
Oracle Cloud Native Environment
Installation for Release 1.9

F93849-03
June 2024

Oracle Cloud Native Environment Installation for Release 1.9,

F93849-03

Copyright © 2022, 2024, Oracle and/or its affiliates.

Contents

 Preface

Documentation License vi

Conventions vi

Documentation Accessibility vi

Access to Oracle Support for Accessibility vi

Diversity and Inclusion vi

1 Host Requirements

Hardware Requirements 1-1

Kubernetes Control Plane Node Hardware 1-2

Kubernetes Worker Node Hardware 1-2

Operator Node Hardware 1-2

Kubernetes High Availability Requirements 1-3

Istio Module Requirements 1-3

Rook Module Requirements 1-3

OS Requirements 1-4

2 Prerequisites

Enabling Access to the Software Packages 2-1

Oracle Linux 9 2-1

Enabling Repositories with the Oracle Linux Yum Server 2-1

Enabling Channels with ULN 2-2

Oracle Linux 8 2-3

Enabling Repositories with the Oracle Linux Yum Server 2-3

Enabling Channels with ULN 2-4

Accessing the Oracle Container Registry 2-5

Using an Oracle Container Registry Mirror 2-5

Using a Private Registry 2-5

Setting up the OS 2-6

Setting up a Network Time Service 2-7

Disabling Swap 2-7

Configuring Access for the Platform Agent 2-7

iii

Setting up the Network 2-7

Setting up the Firewall Rules 2-9

Non-HA Cluster Firewall Rules 2-10

Highly Available Cluster Firewall Rules 2-10

Setting up Other Network Options 2-11

Internet Access 2-11

nftables Rule on Oracle Linux 9 2-11

Flannel Network 2-12

br_netfilter Module 2-12

Bridge Tunable Parameters 2-12

Network Address Translation 2-13

Setting FIPS Mode 2-13

Setting Up SSH Key-based Authentication 2-14

3 Installing Oracle Cloud Native Environment

Installation Overview 3-1

Setting up the Nodes 3-1

Setting up the Operator Node 3-2

Setting up Kubernetes Nodes 3-2

Configuring a Proxy Server 3-3

Setting up a Load Balancer for Highly Available Clusters 3-3

Setting up an External Load Balancer 3-3

Setting up a Load Balancer on Oracle Cloud Infrastructure 3-4

Setting up the Internal Load Balancer 3-4

Setting up Certificates for Kubernetes Nodes 3-5

Setting up Vault Authentication 3-5

Setting up CA Certificates 3-6

Setting up Private CA Certificates 3-6

Distribute Node Certificates 3-6

Distribute Extra Node Certificates 3-8

Setting up Certificates for the Platform CLI to the Platform API Server 3-9

Generate Certificates for the Platform CLI to the Platform API Server 3-10

Setting up Certificates for the externalIPs Kubernetes Service 3-11

Setting up Vault Certificates 3-11

Setting up CA Certificates 3-12

Setting up Private CA Certificates 3-13

Generate Certificates for ExternalIPs Service 3-13

Starting the Platform API Server and Platform Agent Services 3-14

Starting the Services Using Vault 3-15

Starting the Services Using Certificates 3-16

iv

4 Creating an Environment

Creating an Environment using Certificates Managed by Vault 4-1

Creating an Environment using Certificates 4-2

5 Installing Modules

Kubernetes Module 5-1

Calico Module 5-1

Multus Module 5-1

Oracle Cloud Infrastructure Cloud Controller Manager Module 5-1

MetalLB Module 5-1

Rook Module 5-1

KubeVirt Module 5-2

Operator Lifecycle Manager Module 5-2

NGINX Ingress Controller Module 5-2

Istio Module 5-2

6 Configuring Services

Configuring the Platform API Server 6-1

Configuring the Platform Agent 6-2

v

Preface

This document contains information about Oracle Cloud Native Environment. It includes
information on installing and configuring Oracle Cloud Native Environment.

Documentation License
The content in this document is licensed under the Creative Commons Attribution–Share Alike
4.0 (CC-BY-SA) license. In accordance with CC-BY-SA, if you distribute this content or an
adaptation of it, you must provide attribution to Oracle and retain the original copyright notices.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which you supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that you enter.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility
Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://www.oracle.com/corporate/accessibility/learning-
support.html#support-tab.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and

Preface

vi

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

vii

1
Host Requirements

This chapter describes the hardware and OS requirements for the hosts in Oracle Cloud Native
Environment.

Hardware Requirements
Oracle Cloud Native Environment is a clustered environment that requires more than one node
to form a cluster. You can install Oracle Cloud Native Environment on any of the following
server types:

• Bare-metal server

• Oracle Cloud Infrastructure bare-metal instance

• Oracle Cloud Infrastructure virtual instance

• Oracle Linux Kernel-based Virtual Machine (KVM) instance

• Oracle Private Cloud Appliance virtual instance

• Oracle Private Cloud at Customer virtual instance

Oracle Cloud Native Environment is available on hardware that uses 64-bit x86 or 64-bit ARM
processors. Oracle Cloud Native Environment automatically detects the processor type during
an installation and no extra installation steps are required. You can have mixed processor
types in a Kubernetes cluster, so you can use 64-bit x86 and 64-bit ARM nodes in the same
cluster.

Important:

KubeVirt and Kata Containers require bare metal ARM hosts. Nested virtualization is
needed on virtual hosts to create virtual machines using the KubeVirt module, and to
create Kata Containers. Nested virtualization isn't available on virtual ARM instances.

Oracle Cloud Native Environment doesn't require specific hardware, but certain operations are
CPU and memory intensive. For a list of certified bare-metal servers, see the Oracle Linux
Hardware Certification List at:

https://linux.oracle.com/hardware-certifications

For information on the current Oracle x86 Servers, see:

https://www.oracle.com/servers/x86/

For information on 64-bit ARM compute nodes on Oracle Cloud Infrastructure, see:

https://www.oracle.com/cloud/compute/arm/

For information on creating an Oracle Linux KVM instance, see Oracle® Linux: KVM User's
Guide.

1-1

https://linux.oracle.com/hardware-certifications
https://www.oracle.com/servers/x86/
https://www.oracle.com/cloud/compute/arm/
https://docs.oracle.com/en/operating-systems/oracle-linux/kvm-user/
https://docs.oracle.com/en/operating-systems/oracle-linux/kvm-user/

The installation instructions for Oracle Private Cloud Appliance and Oracle Private Cloud at
Customer, and information about the Oracle Cloud Native Environment releases that can be
installed, are available in the Oracle Private Cloud Appliance and Oracle Private Cloud at
Customer documentation at:

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/

The hardware requirements listed here are for the absolute minimum to run Oracle Cloud
Native Environment. A deployment is highly likely to require nodes with a larger footprint.

For a list of the cloud platforms and hypervisors you can use with Oracle Cloud Native
Environment, see Doc ID 2899157.1 in My Oracle Support.

Kubernetes Control Plane Node Hardware
The Kubernetes control plane is the container orchestration layer that exposes the Kubernetes
API and interfaces to create and manage the lifecycle of containers. The nodes that form the
Kubernetes control plane are referred to as control plane nodes. A control plane node is a host
that runs the daemons and services needed to manage the cluster and orchestrate containers,
such as the Oracle Cloud Native Environment Platform Agent, etcd, the Kubernetes API
Server, Scheduler, Controller Manager, and Cloud Controller Manager.

A minimum Kubernetes control plane node configuration is:

• 4 CPU cores (Intel VT-capable CPU)

• 16GB RAM

• 1GB Ethernet NIC

• XFS file system (the default file system for Oracle Linux)

• 40GB hard disk space in the /var directory

Kubernetes Worker Node Hardware
A Kubernetes worker node is a host that runs the daemons and services needed to run pods,
such as the Platform Agent, kubelet, kube-proxy, CRI-O, RunC, and Kata Runtime.

A minimum Kubernetes worker node configuration is:

• 1 CPU cores (Intel VT-capable CPU)

• 8GB RAM

• 1GB Ethernet NIC

• XFS file system (the default file system for Oracle Linux)

• 15GB hard disk space in the /var directory

• XFS mount-point /var/lib/containers with dedicated space based on the number of
container images going to be saved and leveraged.

Operator Node Hardware
An operator node is a host that contains the Oracle Cloud Native Environment Platform CLI.
This node might also include the Oracle Cloud Native Environment Platform API Server.

A minimum operator node configuration is:

• 1 CPU cores (Intel VT-capable CPU)

Chapter 1
Hardware Requirements

1-2

https://docs.oracle.com/en/engineered-systems/private-cloud-appliance/
https://support.oracle.com/epmos/faces/DocContentDisplay?id=2899157.1
https://support.oracle.com/portal/

• 8GB RAM

• 1GB Ethernet NIC

• 15GB hard disk space in the /var directory

Kubernetes High Availability Requirements
A minimum high availability (HA) configuration for a Kubernetes cluster is:

• 3 Kubernetes control plane nodes. At least 5 control plane nodes is recommended.

• 2 Kubernetes worker nodes. At least 3 worker nodes is recommended.

Important:

The number of control plane nodes must be an odd number equal to or greater than
three, for example, 3, 5, or 7.

Istio Module Requirements
A minimum configuration for deploying the Istio module for Oracle Cloud Native Environment
is:

• 1 Kubernetes control plane node

• 2 Kubernetes worker nodes

These requirements are the minimum needed to successfully deploy Istio into a Kubernetes
cluster. However, as a cluster expands and more nodes are added, Istio requires more
hardware resources.

Rook Module Requirements
The Rook module deploys Ceph as containers to the Kubernetes worker nodes. You need at
least three worker nodes in the Kubernetes cluster.

In addition, at least one of these local storage options must be available on the Kubernetes
worker nodes:

• Raw devices (no partitions or formatted file systems).

• Raw partitions (no formatted file system).

• LVM Logical Volumes (no formatted file system).

• Persistent Volumes available from a storage class in block mode.

Tip:

Use the lsblk -f command to ensure no file system is on the device or partition. If
the FSTYPE field is empty, no file system is on the disk and it can be used with Ceph.

Chapter 1
Hardware Requirements

1-3

OS Requirements
Oracle Cloud Native Environment is available for the following x86_64 OSs.

Table 1-1 OSs (x86_64)

OS Release Number Update Number Kernel

Oracle Linux 9 Latest and latest-1 Unbreakable
Enterprise Kernel
Release 7 (UEK R7)

Oracle Linux 9 Latest and latest-1 Red Hat Compatible
Kernel (RHCK)

Red Hat Enterprise
Linux

9 Latest and latest-1 Red Hat Kernel

Oracle Linux 8 Latest and latest-1 Unbreakable
Enterprise Kernel
Release 7 (UEK R7)

Oracle Linux 8 Latest and latest-1 Unbreakable
Enterprise Kernel
Release 6 (UEK R6)

Oracle Linux 8 Latest and latest-1 Red Hat Compatible
Kernel (RHCK)

Red Hat Enterprise
Linux

8 Latest and latest-1 Red Hat Kernel

Chapter 1
OS Requirements

1-4

2
Prerequisites

This chapter describes the prerequisites for the systems to be used in an installation of Oracle
Cloud Native Environment. This chapter also discusses how to enable the repositories to install
the Oracle Cloud Native Environment packages.

