
Oracle® Fusion Middleware
Developing with Oracle WebCenter Content

14c (14.1.2.0.0)
F89678-01
December 2024

Oracle Fusion Middleware Developing with Oracle WebCenter Content, 14c (14.1.2.0.0)

F89678-01

Copyright © 1994, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxxii

Documentation Accessibility xxxii

Related Documents xxxii

Conventions xxxii

Part I Getting Started with Oracle WebCenter Content

1 Introduction to Developing with Oracle WebCenter Content

1.1 Overview of WebCenter Content Architecture 1-1

1.1.1 WebCenter Content Directories and Files 1-1

1.1.1.1 Terminology for WebCenter Content Directories 1-2

1.1.1.2 The bin Directory 1-2

1.1.1.3 The config Directory 1-4

1.1.1.4 The components Directory 1-4

1.1.1.5 The custom Directory 1-5

1.1.1.6 The resources Directory 1-5

1.1.1.7 The weblayout Directory 1-6

1.1.2 Resources 1-6

1.2 Customization Types 1-7

1.3 Customization Planning 1-8

1.4 Recommended Skills and Tools for Customizing Content Server 1-8

1.5 Content Server Behavior 1-10

1.5.1 Startup Behavior 1-10

1.5.1.1 Startup Steps 1-11

1.5.1.2 Effects of Configuration Loading 1-12

1.5.2 Resource Caching 1-12

1.5.3 Page Assembly 1-13

1.5.4 Database Interaction 1-14

1.5.5 Localized String Resolution 1-14

1.5.6 Application Integrations 1-14

iii

2 Installing and Configuring Oracle JDeveloper

2.1 Install JDeveloper 2-1

2.2 Install WebCenter Content Connection Extension for JDeveloper 2-1

2.3 Creating an Integrated WebLogic Server Domain 2-2

2.4 Configuring JDeveloper for Defining Seeded Customizations 2-2

Part II Working with the Idoc Script Custom Scripting Language

3 Introduction to the Idoc Script Custom Scripting Language

3.1 Idoc Naming Conventions 3-1

3.2 Idoc Script Syntax 3-2

3.2.1 Idoc Script Tags 3-2

3.2.2 Idoc Script Comments 3-2

3.3 Idoc Script Uses 3-2

3.3.1 Includes 3-3

3.3.1.1 Include Example 3-3

3.3.1.2 Super Tag 3-4

3.3.1.3 Super Tag Example 3-5

3.3.2 Variables 3-5

3.3.2.1 Variable Creation 3-5

3.3.2.2 Variable References 3-5

3.3.2.3 Variable Values 3-6

3.3.2.4 Comma Separators 3-6

3.3.2.5 Variable Reference in a Conditional 3-6

3.3.2.6 Variable Reference Search Order 3-6

3.3.2.7 Regular Variables 3-7

3.3.3 Functions 3-7

3.3.3.1 Personalization Functions 3-7

3.3.4 Conditionals 3-8

3.3.4.1 Conditional Example 3-8

3.3.5 Looping 3-9

3.3.5.1 ResultSet Looping 3-9

3.3.5.2 ResultSet Looping Example 3-10

3.3.5.3 While Looping 3-10

3.3.5.4 While Looping Example 3-10

3.3.5.5 End a Loop 3-10

3.3.6 Administration Interface 3-11

3.3.6.1 Workflow Admin 3-11

3.3.6.2 Web Layout Editor 3-11

3.3.6.3 Batch Loader 3-12

iv

3.3.6.4 Archiver 3-12

3.3.6.5 System Properties 3-12

3.3.6.6 Email 3-12

3.4 Special Keywords 3-12

3.4.1 Keywords Versus Functions 3-13

3.4.1.1 exec Keyword 3-13

3.4.1.2 eval Function 3-14

3.4.1.3 include Keyword 3-14

3.4.1.4 inc Function 3-14

3.5 Operators 3-15

3.5.1 Comparison Operators 3-15

3.5.2 Special String Operators 3-15

3.5.3 Numeric Operators 3-16

3.5.4 Boolean Operators 3-17

3.6 Metadata Fields 3-17

3.6.1 Metadata Field Naming 3-17

3.6.2 Standard Metadata Fields 3-18

3.6.2.1 Common Metadata Fields 3-18

3.6.2.2 Other Fields 3-19

3.6.3 Option Lists 3-22

3.6.3.1 Internal Option Lists 3-22

3.6.3.2 Option List Script 3-23

3.6.3.3 Methods for Creating an Option List 3-23

3.6.4 Metadata References in Dynamic Server Pages 3-24

3.7 Merge Includes for Formatting Results 3-24

3.8 Scoped Local Variables 3-25

4 Using Idoc Script Variables and Functions with Oracle WebCenter
Content

4.1 Using Different Types of Idoc Script Variables and Functions 4-1

4.1.1 Conditional Dynamic Variables 4-1

4.1.2 Dynamic Variables 4-2

4.1.3 Environment Variables 4-3

4.1.4 Global Functions 4-3

4.1.5 Page Variables 4-7

4.1.5.1 Page Display Variables 4-7

4.1.5.2 Field Display Variables 4-8

4.1.6 Read-Only Variables 4-11

4.1.6.1 Template Read-Only Variables 4-11

4.1.6.2 User Read-Only Variables 4-12

4.1.6.3 Content Read-Only Variable 4-12

v

4.1.6.4 Other Read-Only Variable 4-12

4.1.7 Settable Variables 4-12

4.1.8 Workflows 4-13

4.1.8.1 Workflow Functions 4-14

4.1.8.2 Workflow Variables 4-14

4.1.9 Value Variables 4-15

4.2 Using Idoc Script Variables and Functions with Different Features of Oracle
WebCenter Content 4-16

4.2.1 Batch Loader 4-17

4.2.2 Clients 4-17

4.2.3 Content Items 4-17

4.2.4 Content Profiles 4-18

4.2.5 Content Server 4-18

4.2.6 Conversion 4-19

4.2.6.1 Inbound Refinery 4-19

4.2.6.2 Dynamic Converter 4-19

4.2.7 Database 4-19

4.2.8 Date and Time 4-19

4.2.9 Debugging 4-20

4.2.10 Directories and Paths 4-20

4.2.11 Dynamicdata 4-21

4.2.12 Field Display 4-21

4.2.13 Idoc Script 4-22

4.2.13.1 Keywords 4-22

4.2.14 Indexing 4-23

4.2.15 Localization 4-23

4.2.16 Page Display 4-23

4.2.17 Personalization 4-24

4.2.18 ResultSets 4-24

4.2.19 Schemas 4-25

4.2.20 Searching 4-25

4.2.21 Security 4-26

4.2.21.1 Internal Security 4-26

4.2.21.2 External Security 4-26

4.2.22 Strings 4-27

4.2.23 Templates 4-27

4.2.24 Users 4-27

4.2.25 Web Servers 4-28

4.2.26 Workflow 4-29

4.2.26.1 Global Function 4-29

4.2.26.2 Workflow Functions 4-29

vi

4.2.26.3 Other Variables 4-30

Part III Changing the Look and Feel of the Content Server Interface

5 Customizing the Content Server Interface

5.1 About Customizing the Content Server Interface 5-1

5.1.1 Types of Skins and Layouts 5-1

5.1.2 Skins 5-2

5.1.3 Layouts 5-2

5.2 Choosing a Different Skin or Layout 5-2

5.3 Configure a Default Skin and Layout for New Users and Guests 5-3

5.4 Modify the Template for a Skin or Layout 5-3

5.4.1 About Dynamic Publishing 5-3

5.4.2 IdocScript Files for Dynamic Publishing 5-3

5.4.3 Navigation Engine Reference 5-4

5.4.3.1 Dynamic Data Tables for Content Server Navigation 5-4

5.4.3.2 List of LinkType Values 5-6

5.4.3.3 List of Flags 5-6

5.4.3.4 Global Javascript Variables 5-7

5.4.3.5 Access to Menu Items and Nodes 5-7

5.4.3.6 11g Support for NavBuilder Functions 5-7

5.5 Alter the Anonymous User Interface 5-8

5.5.1 Altering the Anonymous User Interface 5-9

5.6 Changing the URL of the Login Page 5-9

5.7 Creating and Publishing a New Layout 5-11

5.8 Optimize the Use of Published Files 5-11

5.8.1 Bundling Files 5-12

5.8.2 Referencing Published Files 5-13

6 Customizing the WebCenter Content User Interface

6.1 Customizing the WebCenter Content User Interface 6-1

6.2 Install and Configure Oracle JDeveloper Studio Edition 6-2

6.3 Setting up the WccAdfCustomization Application 6-2

6.4 Define a Custom Skin and Generating WccAdfCustomSkin.jar 6-3

6.4.1 Designing and Testing Customizations in the Custom Skin 6-3

6.4.1.1 Customizing the Branding Bar Logo with Your Own Images 6-4

6.4.1.2 Customizing the Default Font Size 6-4

6.4.1.3 Customizing Selectors 6-5

6.4.2 Packaging the Custom Skin As WccAdfCustomSkin.jar 6-6

6.5 Define MDS Seeded Customizations and Generating WccAdfCustomization.mar 6-6

vii

6.5.1 Defining customer Layer Values 6-6

6.5.2 Defining Seeded Customizations for Each Layer Value of the customer Layer 6-7

6.5.3 Defining MDS Seeded Customizations 6-7

6.5.4 Packaging Seeded Customizations in WccAdfCustomization.mar 6-8

6.6 Applying Customizations to the Installed Environment 6-9

6.6.1 Applying a Custom Skin 6-9

6.6.2 Applying the Seeded Customizations to the WebCenter Content User Interface 6-9

7 Creating Dynamic Server Pages

7.1 About Dynamic Server Pages 7-1

7.1.1 Page Types 7-3

7.1.1.1 IDOC File 7-3

7.1.1.2 HCST File 7-3

7.1.1.3 HCSP File 7-3

7.1.1.4 HCSF File 7-3

7.2 Altering the Appearance and Navigation of Web Pages 7-4

7.2.1 Syntax 7-4

7.2.1.1 Idoc Script Expressions 7-4

7.2.1.2 Comparison Operators 7-5

7.2.1.3 Special Characters 7-6

7.2.1.4 References to Metadata 7-6

7.2.2 Idoc Script Functions 7-7

7.2.2.1 docLoadResourceIncludes Function 7-7

7.2.2.2 executeService Function 7-8

7.2.3 Development Recommendations 7-8

7.2.3.1 General Guidelines 7-8

7.2.3.2 HCSF Guidelines 7-9

7.2.4 HCSF Pages 7-9

7.2.4.1 Load Section 7-10

7.2.4.2 Data Section 7-11

7.2.4.3 Form Section 7-16

7.3 Creating an IDOC File with Custom Includes for Dynamic Server Pages 7-18

7.4 Creating an HCST Page 7-18

7.5 Creating an HCSP Page 7-19

7.6 Creating an HCSF Page 7-19

7.6.1 Common Code for Forms 7-24

7.6.1.1 Retrieving File Information 7-24

7.6.1.2 Referencing a File Extension 7-24

7.6.1.3 Defining Form Information 7-24

7.6.1.4 Defining Form Fields 7-25

7.6.1.5 Defining Hidden Fields 7-25

viii

7.6.1.6 Submitting a Form 7-25

7.7 Verifying the Display of an HCST, HCSP, or HCSF Page in a Web Browser 7-26

Part IV Modifying the Functionality of Content Server

8 Changing System Settings

8.1 About Changing System Settings 8-1

8.2 Changing System Settings Through the Configuration Pages 8-1

8.3 Changing System Settings Through the System Properties Application 8-2

8.4 Customizing the Library and System Home Page with the Web Layout Editor 8-2

8.5 Defining Security and Accounts for Users with the User Admin Application 8-2

9 Changing Configuration Information

9.1 About Changing Configuration Information 9-1

9.2 Changing Configurations with the Idoc Script Custom Scripting Language 9-1

9.3 Changing Configurations with Development Tools and Technologies 9-2

10

Customizing Services

10.1 About Customizing Services 10-1

10.2 Customizing Services for Communicating with Content Server 10-2

10.3 Customizing Services for Accessing the Database 10-2

11

Generating Actions Menus

11.1 About Generating Actions Menus 11-1

11.2 Creating Display Tables 11-1

11.2.1 Headline View Tables 11-2

11.2.2 Classic View Tables 11-4

11.2.3 Thumbnail View Tables 11-4

11.3 Customizing Actions Menus 11-4

11.4 Customizing Actions Menus 11-6

Part V Customizing Content Server with Components

12

Getting Started with Content Server Components

12.1 About Standard, System, and Custom Components 12-1

12.1.1 Component Files Overview 12-1

ix

12.1.2 Using Components 12-2

12.1.2.1 Advantages of Using Components 12-2

12.1.2.2 Constraints 12-2

12.1.2.3 Installed Components 12-3

12.1.3 About Directories and Files 12-3

12.1.3.1 HDA Files 12-3

12.1.3.2 Custom Resource Files 12-7

12.1.3.3 Data Binder 12-8

12.1.3.4 Manifest File 12-9

12.1.3.5 Other Files 12-10

12.1.3.6 Typical Directory Structure 12-11

12.1.4 Development Recommendations 12-11

12.1.4.1 Creating a Component 12-12

12.1.4.2 Work with Component Files 12-12

12.1.4.3 Using a Development Content Server 12-12

12.1.4.4 Component File Organization 12-13

12.1.4.5 Naming Conventions 12-13

12.2 Tools for Managing Components 12-14

12.2.1 Component Wizard 12-14

12.2.2 Managing Custom Components with Advanced Component Manager 12-15

12.2.3 ComponentTool 12-17

12.3 Component Files 12-17

12.3.1 The idc Product _components.hda File 12-17

12.3.2 Components ResultSet 12-18

12.3.3 Component Definition (Glue) File 12-18

12.3.3.1 ResourceDefinition ResultSet 12-19

12.3.3.2 MergeRules ResultSet 12-21

12.3.3.3 Filters ResultSet 12-22

12.3.3.4 ClassAliases ResultSet 12-22

12.4 Resources for Assembling Web Pages 12-22

13

Enabling and Disabling Components for Content Server

13.1 About Enabling and Disabling Components 13-1

13.2 Enabling a Component 13-1

13.3 Disabling a Component 13-1

14

Updating Component Configurations

14.1 About Updating Component Configurations 14-1

14.2 Updating a Component Configuration with the Advanced Component Manager 14-1

x

14.3 Updating a Component Configuration Through the Configuration for instance Screen 14-1

15

Customizing Content Tracker

15.1 About Content Tracker 15-1

15.1.1 Content Tracker Accesses and Services 15-1

15.1.2 Content Tracker Components and Functions 15-2

15.1.2.1 DataBinder Dump Facility 15-2

15.1.2.2 Performance Optimization 15-3

15.1.2.3 Installation Considerations 15-4

15.2 Customizing Content Tracker with Configuration Variables 15-4

15.2.1 About Configuration Variables 15-4

15.2.1.1 Access Control Lists and Secure Mode 15-6

15.2.1.2 Values for the Security Checks Preference Variable 15-7

15.2.1.3 File Types for Entries in the SctAccessLog 15-7

15.2.2 Setting Content Tracker Configuration Variables 15-7

15.2.3 Tracking External Users and Content Items 15-8

15.3 Configuring Service Calls 15-8

15.3.1 About the Service Call Configuration File 15-8

15.3.1.1 General Service Call Logging 15-9

15.3.1.2 Extended Service Call Tracking Function 15-9

15.3.1.3 Service Call Configuration File Contents 15-11

15.3.1.4 ResultSet Examples 15-12

15.3.2 About the Content Tracker Logging Service 15-14

15.3.3 Managing Service Call Information 15-15

15.3.3.1 Manually Editing the SctServiceFilter.hda File 15-15

15.3.3.2 Setting Required DataBinder Fields to Call the Content Tracker Logging
Service 15-16

15.3.3.3 Calling the Content Tracker Logging Service from an Application 15-17

15.3.3.4 Calling the Content Tracker Logging Service from Idoc Script 15-17

15.3.4 Service Call Management and the User Interface 15-17

15.3.4.1 Adding, Editing, or Deleting Service Entries 15-18

15.3.4.2 Adding, Editing, or Deleting Field Map ResultSets 15-19

15.4 Customizing the Activity Metrics SQL Queries 15-20

15.4.1 Tracking Access to Content Items by External Users 15-21

15.5 Tracking Indirect Access to Content with Web Beacons 15-21

15.5.1 Web Beacon Use Cases 15-22

15.5.2 Web Beacon Overview 15-23

15.5.3 Web Beacon Object 15-23

15.5.4 Web Beacon References 15-24

15.5.4.1 Format Structure for URL References 15-24

15.5.4.2 Placement and Retrieval Scheme 15-25

xi

15.5.4.3 Data Capture and Storage 15-26

15.5.5 Reduction Processing for Web Beacon References 15-26

15.5.6 Limitations and Guidelines 15-27

15.5.6.1 Limitations 15-27

15.5.6.2 Guidelines 15-27

15.5.7 Examples of Web Beacon Embedding 15-28

15.5.7.1 Embedded HTML Example 15-28

15.5.7.2 Embedded JavaScript Example 15-29

15.5.7.3 Served JavaScript Example 15-31

16

Customizing Content Categorizer

16.1 About Content Categorizer 16-1

16.2 Setting Up and Customizing Content Categorizer for Your Site 16-1

17

Downloading Custom Components

17.1 About Downloading Custom Components 17-1

17.2 Downloading a Component from the Advanced Component Manager 17-1

17.3 Downloading a Component from Oracle Technology Network 17-1

18

Creating Custom Components

18.1 About Creating Custom Components 18-1

18.2 Creating Resources for a Component 18-1

18.2.1 HTML Includes 18-1

18.2.1.1 The Super Tag 18-2

18.2.1.2 Editing an HTML Include Resource 18-2

18.2.2 Dynamic Data Tables 18-3

18.2.2.1 Specifying Table Formats 18-3

18.2.2.2 Editing a Dynamic Data Table Resource 18-4

18.2.2.3 Specifying Table Properties 18-5

18.2.2.4 Using Dynamicdata Idoc Script Functions 18-9

18.2.3 String Resources 18-10

18.2.3.1 String Parameters 18-11

18.2.3.2 Editing a String Resource 18-13

18.2.4 Dynamic Tables 18-13

18.2.4.1 Merge Rules for Dynamic Tables 18-13

18.2.4.2 Editing a Dynamic Table Resource 18-13

18.2.5 Static Tables 18-14

18.2.5.1 Merge Rules for Static Tables 18-14

18.2.5.2 Editing a Static Table Resource 18-14

xii

18.2.6 Queries 18-14

18.2.6.1 Query Example 18-15

18.2.6.2 Editing a Query Resource 18-16

18.2.7 Services 18-16

18.2.7.1 Service Example 18-18

18.2.7.2 Editing a Service Resource 18-23

18.2.8 Templates 18-23

18.2.8.1 Template and Report Pages 18-25

18.2.8.2 Editing a Template Resource 18-29

18.2.9 Environment Resources 18-29

18.2.9.1 Environment Resource Example 18-30

18.2.9.2 Editing an Environment Resource 18-31

18.3 Creating a Component Definition File 18-31

18.4 Restarting Content Server to Apply a Component 18-31

19

Installing Components

19.1 About Installing Components 19-1

19.2 Packaging a Component for Installation 19-1

19.3 Installing a Component with the Advanced Component Manager 19-2

19.4 Installing a Component with the Component Wizard 19-2

19.5 Installing a Component with the ComponentTool Utility 19-3

20

Uninstalling Components

20.1 About Uninstalling Components 20-1

20.2 Uninstalling a Component from Content Server 20-1

Part VI Customizing Records

21

Customizing Disposition Actions

21.1 About Customizing Disposition Actions 21-1

21.2 Managing Custom Dispositions 21-2

21.2.1 Creating or Editing a Custom Disposition Action 21-2

21.2.2 Viewing Information About a Custom Disposition Action 21-4

21.2.3 Deleting a Custom Disposition Action 21-4

21.3 Disabling a Custom Disposition Action 21-5

21.4 Creating a Custom Disposition Action 21-5

21.5 Create Disposition Rules for Physical Content 21-6

xiii

22

Customizing Bar Codes

22.1 About Customizing Bar Codes 22-1

22.2 Adding a Custom Bar Code Range 22-1

22.3 Processing Nonstandard Bar Code Data 22-2

22.3.1 Header and Footer Information 22-2

22.3.2 Data Information 22-2

22.3.2.1 Transaction Codes 22-2

23

Creating Custom Reports

23.1 About Creating Custom Reports 23-1

23.1.1 Creating Custom Reports using Default Templates 23-2

23.2 Creating Custom Templates 23-3

23.3 Creating Templates with Oracle Business Intelligence Publisher 23-4

23.4 Creating or Editing New Report Sources 23-4

23.5 Downloading a BI XML Data File 23-5

Part VII Integrating WebCenter Content into Your Environment

24

Getting Started with Integrating WebCenter Content into Your
Environment

24.1 About Integration Methods 24-1

24.2 Overview of Web Services 24-1

24.3 Folders, Contribution Folders, and WebDAV Integration 24-2

24.3.1 Virtual Folders 24-3

24.3.2 WebDAV Integration 24-3

24.3.2.1 WebDAV Clients 24-4

24.3.2.2 WebDAV Servers 24-4

24.3.2.3 WebDAV Architecture 24-4

25

Configuring WebCenter Content Web Services for Integration

25.1 About Configuring WebCenter Content Web Services for Integration 25-1

25.1.1 Technologies for Web Services 25-1

25.1.2 WebCenter Content Web Services 25-2

25.2 Configuring Web Service Security Through Web Service Policies 25-4

25.3 Configuring SAML Support 25-4

xiv

26

Using the IdcCommand Utility to Access Content Server

26.1 About the IdcCommand Utility 26-1

26.2 Setting Up IdcCommand 26-2

26.2.1 Specifying a Command File 26-2

26.2.1.1 Command File Syntax 26-2

26.2.1.2 Precedence 26-3

26.2.1.3 Special Tags and Characters 26-3

26.2.2 Specifying Configuration Options 26-4

26.2.2.1 Command File 26-4

26.2.2.2 User 26-4

26.2.2.3 Log File 26-4

26.2.2.4 Connection Mode 26-5

26.3 Running IdcCommand 26-5

26.4 Using the Launcher 26-5

26.4.1 Quotation Rules 26-7

26.4.2 Computed Settings 26-7

26.4.3 Launcher Environment Variables 26-9

26.4.4 User Interface 26-10

26.4.5 Configuring the Launcher 26-11

26.4.6 Configuration File Example 26-11

26.5 Calling Services Remotely 26-14

27

Using the COM API for Integration

27.1 About the COM API 27-1

27.2 Calling Content Server Services with the IntradocClient OCX component 27-1

27.2.1 OCX Interface 27-1

27.2.2 IdcClient OCX Description 27-2

27.2.2.1 OCX Events 27-3

27.2.2.2 OCX Methods 27-3

27.2.2.3 OCX Properties 27-3

27.2.2.4 IdcClient OCX Interface 27-3

27.2.3 IdcClient OCX Control Setup 27-3

27.2.3.1 Setting Up the IdcClient OCX Component 27-4

27.2.3.2 Creating a Visual Interface 27-4

27.2.4 IdcClient Events 27-12

27.2.4.1 IntradocBeforeDownload 27-12

27.2.4.2 IntradocBrowserPost 27-13

27.2.4.3 IntradocBrowserStateChange 27-13

27.2.4.4 IntradocRequestProgress 27-13

27.2.4.5 IntradocServerResponse 27-13

xv

27.2.5 IdcClient OCX Methods 27-13

27.2.5.1 AboutBox 27-14

27.2.5.2 Back 27-15

27.2.5.3 CancelRequest 27-15

27.2.5.4 DoCheckoutLatestRev 27-15

27.2.5.5 DownloadFile 27-16

27.2.5.6 DownloadNativeFile 27-16

27.2.5.7 Drag 27-17

27.2.5.8 EditDocInfoLatestRev 27-17

27.2.5.9 Forward 27-18

27.2.5.10 GoCheckinPage 27-18

27.2.5.11 Home 27-19

27.2.5.12 InitiateFileDownload 27-19

27.2.5.13 InitiatePostCommand 27-20

27.2.5.14 Move 27-20

27.2.5.15 Navigate 27-21

27.2.5.16 NavigateCgiPage 27-21

27.2.5.17 Refresh Browser 27-21

27.2.5.18 SendCommand 27-21

27.2.5.19 SendPostCommand 27-22

27.2.5.20 SetFocus 27-22

27.2.5.21 ShowDMS 27-22

27.2.5.22 ShowDocInfoLatestRev 27-23

27.2.5.23 ShowWhatsThis 27-23

27.2.5.24 StartSearch 27-23

27.2.5.25 Stop 27-24

27.2.5.26 UndoCheckout 27-24

27.2.5.27 ViewDocInfo 27-24

27.2.5.28 ViewDocInfoLatestRev 27-25

27.2.5.29 ZOrder 27-25

27.3 Using the ODMA API to Access Content Server from a Desktop Application 27-26

27.3.1 ODMA Client 27-26

27.3.2 ODMA Interfaces 27-26

28

Using RIDC to Access Content Server

28.1 About Remote Intradoc Client 28-1

28.1.1 Supported Protocols 28-2

28.1.2 Supported URL Formats 28-2

28.1.3 Required Environments 28-3

28.1.4 HttpClient Libraries 28-3

28.1.5 Convenience Classes 28-4

xvi

28.2 Initializing Connections 28-4

28.3 Configuring Clients 28-5

28.3.1 Configuring Clients for Intradoc Connections 28-5

28.3.2 Configuring SSL 28-5

28.3.2.1 Installing and Enabling SecurityProviders Component 28-6

28.3.2.2 Creating Self-Signed Key Pairs and Certificates 28-6

28.3.2.3 Configuring an Incoming Provider for SSL Communication 28-10

28.3.2.4 Configuring an Outgoing Provider for SSL Communication 28-12

28.3.3 Configuring JAX-WS 28-13

28.3.3.1 Setting LPA Mode for a Service 28-14

28.3.3.2 Setting a GPA Service Policy for a Domain 28-14

28.3.3.3 Setting a GPA Client Policy for a Domain 28-15

28.3.4 Add GPA for the Web Service Client 28-16

28.3.5 Changing Default Settings 28-17

28.4 Authenticating Users 28-18

28.5 Using Services 28-18

28.6 Handling Connection Pooling 28-19

28.7 Sending and Receiving Streams 28-20

28.8 Reusing Binders for Multiple Requests 28-21

28.9 Setting User Security 28-22

28.10 Using RIDC Filters 28-23

29

Accessing Imaging User Interface Functions Through URL Tools

29.1 About Accessing Imaging User Interface Functions Through URL Tools 29-1

29.2 Using URL Tool 29-1

29.3 Supported URL Tool Parameters 29-1

29.4 Viewer URL Tool 29-2

30

Using the Content Server JCR Adapter

30.1 About the Java Content Repository Adapter 30-1

30.1.1 JCR Data Model 30-1

30.1.2 JCR Adapter Data Model for Content Server 30-2

30.2 Installing Required APIs and Runtime Libraries 30-3

30.2.1 Installing ADF Runtime Libraries 30-3

30.2.2 Deploying Remote Intradoc Client (RIDC) 30-4

30.2.3 Deploying the JCR API 30-4

30.2.4 Installing the JCR Integration Libraries 30-4

30.2.5 Installing the XML Integration Files 30-4

30.3 Deploying the JCR Adapter 30-4

30.4 Configuring Communication with Content Server 30-5

xvii

30.4.1 Supplying a Communication Method 30-5

30.4.2 Configuring Socket Communication (Listener Port) 30-5

30.4.3 Configuring Secure Socket Communication (SSL) 30-6

30.4.4 Configuring Web Communication (Web Server Filter) 30-6

30.4.5 Configuring the User Agent 30-6

30.4.6 Supplying Cache Settings 30-6

30.5 Finding Information About a Content Item 30-7

30.5.1 Revisions 30-7

30.5.2 Documents 30-7

30.5.3 DocMeta 30-8

30.5.4 RevClasses 30-8

30.6 Using a Search Index 30-8

30.7 Using the File Store Provider 30-8

31

Configuring Web Services with WSDL, SOAP, and the WSDL Generator

31.1 About Configuring Web Services with WSDL, SOAP, and the WSDL Generator 31-1

31.1.1 Web Services Framework 31-2

31.1.1.1 XML Data 31-2

31.1.1.2 WSDL Interface 31-2

31.1.1.3 SOAP Communication 31-2

31.1.1.4 UDDI Registry 31-3

31.1.1.5 DIME Message Format 31-3

31.1.1.6 How the Enabling Technologies Work Together 31-3

31.1.1.7 Implementation Architecture 31-4

31.1.1.8 Implementation on .NET 31-4

31.1.1.9 The SOAP Protocol 31-5

31.2 Accessing Content Server with a SOAP Client 31-5

31.2.1 Using a Java SOAP Client 31-5

31.3 Calling Content Server Services with SOAP 31-6

31.3.1 SOAP Packet Format 31-6

31.3.1.1 HTTP Headers 31-6

31.3.1.2 Namespaces 31-6

31.3.1.3 Nodes 31-7

31.3.2 Special Characters 31-10

31.3.3 Sample Service Calls with SOAP Response/Request 31-10

31.3.3.1 Ping the Server 31-11

31.3.3.2 Add a New User 31-12

31.3.3.3 Edit Existing User 31-15

31.3.3.4 Get User Information 31-18

31.3.3.5 Delete User 31-20

31.3.3.6 Check In Content Item 31-21

xviii

31.3.3.7 Check out Content Item 31-25

31.3.3.8 Undo Content Item Checkout 31-27

31.3.3.9 Get Content Item Information 31-29

31.3.3.10 Get File 31-31

31.3.3.11 Get Search Results 31-34

31.3.3.12 Get Table Data 31-37

31.3.3.13 Get Criteria Workflow Information 31-38

31.4 Using SOAP Packets in Active Server Pages 31-40

31.4.1 Sample SOAP Request 31-40

31.4.2 Sample Active Server Page 31-41

31.5 Generating WSDL Files to Access WebCenter Content 31-43

31.5.1 Understanding WSDL Files 31-43

31.5.1.1 WSDL File Structure 31-44

31.5.2 Sample WSDL File 31-46

31.5.3 Generating WSDL Files 31-49

31.5.4 Generating Proxy Class from WSDL Files 31-49

31.6 Customizing WSDL Files 31-50

32

Customizing the DesktopTag Component

32.1 About the DesktopTag Component 32-1

32.2 Enabling the DesktopTag and OracleCleanContent Components 32-1

32.3 Checking Out and Checking In Content Items with DesktopTag 32-2

32.3.1 File Get Operation 32-2

32.3.2 File Check-In Operation 32-2

32.4 Adding Properties to Checked-Out Content Items 32-2

32.4.1 Viewing Custom Properties 32-4

32.4.2 Checking In Documents from Outside Content Server 32-4

32.5 Configuring the DesktopTag Component 32-5

32.5.1 DesktopTagFormats Property 32-5

32.5.2 DesktopTagPrefix Property 32-6

32.5.3 DesktopTagFields Property 32-6

32.5.4 DesktopTagPrefixCustom Property 32-6

32.5.5 DesktopTagFieldsCustom Property 32-7

32.5.6 DesktopTagPrefixExtended Property 32-7

32.5.7 DesktopTagFieldsExtended Property 32-7

32.5.8 DefaultTaskPaneUrl Property 32-8

32.5.9 DesktopTagLog Property 32-8

32.5.10 DesktopTagFormatsExclude Property 32-8

xix

Part VIII Appendices

A Idoc Script Functions and Variables

A.1.1 abortToErrorPage() A-1

A.1.2 addEmptyOption A-2

A.1.3 AdminAtLeastOneGroup A-2

A.1.4 AdsSimpleAuth A-3

A.1.5 AdsUserName A-3

A.1.6 AdsUserPassword A-4

A.1.7 AfterLogin A-4

A.1.8 AllowCheckin A-5

A.1.9 AllowCheckout A-5

A.1.10 AllowIntranetUsers A-6

A.1.11 AllowReview A-6

A.1.12 AuthorAddress A-6

A.1.13 AuthorDelete A-7

A.1.14 AutoNumberPrefix A-8

A.1.15 BatchLoaderPath A-8

A.1.16 break() A-9

A.1.17 BrowserVersionNumber A-9

A.1.18 c A-9

A.1.19 cacheInclude() A-10

A.1.20 captionEntryWidth A-10

A.1.21 captionFieldWidth A-11

A.1.22 clearSchemaData() A-11

A.1.23 ClientControlled A-12

A.1.24 computeDocUrl() A-12

A.1.25 computeRenditionUrl() A-13

A.1.26 CONTENT_LENGTH A-14

A.1.27 coreContentOnly A-14

A.1.28 CURRENT_DATE A-14

A.1.29 CURRENT_ROW A-15

A.1.30 dateCurrent() A-15

A.1.31 dcShowExportLink A-16

A.1.32 ddAppendIndexedColumnResultSet() A-17

A.1.33 ddAppendResultSet() A-18

A.1.34 ddApplyTableSortToResultSet() A-19

A.1.35 ddGetFieldList() A-19

A.1.36 ddIncludePreserveValues() A-20

A.1.37 ddLoadIndexedColumnResultSet() A-21

xx

A.1.38 ddLoadResultSet() A-22

A.1.39 ddMergeIndexedColumnResultSet() A-23

A.1.40 ddMergeResultSet() A-24

A.1.41 ddMergeUsingIndexedKey() A-25

A.1.42 ddSetLocal() A-27

A.1.43 ddSetLocalByColumnsFromFirstRow() A-27

A.1.44 ddSetLocalByColumnsFromFirstRowIndexed() A-28

A.1.45 ddSetLocalEmpty() A-29

A.1.46 ddSetLocalEmptyByColumns() A-30

A.1.47 DefaultAccounts A-30

A.1.48 defaultFieldInclude A-31

A.1.49 defaultOptionListScript A-31

A.1.50 DelimitedUserRoles A-32

A.1.51 docLoadResourceIncludes() A-32

A.1.52 docRootFilename() A-34

A.1.53 DocTypeSelected A-34

A.1.54 DocUrl A-35

A.1.55 docUrlAllowDisclosure() A-35

A.1.56 DownloadApplet A-36

A.1.57 DownloadSuggestedName A-36

A.1.58 dpGet() A-37

A.1.59 dpPromote() A-37

A.1.60 dpPromoteRs() A-38

A.1.61 dpSet() A-38

A.1.62 dWfName A-39

A.1.63 dWfStepName A-39

A.1.64 EmptyAccountCheckinAllowed A-40

A.1.65 EnableDocumentHighlight A-40

A.1.66 encodeHtml() A-41

A.1.67 entryCount A-42

A.1.68 eval() A-42

A.1.69 ExclusiveCheckout A-43

A.1.70 exec A-44

A.1.71 executeService() A-44

A.1.72 ExternalUserAccounts A-45

A.1.73 ExternalUserRoles A-46

A.1.74 fieldCaption A-46

A.1.75 fieldCaptionInclude A-47

A.1.76 fieldCaptionStyle A-47

A.1.77 fieldDefault A-48

A.1.78 fieldEditWidth A-48

A.1.79 fieldEntryInclude A-48

xxi

A.1.80 fieldExtraScriptInclude A-49

A.1.81 fieldInclude A-49

A.1.82 fieldIsOptionList A-49

A.1.83 fieldMaxLength A-50

A.1.84 fieldName A-50

A.1.85 fieldOptionListType A-51

A.1.86 fieldType A-51

A.1.87 fieldValue A-52

A.1.88 fieldValueStyle A-52

A.1.89 fieldWidth A-53

A.1.90 fileUrl A-54

A.1.91 FIRSTREV A-54

A.1.92 ForcedConversionRules A-54

A.1.93 forceExpire() A-55

A.1.94 formatDate() A-56

A.1.95 formatDateDatabase() A-57

A.1.96 formatDateDisplay() A-58

A.1.97 formatDateOnly() A-58

A.1.98 formatDateOnlyDisplay() A-59

A.1.99 formatDateOnlyFull() A-59

A.1.100 formatDateWithPattern() A-60

A.1.101 formatTimeOnly() A-61

A.1.102 formatTimeOnlyDisplay() A-61

A.1.103 GATEWAY_INTERFACE A-62

A.1.104 generateUniqueId A-62

A.1.105 getCookie A-63

A.1.106 GetCopyAccess A-63

A.1.107 getDebugTrace() A-64

A.1.108 getErrorTrace() A-64

A.1.109 getFieldConfigValue A-65

A.1.110 getFieldViewDisplayValue() A-65

A.1.111 getFieldViewValue() A-66

A.1.112 getFreeMemory() A-66

A.1.113 getHelpPage A-67

A.1.114 getOptionListSize A-67

A.1.115 getParentValue() A-67

A.1.116 getRequiredMsg() A-68

A.1.117 getTextFile() A-68

A.1.118 getTotalMemory() A-69

A.1.119 getUserValue() A-70

A.1.120 getValue() A-70

A.1.121 getValueForSpecifiedUser() A-72

xxii

A.1.122 getViewValue() A-73

A.1.123 getViewValueResultSet() A-73

A.1.124 hasAppRights() A-74

A.1.125 HasExternalUsers A-75

A.1.126 HasLocalCopy A-75

A.1.127 hasOptionList A-76

A.1.128 HasOriginal A-76

A.1.129 HasPredefinedAccounts A-77

A.1.130 HasUrl A-77

A.1.131 HeavyClient A-78

A.1.132 HelpDir A-78

A.1.133 htmlRefreshTimeout A-79

A.1.134 htmlRefreshUrl A-79

A.1.135 HttpAbsoluteCgiPath A-79

A.1.136 HttpAdminCgiPath A-80

A.1.137 HttpBrowserFullCgiPath A-80

A.1.138 HttpCgiPath A-81

A.1.139 HttpCommonRoot A-82

A.1.140 HttpEnterpriseCgiPath A-82

A.1.141 HttpHelpRoot A-83

A.1.142 HttpImagesRoot A-83

A.1.143 HttpLayoutRoot A-84

A.1.144 HttpRelativeAdminRoot A-84

A.1.145 HttpRelativeWebRoot A-85

A.1.146 HttpServerAddress A-85

A.1.147 HttpSharedRoot A-86

A.1.148 HttpSystemHelpRoot A-87

A.1.149 HttpWebRoot A-87

A.1.150 HTTP_ACCEPT A-88

A.1.151 HTTP_ACCEPT_ENCODING A-88

A.1.152 HTTP_ACCEPT_LANGUAGE A-89

A.1.153 HTTP_COOKIE A-89

A.1.154 HTTP_HOST A-90

A.1.155 HTTP_INTERNETUSER A-90

A.1.156 HTTP_REFERER A-91

A.1.157 HTTP_USER_AGENT A-91

A.1.158 idocTestForInclude() A-92

A.1.159 inc() A-92

A.1.160 incDynamicConversionByRule() A-93

A.1.161 incGlobal() A-93

A.1.162 include A-94

A.1.163 incTemplate() A-95

xxiii

A.1.164 indexerSetCollectionValue() A-95

A.1.165 InstanceDescription A-96

A.1.166 isActiveTrace() A-96

A.1.167 isCheckin A-97

A.1.168 IsCheckinPreAuthed A-97

A.1.169 isComponentEnabled A-98

A.1.170 IsContributor A-98

A.1.171 IsCriteriaSubscription A-98

A.1.172 IsCurrentNav A-99

A.1.173 isDocPage A-99

A.1.174 IsDynamic A-100

A.1.175 IsDynamicConverterEnabled A-100

A.1.176 isEditMode A-101

A.1.177 IsEditRev A-102

A.1.178 isExcluded A-102

A.1.179 IsExternalUser A-103

A.1.180 IsFailedConversion A-103

A.1.181 IsFailedIndex A-104

A.1.182 sawflies() A-104

A.1.183 is Field Excluded A-105

A.1.184 isFieldHidden A-106

A.1.185 isFieldInfoOnly A-106

A.1.186 isFieldMemo A-107

A.1.187 IsFilePresent A-107

A.1.188 isFormSubmit A-108

A.1.189 IsFullTextIndexed A-109

A.1.190 isHidden A-109

A.1.191 isInfo A-110

A.1.192 isInfoOnly A-110

A.1.193 IsIntranetAuthOnly A-111

A.1.194 IsJava A-112

A.1.195 isLayoutEnabled() A-112

A.1.196 isLinkActive A-112

A.1.197 IsLocalSearchCollectionID A-113

A.1.198 IsLoggedIn A-113

A.1.199 IsMac A-114

A.1.200 IsMaxRows A-114

A.1.201 isMultiOption A-115

A.1.202 IsMultiPage A-115

A.1.203 isNew A-116

A.1.204 IsNotLatestRev A-116

A.1.205 IsNotSyncRev A-117

xxiv

A.1.206 IsOverrideFormat A-117

A.1.207 IsPageDebug A-118

A.1.208 IsPromptingForLogin A-119

A.1.209 IsProxiedServer A-120

A.1.210 isQuery A-120

A.1.211 isRelocated A-121

A.1.212 IsRequestError A-122

A.1.213 isRequired A-122

A.1.214 IsSavedQuery A-123

A.1.215 IsSoap A-123

A.1.216 isStrictList A-124

A.1.217 IsSubAdmin A-124

A.1.218 IsSun A-125

A.1.219 IsSysManager A-125

A.1.220 isTrue() A-126

A.1.221 isUpdate A-126

A.1.222 isUploadFieldScript A-127

A.1.223 IsUploadSockets A-128

A.1.224 IsUserEmailPresent A-128

A.1.225 isUserOverrideSet() A-129

A.1.226 isValidateFile() A-129

A.1.227 isVerboseTrace A-130

A.1.228 IsWindows A-130

A.1.229 IsWorkflow A-130

A.1.230 IsXml A-131

A.1.231 isZoneSearchField A-131

A.1.232 js() A-131

A.1.233 jsFilename() A-132

A.1.234 Json A-132

A.1.235 lastEntryTs A-133

A.1.236 lc() A-133

A.1.237 lcCaption() A-134

A.1.238 LmDefaultLayout() A-134

A.1.239 LmDefaultSkin() A-135

A.1.240 lmGetLayout() A-135

A.1.241 lmGetSkin() A-135

A.1.242 loadCollectionInfo() A-136

A.1.243 loadDocMetaDefinition() A-136

A.1.244 loadDocumentProfile() A-137

A.1.245 loadEnterpriseSearchCollections A-137

A.1.246 loadEnterpriseSearchResults A-137

A.1.247 loadSchemaData() A-138

xxv

A.1.248 loadSearchOperatorTables() A-138

A.1.249 loadUserMetaDefinition() A-139

A.1.250 LocalGroupServer A-139

A.1.251 localPageType A-140

A.1.252 MajorRevSeq A-140

A.1.253 MaxCollectionSize A-140

A.1.254 maxLength A-141

A.1.255 MinorRevSeq A-141

A.1.256 MSIE A-142

A.1.257 MultiUpload A-142

A.1.258 NoMatches A-145

A.1.259 noMCPrefill A-146

A.1.260 NotificationQuery A-146

A.1.261 OneMatch A-147

A.1.262 optionListKey A-148

A.1.263 optionListName A-148

A.1.264 optionListResultSet A-149

A.1.265 optionListScript A-150

A.1.266 optionListValueInclude A-150

A.1.267 optionsAllowPreselect A-151

A.1.268 optList() A-152

A.1.269 PageParent A-153

A.1.270 parseDataEntryDate() A-153

A.1.271 parseDate A-154

A.1.272 parseDateWithPattern() A-155

A.1.273 PATH_INFO A-156

A.1.274 PATH_TRANSLATED A-156

A.1.275 pneNavigation() A-157

A.1.276 proxiedBrowserFullCgiWebUrl A-157

A.1.277 proxiedCgiWebUrl A-158

A.1.278 QUERY_STRING A-158

A.1.279 regexMatches() A-159

A.1.280 regexReplaceAll() A-159

A.1.281 regexReplaceFirst() A-160

A.1.282 REMOTE_ADDR A-161

A.1.283 REMOTE_HOST A-161

A.1.284 REQUEST_METHOD A-162

A.1.285 requiredMsg A-162

A.1.286 ResultsTitle A-163

A.1.287 rptDisplayMapValue() A-163

A.1.288 rs() A-164

A.1.289 rsAddFields() A-164

xxvi

A.1.290 rsAddFieldsWithDefaults() A-165

A.1.291 rsAddRowCountColumn() A-167

A.1.292 rsAppend() A-167

A.1.293 rsAppendNewRow() A-168

A.1.294 rsAppendRowValues() A-168

A.1.295 rsCopyFiltered() A-169

A.1.296 rsCreateReference() A-170

A.1.297 rsCreateResultSet() A-170

A.1.298 rsDeleteRow() A-171

A.1.299 rsDocInfoRowAllowDisclosure() A-171

A.1.300 rsExists() A-172

A.1.301 rsFieldByIndex() A-172

A.1.302 rsFieldExists() A-172

A.1.303 rsFindRowPrimary() A-173

A.1.304 rsFirst() A-173

A.1.305 rsInsertNewRow() A-174

A.1.306 rsIsRowPresent() A-174

A.1.307 rsLoopInclude() A-175

A.1.308 rsLoopSingleRowInclude() A-175

A.1.309 rsMakeFromList() A-176

A.1.310 rsMakeFromString() A-177

A.1.311 rsMerge() A-178

A.1.312 rsMergeDelete() A-179

A.1.313 rsMergeReplaceOnly() A-180

A.1.314 rsNext() A-180

A.1.315 rsNumFields() A-181

A.1.316 rsNumRows() A-181

A.1.317 rsRemove() A-182

A.1.318 rsRename() A-182

A.1.319 rsRenameField() A-183

A.1.320 rsSetRow() A-183

A.1.321 rsSort() A-184

A.1.322 rsSortTree() A-184

A.1.323 SafeDir A-185

A.1.324 SCRIPT_NAME A-186

A.1.325 SelfRegisteredAccounts A-186

A.1.326 SelfRegisteredRoles A-187

A.1.327 SERVER_NAME A-187

A.1.328 SERVER_PORT A-188

A.1.329 SERVER_PROTOCOL A-188

A.1.330 SERVER_SOFTWARE A-189

A.1.331 setContentType() A-189

xxvii

A.1.332 setCookie A-190

A.1.333 setExpires() A-191

A.1.334 setHttpHeader() A-191

A.1.335 setMaxAge() A-192

A.1.336 setResourceInclude() A-193

A.1.337 setValue() A-193

A.1.338 SharedWeblayoutDir A-194

A.1.339 SingleGroup A-195

A.1.340 SourceID A-195

A.1.341 StatusCode A-195

A.1.342 StatusMessage A-196

A.1.343 stdSecurityCheck() A-197

A.1.344 strCenterPad() A-197

A.1.345 strCommaAppendNoDuplicates() A-198

A.1.346 strConfine() A-198

A.1.347 StrConfineOverflowChars A-199

A.1.348 strEquals() A-200

A.1.349 strEqualsIgnoreCase() A-201

A.1.350 strGenerateRandom() A-202

A.1.351 strIndexOf() A-202

A.1.352 strLeftFill() A-203

A.1.353 strLeftPad() A-203

A.1.354 strLength() A-204

A.1.355 strLower() A-205

A.1.356 strRemoveWs() A-205

A.1.357 strReplace() A-206

A.1.358 strReplaceIgnoreCase() A-206

A.1.359 strRightFill() A-207

A.1.360 strRightPad() A-208

A.1.361 strSubstring() A-208

A.1.362 strTrimWs() A-209

A.1.363 strUpper() A-210

A.1.364 SysAdminAddress A-210

A.1.365 TemplateClass A-211

A.1.366 TemplateFilePath A-212

A.1.367 TemplateName A-213

A.1.368 TemplateType A-213

A.1.369 toInteger() A-214

A.1.370 trace() A-215

A.1.371 UploadApplet A-216

A.1.372 url() A-217

A.1.373 urlEscape7Bit() A-217

xxviii

A.1.374 UseHtmlOrTextHighlightInfo A-218

A.1.375 UserAccounts A-218

A.1.376 UserAddress A-219

A.1.377 UserAppRights A-219

A.1.378 UserDefaultAccount A-220

A.1.379 UserFullName A-221

A.1.380 userHasAccessToAccount() A-221

A.1.381 userHasGroupPrivilege() A-222

A.1.382 userHasRole() A-222

A.1.383 UserIsAdmin A-223

A.1.384 UserLanguageID A-223

A.1.385 UserLocaleId A-224

A.1.386 UserName A-224

A.1.387 UserRoles A-224

A.1.388 UseSelfRegistration A-225

A.1.389 UseSSL A-226

A.1.390 UseXmlUrl A-226

A.1.391 utGetValue() A-227

A.1.392 utLoad() A-227

A.1.393 utLoadDocumentProfiles() A-228

A.1.394 utLoadResultSet() A-228

A.1.395 valueStyle A-229

A.1.396 WebProxyAdminServer A-230

A.1.397 wfAction A-230

A.1.398 wfAddActionHistoryEvent() A-231

A.1.399 wfAdditionalExitCondition A-231

A.1.400 wfAddUser() A-232

A.1.401 wfComputeStepUserList() A-232

A.1.402 wfCurrentGet() A-233

A.1.403 wfCurrentSet() A-233

A.1.404 wfCurrentStep() A-234

A.1.405 wfDisplayCondition() A-234

A.1.406 wfExit() A-235

A.1.407 wfGet() A-236

A.1.408 wfGetStepTypeLabel A-236

A.1.409 wfIsFinishedDocConversion() A-237

A.1.410 wfIsNotificationSuppressed() A-237

A.1.411 wfIsReleasable() A-238

A.1.412 wfJumpEntryNotifyOff A-238

A.1.413 wfJumpMessage A-239

A.1.414 wfJumpName A-239

A.1.415 wfJumpReturnStep A-239

xxix

A.1.416 wfJumpTargetStep A-240

A.1.417 wfLoadDesign() A-240

A.1.418 wfMailSubject A-241

A.1.419 wfMessage A-241

A.1.420 wfNotify() A-242

A.1.421 wfParentList A-243

A.1.422 wfReleaseDocument A-243

A.1.423 wfSet() A-244

A.1.424 wfSetSuppressNotification() A-244

A.1.425 WfStart A-245

A.1.426 wfUpdateMetaData() A-245

A.1.427 xml() A-245

B Building a Website

B.1 Planning a Website B-1

B.1.1 The Web Layout B-1

B.1.2 Defining the Site Structure and Displaying Criteria B-2

B.1.3 Task Sequence B-2

B.2 Working with Web Pages B-3

B.3 Managing Web Pages B-4

B.3.1 Adding a New Web Page B-4

B.3.2 Editing Web Page Properties B-5

B.3.3 Creating a Local Page Link B-5

B.3.4 Creating an External URL Link B-5

B.3.5 Editing a Hierarchical Web Page Structure B-5

B.4 Working with Reports B-7

B.4.1 About Reports B-7

B.4.2 Defining an Active Report B-7

B.4.3 Defining a Historical Report B-7

B.4.4 Editing a Query Expression in an Active Report B-8

B.5 Writing Queries B-8

B.5.1 Custom Query Expressions B-8

B.5.2 Creating a Query Link B-9

B.5.3 Editing the Query Expression in a Query Link B-9

B.5.4 Adding a Query Results Page B-10

B.5.5 Editing a Query Results Page B-10

B.5.6 Deleting a Query Results Page B-10

C Annotations XML Structure

C.1 Changes to Annotations XML Structure C-1

xxx

C.2 Annotations Security C-3

D Troubleshooting

D.1 About Troubleshooting Aids D-1

D.2 Viewing Server Errors D-1

D.3 Viewing Page Data D-1

D.4 Monitoring Resource Loading D-2

xxxi

Preface

Oracle WebCenter Content Server is highly functional out of the box, but you can tailor it to
your site requirements in many different ways. This developer's guide provides information to
help you customize your Content Server instance.

Audience
This guide is intended for developers who want to customize Content Server software to suit
content management needs that are specific to their business or organization.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Related Documents
The complete Oracle WebCenter Content documentation set is available from the Oracle Help
Center at the Oracle WebCenter Content page.

Conventions
This document uses the following text conventions.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

xxxii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=wcc1412&id=wcc-books

Part I
Getting Started with Oracle WebCenter
Content

This part provides an overview of customizing Oracle WebCenter Content, including Oracle
WebCenter Content Server, and describes the tools and resources that are available for
customization. This part also describes the Oracle Fusion Order Demo sample application.

Part I contains the following chapters:

• Introduction to Developing with Oracle WebCenter Content

• Installing and Configuring Oracle JDeveloper

1
Introduction to Developing with Oracle
WebCenter Content

This chapter provides an overview of Oracle WebCenter Content and describes skills, tools,
and resources for customizing Oracle WebCenter Content Server.
This chapter includes the following sections:

• Overview of WebCenter Content Architecture

• Customization Types

• Customization Planning

• Recommended Skills and Tools for Customizing Content Server

• Content Server Behavior

For information about troubleshooting aids, see Troubleshooting.

1.1 Overview of WebCenter Content Architecture
Before beginning a customization project, you need to understand the architecture of
WebCenter Content and how it works. To create a customization efficiently and effectively, you
should have an understanding of the WebCenter Content directories and files, available
resources, and Content Server behavior.

Content Server, the web user interface for WebCenter Content, is deployed as an application
to an Oracle WebLogic Server domain. For information about how Content Server works, see
Content Server Behavior.

1.1.1 WebCenter Content Directories and Files
When you create custom components or dynamic server pages, you work primarily with
WebCenter Content files in these directories:

• bin/
• config/
• components/
• custom/
• resources/
• weblayout/

1-1

Caution:

Modifying the default variables in these files can cause WebCenter Content to
malfunction. For more information about configuration variables, see the
Configuration Variables in Oracle Fusion Middleware Configuration Reference for
Oracle WebCenter Content

1.1.1.1 Terminology for WebCenter Content Directories
Oracle WebCenter Content documentation uses the following terms when referring to variables
in the directories associated with the Oracle WebCenter Content installation, configuration, and
deployment:

• IdcHomeDir: This variable refers to the ucm/idc/ directory in the WebCenter Content
Oracle home, where the Content Server media is located. The server media can run
Content Server, Oracle WebCenter Content: Inbound Refinery, or Oracle WebCenter
Content: Records. This is essentially a read-only directory. The default location is
ORACLE_HOME/wccontent/ucm/idc/. The variable portion of the default location can be
changed, but the path cannot be changed from ucm/idc/.

• DomainHome: The user-specified directory where an Oracle WebCenter Content application
is deployed to run on an application server. The DomainHome/ucm/short-product-id/bin/
directory contains the intradoc.cfg file and executables. The default location for
DomainHome is MW_HOME/user_projects/domains/base_domain/, but you can change the
path and domain name (base_domain) during the deployment of an Oracle WebCenter
Content application to an application server.

• short-product-id: An abbreviated name for the type of Oracle WebCenter Content
application deployed to an application server. This name is used as the context root
(default HttpRelativeWebRoot configuration value). Possible values follow:

– cs (Content Server)

– ibr (Inbound Refinery)

– urm (Records)

• IntradocDir: The root directory for configuration and data files specific to a Content
Server instance that is part of an Oracle WebCenter Content application deployed to an
application server. This Idoc Script variable is configured for one type of Content Server
instance: Content Server (cs), Inbound Refinery (ibr), or Records (urm). The default
location of IntradocDir is DomainHome/ucm/short-product-id/, but the IntradocDir
directory can be located elsewhere (as defined in the intradoc.cfg file). The specified
directory must be an absolute path to the instance directory and must be unique to a
particular server or node. The directory includes a bin/ directory, which contains the
startup files (intradoc.cfg and executables).

1.1.1.2 The bin Directory
The bin/ directory is the root directory for Content Server startup files. It contains the
intradoc.cfg file and the executable files that run Content Server services, applets, and
utilities. It is located at DomainHome/ucm/short-product-id/bin/, in which short-product-id
specifies whether it is for Content Server (cs), Inbound Refinery (ibr), or Records (urm).
Table 1-1 describes the contents of the bin/ directory.

Chapter 1
Overview of WebCenter Content Architecture

1-2

Table 1-1 Contents of the bin Directory for Startup Files

Element Description

Executables Services
• IdcServer
• IdcServerNT
Applet
• IntradocApp (launches all Admin tools)

Utilities
• BatchLoader
• Installer
• IdcAnalyze
• ComponentWizard
• SystemProperties
• IdcCommand

intradoc.cfg file Configuration file that contains the settings for Content Server services,
applets, and utilities

Note:

If Content Server is set up as an automatic service and you attempt to start a Content
Server service (IdcServer or IdcServerNT) from the command line, you will receive
an error message: The port could not be listened to and is already in use.

The intradoc.cfg file is used to define system variables for Content Server, including
directory, Internet, and Inbound Refinery settings. Several of these variables can be set using
the WebCenter Content System Properties utility. The following example shows a typical
intradoc.cfg file.

intradoc.cfg File
<?cfg jcharset="Cp1252"?>
#Server System Properties
IDC_Id=UCM_server1

#Server Directory Variables
IdcHomeDir=ORACLE_HOME/wccontent/ucm/idc/
FmwDomainConfigDir=ORACLE_HOME/user_projects/domains/base_domain/config/fmwconfig/
AppServerJavaHome=JRE_HOME
AppServerJavaUse64Bit=true
IntradocDir=ORACLE_HOME/user_projects/domains/base_domain/ucm/cs/
VaultDir=ORACLE_HOME/user_projects/domains/base_domain/ucm/cs/vault/
WeblayourDir=ORACLE_HOME/user_projects/domains/base_domain/ucm/cs/weblayout/

#Server Classpath variables

#Additional Variables
UserProfilesDir=ORACLE_HOME/user_projects/domains/base_domain/ucm/cs/data/users/profiles/

Chapter 1
Overview of WebCenter Content Architecture

1-3

1.1.1.3 The config Directory
The config/ directory is located at IntradocDir/config/. The default location of IntradocDir
is DomainHome/ucm/short-product-id/, but the IntradocDir/ directory can be located
elsewhere (as defined in the intradoc.cfg file). Table 1-2 describes the contents of the
config/ directory.

Table 1-2 Contents of the config Directory

File Description

config.cfg Defines system configuration variables.

The config.cfg file is used to define global variables for the Content Server system. Several
of these variables can be set using the WebCenter Content System Properties utility or by
modifying the variables on the General Configuration page, accessible through the
Administration, Admin Server, General Configuration menu option. The following example
shows a typical config.cfg file.

Example - config.cfg File
<?cfg jcharset="Cp1252"?>
#Server System Properties
IDC_Name=InstanceName
IdcProductName=idccs
InstanceMenuLabel=InstanceName
InstanceDescription=Instance InstanceName
SocketHostAddressSecurityFilter=127.0.0.1|0:0:0:0:0:0:0:1

#Database Variables
SystemDatabase:DataSource=CSDS
SystemDatabase:UseDataSource=true

#Internet Variables
HttpServerAddress=host:16200
MailServer=mail
SysAdminAddress=sysadmin@example.com
HttpRelativeWebRoot=/cs/
UseSSL=No

#General Option Variables
IsAutoNumber=Yes
AutoNumberPrefix=ContentIDPrefix

#Additional Variables
UseAccounts=true
registerStartMenuActions=1
WebServer=javaAppServer
FileEncoding=UTF8

1.1.1.4 The components Directory
The IntradocDir/data/components/ directory contains the files that Content Server uses to
configure system components. Table 1-3 describes the contents of the components/ directory.

Chapter 1
Overview of WebCenter Content Architecture

1-4

Table 1-3 Contents of the components Directory

File Description

idcshort-product-
id_components.hda

Identifies components that have been added to the Content Server system and
whether they are enabled or disabled. Example: idccs_components.hda.

idcshort-product-
id_components.hda

Identifies the configuration status for a component.

The following example shows a component.hda file that defines the configuration status for a
component called help.

Example - component.hda File
<?hda version="11.1.1.2.0-dev idcprod1 (091209T125156)" jcharset=UTF8 encoding=utf-8?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
@end
@ResultSet Components
2
name
location
help
components/help/help.hda
@end

1.1.1.5 The custom Directory
The custom components are developed by customers to enhance WCC functionalities.

1.1.1.6 The resources Directory
The IdcHomeDir/resources/ directory contains two directories: admin/ and core/.

The resources/core/ directory contains files that Content Server uses to assemble web
pages. Table 1-4 describes the subdirectories of the resources/core/ directory.

Table 1-4 Contents of the resources/core Directory

Subdirectory Description

config/ Holds base configuration files for Content Server.

idoc/ Holds Idoc Script dynamichtml and dynamicdata definitions.

install/ Holds files that are used by the installer and related applications.

javascript/ Holds files that are processed by the publishing engine and end up in
the weblayout directory as raw JavaScript files.

lang/ Holds localized string definitions for Content Server.

reports/ Holds templates for Content Server reports.

tables/ Holds Idoc Script resource table definitions (queries, services, and
other table resource data).

templates/ Holds templates for all Content Server pages (except reports).

Table 1-5 describes the subdirectories of the resources/admin/ directory.

Chapter 1
Overview of WebCenter Content Architecture

1-5

Table 1-5 Contents of the resources/admin Directory

Subdirectory Description

idoc/ Holds Idoc Script dynamichtml and dynamicdata definitions.

tables/ Holds Idoc Script resource table definitions.

templates/ Holds templates for all Content Server pages (except reports).

1.1.1.7 The weblayout Directory
The DomainHome/ucm/short-product-id/weblayout/ directory contains the files that are
available to the web server for display on the various pages of the Content Server website.
Table 1-6 describes the subdirectories of the weblayout/ directory.

Table 1-6 Contents of the weblayout Directory

Subdirectory Description

groups/ Holds the web-viewable content items and dynamic server pages.

images/ Holds images, such as icons and home page graphics.

resources/ Holds layouts, skins, and schema information.

1.1.2 Resources
Resources are files that define and implement the actual customization you make to Content
Server. They can be pieces of HTML code, dynamic page elements, queries that gather data
from the database, services that perform Content Server actions, or special code to
conditionally format information.

Resources are a critical part of the Content Server software, so you must be familiar with them
before you attempt to create a custom component or dynamic server page. You can create,
edit, or remove a resource file by using the Component Wizard. You also can use the
Component Wizard as a starting point for creating custom resources.

Resources fall into eight distinct categories, which Table 1-7 describes. The first five types
listed in the table are also called resource-type resources.

Table 1-7 Resource Types

Resource Type Description Example of Standard Resource

HTML Include Defines pieces of HTML
markup and Idoc Script code
that are used on multiple
Content Server web pages.

IdcHomeDir/resources/core/idoc/std_page.idoc

Chapter 1
Overview of WebCenter Content Architecture

1-6

Table 1-7 (Cont.) Resource Types

Resource Type Description Example of Standard Resource

Dynamic Data
Table

Defines a table of data in a
dynamicdata include from
within Idoc Script to load an
HTML table definition,
interface menu actions, or
information about metadata
fields or from within Java
code as an alternative to
static tables loaded into
SharedObjects.

IdcHomeDir/resources/core/idoc/std_data.idoc

String Defines localized strings for
the user interface and error
messages.

IdcHomeDir/resources/core/lang/cs_strings.htm

Dynamic Table
(HDA format)

Provides dynamic (frequently
changed) content in table
format to Content Server.

IdcHomeDir/resources/core/templates/templates.hda

Static Table
(HTML format)

Provides static (seldom
changed) content in table
format to Content Server.

IdcHomeDir/resources/core/tables/std_locale.htm

Query Defines database queries. IdcHomeDir/resources/core/tables/query.htm
Service Defines scripts for services

that can be performed by
Content Server.

IdcHomeDir/resources/core/tables/std_services.htm

Template Defines templates, which
contain the code that Content
Server uses to assemble a
particular web page.

IdcHomeDir/resources/core/templates/checkin_new.htm

Environment Defines configuration settings
for Content Server.

IntradocDir/config/config.cfg

1.2 Customization Types
Three major types of alterations can be made to Content Server:

• Altering the look and feel of the product

You can customize the look and feel of the Content Server interface to meet your
organization's specifications. Interface modifications can be as simple as replacing the
icons that appear on the standard Content Server web pages or as complex as a complete
redesign of the interface.

• Modifying the functionality of the product

By changing how the product functions, you can tailor Content Server to the way your
business or organization functions. For example, you can change the default date and time
stamp, or change aspects of check-in behavior.

• Integrating the product into your environment

You can use shell scripts, SOAP, J2EE, and clusters to more fully integrate Content Server
into your site's current environment.

Chapter 1
Customization Types

1-7

1.3 Customization Planning
Before approaching customization, it is important to clarify exactly why the customization is
being undertaken. For example, to add corporate branding, you can use the Modify Layout
Samples to do so. Or to change security features, you can use components to modify the
default security settings.

Customization often occurs to make Content Server match the business practices of an
organization. Often, after evaluating your business processes, you may find that sometimes it
is more efficient to slightly alter your procedures before customizing Content Server.

There are six major stages in customization:

1. Determine why you want to customize.

Is there corporate personalization to be done? Is there a better way to present navigation
options or material? Depending on what type of need you find, you can determine which
tools are best to use.

Oftentimes the cosmetic details that you change are the ones that can most satisfy your
users; changing items such as layout, colors, and images often provide the effect that
users are looking for.

2. Plan the customization carefully.

Take into account those aspects of the Content Server environment that might be changed
even peripherally by the customization. All customization should be done in a test
environment, separate from the site's production environment.

3. Check to see if a solution might be available.

The samples on the Support website contain many types of customizations. You might be
able to use an existing component with just a little editing. A number of samples are
provided on an as-is basis. These are components or files that demonstrate, enhance, or
extend the functionality of WebCenter Content.

4. Evaluate the problem and how essential it is to solve.

Some problems might require more effort to fix than the resulting payback. Perhaps
customization is not needed, but simply a minor change in business practices.

5. Test the customization thoroughly in a separate environment.

If possible, have end users assist with the testing. When the testing has passed all criteria
for release, inform users about the changes and how to implement them.

6. Document the customization that you create.

All alterations should be documented as completely as possible, both within the actual
customization (for example, as a comment in a dynamic server page or in a component)
and as a separate README document. This documentation provides a historical audit trail for
others who might need to add to the customization later.

1.4 Recommended Skills and Tools for Customizing Content
Server

Content Server brings together a wide variety of technologies to deliver advanced functionality.
To modify Content Server, certain experience and skills with some or all of these technologies
are required.

Chapter 1
Customization Planning

1-8

The technical skills required to customize Content Server can vary depending on the
complexity of the customization. For example, much customization can be accomplished with
knowledge of HTML and Idoc Script.

This list describes, in descending order of importance, the technologies and experience you
might need to modify Content Server:

• Content Server architecture

You should thoroughly understand how Content Server works and how components and
dynamic server pages function before you begin customizing your system.

• HTML and cascading style sheets (CSS)

You will need a good understanding of HTML and CSS to make changes to the Content
Server web page templates. The templates are not complex in their use of HTML, but they
make constant use of HTML tables and frequent use of forms. The std_page.idoc and
std_css.idoc files include cascading style sheets to control the look and feel of the default
templates, including fonts and layouts.

• Idoc Script

Idoc Script is the custom, server-side scripting language for Content Server. Almost every
Content Server web page includes some Idoc Script code, which provides the methods for
processing various page elements.

• JavaScript

The internal content of most Content Server pages do not use JavaScript, but the Search,
Check-In, and Update pages are notable exceptions. You must have an understanding of
JavaScript before you create a customization that is called in place of these pages. Also,
you must understand JavaScript to alter layouts. Changing layouts relies heavily on
JavaScript and cascading style sheets for design and navigation.

• Structured Query Language (SQL)

Content Server uses SQL to perform queries on the database. Knowledge of SQL can help
you understand the standard queries and create your own custom queries.

• Java programming

Content Server is implemented with Java classes. You should have a thorough
understanding of Java and the Content Server Java class files before attempting to make
any changes to the underlying functionality. However, you can customize the product
extensively without working with Java.

• Other programming

Experience with other tools, such as Visual Basic, COM, .Net, C++, or VBScript, might be
helpful if you are doing complex customization or integrating WebCenter Content with
other systems.

You may find the following tools useful when customizing Content Server:

• Text editor

Most product customizing can be done with a normal text editor, such as Microsoft
WordPad or vi.

• HTML editor

Chapter 1
Recommended Skills and Tools for Customizing Content Server

1-9

Caution:

Graphical HTML editor programs often change the source HTML, which can
cause Idoc Script tags to be converted into strings of characters that are no
longer recognized by Content Server. If you use a graphical editor, make sure
you edit in a nongraphical mode.

If you prefer to use a graphical HTML editor to work with HTML pages, use a nongraphical
mode for editing.

• Multiple browsers

You should test customization on multiple versions of any web browsers that might be
used to interface with the content management system. Internet Explorer, Firefox, and
Chrome do not display content in the same manner, and different versions of the same
browser may exhibit different behaviors.

• JavaScript debugger

A JavaScript debugger can ease the task of JavaScript development. A number of
JavaScript debuggers are available for download from the Internet.

• Integrated Development Environment (IDE) for Java

If your customization requires the development of Java code, you need an appropriate
Java development environment.

1.5 Content Server Behavior
Before you customize WebCenter Content, you need to understand the behavior of Content
Server:

• Startup Behavior

• Resource Caching

• Page Assembly

• Database Interaction

• Localized String Resolution

• Application Integrations

For an overview of Content Server administration, see Introduction to Administering Oracle
WebCenter Content in Oracle Fusion Middleware Administering Oracle WebCenter Content.

1.5.1 Startup Behavior
During startup, a Content Server instance performs internal initialization and loads these items:

1. Configuration variables

2. Standard templates, resources, and reports

3. Custom components, including templates, resources, configuration variables, and reports

Figure 1-1 illustrates the four steps that Content Server goes through during startup. Startup
Steps, describes each step in more detail.

Chapter 1
Content Server Behavior

1-10

Figure 1-1 Content Server Startup Behavior

1.5.1.1 Startup Steps
During startup, Content Server goes through these steps:

1. Internal initialization occurs.

When Content Server initializes internally, the Java class files from Content Server are
read and the Java Virtual Machine (JVM) is invoked. Any variables in the DomainHome/ucm/
short-product-id/intradoc.cfg file are initialized as well.

2. Configuration variables load.

After initialization, Content Server loads the config.cfg file from the IntradocDir/config/
directory. This file stores the system properties and configuration variables, which are
defined by name/value pairs (such as SystemLocale=English-US).

The default information contained within the configuration file was supplied during the
Oracle WebCenter Content installation process, but you can modify this file in several
ways:

• Use the General Configuration page, accessible through the Administration, Admin
Server, General Configuration menu option

• Run the SystemProperties executable, located in the bin/ directory of the Oracle
WebCenter Content installation (UNIX operating system)

• Edit the configuration files directly

• Use a custom component

Any time changes are made to the config.cfg file, you must restart Content Server for the
changes to take effect.

Chapter 1
Content Server Behavior

1-11

3. Standard resources, templates, and reports load.

For Content Server to function properly, many standard resources, templates, and reports
must be loaded. After the configuration settings have been loaded, Content Server reads
the entries in the IdcHomeDir/resources/core/templates/templates.hda file and the
IdcHomeDir/resources/core/reports/reports.hda file. These files tell Content Server
which templates to load, which in turn loads any standard resources referenced in the
template and report pages.

4. Custom components load.

Content Server loads all of the components listed in IntradocDir/data/components/
idcshort_product_id_components.hda, and in turn that loads system components out of
IdcHomeDir/components/ComponentName/ComponentName.hda or, for custom components,
out of IntradocDir/custom/ComponentName/ComponentName.hda.

1.5.1.2 Effects of Configuration Loading
It is important to understand the effect of the load order for the different configuration files
because if a variable is set in more than one file, the last variable loaded takes precedence.
For example, the IntradocDir/config/config.cfg file is loaded before the IntradocDir/
data/components/component_name/config.cfg file, so the component_name/config.cfg can
change the value of a variable that was set by the config/config.cfg file.

Files are loaded in this order (not all files exist for each component):

1. DomainHome/ucm/short-product-id/bin/intradoc.cfg
2. IntradocDir/config/config.cfg
3. DomainHome/ucm/short-product-id/custom/component_name/*_environment.cfg

Some components might not have this file, or it might be named environment.cfg.

4. IntradocDir/data/components/component_name/install.cfg
5. IntradocDir/data/components/component_name/config.cfg
6. DomainHome/ucm/short-product-id/bin/intradoc.cfg

This file is reread at the end of startup to allow overrides to other settings.

If, for example, the same variable was set in each of the files in the list, the variable's value in
intradoc.cfg would take precedence because this file was loaded last.

To view the configuration, you can use the GET_SYSTEM_AUDIT_INFO service to show all
configuration entries and where they were set.

To change a component variable, you can use the Update Component Configuration area in
the Advanced Component Manager. This area displays a dropdown list of components that
have editable configurations in the component_name/config.cfg file. You can choose a
component and click Update to get to the Update Component Configuration page in Content
Server.

You can also edit the configuration file manually. If a component is not displayed in the Update
Component Configuration list in the Advanced Component Manager, you can make your
changes directly in one of the configuration files.

1.5.2 Resource Caching
Content Server handles caching for template pages and resources as follows:

Chapter 1
Content Server Behavior

1-12

• When Content Server loads template pages and resources, they are cached in memory to
accelerate page presentation.

• If you change a template page, report page, or HTML include resource, or you check in a
revision to a dynamic server page, your changes go into effect immediately.

The next request for the associated web page or refresh of the page reflects the changes,
and the new information is cached. This occurs because pages are assembled dynamically
for each page request. You can disable this behavior to improve performance by setting
the configuration variable DisableSharedCacheChecking.

• If you change any other component file (including services, queries, environment variables,
tables, the idcshort-product-id_components.hda file, and the template.hda file), you
must restart Content Server before the changes go into effect. Such changes could cause
Content Server to malfunction if they were implemented immediately.

You do not need to restart Content Server after changing strings; however, you must
republish the ww_strings.js files by clicking publish string and dynamic files or publish
string, static, and dynamic files in the Weblayout Publishing area of the Admin Actions
page. For more information, see Getting Started with Content Server Components.

1.5.3 Page Assembly
Content Server uses the following information from the files in the IdcHomeDir/resources/
directory to assemble dynamic web pages:

• The structure and format of a web page

This structure and format are defined by a particular HTML template file. The template files
are primarily in the resources/core/templates directory, and some templates are in the
resources/core/reports and resources/admin/templates directories.

• The templates reference resources

These resources are located in .htm and .idoc files in subdirectories of the resources
directory. Resources can include HTML and Idoc Script markup, localized strings, queries
to gather information from the database, and special code to conditionally format the
information.

As a rule, each web page includes the following resources:

• Standard page header

• Standard page beginning

• Standard page ending

Because all of the Content Server resources are cached in memory at startup, Content Server
has a definition for the standard pieces that appear on the page. Content Server then
combines the standard resources with the unique resources specified in the template to create
the web page.

For dynamic server pages, the template page and custom resource files are checked into
Content Server. When one of these pages is requested by a web browser, Content Server
recognizes the file extension as a dynamic server page, which enables special processing. At
that point, the page assembly process is the essentially the same as the standard process,
except that the page can use both the standard resources in the resources directory and the
custom resources that are checked in to Content Server.

Chapter 1
Content Server Behavior

1-13

1.5.4 Database Interaction
Some databases, such as Oracle Database, return all column names in uppercase characters.
Therefore, when Content Server receives query results from these databases, column names
must be mapped from the uppercase characters to the values used in Content Server.

Because of this case mapping issue, custom components created for a Content Server
instance using one database might not work correctly on a Content Server instance using a
different database.

To map column names, the IdcHomeDir/resources/core/resources/upper_clmns_map.htm
file contains a mapping table named ColumnTranslation. Add the query values to this file
when you create a component that accesses fields that are not WebCenter Content database
fields (for example, if you create a component that accesses a custom table within the
WebCenter Content database).

For information about using the upper_clmns_map.htm file, see Changing System Settings.

1.5.5 Localized String Resolution
Localized strings are the means by which the user interface and error messages are presented
in the language specified by the user's locale. Content Server loads the string resource files for
a base language and also loads resource files for every supported language. Instead of
presenting hard-coded text, the template pages, applets, and error messages reference string
IDs in these resource files, which are then resolved using the ExecutionContext that contains
the locale information for the user.

1.5.6 Application Integrations
Content Server not only serves as a content management solution for content-centric websites,
but also provides a scalable content management infrastructure that supports multiple
enterprise applications in many diverse environments and platforms. The integration solutions
enable other enterprise applications to access content managed by the content management
system and provides these applications with critical content management capabilities such as
full-text and metadata searching, library services, workflow, subscription notifications, and
content conversion capabilities through a wide array of integration methods.

For information about integrating Content Server with enterprise applications, see Getting
Started with Integrating WebCenter Content into Your Environment.

Chapter 1
Content Server Behavior

1-14

2
Installing and Configuring Oracle JDeveloper

This chapter describes how to set up the Oracle JDeveloper development environment to use
with Oracle WebCenter Content.

This chapter includes the following sections:

• Install JDeveloper

• Install WebCenter Content Connection Extension for JDeveloper

• Creating an Integrated WebLogic Server Domain

• Configuring JDeveloper for Defining Seeded Customizations

2.1 Install JDeveloper
If you do not already have JDeveloper installed, download the latest Oracle JDeveloper 14c
Studio Edition from this location:

Download the latest Oracle JDeveloper 14c Studio Edition from this location:http://
www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html
Use the Installing Oracle JDeveloper, available from the same directory, to install and start
JDeveloper Studio Edition on one of the supported platforms (Windows, Linux, UNIX, or Mac
OS system).

Note:

If you have installed other versions of JDeveloper on the same computer, the first
time you start this version of JDeveloper, you will be prompted to import preferences
from the previous installation. Click No to continue without importing preferences
from the previous installation.

When you are starting JDeveloper for the first time, you need to provide the full path
name of a JDK installation.

2.2 Install WebCenter Content Connection Extension for
JDeveloper

For a newly installed JDeveloper Studio instance, you need to install WebCenter Content
Connection Extension.

