster start --provider none --kubeconfig $HOME/.kube/
kubeconfig.ocne19

2. Set the kubeconfig file location using an environment variable.

To access the cluster, set an environment variable to access the Oracle CNE Release 1
cluster. For example:

export KUBECONFIG=$HOME/.kube/kubeconfig.ocne19

3. Configure access to the UI.

Follow the prompts in the output of the ocne cluster start command to set up an access
token for the UI. For more information on setting up an access token, see Creating an
Access Token.

4. Verify the catalogs are installed.

Use the ocne catalog list command to verify the Oracle application catalog, and any
external catalogs are installed. The syntax is:

ocne catalog {list|ls}

For example:

ocne catalog list

5. Verify the list of available applications.

Use the ocne catalog search command to see the list of applications available in each
catalog. The syntax is:

ocne catalog search
[{-N|--name} name]
[{-p|--pattern} pattern]

Chapter 9
Adding the UI and Application Catalogs into a Cluster

9-3

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

For example, to list all the applications available in the Oracle catalog:

ocne catalog search

Chapter 9
Adding the UI and Application Catalogs into a Cluster

9-4

10
Cluster Administration

Describes administration of Kubernetes clusters using the CLI.

This chapter contains information on using the CLI to administer Kubernetes clusters.

Cluster Updates
The ocne node update command is used to update the Oracle Container Host for Kubernetes
(OCK) image on nodes in the cluster. Updating the OCK image is used for patch updates, and
for minor Kubernetes updates.

Cluster Backups
Backups of a cluster can be done with the ocne cluster backup command.

Cluster Analysis
The ocne cluster dump and ocne cluster analyze commands are used to create and
analyze a dump of cluster and node data from a Kubernetes cluster. Analyzing a cluster is
useful for debugging and getting detailed information about a cluster.

OS Console
The ocne cluster console command is used to connect to the OS console of a node in a
cluster. The console provides a method to connect to the host in a chrooted environment to
perform debugging or inspection of the host's OS.

Cluster Updates
Learn how to update a Kubernetes cluster by updating the Oracle Container Host for
Kubernetes (OCK) image on each Kubernetes node.

This section shows you how to update nodes to the latest Kubernetes patch release, or to
update them to the next Kubernetes minor release.

Patch releases include errata updates and might include Common Vulnerabilities and
Exposures (CVE) fixes, Kubernetes updates, OS updates, and so on. An update to the next
Kubernetes minor version is performed in the same way as patch updates, with one extra step
to set the Kubernetes version number.

Oracle CNE delivers all updates through updated Oracle Container Host for Kubernetes (OCK)
images. Updates are delivered through an OCK image that's specific to the Kubernetes minor
version, for example for Kubernetes Release 1.31.

Each node periodically polls the container registry to check for updates to the OCK image it's
running, or for an image for the target Kubernetes version if you're upgrading Kubernetes.
When you set the Kubernetes version for an upgrade, the image for that version is pulled and
staged on the nodes in the cluster. Patch updates are downloaded to each node automatically
and don't need to be staged before a node update.

When an update is available, use the ocne node update command to reboot a node to use the
new image. Running the ocne node update command for a node completes the following
actions:

10-1

1. The node is drained (using the kubectl drain command) from the cluster. This evicts the
pods from the node.

2. The host OCK image is installed on the node, and the node is restarted.

3. The node is returned to the cluster (using the kubectl uncordon command) and is made
available to run pods.

Update nodes sequentially, starting with the control plane nodes.

Tip:

To save time, you can start the update process as soon as one of the control plane
nodes has been annotated as having an update available.

You can update a Highly Available cluster without bringing the cluster down. As one control
plane node is taken offline, another control plane node takes control of the cluster. In a cluster
with a single control plane node, the control plane node is offline for a short time while the
update is performed.

If applications are running on more than one worker node, they remain up, and available,
during an update.

Best Practices for Cluster Updates
Learn about best practices for updating Kubernetes clusters.

The following list describes best practices to be followed when updating a Kubernetes cluster
in a production environment:

Back up etcd database
In the rare event of an OCK image update failure, the update is rolled back to the previous
OCK image. The host reboots into the previous OCK image and rejoins the cluster. However,
despite such safeguards being in place, we recommend you follow best practice and back up
the etcd database before updating a cluster.

Update control plane nodes before worker nodes
Always update the nodes in the control plane first, one node at a time. Confirm the update on
the control plane node you're working on has completed, and that the node has rejoined the
cluster, before starting an update on another node.

Update nodes immediately after staging a new Kubernetes version
When you stage an image for a Kubernetes minor upgrade, the cluster stops polling for patch
updates for the current version. Therefore, apply the upgrade as soon as possible.