Enabling Access to the Software Packages
This section contains information on setting up the locations for the OS on which you want to
install the Oracle Cloud Native Environment software packages.

Oracle Linux 9
The Oracle Cloud Native Environment packages for Oracle Linux 9 are available on the Oracle
Linux yum server in the ol9_olcne19 repository, or on the Unbreakable Linux Network (ULN) in
the ol9_x86_64_olcne19 channel. However, dependencies exist across other repositories and
channels, and these must also be enabled on each system where Oracle Cloud Native
Environment is installed.

NOT_SUPPORTED:

Ensure the ol9_developer and ol9_developer_EPEL yum repositories or ULN
channels aren't enabled, and any software from these repositories or channels isn't
installed on the systems where Kubernetes runs. Even if you follow the instructions in
this document, you might render the platform unstable if these repositories or
channels are enabled or software from these channels or repositories is installed on
the systems.

Enabling Repositories with the Oracle Linux Yum Server
If you're using the Oracle Linux yum server for system updates, enable the required yum
repositories.

To enable the yum repositories:

1. Install the oracle-olcne-release-el9 release package to install the Oracle Cloud Native
Environment yum repository configuration.

sudo dnf install oracle-olcne-release-el9
2. Set up the repositories for the release you want to install.

Enable the following yum repositories:

• ol9_olcne19
• ol9_addons
• ol9_baseos_latest

2-1

• ol9_appstream
• ol9_UEKR7 (if hosts are running UEK R7)

Use the dnf config-manager tool to enable the yum repositories. For hosts running UEK
R7:

sudo dnf config-manager --enable ol9_olcne19 ol9_addons ol9_baseos_latest
ol9_appstream ol9_UEKR7

For hosts running RHCK:

sudo dnf config-manager --enable ol9_olcne19 ol9_addons ol9_baseos_latest
ol9_appstream

3. Disable the yum repositories for previous Oracle Cloud Native Environment releases.

sudo dnf config-manager --disable ol9_olcne18 ol9_olcne17
4. Disable any developer yum repositories. To list the developer repositories that need to be

disabled, use the dnf repolist command:

sudo dnf repolist --enabled | grep developer

Disable the repositories returned using the dnf config-manager tool. For example:

sudo dnf config-manager --disable ol9_developer

Enabling Channels with ULN
If you're registered to use ULN, use the ULN web interface to subscribe the system to the
appropriate channels.

To subscribe to the ULN channels:

1. Sign in to https://linux.oracle.com.

2. On the Systems tab, click the link named for the system in the list of registered machines.

3. On the System Details page, click Manage Subscriptions.

4. On the System Summary page, select each required channel from the list of available
channels and click the arrow to move the channel to the list of subscribed channels.

Subscribe the system to the following channels:

• ol9_x86_64_olcne19
• ol9_x86_64_addons
• ol9_x86_64_baseos_latest
• ol9_x86_64_appstream
• ol9_x86_64_UEKR7 (if hosts are running UEK R7)

Ensure the systems aren't subscribed to the following channels:

• ol9_x86_64_olcne18
• ol9_x86_64_olcne17
• ol9_x86_64_developer

Chapter 2
Enabling Access to the Software Packages

2-2

https://linux.oracle.com

Oracle Linux 8
The Oracle Cloud Native Environment packages for Oracle Linux 8 are available on the Oracle
Linux yum server in the ol8_olcne19 repository, or on the Unbreakable Linux Network (ULN) in
the ol8_x86_64_olcne19 channel. However, dependencies exist across other repositories and
channels, and these must also be enabled on each system where Oracle Cloud Native
Environment is installed.

NOT_SUPPORTED:

Ensure the ol8_developer or ol8_developer_EPEL yum repositories or ULN
channels aren't enabled, and any software from these repositories or channels isn't
installed on the systems where Kubernetes runs. Even if you follow the instructions in
this document, you might render the platform unstable if these repositories or
channels are enabled or software from these channels or repositories is installed on
the systems.

Enabling Repositories with the Oracle Linux Yum Server
If you're using the Oracle Linux yum server for system updates, enable the required yum
repositories.

To enable the yum repositories:

1. Install the oracle-olcne-release-el8 release package to install the Oracle Cloud Native
Environment yum repository configuration.

sudo dnf install oracle-olcne-release-el8
2. Set up the repositories for the release you want to install.

Enable the following yum repositories:

• ol8_olcne19
• ol8_addons
• ol8_baseos_latest
• ol8_appstream
• ol8_kvm_appstream
• ol8_UEKR7 (if hosts are running UEK R7)

• ol8_UEKR6 (if hosts are running UEK R6)

Use the dnf config-manager tool to enable the yum repositories. For hosts running UEK
R7:

sudo dnf config-manager --enable ol8_olcne19 ol8_addons ol8_baseos_latest
ol8_appstream ol8_kvm_appstream ol8_UEKR7

For hosts running UEK R6:

sudo dnf config-manager --enable ol8_olcne19 ol8_addons ol8_baseos_latest
ol8_appstream ol8_kvm_appstream ol8_UEKR6

For hosts running RHCK:

Chapter 2
Enabling Access to the Software Packages

2-3

sudo dnf config-manager --enable ol8_olcne19 ol8_addons ol8_baseos_latest
ol8_appstream ol8_kvm_appstream

3. Disable the yum repositories for previous Oracle Cloud Native Environment releases.

sudo dnf config-manager --disable ol8_olcne18 ol8_olcne17 ol8_olcne16 ol8_olcne15
ol8_olcne14 ol8_olcne13 ol8_olcne12

4. Disable any developer yum repositories. To list the developer repositories that need to be
disabled, use the dnf repolist command:

sudo dnf repolist --enabled | grep developer

Disable the repositories returned using the dnf config-manager tool. For example:

sudo dnf config-manager --disable ol8_developer

Enabling Channels with ULN
If you're registered to use ULN, use the ULN web interface to subscribe the system to the
appropriate channels.

To subscribe to the ULN channels:

1. Sign in to https://linux.oracle.com.

2. On the Systems tab, click the link named for the system in the list of registered machines.

3. On the System Details page, click Manage Subscriptions.

4. On the System Summary page, select each required channel from the list of available
channels and click the arrow to move the channel to the list of subscribed channels.

Subscribe the system to the following channels:

• ol8_x86_64_olcne19
• ol8_x86_64_addons
• ol8_x86_64_baseos_latest
• ol8_x86_64_appstream
• ol8_x86_64_kvm_appstream
• ol8_x86_64_UEKR7 (if hosts are running UEK R7)

• ol8_x86_64_UEKR6 (if hosts are running UEK R6)

Ensure the systems aren't subscribed to the following channels:

• ol8_x86_64_developer
• ol8_x86_64_olcne18
• ol8_x86_64_olcne17
• ol8_x86_64_olcne16
• ol8_x86_64_olcne15
• ol8_x86_64_olcne14
• ol8_x86_64_olcne13
• ol8_x86_64_olcne12

Chapter 2
Enabling Access to the Software Packages

2-4

https://linux.oracle.com

Accessing the Oracle Container Registry
The container images that are deployed by the Platform CLI are hosted on the Oracle
Container Registry. For more information about the Oracle Container Registry, see the Oracle®

Linux: Oracle Container Runtime for Docker User's Guide.

For a deployment to use the Oracle Container Registry, each node within the environment
must be provisioned with direct access to the Internet.

You can optionally use an Oracle Container Registry mirror, or create a private registry mirror
within the network.

When you create a Kubernetes module you must specify the registry from which to pull the
container images. This is set using the --container-registry option of the olcnectl
module create command. If you use the Oracle Container Registry the container registry
must be set to:

container-registry.oracle.com/olcne
If you use a private registry that mirrors the Oracle Cloud Native Environment container images
on the Oracle Container Registry, ensure you set the container registry to the domain name
and port of the private registry, for example:

myregistry.example.com:5000/olcne
When you set the container registry to use during an installation, it becomes the default
registry from which to pull images during updates and upgrades of the Kubernetes module.
You can set a new default value during an update or upgrade using the --container-registry
option.

Using an Oracle Container Registry Mirror
The Oracle Container Registry has many mirror servers around the world. You can use a
registry mirror in a global region to improve download performance of container images. While
the Oracle Container Registry mirrors are hosted on Oracle Cloud Infrastructure, they're also
accessible external to Oracle Cloud Infrastructure. Using a mirror that's closest to a
geographical location results in faster download speeds.

To use an Oracle Container Registry mirror to pull images, use the format:

container-registry-region-key.oracle.com/olcne
For example, to use the Oracle Container Registry mirror in the US East (Ashburn) region,
which has a region key of IAD, the registry is set (using the using the --container-registry
option) to:

container-registry-iad.oracle.com/olcne
For more information on Oracle Container Registry mirrors and finding the region key for a
mirror in a location, see the Oracle Cloud Infrastructure documentation.

Using a Private Registry
Sometimes, nodes within an environment might not be provisioned with direct access to the
Internet. In these cases, you can use a private registry that mirrors the Oracle Cloud Native
Environment container images on the Oracle Container Registry. Each node requires direct
access to the mirror registry host in this scenario.

Chapter 2
Accessing the Oracle Container Registry

2-5

https://container-registry.oracle.com/
https://container-registry.oracle.com/
https://docs.oracle.com/en/operating-systems/oracle-linux/docker/
https://docs.oracle.com/en/operating-systems/oracle-linux/docker/
https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm

You can use an existing container registry in a network, or create a private registry using
Podman on an Oracle Linux 8 host. If you use an existing private container registry, skip the
first step in the following procedure that creates a registry.

To create a private registry:

1. Select an Oracle Linux 8 host to use for the Oracle Container Registry mirror service. The
mirror host must have access to the Internet and able to pull images directly from the
Oracle Container Registry, or alternately, have access to the correct image files stored
locally. Ideally, the host isn't a node within an Oracle Cloud Native Environment, but is
accessible to all nodes that are part of the environment.

On the mirror host, install Podman, and set up a private registry, following the instructions
in the Setting up a Local Container Registry section in Oracle® Linux: Podman User's
Guide.

2. On the mirror host, enable access to the Oracle Cloud Native Environment software
packages. For information on enabling access to the packages, see Enabling Access to
the Software Packages.

3. Install the olcne-utils package so you have access to the registry mirroring utility.

sudo dnf install olcne-utils

If you're using an existing container registry in the network that's running on Oracle Linux
7, use yum instead of dnf to install olcne-utils.

4. Copy the required container images from the Oracle Container Registry to the private
registry using the registry-image-helper.sh script with the required options:

registry-image-helper.sh --to host.example.com:5000/olcne

Where host.example.com:5000 is the resolvable domain name and port on which the
private registry is available.