2-1

http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html

Note:

WebCenter Content Connection Extension is located at WCC_MW_HOME/
oracle_common/ucm/Distribution/RIDC/jdev/oracle.ucm.ridc-jdev.zip.

To install the JDeveloper extension:

1. Open JDeveloper.

2. From the Help menu, choose Check for Updates.

3. In the Check for Updates dialog box, select Install From Local File and click Browse.

In the Browse dialog box, locate oracle.ucm.ridc.jdev.zip under WCC_MW_HOME, and click
Open.

4. In the Check for Updates dialog box, click Next.

5. In the Check for Updates dialog box, verify WebCenter Content Connection Extension is
displayed. Click Finish.

6. On the prompt of Confirm Exit, click Yes.

JDeveloper is restarted to install the updates.

2.3 Creating an Integrated WebLogic Server Domain
For a newly installed JDeveloper Studio instance, you need to create an integrated Oracle
WebLogic Server domain to set up your development environment.

To create an integrated WebLogic Server domain:

1. Open JDeveloper.

2. From the Run menu, choose Start Server Instance.

3. Choose and enter a password, and then enter it again to confirm it. All other fields can
have default values. Click OK.

4. Monitor the log window until you see the message:

IntegratedWebLogicServer started.
5. Stop the server. From the Run menu, choose Terminate, and then choose

IntegratedWebLogicServer.

2.4 Configuring JDeveloper for Defining Seeded Customizations
You can specify JDeveloper configurations to better support defining seeded customizations.

To configure JDeveloper for defining seeded customizations:

1. In the Application Navigator, choose Show Libraries from the Applications Window
Options menu.
This makes each project list all its libraries in the Application Navigator.

2. Open *.jsf and *.jsff files in Source mode:

a. Choose Preferences . . . from the Tools menu.

b. Select File Types in the left panel

Chapter 2
Creating an Integrated WebLogic Server Domain

2-2

c. Click the Default Editors tab on right side.

d. Scroll down to locate the row for ADF Fragment File (which is for .jsff files), and
change its default editor to Source.

e. Locate the row for XHMTL/Facelets Source (which is for .jsf files), and change its
default editor to Source.

f. Click OK.

Chapter 2
Configuring JDeveloper for Defining Seeded Customizations

2-3

Part II
Working with the Idoc Script Custom Scripting
Language

This part describes how to use the Idoc Script Custom Scripting Language for customizing
Oracle WebCenter Content.

Part II contains the following chapters:

• Introduction to the Idoc Script Custom Scripting Language

• Using Idoc Script Variables and Functions with Oracle WebCenter Content

3
Introduction to the Idoc Script Custom
Scripting Language

This chapter describes the Idoc Script Custom Scripting Language, which you can use to
customize Oracle WebCenter Content Server. Idoc Script is the server-side custom scripting
language for the Content Server system. Idoc Script is used primarily for the presentation of
HTML templates and configuration settings.
This chapter includes the following sections:

• Idoc Naming Conventions

• Idoc Script Syntax

• Idoc Script Uses

• Special Keywords

• Operators

• Metadata Fields

• Merge Includes for Formatting Results

• Scoped Local Variables

3.1 Idoc Naming Conventions
Idoc variables (sometimes called configuration variables or environment variables) can be
used in Idoc Script and in configuration files.

In general, if the variable is part of a configuration, it begins with a capital letter. Those
variables specified in the config.cfg file or intradoc.cfg file usually have an initial capital
letter. For an example, see DefaultFilterInputFormat in the Oracle Fusion Middleware
Configuration Reference for Oracle WebCenter Content. Many parameters in service requests
also begin with uppercase letters.

Variables defined on a page, such as those that are derived and then used in files such as
std_page.htm, begin with a lowercase letter. For an example, see executeService Function in
Idoc Script Functions. The variables are calculated from environment variables or service
variables, then used for presentation.

If a variable is used to define an object, it begins with lowercase letters designating the type of
object it is defining. For an example of a workflow-specific variable, see wfSet() in Idoc Script
Functions and Variables. In addition, all functions start with a lowercase letter and many start
with a prefix to describe the type of function. For example, most string manipulation functions
begin with str, or ResultSet functions begin with rs.

All database column names that are not custom metadata fields begin with the lowercase letter
d. All custom metadata database column names created by the Content Server system begin
with the lowercase letter x.

3-1

3.2 Idoc Script Syntax
Idoc Script follows these basic syntax rules:

• Idoc Script Tags

• Idoc Script Comments

3.2.1 Idoc Script Tags
Idoc Script commands begin with <$ and end with $> delimiters. For example:

<$dDocTitle$>
<$if UseGuiWinLook and isTrue(UseGuiWinLook)$>

If you are using Idoc Script in an HCSP or HCSF page, you must use the syntax <!‐‐$script‐‐>
for Idoc Script tags.

3.2.2 Idoc Script Comments
You can use standard HTML comments or Idoc Script comments in Idoc Script code. An Idoc
Script comment begins with [[% and closes with %]] delimiters. For example:

<!-- HTML Comment -->
[[%My Comment%]]

An HTML comment is parsed as plain text to the Idoc Script engine. The engine only looks for
Idoc Script constructs. If you want the comment to appear in the generated page, use the
HTML/XML comment syntax; otherwise, Idoc Script comment syntax is recommended.

If you are writing Idoc Script that generates other Idoc Script and you want the source page to
look readable, you can use the comment syntax to comment out dynamichtml constructs and
other resource specifiers, such as string resources, in Idoc Script resource files. For example:

[[% Commenting out resource includes
<@dynamichtml myinclude@>
<@end@>
End comment %]]

3.3 Idoc Script Uses
There are six basic uses for Idoc Script:

• Includes enable you to reuse pieces of Idoc Script and HTML code.

• Variables enable you to define and substitute variable values.

• Functions enable you to perform actions, including string comparison and manipulation
routines, date formatting, and ResultSet manipulation.

• Conditionals enable you to evaluate if and else clauses to include or exclude code from an
assembled page.

• Looping enables you to repeat code for each row in a ResultSet that is returned from a
query.

• The Administration Interface enables you to use Idoc Script in Content Server applets and
customizations.

Chapter 3
Idoc Script Syntax

3-2

3.3.1 Includes
An include defines pieces of code that are used to build the Content Server web pages.
Includes are defined once in a resource file and then referenced by as many template files as
necessary. The system leverages includes very heavily.

Includes make it easier for you to customize your instance using component architecture and
dynamic server pages. For more information on includes and customization, see Creating an
IDOC File with Custom Includes for Dynamic Server Pages.

• An include is defined in an HTM resource file using the following format:

<@dynamichtml name@>
 code
<@end@>

• An include is called from an HTM template file using the following Idoc Script format:

<$include name$>
• Includes can contain Idoc Script and valid HTML code, including JavaScript, Java applets,

cascading style sheets, and comments.

• Includes can be defined in the same file as they are called from, or they can be defined in
a separate file.

• Standard includes are defined in the wcc_home_dir/shared/config/resources/std_page.htm
file IdcHomeDir/resources/core/idoc/std_page.idoc file.

• HDA and CFG files are not script enabled, therefore using an include statement in either of
these types of files is not supported.

The includes are global, available to all parts of the system. Dynamic scripting pages in HCSP
files can use includes. The .idoc files can do localized includes that are not global. HCSP
files can call both global includes or localized includes with the proper syntax.An include
can override an existing include, if one of the same name exists.

For more information, see the following sections:

• Include Example

• Super Tag

• Super Tag Example

3.3.1.1 Include Example
One of the most common includes is the body definition element <@dynamichtml body_def>.
This include sets the page background color, the color of hyperlinks, and the background
image. The following example shows code located in the wcc_home_dir/shared/config/
resources/std_page.htmIdcHomeDir/resources/core/idoc/std_page.idoc file:

<@dynamichtml body_def@>
<!--Background image defined as part of body tag--->
<body
 <$if background_image$>
 background="<$HttpImagesRoot$><$background_image$>"
 <$elseif colorBackground$>
 bgcolor="<$colorBackground$>"
 <$endif$>
 <$if xpedioLook$>
 link="#663399" vlink="#CC9900"

Chapter 3
Idoc Script Uses

3-3

 <$else$>
 link="#000000" vlink="#CE9A63" alink="#9C3000"
 <$endif$>
 marginwidth="0" marginheight="0" topmargin="0" leftmargin="0"
>
<@end@>

Most of the standard template resource files (for example, IdcHomeDir/resources/core/
templates/pne_home_page.htm), contain the following Idoc Script code near the top of the
page:

(for example, wcc_home_dir/shared/config/templates/pne_home_page.htm)

<$include body_def$>

When the Content Server system resolves a template page containing this code, it looks for
the <@dynamichtml body_def@> definition and replaces the placeholder code with the code in
the definition.

3.3.1.2 Super Tag
The super tag is used to define exceptions to an existing include. The super tag tells the
include to start with an existing include and then add to it or modify it using the specified
code.

• The super tag uses the following syntax:

<@dynamichtml my_resource@>
 <$include super.my_resource$>
 exception code
<@end@>

• You can use the super tag to refer to a standard include or a custom include. The super
tag incorporates the include that was loaded last.

• The resource name defined after super should match the include name in which you
include super. In the preceding syntax example, my_resource is the include name, so the
matching call should be super.my_resource.

• You can specify multiple super tags to call an include that was loaded earlier than the last
version. For example, to make an exception to the standard body_def include in two
different components, you can use the following syntax in the one that is loaded last:

<$include super.super.body_def$>

Caution:

If you use multiple super tags in one include, ensure that you know where the
resources are loaded from and the order they are loaded in.

• The super tag is particularly useful when making small customizations to large includes or
when you customize standard code that is likely to change from one software version to
the next. When you upgrade to a new version of Content Server software, the super tag
ensures that your components are using the most recent version of the include, modifying
only the specific code you require to customize your instance.

Chapter 3
Idoc Script Uses

3-4

3.3.1.3 Super Tag Example
In this example, a component defines the my_resource include as follows:

<@dynamichtml my_resource@>
 <$a = 1, b = 2$>
<@end@>

Another component that is loaded later enhances the my_resource include using the super tag.
The result of the following enhancement is that a is assigned the value 1 and b is assigned the
value 3:

<@dynamichtml my_resource@>
 <$include super.my_resource$>
 <!--Change "b" but not "a" -->
 <$b = 3$>
<@end@>

3.3.2 Variables
A variable enables you to define and substitute variable values.

The following sections describe how to work with Idoc Script variables:

• Variable Creation

• Variable References

• Variable Values

• Comma Separators

• Variable Reference in a Conditional

• Variable Reference Search Order

• Regular Variables

3.3.2.1 Variable Creation
Idoc Script variables are created in one of the following ways:

• Many variables are predefined.

• You can define your own custom variables.

• Some variable values must be generated using queries and services. Some variable
information is not automatically available from the database, so it must be asked for by
defining a query and service.

For more information on the types of Idoc Script variables, see Using Idoc Script Variables and
Functions with Oracle WebCenter Content.

3.3.2.2 Variable References
You can reference a variable in templates and other resource files with the following Idoc Script
tag:

<$variable_name$>

Chapter 3
Idoc Script Uses

3-5

When you reference a variable name like this, the generated page will replace the Idoc Script
tag with the value of that variable, at the time it was referenced.

3.3.2.3 Variable Values
• A value can be assigned to a variable using this structure:

<$variable=value$>

For example, <$i=0$> assigns the value of 0 to the variable i.

• Variable values can also be defined in an environment resource (CFG) file using the
following name/value pair format:

variable=value

For example, standard configuration variables are defined in the IntradocDir/config/
config.cfg file.

Note:

Not all configuration variable values set by code are listed in the IntradocDir/
config/config.cfg file by default.

3.3.2.4 Comma Separators
Idoc Script supports multiple clauses separated by commas in one script block in variable
references.

For example, you can use <$a=1,b=2$> rather than two separate statements: <$a=1$> and
<$b=2$>.

3.3.2.5 Variable Reference in a Conditional
The following structure can be used to evaluate the existence of a variable:

<$if variable_name$>

If the variable is defined and not empty, this conditional is evaluated as TRUE. If the variable is
not defined or it is defined as an empty (null) string, it is evaluated as FALSE.

For an example of how this type of reference is typically used, see Conditional Example.

3.3.2.6 Variable Reference Search Order
When a variable is referenced to fulfill a service request, the substituted value will be the first
match found in the DataBinder from the following default order:

1. LocalData
2. Active ResultSets
3. Nonactive ResultSets
4. Environment

Chapter 3
Idoc Script Uses

3-6

For example, if a particular variable exists in the environment but is also the name of a field in
the active ResultSet, the value in the current row of the active ResultSet will be used.

3.3.2.7 Regular Variables
A regular variable that does not have special evaluation logic (such as Conditional Dynamic
Variables) is equivalent to using the #active keyword prefix.

For example, the tag <$variable$> is equivalent to <$#active.variable$>. However, if
#active is not explicitly stated and the variable is not found, an error report is printed to the
debug output.

The #active qualifier means that a variable reference searches the DataBinder, as described
in Variable Reference Search Order, whereas #env lets you select only from the environment,
and #local always references LocalData. The difference between explicitly using #active
versus without the prefix is that an error is reported only when (1) you are not using any
qualifier and (2) the variable reference is not found in the DataBinder.

3.3.3 Functions
Idoc Script has many built-in global functions. Functions perform actions, including string
comparison and manipulation routines, date formatting, and ResultSet manipulation. Some
functions also return results, such as the results of calculations or comparisons.

Information is passed to functions by enclosing the information in parentheses after the name
of the function. Pieces of information that are passed to a function are called parameters.
Some functions do not take parameters; some functions take one parameter; some take
several. There are also functions for which the number of parameters depends on how the
function is being used.

For a list of Idoc Script functions, see Global Functions.

3.3.3.1 Personalization Functions
Personalization functions refer to user properties that are defined in personalization files, also
called user topic files. Each user's User Profile settings, personal links in the left navigation bar,
and workflow in queue information are all defined in user topic files, which are HDA files
located in the WC_CONTENT_ORACLE_HOME/data/users/profiles/us/username/ directories.

The following global functions reference user topic files:

• utGetValue()

• utLoad()

• utLoadResultSet()

For example, the Portal Design link in a user's left navigation bar is generated from the
following code in the pne_nav_userprofile_links include (located in the
WC_CONTENT_ORACLE_HOME/shared/config/resources/std_page.htm resource file). If the
portalDesignLink property in the WC_CONTENT_ORACLE_HOME/data/users/profiles/us/
username/pne_portal.hda file is TRUE, the link is displayed:

<$if utGetValue("pne_portal", "portalDesignLink") == 1$>
 <$hasUserProfileLinks=1$>
 <tr>
 <td colspan=2 nowrap align="left">
 <a class=pneLink href="<$HttpCgiPath$>?
IdcService=GET_PORTAL_PAGE&Action=GetTemplatePage&Page=PNE_PORTAL_DESIGN_PAGE">

Chapter 3
Idoc Script Uses

3-7

 <$lc("wwPortalDesign")$>
 <td>
 </tr>
<$endif$>

3.3.4 Conditionals
A conditional enables you to use if and else clauses to include or exclude code from an
assembled page.

• Use the following Idoc Script keywords to evaluate conditions:

– <$if condition$>
– <$else$>
– <$elseif condition$>
– <$endif$>

• Conditional clauses use this general structure:

<$if conditionA$>
 <!--Code if conditionA is true-->
<$elseif conditionB$>
 <!--Code if conditionB is true-->
<$else$>
 <!--Code if neither conditionA nor conditionB is true-->
<$endif$>

• A condition expression can be any Idoc Script function or variable.
For more information, see Variable Reference in a Conditional.

• Boolean Operators can be used to combine conditional clauses. For example, you can use
the and operator as follows:

<$if UseBellevueLook and isTrue(UseBellevueLook)$>

The first expression tests whether the variable exists and is not empty, and the second
expression checks to see if the value of that variable evaluates to 1 or if it starts with t or y
(case-insensitive). If you just have the second clause, it may generate an error if the
variable is not set, or empty. An equivalent expression follows:

<$if isTrue(#active.UseBellevueLook)$>
• If the condition expression is the name of a ResultSet available for inclusion in the HTML

page, the conditional clause returns true if the ResultSet has at least one row. This
ensures that a template page presents information for a ResultSet only if there are rows in
the ResultSet.

• A conditional clause that does not trigger special computation is evaluated using the
#active prefix. The result is true if the value is not null and is either a nonempty string or a
nonzero integer.

3.3.4.1 Conditional Example
In this example, a table cell <td> is defined depending on the value of the variable
xDepartment:

<$if xDepartment$>
 <td><$xDepartment$></td>
<$else$>
 <td>Department is not defined.</td>

Chapter 3
Idoc Script Uses

3-8

<$endif$>
<$xDepartment=""$>

• If the value of xDepartment is defined, then the table cell contains the value of
xDepartment.

• If the value of xDepartment is not defined or is an empty (null) string, a message is written
as the content of the table cell.

• The last line of code clears the xDepartment variable by resetting it to an empty string.

3.3.5 Looping
Loop structures allow you to execute the same code a variable number of times. Looping can
be accomplished in two ways with Idoc Script:

• ResultSet Looping

• While Looping

For information on exiting and ending a loop structure, see End a Loop.

3.3.5.1 ResultSet Looping
ResultSet looping repeats a set of code for each row in a ResultSet that is returned from a
query. The name of the ResultSet to be looped is specified as a variable using the following
syntax:

<$loop ResultSet_name$>
 code
<$endloop$>

• The code between the <$loop$> and <$endloop$> tags is repeated once for each row in
the ResultSet.

• When inside a ResultSet loop, you can retrieve values from the ResultSet using the
getValue() function. Substitution of values depends on which row is currently being
accessed in the loop.

• When inside a ResultSet loop, that ResultSet becomes active and has priority over other
ResultSets when evaluating variables and conditional statements.

• Infinite loops with ResultSet loops are not possible (finite lists), whereas while loops can
cause infinite loops.

• You cannot use the <$loop$> tag to loop over a variable that points to a ResultSet. Instead
you must loop over the ResultSet manually using the rsFirst() and rsNext() functions.

For example, you cannot use the following code to loop over a ResultSet:

<$name="SearchResults"$>
<$loop name$>
 <!--output code-->
<$endloop$>

Instead, you must use the following code:

<$name="SearchResults"$>
<$rsFirst(name)$>
<$loopwhile getValue(name, "#isRowPresent")$>
 <!--output code-->
 <$rsNext(name)$>
<$endloop$>

Chapter 3
Idoc Script Uses

3-9

3.3.5.2 ResultSet Looping Example
In this example, a search results table is created by looping over the SearchResults ResultSet,
which was generated by the GET_SEARCH_RESULTS service.

<$QueryText="dDocType <matches> 'ADACCT'"$>
<$executeService("GET_SEARCH_RESULTS")$>
<table>
 <tr>
 <td>Title</td><td>Author</td>
 </tr>
<$loop SearchResults$>
 <tr>
 <td><a href="<$SearchResults.URL$>"><$SearchResults.dDocTitle$></td>
 <td><$SearchResults.dDocAuthor$></td>
 </tr>
<$endloop$>
</table>

3.3.5.3 While Looping
While looping enables you to create a conditional loop. The syntax for a while loop is:

<$loopwhile condition$>
 code
<$endloop$>

• If the result of the condition expression is true, the code between the <$loopwhile$> and
<$endloop$> tags is executed.

• After all of the code in the loop has been executed, control returns to the top of the loop,
where the condition expression is evaluated again.

– If the result is true, the code is executed again.

– If the code if the result is false, the loop is exited.

3.3.5.4 While Looping Example
In this example, a variable named abc is increased by 2 during each pass through the loop. On
the sixth pass (when abc equals 10), the condition expression is no longer true, so the loop is
exited.

<$abc=0$>
<$loopwhile abc<10$>
 <$abc=(abc+2)$>
<$endloop$>

3.3.5.5 End a Loop
There are two Idoc Script tags that will terminate a ResultSet loop or while loop:

• <$endloop$> returns control to the beginning of the loop for the next pass. All loops must
be closed with an <$endloop$> tag.

• <$break$> causes the innermost loop to be exited. Control resumes with the first statement
following the end of the loop.

Chapter 3
Idoc Script Uses

3-10

3.3.6 Administration Interface
You can use Idoc Script in several areas of the administration interface, including:

• Workflow Admin

• Web Layout Editor

• Batch Loader

• Archiver

• System Properties

• Email

3.3.6.1 Workflow Admin
In the Workflow Admin tool, you can use Idoc Script to define the following items:

• Step events

• Jump messages

• Extra exit conditions

• Tokens

• Custom effects for jumps

For example, the following step entry script sends documents in the Secure security group to
the next step in the workflow:

<$if dSecurityGroup like "Secure"$>
 <$wfSet("wfJumpName", "New")$>
 <$wfSet("wfJumpTargetStep", wfCurrentStep(1))$>
 <$wfSet("wfJumpEntryNotifyOff", "0")$>
<$endif$>

For more information, see Workflows.

3.3.6.2 Web Layout Editor
In the Web Layout Editor, you can use Idoc Script in the page titles, page descriptions, URL
descriptions, query result pages, and content queries. For example:

• You can use Idoc Script tags in the query results page definition to specify the contents of
each row in a search results table.

• To set the search results to return all content items up to 7 days, you could define the
search query to be:

dInDate > '<$dateCurrent(-7)$>'
• To define a report that returns results based on the current user, you could define User

Name is <$UserName$> as part of the report query expression.

See Administration Interface in Oracle Fusion Middleware Administering Oracle WebCenter
Content.

Chapter 3
Idoc Script Uses

3-11

3.3.6.3 Batch Loader
In the Batch Loader, you can use Idoc Script in a mapping file, which tells the BatchBuilder
utility how to determine the metadata for file records.

3.3.6.4 Archiver
In Archiver, you can use Idoc Script in the following areas:

• Export query values. For example, to archive content more than one year old, you could
use <$dateCurrent(-365)$> as the Release Date value.

• Value map output values. For example, to set the expiration date one week in the future
for all imported revisions, you could use <dateCurrent(7)$> as the Output value.

3.3.6.5 System Properties
When you set values in the System Properties utility, through the General Configuration page
of the Content Server instance or in the Local Configuration or Shared Configuration pages of
the Oracle WebCenter Content: Inbound Refinery instance, you are actually setting Idoc Script
configuration variables. For more information, see Oracle Fusion Middleware Administering
Oracle WebCenter Content.

3.3.6.6 Email
You can use Idoc Script to customize the subject line and body of a notification email. For
example:

Hello, <$UserName$>. Content item <$dDocName$> requires your review.

3.4 Special Keywords
The following keywords have special meaning in Idoc Script.

Keyword Example Description

#active <$#active.variable$> Retrieves the value of the specified variable from the
DataBinder, searching in the following default order:

1. Active ResultSets

2. Local data

3. All other ResultSets

4. Environment

Does not send an error report to the debug output if
the variable is not found.

#local <$#local.variable$> Retrieves the value of the specified variable from the
local data. Does not send an error report to the debug
output if the variable is not found.

#env <$#env.variable$> Retrieves the value of the specified variable from the
environment settings. Does not send an error report to
the debug output if the variable is not found.

Chapter 3
Special Keywords

3-12

Keyword Example Description

exec <$exec expression$> Executes an expression and suppresses the output
(does not display the expression on the page).

In earlier versions of Idoc Script, the exec keyword
was required to suppress the value of any variable
from appearing in the output file. In the current version,
the exec keyword is needed only to suppress an
expression from appearing in the output file.

include <$include ResourceName$> Includes the code from the specified resource. For
more information, see Includes.

super <$include super.<include>$> Starts with the existing version of the include code. For
more information, see Super Tag.

3.4.1 Keywords Versus Functions
Content Server pages use the include and exec special keywords and the inc and eval
functions extensively. This section describes the differences between these commands and
gives examples of how to use them.

The include and exec keywords are standalone commands that operate on defined
parameters, but cannot take a variable as a parameter. The inc and eval functions have
similar purposes, but they can take variables for parameters, which enables you to dynamically
create Idoc Script code depending on the value of the variables.

The following sections describe these keywords and functions in detail:

• exec Keyword

• eval Function

• include Keyword

• inc Function

3.4.1.1 exec Keyword
The exec keyword executes an Idoc Script expression and suppresses the output (does not
display the expression on the page). It is primarily used to set variables without writing
anything to the page.

In earlier versions of Idoc Script, the exec keyword was required to suppress the value of any
variable from appearing in the output file. In the current version, the exec keyword is needed
only to suppress an expression from appearing in the output.

For example, if you used the following expression, the output value, 0 or 1, would appear in the
output file:

<$rsFirst(name)$>

Instead, you can use the exec keyword before the expression to suppress the output:

<$exec rsFirst(name)$>

You can also use exec to suppress the output from rsNext:

<$exec rsNext(name)$>

Chapter 3
Special Keywords

3-13

See exec in Idoc Script Functions and Variables.

3.4.1.2 eval Function
The eval function evaluates an expression as if it were actual Idoc Script.

In the following example, a variable named one is assigned the string Company Name, and a
variable named two is assigned a string that includes variable one.

<$one="Company Name"$>
<$two="Welcome to <$one$>"$>
<one>

<two>

<$eval(two)$>

In the page output, variable one presents the string Company Name, variable two presents the
string Welcome to <one>, and the function eval(two) presents the string Welcome to
Company Name.

Note that the string to be evaluated must have the Idoc Script delimiters <$ $> around it,
otherwise it will not be evaluated as Idoc Script.

Also note that too much content generated dynamically in this manner can slow down page
display. If the eval function is used frequently on a page, it may be more efficient to put the
code in an include and use the inc function in conjunction with the eval function.

See eval() in Idoc Script Functions and Variables.

3.4.1.3 include Keyword
The include keyword is the standard way in which chunks of code are incorporated into the
current page. Because include is a keyword, it cannot take a variable as a parameter-the
parameter must be the name of an include that already exists.

See Includes, and include in Idoc Script Functions and Variables.

3.4.1.4 inc Function
The inc function does the same thing as the include keyword, except that it can take a
variable as the parameter. This function is most useful for dynamically changing which include
will be used depending on the current value of a variable.

For example, say you want to execute some Idoc Script for some, but not all, of your custom
metadata fields. You could dynamically create includes based on the field names (such as
specific_include_xComments) by executing this Idoc Script:

<$loop DocMetaDefinition$>
 <$myInclude = "specific_include_" & dName$>
 <$exec inc(myInclude)$>
<$endloop$>

Note the use of the exec Keyword, which suppresses the output of the include specified by the
inc function. If you do not use exec before the inc function, the HTML inside the specified
include will be displayed on the page.

Note that if the specific_include_xComments does not exist, this code will not throw an error
because the output is not being displayed.

See inc() in Idoc Script Functions and Variables.

Chapter 3
Special Keywords

3-14

3.5 Operators
Idoc Script supports several operators.

• Comparison Operators

• Special String Operators

• Numeric Operators

• Boolean Operators

3.5.1 Comparison Operators
Use the following comparison operators to compare the value of two operands and return a
true or false value based on the result of the comparison. These operators can be used to
compare integers and Boolean values in Idoc Script.

If you are using Idoc Script in an HCSP or HCSF page, you must use special comparison
operators. For more information, see Comparison Operators.

Operato
r

Description Example

== equality <$if 2 == 3$> evaluates to false

!= inequality <$if 2 != 3$> evaluates to true

< less than <$if 2 < 2$> evaluates to false

<= less than or equal <$if 2 <= 2$> evaluates to true

> greater than <$if 3 > 2$> evaluates to true

>= greater than or
equal

<$if 3 >= 2$> evaluates to true

These are numeric operators that are useful with strings only in special cases where the string
data has some valid numeric meaning, such as dates (which convert to milliseconds when
used with the standard comparison operators).

• For string concatenation, string inclusion, and simple string comparison, use the Special
String Operators.

• To perform advanced string operations, use strEquals(), strReplace(), or other string-
related global functions.

3.5.2 Special String Operators
Use the following special string operators to concatenate and compare strings.

Operator Description Example

& The string join operator performs
string concatenation. Use this
operator to create script that
produces Idoc Script for a resource
include.

<$"<$include " & VariableInclude & "$>"$>

evaluates to

<$include VariableName$>

Chapter 3
Operators

3-15

Operator Description Example

like The string comparison operator
compares two strings.

• The first string is compared
against the pattern of the
second string. (The second
string can use asterisk and
question mark characters as
wildcards.)

• This operator is not case
sensitive.

• Evaluates to FALSE:

<$if "cart" like "car"$>
• Evaluates to TRUE:

<$if "cart" like "car?"$>
• Evaluates to TRUE:

<$if "carton" like "car*"$>
• Evaluates to TRUE:

<$if "Carton" like "car*"$>
| The string inclusion operator

separates multiple options,
performing a logical OR function.

Evaluates to TRUE:

<$if "car" like "car|truck|van"$>

For example, to determine whether the variable a has the prefix car or contains the substring
truck, this expression could be used:

<$if a like "car*|*truck*"$>

Note:

To perform advanced string operations, use strEquals(), strReplace(), or other string-
related global functions.

The like operator recognizes the following wildcard symbols.

Wildcard Description Example

* Matches 0 or more characters. • grow* matches grow, grows, growth, and
growing

• *car matches car, scar, and motorcar
• s*o matches so, solo, and soprano

? Matches exactly one character. • grow? matches grows and growl but not
growth

• grow?? matches growth but not grows or
growing

• b?d matches bad, bed, bid, and bud

3.5.3 Numeric Operators
Use the following numeric operators to perform arithmetic operations. These operators are for
use on integers evaluating to integers or on floats evaluating to floats.

Operator Description Example

+ Addition operator. <$a=(b+2)$>

Chapter 3
Operators

3-16

Operator Description Example

- Subtraction operator. <$a=(b-2)$>

* Multiplication operator. <$a=(b*2)$>

/ Division operator. <$a=(b/2)$>

% Modulus operator. Provides the remainder of two values divided
into each other.

<$a=(b%2)$>

3.5.4 Boolean Operators
Use the following Boolean operators to perform logical evaluations.

Operato
r

Description Example

and • If both operands have nonzero values or are
true, the result is 1.

• If either operand equals 0 or is false, the result
is 0.

<$if 3>2 and 4>3$>

evaluates to 1

or • If either operand has a nonzero value or is
true, the result is 1.

• If both operands equal 0 or are false, the result
is 0.

<$if 3>2 or 3>4$>

evaluates to 1

not • If the operand equals 0 or is false, the result is
1.

• If the operand has a nonzero value or is true,
the result is 0.

<$if not 3=4$>

evaluates to 1

Boolean operators evaluate from left to right. If the value of the first operand is sufficient to
determine the result of the operation, the second operand is not evaluated.

3.6 Metadata Fields
This section includes these topics:

• Metadata Field Naming

• Standard Metadata Fields

• Option Lists

• Metadata References in Dynamic Server Pages

3.6.1 Metadata Field Naming
Each metadata field has an internal field name, which is used in code. In addition, many fields
have descriptive captions which are shown on web pages.

• Use field captions when displaying metadata to the user.

• Use internal field names when batch loading files or scripting dynamic server pages
(.hcst,.hcsp, and .hcsf pages).

Chapter 3
Metadata Fields

3-17

• All internal metadata field names begin with either a d or an x:

– Predefined or core field names begin with a d. For example, dDocAuthor.

– Custom or add-on field names begin with an x. For example, xDepartment.

Note:

Add-on components from Oracle and custom components made by customers all
start with x.

• When you create a custom metadata field in the Configuration Manager, the x is
automatically added to the beginning of your field name.

Note:

In all cases, internal metadata field names are case sensitive.

3.6.2 Standard Metadata Fields
This section describes the standard metadata fields that the Content Server system stores for
each content item. The fields are grouped as follows:

• Common Metadata Fields

• Other Fields

3.6.2.1 Common Metadata Fields
The following metadata fields are the most commonly used in customizing the interface. These
fields appear by default on checkin and search pages.

Note:

Add-on components, of which there are many, are not listed here. For example, the
FrameworkFolders component is enabled in many configurations of Content Server,
but FrameworkFolders fields are not in the list.

Do not confuse the content ID (dDocName) with the dID. The dID is an internally generated
integer that refers to a specific revision of a content item.

Internal Field
Name

Standard Field
Caption

Description

dDocAccount Account Security account.

dDocAuthor Author User who checked in the revision.

xComments Comments Explanatory comments.

dDocName Content ID Unique content item identifier.

Chapter 3
Metadata Fields

3-18

Internal Field
Name

Standard Field
Caption

Description

dOutDate Expiration Date Date the revision becomes unavailable for searching or
viewing.

dInDate Release Date Date the revision is scheduled to become available for
searching and viewing (see also dCreateDate and
dReleaseDate).

dRevLabel Revision Revision label (see also dRevisionID).

dSecurityGroup Security Group Security group.

dDocTitle Title Descriptive title.

dDocType Type Content type.

3.6.2.2 Other Fields
In addition to values of the Common Metadata Fields, the following metadata is stored for
content items.

Internal Field Name Standard Field Caption Description

dCheckoutUser Checked Out By
(Content Information
page)

User who checked out the revision.

dCreateDate None Date on which the revision was checked in.

dDocFormats Formats (Content
Information page)

Formats of the primary and alternate files.

dDocID None Unique rendition identifier.

dExtension None File extension of the primary file.

dFileSize None Size of the primary file (in bytes).

dFlag1 None Not used.

dFormat Format (checkin page,
Allow override format
on checkin enabled)

Format of the primary file.

dID None Unique revision identifier.

Chapter 3
Metadata Fields

3-19

Internal Field Name Standard Field Caption Description

dIndexerState None State of the revision in an Indexer cycle. Possible
values follow:

X: The revision has been processed by the rebuild
cycle.

Y: The revision has been processed by the rebuild
cycle.

A, B, C, or D: Values generated at run time that can
be assigned to any of the following states:

• Loading the revision for the active
update cycle.

• Indexing the revision for the active
update cycle.

• Loading the revision for the rebuild
cycle.

• Indexing the revision for the rebuild
cycle.

The specific definitions of these values are stored in
the DomainHome/ucm/cs/search/
cyclesymbols.hda file.

dIsCheckedOut None Indicates whether the revision is checked out.

0: Not checked out

1: Checked out

dIsPrimary None Indicates the type of file, primary or alternate.

0: Alternate file

1: Primary file

dIsWebFormat None Indicates whether the file is the web-viewable file in
the weblayout directory.

0: Not web-viewable file

1: Web-viewable file

dLocation None Not used.

dMessage None (Content
Information page)

Indicates the success or reason for failure for
indexing or conversion.

dOriginalName Get Native File (Content
Information page)

Original File (revision
checkin page)

Original file name of the native file.

Chapter 3
Metadata Fields

3-20

Internal Field Name Standard Field Caption Description

dProcessingState None Conversion status of the revision. Possible values
follow:

I: Incomplete Conversion; an error occurred in the
conversion after a valid web-viewable file was
produced and the file was full-text indexed.

Y: Converted; the revision was converted
successfully and the web-viewable file is available.

P: Refinery PassThru; the Inbound Refinery system
failed to convert the revision and passed the native
file through to the web.

F: Failed; the revision is deleted, locked, or
corrupted, or an indexing error occurred.

C: Processing; the revision is being converted by
Inbound Refinery.

M: MetaData Only; full-text indexing was bypassed
and only the revision's metadata was indexed.

dReleaseDate None Date on which the revision was released.

dReleaseState None Release status of a revision:

N: New, not yet indexed

E: In a workflow

R: Processing, preparing for indexing

I: Currently being indexed; the file has been
renamed to the released name

Y: Released

U: Released, but needs to be updated in the index

O: Old revision

dRendition1 None Indicates whether the file is a thumbnail rendition.
Possible values are:

null: File is not a thumbnail rendition

T: File is a thumbnail rendition

dRendition2 None Not used.

dRevClassID None Internal integer that corresponds to the content ID
(dDocName). Used to enhance query response
times.

dRevisionID None Internal revision number that increments by 1 for
each revision of a content item, regardless of the
value of dRevLabel.

Chapter 3
Metadata Fields

3-21

Internal Field Name Standard Field Caption Description

dStatus Status (Content
Information page)

State of a revision in the system. Possible values
are:

GENWWW: The file is being converted to web-viewable
format or is being indexed, or has failed conversion
or indexing.

DONE: The file is waiting to be released on its
specified Release Date.

RELEASED: The revision is available.

REVIEW: The revision is in a workflow and is being
reviewed.

EDIT: The revision is at the initial contribution step
of a workflow.

PENDING: The revision is in a Basic workflow and is
waiting for approval of all revisions in the workflow.

EXPIRED: The revision is no longer available for
viewing. The revision was not deleted, but it can be
accessed only by an administrator.

DELETED: The revision has been deleted and is
waiting to be completely removed during the next
indexing cycle.

dWebExtension None File extension of the web-viewable file.

3.6.3 Option Lists
An option list is a set of values that can be selected for a metadata field. Option lists can be
formed from queries (dynamically built from the DB), or they can be hard coded and stored in
Content Server files (HDA) on the file system.

The following topics describe the use of option lists:

• Internal Option Lists

• Option List Script

• Methods for Creating an Option List

3.6.3.1 Internal Option Lists
The Content Server system maintains the following internal option lists by default.

Metadata Field Option List

Author (dDocAuthor) docAuthors

Security Group (dSecurityGroup) securityGroups

Type (dDocType) docTypes

Account (dDocAccount) docAccounts

Role (dRole) roles

The securityGroups and docAccounts option lists are filtered according to the current user's
permissions.

Chapter 3
Metadata Fields

3-22

3.6.3.2 Option List Script
The following Idoc Script variables and functions are used to generate and enable option lists.

Variable or Function Description

optList() function Generates the option list for a metadata field.

optionListName variable Specifies the name of an option list.

fieldIsOptionList variable Specifies that a metadata field has an option list.

fieldOptionListType variable Specifies the type of option list (strict, combo, multi, or
access).

hasOptionList variable Set to the value of the fieldIsOptionList variable. This
variable is used in conditional statements.

defaultOptionListScript variable Defines a piece of Idoc Script that displays a standard
option list field.

optionListScript variable Overrides the standard implementation of option list
fields (as defined by the defaultOptionListScript
variable).

optionsAllowPreselect variable Specifies that a metadata field option list can be prefilled
with its last value.

addEmptyOption variable Specifies that the first value in the option list is blank.

optionListResultSet variable Specifies a ResultSet that contains option list values.

optionListKey variable Specifies the name of a ResultSet column that contains
option list values.

optionListValueInclude variable Specifies an include that defines the values for an option
list.

3.6.3.3 Methods for Creating an Option List
To create an option list, you can use one of the following methods:

• Use the optList() function to generate a basic option list. This function produces output only
when used with a service that calls loadMetaOptionsList.

For example, this code displays a list of possible authors as an HTML option list:

<select name="dDocAuthors">
 <$optList docAuthors$>
</select>

• Use the rsMakeFromList() function to turn the option list into a ResultSet, and then loop
over the ResultSet.

For example, this code creates a ResultSet called Authors from the docAuthors option list,
and loops over the ResultSet to create an HTML option list. (Because the column name is
not specified as a parameter for rsMakeFromList, the column name defaults to row.)

<$rsMakeFromList("Authors","docAuthors")$>
<select name="dDocAuthors">
 <$loop Authors$>
 <option><row>
<$endloop$>
</select>

Chapter 3
Metadata Fields

3-23

This code sample is equivalent to the sample produced by using the optList function.
Typically, you would use the rsMakeFromList function when you want to parse or evaluate
the list options.

• Use the Configuration Manager applet to create an option list, without writing any code.

3.6.4 Metadata References in Dynamic Server Pages
For dynamic server pages, several metadata values are stored with a ref: prefix, which makes
them available to the page but does not replace ResultSet values. (This prevents pollution of
ResultSets by dynamic server pages.)

When you reference any of the following metadata values on a dynamic server page, you must
include the ref: prefix:

• hasDocInfo
• dDocName
• dExtension
• dSecurityGroup
• isLatestRevision
• dDocType
• dID
For example, the following statement determines if the document type is Page:

<$if strEquals(ref:dDocType,"Page"))$>

For more information, see Altering the Appearance and Navigation of Web Pages.

3.7 Merge Includes for Formatting Results
You can use a MergeInclude to format your results from a Content Server request based on an
Idoc Script include, rather than an entire template page.

A MergeInclude is a feature often used to integrate ASP pages using the IdcCommandX
ActiveX module. The Content Server architecture is essentially a modular, secure, service-
based application with multiple interfaces, although its architecture was designed to optimize
the web interface. Services such as GET_SEARCH_RESULTS will generate response data based
on the QueryString passed, and the user's security credentials. This response data is
internally represented in the form of a HDA file. To see this in action, simply perform a search
and then add 'IsJava=1' or 'IsSoap=1' (for XML-formatted data) to the URL. You can now
see how data is internally represented for the response.

Because this HDA representation is not particularly useful for web-based users, we use Idoc
Script includes and templates to format the response into a readable HTML page. A user can
modify how this HTML is displayed by changing the template or a few resource includes with a
component.

However, to retrieve only a small portion of this search result (for example, to display it on an
ASP, JSP, or PHP page where the majority of the code is not Idoc Script), or have an IFRAME
or DIV element pop up and display the results, or to dynamically change how to display the
results, you can simply add these parameters to your URL:

MergeInclude=my_custom_include&IsJava=1

Chapter 3
Merge Includes for Formatting Results

3-24

This will cause the Content Server system to bypass formatting the response according to the
template that is specified in the service. It will instead format the response based on the Idoc
Script in my_custom_include. For example, if you executed a search, then added the above
line to the URL, and the include looked like this in your component:

<@dynamichtml my_custom_include@>
<html>
<table width=300>
<tr>
 <td>Name</td>
 <td>Title (Author)</td>
</tr>
<$loop SearchResults$>
<tr><td><a href="<URL>"><$dDocName$></td>
 <td><$dDocTitle$> (<$dDocAuthor$>)</td></tr>
<$endloop$>
</table>
</html>
<@end@>

This would display a search result page devoid of all images and formatting that you may not
need. Consequently, you can format any Content Server response with any Idoc Script include
that you want. In theory, the Idoc Script include can contain any kind of formatting that you
want: XML, WML, or simply plain text.

For example, if you wanted to return search results in a format that can be read in an Excel
Spreadsheet, you could create a resource include that returns a comma-delimited list of
entries. You could then save the returned file to your hard drive, and then open it up in Excel.
Another useful trick would be to create a resource include that formats the response into a
record set that can be read in as a file by the IdcCommandX utility, or the BatchLoader. Such
an include could be used with a search result, or an Active Report created with the Web Layout
Editor, to build up batch files specific to arbitrary queries against the database or against the
search index.

• MergeInclude variables are cached differently than normal resource includes. Therefore,
you must restart the Content Server instance if you make changes to the resource include.
This can be bypassed if you execute a docLoadResourceInclude() function to dynamically
load different includes from within the MergeInclude.

• The content type of the returned data is 'text/plain' and not 'text/html' for data returned
by a MergeInclude. Some clients (such as Internet Explorer and many versions of
Netscape) still display plain text as html if you have valid HTML in the response, others
clients may not. If you experience problems, you may need to manually set the content
type when you link to it.

3.8 Scoped Local Variables
Scoped local variables are a special kind of local variable, used to override how metadata is
drawn to the page. These variables are scoped to a specific metadata field by separating them
with a colon.

For example, to hide the title and comments fields, you would set the following flags:

dDocTitle:isHidden=1
xComments:isHidden=1

These flags must be set early in the page in the URL or by overriding the include
std_doc_page_definitions.

Chapter 3
Scoped Local Variables

3-25

In the following list, all flags affect the display of the field xFieldName:

• xFieldName:groupHeader: This is set in Content Profiles if this field is the first field in a
group. It contains the HTML and Idoc Script to use for the group header.

• xFieldName:hasOptionList: Allows the field to contain a custom option list, instead of
using the default option list. Must be used with the xFieldName:optionListName variable or
xFieldName:optionListScript variable.

• xFieldName:include: Used to set the value for fieldInclude to the name of a custom
resource include. This resource will be used throughout the page, including the JavaScript
and the HTML. This flag is used rarely. If needed, use the std_namevalue_field include
file as a guide for making a custom include.

• xFieldName:isExcluded: Set to true to exclude a field from the page completely. It will not
be displayed as a field, or as a hidden input field. The field will be completely absent from
the page.

• xFieldName:isHidden: Set to TRUE to hide a field on the page. On pages with form posts,
the field will still be present. However, it will only exist as a hidden INPUT field. The value
of the field will be blank, unless xFieldName or fieldValue is defined. This will enable you
to create pages with default values that cannot be changed.

• xFieldName:isInfoOnly: Set to TRUE to display only the value of a field. This is used
instead of xFieldName:isHidden to show the user what default values are being submitted.

• xFieldName:isRelocated: Set to TRUE to stop the automatic display of a field on the HTML
page. By default, all fields on the page have a specific order. To reorder them, you must set
this flag, then display the field manually.

<!-- hide the comments field -->
<$xComments:isRelocated = 1$>
<$loop DocMetaDefinition$>
<$strTrimWs(inc("std_meta_field_display"))$>
<$endloop$>
<!-- now turn off relocation, and display it -->
<$xComments:isRelocated = ""$>
<$fieldName="xComments", fieldCaption="Comments", fieldType="Memo"$>
<$include std_display_field$>

• xFieldName:isRequired: Set to TRUE to turn this field into a required field. This flag must
be set in std_doc_page_definitions, before the JavaScript validation code is drawn to the
page.

• xFieldName:maxLength: Similar to fieldWidth, this sets the maximum length of a text
input field. This is usually greater than fieldWidth, and must be less than the width of the
field in the database.

• xFieldName:noSchema: Set to TRUE to disable a schema option list for a field. Required if
you want to generate option lists in a custom, dynamic way.

• xFieldName:optionListName: This flag can only be set if a field is an option list. You can
override which option list to use to display values:

<$xCountry:hasOptionList = 1$>
<$xCountry:noSchema = 1$>
<$xCountry:optionListName = "securityGroups"$>
<$loop DocMetaDefinition$>
<$strTrimWs(inc("std_meta_field_display"))$>
<$endloop$>

Chapter 3
Scoped Local Variables

3-26

• xFieldName:optionListScript: Similar to optionListName, except it can be used to
render Idoc Script instead of explicitly defined option lists. This allows the option list to be
drawn with a ResultSet instead:

<$xCountry:hasOptionList = 1$>
<$xCountry:noSchema = 1$>
<$xCountry:optionListScript =
"<$rsMakeFromList('GROUPS', 'securityGroups')$>" &
"<select>\n" &
"<$loop GROUPS$>" &
" <option><row>" &
"<$endloop$>\n" &
"</select>"$>
<$loop DocMetaDefinition$>
<$strTrimWs(inc("std_meta_field_display"))$>
<$endloop$>

• xFieldName:rowClass: Used in std_nameentry_row. It sets a Cascading Style Sheet class
for the table row that contains this field.

<$xComments:rowClass="xuiPageTitleText"$>
<$loop DocMetaDefinition$>
<$strTrimWs(inc("std_meta_field_display"))$>
<$endloop$>

• xFieldName:rowStyle: Same as rowClass, but this can be used to create inline styles. For
example, to hide the Comments field with DHTML, use the following code:

<$xComments:rowStyle="display:none"$>
<$loop DocMetaDefinition$>
<$strTrimWs(inc("std_meta_field_display"))$>
<$endloop$>

This is useful when you want to hide and display fields dynamically without a page reload.

Chapter 3
Scoped Local Variables

3-27

4
Using Idoc Script Variables and Functions with
Oracle WebCenter Content

This chapter describes the different types of Idoc Script variables and functions and how you
can use them with Oracle WebCenter Content. You can use the Idoc Script Custom Scripting
Language to customize Oracle WebCenter Content Server. Idoc Script enables you to
reference variables, conditionally include content in HTML pages, and loop over results
returned from queries. Because Idoc Script is evaluated on the server side rather than the
client side, page elements are processed after the browser has made a request, but before the
requested page is returned to the client.
This chapter includes the following sections:

• Using Different Types of Idoc Script Variables and Functions

• Using Idoc Script Variables and Functions with Different Features of Oracle WebCenter
Content

4.1 Using Different Types of Idoc Script Variables and Functions
You can use the several different types of Idoc Script variables and functions to customize
Content Server:

• Conditional Dynamic Variables

• Dynamic Variables

• Environment Variables

• Global Functions

• Page Variables

• Read-Only Variables

• Settable Variables

• Workflows

• Value Variables

4.1.1 Conditional Dynamic Variables
Some Idoc Script dynamic variables are conditional and can only be used within a conditional
statement such as if, while, elseif, or loop. These variables have the following special
features:

• Conditional variables are internal flags that are gettable but not settable.

• Conditional variables will only provide a Boolean response and do not return a value such
as a string or integer.

• Conditional variables will not accept the #active keyword prefix. Thus, an error report is
printed to the debug output if the variable is not found.

Idoc Script Functions and Variables, describes these conditional dynamic variables:

4-1

AdminAtLeastOneGroup
AfterLogin
AllowCheckin
AllowCheckout
AllowReview
dcShowExportLink
EmptyAccountCheckinAllowed
HasPredefinedAccounts
HasUrl
HeavyClient
IsCheckinPreAuthed
isComponentEnabled
IsContributor
IsCriteriaSubscription
IsCurrentNav
IsDynamic
IsExternalUser
IsFilePresent
IsFullTextIndexed
isLinkActive
IsLocalSearchCollectionID
IsLoggedIn
IsMac
IsMaxRows
IsMultiPage
IsNotSyncRev
IsPromptingForLogin
IsRequestError
IsSubAdmin
IsSun
IsSysManager
IsUploadSockets
IsUserEmailPresent
IsWindows
IsWorkflow
SingleGroup
UserIsAdmin
UserLanguageID
UserLocaleId
UseXmlUrl

4.1.2 Dynamic Variables
A dynamic variable is evaluated on each occurrence of the variable. Each time the variable is
encountered, the value is recalculated from code. (In contrast, a value variable is evaluated
once at the beginning of the service call, and that value is used throughout the service call.
See Value Variables.) Dynamic variables generally return a value, such as a string or an
integer.

Idoc Script Functions and Variables, describes this dynamic variable:

Chapter 4
Using Different Types of Idoc Script Variables and Functions

4-2

AfterLogin

4.1.3 Environment Variables
Web server variables are the CGI environment variables that are set when the server executes
the gateway program. To pass data about the information request from the server to the script,
the server uses command-line arguments and environment variables. These environment
variables can be used to output information to a log file or can be used within Idoc Script
statements and as part of evaluations.

For example, this Idoc Script statement evaluates whether the remote host address matches a
specific string:

<$if strEquals("207.0.0.1",REMOTE_HOST)$>

This HTML and Idoc Script markup displays a list of web server environment information on the
page:

<P>HTTP_INTERNETUSER=<$HTTP_INTERNETUSER$></P>
<P>REMOTE_HOST=<$REMOTE_HOST$></P>
<P>SCRIPT_NAME=<$SCRIPT_NAME$></P>

Idoc Script Functions and Variables, describes these web server variables:

CONTENT_LENGTH
GATEWAY_INTERFACE
HTTP_ACCEPT
HTTP_ACCEPT_ENCODING
HTTP_ACCEPT_LANGUAGE
HTTP_COOKIE
HTTP_HOST
HTTP_INTERNETUSER
HTTP_REFERER
HTTP_USER_AGENT
PATH_INFO
PATH_TRANSLATED
QUERY_STRING
REMOTE_ADDR
REMOTE_HOST
REQUEST_METHOD
SCRIPT_NAME
SERVER_NAME
SERVER_PORT
SERVER_PROTOCOL
SERVER_SOFTWARE

4.1.4 Global Functions
Idoc Script has many built-in global functions. Functions perform actions, including string
comparison and manipulation routines, date formatting, and ResultSet manipulation. Some
functions also return results, such as the results of calculations or comparisons.

Information is passed to functions by enclosing the information in parentheses after the name
of the function. Pieces of information that are passed to a function are called parameters.
Some functions do not take parameters; some functions take one parameter; some take

Chapter 4
Using Different Types of Idoc Script Variables and Functions

4-3

several. There are also functions for which the number of parameters depends on how the
function is being used.

In addition to the built-in global functions, you can define new global functions, including
custom classes, with Java code. For more information, see Getting Started with Content
Server Components, and Creating Custom Components.

Idoc Script Functions and Variables, describes these Idoc Script built-in global functions:

abortToErrorPage()
break()
cacheInclude()
clearSchemaData()
computeDocUrl()
computeRenditionUrl()
dateCurrent()
ddAppendIndexedColumnResultSet()
ddAppendResultSet()
ddApplyTableSortToResultSet()
ddGetFieldList()
ddIncludePreserveValues()
ddLoadIndexedColumnResultSet()
ddLoadResultSet()
ddMergeIndexedColumnResultSet()
ddMergeResultSet()
ddMergeUsingIndexedKey()
ddSetLocal()
ddSetLocalByColumnsFromFirstRow()
ddSetLocalByColumnsFromFirstRowIndexed()
ddSetLocalEmpty()
ddSetLocalEmptyByColumns()
docLoadResourceIncludes()
docRootFilename()
docUrlAllowDisclosure()
dpGet()
dpPromote()
dpPromoteRs()
dpSet()
encodeHtml()
eval()
executeService()
forceExpire()
formatDate()
formatDateDatabase()
formatDateDisplay()
formatDateOnly()
formatDateOnlyDisplay()
formatDateOnlyFull()
formatDateWithPattern()
formatTimeOnly()
formatTimeOnlyDisplay()
getDebugTrace()

Chapter 4
Using Different Types of Idoc Script Variables and Functions

4-4

getErrorTrace()
getFieldViewDisplayValue()
getFieldViewValue()
getFreeMemory()
getParentValue()
getRequiredMsg()
getTextFile()
getTotalMemory()
getUserValue()
getValue()
getValueForSpecifiedUser()
getViewValue()
getViewValueResultSet()
hasAppRights()
idocTestForInclude()
inc()
incDynamicConversionByRule()
incGlobal()
incTemplate()
indexerSetCollectionValue()
isActiveTrace()
sawflies()
isLayoutEnabled()
isTrue()
isUserOverrideSet()
isValidateFile()
js()
jsFilename()
lc()
lcCaption()
LmDefaultLayout()
LmDefaultSkin()
lmGetLayout()
lmGetSkin()
loadCollectionInfo()
loadDocMetaDefinition()
loadDocumentProfile()
loadEnterpriseSearchCollections
loadEnterpriseSearchResults
loadSchemaData()
loadSearchOperatorTables()
loadUserMetaDefinition()
optList()
parseDataEntryDate()
parseDateWithPattern()
pneNavigation()
proxiedBrowserFullCgiWebUrl
proxiedCgiWebUrl
regexMatches()
regexReplaceAll()

Chapter 4
Using Different Types of Idoc Script Variables and Functions

4-5

regexReplaceFirst()
rptDisplayMapValue()
rs()
rsAddFields()
rsAddFieldsWithDefaults()
rsAddRowCountColumn()
rsAppend()
rsAppendNewRow()
rsAppendRowValues()
rsCopyFiltered()
rsCreateReference()
rsCreateResultSet()
rsDeleteRow()
rsDocInfoRowAllowDisclosure()
rsExists()
rsFieldByIndex()
rsFieldExists()
rsFindRowPrimary()
rsFirst()
rsInsertNewRow()
rsIsRowPresent()
rsLoopInclude()
rsLoopSingleRowInclude()
rsMakeFromList()
rsMakeFromString()
rsMerge()
rsMergeDelete()
rsMergeReplaceOnly()
rsNext()
rsNumFields()
rsNumRows()
rsRemove()
rsRename()
rsRenameField()
rsSetRow()
rsSort()
rsSortTree()
setContentType()
setExpires()
setHttpHeader()
setMaxAge()
setResourceInclude()
setValue()
stdSecurityCheck()
strCenterPad()
strCommaAppendNoDuplicates()
strConfine()
strEquals()
strEqualsIgnoreCase()
strGenerateRandom()

Chapter 4
Using Different Types of Idoc Script Variables and Functions

4-6

strIndexOf()
strLeftFill()
strLeftPad()
strLength()
strLower()
strRemoveWs()
strReplace()
strReplaceIgnoreCase()
strRightFill()
strRightPad()
strSubstring()
strTrimWs()
strUpper()
toInteger()
trace()
url()
urlEscape7Bit()
userHasAccessToAccount()
userHasGroupPrivilege()
userHasRole()
utGetValue()
utLoad()
utLoadDocumentProfiles()
utLoadResultSet()
xml()

4.1.5 Page Variables
Page variables are set on a particular web page to enable specific page attributes or
functionality. A page variable applies only to the page on which it is set.

This section includes the following topics:

• Page Display Variables

• Field Display Variables

4.1.5.1 Page Display Variables
Page variables that affect page display are typically set near the top of the page. Page display
variables should be used as read-only variables; setting or changing the value of any of these
variables will typically change the way all metadata is displayed on the page, which in most
cases is not the desired effect.

Where a listed variable name references another document, it means the variable can be set in
Idoc Script or in the URL for a web page.

Idoc Script Functions and Variables, describes these page display variables:

generateUniqueId
isCheckin
isDocPage
isEditMode
isFormSubmit

Chapter 4
Using Different Types of Idoc Script Variables and Functions

4-7

isInfo
isQuery
isUpdate
isUploadFieldScript
localPageType
noMCPrefill

4.1.5.2 Field Display Variables
Field display variables can be grouped into the following types:

• Field Information Variables

• Common Field Display Variables

• Other Field Display Variables

4.1.5.2.1 Field Information Variables
The following variables define information about a metadata field. The variable values are
loaded or computed for each metadata field.

Idoc Script Functions and Variables, describes these field information variables:

fieldCaption
fieldDefault
fieldIsOptionList
fieldName
fieldOptionListType
fieldType
fieldValue
fieldWidth
isRequired
requiredMsg
valueStyle

Example

The std_prepare_metafield_include include in the resource file IdcHomeDir/resources/
core/std_page.htm loads a number of field information variables from the local data in
preparation for displaying the current metadata field.

<@dynamichtml std_prepare_metafield_include@>
<!--Prepare for presenting field-->
<$fieldName=dName, fieldCaption=dCaption, fieldDefault=dDefaultValue$>
<$fieldType=dType, fieldIsOptionList=dIsOptionList, fieldOptionListType=dOptionListType$>
<@end@>

4.1.5.2.2 Common Field Display Variables
There are several commonly used page variables that affect the display of metadata fields.
These variables can be set using different syntaxes at different places on a page, depending
on how they are being used.

Chapter 4
Using Different Types of Idoc Script Variables and Functions

4-8

Note:

The Profiles and Rules engine in the Configuration Manager applet duplicates this
functionality with less code.

The following formats can be used to set a special field display variable:

• Name/Value pair: The variable is set using the standard variable=value format. For
example, isHidden=1. This format is typically used to set the display of the current
metadata field at the point in the page where the field is being generated by looped code.

• FieldName:Variable format: The variable is set by defining it as a parameter for the
metadata field it applies to. For example, myMetadata:isHidden. This format is typically
used at the top of a page to set the global display of a particular metadata field.

If a common field display variable is set at the top of a template page, it should be placed
before the <HEAD> tag. Placing the variable in or after the <HEAD></HEAD> section will result in
the field being displayed (or not displayed) as you intended, but the JavaScript validation code
in the header will still be evaluated, so an … is not an object error will be thrown when you
attempt to display a checkin page.

Idoc Script Functions and Variables

Idoc Script Functions and Variables, describes these comman field display variables:

isExcluded
isHidden
isInfoOnly
isRelocated
maxLength
optionListScript

Alternative Methods to Display Metadata Fields

If these common field display variables are not sufficient to provide the required flexibility, the
entire implementation of a metadata field can be replaced by setting the field variable to the
name of a resource include that should be used instead (for example,
myField:include=customInclude).

The standard implementation is referred to by the variable defaultFieldInclude, whose value
is different depending on whether the field is being generated on a checkin/update, query, or
info page. It also varies considerably based on the type of field being displayed. If the standard
field include is overridden, then the new implementation must take into consideration all the
issues of the different pages, including JavaScript validation and the Upload applet.

Use this approach only as a last resort. It is preferable to extend existing functionality and set
local variables to have custom functionality.

If you use the include tag in this way to insert custom HTML code for a special metadata field,
you must place the include statement after the </HEAD> tag on the page. If you place it before
the </HEAD> tag, the system will insert your custom HTML code into the header and attempt to
read it as JavaScript.

Chapter 4
Using Different Types of Idoc Script Variables and Functions

4-9

4.1.5.2.3 Other Field Display Variables
A number of other variables are available to affect the display of metadata fields. Generally,
these are used to define the display of a metadata field depending on which field is currently
being generated and the value of related common field display variables.

Idoc Script Functions and Variables, describes these other field display variables:

addEmptyOption
captionEntryWidth
captionFieldWidth
defaultFieldInclude
defaultOptionListScript
fieldCaptionInclude
fieldCaptionStyle
fieldEditWidth
fieldEntryInclude
fieldExtraScriptInclude
fieldInclude
fieldMaxLength
fieldValueStyle
hasOptionList
is Field Excluded
isFieldHidden
isFieldInfoOnly
isFieldMemo
isMultiOption
isStrictList
optionListKey
optionListName
optionListResultSet
optionListValueInclude
optionsAllowPreselect

Example

This example shows how the compute_std_field_overrides include in the IdcHomeDir/
resources/core/templates/std_page.htm resource file determines if the field currently being
generated is hidden, information only, excluded, and/or relocated. This code is looped over
during generation of each metadata field on a page.

<@dynamichtml compute_std_field_overrides@>
<$isCustomHidden = getValue("#active", fieldName & ":isHidden")$>
<$if isHidden or isCustomHidden$>
 <$isFieldHidden = 1$>
<$else$>
 <$isFieldHidden = ""$>
<$endif$>
<$isCustomInfo = getValue("#active", fieldName & ":isInfoOnly")$>
<$if isInfo or isCustomInfo or isFieldHidden or isInfoOnly$>
 <$isFieldInfoOnly = 1$>
<$else$>
 <$isFieldInfoOnly = ""$>
<$endif$>
<$isCustomExcluded = getValue("#active", fieldName & ":isExcluded")$>

Chapter 4
Using Different Types of Idoc Script Variables and Functions

4-10

<$isCustomRelocated = getValue("#active", fieldName & ":isRelocated")$>
<$if isCustomExcluded or (isCustomRelocated and not isRelocated) or isExcluded or
(isFieldHidden and not isFormSubmit)$>
 <$isFieldExcluded = 1$>
<$endif$>
<@end@>

4.1.6 Read-Only Variables
Read-only variables can be used to gather information about the current template, the user
who is currently logged in, or other current settings. These variables are read-only and cannot
be assigned a value.

• Template Read-Only Variables

• User Read-Only Variables

• Content Read-Only Variable

• Other Read-Only Variable

4.1.6.1 Template Read-Only Variables
Template-related read-only variables make it possible to create conditional content in a
template based on the identity of the template. These predefined variables allow you to display
the class, file path, name, or type of any template on a Content Server web page. This is
particularly useful while you are developing your website.

Idoc Script Functions and Variables, describes these read-only variables that are related to
templates:

TemplateClass
TemplateFilePath
TemplateName
TemplateType

Example

In this example, the internal name of the template appears under the Administration link in the
left sidebar of all Content Server web pages. To accomplish this change, the predefined
TemplateName variable was added to the pne_nav_admin_links include that defines the
Administration links.

The following is an example of using the TemplateName predefined variable to display the
internal template name on a web page.

<$if IsSubAdmin$>
<tr>
 <td>
 <a href="<$HttpCgiPath$>?IdcService=GET_ADMIN_PAGE&Action=
 GetTemplatePage&Page=ADMIN_LINKS"
 OnMouseOver="imgAct('admin')"
 OnMouseOut="imgInact('admin')">
 <img src="<$HttpImagesRoot$>
 <$button_admin_grey_ish_image$>" width="<$navImageWidth$>"
 height="<$navImageHeight$>" name="admin" border="0"
 alt="<$lc("wwProductAdministration", ProductID)$>">
 </td>
 <td>
 <a class=pneHeader href="<$HttpCgiPath$>?IdcService=GET_ADMIN_

Chapter 4
Using Different Types of Idoc Script Variables and Functions

4-11

 PAGE&Action=GetTemplatePage&Page=ADMIN_LINKS"
 OnMouseOver="imgAct('admin')"
 OnMouseOut="imgInact('admin')">
 <$lc("wwAdministration")$>
 </td>
</tr>
<tr>
 <td colspan=2><font color=#FFFFFF style="Arial"
 size="-1"><$TemplateName$></td>
</tr>
<$endif$>

4.1.6.2 User Read-Only Variables
User-related read-only variables make it possible to gather information about the current user.

Idoc Script Functions and Variables, describes these read-only variables that are related to
users:

DelimitedUserRoles
ExternalUserAccounts
ExternalUserRoles
UserAccounts
UserAddress
UserAppRights
UserDefaultAccount
UserFullName
UserName
UserRoles

4.1.6.3 Content Read-Only Variable
One content-related read-only variable, SourceID, described in Idoc Script Functions and
Variables, makes it possible to retrieve the content ID of the current dynamic server page.

This variable returns the same value as ref:dID.

4.1.6.4 Other Read-Only Variable
The SafeDir read-only variable, described in Idoc Script Functions and Variables, is set only as
an internal flag. It can be retrieved but not set directly.

4.1.7 Settable Variables
Settable variables can be set within script or used within a CGI string. For example, the
variable IsPageDebug can be used as a parameter for a service call to display debug trace
information on a page. Setting one of these variables can change the content of the page.

Idoc Script Functions and Variables, describes these settable variables:

ClientControlled
coreContentOnly
getCookie
HasLocalCopy
HasLocalCopy
IsJava

Chapter 4
Using Different Types of Idoc Script Variables and Functions

4-12

IsPageDebug
IsSavedQuery
IsSoap
IsXml
isZoneSearchField
Json
setCookie

4.1.8 Workflows
Idoc Script includes predefined functions and variables that are used specifically for workflows.

• Workflow Functions perform actions or return results relative to a workflow.

• Workflow Variables enable you to set values for variables related to workflows.

For a detailed description of how workflows are implemented in Content Server, see Managing
Workflows in Oracle Fusion Middleware Managing Oracle WebCenter Content.

The following points summarize the use of Idoc Script in workflows:

• Workflow jumps are initiated through the evaluation of Idoc Script that is defined for a
particular step event (entry, update, or exit).

• As a revision moves from step to step, the system creates a companion file that maintains
information about the state of the revision in the workflow. You can use the wfGet() and
wfSet() functions to code data into the companion file, as needed. Along with user-defined
options, the system also maintains the history of what steps the revision has been to, the
last entry time, and the number of times a revision has entered a particular workflow step.

– Global state information is maintained as the revision moves from step to step.

– Localized state information is stored with the step and becomes available when a
revision is at that step.

• The companion file uses keys to keep track of workflow state information. The syntax for a
key is:

step_name@workflow_name.variable=value

For example, the following keys define the value of the entry count and last entry variables
for the Editor step of a workflow called Marketing:

Editor@Marketing.entryCount=1
Editor@Marketing.lastEntryTs={ts '2002-05-28 16:57:00'}

• All workflow script evaluation occurs inside a database transaction. The result is that any
serious errors or aborts that are encountered cause no change to either the database or
the companion file. This also means that no Idoc Script workflow function should take more
than a negligible amount of time. Consequently, to trigger an external process, an Idoc
Script function should be written to execute in a separate thread.

Caution:

If you are using Idoc Script or custom components to load workflow information
into the local data, keep in mind that there is a risk of data pollution. This is
particularly important if you are loading information for a different revision than
the current one.

Chapter 4
Using Different Types of Idoc Script Variables and Functions

4-13

4.1.8.1 Workflow Functions
Workflow functions perform actions or return results relative to a workflow.

Idoc Script Functions and Variables, describes these workflow functions:

wfAddActionHistoryEvent()
wfAddUser()
wfComputeStepUserList()
wfCurrentGet()
wfCurrentSet()
wfCurrentStep()
wfDisplayCondition()
wfExit()
wfGet()
wfIsFinishedDocConversion()
wfIsNotificationSuppressed()
wfIsReleasable()
wfLoadDesign()
wfNotify()
wfSet()
wfSetSuppressNotification()
wfUpdateMetaData()

4.1.8.2 Workflow Variables
Workflow variables are used to set values related to workflows.

Idoc Script Functions and Variables, describes these workflow variables:

dWfName
dWfStepName
entryCount
lastEntryTs
wfAction
wfAdditionalExitCondition
wfGetStepTypeLabel
wfJumpEntryNotifyOff
wfJumpMessage
wfJumpName
wfJumpReturnStep
wfJumpTargetStep
wfMailSubject
wfMessage
wfParentList
wfReleaseDocument
WfStart

Chapter 4
Using Different Types of Idoc Script Variables and Functions

4-14

4.1.9 Value Variables
A value variable is evaluated once at the beginning of a service call and that value is used
throughout the service call. The variable is then reevaluated on each new service call. In
contrast, a dynamic variable is evaluated on each occurrence of the variable. For example, the
value variable isNew evaluates whether the content item is new or a revision when performing
a check in. That evaluation is used throughout the call to the checkin service.

Idoc Script Functions and Variables, describes these value variables:

AuthorAddress
BrowserVersionNumber
CURRENT_DATE
CURRENT_ROW
DocTypeSelected
DocUrl
DownloadSuggestedName
fileUrl
FIRSTREV
HasOriginal
htmlRefreshTimeout
htmlRefreshUrl
HttpAbsoluteCgiPath
HttpAdminCgiPath
HttpBrowserFullCgiPath
HttpCgiPath
HttpCommonRoot
HttpEnterpriseCgiPath
HttpHelpRoot
HttpImagesRoot
HttpLayoutRoot
HttpRelativeAdminRoot
HttpSharedRoot
HttpSystemHelpRoot
HttpWebRoot
IsEditRev
IsFailedConversion
IsFailedIndex
isNew
IsNotLatestRev
MSIE
NoMatches
OneMatch
PageParent
ResultsTitle
StatusCode
StatusMessage
UseHtmlOrTextHighlightInfo

Chapter 4
Using Different Types of Idoc Script Variables and Functions

4-15

4.2 Using Idoc Script Variables and Functions with Different
Features of Oracle WebCenter Content

You can use Idoc Script variables and functions with different features of Oracle WebCenter
Content. Idoc Script Functions and Variables, describes the Idoc Script variables and functions.

For information about system configuration variables that you can use in the WebCenter
Content config.cfg file, intradoc.cfg file, and other .cfg files, see Configuration Variables in
Oracle Fusion Middleware Configuration Reference for Oracle WebCenter Content.

You can use Idoc Script variables and functions with these Oracle WebCenter Content
features:

• Batch Loader

• Clients

• Content Items

• Content Profiles

• Content Server

• Conversion

• Database

• Date and Time

• Debugging

• Directories and Paths

• Dynamicdata

• Field Display

• Idoc Script

• Indexing

• Localization

• Page Display

• Personalization

• ResultSets

• Schemas

• Searching

• Security

• Strings

• Templates

• Users

• Web Servers

• Workflow

Chapter 4
Using Idoc Script Variables and Functions with Different Features of Oracle WebCenter Content

4-16

4.2.1 Batch Loader
The following Idoc Script variable, described in Idoc Script Functions and Variables, is related
to the Batch Loader utility:

BatchLoaderPath

For information about other Idoc Script configuration variables that are related to the Batch
Loader utility, see Batch Loader in the Oracle Fusion Middleware Configuration Reference for
Oracle WebCenter Content.

4.2.2 Clients
The following Idoc Script variables are related to client applications:

BrowserVersionNumber
ClientControlled
DownloadApplet
HasLocalCopy
HeavyClient
HttpBrowserFullCgiPath
IsMac
IsSun
IsUploadSockets
IsWindows
MSIE
MultiUpload
UploadApplet

4.2.3 Content Items
The following Idoc Script variables and functions are related to content items:

AutoNumberPrefix
computeDocUrl()
computeRenditionUrl()
CONTENT_LENGTH
DocTypeSelected
DocUrl
DownloadSuggestedName
fileUrl
FIRSTREV
HasLocalCopy
HasOriginal
HasUrl
IsCriteriaSubscription
IsEditRev
IsFailedConversion
IsFailedIndex
IsFilePresent
IsFullTextIndexed

Chapter 4
Using Idoc Script Variables and Functions with Different Features of Oracle WebCenter Content

4-17

IsLocalSearchCollectionID
isNew
IsNotLatestRev
IsNotSyncRev
MajorRevSeq
MinorRevSeq
NotificationQuery
SingleGroup
SourceID

4.2.4 Content Profiles
The following Idoc Script functions are used to manage content profiles:

dpGet()
dpPromote()
dpPromoteRs()
dpSet()
getFieldViewValue()
getRequiredMsg()
loadDocumentProfile()
utLoadDocumentProfiles()

4.2.5 Content Server
The following Idoc Script variables and functions are related to the Content Server system:

DownloadApplet
getFieldConfigValue
HasExternalUsers
HttpAbsoluteCgiPath
HttpAdminCgiPath
HttpCgiPath
HttpCommonRoot
HttpEnterpriseCgiPath
HttpHelpRoot
HttpImagesRoot
HttpLayoutRoot
HttpRelativeAdminRoot
HttpSharedRoot
HttpSystemHelpRoot
InstanceDescription
isComponentEnabled
IsContributor
isLayoutEnabled()
IsPromptingForLogin
IsProxiedServer
IsRequestError
isValidateFile()
LmDefaultLayout()
LmDefaultSkin()

Chapter 4
Using Idoc Script Variables and Functions with Different Features of Oracle WebCenter Content

4-18

lmGetLayout()
lmGetSkin()
MultiUpload
StatusCode
StatusMessage
SysAdminAddress
UploadApplet
WebProxyAdminServer

4.2.6 Conversion
You can use some Idoc Script variables with these conversion products:

• Inbound Refinery

• Dynamic Converter

4.2.6.1 Inbound Refinery
The following Idoc Script variable is related to the Oracle WebCenter Content: Inbound
Refinery system:

IsFailedConversion

4.2.6.2 Dynamic Converter
The following Idoc Script variables and function are related to the Dynamic Converter:

dcShowExportLink
ForcedConversionRules
incDynamicConversionByRule()
IsDynamicConverterEnabled

4.2.7 Database
The following Idoc Script function is related to databases:

formatDateDatabase()

4.2.8 Date and Time
The following Idoc Script variables and functions are related to formatting and manipulating
dates and times:

CURRENT_DATE
dateCurrent()
formatDate()
formatDateDatabase()
formatDateDisplay()
formatDateOnly()
formatDateOnlyDisplay()
formatDateOnlyFull()
formatDateWithPattern()
formatTimeOnly()

Chapter 4
Using Idoc Script Variables and Functions with Different Features of Oracle WebCenter Content

4-19

formatTimeOnlyDisplay()
lastEntryTs
parseDataEntryDate()
parseDate
parseDateWithPattern()

4.2.9 Debugging
The following Idoc Script variables and functions are related to debugging:

getDebugTrace()
getErrorTrace()
getFreeMemory()
getTotalMemory()
isActiveTrace()
IsJava
IsPageDebug
IsRequestError
IsSoap
isVerboseTrace
IsXml
Json
trace()

For information about other Idoc Script configuration variables that are related to debugging,
see Debugging in the Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content.