Check Kubernetes rules
Certain Kubernetes configurations might prevent a node from being taken offline for upgrade.
For example, the minAvailable field of the PodDisruptionBudget object sets the minimum
number of pods that must always be available. For a node to be taken offline, you might need
to increase the number of running pods to exceed the number set in the minAvailable field.
For more information about PodDisruptionBudgets see the upstream Kubernetes
documentation.

Chapter 10
Cluster Updates

10-2

https://kubernetes.io/docs/concepts/workloads/pods/disruptions/#how-disruption-budgets-work
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/#how-disruption-budgets-work

Tip:

You can also use the --disable-eviction option with the ocne node update
command to bypass PodDisruptionBudget and force pods to be deleted during the
draining process. Use with caution.

Kubernetes Patch Updates
Describes updating to Kubernetes patch releases.

When an image update is detected, the image is automatically pulled, verified, and staged on
each node. After the image has been staged, the node is annotated to show an update is
available.

You can check whether nodes have an available update using the ocne cluster info
command. When an OCK image is ready to install, the output of this command shows the
Update Available field is set to true for a node.

Note:

We recommend you run the ocne cluster info command often to check for
updates. If you miss an update, and a new one becomes available, the latest one is
pulled and staged and ready to use. The latest patch image is always made available
on the node. If you miss a patch update, you can install the latest.

When an update is staged, use the ocne node update command to reboot the node to use the
new image.

Installing a Kubernetes Patch Release
Update the Oracle Container Host for Kubernetes (OCK) image on Kubernetes nodes to install
the latest Kubernetes patch release.

Each node in a Kubernetes cluster periodically polls the container registry to check for patch
updates to the Oracle Container Host for Kubernetes (OCK) image it's running. When an
update is detected, the image is automatically pulled, verified, and staged on each node, and
the nodes are annotated to show an update is available.

1. Confirm an update is available for the cluster nodes.

Use the ocne cluster info command to confirm the nodes are staged with an updated
OCK image. Use the syntax:

ocne cluster info
[{-N|--node}] nodename, ...
[{-s|--skip-nodes }]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

Chapter 10
Cluster Updates

10-3

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

For example:

ocne cluster info

When an OCK image is available, staged, and ready to install, the output of this command
shows the Update Available field to be true for a node.

2. Update the control plane nodes.

Update the control plane nodes, one node at a time, with the staged OCK image.

Use the ocne node update command to update each node. Use the syntax:

ocne node update
[{-d|--delete-emptydir-data}]
[{-c|--disable-eviction}]
{-N|--node} name
[{-p|--pre-update-mode} mode]
[{-t|--timeout} minutes]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

For example:

ocne node update --node mynode

Replace mynode with the name of the control plane node.

Tip:

After each node is updated, use the ocne cluster info command to check the
update is complete. Node updates are asynchronous. The update is complete
only when the output to this command reports an update is no longer available
for a node.

3. Update the worker nodes.

Use the ocne node update command to update each worker node.

Kubernetes Minor Updates
Describes updating to Kubernetes minor releases.

You can upgrade a cluster to the next Kubernetes minor version when an OCK image becomes
available for that version. To do this, you use the ocne cluster stage command to set the
target Kubernetes version.

The target Kubernetes version must be the next available minor version. For example, to
upgrade from Kubernetes Release 1.29 to 1.31, first set the target Kubernetes release to 1.30
and update all the nodes, then set the target version to 1.31 and update the nodes again.

The nodes then poll the container registry for an OCK image for the target Kubernetes version.
When an image is available the nodes pull and stage the image, and the nodes are annotated
to show an update is available, in the same way as patch updates. Again, you then manually
update each node using the ocne node update command.

Chapter 10
Cluster Updates

10-4

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

Tip:

If the cluster is running on OCI, and provisioned with oci provider, you can also
update to a Kubernetes minor version using the Kubernetes Cluster API controllers.
Using the Cluster API to upgrade provisions new compute instances using the new
OCK image, instead of upgrading existing nodes, one at a time. For information on
upgrading clusters provisioned with the oci provider, see Upgrading to a Kubernetes
Minor Release.

Upgrading to a Kubernetes Minor Release
Update the Oracle Container Host for Kubernetes (OCK) image on Kubernetes nodes to
upgrade to the next Kubernetes minor release.

Upgrade a Kubernetes cluster to the next minor Kubernetes version when an Oracle Container
Host for Kubernetes (OCK) image becomes available for that version. Use the ocne cluster
stage command to set the target Kubernetes version.