You can optionally use the --from option to specify a different registry from which to pull
the images. For example, to pull the images from an Oracle Container Registry mirror:

registry-image-helper.sh \
--from container-registry-iad.oracle.com/olcne \
--to host.example.com:5000/olcne

If the host where you're running the script doesn't have access to the Internet, you can
replace the --from option with the --local option to load the container images directly
from a local directory. The local directory which contains the images can be either:

• /usr/local/share/kubeadm/
• /usr/local/share/olcne/
The image files must be archives in TAR format. All TAR files in the directory are loaded
into the private registry when the script is run with the --local option.

You can use the --version option to specify the Kubernetes version you want to mirror. If
not specified, the latest release is used. The available versions you can pull are listed in
Release Notes.

Setting up the OS
The following sections describe the requirements that must be met to install and configure
Oracle Cloud Native Environment on Oracle Linux systems.

Chapter 2
Setting up the OS

2-6

https://docs.oracle.com/en/operating-systems/oracle-linux/podman/
https://docs.oracle.com/en/operating-systems/oracle-linux/podman/
https://docs.oracle.com/en/operating-systems/olcne/1.9/relnotes/components.html

Setting up a Network Time Service
As a clustering environment, Oracle Cloud Native Environment requires that the system time is
synchronized across each Kubernetes control plane and worker node within the cluster.
Typically, this can be achieved by installing and configuring a Network Time Protocol (NTP)
daemon on each node. We recommend installing and setting up the chronyd daemon for this
purpose.

The chronyd service is enabled and started by default on Oracle Linux systems.

Systems running on Oracle Cloud Infrastructure are configured to use the chronyd time service
by default, so you don't need to add or configure NTP if you're installing into an Oracle Cloud
Infrastructure environment.

Disabling Swap
You must disable swap on the Kubernetes control plane and worker nodes. To disable swap,
enter:

sudo swapoff -a

To make this permanent over reboots, edit the /etc/fstab file to remove or comment out any
swap disks. For example, you can consider using commands similar to those shown in the
following steps:

1. Check contents of the /etc/fstab file before any change:

sudo cat /etc/fstab
2. Make a backup of /etc/fstab.

sudo cp /etc/fstab /etc/fstab_copy
3. Comment out swap disks from the /etc/fstab file:

sudo sed -i '/\bswap\b/s/^/#/' /etc/fstab
4. Check contents of /etc/fstab after the change:

sudo cat /etc/fstab

Configuring Access for the Platform Agent
During the installation of the required packages, an olcne user is created for the Platform
Agent on each of the Kubernetes nodes.

You must ensure the olcne user can do the following on each Kubernetes node:

• Use sudo without being required to log in to a real terminal session (tty).

• Use sudo to run scripts in /etc/olcne/scripts without supplying a password for
authentication.

Setting up the Network
This section contains information about the networking requirements for Oracle Cloud Native
Environment nodes.

Chapter 2
Setting up the Network

2-7

The following table shows the network ports used by the services in a deployment of
Kubernetes in an environment.

From Node Type To Node Type Port Protocol Reason

Worker Operator 8091 TCP(6) Platform API
Server

Control plane Operator 8091 TCP(6) Platform API
Server

Control plane Control plane 2379-2380 TCP(6) Kubernetes etcd
(highly available
clusters)

Operator Control plane 6443 TCP(6) Kubernetes API
server

Worker Control plane 6443 TCP(6) Kubernetes API
server

Control plane Control plane 6443 TCP(6) Kubernetes API
server

Control plane Control plane 6444 TCP(6) Alternate
Kubernetes API
server (highly
available clusters)

Operator Control plane 8090 TCP(6) Platform Agent

Control plane Control plane 10250
10251
10252
10255

TCP(6)
TCP(6)
TCP(6)
TCP(6)

Kubernetes
kubelet API
server
Kubernetes kube-
scheduler
(highly available
clusters)
Kubernetes kube-
controller-
manager (highly
available clusters)
Kubernetes
kubelet API
server for read-
only access with
no authentication

Control plane Control plane 8472 UDP(11) Flannel

Control plane Worker 8472 UDP(11) Flannel

Worker Control plane 8472 UDP(11) Flannel

Worker Worker 8472 UDP(11) Flannel

Control plane Control plane N/A VRRP(112) Keepalived for
Kubernetes API
server (highly
available clusters)

Operator Worker 8090 TCP(6) Platform Agent

Chapter 2
Setting up the Network

2-8

From Node Type To Node Type Port Protocol Reason

Control plane Worker 10250
10255

TCP(6)
TCP(6)

Kubernetes
kubelet API
server
Kubernetes
kubelet API
server for read-
only access with
no authentication

The following sections show you how to set up the network on each node to enable the
communication between nodes in an environment.

Important:

In addition to opening network ports on the operator and Kubernetes nodes, if you're
using an external firewall (hardware or software based), ensure the ports in the
previous table are open on the external firewall before you perform an installation.

Setting up the Firewall Rules
Oracle Linux installs and enables firewalld, by default. You can install Oracle Cloud Native
Environment with firewalld enabled, or you can disable it and use another firewall solution.
This sections shows you how to set up the firewall rules to enable firewalld.

Important:

Calico requires the firewalld service to be disabled. If you're installing Calico as the
Kubernetes CNI for pods, you don't need to configure the networking ports as shown
in this section. See Calico Module for information on disabling firewalld and how to
install Calico.

If you want install with firewalld enabled, the Platform CLI notifies you of any rules that you
need to add during the deployment of the Kubernetes module. The Platform CLI also provides
the commands to run to change the firewall configuration to meet the requirements.

Ensure that all required ports are open. The ports required for a Kubernetes deployment are:

• 2379/tcp: Kubernetes etcd server client API (on control plane nodes in highly available
clusters)

• 2380/tcp: Kubernetes etcd server client API (on control plane nodes in highly available
clusters)

• 6443/tcp: Kubernetes API server (control plane nodes)

• 8090/tcp: Platform Agent (control plane and worker nodes)

• 8091/tcp: Platform API Server (operator node)

• 8472/udp: Flannel overlay network, VxLAN backend (control plane and worker nodes)

Chapter 2
Setting up the Network

2-9

https://docs.oracle.com/en/operating-systems/olcne/1.9/calico/

• 10250/tcp: Kubernetes kubelet API server (control plane and worker nodes)

• 10251/tcp: Kubernetes kube-scheduler (on control plane nodes in highly available
clusters)

• 10252/tcp: Kubernetes kube-controller-manager (on control plane nodes in highly
available clusters)

• 10255/tcp: Kubernetes kubelet API server for read-only access with no authentication
(control plane and worker nodes)

The commands to open the ports and to set up the firewall rules are provided.

Non-HA Cluster Firewall Rules
For a cluster with a single control plane node, the following ports are required to be open in the
firewall.

Operator Node

On the operator node, run:

sudo firewall-cmd --add-port=8091/tcp --permanent

Restart the firewall for these rules to take effect:

sudo systemctl restart firewalld.service

Worker Nodes

On the Kubernetes worker nodes run:

sudo firewall-cmd --zone=trusted --add-interface=cni0 --permanent
sudo firewall-cmd --add-port=8090/tcp --permanent
sudo firewall-cmd --add-port=10250/tcp --permanent
sudo firewall-cmd --add-port=10255/tcp --permanent
sudo firewall-cmd --add-port=8472/udp --permanent

Restart the firewall for these rules to take effect:

sudo systemctl restart firewalld.service

Control Plane Nodes

On the Kubernetes control plane nodes run:

sudo firewall-cmd --zone=trusted --add-interface=cni0 --permanent
sudo firewall-cmd --add-port=8090/tcp --permanent
sudo firewall-cmd --add-port=10250/tcp --permanent
sudo firewall-cmd --add-port=10255/tcp --permanent
sudo firewall-cmd --add-port=8472/udp --permanent
sudo firewall-cmd --add-port=6443/tcp --permanent

Restart the firewall for these rules to take effect:

sudo systemctl restart firewalld.service

Highly Available Cluster Firewall Rules
For a highly available cluster, open all the firewall ports as described in Non-HA Cluster
Firewall Rules, along with the following extra ports on the control plane nodes.

On the Kubernetes control plane nodes run:

Chapter 2
Setting up the Network

2-10

sudo firewall-cmd --add-port=10251/tcp --permanent
sudo firewall-cmd --add-port=10252/tcp --permanent
sudo firewall-cmd --add-port=2379/tcp --permanent
sudo firewall-cmd --add-port=2380/tcp --permanent

Restart the firewall for these rules to take effect:

sudo systemctl restart firewalld.service

Setting up Other Network Options
This section contains information on other network related configuration that affects an Oracle
Cloud Native Environment deployment. You might not need to make changes from this section,
but they're provided to help you understand any issues you might meet related to network
configuration.

Internet Access
The Platform CLI checks it can access the container registry, and possibly other Internet
resources, to pull any required container images. Unless you intend to set up a local registry
mirror for container images, the systems where you intend to install Oracle Cloud Native
Environment must either have direct internet access, or must be configured to use a proxy.

nftables Rule on Oracle Linux 9
If you're using Oracle Linux 9 hosts and you have firewalld enabled, you must add an nftables
rule on the Kubernetes nodes.

If you don't need to persist the rule over reboots, set up the rule on each Kubernetes node
using:

sudo nft add rule inet firewalld filter_FORWARD_POLICIES_post accept

If you do need to persist the rule over host reboots (recommended), set up a rule file and
create a systemd service that's enabled. On each Kubernetes node, run the following.

1. Create a file named /etc/nftables/forward-policies.nft which contains the rule
by entering:

sudo sh -c "cat > /etc/nftables/forward-policies.nft << EOF
flush chain inet firewalld filter_FORWARD_POLICIES_post

table inet firewalld {
 chain filter_FORWARD_POLICIES_post {
 accept
 }
}
EOF"

2. Create a file named /etc/systemd/system/forward-policies.service which
contains the systemd service by entering:

sudo sh -c "cat > /etc/systemd/system/forward-policies.service << EOF
[Unit]
Description=Idempotent nftables rules for forward-policies
PartOf=firewalld.service

Chapter 2
Setting up the Network

2-11

[Service]
ExecStart=/sbin/nft -f /etc/nftables/forward-policies.nft
ExecReload=/sbin/nft -f /etc/nftables/forward-policies.nft
Restart=always
StartLimitInterval=0
RestartSec=10

[Install]
WantedBy=multi-user.target
EOF"

3. Enable and restart the rule service:

sudo systemctl enable forward-policies.service
sudo systemctl restart forward-policies.service

Flannel Network
The Platform CLI configures a Flannel network as the network fabric used for communications
between Kubernetes pods. This overlay network uses VxLANs for network connectivity. For
more information on Flannel, see the upstream documentation.