4.2.10 Directories and Paths
The following Idoc Script variables and function are related to directories and file paths:

docRootFilename()
DownloadSuggestedName
HttpAbsoluteCgiPath
HttpAdminCgiPath
HttpBrowserFullCgiPath
HttpCgiPath
HttpCommonRoot
HttpEnterpriseCgiPath
HttpHelpRoot
HttpImagesRoot
HttpLayoutRoot
HttpRelativeAdminRoot
HttpRelativeWebRoot
HttpServerAddress
HttpSharedRoot
HttpSystemHelpRoot
HttpWebRoot
SafeDir
proxiedBrowserFullCgiWebUrl

Chapter 4
Using Idoc Script Variables and Functions with Different Features of Oracle WebCenter Content

4-20

proxiedCgiWebUrl

4.2.11 Dynamicdata
The following Idoc Script functions are related to dynamicdata tables:

ddAppendIndexedColumnResultSet()
ddAppendResultSet()
ddApplyTableSortToResultSet()
ddGetFieldList()
ddIncludePreserveValues()
ddLoadIndexedColumnResultSet()
ddLoadResultSet()
ddMergeIndexedColumnResultSet()
ddMergeResultSet()
ddMergeUsingIndexedKey()
ddSetLocal()
ddSetLocalByColumnsFromFirstRow()
ddSetLocalByColumnsFromFirstRowIndexed()
ddSetLocalEmpty()
ddSetLocalEmptyByColumns()

4.2.12 Field Display
The following Idoc Script variables and functions are related to the display of metadata fields
on Content Server web pages:

captionEntryWidth
captionFieldWidth
defaultFieldInclude
defaultOptionListScript
fieldCaption
fieldCaptionInclude
fieldCaptionStyle
fieldDefault
fieldEditWidth
fieldEntryInclude
fieldExtraScriptInclude
fieldInclude
fieldIsOptionList
fieldMaxLength
fieldName
fieldOptionListType
fieldType
fieldValue
fieldValueStyle
fieldWidth
hasOptionList
isExcluded
is Field Excluded
isFieldHidden

Chapter 4
Using Idoc Script Variables and Functions with Different Features of Oracle WebCenter Content

4-21

isFieldInfoOnly
isFieldMemo
isHidden
isInfoOnly
isMultiOption
IsOverrideFormat
isRelocated
isRequired
isStrictList
maxLength
optionListKey
optionListName
optionListResultSet
optionListScript
optionListValueInclude
optionsAllowPreselect
optList()
requiredMsg
valueStyle

4.2.13 Idoc Script
The following Idoc Script functions are not related to any specific functionality:

break()
cacheInclude()
docLoadResourceIncludes()
eval()
executeService()
forceExpire()
getTextFile()
getUserValue()
getValue()
inc()
incGlobal()
incTemplate()
sawflies()
isTrue()
setExpires()
setHttpHeader()
setMaxAge()
setResourceInclude()

4.2.13.1 Keywords
The following Idoc Script variables are related to keywords:

c
exec
include

Chapter 4
Using Idoc Script Variables and Functions with Different Features of Oracle WebCenter Content

4-22

4.2.14 Indexing
The following Idoc Script variables and function are related to indexing:

indexerSetCollectionValue()
IsFailedIndex
IsFullTextIndexed
MaxCollectionSize

4.2.15 Localization
The following Idoc Script variables and functions are related to localization:

lc()
lcCaption()
rptDisplayMapValue()
UserLanguageID
UserLocaleId
UserLanguageID

4.2.16 Page Display
The following Idoc Script variables and functions are related to the display of Content Server
web pages:

abortToErrorPage()
AfterLogin
coreContentOnly
docLoadResourceIncludes()
generateUniqueId
getHelpPage
getOptionListSize
htmlRefreshTimeout
htmlRefreshUrl
isCheckin
IsCurrentNav
isDocPage
IsDynamic
isEditMode
isFormSubmit
isInfo
IsMaxRows
IsMultiPage
isNew
isQuery
IsSavedQuery
isUpdate
isUploadFieldScript
localPageType
noMCPrefill
PageParent

Chapter 4
Using Idoc Script Variables and Functions with Different Features of Oracle WebCenter Content

4-23

pneNavigation()
ResultsTitle
TemplateClass
TemplateFilePath
TemplateName
TemplateType

4.2.17 Personalization
The following Idoc Script functions are related to user topic (personalization) files:

utGetValue()
utLoad()
utLoadDocumentProfiles()
utLoadResultSet()

4.2.18 ResultSets
The following Idoc Script variable and functions are related to ResultSets:

CURRENT_ROW
getValue()
loadDocMetaDefinition()
loadEnterpriseSearchCollections
loadEnterpriseSearchResults
loadSearchOperatorTables()
loadUserMetaDefinition()
rs()
rsAddFields()
rsAddFieldsWithDefaults()
rsAddRowCountColumn()
rsAppend()
rsAppendNewRow()
rsAppendRowValues()
rsCopyFiltered()
rsCreateReference()
rsCreateResultSet()
rsDeleteRow()
rsDocInfoRowAllowDisclosure()
rsExists()
rsFieldByIndex()
rsFieldExists()
rsFindRowPrimary()
rsFirst()
rsInsertNewRow()
rsIsRowPresent()
rsLoopInclude()
rsLoopSingleRowInclude()
rsMakeFromList()
rsMakeFromString()
rsMerge()

Chapter 4
Using Idoc Script Variables and Functions with Different Features of Oracle WebCenter Content

4-24

rsMergeDelete()
rsMergeReplaceOnly()
rsNext()
rsNumFields()
rsNumRows()
rsRemove()
rsRename()
rsRenameField()
rsSetRow()
rsSort()
rsSortTree()
setContentType()
setValue()
utLoadResultSet()

4.2.19 Schemas
The following Idoc Script functions are related to schemas.

A schema is republished whenever a change occurs that might affect the relationship between
the parts of the schema. These settings relate to publishing factors:

clearSchemaData()
getFieldViewDisplayValue()
getParentValue()
getViewValue()
getViewValueResultSet()
jsFilename()
loadSchemaData()

4.2.20 Searching
The following Idoc Script variables and functions are related to searching:

EnableDocumentHighlight
indexerSetCollectionValue()
IsCurrentNav
IsFullTextIndexed
IsLocalSearchCollectionID
IsMultiPage
IsSavedQuery
isZoneSearchField
loadCollectionInfo()
NoMatches
OneMatch
QUERY_STRING
regexMatches()
regexReplaceAll()
regexReplaceFirst()
ResultsTitle
UseHtmlOrTextHighlightInfo
UseXmlUrl

Chapter 4
Using Idoc Script Variables and Functions with Different Features of Oracle WebCenter Content

4-25

4.2.21 Security
The following sections list Idoc Script variables and functions that are related to security:

• Internal Security

• External Security

4.2.21.1 Internal Security
The following Idoc Script variables and functions are related to internal security:

AdminAtLeastOneGroup
AllowCheckin
AllowCheckout
AuthorDelete
DefaultAccounts
DelimitedUserRoles
docUrlAllowDisclosure()
EmptyAccountCheckinAllowed
encodeHtml()
ExclusiveCheckout
GetCopyAccess
hasAppRights()
HasPredefinedAccounts
IsCheckinPreAuthed
IsLoggedIn
IsSubAdmin
IsSysManager
isUserOverrideSet()
rsDocInfoRowAllowDisclosure()
SelfRegisteredAccounts
SelfRegisteredRoles
SelfRegisteredAccounts
stdSecurityCheck()
UserAccounts
UserAppRights
UserDefaultAccount
userHasAccessToAccount()
userHasGroupPrivilege()
userHasRole()
UserIsAdmin
UserRoles
UseSelfRegistration

4.2.21.2 External Security
The following Idoc Script variables are related to external security (web server and NTLM
security).

AdsSimpleAuth
AdsUserName

Chapter 4
Using Idoc Script Variables and Functions with Different Features of Oracle WebCenter Content

4-26

AdsUserPassword
AllowIntranetUsers
HasExternalUsers
IsIntranetAuthOnly
IsPromptingForLogin
IsUploadSockets
LocalGroupServer
UseSSL

4.2.22 Strings
The following Idoc Script variables and functions are related to strings:

js()
strCenterPad()
strCommaAppendNoDuplicates()
strConfine()
StrConfineOverflowChars
strEquals()
strEqualsIgnoreCase()
strGenerateRandom()
strIndexOf()
strLeftFill()
strLeftPad()
strLength()
strLower()
strRemoveWs()
strReplace()
strReplaceIgnoreCase()
strRightFill()
strRightPad()
strSubstring()
strTrimWs()
strUpper()
toInteger()
url()
urlEscape7Bit()
xml()

4.2.23 Templates
The following Idoc Script variables are related to templates:

TemplateClass
TemplateFilePath
TemplateName
TemplateType

4.2.24 Users
The following Idoc Script variables and functions are related to users:

Chapter 4
Using Idoc Script Variables and Functions with Different Features of Oracle WebCenter Content

4-27

AdminAtLeastOneGroup
AllowCheckin
AllowCheckout
AuthorAddress
DefaultAccounts
DelimitedUserRoles
ExclusiveCheckout
ExternalUserAccounts
ExternalUserRoles
getUserValue()
getValueForSpecifiedUser()
HasPredefinedAccounts
IsCheckinPreAuthed
IsExternalUser
IsLoggedIn
IsSubAdmin
IsSysManager
IsUserEmailPresent
isUserOverrideSet()
SysAdminAddress
UserAccounts
UserAddress
UserAppRights
UserDefaultAccount
UserFullName
userHasAccessToAccount()
userHasGroupPrivilege()
userHasRole()
UserIsAdmin
UserName
UserRoles
UseSelfRegistration
wfAddUser()

4.2.25 Web Servers
The following Idoc Script variables are related to web servers.

They are also related to the web server filter plug-in.

GATEWAY_INTERFACE
getCookie
HTTP_ACCEPT
HTTP_ACCEPT_ENCODING
HTTP_ACCEPT_LANGUAGE
HTTP_COOKIE
HTTP_HOST
HTTP_INTERNETUSER
HTTP_REFERER
HTTP_USER_AGENT
IsIntranetAuthOnly

Chapter 4
Using Idoc Script Variables and Functions with Different Features of Oracle WebCenter Content

4-28

PATH_INFO
QUERY_STRING
REMOTE_ADDR
REMOTE_HOST
REQUEST_METHOD
SCRIPT_NAME
SERVER_NAME
SERVER_PORT
SERVER_PROTOCOL
SERVER_SOFTWARE
setCookie
UseSSL

4.2.26 Workflow
The following sections list Idoc Script variables and functions that are related to workflows:

• Global Function

• Workflow Functions

• Other Variables

4.2.26.1 Global Function
The following Idoc Script global function is related to workflows:

getValueForSpecifiedUser()

4.2.26.2 Workflow Functions
The following Idoc Script functions are related to workflows:

wfAddActionHistoryEvent()
wfAddUser()
wfComputeStepUserList()
wfCurrentGet()
wfCurrentSet()
wfCurrentStep()
wfDisplayCondition()
wfExit()
wfGet()
wfGetStepTypeLabel
wfIsFinishedDocConversion()
wfIsNotificationSuppressed()
wfIsReleasable()
wfLoadDesign()
wfNotify()
wfReleaseDocument
wfSet()
wfSetSuppressNotification()
wfUpdateMetaData()

Chapter 4
Using Idoc Script Variables and Functions with Different Features of Oracle WebCenter Content

4-29

4.2.26.3 Other Variables
The following Idoc Script variables are related to workflows:

AllowReview
dWfName
dWfStepName
entryCount
IsEditRev
IsWorkflow
lastEntryTs
SingleGroup
wfAction
wfJumpEntryNotifyOff
wfJumpMessage
wfJumpName
wfJumpReturnStep
wfJumpTargetStep
wfMailSubject
wfMessage
wfParentList
WfStart

Chapter 4
Using Idoc Script Variables and Functions with Different Features of Oracle WebCenter Content

4-30

Part III
Changing the Look and Feel of the Content
Server Interface

This part provides information about the several different methods that you can use to change
the appearance and navigation of the Oracle WebCenter Content Server interface.

Part III contains the following chapters:

• Customizing the Content Server Interface

• Customizing the WebCenter Content User Interface

• Creating Dynamic Server Pages

5
Customizing the Content Server Interface

This chapter provides information about the several different methods that you can use to
customize the look and feel of the Oracle WebCenter Content Server interface. You can use
skins and layouts to change the appearance of the user interface and dynamic server pages to
change the navigation.

This chapter includes the following sections:

• About Customizing the Content Server Interface

• Choosing a Different Skin or Layout

• Configure a Default Skin and Layout for New Users and Guests

• Modify the Template for a Skin or Layout

• Alter the Anonymous User Interface

• Changing the URL of the Login Page

• Creating and Publishing a New Layout

• Optimize the Use of Published Files

Note:

In addition to using the methods discussed in this chapter, you can alter the metadata
fields that are presented to users and modify the types of presentations used for
check-in pages, search pages, and other user interfaces. For information about
creating and modifying metadata fields and creating content profiles, see
Customizing Repository Fields and Metadata and Managing Content Profiles in
Oracle Fusion Middleware Managing Oracle WebCenter Content.

5.1 About Customizing the Content Server Interface
Skins and layouts provide alternate color schemes and alternate navigation designs.You can
change the skin or layout to customize the Content Server interface.

The content server navigation system consists of a combination of menu bars and tree views,
based on the layout the user is in (either Top Menus or Trays). The default layout is Trays,
which provides a list of menu titles and options on the left of the page. The predefined Top
Menus layout makes these options available in menu bars across the top of the page.

5.1.1 Types of Skins and Layouts
Some skins and layouts are provided by default with Content Server. In addition, you can
design custom skins and layouts. When you change the skin or layout, you change the look
and feel of the interface. You can select a skin and layout from the options provided on the
User Profile page.

5-1

The only skills required to create and modify skins or layouts is an understanding of HTML,
cascading style sheets, and JavaScript. After altering the appearance, the edited layouts and
skins are published so that others in your environment can use them.

Note:

Only administrators can make new or custom skins. For more information about
setting the default look and feel of the user interface, see Configure a Default Skin
and Layout for New Users and Guests.

5.1.2 Skins
Skins define the color scheme and other aspects of appearance of the layout such as graphics,
fonts, or font size. You can design custom skins or modify the existing skins.

Content Server has two existing skins:

• Oracle (the default skin)

• Oracle2

5.1.3 Layouts
Layouts define the navigation hierarchy display (the default layout is Trays), and custom
layouts can be designed. Custom layouts change behavior and the look-and-feel systemwide.
If you want your changes to apply only in limited situations, you might want to consider
dynamic server pages.These layouts are provided:

• Trays: This layout with the standard Oracle skin is the default interface. High-level
navigation occurs through the navigation trays.

• Top Menus: This layout provides an alternate look, with top menus providing navigation.

Most menu items are generated from data, and there are JavaScript hooks into the menus
later. Each user gets a personalized JavaScript file that generates solely a user's navigation
links.

5.2 Choosing a Different Skin or Layout
You can choose a different skin to provide an alternate color scheme or a different layout to
provide an alternate navigation design, or both.

The User Personalization settings available on the User Profile page enable users to change
the layout of Content Server or the skin.

Note:

This personalization functionality works with Internet Explorer 7+ or Mozilla Firefox 3+
and later versions.

To choose a different skin or layout:

Chapter 5
Choosing a Different Skin or Layout

5-2

1. On the Content Server Home page, click your_user_name in the top menu bar.

The User Profile page appears.

2. Choose the desired skin and layout.

3. Click Update, and view the changes.

After you choose a different skin or layout, it becomes the user interface for Content Server
whenever you log in.

5.3 Configure a Default Skin and Layout for New Users and
Guests

These values can be placed in the IntradocDir/config/config.cfg file to alter the default
behavior for the Content Server instance:

• LmDefaultSkin: The name of the skin used by guests, and new users. The default is
Oracle.

• LmDefaultLayout: The name of the layout used by guests, and new users. The default is
Trays, but it can be set to Top Menus.

5.4 Modify the Template for a Skin or Layout
The Trays and Top Menus layouts are included by default with the system. The two layouts
have two skin options (Oracle and Oracle2). The layouts are written in JavaScript, and the
look of the skins is created by using cascading style sheets.

You can modify skins and layouts by altering the template files provided with Content Server or
design new skins and layouts by creating components that can be shared with other users.

5.4.1 About Dynamic Publishing
When Content Server starts, or when the PUBLISH_WEBLAYOUT_FILES service is run, the
PublishedWeblayoutFiles table in the std_resource.htm file is used to publish files to the
weblayout directory. To have your custom component use this publishing mechanism, create a
template, and then merge a custom row that uses that template into the
PublishedWeblayoutFiles table.

Other users who want to modify or customize your file can override your template or your row
in the PublishedWeblayoutFiles table. If your template uses any resource includes, other
users can override any of these includes or insert their own Idoc Script code using the
standard super notation. When your component is disabled, the file is no longer published or
modified and Content Server returns to its default state.

5.4.2 IdocScript Files for Dynamic Publishing
In addition to giving others an easy way to modify and add to your work, you can also construct
these former static files using Idoc Script. For example, you can have the files change
depending on the value of a custom configuration flag. You can use core Content Server
objects and functionality by writing custom Idoc Script functions and referencing them from
inside your template.

Chapter 5
Configure a Default Skin and Layout for New Users and Guests

5-3

Because this Idoc Script is evaluated once during publishing, you cannot use Idoc Script as
you would normally do from the IdcHomeDir/resources/core/idoc/std_page.idoc file. When
a user requests that file, it has already been created, so the script that was used to create it did
not have any access to the current service's DataBinder object or to any information about the
current user.

This does limit the type of Idoc Script you can write in these files. If you are writing CSS or
JavaScript that needs information that dynamically changes with users or services, consider
having the pages that need this code include the code inline. This increases the size of pages
delivered by your web server and so increases the amount of bandwidth used.

5.4.3 Navigation Engine Reference
The following navigation engine reference shows the data you can use to add to the navigation
menus or trays. For information about how to use this data to customize Content Server
navigation, see Creating Custom Components.

5.4.3.1 Dynamic Data Tables for Content Server Navigation
The following sections describe the dynamic data table resources (dynamicdata tables) for
Content Server navigation, including what each table is for and what each column does.

5.4.3.1.1 CoreMenuItems
This dynamicdata table defines basic information for every menu item.

Column Description

id Specifies the ID for the menu item.

label Specifies he label for the menu item. Keys for localized strings are acceptable
here, as well as IdocScript.

linkType Determines the way that the linkData value is manipulated to create the
final link.

linkData Specifies the data for this link.

5.4.3.1.2 CoreMenuItemRelationships
This dynamicdata table defines how menu items in the core navigation system relate to each
other. This table shows both where each item should be in relation to its parent as well as in
relation to its siblings.

Column Description

parentId Specifies the ID for the parent menu item. For a node to be a top-level node,
enter a special value here, either "MENU_A" or "MENU_B".

id Specifies the ID for the menu item.

loadOrder Specifies the load order for the menu item. Sibling menu items are loaded in
this order. Setting loadOrder to blank will cause an item not to be loaded.

5.4.3.1.3 CoreMenuItemsFlags
This dynamicdata table defines the flags for menu items. See also List of Flags.

Chapter 5
Modify the Template for a Skin or Layout

5-4

Column Description

id Specifies the ID for the menu item.

flags Specifies a colon-separated list of flags for this menu item.

5.4.3.1.4 CoreMenuItemsImages
This dynamicdata table defines the images for menu items when in the Trays layout. Default
images are used if not supplied, so it is not necessary to define an image for every item.

Column Description

id Specifies the ID for the menu item.

image Specifies the image that should appear next to the menu item and also the
image that shows next to a folder item when closed.

imageOpen Specifies the image that should appear next to the menu item when open.

5.4.3.1.5 CoreMenuItemsDynamicLoadCallbacks
This dynamicdata table defines the JavaScript function that is the dynamic load callback for
menu items. This works only in the Trays layout. When the menu item is opened, the function
is called.

Column Description

id Specifies the ID for the menu item.

dynamicLoadFunction Specifies he JavaScript function to apply as the dynamic load callback.
It is possible to place arbitrary JavaScript here as well, so long as it
ends up returning a function.

5.4.3.1.6 CoreMenuItemsExitLinks
This dynamicdata table defines exit URLs for menu items. Exit URLs are appended to the
parameters when provided. This specialized table is not necessary most of the time.

Column Description

id Specifies the ID for the menu item.

exitLinkType Determines the way that the linkData value is manipulated to create the
final exit link (acts the same way as linkType in CoreMenuItems.

exitLinkData Specifies the data for this exit link (acts the same way as linkData in
CoreMenuItems.

5.4.3.1.7 CoreMenuItemsTrayDocLinks
This dynamicdata table defines tray document URLs for menu items. This works only in the
Trays layout. A tray document URL can be added to a top-level tray node, which will then open
to an iframe using this URL instead of the normal child nodes. This specialized table is not
necessary most of the time.

Chapter 5
Modify the Template for a Skin or Layout

5-5

Column Description

id Specifies the ID for the menu item.

trayDocLinkType Determines the way that the linkData value is manipulated to create the
final tray document link (acts the same way as linkType in CoreMenuItems.

trayDocLinkData Specifies the data for this tray document link (acts the same way as
linkData in CoreMenuItems.

5.4.3.2 List of LinkType Values
LinkType is used to determine how to manipulate the LinkData value to get the final URL. The
following table lists the core LinkType values. You can create your own LinkType values and
manipulate the data from either the std_compute_menu_link or
navigation_modify_rset_menu_item includes.

LinkType Value Description

cgi Starts with HttpCgiPath and uses linkData as the parameters.

enterprise Starts with HttpEnterpriseCgiPath and uses linkData as the
parameters

web Starts with HttpWebRoot and appends linkData to it.

admin Starts with HttpAdminCgiPath and uses linkData as the parameters.

javascript Executes linkData as JavaScript.

external Uses linkData as the URL.

5.4.3.3 List of Flags
The flags in the following table can be appended to a row in CoreMenuItemsFlags to affect the
behavior of a menu item. Multiple flags should be separated with a colon.

Flag Description

isTopMenusOnly Menu item is shown only in the Top Menus layout.

isTraysOnly Menu item is shown only in the Trays layout.

isLoggedIn Menu item is shown only to users who are logged in.

isAnonymous Menu item is shown only to users who are not logged in.

isAllowIntranetUsers Menu item is shown only if <$AllowIntranetUsers$> is true.

isSelfRegistration Menu item is shown only if self-registration is enabled.

isProxiedServer Menu item is shown only if <$#env.IsProxiedServer$> is
true.

isContributor Menu item is shown only if user is a contributor.

isAdminAtLeastOneGroup Menu item is shown only if user is an admin of one or more
groups.

isSubAdminOrSysManager Menu item is shown only if the user is a subadmin or
sysmanager.

isAdmin Menu item is shown only if the user is an administrator.

Chapter 5
Modify the Template for a Skin or Layout

5-6

Flag Description

isSubAdmin Menu item is shown only if the user is a subadmin.

isSysManager Menu item is shown only if the user is a sysmanager.

isContentRefineryPresent Menu item is shown only if a content refinery is present.

isDynamicConverterEnabled Menu item is shown only if dynamic converter is enabled.

isJspServerEnabled Menu item is shown only if JSP server is enabled.

hasIndexAdminActions Menu item is shown only if there are index admin actions.

isGroup Identifies the menu item as a group. The item itself is not visible,
but any items with this item as the parent will be grouped
together.

targetTop Sets this menu item's target as "_top"

targetBlank Sets this menu item's target as "_blank".

5.4.3.4 Global Javascript Variables
The variables in the following table are available after menu creation so that you can modify
menus on the fly.

Javascript Variable Description

oMenuBarA The YAHOO.widget.MenuBar for menuA. It is always present.

oMenuBarB he YAHOO.widget.MenuBar for menuB. It is present only in the Top Menus
layout.

oTreeViewA The YAHOO.idc.widget.TrayTreeView for the side tray. It is present only
in the Trays layout.

5.4.3.5 Access to Menu Items and Nodes
You can use the YUI API for accessing nodes. Here are some tips for getting a menu or menu-
item node:

• All YAHOO.idc.widget.TrayTreeView objects have a variable oNodeList. It is an object that
references the ID of a node to the node itself. This list is fully populated after startup, but
afterwards it needs to be updated manually.

• You can easily access menus and menu items with YAHOO.widget.MenuManager, which has
the methods getMenu() and getMenuItem().

• For menus built from the navigation engine, all menu items are prefixed with "MENU_?_",
where ? is either 'A' or 'B' (depending on which menu the item is in).

5.4.3.6 11g Support for NavBuilder Functions
There is partial backwards compatibility between the 11g menu system and the old NavBuilder
API. This is provided to keep old components working. New components should not use any of
these methods. The following table lists the old NavBuilder functions and their level of support.

Chapter 5
Modify the Template for a Skin or Layout

5-7

Method Compati
bility

Notes

addTopLevelNode Partial This method affects only nodes added through addChildNodeTo.
Nodes added through the new system ignore the top-level-node list
altogether.

deleteTopLevelN
ode

Partial This method affects only nodes added through addChildNodeTo.
Nodes added through the new system ignore the top-level-node list
altogether.

addPrevSiblingN
odeTo

Full

addChildNodeTo Full

moveItemInto Partial Cloning while moving is no longer available. You cannot move items into
the top-level container (that is, NAVTREE).

moveItemAbove Partial Cloning while moving is no longer available. You cannot mix items from
the top level and lower levels with this method. For example, moving a
node in trays to become a top-level node does not work.

setAttributeVal
ue

None The XML tree is no longer used at all, so this method is not applicable.

deleteItem Partial If you delete an item from a YUI menu so that the parent no longer has
any items in it, the parent will still indicate it has children even though it
is empty

deleteChildrenO
f

Partial If you delete the children of a YUI menu, the menu will still indicate it has
children even though it is empty

getNodeById Partial This method now returns either a MenuItem or Node object. It does not
return an XML node.

buildHtmlString
FromXml

None The XML tree is no longer used at all, so this method is not applicable.

5.5 Alter the Anonymous User Interface
The ExtranetLook component can be used to change the interface for anonymous, random
users. An example of this is when a website based on Content Server must be available to
external customers without a login, but you want employees to be able to contribute content to
that website.

When Content Server is running on Oracle WebLogic Server, the ExtranetLook component
alters privileges for certain pages so that they require write privilege to access. The component
also makes small alterations to the static portal page to remove links that anonymous, random
users should not see.

Note:

The ExtranetLook component does not provide form-based authentication for Oracle
WebLogic Server or provide customizable error pages.

The ExtranetLook component is installed (disabled) with Content Server. To use the
component, you must enable it with the Component Manager.

Chapter 5
Alter the Anonymous User Interface

5-8

You can customize your web pages to make it easy for customers to search for content, and
then give employees a login that permits them to see the interface on login. To do the
customization, modify the ExtranetLook.idoc file, which provides dynamic resource includes
that can be customized based on user login. The IDOC file is checked in to the Content Server
repository so it can be referenced by the Content Server templates.

If the IsWebServerPagesOnly configuration variable is set to TRUE in the IntradocDir/config/
config.cfg file, the ExtranetLook web server plug-in delivers customized versions of pages
created by the web server filter. It also disables cookie-based login functionality. See
Customizing Content Server Communication in Oracle Fusion Middleware Administering
Oracle WebCenter Content.

5.5.1 Altering the Anonymous User Interface
You can update the look and feel of the anonymous user interface for the Content Server
website by altering the following files in the IntradocDir/data/users/ directory:

• prompt_login.htm
• access_denied.htm
• report_error.htm
To alter the anonymous user interface:

1. Display the Web Layout Editor.

2. From the Options menu, choose Update Portal.

3. Modify the portal page as you want to. You can use dynamic resource includes to
customize this page.

4. Click OK.

5. Customize the ExtranetLook.idoc file as you want to.

6. Check out the ExtranetLook content item from Content Server.

7. Check in the revised ExtranetLook.idoc file to Content Server.

After you modify the portal page and customize the ExtranetLook.idoc file, your design
becomes the user interface for Content Server whenever a user goes to the website without
logging in.

5.6 Changing the URL of the Login Page
You can change the URL of the Login page for Content Server by changing its context root,
which is normally /cs/. You cannot change the URL by setting a relative context root with the
HttpRelativeWebRoot property because the value of this property does not apply to the Login
page. If you need to change the web location where users log in, you can redeploy the
WebCenter Content application with a deployment plan.

To change the URL of the Login page:

1. Log in to the Oracle WebLogic Server Administration Console as the administrator of the
domain where WebCenter Content is deployed.

2. Click Deployments under the name of your domain, in the Domain Structure area on the
left.

3. Click Oracle WebCenter Content - Content Server in the Deployments table on the
Control tab of the Summary of Deployments page.

Chapter 5
Changing the URL of the Login Page

5-9

This application may be on the second or third page of the table.

4. Note the path to the deployment plan.
If no plan is specified for your WebCenter Content instance, you can create one:

a. Click Configuration on the Settings for Oracle WebCenter Content - Content Server
page.

b. Change the value of any parameter on the Configuration tab.

c. Click Save.

d. Confirm the path to the deployment plan on the Save Deployment Plan Assistant page,
or change the path.

e. Click OK.

5. In a text editor, add lines at two places in the deployment plan:

a. Add the original_loginpage_path and original_loginerror_path variables, each in
a <variable> element of a <variable-definition> element, as in this example:

<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/deployment-plan"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/deployment-plan
 http://xmlns.oracle.com/weblogic/deployment-plan/1.0/deployment-plan.xsd">
 <application-name>ServletPlugin</application-name>
 <variable-definition>
 <variable>
 <name>original_loginpage_path</name>
 <value>/content/login/login.htm</value>
 </variable>
 <variable>
 <name>original_loginerror_path</name>
 <value>/content/login/error.htm</value>
 </variable>
 <variable>
 <name>SessionDescriptor_timeoutSecs_12996472139160</name>
 <value>3600</value>
 </variable>

b. In the <module-descriptor> element of web.xml in the cs.war file, add two
<variable-assignment> elements that assign the following values to the
original_loginpage_path and original_loginerror_path variables, respectively:

• /web-app/login-config/form-login-config/form-login-page
• /web-app/login-config/form-login-config/form-error-page

For example:

 <module-override>
 <module-name>cs.war</module-name>
 <module-type>war</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-web-app</root-element>
 <uri>WEB-INF/weblogic.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>web-app</root-element>
 <uri>WEB-INF/web.xml</uri>
 <variable-assignment>
 <name>original_loginpage_path</name>

 <xpath>/web-app/login-config/form-login-config/form-login-page</xpath>
 </variable-assignment>

Chapter 5
Changing the URL of the Login Page

5-10

 <variable-assignment>
 <name>original_loginerror_path</name>

 <xpath>/web-app/login-config/form-login-config/form-error-page</xpath>
 </variable-assignment>
 </module-descriptor>
 </module-override>
 <module-override>

6. Stop the WebCenter Content Managed Server (UCM_server1 by default), with the
stopManagedWebLogic script:

• UNIX script: DomainHome/bin/stopManagedWebLogic.sh UCM_server1
• Windows script: DomainHome\bin\stopManagedWebLogic.cmd UCM_server1

7. In the Administration Console, click Deployments under the name of your domain.

8. Select Oracle WebCenter Content - Content Server in the Deployments table, and click
Update.

9. Select Redeploy this application using the following deployment files, make sure the
path to the deployment plan is correct, and then click Finish.

10. After the redeployment completes successfully, click Apply Changes.

11. Start the WebCenter Content Managed Server with the startManagedWebLogic script.

• UNIX script: DomainHome/bin/startManagedWebLogic.sh UCM_server1
• Windows script: DomainHome\bin\startManagedWebLogic.cmd UCM_server1

12. In the Administration Console, click Deployments.

13. Select Oracle WebCenter Content - Content Server in the Deployments table, and from
the Start menu, choose Servicing all requests.

14. After the WebCenter Content application is launched, verify that the URL of the login page
has changed.

5.7 Creating and Publishing a New Layout
The following general steps are necessary to create and publish new layouts:

1. Merge a table into the LmLayouts table in IdcHomeDir/resources/core/tables/
std_publishing.htm to define the new layout. Define the layout ID, label, and whether it is
enabled (set to 1) or not.

2. Merge a table into the PublishedWeblayoutFiles table in IdcHomeDir/resources/core/
tables/std_publishing.htm. This new table describes the files that are created from
Content Server templates and then pushed out to the weblayout directory. Specify the
necessary skin.css files to push out to each skin directory.

3. Merge a table with the PublishedStaticFiles table in std_publishing.htm. This lists the
directories that contain files, such as images, that should be published to the weblayout
directory.

5.8 Optimize the Use of Published Files
You can direct Content Server to bundle published files so that they can be delivered as one,
minimizing the number of page requests to the server. In addition, you can optimize file use by
referencing published pages using Idoc Script.

Chapter 5
Creating and Publishing a New Layout

5-11

5.8.1 Bundling Files
Multiple resources may be packaged together into units called bundles. A bundle is a single file
containing one or more published resources. Only JavaScript and css resources should be
bundled and only with other resources of the same type. Bundling helps reduce the client
overhead when pages are loaded but increases client parse, compile, and execute overhead.
Generally, it is recommended to bundle resources that have some thematic similarity or are
expected to be included at similar times. For example, if you know that resources A, B, and C
are needed on every page, and resources D, E, and F are needed rarely but are all needed
together, it is recommended to bundle A, B, and C together and to put D, E, and F into a
separate bundle.

Almost all JavaScript resources for the Content Server core are bundled into one of two
bundles: yuiBundle.js, which contains script provided by the third-party Yahoo User Interface
library, and bundle.js, which contains the rest of the resources.

The PublishedBundles table is used for determining how resources are bundled. Essentially a
bundle is identified by its target bundlePath, which is the path name to the bundle (relative to
the weblayout directory), and a list of rules detailing which resource classes are included or
excluded. A loadOrder value in this table applies only to the order in which the filtering rules
are applied, not the order in which the resources appear in the bundle.

Note:

The bundling has changed since Oracle Universal Content Management 10g, which
used a different table and had a loadOrder value that determined the order of
resources in each bundle.

Static weblayout file contents are cached on client machines and on web proxies, significantly
lowering the amount of server bandwidth they use. Therefore, the best practice is to use these
types of files wherever possible.

However, each static weblayout file requested by the client's browser requires a round-trip to
the server just to verify that the client has the most up-to-date version of the file. This occurs
even if the file is cached. As the number of these files grows, so does the number of
downloads from the server for each page request.

To help minimize the number of round-trips, Content Server can bundle multiple published files
so that they are delivered as one. You can disable this feature by setting the following
configuration in the server's IntradocDir/config/config.cfg file:

BundlePublishedWeblayoutFiles=false

Bundling is accomplished by using the PublishedBundles table in the std_publishing.htm file,
which {Example - PublishedBundles Table in std_publishing.htm file} shows.

In the previous example, files of the javascript:common class are published to a single bundle
located at resources/layouts/commonBundle.js. The contents of all bundled files that match
this class are appended to form a single file to be stored at that location.

The columns in this table are as follows:

Chapter 5
Optimize the Use of Published Files

5-12

PublishedBundles
Table Column

Description

bundlePath The eventual location where the bundle is published. This path is relative to
the weblayout directory.

oMenuBarB he YAHOO.widget.MenuBar for menuB. It is present only in the Top Menus
layout.

oTreeViewA The YAHOO.idc.widget.TrayTreeView for the side tray. It is present only
in the Trays layout.

Example - PublishedBundles Table in std_publishing.htm File
<@table PublishedBundles@>
<table border=1><caption>
 <tr>
 <td>bundlePath</td>
 <td>includeClass</td>
 <td>excludeClass</td>
 <td>loadOrder</td>
 </tr>
 <tr>
 <td>resources/bundle.js</td>
 <td>javascript:common</td>
 <td></td>
 <td>128</td>
 </tr>
. . .
</table>
<@end@>

5.8.2 Referencing Published Files
Most published files (both bundled and unbundled) must be directly referenced from within
HTML to be included in a page. It can therefore be difficult to know exactly which files to
include for a given situation, especially when bundling can be enabled or disabled by server
administrators. A simple Idoc Script method can be used to easily and transparently include all
of the files you need on a given page.

For example, if you write a page that includes all files associated with the javascript:common
bundle (as described previously), then do not write HTML that includes all of the files
mentioned in the first table in addition to the bundle mentioned in the second, the server is
asked for each file. This negates the purpose of bundling because the server is pinged for
each file whether it actually exists or not.

{Example - Idoc Script to Reference a Bundle of Files} shows Idoc Script code, within the HEAD
section for a page, to correctly include these files on the page.

This code fragment includes all javascript:common files even if bundling is switched off. If
javascript instead of javascript:common is passed, all files whose class starts with
javascript are included.

This PublishedResources ResultSet is sorted by loadOrder, so files and bundles with the
lowest loadOrder are included first. Files with a greater loadOrder can override JavaScript
methods or CSS styles that were declared earlier.

Example - Idoc Script to Reference a Bundle of Files
<$exec createPublishedResourcesList("javascript:common")$>
<$loop PublishedResources$>
<script language="JavaScript" src="<$HttpWebRoot$><$PublishedResources.path$>" />

Chapter 5
Optimize the Use of Published Files

5-13

</script>
<$endloop$>

Chapter 5
Optimize the Use of Published Files

5-14

6
Customizing the WebCenter Content User
Interface

This chapter provides information about customizing the WebCenter Content user interface
with a custom Oracle Application Development Framework (Oracle ADF) skin and with Oracle
Metadata Services (MDS) seeded customizations.
This chapter includes the following sections:

• Customizing the WebCenter Content User Interface

• Install and Configure Oracle JDeveloper Studio Edition

• Setting up the WccAdfCustomization Application

• Define a Custom Skin and Generating WccAdfCustomSkin.jar

• Define MDS Seeded Customizations and Generating WccAdfCustomization.mar

• Applying Customizations to the Installed Environment

6.1 Customizing the WebCenter Content User Interface
You can customize the WebCenter Content user interface in two areas:

• Custom Oracle ADF skin

• MDS seeded customizations

Prerequisites

To customize the WebCenter Content user interface, you need to know how to use Oracle
JDeveloper to define a skin and to define seeded customizations. To create a custom Oracle
ADF skin, you should be familiar with the JDeveloper skin editor, HTML, and cascading style
sheets.

Note:

You must be an administrator for the domain in which you want to implement the
custom skin.

The overall steps to customize the WebCenter Content user interface follow:

1. Install and configure Oracle JDeveloper Studio Edition.

2. Set up the WccAdfCustomization application.

3. Define a custom skin and generate WccAdfCustomSkin.jar.

4. Define seeded customizations and generate WccAdfCustomization.mar.

5. Apply customizations to the installed environment.

6-1

6.2 Install and Configure Oracle JDeveloper Studio Edition
You can use Oracle JDeveloper Studio Edition to customize the Oracle WebCenter Content
user interface. After you download and install JDeveloper, you can configure it to support
defining seeded customizations.

Installing and configuring JDeveloper for customizing the WebCenter Content user interface
includes these tasks:

1. Install JDeveloper

2. Install WebCenter Content Connection Extension for JDeveloper

3. Creating an Integrated WebLogic Server Domain

4. Configuring JDeveloper for Defining Seeded Customizations

For more information about these tasks, see Installing and Configuring Oracle JDeveloper.

6.3 Setting up the WccAdfCustomization Application
You can use the prebuilt WccAdfCustomization application to define and package your
WebCenter Content user interface customizations.

To set up the WccAdfCustomization application:

1. Copy the following file from the installed environment to the machine where you run
JDeveloper:

WCC_MW_HOME/wccontent/wccadf/WccAdfCustomization.zip
2. Unzip WccAdfCustomization.zip.

This creates a WccAdfCustomization folder that contains the WccAdfCustomization
application.

3. Open the WccAdfCustomization application in JDeveloper:

a. Select Open Application….

b. In the Open Application(s) dialog box, navigate to the WccAdfCustomization folder
created in a step 2.

c. Select WccAdfCustomization.jws.

d. Click Open.

4. Configure the RIDC connection URL and the administrator user name:

a. In the Application Navigator, under the Application Resources panel, expand
Descriptors and then ADF META-INF.

b. Open the connections.xml file in the editor.

c. Replace wccadmin with the real administrator user name. For example:

<Contents>weblogic</Contents>
d. Replace example-cs with the real host name where your Oracle WebCenter Content

Server instance is running.

e. Update the IDC port number, 4444, if your Content Server listens on a different IDC
port. For example:

Chapter 6
Install and Configure Oracle JDeveloper Studio Edition

6-2

<Contents>idc://cshost.example.com:4444</Contents>
f. Click Save.

5. Run the WccAdfCustomization application:

a. In the Application Navigator, expand ViewController and then Web Content.

b. Right-click index.html and choose Run.

This starts the JDeveloper integrated Weblogic Server and deploys the
WccAdfCustomization application to the server.

c. When the browser displays the index.html page, click the link on that page to navigate
to the WebCenter Content user interface.

d. Log in as the weblogic user

e. Verify that the WebCenter Content user interface works as expected.

6. Stop the WccAdfCustomization application:

a. Click the red Terminate button to stop the WccAdfCustomization application.

b. (Optional) You can stop the IntegratedWebLogicServer application as well.

6.4 Define a Custom Skin and Generating
WccAdfCustomSkin.jar

In the WccAdfCustomization application, there is a prebuilt custom skin called wcc-custom-
skin. You can define your CSS customizations for the WebCenter Content user interface in
this custom skin. The skin is located in JDeveloper at ViewController > Web Content >
skins > wcc-custom-skin > wcc-custom-skin.css or, in the file system, at ViewController/
public_html/skins/wcc-custom-skin/wcc-custom-skin.css.

The application also includes an images folder in which you can place your custom images.
This folder is located at ViewController > Web Content > images or, in a file system, at
ViewController/public_html/images/.

For universal changes, such as changing the logo and the title in the branding bar, you do not
have to create a custom skin. Instead, you can update the application configuration directly
and modify the values for customBrandingLogo and customBrandingTitle. See User Interface
Commands in Oracle Fusion Middleware WebCenter WLST Command Reference.

When you save a change you made to the skin, you must refresh the user interface to see the
results.

Note:

You may need to clear the browser's cache to see changes in the user interface,
particularly when the change relates to images.

6.4.1 Designing and Testing Customizations in the Custom Skin
You can design and test customizations for the following items within the custom skin:

• Branding bar logo

Chapter 6
Define a Custom Skin and Generating WccAdfCustomSkin.jar

6-3

• Default font size

• wcc-skin selectors

The following sections provide instructions and examples for customizing skins. For details
about how to use the JDeveloper skin editor, see the Skin Editor User Guide.

• Customizing the Branding Bar Logo with Your Own Images

• Customizing the Default Font Size

• Customizing Selectors

6.4.1.1 Customizing the Branding Bar Logo with Your Own Images
You can customize the branding bar logo in the WebCenter Content user interface with your
own images.

To customize the branding bar logo with your own images:

1. Create and copy custom images for your customization.

From the file system, create or copy any custom images you want to use into the folder:

WccAdfCustomization/ViewController/public-html/images
2. On the Skin Editor Selectors tab, select the following:

Style Classes/Miscellaneous/.AFBrandingBarLogo
3. In the Property Inspector under Common, click the menu (far right) for Background

Image and choose Edit.

4. Locate and select the new logo image in the folder you created in step 1, and click OK.

5. Adjust the width and height properties as necessary to accommodate the image (by
default, .AFBrandingBarLogo has a height of 2.5 em and a width of 119 px).

6. From the File menu, choose Save.

7. To see the generated selectors and rules, switch to the Source tab. For example:

.AFBrandingBarLogo
{
 background-image: url("../../images/my-company-logo.png");
 height: 3.2em;
 width: 128px;
}

6.4.1.2 Customizing the Default Font Size
You can specify your own default font size for the WebCenter Content user interface.

To customize the default font size:

1. On the Skin Editor Selectors tab, select the following:

Global Selector Aliases/Font/.AFDefaultFont:alias
2. In the Property Inspector under Font/Text, enter a new value for Font Size.

3. From the File menu, choose Save.

4. To see the generated selectors and rules, switch to the Source tab. For example:

.AFDefaultFont:alias
{

Chapter 6
Define a Custom Skin and Generating WccAdfCustomSkin.jar

6-4

 font-size: 14px;
}

6.4.1.3 Customizing Selectors
If you want to customize selectors, you must add and modify their rules directly on the Source
tab for the .css file for the custom skin.

You can find selector information on which to base your customizations in the following files:

• wcc-styles.css: This file contains all of the WebCenter Content selectors and aliases
(those with prefix 'Wcc').

• wcc-skin.css: This file contains WebCenter Content extensions that override base ADF
definitions. No new selectors are defined in this file.

It is easiest to copy the rule where you find it in one of these files, paste it into the Source tab
for the .css file for your custom skin, and then modify the rule there.

Note:

You cannot modify selector rules directly in the wcc-styles.css and wcc-skin.css
files.

The .css file for your custom skin is an extension to the wcc-styles.css and wcc-
skin.css files. The rules you specify override the associated rules in those files.

For example, to customize Web UI Branding Bar Title Selector:

1. In the upper left corner of the Skin Editor, Selectors tab, click the Extended Skins menu
and choose simple.desktop > wcc-styles.css.

2. On the Source tab, use the Search bar to find WccBrandingBarTitle. If necessary, use
the down arrow to the right of the search bar to search for subsequent instances.

3. Select the lines containing the name and the associated definition, right-click the selection,
and choose Copy:

.WccBrandingBarTitle
{
 -tr-rule-ref: selector(".AFBrandingBarTitle");
}

4. If the wcc-custom-skin.css file is open in the editor, click its tab to switch to that file. If it is
not open, locate it on the Application Navigator tab, and double-click it to open it in the
editor:

ViewController > Web Content > skins > wcc-custom-skin > wcc-custom-skin.css
5. Click the Source tab, position the cursor in the file where you want the definition, and right-

click and choose Paste to paste the rule.

6. Specify the path to the logo image file, and adjust the width and height properties as
necessary to accommodate the image. Delete any line whose definition you do not want to
override as part of the custom extension, and add line for your customization. For example,
choose a custom color like this: :

.WccBrandingBarTitle
{

Chapter 6
Define a Custom Skin and Generating WccAdfCustomSkin.jar

6-5

 color: #993300;
}

7. From the File menu, choose Save.

When you are done customizing the skin, stop the application. From the Run menu,
choose Terminate, and then choose WccAdfCustomization.

6.4.2 Packaging the Custom Skin As WccAdfCustomSkin.jar
In JDeveloper, you can deploy the custom skin for the WebCenter Content user interface to
package it in the WccAdfCustomSkin.jar file.

To package the custom skin:

1. On the Application Navigator tab, right-click the ViewController project, and from the
Deploy menu, choose WccAdfCustomSkin.

2. Stay with the default deployment action, which should be Deploy to ADF Library JAR file,
click Finish. This generates the WccAdfCustomSkin.jar file under ViewController/
deploy/.

6.5 Define MDS Seeded Customizations and Generating
WccAdfCustomization.mar

The WebCenter Content user interface has defined a seeded customization layer, called
customer, for customers to define seeded customizations for the user interface. Customers can
define one or multiple layer values for this customer layer. In most cases, one layer value
would be sufficient. However, if multiple layer values are defined, the customizations for those
values are applied in the order in which they are defined.

6.5.1 Defining customer Layer Values
You can define values for the customer layer in the adf-config.xml and
CustomizationLayerValues.xmlfiles.

1. In the Application Navigator, under the Application Resources panel, expand Descriptors
and then ADF META-INF.

2. Open the adf-config.xml file in the editor.

3. On the Source tab, find the <customerCustomizationLayerValues> tag and edit its value.
For example:

<customerCustomizationLayerValues>demo</customerCustomizationLayerValues>
4. On the Overview tab, choose MDS in the left panel.

5. Click the link Configure Design Time Customization Layer Values on the right side.

This opens the CustomizationLayerValues.xml file in a new editor window. Locate the
customer layer, and define the same layer value or values for the layer. For example:

<cust-layer name="customer" id-prefix="c">
 <cust-layer-value value="demo" display-name="Demo" id-prefix="d"/>
</cust-layer>

6. Click Save All.

Chapter 6
Define MDS Seeded Customizations and Generating WccAdfCustomization.mar

6-6

6.5.2 Defining Seeded Customizations for Each Layer Value of the customer
Layer

In the customer layer, you can define multiple seeded customizations for each layer value.

To define seeded customizations for each layer value:

1. Start JDeveloper with the Customization Developer role.

The first time the WccAdfCustomization application is opened in JDeveloper with the
Customization Developer role, its application file is modified by JDeveloper. So click Save
All.

2. For each layer value of the customer layer, do the following steps:

a. Go to WccAdfCustomization - Customization Context window, select a specific layer
value in the customer tip layer, and then click Save All.

b. Under the ViewController project, locate WccAdfLibrary.jar (usually near the end of
library list), expand it, and then expand wcc.

All the WebCenter Content user interface pages (.jsf) and page fragments (.jsff)
are listed there.

c. For each page or page fragment that you want to define seeded customizations, take
the following actions, in order:

• Open it in the editor.

• Define seeded customizations on the page or page fragment, including but not
limited to these customizations:

Hide or remove certain UI components.

Move UI components around.

Add new UI components.

Modify properties of UI components.

Change resource strings.

• Click Save All.

d. Run the WccAdfCustomization application to test the seeded customizations:

• Right-click index.html and choose Run.

• After the test is done, stop the WccAdfCustomization application.

6.5.3 Defining MDS Seeded Customizations
You can define MDS seeded customizations in JDeveloper to modify the WebCenter Content
user interface. For example, the following procedure shows how to modify the Document
Properties page with these customizations:

• Rename the Summary tab to Overview

• Hide the System Metadata section on the Metadata tab

To define MDS seeded customizations for the Document Properties page:

1. In JDeveloper, open docInfoTabs.jsff in the editor.

Chapter 6
Define MDS Seeded Customizations and Generating WccAdfCustomization.mar

6-7

2. Select the af:showDetailItem component with the ID summtab.

3. In the Property Inspector window, pull down the menu for the Text property and choose
Select Text Source

4. In the Select Text Resource dialog box, do these steps:

a. Make sure the entry oracle.wcc.adf.vc.resource.CustomizationBundle
(ViewController.jpr) is selected.

b. In the input box for Display Value, enter Overview.

c. Click Save and Select.

d. If prompted by a Confirm override popup, click Yes to dismiss it. If you do not want to
see this confirmation popup again, you can select Skip This Message Next Time.

e. Wait until JDeveloper becomes responsive again. This may take several seconds.

5. Select the same af:showDetailItem component again.

6. In the Property Inspector window, pull down the menu for the ShortDesc property, and
choose Select Text Source

7. In the Select Text Resource dialog box, do these steps:

a. Make sure the entry oracle.wcc.adf.vc.resource.CustomizationBundle
(ViewController.jpr) is selected.

b. In the table for Matching Text Resources, select the row whose Display Value is
Overview.

c. Click Select.

After these changes, the beginning of the af:showDetailItem component looks like this:

 <af:showDetailItem text="#{viewcontrollerBundle.OVERVIEW}" id="summtab"
shortDesc="#{viewcontrollerBundle.OVERVIEW}

8. Select the af:showDetailHeader component whose Text property has the value
#{diBundle.MTAB_SYSTEM_METADATA}.

9. In the Property Inspector window, edit the value of the Rendered property, and choose
False. Click Enter to save the change.

10. Click Save All.

6.5.4 Packaging Seeded Customizations in WccAdfCustomization.mar
After you finish specifying and testing your seeded customizations, you package them for
deployment in the WccAdfCustomization.mar file.

To package seeded customizations:

1. Right-click the WccAdfCustomization application and choose Deploy, then
WccAdfCustomization….

2. In the Deploy WccAdfCustomization dialog box, leave the deployment action with the
default selection, which is Deploy to MAR, and click Finish.

This will generate a WccAdfCustomization.mar file in the deploy/ directory.

Chapter 6
Define MDS Seeded Customizations and Generating WccAdfCustomization.mar

6-8

6.6 Applying Customizations to the Installed Environment
To apply customizations to the installed Oracle WebCenter user interface environment, you can
apply the custom skin and the seeded customizations.

6.6.1 Applying a Custom Skin
To apply a custom skin defined by the new WccAdfCustomSkin.jarfile to WebCenter Content
user interface in an installed environment, update the application configuration for the user
interface to point to the new skin and to replace the WccAdfCustomSkin.jarfile under the
WebCenter Content user interface domain with the new one.

1. Run a WLST command to update the configuration of the WebCenter Content user
interface application to point to the new skin:

a. Go to WCC_MW_HOME/oracle_common/common/bin, and run wlst.sh or wlst.cmd.

b. Connect to the port of WCCADF_server1, which by default is 9225. For example:

wls:/offline> connect()
Please enter your username :weblogic
Please enter your password :
Please enter your server URL [t3://localhost:7001] :t3s://localhost:9225

Note:

In the above URL, 9225 is the default administration port for WebCenter
Content UI in 14.1.2 WLS secured set-up.

c. Run the updateWccAdfConfig command to update the skinFamily property to point to
the custom skin. For example:

wls:/wccadf_domain/serverConfig> updateWccAdfConfig(appName='Oracle WebCenter
Content - Web UI', skinFamily='wcc-custom-skin')

2. Stop WCCADF_server1 in the WebCenter Content user interface domain.

3. Replace the WccAdfCustomSkin.jar file under WCC_MW_HOMEwccontent/wccadf with the
generated one.

4. Start WCCADF_server1 again in the WebCenter Content user interface domain.

The custom skin defined by the new WccAdfCustomSkin.jarfile will take effect immediately.
Clear your browser's cache and log in to the WebCenter Content user interface to see the
customizations.

6.6.2 Applying the Seeded Customizations to the WebCenter Content User
Interface

To apply the seeded customizations defined by the WccAdfCustomization.mar file to the
WebCenter Content user interface in an installed environment, update the configuration of the
WebCenter Content user interface application to define values for the customer customization
layer and to import the WccAdfCustomization.mar file to the MDS repository of the WebCenter
Content domain.

To apply the seeded customizations to the WebCenter Content user interface:

Chapter 6
Applying Customizations to the Installed Environment

6-9

1. Copy the WccAdfCustomization.mar file to a stage location; for example, /tmp/
WccAdfCustomization.mar.

2. Run a WLST command to update the configuration of the WebCenter Content user
interface application configuration to define the value(s) for the customer customization
layer.

a. Go to WCC_MW_HOMEoracle_common/common/bin, and run wlst.sh or wlst.cmd.

b. Connect to the port of WCCADF_server1, which by default is 9225. For example:

wls:/offline> connect()
Please enter your username :weblogic
Please enter your password :
Please enter your server URL [t3://localhost:7001] :t3s://localhost:9225

Note:

In the above URL, 9225 is the default administration port for WebCenter
Content UI in 14.1.2 WLS secured set-up.

c. Run the updateWccAdfConfig command to update the
customerCustomizationLayerValues property to the values of the customer layer. For
example:

wls:/wccadf_domain/serverConfig> updateWccAdfConfig(appName='Oracle WebCenter
Content - Web UI', customerCustomizationLayerValues='demo')

3. Run a WLST command to import the WccAdfCustomization.mar file to the MDS repository
of the WCCUI domain:

a. Go to WCC_MW_HOMEoracle_common/common/bin, run wlst.sh or wlst.cmd.

b. Connect to the port of the Administration Server, which is 7001 by default. For
example:

wls:/offline> connect()
Please enter your username :weblogic
Please enter your password :
Please enter your server URL [t3://localhost:7001] :

c. Run the importMetadata command to import the metadata defined by the
WccAdfCustomization.mar file to the MDS repository. For example:

wls:/wccadf_domain/serverConfig> importMetadata('Oracle WebCenter Content - Web
UI', 'WCCADF_server1', '/tmp/WccAdfCustomization.mar')

4. Stop WCCADF_server1 in the WebCenter Content domain.

5. Start WCCADF_server1 again in the WebCenter Content domain.

The seeded customizations defined by the WccAdfCustomization.mar file will take effect
immediately. Clear your browser's cache and login to the WebCenter Content user interface to
see the customizations.

Chapter 6
Applying Customizations to the Installed Environment

6-10

7
Creating Dynamic Server Pages

This chapter describes how to use the building blocks necessary for creating dynamic server
pages to alter the appearance and navigation of web pages.

This chapter includes the following sections:

• About Dynamic Server Pages

• Altering the Appearance and Navigation of Web Pages

• Creating an IDOC File with Custom Includes for Dynamic Server Pages

• Creating an HCST Page

• Creating an HCSP Page

• Creating an HCSF Page

• Verifying the Display of an HCST_ HCSP_ or HCSF Page in a Web Browser

7.1 About Dynamic Server Pages
Dynamic server pages are files that are checked in to Oracle WebCenter Content Server and
then used to generate web pages dynamically. Dynamic server pages are typically used to
alter the look-and-feel and the navigation of web pages. For example, dynamic server pages
can be used to do these tasks:

• Implement HTML forms

• Maintain a consistent look-and-feel throughout a website

Dynamic server pages include the following file formats:

• IDOC: A proprietary scripting language

• HCST: Hypertext Content Server Template, similar to a standard Content Server template
page stored in the IdcHomeDir/resources/core/templates/ directory

• HCSP: Hypertext Content Server Page, an HTML-compliant version of the HCST page,
usually used for published content

• HCSF: Hypertext Content Server Form, similar to HCSP and HCST pages, but containing
HTML form fields that can be filled out and submitted from a web browser

When you use dynamic server pages, Content Server assembles web pages dynamically
using a custom template (HCST, HCSP, or HCSF file) that you have checked in to Content
Server. The template calls HTML includes from a text file (IDOC file) that you have also
checked in to Content Server.

To make changes to the look-and-feel or navigation on a web page, you modify the HCS*
template page, or the IDOC file, or both, and then check in the revised files as new revisions.
Your changes are available immediately.

Using dynamic server pages with Content Server gives you these advantages:

7-1

• You can introduce and test customizations quickly and easily. Simply checking in a
revision of a dynamic server page implements the changes immediately—you do not have
to restart Content Server.

• Your web pages can make use of functionality not found in standard HTML. For
example, HTML forms can be submitted directly to Content Server without the need for
CGI scripts. Also, Idoc Script enables you to work directly with environment and state
information about Content Server.

• You do not have to install or keep track of component files. It can be difficult to
maintain and troubleshoot components if they have a lot of files or your system is highly
customized. Dynamic server pages are easier to work with because you can check in just
a few content items that contain all of your customizations.

• Customizations can be applied to individual pages. Dynamic server pages enable you
to apply customizations to a single page rather than globally, leaving the standard Content
Server page coding intact.

Keep the following constraints in mind when deciding whether to use dynamic server pages:

• Dynamic server pages cannot be used to modify core functionality of Content
Server. Dynamic server pages are most useful for customizing your web design and form
pages.

• Frequent revisions to dynamic server pages can result in a large number of obsolete
content items. You should do as much work on a development system as possible before
deploying to a production instance, and you may need to delete out-of-date pages
regularly.

Figure 7-1 shows the process for generating and using a dynamic server page.

Figure 7-1 The Dynamic Server Page Process

Chapter 7
About Dynamic Server Pages

7-2

7.1.1 Page Types
There are four types of dynamic server pages, which are identified in Content Server by their
four-character file-name extensions:

• IDOC File

• HCST File

• HCSP File

• HCSF File

7.1.1.1 IDOC File
An IDOC file is a text file containing HTML includes that are called by HCST, HCSP, and HCSF
pages.

For more information about includes, see Getting Started with Content Server Components.

7.1.1.2 HCST File
A Hypertext Content Server Template (HCST) file is a template page, similar to a standard
Content Server template page, that is used as a framework for assembling a web page.

• HCST pages are typically used when the content of the page itself is dynamic or where
Content Server functionality is needed, such as on a search page, search results page, or
custom check-in page.

• Because this type of page consists mostly of dynamically assembled code, HCST files are
not indexed in Content Server.

7.1.1.3 HCSP File
A Hypertext Content Server Page (HCSP) file is a published web page that displays actual
website content.

• HCSP files are typically created either by using an HCST page as a template or by
submittal of a form in Content Server through an HCSF page.

• Because this type of page contains web-viewable content, HCSP files are indexed in
Content Server.

7.1.1.4 HCSF File
A Hypertext Content Server Form (HCSF) file is similar to an HCSP file, except that it contains
HTML form fields that can be filled out and submitted from a web browser.

• When a user fills out and submits a form from an HCSF page, an HCSP file is checked in
as a separate content item with metadata defined by XML elements for the HCSF page.

• Because this type of page contains web-viewable content, HCSF files are indexed in
Content Server.

For more information about HCSF pages, see HCSF File.

Chapter 7
About Dynamic Server Pages

7-3

7.2 Altering the Appearance and Navigation of Web Pages
Although dynamic server pages are implemented in Content Server differently than custom
components, you must be familiar with WebCenter Content component architecture concepts,
particularly Content Server templates and HTML includes. For more information, see Getting
Started with Content Server Components.

Use the following basic procedure to customize your Content Server instance with dynamic
server pages:

1. Create an IDOC file with custom includes.

2. Check in the IDOC file to Content Server.

3. Create an HCST, HCSP, or HCSF file that references the IDOC file.

4. Check in the HCS* file to Content Server.

5. Display the HCS* file in your web browser by searching for it in Content Server or linking to
it from a published web page.

7.2.1 Syntax
Because the different types of dynamic server pages are interpreted and displayed differently,
the Idoc Script in the files must be coded differently. The following table summarizes these
differences.

File Type .idoc .hcst .hcsp .hcsf

Full Text Indexed? No No Yes Yes

Idoc Script Expressions <$ … $> <$ … $> <!--$ … -->

[!--$ … --]

<!--$ … -->

[!--$ … --]

Comparison Operators Symbols (==) Symbols (==) Special operators (eq) Special operators (eq)

Special Characters Symbols (&) Symbols (&) Escape sequence
(&)

Escape sequence
(&)

References to Metadata Required Required Required Required

Note:

Idoc Script uses standard HTML include coding. For more information, see HTML
Includes.

HCST uses standard Content Server template coding. For more information, see
Template and Report Pages.

Special coding is used with HCSP and HCSF to allow the page to be rendered both
statically and dynamically, and full-text indexed.

7.2.1.1 Idoc Script Expressions
For HCSP and HCSF pages, Idoc Script expressions are generally placed between HTML
comment tags. When a page is viewed statically, this placement enables a web browser to
present the page content while ignoring any dynamic code that is used to format the content.

Chapter 7
Altering the Appearance and Navigation of Web Pages

7-4

This also enables the full-text indexing engine to successfully index the contents of these
pages.

Some examples follow.

• IDOC or HCST file: <$include MyIdocExpression$>
• HCSP or HCSF file: <!--$include MyIdocExpression-->
In some situations, you might want to control the opening and closing of the HTML comment.
In HCSP and HCSF files, this can be done by substituting other characters for the dash (-) in
the closing tag after an Idoc Script expression, as the following example shows.

Example - Pound Sign Delimiter for HTML Comment in HCSP or HCSF File
<!--$a="ab"##> HTML comment remains open
<a href="<!--$myUrlAsVariable##>">MyUrl Static view does not see this
<!--$dummy=""--> <!—Ended the comment area-->.

In {Example - Bracket Delimiters for HTML Comment in HCSP or HCSF File}, the pound sign
(#) is substituted for the dash (-).

Another option in HCSP and HCSF files is to substitute brackets ([]) for the opening and
closing tags (< >) of the standard HTML comment, as Example - docLoadResourceIncludes
Function Call in HCST File} shows. This substitution enables an XHTML parser to properly
identify all the script when viewed statically.

Example 7-1 Bracket Delimiters for HTML Comment in HCSP or HCSF File

<!--$a="ab"--] HTML comment remains open
MyUrl Static view does not see this
[!--$dummy=""--> <!—Ended the comment area-->.

7.2.1.2 Comparison Operators
For HCSP and HCSF pages, the standard comparison operators (such as ==) cannot be used
because of their special meaning to HTML parsers. Use the following comparison operators in
dynamic server pages.

IDOC or HCST
File

HCSP or HCSF
File

Description

== eq Tests for equality.

!= ne Tests for inequality.

< lt Tests if less than.

> gt Test if greater than.

<= le Tests if less or equal than.

>= ge Tests if greater or equal than.

For example, the following code evaluates whether or not the value of the variable count is
greater than 10.

IDOC or HCST File HCSP or HCSF File

<$if count > 10$>
 <$"Count is greater than"$>
<$endif$>

<!--$if count gt 10-->
 <!--$"Count is greater than"-->
<!--$endif-->

Chapter 7
Altering the Appearance and Navigation of Web Pages

7-5

7.2.1.3 Special Characters
For HCSP and HCSF pages, special characters such as the ampersand (&) cannot used
because of their special meaning to HTML parsers. You must use the standard HTML or XML
escape format (such as & or &).

Note:

It is especially important to use the & escape character when you call the
docLoadResourceIncludes function from an HCSP or HCSF page. For more
information, see docLoadResourceIncludes Function.

As the following examples show, in Idoc Script, a quotation mark can be included in a string by
preceding it with a backslash escape character, but in an HCSP or HCSF page, the quotation
mark character must be represented by an HTML escape character.

• IDOC or HCST file: "Enter \"None\" in this field."
• HCSP or HCSF file: "Enter "None" in this field."
In an HCST page, a line feed is inserted using \n. In an HCSP page, insert the line feed
directly in the file or encode it in the XML using the numeric ASCII number for a line feed.

Note:

You can now substitute the word join for the & string join operator. For example, you
can write [!--$a join b--] instead of [!--$a & b--]. The first is accepted by an XML
parser inside an attribute of a element, but the second is not.

7.2.1.4 References to Metadata
For dynamic server pages, several metadata values are stored with a ref: prefix, which makes
them available to the page but does not replace ResultSet values. (This prevents pollution of
ResultSets by dynamic server pages.)

When you reference any of the following metadata values on a dynamic server page, you must
include the ref: prefix:

• hasDocInfo
• dDocName
• dExtension
• dSecurityGroup
• isLatestRevision
• dDocType
For example, the following statement determines if the document type is Page:

<$if strEquals(ref:dDocType,"Page"))$>

Chapter 7
Altering the Appearance and Navigation of Web Pages

7-6

7.2.2 Idoc Script Functions
Two special Idoc Script functions are required for dynamic server pages:

• docLoadResourceIncludes Function

• executeService Function

7.2.2.1 docLoadResourceIncludes Function
To be able to use the HTML includes in an IDOC file, an HCS* file must call the
docLoadResourceIncludes function, as in the following examples. This function loads all the
includes from the specified IDOC file for use in assembling the current page. {Example -
docLoadResourceIncludes Function Call in HCST File} shows the format for calling this
function from an HCST file.

Example - docLoadResourceIncludes Function Call in HCST File
<$docLoadResourceIncludes("dDocName=system_std_page&RevisionSelectionMethod=Latest")$>

{Example - docLoadResourceIncludes Function Call in HCSP or HCSF file} shows the format
for calling this function from an HCSP or HCSF file.

Example - docLoadResourceIncludes Function Call in HCSP or HCSF file
<!--$docLoadResourceIncludes("dDocName=system_std_page&RevisionSelectionMethod=Latest
")-->

7.2.2.1.1 Requirements for Calling the docLoadResourceIncludes Function
• The native file for the specified content item must have the.idoc extension.

• The docLoadResourceIncludes call must be placed before the first include call in the HCS*
file. It is recommended that you place this function within the HEAD section of the page.

• You must use the correct ampersand character when you call the
docLoadResourceIncludes function from an HCS* page. For more information, see Special
Characters.

7.2.2.1.2 Parameters
Use the following parameters with the docLoadResourceIncludes function to specify which
IDOC file to call.

• You must define either a dDocName or a dID; do not use both parameters together.

• If you define a dDocName, you must define RevisionSelectionMethod to be Latest or
LatestReleased.

• If you define a dID, do not define a RevisionSelectionMethod, or define the
RevisionSelectionMethod to be Specific.

Parameter Description

dDocName Specifies the content ID of the IDOC file.

This parameter should always be present when the content ID value is known. Error
messages are based on the assumption that it is present, as are other features, such as
forms.

dID Specifies the unique ID number of a particular revision of the IDOC file.

Chapter 7
Altering the Appearance and Navigation of Web Pages

7-7

Parameter Description

RevisionSelectionMethod Specifies which revision of the IDOC file to use:

– Latest: The latest checked-in revision of the document is used (including revisions
in a workflow).

– LatestReleased: The latest released revision of the document is used.
– Specific: Use only with dID.

Rendition Specifies which rendition of the IDOC file to use:

– Primary: The primary (native) file. This is the default value in effect if no
Rendition value is specified.

– Web: The web-viewable file.
– Alternate: The alternate file.

7.2.2.2 executeService Function
The executeService function executes a Content Server service from within a dynamic server
page. For example:

HCST file: <$executeService("GET_SEARCH_RESULTS")$>
HCSP or HCSF file: <!--$executeService("GET_SEARCH_RESULTS")-->
• Services that can be called with the executeService function must be scriptable, meaning

that they do not require parameter input.

• Scriptable services have an access level of 32 or more. For more information, see Getting
Started with Integrating WebCenter Content into Your Environment.

• For a list of standard Content Server services, see the IdcHomeDir/resources/core/
tables/std_services.htm file.

• For more information about the executeService function, see the Oracle Fusion
Middleware Configuration Reference for Oracle WebCenter Content.

• For more information about services, see Getting Started with Integrating WebCenter
Content into Your Environment.

Note:

Use services sparingly. Too many service calls on a page can affect performance
and limit scalability.

7.2.3 Development Recommendations
The following recommendations to assist you in developing dynamic server pages include
general guidelines and HCSF guidelines.

7.2.3.1 General Guidelines
The following recommendations apply to the development of all types of dynamic server
pages:

• Keep templates as simple and free of code as possible. Strive to have only HTML includes
in your templates, with all code and conditionals in an IDOC file. This is especially helpful
for HCSF pages, where submitted forms also reflect changes made to the IDOC file.

Chapter 7
Altering the Appearance and Navigation of Web Pages

7-8

• Whenever you are customizing an Oracle WebCenter Content Server instance, you should
isolate your development efforts from your production system. Keep in mind that frequent
revisions to dynamic server pages can result in a large number of obsolete content items.
You should do as much work on a development system as possible before deploying to a
production instance, and you may need to delete out-of-date pages regularly.

• When you develop a website using dynamic server pages, think of the development and
contribution processes in terms of ownership:

– Structure, including site design and navigation, is owned by the webmaster. When
you use dynamic server pages, structure is contained in and controlled with includes
that are defined in IDOC files.

– Content, that is, the actual text of the web pages, is owned by the contributors. When
you use dynamic server pages, content is contained primarily in HCSP files that make
use of the includes in the IDOC files.

• Use a consistent naming convention. For example, for "system" level includes, you could
name your IDOC file system_std_page, and then name each include in that file with the
prefix system_. This makes locating the includes easier.

• You may want to create a content type for each type of dynamic server page (such as
HCSF_templates or submitted_forms).

• In accordance with good coding practices, you should always put comments in dynamic
server pages to document your customizations.

7.2.3.2 HCSF Guidelines
The following recommendations apply specifically to the development of HCSF pages:

• When designing a form, consider how the template will be used:

– Will this template change depending on the role of the user submitting the form?

– Will the submitted content enter into a criteria workflow?

– What default metadata values should be set?

– Does the form contain ResultSets for multiple line entries?

• To see the form parameters as they are passed from the web browser to the web server,
filtered through Content Server, and then passed back to the web browser, change the
method attribute in the include code from POST to GET:

<form name="<$formName$>" method="GET" action="<$HttpCgiPath$>">
• If you add a form field called DataScript to a form being submitted, then any Idoc Script for

that value is evaluated by Content Server when it processes the form.

7.2.4 HCSF Pages
In addition to following the standard formatting rules for Content Server templates and HTML
forms, HCSF pages require several special sections and tags that enable Content Server to
process them. These special sections appear in the following order in a typical HCSF file:

1. Load section

2. Data section

3. Form section

For an example of a complete HCSF page, see HCSF File.

Chapter 7
Altering the Appearance and Navigation of Web Pages

7-9

7.2.4.1 Load Section
The load section at the beginning of an HCSF page declares the file as an HTML file, loads an
IDOC file, and loads other information about the page. {Example - Load Section for an HCSF
Page} shows a typical load section.

The load section has these items:

• HTML Declaration

• docLoadResourceIncludes Function

• Meta Element

• Variables and Includes

Example - Load Section for an HCSF Page
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<head>
<!--$docLoadResourceIncludes("dDocName=my_idoc_page&RevisionSelectionMethod=Latest")-
->
<meta NAME="idctype" CONTENT="form; version=1.0">
<!--$defaultPageTitle="Department News Form"-->
<!--$include std_html_head_declarations-->
</head>

7.2.4.1.1 HTML Declaration
The HTML declaration identifies the file as an HTML file, with the following syntax:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

7.2.4.1.2 docLoadResourceIncludes Function
The docLoadResourceIncludes function loads all the includes from the specified IDOC file for
use in assembling the current page. For more information, see docLoadResourceIncludes
Function.

7.2.4.1.3 Meta Element
The meta element identifies page of a special type.

• This element is not required.

• The meta element must be placed inside the HEAD section of your HTML file.

• Use the following syntax for the meta tag:

<meta NAME="idctype" CONTENT="form; version=1.0">

7.2.4.1.4 Variables and Includes
The HEAD section for an HCSF page can contain variable definitions and HTML includes as
necessary. {Example - Variable Definition and Include in the HEAD Section for an HCSF
Page } shows lines in a HEAD section that define the default page title and load the
std_html_head_declarations code.

Example - Variable Definition and Include in the HEAD Section for an HCSF Page
!--$defaultPageTitle="Department News Form"-->
<!--$include std_html_head_declarations-->

Chapter 7
Altering the Appearance and Navigation of Web Pages

7-10

7.2.4.2 Data Section
The data section for an HCSF page contains rules and metadata information that is used to
process the form. There is a close relationship between the information in the data section and
the presentation of the page:

• Upon delivery of the HCSF page to the user, the information in the data section is parsed
into a DataBinder object and merged into the Form Section.

• Upon form submittal, the information in the data section is merged with the request and
written out again to the data section. For more information, see Data Binder, and Elements
in HDA Files.

7.2.4.2.1 Data Section Structure
The data section consists of XML elements that are placed between idcbegindata and
idcenddata Idoc Script tags, as {Example - Data Section for an HCSF Page} shows.

The following rules apply to the data section:

• The data section must be placed inside the <BODY> section of your HTML file, before the
beginning of the form section.

• You can place Idoc Script variable definitions and includes before or after the data section,
but not within it.

• Two types of XML elements are used in the data section:

– The idcformrules Element

– Metadata Elements

• You can also use the following types of formatting in the data section:

– Nested Elements

– Referencing XML Elements

– Form Elements

– ResultSets

Example - Data Section for an HCSF Page
<!--$idcbegindata-->
<idcformrules isFormFinished="0"/>
<model_number content="html">AB-123</model_number>
<revision>12</revision>
…
<!--$idcenddata-->

7.2.4.2.2 The idcformrules Element
The idcformrules element defines Content Server rules in the data section. This element
requires one attribute, either isFormFinished or resultsets.

• IsFormFinished Attribute: The isFormFinished attribute indicates whether the form can
be submitted again or not.

– Use the following attribute value to specify that the form can be submitted again:

<idcformrules isFormFinished="0"/>
– Use the following attribute value to specify that the form cannot be submitted again:

Chapter 7
Altering the Appearance and Navigation of Web Pages

7-11

<idcformrules isFormFinished="1"/>

This code results in a read-only form.

• resultsets Attribute: The resultsets attribute indicates which XML elements in the data
section are interpreted as ResultSets.

– This attribute specifies one or more XML tag names separated by commas. For
example:

<idcformrules resultsets="volume,chapter">
– During delivery of an HCSF page to the user, the core Content Server reads the

resultsets attribute and, if necessary, places empty ResultSets with the specified
names into the DataBinder object so that they are available for merging.

For more information about ResultSet formatting in the data section, see ResultSets.

7.2.4.2.3 Metadata Elements
Metadata elements specify the metadata values that appear in form fields when a form is
displayed in a browser. For example:

<model_number>AB-123</model_number>

Each metadata element can be assigned a content attribute that indicates which type of
content the element contains. For example:

<model_number content="html">AB-123</model_number>

• The value of the content attribute can be either html or text: Text indicates that the
content of the element should be interpreted strictly as text. HTML indicates that the
content of the element should be interpreted as HTML code.

• If the content attribute is not specified for a metadata element, it defaults to html.

7.2.4.2.4 Nested Elements
You can use nested XML elements (also called nodes) within the data section. {Example -
Nested XML Tags in a Data Section } shows a <section> element nested in a <chapter>
element.

Example - Nested XML Tags in a Data Section
<chapter title="Chapter 1">
This is the beginning of the chapter.
<section title="First Section">
This is the first section of the chapter.
</section>
</chapter>

7.2.4.2.5 Referencing XML Elements
To refer to a nested XML element, start with the root-level element, and use an exclamation
point (!) between element levels. For example:

chapter!section

To refer to the attribute of any element, use a colon (:) after the tag name. For example:

chapter!section:title

Chapter 7
Altering the Appearance and Navigation of Web Pages

7-12

• If you reference an element in the data section, the element value can be merged back into
the data section upon form submission only if one of the following statements are true:

– The root element has already been referenced in the data area.

– The root element is referenced in an ExtraRootNodes form element.

– A prefix part of the tag is referenced as a ResultSet in the resultsets form element.

• Default values can be specified by applying the :default suffix to a tag path. Note that
default elements might contain Idoc Script for further evaluation. {Example - Specification
of a Default Metadata value} shows the format for specifying a default dDocTitle value.

Example - Specification of a Default Metadata Value
<input type=hidden name="dDocTitle:default" value="<$'MyTitle ' & dateCurrent()$>">0

7.2.4.2.6 Form Elements
• The ExtraRootNodes form element enables you to add tags by creating an Idoc Script

variable and then appending the tag names to it, rather than specifying the tags in the data
section of the form. At the end of your form, you can substitute a string value in place of
the ExtraRootNodes value to be merged back into the data section.

• The resultsets form element enables you to add a tag as a ResultSet, rather than
specifying the ResultSet in the data section.

• Both the ExtraRootNodes and ResultSet form elements take a comma-delimited list of
tags.

{Example - Form Elements That Add Elements to a ResultSet} shows form elements that add
the mychapters!chapter element as a valid ResultSet if it is not already defined in the
idcformrules resultsets attribute. They also add the root element mychapters, if necessary.

Example - Form Elements That Add Elements to a ResultSet
<input type=hidden name="resultsets" value="mychapters!chapter">
<input type=hidden name="ExtraRootNodes" value="mychapters">

7.2.4.2.7 ResultSets
You can define a ResultSet using XML elements within the data section for an HCSF page, as
follows:

• You must use the resultsets attribute of the idcformrules element to specify a
ResultSet.

• The element names must be completely qualified, and the full reference path from the root
node must be used.

• The columns in the ResultSet are the element content and the element attributes.

For information about limitations on repeating and nesting XML elements in a ResultSet, see
{Example - Repeated Elements for a ResultSet} and {Example - Repeated Nested Elements
for a RuleSet}.

{Example - XML Elements for Defining ResultSets in the Data Section for an HCSF Page}
shows XML elements that define two ResultSets, named volume and chapter.

Example - XML Elements for Defining ResultSets in the Data Section for an HCSF Page
<idcformrules resultsets="volume,chapter">
<volume title="First Volume">
 Volume content here
</volume>
<chapter title="First Chapter">

Chapter 7
Altering the Appearance and Navigation of Web Pages

7-13

 Chapter content here
</chapter>

Example - XML Elements for Defining ResultSets in the Data Section for an HCSF Page
@ResultSet volume
2
volume
volume:title
Volume content here
First Volume
@end
@ResultSet chapter
2
chapter
chapter:title
Chapter content here
First Chapter
@end

This code evaluates to two ResultSets with two columns each. {Example - ResultSets Defined
by XML Elements} shows these ResultSets.

You can use repeated elements for a ResultSet in the data section. Repeated elements are
typically useful for looping over code to create the ResultSet.

Repeated elements are not allowed unless they are part of a ResultSet.

{Example - Repeated Elements for a ResultSet} shows how the chapter element is repeated
for the chapter ResultSet.

Example - Repeated Elements for a ResultSet
<idcformrules resultsets="chapter">
<chapter title="First Chapter">
 Some content here
</chapter>
<chapter title="Second Chapter">
 More content here
</chapter>

This code evaluates to a ResultSet with two columns and two rows. {Example - ResultSet
Created with Repeated Elements} shows this ResultSet.