1. Set the target Kubernetes version.

Use ocne cluster stage command to stage the target Kubernetes version. The syntax to
use is:

ocne cluster stage
[{-c|--config} path]
[{-r|--os-registry} registry]
[{-t|--transport} transport]
{-v|--version} version

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

For example:

ocne cluster stage --version 1.31

2. Confirm an update is available for the cluster nodes.

Use the ocne cluster info command to confirm the nodes are staged with an updated
OCK image. Use the syntax:

ocne cluster info
[{-N|--node}] nodename, ...
[{-s|--skip-nodes }]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

For example:

ocne cluster info

When an OCK image is available, staged, and ready to install, the output of this command
shows the Update Available field to be true for a node.

3. Update the control plane nodes.

Chapter 10
Cluster Updates

10-5

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/
https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

Update the control plane nodes, one node at a time, with the staged OCK image.

Use the ocne node update command to update each node. Use the syntax:

ocne node update
[{-d|--delete-emptydir-data}]
[{-c|--disable-eviction}]
{-N|--node} name
[{-p|--pre-update-mode} mode]
[{-t|--timeout} minutes]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

For example:

ocne node update --node mynode

Replace mynode with the name of the control plane node.

Tip:

After each node is updated, use the ocne cluster info command to check the
update is complete. Node updates are asynchronous. The update is complete
only when the output to this command reports an update is no longer available
for a node.

4. Update the worker nodes.

Use the ocne node update command to update each worker node.

5. Confirm Kubernetes has been upgraded.

Use the kubectl get nodes command to confirm all nodes have been upgraded and are
listed with the updated Kubernetes version.

kubectl get nodes

Cluster Backups
Learn about backing up a Kubernetes cluster using the CLI.

Adopting a back up strategy to protect a Kubernetes cluster against control plane node failures
is important, especially for clusters with only one control plane node. High availability clusters
with many control plane nodes also need a fallback plan if the resilience provided by the
replication and fail over functionality has been exceeded.

The state for Kubernetes clusters is maintained in an etcd database. Access to the database is
shared between all Kubernetes API Server instances. Taking regular backups of the etcd
database is a critical part of a Kubernetes disaster recovery plan.

Typically, the backup contains sensitive data, such as Kubernetes Secret objects, so care must
be taken to store the backups in a secure location.

Chapter 10
Cluster Backups

10-6

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

If restoring from an etcd backup is part of a disaster recovery strategy, the integrity of the
backup file is important. Backups must therefore be stored in a location with integrity
safeguards.

Important:

Only the key containers required for the Kubernetes control plane node are backed
up. No application containers are backed up.

You don't need to bring down the cluster to perform a back up as part of a disaster recovery
plan. Use the ocne cluster backup command to back up the key containers and manifests for
all the control plane nodes in the cluster (the etcd database).

Important:

The CLI doesn't provide a command to restore a cluster from an etcd database
backup. For information on restoring a cluster using the etcd backup, see the
upstream Kubernetes documentation.

Backing Up a Cluster
Back up the etcd database for a Kubernetes cluster using the ocne cluster backup
command.

Use the ocne cluster backup command to back up the etcd database for a Kubernetes
cluster. The syntax is:

ocne cluster backup
{-o|--out} path

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

Example 10-1 Back up the etcd database for a cluster

To back up the etcd database for a cluster to the current directory:

ocne cluster backup --out mybackup.db

Analyzing a Cluster
Perform analysis on the state of Kubernetes cluster using the ocne cluster analyze
command.

This might be useful for debugging any issues with the Kubernetes cluster.

You can create a set of dump files to analyze using the ocne cluster dump command. Or you
can analyze a live, running, cluster without first creating a set of dump files.

1. (Optional) Generate dump files of the Kubernetes cluster.

Chapter 10
Analyzing a Cluster

10-7

https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

Use the ocne cluster dump command to generate a dump file of the Kubernetes cluster.
The syntax to use is:

ocne cluster dump
[{-c|--curated-resources}]
[{-z|--generate-archive} path]
[{-m|--include-configmaps}]
[--json]
[--managed]
[{-n|--namespaces} namespace,...]
[{-N|--nodes} nodename, ...]
[{-d|--output-directory} path]
[{-r|--skip-cluster}]
[{-s|--skip-nodes}]
[{-p|--skip-pod-logs}]
[{-t|--skip-redaction}]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

For example:

ocne cluster dump --output-directory $HOME/dump

2. Analyze the state of the cluster.

Use the ocne cluster analyze command to analyze the state of the cluster. The syntax
is:

ocne cluster analyze
[{-d|--dump-directory} path]
[{-s|--skip-nodes}]
[{-p|--skip-pod-logs}]
[{-v|--verbose}]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

For example:

To analyze a live cluster:

ocne cluster analyze

To analyze a live cluster without including node data:

ocne cluster analyze --skip-nodes

To perform a basic analysis of cluster dump files:

ocne cluster analyze --dump-directory $HOME/dump/

To display more detailed information of cluster dump files:

ocne cluster analyze --dump-directory $HOME/dump/ --verbose

Chapter 10
Analyzing a Cluster

10-8

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/
https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

OS Console
Learn how to access a Kubernetes node's OS console using the ocne cluster console
command.