By default, the Platform CLI creates a network in the 10.244.0.0/16 range to host this
network. The Platform CLI provides an option to set the network range to another range, if
required, during installation. Systems in an Oracle Cloud Native Environment deployment must
not have any network devices configured for this reserved IP range.

br_netfilter Module
The Platform CLI checks whether the br_netfilter module is loaded and exits if it's not
available. This module is required to enable transparent masquerading and for Virtual
Extensible LAN (VxLAN) traffic for communication between Kubernetes pods across the
cluster. If you need to check whether it's loaded, run:

sudo lsmod|grep br_netfilter

If you see the output similar to the following, the br_netfilter module is loaded.

br_netfilter 24576 0
bridge 155648 2 br_netfilter,ebtable_broute

Kernel modules are loaded as they're needed, and it's unlikely that you need to load this
module manually. You can load the module manually and add it as a permanent module by
running:

sudo modprobe br_netfilter
sudo sh -c 'echo "br_netfilter" > /etc/modules-load.d/br_netfilter.conf'

Bridge Tunable Parameters
Kubernetes requires that packets traversing a network bridge are processed for filtering and for
port forwarding. To achieve this, tunable parameters in the kernel bridge module are

Chapter 2
Setting up the Network

2-12

https://github.com/flannel-io/flannel

automatically set when the kubeadm package is installed and a sysctl file is created at /etc/
sysctl.d/k8s.conf that contains the following lines:

net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_forward = 1

If you change this file, or create anything similar yourself, run the following command to load
the bridge tunable parameters:

sudo /sbin/sysctl -p /etc/sysctl.d/k8s.conf

Network Address Translation
Network Address Translation (NAT) is sometimes required when one or more Kubernetes
worker nodes in a cluster are behind a NAT gateway. For example, you might want to have a
control plane node in a secure company network while having other worker nodes in a publicly
accessible demilitarized zone which is less secure. The control plane node would access the
worker nodes through the worker node's NAT gateway. Or you might have a worker node in a
legacy network that you want to use in the cluster that's primarily on a newer network. The NAT
gateway, in these cases, translates requests for an IP address accessible to the Kubernetes
cluster into the IP address on the subnet behind the NAT gateway.

Note:

Only worker nodes can be behind a NAT. Control plane nodes can't be behind a NAT.

Regardless of what switches or network equipment you use to set up the NAT gateway, you
must configure the following for a node behind a NAT gateway:

• The node's interface behind the NAT gateway must have an public IP address using
the /32 subnet mask that's reachable by the Kubernetes cluster. The /32 subnet restricts
the subnet to one IP address, so that all traffic from the Kubernetes cluster flows through
this public IP address.

• The node's interface must also include a private IP address behind the NAT gateway that
the switch uses NAT tables to match the public IP address to.

For example, you can use the following command to add the reachable IP address on the ens5
interface:

sudo ip addr add 192.168.64.6/32 dev ens5

You can then use the following command to add the private IP address on the same interface:

sudo ip addr add 192.168.192.2/18 dev ens5

Setting FIPS Mode
You can optionally configure Oracle Cloud Native Environment operator, control plane, and
worker hosts to run in Federal Information Processing Standards (FIPS) mode as described in

Chapter 2
Setting FIPS Mode

2-13

Oracle Linux 9: Installing and Configuring FIPS Mode or Oracle Linux 8: Enhancing System
Security.

Oracle Cloud Native Environment uses the cryptographic binaries of OpenSSL from Oracle
Linux when the host runs in FIPS mode.

Setting Up SSH Key-based Authentication
Set up SSH key-based authentication for the user that's to be used to run the Platform CLI
(olcnectl) installation commands to enable login from the operator node to each Kubernetes
node and to the Platform API Server node.

The following steps show one method of setting up SSH key-based authentication.

1. Generate the private and public key pair. On the operator node, run ssh-keygen as the
user that you use to run olcnectl commands. Don't create a passphrase for the key
(press <Enter> when prompted for a passphrase). For example:

ssh-keygen

Output similar to the following is displayed:

Generating public/private rsa key pair.
Enter file in which to save the key (/home/user/.ssh/id_rsa):<Enter>
Enter passphrase (empty for no passphrase): <Enter>
Enter same passphrase again: <Enter>
Your identification has been saved in /home/user/.ssh/id_rsa.
Your public key has been saved in /home/user/.ssh/id_rsa.pub.
...

2. Verify the location of the private and public key pair. Verify the private and public key pair
have been created at the location reported in the ssh-keygen command output:

ls -l /home/user/.ssh/

Output similar to the following is displayed:

...
-rw-------. 1 user user 2643 Jan 10 14:55 id_rsa
-rw-r--r--. 1 user user 600 Jan 10 14:55 id_rsa.pub
...

The public key is indicated by the file with the “.pub” extension.

3. Set up the public key on the target nodes. Add the contents of the public key to
the $HOME/.ssh/authorized_keys file on each target node for the user for which the key-
based SSH is being set up.

On the operator node, run the ssh-copy-id command. The syntax is:

ssh-copy-id user@host

Chapter 2
Setting Up SSH Key-based Authentication

2-14

https://docs.oracle.com/en/operating-systems/oracle-linux/9/fips/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/security/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/security/

When prompted you enter the user’s password for the host. After the command
successfully completes, the public key’s contents have been added to the copy of the
user’s $HOME/.ssh/authorized_keys file on the remote host.

The following example shows how command ssh-copy-id can be used to add the public
key to the authorized_keys file for user on host 192.0.2.255 :

ssh-copy-id user@192.0.2.255

4. Verify the user has SSH key-based access from the operator node. On the operator node,
use ssh to connect to each of the other nodes and confirm login succeeds without being
prompted for a password.

For example, confirm key-based SSH access by running the ssh command on the operator
node as follows:

ssh user@192.0.2.255

For more information on setting up SSH key-based authentication, see Oracle Linux:
Connecting to Remote Systems With OpenSSH.

Chapter 2
Setting Up SSH Key-based Authentication

2-15

https://docs.oracle.com/en/operating-systems/oracle-linux/openssh/
https://docs.oracle.com/en/operating-systems/oracle-linux/openssh/

3
Installing Oracle Cloud Native Environment

This chapter discusses how to prepare the nodes to be used in an Oracle Cloud Native
Environment deployment. When the nodes are prepared, they must be installed with the
Oracle Cloud Native Environment software packages. When the nodes are set up with the
software, you can use the Platform CLI to perform a deployment of a Kubernetes cluster and
optionally install other modules.

This chapter shows you how to perform the steps to set up the hosts and install the Oracle
Cloud Native Environment software, ready to perform a deployment of modules. When you
have set up the nodes, deploy the Kubernetes module to install a Kubernetes cluster using the
steps in Kubernetes Module.

Installation Overview
The high level overview of setting up Oracle Cloud Native Environment is described in this
section.

To install Oracle Cloud Native Environment:

1. Prepare the operator node: An operator node is a host to be used to perform and
manage the deployment of environments. The operator node must be set up with the
Platform API Server, and the Platform CLI (olcnectl).

2. Prepare the Kubernetes nodes: The Kubernetes control plane and worker nodes must to
be set up with the Platform Agent.

3. Set up a load balancer: If you're deploying a highly available Kubernetes cluster, set up a
load balancer. You can set up an external load balancer, or use the container-based load
balancer deployed by the Platform CLI.

4. Set up X.509 Certificates: X.509 Certificates are used to provide secure communication
between the Kubernetes nodes. You must set up the certificates before you create an
environment and perform a deployment.

5. Start the services: Start the Platform API Server and Platform Agent services on nodes
using the X.509 Certificates.

6. Create an environment: Create an environment into which you can install the Kubernetes
module and any other optional modules.

7. Deploy modules: Deploy the Kubernetes module and any other optional modules.

Setting up the Nodes
This section discusses setting up nodes to use in an Oracle Cloud Native Environment. The
nodes are used to form a Kubernetes cluster.

An operator node is used to perform the deployment of the Kubernetes cluster using the
Platform CLI and the Platform API Server. An operator node might be a node in the
Kubernetes cluster, or a separate host. In examples in this book, the operator node is a
separate host, and not part of the Kubernetes cluster.

3-1

https://docs.oracle.com/en/operating-systems/olcne/1.9/kubernetes/

On each Kubernetes node (both control plane and worker nodes) the Platform Agent must be
installed. Before you set up the Kubernetes nodes, you must prepare them. For information on
preparing the nodes, see Prerequisites.

During the installation of the required packages, an olcne user is created. This user is used to
start the Platform API Server or Platform Agent services and has the minimum OS privileges to
perform that task. Don't use the olcne user for any other purpose.

Setting up the Operator Node
This section discusses setting up the operator node. The operator node is a host that's used to
perform and manage the deployment of environments, including deploying the Kubernetes
cluster.

To set up the operator node:

1. On the operator node, install the Platform CLI, Platform API Server, and utilities.

sudo dnf install olcnectl olcne-api-server olcne-utils

2. Enable the olcne-api-server service, but do not start it. The olcne-api-server service is
started when you configure the X.509 Certificates.

sudo systemctl enable olcne-api-server.service

For information on configuration options for the Platform API Server, see Configuring the
Platform API Server.

Setting up Kubernetes Nodes
This section discusses setting up the nodes to use in a Kubernetes cluster. Perform these
steps on both Kubernetes control plane and worker nodes.

To set up the Kubernetes nodes:

1. On each node to be added to the Kubernetes cluster, install the Platform Agent package
and utilities.

sudo dnf install olcne-agent olcne-utils

2. Enable the olcne-agent service, but do not start it. The olcne-agent service is started
when you configure the X.509 Certificates.

sudo systemctl enable olcne-agent.service

For information on configuration options for the Platform Agent, see Configuring the
Platform Agent.

3. If the docker service is running, stop, and disable it.

sudo systemctl disable --now docker.service

Chapter 3
Setting up the Nodes

3-2

4. If the containerd service is running, stop, and disable it.

sudo systemctl disable --now containerd.service

Configuring a Proxy Server
If you use a proxy server, configure it with CRI-O on each Kubernetes node.

On each Kubernetes node:

1. Create a CRI-O systemd configuration directory:

sudo mkdir /etc/systemd/system/crio.service.d

2. Create a file named proxy.conf in the directory, and add the proxy server information. For
example:

[Service]
Environment="HTTP_PROXY=http://proxy.example.com:3128"
Environment="HTTPS_PROXY=https://proxy.example.com:3128"
Environment="NO_PROXY=mydomain.example.com"

3. If you're also installing Calico (as a module or as the Kubernetes Container Network
Interface), or the Multus module, add the Kubernetes service IP (the default is 10.96.0.1)
to the NO_PROXY variable:

Environment="NO_PROXY=mydomain.example.com,10.96.0.1"

Setting up a Load Balancer for Highly Available Clusters
A highly available (HA) cluster needs a load balancer to provide high availability of control
plane nodes. A load balancer communicates with the Kubernetes API Server on the control
plane nodes.

The methods of setting up a load balancer to create an HA cluster are:

• Using an external load balancer instance.

• Using a load balancer provided by a cloud infrastructure, for example an Oracle Cloud
Infrastructure load balancer.

• Using the internal load balancer that can be deployed by the Platform CLI on the control
plane nodes.

Setting up an External Load Balancer
To use an external load balancer implementation, it must be set up and ready to use before
you perform an HA cluster deployment. The load balancer hostname and port is entered as an
option when you create the Kubernetes module. The load balancer must be set up with the
following configuration:

• The listener listening on TCP port 6443.