Example - ResultSet Created with Repeated Elements
@ResultSet chapter
2
chapter
chapter:title
Some content here
First Chapter
More content here
Second Chapter
@end

A ResultSet can have nested elements, but the nested elements cannot be repeated within a
parent element, as {Example - Repeated Nested Elements for a ResultSet} shows. In this
example code, an additional <section> element would not be allowed within the first
<chapter> element.

Example - Repeated Nested Elements for a ResultSet
<idcformrules resultsets="chapter">
<chapter title="First Chapter">
 Some content here

Chapter 7
Altering the Appearance and Navigation of Web Pages

7-14

 <section title="First Section of First Chapter">
 Section content
 </section>
</chapter>
<chapter title="Second Chapter">
 More content here
</chapter>

This code evaluates into a ResultSet that has four columns and four rows, with the last two
cells blank, as {Example - ResultSet Created with Repeated Nested Elements} shows.

Example - ResultSet Created with Repeated Nested Elements
@ResultSet chapter
4
chapter
chapter:title
chapter!section
chapter!section:title
Some content here
First Chapter
Section Content
First Section of First Chapter
More content here
Second Chapter

@end

Guidelines for Editing ResultSets

The following guidelines apply to editing ResultSets:

• Updating a specific row in a ResultSet requires that you indicate the ResultSet row number
in the request parameter. The pound sign character (#) is used by Content Server to
indicate a specific row. If you do not specify a row with the # character, then a row is
appended. If you specify a row # that does not yet exist, then enough empty rows are
added to provide a row to be edited.

{Example - Editing a Row in a ResultSet} shows how to update the first row (row 0) of a
ResultSet.

Example - Editing a Row in a ResultSet
<input type="text" name="comment#0"
 value="new comment">
<input type="text" name="comment!title#0"
 value="new title"

• Use the exclamation point character (!) to insert new fields into a ResultSet.

For example, to insert author and title fields into the comment ResultSet, you could name
the input fields comment!author and comment!title. If those fields are not already in the
ResultSet, they would be added when the form is submitted.

• To delete a row from a ResultSet, empty all the field values so that they are blank, as
{Example - Deleting the First Row from a ResultSet} shows.

Example - Deleting the First Row from a ResultSet
<input type="hidden" name="comment#0" value="">
<input type="hidden" name="comment!title#0" value="">
<input type="hidden" name="comment!date#0" value="">
<input type="hidden" name="comment!author#0" value="">

Another method for deleting rows from a ResultSet is to set the DeleteRows form element
to a list of comma-delimited pairs of ResultSet names and row numbers. For example, to

Chapter 7
Altering the Appearance and Navigation of Web Pages

7-15

delete row 2 from the comment ResultSet and row 5 from the book ResultSet, the
DeleteRows form element would be set to the following comma-delimited pairs:

comment:2,book:5

7.2.4.3 Form Section
The form section contains the code for presentation of the HTML form elements and any other
functionality that the page requires. The form properties, form fields, and form buttons are
placed in an HTML table to control the formatting of the assembled web page.

For code examples, see Common Code for Forms.

7.2.4.3.1 Form Begin
The form section begins two lines of Idoc Script, as {Example - Idoc Script to Begin Form
Section} shows.

Example - Idoc Script to Begin Form Section
<!--$formName="HTMLForm"-->
<!--$include std_html_form_submit_start-->

The std_html_form_submit_start include in the std_page.idoc resource file contains code
to create a standard HTML form using a POST method, set the value of IdcService to
SUBMIT_HTML_FORM, and set the dID variable to the value of the current HCSF page. {Example -
Standard HTML Form for an HCSF Page} shows this code.

Example - Standard HTML Form for an HCSF Page
<form name="<$formName$>" method="POST"action="<$HttpCgiPath$>">7
<input type=hidden name="IdcService"value="SUBMIT_HTML_FORM">
<input type=hidden name="dID" value="<$SourceID$>">

7.2.4.3.2 Form Properties
The form table typically begins with property definitions that create the fields as form fields,
allow the fields to be edited, and set the size of the field caption area. {Example - Field
Property Definitions for a Form Table} shows these property definitions.

Example - Field Property Definitions for a Form Table
<!--$isFormSubmit=1,isEditMode=1-->
<!--$captionFieldWidth=200, captionEntryWidth=80-->

7.2.4.3.3 Form Fields
A few lines of code are typically used to create each input field, as {Example - Code to Create
an Input Field on a Form} shows.

Example - Code to Create an Input Field on a Form
<!--$eval("<$product_name:maxLength=250$>")-->
<!--$fieldName="model", fieldCaption="Model Number"-->
<!--$include std_display_field-->

Chapter 7
Altering the Appearance and Navigation of Web Pages

7-16

Note:

Some fields might require additional code for proper display. For example, you might
need to override the standard std_memo_entry include to increase the size of text
areas. You can do this by defining a custom include in the IDOC file, as follows:

<@dynamicalhtml std_memo_entry@>
<textarea name="<$fieldName$>" rows=15 cols=50 wrap=virtual><$fieldValue$></
textarea>
<@end@>

• DataScript: If you add a form field called DataScript to a form being submitted, then any
Idoc Script for that value is evaluated by Content Server when it processes the form.

There are two tables (coming from the data island inside the HCSP form) with an entry in
one table that references entries in the other table. Your goal is to change a value in a
specific column and row in the second table when you update a row in the first table. To
accomplish this value change, you can write JavaScript to set the DataScript value with
Idoc Script, as {Example - Changing a Field Value in a Table When You Update a Row in
Another Table} shows.

Example - Changing a Field Value in a Table When You Update a Row in Another Table
modifyRowAndColumn(row, column, value)
{
document.myform.DataScript = "<$setValue('#local', 'table2!'"+ column + "#'"+ row +
"','" + value + "')$>";
}

Then, when you call the function with column = "myColumn" and row="1" and value =
"Test" while submitting the update form, the resulting DataScript value before submit
would be as follows:

DataScript.value = <$setValue('#local', 'table2!myColumn#1', 'Test')$>

The result would be the column table2!myColumn in row 1 of the table table2 would be
updated with the value Test after the form was submitted.

Another way of saying this is that the DataScript can allow arbitrary edits of other entries in
the data island without having to actually create HTML form fields that reference their
names.

7.2.4.3.4 Form Buttons
Two lines of code are typically used to create the form submission and reset buttons. {Example
- Code for Creating Form Submission and Reset Buttons} shows these lines.

Example - Code for Creating Form Submission and Reset Buttons
<input type=submit name=Submit value=" Submit ">
<input type=reset name=Reset value="Reset">

7.2.4.3.5 Form End
After all the form elements and default values have been defined, the form must end with a </
form> tag.

Chapter 7
Altering the Appearance and Navigation of Web Pages

7-17

7.3 Creating an IDOC File with Custom Includes for Dynamic
Server Pages

Dynamic server pages can work together to modify Content Server behavior. Before you can
create a dynamic server page, you need an IDOC file with custom includes for the page to
reference.

To create an IDOC file with custom includes for dynamic server pages:

1. Create an IDOC file with a custom include, in the format that {Example - Custom Include}
shows.

In the example, the first include is named HelloWorld, and the second include defines one
line of HTML code.

2. Save the file with the .idoc extension; for example, helloworld.idoc.

3. Check in the IDOC file to Content Server with a content ID that you can reference from
another file, such as helloworld.

Example 7-2 Custom Include

<@dynamichtml HelloWorld@>
<H1>Hello World/<H1>
<@end@>

The IDOC file is available to any HCS* pages that reference it.

7.4 Creating an HCST Page
You can create an HCST dynamic server page by referencing an IDOC file in an HCST file.

To create an HCST page:

1. Create an HCST file that references an include in an IDOC file, like the HCST file that
{Example - HCST File Referencing Custom Include} shows.

In the example, the line after the <HEAD> tag loads the helloworld.idoc file so that the
includes in the IDOC file are available to this HCST page. The second line after the <BODY>
tag displays the code from the HelloWorld include from the helloworld.idoc file. Note the
use of the standard Idoc Script tags, <$...$>.

2. Save the file with the .hcst extension; for example, helloworld.hcst.

3. Check in the HCST file to Content Server.

Example 7-3 HCST File Referencing Custom Include

<HTML>
<HEAD>
<$docLoadResourceIncludes("dDocName=helloworld&RevisionSelectionMethod=LatestReleased")$>
</HEAD>
<BODY>
You should see it:
<$include HelloWorld$>
</BODY>
</HTML>

Chapter 7
Creating an IDOC File with Custom Includes for Dynamic Server Pages

7-18

7.5 Creating an HCSP Page
You can create an HCSP dynamic server page by referencing an IDOC file in an HCSP file.

To create an HCSP Page:

1. Create an HCSP file that references an include in an IDOC file, like the HCSP file that
{Example - HCSP File Referencing Custom Include} shows.

In the example, the line after the <HEAD> tag loads the helloworld.idoc file so that the
includes in the IDOC file are available to this HCSP page. The second line after the <BODY>
tag displays the code from the HelloWorld include from the helloworld.idoc file. Note the
use of the HTML comment tags, <!--...-->.

2. Save the file with the.hcsp extension; for example, helloworld.hcsp.

3. Check in the HCSP file to Content Server.

Example 7-4 HCSP File Referencing Custom Include

<HTML>
<HEAD>
<!--$docLoadResourceIncludes("dDocName=helloworld&RevisionSelectionMethod=LatestReleased")-->
</HEAD>
<BODY>
You should see it:

<!--$include HelloWorld-->
</BODY>
</HTML>

7.6 Creating an HCSF Page
A typical HCSF page and its associated IDOC file are shown in {Example - Product Description
Form in HCSF File}. This example creates a form that users can fill out and submit to enter
product descriptions as content items.

To create an HCSF page:

1. Create an HCSF file that references an IDOC file named form_std_page, as {Example -
Product Description Form in HCSF File} shows.

In the example, the line after the html tag loads the IDOC file with the content ID of
form_std_page so that the includes in the IDOC file are available to this HCSF page.

The two includes after the meta tag, defined in the form_std_page IDOC file, generate the
code at the beginning of the web page.

The isFormFinished attribute of the idcformrules tag tells Content Server that the form is
not finished, so the fields can be edited, and the form can be submitted.

The content property does not have to be set for each tag; it defaults to html.

The idcbegindata and idcenddata tags define the XML tagged area, which specifies rules
and initial metadata values for the form.

The text in each set of XML tags will populate the corresponding field on the form.

The last include in the example, defined in the form_std_page IDOC file, generates the
code at the end of the web page.

Chapter 7
Creating an HCSP Page

7-19

2. Save the file as product_form.hcsf.

3. Check in the HCSF file to Content Server.

4. Create an IDOC file with custom includes, as {Example - IDOC File with Custom Includes}
shows.

In the example, the form_head_section include defines the page title and the code for the
standard HTML head section (referencing the std_html_head_declarations include in the
std_page.htm resource file).

The form_pre_xml_section include allows the page to be viewed statically and defines
code for a standard Content Server web page (referencing the body_def include in the
std_page.htm resource file).

The form_post_xml_section include defines the form fields. The std_page_begin and
std_header includes, which are defined in the std_page.htm resource file, define code for
a standard Content Server web page. The two lines after these includes define the form
name and the code for a standard HTML form (referencing the
std_htm_form_submit_start include in the std_page.htm file).

The conditional after the table tag determines if this is an editable form or a page that has
already been submitted, based on the file-name extension. If this is an editable page
(isHcsf=1), the next conditional sets variables that create the fields as form fields and
allow the fields to be edited. The line after the conditionals sets the width of the table cells
for field captions to 150 pixels and sets the width of the table cells for input fields to 200
pixels.

The eval function sets the maximum length of a text field to 250 characters.

The fieldName tag defines the name, caption, and type of field. If fieldType is not defined,
it defaults to Text.

If this is a form that has already been submitted (isHcsp=1), the if isHcsp conditional sets
a variable that makes the form field read-only.

The std_display_field include, defined in the std_page.htm resource file, defines code
that creates the form field.

If this is an editable form (isHcsf=1), the if isHcsf conditional creates the Submit and
Reset buttons.

The line after the if isHcsf conditional generates the document title (dDocTitle)
automatically.

The std_page_end include, defined in the std_page.htm resource file, generates the code
at the end of the web page.

5. Save the file as form_std_page.idoc.

6. Check in the IDOC file to Content Server with a content ID of form_std_page. (This is the
name that is referenced by the HCSF page.)

7. Search for the HCSF content item in Content Server.

8. Click the link to display the form to create an HCSF page in your web browser. The form
should look like the sample in Figure 7-2.

Chapter 7
Creating an HCSF Page

7-20

Figure 7-2 Form to Create an HCSF Page Displayed in a Web Browser

9. Fill out the form with some sample values, and click Submit.

A content item is created as an HCSP page.

10. Search for the HCSP page in Content Server.

11. Click the link to display the HCSP page in your web browser. Figure 7-3 shows how the
page should look.

Figure 7-3 HCSP Page

Example 7-5 Product Description Form in HCSF File

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<!--$docLoadResourceIncludes("dDocName=form_std_page&
 RevisionSelectionMethod=Latest")-->

<head>
<meta NAME="idctype' CONTENT="form; version=1.0">

<!--$include form_head_section-->

</head>

<!--$include form_pre_xml_section-->

Chapter 7
Creating an HCSF Page

7-21

<!--$idcbegindata-->
 <idcformrules isFormFinished="0"/>
 <product_name content="html">

 </product_name?
 <model_number content="html">
 SC-
 </model_number>
 <summary_description>
 Enter a summary here.
 </summary_description>
 <full_description>
 Enter a full description here.
 </full_description>
 <author>
 <division>
 Household Products
 </division>
 <revision>

 </revision>
<!--$idcenddata-->

<!--$include form_post_xml_section-->

</body>
</html>

Example 7-6 IDOC File with Custom Includes

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<body>

<@dynamichtml form_head_section@>
<!--standard includes for a standard hcsp page-->
<$defaultPageTitle="Product Description Form"$>
$include std_html_head_declarations$>
<@end@>

<@dynamichtml form_pre_xml_section@>
<!--This code is here for static viewing.-->
<$if 0$>
 <body>
<$endif$>

<$include body_def$>
<@end@>

<@dynamichtml form_post_xml_section@>

<$include std_page_begin$>
<$include std_header$>

<$formName="HTMLForm"$>
<$include std_html_form_submit_start$>

<table>

<$if strEquals(ref:dExtension,"hcsf"))$>
 <$isHcsf=1$>
<$else$>

Chapter 7
Creating an HCSF Page

7-22

 <$isHcsp=1$>
<$endif$>

<$if isHcsf$>
 <$isFormSubmit=1,isEditMode=1$>
<$endif$>

<$captionFieldWidth=150, captionEntryWidth=200$>

<$eval("<$product_name:maxLength=250$>")$>
<$fieldName="product_name", fieldCaption="Product Name"$>
<$if isHcsp$><isInfoOnly=1$><$endif$>
<$include std_display_field$>

<$eval("<$model_number:maxLngth=250$>")$>
<$fieldName="model_number", fieldCaption="Model Number"$>
<$if isHcsp$><$isInfoOnly=1$><$endif$>
<$include std_display_field$>

<$fieldName="summary_description",
 fieldCaption="Summary Description",
 fieldType="Memo"$>
<$if isHcsp$><$isInfoOnly=1$><$endif$>
<$include std_display_field$>

<fieldName="full_descripton",
 fieldCaption="Full Description",
 fieldType="Memo"$>
<$if isHcsp$><$isInfoOnly=1$><$endif$>
<$include std_display_field$>

<$eval("<$author:maxLength=250$>")$>
<$fieldName="author", fieldCaption="Author"$>
<$if isHcsp$><$isInfoOnly=1$><$endif$>
<$include std_display_field$>

<$eval("<$division:maxLength=250$>")$>
<$fieldName="division", fieldCaption="Division"$>
<$if isHcsp$><$isInfoOnly=1$><$endif$>
<$include std_display_field$>

<$eval("<$revision:maxLength=250$>")$>
<$fieldName="revision", fieldCaption="Revision"$>
<$if isHcsp$><$isInfoOnly=1$><$endif$>
<$include std_display_field$>

<tr>
 <td colspand=2><hr></td>
</tr>
<tr>align=center>
 <td colspan=2>
 <$if isHcsf$>
 <input type=submit name=Submit value=" Submit ">
 <input type=reset name=Reset Value="Reset">
 <$endif$>
 <input type=hidden name="dDocTitle:default"
 value="<$"Product Description " & dateCurrent()$>">
 </td>
</tr>
</table>
</form>
<$include std_page_end$>

Chapter 7
Creating an HCSF Page

7-23

<@end@>

</body>
</html>

7.6.1 Common Code for Forms
The following features are commonly used in HCSF pages and associated IDOC files.

• Retrieving file information

• Referencing a file extension

• Defining form information

• Defining form fields

• Defining hidden fields

• Submitting a form

7.6.1.1 Retrieving File Information
Executing the DOC_INFO_SIMPLE service makes metadata from a specific file available to the
page. {Example - Idoc Script to Retrieve Metadata} shows the Idoc Script to execute this
service.

Example 7-7 Idoc Script to Retrieve Metadata

<$dID=SourceID$>
<$executeService("DOC_INFO_SIMPLE")$>

7.6.1.2 Referencing a File Extension
You can reference a file extension in an if statement for a form to determine whether the form
has been submitted (.hcsp file) or unsubmitted (.hcsf file), as {Example - Statement to
Reference a File Extension} shows.

Example 7-8 Statement to Reference a File Extension

<$if (strEquals(ref:dExtension,"hcsf"))$>
 <$isHcsf=1$>
<$else$>
 <$isHcsp=1$>
<$endif$>

For information about the ref: prefix, see References to Metadata.

7.6.1.3 Defining Form Information
Two lines of code define the form name and the standard include to start an HTML form, as
{Example - Name and Standard Include for an HTML Form} shows.

Example 7-9 Name and Standard Include for an HTML Form

<$formName="HTMLForm"$>
<$include std_html_form_submit_start$>

{Example - Form Properties} shows typical code to define form properties.

Chapter 7
Creating an HCSF Page

7-24

Example 7-10 Form Properties

<table border=0 width=100%>
<$isEditMode=1,isFormSubmit=1$>
<$captionFieldWidth="25%", captionEntryWidth="75%"$>

7.6.1.4 Defining Form Fields
Use standard Idoc Script variables and the std_display_field include to display the form fields,
as {Example - Standard Idoc Script to Display Form Fields} shows.

Some fields might require extra code to display the field correctly. For instance, the standard
text area for a memo field is 3 rows by 40 columns, but you might need to override the
standard include to increase the size of the text area. {Example - Standard Include for a Memo
Field } shows the standard std_memo_entry include.

{Example - Custom Include for a Memo Field} shows how to use a custom std_memo_entry
include to increase the text area to a specified size, in this case 15 rows by 50 columns.

Example 7-11 Standard Idoc Script to Display Form Fields

<$fieldName="news_author",fieldDefault=dUser,fieldCaption="Author",isRequired=1,requiredM
sg = "Please specify the author."$>
<$include std_display_field$>

Example 7-12 Standard Include for a Memo Field

<@dynamichtml std_memo_entry@>
 <textarea name="<$fieldName$>" rows=3 cols=40 wrap=virtual> <$fieldValue$></textarea>
<@end@>

Example 7-13 Custom Include for a Memo Field

<@dynamichtml std_memo_entry@>
 <textarea name=<$fieldName$> rows=15 cols=50 wrap=virtual><$fieldValue$></textarea>
<@end@>

7.6.1.5 Defining Hidden Fields
You can specify metadata for a submitted form (HCSP) by defining a hidden field, which
contributors cannot change. For example, the following code assigns the document type
News_Forms to each submitted form:

<input type=hidden name="dDocType" value="News_Forms">

This code specifies the security group of the submitted forms:

<input type=hidden name="dSecurityGroup" value="Public">

7.6.1.6 Submitting a Form
When a form is submitted, you may want to call a Java function to perform additional validation
or processing. For example:

<input type=button name=Submit value="Save" onClick="postCheckIn(this.form)">

Chapter 7
Creating an HCSF Page

7-25

7.7 Verifying the Display of an HCST, HCSP, or HCSF Page in a
Web Browser

After you save an HCST, HCSP, or HCSF file, you can verify the page display in a Web
Browser

1. Search for the helloworld content item in Content Server.

2. Display the HCST file and HCSP files in your web browser. They should both look like the
example in Figure 7-4.

Figure 7-4 HelloWorld Content Item Displayed in a Web Browser

Chapter 7
Verifying the Display of an HCST, HCSP, or HCSF Page in a Web Browser

7-26

Part IV
Modifying the Functionality of Content Server

This part describes how to change the basic functionality of Oracle WebCenter Content Server.

Part IV contains the following chapters:

• Changing System Settings

• Changing Configuration Information

• Customizing Services

• Generating Actions Menus

8
Changing System Settings

This chapter describes how to change the basic functionality of Oracle WebCenter Content
Server.

This chapter includes the following sections:

• About Changing System Settings

• Changing System Settings Through the Configuration Pages

• Changing System Settings Through the System Properties Application

• Customizing the Library and System Home Page with the Web Layout Editor

• Defining Security and Accounts for Users with the User Admin Application

8.1 About Changing System Settings
Content Server has a number of features that you can set up to change features systemwide
according to your needs. For example, you can use the following administration tools within
Content Server to customize your content management system settings:

• Configuration pages accessible through the Administration, Admin Server menu options

• System Properties utility

• Web Layout Editor

• User Admin application

• Other administration customizations
In addition to changing system setting with these tools, you can change other settings in
different ways to meet the needs of your site:

– Workflows can be designed, customized, and implemented using the Workflow Admin
tool available from the Desktop Client Apps menu

– New custom metadata fields can be created and default values set using the
Configuration Manager

– Customized action screens (such as check-in, search, and check-out) can be created
using Content Profiles

8.2 Changing System Settings Through the Configuration Pages
Content Server provides a collection of web pages that you can use to configure systemwide
settings for Content Server. To access one of these web pages, choose Admin Server from
the Administration tray or menu, and then choose one these menu options:

• Component Manager

• General Configuration

• Content Security

• Internet Configuration

8-1

You can also use the collection of web pages to configure systemwide settings for multiple
Content Server instances

For more information about changing system settings through the configuration pages, see
Configuring System Properties in Oracle Fusion Middleware Administering Oracle WebCenter
Content.

8.3 Changing System Settings Through the System Properties
Application

The System Properties administration application is used to configure systemwide Oracle
WebCenter Content settings for content security, Internet settings, localization, and other types
of settings. In the System Properties application, you can set these options:

• Optional functionality for Content Server

• Options related to content item security

• Options related to the Internet and web interaction

• JDBC connectivity options

• Functionality such as time zones and IP filters

• Localization features

• Directory paths

The application server is the primary tool for setting system properties for Oracle WebCenter
Content; however, for some purposes you must use the System Properties application. You do
not need administrative-level permissions to set these options; just access to the directory
where the instance is installed.

For more information about changing system settings through the System Properties
application, see Running Administration Applications in Standalone Mode in Oracle Fusion
Middleware Administering Oracle WebCenter Content.

8.4 Customizing the Library and System Home Page with the
Web Layout Editor

The Web Layout Editor is used to customize the Library and system home (portal) page. To
access this editor, click Web Layout Editor on the Administration Apps page. With the Web
Layout Editor, you can change the organization of local web pages in the Library and build new
portal pages for your site. You can create links to websites outside your local site.

You can also filter files based on security groups or queries.

For more information, see Building a Website.

8.5 Defining Security and Accounts for Users with the User
Admin Application

You can define security groups, aliases, roles, and accounts for the users at your site using the
User Admin function. To access this screen, choose Desktop Client Apps from the
Administration tray or menu, then click User Admin on the Administration Apps for user
page. Options on this screen are used to create aliases, set permissions for security groups,

Chapter 8
Changing System Settings Through the System Properties Application

8-2

establish roles and permissions associated with those roles, and customize information that is
stored about users.

For more information, see Managing Logins and Aliases in Oracle Fusion Middleware
Administering Oracle WebCenter Content.

Chapter 8
Defining Security and Accounts for Users with the User Admin Application

8-3

9
Changing Configuration Information

This chapter describes how to change Oracle WebCenter Content Server configurations with
the Idoc Script Custom Scripting Language and with other development tools and
technologies.

This chapter includes the following sections:

• About Changing Configuration Information

• Changing Configurations with the Idoc Script Custom Scripting Language

• Changing Configurations with Development Tools and Technologies

9.1 About Changing Configuration Information
You can change configuration information with Idoc Script, a proprietary, server-side custom
scripting language for Content Server. With Idoc Script, you can reference variables,
conditionally include content in HTML pages, and loop over results returned from queries.
Because Idoc Script is evaluated on the server side (rather than the client side), page elements
are processed after the browser has made a request, but before the requested page is
returned to the client.

For advanced customizations and integration with other business systems, you can use other
development tools and technologies that Content Server supports.

9.2 Changing Configurations with the Idoc Script Custom
Scripting Language

Idoc Script is primarily used in the following situations:

• For include code, an include defines pieces of code used to build Content Server web
pages. They are defined once in a resource file then referenced by template files as
necessary. Includes are used on almost every page of the Content Server website.
A super tag can also be used, which defines exceptions to an existing include. The super
tag tells the include to start with an existing include and add to it or modify it using the
specified code.

• For variables, you can use variables to customize the Content Server behavior. Variable
values can be stored in an environment resource, such as the config.cfg file and many
are predefined in Content Server. You can also define your own custom variables.

• For functions, many built-in global functions are used in Content Server. These perform
actions such as date formatting or string comparisons. Some functions return results and
some are used for personalization functions, such as those found on the My Profile page.

• For conditionals, you can use conditionals to test code and include or exclude the code
from an assembled web page.

• For looping, two types of looping are available using Idoc Script: ResultSet looping, in
which a set of code is repeated for each row in a ResultSet that is returned from a query
and while looping, which is a conditional loop.

9-1

• In Administration areas, such as Workflow customization, web layouts, archiver and
search expressions.

For information about usage, syntax, and configuration variables, see Configuration Variables
in Oracle Fusion Middleware Configuration Reference for Oracle WebCenter Content.

9.3 Changing Configurations with Development Tools and
Technologies

For advanced customizations and integration with other business systems, Content Server
supports the following development tools and technologies:

• VBScript

• ASP

• J++

• JavaScript

• ASP+

• J2EE

• Java

• JSP

• COM

• Visual Basic

• DreamWeaver

• .Net

• C++

• Visual InterDev

Chapter 9
Changing Configurations with Development Tools and Technologies

9-2

10
Customizing Services

This chapter describes how to customize Oracle WebCenter Content Server services.

This chapter includes the following sections:

• About Customizing Services

• Customizing Services for Communicating with Content Server

• Customizing Services for Accessing the Database

10.1 About Customizing Services
Content Server services are functions or procedures performed by Content Server. Calling a
Content Server service (making a service request) is the only way to communicate with
Content Server or to access the database.

Any service can be called externally (from outside Content Server) or internally (from within
Content Server). Client services are usually called externally while administrative services are
called internally. The service uses its own attributes and actions to execute the request, based
on any parameters passed to the service.

The standard Content Server services are defined in the StandardServices table in
DomainHome/resources/core/tables/std_services.htm. A service definition contains three
main elements:

• The service name.

• The service attributes, which define the following aspects of the service:

– service class, which specifies which Java class the service has access to. This
determines what actions can be performed by the service.

– access level, which assigns a user permission level to the service.

– template page, which specifies the template that displays the results of the service

– service type, which specifies if the service is to be executed as a subservice inside
another service

– subjects notified, which specifies the subsystems to be notified by the service.

– error message, which is returned by the service if no action error message overrides it

• The service action, which is a colon-separated list that defines the following aspects of the
action:

– Action type

– Action name

– Action parameters

– Action control mask

– Action error message

10-1

Understanding and using services is an integral part of creating components and customizing
Content Server. For more information, see Getting Started with Integrating WebCenter Content
into Your Environment.

10.2 Customizing Services for Communicating with Content
Server

Clients use services to communicate with Content Server. A service call can be performed
from either the client or server side, so services can be performed on behalf of the web
browser client or within the system itself.

For more information about services, see Services.

For more information about customizing services, see Customizing Services in the Oracle
Fusion Middleware Services Reference for Oracle WebCenter Content.

10.3 Customizing Services for Accessing the Database
Clients use services to access the Oracle WebCenter Content database. Any program or
HTML page can use services to request information from Content Server.

For more information about services, see Services.

For more information about customizing services, see Customizing Services in the Oracle
Fusion Middleware Services Reference for Oracle WebCenter Content.

Chapter 10
Customizing Services for Communicating with Content Server

10-2

11
Generating Actions Menus

This chapter describes how to generate Actions menus for Oracle WebCenter Content Server.

This chapter includes the following sections:

• About Generating Actions Menus

• Creating Display Tables

• Customizing Actions Menus

11.1 About Generating Actions Menus
In previous versions of Content Server, when a component writer wanted to create an HTML
table like those used on the search results page, HTML code had to be copied and pasted.
The information in the tables was mixed with the HTML, with no separation between data and
display.

The same issue was true for Actions menus. Data and display for the tables and menus were
tightly coupled, making it impossible to perform global changes to all tables in Content Server
except for those changes done with CSS modifications. It was also difficult for components to
target and modify specific aspects of both the tables and the menus.

To customize a page's Actions menu, a developer can override one of the following include
files then modify the PageMenusData ResultSet. These includes are all defined in the
DomainHome/resources/core/resources/std_page.idoc file:

• custom_searchapi_result_menus_setup
• custom_docinfo_menus_setup
• custom_query_page_menus_setup
• custom_audit_info_menus_setup
In addition, tables like the one used on the search results page can be created by setting up
ResultSets of data then calling specific resource includes which use that data to display the
page. ResultSets can also be used to create Actions menus like those found on the Workflow
In Queue and Search Results pages.

The Actions menu and HTML table display frameworks allow developers to create quick and
flexible web pages that match the look and feel of the rest of the system. They also allow
component writers to easily extend, add to, and override any or all of the Headline View or
Thumbnail View tables on the server, and any of the Actions menus.

11.2 Creating Display Tables
Different display tables are used for the search results page for each display type:

• Headline view

• Thumbnail view

11-1

One of the first steps in any table setup is to retrieve documents to display, as {Example - Code
to Retrieve Documents} shows.

Example 11-1 Code to Retrieve Documents

<$QueryText = "dDocAuthor <matches> `sysadmin`"$>
<$executeService("GET_SEARCH_RESULTS")$>

11.2.1 Headline View Tables
The following example shows how to create a Headline View table. The concepts discussed
here are also used to create the other table types.

The initial step in this process is to create a ResultSet that describes the columns of the table,
as {Example - ResultSet to Describe Table Columns} shows.

A ResultSet called ColumnProperties is created. Each row in the table corresponds to a
column on the table to be created. Each column can have several attributes associated with it.
Some of the more common attributes are:

• id: This is a mandatory attribute. Each column in the table being created must have an ID
associated with it. The ID is used later to determine what will be displayed in every row.

• width: The width of the column. This can be any CSS width declaration such as 100px,
15em, or auto, which causes the column to auto-size, filling as much of the table as
possible.

• headerLabel: The text to be displayed in the header of this column.

• rowAlign: An indication of whether the contents should be left, right, or center aligned.

• headerURL: Used to link the column header text to a URL.

The next step is to specify what data will be displayed in each row of the table, as {Example -
Data to Display in a ResultSet} shows.

The ColumnProperties ResultSet technically has a row for each column in the table, while in
RowData, there is only one row. Data entered into this ResultSet is of the following form:

<$RowData.%COLUMN_ID% = "%IDOCSCRIPT%"$>

Each column in the RowData ResultSet refers to an actual column that will appear in the final
table. Each column in this ResultSet has a corresponding "ID" in the ColumnProperties
ResultSet declared earlier. An Idoc Script expression is assigned to each cell in this ResultSet.
It will then be evaluated during the display of each row as it is written to the HTML document.

Next the resource include must be created to display each row in the table.

<$include create_slim_table_row_include$>

Calling this resource include creates the slim_table_row_include resource include. Instead of
parsing and evaluating the RowData ResultSet for each row in the table, it is done once.

Use the following steps to set multiple row includes (for example, for a single table which
displays different rows for different types of items):

1. Delete and re-create the RowData ResultSet.

2. Set rowIncludeName to the name of the resource include to create.

3. Include create_slim_table_row_include again.

{Example - Code to Display a Table} shows code that displays the table.

Chapter 11
Creating Display Tables

11-2

To make the table look like the table on the search results page, set the following value in the
script:

<$UseRowHighlighting = true$>

One special customization with the Headline View table allows any component writer or
administrator to easily override how the data in any column is presented. {Example - Custom
Include Declaration in a Component} shows a custom include that can be declared from within
a component.

Example 11-2 ResultSet to Describe Table Columns

<$exec rsCreateResultSet("ColumnProperties",
 "id,width,headerLabel,rowAlign")$>

<$exec rsAppendNewRow("ColumnProperties")$>
<$ColumnProperties.id = "dDocName"$>
<$ColumnProperties.width = "150px"$>
<$ColumnProperties.headerLabel = lc("wwDocNameTag")$>
<$ColumnProperties.rowAlign = "center"$>

<$exec rsAppendNewRow("ColumnProperties")$>
<$ColumnProperties.id = "dDocTitle"$>
<$ColumnProperties.width = "auto"$>
<$ColumnProperties.headerLabel = lc("wwTitle")$>
<$ColumnProperties.rowAlign = "left"$>

<$exec rsAppendNewRow("ColumnProperties")$>
<$ColumnProperties.id = "actions"$>
<$ColumnProperties.width = "75px"$>
<$ColumnProperties.headerLabel = lc("wwActions")$>
<$ColumnProperties.rowAlign = "center"$>

Example 11-3 Code to Display a Table

<$include slim_table_header$>
<$loop SearchResults$>
 <$include slim_table_row_include$>
<$endloop$>
<$include slim_table_footer$>

Example 11-4 Data to Display in a ResultSet

<$exec rsCreateResultSet("RowData","dDocName,dDocTitle,actions")$>
<$exec rsAppendNewRow("RowData")$>
<$RowData.dDocName = "<$dDocName$>"$>
<$RowData.dDocTitle = "<$dDocTitle$>"$>
<$RowData.actions = "<$include doc_info_action_image$>"$>

Example 11-5 Custom Include Declaration in a Component

<@dynamichtml slim_table_title@>
 <$dDocTitle$>
<@end@>

If dDocTitle:slimTableCellInclude=slim_table_title is added to the IntradocDir/config/
config.cfg file or set from within a script, all Headline View tables with a column ID of
dDocTitle are displayed using the defined custom include. This overrides the RowData for these
columns.

Chapter 11
Creating Display Tables

11-3

11.2.2 Classic View Tables
Classic View table creation is almost identical to Headline View table creation. The major
differences center around different variables and different include names, as shown in the
following table.

Classic View Table Headline View Table

classic_table_header slim_table_header
classic_table_footer slim_table_footer
create_classic_table_row_include create_slim_table_row_include
classic_table_row_include slim_table_row_include

11.2.3 Thumbnail View Tables
The table for the Thumbnail View is created differently. The ColumnProperties and RowData
ResultSets are not constructed. Instead, the number of columns are set, and an Idoc Script
include name is used to paint each cell, as {Example - Code for Cells in a Thumbnail View
Table} shows. This is less easy to customize and less data-driven than the other methods, but
this type of table is also much less structured.

Example 11-6 Code for Cells in a Thumbnail View Table

<$numDamColumns = 4$>
<$damCellIncludeName = "my_sample_dam_cell"$>
<$include dam_table_header$>
<$loop SearchResults$>
 <$include dam_table_item$>
<$endloop$>
<$include dam_table_footer$>

11.3 Customizing Actions Menus
1. The first step in customization is to add the Actions menu icon to the Actions column.

{Example - Code to Incorporate Actions Menu in Rows} incorporates an Actions menu into
each row of the Headline View sample table used previously.

2. This inserts the action image into the appropriate column. However, clicking it does nothing
because the actual menu is not written to the HTML page. {Example - Data to Construct an
Actions Menu} shows code that creates the data to be used to construct this menu.

This code creates a ResultSet called PopupProps, where each row corresponds to an
action in the menu being created. Each action can have several attributes associated with
it. Some of the more common attributes follow:

• label: A string displayed as the label for the action.

• function: The URL or JavaScript method to be associated with this action.

• class: A classification for this action. It can be something as simple as "search",
"document", "workflow", or even the name of your component. It places the action into
a group so that it can be quickly enabled or disabled with the rest of the actions within
that same group.

Chapter 11
Customizing Actions Menus

11-4

• id: Another method of classification, much more specific than "class". This method
should be unique to the application, and you can use it to hide certain actions from
appearing within the menus.

• ifClause: An optional attribute evaluated every time that action is about to be written
to the HTML document. If the clause evaluates to FALSE, the action is not displayed.

• isDisabled: If set to 1, the action is never displayed.

• linkTarget: Used to make this link open a page in a different window. This attribute
points to any anchor tag target.

3. After the data is set, it can be used to create an Idoc Script resource that writes this
Actions menu, as {Example - Resource to Write an Actions Menu} shows.

This resource works like create_slim_table_row_include. It constructs a new Idoc Script
resource called action_popup_container_include. To rename it, you could set
<$actionPopupContainerIncludeName = new_include_name$> in the script.

{Example - Code to Call an Include for Each Row of a table} shows code to have this
include called for each row of the Headline View table.

This code creates a PopupData ResultSet similar to the RowData ResultSet. It is structured
in the same way, and is used as a location to print the Actions menu containers which are
hidden until a user clicks on the action image.

4. The table created now has Actions menus, similar to those normally seen on the search
results page whenever the appropriate image is clicked.

Editing these actions is done by adding and deleting rows from the PopupProps ResultSet
or editing rows that already exist. In addition to this type of customization, actions can be
hidden by setting the disabledActionPopupClasses and disabledActionPopupIds
variables. These can be set in the config/config.cfg file or in the Idoc Script itself, as
{Example - Code to Hide in an Actions Menu} shows.

5. Setting these variables causes any actions whose class is either workflow or folders, or
whose ID is getNativeFile or alertDocName, to always be hidden. Using these variables
enable Content Server administrators and component writers to hide specific actions either
globally or for specific pages.

Component writers also can override a number of Idoc Script resource includes to modify
functionality in this area on either a global or targeted scale. The following includes are just
a few of the available resource includes:

• custom_add_to_action_popup_data
• custom_modify_action_popup_data
• classic_table_row_pre_display
• slim_table_row_pre_display
• custom_row_pre_display

Example 11-7 Code to Incorporate Actions Menus in Rows

<$RowData.actions = "<$include action_popup_image$>" &
 " <$include doc_info_action_image$>"$>

Example 11-8 Data to Construct an Actions Menu

<$exec rsCreateResultSet("PopupProps",
 "label,onClick,function,class,id,ifClause")$>

<$exec rsAppendNewRow("PopupProps")$>

Chapter 11
Customizing Actions Menus

11-5

<$PopupProps.label = lc("wwCheckOut")$>
<$PopupProps.function = "<$HttpCgiPath$>?IdcService=CHECKOUT" &
 "&dID=<dID>&dDocName=<$url(dDocName)$>" &
 "&dDocTitle=<$url(dDocTitle)$>"$>
<$PopupProps.class = "document"$>
<$PopupProps.id = "checkout"$>

<$exec rsAppendNewRow("PopupProps")$>
<$PopupProps.label = lc("wwGetNativeFile")$>
<$PopupProps.function = "<$HttpCgiPath$>?IdcService=GET_FILE" &
 "&dID=<dID>&dDocName=<$url(dDocName)$>" &
 "&allowInterrupt=1"$>
<$PopupProps.ifClause = "showNativeFileLink"$>
<$PopupProps.class = "document"$>
<$PopupProps.id = "getNativeFile"$>

<$exec rsAppendNewRow("PopupProps")$>
<$PopupProps.label = lc("wwTest")$>
<$PopupProps.function = "javascript:alert('<$js(dDocName)$>');"$>
<$PopupProps.ifClause = "showTestAction"$>
<$PopupProps.class = "debug"$>
<$PopupProps.id = "alertDocName"$>

Example 11-9 Resource to Write an Actions Menu

<$include create_action_popup_container_include$>

Example 11-10 Code to Call an Include for Each Row of a Table

<$exec rsCreateResultSet("PopupData", "actions")$>
<$exec rsAppendNewRow("PopupData")$>
<$PopupData.actions="<$include action_popup_container_include$>"$>

Example 11-11 Code to Hide Items in an Actions Menu

<$disabledActionPopupClasses = "workflow,folders"$>
<$disabledActionPopupIds = "getNativeFile,alertDocName"$>

11.4 Customizing Actions Menus
This inserts the action image into the appropriate column. However, clicking it does nothing
because the actual menu is not written to the HTML page. {Example - Data to Construct an
Actions Menu} shows code that creates the data to be used to construct this menu.

This code creates a ResultSet called PopupProps, where each row corresponds to an action in
the menu being created. Each action can have several attributes associated with it. Some of
the more common attributes follow:

• label: A string displayed as the label for the action.

• function: The URL or JavaScript method to be associated with this action.

• class: A classification for this action. It can be something as simple as "search",
"document", "workflow", or even the name of your component. It places the action into a
group so that it can be quickly enabled or disabled with the rest of the actions within that
same group.

• id: Another method of classification, much more specific than "class". This method should
be unique to the application, and you can use it to hide certain actions from appearing
within the menus.

Chapter 11
Customizing Actions Menus

11-6

• ifClause: An optional attribute evaluated every time that action is about to be written to the
HTML document. If the clause evaluates to FALSE, the action is not displayed.

• isDisabled: If set to 1, the action is never displayed.

• linkTarget: Used to make this link open a page in a different window. This attribute points
to any anchor tag target.

After the data is set, it can be used to create an Idoc Script resource that writes this Actions
menu, as {Example - Resource to Write an Actions Menu} shows.

This resource works like create_slim_table_row_include. It constructs a new Idoc Script
resource called action_popup_container_include. To rename it, you could set
<$actionPopupContainerIncludeName = new_include_name$> in the script.

{Example - Code to Call an Include for Each Row of a table} shows code to have this include
called for each row of the Headline View table.

This code creates a PopupData ResultSet similar to the RowData ResultSet. It is structured in
the same way, and is used as a location to print the Actions menu containers which are
hidden until a user clicks on the action image.

The table created now has Actions menus, similar to those normally seen on the search
results page whenever the appropriate image is clicked.

Editing these actions is done by adding and deleting rows from the PopupProps ResultSet or
editing rows that already exist. In addition to this type of customization, actions can be hidden
by setting the disabledActionPopupClasses and disabledActionPopupIds variables. These
can be set in the config/config.cfg file or in the Idoc Script itself, as {Example - Code to Hide
Items in an Actions menu} shows.

Setting these variables causes any actions whose class is either workflow or folders, or
whose ID is getNativeFile or alertDocName, to always be hidden. Using these variables
enable Content Server administrators and component writers to hide specific actions either
globally or for specific pages.

Component writers also can override a number of Idoc Script resource includes to modify
functionality in this area on either a global or targeted scale. The following includes are just a
few of the available resource includes:

• custom_add_to_action_popup_data
• custom_modify_action_popup_data
• classic_table_row_pre_display
• slim_table_row_pre_display
• custom_row_pre_display
Example 11-12 Code to Incorporate Actions Menus in Rows

<$RowData.actions = "<$include action_popup_image$>" &
 " <$include doc_info_action_image$>"$>

Example 11-13 Data to Construct an Actions Menu

<$exec rsCreateResultSet("PopupProps",
 "label,onClick,function,class,id,ifClause")$>

<$exec rsAppendNewRow("PopupProps")$>
<$PopupProps.label = lc("wwCheckOut")$>
<$PopupProps.function = "<$HttpCgiPath$>?IdcService=CHECKOUT" &

Chapter 11
Customizing Actions Menus

11-7

 "&dID=<dID>&dDocName=<$url(dDocName)$>" &
 "&dDocTitle=<$url(dDocTitle)$>"$>
<$PopupProps.class = "document"$>
<$PopupProps.id = "checkout"$>

<$exec rsAppendNewRow("PopupProps")$>
<$PopupProps.label = lc("wwGetNativeFile")$>
<$PopupProps.function = "<$HttpCgiPath$>?IdcService=GET_FILE" &
 "&dID=<dID>&dDocName=<$url(dDocName)$>" &
 "&allowInterrupt=1"$>
<$PopupProps.ifClause = "showNativeFileLink"$>
<$PopupProps.class = "document"$>
<$PopupProps.id = "getNativeFile"$>

<$exec rsAppendNewRow("PopupProps")$>
<$PopupProps.label = lc("wwTest")$>
<$PopupProps.function = "javascript:alert('<$js(dDocName)$>');"$>
<$PopupProps.ifClause = "showTestAction"$>
<$PopupProps.class = "debug"$>
<$PopupProps.id = "alertDocName"$>

Example 11-14 Resource to Write an Actions Menu

<$include create_action_popup_container_include$>

Example 11-15 Code to Hide Items in an Actions Menu

<$disabledActionPopupClasses = "workflow,folders"$>
<$disabledActionPopupIds = "getNativeFile,alertDocName"$>

Example 11-16 Code to Call an Include for Each Row of a Table

<$exec rsCreateResultSet("PopupData", "actions")$>
<$exec rsAppendNewRow("PopupData")$>
<$PopupData.actions="<$include action_popup_container_include$>"$>

Chapter 11
Customizing Actions Menus

11-8

Part V
Customizing Content Server with Components

This part describes how to work with Oracle WebCenter Content Server components, which
are programs that modify Content Server functionality.

Part V contains the following chapters:

• Getting Started with Content Server Components

• Enabling and Disabling Components for Content Server

• Updating Component Configurations

• Customizing Content Tracker

• Customizing Content Categorizer

• Downloading Custom Components

• Creating Custom Components

• Installing Components

• Uninstalling Components

12
Getting Started with Content Server
Components

This chapter describes how to work with Oracle WebCenter Content Server components,
which are programs used to modify Content Server functionality.

This chapter includes the following sections:

• About Standard_ System_ and Custom Components

• Tools for Managing Components

• Component Files

• Resources for Assembling Web Pages

12.1 About Standard, System, and Custom Components
Components are modular programs designed to interact with Content Server at runtime.
Standard components, system components, and custom components are included with
Content Server to add or change the standard core functionality of Content Server.

12.1.1 Component Files Overview
When you define a custom component, you create or make changes to the following files:

• The idcshort-product-id_components.hda file, which tells Content Server what
components are enabled and where to find the definition file for each component.

• The component definition (or glue) file, which tells Content Server where to find the
resources for the custom component.

• Different custom resource files, which define your customization to standard Content
Server resources.

• Template files, which define custom template pages.

• Other files which contain customization to Content Server graphics, Java code, help files,
and so on.

For more detailed information about these files, see About Directories and Files.

Any type of file can be included in a component, but the following file formats are used most
often:

• HDA

• HTM

• CFG

• Java CLASS

If you build or unpackage components in the Component Wizard, or upload and download
components in the Component Manager, you work with the following files:

12-1

• A compressed ZIP file used to deploy a component on other Content Server instances.

• A manifest.hda file that tells Content Server where to place the files that are unpackaged
or uploaded from a component ZIP file.

12.1.2 Using Components
Components are modular programs that are designed to interact with Content Server at
runtime. The component architecture model is derived from object-oriented technologies, and
encourages the use of small modules to customize Content Server as necessary, rather than
creation of a huge, all-inclusive (but cumbersome) application.

Note:

You can create custom components by manually creating the necessary files and
resources. However, the Component Wizard has no limitations compared to the
manual method, and using it prevents many common mistakes.

Components are typically used to alter the core functionality of Content Server. For example,
you could use a component to perform any of these tasks:

• Modify the standard security features

• Change the way search results are requested and returned

• Enable Content Server to work with a particular system (such as a Macintosh client or a
proprietary CAD program)

12.1.2.1 Advantages of Using Components
Using component architecture with Content Server gives you these advantages:

• You can modify source code without compromising the integrity of the product.
Content Server loads many of its resources from external text files, so you can view the
files to analyze how the system works, and then copy and modify the files to your
requirements.

• You can use a custom component on multiple instances across multiple platforms.
When you have created a custom component, you can package it as a ZIP file and load it
on other Content Server instances. Many custom components can work on Content Server
platforms other than the original development platform.

• You can turn individual components on and off for troubleshooting purposes.
You can group customizations so that each component customizes a specific Content
Server function or area. If you have problems, disabling components one at a time can
help you quickly isolate the trouble.

• You can reinstall or upgrade a Content Server instance without compromising
customizations.
Custom components override existing product resources rather than replace them.
Replacing the standard Content Server files might not affect your customizations.

12.1.2.2 Constraints
Keep the following constraints in mind when deciding whether to use custom components:

Chapter 12
About Standard, System, and Custom Components

12-2

• Custom components change behavior and look-and-feel systemwide. If you want
your changes to apply only in limited situations, you might want to consider dynamic server
pages.

• Custom components can be affected by changes to the Content Server core
functionality. Because new functionality may change the way your components behave,
customizations are not guaranteed to work for future Content Server releases. Whenever
you upgrade, you should review and test your custom components.

• A component may not be necessary for simple customizations. A large number of
simple components could become difficult to manage.

12.1.2.3 Installed Components
Components must be installed and enabled to be used by Content Server. Components
provided with Content Server are automatically installed, and they are enabled or disabled by
default. Custom components must be installed and enabled to be usable. Several tools are
available for working with components:

• The Component Wizard automates the process of creating custom components. You can
use the Component Wizard to create new components, modify existing components, and
package components for use on other Content Server instances. For more information,
see Component Wizard.

• The Advanced Component Manager provides a way to manage custom components in
Content Server. By using the Advanced Component Manager, you can add new
components and enable or disable components for Content Server. For more information,
see Managing Custom Components with Advanced Component Manager.

• The ComponentTool is a command-line utility for installing, enabling, and disabling
components for Content Server.

For information about component architecture and creation, see Getting Started with Content
Server Components.

12.1.3 About Directories and Files
The following files are used in component creation:

• HDA files

• Custom resource files

• Manifest file

• Other files, such as customized site files, the component ZIP file, and custom installation
parameter files

In the typical directory structure for WebCenter Content, the files for a component are stored in
a component directory, in the DomainHome/ucm/short-product-id/custom/ directory.

Content Server uses a data binder to cache data, such as variable values and lookup keys.

12.1.3.1 HDA Files
A HyperData File (HDA) is used to define properties and tabular data in a simple, structured
ASCII file format. It is a text file that is used by Content Server to determine which components
are enabled and disabled and where to find the definition files for that component.

The HDA file format is useful for data that changes frequently because the compact size and
simple format make data communication faster and easier for Content Server.

Chapter 12
About Standard, System, and Custom Components

12-3

The HDA file type is used to define the following component files:

• Components file (idcshort-product-id_components.hda)

• Component definition file

• Manifest file

• Dynamic table resource file

• Template resource file

{Example - idccs_components.hda File for a Component} shows an idccs_components.hda file
that points to a component called customhelp.

Example 12-1 idccs_components.hda File for a Component

<?hda charset=Cp1252 encoding=iso-8859-1?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
@end
@ResultSet Components
2
name
location
customhelp
custom/customhelp/customhelp.hda
@end

12.1.3.1.1 Elements in HDA Files
Each HDA file contains a header line and one or more sections. The header line identifies the
Content Server version, character set, and Java encoding for the HDA file. If an HDA file
contains double-byte (Asian language) characters, the correct character set and encoding
must be specified so that Content Server can read the file properly. The header line is not
required for single-byte characters, but it is a good practice to include it in your HDA files.

Two types of sections, Properties and ResultSet, are relevant to component development.
These sections are used to define the properties of the file (name, location, and so on) and the
ResultSet, which defines a table or columns and rows of data. A ResultSet often represents
the results of a query. All other sections tags are for internal application use only.

Comments are not allowed within a section of an HDA file. However, you can place comments
in the HDA file before the first section, between sections, or after the last section. Blank lines
within a section of an HDA file are interpreted as a NULL value. Blank lines before the first
section, between sections, or after the last section are ignored. None of the section types are
mandatory in an HDA file, so unused sections can be deleted.

• The Properties section contains a group of name/value pairs. For a custom component,
the most common name for a Properties section is LocalData, which means that the
name/value pairs are valid only for the current HDA file.

You can also define global name/value pairs in a Properties section called Environment,
but this section is rarely used. The recommended practice is to define global environment
variables in a configuration file, such as config.cfg.

{Example - Properties Section of an HDA File } shows a Properties section from an HDA
file.

Properties Section of an HDA File
@Properties LocalData
PageLastChanged=952094472723
LocationInfo=Directory,Public,

Chapter 12
About Standard, System, and Custom Components

12-4

IsJava=1
refreshSubMonikers=
PageUrl=/intradoc/groups/public/pages/index.htm
LastChanged=-1
TemplatePage=DIRECTORY_PAGE
IdcService=PAGE_HANDLER
LinkSelectedIndex=0
PageName=index
HeaderText=This is a sample page. The Page Name must remain index. The Page
Properties for this index page should be customized.
PageFunction=SavePage
dSecurityGroup=Public
restrictByGroup=1
PageType=Directory
PageTitle=Content Server Index Page
@end

• Each ResultSet section of an HDA file defines a table or columns and rows of data. A
ResultSet can be used to pass information to a database or to represent the result of a
database query. A ResultSet section has the following structure:

– The first line defines the name of the ResultSet table, using the format @ResultSet
resultset_name.

– The second line defines the number of columns.

– The next n lines define the column names.

– The remaining lines define the values in each cell of the table.

– The last line of the section ends the table, using the format @end.

{Example - ResultSet Section of an HDA File} shows a ResultSet called Scores that has 4
columns and 3 rows.

ResultSet Section of an HDA File
@ResultSet Scores
4
name
match1
match2
match3
Margaret
68
67
72
Sylvia
70
66
70
Barb
72
71
69
@end

The following table shows the ResultSet data in a columnar form. A ResultSet can be
given any name.

name match1 match2 match3

Margaret 68 67 72

Chapter 12
About Standard, System, and Custom Components

12-5

name match1 match2 match3

Sylvia 70 66 70

Barb 72 71 69

Content Server uses some predefined ResultSets with the following names, which should
not be used for the custom component table.

ResultSet Name Location Purpose

Components IntradocDir/data/components/ idcshort-product-
id_components.hda

Defines the name and
location of any custom
components you have
created. You must specify the
short product ID (cs, ibr,
urm) for short-product-
id.

IntradocReports IdcHomeDir/resources/core/reports/ reports.hda Specifies the default report
templates for Content Server.

IntradocTemplates IdcHomeDir/resources/core/templates/
templates.hda

Specifies all of the default
templates for Content Server
(except for search results and
report templates).

ResourceDefinition DomainHome/ucm/short-product-id/custom/
component_name/component_name.hda

Defines resources for a
custom component.

SearchResultTemplates IdcHomeDir/resources/core/templates/
templates.hda

Specifies the default search
results templates for Content
Server.

12.1.3.1.2 The idccs_components.hda, idcibr_components.hda, or idcurm_components.hda File
The idcshort-product-id_components.hda file is a text file that tells Content Server which
components are enabled and where to find the definition file for each component.

The idcshort-product-id_components.hda file is always stored in the IntradocDir/data/
components/ directory. You can use Component Wizard, Component Manager, or
ComponentTool to make changes to this file if needed.

Note:

As of release 11gR1, the components.hda file and edit_components.hda file have
been combined into one file called idcshort-product-id_components.hda. If
Content Server does not find the idcshort-product-id_components.hda file but
does find the legacy files, then it will migrate the data from the legacy file and create
an idcshort-product-id_components.hda file containing the appropriate data.

{Example - idccs_components.hda File for Multiple Enabled Components} shows an
idccs_components.hda file that lists several enabled components, such as schema,
configuration migration, and SOAP components.

idccs_components.hda File for Multiple Enabled Components
@properties LocalData
blDateFormat=M/d/yy

Chapter 12
About Standard, System, and Custom Components

12-6

@end
@ResultSet Components
2
name
location
SchemaDCL
custom/SchemaDCL/SchemaDCL.hda
ConfigMigrationUtility
custom/ConfigMigrationUtility/Cmu.hda
Soap
custom/Soap/Soap.hda
@end

12.1.3.1.3 Component Definition Files
A component definition file points to the custom resources that you have defined. This file
specifies information about custom resources, ResultSets, and merge rules. Because it serves
as the "glue" that holds a component together, the component definition file is sometimes
called the glue file.

The definition file for a component is typically named component_name.hda, and it is located in
the DomainHome/ucm/short-product-id/custom/component_name/ directory.

Note:

Do not confuse the idcshort-product-id_components.hda file with the
component_name.hda file. The idcshort-product-id_components.hda file is used to
track all installed components. The component_name.hda file contains information that
is specific to a single component.

12.1.3.2 Custom Resource Files
Custom resource files define your Content Server customization. They are usually HDA files
but some are HTM files.

The custom resource files for a component are typically located in the DomainHome/ucm/short-
product-id/custom/component_name/ directory. Some resource files may be placed in
subdirectories, such as resources/core/templates/.

Table 12-1 describes these resources.

Table 12-1 Custom Resource Files

Resource Type File Type Contents

HTML include HTM Definitions of includes

String HTM Localized string definitions

Dynamic table HDA Tables for data that changes often

Static table HTM Tables for data that seldom changes

Query HTM Tables that define queries

Service HTM Tables that define service scripts

Template HDA Tables that specify location and file name for template pages

Chapter 12
About Standard, System, and Custom Components

12-7

Table 12-1 (Cont.) Custom Resource Files

Resource Type File Type Contents

Environment CFG Configuration variable name/value pairs

For more detailed information about these files, see Resources for Assembling Web Pages.

In addition, a template.htm page is used by Content Server to assemble web pages. For more
detailed information about the template.hdm file, see Templates.

A ResultSet HTM table file is used by other resources. A ResultSet table in an HTM file is
similar to the ResultSet of an HDA file, except that it uses HTML table tags to lay out the data.
Static table resources, service resources, and query resources all use this table format.

A ResultSet table in an HTM file begins with <@table table_name@> and ends with <@end@>.
The markup between the start and end tags is an HTML table. Unlike a ResultSet in an HDA
file, the number of columns is implied by the table tags.

Any HTML syntax that does not define the data structure is ignored when the table is loaded.
Therefore, HTML comments are allowed within tables in an HTM file, and HTML style
attributes can be used to improve the presentation of the data in a web browser.

12.1.3.3 Data Binder
Content Server caches data (such as variable values and lookup keys) internally in a data
binder. All data in the data binder is categorized according to where it came from and how it
was created. When a value is required to fulfill a service request, the data in the data binder is
evaluated in the following default order:

1. LocalData

2. ResultSets

3. Environment

This precedence can be changed using Idoc Script functions. For more information, see Idoc
Script Functions and Variables.

12.1.3.3.1 LocalData
The @Properties LocalData section in an HDA file maps to the LocalData category of the
data binder. The LocalData information consists of name/value pairs.

LocalData information is maintained only during the lifetime of the Content Server request and
response. Unlike information about the server environment, which rarely changes, the
LocalData information for each request is dynamic.

From the point of view of an HTTP request, the initial LocalData information is collected from
the REQUEST_METHOD, CONTENT_LENGTH, and QUERY_STRING HTTP environment variables. As the
service request is processed, the LocalData name/value pairs can be added and changed.

12.1.3.3.2 ResultSets
Each @ResultSet section of an HDA file maps to a named result in the DataBinder object.
Some ResultSet can be made active, taking precedence over other ResultSets during a value
search. A ResultSet becomes active when the ResultSet is looped on during page assembly.
An active ResultSet take precedence over any other ResultSets during a value search of the

Chapter 12
About Standard, System, and Custom Components

12-8

DataBinder object. When a service request requires data and the value is not found in the
LocalData or an active ResultSet, the remaining ResultSets (those that are not active) are
searched next.

12.1.3.3.3 Environment
Environment values are placed in the DataBinder object as name/value pairs, which are
defined in configuration files such as IntradocDir/config/config.cfg, intradoc.cfg, and
environment-type resource files.

12.1.3.4 Manifest File
Manifest files are used to upload or unpackage a component ZIP file on Content Server. This
file tells Content Server where to place the individual files that are included in the component
ZIP file. A manifest file is created automatically when you build a component in the Component
Wizard, or when you download a component using the Advanced Component Manager.

All manifest files must be called manifest.hda. The manifest.hda file is included in the
component ZIP file along with the other component files. It must be at the top level of the ZIP
file directory structure.

The manifest.hda file contains a ResultSet table called Manifest, which consists of two
columns:

• The entryType column defines the type of entry in the manifest file.

Entry Type Description Default Path

Classes Java class files DomainHome/ucm/short-product-id/classes/
Common Common files DomainHome/ucm/short-product-id/weblayout/

common/
Component Component

resource files
DomainHome/ucm/short-product-id/custom/

ComponentExtra Associated files,
such as a
readme

DomainHome/ucm/short-product-id/custom/

Help Online help files DomainHome/ucm/short-product-id/weblayout/
help/

Images Graphics files DomainHome/ucm/short-product-id/weblayout/
images/

Jsp JavaServer
Pages

DomainHome/ucm/short-product-id/weblayout/jsp/

Caution:

Avoid using the entry types Common, Help, Images, and Jsp because they were
deprecated in WebCenter Content 11g. WebCenter Content has a publishing
engine that pushes files into the weblayout directory from components. If you
want the same behavior as in a previous release, use the publishing engine;
otherwise, the publishing engine may place files directly into the weblayout
directory from a custom component, overwriting existing files. The overwritten
files could be permanently lost.

Chapter 12
About Standard, System, and Custom Components

12-9

• The location column defines the directory where the files associated with the entry are
installed and specifies the file name for some entry types.

– For a Component entry type, the location is the path and file name for the definition file.
The definition file then tells Content Server which resource files are included in the
component.

– For other entry types, the location can be a path without a file name (to specify all files
in a particular subdirectory) or a path with a file name (to specify an individual file).

– The location should be a path relative to the DomainHome/ucm/short-product-id/
custom/ directory. You can use an absolute path, but then the component can be
installed only on Content Server instances with the same installation directory path.

{Example - manifest.hda file} shows a manifest.hda file.

Example 12-2 manifest.hda File

@ResultSet Manifest
2
entryType
location
component
MyComponent/MyComponent.hda
componentExtra
MyComponent/readme.txt
images
MyComponent/
@end

12.1.3.5 Other Files
Your custom components can include any type of file that Content Server uses for functionality
or to generate its look and feel.

12.1.3.5.1 Customized Site Files
You can add customized files for your site to change the look or actions of Content Server. For
example, the following types of files are often referenced in custom resources:

• Graphics

Replace the icons, backgrounds, and logos that constitute the standard Content Server
interface.

• Help

With the assistance of Consulting Services, you can customize help files for your content
management system.

• Classes

Java code can change or extend the functionality of Content Server. Java class files must
be packaged into directories for placement in the DomainHome/ucm/short-product-id/
classes/ directory.

Chapter 12
About Standard, System, and Custom Components

12-10

Caution:

Avoid placing Graphics and Help files in the weblayout directory manually because
your files may be overwritten by the WebCenter Content publishing engine, which
pushes files into the weblayout directory from components. If you want the same
behavior as in a previous release, use the publishing engine; otherwise, the
publishing engine may place files in this directory directly from a custom component,
overwriting existing files. The overwritten files could be permanently lost. If you need
to place these files in the weblayout directory manually, contact Oracle Consulting
Services.

12.1.3.5.2 Component ZIP File
A component ZIP file contains all files that define a Content Server component. It can be
unpackaged to deploy the component on other Content Server instances.

12.1.3.5.3 Custom Installation Parameter Files
When you define one or more custom installation parameters, several additional files are
created in addition to the files that compose the basic component file structure.

If installation parameters are created for the component, then during the component installation
process the component installer automatically places two files in the directory for the
component within the data/components/ directory. These files hold the preference data as
follows:

• The config.cfg file: Contains the parameters that can be reconfigured after installation.

• The install.cfg file: Contains the preference data definitions and prompt answers.

• Backup ZIP file: A backup file that is created if the component is currently installed and is
being reinstalled.

12.1.3.6 Typical Directory Structure
If you use the Component Wizard to create custom components, your files are stored in the
appropriate directory.

Different component directories are established for each custom component in the
DomainHome/ucm/short-product-id/custom/ directory. Within each component directory,
separate subdirectories are established for reports, templates, and resources, all named
appropriately (for example, component_name/resources/). The component_name.hda file (the
definition file) is stored in the component_name directory.

12.1.4 Development Recommendations
The following sections provide some guidelines to assist you in developing custom
components:

• Creating a Component

• Work with Component Files

• Using a Development Content Server

• Component File Organization

Chapter 12
About Standard, System, and Custom Components

12-11

• Naming Conventions

For more detailed information about creating or modifying components, see Managing
Components in Oracle Fusion Middleware Administering Oracle WebCenter Content or online
help.

12.1.4.1 Creating a Component
If your site needs some functionality in Content Server that the existing components do not
provide, you can create a custom component for your Content Server instance.You can create
a custom component in a definition file, then enable the component and apply it to Content
Server.

To create and enable a custom component:

1. Create a definition file.

2. Add a reference to the definition file in the idcshort-product-id_components.hda file to
enable the component.

3. Restart Content Server to apply the component.

4. Create resources and other files to define your customization. A good approach is to copy,
rename, and modify standard Content Server files to create your custom resource files.

5. Test and revise your customization as necessary. You may need to restart Content Server
to apply your changes.

6. If you want to package the component for later use or for deployment on other Content
Servers instances, build the component and create a component ZIP file.

12.1.4.2 Work with Component Files
Two tools are available for working with component files:

• Component Wizard

The Component Wizard is a Content Server utility that can help you create and edit
component files. You can also use the Component Wizard to package, unpackage, enable,
and disable components. For more information about using this utility, see Managing
Components in Oracle Fusion Middleware Administering Oracle WebCenter Content.

• Text editor

Because most component files are plain text files, you can create and edit the files in your
favorite text editor.

You should use the Component Wizard as much as possible when working with custom
components.

The Component Wizard does several tasks for you and minimizes the amount of work you
need to do in a text editor. Using the Component Wizard helps you follow the recommended
file structure and naming conventions. The Component Wizard automatically adds a readme
text file when you build a component, which helps you document your customization. You
should also include comments within your component files.

12.1.4.3 Using a Development Content Server
Whenever you are customizing Content Server, you should isolate your development efforts
from your production system. Remember to include the same custom metadata fields on your
development Content Server as you have defined for your production Content Server.

Chapter 12
About Standard, System, and Custom Components

12-12

1. When you have successfully tested your modifications on a development Content Server,
use the Component Wizard to build a component ZIP file and then unpackage the
component on your production system.

2. Remember to restart Content Server after enabling or disabling a component.

3. If you are having problems with Content Server after you have installed a custom
component, disable the component and restart Content Server. If this fixes the problem,
you probably need to troubleshoot your component. If the problem is not fixed, you may
need to remove the component completely, using the Component Wizard, to determine
whether there is a problem with the component or with Content Server.

12.1.4.4 Component File Organization
To keep your custom components organized, follow these file structure guidelines. For more
information, see Typical Directory Structure.

Note:

If you use the Component Wizard, it creates component directories for you and
places the component files in the correct directories.

Place each custom component in its own directory within a directory called DomainHome/ucm/
short-product-id/custom/. If your custom component includes resource-type or template-
type resources, or both, the component directory should have subdirectories that follow the
structure of the IdcHomeDir/data/resources/core/ directory:

• resources/ to hold HTML include and table resource files

• resources/lang/ to hold string resource files

• templates/ to hold template files

• reports/ to hold report files

When considering files and their organization, keep the following points in mind:

• Place the definition file for each custom component at the top level of the component's
directory.

• When referring to other files within a component, use relative path names instead of
absolute path names. Using relative path names enables you to move the component to a
different location without having to edit all of the files in the component.

• Content Server is a Java-based application, so forward slashes must be used in all path
names.

• Custom components do not have to be stored on the same computer as Content Server,
but all component files must be accessible to your Content Server instance.

• Images and other objects that are referenced by Content Server web pages must reside
somewhere in the DomainHome/ucm/short-product-id/weblayout/ directory (so that the
web server can access the objects).

12.1.4.5 Naming Conventions
To keep your component files organized and ensure that the files work properly in Content
Server, follow these naming conventions for directories, individual files, and file contents:

Chapter 12
About Standard, System, and Custom Components

12-13

• You should give all of your component directories and files unique and meaningful names.
Keep in mind that as each component is loaded into Content Server, it overrides any
resources with the same file names, so you should use duplicate file names only if you
want certain components to take precedence.

• If you are copying a standard Content Server file, a common practice is to place the prefix
custom_ in front of the original file name. This ensures that you do not overwrite any default
templates, and your customization is easy to identify.

• HTM file types should have the .htm extension, and HDA file types should have the .hda
extension.

• If you are creating a new component file with a text editor, like WordPad, place the file
name within quotation marks in the Save dialog box so that the proper file extension is
assigned to it (for example, myfile.hda). Failure to use quotation marks to define the file
name may result in a file name such as myfile.hda.txt.

• Content Server is case sensitive even if your file system is not. For example, if a file is
named My_Template, Content Server does not recognize case variations such as
my_template or MY_TEMPLATE.

• For localized string resources, you must follow the standard file naming conventions for
Content Server to recognize the strings. You should also use the standard two-character
prefix (cs, sy, ap, or ww) when naming your custom strings. For more information, see
Localized String Resolution.

12.2 Tools for Managing Components
You can use the following tools to manage components:

• Component Wizard

• Managing Custom Components with Advanced Component Manager

• ComponentTool

12.2.1 Component Wizard
The Component Wizard utility automates the process of creating custom components,
including creating and editing all the files necessary for custom components. You can also use
the Component Wizard to modify existing components and to package and unpackage
components for use on Content Server instances.

Figure 12-1 shows the interface to the Component Wizard. For more information, see Creating
Components Using the Component Wizard in Oracle Fusion Middleware Administering Oracle
WebCenter Content.

Chapter 12
Tools for Managing Components

12-14

Figure 12-1 Component Wizard Interface

To access the Component Wizard

• UNIX operating system: Run ComponentWizard, stored in DomainHome/ucm/short-
product-id/bin/.
The Component Wizard main page is displayed.

• Windows operating system: From the Start menu, choose the instance name, then
Utilities, and then Component Wizard.
The Component Wizard main page is displayed.

12.2.2 Managing Custom Components with Advanced Component Manager
The Advanced Component Manager provides a way to manage custom components in
Content Server. With the Advanced Component Manager, you can easily enable or disable
components or add new components to Content Server.

To use the Advanced Component Manager:

1. From the Administration tray or menu, choose Admin Server, then Component
Manager.

The Component Manager page opens.

2. In the first paragraph on the Component Manager page, click advanced component
manager.

The Advanced Component Manager page opens. Figure 12-2 shows this page, which has
lists of enabled and disabled components.

Chapter 12
Tools for Managing Components

12-15

Figure 12-2 Advanced Component Manager Page

3. On the Advanced Component Manager page, you can do these tasks:

• View lists of enabled and disabled components by categories and other filters

Chapter 12
Tools for Managing Components

12-16

• View details about a selected component

• Enable components

• Disable components

• Install custom components

• Uninstall custom components

For more information, see Managing Components in Oracle Fusion Middleware Administering
Oracle WebCenter Content.

12.2.3 ComponentTool
ComponentTool is a command-line utility for installing, enabling, and disabling components in
Content Server. After installing a component, ComponentTool automatically enables it.
ComponentTool is located in the DomainHome/ucm/cs/bin/ directory.

12.3 Component Files
The idcshort-product-id_components.hda file tells Oracle WebCenter Content which
components are enabled and where to find the component definition (glue) file for each
component. This file has two forms, one for each of the WebCenter Content applications:

• idcibr_components.hda for Inbound Refinery

• idcurm_components.hda for Records

The file is always stored in the IntradocDir/data/components/ directory.

You should not create these files manually. Always use the Component Wizard to create your
component files.

12.3.1 The idc Product _components.hda File
The idcshort-product-id_components.hda file always includes a ResultSet called
Components that defines the name and file path of each definition file. You can use the
Component Wizard or the Component Manager to make changes to the components HDA file.
For more information, see Enabling and Disabling Components for Content Server.

Example 12-3 shows an idccs_components.hda file that specifies two enabled components,
MyComponent and CustomHelp, for Content Server.

Example 12-3 idccs_components.hda File

<?hda version="5.1.1 (build011203)" jcharset=Cp1252 encoding=iso-8859-1?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
blFieldTypes=
@end
@ResultSet Components
2
name
location
MyComponent
custom/MultiCheckin/my_component.hda
CustomHelp
custom/customhelp/customhelp.hda
@end

Chapter 12
Component Files

12-17

12.3.2 Components ResultSet
The order that components are listed in the Components ResultSet determines the order that
components are loaded when you start Content Server. If a component listed later in the
ResultSet has a resource with the same name as an earlier component, the resource in the
later component takes precedence.

A Components ResultSet has two columns:

• The name column provides a descriptive name for each component, which is used in the
Component Wizard, Component Manager, and Content Server error messages.

• The location column defines the location of the definition file for each component. The
location can be an absolute path or can be a path relative to the Content Server installation
directory.

Note:

Always use forward slashes in the location path.

12.3.3 Component Definition (Glue) File
A component definition file, or glue file, points to the custom resources that you have defined.
The definition file for a component is named component_name.hda, and it is typically located in
the DomainHome/ucm/short-product-id/custom/component_name directory. The Component
Wizard can be used to create and make changes to a definition file.

A definition file contains a ResourceDefinition ResultSet and may contain a MergeRules
ResultSet, a Filters ResultSet, a ClassAliases ResultSet, or any combination of these
ResultSets. Example 12-4 shows a typical component definition file.

Example 12-4 Component Definition File

<?hda jcharset=UTF8 encoding=utf-8?>
@Properties LocalData
classpath=$COMPONENT_DIR/classes.jar
ComponentName=Custom DCL Component
serverVersion=7.3
version=2010_10_22
@end
@ResultSet ResourceDefinition
4
type
filename
tables
loadOrder
template
dcl_templates.hda
DCLCustomTemplates
1
resource
dcl_resource.htm
null
1
resource
dcl_upper_clmns_map.htm

Chapter 12
Component Files

12-18

DCLColumnTranslationTable
1
resource
dcl_data_sources.htm
dclDataSources
1
service
dcl_services.htm
CustomServices
1
query
dcl_query.htm
CustomQueryTable
1
resource
dcl_checkin_tables.hda
null
1
@end

@ResultSet MergeRules
3
fromTable
toTable
column
DCLCustomTemplates
IntradocTemplates
name
DCLColumnTranslationTable
ColumnTranslation
alias
DCLDataSources
DataSources
name
CustomDCLServiceQueries
ListBoxServiceQueries
dataSource
@end

@ResultSet Filters
4
type
location
parameter
loadOrder
loadMetaOptionsLists
intradoc.server.ExecuteSubServiceFilter
GET_CHOICE_LIST_SUB
1
@end

12.3.3.1 ResourceDefinition ResultSet
The ResourceDefinition ResultSet table defines the type, file name, table names, and load
order of custom resources. {Example - ResourceDefinition ResultSet} shows the structure of a
ResourceDefinition ResultSet:

Example 12-5 ResourceDefinition ResultSet

@ResultSet ResourceDefinition
4
type

Chapter 12
Component Files

12-19

filename
tables
loadOrder
template
dcl_templates.hda
DCLCustomTemplates
1
resource
dcl_resource.htm
null
1
resource
dcl_upper_clmns_map.htm
DCLColumnTranslationTable
1
resource
dcl_data_sources.htm
dclDataSources
1
service
dcl_services.htm
CustomServices
1
query
dcl_query.htm
CustomQueryTable
1
resource
dcl_checkin_tables.hda
null
1
@end

12.3.3.1.1 ResourceDefinition ResultSet Columns
A ResourceDefinition ResultSet consists of four columns:

• The type column defines the resource type, which must be one of the following values:

– resource, which points to an HTML include (HTM), string (HTM), dynamic table (HDA),
or static table (HTM) resource file.

– environment, which points to an environment resource (CFG) file.

– template, which points to a template resource (HDA) file.

– query, which points to a query resource (HTM) file.

– service, which points to a service resource (HTM) file.

• The filename column defines the path and file name of the custom resource file. This can
be an absolute path or a relative path. Relative paths are relative to the DomainHome/ucm/
short-product-id/custom/component_name/ directory.

• The tables column defines the ResultSet tables to be loaded from the resource file.
ResultSet names are separated with a comma. If the resource file does not include
ResultSets, this value is null. For example, HTML include resources do not include table
definitions, so the value for the tables column is always null for an HTML include file.

• The loadOrder column defines the order in which the resource is loaded. Resources are
loaded in ascending order, starting with resources that have a loadOrder of 1. If multiple
resources have the same loadOrder, the resources are loaded in the order they are listed
in the ResourceDefinition ResultSet. If there are multiple resources with the same name,

Chapter 12
Component Files

12-20

the last resource loaded is the one used by the system. Normally, you should set
loadOrder to 1, unless there is a particular reason to always load one resource after the
others.

12.3.3.2 MergeRules ResultSet
The MergeRules ResultSet table identifies new tables that are defined in a custom component,
and specifies which existing tables the new data is loaded into. MergeRules are required for
custom template resources but are optional for custom dynamic table and static table
resources. MergeRules are not required for custom service, query, HTML include, string, and
environment resources.

{Example - MergeRules ResultSet} shows a MergeRules ResultSet.

Example 12-6 MergeRules ResultSet

@ResultSet MergeRules
4
fromTable
toTable
column
loadOrder
DCLCustomTemplates
IntradocTemplates
name
1
DCLColumnTranslationTable
ColumnTranslation
alias
1
DCLDataSources
DataSources
name
1
CustomDCLServiceQueries
ListBoxServiceQueries
dataSource
1
@end

12.3.3.2.1 MergeRules ResultSet Columns
A MergeRules ResultSet consists of three columns:

• The fromTable column specifies a table that was loaded by a custom resource and
contains new data to be merged with the existing data. To properly perform a merge, the
fromTable table must have the same number of columns and the same column names as
the toTable table.