Oracle CNE systems are administered through Kubernetes. If you need to directly access a
node's OS for debugging and testing purposes, use the ocne cluster console command to
start an administration console.

The console can be started with extra debugging tools that can be used for investigation and
diagnosis purposes, by including the --toolbox option.

The ocne cluster console command can also be used with the -- command option to run
commands on a node, without directly interacting with the shell. This might be helpful to return
information about a node, without connecting directly to the console.

By default, the console session starts with the initial working directory set to root (/). If you
need to access services that run on the node itself, for example the ocne-update.service, you
can run the chroot /hostroot command, and chroot to the local file system of the node. Or,
you can start the console session already chrooted to the node file system, using the --
direct option.

The ocne cluster console command is the method you use to access a node's OS in the
cluster. The only reason to access a node using some other method, such as SSH, or a serial
console, is when the node can't be accessed using this method.

For information on the credentials to use for SSH, see OCK Image User.

Accessing a Node's OS Console
Access a Kubernetes node's OS console using the ocne cluster console command.

1. Get the name of the node.

Use the kubectl get nodes command to find the name of the node you want to access.

kubectl get nodes

2. Connect to the node's console.

Use the ocne cluster console command to access the console of a node. The syntax is:

ocne cluster console
[{-d|--direct}]
{-N|--node} nodename
[{-t|--toolbox}]
[-- command]

For more information on the syntax options, see Oracle Cloud Native Environment: CLI.

For example:

ocne cluster console --direct --node mynode

Chapter 10
OS Console

10-9

https://docs.oracle.com/en/operating-systems/olcne/2.0/cli/

The preceding line of code starts a chroot session on the node and a terminal prompt is
displayed. When you're finished using the console, enter exit to end the console session.

3. Pass a command for the console to run.

The ocne cluster console command can be used with the -- command option to run
commands on a node, without directly interacting with the shell. For example, to find the IP
address of the node, you can run:

ocne cluster console --direct --node ocne-control-plane-1 -- ip addr | head

Chapter 10
OS Console

10-10

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Introduction
	2 Cluster Configuration Files
	Cluster Configuration File Options
	libvirt Provider Options
	OCI Provider Options
	Bring Your Own Provider Options

	Configuration File Examples

	3 Oracle Container Host for Kubernetes Image
	OCK Image User
	Custom Images
	OSTree Archive Images

	4 Application Catalog Mirrors
	Mirroring an Application Catalog

	5 Proxy Servers
	Setting a Proxy Server for the CLI
	Setting a Proxy Server for the Kubernetes Cluster
	Setting a Proxy Server for the UI

	6 libvirt Provider
	Setting Up the libvirt Provider
	Creating a libvirt Cluster
	Connecting to a Cluster
	Deleting a Cluster

	7 OCI Provider
	Setting Up the OCI Provider
	Cluster API Templates
	Cluster API Template Files
	Creating a Cluster API Template
	Using an Existing VCN

	OCI Compute Images
	Creating an OCK Image for the OCI Provider

	Create a Cluster on OCI
	Creating an OCI Cluster
	Monitoring a Cluster Installation

	OCI Components
	Connecting to a Cluster
	Scale a Cluster
	Scaling Worker Nodes in an OCI Cluster
	Scaling Control Plane Nodes in an OCI Cluster

	Upgrading to a Kubernetes Minor Release
	Delete a Cluster
	Deleting an OCI Cluster

	8 Bring Your Own Provider
	OS Image
	Oracle Linux ISO Images
	OSTree Archive Server
	Creating an OSTree Image for the Bring Your Own Provider

	Creating a Bring Your Own Cluster
	Connecting to a Cluster
	Migrate Cluster Nodes
	Migrating a Cluster Node

	Deleting a Cluster

	9 UI
	Creating an Access Token
	Exposing the UI Using Port Forwarding
	Adding the UI and Application Catalogs into a Cluster

	10 Cluster Administration
	Cluster Updates
	Best Practices for Cluster Updates
	Kubernetes Patch Updates
	Installing a Kubernetes Patch Release
	Kubernetes Minor Updates
	Upgrading to a Kubernetes Minor Release

	Cluster Backups
	Backing Up a Cluster

	Analyzing a Cluster
	OS Console
	Accessing a Node's OS Console