• The distribution set to round robin.

• The target set to TCP port 6443 on the control plane nodes.

Chapter 3
Setting up a Load Balancer for Highly Available Clusters

3-3

• The health check set to TCP.

For more information on setting up an external load balancer, see Oracle Linux 9: Setting Up
Load Balancing or Oracle Linux 8: Setting Up Load Balancing.

Setting up a Load Balancer on Oracle Cloud Infrastructure
To set up a load balancer on Oracle Cloud Infrastructure:

1. Sign-in to Oracle Cloud Infrastructure.

2. Create a load balancer.

3. Add a backend set to the load balancer using weighted round robin. Set the health check
to be TCP port 6443.

4. Add the control plane nodes to the backend set. Set the port for the control plane nodes to
port 6443.

5. Create a listener for the backend set using TCP port 6443.

For more information on setting up a load balancer in Oracle Cloud Infrastructure, see the
Oracle Cloud Infrastructure documentation.

Setting up the Internal Load Balancer

Important:

Using the internal load balancer is not recommended for production deployments.
Instead, use a correctly configured load-balancer that's outside the Kubernetes
cluster, for example an own external load balancer, or a load balancer provided by a
cloud infrastructure, such as an Oracle Cloud Infrastructure load balancer.

To use the internal load balancer deployed by the Platform CLI, you need to perform the
following steps to prepare the control plane nodes.

To prepare control plane nodes for the load balancer deployed by the Platform CLI:

1. Set up the control plane nodes as described in Setting up Kubernetes Nodes.

2. Use the --virtual-ip option when creating the Kubernetes module to nominate a virtual
IP address that can be used for the primary control plane node. This IP address must not
be in use on any node and is assigned dynamically to the control plane node assigned as
the primary controller by the load balancer. If the primary node fails, the load balancer
reassigns the virtual IP address to another control plane node, and that, in turn, becomes
the primary node.

Tip:

If you're deploying to Oracle Cloud Infrastructure virtual instances, you can
assign a secondary private IP address to the VNIC on a control plane node to
create a virtual IP address. Ensure you list this control plane node first when
creating the Kubernetes module. For more information on secondary private IP
addresses, see the Oracle Cloud Infrastructure documentation.

Chapter 3
Setting up a Load Balancer for Highly Available Clusters

3-4

https://docs.oracle.com/en/operating-systems/oracle-linux/9/balancing/
https://docs.oracle.com/en/operating-systems/oracle-linux/9/balancing/
https://docs.oracle.com/en/operating-systems/oracle-linux/8/balancing/
https://docs.cloud.oracle.com/iaas/Content/Balance/Concepts/balanceoverview.htm
https://docs.oracle.com/iaas/Content/Network/Tasks/managingIPaddresses.htm

3. On each control plane node, open port 6444. When you use a virtual IP address, the
Kubernetes API server port is changed from the default of 6443 to 6444. The load balancer
listens on port 6443 and receives the requests and passes them to the Kubernetes API
server.

sudo firewall-cmd --add-port=6444/tcp
sudo firewall-cmd --add-port=6444/tcp --permanent

4. On each control plane node, enable the Virtual Router Redundancy Protocol (VRRP)
protocol:

sudo firewall-cmd --add-protocol=vrrp
sudo firewall-cmd --add-protocol=vrrp --permanent

Setting up Certificates for Kubernetes Nodes
Communication between the Kubernetes nodes is secured using X.509 certificates.

Before you deploy Kubernetes, you need to configure the X.509 certificates used to manage
the communication between the nodes. You can use:

• Vault: The certificates are managed using the HashiCorp Vault secrets manager.
Certificates are created during the deployment of the Kubernetes module. You need to
create a token authentication method for Oracle Cloud Native Environment.

• CA Certificates: Using certificates signed by a trusted Certificate Authority (CA), and
copied to each Kubernetes node before the deployment of the Kubernetes module. These
certificates are unmanaged and must be renewed and updated manually.

• Private CA Certificates: Using generated certificates, signed by a private CA you set up,
and copied to each Kubernetes node before the deployment of the Kubernetes module.
These certificates are unmanaged and must be renewed and updated manually. A script is
provided to help you set this up.

A software-based secrets manager is recommended to manage these certificates. The
HashiCorp Vault secrets manager can be used to generate, assign, and manage the
certificates. We recommend you implement an instance of Vault, setting up the appropriate
security for the environment.

For more information on installing and setting up Vault, see the Hashicorp documentation.

If you don't want to use Vault, you can use certificates, signed by a trusted CA, and copied to
each node. A script is provided to generate a private CA to generate certificates for each node.
This script also gives you the commands needed to copy the certificates to the nodes.

Setting up Vault Authentication
To configure Vault for use with Oracle Cloud Native Environment, set up a Vault token with the
following properties:

• A PKI secret engine with a CA certificate or intermediate, at olcne_pki_intermediary.

• A role under that PKI, named olcne, configured to not require a common name, and allow
any name.

• A token authentication method and policy that attaches to the olcne role and can request
certificates.

Chapter 3
Setting up Certificates for Kubernetes Nodes

3-5

https://developer.hashicorp.com/vault/tutorials

For information on setting up the Vault PKI secrets engine to generate dynamic X.509
certificates, see:

https://developer.hashicorp.com/vault/docs/secrets/pki

For information on creating Vault tokens, see:

https://developer.hashicorp.com/vault/docs/commands/token/create

Setting up CA Certificates
This section shows you how to use certificates signed by a trusted CA, without using a secrets
manager such as Vault. To use certificates, copy them to all Kubernetes nodes, and to the
Platform API Server node.

To ensure the Platform Agent on each Kubernetes node, and the Platform API Server have
access to certificates, copy them into the /etc/olcne/certificates/ directory on each node.
This is the default location of the certificates and is used when setting up the Platform Agent
and Platform API Server, and when creating an environment. You can use another location for
certificates, but this means you need to specify the location for each certificate and key when
you're setting up the services, and the environment.

Tip:

You can use the olcnectl certificates copy command to copy the certificates to
the Kubernetes nodes.

The default location for certificates and keys, and the location used in this book, is the /etc/
olcne/certificates/ directory on each node.

• CA Certificate: /etc/olcne/certificates/ca.cert
• Node Key: /etc/olcne/certificates/node.key
• Node Certificate: /etc/olcne/certificates/node.cert

Setting up Private CA Certificates
This section shows you how to create a private CA, and use that to generate signed
certificates for the nodes. This section also contains information on copying the certificates to
the nodes. This section also contains information on generating certificates for nodes that you
want to scale into a Kubernetes cluster.

Distribute Node Certificates
Use the Platform CLI to generate and distribute signed certificates to the Kubernetes nodes.
You can use a CA Certificate or create one automatically. These certificates are used when
starting the Platform API Server and Platform agent on nodes to secure communication
between the Kubernetes nodes.

Before you create the certificates, ensure the user on the operator node that's creating the
certificates is a member of the olcne group. Use the syntax:

sudo usermod -a -G olcne username

Chapter 3
Setting up Certificates for Kubernetes Nodes

3-6

https://developer.hashicorp.com/vault/docs/secrets/pki
https://developer.hashicorp.com/vault/docs/commands/token/create

For example, to add the olcne group to the oracle user, on the operator node run:

sudo usermod -a -G olcne oracle

Important:

When you add a group to a user, you must log out of the terminal session, and back
in again. This is required to apply the change.

On the operator node, use the olcnectl certificates distribute command to generate
and distribute private CA and certificates to the Kubernetes nodes. The syntax to use is:

olcnectl certificates distribute
[--byo-ca-cert certificate-path]
[--byo-ca-key key-path]
[--cert-dir certificate-directory]
[--cert-request-common-name common_name]
[--cert-request-country country]
[--cert-request-locality locality]
[--cert-request-organization organization]
[--cert-request-organization-unit organization-unit]
[--cert-request-state state]
[{-h|--help}]
[{-n|--nodes} nodes]
[--one-cert]
[{-R|--remote-command} remote-command]
[{-i|--ssh-identity-file} file_location]
[{-l|--ssh-login-name} username]
[--timeout minutes]

Provide the nodes for which you want to create certificates using the --nodes option. Create a
certificate for each node that runs the Platform API Server or Platform Agent. This means you
must create certificates for the operator node, and for each Kubernetes node.

Note:

If you're deploying a highly available Kubernetes cluster using a virtual IP address,
you don't need to create a certificate for a virtual IP address.

For example:

olcnectl certificates distribute \
--nodes
operator.example.com,control1.example.com,worker1.example.com,worker2.example.
com

Chapter 3
Setting up Certificates for Kubernetes Nodes

3-7

To set up the information for the private CA, use the --cert-request-* options. The following
example also includes options to set the SSH login information for nodes using the --ssh-*
options.

olcnectl certificates distribute \
--nodes
operator.example.com,control1.example.com,worker1.example.com,worker2.example.
com \
--cert-request-common-name cloud.example.com \
--cert-request-country US \
--cert-request-locality "My Town" \
--cert-request-organization "My Company" \
--cert-request-organization-unit "My Company Unit" \
--cert-request-state "My State" \
--ssh-identity-file ~/.ssh/id_rsa \
--ssh-login-name oracle

If you have a CA Certificate and private key to generate certificates, you can provide it using
the --byo-ca-cert and --byo-ca-key options, for example:

olcnectl certificates distribute \
--nodes
operator.example.com,control1.example.com,worker1.example.com,worker2.example.
com \
--byo-ca-cert $HOME/certificates/ca/ca.cert \
--byo-ca-key $HOME/certificates/ca/ca.key

The certificate files for each node are generated and saved in the $HOME/certificates/
directory, in a directory for each hostname. If you used the --cert-dir option, they're saved to
the directory you specified.

The CA Certificate and private key are generated to the $HOME/certificates/ca/ directory. If
you used the --cert-dir option, they're saved to the directory you specified. If you used a CA
Certificate and key using the --byo-ca-* options, they're not created, or saved.

The certificates for each node are copied to the /etc/olcne/certificates/ directory on each
Kubernetes node using SSH. This is the default directory for the location of the certificates
when you start the Platform API Server and Platform Agent.

Distribute Extra Node Certificates
Use the Platform CLI to generate and distribute signed certificates to the nodes using an
existing CA.

This is useful to generate and distribute certificates for any extra nodes that you want to add to
a Kubernetes cluster.

On the operator node, use the olcnectl certificates distribute command to generate
and distribute private CA and certificates to the Kubernetes nodes. The syntax to use is:

olcnectl certificates distribute
[--byo-ca-cert certificate-path]
[--byo-ca-key key-path]
[--cert-dir certificate-directory]
[--cert-request-common-name common_name]

Chapter 3
Setting up Certificates for Kubernetes Nodes

3-8

[--cert-request-country country]
[--cert-request-locality locality]
[--cert-request-organization organization]
[--cert-request-organization-unit organization-unit]
[--cert-request-state state]
[{-h|--help}]
[{-n|--nodes} nodes]
[--one-cert]
[{-R|--remote-command} remote-command]
[{-i|--ssh-identity-file} file_location]
[{-l|--ssh-login-name} username]
[--timeout minutes]

Provide the nodes for which you want to create certificates using the --nodes option.