• The toTable column specifies the name of the existing table into which the new data is
merged. Usually, the toTable value is one of the standard Content Server tables, such as
IntradocTemplates or QueryTable.

• The column column specifies the name of the table column that Content Server uses to
compare and update data.

– Content Server compares the values of column in fromTable and toTable. For each
fromTable value that is identical to a value currently in toTable, the row in toTable is
replaced by the row in fromTable. For each fromTable value that is not identical to a

Chapter 12
Component Files

12-21

value currently in toTable, a new row is added to toTable and populated with the data
from the row of fromTable.

– The column value is usually name. Setting this value to null defaults to the first column,
which is generally a name column.

12.3.3.3 Filters ResultSet
The Filters ResultSet table defines filters, which are used to execute custom Java code when
certain Content Server events are triggered, such as when new content is checked in or when
the server first starts. {Example - Filters ResultSet} shows a typical Filters ResultSet.

Example 12-7 Filters ResultSet

@ResultSet Filters
4
type
location
parameter
loadOrder
loadMetaOptionsLists
intradoc.server.ExecuteSubServiceFilter
GET_CHOICE_LIST_SUB
1
@end

12.3.3.4 ClassAliases ResultSet
The ClassAliases ResultSet table points to custom Java class files, which are used to extend
the functionality of an entire Content Server Java class. {Example - ClassAliases ResultSet}
shows a typical ClassAliases ResultSet.

Example 12-8 ClassAliases ResultSet

@ResultSet ClassAliases
2
classname
location
WorkflowDocImplementor
WorkflowCheck.CriteriaWorkflowImplementor
@end

12.4 Resources for Assembling Web Pages
Resources are the files that define and implement the actual customization you make to
Content Server. Resources can be snippets of HTML code, dynamic page elements, queries
that gather data from the database, services that perform Content Server actions, or special
code to conditionally format information.

The custom resource files for a component are typically located in the DomainHome/ucm/short-
product-id/custom/component_name directory. If your component has more than a few
resources, it is easier to maintain the files if you place them in subdirectories (such as
component_name/resources or component_name/templates) within the component directory.

Always use the Component Wizard to create your resource files.You should not create a
resource file manually. There are two ways to edit a resource file after it is created:

• Component Wizard

Chapter 12
Resources for Assembling Web Pages

12-22

You can add, edit, or remove a resource file from a component using the Component
Wizard. The Component Wizard provides code for predefined resources that you can use
as a starting point for creating custom resources. You can also open resource files in a text
editor from within the Component Wizard.

• Manual editing in a text editor

After creating a resource file with the Component Wizard, you can open the resource file in
a text editor and edit the code manually, if necessary.

For more information, see Creating Resources for a Component.

Note:

You must restart Content Server after changing a resource file.

Chapter 12
Resources for Assembling Web Pages

12-23

13
Enabling and Disabling Components for
Content Server

This chapter describes how to enable components that have been installed in Oracle
WebCenter Content Server and how to disable components.

This chapter includes the following sections:

• About Enabling and Disabling Components

• Enabling a Component

• Disabling a Component

13.1 About Enabling and Disabling Components
By definition, a component is enabled when it is properly defined in the Components ResultSet
in the idcshort-product-id_components.hda file. A component is disabled if there is no entry
or the entry is not formatted correctly.

13.2 Enabling a Component
There are several ways to enable a component:

• ComponentTool: Run DomainHome/ucm/short-product-id/bin/ComponentTool to enable a
component. For example:

ComponentTool -enable component_name
• Component Wizard: Choose Enable from the Options menu. For more information, see

Creating Components Using the Component Wizard in Oracle Fusion Middleware
Administering Oracle WebCenter Content.

• Component Manager: Select the checkbox next to a component name to enable a server
component specified on the Component Manager screen. For more information, see Using
the Component Manager in Oracle Fusion Middleware Administering Oracle WebCenter
Content.

• Advanced Component Manager: On the Advanced Component Manager page, select a
component name, and then click Enable to enable the component.

13.3 Disabling a Component
There are several ways to disable a component:

• ComponentTool: Run DomainHome/ucm/short-product-id/bin/ComponentTool to disable
a component. For example:

ComponentTool -disable component_name

13-1

• Component Wizard: Choose Disable from the Options menu. For more information, see
Creating Components Using the Component Wizard in Oracle Fusion Middleware
Administering Oracle WebCenter Content.

• Component Manager: Clear the checkbox next to a component name to disable a server
component on the Component Manager screen. For more information, see Using the
Component Manager in Oracle Fusion Middleware Administering Oracle WebCenter
Content.

• Advanced Component Manager: On the Advanced Component Manager page, select a
component name, and then click Disable to disable the component.

Chapter 13
Disabling a Component

13-2

14
Updating Component Configurations

This chapter provides information about updating the configuration of components in Oracle
WebCenter Content Server.

This chapter includes the following sections:

• About Updating Component Configurations

• Updating a Component Configuration with the Advanced Component Manager

• Updating a Component Configuration Through the Configuration for instance Screen

14.1 About Updating Component Configurations
You can update, or modify, the configuration of some Content Server components with the
Advanced Component Manager or the Configure for Instance screen, whether the component
is enabled or disabled. The Advanced Component Manager has a list of the components
whose configuration you can modify in the Update component configuration field. From the
Configure for Instance screen, the Update Component Configuration screen is displayed for
the specified component if you can modify its configuration, or if you cannot modify it, a
message is displayed.

Content Server has Update Component Configuration screens for these components:

• PDF Watermark

• Content Tracker

• Site Studio

• DesktopIntegrationSuite

• DesktopTag

• EmailMetadata

14.2 Updating a Component Configuration with the Advanced
Component Manager

For information about updating a component configuration with the Advanced Component
Manager, see Modifying a Component Configuration Using the Component Manager in Oracle
Fusion Middleware Administering Oracle WebCenter Content.

14.3 Updating a Component Configuration Through the
Configuration for instance Screen

For information about updating a component configuration through the Configuration for
instance screen, see Modifying a Component Configuration Using the Component Manager in
Oracle Fusion Middleware Administering Oracle WebCenter Content.

14-1

15
Customizing Content Tracker

Content Tracker, an optional component of Oracle WebCenter Content Server, is installed with
Oracle WebCenter Content. When enabled, this component provides information about system
usage, such as which content items are most frequently accessed and what content is most
valuable to users or specific groups. You can customize this to provide specific information
about the consumption patterns of your organization's content.

This chapter includes the following sections:

• About Content Tracker

• Customizing Content Tracker with Configuration Variables

• Configuring Service Calls

• Customizing the Activity Metrics SQL Queries

• Tracking Indirect Access to Content with Web Beacons

For information about using Content Tracker with the default settings, see Tracking Content
Access in Oracle Fusion Middleware Managing Oracle WebCenter Content

.

15.1 About Content Tracker
Content Tracker monitors activity on your Content Server instance and records selected details
of those activities. This section includes an overview about Content Tracker functionality.

Content Tracker incorporates several optimization functions which are controlled by
configuration variables. The default values for the variables set Content Tracker to function as
efficiently as possible for use in high volume production environments. For more information
about Content Tracker configuration variable, see Content Tracker in Oracle Fusion
Middleware Configuration Reference for Oracle WebCenter Content.

15.1.1 Content Tracker Accesses and Services
Content Tracker monitors a system and records information about various activities which is
collected from various sources and then merged and written to a set of tables in your Content
Server database. Content Tracker can monitor activity based on these accesses and services:

• Content item accesses: Information about content item usage

Data is obtained from Web filter log files, the Content Server database, and other external
applications, such as portals and websites. Content item access data includes dates,
times, content IDs, and current metadata.

• Content Server services: All services that return content, as well as services that handle
search requests. By default, Content Tracker logs only the services that have content
access event types but by changing configuration, Content Tracker can monitor any
Content Server service, even custom services.

15-1

• User accesses: Information about other non-content access events such as the collection
and synthesis of user profile summaries. This data includes user names and user profile
information.

15.1.2 Content Tracker Components and Functions
Content Tracker provides the SctDebugServiceBinderDumpEnable debugging configuration
variable that, if enabled, configures the service handler filter to write out the service DataBinder
objects into dump files. These can be used as diagnostic tools when developing field map
screens. The dump files enable you to see what data is available at the time the particular
service events are recorded.

15.1.2.1 DataBinder Dump Facility
When Content Tracker records a specific service in the log file, the contents of that service's
DataBinder object are written to a serialized dump file. The contents of these files are useful for
debugging when creating field maps to use the extended service call tracking function. These
dump files enable you to see the available LocalData fields for the recorded service.

The Content Tracker service handler filter only creates dump files for DataBinder objects if the
associated services are defined in the SctServiceFilter.hda file.

Caution:

The dump files for DataBinder objects continue to accumulate until manually deleted.
Use the SctDebugServiceBinderDumpEnabled configuration variable only as
necessary.

15.1.2.1.1 Values for the DataBinder Dump Facility
The value of this configuration variable can be False or True:

• SctDebugServiceBinderDumpEnabled=False prevents the Content Tracker service handler
filter from writing out the DataBinder objects into dump files. This is the default value.

• SctDebugServiceBinderDumpEnabled=True configures the Content Tracker service handler
filter to write out the DataBinder objects into dump files. Use a dump file as a diagnostic aid
when you are developing field maps for extended service logging. If creating field maps for
services, the dump files enable you to see what data is available at the time the service
events are recorded.

15.1.2.1.2 Location of the DataBinder Object Dump Files
The serialized DataBinder objects are written to a dump file:

IntradocDir/data/ContentTracker/DEBUG_BINDERDUMP/dump_file_name

15.1.2.1.3 Names of the DataBinder Object Dump Files
The dump file of DataBinder Objects are text files and their names consist of three parts, as
follows:

service-name_filter-function_serial-number.hda

Chapter 15
About Content Tracker

15-2

Where:

• service-name is the name of the logged service, such as GET_FORM_FILE.

• filter-function is one of the following values:

– End: Filter Event 'on EndServiceRequestActions'
This value is for a normal end-of-service event.

– EndSub: FilterEvent 'on EndScriptSubServiceActions'
This value is for a normal end-of-service for a service called as a subservice.

– Error: Filter Event 'on ServiceRequestError'
This value is for an end-of-service in which an error occurred. It may occur in addition
to an End filter event.

• serial-number is the unique identification number assigned to the file.

This number enables Content Tracker to create more than one DataBinder object dump file
for a given service.

Example:

GET_SEARCH_RESULTS_End_1845170235.hda

15.1.2.2 Performance Optimization
Content Tracker collects and records only content access event data. This excludes
information gathering on noncontent access events like searches or the collection and
synthesis of user-profile summaries.

Content Tracker incorporates several optimization functions that are controlled by configuration
variables. The default values for the variables are set for Content Tracker to function as
efficiently as possible for use in high-volume production environments. You can set alternate
values during installation or change the values later.

These performance variables are available:

• SctTrackContentAccessOnly
Content Access Only: This variable determines what types of information is collected.
When enabled (the default), only content access events are recorded.

• SctDoNotPopulateAccessLogColumns
Exclude Columns: The value of this variable is a list of columns that Content Tracker
does not populate in the SctAccessLog table. By default, bulky and rarely used information
is not collected, which reduces the size of the output table.

• SctSimplifyUserAgent
Simplify User Agent: This variable minimizes the information that is stored in the
cs_userAgent column of the SctAccessLog table.

• SctDoNotArchive
Do Not Archive: This variable ensures that all Content Tracker database tables contain
the most current data and that expired table rows are discarded rather than archived. By
default, only the SctAccessLog table is populated, but expired rows are not archived. If
both SctTrackContentAccessOnly and SctDoNotArchive are disabled, however, all tables
are populated and their expired data archived.

Chapter 15
About Content Tracker

15-3

15.1.2.3 Installation Considerations
Set the SctUseGMT configuration parameter to true to use Greenwich Mean Time (GMT). It is
set to false by default, to use local time. When upgrading from an earlier version of Content
Tracker there is a one-time retreat (or advance, depending on location) in access times. To
accommodate the biannual daylight savings time changes, discontinuities in recorded user
access times are used (contingent on the use of local time and the location).

15.2 Customizing Content Tracker with Configuration Variables
You can use configuration variables to customize Content Tracker.

15.2.1 About Configuration Variables
The following table lists the default values of the configuration settings used in the current
version of Content Tracker. These configuration variables are contained in the Content Tracker
configuration file:

cs_root/data/contenttracker/config/sct.cfg

Config. Setting Default Value Remarks

SctAutoTruncate
DataStrings

FALSE Used by: JAVA
Determines if the reduction process truncates data strings to
fit into the corresponding table column.

SctComponentDir cs_root/data/
contenttracker/

Used by: JAVA
Path to the directory where Content Tracker is installed.

SctDebugLogEnab
led

FALSE Used by: JAVA
Set to TRUE to enable Java code execution trace. Used with
SctDebugLogFilePath.

SctDebugLogFile
Path

cs_root/data/
contenttracker/
log/
SCT_DEBUG_TRACE
.log

Used by: JAVA
Directory for Java code execution trace. Used with
SctDebugLogEnabled.

SctDebugService
BinderDumpEnabl
ed

FALSE Used by: JAVA
Set to TRUE to enable diagnostic output of Service DataBinder
objects during Service logging.

SctExternalUser
LogEnabled

TRUE Used by: JAVA
Set to TRUE to enable replication of the External user account
and role information to UserSecurityAttributes table.

SctFilterPlugin
LogDir

cs_root/data/
contenttracker/
data/

Used by: filter plug-in
Path to the directory where the filter plug-in stores the event
logs.

SctIdcAuthExtra
ConfigParams

[none] List of Content Tracker configuration parameters passed to
the filter plug-in, merged programmatically into
idcAuthExtraConfigParams by the Content Tracker startup
filter.

SctIgnoreDirect
ories

DomainHome/ucm/
cs/ resources/;
DomainHome/ucm/
cs/ common/

Used by: filter plug-in
Directs the filter plug-in to disregard URLs contained within
the listed directory roots.

Chapter 15
Customizing Content Tracker with Configuration Variables

15-4

Config. Setting Default Value Remarks

SctIgnoreFileTy
pes

gif,jpg,js,css Used by: filter plug-in
Directs the filter plug-in to disregard URLs with the listed file
types.

SctLogDir cs_root/data/
contenttracker/
data/

Used by: JAVA
Path to one or more directories where Content Tracker looks
for the raw event logs - sctLog, and so on. This parameter
can be multivalued, as dir1;dir2;...;dirn.

SctLogEnabled TRUE Used by: filter plug-in, JAVA
If FALSE, directs Service Handler filters and the web server
filter plug-in to ignore all events and create no logs. This is the
Content Tracker Master On/Off switch.

SctMaxRecentCou
nt

5 Used by: JAVA
Maximum number of days worth of reduced data kept in the
Recent state. Overflow from Recent is moved to the
Archive state.

SctMaxRereadTim
e

3600 Used by: JAVA
Maximum number of seconds that can occur between
consecutive references by a particular user to a particular
content item, such as a PDF file, and have the adjacent
references be considered a single sustained access.
Consecutive references that occur further apart in time count
as separate accesses.

SctReductionAva
ilableDatesLook
back

0 Used by: JAVA
Used with SctReductionRequireEventLogs to limit the
available dates range. Unit = days. Zero = unlimited.

SctReductionLog
Dir

cs_root/data/
contenttracker/
log/

Used by: JAVA
Path to the directory where the Content Tracker Reduction
logs are stored.

SctReductionReq
uireEventLogs

TRUE Used by: JAVA
Used in Detached configurations. FALSE means proceed with
Reduction even if no event logs are found.

SctScheduledRed
uctionEnable

TRUE Used by: JAVA
Used in multi-JVM configurations to select which Content
Server instance performs the Reduction.

SctSnapshotEnab
le

FALSE Used by: JAVA
Set to TRUE to enable Snapshot functions. Set from the Data
Engine Control Center.

SctSnapshotLast
AccessEnable

FALSE Used by: JAVA
Set to TRUE to enable the Last Access Date Snapshot
function. Set from the Data Engine Control Center.

SctSnapshotLast
AccessField

[none] Used by: JAVA
Metadata field name for Last Access Date; for example,
xLastAccessDate. Set from the Data Engine Control Center.

SctSnapshotLong
CountEnable

FALSE Used by: JAVA
Set to TRUE to enable the Long Interval Access Count
Snapshot function. Set from the Data Engine Control Center.

SctSnapshotLong
CountField

[none] Used by: JAVA
Metadata field name for Long Interval Count; for example,
xAccessesInLast90Days. Set from the Data Engine Control
Center.

Chapter 15
Customizing Content Tracker with Configuration Variables

15-5

Config. Setting Default Value Remarks

SctSnapshotLong
CountInterval

[none] Used by: JAVA
Number of days for the Long Interval. Set from the Data
Engine Control Center.

SctSnapshotShor
tCountEnable

FALSE Used by: JAVA
Set to TRUE to enable the Short Interval Access Count
Snapshot function. Set from the Data Engine Control Center.

SctSnapshotShor
tCountField

[none] Used by: JAVA
Metadata field name for the Short Interval Count; for example,
xAccessesInLast10Days. Set from the Data Engine Control
Center.

SctSnapshotShor
tCountInterval

[none] Used by: JAVA
Number of days for the Short Interval. Set from the Data
Engine Control Center.

SctUseGMT FALSE Used by: filter plug-in, JAVA
Set to TRUE for logged event times to be converted to
Universal Coordinated Time. FALSE uses local time.

The following variables are not available in the sct.cfg file and are accessible only through the
Component Manager.

Config. Setting Default Value Remarks

SctPostReductio
nExec

[none] Used by: JAVA
Path to the Post Reduction Executable (assumed to be in
IntradocDir/custom/ContentTracker/bin/)

SctProxyNameMax
Length

50 Used by: JAVA
Maximum number of characters in the name of any Content
Server proxy server in the configuration. Used to increase the
size of user-name fields in Content Tracker table creation.

SctUrlMaxLength 3000 Used by: JAVA
Maximum expected length (in characters) for URL fields. Used
to determine column widths when creating tables. There can
be several such columns in a given table.

SctWebBeaconIDL
ist

[none] Used by: filter plug-in
List of zero or more web-beacon objects. Required to add the
ability to feed data to Content Tracker using client-side tags.
Enables Content Tracker to gather data from cached pages
and pages generated from cached services.

For more information about the Content Tracker configuration variables, see Content Tracker in
Oracle Fusion Middleware Configuration Reference for Oracle WebCenter Content.

15.2.1.1 Access Control Lists and Secure Mode
During installation, leave the security checks preference checkbox blank. This means that on
an ACL-based system, the secure mode must be disabled. In this case, it is possible for users
other than a system administrator to see information about content items that they would not
otherwise be authorized to access and view.

Chapter 15
Customizing Content Tracker with Configuration Variables

15-6

15.2.1.2 Values for the Security Checks Preference Variable
The security checks preference variable can have either of these values:

• SctrEnableSecurityChecks=True enables the security checks installation preference.

In secure mode, the same security criteria (role and account qualifications) used to limit
Content Server search results are also applied to the generated reports. So, it is possible
that two different users running the Top Content Items report might see different results.

• SctrEnableSecurityChecks=False disables the security checks installation preference.
This is the default setting.

In nonsecure mode, the additional role and account criteria used to restrict Content Server
search results are not applied to the generated reports. So, it is possible for a user other
than a system administrator to see information about content items that the user would not
be authorized to access and view.

15.2.1.3 File Types for Entries in the SctAccessLog
By default, Content Tracker does not log accesses to GIF, JPG, JS, CSS, CAB, and CLASS file
types. Therefore, entries for these file types are not included in the combined output table after
data reduction.

To log these file types, enable the file type in the sct.cfg file located in the IntradocDir/
custom/ContentTracker/resources/ directory. Change the default setting for the
SctIgnoreFileTypes configuration variable (gif,jpg,js,css). The default setting excludes
these file types. To include one or more of these file types, delete each desired file type from
the list. To ensure that these changes take effect, it is necessary to restart the web server and
Content Server.

15.2.2 Setting Content Tracker Configuration Variables
To set or edit any of the Content Tracker configuration variables:

1. In a text editor, open the sct.cfg file:

cs_root/data/contenttracker/config/sct.cfg
2. Locate the configuration variable to be edited.

3. Enter the applicable value.

4. Save and close the sct.cfg file.

5. Restart Content Server to apply the changes.

Add or edit the configuration variables for the activity metrics metadata fields with the user
interface included in the Data Engine Control Center. These include the following variables:

• SctSnapshotEnable
• SctSnapshotLastAccessEnable
• SctSnapshotLastAccessField
• SctSnapshotLongCountEnable
• SctSnapshotLongCountField
• SctSnapshotLongCountInterval

Chapter 15
Customizing Content Tracker with Configuration Variables

15-7

• SctSnapshotShortCountEnable
• SctSnapshotShortCountField
• SctSnapshotShortCountInterval
For more information about the user interface and the activity metrics functions, see Data
Tracking Functions in Oracle Fusion Middleware Managing Oracle WebCenter Content.

15.2.3 Tracking External Users and Content Items
The option exists to control if Content Tracker includes data about external user accesses in
the applicable reports. These authenticated users are qualified based on their user roles and
accounts. By default, the configuration parameter SctExternalUserLogEnabled is set to true
(enabled). This allows Content Tracker to monitor external user logins and automatically
propagate their role and account information to the UserSecurityAttributes table.

Regardless of whether the SctExternalUserLogEnabled configuration variable is enabled or
disabled, all of the content item access information for external users is tracked and recorded.
But when it is enabled, this variable ensures that this data is included in reports that explicitly
correlate externally authenticated user names with their associated user roles and accounts.
Specifically, the Top Content Items by User Role report and the Users by User Role report
include all of the content item access activity by external users. For more information, see
Content Tracker Reports in Oracle Fusion Middleware Managing Oracle WebCenter Content.

Note:

For information about how to manually disable the SctExternalUserLogEnabled
configuration variable, see Setting Content Tracker Configuration Variables.

15.3 Configuring Service Calls
You can configure service calls in the service call configuration file, configure the Content
Tracker logging service to log events, and manage service call information.

15.3.1 About the Service Call Configuration File
The Content Tracker service handler filter makes it possible to gather information about
Content Server activity other than content requests. Service request details are collected by
the service handler filter and stored in the SctAccessLog table in real time. The details are
obtained from the DataBinder that accompanies the service call. For a Content Server service
call to be logged, it must have an entry in the service call configuration file
(SctServiceFilter.hda).

The SctServiceFilter.hda file is a user-modifiable configuration file that is used to limit the
number of logged service calls. This enables you to selectively control which services are
logged. The data logging function for any service call included in the SctServiceFilter.hda
file can also be expanded, to log and track data values of specific DataBinder fields relevant to
a particular service. For more information, see Extended Service Call Tracking Function.

Service tracking is limited to top-level services called through the server socket port.
Subservices, or services called internally, cannot be tracked.

Chapter 15
Configuring Service Calls

15-8

The purpose of the SctServiceFilter.hda file is to define which parts of Content Server are of
particular interest to users. If a Content Server service is not listed in the
SctServiceFilter.hda file, it is ignored by Content Tracker. Additionally, if a service is not
listed in this file, it can be logged only by the Content Tracker logging service. For more
information, see About the Content Tracker Logging Service.

You can make changes to the SctServiceFilter.hda file in two ways:

• Add new services and edit the existing service call parameters in the file from the Data
Engine Control Center.

• Manually edit the SctServiceFilter.hda file.
For more information, see Manually Editing the SctServiceFilter.hda File.

Tip:

Control the services to log by including or excluding them from the
SctServiceFilter.hda file. This is an effective method to control logging for
particular services or for all services. Also, the extended service call tracking function
enables customization of the type of data that is logged for a specific service.

15.3.1.1 General Service Call Logging
Services listed in the SctServiceFilter.hda file are detected by the Content Tracker service
handler filter and the values of selected data fields are captured. Content Tracker then logs the
named service calls. The information with the timestamps, and so on, are written dynamically
into the SctAccessLog table.

For each enabled service, Content Tracker automatically logs certain standard DataBinder
fields, such as dUser and dDocName. Also, DataBinder fields associated with the extended
service call tracking function are logged to the general purpose columns in the SctAccessLog
table.

Data is inserted into the SctAccessLog table in real time using Content Tracker-specific
services sequence numbers and a type designation of S for service. (A W designation indicates
a static URL event type). Manual reductions, scheduled reductions, or both are required only to
process the static URL access information gathered by the web server filter.

15.3.1.2 Extended Service Call Tracking Function
The extended service call tracking function enables the logging of Content Server service calls
and supplement this information by also logging relevant data values from one or more
additional DataBinder fields other than the standard DataBinder fields logged by each
configured service call.

Chapter 15
Configuring Service Calls

15-9

15.3.1.2.1 Service Call ResultSet Combinations
Each service that Content Tracker logs must have an entry in the ServiceExtraInfo ResultSet
that is contained in the SctServiceFilter.hda file. Content Tracker automatically logs various
standard DataBinder fields, such as dUser and dDocName. However, the service-related data
logged by Content Tracker can be expanded by logging and tracking relevant data values from
supplementary DataBinder fields.

The extended service call tracking function is implemented by linking the entries in the
ServicesExtraInfo ResultSet to field map ResultSets. Each field map ResultSet contains one
or more sets of data field names, the source location, and the destination table column name in
the SctAccessLog table. This grouping allows you to select data fields relevant to the
associated service call and have the data values logged into the specified column in the
SctAccessLog table.

Since more than one expanded service can be logged using the extended tracking function,
the contents of the general purpose columns in the SctAccessLog table cannot be properly
interpreted without knowing which service is being logged. The service name is always logged
in the sc_scs_idcService column. Your queries should match this column with the desired
service name.

Caution:

In field map ResultSets, you can map data fields to existing, standard SctAccessLog
table columns. The extended service mapping occurs after the standard field data
values are collected. You can override any of the standard table column fields.

For example, the service you are logging might carry a specific user name (such as,
MyUserName=john) in a data field. You could use the extended tracking function to
override the contents of the sc_scs_dUser column. In this case, you simply combine
MyUserName and sc_scs_dUser and use them as the data field, location, and table
column set in the field map ResultSet.

It is your responsibility to ensure that the data being logged is a reasonable fit with
the SctAccessLog column type.

For examples of linked service entries and ResultSets, see Linked Service Entries and Field
Map ResultSets. For more information about the contents of the SctAccessLog table and the
general-purpose columns intended to be mapped to data fields, see Combined Output Table in
Oracle Fusion Middleware Managing Oracle WebCenter Content.

15.3.1.2.2 General Purpose Columns in the Output Table
In the field map ResultSets for extended service tracking, map the DataBinder fields to
columns in the SctAccessLog table. The general purpose columns (extField_1 through
extField_10) are available for mapping. These columns may be filled with any data values you
consider appropriate for logging and tracking for a particular service. It is recommended and
expected that you use these columns to avoid overwriting the standard table columns.

Chapter 15
Configuring Service Calls

15-10

Tip:

The name of the service is always logged to the sc_scs_idcService column. Include
it as a qualifier in any query that uses the contents of the extended fields. For more
information about custom reports that include specific SQL queries involving
SctAccessLog table columns, see Report Creation Types in Oracle Fusion
Middleware Managing Oracle WebCenter Content.

15.3.1.3 Service Call Configuration File Contents
The initial contents of the service call configuration file (SctServiceFilter.hda) are the
commonly used content access, search, and user authentication services native to Content
Server. This file contains a ResultSet structure with one entry for each service to be logged. To
support the extended service call tracking function, this file may also include field map
ResultSets linked to the service entries contained in the ServiceExtraInfo ResultSet.

Add new entries or edit existing entries, or both, in the SctServiceFilter.hda file with the
Services user interface accessed through the Data Engine Control Center, or change entries in
the file manually. For more information, see Manually Editing the SctServiceFilter.hda File.

Note:

To review the set of initial services that Content Tracker logs into the SctAccessLog
table see the SctServiceFilter.hda file:

cs_root/data/contenttracker/config/SctServiceFilter.hda

The following tables provide details of the service call configuration file ResultSet schema. The
values are copied directly to the corresponding columns in the SctAccessLog table.

ServiceExtraInfo ResultSet Contents

Feature Description

Service Name
(sctServiceName)

The name of the service to be logged. For example, GET_FILE. If no
row is present in the ResultSet for a given service, the service is not
logged.

Calling Product
(sctCallingProduct)

An arbitrary string. It is generally set to "Core Server" for all standard
Content Server entries.

Event Type (sctEventType) An arbitrary string. It is generally set to "Content Access" for all
standard Content Server entries.

Reference (sctReference) Used to set the sc_scs_reference field in the SctAccessLog table.
If blank, the internal getReference logic is used.

Field Map (sctFieldMap) The name of the field map ResultSet that is added to the
SctServiceFilter.hda file. This field is only required if the
extended service call tracking function is used. This function enables
the logging of DataBinder field information to one or more of the
general purpose columns in the SctAccessLog table.

Chapter 15
Configuring Service Calls

15-11

Field Map ResultSet Contents

Feature Description

Field Map Link The name of the field map ResultSet.

A configuration variable can be set that writes out the service
DataBinder object. This enables you to see the data available at the
time the event is recorded.

DataBinder Field
(dataFieldName)

The name of the DataBinder field name whose data values are
logged to a general purpose column in the SctAccessLog table. See
also the Field Name field on the Field Map screen.

Data Location (dataLocation) The section in the Content Server service DataBinder where the field
to be logged is located. See also the Field Location field on the Field
Map screen.

Access Log Column
(accessLogColumnName)

The specific general purpose column in the SctAccessLog table
where data values from a specified DataBinder field are logged. See
also the Column Name field on the Field Map screen.

These fields are copied from the DataBinder and inserted into the SctAccessLog table: dID,
dDocName, IdcService, dUser, SctCallingProduct, SctEventType, and SctReference. If the
values for the latter three fields are included in a service's entry in the SctServiceFilter.hda
file, they override the corresponding values in the data field.

There should be no duplication or conflicts between services logged through the service
handler filter and those logged through the Content Tracker logging service. If a service is
named in the Content Tracker service handler filter file, then the service is automatically
logged, so there is no need for the Content Tracker logging service to do it.

Note:

Adding desired service calls to the SctServiceFilter.hda file and using this method
to log specific activity gives you the advantage of providing values for the
CallingProduct, EventType, and Reference fields. The assigned values are copied
directly to the corresponding columns in the in the SctAccessLog table.

15.3.1.4 ResultSet Examples
The default SctServiceFilter.hda file includes various common service calls.

Chapter 15
Configuring Service Calls

15-12

Note:

To review the initial set of services that Content Tracker logs into the SctAccessLog
table and the service entries and field map ResultSets, see the
SctServiceFilter.hda file:

cs_root/data/contenttracker/config/SctServiceFilter.hda
For more detailed information about these services, see Core Content Server
Services in Oracle Fusion Middleware Services Reference for Oracle WebCenter
Content.

15.3.1.4.1 ServiceExtraInfo ResultSet Entries
The following list provides examples of several service entries contained in the
SctServiceFilter.hda file's ServiceExtraInfo ResultSet.

• GET_FILE_BY_NAME
Core Server
Content Access

• GET_DYNAMIC_URL
Core Server
Content Access

• GET_DYNAMIC_CONVERSION
Core Server
Content Access

• GET_EXTERNAL_DYNAMIC_CONVERSION
Core Server
Content Access

• GET_ARCHIVED_FILE
Core Server
Content Access

• COLLECTION_GET_FILE
Folders
Content Access

15.3.1.4.2 Linked Service Entries and Field Map ResultSets
The following table lists several examples of service entries linked to field map ResultSets.
These examples, or other similar ones, are included in the initial SctServiceFilter.hda file.

Chapter 15
Configuring Service Calls

15-13

Service Entries Field Map ResultSets

GET_SEARCH_RESULTS
Core Server
Search

SearchFieldMap

@ResultSet SearchFieldMap
3
dataFieldName 6 255
dataLocation 6 255
accessLogColumnName 6 255
MiniSearchText
LocalData
extField_1
TranslatedQueryText
LocalData
extField_2
IsSavedQuery
LocalData
extField_7
@end

PNE_GET_SEARCH_RESULTS
Core Server
Search

SearchFieldMap

@ResultSet SearchFieldMap
3
dataFieldName 6 255
dataLocation 6 255
accessLogColumnName 6 255
MiniSearchText
LocalData
extField_1
TranslatedQueryText
LocalData
extField_2
IsSavedQuery
LocalData
extField_7
@end

GET_FILE
Core Server
Content Access

GetFileFieldMap

@ResultSet GetFileFieldMap
3
dataFieldName 6 255
dataLocation 6 255
accessLogColumnName 6 255
RevisionSelectionMethod
LocalData
extField_1
Rendition
LocalData
extField_2
@end

15.3.2 About the Content Tracker Logging Service
The Content Tracker logging service is a single service call (SCT_LOG_EVENT) that allows an
application to log a single event to the SctAccessLog table. You can call this service directly
through a URL, as an action in a service script, or from Idoc Script with the executeService()
function. The calling application is responsible for setting any and all fields in the service

Chapter 15
Configuring Service Calls

15-14

DataBinder to be recorded, including the descriptive fields in the Content Tracker
SctServiceFilter.hda configuration file.

The SCT_LOG_EVENT service copies information out of the service DataBinder. This data is
inserted into the SctAccessLog table in real time using the Content Tracker specific services
sequence numbers and a type designation of “S" for service. Manual or scheduled reductions,
or both, are required only to process the static URL access information gathered by the web
server filter. For more information, see Data Reduction in Oracle Fusion Middleware Managing
Oracle WebCenter Content.

Note:

There should be no duplication or conflicts between services logged through the
service handler filter and those logged through the Content Tracker logging service. If
a service is named in the Content Tracker service handler filter file then such
services are automatically logged so there is no need for the Content Tracker logging
service to do it. However, Content Tracker makes no attempt to prevent such
duplication.

15.3.3 Managing Service Call Information
This section provides information and task procedures for mapping and logging data from
Content Server services to the combined output database table (SctAccessLog).

15.3.3.1 Manually Editing the SctServiceFilter.hda File
To add or change entries in the SctServiceFilter.hda file:

1. In a text editor, open the SctServiceFilter.hda file:

cs_root/data/contenttracker/config/.../SctServiceFilter.hda
2. Edit an existing entry or add a new service entry. For example, to add the GET_FORM_FILE

service, enter the following service entry to the ServiceExtraInfo ResultSet in the file:

GET_FORM_FILE
Threaded Discussion
Content Access
optional_reference_value
optional_field_map_link_value

Specify optional_field_map_link_value in the service entry when you are implementing
the extended service call tracking function. In this case, add or edit the corresponding field
map ResultSet.

3. If you are using extended service tracking, add or edit the corresponding field map
ResultSet. For example, to add the SS_GET_PAGE service and track additional data-field
values, enter the following service entry and corresponding field map ResultSets into the
file.

Chapter 15
Configuring Service Calls

15-15

Service Entry Field Map ResultSet

SS_GET_PAGE
Site Studio
Web Hierarchy Access
web
SSGetPageFieldMap

@ResultSet SSGetPageFieldMap
3
dataFieldName 6 255
dataLocation 6 255
accessLogColumnName 6 255
DataBinder_field_name
data_field_location_name
access_log_column_name
@end

Note:

Include as many sets of DataBinder field, location, and table column names as
necessary.

4. Save and close the file.

5. Restart the Content Server to apply the new definitions.

Note:

Search request events are logged into the SctAccessLog table in real time and do
not need to be reduced. Add or edit services with the user interface included in
the Data Engine Control Center.

15.3.3.2 Setting Required DataBinder Fields to Call the Content Tracker Logging
Service

The following table provides the SctAccessLog column names and the corresponding
DataBinder fields that Content Tracker looks for when the Content Tracker logging service
(SCT_LOG_EVENT) is called. When an application calls the Content Tracker logging service, the
application is responsible for setting the necessary fields in the service DataBinder for Content
Tracker to find. For more detailed information about the SctAccessLog fields, see “Combined
Output Table" in Oracle Fusion Middleware Managing Oracle WebCenter Content.

SctAccessLog Column Name Service DataBinder LocalData Field

SctDateStamp [computed]

SctSequence SctSequence
SctEntryType "S"
eventDate [computed]

SctParentSequence SctParentSequence
c_ip REMOTE_HOST
cs_username HTTP_INTERNETUSER
cs_method REQUEST_METHOD

Chapter 15
Configuring Service Calls

15-16

SctAccessLog Column Name Service DataBinder LocalData Field

cs_uriStem HTTP_CGIPATHROOT
cs_uriQuery QUERY_STRING
cs_host SERVER_NAME
cs_userAgent HTTP_USER_AGENT
cs_cookie HTTP_COOKIE
cs_referer HTTP_REFERER
sc_scs_dID dID
sc_scs_dUser dUser
sc_scs_idcService IdcService (or SctIdcService)

sc_scs_dDocName dDocName
sc_scs_callingProduct sctCallingProduct
sc_scs_eventType sctEventType
sc_scs_status StatusCode
sc_scs_reference sctReference (also . . .)

comp_username [computed - HTTP_INTERNETUSER or . . .]

sc_scs_isPrompt n/a

sc_scs_isAccessDenied n/a

sc_scs_inetUser n/a

sc_scs_authUser n/a

sc_scs_inetPassword n/a

sc_scs_serviceMsg StatusMessage

15.3.3.3 Calling the Content Tracker Logging Service from an Application
You can call the SCT_LOG_EVENT service from an application. This can be done by the
application developer, or by a user willing to modify the application service scripts.

1. The application can call SCT_LOG_EVENT from Java.

2. Or, the application can include calls to SCT_LOG_EVENT in the service script.

15.3.3.4 Calling the Content Tracker Logging Service from Idoc Script
You can call the SCT_LOG_EVENT service indirectly from Idoc Script, using the
executeService() function. This is the same as calling the SCT_LOG_EVENT service from an
application except that it occurs from Idoc Script instead of the application Java code. Content
Tracker cannot distinguish if the SCT_LOG_EVENT service is called from Java or from Idoc Script.

15.3.4 Service Call Management and the User Interface
Content Tracker enables the logging of service calls with data values relevant to the associated
services. Every service to be logged must have a service entry in the service call configuration
file (SctServiceFilter.hda). In addition to the logged services, their corresponding field map
ResultSets can be included in the SctServiceFilter.hda.

Chapter 15
Configuring Service Calls

15-17

Content Tracker only logs services that have event types for content access or services that
cause an entry to be made in the DocHistory table. This ensures maximum performance, but
some service events are not logged.

The enabled services automatically log general DataBinder fields, such as dUser and
dDocName. Linking a field map ResultSet to a service entry enables the use of the extended
service call tracking function.

The SctAccessLog database table provides additional columns for use with the extended
service call tracking function which can be filled with any data values appropriate for the
associated service call. When listing the data field names in the field map ResultSet, also list
the location name for the source of the data field and the table column name where the data is
logged.

Caution:

In field map ResultSets, you can map data fields to existing, standard SctAccessLog
table columns. The extended service mapping occurs after the standard field data
values are collected. Therefore, any of the standard table column fields can be
overwritten.

For example, the service you log might carry a specific user name
(MyUserName=john) in a data field. You could use the extended tracking function to
overwrite the contents of the sc_scs_dUser column. In this case, combine
MyUserName and sc_scs_dUser and use them as the data field, location, and table
column set in the field map ResultSet.

It is your responsibility to ensure that the data being logged is a reasonable fit with
the SctAccessLog column type.

15.3.4.1 Adding, Editing, or Deleting Service Entries
Follow these steps to add or edit a service:

1. Choose Administration then Content Tracker Administration from the Main menu.
Choose Data Engine Control Center.

The Data Engine Control Center opens.

2. Click the Services tab.

3. Click Add to create a new service entry, or choose an existing service entry from the
Service Name list and click Edit.

The Extended Services Tracking screen opens. The fields are empty when adding a new
service entry. When editing an existing service entry, the fields are populated with values
that can be edited.

4. Enter or modify the applicable field values (except in the Field Map field).

To link this service entry to a field map ResultSet, enter the applicable name in the Field
Map field, and then link the field. For more information, see Linking Activity Metrics to
Metadata Fields in Oracle Fusion Middleware Managing Oracle WebCenter Content.

5. Click OK.

A confirmation dialog box is displayed.

6. Click OK.

Chapter 15
Configuring Service Calls

15-18

The Services tab is redisplayed with the new service or newly edited service in the
Services list. The services state and the Content Tracker SctServiceFilter.hda file are
updated.

Content Tracker does not perform error checking (such as field type or spelling verification)
for the extended services tracking function in the Data Engine Control Center. Errors are
not generated until a reduction is done. These fields are case-sensitive. When adding new
services or editing existing services, be careful to enter the proper service call names.
Ensure that all field values are spelled and capitalized correctly.

To delete an entry, follow the previous steps, highlight an entry, and select Delete.

15.3.4.2 Adding, Editing, or Deleting Field Map ResultSets
To implement the extended service call tracking function, service entries must be linked to field
map ResultSets in the SctServiceFilter.hda file.

Follow these steps to add a field map and link it:

1. Choose Administration then Content Tracker Administration from the Main menu.
Choose Data Engine Control Center.

The Data Engine Control Center opens.

2. Click the Services tab.

3. To add a new entry, follow the procedure in Adding_ Editing_ or Deleting Service Entries.
Choose the service entry from the Service Name list.

4. Click Edit.

The Extended Services Tracking screen opens. If necessary, edit this service entry's
values now in addition to adding the field map ResultSet.

If the service is already linked to a field map ResultSet, the name is listed in the Field Map
field and one or more data field, location, and table column set are listed in the Field area.

5. If the selected service is not linked to a secondary ResultSet, the Field Map field is empty.
Enter the name of the field map ResultSet. If the selected service is already linked, skip
this step.

6. Click Add.

The Field Map screen opens.

7. Enter the appropriate values in the fields:

• Field Name: The name of the data field in the service DataBinder whose data values
are logged to a general purpose column in the SctAccessLog table.

• Field Location: The section in the Content Server service DataBinder where the data
field to be logged is located. You can use the following values:

– LocalData (the default value)

– Environment
– BinderResultSet. This returns a comma-delimited string containing all values in

the ResultSet. Size is restricted to 255 characters, allowing for commas and so on,
so this value is useful only for small ResultSets.
To accommodate more characters, enlarge or redefine the SctAccessLog table
columns using standard database tools. For example, if you open up extField_3
to 2047, then it holds the equivalent amount of data. However, most databases
have page-size limitations. In addition, SQL does not parse strings efficiently.

Chapter 15
Configuring Service Calls

15-19

• Column Name: The column in the SctAccessLog table where data values from a
specified DataBinder field are logged.

8. Click OK.

The Field Map screen closes, and the values are added to the Field Name and Column
Name fields.

9. Click OK again.

A confirmation dialog box opens.

The Services tab is redisplayed with the updated information.

10. Click OK.

Content Tracker does not perform error checking (such as field type or spelling verification) for
the extended services tracking function in the Data Engine Control Center. Errors are not
generated until a reduction is done. These fields are case-sensitive. When adding new field
map ResultSets or editing existing field map ResultSets, be sure to enter the proper names
and ensure that all field values are spelled and capitalized correctly.

To edit a field map, perform the previous steps, and edit the entries as needed.

To delete an entry, perform the previous steps, highlight a service entry, and select Delete.

15.4 Customizing the Activity Metrics SQL Queries
The snapshot feature enables you to log and track search relevance custom metadata fields.
Content Tracker fills these fields with content item usage and access information that reflects
the popularity of particular content items. The information includes the date of the most recent
access and the number of accesses in two distinct time intervals. For more information about
the snapshot feature, see Activity Snapshots in Oracle Fusion Middleware Managing Oracle
WebCenter Content.

If the snapshot feature and activity metrics are enabled, the values in the custom metadata
fields are updated following the reduction processing phase. When users access content
items, the values of the applicable search relevance metadata fields change accordingly.
Subsequently, Content Tracker runs three SQL queries as a postreduction processing step to
determine which content items were accessed during the reporting period. For more
information about the postprocessing reduction step, see Data Reduction Process with Activity
Metrics in Oracle Fusion Middleware Managing Oracle WebCenter Content.

The SQL queries are available as a resource and can be customized to filter information from
the final tracking data. For example, you might want to exclude accesses by certain users in
the tabulated results.

The SQL queries are included in the sctQuery.htm file:

IntradocDir/custom/ContentTracker/resources/SctQuery.htm

Note:

In general, the WHERE clause can be modified in any of the SQL queries. It is
recommended that nothing else be modified.

The following SQL queries are used for the search relevance custom metadata fields:

Chapter 15
Customizing the Activity Metrics SQL Queries

15-20

• qSctLastAccessDate: For the last access function, this query uses the SctAccessLog
table. It checks for all content item accesses on the reduction date and collects the latest
timestamp for each dID. The parameter for the query is the reduction date. In this case,
dates may be reduced in random order because the comparison test for the last access
date only signals a change if the existing DocMeta value is older than the proposed new
value.

• qSctAccessCountShort and qSctAccessCountLong: For the short and long access count
functions, the qSctAccessCountShort and qSctAccessCountLong SQL queries are identical
except for the "column name" for the count. They use the SctAccessLog table to calculate
totals for all accesses for each dID across the time intervals specified (in days) for each.
The parameters are the beginning and ending dates for the applicable rollups.

15.4.1 Tracking Access to Content Items by External Users
The option exists to control if Content Tracker includes data about external user accesses in
the applicable reports. These authenticated users are qualified based on their user roles and
accounts. By default, the configuration parameter SctExternalUserLogEnabled is set to true
(enabled). This allows Content Tracker to monitor external user logins and automatically
propagate their role and account information to the UserSecurityAttributes table.

Regardless of whether the SctExternalUserLogEnabled configuration variable is enabled or
disabled, all of the content item access information for external users is tracked and recorded.
But when it is enabled, this variable ensures that this data is included in reports that explicitly
correlate externally authenticated user names with their associated user roles and accounts.
Specifically, the Top Content Items by User Role report and the Users by User Role report
include all of the content item access activity by external users. For more information, see
Custom Reports in Oracle Fusion Middleware Managing Oracle WebCenter Content.

Note:

To manually disable the SctExternalUserLogEnabled configuration variable, see
Setting Content Tracker Configuration Variables.

15.5 Tracking Indirect Access to Content with Web Beacons

Note:

The implementation requirements for the web beacon feature are contingent on the
system configurations involved. All of the factors cannot be addressed in this
documentation. Information about the access records collected and processed by
Content Tracker are an indication of general user activity and not exact counts.

A web beacon is a managed object that facilitates specialized tracking support for indirect user
accesses to web pages or other managed content. In earlier releases, Content Tracker was
unable to gather data from cached pages and pages generated from cached services. When
users accessed cached web pages and content items, Content Server and Content Tracker
were unaware that these requests ever happened. Without using web beacon referencing,
Content Tracker does not record and count such requests.

Chapter 15
Tracking Indirect Access to Content with Web Beacons

15-21

The web beacon involves the use of client side embedded references that are invisible
references to the managed beacon objects within Content Server. This enables Content
Tracker to record and count user access requests for managed content items that have been
copied by an external entity for redistribution without obtaining content directly from Content
Server. For details about circumstances when this might be used, see Web Beacon Use
Cases.

When cached content is served to consumers, users perceive that the requested object was
served by Content Server. The managed content is actually provided using non-dynamic
content delivery methods. In these situations, the managed content is served by a static
website, a reverse proxy server, or out of a file system. The web beacon feature ensures that
this type of activity can be tracked.

15.5.1 Web Beacon Use Cases
Two situations in particular may merit the use of the web beacon functionality: reverse proxy
activity and when using Site Studio.

In a reverse proxy scenario, the reverse proxy server is positioned between the users and
Content Server. The reverse proxy server caches managed content items by making a copy of
requested objects. The next time another user asks for the document, it displays its copy from
the private cache. If the reverse proxy server does not already have the object in its cache, it
requests a copy.

Because it is delivering cached content, the reverse proxy server does not directly interact with
Content Server. Therefore, Content Tracker cannot detect these requests and does not track
this type of user access activity.

A reverse proxy server is often used to improve web performance by caching or by providing
controlled web access to applications and sites behind a firewall. Such a configuration provides
load balancing by moving copies of frequently accessed content to a web server where it is
updated on a scheduled basis.

For the web beacon feature to work, each user access includes an additional request to the
managed beacon object in Content Server. This adds overhead to normal requests, but the
web beacon object is very small and does not significantly interfere with the reverse proxy
server's performance. Note that it is only necessary to embed the web beacon references in
objects you specifically want to track.

Another usage scenario involves Site Studio, a product that is used to create websites which
are stored and managed in Content Server. When Site Studio and Content Server are located
on the same server, Content Tracker is configured to automatically track the applicable user
accesses. The gathered Site Studio activity data is then used in predefined reports. For more
information, see Site Studio Website Activity Reporting in Oracle Fusion Middleware Managing
Oracle WebCenter Content.

Chapter 15
Tracking Indirect Access to Content with Web Beacons

15-22

Note:

Two modes of Site Studio integration are available with Content Tracker. One type is
the existing built-in integration that automatically occurs when Site Studio is installed.
This is typically used when a website is under construction and the web pages are
managed in Content Server.

The other form uses the web beacon feature and Content Tracker regards Site
Studio the same as any other website generator. This is typically used when a
website is in production mode and content is no longer managed in Content Server.

If your website is intended for an external audience, you may decide to create a copy of the
site and transfer it to another server. In addition to being viewed publicly, this solution also
ensures that site development remains separate from the production site. In this arrangement,
however, implement the web beacon feature to make sure that Content Tracker can collect and
process user activity.

15.5.2 Web Beacon Overview
Content Tracker records and counts requests for objects managed by Content Server. The web
beacon feature counts requests for managed objects copied by an external entity (such as a
reverse proxy server or other functions not involving Content Server).

The following list provides a brief overview of the web beacon feature's functionality and
implementation requirements.

• To begin implementing the web beacon feature, create a Web Beacon object. This is
usually a small object such as a 1x1 pixel transparent image. The object is then checked in
and added to the Content Tracker list of web beacon object names.

• Next create the Web Beacon references to the checked-in web beacon object and
embedding them into cached HTML pages or managed content items. The first part of the
reference is a URL reference to the web beacon object and the second part is identification
information encoded as pseudo query parameters.

• Content Tracker logs the web beacon reference to the beacon object and performs
Reduction Processing for Web Beacon references. During data reduction, Content Tracker
checks the dDocName value of each referenced object against the list of registered web
beacons. If the dDocName value is on the list, the query parameters are processed in such a
manner to ensure that the URL request is logged as a request for the tagged object (web
page or managed content item) rather than the web beacon object.

15.5.3 Web Beacon Object
One or more content items must be created to use as the web beacon object or objects. These
are usually a 1x1 pixel transparent image or anything with low overhead that won't disrupt the
page being rendered. The ideal web beacon object has zero content. Multiple web beacon
objects can be created but only one is required. Make sure the object is not a file type included
in the SctIgnoreFileType configuration variable.

Check in the completed object, then update the Content Tracker SctWebBeaconIDList
configuration variable. During data reduction, Content Tracker checks the SctWebBeaconIDList
settings to determine how the web beacon reference listings in the event logs should be
processed. If the applicable web beacon object is listed, Content Tracker processes the data

Chapter 15
Tracking Indirect Access to Content with Web Beacons

15-23

appropriately. For details about configuration variables, see the Oracle Fusion Middleware
Configuration Reference for Oracle WebCenter Content.

During installation, the dDocName values of web beacon objects can be entered into the
SctWebBeaconIDList preference variable, or they can be added or edited later. Follow these
steps to add or edit object names in the ID list:

1. From the Administration tray or menu, choose Admin Server, then Component
Manager.

The Component Manager page opens.

2. In the first paragraph, click advanced component manager.

The Advanced Component Manager page opens.

3. In the Update Component Configuration field, choose Content Tracker from the list.

4. Click Update.

The Update Component Configuration page opens.

5. In the SctWebBeaconIDList preference field, enter the applicable web beacon object
dDocName values, separated by commas.

6. Click Update.

7. Restart Content Server to apply the changes.

15.5.4 Web Beacon References
After creating and checking in the web beacon object(s), create their corresponding
reference(s). A single web beacon object works in most systems because different query
strings appended to the web beacon static URL make each reference unique. Each query
parameter set also consists of distinct combinations of variables that identify specific cached
web pages or managed content items.

15.5.4.1 Format Structure for URL References
Web beacon URL references consist of the web beacon static URL used to access the web
beacon object managed by Content Server and a pseudo query string with content item
variables.

When creating the references, make sure the web beacon static URL in Content Server does
not use a directory root that is included in the SctIgnoreDirectories configuration variable. If
the URL is one of the listed values, Content Tracker does not collect the activity data. For more
information about the SctIgnoreDirectories configuration variable, see SctIgnoreDirectories
in Oracle Fusion Middleware Configuration Reference for Oracle WebCenter Content.

The query parameter set functions as a code that informs Content Tracker what the actual
managed content item is that the user accessed. One of the query parameters is the item's
dID. Including a unique set of query parameter values allows monitoring of indirect user access
activity for managed objects that have been copied and cached. The query string is never
actually executed but the query parameter values provide information for Content Tracker to be
able to identify the associated managed object.

The following examples illustrate general format structures associated with the web beacon
feature. The examples demonstrate how to use one web beacon object while creating an
unbounded number of different query strings. The same web beacon object (dDocName =
bcn_2.txt) is used in all of the examples. By varying the query parameters, the requests for

Chapter 15
Tracking Indirect Access to Content with Web Beacons

15-24

this web beacon object can convey to Content Tracker a 'request' for any managed object in
the repository.

These examples have the following assumptions:

• The web beacon object (bcn_2.txt) is checked in and is included in the web beacon list
(SctWebBeaconIDList).

• The applicable web beacon references are embedded into the associated managed
content items (doc1, doc2, and doc3).

• To resolve the web beacon reference, the browser must request a copy of the web beacon
object from Content Server.

• The web beacon requests occur because users are indirectly requesting the related
content items.

Example 15-1 Web Beacon Request Without Query Parameters

http://myhost.somewhere.else/idc/groups/public/documents/adacct/bcn_2.txt

This begins with a static web reference to the web beacon object. Although it is a legitimate
direct access to the web beacon object, there are no appended query parameters. Content
Tracker processes this access event as a request for the web beacon object itself.

Example 15-2 Web Beacon Request for Tracking doc1

http://myhost.somewhere.else/idc/groups/public/documents/adacct/bcn_2.txt?
sct_dDocName=doc1&sct_dID=1234&...

This also begins with the usual static web reference to this beacon object. It has a pseudo
query string appended to it that contains an arbitrary number of query parameters. The values
contained in these query parameters convey the information about the specific managed object
(doc1) the user has requested.

Example 15-3 Web Beacon Request for Tracking doc2

http://myhost.somewhere.else/idc/groups/public/documents/adacct/bcn_2.txt?
sct_dDocName=doc2&sct_Ext_2=WebSite4

This is similar to {Example - Web Beacon Request for tracking doc3}. The parameter values
provide information about the user requested content item (doc2). In this example the query
string includes another parameter to convey additional information about the tagged item. The
added parameter uses an extField column name. The value WebSite4 is copied into the
extField_2 column of the SctAccessLog table. The extField column substitution is optional and
application dependent.

Example 15-4 Web Beacon Request for Tracking doc3

http://myhost.somewhere.else/idc/groups/public/documents/adacct/bcn_2.txt?
sct_dDocName=doc2&sct_Ext_2=WebSite4&sct_Ext_8=SubscriptionClass6

This example modifies {Example - Web Beacon Request for Tracking doc2} by adding a
second (although non-sequential) extField column name. In this case, WebSite4 is copied into
the extField_2 column of the SctAccessLog table, and SubscriptionClass6 is copied into the
extField_8 column. The extField column substitutions are optional and application dependent.

15.5.4.2 Placement and Retrieval Scheme
The specially constructed web beacon references must be embedded in the managed object to
track. Web beacon references can be embedded in any HTML page. Users indirectly request

Chapter 15
Tracking Indirect Access to Content with Web Beacons

15-25

access to the modified managed content items through an external Site Studio website or a
reverse proxy server.

The browser encounters the web beacon reference while rendering the page. Each display of
the managed object, regardless of how the object was obtained, causes the browser to request
a copy of the web beacon object directly from Content Server. When the browser resolves the
web beacon reference, Content Tracker captures the data that includes the web beacon
reference with the set of pseudo query parameters that identify the managed content item.

15.5.4.3 Data Capture and Storage
Ordinarily, query parameters in static URLs serve no function for the web browser. But when
resolving the web beacon static URL, the browser ignores the appended query parameters
long enough for the Content Tracker web server filter plug-in to record them. Although the
pseudo query string is never executed, Content Tracker captures the query parameter values
with other data such as the client IP address and date-and-time stamp. Content Tracker
records the data in web access event logs.

15.5.5 Reduction Processing for Web Beacon References
When these specially constructed web beacon references are processed during data
reduction, Content Tracker compares the web beacon's dDocName value to the list of dDocName
values in the SctWebBeaconID list to determine if the request was for a web beacon object
rather than a regular content item.

If there is no match or if no query parameters are appended to the web beacon reference,
Content Tracker processes the access event normally. If the web beacon's dDocName is
identified, Content Tracker continues to process and interpret the associated URL query
parameters with the data reduction process treating the web beacon access request as a
request for the web page or content item.

During data reduction, Content Tracker completes the processing by parsing the query
parameters and performing various value substitutions for fields ultimately written to the
SctAccessLog. The query parameter values are mapped as follows:

• sct_dID replaces the web beacon object's dID value.

• sct_dDocName replaces the web beacon object's dDocName value.

• sct_uriStem replaces the web beacon object's URI stem (everything preceding the
question mark (?)).

• sct_uriQuery replaces the web beacon object's URI query portion (everything following
the question mark (?)).

• sct_Ext_n is copied directly into the SctAccessLog Extended Field n.

Example 15-5 Data Reduction Processing for Query Parameter Values

/idc/groups/public/documents/adacct/bcn_2.txt?
sct_dDocName=WW_1_21&sct_dID=42&sct_Ext_1=WillowStreetServer&sct_Ext_2=SubscriptionTypeA

After data reduction, Content Tracker records this web beacon type request in the
SctAccessLog table as an access to WW_1_21 rather than to bcn_2.txt. Other data, such as the
user name, time of access, and client IP, is derived from the HTTP request. Additionally,
WillowStreetServer is copied into the extField_1 column of the SctAccessLog table, and
SubscriptionTypeA is copied into the extField_2 column. (These last two field substitutions are
optional and application dependent.)

Chapter 15
Tracking Indirect Access to Content with Web Beacons

15-26

15.5.6 Limitations and Guidelines
Perform the following tasks to implement Content Tracker's web beacon feature:

1. Create the web beacon object.

2. Check it in.

3. Update the SctWebBeaconIDList.

4. Define the web beacon references.

5. Embed them into the cached content items, websites, or both to track.

15.5.6.1 Limitations
The following limitations should be considered:

• One difficulty is determining the means by which the web beacon reference is attached to
a tagged object. There are situations where the requested object does not allow embedded
references (for example, a PDF or Word document). In this case, the web beacon object
must be requested directly from Content Server before the actual content item is
requested.

• The web beacon feature does not work in many situations, such as with certain browser
configurations. If the user has disabled cross-domain references in their browser, and both
the web page and Content Server instance are in different domains, the web beacon object
is never requested from Content Server and the user access is not counted.

• The first time a managed content item is accessed through a reverse proxy server, it is
counted twice: once when the Content Server provides the item to the reverse proxy
server, and a second time when the browser requests the web beacon object.

• Depending on the specific configuration, it might be necessary to devise a method to
prevent the reverse proxy server and external Site Studio from caching the web beacon
object itself. Browsers also do caching. This situation would prevent Content Tracker from
counting any relevant content accesses. To avoid this append a single-use query
parameter to the web beacon reference that contains a random number as in this example:

dDocName=vvvv_1_21&FoolTheProxyServer=12345654321
By changing the number on each request, the cache, web server and the browser view the
request as new.

15.5.6.2 Guidelines
The following guidelines should be considered:

• The sct_dDocName and sct_dID parameter values in the web beacon reference must
resolve to an actual managed content item in the same Content Server instance that
provides the requested web beacon object.

• Using the ExtField columns in the SctAccssLog table is optional and application
dependent.

• Use of ExtField_10 is reserved for the web beacon object's dDocName value. This allows
report writers a way to determine which web beacon object was used to signal the access
to the actual managed content item.

• Spelling and capitalization of the query parameter names must be exact.

• Embedded commas or spaces in the query parameter values are not allowed.

Chapter 15
Tracking Indirect Access to Content with Web Beacons

15-27

• The dDocName and dID values of a managed object are usually included in the web beacon
reference although to be considered a legitimate access request, it is not necessary to
provide both. If any of the standard fields are missing, Content Tracker resolves the
identification parameters as follows:

– Given a dID, Content Tracker can determine the content item's dDocName value.

– Given a dDocName, Content Tracker can determine the content item's dID values. The
dID is the content item's most current revision. If the revision changes after the content
item is cached, then the user sees the older version. However, Content Tracker counts
this access request as a view of the most recent revision of the content item.

– Given a proper URI Stem, Content Tracker can determine the content item's dDocName
value but assumes the dID value of the most recent revision.

• Restart Content Server after making changes to the web beacon list
(SctWebBeaconIDList).

• Do not create a web beacon object that uses a file type or is located in a directory that
Content Tracker is configured to disregard.

• Content Tracker is unable to verify if the cached content item was delivered.

• Content Tracker performs normal folding of static URL accesses. If a user repeatedly
requests the same content item and makes no intervening requests for another document,
then Content Tracker assumes that the consecutive requests are the same document. In
this case, these access requests are considered to be all one access request.

• The query parameters can represent any managed object and need not necessarily be
what the user is actually viewing.

15.5.7 Examples of Web Beacon Embedding
Several embedding methods can be used to implement the web beacon feature. Each
technique has advantages and disadvantages and one may be more appropriate for a
particular situation than another. Because of differences in system configurations, there is no
optimal single technique.

All of the examples below use the following information:

• WebBeacon.bmp web beacon object

• Content Server instance IFHE.comcast.net/idc/
• dDocName value wb_bmp
Code fragment files for all of the examples are included in Content Tracker's documentation
directory. These examples are intended to demonstrate general approaches and are provided
as a starting point. They will need to be adapted to work with your specific application and
network topology.

15.5.7.1 Embedded HTML Example
The simplest, most direct use of a web beacon for tracking managed content access is to
embed a reference to the beacon directly into the HTLM source for the containing web page.
When the requesting user's browser attempts to render the page, it sends a request to the
instance where the web beacon object resides.

In this example, the technique places an image tag in the web page to be tracked. The src
attribute of the image refers to the web beacon object (wb_bmp) which was checked into an

Chapter 15
Tracking Indirect Access to Content with Web Beacons

15-28

instance. When the user's browser loads the image the instance, the additional query
information is recorded and ultimately interpreted as a reference to the dDocName BOPR.

This approach is simple but has the disadvantage that the user's browser or a reverse proxy
server, might cache a copy of the web beacon object. As such, no additional requests are
posted directly to the instance, and no additional accesses to any content tagged with this web
beacon are counted.

The HTML fragment for this method might be written as follows:

<!-- WebBeaconEmbeddedHtml.htm - Adjust the Web Beacon web location and managed object
identfiers in the img src attribute, then paste into your web page -->
<img src="http://IFHE.comcast.net/idc/groups/public/documents/adacct/wb_bmp.bmp?
sct_dID=1&sct_dDocName=BOPR&sct_uriStem=http://IFHE.comcast.net/idc/groups/public/
documents/adacct/bopr.pdf&sct_Ext_1=Sample_Html_Beacon_Access" width="21" height="21" />

15.5.7.2 Embedded JavaScript Example
The cached web beacon problem can be overcome by using JavaScript instead of HTML
Using the embedded JavaScript method requires two script tags:

• The cs_callWebBeacon function that issues the actual web beacon request.

• An unnamed block that assigns context values to certain JavaScript variables, then calls
the cs_callWebBeacon function.

The identifying information for the managed content object is defined in a list of variables which
improves readability. The web beacon request is also made effectively unique by adding a
random number to the pseudo query parameters.

Disadvantages include more code to manage and the URL of the web beacon server is hard
coded in each web page. In addition, the user's browser might not have JavaScript enabled.

The JavaScript fragment for this method might be written as follows:

// WebBeaconEmbeddedJavascript.js - Adjust the managed object and Web Beacon descriptors,
then paste this into your web page.
//

<script type="text/javascript" >

 var cs_obj_dID = "" ;
 var cs_obj_dDocName = "" ;
 var cs_obj_uriStem = "" ;
 var cs_extField_1 = "" ;
 var cs_extField_2 = "" ;
 var cs_extField_3 = "" ;
 var cs_extField_4 = "" ;
 var cs_extField_5 = "" ;
 var cs_extField_6 = "" ;
 var cs_extField_7 = "" ;
 var cs_extField_8 = "" ;
 var cs_extField_9 = "" ;
 var cs_beaconUrl = "" ;

 function cs_void() { return ; }

 function cs_callWebBeacon() {
 //
 var cs_imgSrc = "" ;
 var cs_inQry = false ;

Chapter 15
Tracking Indirect Access to Content with Web Beacons

15-29

 if (cs_beaconUrl && cs_beaconUrl != "") {
 cs_imgSrc += cs_beaconUrl ;
 }

 if (cs_obj_dID && cs_obj_dID != "") {
 if (cs_inQry) {
 cs_imgSrc += "&" ;
 } else {
 cs_imgSrc += "?" ;
 cs_inQry = true ;
 }
 cs_imgSrc += "sct_dID=" + cs_obj_dID ;
 }

 if (cs_obj_dDocName && cs_obj_dDocName != "") {
 if (cs_inQry) {
 cs_imgSrc += "&" ;
 } else {
 cs_imgSrc += "?" ;
 cs_inQry = true ;
 }
 cs_imgSrc += "sct_dDocName=" + cs_obj_dDocName ;
 }
 if (cs_obj_uriStem && cs_obj_uriStem != "") {
 if (cs_inQry) {
 cs_imgSrc += "&" ;
 } else {
 cs_imgSrc += "?" ;
 cs_inQry = true ;
 }
 cs_imgSrc += "sct_uriStem=" + cs_obj_uriStem ;
 }

 if (cs_extField_1 && cs_extField_1 != "") {
 if (cs_inQry) {
 cs_imgSrc += "&" ;
 } else {
 cs_imgSrc += "?" ;
 cs_inQry = true ;
 }
 cs_imgSrc += "sct_Ext_1=" + cs_extField_1 ;
 }

 if (cs_extField_2 && cs_extField_2 != "") {
 if (cs_inQry) {
 cs_imgSrc += "&" ;
 } else {
 cs_imgSrc += "?" ;
 cs_inQry = true ;
 }
 cs_imgSrc += "sct_Ext_2=" + cs_extField_2 ;
 }

 <!-- and so on for the remaining extended fields -->

 if (cs_inQry) {
 cs_imgSrc += "&" ;
 } else {
 cs_imgSrc += "?" ;
 cs_inQry = true ;
 }

Chapter 15
Tracking Indirect Access to Content with Web Beacons

15-30

 var dc = Math.round(Math.random() * 2147483647) ;
 cs_imgSrc += "sct_defeatCache=" + dc ;

 var wbImg = new Image(1, 1) ;
 wbImg.src = cs_imgSrc ;
 wbImg.onload = function() { cs_void() ; }

 }

</script>

<script type="text/javascript">
 //
 var cs_obj_dID = "1" ;
 var cs_obj_dDocName = "BOPR" ;
 var cs_obj_uriStem = "http://IFHE.comcast.net/idc/groups/public/documents/adacct/
bopr.pdf" ;
 var cs_extField_1 = "Sample_Javascript_Beacon_Access" ;
 var cs_beaconUrl = "http://IFHE.comcast.net/idc/groups/public/documents/adacct/
wb_bmp.bmp" ;

 cs_callWebBeacon() ;

</script>

15.5.7.3 Served JavaScript Example
The hard-coded web beacon server problem described in the Embedded JavaScript Example
can be overcome by splitting the code into two fragments:

• The managed code fragment contains the cs_callWebBeacon function. It can be checked
in and managed by a Content Server instance, either the instance that manages the web
beacon or some other instance. The src attribute contained in the in-page code fragment
refers to the managed code fragment and causes it to be dynamically loaded into the web
page.

• The in-page code fragment still consists of two <script> tags, but the first contains only a
reference to the cs_callWebBeacon code instead of the code itself. The advantage for this
is that changes to the cs_callWebBeacon function can be managed centrally instead of
having to modify each and every tagged web page.

This solution incurs the additional network overhead of loading the managed code into the
web page on the user's browser. However, the requirement for a web beacon assist to
tracking implies that the network environment includes an efficient reverse proxy server, or
other caching mechanism. The same cache that conceals managed object access also
minimizes the impact of the code download.

Managed Code Fragment

// WebBeaconServedJavascript_Checkin.js - Check this in to your Content Server, then
fixup
// the JavaScript include src attribute in WebBeaconManagedJavascriptIncludeSample.js
//
 var cs_obj_dID = "" ;
 var cs_obj_dDocName = "" ;
 var cs_obj_uriStem = "" ;
 var cs_extField_1 = "" ;
 var cs_extField_2 = "" ;
 var cs_extField_3 = "" ;
 var cs_extField_4 = "" ;

Chapter 15
Tracking Indirect Access to Content with Web Beacons

15-31

 var cs_extField_5 = "" ;
 var cs_extField_6 = "" ;
 var cs_extField_7 = "" ;
 var cs_extField_8 = "" ;
 var cs_extField_9 = "" ;
 var cs_beaconUrl = "http://IFHE.comcast.net/idc/groups/public/documents/adacct/
wb_bmp.bmp" ;

 function cs_void() { return ; }

 function cs_callWebBeacon() {
 //
 var cs_imgSrc = "" ;
 var cs_inQry = false ;

 if (cs_beaconUrl && cs_beaconUrl != "") {
 cs_imgSrc += cs_beaconUrl ;
 }

 if (cs_obj_dID && cs_obj_dID != "") {
 if (cs_inQry) {
 cs_imgSrc += "&" ;
 } else {
 cs_imgSrc += "?" ;
 cs_inQry = true ;
 }
 cs_imgSrc += "sct_dID=" + cs_obj_dID ;
 }

 if (cs_obj_dDocName && cs_obj_dDocName != "") {
 if (cs_inQry) {
 cs_imgSrc += "&" ;
 } else {
 cs_imgSrc += "?" ;
 cs_inQry = true ;
 }
 cs_imgSrc += "sct_dDocName=" + cs_obj_dDocName ;
 }

 if (cs_obj_uriStem && cs_obj_uriStem != "") {
 if (cs_inQry) {
 cs_imgSrc += "&" ;
 } else {
 cs_imgSrc += "?" ;
 cs_inQry = true ;
 }
 cs_imgSrc += "sct_uriStem=" + cs_obj_uriStem ;
 }

 if (cs_extField_1 && cs_extField_1 != "") {
 if (cs_inQry) {
 cs_imgSrc += "&" ;
 } else {
 cs_imgSrc += "?" ;
 cs_inQry = true ;
 }
 cs_imgSrc += "sct_Ext_1=" + cs_extField_1 ;
 }

 if (cs_extField_2 && cs_extField_2 != "") {
 if (cs_inQry) {
 cs_imgSrc += "&" ;

Chapter 15
Tracking Indirect Access to Content with Web Beacons

15-32

 } else {
 cs_imgSrc += "?" ;
 cs_inQry = true ;
 }
 cs_imgSrc += "sct_Ext_2=" + cs_extField_2 ;
 }

 <!-- and so on for the remaining extended fields -->

 if (cs_inQry) {
 cs_imgSrc += "&" ;
 } else {
 cs_imgSrc += "?" ;
 cs_inQry = true ;
 }

 var dc = Math.round(Math.random() * 2147483647) ;
 cs_imgSrc += "sct_defeatCache=" + dc ;

 var wbImg = new Image(1, 1) ;
 wbImg.src = cs_imgSrc ;
 wbImg.onload = function() { cs_void() ; }

 }

In-Page Code Fragment

<script type="text/javascript" src="http://IFHE.comcast.net/idc/groups/public/documents/
adacct/wbmjcs.js" >
</script>

<script type="text/javascript">
 //
 var cs_obj_dID = "1" ;
 var cs_obj_dDocName = "BOPR" ;
 var cs_obj_uriStem = "http://IFHE.comcast.net/idc/groups/public/documents/adacct/
bopr.pdf" ;
 var cs_extField_1 = "Sample_Managed_Javascript_Beacon_Access" ;

 cs_callWebBeacon() ;

</script>

Chapter 15
Tracking Indirect Access to Content with Web Beacons

15-33

16
Customizing Content Categorizer

This chapter provides information about the customization of Content Categorizer, an optional
component that is automatically installed with Oracle WebCenter Content. When enabled,
Content Categorizer suggests metadata values for documents being checked into Oracle
WebCenter Content Server.

• About Content Categorizer

• Setting Up and Customizing Content Categorizer for Your Site

16.1 About Content Categorizer
Content Categorizer suggests metadata values for new documents being checked into Content
Server, and for existing documents that may or may not already have metadata values. These
metadata values are determined according to search rules provided by the System
Administrator.

For Content Categorizer to recognize structural properties, the content must go through XML
Conversion (eXtensible Markup Language).

The Content Categorizer Batch utility can search a large number of files and create a Batch
Loader control file containing appropriate metadata field values. The Batch utility can also be
used to recategorize existing content (already checked into the repository).

16.2 Setting Up and Customizing Content Categorizer for Your
Site

To customize Content Categorizer for your site, you can set the XML conversion method,
define field properties for the metadata fields, and define search rules for each file type. You
can also define your own eXtensible Style Sheet Language Transformations (XSLT) for the
XML translation, to accommodate your site's document processing needs.

For details about setting up Content Categorizer and customizing it, see Categorizing and
Linking Content in Oracle Fusion Middleware Managing Oracle WebCenter Content.

16-1

17
Downloading Custom Components

This chapter describes how to download packaged custom components to Oracle WebCenter
Content Server.

This chapter includes the following sections:

• About Downloading Custom Components

• Downloading a Component from the Advanced Component Manager

• Downloading a Component from Oracle Technology Network

17.1 About Downloading Custom Components
You can download custom components for Content Server with the Advanced Component
Manager or from Oracle Technology Network.

17.2 Downloading a Component from the Advanced Component
Manager

You can use the Advanced Component Manager to download a component for Content Server.

To download a component from the advanced component manager:

1. In the Administration tray or menu, choose Admin Server, then Component Manager.

The Component Manager page opens.

2. In the first paragraph on the Component Manager page, click advanced component
manager.

This displays the Advanced Component Manager page, which has a list of components
available for downloading.

3. Choose the component to be packaged from the Download Component list.

4. Click Download to display the File Download screen.

5. Select Save this file to disk, and click OK.

6. In the Save As dialog box, navigate to a directory, change the file name if necessary, and
click Save.

17.3 Downloading a Component from Oracle Technology
Network

You can download a component for Content Server from Oracle Technology Network (OTN).

To download a component from OTN:

17-1

1. In a web browser, go to the OTN website at http://www.oracle.com/technetwork/
middleware/downloads/index.html.

2. On the Oracle Fusion Middleware 14c Software Downloads page, locate and click
WebCenter Content.

3. On the Oracle WebCenter Content page, click Core Capabilities.

4. On the Oracle WebCenter Content Core Capabilities page, click Download.

5. On the Downloads page, click Individual UCM Component Downloads, and download
the component you want.

Chapter 17
Downloading a Component from Oracle Technology Network

17-2

http://www.oracle.com/technetwork/middleware/downloads/index.html
http://www.oracle.com/technetwork/middleware/downloads/index.html

18
Creating Custom Components

This chapter describes how to create custom components to use with Oracle WebCenter
Content Server.

This chapter includes the following sections:

• About Creating Custom Components

• Creating Resources for a Component

• Creating a Component Definition File

• Restarting Content Server to Apply a Component

18.1 About Creating Custom Components
Custom components can alter defaults for your system, add new functionality, or streamline
repetitive functions. You can create and use custom components to modify a Content Server
instance without compromising the system integrity.

18.2 Creating Resources for a Component
You can use the following types of resources to customize Content Server:

• HTML includes

• Dynamic data tables

• String resources

• Dynamic tables

• Static tables

• Queries

• Services

• Templates

• Environment resources

18.2.1 HTML Includes
An include is defined within <@dynamichtml name@> and <@end@> tags in an HTM resource file.
The include is then called using this syntax:

<$include name$>
Includes can contain Idoc Script and valid HTML code, including JavaScript, Java applets,
cascading style sheets, and comments. Includes can be defined in the same file as they are
called from, or they can be defined in a separate HTM file. Standard HTML includes are
defined in the IdcHomeDir/resources/core/idoc files.

18-1

HTML includes, strings, and static tables can be present in the same HTM file. An HTML
include resource does not require merge rules.

18.2.1.1 The Super Tag
The super tag is used to define exceptions to an existing HTML include. The super tag tells the
include to start with an existing include and then add to it or modify using the specified code.

The super tag is particularly useful when making a small customization to large includes or
when you customize standard code that is likely to change from one software version to the
next. When you upgrade to a new version of Content Server, the super tag ensures that your
components are using the most recent version of the include, modifying only the specific code
you need to customize your instance.

The super tag uses the following syntax:

<@dynamichtml my_resource@>
 <$include super.my_resource$>
 exception code
<@end@>

You can use the super tag to refer to a standard include or a custom include. The super tag
incorporates the include that was loaded last.

Caution:

The placement of a super tag will determine how the Idoc Script is evaluated.

Example 18-1 super Tag

In this example, a component defines the my_resource include as follows:

<@dynamichtml my_resource@>
 <$a = 1, b = 2$>
<@end@>

Another component that is loaded later enhances the my_resource include using the super tag.
The result of the following enhancement is that a is assigned the value 1 and b is assigned the
value 3:

<@dynamichtml my_resource@>
 <$include super.my_resource$>
 <!--Change "b" but not "a" -->
 <$b = 3$>
<@end@>

18.2.1.2 Editing an HTML Include Resource
Use the following procedure to edit an existing HTML include resource using the Component
Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Choose the resource in the Custom Resource Definition list.