Provide the location of the existing CA Certificate using the --byo-ca-cert option.

You can use the same CA certificate and private key you used to generate the Kubernetes
node certificates by using the --byo-ca-cert and --byo-ca-key options.

For example:

olcnectl certificates distribute \
--nodes worker3.example.com,worker4.example.com \
--byo-ca-cert $HOME/certificates/ca/ca.cert \
--byo-ca-key $HOME/certificates/ca/ca.key

The location of the CA Certificate and private key might be different if you used the --cert-dir
option of the olcnectl certificates distribute command when creating the original
certificates.

The certificate files for each node are generated and saved in the $HOME/certificates/
directory, in a directory for each hostname.

The certificates for each node are copied to the /etc/olcne/certificates/ directory on each
Kubernetes node using SSH. This is the default directory for the location of the certificates
when you start the Platform API Server and Platform Agent.

Setting up Certificates for the Platform CLI to the Platform API
Server

Communication between the Platform CLI and Platform API Server is secured using X.509
certificates.

We recommend you configure the X.509 certificates used to manage the communication
between the Platform CLI and the Platform API Server. You can use:

• Vault: The certificates are managed using the HashiCorp Vault secrets manager.

• CA Certificates: Using a CA Certificate, signed by a trusted Certificate Authority.

• Private CA Certificates: Using generated certificates, signed by a private CA you set up.
These certificates are unmanaged and must be renewed and updated manually.

The certificates need to be on the node that contains the Platform CLI (this is most likely the
operator node). The name of the directory reflects the name of the host that contains Platform

Chapter 3
Setting up Certificates for the Platform CLI to the Platform API Server

3-9

API Server (again, this is most likely the operator node). The format of the directory for the
certificates must be:

$HOME/.olcne/certificates/api_server_hostname:port
The api_server_hostname is the hostname of the node where the Platform API Server is
installed, and the port is the port to access the Platform API Server (the default is 8091). This
is the default directory for the Platform API Server keys, and where the Platform CLI checks for
access to the Platform API Server without any extra configuration. For example:

$HOME/.olcne/certificates/operator.example.com:8091

Generate Certificates for the Platform CLI to the Platform API Server
Use the Platform CLI to generate signed certificates for the Platform CLI to access the Platform
API Server.

On the operator node, use the olcnectl certificates generate command to generate
certificates for the Platform CLI to access the Platform API Server. The syntax to use is:

olcnectl certificates generate
[--byo-ca-cert certificate-path]
[--byo-ca-key key-path]
[--cert-dir certificate-directory]
[--cert-request-common-name common_name]
[--cert-request-country country]
[--cert-request-locality locality]
[--cert-request-organization organization]
[--cert-request-organization-unit organization-unit]
[--cert-request-state state]
[{-h|--help}]
{-n|--nodes} nodes
[--one-cert]

The --cert-dir option sets the location where the certificates are to be saved. We
recommend to use the the following format for the directory:

$HOME/.olcne/certificates/api_server_hostname:port
The api_server_hostname is the hostname of the node where the Platform API Server is
installed, and the port is the port to access the Platform API Server (the default is 8091). This
is the default directory for the Platform API Server keys, and where the Platform CLI checks for
access the Platform API Server without any extra configuration.

Important:

This is the path to specify the location of the certificates for the Platform CLI to
access the Platform API Server when you create an environment using the olcnectl
environment create command.

The --nodes option must be set to the hostname and IP address of the Platform API Server, as
shown:

--nodes api_server_hostname,api_server_ip_address

Chapter 3
Setting up Certificates for the Platform CLI to the Platform API Server

3-10

Use the --one-cert option to save the certificates for the hostname and for the IP address to a
single file.

You can use the same CA certificate and private key you used to generate the Kubernetes
node certificates by using the --byo-ca-cert and --byo-ca-key options.

For example:

olcnectl certificates generate \
--nodes operator.example.com,127.0.0.1 \
--cert-dir $HOME/.olcne/certificates/operator.example.com:8091/ \
--byo-ca-cert $HOME/certificates/ca/ca.cert \
--byo-ca-key $HOME/certificates/ca/ca.key \
--one-cert

In this example, the certificate files (node.cert, node.csr, and node.key) are created and
saved in the directory:

$HOME/.olcne/certificates/operator.example.com:8091/
Copy the CA Certificate you used to generate the keys to this directory. For example:

cp $HOME/certificates/ca/ca.cert $HOME/.olcne/certificates/
operator.example.com:8091/

The Platform CLI is set up to connect securely to the Platform API Server.

Setting up Certificates for the externalIPs Kubernetes Service
When you deploy Kubernetes, a service is deployed to the cluster that controls access to
externalIPs in Kubernetes services. The service is named externalip-validation-webhook-
service and runs in the externalip-validation-system namespace. This Kubernetes service
requires X.509 certificates be set up before deploying Kubernetes. You can use Vault to
generate the certificates, or use existing certificates for this purpose. You can also generate
certificates using the Platform CLI. The certificates must be available on the operator node.

The examples in this book use the /etc/olcne/certificates/restrict_external_ip/
directory for these certificates.

Setting up Vault Certificates
You can use Vault to generate a certificates for the externalIPs Kubernetes service. The Vault
instance must be configured in the same way as described in Setting up Vault Authentication.

You need to generate certificates for two nodes, named:

externalip-validation-webhook-service.externalip-validation-system.svc
externalip-validation-webhook-service.externalip-validation-
system.svc.cluster.local
The certificate information must be generated in PEM format.

Chapter 3
Setting up Certificates for the externalIPs Kubernetes Service

3-11

For example:

vault write olcne_pki_intermediary/issue/olcne \
 alt_names=externalip-validation-webhook-service.externalip-validation-
system.svc,\
externalip-validation-webhook-service.externalip-validation-
system.svc.cluster.local \
 format=pem_bundle

The output is displayed. Look for the section that starts with certificate. This section
contains the certificates for the node names (set with the alt_names option). Save the output in
this section to a file named node.cert. The file looks similar to:

-----BEGIN RSA PRIVATE KEY-----
MIIEpQIBAAKCAQEAymg8uHy+mpwlelCyC4WrnfLwUmJ5vZmSos85QnIlZvyycUPK
...
X3c8LNaJDfQx1wKfTc/c0czBhHYxgwfau0G6wjqScZesPi2xY0xyslE=
-----END RSA PRIVATE KEY-----
-----BEGIN CERTIFICATE-----
MIID2TCCAsGgAwIBAgIUZ/M/D7bAjhyGx7DivsjBb9oeLhAwDQYJKoZIhvcNAQEL
...
9bRwnen+JrxUn4GV59GtsTiqzY6R2OKPm+zLl8E=
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
MIIDnDCCAoSgAwIBAgIUMapl4aWnBXE/02qTW0zOZ9aQVGgwDQYJKoZIhvcNAQEL
...
kV8w2xVXXAehp7cg0BakVA==
-----END CERTIFICATE-----

Look for the section that starts with issuing_ca. This section contains the CA certificate. Save
the output in this section to a file named ca.cert. The file looks similar to:

-----BEGIN CERTIFICATE-----
MIIDnDCCAoSgAwIBAgIUMapl4aWnBXE/02qTW0zOZ9aQVGgwDQYJKoZIhvcNAQEL
...
kV8w2xVXXAehp7cg0BakVA==
-----END CERTIFICATE-----

Look for the section that starts with private_key. This section contains the private key for the
node certificates. Save the output in this section to a file named node.key. The file looks similar
to:

-----BEGIN RSA PRIVATE KEY-----
MIIEpQIBAAKCAQEAymg8uHy+mpwlelCyC4WrnfLwUmJ5vZmSos85QnIlZvyycUPK
...
X3c8LNaJDfQx1wKfTc/c0czBhHYxgwfau0G6wjqScZesPi2xY0xyslE=
-----END RSA PRIVATE KEY-----

Copy the three files (node.cert, ca.cert and node.key) to the operator node and set the
ownership of the files as described in Setting up CA Certificates.

Setting up CA Certificates
If you're using existing certificates, copy them to a directory under /etc/olcne/certificates/
on the operator node. For example:

• CA Certificate: /etc/olcne/certificates/restrict_external_ip/ca.cert
• Node Key: /etc/olcne/certificates/restrict_external_ip/node.key

Chapter 3
Setting up Certificates for the externalIPs Kubernetes Service

3-12

• Node Certificate: /etc/olcne/certificates/restrict_external_ip/node.cert
Copy these certificates to a different location on the operator node than the certificates and
keys used for the Kubernetes nodes as set up in Setting up Certificates for Kubernetes Nodes.
This makes sure you don't overwrite those certificates and keys. You need to generate
certificates for two nodes, named:

externalip-validation-webhook-service.externalip-validation-system.svc
externalip-validation-webhook-service.externalip-validation-
system.svc.cluster.local
Save the certificates for these two nodes as a single file named node.cert.

Ensure the permissions of the directory where the certificates are saved can be read by the
user on the operator node that you intend to use to run the olcnectl commands to install
Kubernetes.

sudo chown -R username:username /etc/olcne/certificates/restrict_external_ip/

Setting up Private CA Certificates
You can use the Platform CLI to generate the certificates.

Generate Certificates for ExternalIPs Service
Use the Platform CLI to generate signed certificates for the Kubernetes ExternalIPs service.

On the operator node, use the olcnectl certificates generate command to generate
certificates for the Kubernetes ExternalIPs service. The syntax to use is:

olcnectl certificates generate
[--byo-ca-cert certificate-path]
[--byo-ca-key key-path]
[--cert-dir certificate-directory]
[--cert-request-common-name common_name]
[--cert-request-country country]
[--cert-request-locality locality]
[--cert-request-organization organization]
[--cert-request-organization-unit organization-unit]
[--cert-request-state state]
[{-h|--help}]
{-n|--nodes} nodes
[--one-cert]

The --cert-dir option sets the location where the certificates are to be saved. We
recommend you use the directory:

$HOME/certificates/restrict_external_ip/
The directory you use must have read and write permissions by the user you intend to use use
to run the olcnectl commands to install Kubernetes.

Chapter 3
Setting up Certificates for the externalIPs Kubernetes Service

3-13

Important:

This is the path to specify the location of the ExternalIPs Kubernetes service
certificates when you create the Kubernetes module using the olcnectl module
create command.

The --nodes option must be set to the name of the Kubernetes service, as shown:

--nodes externalip-validation-webhook-service.externalip-validation-
system.svc,externalip-validation-webhook-service.externalip-validation-
system.svc.cluster.local
Use the --one-cert option to save the certificates for the two service names to a single file.

You can use the same CA certificate and private key you used to generate the Kubernetes
node certificates by using the --byo-ca-cert and --byo-ca-key options.

For example:

olcnectl certificates generate \
--nodes externalip-validation-webhook-service.externalip-validation-
system.svc,\
externalip-validation-webhook-service.externalip-validation-
system.svc.cluster.local \
--cert-dir $HOME/certificates/restrict_external_ip/ \
--byo-ca-cert $HOME/certificates/ca/ca.cert \
--byo-ca-key $HOME/certificates/ca/ca.key \
--one-cert

In this example, the certificates are created and saved in the directory:

$HOME/certificates/restrict_external_ip/
Copy the CA certificate you used to generate the certificate into to this directory. If you used all
the defaults and suggested paths, the following command copies the file:

cp $HOME/certificates/ca/ca.cert $HOME/certificates/restrict_external_ip/

The certificates are set up for the Kubernetes ExternalIPs service.

Starting the Platform API Server and Platform Agent Services
This section discusses using certificates to set up secure communication between the Platform
API Server and the Platform Agent on nodes in the cluster. You can set up secure
communication using certificates managed by Vault, or using certificates copied to each node.
You must configure the Platform API Server and the Platform Agent to use the certificates
when you start the services.

For information on setting up the certificates with Vault, see Setting up Certificates for
Kubernetes Nodes.

For information on creating a private CA to sign certificates that can be used during testing,
see Setting up Private CA Certificates.

Chapter 3
Starting the Platform API Server and Platform Agent Services

3-14

Starting the Services Using Vault
This section shows you how to set up the Platform API Server and Platform Agent services to
use certificates managed by Vault.

To set up and start the services using Vault:

1. On the operator node, use the /etc/olcne/bootstrap-olcne.sh script to configure the
Platform API Server to retrieve and use a Vault certificate. Use the bootstrap-
olcne.sh --help command for a list of options for this script. For example:

sudo /etc/olcne/bootstrap-olcne.sh \
--secret-manager-type vault \
--vault-token s.3QKNuRoTqLbjXaGBOmO6Psjh \
--vault-address https://192.0.2.20:8200 \
--force-download-certs \
--olcne-component api-server

The certificates are generated and downloaded from Vault.

By default, the certificates are saved to the /etc/olcne/certificates/ directory. You can
optionally specify a path for the certificates, for example, by including the following options
in the bootstrap-olcne.sh command:

--olcne-ca-path /path/ca.cert \
--olcne-node-cert-path /path/node.cert \
--olcne-node-key-path /path/node.key \

The Platform API Server is configured to use the certificates, and started. You can confirm
the service is running using:

systemctl status olcne-api-server.service

2. On each Kubernetes node, use the /etc/olcne/bootstrap-olcne.sh script to configure
the Platform Agent to retrieve and use a certificate. For example:

sudo /etc/olcne/bootstrap-olcne.sh \
--secret-manager-type vault \
--vault-token s.3QKNuRoTqLbjXaGBOmO6Psjh \
--vault-address https://192.0.2.20:8200 \
--force-download-certs \
--olcne-component agent

The certificates are generated and downloaded from Vault.

By default, the certificates are saved to the /etc/olcne/certificates/ directory. You can
optionally specify a path for the certificates, for example, by including the following options
in the bootstrap-olcne.sh command:

--olcne-ca-path /path/ca.cert \
--olcne-node-cert-path /path/node.cert \
--olcne-node-key-path /path/node.key \

Chapter 3
Starting the Platform API Server and Platform Agent Services

3-15

The Platform Agent is configured to use the certificates, and started. You can confirm the
service is running using:

systemctl status olcne-agent.service

Starting the Services Using Certificates
This section shows you how to set up the Platform API Server and Platform Agent services to
use certificates which have been copied to each node. This example assumes the certificates
are available on all nodes in the /etc/olcne/certificates/ directory.

To set up and start the services using certificates:

1. On the operator node, use the /etc/olcne/bootstrap-olcne.sh script to configure the
Platform API Server to use the certificates. Use the bootstrap-olcne.sh --help
command for a list of options for this script. For example:

sudo /etc/olcne/bootstrap-olcne.sh \
--secret-manager-type file \
--olcne-component api-server

If the certificates for Kubernetes nodes are in a directory other than /etc/olcne/
certificates/ (the default), include the location of the certificates. The --olcne-node-
cert-path, --olcne-ca-path, and --olcne-node-key-path options set the location of the
certificate files. For example:

--olcne-node-cert-path /etc/olcne/configs/certificates/production/
node.cert \
--olcne-ca-path /etc/olcne/configs/certificates/production/ca.cert \
--olcne-node-key-path /etc/olcne/configs/certificates/production/node.key \

The Platform API Server is configured to use the certificates, and started. You can confirm
the service is running using:

systemctl status olcne-api-server.service

2. On each Kubernetes node, use the /etc/olcne/bootstrap-olcne.sh script to configure
the Platform Agent to use the certificates. For example:

sudo /etc/olcne/bootstrap-olcne.sh \
--secret-manager-type file \
--olcne-component agent

If the certificates for Kubernetes nodes are in a directory other than /etc/olcne/
certificates/ (the default), include the location of the certificates. The --olcne-node-
cert-path, --olcne-ca-path, and --olcne-node-key-path options set the location of the
certificate files. For example:

--olcne-node-cert-path /etc/olcne/configs/certificates/production/
node.cert \
--olcne-ca-path /etc/olcne/configs/certificates/production/ca.cert \
--olcne-node-key-path /etc/olcne/configs/certificates/production/node.key \

Chapter 3
Starting the Platform API Server and Platform Agent Services

3-16

The Platform Agent is configured to use the certificates, and started. You can confirm the
service is running using:

systemctl status olcne-agent.service

Chapter 3
Starting the Platform API Server and Platform Agent Services

3-17

4
Creating an Environment

The first step to creating a Kubernetes cluster is to create an environment. You can create
many environments, with each environment containing many modules. Naming each
environment and module makes it easier to manage the deployed components of Oracle Cloud
Native Environment.

Important:

Don't use the same node in more than one environment.

Use the olcnectl environment create command on the operator node to create an
environment. For more information on the syntax for the olcnectl environment create
command, see Platform Command-Line Interface.

Tip:

You can also use a configuration file to create an environment. The configuration file
is a YAML file that contains the information about the environments and modules you
want to deploy. Using a configuration file reduces the information you need to provide
with olcnectl commands. For information on creating and using a configuration
file, see Platform Command-Line Interface.

This section shows you how to create an environment using Vault, and using certificates
copied to the file system on each node. For information on setting up X.509 certificates, see
Setting up Certificates for Kubernetes Nodes.

Creating an Environment using Certificates Managed by Vault
This section shows you how to create an environment using Vault to provide and manage the
certificates.

On the operator node, use the olcnectl environment create command to create an
environment. For example, to create an environment named myenvironment using certificates
generated from a Vault instance at https://192.0.2.20:8200:

olcnectl environment create \
--api-server 127.0.0.1:8091 \
--environment-name myenvironment \
--secret-manager-type vault \
--vault-token s.3QKNuRoTqLbjXaGBOmO6Psjh \
--vault-address https://192.0.2.20:8200 \
--update-config

4-1

https://docs.oracle.com/en/operating-systems/olcne/1.9/olcnectl/
https://docs.oracle.com/en/operating-systems/olcne/1.9/olcnectl/

The --api-server option sets the location of the Platform API Server service. In this example,
the Platform API Server is running on the operator node (the localhost) and listening on port
8091.

The --environment-name option sets the name of the environment, which in this example is
myenvironment.

The --secret-manager-type option sets the certificate manager to Vault.

Replace --vault-token with the token to access Vault.

Replace --vault-address with the location of the Vault instance.

The --update-config option writes information about the environment to a local configuration
file at $HOME/.olcne/olcne.conf, and this configuration is used for future calls to the Platform
API Server. If you use this option, you don't need to specify the Platform API Server (using the
--api-server option) in future olcnectl commands. For more information on setting the
Platform API Server see Platform Command-Line Interface.

By default, the certificate generated by Vault is saved to $HOME/.olcne/certificates/
environment_name/. To specify a different location to save the certificate, use the --olcne-
node-cert-path, --olcne-ca-path, and --olcne-node-key-path options. For example, add
the following options to the olcnectl environment create command:

--olcne-node-cert-path /path/node.cert \
--olcne-ca-path /path/ca.cert \
--olcne-node-key-path /path/node.key

Creating an Environment using Certificates
This section shows you how to create an environment using certificates, copied to each
Kubernetes node. This example assumes the certificates are available on all nodes in
the /etc/olcne/certificates/ directory.

On the operator node, create the environment using the olcnectl environment create
command. For example:

olcnectl environment create \
--api-server 127.0.0.1:8091 \
--environment-name myenvironment \
--secret-manager-type file \
--olcne-node-cert-path /etc/olcne/certificates/node.cert \
--olcne-ca-path /etc/olcne/certificates/ca.cert \
--olcne-node-key-path /etc/olcne/certificates/node.key \
--update-config

If you created certificates for the Platform CLI to communicate the with Platform API Server as
shown in Generate Certificates for the Platform CLI to the Platform API Server, you don't need
to specify the location of the certificate information. The key information is stored in:

$HOME/.olcne/certificates/api_server_hostname:port

Chapter 4
Creating an Environment using Certificates

4-2

https://docs.oracle.com/en/operating-systems/olcne/1.9/olcnectl/

If you followed that procedure, you can create an environment without the key information, for
example:

olcnectl environment create \
--api-server 127.0.0.1:8091 \
--environment-name myenvironment \
--secret-manager-type file \
--update-config

The --api-server option sets the location of the Platform API Server service. In this example,
the Platform API Server is running on the operator node (the localhost) and listening on port
8091.

The --environment-name option sets the name of the environment, which in this example is
myenvironment.

The --secret-manager-type option sets the certificate manager to use file-based certificates.

The --olcne-node-cert-path, --olcne-ca-path, and --olcne-node-key-path options set the
location of the certificate files.

You can optionally set the location for the certificate files using environment variables as the
Platform CLI uses these if they're set. The following environment variables map to the
olcnectl environment create command options:

Table 4-1 Certificate Options

Command Option Environment Variable Purpose

--olcne-node-cert-path $OLCNE_SM_CERT_PATH The path to the node
certificate.

--olcne-ca-path $OLCNE_SM_CA_PATH The path to the Certificate
Authority certificate.

--olcne-node-key-path $OLCNE_SM_KEY_PATH The path to the key for the
node's certificate.

For example, to set the certificate information using environment variables for the same
environment, you could use:

export OLCNE_SM_CA_PATH=/etc/olcne/certificates//ca.cert
export OLCNE_SM_CERT_PATH=/etc/olcne/certificates/node.cert
export OLCNE_SM_KEY_PATH=/etc/olcne/certificates/node.key

olcnectl environment create \
--api-server 127.0.0.1:8091 \
--environment-name myenvironment \
--secret-manager-type file \
--update-config

The --update-config option writes information about the environment to a local configuration
file at $HOME/.olcne/olcne.conf, and this configuration is used for future calls to the Platform
API Server. If you use this option, you don't need to specify the Platform API Server (using the
--api-server option) in future olcnectl commands. For more information on setting the
Platform API Server see Platform Command-Line Interface.