3. If the resource file contains multiple types of resources, click the Includes tab on the right.

Chapter 18
Creating Resources for a Component

18-2

4. Modify the includes in the Custom HTML Includes list.

• To edit an existing include, choose the include, click Edit, modify the code, and then
click OK.

• To add an include to the resource file, click Add.

• To remove an include, choose the include, click Delete, and then click Yes to confirm.

18.2.2 Dynamic Data Tables
A dynamic data table resource is a dynamicdata table. This type of resource enables you to
define tables of data from within Idoc Script to load an HTML table definition, interface menu
actions, or information about metadata fields or from within Java code as an alternative to
static tables loaded into SharedObjects.

While tables loaded into SharedObjects are static and rarely change, a lot of code within
Content Server will modify the contents of a dynamicdata table when it is loaded into a user's
context. You can use dynamicdata resources to display different data to users depending on
anything from their security attributes to the specific actions they are performing. Components
can do targeted merging into tables created with this resource type, and Idoc Script pages can
select and sort rows.

You can declare a dynamicdata resource in any resource file that can contain dynamichtml
constructions.

Example 18-2 dynamicdata Resource

<@dynamicdata NameOfTable@>
<?formatoftable properties-of-table?>
table-data
<@end@>

A dynamicdata table is defined within <@dynamicdata name@> and <@end@> tags in a resource
file. To reference dynamicdata tables, you need to use the Idoc Script functions whose names
begin with dd, such as ddLoadResultSet, which loads a merged dynamicdata table and creates
a ResultSet in the current data binder.

The IdcHomeDir/resources/core/idoc files define standard dynamicdata resources.

18.2.2.1 Specifying Table Formats
For the formatoftable parameter in a dynamicdata resource, you can specify either of two
format types:

• commatable
• htmltable
The default format is commatable.

commatable

The commatable format is for tables with values that do not have line feeds or carriage returns.
In this format, you enter a comma-separated list of field names on one line followed by a
comma-separated list of values on the following lines, one line for each field.

commatable Format
<@dynamicdata SampleTable@>
<?commatable?>
col1, col2

Chapter 18
Creating Resources for a Component

18-3

val1_1, val1_2
val2_1, val2_2
<@end@>

If you need to insert a comma (,) into a value, then use a circumflex (^) instead of the
comma. If you need to insert a circumflex, then enter the escape sequence pound sign-
circumflex (#^, and if you need to insert a pound sign (#) that is followed by a pound sign or a
circumflex, then enter the escape sequence pound sign-pound sign (##).

Special Characters in Values
<@dynamicdata SampleTable@>
field1, field2
ÂB, C##^D#^E#F^G
<@end@>

This dynamicdata resource would load a table row whose value for field1 would be A,B and
for field2 would be C#^D^E#F,G.

You cannot escape line feeds or carriage returns. If you need to specify a value that contains
either of those characters, then you should use the htmltable format.

htmltable

The htmltable format is the same as the format used for static HTML table constructs in
Content Server.

Example 18-3 htmltable Format

<@dynamicdata SampleTable@>
<?htmltable?>
<table>
<tr>
 <td>col1</td>
 <td>col2</td>
</tr>
<tr>
 <td>val11</td>
 <td>val12</td>
</tr>
<tr>
 <td>val21</td>
 <td>val22</td>
</tr>
</table>
<@end@>

18.2.2.2 Editing a Dynamic Data Table Resource
Use the following procedure to edit an existing dynamicdata resource using the Component
Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Choose the resource from the Custom Resource Definition list.

3. If the resource file contains multiple types of resources, click the Includes tab on the right.

4. You can modify any of the dynamicdata tables in the custom resource definition, add a
dynamicdata table, or remove a dynamicdata table:

• To edit an existing dynamicdata table, choose the table, click Edit, modify the code,
and then click OK.

Chapter 18
Creating Resources for a Component

18-4

• To add a dynamicdata table to the resource file, click Add.

• To remove a dynamicdata table, choose the table, click Delete, and then click Yes to
confirm.

18.2.2.3 Specifying Table Properties
The properties-of-table parameter in a dynamicdata resource has this format:

field1="value1" field2="value2" . . .

The properties are like attributes defined in an XML node. The following example shows a
typical table declaration.

Table Properties in a Table Definition
<@dynamicdata ExampleTable@>
<?commatable mergeField="fieldA" indexedColumns="fieldA,fieldB"?>
fieldA, fieldB
1, 2
3, 4
<@end@>

The quotation marks that enclose the values are optional for values that have no spaces, and
you can use either single or double quotation marks. Also, the default property value is 1, so
you can omit the assignment of a value for a table property if it is 1.

Omitting the value is useful for Boolean properties such a notrim and mergeBlanks. shows a
declaration specifying a table that is not to trim its values.

notrim Property
<@dynamicdata ExampleTable@>
<?commatable mergeField="fieldA" indexedColumns="fieldA,fieldB" notrim?>
fieldA, fieldB
1, 2
3, 4
<@end@>

In this example, the space would not be trimmed before the 2 or the 4. (Field names are always
trimmed.)

You can specify the following kinds of table properties:

• Merge properties

• Assembly properties

• Sort properties

• Filter and dynamicdata table properties

18.2.2.3.1 Merge Properties
The dynamicdata tables can be merged together automatically, which is part of the power of
using these tables. If two dynamicdata tables have the same name but are in separate
resource files, they will be automatically merged. You can use the mergeOtherData option to
merge another existing table into the current existing table. Using this technique, you can build
very complicated tables all merged from various other tables. This merging can improve the
readability of the data and enable you to have some tables as subsets of other tables.

You can specify one or more of the following merge properties in the properties-of-table
parameter in a dynamicdata resource:

Chapter 18
Creating Resources for a Component

18-5

• mergeKey: The name of the field to do a merge on. This value applies to both this and the
existing tables when doing an overlay unless mergeNewKey is set in which case it only
applies to the existing table. If this value is not set, then the merge key defaults to the first
column of this table. If the mergeKey refers to a column in the existing table that does not
exist, then the result will be to append this table to the existing table unless the mergeRule
is set to a value that dictates a different outcome. This property has merge scope.

• mergeNewKey: The name of the field in this table to use as a basis of comparison with the
mergeKey column in the existing table. The default is to be the value of mergeKey. This
property has merge scope.

• mergeRule: The rule to use when performing a merge of two tables. This property has
three possible values, the default being merge. This property has merge scope.

• merge: Merge using the mergeKey (and if specified, the mergeNewKey) properties to
perform the merge.

• mergenoappend: Perform the merge, but do not append any new rows. If there is no valid
merge to perform (for example, if the mergeKey does not refer to a valid column in the
existing table), then the result is to not perform a merge at all and the overlaying table has
no effect on the final result.

• replace: Replace the existing table with this table. This option has the outcome of
suppressing any prior table resource. This would be similar to not using the super include
in a dynamichtml resource.

• mergeBlanks: By default, when values are merged from this table to the existing table,
any values that are blank in this table do not replace the overlaid value in the existing
table. This allows for targeted replacement of column values in the existing table by this
table. But if this option is enabled (set without a value, or set with the value 1 or true), then
blanks in this table replace non-blank values in the existing table. The default is 0 (or false)
and the property has merge scope.

• mergeAppendColumns: This is a comma-separated list of columns in this table. For any
column mentioned in the list, column values in this table for that column do not replace
values in the existing table for that column but instead append or replace the new value
(using comma as the separator) to the current value. Each of the subvalues in the comma-
separated list is assumed to be of the form key=value with the =value part being optional.
If this table has the same key in its comma-separated list, then that key=value pair will
replace the value in the existing table. For example, if the existing table has a column
value of the form a=1,b=2 and this table has the value b=3,c=4, then the merged result will
be a=1,b=3,c=4. This property has merge scope.

• cssStyleMergeAppendFormat: This is a boolean property and changes the separator
values used for the mergeAppendColumns property. Normally the value of a field
mentioned in the mergeAppendColumns is a comma separated list of name equal value
pairs with the equal operator (=) being the assignment operator. If this property is enabled,
then the lists separator becomes a semi-colon (;) and the name value pairs use a colon (:)
for the assignment. So, instead of the field value looking like A=1,B=2, it would be A:1;B:2.
The default is false, and the property has merge scope.

• wildcard: Normally when a merge is performed, the merge test is a case insensitive match
comparison. When this option is enabled, the comparison is a standard Content Server
wildcard match (* = 0 or more of any character, ? = any single character). Typically the
option is used with mergeNewKey being set to a column different from mergeKey and in
many cases the mergeKey does not even refer to a valid column in this table. The default
is 0 (or false) and the property has merge scope.

• mergeOtherData: A comma-separated list of other dynamicdata resources to merge into
this one. Each of the other dynamicdata resources is fully merged before it is merged into

Chapter 18
Creating Resources for a Component

18-6

this resource. (If those other resources also are using mergeOtherData, then those merges
are done first. The code has recursion detection.) If one of the referenced dynamicdata
resources has multiple definitions in multiple files, then the merge keys used to merge into
this resource are the ones defined that is highest in merge order (the one that is merged
into last) for that other resource. If this dynamicdata resource (the one that has the
mergeOtherData property on it) has multiple definitions in multiple files, the
mergeOtherData parameter is produced by merging all the referenced named resources
from all the resources in the merge stack. The default is null and has global scope.

18.2.2.3.2 Assembly Properties
You can specify one or more of the following assembly properties in the properties-of-table
parameter in a dynamicdata resource:

• notrim: This option only applies to the commatable format. Normally, all the values that are
parsed for a table resource are trimmed. Setting this option prevents the values from being
trimmed. It is presumed that this will be a rarely used option. The default is 0 (or false) and
the property has local table scope.

• indexedColumns: This property lists columns that should be optimized for indexed
lookup. Specialized Idoc Script functions exist to take advantage of the any of the indexed
columns. When a lookup is done against an indexed column, the column name and a
value must be specified. A filtered table consisting of just the rows whose values for the
indexed column match (case insensitive) the value passed in to the function is returned.
Note that these indexed column lookups are all computed at load and merge time and
stored in a hash table for fast retrieval. The list of indexed column values for all the
overlaying tables are merged together and the index computations are done after the
merge is finished. This property has global table scope.

• countColumn: This value specifies a column in the fully merged table into which the
values of a row count is put. The count starts at 1 and increments for each row in the table.
Any existing values in that column of the merged table are replaced by the count value.
This property can be used to create a quick unique key for each row. The default value for
this property is count, so any table with the column name count that does not specify a
different countColumn will automatically have counter values put into that column. If the
value of this property does not match a column name in the final merged table, then it is
ignored. If an overlaying table resource specifies a different countColumn from one
specified in a prior table resource, then the overlaying one will be used. The property has
global table scope.

• defaultValues -- This property specifies a comma-separated list of default values to apply
to the table. Each default value in this list is of the format fieldname:value. If the value is an
empty string then the colon can be dropped. For example, the string
field1:val1,field2:val2,field3 specifies the default value val1 for field1, val2 for
field2, and the empty string for field3. A colon can be escaped with an asterisk (*), and
an asterisk can be escaped by preceding it with a pound sign (#). If either a pound sign or
an asterisk follows a pound sign, then the pound sign can be escaped by adding another
pound sign (see the similar rule for escaping commas given earlier). If a field specified in a
default value construction does not exist in the final merged table, then it is added as a
new field and given the default value for all rows in that table. If the field exists, then the
default value will override any blank values in that table for that field. The definitions of
defaultValues from the newer overlaying tables are collated with the active definition of
the existing table. If there is a conflict in the definition of a particular default value, the
newer overlaying table wins. The default for this property is null, and it has global table
scope.

• derivedColumns: This property specifies columns to be built up from values from other
columns. The general syntax is a comma separated list of derived column definitions of the

Chapter 18
Creating Resources for a Component

18-7

form derivedColumnDef1,derivedColumnDef2,... with each column definition being of the
form fieldName:sourceField1+sourceField2+.... The fieldName value refers to the
name of the field to be created, and the sourceFieldN values refer to fields whose values
will be sourced to create the derived column. The derived value will hold the values of the
source fields separated by a double colon (::). If the derived column exists and has a non
empty value, then it is not replaced. As with the defaultValues property, there is a second
pass after the final table is assembled to determine whether any derived values still need
to be filled in. The most typical usage for derived columns is to allow one dynamicdata
resource to use multiple columns for specifying a merge criteria instead of just one. The
derived column is used as the target of a merge and is defined in the definition of the
existing table. The derived column definitions are inherited into the newer overlaying tables
and if there is a conflict in definition of a particular derived column then the newer table's
definition wins. Otherwise, the definitions of derived columns from the existing and new
tables are collated together. The default value for this property is null and it has global
table scope.

18.2.2.3.3 Sort Properties
You can specify one or more of the following sort properties in the properties-of-table
parameter in a dynamicdata resource:

• sortColumn: Specifies a column to sort on. If an overlaying table resource specifies a
different sortColumn value from one specified in a prior table resource, then the value from
the overlaying table resource will be used. If the name of the column does not match any
column name in the final merged table, then no sort is performed. The default value is
sortOrder. So, creating a column with this name will cause the table to be automatically
sorted. This property has global table scope.

• sortType: Specifies what data type should be assumed for the column being sorted. This
type applies to both sortColumn and sortParentColumn. The value can be int, string, or
date. The default value for this property is int. Rules for overlaying tables both specifying
this property are identical to sortColumn. This property has global table scope.

• sortOrder: Specifies what sort order to use when performing a sort. The possible values
are asc (for ascending) and desc (for descending). The default is asc. Rules for overlaying
tables both specifying this property are identical to sortColumn. This property has global
table scope.

• sortIsTree: Specifies whether the sort is actually a tree sort with a sortParentColumn
being sorted along with the sortChildColumn. The assumption is that the child to parent
row mapping relationship is done by using the child row's value in the sortParentColumn to
the find the parent row with a matching value in its sortChildColumn field. The sort is
performed so that the top-level parents are sorted first, then the children of each parent are
sorted as a subgroup for each parent, and so on recursively for all the children of the
children. The default value is 0 (or false). Rules for overlaying tables both specifying this
property are identical to sortColumn. This property has global table scope.

• sortParentColumn: This value must be specified if the sortIsTree option is enabled. If
the value of this property is missing or specifies an invalid column, then the sortIsTree
option is ignored and has no effect. For more information about what it does, see the
preceding description of the sortIsTree property. The default for the sortParentColumn
property is null. Rules for overlaying tables both specifying this property are identical to
sortColumn. This property has global scope.

• sortChildColumn: This value must be specified if the sortIsTree option is enabled. If the
value of this property is missing or specifies an invalid column, then the sortIsTree option
is ignored and has no effect. For more information about what it does, see the preceding

Chapter 18
Creating Resources for a Component

18-8

description of the sortIsTree property. The default for the sortChildColumn property is
null. Rules for overlaying tables both specifying this property are identical to sortColumn.
This property has global scope.

• sortNestLevelColumn: This value is available only if the sortIsTree option is enabled. If
the value of this property references an invalid column then it has no effect. If a valid
column is specified, then that column will get an integer value that specifies its nest level
(starting at 0). The nest level is defined as the number of immediate parents that have to
be traversed before reaching a parent that itself has no parent. The default value for this
property is nestLevel and it has global scope.

18.2.2.3.4 Filter and Include Properties
You can specify one or more of the following filter and include properties in the properties-
of-table parameter in a dynamicdata resource:

• filterInclude: This property specifies an include to be executed for each row of a table (or
subtable if an indexed column is being used to select a subtable). This execution will
happen when the table is loaded into the current user's context. Its main purpose is either
to create a side effect or to determine if the row should be excluded. To prevent the row
from being loaded into the final ResultSet, you can set the variable ddSkipRow to 1
(<$ddSkipRow=1$>). During execution of this include, the table is made active, allowing for
easy access and replacement of values in the table. The default value of this property is
null, and it has global scope.

• includeColumns: This property specifies a comma-separated list of columns whose row
values are the names of resource includes to be executed. After the resource includes are
executed, the result is fed back into the ResultSet to become the new value for that column
for that row. The timing and rules for execution are similar to filterInclude except that
includeColumns cannot suppress the loading of a row. If a filter include is specified and
there are active include columns, then during the looping of the temporary active
ResultSet, the include column values are executed first and then the filter include. If one of
the specified include columns in not present in the final merged table, then it will have no
effect. Empty values in an include column are ignored. The includeColumns attribute is
commonly combined with the defaultValues attribute to create columns whose values are
derived from other columns. The default value of this property is null, and it has global
scope.

Note:

Using includeColumns may not be as useful as it first appears. The resource
includes are executed at the time the Idoc Script function is executed to load the
table, but a component that customizes output may determine the value for the
column only after further processing (after other tables are merged into this table,
summaries of row statistics are calculated, and so on).

18.2.2.4 Using Dynamicdata Idoc Script Functions
For dynamic data tables, you can use the following dynamicdata Idoc Script functions:

• ddAppendIndexedColumnResultSet
• ddAppendResultSet
• ddApplyTableSortToResultSet

Chapter 18
Creating Resources for a Component

18-9

• ddGetFieldList
• ddIncludePreserveValues
• ddLoadIndexedColumnResultSet
• ddLoadResultSet
• ddMergeIndexedColumnResultSet
• ddMergeResultSet
• ddMergeUsingIndexedKey
• ddSetLocal
• ddSetLocalByColumnsFromFirstRow
• ddSetLocalByColumnsFromFirstRowIndexed
• ddSetLocalEmpty
• ddSetLocalEmptyByColumns

18.2.3 String Resources
A string resource defines locale-sensitive text strings that are used in error messages and on
Content Server web pages and applets. Strings are resolved by Content Server each time a
web page is assembled, an applet is started, or an error message is displayed.

A string is defined in an HTM file using the following format:

<@stringID=Text string@>

A string is called from an HTM template file using the following Idoc Script format:

<$lc("wwStringID")$>

Note:

On Content Server web pages, you should use only the strings in the
ww_strings.htm file.

Standard English strings are defined in the IdcHomeDir/resources/core/lang directory.
Strings for other supported languages are provided by the Localization component.

HTML includes, strings, and static tables can be present in the same HTM file. A string
resource does not require merge rules.

You must use HTML escape encoding to include the following special characters in a string
value.

Escape Sequence Character

&at; @
\&lf; line feed (ASCII 10)

\&cr; carriage return (ASCII 13)

\&tab; tab (ASCII 9)

Chapter 18
Creating Resources for a Component

18-10

Escape Sequence Character

\&eatws; Eats white space until the next nonwhite space character.

\< < (less than)

\> > (greater than)

\&sp; space (ASCII 32)

\&#xxx; ASCII character that a decimal number represents (nnn)

You can specify strings for multiple languages in the same resource file using the language
identifier prefix, if the languages all have single-byte characters or all have multibyte
characters. The following example shows prefixes for strings in several languages in a
resource file.

Multiple Languages in the Same Resource File
<@myString=Thank you@>
<@es.myString=Gracias@>
<@fr.myString=Merci@>
<@de.myString=Danke@>

Caution:

Do not specify single-byte strings and multibyte strings in the same resource file. You
should create separate resource files for single-byte and multibyte strings.

If you are specifying multibyte strings in your custom string resource, ensure that the character
set specification on your HTML pages changes to the appropriate encoding. Resource files
should have a correct http-equiv charset tag so that Content Server reads them correctly.

18.2.3.1 String Parameters
Text strings can contain variable parameters, which are specified by placing the parameter
argument inside curly braces (for example, {1}). When a string is localized, the arguments are
passed along with the string ID and the ExecutionContext value that contains the locale
information. The following table describes the syntax for parameterized strings.

Syntax Meaning Examples

{{} Opening curly brace. (Note that only the
opening curly brace must be expressed as
a literal.)

{{}Text in braces}

{n} Substitute the nth argument. Content ID {1} not found

{ni} Substitute the nth argument, formatted as
an integer.

dID {1i} does not exist

{nx} Substitute the nth argument, formatted as
an integer in hexadecimal.

{nd} Substitute the nth argument, formatted as
a date.

The release date is {1d}

{nD} Substitute the nth argument, formatted as
a date. The argument should be ODBC-
formatted.

The release date is {1D}

Chapter 18
Creating Resources for a Component

18-11

Syntax Meaning Examples

{nt} Substitute the nth argument, formatted as
a date and time.

The release date is {1t}

{ne} Substitute the nth argument, formatted as
elapsed time.

{nT} Substitute the nth argument, formatted as
a date and time. The argument should be
ODBC-formatted.

The release date is {1T}

{nfm} Substitute the nth argument, formatted as
a float with m decimal places.

The distance is {1f3} miles.

{nk} Substitute a localized string using the nth
argument as the string ID.

Unable to find {1k} revision of
{2}

{nm} Localize the nth argument as if it were a
string-stack message. (For example, the
argument could include concatenated text
strings and localized string IDs.)

Indexing internal error: {1m}

{nl} Substitute the nth argument as a list. The
argument must be a list with commas (,)
and carets (^) as the separators.

Add-ons: {1l}

{nK} Takes a list of localization key names,
separated by commas, and localizes each
key into a list.

Unsupported byte feature(s):
{1K}

{nM} Takes a list of message strings and
localizes each message into a list.

{1q} component, version {2q},
provides older versions of
features than are currently
enabled. {3M}

{nq} If the nth argument is non-null and nonzero
in length, substitute the argument in
quotation marks. Otherwise, substitute the
string "syUndefined".

Content item {1q} was not
successfully checked in

{no} Performs ordinal substitution on the nth
argument. For example, 1st, 2nd, 3rd, and
so on. The argument must be an integer.

"I am {1o}." with the
argument 7 would localize into
"I am 7th."

{n?text} If the value of the nth argument is not 1,
substitute the text.

{1} file{1?s} deleted

{n?text1:text2} • If the value of the nth argument is not
1, substitute text1.

• If the value of the nth argument is 1,
substitute text2.

The (n?) function can be extended with as
many substitution variables as required.
The last variable in the list always
corresponds to a value of 1.

There {1?are:is} currently {1}
active search{1?es}.

Chapter 18
Creating Resources for a Component

18-12

Syntax Meaning Examples

{n?text1:text2:text3} • If the value of the nth argument is not
1 or 2, substitute text1.

• If the value of the nth argument is 2,
substitute text2.

• If the value of the nth argument is 1,
substitute text3.

The (n?) function can be extended with as
many substitution variables as required.
The last variable in the list always
corresponds to a value of 1.

Contact {1?their:her:his}
supervisor.

18.2.3.2 Editing a String Resource
Use the following procedure to edit an existing string resource using the Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Choose the resource from the Custom Resource Definition list.

3. If the resource file contains multiple types of resources, click the Strings tab on the right.

4. Modify the strings in the Custom Strings list.

• To edit an existing string, select the string, click Edit, modify the string text, and then
click OK.

• To add a string to the resource file, click Add.

• To remove a string, select the string, click Delete, and then click Yes to confirm.

18.2.4 Dynamic Tables
Dynamic table resources are defined in the HDA file format. For more information and an
example of an HDA ResultSet table, see Elements in HDA Files.

18.2.4.1 Merge Rules for Dynamic Tables
Merge rules are required for a dynamic table resource if data from the custom resource
replaces data in an existing table. Merge rules are not required if data from the custom
resource is to be placed in a new table.

18.2.4.2 Editing a Dynamic Table Resource
Use the following procedure to edit an existing dynamic table resource using the Component
Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Choose the resource file from the Custom Resource Definition list.

3. Click Launch Editor.

4. Modify the table in the text editor.

5. Save and close the resource file.

Changes are reflected on the right of the Resource Definition tab.

Chapter 18
Creating Resources for a Component

18-13

18.2.5 Static Tables
Static tables, HTML includes, and strings can be present in the same HTM file.

18.2.5.1 Merge Rules for Static Tables
Merge rules are required for a static table resource if data from the custom resource replaces
data in an existing table. Merge rules are not required if data from the custom resource is to be
placed in a new table.

18.2.5.2 Editing a Static Table Resource
Use this procedure to edit an existing static table resource with the Component Wizard:

1. In the Component Wizard, open the component that contains the resource to edit.

2. Choose the resource file from the Custom Resource Definition list.

3. Click Launch Editor.

4. Modify the table in the text editor.

5. Save and close the resource file. Changes are reflected in the Resource Tables list.

18.2.6 Queries
A query resource defines SQL queries, which are used to manage information in the Content
Server database. Queries are used with service scripts to perform tasks such as adding to,
deleting, and retrieving data from the database.

The standard Content Server queries are defined in the QueryTable table in the IdcHomeDir/
resources/core/tables/query.htm file. You can also find special-purpose queries in the
indexer.htm and workflow.htm files that are stored in the IdcHomeDir/resources/core/
tables directory. Merge rules are not required for a query resource.

A query resource is defined in an HTM file using a ResultSet table with three columns: name,
queryStr, and parameters.

• The name column defines the name for each query. To override an existing query, use the
same name for your custom query. To add a new query, use a unique query name. When
naming a new query, identify the type of query by starting the name with one of the
following characters.

First Character Query Type

D Delete

I Insert

Q Select

U Update

• The queryStr column defines the query expression. Query expressions are in standard
SQL syntax. If there are any parameter values to pass to the database, their place is held
with a question mark (?) as an escape character.

• The parameters column defines the parameters that are passed to the query from a
service. A request from a web browser calls a service, which in turn calls the query. It is the

Chapter 18
Creating Resources for a Component

18-14

responsibility of the web browser to provide the values for the query parameters, which are
standard HTTP parameters The browser can pass query parameters from the URL or from
FORM elements in the web page. For example, the QdocInfo query requires the dID
(revision ID) to be passed as a parameter, so the value is obtained from the service
request URL.

18.2.6.1 Query Example
The standard QdocInfo query, which Figure 18-1 shows, is defined in the IntradocDir/core/
config/resources/query.htm file. This query obtains the metadata information to display on
the DOC_INFO template page, which is the page displayed when a user clicks the
Information icon on a search results page.

Figure 18-1 Standard QDocInfo Query

The parameter passed from the web browser URL is the dID, which is the unique identification
number for the content item revision. The query expression selects the data that matches the
dID for the primary revision from the Revisions, Documents, and DocMeta database tables, if
the revision does not have the DELETED status.

Example 18-4 shows the contents of a query.htm file.

Example 18-4 query.htm File

<HTML>
<HEAD>
<META HTTP-EQUIV='Content-Type' content='text/html; charset=iso-8859-1'>
<TITLE>Query Definition Resources</TITLE>
</HEAD>
<BODY>
<@table QueryTable@>
<table border=1><caption>Query Definition Table</caption>
<tr>
 <td>name</td>
 <td>queryStr</td>
 <td>parameters</td>
</tr>
<tr>
 <td>QdocInfo</td>
 <td>SELECT Revisions.*, Documents.*, DocMeta.*
 FROM Revisions, Documents, DocMeta
 WHERE Revisions.dID=? AND Revisions.dID=Documents.dID AND DocMeta.dID =
Documents.dID AND Revisions.dStatus<>'DELETED' AND Documents.dIsPrimary<>0</td>
 <td>dID int</td>
</tr>
</table>
<@end@>

Chapter 18
Creating Resources for a Component

18-15

</BODY>
</HTML>

18.2.6.2 Editing a Query Resource
Use the following procedure to edit a query resource using the Component Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Choose the resource from the Custom Resource Definition list.

3. If there are multiple tables in the resource, choose the query table to edit from the Table
Name list.

4. Modify the selected query table.

• To add a query to the table, click Add.

• To edit an existing query, select the query, click Edit, modify the query expression or
parameters or both, and then click OK.

• To remove a query, select the query, click Delete, and then click Yes to confirm.

18.2.7 Services
A service resource defines a function or procedure that is performed by Content Server. A
service call can be performed from either the client or server side, so services can be
performed on behalf of the web browser client or within the system itself. For example:

• Client-side request: When you click a Search link on a Content Server web page, the
standard search page is delivered to your web browser by the GET_DOC_PAGE service, using
the following URL segment:

IdcService=GET_DOC_PAGE&Action=GetTemplatePage&Page=STANDARD_QUERY_PAGE
• Server-side request: You can use the START_SEARCH_INDEX service to update or rebuild

the search index automatically in a background thread.

Services are the only way a client can communicate with the server or access the database.
Any program or HTML page can use services to request information from Content Server or
perform a specified function.

The standard Content Server services are defined in the StandardServices table in the
IdcHomeDir/resources/core/tables/std_services.htm file. You can also find special-
purpose services in the workflow.htm file in the IdcHomeDir/resources/core/tables/
directory. For more information about standard and special-purpose services that Content
Server provides, see List of Oracle WebCenter Content Services in Oracle Fusion Middleware
Services Reference for Oracle WebCenter Content.

Services depend on other resource definitions to perform their functions. Any service that
returns HTML requires a template to be specified. A common exception is the PING_SERVER
service, which does not return a page to the browser.

Most services use a query. A common exception is the SEARCH service, which sends a request
directly to the search collection. Merge rules are not required for a service resource.

Figure 18-2 shows an example of a service definition.

Chapter 18
Creating Resources for a Component

18-16

Figure 18-2 Service Definition Example

A service resource is defined in an HTM file using a ResultSet table with the following three
columns:

• The Name column defines the name for each service. For client-side service requests, this
is the name called in the URL. To override an existing service, use the same name for your
custom service. To add a new service, use a unique service name.

• The Attributes column defines the following attributes for each service.

Attribute Description Example (attributes from the DELETE_DOC
service)

Service class Determines, in part, what actions can be performed by
the service.

DocService 4 MSG_PAGE null documents !
csUnableToDeleteItem(dDocName)

Access level Assigns a user access level to the service. This number
is the sum of the following possible bit flags:

READ_PRIVILEGE = 1
WRITE_PRIVILEGE = 2
DELETE_PRIVILEGE = 4
ADMIN_PRIVILEGE = 8
GLOBAL_PRIVILEGE = 16
SCRIPTABLE_SERVICE=32

DocService 4 MSG_PAGE null documents !
csUnableToDeleteItem(dDocName)

Template page Specifies the template that presents the results of the
service. If the results of the service do not require
presentation, this attribute is null.

DocService 4 MSG_PAGE null documents !
csUnableToDeleteItem(dDocName)

Service type If the service is to be executed inside another service,
this attribute is SubService; otherwise, this attribute is
null.

DocService 4 MSG_PAGE null documents !
csUnableToDeleteItem(dDocName)

Subjects notified Specifies the subjects (subsystems) to be notified by the
service. If no subjects are notified, this attribute is null.

DocService 4 MSG_PAGE null documents !
csUnableToDeleteItem(dDocName)

Error message Defines the error message returned by the service if no
action error message overrides it. This can be either an
actual text string or a reference to a locale-sensitive
string. For more information, see Localized String
Resolution.

DocService 4 MSG_PAGE null documents !
csUnableToDeleteItem(dDocName)

• The Actions column defines the actions for each service. An action is an operation to be
performed as part of a service script. The action can execute an SQL statement, perform a
query, run code, cache the results of a query, or load an option list. Each service includes
one or more actions, which specify what happens upon execution.

Chapter 18
Creating Resources for a Component

18-17

The
 tags in the Actions column are for browser display purposes only, so they are
optional. However, the </td> tag must occur immediately after the actions, without a line
break in between. An action is defined using the following format:

type:name:parameters:control mask:error message

Section Description Example (first action from the
DELETE_DOC service)

type Defines the type of action:

QUERY_TYPE = 1
EXECUTE_TYPE = 2
CODE_TYPE = 3
OPTION_TYPE = 4
CACHE_RESULT_TYPE = 5

5:QdocInfo:DOC_INFO:6:!
csUnableToDeleteItem(dDocName)!
csRevisionNoLongerExists

name Specifies the name of the action. 5:QdocInfo:DOC_INFO:6:!
csUnableToDeleteItem(dDocName)!
csRevisionNoLongerExist

parameters Specifies parameters required by the action. If no parameters
are required, leave this part empty (two colons in a row).

5:QdocInfo:DOC_INFO:6:!
csUnableToDeleteItem(dDocName)!
csRevisionNoLongerExist

control
mask

Controls the results of queries to the database. This number
is the sum of the following possible bit flags:

No control mask = 0
CONTROL_IGNORE_ERROR = 1
CONTROL_MUST_EXIST = 2
CONTROL_BEGIN_TRAN = 4
CONTROL_COMMIT_TRAN = 8
CONTROL_MUST_NOT_EXIST = 16

5:QdocInfo:DOC_INFO:6:!
csUnableToDeleteItem(dDocName)!
csRevisionNoLongerExist

Error
message

Defines the error message to be displayed by this action. This
error message overrides the error message provided as an
attribute of the service. This can be either an actual text string
or a reference to a locale-sensitive string. For more
information, see Localized String Resolution.

5:QdocInfo:DOC_INFO:6:!
csUnableToDeleteItem(dDocName)!
csRevisionNoLongerExist

18.2.7.1 Service Example
The DOC_INFO service provides a good example of how services, queries, and templates work
together. Figure 18-3 shows the actions that the DOC_INFO service can take.

Chapter 18
Creating Resources for a Component

18-18

Figure 18-3 DOC_INFO Service

Example 18-5 shows the definition of the DOC_INFO service in the IntradocDir/config/
resources/std_services.htm file.

Example 18-5 DOC_INFO Service Definition in std_services.htm File

 <HTML>
 <HEAD>
 <META HTTP-EQUIV='Content-Type' content='text/html; charset=iso-8859-1'>
 <TITLE>Standard Scripted Services</TITLE>
 </HEAD>
 <BODY>
 <@table StandardServices@>
 <table border=1><caption>Scripts For Standard Services</caption>
 <tr>
 <td>Name</td><td>Attributes</td><td>Actions</td>
 </tr>
 <tr>
 <td>DOC_INFO</td>
 <td>DocSgervice
 33
 DOC_INFO
 null
 null

 !csUnableToGetRevInfo</td>
 <td>5:QdocInfo:DOC_INFO:2:!csItemNoLongerExists2
 3:mapNamedResultSetValues:DOC_INFO,dStatus,dStatus,dDocTitle,dDocTitle:0:null
 3:checkSecurity:DOC_INFO:0:!csUnableToGetRevInfo2(dDocName)
 3:getDocFormats:QdocFormats:0:null
 3:getURLAbsolute::0:null
 3:getUserMailAddress:dDocAuthor,AuthorAddress:0:null
 3:getUserMailAddress:dCheckoutUser,CheckoutUserAddress:0:null
 3:getWorkflowInfo:WF_INFO:0:null
 3:getDocSubscriptionInfo:QisSubscribed:0:null
 5:QrevHistory:REVISION_HISTORY:0:!csUnableToGetRevHistory(dDocName)</td>
 </tr>
 </table>
 <@end@>
 </BODY>
 </HTML>

18.2.7.1.1 Attributes
The following table describes the attributes of the preceding DOC_INFO service.

Attribute Value Description

Service class DocService This service is providing information about a content item.

Chapter 18
Creating Resources for a Component

18-19

Attribute Value Description

Access level 33 32 = This service can be executed with the executeService
Idoc Script function.
1 = The user requesting the service must have Read privilege
for the content item.

Template page DOC_INFO This service uses the DOC_INFO template (doc_info.htm
file). The results from the actions are merged with this
template and presented to the user.

Service type null This service is not a subservice.

Subjects
notified

null No subjects are affected by this service.

Error message !
csUnableToGetRe
vInfo

If this service fails on an English Content Server system, it
returns this error message string: Unable to retrieve
information about the revision

18.2.7.1.2 Actions
The DOC_INFO service executes the following actions:

• 5:QdocInfo:DOC_INFO:2:!csItemNoLongerExists2

Action Definition Description

5 Cached query action that retrieves information from the database using a
query.

QDocInfo This action retrieves content item information using the QDocInfo query in
the query.htm file.

DOC_INFO The result of the query is assigned to the parameter DOC_INFO and stored
for later use.

2 The CONTROL_MUST_EXIST control mask specifies that either the query
must return a record, or the action fails.

!
csItemNoLongerExis
ts2

If this action fails on an English Content Server system, it returns this error
message string: This content item no longer exists

• 3:mapNamedResultSetValues:DOC_INFO,dStatus,dStatus,dDocTitle,dDocTitle:0:null

Action Definition Description

3 Java method action specifying a module that is a part of the Java class
implementing the service.

mapNamedResultSetV
alues

This action retrieves the values of dStatus and dDocTitle from the first
row of the DOC_INFO ResultSet and stores them in the local data. (This
increases speed and ensures that the correct values are used.)

DOC_INFO,dStatus,d
Status,dDocTitle,d
DocTitle

Parameters required for the mapNamedResultSetValues action.

0 No control mask is specified.

null No error message is specified.

• 3:checkSecurity:DOC_INFO:0:!csUnableToGetRevInfo2(dDocName)

Chapter 18
Creating Resources for a Component

18-20

Action Definition Description

3 Java method action specifying a module that is a part of the Java class
implementing the service.

checkSecurity This action retrieves the data assigned to the DOC_INFO parameter and
evaluates the assigned security level to verify that the user is authorized to
perform this action.

DOC_INFO Parameter that contains the security information to be evaluated by the
checkSecurity action.

0 No control mask is specified.

!
csUnableToGetRevIn
fo2(dDocName)

If this action fails on an English Content Server system, it returns this error
message string: Unable to retrieve information for
''{dDocName}."

• 3:getDocFormats:QdocFormats:0:null

Action Definition Description

3 Java method action specifying a module that is a part of the Java class
implementing the service.

getDocFormats This action retrieves the file formats for the content item using the
QdocFormats query in the query.htm file. A comma-delimited list of the file
formats is stored in the local data as dDocFormats.

QdocFormats Specifies the query used to retrieve the file formats.

0 No control mask is specified.

null No error message is specified.

• 3:getURLAbsolute::0:null

Action Definition Description

3 Java method action specifying a module that is a part of the Java class
implementing the service.

getURLAbsolute This action resolves the URL of the content item and stores it in the local
data as DocUrl.

blank This action takes no parameters.

0 No control mask is specified.

null No error message is specified.

• 3:getUserMailAddress:dDocAuthor,AuthorAddress:0:null

Action Definition Description

3 Java method action specifying a module that is a part of the Java class
implementing the service.

getUserMailAddress This action resolves the email address of the content item author.

dDocAuthor,AuthorA
ddress

This action passes dDocAuthor and AuthorAddress as parameters.

0 No control mask is specified.

null No error message is specified.

• 3:getUserMailAddress:dCheckoutUser,CheckoutUserAddress:0:null

Chapter 18
Creating Resources for a Component

18-21

Action Definition Description

3 Java method action specifying a module that is a part of the Java class
implementing the service.

getUserMailAddress This action resolves the email address of the user who has the content
item checked out.

dCheckoutUser,Chec
koutUserAddress

This action passes dCheckoutUser and CheckoutUserAddress as
parameters.

0 No control mask is specified.

null No error message is specified.

• 3:getWorkflowInfo:WF_INFO:0:null

Action Definition Description

3 Java method action specifying a module that is a part of the Java class
implementing the service.

getWorkflowInfo This action evaluates whether the content item is part of a workflow. If the
WF_INFO ResultSet exists, then workflow information is merged into the
DOC_INFO template.

WF_INFO This action passes WF_INFO as a parameter.

0 No control mask is specified.

null No error message is specified.

• 3:getDocSubscriptionInfo:QisSubscribed:0:null

Action Definition Description

3 Java method action specifying a module that is a part of the Java class
implementing the service.

getDocSubscription
Info

This action evaluates if the current user has subscribed to the content
item:
– If the user is subscribed, an Unsubscribe button is displayed.
– If the user is not subscribed, a Subscribe button is displayed.

QisSubscribed Specifies the query used to retrieve the subscription information.

0 No control mask is specified.

null No error message is specified.

• 5:QrevHistory:REVISION_HISTORY:0:!csUnableToGetRevHistory(dDocName)

Action Definition Description

5 Cached query action that retrieves information from the database using a
query.

QrevHistory This action retrieves revision history information using the QrevHistory
query in the query.htm file.

REVISION_HISTORY The result the query is assigned to the parameter REVISION_HISTORY.
The DOC_INFO template uses this parameter in a loop to present
information about each revision.

0 No control mask is specified.

!
csUnableToGetRevHi
story(dDocName)

If this action fails on an English Content Server system, it returns the error
message string:
Unable to retrieve revision history for ''{dDocName}.''

Chapter 18
Creating Resources for a Component

18-22

18.2.7.2 Editing a Service Resource
Use the following procedure to edit a service resource using the Component Wizard:

1. In the Component Wizard, open the component that contains the resource to edit.

2. Choose the resource from the Custom Resource Definition list.

3. If there are multiple tables in the resource, choose the service table to edit from the Table
Name list.

4. Modify the selected service table.

• To add a service to the table, click Add.

• To edit an existing service, select the service, click Edit, modify the service attributes
or actions or both, and then click OK.

• To remove a service, select the service, click Delete, and then click Yes to confirm.

18.2.8 Templates
A template resource defines the names, types, and locations of custom template files to be
loaded for the component.

The actual template pages are separate.htm files that are referenced in the template resource
file. Template HTM files contain the code that Content Server uses to assemble web pages.
HTML markup in a template file defines the basic layout of the page, while Idoc Script in a
template file generates additional HTML code for the web page at the time of the page request.
Because HTM template files contain a large amount of script that is not resolved by Content
Server until the final page is assembled, these files are not viewable web pages.

The template type of HTM file is used to define the following component files:

• Template pages: Standard template pages are located in the IdcHomeDir/resources/
core/templates directory.

• Report pages: Standard report pages are located in the IdcHomeDir/resources/core/
reports directory.

A template resource (templates.hda) is defined in the HDA file format. The standard templates
are defined in the IdcHomeDir/resources/core/templates/templates.hda file. For more
information and an example of an HDA ResultSet table, see Elements in HDA Files.

Merge rules are required for merging the new template definition into the IntradocTemplates
table or SearchResultTemplates table. Typically, the merge is on the name column. The
following example shows a MergeRules ResultSet for a template.

MergeRules ResultSet
@ResultSet MergeRules
4
fromTable
toTable
column
loadOrder
MultiCheckinTemplates
IntradocTemplates
name
1
@end

Chapter 18
Creating Resources for a Component

18-23

The standard templates.hda file defines three ResultSet tables:

• The IntradocTemplates ResultSet table defines the template pages for all Content Server
web pages except search results pages. This table consists of five columns:

– The name column defines the name for each template page. This name is how the
template is referenced in the Content Server CGI URLs and in code.

– The class column defines the general category of the template. The most common
class type is Document.

– The formtype column defines the specific type of functionality the page is intended to
achieve. The formtype is typically the same as the name of the form, except in
lowercase characters.

– The filename column defines the path and file name of the template file. The location
can be an absolute path or can be relative to the template resource file when the
template page is in the same directory as the template resource file.

– The description column defines a description of the template.

• The VerifyTemplates ResultSet table is no longer used by Content Server, but this table
remains in the templates.hda file as legacy code for reverse compatibility.

• The SearchResultTemplates table defines the template pages for search results pages.
Template pages define how query results are displayed on the search results pages in the
Library. Query result pages are a special type of search results page. This table consists of
six columns:

– The name column defines the name for each template page. This name is how the
template is referenced in the Content Server CGI URLs, in code, and in the Web
Layout Editor utility.

Note:

The StandardResults template (search_results.htm file) is typically used as
the global template for standard search results pages and the query results
pages in the Library. You can create a new template or change the flexdata
value for the StandardResults template through the Web Layout Editor, but
these changes are saved in a separate file (IntradocDir/data/results/
custom_results.hda) rather than in the SearchResultTemplates table in the
templates.hda file.

– The formtype column defines the specific type of functionality the page is intended to
achieve. ResultsPage is the only form type currently supported for search results
pages.

– The filename column defines the path and file name of the template file. The location
can be an absolute path or can be relative to the template resource file when the
template page is in the same directory as the template resource file.

– The outfilename column is for future use; the value is always null.

– The flexdata column defines the metadata to be displayed for each row on the search
results page. The format of text in the flexdata column follows:

Text1 "text 1 contents"%<Tab>Text2 "text 2 contents"%

In the format, the Text1 value appears on the first line in each search results row, and
the Text2 value appears on the second line. <Tab> represents a literal tab character.

Chapter 18
Creating Resources for a Component

18-24

Idoc Script can be used to define the contents in the flexdata field. You can also
change the flexdata value for the StandardResults template through the Web Layout
Editor, but these changes are saved in a separate file (IntradocDir/data/results/
custom_results.hda) rather than in the SearchResultTemplates table in the
templates.hda file.

– The description column defines a description of the template.

The following example shows a custom template resource file that points to a custom Content
Management page (multicheckin_doc_man.htm) and a custom search results page
(MultiCheckin_search_results.htm).

Example 18-6 Custom Template Resource File

<?hda version="5.1.1 (build011203)" jcharset=Cp1252 encoding=iso-8859-1?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
blFieldTypes=
@end
@ResultSet MultiCheckinTemplates
5
name
class
formtype
filename
description
DOC_MANAGEMENT_LINKS
DocManagement
DocManagementLinks
multicheckin_doc_man.htm
Page containing links to various document management functions
@end
@ResultSet MultiCheckin_2
6
name
formtype
filename
outfilename
flexdata
description
StandardResults
SearchResultsPage
MultiCheckin_search_results.htm
null
Text2 <$dDocTitle$> <$dInDate$>% Text1 <$dDocName$>%
apStandardResultsDesc
@end

18.2.8.1 Template and Report Pages
Template pages and report pages are also called presentation pages, because Content
Server uses them to assemble, format, and present the results of a web page request.

The standard template pages are located in the IdcHomeDir/resources/core/templates
directory. The standard report pages are located in the IdcHomeDir/resource/core/reports
directory.

Chapter 18
Creating Resources for a Component

18-25

18.2.8.1.1 Template Page Example
The template file for the standard Content Management page is doc_man.htm. The following
example shows the contents of this file.

The doc_man.htm File
<$include std_doctype_html_decl$>

<head>
 <$defaultPageTitle=lc("wwContentMgmt")$>
 <$include std_html_head_declarations$>
</head>

<$include body_def$>

<$include std_page_begin$>

<$include std_header$>

<table border="0" cellpadding="2" cellspacing="2" width="450" summary="">

<$include std_doc_man_pages$>

</table>

<table cellpadding="7" cellspacing="7" summary="">
<$if showQuickHelp$>
<tr><td><form><INPUT type=Button onClick="QuickHelp('<$getHelpPage("QH_DocMan")$>',
'QH_DocMan')"
 value="<$lc("wwQuickHelp")$>"></form></td></tr>
<$endif$>
</table>

<$include std_page_end$>

</body>
</html>

In the example, the std_doctype_html_decl include references the standard Content Server
document type. The <head> element references the page title, and the code for the head
section is built using the std_html_head_declarations include code from the std_page.htm
resource file. Other elements of the page definition follow:

1. Page elements common to most Content Server web pages are built using the body_def,
std_page_begin, and std_header include code from the std_page.htm resource file.

2. The links on the Content Management page are built using include code from the
std_page.htm resource file.

3. The <table> element in the example defines whether a Quick Help button should appear
on the Content Management page.

4. The code at the end of the page is built using the std_page_end include code from the
std_page.htm resource file.

Figure 18-4 shows a Content Management page.

Chapter 18
Creating Resources for a Component

18-26

Figure 18-4 Content Management Page

18.2.8.1.2 Report Page Example
The template file for the standard Document Types report page is in the doc_types.htm file.
The following example shows the contents of this file.

The doc_types.htm File
<$include std_doctype_html_decl$>

<head>
 <$defaultPageTitle=lc("wwDocumentTypes")$>
 <$include std_html_head_declarations$>
</head>

<$include body_def$>

<$include std_page_begin$>

<$include std_header$>

<!--Directory Title--->
<table border="0" cellpadding="0" cellspacing="0" summary="">
<tr>
 <td width="75"><$if PageParent$><a href="<$PageParent$>">
 <$strTrimWs(inc("open_folder_image"))$>
 <$endif$></td>
 <td colspan="2" width="390"><$PageTitle$></td>
</tr>
</table>

<$if IsSavedQuery$>
<!---Parameters for historical reports-->
<table border="0" cellpadding="0" cellspacing="0" summary="">
<tr>
 <td width="75" height="45"> </td><!---Indent-->
 <td><$lc("wwReportCreated")$>
<$ReportCreationDate$></td>
</tr>
</table>
<$endif$>

<!--Directory Header--->
<table border="0" cellspacing="0" summary="">
<tr>
 <td width="75" height="45"> </td><!---Indent-->
 <td colspan="2" width="390"><$HeaderText$></td>

Chapter 18
Creating Resources for a Component

18-27

</tr>
</table>

<!---Doc types report-->
<table border=0 cellpadding=0 cellspacing=0 summary="">
<tr><td> </td></tr>
<tr>
 <td align=center width=<$StdPageWidth$>>
 <h1 class="underlinePageTitle"><$lc("wwDocumentTypes")$></h1>
 </td>
</tr>
<tr><td> </td></tr>

<$if IsMultiPage$>
<!---Navigation Bar-->
<tr>
 <td width=565 align="center"><$include std_page_nav_bar$></td>
</tr>
<$endif$>

<tr>
 <td>
 <table class="xuiTable" width=<$StdPageWidth$>
summary="<$stripXml(lc("wwReportResultsTable"))$>">
 <tr class="xuiAltHeader">
 <td width=12% class="xuiAltHeader" scope="col"></td>
 <td width=29% class="xuiAltHeader"
scope="col"><$lc("wwDocumentType")$></td>
 <td width=49% class="xuiAltHeader"
scope="col"><$lc("wwDescription")$></td>
 <td width=12% class="xuiAltHeader"
scope="col"><$lc("wwImageFileName")$></td>
 </tr>
 <$rowCount=0$>

 <$loop DocTypes$>
 <$if rowCount%2 == 0$>
 <$rowClass="xuiRow"$>
 <$else$>
 <$rowClass="xuiAltRow"$>
 <$endif$>
 <tr class="<$rowClass$>">
 <!--Document types are localized to each instance, so we must
use direct path to images directory.-->
 <td><img src="<$HttpWebRoot$>images/docgifs/<$dGif$>"
alt="<$stripXml(lc("wwDoctypeIcon"))$>" border=0></td>
 <td><$dDocType$></td>
 <td><$dDescription$></td>
 <td><$dGif$></td>
 </tr>
 <$rowCount=rowCount+1$>
 <$endloop$>
 </table>
 </td>
</tr>
</table>

<$include std_page_end$>

</body>
</html>

Chapter 18
Creating Resources for a Component

18-28

In the example, the std_doctype_html_decl include references the standard Content Server
document type. The <head> element in the example references the page title and metadata,
and the code for the head section is built using the std_html_head_declarations include code
from the std_page.htm resource file. Other elements of the page definition follow:

1. Page elements common to most Content Server web pages are built using the body_def,
std_page_begin, and std_header include code from the std_page.htm resource file.

2. The Directory Title section in the example displays the open folder image, links it to the
parent page, and displays the page title.

3. The Parameters for historical reports section displays the original query date for a
historical report.

4. The Directory Header section displays the report description.

5. The Doc types report section displays the table title.

6. The Navigation Bar section displays the page navigation bar if a historical report requires
more than one page.

7. In the next <table> element, the first part displays the table column headers.

8. The last part of the <table> element loops on the document types to create the rows of the
report table.

9. The code at the end of the page is built using the std_page_end include code from the
std_page.htm resource file.

18.2.8.2 Editing a Template Resource
Use the following procedure to edit an existing template resource using the Component
Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Choose the resource from the Custom Resource Definition list.

3. To remove a template definition table or edit a template definition manually, click Launch
Editor in the Custom Resource Definition area.

4. If there are multiple tables in the resource, choose the template table to edit from the Table
Name list.

5. Modify the selected template table.

• To add a template definition to the table, click Add.

• To edit an existing template definition, select the definition, click Edit, modify the
parameters, and then click OK.

• To remove a template definition, select the definition, click Delete, and then click Yes
to confirm.

18.2.9 Environment Resources
An environment resource defines configuration variables, either by creating new variable
values or replacing existing values. Because custom resources are loaded after the standard
config.cfg file is loaded, the variable values defined in the custom environment resource
replace the original variable values.

An environment resource is defined in a CFG file using a name/value pair format:

Chapter 18
Creating Resources for a Component

18-29

variable_name=value

After defining a variable value, you can reference the variable in templates and other resource
files with the following Idoc Script tag:

<$variable_name$>

Environment resource files can include comment lines, which are designated with a # symbol:

#Set this variable to true to enable the function.

18.2.9.1 Environment Resource Example
The following example shows the contents of an environment resource file.

Environment Resource File
Use this to turn on or off alternate row coloring
nsUseColoredRows=0

These are the nested search field definitions.

nsFld1Caption=Document Text
nsFld1Name=
nsFld1Type=FullText
nsFld1OptionKey=
#
nsFld2Caption=Text
nsFld2Name=xtext
nsFld2Type=Text
nsFld2OptionKey=
#
nsFld3Caption=Date
nsFld3Name=xdate
nsFld3Type=Date
nsFld3OptionKey=
#
nsFld4Caption=Integer
nsFld4Name=xinteger
nsFld4Type=Int
nsFld4OptionKey=
#
nsFld5Caption=Option List
nsFld5Name=xoptionlist
nsFld5Type=OptionList
nsFld5OptionKey=optionlistList
#
nsFld6Caption=Info Topic
nsFld6Name=xwfsInfoTopic
nsFld6Type=OptionList
nsFld6OptionKey=wfsInfoTopicList

The colored_search_resource.htm template resource file in the Nested Search component
references the nsUseColoredRows variable as follows:

<$if isTrue(#active.nsUseColoredRows)$>
 <$useColoredRows=1, bkgHighlight=1$>
<$endif$>

Standard configuration variables are defined in the IntradocDir/config/config.cfg file. For a
complete list of configuration variables, see Configuration Variables in Oracle Fusion
Middleware Configuration Reference for Oracle WebCenter Content.

Chapter 18
Creating Resources for a Component

18-30

18.2.9.2 Editing an Environment Resource
Use the following procedure to edit an existing environment resource using the Component
Wizard.

1. In the Component Wizard, open the component that contains the resource to edit.

2. Choose the resource file from the Custom Resource Definition list.

3. Click Launch Editor.

4. Modify the configuration variables in the text editor.

5. Save and close the resource file.

Changes are reflected in the Custom Environment Parameters list.

Note:

The configuration settings might not appear in the Custom Environment
Parameters list in the order they actually appear in the resource file. For easier
viewing, launch the text editor.

18.3 Creating a Component Definition File
You can use the Component Wizard to create a component definition file or make changes to
it.

The following example shows a component definition file that points to an environment
resource file called customhelp_environment.cfg.

Example 18-7 Component Definition File for an Environment Resource

<?hda version="5.1.1 (build011203)" jcharset=Cp1252 encoding=iso-8859-1?>
@Properties LocalData
blDateFormat=M/d{/yy} {h:mm[:ss] {aa}[zzz]}!tAmerica/Chicago!mAM,PM
blFieldTypes=
@end
@ResultSet ResourceDefinition
4
type
filename
tables
loadOrder
environment
customhelp_environment.cfg
null
1
@end

18.4 Restarting Content Server to Apply a Component
Before you can apply a custom component to Content Server, you need to restart it. You can
restart Content Server by restarting the WebCenter Content Managed Server with the
Administration Console, shutdown and startup scripts, or Fusion Middleware Control.

Chapter 18
Creating a Component Definition File

18-31

The following example shows how to restart WebCenter Content with the
stopManagedWebLogic and startManagedWebLogic scripts.

For more information, see Managing System Processes in Oracle Fusion Middleware
Administering Oracle WebCenter Content.

To restart the WebCenter Content Managed Server with scripts on the command line:

1. Stop the WebCenter Content Managed Server with the stopManagedWebLogic script.

• UNIX script: DomainHome/bin/stopManagedWebLogic.sh UCM_server1
• Windows script: DomainHome\bin\stopManagedWebLogic.cmd UCM_server1

2. Stop the Administration Server with the stopWebLogic script.

• UNIX script: DomainHome/bin/stopWebLogic.sh
• Windows script: DomainHome\bin\stopWebLogic.cmd

3. Start the Administration Server with the startWebLogic script.

• UNIX script: DomainHome/bin/startWebLogic.sh
• Windows script: DomainHome\bin\startWebLogic.cmd

4. Start the WebCenter Content Managed Server with the startManagedWebLogic script.

• UNIX script: DomainHome/bin/startManagedWebLogic.sh UCM_server1
• Windows script: DomainHome\bin\startManagedWebLogic.cmd UCM_server1

Chapter 18
Restarting Content Server to Apply a Component

18-32

19
Installing Components

This chapter describes how to install additional components in Oracle WebCenter Content
Server.

This chapter includes the following sections:

• About Installing Components

• Packaging a Component for Installation

• Installing a Component with the Advanced Component Manager

• Installing a Component with the Component Wizard

• Installing a Component with the ComponentTool Utility

19.1 About Installing Components
Server components for Content Server are installed by default, however, custom components
and components downloaded from Oracle Technology Network must be installed and enabled
before they can be used.

Note:

If you need only to enable or disable an installed component, see Enabling and
Disabling Components for Content Server.

You can install components using one these methods:

• Installing a Component with the Advanced Component Manager

• Installing a Component with the Component Wizard

• Installing a Component with the ComponentTool Utility

Before installing a component, you must first download it to your instance. A component
cannot be downloaded unless it meets the following requirements:

• The component must exist outside of the IdcHomeDir/system directory (that is,
DomainHome/ucm/idc/system). This excludes all packaged components unless a patch has
been uploaded to a component.

• The component must have a ZIP file with the appropriate name and be located inside the
custom component or core component directory.

19.2 Packaging a Component for Installation
You can package a custom component in a ZIP file for installation on multiple Content Server
instances with the Component Wizard.

To package a component for installation:

19-1

1. In the Administration tray or menu, choose Admin Server, then Component Manager.

The Component Manager page opens.

2. In the first paragraph on the Component Manager page, click advanced component
manager.

This displays the Advanced Component Manager page, which has a list of components
available for downloading.

3. Choose the component to be packaged from the Download Component list.

4. Click Download to display the File Download screen.

5. Select Save this file to disk, and click OK.

6. In the Save As dialog box, navigate to a directory, change the file name if necessary, and
click Save.

This creates a component ZIP file that can be used to install the component.

19.3 Installing a Component with the Advanced Component
Manager

Follow these steps to install the component using the Advanced Component Manager:

1. In the Administration tray or menu, choose Admin Server, then Component Manager.

The Component Manager page opens.

2. On the Component Manager page, click the Browse button, and find the ZIP file that was
downloaded and saved.

3. Highlight the component name, and click Open.

4. Click Install. A message is displayed, detailing what will be installed.

5. Click Continue to continue with installation or Cancel to stop installation.

6. If you click Continue, a message appears after successful installation. You can select one
of two options:

• Enable the component and restart Content Server.

• Return to the Component Manager, where you can continue adding components.

When done, highlight the components you want to enable, and click Enable. When
finished enabling components, restart the server.

19.4 Installing a Component with the Component Wizard
Follow these steps to install the component using the Component Wizard:

1. Start the Component Wizard:

• (Windows operating system) From the Start menu, choose Programs, then Oracle
WebCenter Content Server, then your server, then Utilities, and then Component
Wizard.

• (UNIX operating system) Run the ComponentWizard script in the
DomainHome/ucm/cs/bin directory.

The Component Wizard main screen and the Component List screen are displayed.

2. On the Component List screen, click Install.

Chapter 19
Installing a Component with the Advanced Component Manager

19-2

The Install screen is displayed.

1. Click Select.

2. Navigate to the ZIP file that was downloaded and saved, and select it.

3. Click Open.

The ZIP file contents are added to the Install screen list.

4. Click OK. You are prompted to enable the component.

5. Click Yes. The component is listed as enabled on the Component List screen.

6. Exit the Component Wizard.

7. Restart Content Server.

Depending on the component being installed, a new menu option appears in the
Administration tray or menu or on the Admin App page. Some components simply extend
existing functionality and do not appear as separate new options. For more information, see
the component's documentation.

19.5 Installing a Component with the ComponentTool Utility
Run the ComponentTool utility and specify the ZIP file for the component to install and enable:

DomainHome/ucm/cs/bin/ComponentTool path_to_file/component.zip

Chapter 19
Installing a Component with the ComponentTool Utility

19-3

20
Uninstalling Components

This chapter describes how to uninstall components from Oracle WebCenter Content Server.

This chapter includes the following sections:

• About Uninstalling Components

• Uninstalling a Component from Content Server

20.1 About Uninstalling Components
The Component List screen of the Content Server Component Wizard lists all the currently
installed components. Starting the Component Wizard displays this screen, from which you
can uninstall components.

20.2 Uninstalling a Component from Content Server
You can select a component and uninstall it from the Component List screen of the Component
Wizard.

To uninstall a component from Content Server:

1. Start the Component Wizard, as described in Component Wizard.

2. On the Component List screen, select the component you want to uninstall.

3. Click the Uninstall button.

This removes the selected component from the Content Server instance. The component
files remain in the file system, but the component no longer appears on the list of
components.

20-1

Part VI
Customizing Records

This part includes information about customizing Oracle WebCenter Content: Records.

Part VI contains the following chapters:

• Customizing Disposition Actions

• Customizing Bar Codes

• Creating Custom Reports

21
Customizing Disposition Actions

This chapter describes how to customize disposition actions for Oracle WebCenter Content:
Records. Disposition actions are used in disposition instructions, which define the sequence of
actions to be performed on content during its life cycle.
This chapter includes the following sections:

• About Customizing Disposition Actions

• Managing Custom Dispositions

• Disabling a Custom Disposition Action

• Creating a Custom Disposition Action

• Create Disposition Rules for Physical Content

21.1 About Customizing Disposition Actions
A large number of built-in disposition actions are included, such as Cutoff, Destroy, Transfer,
Move, and Declassify. Your environment might require disposition actions other than the
predefined options. You can design disposition actions to reflect your organization's specific
needs.

Note:

If custom dispositions were previously created using an older version of the Records
system, those dispositions should be re-examined and updated to use the newest
services and actions. The Action Service parameters have changed from previous
versions of this software, and any changes to existing custom dispositions are not
mapped automatically.

Custom disposition actions are based on Oracle WebCenter Content services, which can be
called with specific parameters to define the behavior of the disposition actions. For example,
you could create a disposition action to automatically retain the last three revisions of content
items using the DELETE_ALL_BUT_LAST_N_REVISIONS_SERVICE service with the
NumberOfRevisions=3 parameter.

Note:

Custom disposition features are available only to users with the
Rma.Admin.Customization right. By default, this right is not assigned to any of the
predefined roles. You must assign it to a role before this functionality is exposed.

21-1

21.2 Managing Custom Dispositions
The following tasks are for managing dispositions:

• Creating or Editing a Custom Disposition Action

• Viewing Information About a Custom Disposition Action

• Deleting a Custom Disposition Action

21.2.1 Creating or Editing a Custom Disposition Action
You can create or edit a custom disposition action for records through Content Server.

Note:

Creating custom disposition actions requires in-depth technical knowledge of Oracle
WebCenter Content. Contact Consulting Services to define custom disposition
actions.

Note:

The Rma.Admin.Customization right is required to perform this task. This right is not
assigned by default to any of the predefined roles, which means it must be assigned
to a role for this functionality to be exposed.

To create a custom disposition action:

1. Choose Records then Configure from the top menu. Choose Disposition Actions then
Custom.

2. On the Configure Dispositions page, click Add in the Custom Disposition Action section.

3. On the Create or Edit Disposition Action page, enter a unique ID for the custom disposition
action in the Action ID text box.

4. Enter a name for the custom disposition action in the Action Name text box.

5. Enter a description for the custom disposition action in the Brief Description text box.

6. Enter a group name for the custom disposition action in the Group Name text box. The
default value for this field is stored in the ww_strings.htm file in the
wwOptGroupLabelCustomDispositionActionsList. It is set to Custom Actions by default.

To use a different group name than Custom Actions, modify the string value in the resource
file and restart Oracle WebCenter Content Server. Do not change the suggested default
value in the Group Name field.

7. Choose the service to be used for the custom disposition action from the Action Service
list.

8. (Optional) Specify one or more parameters for the selected action service.

Chapter 21
Managing Custom Dispositions

21-2

9. (Optional) Select any of the checkboxes as required. The selections include Must Be
First, Must Be Last, and Require Approval. These actions determine when the custom
disposition action will be used.

10. Click Create.

A message is displayed saying the disposition action was created successfully, with the
action information.

11. Click OK.

The following Action Service Parameters are required for the specific Action Service.

Disposition/Event Service Parameters

Superseded isScrub=1
Delete All Revisions (destroy
metadata)

NumberOfRevisions=0, isDestroy=1, dRevRank=0

Delete Revision NumberOfRevisions=0, isDestroy=1
Mark Transfer Completed NumberOfRevisions=0, isDestroy=1, dRevRank=0
Mark Move Completed NumberOfRevisions=0, isDestroy=1, dRevRank=0
Mark Accession Completed NumberOfRevisions=0, isDestroy=1, dRevRank=0
Delete Previous Revision NumberOfRevisions=1
Delete Old Revision NumberOfRevisions=1
Mark Archive Completed NumberOfRevisions=0, isDestroy=1, dRevRank=0
Archive Leave Metadata isScrub=1
Mark Accession Completed
(leave metadata)

isScrub=1

Mark Move Completed (leave
metadata)

isScrub=1

Mark Transfer Complete
(leave metadata)

isScrub=1

Mark Delete Revision
Completed

NumberOfRevisions=0, isDestroy=1

Delete Complete NumberOfRevisions=0, isDestroy=1
Mark Transfer Completed
(prompt to keep or delete
metadata)

NumberOfRevisions=0, isDestroy=1

Mark Move Complete (prompt to
keep or delete metadata)

NumberOfRevisions=0, isDestroy=1

Mark Accession Complete
(prompt to keep or delete
metadata)

NumberOfRevisions=0, isDestroy=1

Mark Archive Complete
(prompt to keep or delete
metadata)

NumberOfRevisions=0, isDestroy=1

Mark Related Content IsMarkAllRelations=1

To edit a custom disposition action:

Chapter 21
Managing Custom Dispositions

21-3

1. Choose Records then Configure from the top menu. Choose Disposition Actions then
Custom.

2. On the Configure Dispositions page, choose Edit Action from a disposition Actions menu.

3. Make modifications as required on the Create or Edit Disposition Action page, and click
Submit Update when done.

A message is displayed saying the disposition action was created successfully, with the
action information.

4. Click OK.

21.2.2 Viewing Information About a Custom Disposition Action
To view the information about a custom disposition action:

Note:

The Rma.Admin.Customization right is required to perform this task. This right is not
assigned by default to any of the predefined roles, which means you must assign it to
a role before this functionality is exposed.

1. Choose Records then Configure from the top menu. Choose Disposition Actions then
Custom.

2. On the Configure Dispositions page, click the disposition name to view.

3. When done viewing, click OK.

21.2.3 Deleting a Custom Disposition Action

Note:

The Rma.Admin.Customization right is required to perform this task. This right is not
assigned by default to any of the predefined roles, which means you must assign it to
a role before this functionality is exposed.

Custom disposition actions can be deleted only if they are no longer used in the disposition
instructions for any category.

To delete a custom disposition action:

1. Choose Records then Configure from the top menu. Choose Disposition Actions then
Custom.

2. On the Configure Dispositions page, choose Delete Action from a disposition's item
Actions menu. You can also select the checkbox by the action name and choose Delete
from the Table menu.

A message is displayed saying the disposition action was deleted successfully.

3. Click OK.

Chapter 21
Managing Custom Dispositions

21-4

To delete multiple dispositions, select the checkbox for the dispositions to delete on the
Configure Dispositions page, and choose Delete from the Table menu.

21.3 Disabling a Custom Disposition Action
You can disable a custom disposition action through Content Server.

Note:

The Rma.Admin.Customization right is required to perform this task. This right is not
assigned by default to any of the predefined roles, which means you must assign it to
a role before this functionality is exposed.

Note:

Some dispositions are required for processing of instructions to occur. Disabling a
disposition could interfere with the processing of disposition instructions. Always
verify ahead of time that it is acceptable to disable a disposition.

To disable a custom disposition action:

1. Choose Records then Configure from the top menu. Choose Disposition Actions then
Disable.

2. On the Disposition Actions Configuration page, select the checkbox next to the actions that
should be disabled.

3. Click Submit Update when done.

21.4 Creating a Custom Disposition Action
This example creates a custom disposition action that automatically retains the last three
revisions of a content item.

Note:

The Rma.Admin.Customization right is required to perform this task. This right is not
assigned by default to any of the predefined roles, which means you must assign it to
a role before this functionality is exposed.

1. Choose Records then Configure from the top menu. Choose Disposition Actions, then
Custom.

2. On the Configure Dispositions page, in the Custom Disposition Action section, click
Add.

3. Complete the metadata fields as follows on the Create or Edit Disposition Action page:

a. In the Action ID field, type RetainLast3Rev.

Chapter 21
Disabling a Custom Disposition Action

21-5

b. In the Action Name field, type Retain Last 3 Revisions.

c. In the Brief Description field, type Only keep the last 3 revisions of a content
item.

d. In the Group Name field, type Custom.

e. From the Action Service list, choose the wwString name of a disposition action; for
example, Notify Author.

f. In the Action Service Parameters field, type NumberOfRevisions=3.

4. Click Create.

The newly created disposition action can now be selected from the list of available disposition
actions when creating disposition rules.

21.5 Create Disposition Rules for Physical Content
Physical items can be assigned retention schedules, which define their life cycle. When
creating a physical item you can assign a retention schedule to it. This links the physical item
to a set of retention and disposition rules, which specify how long an item should be stored and
when and how it should be disposed.

The same retention schedules and disposition rules may be used for physical items as for
electronic items, but disposition rules used only for physical items can also be defined.

Chapter 21
Create Disposition Rules for Physical Content

21-6

22
Customizing Bar Codes

This chapter describes how to customize bar codes in Oracle WebCenter Content: Records.
You can add a custom bar code range and process nonstandard bar code data.
This chapter includes the following sections:

• About Customizing Bar Codes

• Adding a Custom Bar Code Range

• Processing Nonstandard Bar Code Data

22.1 About Customizing Bar Codes
The Physical Content Management (PCM) software is shipped with a default set of bar codes
ranges and bar code transaction types (check in, check out, and set locations). You can add a
set of bar code numbers to coincide with the system in place at your site and use them to
provide additional custom functionality. After adding the numbers, a customized service must
be created to use the new functionality. Consulting Services should be used to design this
service.

The system can also be customized to process bar code files that are in a format other than
the standard format used by PCM. This is done by altering a processing file to accommodate
the format in use at your site. A detailed knowledge of Idoc Script is required to customize the
processing file used to upload bar code data.

PCM bar codes are prefixed with a value when printing that should be stripped before
processing. User bar codes are prefixed with U, storage bar codes with S, and object bar codes
with O.

Note:

The Rma.Admin.Customization right is required to perform this task. This right is not
assigned by default to any of the predefined roles, which means you must assign it to
a role before this functionality is exposed.

22.2 Adding a Custom Bar Code Range
To add custom bar code ranges:

1. Choose Physical then Configure then Function Barcodes from the top menu.

2. On the Configuring Custom Barcode page, click Add.

3. In the Create Custom Barcode dialog, enter the bar code and the activity or event
associated with the bar code (for example, Inventory or Storage Disposal). A custom
code must be a number between 7000 and 9999. Click OK when done.

4. The Configuring Custom Barcode page opens showing the new bar code in the listing.

22-1

After defining the bar code range, contact Consulting Services to define a service called by the
custom bar codes. The type of service used will vary depending on the type of functionality
defined.

22.3 Processing Nonstandard Bar Code Data
Bar code processing in PCM uses code written with Idoc script in a processing file to evaluate
each line in a data file. You can modify the processing file to customize how the system parses
and processes the bar code data files.

Note:

A detailed knowledge of Idoc Script is required to customize the file that processes
bar code data. If you need assistance, contact Consulting Services.

The processing file is stored in the barcode\resources\ directory and is named
barcode_process_resource.htm.

The following is an example of a standard bar code data file:

H YYYYMMYYHHMMSS 00 0000000000 - Header
20050721125151 00 1000 - Transaction code
20050721125201 00 URMUSER - Location
20050721125204 00 OB1 - Object to be processed
20050721125204 00 OB2 - Object to be processed
T 000 - Footer

22.3.1 Header and Footer Information
The header line in the standard data file begins with the value H and is ignored by the
processing file. This can be customized if a header line is different or if one is absent. To
modify this, change the barcodeHeaderStartsWith variable in the bar code environment file.

The standard footer line in the data file begins with T 000. When the processing file encounters
this notation, processing stops and the processed data is uploaded. The
barcodeFooterStartsWith variable can be changed to indicate a different footer type.

22.3.2 Data Information
Each line in the file that is not a Header or a Footer is parsed as data. Each valid transaction
must have a Transaction Code, a Location, and Items to assign to the location.

22.3.2.1 Transaction Codes
Three default transaction codes are available:

• 1000: Check in

• 2000: Check out

• 3000: Set permanent and actual locations; this can also be used as a check-in transaction.

As noted in Adding a Custom Bar Code Range you can also create custom Transaction Codes.
If custom codes are used, the location must be set to a user, storage item or object (for
example, a box, folder, or tape).

Chapter 22
Processing Nonstandard Bar Code Data

22-2

The Transaction Date (dTransDate) and the Transaction Type (dTransType, which is the code
designation of 1000, 2000, 3000, or custom number) must be set in the processing file. The
following values should be cleared in the processing file:

• Location Type (dLocationType)

• Location (dLocation)

• Object Type (dExtObjectType)

• Bar Code (dBarcode)

• Bar Code Date (dBarcodeDate). Dates must be in the format MM/dd/yyyy HH:MM:SS.

The following variables should be set to FALSE:

• Bar Code Transaction Location (barcodeTransLocation)

• Bar Code Item (barcodeItemSet)

22.3.2.1.1 Location
The dLocationType and dLocation values must be set to set the location. In addition, the
barcodeTransLocation variable must be set to TRUE. This indicates that a location has been
set for the current transaction.

If the location is a user, dLocationType must be set to wwUser. If the location is a storage
location, dLocationType must be set to wwStorage. If the location is an object, dLocationType
can be left blank and the processing code will determine the object type of the object during
processing.

Multiple items can be assigned to the same location with one transaction. If the value for
barcodeTransLocation is set to TRUE, it is assumed that the item being processed is an object
being assigned to the current location set earlier. Make sure the barcodeItemSet value is set to
TRUE after each item is parsed so it is processed.

22.3.2.1.2 Object
To set the item, set dBarcode and dBarcode Date values. Also set barcodeItemSet to TRUE.
This indicates that an item is ready to be processed.

Chapter 22
Processing Nonstandard Bar Code Data

22-3

23
Creating Custom Reports

This chapter describes how to create custom reports for Oracle WebCenter Content: Records.
to tailor data presentation for your site.
This chapter includes the following sections:

• About Creating Custom Reports

• Creating Custom Templates

• Creating Templates with Oracle Business Intelligence Publisher

• Creating or Editing New Report Sources

• Downloading a BI XML Data File

23.1 About Creating Custom Reports

Note:

The Rma.Admin.Customization right is required to perform this task. This right is not
assigned by default to any of the predefined roles, which means you must assign it to
a role before this functionality is exposed. To create custom reports with a report
source type of Query, a user must also have the Rma.Admin.NoSecurity right.

To create a custom report for your site, data is gathered for the report, a report template is
chosen, the data is populated, and the report is generated. The data is gathered in XML format
then formatted for use using a template. This process allows you to keep the data separate
from the presentation of the data.

Several default reports and templates are provided when you install the Records system. New
reports can be created by using the current reports as a base then editing them, or entirely
new reports can be designed.

When creating custom reports, content on Oracle WebCenter Content Server Adapter systems
is not included in the report even if the content is managed by the Records system. To
generate reports concerning Adapter content, run the reports on the Content Server Adapter
system.

This section describes how to create customized reports using Oracle WebCenter Content
services and queries. To create reports about users and content using the default reports
provided with the software, see Using Default Reports in Oracle Fusion Middleware Managing
Oracle WebCenter Content.

To create new templates, the Oracle Business Intelligence Publisher (BI Publisher) functionality
must be purchased and installed. This documentation describes how to use the default
templates provided with the system. For details about creating new templates or editing the
default templates, see the BI Publisher documentation.

23-1

Note:

Before using custom reports, verify that the report library has been configured
correctly. For more information, see Oracle Fusion Middleware Installing and
Configuring Oracle WebCenter Content.

After creating a new template, it can be added to the list of available templates for others to
use. Templates as well as the report (that is, a report with data included) can be checked in as
content. These are separate check-ins, thus keeping data separate from the report format.

A similar interface is used to create the different elements of a report (report type, template,
report sources).

Choose Browse Content then Custom Physical Reports or Custom Record Reports to
access reports that have been created.

Note that user permissions are needed to access the data for a report as well as permissions
to the report itself. Therefore, if two different people run a report, they might see different
results depending on their rights.

23.1.1 Creating Custom Reports using Default Templates
To create a custom report using default templates and sources:

1. Choose Records then Configure from the top menu. Choose Reports to create a report
for content items. Choose Physical then Configure then Reports to create reports for
physical items.

Click Create New Report and choose a report option:

• Create New Report: Used to start the process of creating a new report. This option
opens a check-in page, used to save the report name and save other detailed report
information.

• Report Sources: Opens the Configure Report Sources page, used to choose the
criteria to gather data for the report.

• Templates: Opens a search results page listing templates for reports.

• Download BI XML Data: Opens a dialog where a user can choose to open the XML
data used for the reports or save the data.

2. On the Configure Report Element page, choose the type of report to create and click
Configure.

3. On the Report Check-in page, enter content information for the report as required at your
site. Also enter the following report-specific information for the report:

• Report Template

Choose a template from the list or click Add New to create a new template. For details
about creating a new template, Creating Custom Templates.

• Report Format

Choose a format from the list, which includes these choices:

– System

– User

Chapter 23
About Creating Custom Reports

23-2

– HTML

– PDF

– RTF

– XLS

If you are creating a bar code report, use PDF as your format type.

• Report Source Type

Choose the type of source to use to gather the data for the report, from these options:

– Service

Use Oracle WebCenter Content services to build the report data.

– Query

Use Oracle WebCenter Content queries to gather data.

– Dynamic Query

Use a dynamic query to gather data.

If you choose Service or Query, the correct service or query must be used to work
with the template. A dynamic query will gather the appropriate data for use.

• Report Source

Choose a previously configured report source for the data, or click Add New to create
a new source using the Configure Report Sources page. For details, see Creating or
Editing New Report Sources.

23.2 Creating Custom Templates
Templates are files that can be checked in and checked out of the system. They are treated as
content items. For details about creating a new template without using an existing template as
a guide, see the BI Publisher documentation.

To edit or create a new custom template:

1. Choose Records then Configure from the top menu. Choose Reports to create a
template for content items. Choose Physical then Configure then Reports to create
reports for physical items.

Click Templates.

2. On the Configure Report Element page, choose the type of template to create. Click
Configure.

3. The following options are available on the Report Templates page:

• To create a new template based on an existing template, click Get Native File from the
Actions menu of the template to be used. You can then save the file, edit the file as
needed, and check it in as a new template.

• To check out and edit an existing template, click Check Out from the Actions menu of
the template to be used. Save the file, edit it, then check it back in to the system.

• If a template exists and you would like to check it in using similar metadata as another
template, click Check In Similar from the Actions menu of the template with metadata
to be copied.

Chapter 23
Creating Custom Templates

23-3

The Table menu on this page is used to perform actions for all template files or for selected
files. The options shown depend on the configuration of the system and the permissions of the
user accessing the page.

• Select: Allows the selection of all items or the deselection of items.

• Actions: Used to add items to a Content Basket or to a folio.

• Edit: Used to freeze or unfreeze selected items.

• Set Dates: Used to mark dates associated with items such as review dates, rescind dates,
and other action dates.

• Create Reports: Used to create a report using a specified template.

• Delete Metadata History: Used to clear the metadata history changes.

• Change view: Used to change the way search results are displayed.

• Search actions: Used to save the search under a search name.

Additional options on this page are used to freeze or unfreeze template files, add files to a folio
or Content Basket for later use, set dates for processing files, or create reports from a
template.

23.3 Creating Templates with Oracle Business Intelligence
Publisher

You can use Oracle Business Intelligence Publisher to create custom report templates. For
more information, see the Creating custom report templates with BI Publisher blog.

23.4 Creating or Editing New Report Sources

Note:

Creating custom report sources requires in-depth technical knowledge of services
and queries. Contact Consulting Services for further assistance if needed.

To edit report sources:

1. Choose Records then Configure from the top menu. Choose Reports to edit sources for
a report for content items. Choose Physical then Configure then Reports to edit sources
for reports for physical items.

2. Click Report Sources.

The Configure Report Element page opens.

3. Choose the report whose sources will be altered, then click Configure.

4. On the Configure Report Sources page, highlight a query or a service on the left side of the
page. Click the right arrow to move the query or service to the right column for use.

To remove a query or service from use, highlight the name and click the left arrow to move
the item to the left column.

5. Click Update when done. The report sources for that particular type of report are altered
and are used the next time the report is run.

Chapter 23
Creating Templates with Oracle Business Intelligence Publisher

23-4

http://www.ateam-oracle.com/creating-custom-report-templates-with-bi-publisher/

Follow this procedure to create a new report source:

1. Use the previously described procedure to create a new report.

2. Click Add New in the Report Source section of the Report Check-in page.

3. A dialog opens. Follow the previously described procedure to add queries and services for
the new source.

4. Click OK when done. The report source is added and is available for use with the new
report.

23.5 Downloading a BI XML Data File
The provided XML data files can be used in conjunction with BI Publisher to customize report
templates Using the XML data file, you can import data into a Word document and then edit the
template to create a specialized report.

To select an XML data file:

1. Choose Records or Physical then Configure from the top menu. Choose Reports then
Download BI XML Data.

2. On the Configure Report Element page, choose the type of XML data file to download.
Click Download.

3. You can open the data file to examine the contents in a browser window or you can save
the file for later use.

4. Click OK when done.

Chapter 23
Downloading a BI XML Data File

23-5

Part VII
Integrating WebCenter Content into Your
Environment

This part describes how to integrate Oracle WebCenter Content with enterprise applications.

Note:

Content Integration Suite (CIS) has been deprecated. Developers and system
integrators are directed to use Remote Intradoc Client (RIDC), which provides a thin
communication API for communication with Oracle WebCenter Content Server. For
details, see the Oracle Fusion Middleware Java API Reference for Oracle WebCenter
Content Remote Intradoc Client (RIDC). For more information, see Using RIDC to
Access Content Server.

Part VII contains the following chapters:

• Getting Started with Integrating WebCenter Content into Your Environment

• Configuring WebCenter Content Web Services for Integration

• Using the IdcCommand Utility to Access Content Server

• Using the COM API for Integration

• Using RIDC to Access Content Server

• Using the Content Server JCR Adapter

• Configuring Web Services with WSDL_ SOAP_ and the WSDL Generator

• Customizing the DesktopTag Component

24
Getting Started with Integrating WebCenter
Content into Your Environment

This chapter describes how to integrate Oracle WebCenter Content with enterprise
applications.

This chapter includes the following sections:

• About Integration Methods

• Overview of Web Services

• Folders_ Contribution Folders_ and WebDAV Integration

24.1 About Integration Methods
Several methods are available for integrating Oracle WebCenter Content with enterprise
applications, such as application servers, catalog solutions, personalization applications,
enterprise portals, and client-side software. In general, these integration methods serve to
translate or pass methods and associated parameters with the goal of executing Oracle
WebCenter Content Server services.

A Content Server service is a window for accessing the content and content management
functions within Oracle WebCenter Content. For example, one simple integration option is to
reference content that is managed within WebCenter Content by a persistent URL. Some other
integration options enable you to use the Java API, the Microsoft Component Object Model
(COM) interface, or the ActiveX control.

The focus of this chapter is to present the available integration options, suggest an approach,
(like IdcCommand X, or persistent URL, or SOAP), and provide information about where to get
the detailed documentation on that approach. Specifically, this chapter provides basic
conceptual information about the integration of Oracle WebCenter Content within network
system environments using various protocols, interfaces, and mapping services.

For information about using the IdcCommand utility to access Content Server services from
other applications, see Using the IdcCommand Utility to Access Content Server.

For information about the COM interface, see Using the COM API for Integration.

For information about Remote Intradoc Client (RIDC) integration, see Using RIDC to Access
Content Server.

24.2 Overview of Web Services
Web services reside as a layer on top of existing software systems, such as application
servers, .NET servers, and Content Server. Adapted to the Internet as the model for
communication, web services rely on the HyperText Transfer Protocol (HTTP) as the default
network protocol. You can use web services as a bridge between dissimilar operating systems
or programming languages to build applications with a combination of components.

WebCenter Content supports two ways of using web services to build applications that are
integrated with Content Server:

24-1

• WebCenter Content web services together with Oracle WebLogic Server web services,
with security configuration and Security Assertion Markup Language (SAML) support
(introduced in WebCenter Content 11g)

Content Server provides some web services built into the core product. Oracle WebLogic
Server provides SOAP capabilities, and Content Server supports several SOAP requests
through Oracle WebLogic Server. For more information, see Configuring WebCenter
Content Web Services for Integration .

• Web Services Definition Language (WSDL) and SOAP (Simple Object Access Protocol)
files, with or without the WSDL generator component of Content Server (introduced in
Oracle Universal Content Management 10g)

The WSDL Generator component, WsdlGenerator, provides integration technologies for
accessing the functionality of Content Server. This Content Server system component is
installed and enabled by default. The WSDL Generator can create WSDLs for the services
of Content Server, or the service calls can be written in SOAP. For more information, see
Configuring Web Services with WSDL_ SOAP_ and the WSDL Generator.

With either way of using web services, you can use Oracle Web Services Manager (Oracle
WSM) for security. For more information about Oracle WSM, see Configuring WebCenter
Content Web Services for Integration , and the Administering Web Services.

24.3 Folders, Contribution Folders, and WebDAV Integration
Oracle WebCenter Content Server includes components that provide a hierarchical folder
interface, similar to a conventional file system, for organizing and managing some or all of the
content in the repository.

• Folders: This component (FrameworkFolders component) provides a hierarchical folder
interface within the browser, similar to a conventional file system, for organizing, locating,
and managing repository content and content item metadata. The Folders functionality is
installed but disabled by default. Folders is a scalable, enterprise solution and is intended
to replace the earlier Contribution Folder interface.

• Contribution Folders: Contribution Folders is an optional feature. The component is
installed but disabled by default. The newer, Folders component is meant to be a
replacement for Contribution Folders.

Note:

Running both Folders and Contribution Folders is not a supported configuration.
Content in Contribution Folders should be migrated to the Folders interface. For
more information about migrating Contribution Folder content, see Archiving
Contribution Folders in Oracle Fusion Middleware Administering Oracle
WebCenter Content.

In later releases of Oracle WebCenter Content 11g Release 1 (11.1.1)
Contribution Folders has been replaced by Folders, which is supported by the
FrameworkFolders component.

• WebDAV (Web-Based Distributed Authoring and Versioning): Both folder components work
with the built-in WebDAV functionality in Content Server that enables users to remotely
manage and author content using clients that support the WebDAV protocol. The WebDAV
interface provides a subset of the options available through the browser interface. In
general, you can create, delete, move, and copy both folders and content items, and you
can modify and check in content items. To check out content items through the WebDAV

Chapter 24
Folders, Contribution Folders, and WebDAV Integration

24-2

interface, you must use a WebDAV client that can open the file. To perform other
management tasks, such as specifying or propagating metadata values, you must use the
standard browser interface.

For information about configuring Folders or Contribution Folders, see Oracle Fusion
Middleware Installing and Configuring Oracle WebCenter Content.

For information about using Folders or Contribution Folders with WebDAV, see Working with
Content Folders in Oracle Fusion Middleware Using Oracle WebCenter Content.

For information about managing Folders, Contribution Folders, and WebDAV, see Organizing
Content in Oracle Fusion Middleware Managing Oracle WebCenter Content.

Oracle WebCenter Content provides services for customizing Folders and Contribution
Folders. For more information, see Folders Services or Contribution Folders Services in the
Oracle Fusion Middleware Services Reference for Oracle WebCenter Content.

24.3.1 Virtual Folders
The Contribution Folders component sets up an interface to Content Server in the form of
virtual folders (also called hierarchical folders). Virtual folders enable you to create a multilevel
folder structure.

Virtual folders provide two main benefits:

• Users can find content by drilling down through a familiar folder-type interface.

• Users can apply default metadata to content items by checking them in through a particular
folder.

The following structure is used for the Contribution Folders component:

• Each Content Server instance has a common set of virtual folders. Any change to the
folders is applied systemwide.

• There is one default system-level folder, called Contribution Folders. If you are using a
custom folders interface, folders for these products may also appear at the system level of
the Folders hierarchy.

This also applies if you are using the Collaboration Server.

• The system administrator can change the name of a system-level folder, but cannot delete
it or add a custom system-level folder except through changes to the database. (Deleting a
system-level folder disables it, but does not remove it from the system.)

• Each folder in the hierarchy contains content items that have the same numeric Folder
value, which is assigned automatically upon creation of the folder. Changing the value of
the Folder field for a content item places it in a different folder.

• The number of folders and number of files in each folder can be limited by the system
administrator so that virtual folder functions do not affect system performance.

For detailed information about configuring Content Server for WebDAV integration, see
Managing WebDAV inOracle Fusion Middleware Managing Oracle WebCenter Content.

24.3.2 WebDAV Integration
WebDAV provides a way to remotely author and manage your content using clients that
support the WebDAV protocol. For example, you can use Microsoft Windows Explorer to check
in, check out, and modify content in the repository rather than using a web browser interface.

Chapter 24
Folders, Contribution Folders, and WebDAV Integration

24-3

WebDAV is an extension to the HTTP/1.1 protocol that allows clients to perform remote web
content authoring operations. The WebDAV protocol is specified by RFC 2518.0.

For more information, see the WebDAV Resources website at

http://www.webdav.org

WebDAV provides support for the following authoring and versioning functions:

• Version management

• Locking for overwrite protection

• Web page properties

• Collections of web resources

• Name space management (copy or move pages on a web server)

• Access control

When WebDAV is used with a content management system such as Content Server, the
WebDAV client serves as an alternate user interface to the native files in the content repository.
The same versioning and security controls apply, whether an author uses the Content Server
web browser interface or a WebDAV client.

In Content Server, the WebDAV interface is based on the hierarchical Folders interface. For
more information, see Virtual Folders.

24.3.2.1 WebDAV Clients
A WebDAV client is an application that can send requests and receive responses using a
WebDAV protocol (for example, Microsoft Windows Explorer, Word, Excel, and PowerPoint).
Check the current WebDAV client documentation for supported versions. The WebCenter
Content WebDAV Client is a different product that enhances the WebDAV interface to Content
Server.

You can use WebDAV virtual folders in Windows Explorer to manage files that were created in
a non-WebDAV client, but you cannot use the native application to check content in to and out
of the Content Server repository.

The Desktop software package also includes a WebDAV Client component and a Check Out
and Open component.

24.3.2.2 WebDAV Servers
A WebDAV server is a server that can receive requests and send responses using WebDAV
protocol and can provide authoring and versioning capabilities. Because WebDAV requests are
sent over HTTP protocol, a WebDAV server typically is built as an add-on component to a
standard web server. In Content Server, the WebDAV server is used only as an interpreter
between clients and Content Server.

24.3.2.3 WebDAV Architecture
WebDAV is implemented in Content Server by the WebDAV component. The architecture of a
WebDAV request follows these steps:

1. The WebDAV client makes a request to Content Server.

2. The message is processed by the web server (through a DLL in IIS).

3. On Content Server, the WebDAV component performs these functions:

Chapter 24
Folders, Contribution Folders, and WebDAV Integration

24-4

http://www.webdav.org

• Recognizes the client request as WebDAV.

• Maps the client request to the appropriate WebDAV service call on Content Server.

• Converts the client request from a WebDAV request to the appropriate Content Server
request.

• Connects to the core Content Server and executes the Content Server request.

4. The WebDAV component converts the Content Server response into a WebDAV response
and returns it to the WebDAV client.

Chapter 24
Folders, Contribution Folders, and WebDAV Integration

24-5

25
Configuring WebCenter Content Web Services
for Integration

This chapter describes how to use Oracle WebCenter Content web services and Oracle
WebLogic Server web services to integrate a client application with Content Server.

This chapter includes the following sections:

• About Configuring WebCenter Content Web Services for Integration

• Configuring Web Service Security Through Web Service Policies

• Configuring SAML Support

For general information about web services that you can use with Content Server, see
Overview of Web Services.

The way to use web services described in this chapter was introduced in Oracle Universal
Content Management 11g. If you want to use the way introduced in Oracle Universal Content
Management 10g, with Web Services Definition Language (WSDL) and SOAP (Simple Object
Access Protocol) files and the WSDL generator, see Configuring Web Services with WSDL_
SOAP_ and the WSDL Generator.

25.1 About Configuring WebCenter Content Web Services for
Integration

WebCenter Content web services work with Oracle WebLogic Server web services to perform
management functions for Content Server. Oracle WebLogic Server web services provide
SOAP capabilities, and WebCenter Content web services include several built-in SOAP
requests. WebCenter Content web services are automatically installed with Content Server, but
they require additional configuration to set up security.

25.1.1 Technologies for Web Services
The core enabling technologies for WebCenter Content web services follow:

• SOAP (Simple Object Access Protocol) is a lightweight XML-based messaging protocol
used to encode the information in request and response messages before sending them
over a network. SOAP requests are sent from WebCenter Content web services to Oracle
WebLogic Server web services for implementation. For more information about SOAP, see
Simple Object Access Protocol (SOAP) at http://www.w3.org/TR/soap12.

• Web Services Security (WS-Security) is a standard set of SOAP extensions for securing
web services for confidentiality, integrity, and authentication. For WebCenter Content web
services, WS-Security is used for authentication, either for a client to connect to the server
as a particular user or for one server to talk to another as a user. For more information, see
the OASIS Web Service Security page at http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wss.

25-1

http://www.w3.org/TR/soap12
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

• Web Service Policy (WS-Policy) is a standard for attaching policies to web services. For
WebCenter Content web services, policies are used for applying WS-Security to web
services. The two supported policies are username-token security and SAML security.

Historically, Oracle used Oracle Web Services Manager (Oracle WSM) to secure its web
services, and Oracle WebLogic Server used Web Services Security Policy (WS-
SecurityPolicy) to secure its web services. Because web services security is partially
standardized, some Oracle WSM and WS-SecurityPolicy policies can work with each
other.

Note:

Use Oracle WSM policies over Oracle WebLogic Server web services whenever
possible. You cannot mix your use of Oracle WSM and Oracle WebLogic Server
web services policies in the same web service.

WebCenter Content web services (idcws/ as context root) are SOAP based, while
WebCenter Content native web services (idcnativews/ as context root) are JAX_WS
based. Both kinds of web services can be assigned Oracle WSM policies through the
Oracle WebLogic Server Administration Console.

The generic WebCenter Content web services are JAX-WS based and can be assigned
Oracle WSM policies and managed by Oracle WSM. The native WebCenter Content web
Services are SOAP based and can only support WS-Policy policies managed through the
Oracle WebLogic Server Administration Console.

For more information about Oracle WSM, see the Overview of Web Services
Administration in Administering Web Services.

A subset of Oracle WebLogic Server web services policies interoperate with Oracle WSM
policies. See Overview of OWSM Interoperability.

Web Services Security Policy (WS-SecurityPolicy) is a set of security policy assertions for
use with the WS-Policy framework. For more information, see the Web Services Security
Policy specification at http://docs.oasis-open.org/ws-sx/ws-securitypolicy/
200702/ws-securitypolicy-1.2-spec-os.html.

• SAML is an XML standard for exchanging authentication and authorization between
different security domains. For more information, see the Security Assertion Markup
Language (SAML) specification at http://docs.oasis-open.org/security/saml/v2.0/.

• WebLogic Scripting Tool (WLST) is a command-line tool for managing Oracle WebLogic
Server. For more information, see WebCenter Portal Custom WLST Commands in Oracle
Fusion Middleware WebCenter WLST Command Reference.

25.1.2 WebCenter Content Web Services
WebCenter Content provides two types of web services: a general (generic) JAX-WS based
web service, and a native SOAP based web service. The two types of web services reside in
two different context roots. The context root is the primary identifier in the URL for accessing
the web services.

The context roots follow:

• idcws

Chapter 25
About Configuring WebCenter Content Web Services for Integration

25-2

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/security/saml/v2.0/

Use this context root for general access to Content Server through any regular web
services client.

• idcnativews
The Remote Intradoc Client (RIDC) uses the native web services. Oracle recommends that
you do not develop a custom client against these services. For more information about
RIDC, see Using RIDC to Access Content Server.

The following table describes the WebCenter Content web service in the idcws context root.

WebCenter Content Web
Service

Descriptions

GenericSoapService This service uses a generic format similar to HDA for its SOAP format. It
is almost identical to the generic SOAP calls that you can make to
Content Server when you set IsSoap=1. For details of the format, see
the published WSDL at idcws/GenericSoapPort?WSDL.

You can apply WS-Security to GenericSoapService through WS-
Policy. Content Server supports Oracle WSM policies for SAML and
username-token.

As a result of allowing WS-Security policies to be applied to this service,
streaming Message Transmission Optimization Mechanism (MTOM) is
not available for use with this service. Very large files (greater than the
memory of the client or the server) cannot be uploaded or downloaded.

GenericSoapService automatically has oracle/wsmtom_policy
applied to it. Content Server cannot accept SOAP requests that have this
policy applied. For GenericSoapService to work, the following policy
must be applied to it:

oracle/no_mtom_policy

The following table describes the WebCenter Content web services in the idcnativews context
root.

WebCenter Content Web
Services

Descriptions

IdcWebRequestService This is the general WebCenter Content service. Essentially, it is a normal
socket request to Content Server, wrapped in a SOAP request. Requests
are sent to Content Server using streaming Message Transmission
Optimization Mechanism (MTOM) in order to support large files.

Streaming MTOM and WS-Security do not mix. As a result, do not apply
WS-Security to this service because it will break the streaming file
support. In order to achieve security, you must first log in using the
IdcWebLoginService, then use the same JSESSIONID received from
that service in the next call to IdcWebRequestService as a cookie.

IdcWebLoginService This service is solely for adding security to IdcWebRequestService
calls. There are no parameters for this service; it simply creates a
session. The important field to retrieve is the JSESSIONID value for
future calls to IdcWebRequestService. If you want to use WS-Security
with IdcWebRequestService, then apply it here. Content Server
supports Oracle WSM policies for SAML and username-token.

Chapter 25
About Configuring WebCenter Content Web Services for Integration

25-3

25.2 Configuring Web Service Security Through Web Service
Policies

The WebCenter Content web services are installed and ready to use by default with the
WebCenter Content EAR. However, unless you configure web service security (WS-Security)
on any of the WebCenter Content web services, all connections to Content Server will use the
anonymous user. To configure security for WebCenter Content web services, you configure WS-
Security through WS-Policy. Additional configuration is required to enable authentication.

WS-Security is set through the use of web service policies (WS-Policy). Security policies can
be set for web services to define their security protocol. In particular, the WebCenter Content
web services support Oracle WSM policies.

Note:

GenericSoapService automatically has oracle/wsmtom_policy applied to it. Content
Server cannot accept SOAP requests that have this policy applied. For
GenericSoapService to work, the following policy must be applied to it:

oracle/no_mtom_policy

WebCenter Content supports the following Oracle WSM policies:

• oracle/wss11_saml_token_with_message_protection_service_policy
• oracle/wss11_username_token_with_message_protection_service_policy
• oracle/wss_username_token_service_policy
• oracle/wss_http_token_service_policy
• oracle/wss_http_token_over_ssl_service_policy
14c uses Weblogic Server to apply Oracle WSM policies to web services. For more
information, see Oracle Fusion Middleware Security and Administrator's Guide for Web
Services.

25.3 Configuring SAML Support
You can also provide SAML support for client-side certificate authentication. See Securing
Inbound SOAP Requests Using SAML Message Protection and Configuring Message
Protection for Web Services for more details.

Chapter 25
Configuring Web Service Security Through Web Service Policies

25-4

26
Using the IdcCommand Utility to Access
Content Server

This chapter describes how to use the IdcCommand utility to access Oracle WebCenter
Content Server services from other applications.

This chapter includes the following sections:

• About the IdcCommand Utility

• Setting Up IdcCommand

• Running IdcCommand

• Using the Launcher

• Calling Services Remotely

26.1 About the IdcCommand Utility
The IdcCommand utility is a standalone Java application that executes Content Server
services. Almost any action you can perform from the Content Server browser interface or
administration apps can be executed from IdcCommand.

The program reads a command file, which contains service commands and parameters, and
then calls the specified services. A log file can record the time that the call was executed,
whether the service was successfully executed, and if there were execution errors.

Note:

The IdcCommand utility returns only information about the success or failure of the
command. To retrieve information from Content Server in an interactive session, use
the Java COM wrapper IdcCommandX, available on Microsoft Windows platforms.

To run the IdcCommand utility, you must specify the following parameters on the command line
or in the intradoc.cfg configuration file:

• A command file containing the service commands and parameters

• A Content Server user name for a user who has permission to execute the services being
called

• A path and file name for a log file

• The connection mode (auto, server, or standalone)

Certain commands that cannot be executed in standalone mode. In general, the server
performs these commands asynchronously in a background thread. This happens in the
update or rebuild of the search index.

26-1

For information about using services in custom components, see Getting Started with Content
Server Components, and Using Services in Oracle Fusion Middleware Services Reference for
Oracle WebCenter Content.

26.2 Setting Up IdcCommand
To set up IdcCommand, you must specify the following:

1. A command file, which specifies the services to be executed and any service parameters.

For more information, see Specifying a Command File.

2. Configuration options, which specify the command file and other IdcCommand information.
You can set IdcCommand configuration options in two places:

a. IdcCommand Options in a Configuration File. For more information, see {Example - Idc
Command Options in a Config file}.

b. On the command line, specifying option flag when running IdcCommand, as shown in
{Example - IdcCommand Options on the Command Line}.

For more information, see Specifying Configuration Options.

Example 26-1 IdcCommand Options in a Configuration File

IdcCommandFile=newfile.hda
IdcCommandUserName=sysadmin
IdcCommandLog=C:/domain/newlog.txt
ConnectionMode=server

Example 26-2 IdcCommand Options on the Command Line

-f newfile.hda -u admin -l C:/domain/newlog.txt -c server

26.2.1 Specifying a Command File
The command file defines the service commands and parameters that are executed by the
IdcCommand utility. Command files must follow rules for syntax, precedence, and special tags
and characters.

26.2.1.1 Command File Syntax
The command file uses the HDA (hyperdata file) syntax to define service commands.

• Each service to be executed, along with its parameters, is specified in a @Properties
LocalData section.

• For some services, an @ResultSet section is used to specify additional information.

• Data from one section of the command file is not carried over to the next section. Each
section must contain a complete set of data for the command.

• Service names and parameters are case sensitive.

The following example shows a command file that executes the ADD_USER service and defines
attributes for two new users.

Example 26-3 Command File for the ADD_USER Service

<?hda version="5.1.1 (build011203)" jcharset=Cp1252 encoding=iso-8859-1?>
Add users
@Properties LocalData

Chapter 26
Setting Up IdcCommand

26-2

IdcService=ADD_USER
dName=jsmith
dUserAuthType=Local
dFullName=Jennifer Smith
dPassword=password
dEmail=email@example.com
@end
@ResultSet UserAttribInfo
2
dUserName
AttributeInfo
jsmith
role,contributor,15
@end
<<EOD>>
@Properties LocalData
IdcService=ADD_USER
dName=pwallek
dUserAuthType=Local
dFullName=Peter Wallek
dPassword=password
dEmail=email@example.com
@end
@ResultSet UserAttribInfo
2
dUserName
AttributeInfo
pwallek
role,contributor,15,account,marketing,7
@end
<<EOD>>

26.2.1.2 Precedence
IdcCommand uses precedence to resolve conflicts among the name/value pairs within the
LocalData section of the command file. When normal name/value pairs are parsed, they are
assumed to be within the @Properties LocalData tag. If the section contains HDA tags, the
normal name/value pairs take precedence over name/value pairs within the @Properties
LocalData tag.

For example, if foo=x is in a normal name/value pair and foo=y is within the @Properties
LocalData tag, the name/value pair foo=x takes precedence because it is outside the tag.

26.2.1.3 Special Tags and Characters
These special tags and characters can be used in a command file.

Special Character Description

IdcService=service_name Each section of the command file must specify the name of the service it
is calling.

<<EOD>> The end of data marker. The command file can include one or more
sections separated with an end of data marker. For an example, see
Command File Syntax.

The pound character placed at the beginning of a line indicates that the
line is a comment.

\ The backslash is an escape character.

Chapter 26
Setting Up IdcCommand

26-3

Special Character Description

@Include filename This tag enables you to include content from another file at the spot
where the @Include tag is placed. This tag can be used to include a
complete HDA file or to include shared name/value pairs. This inclusion
takes the exact content of the specified file and places it in the location
of the @Include tag. A file can be included as many times as desired
and an included file may include other files. However, circular inclusions
are not allowed.

26.2.2 Specifying Configuration Options
To run the IdcCommand utility, specify the following parameters on the command line or in the
DomainHome/ucm/cs/bin/intradoc.cfg configuration file.

Parameter Required? Command Line Syntax Configuration File Syntax

Command File Yes -f name.txt IdcCommandFile=name.txt

User Yes -u sysadmin IdcCommandUserName=sysadmin

Log File No -l C:/logs/log.txt IdcCommandLog=C:/logs/log.txt

Connection Mode No -c auto ConnectionMode=auto

Note:

Command-line configuration options override the settings in the configuration file.

26.2.2.1 Command File
You must specify the name of the command file that contains the service commands and
parameters. The command file parameter can specify a full path (such as C:/command_files/
command.txt), or it can specify a relative path. For more information, see Specifying a
Command File.

26.2.2.2 User
You must specify a Content Server user name. This user must have permission to execute the
services being called.

26.2.2.3 Log File
You can specify a path and file name for an IdcCommand log file. As each command is
executed, a message is sent to the log file, which records the time the command was executed
and its success or failure status. If the log file already exists, it is overwritten with the new
message. The log file can be used to display processing information to the user.

• If the action performed is successful, a "success" message is written to the log file.

Chapter 26
Setting Up IdcCommand

26-4

• If the action performed is not successful, an error message is written to the log file.

• If no log file is specified, information is logged only to the screen.

26.2.2.4 Connection Mode
You can specify the connection mode for executing the IdcCommand services.

Connection Mode Description

auto IdcCommand attempts to connect to the Content Server instance. If
this fails, services are executed in standalone mode.

This is the default connection mode.

server IdcCommand executes services only through Content Server.

standalone IdcCommand executes services in a standalone session.

Certain services cannot be executed in standalone mode. In general,
these services are performed asynchronously by the server in a
background thread. For example, this happens during an update or
rebuild of the search index.

26.3 Running IdcCommand
To run IdcCommand:

1. Create a new IdcCommand working directory.

Use this directory for your command file and configuration file.

2. Create a command file in the working directory to specify the desired service commands.

3. Copy the intradoc.cfg configuration file from the DomainHome/ucm/cs/bin directory into
the working directory.

Note:

Do not delete the IntradocDir or WebBrowserPath information.

4. Add IdcCommand options to the intradoc.cfg file in the working directory, as {Example -
IdcCommand Options in intradoc.cfg File} shows.

For more information, see Specifying Configuration Options.

5. Run the IdcCommand utility from the DomainHome/ucm/cs/bin directory:

IdcCommand.exe
Example 26-4 IdcCommand Options in the intradoc.cfg File

IdcCommandFile=newfile.hda
IdcCommandUserName=sysadmin
IdcCommandLog=C:/domain/newlog.txt

26.4 Using the Launcher
The Launcher is a native C++ application used to manage services in Windows environments
and to construct command line arguments and environment settings for the Java VM.

Chapter 26
Running IdcCommand

26-5

The main operation of the Launcher is to find and read its configuration files, compute any
special values, then launch an executable with a command line that it constructs. Configuration
files support Bourne Shell-like substitutions, all of which start with the dollar sign ($) followed
by an alphanumeric identifier or expression inside braces ({}).

The Launcher executable is installed in the following directory:

DomainHome/ucm/native/platform/bin/Launcher/

On UNIX systems, symlinks are created in the bin directory to Launcher.sh, a Bourne Shell
wrapper that executes the Launcher executable. The purpose of this wrapper is to locate the
correct binary Launcher executable for the platform. The term Launcher is used here to refer to
the native Launcher executable or to the Launcher.sh Bourne Shell script.

The Launcher or the symlink to Launcher.sh must reside in a directory with a valid
intradoc.cfg configuration file and must have the same name as the Java class file to be
launched (case sensitive). The Launcher uses this name to set the environment variable
STARTUP_CLASS.

On Windows this name is computed by calling GetModuleFileName(). On UNIX systems, it is
computed by inspecting argv[0]. The PLATFORM variable is set to the Content Server identifier
for the platform. The variable BIN_DIR is set to the directory where the Launcher is located.

The Launcher reads a file named intradoc.cfg from BIN_DIR. This file should contain a value
for IntradocDir. The IntradocDir directory is used as the base directory for resolving relative
paths. Any unqualified path in this document should be taken as relative to the IntradocDir.
Future releases of Content Server may change or remove these variable names.

If the intradoc.cfg file does not contain a value for IdcResourcesDir, the Launcher sets
IdcResourcesDir to $IntradocDir/resources. If the Launcher is starting a Windows service, it
sets IS_SERVICE to 1. If it is unset, the Launcher also sets PATH_SEPARATOR to the correct
character for the platform.

The Launcher reads the intradoc.cfg file first to find the locations of configuration files, then
reads all available configuration files in this order:

1. $IdcResourcesDir/core/config/launcher.cfg
2. $BIN_DIR/../config/config.cfg
3. $IntradocDir/config/config.cfg
4. $IntradocDir/config/config-$PLATFORM.cfg
5. $IntradocDir/config/state.cfg
6. $IdcResourcesDir/core/config/launcher-$PLATFORM.cfg
7. $BIN_DIR/intradoc.cfg
8. $BIN_DIR/intradoc-$PLATFORM.cfg
9. All files specified on the command line, using the -cfg option.

Note:

You can assign variable values directly on the command line by using the -cfg
option NAME=VALUE.

Chapter 26
Using the Launcher

26-6

26.4.1 Quotation Rules
The Launcher uses Bourne Shell-like quotation rules. A string can be inside double quotation
marks (") to escape spaces. A backslash (\) can precede any character to provide that
character. After a final command line is computed, the Launcher separates it into spaces
without quotation marks. Each string is then used without quotation marks as an entry in the
argv array for the command.

26.4.2 Computed Settings
After reading the configuration files, the Launcher processes variable substitutions. Some
variables can have extra computations to validate directories or files, build command-line
argument lists, or construct PATH-like variables.

These special computations are performed for variables based on their type. To set a type for a
variable, set TYPE_variable_name=typename in any of the configuration files listed previously.

The following list describes Launcher variable types:

• file
file Launcher Variables
TYPE_PASSWD_FILE=file
PASSWD_FILE_sys5=/etc/passwd
PASSWD_FILE_bsd=/etc/master.passwd

This type looks for a file. If the value of variable_name is a path to an existing file, it is
kept. If not, every variable beginning with variable_name_ is checked. The last value,
which is a path to an existing file, is used for the new value of variable_name.

In this example PASSWD_FILE is set to /etc/master if /etc/master.passwd exists, or it is
set to /etc/passwd if /etc/passwd exists. Otherwise, PASSWD_FILE is undefined.

• directory
directory Launcher Variables
TYPE_JDK=directory
JDK_java_home=$JAVA_HOME
IdcNativeDir=$IdcHomeDir/native
DEFAULT_JDK_DIR=$OS_DIR/$PLATFORM
JDK_legacy142=$DEFAULT_JDK_DIR/j2sdk1.4.2_04
JDK_default=$DEFAULT_JDK_DIR/jdk1.5.0_07

In this example, JDK is set to the same value as the last of the JDK_ variables that is a
directory. Typically, this would point at the JDK installed with Oracle Fusion Middleware.
Note that JDK_java_home references $JAVA_HOME; if a variable is not defined in any
configuration file but is in the environment, the environment value is used.

• executable
executable Launcher Variables
TYPE_JAVA_EXE=executable
JAVA_EXE_default=java$EXE_SUFFIX
JAVA_EXE_jdk_default=$JDK/bin/java$EXE_SUFFIX

The executable type looks for an executable. It works very much like the file type, but looks
through every directory in $PATH for each candidate value. In this example JAVA_EXE is set
to the Java executable in the JDK if it exists. Otherwise it is set to the first Java executable
in the PATH.

Chapter 26
Using the Launcher

26-7

• list
list Launcher Variables
TYPE_JAVA_OPTIONS=list
JAVA_MAX_HEAP_SIZE=384
DEFINE_PREFIX=-D
JAVA_OPTIONS_BIN_DIR=${DEFINE_PREFIX}idc.bin.dir=$BIN_DIR
JAVA_OPTIONS_maxheap=${JAVA_MAX_HEAP_SIZE+-Xmx${JAVA_MAX_HEAP_SIZE\}m}
JAVA_OPTIONS_service=${IS_SERVICE+$JAVA_SERVICE_EXTRA_OPTIONS}

The list type computes a list of options for an executable. Each value that begins with
variable_name_ becomes a quoted option, and variable_name is set to the entire list. In
this example, JAVA_OPTIONS is set to the string:

"-Didc.bin.dir=/intradocdir/bin/" "-Xmx384m"
• path

path Launcher Variables
IdcResourcesDir=${IdcResourcesDir-$IdcHomeDir/resources}
BASE_JAVA_CLASSPATH_source=$IdcResourcesDir/classes
BASE_JAVA_CLASSPATH_serverlegacy=$SharedDir/classes/server.zip
BASE_JAVA_CLASSPATH_server=$JLIB_DIR/idcserver.jar

TYPE_JAVA_CLASSPATH=path

JAVA_CLASSPATH_legacy=$CLASSPATH

JAVA_CLASSPATH_orig=$IntradocDir/classes

JAVA_CLASSPATH_unpackaged=$SharedDir/classes

JAVA_CLASSPATH_components=$COMPONENTS_CLASSPATH

JAVA_CLASSPATH_server=$SharedDir/classes/server.zip

JAVA_CLASSPATH_refinery=$SharedDir/classes/idcrefinery.zip

JAVA_CLASSPATH_flexion=$SharedDir/classes/flexionxml.jar

JAVA_CLASSPATH_ldap=$SharedDir/classes/ldapjdk.jar

The path type computes a path-like value.The value of each variable starting with
variable_name_ is appended to the value of variable_name separated by the value of
PATH_SEPARATOR. In this example, BASE_JAVA_CLASSPATH is set to a very long class path.

• lookupstring
lookupstring Launcher Variables
TYPE_VDK_PLATFORM=lookupstring
PARAMETER_VDK_PLATFORM=${PLATFORM}_${UseVdkLegacySearch+vdk27}
VDK_PLATFORM_aix_vdk27=_rs6k41
VDK_PLATFORM_aix_=_rs6k43
VDK_PLATFORM_hpux_vdk27=_hpux11
VDK_PLATFORM_hpux_=_hpux11
VDK_PLATFORM_freebsd_vdk27=_ilnx21
VDK_PLATFORM_freebsd_=_ilnx21
VDK_PLATFORM_linux_vdk27=_ilnx21
VDK_PLATFORM_linux_=_ilnx21
VDK_PLATFORM_solaris_vdk27=_ssol26
VDK_PLATFORM_solaris_=_ssol26

Chapter 26
Using the Launcher

26-8

VDK_PLATFORM_win32_vdk27=_nti40
VDK_PLATFORM_win32_=_nti40

The lookupstring type uses a second parameter to construct a lookup key for the final
value. The second parameter is the value of $PARAMETER_variable_name. If this value is
undefined, the current value of variable_name is used as the lookup key. In this example,
PARAMETER_VDK_PLATFORM has the value of ${PLATFORM}_ or ${PLATFORM}_vdk27
depending on the value of UseVdkLegacySearch.

This value is then used to look up the value of the variable VDK_PLATFORM_$
{PARAMETER_VDK_PLATFORM} which is then enclosed in quotation marks and assigned to
VDK_PLATFORM.

• lookuplist

lookuplist Launcher Variables
TYPE_STARTUP_CLASS=lookuplist
STARTUP_CLASS_version=Installer --version
STARTUP_CLASS_installer=Installer
STARTUP_CLASS_WebLayoutEditor=IntradocApp WebLayout
STARTUP_CLASS_UserAdmin=IntradocApp UserAdmin
STARTUP_CLASS_RepositoryManager=IntradocApp RepositoryManager
STARTUP_CLASS_Archiver=IntradocApp Archiver
STARTUP_CLASS_WorkflowAdmin=IntradocApp Workflow
STARTUP_CLASS_ConfigurationManager=IntradocApp ConfigMan

The lookuplist type uses a second parameter to construct a lookup key for the final
value. The second parameter is the value of $PARAMETER_variable_name. If this value is
undefined, the current value of variable_name is used as the lookup key.

Unlike lookupstring, lookuplist does not enclose the final value in quotation marks. For
this example, the current value of STARTUP_CLASS is version. STARTUP_CLASS is replaced
with the value Installer --version.

26.4.3 Launcher Environment Variables
After processing the computed settings, the Launcher iterates over all variables that begin with
the string EXPORT_. The value of each variable is used as an environment variable name, which
has the value of the second half of the EXPORT_ variable assigned. For example,
EXPORT_IDC_LIBRARY_PATH=LD_LIBRARY_PATH exports the value of the IDC_LIBRARY_PATH
variable with the name LD_LIBRARY_PATH.

The variable JAVA_COMMAND_LINE is used to get the command line. Any command line
arguments to the Launcher that have not been consumed are appended to the command line.
On UNIX systems, the command line is parsed and quoting is undone and then execv is called.
On Windows, a shutdown mutex is created and CreateProcess is called with the command
line. Care should be taken because CreateProcess does not undo backslash-quoting.

The principal mechanism for debugging the Launcher is to add the flag -debug before any
arguments for the final command. You can also create a file named $BIN_DIR/debug.log which
triggers debug mode and contain the debug output.

The Launcher has knowledge of the following configuration entries, which it either sets or uses
to control its behavior. Note that these configuration variables might change or be removed in
future releases of Content Server:

• IDC_SERVICE_NAME: the name of the win32 service used for service registration,
unregistration, startup, and shutdown.

Chapter 26
Using the Launcher

26-9

• IDC_SERVICE_DISPLAY_NAME: the display name of the win32 used for service registration.

• IntradocDir: the base directory for relative path names.

• IdcBaseDir: an alternate name for IntradocDir.

• IdcResourcesDir: set to $IdcHomeDir/resources if otherwise undefined.

• IdcNativeDir: defaults to $IdcHomeDir/native if otherwise unset.

• PATH_SEPARATOR: set to either colon (:) or semi-colon (;) if otherwise unset.

• STARTUP_CLASS: set to the name of the Launcher executable.

• MUTEX_NAME: the name used to create a shutdown mutex on win32.

• BEFORE_WIN_SERVICE_START_CMD: if set, is a command line that is executed before a win32
service starts.

• UseRedirectedOutput: if set tells the Launcher on win32 to redirect the output from the
Java VM to a file.

• ServiceStartupTimeout: the time out used for waiting for a Java process to successfully
start on win32.

Note:

By using Launcher.exe, changing the status.dat file, and altering the value of
the JVM command line, you could theoretically run any Java program as a
Windows service. This is not recommended for normal use, but it does explain
some ways you could configure the Launcher.

26.4.4 User Interface
The UI for the Launcher is the same as the application it launches. For example, if the
Launcher is renamed to IntradocApp, the following command-line arguments are specified to
launch the Web Layout Editor:

IntradocApp WebLayout

This launches the Web Layout Editor as a standalone application.

By default, the application is launched without console output. However, when launching
IdcServer, IdcAdmin, IdcCommandX, or the Installer, Java output is printed to the screen. In all
other cases, the output is suppressed for a cleaner interface.

For some applications, such as the Batch Loader and the Repository Manager, it is desirable to
view the Java output from the application. To force the Launcher to dump the Java output to
the screen, use the -console flag in this manner:

IntradocApp RepMan -console

The output is now written to the console from which the Repository Manager was launched.

If the Launcher is renamed IdcServer, BatchLoader, SystemProperties, or any other Java class
that requires no additional parameters, it can be launched with a simple double-click. In other
cases, a shortcut can be used to launch them by double-clicking.

Chapter 26
Using the Launcher

26-10

26.4.5 Configuring the Launcher
To use the Launcher, you must first rename the Launcher.exe file to an executable with the
same name as the class file to be launched. Typical examples include IdcServer.exe and
IntradocApp.exe.

Note:

If you want to make a custom application, you must create a custom directory and
rename the Launcher.exe file to the service that is to be launched. A valid
intradoc.cfg file must be in the same directory as the executable. The only required
parameter is IntradocDir; however, you can include other entries to alter the way
the Java application is launched.

26.4.6 Configuration File Example
You can modify the configuration file for the applications you need to run. The following
example shows configuration file entries that are sufficient to launch nearly all Content Server
applications.

Configuration File Entries for Content Server Applications
<?cfg jcharset="Cp1252"?>
#Content Server Directory Variables
IntradocDir=C:/domain/idcm1/

CLASSPATH=$COMPUTEDCLASSPATH;$SHAREDDIR/classes/jtds.jar

BASE_JAVA_CLASSPATH_source=$IdcResourcesDir/classes
BASE_JAVA_CLASSPATH_serverlegacy=$SharedDir/classes/server.zip
BASE_JAVA_CLASSPATH_server=$JLIB_DIR/idcserver.jar

Other applications, such as Oracle WebCenter Content: Inbound Refinery, require additional
classes in the class path. This file can also be modified to enable Content Server to be run with
different Java Virtual Machines.

The CLASSPATH is designed to look for class files in order of the listed entries. In other words,
the Launcher will search the entire DomainHome/ucm/idc/native directory before it looks in the
resources directory or server.zip file. This is desirable if the users want to overload Java
classes without patching the ZIP file.

Additionally, the Launcher can be used to install, uninstall, and run Java applications as
Windows services, if they follow the correct API for communicating back to the Launcher. For
more details on how to make any Java application run as a Windows service with the
Launcher, see the source code for IdcServer.java or IdcAdmin.java.

The COMPUTEDCLASSPATH is used to add class files to the CLASSPATH that the Launcher uses. To
add class files, override this flag.

Chapter 26
Using the Launcher

26-11

Note:

The intradoc.cfg file is usually altered to include the locations of JDBC drivers for
particular databases upon installation. If you want to use an alternate JDBC driver,
place it outside of the IdcHomeDir directory for Content Server, and alter the
JDBC_JAVA_CLASSPATH_customjdbc entry in the intradoc.cfg file with the location of
the driver.

The following example shows a command to run Content Server with the IBM virtual machine
on a Windows operating system.

Command for Running Content Server with a Custom JVM
#customized for running the IBM VM
JAVA_EXE=full path

When using a custom JVM, specify the full path to the Java executable file to be used.

Note:

Avoid overriding the JVM command line. Customization is more complicated because
of the custom class loader. If you do override the JVM command line, start with
the $IdcHomeDir/resources/core/config/launcher.cfg file.

If you do so, start with the following command line:

JvmCommandLine=$JAVA_EXE $JAVA_OPTIONS $JAVA_SERVICE_EXTRA_OPTIONS $DEFINE_PREFIXjava.endorsed.d
irs=$ENDORSEDPATH $APPEND_CLASSPATH "$CLASSPATH" $STARTUPCLASS

You can set JAVA_COMMAND_LINE_SELECTION entry in the configuration file to idcclassloader or
traditional.

If you choose to change which JVM you are using, and if that VM has all the standard Sun
SDK JAR files, then it is better to use the J2SDK configuration entry to relocate the root
directory of the SDK directory rather than use JAVA_EXE to specify the location of the Java
executable. (This is not applicable for the IBM VM.)

The J2SDK variable changes the directory where the Sun SDK libraries are found (such as
tools.jar). If you change this entry without setting the JAVA_EXE entry, then Java executables
are assumed to be in the bin directory of the path in J2SDK. The default value for J2SDK
is ...\shared\os\win32\j2sdk1.4.2_04.

To add a value to JAVA_OPTIONS, use JAVA_OPTIONS_server=-server or another similar value.

The following table describes commonly used command-line options. Those options noted with
an asterisk (*) are available on a Windows operating system only. Unmarked options are
available for a Windows or UNIX operating system.

Option Description

-console * Forces the Launcher to keep a Windows console window open so that the
Java output and error streams are printed to the console.

-debug Shows paths and variables in use at startup, and startup errors. Also enables
Java debugging in Content Server; when repeated, this increases verbosity.

Chapter 26
Using the Launcher

26-12

Option Description

-fileDebug Similar to the -debug option but this option dumps debug data to the
debug.log file. It is usually only set in JAVA_OPTIONS or
JAVA_SERVICE_EXTRA_OPTIONS in the intradoc.cfg file to debug
Windows services.

-install * Used to install the Java application referred to by the Launcher as a
Windows service.

-install_autostart * Similar to the -install option but this option installs the application to
start when the server starts.

-uninstall * Used to uninstall the Java application referred to by the Launcher as a
Windows service.

-remove * Same as -uninstall.

-dependent service-
name

* Makes the Windows service dependent on whether the service-name
service is also running.
This command is useful when you want to make a dependent call for each
service.

For example, if you want to launch a database before starting Content Server,
you can specify the Content Server startup to be dependent on the database
startup.

-dependent user
password

* Used with -install, installs the service with the credentials of the user
specified by user with password password.
This command will check the user regardless of the credentials, but may not
install the service. The credentials of the user need to extend to the service
for the auto-start to run the service automatically.

For certain services, such as Inbound Refinery, the last flag is required so
that the service can run with higher permissions. The user name must be in
the typical Microsoft format DOMAIN\User. Once users change passwords,
the service will not be able to log in, and therefore will not run.

-help Provides verbose output on Launcher use.

-version Displays the version number for the Launcher and exits.

-asuser user
password

* Used during an install to install a service as a specified user with a
specific password.

-exec path _name Overrides the argv[0] setting. Used by Launcher.sh to specify the target
path_name because the target of the symlink does not know its source.

-cfg configfilename Specifies additional config files to read before determining computed settings.

-idcServiceName
servicename

* Specifies the name of the Windows service. This can used with -remove
to uninstall another Content Server service without using that Content Server
Launcher (for example, if an entire installation directory has been removed).

Note:

To customize the class path to alter the system path to load Oracle .dll files, you
can set the path as follows:

IDC_LIBRARY_PATH_customfiles=/path-to-customfiles

Custom shared objects and .dll files must not be installed into IdcHomeDir.

Chapter 26
Using the Launcher

26-13

Note:

To customize the classpath to alter the system path to load Oracle .dll files, you can
change the pathway to:

PATH=$SHAREDDIR\\os\\win32\\lib\\;$SHAREDDIR\\search\\vdk_nti40\\bin;$SHAREDDIR\\search\\vdk\
_nti40\\filters;$OLDPATH

If you want to load custom .dll files, you should put them in the IdcHomeDir/native/
win32/lib directory.

26.5 Calling Services Remotely
To use services remotely, you must have these files on the remote system:

• DomainHome/ucm/cs/bin/IdcCommand.exe
• DomainHome/ucm/cs/bin/intradoc.cfg (same file as on Content Server)

• IntradocDir/config/config.cfg
In addition, the following configuration entries must be defined in the #Additional Variables
section of the config.cfg file on the remote system:

• IntradocServerPort=4444

• IntradocServerHostName=IP or DNS

Chapter 26
Calling Services Remotely

26-14

27
Using the COM API for Integration

This chapter describes Microsoft Component Object Model (COM) integration. Oracle
WebCenter Content Server utilizes a COM-based API, which provides the capability to call
functionality from within a COM environment.

This chapter includes the following sections:

• About the COM API

• Calling Content Server Services with the IntradocClient OCX component

• Using the ODMA API to Access Content Server from a Desktop Application

27.1 About the COM API
You can use a COM interface to integrate Content Management with Microsoft environments
and applications. An ActiveX control and an OCX component are provided as interface options
to gain access to the content and content management functions within Content Server.
Additionally, you can communicate with ODMA-aware applications through a COM interface.

27.2 Calling Content Server Services with the IntradocClient
OCX component

An Object Linking and Embedding Control Extension (OCX) control is provided for connecting
to a remote Content Server instance and executing Content Server services. The IdcClient
OCX control is used within a Windows Visual Basic development environment to gain access
to the content and content management functions within Content Server.

You can call Content Server services with the IdcClient OCX control. The IdcClient.ocx
control is used to connect to a remote Content Server instance and perform typical server
functions.

Note:

• A Visual Basic or Visual C++ development environment is required for using the
IdcClient OCX component.

• For more information about Intradoc, see Oracle Fusion Middleware Java API
Reference for Oracle WebCenter Content Remote Intradoc Client (RIDC).

27.2.1 OCX Interface
The IntradocClient OCX component is used within a Windows Visual Basic development
environment to gain access to the content and content management functions within Content
Server. The OCX integration is designed to call services in a visual development environment,
or to connect to a remote Content Server instance.

27-1

The IntradocClient OCX component provides functionality that you can access with a method
call. Methods perform actions and often return results. Information is passed to methods using
parameters. Some functions do not take parameters; some functions take one parameter;
some take several.

The IntradocClient OCX component requires a username and password to execute the
commands. The user must have the appropriate permissions to execute the commands. Some
commands will require an administrative access level, other commands may require only write
permission.

Outside of the init and connection managing methods, all methods use the serialized HDA
format for communication. The returned serialized HDA format string contains information
about the success or failure of the command. The StatusCode will be negative if a failure
occurs, and StatusMessage indicates the error.

27.2.2 IdcClient OCX Description
IdcClient is an ActiveX control that allows a program to perform actions such as executing a
service and retrieving file path information. The IdcClient control is also a wrapper for the
Microsoft Internet Explorer browser.

The IdcClient OCX control is designed to use the Unicode standard and in most cases
exchanges data with Content Server in UTF-8 format. Unicode uses two bytes (16 bits) of
storage per character and can represent characters used in a wide range of languages (for
example, English, Japanese, Arabic). Since English language ASCII (American Standard Code
for Information Interchange) characters only require one byte (8 bits), when an ASCII character
is represented the upper byte of each Unicode character is zero.

See the Unicode Consortium on the Web for additional information about the Unicode standard
at http://www.unicode.org.

Note:

IdcClient OCX is built atop the Microsoft Layer for Unicode, which allows Unicode
applications to run on Win9x platforms. When distributing the IdcClient OCX Control
on 9x platforms, the "unicows.dll" must also be distributed. This companion DLL
cannot be distributed on Windows-based systems.

In most cases, the methods use the serialized HDA format for communication. A serialized
HDA format is a Java method used for communication. The returned serialized HDA format
string contains information about the success or failure of the command.

The IdcClient OCX control provides functionality that can be performed with a method call.
Methods perform actions and often return results. Information is passed to methods using
parameters. Some functions do not take parameters; some functions take one parameter;
some take several. For example, a function with two parameters passed as strings would use
this format:

Function(Parameter As String, Parameter As String) As String

• IdcClient OCX enables users to write client applications to execute services. The OCX
control takes name/value pairs containing commands and parameters and calls the
specified services. Execution results are passed back to the calling program.

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-2

http://www.unicode.org

• IdcClient OCX requires a user name and password to execute the commands. The user
must have the appropriate permissions to execute the commands. Some commands will
require an administrative access level, other commands may require only write permission.

27.2.2.1 OCX Events
Events are executed when the user or server performs an action. For example:

• The IntradocBrowserPost event executes every time a user submits a form from within a
browser.

• The IntradocServerResponse event executes after the server completes a requested
action.

27.2.2.2 OCX Methods
The Visual Basic Standard Controls provide methods that are common to every Visual Basic
development environment. In addition, the IdcClient OCX control provides methods that are
private and unique to this specific control. These methods are used to perform or initiate an
action rather than setting a characteristic.

For example:

• The AboutBox() method launches the About box containing product version information.

• The GoCheckinPage method checks in a new content item or a content item revision.

27.2.2.3 OCX Properties
Properties describe or format an object and can be modified with code or by using the property
window in the Visual Basic development environment. Properties describe the basic
characteristic of an object.

For example:

• The UserName property provides the assigned user name.

• The WorkingDir property specifies the location where downloaded files are placed.

27.2.2.4 IdcClient OCX Interface
The IdcClient OCX control is used within a Windows Visual Basic development environment to
gain access to the content and content management functions within Content Server. The OCX
integration is designed to call services in a visual development environment, or to connect to a
remote Content Server instance.

In most cases, methods use the serialized HDA format for communication. The returned
serialized HDA format string contains information about the success or failure of the command.
The StatusCode will be negative if a failure occurs, and StatusMessage will indicate the error. If
the returned HDA does not contain a StatusCode parameter, the service call succeeded.

27.2.3 IdcClient OCX Control Setup
You can set up the IdcClient OCX component and create a visual interface in the Microsoft
Visual Basic development environment.

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-3

27.2.3.1 Setting Up the IdcClient OCX Component
Follow these steps to set up the IdcClient OCX component in the Microsoft Visual Basic
development environment:

1. Create a new project.

2. Select Project, and then choose Components.

3. Browse to the IdcClient.ocx file on your system, and click Open.

The IdcClient module is added to the Component Controls list.

4. Ensure that the checkbox for the IdcClient ActiveX Control module is enabled, and click
OK.

The IdcClient OCX control is placed in the list of controls.

5. (Optional) You can use the Visual Basic development environment to build your own visual
interface or follow the steps provided in Creating a Visual Interface, to build a basic visual
interface.

27.2.3.2 Creating a Visual Interface
The following procedure for creating a visual interface is based on the assumption that a Visual
Basic project has been created and the IdcClient OCX control has been placed in the list of
controls. For more information, see Setting Up the IdcClient OCX Component.

Follow these steps to build a basic visual interface:

1. Select the control, and draw it on the Visual Basic form.

Figure 27-1 shows the IdcClient OCX control.

Figure 27-1 OCX Control Drawn on a Visual Basic Form

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-4

2. From the drop-down list of the Properties window, choose IdcClient OCX.

If the Properties window is not currently displayed, select View, and then choose
Properties Window from the main menu.

3. Rename the IdcClient OCX control IdcClientCtrl.

4. Define HostCgiUrl to reference the iss_idc_cgi.dll for your particular instance.

For example:

http://testserver/intradoc-cgi/iss_idc_cgi.dll

Figure 27-2 shows this URL as the value of HostCgiUrl.

Figure 27-2 Edited IdcClient Properties

5. On the form, draw a text box, and name it CgiUrl.

6. For the Text field, enter the HostCgiUrl value as the text to be displayed, such as http://
testserver/intradoc-cgi/iss_idc_cgi.dll.

Figure 27-3 shows this URL as the Text value.

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-5

Figure 27-3 Edited CgiUrl TextBox Properties

7. On the form, draw a text box, and name it Command.

8. Clear the entry for the Text field (leave blank), and set MultiLine to True.

Figure 27-4 shows a MultiLine value.

Figure 27-4 Edited Command TextBox Properties

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-6

9. On the form, draw a text box, and name it Response.

10. Clear the entry for the Text field (leave blank).

Figure 27-5 shows field values for a Response text box.

Figure 27-5 Edited Response TextBox Properties

11. On the form, draw a button, and name it SendPostCommand.

12. For the Caption field, enter Send Post Command as the text to be displayed.

Figure 27-6 shows a Caption value to be displayed on a SendPostCommand button.

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-7

Figure 27-6 Edited SendPostCommand CommandButton Properties

13. On the form, select View, and then choose Code.

14. Select SendPostCommand, and then click the drop-down lists and modify the code to
perform these actions:

• Set the Host Cgi URL value.

• Issue the command.

• (Optional) Replace LF with CRLF to make the presentation in the edit control more
readable.

• Display the response.

Modify the code as follows:

Dim R As String
IdcClientCtrl.HostCgiUrl = CgiUrl.Text
R = IdcClientCtrl.1.SendPostCommand(Command.Text)
R = Replace(R, vbLf, vbCrLf
Response.Text = R

Figure 27-7 shows the code modifications.

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-8

Figure 27-7 Edited SendPostCommand_Click Code

15. Choose Form and then Load from the drop-down lists, and add the following lines to set
the login prompt for the Content Server instance:

IdcClientCtrl.UseBrowserLoginPrompt = True
IdcClientCtrl.UseProgressDialog = True

Figure 27-8 shows the modified code.

Figure 27-8 Edited Form_Load Code

16. (Optional) Add appropriate descriptive labels, such as Cgi Url, Command, and Response

Figure 27-9 shows a form with descriptive labels.

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-9

Figure 27-9 Visual Interface with a Descriptive Label

17. Select Run, and then choose Start to test the visual interface.

Figure 27-10 shows a successful test result.

Figure 27-10 Completed Visual Interface

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-10

18. Enter a formatted command in the Command field.

Figure 27-11 shows the ADD_USER command to add a user.

For more information about the ADD_USER service, see ADD_USER in Oracle Fusion
Middleware Services Reference for Oracle WebCenter Content.

Figure 27-11 Visual Interface with Defined Command

19. Click the Send Post Command button to execute the command. The returned results are
displayed in the Response field.

Figure 27-12 shows some returned results.

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-11

Figure 27-12 Visual Interface with Returned Results

To verify the command:

1. In a web browser, log in to Content Server as an administrator.

2. From the Administration tray or menu, choose Desktop Client Apps.

3. Click User Admin. The app launches and displays the added user (for example, user99).

27.2.4 IdcClient Events
Events are executed when the user or server performs an action. The following IdcClient OCX
events are available:

• IntradocBeforeDownload

• IntradocBrowserPost

• IntradocBrowserStateChange

• IntradocRequestProgress

• IntradocServerResponse

27.2.4.1 IntradocBeforeDownload
Executes before a file is downloaded.

• Initiates the server actions and updates required before a download.

Parameters

The event passes these parameters:

• ByVal params As String

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-12

• cancelDownload As Boolean

27.2.4.2 IntradocBrowserPost
Executes every time a form is submitted from within a browser.

Parameters

The event passes these parameters:

• ByVal url As String

• ByVal params As String

• cancelPost As Boolean

27.2.4.3 IntradocBrowserStateChange
Executes whenever the browser state changes.

Parameters

The event passes these parameters:

• ByVal browserStateItem As String

• ByVal enabled As Boolean

27.2.4.4 IntradocRequestProgress
Executes a request for a progress report to be sent from the server. This event occurs only
after a method has been called.

Parameters

The event passes these parameters:

• ByVal statusData As String

• ByVal isDone As Boolean

27.2.4.5 IntradocServerResponse
Executes after the server completes a requested action. For example, after a file has been
downloaded. This event handles HDA encoded data that is a response from the server. This
event only occurs when an action is performed in the browser.

Parameters

The event passes one parameter:

• ByVal response As String

27.2.5 IdcClient OCX Methods
The following IdcClient OCX methods are available:

• AboutBox

• Back

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-13

• CancelRequest*

• DoCheckoutLatestRev

• DownloadFile

• DownloadNativeFile

• Drag

• EditDocInfoLatestRev

• Forward

• GoCheckinPage

• Home

• InitiateFileDownload*

• InitiatePostCommand*

• Move

• Navigate

• NavigateCgiPage

• Refresh Browser

• SendCommand*

• SendPostCommand*

• SetFocus

• ShowDMS

• ShowDocInfoLatestRev

• ShowWhatsThis

• StartSearch

• Stop

• UndoCheckout

• ViewDocInfo

• ViewDocInfoLatestRev

• ZOrder

Methods marked with an asterisk (*) are ones which are not related to browser activity and
which return a value.

Note:

All parameters are required unless otherwise indicated.

27.2.5.1 AboutBox
Sub AboutBox()

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-14

Description

Launches the About box containing product version information.

• This method displays the product About box.

• The method returns FALSE if the call cannot be executed.

Parameters

None

27.2.5.2 Back
Sub Back()

Description

Displays the previous HTML page.

• Returns the user to the previous screen.

• The method retrieves the previous HTML page from cached information for display to the
user.

Parameters

None

27.2.5.3 CancelRequest
Function CancelRequest() As Boolean

Description

This method cancels the currently active request. Returns FALSE if the function is unable to
cancel the request or if there is no request currently active.

Parameters

None

Output

Returns a Boolean value:

• Returns TRUE if request is canceled.

• Returns FALSE if the cancel request is not performed.

27.2.5.4 DoCheckoutLatestRev
Sub DoCheckoutLatestRev(docName As String, curID As String)

Description

Checks out or locks the latest content item revision.

• Given a content item name and the version label, the method checks out the latest content
item revision.

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-15

• Executes the IntradocServerResponse event. The event is executed before the method
occurs. For details, see IdcClient Events.

Note:

The curID value is the content item version label, not the generated content item
revision ID.

This function returns the following values:

• Serialized HDA containing dID and dDocName.

• FALSE if the latest revision cannot be checked out or cannot be found in the system.

• The data that was passed in as parameters.

Parameters

• docName: The user-assigned content item name.

• curID: The unique identifier for the latest revision. Optional.

27.2.5.5 DownloadFile
Function DownloadFile(command As String, filename As String) As String

Description

Downloads the defined file.

• Given a currently associated command and the file type, this method performs a file
download of the postconversion file (compare DownloadNativeFile).

• Executes the IntradocBeforeDownload event. The event is executed before the method
occurs. For details, see IdcClient Events.

This function returns the following:

• Serialized HDA containing the status code and status method.

• The data that was passed in as parameters.

• FALSE if it is unable to download the specified file.

Parameters

• command: The currently associated command.

• filename: The file format. This is the file type such as PDF, HTM, or other supported
format.

27.2.5.6 DownloadNativeFile
Function DownloadNativeFile(id As String, docName As String, filename As String) As String

Description

Downloads the defined native file.

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-16

• Given a content item revision ID, a content item name, and a file type, this method
performs a file download of the native file (compare DownloadFile).

• Executes the IntradocBeforeDownload event. The event is executed before the method
occurs. For details, see IdcClient Events..

Note:

The id value is the generated content item revision ID, not the content item
version label.

This function returns the following:

• Serialized HDA containing dID and dDocName.

• The data that was passed in as parameters.

• FALSE if it is unable to download the specified file.

Parameters

• id: The unique identifier for the latest revision.

• docName: The user-assigned content item name.

• filename: The file format. This is the file type such as DOC, RTF, or any other supported
format.

27.2.5.7 Drag
Sub Drag([nAction])

Description

Begins, ends, or cancels a drag operation.

• The Drag method is handled the same as a Standard Control implementation.

• Refer to a Visual Basic API reference for additional information.

Parameters

• nAction: Indicates the action to perform. If you omit nAction, nAction is set to 1.

The settings for the Drag method are:

• 0: Cancel drag operation; restore original position of control.

• 1: (Default) Begin dragging the control.

• 2: End dragging, that is, drop the control.

27.2.5.8 EditDocInfoLatestRev
Sub EditDocInfoLatestRev(docName As String, curID As String, activateAction As String)

Description

Edits the content item information for the latest revision.

• ODMA related.

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-17

• Given a content item name, the version label, and the currently active requested action,
the method edits the content item information for the latest revision.

• The function returns FALSE if the content item information for the latest revision cannot be
edited or cannot be found in the system.

Note:

The curID value is the content item version label, not the generated content item
revision ID.

Parameters

• curID: The unique identifier for the latest revision.

• activateAction: Passed to ODMActivate. This can be used as Idoc Script. Optional.

• docName: The user-assigned content item name. Optional.

27.2.5.9 Forward
Sub Forward()

Description

Displays the next HTML page.

• Moves the user to the next screen.

• This method retrieves cached information for the next HTML page for display to the user.

Parameters

None

27.2.5.10 GoCheckinPage
Sub GoCheckinPage(id As String, docName As String, isNew As Boolean, params As String)

Description

Checks in a new content item or a content item revision.

• Given the content item revision ID and the content item name, the function checks in a new
content item or a content item revision.

• This method opens the content item check-in page and enters the unique content item
identifier, user-assigned content item name, and any assigned content item parameters
into the associated text fields. It is also specified whether this is a new content item or a
revision.

Note:

The id value is the generated content item revision ID, not the content item
version label.

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-18

Output

This function returns the following:

• FALSE if it is unable to check in the specified file.

• Serialized HDA containing dID and dDocName.

• The data that was passed in as parameters.

Parameters (All Optional)

• id: The unique identifier for the latest revision.

• docName: The user-assigned content item name.

• IsNew: Defines whether the content item to be checked in is a new content item or a
revision.

– If TRUE, a new unique content item version label is assigned.

– Default is TRUE.

• params: The parameters that prefill the Check In page.

27.2.5.11 Home
Sub Home()

Description

Returns the user to the defined home page.

• Moves the user to the home screen.

• Executes an HTML page request and displays the defined home page to the user.

Parameters

None

27.2.5.12 InitiateFileDownload
Function InitiateFileDownload(command As String, filename As String) As String

Description

Initiates a file download.

• Given the currently associated command and the file type, the function initiates a file
download. This method initiates a file download of a specific rendition of a content item, the
latest revision, or the latest released revision.

• Executes the IntradocServerResponse event. The event is executed before the method
occurs. For details, see IdcClient Events.

Parameters

• command: The currently associated command.

• filename: The file format. This is the file type, such as PDF, HTM, or another supported
format.

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-19

Output

• Returns serialized HDA containing the requested information.

• Returns the data that was passed in as parameters.

27.2.5.13 InitiatePostCommand
Function InitiatePostCommand(postData As String) As String

Description

Initiates a post command.

• Initiates a service call. Given assigned post data, this method initiates a post command.

• Executes the IntradocServerResponse event. The event is executed before the method
occurs. For details, see IdcClient Events.

Parameters

• postData: The serialized HDA containing the service command and any necessary service
parameters.

Output

• Returns serialized HDA containing the requested information.

• Returns StatusCode and StatusMessage.

– The StatusCode will be negative if a failure occurs, and StatusMessage will indicate
the error.

– If the returned HDA does not contain a StatusCode parameter, the service call
succeeded.

27.2.5.14 Move
Sub Move(Left As Single, [Top], [Width], [Height])

Description

Moves an object.

• The Move method is handled the same as a Standard Control implementation.

• Refer to a Visual Basic API reference for additional information.

Parameters

• nLeft: Specifies the horizontal coordinate for the left edge of the object. This is a single-
precision value.

• nTop: Specifies the vertical coordinate for the top edge of the object. This is a single-
precision value.

• nWidth: Specifies the new width of the object. This is a single-precision value.

• nHeight: Specifies the new height of the object. This is a single-precision value.

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-20

27.2.5.15 Navigate
Sub Navigate(url As String

Description

Computes the URL path.

• Given a complete URL, this method computes the URL from the serialized HDA and
returns the value as a string.

This function returns the following values:

• Serialized HDA containing the requested information.

• The data that was passed in as parameters.

Parameters

• url: The complete URL path.

27.2.5.16 NavigateCgiPage
Sub NavigateCgiPage(params As String)

Description

Computes the CGI path.

• Given defined content item parameters, this method computes the CGI path from the
serialized HDA and returns the value as a string.

Parameters

• params: The assigned content item parameters.

27.2.5.17 Refresh Browser

Description

Refreshes the browser.

• This method refreshes the web browser and updates dynamic information.

Parameters

None

27.2.5.18 SendCommand
Function SendCommand(params As String) As String

Description

Issues a service request to Content Server.

• Given defined content item parameters, the function executes a service from Content
Server related to content item handling.

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-21

Parameters

• params: The CGI URL encoded parameters.

Output

• Returns serialized HDA containing the requested information.

• Returns the data that was passed in as parameters.

27.2.5.19 SendPostCommand
Function SendPostCommand(postData As String) As String

Description

Sends a post command.

• Executes a service call.

• Executes the IntradocBrowserPost event. The event is executed before the method
occurs. For details, see IdcClient Events.

Parameters

• postData: The serialized HDA containing the service command and any necessary service
parameters.

Output

• Returns serialized HDA containing the requested information.

• Returns StatusCode and StatusMessage.

– The StatusCode will be negative if a failure occurs, and StatusMessage will indicate the
error.

– If the returned HDA does not contain a StatusCode parameter, the service call
succeeded.

27.2.5.20 SetFocus
Sub SetFocus()

Description

Assigns the focus to a control.

• The SetFocus method is handled the same as a Standard Control implementation.

• Refer to a Visual Basic API reference for additional information.

Parameters

None

27.2.5.21 ShowDMS
Sub ShowDMS()

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-22

Description

Opens the HTML page associated with the Content Manager.

• ODMA related.

• Displays the Content Manager access page in a browser.

Parameters

None

27.2.5.22 ShowDocInfoLatestRev
Sub ShowDocInfoLatestRev(docName As String, curID As String, activateAction As String)

Description

Displays the content item information for the latest revision.

Note:

The curID value is the content item version label, not the generated content item
revision ID.

Parameters

• docName: The user-assigned content item name.

• curID: The unique identifier for the latest revision. Optional.

• activateAction: The currently active requested action. Optional.

27.2.5.23 ShowWhatsThis
Sub ShowWhatsThis()

Description

Displays the What's This Help topic specified for an object with the WhatsThisHelpID property.

• The ShowWhatsThis method is handled the same as a Standard Control implementation.

• Refer to a Visual Basic API reference for additional information.

Parameters

• Object: Specifies the object for which the What's This Help topic is displayed.

27.2.5.24 StartSearch
Sub StartSearch()

Description

Displays the query page in the browser control.

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-23

• Preforms browser manipulation.

Parameters

None

27.2.5.25 Stop
Sub Stop()

Description

Stops the browser.

• This method stops or cancels the loading of information in the browser.

Parameters

None

27.2.5.26 UndoCheckout
Sub UndoCheckout(docName As String, curID As String)

Description

This service reverses a content item checkout.

• Given a content item name and a version label, this service attempts to locate the content
item in the system and undo the check out. The service fails if the content item does not
exist in the system, if the content item is not checked out or the user does not have
sufficient privilege to undo the checkout.

• Executes the IntradocServerResponse event. The event is executed before the method
occurs. For details, see IdcClient Events.

Note:

The curID value is the content item version label, not the generated content item
revision ID.

Parameters

• curID: The unique identifier for the latest revision.

• docName: The user-assigned content item name. Optional.

27.2.5.27 ViewDocInfo
Sub ViewDocInfo(id As String)

Description

Navigates to the content item information page and displays content item information in a
browser.

• Performs browser manipulation.

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-24

• Given a content item revision ID, the method displays content item information in a
browser.

Note:

The id value is the generated content item revision ID, not the content item
version label.

Parameters

• id: The unique identifier for the latest revision.

27.2.5.28 ViewDocInfoLatestRev
Sub ViewDocInfoLatestRev(docName As String, curID As String)

Description

Navigates to the content item information page and displays content item information for the
latest revision.

• Given a content item name and a version label, the method displays the content item
information for the latest revision.

Note:

The curID value is the content item version label, not the generated content item
revision ID.

This function returns the following values:

• Serialized HDA containing dID and dDocName.

• The data that was passed in as parameters.

Parameters

• docName: The user assigned content item name.

• curID: The unique identifier for the latest revision.

27.2.5.29 ZOrder
Sub ZOrder([Position])

Description

Places a specified form or control at the front or back of the z-order within its graphical level.

• The ZOrder method is handled the same as a Standard Control implementation.

• Refer to a Visual Basic API reference for additional information.

Chapter 27
Calling Content Server Services with the IntradocClient OCX component

27-25

Parameters

• nOrder: Specifies an integer indicating the position of the object relative to other objects. If
you omit nOrder, the setting is 0.

The settings for the ZOrder method follow:

• 0: (Default) The object is positioned at the front of the z-order.

• 1: The object is positioned at the back of the z-order.

27.3 Using the ODMA API to Access Content Server from a
Desktop Application

The Open Document Management Application (ODMA) is a standard API used to interface
between desktop applications and file management software. The ODMA integration for
Content Server is available with Desktop, a separate product. Use the ODMA-integration
products to gain access to the content and content management functions within Content
Server (for ODMA-compliant desktop applications).

You can publish files to your web repository directly from any ODMA-compliant application,
such as Microsoft Word, Corel WordPerfect, and Adobe FrameMaker. With the web-centric
adoption of ODMA, you can check in and publish information directly to the Web. This is a
significant advancement over traditional ODMA client/server implementations, where
information is published first to a server and is not immediately available on the Web for
consumption.

For more information, refer to the ODMA or ODMA/FrameMaker online help.

27.3.1 ODMA Client
The ODMA Client is a separate product and does not ship with the core product. It is used to
check in and publish information directly to the Web from your desktop applications. ODMA
Client surpasses traditional ODMA client–server models, which publish information to a server
and not immediately to the Web for consumption. You can use ODMA Client from within your
desktop application to perform many tasks which interact with Content Server, for example:

• Save a file and immediately check it in to Content Server.

• Save a file to check in later.

• Check out a file from Content Server.

• Update a file's metadata (content information).

• Save the file to your local file system and bypass the ODMA Client system.

27.3.2 ODMA Interfaces
These ODMA interfaces are available:

• ODMA Client Interface: The Select Document screen with the Recent Files option
selected displays a list of files that you recently used through ODMA. This screen is
displayed instead of the typical Open dialog box. If a file does not display on this screen,
you can search for it in Content Server or on the local file system.

Chapter 27
Using the ODMA API to Access Content Server from a Desktop Application

27-26

• ODMA Desktop Shell Interface: The Client Desktop Shell provides a drag-and-drop
check-in functionality, and access to the ODMA Client - Select Document screen from
outside of your desktop application. Through the Desktop Shell, you can:

– Select a file from your desktop or a Windows Explorer window and drag it to the
Desktop Shell to check in the file to Content Server.

– Choose and open a file from the Recent Files list or from Content Server.

• Content Server Interface with ODMA: You can open and check out an ODMA file directly
from the Content Server Content Information page. When you open a file from Content
Server, the file opens in its native application so that you can edit it and quickly check the
file back in to Content Server.

Note:

You can also open and check out a file from within an ODMA-compliant
application, and you can open a copy of a file instead of checking it out. For more
information, see the ODMA Online Help.

Chapter 27
Using the ODMA API to Access Content Server from a Desktop Application

27-27

28
Using RIDC to Access Content Server

This chapter describes how to initialize and use Remote Intradoc Client (RIDC), which provides
a thin communication API for communication with Oracle WebCenter Content Server.

The Remote Intradoc Client (RIDC) can be downloaded from the Oracle Technology Network
(OTN) at http://www.oracle.com/technetwork/index.html.

Note:

• Remote Intradoc Client (RIDC) 12c or later requires Java Runtime Environment
(JRE) 1.8 or later. The current Java JRE/JDK can be downloaded from the
Oracle Technology Network (OTN) at http://www.oracle.com/technetwork/
index.html.

• For more information about Remote Intradoc Client (RIDC), see Oracle Fusion
Middleware Java API Reference for Oracle WebCenter Content Remote Intradoc
Client (RIDC).

This chapter includes the following sections:

• About Remote Intradoc Client

• Initializing Connections

• Configuring Clients

• Authenticating Users

• Using Services

• Handling Connection Pooling

• Sending and Receiving Streams

• Reusing Binders for Multiple Requests

• Setting User Security

• Using RIDC Filters

28.1 About Remote Intradoc Client
Remote Intradoc Client (RIDC) is a thin communication API for talking to Content Server. It's
main functionality is to provide the ability to remotely execute Content Server services. In
addition, RIDC handles things like connection pooling, security, and protocol specifics.

Key Features

Remote Intradoc Client (RIDC) has these features:

• Supports Intradoc socket-based communication and the HTTP and JAX-WS protocols.