Chapter 4
Creating an Environment using Certificates

4-3

https://docs.oracle.com/en/operating-systems/olcne/1.9/olcnectl/

5
Installing Modules

After you create an environment, you can add any modules you want to the environment.

Kubernetes Module
A base installation requires a Kubernetes module which is used to create a Kubernetes cluster.
For information on creating and installing a Kubernetes module, see Kubernetes Module.

Calico Module
When you have created and installed a Kubernetes module, you can optionally install the
Calico module. Calico can be used to configure the Kubernetes CNI to manage pod network
traffic. For information on creating and installing a Calico module, see Calico Module.

Multus Module
When you have created and installed a Kubernetes module, you can optionally install the
Multus module. Multus can be used to create a network bridge between either Flannel or
Calico. For information on creating and installing a Multus module, see Multus Module.

Oracle Cloud Infrastructure Cloud Controller Manager Module
When you have created and installed a Kubernetes module, you can optionally install the
Oracle Cloud Infrastructure Cloud Controller Manager module to set up access to Oracle Cloud
Infrastructure storage and application load balancers. This lets you use Oracle Cloud
Infrastructure storage to provide persistent storage for Kubernetes applications. This also lets
you create load balancers for Kubernetes applications so they can be accessed externally,
from outside the cluster.

For information on installing the Oracle Cloud Infrastructure Cloud Controller Manager module,
see Oracle Cloud Infrastructure Cloud Controller Manager Module.

MetalLB Module
When you have created and installed a Kubernetes module, you can optionally install the
MetalLB module. MetalLB is a network load balancer for Kubernetes applications running on
bare metal hosts. MetalLB lets you use Kubernetes LoadBalancer services, which traditionally
use a cloud provider network load balancer, in a bare metal environment. For information on
installing the MetalLB module, see MetalLB Module.

Rook Module
When you have created and installed a Kubernetes module, you can optionally install the Rook
module to set up access to Ceph storage. This lets you use a Ceph cluster to provide

5-1

https://docs.oracle.com/en/operating-systems/olcne/1.9/kubernetes/
https://docs.oracle.com/en/operating-systems/olcne/1.9/calico/
https://docs.oracle.com/en/operating-systems/olcne/1.9/multus/
https://docs.oracle.com/en/operating-systems/olcne/1.9/ociccm/
https://docs.oracle.com/en/operating-systems/olcne/1.9/metallb/

persistent storage for Kubernetes applications. For information on installing the Rook module,
see Rook Module.

KubeVirt Module
When you have created and installed a Kubernetes module, you can optionally install the
KubeVirt module to create and manage virtual machines. For information on installing the
KubeVirt module, see KubeVirt Module.

Operator Lifecycle Manager Module
When you have created and installed a Kubernetes module, you can optionally install the
Operator Lifecycle Manager module to manage the installation and lifecycle management of
operators in a Kubernetes cluster. For information on installing the Operator Lifecycle Manager
module, see Operator Lifecycle Manager Module.

NGINX Ingress Controller Module
When you have created and installed a Kubernetes module, you can optionally install the
NGINX Ingress Controller using the NGINX Ingress Controller module. For information on
installing the NGINX Ingress Controller module, see NGINX Ingress Controller Module.

Istio Module
When you have created and installed a Kubernetes module, you can optionally install a service
mesh using the Istio module. For information on installing the Istio module to create a service
mesh, see Istio Module.

Chapter 5
KubeVirt Module

5-2

https://docs.oracle.com/en/operating-systems/olcne/1.9/rook/
https://docs.oracle.com/en/operating-systems/olcne/1.9/kubevirt/
https://docs.oracle.com/en/operating-systems/olcne/1.9/olm/
https://docs.oracle.com/en/operating-systems/olcne/1.9/ingress-nginx/
https://docs.oracle.com/en/operating-systems/olcne/1.9/istio/

6
Configuring Services

This chapter contains information about any configuration options for Oracle Cloud Native
Environment, including configuring the Platform API Server and Platform Agent services.

Configuring the Platform API Server
The Platform API Server runs as a Systemd service, named olcne-api-server. You can get
logs for this service using:

sudo journalctl -u olcne-api-server

By default, the service logs information level messages. You can change this to log debug level
messages using the OLCNE_DEBUG environment variable or a Systemd drop in file.

If the environment variable is set to OLCNE_DEBUG=0, the logging level is set to information
messages. Setting OLCNE_DEBUG=1 sets the logging level to debug messages, for example:

export OLCNE_DEBUG=1

You can also set this as a Systemd drop in file. Edit the /etc/systemd/system/olcne-
api-server.service.d/10-auth.conf file and change the OLCNE_DEBUG entry. For
example:

[Service]
Environment="VAULT_SKIP_VERIFY=false"
Environment="OLCNE_DEBUG=1"
Environment="OLCNE_AGENT_ARGS= --secret-manager-type 'file' "
Environment="OLCNE_TLS= "
ExecStart=
ExecStart=/usr/libexec/olcne-api-server -i /etc/olcne/
modules $OLCNE_AGENT_ARGS $OLCNE_TLS
RestartSec=5

You can change some Platform API Server settings by editing the Systemd service unit file so
that the binary is invoked to use extra options.

olcne-api-server options:

• [-p|--port] port_number
Specifies the port that the Platform API Server binds to. Defaults to 8091 if unspecified.

• [-i|--installables] installables_path
Specifies the path to the directory of installable modules. Defaults to /etc/olcne/modules.

• [-x|--insecure]
Allows the gRPC server to accept clients that don't securely establish their identity.

6-1

To reconfigure the Platform API Server to use any of these options, you can edit the Systemd
unit file at /usr/lib/systemd/system/olcne-api-server.service and append the
option to the ExecStart line. For example:

[Unit]
Description=Platform API Server for Oracle Cloud Native Environments
Wants=network.target
After=network.target

[Service]
ExecStart=/usr/libexec/olcne-api-server -i /etc/olcne/modules --port 9083
WorkingDirectory=/var/olcne
User=olcne
Group=olcne
Restart=on-failure

[Install]
WantedBy=multi-user.target

If you edit the Systemd unit or drop in file, you must run the following commands for the
changes to take effect:

sudo systemctl daemon-reload
sudo systemctl restart olcne-api-server.service

Note:

If you change the port value for this service, take this into account for all other
instructions provided in the documentation.

Configuring the Platform Agent
The Platform Agent runs as a Systemd service, named olcne-agent. You can get logs for this
service using:

sudo journalctl -u olcne-agent

By default, the service logs information level messages. You can change this to log debug level
messages using the OLCNE_DEBUG environment variable or a Systemd drop in file.

If the environment variable is set to OLCNE_DEBUG=0, the logging level is set to information
messages. Setting OLCNE_DEBUG=1 sets the logging level to debug messages, for example:

export OLCNE_DEBUG=1

You can also set this as a Systemd drop in file. Edit the /etc/systemd/system/olcne-
agent.service.d/10-auth.conf file and change the OLCNE_DEBUG entry. For example:

[Service]
Environment="VAULT_SKIP_VERIFY=false"

Chapter 6
Configuring the Platform Agent

6-2

Environment="OLCNE_DEBUG=1"
Environment="OLCNE_AGENT_ARGS= --secret-manager-type 'file' "
Environment="OLCNE_TLS= "
ExecStart=
ExecStart=/usr/libexec/olcne-agent $OLCNE_AGENT_ARGS $OLCNE_TLS
RestartSec=5

You can change some Platform Agent settings by editing the Systemd service unit file so that
the binary is invoked to use extra options.

olcne-agent options:

• [-p|--port] port-number
Specifies the port that the Platform Agent service binds to. Defaults to 8090 if unspecified.

• [-x|--insecure]
Allows the gRPC server to accept clients that don't securely establish their identity.

To reconfigure the Platform Agent to use any of these options, you can edit the Systemd unit
file at /usr/lib/systemd/system/olcne-agent.service and append the option to the
ExecStart line.

If you edit the Systemd unit or drop in file, you must run the following commands for the
changes to take effect:

sudo systemctl daemon-reload
sudo systemctl restart olcne-agent.service

Note:

If you change the port value for this service, take this into account for all other
instructions provided in the documentation.

Chapter 6
Configuring the Platform Agent

6-3

	Contents
	Preface
	Documentation License
	Conventions
	Documentation Accessibility
	Access to Oracle Support for Accessibility
	Diversity and Inclusion

	1 Host Requirements
	Hardware Requirements
	Kubernetes Control Plane Node Hardware
	Kubernetes Worker Node Hardware
	Operator Node Hardware
	Kubernetes High Availability Requirements
	Istio Module Requirements
	Rook Module Requirements

	OS Requirements

	2 Prerequisites
	Enabling Access to the Software Packages
	Oracle Linux 9
	Enabling Repositories with the Oracle Linux Yum Server
	Enabling Channels with ULN

	Oracle Linux 8
	Enabling Repositories with the Oracle Linux Yum Server
	Enabling Channels with ULN

	Accessing the Oracle Container Registry
	Using an Oracle Container Registry Mirror
	Using a Private Registry

	Setting up the OS
	Setting up a Network Time Service
	Disabling Swap
	Configuring Access for the Platform Agent

	Setting up the Network
	Setting up the Firewall Rules
	Non-HA Cluster Firewall Rules
	Highly Available Cluster Firewall Rules

	Setting up Other Network Options
	Internet Access
	nftables Rule on Oracle Linux 9
	Flannel Network
	br_netfilter Module
	Bridge Tunable Parameters
	Network Address Translation

	Setting FIPS Mode
	Setting Up SSH Key-based Authentication

	3 Installing Oracle Cloud Native Environment
	Installation Overview
	Setting up the Nodes
	Setting up the Operator Node
	Setting up Kubernetes Nodes
	Configuring a Proxy Server

	Setting up a Load Balancer for Highly Available Clusters
	Setting up an External Load Balancer
	Setting up a Load Balancer on Oracle Cloud Infrastructure
	Setting up the Internal Load Balancer

	Setting up Certificates for Kubernetes Nodes
	Setting up Vault Authentication
	Setting up CA Certificates
	Setting up Private CA Certificates
	Distribute Node Certificates
	Distribute Extra Node Certificates

	Setting up Certificates for the Platform CLI to the Platform API Server
	Generate Certificates for the Platform CLI to the Platform API Server

	Setting up Certificates for the externalIPs Kubernetes Service
	Setting up Vault Certificates
	Setting up CA Certificates
	Setting up Private CA Certificates
	Generate Certificates for ExternalIPs Service

	Starting the Platform API Server and Platform Agent Services
	Starting the Services Using Vault
	Starting the Services Using Certificates

	4 Creating an Environment
	Creating an Environment using Certificates Managed by Vault
	Creating an Environment using Certificates

	5 Installing Modules
	Kubernetes Module
	Calico Module
	Multus Module
	Oracle Cloud Infrastructure Cloud Controller Manager Module
	MetalLB Module
	Rook Module
	KubeVirt Module
	Operator Lifecycle Manager Module
	NGINX Ingress Controller Module
	Istio Module

	6 Configuring Services
	Configuring the Platform API Server
	Configuring the Platform Agent