28-1

http://www.oracle.com/technetwork/index.html
http://www.oracle.com/technetwork/index.html
http://www.oracle.com/technetwork/index.html
https://docs.oracle.com/middleware/12212/wcc/java-api-RIDC/toc.htm
https://docs.oracle.com/middleware/12212/wcc/java-api-RIDC/toc.htm
https://docs.oracle.com/middleware/12212/wcc/java-api-RIDC/toc.htm

• Supports Secure Socket Layer (SSL) communication with Content Server.

• Provides client configuration including setting the socket time outs, connection pool size,
and so on.

• RIDC objects follow the standard Java Collection paradigms.

28.1.1 Supported Protocols
Remote Intradoc Client (RIDC) 12c (12.2.1.3.0) and later supports the idc, idcs, http, https,
and jax-ws protocols.

Intradoc: The Intradoc protocol communicates to the Content Server over the over the
Intradoc socket port (typically 4444). This protocol requires a trusted connection between the
client and Content Server and will not perform any password validation. Clients that use this
protocol are expected to perform any required authentication themselves before making RIDC
calls. The Intradoc communication can also be configured to run over SSL.

HTTP: RIDC can create an HTTP connection to Content Server using one of three supported
HTTP client packages:

• Oracle HTTPClient

• JDK HttpURLConnection

Unlike Intradoc, this protocol requires valid user name and password authentication credentials
for each request.

For details, see HttpClient Libraries.

JAX-WS: The JAX-WS protocol is supported only in Oracle WebCenter Content 14c with a
properly configured Content Server instance and the RIDC client installed. JAX-WS is not
supported outside this environment.

For more information about JAX-WS, see Introduction to JAX-WS Web Services in Developing
JAX-WS Web Services for Oracle WebLogic Server and Using the JAX-WS Reference
Implementation in Oracle Fusion Middleware Programming Advanced Features of JAX-WS
Web Services for Oracle WebLogic Server. Also see the Java API for XML Web Services
(JAX-WS) documentation on the Java Community Process website at http://www.jcp.org/.

28.1.2 Supported URL Formats
The following table shows the URL formats that are supported.

URL Description

idc://localhost:4444 Uses the Intradoc port; requires only the
hostname and the port number.

idcs://localhost:4443 Uses SSL over the Intradoc port; requires extra
configuration to load the SSL certificates.

http://localhost:16200/cs/idcplg Specifies the URL to the Content Server CGI
path.

https://localhost:16200/cs/idcplg Uses SSL over HTTP; requires extra
configuration to load the SSL certificates.

http://wlsserver:16200/idcnativews Uses the JAX-WS protocol to connect to the
Content Server.

Chapter 28
About Remote Intradoc Client

28-2

http://www.jcp.org/

28.1.3 Required Environments
The following table summarizes the environment RIDC needs to support each connection type.

URL Description

idc:// • oracle.ucm.ridc.jar

idcs:/ • oracle.ucm.ridc.jar
• SSL certificate configuration

http:/ • oracle.ucm.ridc.jar
• HttpClient libraries

https:/ • oracle.ucm.ridc.jar
• HttpClient libraries
• SSL certificate configuration

jax-ws • Oracle shiphome having WLS and JRF stacks

28.1.4 HttpClient Libraries
RIDC requires supporting HTTP client libraries to communicate with the web server attached to
the Content Server instance using an HTTP connection. Currently two libraries are supported:

• Oracle HTTPClient

• JDK HttpURLConnection

JDK HttpURLConnection is the default.

Note:

By default, RIDC leverages JVM's internal HTTP Client Library,
java.net.HttpURLConnection for HTTP/HTTPS protocol connections. JVM's HTTP
client is known as httpurlconnection client library within RIDC. If you are using the
RIDC httpurlconnection client implementation within your application, be aware
that any auxiliary application code or libraries in classpath that modifies or overrides
static java.net configuration may impact RIDC behavior. For example, if the
auxiliary code sets a static custom cookie handler by using the
java.net.CookieHandler setDefault() method, the custom cookie handler may
incorrectly submit cookies in to RIDC HTTP/HTTPS URL connection requests, and
this may be invisible to the RIDC cookie management framework. In other words,
cookies from the global cookie store may inadvertently be submitted to UCM back-
end.

To request the Oracle HttpClient in Java code:

IdcClient idcClient = manager.createClient("http://localhost/cs/idcplg");
idcClient.getConfig ().setProperty ("http.library", "oracle");

If you are creating a new RIDC application using the JDeveloper extension, you can add to
your connection, in the Configuration Parameters section, the parameter http.library with an
appropriate value, such as oracle.

Chapter 28
About Remote Intradoc Client

28-3

If you are in a Site Studio for External Applications (SSXA) application in JDeveloper, because
there is no user interface, you need to create your connection and save it without testing the
connection first. Then open the connections.xml file in the Connections > Descriptors >
ADF META-INF node. Add the StringRefAddr section to the connections.xml file, and save
the file.

Connection Example in connections.xml
<Reference name="sample"
 className="oracle.stellent.ridc.convenience.adf.mbeans.IdcConnection" xmlns="">
 <Factory className=
 "oracle.stellent.ridc.convenience.adf.mbeans.IdcConnectionFactory"/>
 <RefAddresses>
 <StringRefAddr addrType="oracle.stellent.idc.connectionUrl">
 <Contents>idc://<IPv6 Hostname>:4444</Contents>
 </StringRefAddr>
 <StringRefAddr addrType="oracle.stellent.idc.idcServerURL">
 <Contents>http://localhost/cs/idcplg</Contents>
 </StringRefAddr>

 <StringRefAddr addrType="oracle.stellent.idc.http.library">
 <Contents>oracle</Contents>
 </StringRefAddr>

 </RefAddresses>
</Reference>

Note that the connection types for SSXA and RIDC are similar:

• When you are using SSXA connections in JDeveloper, the addrType value in the
connections.xml file is oracle.stellent.idc.http.library.

• When you are using RIDC connections in JDeveloper the addrType value in the
connections.xml file is oracle.stellent.ridc.http.library.

28.1.5 Convenience Classes
There are some patterns of actions that many applications perform using RIDC. The
convenience package supplies some of these for reuse. The classes in the convenience
package space are consumers of the RIDC code and as such don't add any new functionality.
They can be thought of as a new layer on top of RIDC.

For information about using convenience classes, see Setting User Security.

28.2 Initializing Connections
This section provides sample code to initialize an Intradoc connection, an HTTP connection,
and code that initializes a JAX-WS client.

The code initializes an Intradoc connection.

Intradoc Connection Initialization
// create the manager
IdcClientManager manager = new IdcClientManager();

// build a client that will communicate using the intradoc protocol
IdcClient idcClient = manager.createClient("idc://localhost:4444");

The code initializes an HTTP connection. The only difference from an Intradoc connection is
the URL.

Chapter 28
Initializing Connections

28-4

HTTP Connection Initialization
// create the manager
IdcClientManager manager = new IdcClientManager();

// build a client that will communicate using the HTTP protocol
IdcClient idcClient = manager.createClient("http://localhost:16200/cs/idcplg");

The code initializes a JAX-WS client. The URL includes the idcnativews web context root.
This web context root (by default) is used by two web services exposed by Content Server: the
login service and the request service.

JAX-WS Client Initialization
// create the manager
IdcClientManager manager = new IdcClientManager();

// build a client that will communicate using the JAXWS protocol
IdcClient idcClient = manager.createClient
 ("http://wlsserver:16200/idcnativews");

28.3 Configuring Clients
Configuration of the clients can be done after they are created. Configuration parameters
include setting the socket timeouts, connection pool size, and so on. The configuration is
specific to the protocol; if you cast the IdcClient object to the specific type, then you can
retrieve the protocol configuration object for that type.

28.3.1 Configuring Clients for Intradoc Connections
The code sets the socket time-out and wait time for Intradoc connections.

Client Configuration for Intradoc Connections

// build a client as cast to specific type
IntradocClient idcClient =
 (IntradocClient)manager.createClient("http://localhost/cs/idcplg");

// get the config object and set properties
idcClient.getConfig().setSocketTimeout(30000); // 30 seconds
idcClient.getConfig().setConnectionSize(20); // 20 connections

28.3.2 Configuring SSL
Remote Intradoc Client (RIDC) allows Secure Socket Layer (SSL) communication with Content
Server using the Intradoc communication protocol. The typical port used is 4444. For more
information about configuring SSL and enabling ports, see Configuring Oracle WebCenter
Content to Use SSL in Oracle Fusion Middleware Administering Oracle WebCenter Content.

For SSL communication, you must install and enable the SecurityProviders component in the
Content Server instance that you want to access. You must configure Content Server for SSL
communication with a new incoming provider, and specify the truststore or keystore
information. You must have a valid keystore or trust manager with signed, trusted certificates
on both the client and Content Server.

Oracle does not provide signed certificates. For most implementations, you will want a
certificate signed by a universally recognized Certificate Authority.

To configure SSL communication with Content Server, perform the following tasks:

• Installing and Enabling SecurityProviders Component

Chapter 28
Configuring Clients

28-5

• Creating Self-Signed Key Pairs and Certificates

• Configuring an Incoming Provider for SSL Communication

• Configuring an Outgoing Provider for SSL Communication

28.3.2.1 Installing and Enabling SecurityProviders Component
The SecurityProviders component is installed and enabled by default in the Content Server.

28.3.2.2 Creating Self-Signed Key Pairs and Certificates
For most implementations, you need a certificate signed by a universally recognized Certificate
Authority. However, if you control both the client and server and only need to ensure that your
transmissions are not intercepted, or if you are simply testing your implementation, you can
create your own self-signed key pairs and certificates by using the JDK utility called keytool.
Key and Certificate Management Tool (keytool) is a key and certificate management utility that
enables users to administer their own public and private key pairs and associated certificates
for use in self-authentication. It is provided as part of the Sun JDK. Keytool is a command-line
utility. The executable is located in the bin subdirectory.

This section covers the following topics:

• Creating Client and Server Keys

• Self-Signing Certificates

• Exporting Certificates

• Importing Certificates

28.3.2.2.1 Creating Client and Server Keys
From a command-line prompt, navigate to the JDK-Home/bin subdirectory, and issue the -
genkey command. This command generates a new key and takes several arguments. The
arguments in the following table are used with this command.

Argument Description

-alias Alias of the key being created. Enables a keystore
understand which element in the file you are
referring to when you perform operations on it.

-keyalg Encryption algorithm to use for the key.

-keystore Name of the binary output file for the keystore.

-dname Distinguished name that identifies the key

-keypass Password for the key that is being generated.

-storepass Password used to control access to the keystore.

Generate a separate key pair for both the client and the server. To do this, run the -genkey
command twice, each time placing the key pair into a separate keystore. Specify the alias, the
algorithm to use, the keystore name, the distinguished name, and passwords for the keys and
the keystore. .

This example uses RSA as the algorithm and idcidc as the password for the key and the
keystore. Use these argument values for the client:

• -alias SecureClient
• -keyalg RSA

Chapter 28
Configuring Clients

28-6

• -keystore client_keystore
• -dname "cn=SecureClient"
• -keypass idcidc
• -storepass idcidc

keytool -genkey -alias SecureClient -keyalg RSA -keystore client_keystore -
dname "cn=SecureClient" -keypass idcidc -storepass idcidc

Use these argument values for the server:

• -alias SecureServer
• -keyalg RSA
• -keystore server_keystore
• -dname "cn=SecureServer"
• -keypass idcidc
• -storepass idcidc

keytool -genkey -alias SecureClient -keyalg RSA -keystore client_keystore -
dname "cn=SecureClient" -keypass idcidc -storepass idcidc

keytool -genkey -alias SecureServer -keyalg RSA -keystore server_keystore -
dname "cn=SecureServer" -keypass idcidc -storepass idcidc

keytool -importcert -file $WL_HOME/server/lib/CertGenCA.der -keystore
server_truststore.jks
 -storepass idcidc –noprompt

Note:

Each of these commands will generate a key pair wrapped in a self-signed certificate
and stored in a single-element certificate chain.

28.3.2.2.2 Self-Signing Certificates
Keys are unusable unless they are signed. The keytool utility will self-sign them for you so that
you can use the certificates for internal testing. However, these keys are not signed for general
use.

From a command line prompt, issue the -selfcert command (this command self-signs your
certificates and takes several arguments). Run the -selfcert command twice, once for the
client and again for the server.

Use these argument values for the client:

• -alias SecureClient
• -keystore client_keystore

Chapter 28
Configuring Clients

28-7

• -keypass idcidc
• -storepass idcidc
Use these argument values for the server:

• -alias SecureServer
• -keystore server_keystore
• -keypass idcidc
• -storepass idcid
Examples of -selfcert commands follow:

keytool -selfcert -alias SecureClient -keystore client_keystore -keypass
idcidc -storepass idcidc

keytool -selfcert -alias SecureServer -keystore server_keystore -keypass
idcidc -storepass idcidc

The certificate is now signed by its private and public key resulting in a single-element
certificate chain. This replaces the one that you generated previously.

28.3.2.2.3 Exporting Certificates
After you have created the client and server keys and self-signed the certificates, you now
have two key pairs, public and private keys in two certificates locked in two keystores. Since
each application needs a public key of the other to encrypt and decrypt data, you must place a
copy of each public key in the other application's keystore.

From a command-line prompt, issue the -export command. This command exports your
certificates and takes several arguments. Run the -export command twice, once for the client
and again for the server. Use the -file argument to redirect the output to a file instead of the
console.

Use these argument values for the client:

• -alias SecureClient
• -file client_cert
• -keystore client_keystore
• -storepass idcidc
Use these argument values for the server:

• -alias SecureServer
• -file server_cert
• -keystore server_keystore
• -storepass idcidc
Examples of -export commands follow:

Chapter 28
Configuring Clients

28-8

• Certificate stored in the file client_cert

keytool -export -alias SecureClient -file client_cert -keystore
client_keystore -storepass idcidc

• Certificate stored in the file server_cert

keytool -export -alias SecureServer -file server_cert -keystore
server_keystore -storepass idcidc

The certificate containing the public key and signer information is now exported to a binary
certificate file.

28.3.2.2.4 Importing Certificates
The last step in setting up your self-signed certificates is to import the public certificates of
each program into the keystore of the other. Keytool presents you with the details of the
certificates you are requesting to be imported and provides a request confirmation.

From a command line prompt, issue the -import command. This command imports your
certificates and takes several arguments. Run the -import command twice, once for the client
and again for the server. Notice that the -keystore values are reversed.

Use these argument values for the client:

• -alias SecureClient
• -file client_cert
• -keystore server_keystore
• -storepass idcidc
Use these argument values for the server:

• -alias SecureServer
• -file server_cert
• -keystore client_keystore
• -storepass idcidc
Examples of -import commands follow:

keytool -import -alias SecureClient -file client_cert -keystore
server_keystore -storepass idcidc

Owner: CN=SecureClient Issuer:
CN=SecureClient
Serial number: 3c42e605
Valid from: Mon Jan 14 08:07:01 CST 2002 until: Sun Apr 14 09:07:01 CDT 2002
Certificate fingerprints:
 MD5: 17:51:83:84:36:D2:23:A2:8D:91:B7:14:84:93:3C:FF
 SHA1: 61:8F:00:E6:E7:4B:64:53:B4:6B:95:F3:B7:DF:56:D3:4A:09:A8:FF
Trust this certificate? [no]: y
Certificate is added to keystore

keytool -import -alias SecureServer -file server_cert -keystore

Chapter 28
Configuring Clients

28-9

client_keystore -storepass idcidc

Owner: CN=SecureServer
Issuer: CN=SecureServer
 Serial number: 3c42e61e
Valid from: Mon Jan 14 08:07:26 CST 2002 until: Sun Apr 14 09:07:26 CDT 2002
Certificate fingerprints:
 MD5: 43:2F:7D:B6:A7:D3:AE:A7:2E:21:7C:C4:52:49:42:B1
 SHA1: ED:B3:BB:62:2E:4F:D3:78:B9:62:3B:52:08:15:8E:B3:5A:31:23:6C
Trust this certificate? [no]: y
Certificate is added to keystore

The certificates of each program are now imported into the keystore of the other.

28.3.2.3 Configuring an Incoming Provider for SSL Communication
You can set up a new keepalive incoming socket provider or a new SSL incoming socket
provider. Using keepalive improves the performance of a session and is recommended for
most implementations.

To set up a new incoming socket provider, perform the following steps:

1. Log in to Oracle Content Server as an administrator.

2. Click Administration and then Providers.

3. Click Add corresponding to sslincoming provider.

The Add Incoming Provider page is displayed.

4. Enter a provider name and description.

5. Enter an open server port.

6. Enter the following configuration information:

To configure SSL keepalive incoming socket provider, enter the following values:

• Provider Class: idc.provider.ssl.SSLSocketIncomingProvider
• Connection Class: idc.provider.KeepaliveSocketIncomingConnection
• Server Thread Class: idc.server.KeepaliveIdcServerThread

Note:

Using keepalive improves the performance of a session and is recommended for
most implementations.

To configure SSL incoming socket provider, enter the following values:

• Provider Class: idc.provider.ssl.SSLSocketIncomingProvider
• Connection Class: intradoc.provider.SocketIncomingConnection
• Server Thread Class: intradoc.server.IdcServerThread

7. Select the Request Client Authentication check box.

Chapter 28
Configuring Clients

28-10

8. Enter the location where the keystore file is stored. For example,
D:\OraclePS4\Middleware\Oracle_Home\user_projects\domains\base_domainNew\ucm\c
s\data\providers\sslincomingcs\server_keystore.jks.

9. Enter the password to access the keystore file.

10. Enter the keystore alias name.

11. Enter the keystore alias password.

12. Enter the location where the truststore file is stored. For example,
D:\OraclePS4\Middleware\Oracle_Home\user_projects\domains\base_domainNew\ucm\c
s\data\providers\sslincomingcs\server_truststore.jks.

13. Enter the password to access the truststore file.

14. Click Add.

15. Restart the server.

Sample Code for Verifying SSL Incoming Provider

Since RIDC code is the client, you can specify the client keystore and truststore details:

Use the following sample code to test the SSL incoming provider:

Note:

Use the same port number that you specified while creating the SSL incoming
provider.

public static void main(String[] args)
 throws IdcClientException, FileNotFoundException, IOException
 {

 //ssl provider test

 IdcClientManager manager = new IdcClientManager();
 IdcClient idcClient = manager.createClient("idcs://localhost:6666");
IdcContext userContext = new IdcContext("weblogic");
 IntradocClientConfig config =
(IntradocClientConfig)idcClient.getConfig();
 config.setKeystoreFile("D:/OraclePS4/Middleware/Oracle_Home/
user_projects/domains/base_domainNew/ucm/cs/data/providers/sslincomingcs/
client_keystore.jks");
 config.setKeystorePassword("welcome1");
 config.setKeystoreAliasPassword("SecureClient");
 config.setKeystoreAliasPassword("welcome1");
 idcClient.initialize();
 DataBinder dataBinder = idcClient.createBinder();
 dataBinder.putLocal("IdcService", "PING_SERVER");
 ServiceResponse response = idcClient.sendRequest(userContext,
dataBinder);
 DataBinder responseData = response.getResponseAsBinder();
 System.out.println(responseData.getLocal("StatusMessage"));

Chapter 28
Configuring Clients

28-11

 }
}

28.3.2.4 Configuring an Outgoing Provider for SSL Communication
To set up a new outgoing socket provider, perform the following steps:

1. Log in to Oracle Content Server as an administrator.

2. Click Administration and then Providers.

3. Click Add corresponding to ssloutgoing provider.

The Edit Outgoing Socket Provider page is displayed.

4. Enter a provider name and description.

5. Enter an open server port.

6. Enter the following configuration information:

To configure SSL outgoing socket provider, enter the following values:

• Provider Class: idc.provider.KeepaliveSocketOutgoingProvider
• Connection Class: idc.provider.ssl.SSLSocketOutgoingConnection
• Request Class: idc.provider.KeepaliveServerRequest
• Number of Connections: 3

7. Enter the following server and port information:

• Server Host Name: localhost

Note:

This is the hostbox name used to set the SSL incoming provider.

• Server Port: 6666

Note:

This is the same port number that is specified when creating the SSL
incoming provider.

• Instance Name: localhost6666

Note:

This is the instance where the SSL incoming provider is set up.

• Relative Web Root: /ibr

Chapter 28
Configuring Clients

28-12

Note:

This is the root of the server where the SSL incoming provider is set up.

8. Enter the location where the keystore file is stored. For example,
D:\OraclePS4\Middleware\Oracle_Home\user_projects\domains\base_domainNew\ucm\c
s\data\providers\ssloutgoingcs\client_keystore.jks..

9. Enter the password to access the keystore file.

10. Enter the keystore alias name.

11. Enter the keystore alias password.

12. Enter the location where the truststore file is stored. For
example,D:\OraclePS4\Middleware\Oracle_Home\user_projects\domains\base_domainN
ew\ucm\cs\data\providers\ssloutgoingcs\client_truststore.jks..

13. Enter the password to access the truststore file.

14. Select the Handles Inbound Refinery Conversion Jobs check box.

15. Click Add.

Verifying SSL Outgoing Provider

Perform the following steps to test your SSL outgoing provider configuration:

1. Log in to Oracle WebCenter Content: Inbound Refinery as an administrator and create
SSL incoming provider on IBR.

2. Ensure that IBR components are enabled on the Content Server as well as IBR.

3. Log in to Oracle Content Server as an administrator.

4. Click Administration, Admin Server, and then General Configuration

5. Enter the IP address in Server IP Filter and click Save.

6. Click Administration, Refinery Administration, and then File Formats Wizard.

7. Select all the file types and click Update.

8. Restart the Content Server and IBR.

After you perform the preceding steps, the conversion of documents checked in to the
Content Server will happen as expected.

28.3.3 Configuring JAX-WS
To make a JAX-WS connection, the RIDC client and Content Server must be configured with
compatible client and service web service policies, respectively.

For the RIDC client, you can either set an explicit client policy (LPA mode) using
jaxwsConfig.setClientSecurityPolicy(...) or inherit a GPA client policy, provided the
application consuming RIDC is deployed to an Oracle WebLogic Server domain with a GPA
policy for ws-client correctly configured and targeted.

A service policy can be directly attached to the Oracle WebCenter Content web services
(IdcWebLoginPort) end-point (LPA mode), or a GPA ws-service policy can be configured for
the domain and inherited by the service.

Chapter 28
Configuring Clients

28-13

28.3.3.1 Setting LPA Mode for a Service
You can set LPA mode for a service with Oracle Enterprise Manager Fusion Middleware
Control.

To set LPA mode for a service with Fusion Middleware Control:

1. Log in to Oracle Enterprise Manager 14c Fusion Middleware Control.

2. In the navigation tree on the left, expand Application Deployments, and click Oracle
UCM Native Web Services.

3. From the Application Deployment drop-down menu on the Oracle UCM Native Web
Service page, choose Web Services.

4. Under Web Service Details on the Web Services (Oracle Infrastructure Web Services)
page, click the Web Service Endpoints tab.

5. Click IdcWebLoginPort in the Endpoint Name column.

6. On the IdcWebLoginPort (Web Service Endpoint) page, click the OWSM Policies tab.

7. Under Directly Attached Policies , click Attach/Detach, and choose an appropriate
available policy; for example, oracle/wss_saml_or_username_token_service_policy.

28.3.3.2 Setting a GPA Service Policy for a Domain
You can configure inheritance of a GPA policy with WebLogic Scripting Tool (WLST)
commands.

To set a GPA ws-service policy for a domain with WLST:

1. Initialize the WebLogic Scripting Tool (WLST), using the WebLogic Server Administration
Scripting Shell:

(/u01/app/oracle/product/Middleware/oracle_common/common/bin)% ./wlst.sh

...

Initializing WebLogic Scripting Tool (WLST) ...

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands

2. Invoke a sequence of commands similar to the following ones, which are for a domain
named base_domain:

$MW_HOME/Oracle_ECM1/common/bin/wlst.sh
connect(username='weblogic',password='password',url='t3://localhost:7001')
beginRepositorySession()
createPolicySet('base_domain-ws-service','ws-service','Domain("base_domain")')
attachPolicySetPolicy('oracle/wss_saml_or_username_token_service_policy')
validatePolicySet()
commitRepositorySession()
listPolicySets()
exit()

3. Verify that the GPA service policy has been set:

a. Wait a few minutes for the GPA service policy to be picked up by IdcWebLoginPort.

Chapter 28
Configuring Clients

28-14

b. Inspect the WSDL and look for wsp:PolicyReference to see if changes have been
applied:

http://server:16200/idcnativews/IdcWebLoginPort?WSDL
For more information about setting a GPA web service client policy, see Setting a GPA Service
Policy for a Domain and Add GPA for the Web Service Client.

28.3.3.3 Setting a GPA Client Policy for a Domain
To determine GPA policy for a ws-client that will be leveraged by RIDC over JAX-WS should no
explicit LPA be set, initialize the WebLogic Scripting Tool (WLST) and use the WebLogic
Server Administration Scripting Shell.

The following code provides an example.

Example 28-1 Determining GPA Policy with the WebLogic Scripting Tool

(/u01/app/oracle/product/Middleware/oracle_common/common/bin)% ./wlst.sh

...

Initializing WebLogic Scripting Tool (WLST) ...

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands

wls:/offline> connect('weblogic','password','t3://localhost:7001')
Connecting to t3://localhost:7001 with userid weblogic ...
Successfully connected to Admin Server 'AdminServer' that belongs to domain
'base_domain'.

wls:/base_domain/serverConfig> help('wsmManage')

Operations that provide support to manage the global policy attachments and
Oracle MDS repository.

 help('abortRepositorySession')
 Abort the current repository session,
 discarding the changes made to repository.
 help('attachPolicySet')
 Attach a policy set to the specified resource scope.
 help('attachPolicySetPolicy')
 Attach a policy to a policy set using the policy's URI.
 help('beginRepositorySession')
 Begin a session to modify the repository.
 help('clonePolicySet')
 Clone a new policy set from an existing policy set.
 help('commitRepositorySession')
 Write the contents of the current session to the repository.
 help('createPolicySet')
 Create a new, empty policy set.
 help('deletePolicySet')
 Delete a specified policy set.
 help('describeRepositorySession')
 Describe the contents of the current repository session.
 help('detachPolicySetPolicy')
 Detach a policy from a policy set using the policy's URI.
 help('displayPolicySet')
 Display the configuration of a specified policy set.
 help('enablePolicySet')

Chapter 28
Configuring Clients

28-15

 Enable or disable a policy set.
 help('enablePolicySetPolicy')
 Enable or disable a policy attachment
 for a policy set using the policy's URI.
 help('exportRepository')
 Export a set of documents from the repository into a supported ZIP archive.
 help('importRepository')
 Import a set of documents from a supported ZIP archive into the repository.
 help('listPolicySets')
 Lists the policy sets in the repository.
 help('migrateAttachments')
 Migrates direct policy attachments to global policy attachments
 if they are identical.
 help('modifyPolicySet')
 Specify an existing policy set for modification in the current session.
 help('resetWSMPolicyRepository')
 Clean the Oracle MDS repository and re-seed with the current set
 of WSM policies.
 help('setPolicySetDescription')
 Specify a description for the policy set selected within a session.
 help('upgradeWSMPolicyRepository')
 Add newly introduced WSM policies to the Oracle MDS repository.
 help('validatePolicySet')
 Validate an existing policy set in the repository or in a session.

wls:/base_domain/serverConfig> listPolicySets()
Location changed to domainRuntime tree. This is a read-only tree with DomainMBean as the
root.
For more help, use help(domainRuntime)

Global Policy Sets in Repository:
 base-domain-ws-client

wls:/base_domain/serverConfig> displayPolicySet('base-domain-ws-client')

Policy Set Details:

Name: base-domain-ws-client
Type of Resources: Web Service Client
Scope of Resources: Domain("base_domain")
Description: Global policy attachments for Web Service Client resources.
Enabled: true
Policy Reference: security : oracle/wss10_saml_token_client_policy, enabled=true

28.3.4 Add GPA for the Web Service Client
The following code sets the ws-client GPA policy:

Example 28-2 Add GPA for the Web Service Client

add GPA for the web service client assuming domain name is base_domain
beginRepositorySession()
createPolicySet('base_domain-ws-client','ws-client','Domain("base_domain")')

assuming service policy is hardcoded to
oracle/wss11_saml_token_with_message_protection_service_policy
and that we want the RIDC client to leverage client policy:
oracle/wss11_saml_token_with_message_protection_client_policy
attachPolicySetPolicy
 ('oracle/wss11_saml_token_with_message_protection_client_policy')
validatePolicySet()

Chapter 28
Configuring Clients

28-16

commitRepositorySession()

confirm policy set created
listPolicySets()

add GPA for the web service client assuming domain name is base_domain
beginRepositorySession()
createPolicySet('base_domain-ws-client','ws-client','Domain("base_domain")')

assuming service policy is hardcoded to
oracle/wss11_saml_token_with_message_protection_service_policy
and that we want the RIDC client to leverage client policy:
oracle/wss11_saml_token_with_message_protection_client_policy
attachPolicySetPolicy
 ('oracle/wss11_saml_token_with_message_protection_client_policy')
validatePolicySet()
commitRepositorySession()

confirm policy set created
listPolicySets()

28.3.5 Changing Default Settings
There are several JAX-WS specific configurations that can be done after you have created the
client. However, in most cases, you should use the default settings.

This code builds a client as a cast for a JAX-WS type:

JaxWSClient jaxwsClient = (JaxWSClient) manager.createClient
 ("http://wlsserver:7044/idcnativews");
JaxWSClientConfig jaxwsConfig = jaxwsClient.getConfig();

You can set the instance name of the Content Server that you would like to connect to. This is
set by default to /cs/, which is the default web context for the Content Server installation. If the
server web context is different than the default, then you can set it as follows:

// set the property
jaxwsConfig.setServerInstanceName("/mywebcontext/");

Setting the JPS configuration file location. A JPS configuration file is required for most policies
such as SAML and/or Message Token.

jaxwsConfig.setJpsConfigFile("/my/path/to/the/jps-config.xml");

Setting the security policy:

jaxwsConfig.setClientSecurityPolicy("policy:oracle/
wss11_username_token_with_message_protection_client_policy");

Changing the Login Port WSDL URL

RIDC uses the default values for the installed web services. If, for some reason, the web
services have been modified and do not conform to the default URI or URLs, you may need to
modify the default values.

Changing the login port WSDL URL:

jaxwsConfig.setLoginServiceWSDLUrl
 (new URL("http://server:7044/webservices/loginPort?WSDL"));

Change the request service URL:

Chapter 28
Configuring Clients

28-17

jaxwsConfig.setRequestServiceWSDLUrl
 (new URL("http://server:7044/anotherservice/myrequestport?WSDL"));

The default streaming chunk size is 8192. This example changes the chunk size:

jaxwsConfig.setStreamingChunkSize(8190);

28.4 Authenticating Users
All calls to Remote Intradoc Client (RIDC) require some user identity for authentication.
Optionally, this identity credential can be accompanied by other parameters such as a
password as required by the protocol. The user identity is held in the IdcContext object; once
created, it can be reused for all subsequent calls. To create a context, you pass in the user
name and, optionally, some credentials.

Create a simple context with no password (for idc:// URLs):

IdcContext userContext = new IdcContext("weblogic");

Create a context with a password:

IdcContext userPasswordContext = new IdcContext("weblogic", "password");

For Intradoc URLs, no password is required in the credentials because the request is trusted
between Content Server and the client.

For JAX-WS URLs, the requirement for credentials will be dependent on the service policy that
the web service is configured to use by the server.

28.5 Using Services
To invoke a service use the IdcClient class method:

public ServiceResponse sendRequest (IdcContext userContext, DataBinder dataBinder)
throws IdcClientException

The following code executes a service request and gets back a data binder of the results.

Executing a Service Request
// get the binder
DataBinder binder = idcClient.createBinder();

// populate the binder with the parameters
binder.putLocal ("IdcService", "GET_SEARCH_RESULTS");
binder.putLocal ("QueryText", "");
binder.putLocal ("ResultCount", "20");

// execute the request
ServiceResponse response = idcClient.sendRequest (userContext, binder);

The ServiceResponse object contains the response from Content Server. From the response,
you can access the stream from Content Server directly, or you can parse it into a DataBinder
and query the results.

The following code takes the ServiceResponse object and gets the search results, printing out
the title and author value.

Get the Binder and Loop Over the Results
// get the binder
DataBinder binder = response.getResponseAsBinder ();

Chapter 28
Authenticating Users

28-18

DataResultSet resultSet = binder.getResultSet ("SearchResults");

// loop over the results
for (DataObject dataObject : resultSet.getRows ()) {
 System.out.println ("Title is: " + dataObject.get ("dDocTitle"));
 System.out.println ("Author is: " + dataObject.get ("dDocAuthor"));
}

If you consume a stream, your code is responsible for closing the stream. The following code
closes a stream.

Closing a Stream
IdcContext user = new IdcContext ("weblogic", "password");
IdcClientManager manager = new IdcClientManager ();
IdcClient idcClient = manager.getClient ("some url");
DataBinder binder = idcClient.createBinder ();
binder.putLocal ("IdcService", "GET_FILE");
binder.putLocal ("dID", "12345");
ServiceResponse response = idcClient.sendRequest (user, binder);

InputStream stream = null;
try {
 stream = response.getResponseStream ();
 int read = 0;
 int total = 0;
 byte[] buf = new byte[256];
 while ((read = stream.read (buf)) != -1) {
 total += read;
 }
} finally {
 if (stream != null) {
 stream.close ();
 }
}

For information about connection pooling and closing through the stream, see Handling
Connection Pooling

28.6 Handling Connection Pooling
The IdcClientConfig#getConnectionPool property determines how RIDC will handle pooling
of connections. There are two options, simple and pool.

• The simple option is the default. The simple option does not enforce a connection
maximum and rather lets every connection proceed without blocking and does not enforce
a connection maximum. In most cases this option should be used.

• The pool option specifies the use of an internal pool that allows a configurable number of
active connections at a time (configurable through the
IdcClientConfig#getConnectionSize property), with the default active size set to 20.

Usually, when the RIDC library is used to communicate from an application that itself is in an
application container (such as a web application), the inbound requests have already been
throttled. Thus, the simple option is the correct choice to use. The only scenario to use the
pool option is if you are creating a standalone server and you are manufacturing a large
number of concurrent calls to Content Server, which may cause Content Server to become
overwhelmed.

A different pool implementation can be registered through the
IdcClientManager#getConnectionPoolManager()#registerPool() method, which maps a

Chapter 28
Handling Connection Pooling

28-19

name to an implementation of the ConnectionPool interface. The name can then be used in
the IdcClientConfig object to select that pool for a particular client.

28.7 Sending and Receiving Streams
Streams are sent to the Content Server through the TransferFile class. This class wraps the
actual stream with metadata about the stream (length, name, and so on). For information about
methods that allow check-ins of files and streams, see the Oracle Fusion Middleware Java API
Reference for Oracle WebCenter Content Remote Intradoc Client (RIDC).

The following code performs a check-in to the Content Server:

Content Server Check-In
// create request
DataBinder binder = idcClient.createBinder();
binder.putLocal ("IdcService", "CHECKIN_UNIVERSAL");

// get the binder
binder.putLocal ("dDocTitle", "Test File");
binder.putLocal ("dDocName", "test-checkin-6");
binder.putLocal ("dDocType", "ADACCT");
binder.putLocal ("dSecurityGroup", "Public");

// add a file
binder.addFile ("primaryFile", new TransferFile ("test.doc"));

// check in the file
idcClient.sendRequest (userContext, binder);

Response from Content Server

Streams are received from the Content Server through the ServiceResponse object. For a
summary of available methods, see Oracle Fusion Middleware Java API Reference for Oracle
WebCenter Content Remote Intradoc Client (RIDC).

The response is not converted into a DataBinder unless specifically requested. If you just want
the raw HDA data, you can get that directly, along with converting the response to a String or
DataBinder.

The code executes a service, gets the response as a string, and parses it into a data binder.

Parsing a String into a DataBinder
// create request
DataBinder binder = idcClient.createBinder ();

// execute the service
ServiceResponse response = idcClient.sendRequest (userContext, binder);

// get the response stream
InputStream stream = response.getResponseStream ();

// get the response as a string
String responseString = response.getResponseAsString ();

// parse into data binder
DataBinder dataBinder = response.getResponseAsBinder ();

Most Content Server service requests return a structured HDA payload that is modeled on the
client using a DataBinder. The HDA payload is essentially a map-like structure optionally
containing some ResultSets, which resemble tables.

Chapter 28
Sending and Receiving Streams

28-20

Download-style service requests (such as GET_FILE) generally are expected to return the
requested document's contents as a raw stream of bytes. However, if the parameters supplied
to a GET_FILE request are invalid, or if the end user does not have sufficient privileges, and so
on, Content Server can respond with an HDA payload containing the error information.
Therefore, when performing a request such as GET_FILE, you should interrogate the
ServiceResponse object to determine the response type returned, illustrated as follows.

Response Type Returned
DataBinder binder = idcClient.createBinder ();
binder.putLocal ("IdcService", "GET_FILE");
binder.putLocal ("dID", "12345");
ServiceResponse response = idcClient.sendRequest (user, binder);
if (response.getResponseType().equals(ServiceResponse.ResponseType.BINDER))
{
DataBinder responseBinder = response.getResponseAsBinder(false); // do not check for
errors
int statusCode = m_binder.getLocalData ("StatusCode").getInteger("StatusCode");
String statusMessage = m_binder.getLocal ("StatusMessage");
throw new IllegalStateException("Download response was not a stream - Error: " +
statusCode + " - " + statusMessage);
}

28.8 Reusing Binders for Multiple Requests
Binders can be reused among multiple requests. A binder from one request can be sent in to
another request. Note that if you reuse a binder from one call to the next you need to be very
careful there is nothing leftover in the binder that could impact your next call. RIDC does not
clean the binder after each call.

The following code provides an example that pages the search results by reusing the same
binder for multiple calls to Content Server.

Reusing Binders
// create the user context
IdcContext idcContext = new IdcContext ("sysadmin", "idc");

// build the search request binder
DataBinder binder = idcClient.createBinder();
binder.putLocal("IdcService", "GET_SEARCH_RESULTS");
binder.putLocal("QueryText", "");
binder.putLocal("ResultCount", "20");

// send the initial request
ServiceResponse response = idcClient.sendRequest (idcContext, binder);
DataBinder responseBinder = response.getResponseAsBinder();

// get the next page
binder.putLocal("StartRow", "21");
response = idcClient.sendRequest (idcContext, binder);
responseBinder = response.getResponseAsBinder();

// get the next page
binder.putLocal("StartRow", "41");
response = idcClient.sendRequest (idcContext, binder);
responseBinder = response.getResponseAsBinder();

Chapter 28
Reusing Binders for Multiple Requests

28-21

28.9 Setting User Security
The Content Server has several security models that are controlled by settings on the Content
Server. To resolve if a particular user has access to a document, three things are needed: The
user's permission controls, the document's permission controls, and Content Server security
environment settings.

It is assumed that the application program calling the UserSecurity module will fetch
documents and the DOC_INFO metadata (in the document's binder, typically the result of a
Search) as some superuser and cache this information. When the application program needs
to know if a particular user has access to the document, a call is made to the Content Server
as that user to fetch that user's permissions. Once the user's permission controls are known,
then they can matched to the information in the document's metadata to resolve the access
level for that user. (Access level is READ or READ/WRITE or READ/WRITE/DELETE). The
need therefore is to reduce the number of calls to the Content Server (with a cache) and to
provide a default implementation for matching the user's permissions information with the
document's permission information. One further complication is that the Content Server
controls which types of security are used in some server environment properties:
UseAccounts=true and UseCollaboration=true or UseEntitySecurity=1. Additionally, a
method allows testing to see if admin rights are assigned to a security type for that document.

The user security convenience is accessed through the IUserSecurityCache interface. There
classes implement the optional Content Server security:

• The UserSGAcctAclCache class should always be called. This class will check the Content
Server for security configuration and internally adjust itself to match.

• The UserSecurityGroupsCache class keeps a cache of user permissions and will match
documents considering only Security Group information. Do not call this class directly. The
UserSGAcctAclCache class will check the Content Server for security configuration and
internally adjust itself to match.

• The UserSGAccountsCache class adds a resolver to also consider Account information if
the Content Server has the UseAccounts=true setting. Do not call this class directly. The
UserSGAcctAclCache class will check the Content Server for security configuration and
internally adjust itself to match.

The following code provides an example of setting user security.

Setting User Security
IdcClientManager m_clientManager = new IdcClientManager ();
IdcClient m_client = m_clientManager.createClient
 ("http://localhost/scs/idcplg");

//RIDC superuser context
IdcContext m_superuser = new IdcContext("sysadmin", "idc");

//This class will self-adjust (downwards) to match the security model
// on Content Server.
IUserSecurityCache m_userSecurityCache = new UserSGAcctAclCache
 (m_client, 20, 1000, 20000, m_superuser);
ITrace trace = null;

//Example test
testDocPermission () {
 //If you don't want to do any logging, you can leave trace as null
 if (m_log.isLogEnabled(ILog.Level.TRACE)) {
 trace = new Trace ();
 }

Chapter 28
Setting User Security

28-22

 DataBinder m_doc1 = getDataBinder ("TEST");
 //Get the document information (typically in the first row of DOC_INFO)
 DataObject docInfo = m_doc1.getResultSet ("DOC_INFO").getRows ().get (0);
 //Get the cache id for this user
 //This makes a live call to content server to get the user ID for "Acme1"
 //CacheId acme1 = m_userSecurityCache.getCacheIdForUser
 // (new IdcContext("Acme1", "idc"), trace);
 IdcContext context = new IdcContext("Acme1", "idc");
 CacheId acme1 = new CacheId (context.getUser (), context);
 //Get the access level for this document by this user
 int access = m_userSecurityCache.getAccessLevelForDocument
 (acme1, docInfo, trace);
 //Check if user has ACL admin permissions
 boolean aclAdmin = m_userSecurityCache.isAdmin
 (acme1, docInfo, IUserSecurityCache.AdminType.ACL, trace);
 if (m_log.isLogEnabled(ILog.Level.TRACE)) {
 m_log.log (trace.formatTrace (), ILog.Level.TRACE);
 }
}
//Example code to get a Document's DOC_INFO databinder
DataBinder getDataBinder (String dDocName) throws IdcClientException {
 DataBinder dataBinder = m_client.createBinder ();
 dataBinder.putLocal ("IdcService", "DOC_INFO_BY_NAME");
 dataBinder.putLocal ("dDocName", dDocName);
 ServiceResponse response = m_client.sendRequest (m_superuser, dataBinder);
 return response.getResponseAsBinder ();
}
//Example code to create a DataObject
DataObject dataObject = m_client.getDataFactory ().createDataObject ();
dataObject.put ("dSecurityGroup", "public");
dataObject.put ("dDocAccount", "Eng/Acme");

Internally, these fields from the document are examined during
getAccessLevelForDocument():

• For the AccessResolverSecurityGroups class: dSecurityGroup.

• For the AccessResolverAccounts class: dDocAccount.

• For the AccessResolverSecurityGroups class: xClbraUserList, xClbraAliasList, and
xClbraRoleList.

The IAccessResolver classes determine if they should participate based on cached
information from the Content Server, if they do participate, the access levels are ANDed
together. You can use the hasAdmin() method to determine if there is admin access.

28.10 Using RIDC Filters
Remote Intradoc Client (RIDC) enables your application code to add a filter before the
DataBinder is processed and sent to Content Server. You can create a filter by extending one
of the IdcFilterAdapter classes, and then register that filter to execute with the
IdcFilterManager class. Filters are executed in the order specified when registered. You can
also get and remove previously registered filters.

The following code extends an adapter and overrides a method to perform an action:

Calling RIDC Filter Before Service Request
public class IdcFilterAddComment extends BeforeServiceRequestFilter {
 @Override
 public void beforeServiceRequest
 (IdcClient client, IdcContext context, DataBinder binder)

Chapter 28
Using RIDC Filters

28-23

 throws IdcClientException {
 String existingComments = binder.getLocal("xComments");
 if (existingComments != null) {
 binder.putLocal("xComments", String.format
 ("%s %s", existingComments, "--DGT WAS HERE--"));
 } else {
 binder.putLocal("xComments", "--DGT WAS HERE--");
 }
 }
}

Remote Intradoc Client (RIDC) provides two more filter locations in the JAX-WS processing
area. To use these filters, extend the BeforeJaxwsServiceFilter class.

The following code extends the BeforeJaxwsServiceFilter class:

Calling RIDC Filter Before JAX-WS Call
/**
 * RIDC filter called just before jaxws call is made to
 * loginPort.contentServerLogin () in authenticateUser ()
 **/
public void beforeJaxwsAuthenticateUser (IdcContext context, DataBinder binder,
 Map<String, Object> requestContext) throws IdcClientException {
 requestContext.put(oracle.wsm.security.util.SecurityConstants.
 ClientConstants.WSM_SUBJECT_PRECEDENCE, “false");
}

/**
 * RIDC filter called just before jaxws call is made to
 * loginPort.contentServerRequest () in performServiceRequest ()
 **/
public void beforeJaxwsServiceRequest (IdcContext context, DataBinder binder,
 Map<String, Object> requestContext) throws IdcClientException {
 //Override this class and implement your filter here
}

The following code registers your filter class(es):

Register Filer Classes
// If you are at the start of a pure RIDC application, you typically
// will create a ClientManager, for example:
IdcClientManager m_clientManager = new IdcClientManager();

// New method added to IdcClient to get the ClientManager
// if you do not have the ClientManager instance:
IdcClient client = myClient;
client.getClientManager();

// From the ClientManager, you can get the FilterManager:
IdcFilterManager fmanager = m_clientManager.getFilterManager();

// Then register your filter:
IIdcFilter addCommentFilter = new IdcFilterAddComment();
int slot = fmanager.registerFilter(100, addCommentFilter);

// Optionally, you can deregister. However, it might not be in the slot you
// assigned because there might have already been a filter in that slot.
// When registering, the next available higher slot will be used. You also need
// to pass in the instance currently in the slot you want to remove:
fmanager.deRegisterFilter(slot, addCommentFilter);

// Here is an example to remove all the filters,
// including the ones you did not register

Chapter 28
Using RIDC Filters

28-24

for (Integer slot:fmanager.getUsedSlots()) {
 fmanager.deRegisterFilter(slot, fmanager.getFilter (slot));
}

Chapter 28
Using RIDC Filters

28-25

29
Accessing Imaging User Interface Functions
Through URL Tools

This chapter describes how the Viewer UI Tool is implemented. Viewer URL Tool provides
direct access to View Document user interface function.

This chapter includes the following sections:

• About Accessing Imaging User Interface Functions Through URL Tools

• Using URL Tool

• Supported URL Tool Parameters

• Viewer URL Tool

29.1 About Accessing Imaging User Interface Functions
Through URL Tools

URL tool is a URL in the Imaging user interface that provides direct access to specific user
interface function such as viewing a document. This tool is exposed through a specific access
page and is supported as official API into the application.

29.2 Using URL Tool
The access point for the URL tools is currently the "UrlTools.jspx" page found in the following
location: http://<server>:<port>/imaging/faces/Pages/UrlTools.jspx

Note:

You need to modify your server architecture such that existing client URLs will
continue to work (you could replace the IPM machine with a UCM machine at the
same machine/IP address) through network mapping, or modify all the client
references.

29.3 Supported URL Tool Parameters
This section lists the URL parameters used. They can be added as a parameter to the URL
tool. Semicolon delimited Parameter Names indicate that multiple parameter names mean the
same thing.

29-1

Parameter Name Description Valid Values Default

LockBanner Indicates the banner
should be locked or not
locked. Locking the
banner means that it is
hidden and there is no
way to expand it.

HideBanner=0 will
override the existence of
this parameter on the
URL.

1 or true: Lock the banner

0 or false: Unlock the
banner

0 - Unlock banner on URL
Tool (unless otherwise
noted)

LockWorkcenter Indicates the Navigation
Pane should be locked or
not locked. Locking the
Navigation Pane means
that it is hidden and there
is no way to expand it.

HideWorkcenter=0 will
override the existence of
this parameter on the
URL.

1 or true: Lock the
Navigation Pane

0 or false: Unlock the
Navigation Pane

1 - Lock the Navigation
Pane on URL tool (unless
otherwise noted)

ToolName Indicates which tool
should be used to process
the request.

Currently there are only
two tools. They are
ExecuteSearch (or
AWSER) and
ViewDocument (or
AWVWR).

None

skin Indicates which skin to
use.

Any value that is deployed
with the application.
Typically:

• blafplus-rich
• blafplus-medium
• blafplus
• fusion
• fusion-11.1.1.3.0
• skyros

The current user's
preference setting is used.

29.4 Viewer URL Tool
The Viewer URL tool exposes the Imaging Viewer UI tool as a directly accessible tool.

Parameter Name Description Valid Values Default

showHistory Causes the history pane
of the viewer to be shown
or hidden

1 or true: Show History

0 or false: Hide history

False

showProperties Causes the Properties
pane of the viewer to be
shown or hidden

1 or true: Show properties

0 or false: Hide properties

False

showStickyNotes Causes the Sticky Notes
pane of the viewer to be
shown or hidden

1 or true: Show Sticky
Notes

0 or false: Hide Sticky
Notes

False

Chapter 29
Viewer URL Tool

29-2

Parameter Name Description Valid Values Default

DocumentId The document id of the
document that should be
shown to the user. If this is
missing the view of the
document will fail with an
error.

Any valid document id
obtained through
searching or as a result of
indexing a document
through the user interface
or the Web service API.

None

supportingKey The key for the supporting
information that should be
shown

Any valid supporting
information key value.

None

folder The name of the folder the
viewer should be placed
in. This is an optional
value that allows different
sets of documents to be
accumulated into
segregated set in the UI
cache.

Any string value that can
be used as a name of a
folder.

If this is not specified the
folder name will be
"default". This is the same
folder the search results
place viewed documents.

showTabs Indicates if the tabs
should be shown allowing
the user to switch between
documents in a folder.

1 or true - Hide the tabs

0 or false - Show the tabs

False

closeAllTabs Tells the URL Tool to close
all the tabs in the folder
that the document will be
opened in.

1 or true - Close all the
documents in the folder.

0 or false - Do not close
any of the documents in
the folder.

False

forceHideProperties Causes the Properties
pane of the viewer to
close. This option
overrides the system
default and any user
preferences.

1 or true - Force close the
Properties pane.

0 or false - Do not force
close the Properties pane.

False

forceHideStickyNote
s

Causes the StickyNotes
pane of the viewer to
close. This option
overrides the system
default and any user
preferences.

1 or true - Force close the
StickyNotes pane.

0 or false - Do not force
close the StickyNotes
pane.

False

forceHideHistory Causes the History pane
of the viewer to close. This
option overrides the
system default and any
user preferences.

1 or true - Force close the
History pane.

0 or false - Do not force
close the History pane.

False

HideBanner Causes the banner in the
viewer to be shown or
hidden

1 or true - Hide the
banner

0 or false - Show the
banner

True

Example 29-1 Opening a Document for Viewing

The following is a sample URL for opening a document in the viewer using the ViewDocument
URL Tool.

Chapter 29
Viewer URL Tool

29-3

In this example, the document with the ID of 123.RPO_456 is placed in a folder named EBS1.
The parameter showTabs=0 suppresses the document tabs in the viewer to prevent users from
switching to other documents in the folder.

http://<server>:<port>/imaging/faces/Pages/UrlTools.jspx?
ToolName=ViewDocument&DocumentId=123.RPO_456&folder=EBS1&showTabs=0

Chapter 29
Viewer URL Tool

29-4

30
Using the Content Server JCR Adapter

This chapter describes how to use the Java Content Repository (JCR) adapter for Oracle
WebCenter Content Server.

This chapter includes the following sections:

• About the Java Content Repository Adapter

• Installing Required APIs and Runtime Libraries

• Deploying the JCR Adapter

• Configuring Communication with Content Server

• Finding Information About a Content Item

• Using a Search Index

• Using the File Store Provider

30.1 About the Java Content Repository Adapter
The Java Content Repository API is a specification for accessing content repositories in a
standardized manner. This specification was developed under the Java Community Process as
JSR-170 and includes the Content Repository for Java API and the Java Content Repository
(JCR).

The standard APIs associated with the JSR-170 specification are functional and exposed in the
JCR adapter for Content Server. The JCR 1.0 API is required and must be predeployed and
integrated as part of the underlying framework.

Oracle adapters are fully standards based and compliant with both the J2EE Connector
Architecture and the Web Services Architecture. The JCR adapter can be deployed on any
JSR-170-compliant application to enable communication with Content Server through the
standards-based JCR specification.

30.1.1 JCR Data Model
The JCR standard uses a hierarchical data model based on extensible node types and content
properties. This data model is used by the repository's underlying storage subsystems. For
more information, see the JCR and JSR-170 standards.

• The nt:folder node type represents a structured collection of nodes. It is closely related to
the directory or folder concept found in many file systems and is the node type that is
normally used when mapping file system directories to a content repository.

• The nt:resource child node is normally used instead of a plain binary property when more
resource metadata is required.

• The nt:file node type represents a file with some content.

• The nt:unstructured node type permits all kinds of properties and child nodes to be added
to a node. It is normally used when nothing is known about the content that will be stored
within a node.

30-1

30.1.2 JCR Adapter Data Model for Content Server
This is the data model for the Content Server JCR adapter:

A Folder [nt:folder]
+- jcr:content [nt:resource]
 +- jcr:created DATE
 <returns dCreateDate for the folder>
 +- ojcr:owner STRING
 <returns dCollectionOwner for the folder>
 +- ojcr:creator STRING
 <returns dCollectionCreator if it is available,
 otherwise it returns dCollectionOwner>
 +- ojcr:lastModifier STRING
 <returns dCollectionModifier if it is available,
 otherwise it returns dCollectionOwner
 +- ojcr:lastModified STRING
 <returns dLastModifiedDate>
 +- ojcr:displayName STRING
 <returns dCollectionName for the folder>
 +- idc:defaultMetadata [nt:unstructured]
 <metadata that should by default be applied to content checked
 into this folder. see idc:metadata under nt:file/jcr:content for
 example fields>
 +- idc:folderMetadata [nt:unstructured]
 +- idc:dCollectionName STRING
 +- idc:dCreateDate DATE
 +- idc:dCollectionPath STRING
 +- idc:dLastModifiedDate DATE
 +- idc:dCollectionOwner STRING
 +- idc:dCollectionGUID STRING
 +- idc:dParentCollectionID INTEGER
 +- idc:dCollectionQueries INTEGER
 +- idc:dCollectionEnabled INTEGER
 +- idc:dCollectionInherit INTEGER
 +- idc:dChildManipulation INTEGER
 +- idc:dCollectionID INTEGER
 +- idc:dCollectionCreator STRING
 +- idc:dCollectionModifier STRING
 +- idc:folderPermissions [nt:unstructured]
 +- idc:userCanRead INTEGER
 +- idc:userCanWrite INTEGER
 +- idc:userCanDelete INTEGER

A Document.txt [nt:file]
+- jcr:content [nt:resource]
 +- jcr:data=...
 +- jcr:created DATE
 <returns dDocCreatedDate from the RevClasses table>
 +- ojcr:creator STRING
 <returns dDocCreator from the RevClasses table>
 +- ojcr:lastModifier STRING
 <returns dDocLastModifier from the RevClasses table>
 +- ojcr:lastModified STRING
 <returns dDocLastModifiedDate >
 +- ojcr:author STRING
 <returns dDocAuthor for the document>
 +- ojcr:comment STRING
 <if xComments exists as a metadata field, that is returned>
 +- ojcr:displayName STRING
 <returns the filename>

Chapter 30
About the Java Content Repository Adapter

30-2

 +- ojcr:language STRING
 <if xIdcLanguage exists as a metadata field, that is returned>
 +- idc:metadata [nt:unstructured]
 <returns values for everything in the RevClasses table,
 please see the definition of that table to see exactly what is defined
 +- idc:dID INTEGER
 +- idc:dDocName STRING
 +- idc:dDocTitle STRING
 +- idc:dDocAuthor STRING
 +- idc:dRevClassID INTEGER
 +- idc:dRevisionID INTEGER
 +- idc:dRevLabel STRING
 +- idc:dIsCheckedOut INTEGER
 +- idc:dSecurityGroup STRING
 +- idc:dCreateDate DATE
 +- idc:dInDate DATE
 +- idc:dOutDate DATE
 +- idc:dStatus STRING
 +- idc:dReleaseState STRING
 +- idc:dWebExtension STRING
 +- idc:dProcessingState STRING
 +- idc:dMessage STRING
 +- idc:dDocAccount STRING
 +- idc:dReleaseDate DATE
 +- idc:dRendition1 STRING
 +- idc:dRendition2 STRING
 +- idc:dIndexerState STRING
 +- idc:dPublishType STRING
 +- idc:dPublishState STRING
 +- idc:dWorkflowState STRING
 +- idc:dRevRank INTEGER
 <all custom metadata properties for a revision
 like idc:xComments STRING>

30.2 Installing Required APIs and Runtime Libraries
The JCR adapter can be used with any application that supports the JSR-170 specification, but
the adapter requires a custom integration. This custom integration requires that an underlying
framework consisting of several APIs and runtime libraries be installed.

Note:

All of these APIs and runtime libraries are provided with Oracle JDeveloper and
Oracle WebCenter, with the exception of the JCR adapter and Remote Intradoc
Client (RIDC).

30.2.1 Installing ADF Runtime Libraries
Several of the Application Development Framework (ADF) runtime libraries are required and
must be installed on your application. These files are available in your Oracle JDeveloper
instance. You can perform the installation using the ADF Runtime Installer wizard in
JDeveloper, or you can do it manually.

The following ADF runtime libraries must be deployed on your application:

• adf-share-base.jar

Chapter 30
Installing Required APIs and Runtime Libraries

30-3

• adf-share-ca.jar
• adf-share-support.jar
• adflogginghandler.jar
If you choose to manually install these libraries on your application, they must be installed in
the lib directory. For example, an installation on Tomcat would use the TOMCAT_HOME/
common/lib directory, and an installation on Oracle WebLogic Server would use the
WL_HOME/ADF/lib directory. (For Oracle WebLogic Server, you must create the ADF and lib
directories.)

30.2.2 Deploying Remote Intradoc Client (RIDC)
Remote Intradoc Client must be deployed on your application. RIDC provides a thin
communication API for communication with Content Server. This API removes data
abstractions to the Content Server instance while still providing a wrapper to handle connection
pooling, security, and protocol specifics. RIDC is included with the JCR adapter distribution file
and is available from the Oracle Technology Network (OTN).

For more information, see Using RIDC to Access Content Server.

30.2.3 Deploying the JCR API
The Java Content Repository (JCR) API must be deployed on your application. The JCR API is
available from JDeveloper or for download from The Apache Software Foundation website at
http://www.apache.org/.

The JCR API is also part of the JSR-170 specifications download from the Java Community
Process website at http://www.jcp.org/.

30.2.4 Installing the JCR Integration Libraries
The following JCR integration libraries are required and must be deployed on your application:

• jcr-common-runtime.jar
• ojcr.jar
• ojdbc5.jar
These files are available in your JDeveloper instance.

30.2.5 Installing the XML Integration Files
The following XML integration libraries are required and must be deployed on your application:

• xmlparserv2.jar
• xquery.jar
These files are available in your JDeveloper instance.

30.3 Deploying the JCR Adapter
The JCR adapter must be deployed on your application to enable communication with Content
Server. The JCR adapter utilizes Remote Intradoc Client (RIDC) as part of the underlying
framework and works in conjunction with the general JSR-170 architecture.

Chapter 30
Deploying the JCR Adapter

30-4

http://www.apache.org/
http://www.jcp.org/

Follow the general instructions of your specific JSR-170-compliant application for deploying
JCR adapters. The JCR adapter uses an embedded deployment descriptor
(rep_descriptor.xml). Upon deployment, many applications will use the deployment
descriptor to populate the configuration entries as part of an administration interface or
deployment wizard. If your application does not use an administration interface or deployment
wizard, you will need to edit the deployment descriptor directly and provide the required values.

30.4 Configuring Communication with Content Server
To enable communication between the JCR adapter and Content Server, you configure these
items:

• Communication method

• Socket communication (listener port)

• Secure Socket Communication (SSL)

• Web communication (web servlet filter)

• User agent

• Cache settings

30.4.1 Supplying a Communication Method
You must supply the provider name and communication method with this configuration setting:

CIS_SOCKET_TYPE_CONFIG: This configuration setting defines the communication method
with Content Server. The options are socket, socketssl, and web. For example:

oracle.stellent.jcr.configuration.cis.config.socket.type

• The socket (listener port) communication method specifies that RIDC should use the
Content Server listener port. If socket is used as the communication method, you must
provide the required configuration values.

• The socketssl communication method specifies that secure socket communication (SSL)
be used as the communication protocol. If socketssl is used as the communication
method, you must provide configuration values for both socket communication and secure
socket communication.

• The web (web server filter) communication method specifies that RIDC should
communicate through the web server filter, which requires individual authentication for
each request. If web is used as the communication method, you must provide the required
configuration value.

30.4.2 Configuring Socket Communication (Listener Port)
You must supply values for these configuration settings if secure socket communication (SSL)
is used as the communication protocol:

• SERVER_HOST_CONFIG: The hostname of the machine on which Content Server is
running. The default value is localhost.

oracle.stellent.jcr.configuration.server.host
• SERVER_PORT_CONFIG: The port on which Content Server is listening. The default

value is 16200.

Chapter 30
Configuring Communication with Content Server

30-5

oracle.stellent.jcr.configuration.server.port

30.4.3 Configuring Secure Socket Communication (SSL)
You must supply values for both socket communication (listener port) and these configuration
settings if secure socket communication (SSL) is used as the communication protocol:

• KEYSTORE_LOCATION: The location and name of the keystore file.

oracle.stellent.jcr.configuration.ssl.keystore.location
• KEYSTORE_PASSWORD: The password for the keystore file.

oracle.stellent.jcr.configuration.ssl.keystore.password
• PRIVATE_KEY_ALIAS: The private key alias for authentication.

oracle.stellent.jcr.configuration.ssl.privatekey.alias
• PRIVATE_KEY_PASSWORD: The private key password.

oracle.stellent.jcr.configuration.ssl.privatekey.password
For information about socket communication values, see Configuring Socket Communication
(Listener Port).

30.4.4 Configuring Web Communication (Web Server Filter)
You need to supply a value for one of these configuration settings if your application is
connecting through the web server filter (web communication):

• SERVER_WEB_CONTEXT_ROOT_CONFIG: The web server context root for Content Server, in the
format /context_root. This setting provides a more seamless integration for Oracle
WebCenter and for other application integrations.

For example: /cs/
• SERVER_WEB_URL_CONFIG: The full URL to the Content Server web server extension. Include

the protocol (usually http or https), host name, port, relative web root, and extension root
(usually idcplg). If a port other than port 80 is used, the port number needs to be
specified.

For example: http://myserver.example.com:8080/cs/idcplg/
oracle.stellent.jcr.configuration.server.web.url

30.4.5 Configuring the User Agent
You can optionally supply a value for this configuration setting to identify JCR requests:

• CIS_USER_AGENT_CONFIG: A string to append to the RIDC user agent. This value can be set
to help identify requests made by the JCR adapter.

oracle.stellent.jcr.configuration.cis.config.userAgent

30.4.6 Supplying Cache Settings
You can optionally supply values for these cache settings:

• VCR_CACHE_INVALIDATION_INTERVAL: Polling interval used by the WebCenter Content SPI
to check for cache invalidations, in minutes. Defaults to 0 (zero), cache invalidation
disabled. The minimum value is 2 minutes.

Chapter 30
Configuring Communication with Content Server

30-6

com.oracle.content.spi.ucm.CacheInvalidationInterval

• VCR_BINARY_CACHE_MAX_SIZE: Maximum size of documents stored in the VCR binary
cache, in bytes. The default value is 102400 (800 KB).

com.bea.content.federated.binaryCacheMaxEntrySize

30.5 Finding Information About a Content Item
Content managed by Content Server is primarily tracked by four tables:

• Revisions

• Documents

• DocMeta

• RevClasses

These tables track the content's metadata, state, and actions as well as information that is
associated with each file.

30.5.1 Revisions
This table tracks core information about each revision of the content:

• One row per revision

• Different revisions with the same content that share the same content ID and RevClass ID

• System metadata for each revision:

– Metadata for revisions: content ID, title, author, check-in date, and so on

– Metadata for categorization and security: type, security group, doc account

• State information for various actions:

– Indexing

– Workflow

– Document conversion

• Numeric IDs and text labels to help track and retrieve a revision:

– A unique dID value for each revision (the primary key in the table)

– A unique dRevClassID value for the content

– A revision ID to mark the revision number for each revision

30.5.2 Documents
This table tracks information for files that are associated with each content revision:

• One row per revision

• Multiple rows per revision, one row for each of these files:

– Primary

– Alternate

– Web-viewable

Chapter 30
Finding Information About a Content Item

30-7

• File information: original name, location, language, size, and so on

30.5.3 DocMeta
This table contains extended metadata fields:

• One row per revision

• One column per metadata field

• Definition for each field stored in the DocMetaDefinition table

30.5.4 RevClasses
This table tracks information for each content revision:

• One row per content item

• Row locked for content modification

• Unique dDocName and RevClassId values

• Current indexed revision

• Dates and users:

– Creation date and creator

– Last modified date and user

– Owner

30.6 Using a Search Index
Content Server provides various ways to search the repository. Metadata searches can be
based on the Revisions, Documents, DocMeta, and RevClasses tables. To efficiently
perform text searches, the full-text search feature of Oracle Database can be utilized, and the
IdcText table can be created to hold the search index.

IdcText

This table contains selected columns from the Revisions, Documents, DocMeta, and
RevClasses tables as well as columns for other data:

• It contains a predefined list from the Revisions, RevClasses, and Documents tables.

• It contains custom metadata that is indicated as searchable from the DocMeta table.

• The OtsMeta column (CLOB field) contains an SDATA section and additional indexable
fields that are not in the other columns. However, SDATA has significant limitations.

• The OtsContent column contains an indexable document.

• The ResultSetInterface column can be used for sorting or count estimation, or to drill
down.

30.7 Using the File Store Provider
The File Store Provider can be used to distribute files managed by Content Server on the file
system, a database, other devices, or any combination of these. The files are stored in

Chapter 30
Using a Search Index

30-8

SecureFiles in Content Server. For database-backed file storage, the FileStorage and
FileCache tables store the information related to each file.

FileStorage

This table stores file information and some additional information:

• File stored in a BLOB (binary large object) field (SecureFiles in Content Server)

The database administrator can turn on additional BLOB optimizations. For example,
deduplication, compression, and encryption with SecureFiles.

• Provides SecureFiles support

• Values for dID and dRenditionID that point to a particular file managed by Content Server

• Tracking information in a small number of fields: last modified date and file size

FileCache

This table stores pointers for files cached on the file system, for certain types of processing
(extraction, conversion, and so on), and for quick access by the web server. This pointer is also
used to perform cleanup.

Chapter 30
Using the File Store Provider

30-9

31
Configuring Web Services with WSDL, SOAP,
and the WSDL Generator

This chapter describes how to integrate Oracle WebCenter Content into a client application
with WSDL and SOAP files by using them to manage Oracle WebCenter Content Server. It
also describes how to use the WSDL Generator component, which provides integration
technologies to access the functionality of Content Server.

This chapter includes the following sections:

• About Configuring Web Services with WSDL_ SOAP_ and the WSDL Generator

• Accessing Content Server with a SOAP Client

• Calling Content Server Services with SOAP

• Using SOAP Packets in Active Server Pages

• Generating WSDL Files to Access WebCenter Content

• Customizing WSDL Files

For general information about web services that you can use with Content Server, see
Overview of Web Services. The way to use web services described in this chapter was
introduced in Oracle Universal Content Management 10g. If you want to use WebCenter
Content web services with security configuration and Security Assertion Markup Language
(SAML) support, introduced in Oracle WebCenter Content 11g, see Configuring WebCenter
Content Web Services for Integration .

With either way of using web services, you can use the Oracle Web Services Manager
(Oracle WSM) for security. For more information about Oracle WSM, see the Overview of Web
Services Administration in Administering Web Services.

31.1 About Configuring Web Services with WSDL, SOAP, and
the WSDL Generator

You can use Web Services Definition Language (WSDL) and SOAP (Simple Object Access
Protocol) files to manage Content Server from a client application. SOAP is a lightweight, XML-
based messaging protocol for encoding the information in web service request and response
messages before sending them over a network.

The WSDL Generator component, WsdlGenerator, which is installed and enabled by default in
Content Server, generates WSDLs for the services of Content Server. You can take the
WSDLs and plug them into APIs to create web services for use with Content Server.

Some SOAP functionality has been built into the core Content Server. The WSDL Generator
component is not essential for using SOAP. Administrators can still write service calls to
Content Server in SOAP if needed. The WSDL Generator provides flexibility in altering existing
client applications.

WebCenter Content has a WSDL 1.1 implementation that exposes the WebCenter Content
IDCService (Internet Distributed Content Service), which in turn extends all of the capabilities
of Content Server. With IDCService, you can do any of these tasks:

31-1

• Check in or check out content

• Create, run, or approve workflows

• Make content available for publishing

• Search content by category (metadata), content (full text), or a combination of both

You can use WSDL files to map to WebCenter Content and SOAP to access content and
content management functions within WebCenter Content and to deploy your content
management capabilities as a web service. Alternatively, you can write service calls to Content
Server in SOAP.

31.1.1 Web Services Framework
The core enabling technologies for web services follow:

• XML Data

• WSDL Interface

• SOAP Communication

• UDDI Registry

31.1.1.1 XML Data
The eXtensible Markup Language (XML) is a bundle of specifications that provides the
foundation of all web services technologies. Using the XML structure and syntax as the
foundation allows for the exchange of data between different programming languages,
middleware, and database management systems.

The XML syntax incorporates instance data, typing, structure, and semantic information
associated with data. XML describes data independently and also provides information for
mapping the data to software systems or programming languages. Because of this flexibility,
any software program can be mapped to web services.

When web services are invoked, the underlying XML syntax provides the data encapsulation
and transmission format for the exchanged data. The XML elements and attributes define the
type and structure information for the data. XML provides the capability to model data and
define the structure specific to the programming language (such as Java, C#, or Visual Basic),
the database management system, or the software application. Web services use the XML
syntax to specify how data is represented, how the data is transmitted, and how the service
interacts with the referenced application.

31.1.1.2 WSDL Interface
The Web Services Description Language (WSDL) provides the interface that is exposed to web
services. The WSDL layer enables web services to be mapped to underlying programs and
software systems. A WSDL file is an XML file that describes how to connect to and use a web
service.

31.1.1.3 SOAP Communication
The Simple Object Access Protocol (SOAP) provides Content Server communications for web
services interfaces to communicate with each other over a network. SOAP is an XML-based
communication protocol used to access web services. The web services receive requests and
return responses using SOAP packets that are encapsulated within an XML document.

Chapter 31
About Configuring Web Services with WSDL, SOAP, and the WSDL Generator

31-2

31.1.1.4 UDDI Registry
The Universal Description Discovery and Integration (UDDI) service provides registry and
repository services for storing and retrieving web services interfaces. UDDI is a public or
private XML-based directory for registering and looking up web services.

Content Server currently does not publish to any public or private UDDI sources. However, this
does not prevent users from integrating Content Server with other applications using web
services.

31.1.1.5 DIME Message Format
DIME is a lightweight, binary message format that can be used to encapsulate one or more
application-defined groups of file content, of arbitrary type and size, into a single message
construct. You can use this format for uploading or downloading content. The payloads consist
of the SOAP message and one or more groups of file content.

31.1.1.6 How the Enabling Technologies Work Together
The XML, WSDL, SOAP, and UDDI technologies work together as layers on the web services
protocol stack. As Figure 31-1 shows, the web services protocol stack consists of these layers:

• The service transport layer between applications (HTTP)

• The messaging layer, which provides a common communication method (XML and SOAP)

• The service description layer, which describes the public interface to a specific web service
(WSDL)

• The service discovery layer, which provides registry and repository services for storing and
retrieving web services interfaces (UDDI)

Figure 31-1 Layers of the Web Services Protocol Stack

Note:

While several protocols are available for a transport layer (such as HTTP, SMTP,
FTP, and BEEP), the HTTP protocol is most commonly used. The WSDL Generator
component relies on the HTTP protocol as the transport layer.

Chapter 31
About Configuring Web Services with WSDL, SOAP, and the WSDL Generator

31-3

To help grasp the connection between these technologies, consider this simple analogy: Think
of HTTP as the telephone wire (transport between applications) and UDDI as a telephone book
(where a developer can browse a UDDI registry to locate a registered service). SOAP could be
described as the voices of the people talking on the telephone (the exchange of information),
and XML as the language they are speaking in (the underlying structure for the exchange of
data). To continue with the telephone analogy, WSDL would be the phone number that calls a
specific web service (of course, WSDL is more than just a phone number because it includes
information such as the available functions and data types).

31.1.1.7 Implementation Architecture
Web services are not executable, but rather they exchange data within the development
environment. So, web services are a means to exchange information with an application server
or software package that is performing the communication between the programs exchanging
data.

Figure 31-2 shows the web services implementation architecture for the Content Server
application. The primary value of this architecture remains in the features and functions of
Content Server. Web services access Content Server through the WSDL Generator and use
the exposed Content Server services to execute actions and provide data transactions
between the user employing web services and Content Server.

Figure 31-2 Web Services Implementation Architecture

31.1.1.8 Implementation on .NET
The Microsoft .NET products, including the .NET platform, .NET Framework, and Visual
Studio .NET, all support the XML schema, WSDL, and SOAP specifications:

• The .NET platform is designed as a programming model that enables developers to build
XML web services and applications. The platform provides a set of servers that integrates,
executes, and manages XML web services and applications.

• The .NET Framework product enables developers to build and deploy web services and
applications. It provides a structured environment for integrating web services, consists of
a common language runtime and unified class libraries, and includes the ASP .NET server.

• The Visual Studio .NET product provides tools for developers to write application software
according to the XML-based web service specifications.

Using the .NET architecture, development and deployment of a web service are integrated as
a single step. Because every program written in a .NET language is designed to function as a
web service, the .NET server is able to create and deploy the program as a web service.

Chapter 31
About Configuring Web Services with WSDL, SOAP, and the WSDL Generator

31-4

31.1.1.9 The SOAP Protocol
SOAP is an XML-based messaging protocol consisting of these parts:

• An envelope that defines what is in a message and how to process it

• A set of encoding rules for defining application data types

• A convention for representing remote procedure calls and responses

Employing a SOAP integration provides a standardized interface for executing Content Server
services using the Java API (IdcCommand) and provides XML and non-XML content managed
by Content Server.

Because SOAP uses the Hypertext Transfer Protocol (HTTP) for data transmission, it can be
invoked across the Web, and it can enable content to be accessible over a network in a
platform-independent and language-neutral way.

31.2 Accessing Content Server with a SOAP Client
Using SOAP to access content management capabilities as a web service enables real-time
programmatic interaction between applications, enables the integration of business processes,
and facilitates information exchange.

Note:

If you are developing SOAP client implementations, make sure that chunking is
disabled in your client API code.

Web services are modular components that are contained in an XML wrapper and defined by
the WSDL specifications. The UDDI) Web-based registry system is used to locate these
services.

Tip:

While .NET servers support WSDL and integrate with the SOAP Toolkit, you must
specify that a SOAP packet is sending a Remote Procedure Call (RPC). The default
is to evaluate SOAP messages as document-style SOAP messages, rather than
RPC-style SOAP messages. Using the SOAP Toolkit client with a .NET-developed
web service returns a read error for the WSDL document. To permit the SOAP Toolkit
to read the generated WSDL and call your .NET web service, you must specify the
SoapRpcService() attribute in your web service class.

31.2.1 Using a Java SOAP Client
With a Java SOAP client, you can use the command-line parameters that Table 31-1
describes.

Chapter 31
Accessing Content Server with a SOAP Client

31-5

Table 31-1 Command-Line Parameters for Java SOAP Clients

Parameter Description

-c config file The configuration file containing server settings (host, port, and so on)

-x xml file The XML file containing the SOAP request to pass to Content Server

-p primary file The file name of the primary file to upload

‐a alternate file The file name of the alternate file to upload (optional)

-l log file The file name of the file containing the request and response data
(optional)

31.3 Calling Content Server Services with SOAP
You can execute various Content Server IdcCommand services with the SOAP interface. Your
user ID must have appropriate permissions to execute the commands. Some commands
require administrative access, and other commands require only write permission.

The WSDL Generator component is installed and enabled by default with Content Server, and
it must remain enabled to call services. For lists of available services and the required
parameters, see List of Oracle WebCenter Content Services in Oracle Fusion Middleware
Services Reference for Oracle WebCenter Content.

31.3.1 SOAP Packet Format
A SOAP request is an XML-based Remote Procedure Call (RPC) sent using the HTTP
transport protocol. The payload of the SOAP packet is an XML document that specifies the call
being made and the parameters being passed.

31.3.1.1 HTTP Headers
This entry is required in the HTTP header of a SOAP request:

Content-Type: text/xml; charset="utf-8"

This SOAPAction header is suggested, but not required:

SOAPAction: "http://www.oracle.com/IdcService"

31.3.1.2 Namespaces
Within the body of a SOAP message, XML namespaces are used to qualify element and
attribute names in the parts of the document. Element names can be global (referenced
throughout the SOAP message) or local. A local element name is provided by a namespace,
and the name is used in the particular part of the message where it is located. So, SOAP
messages use namespaces to qualify element names in the separate parts of a message.
Application-specific namespaces qualify application-specific element names. Namespaces also
identify the envelope version and encoding style.

Content Server defines a namespace called idc that explains the schema and allowable tags
for the SOAP content.

Chapter 31
Calling Content Server Services with SOAP

31-6

31.3.1.3 Nodes
A SOAP node is the entity that processes a SOAP message according to the rules for
accessing the services provided by the underlying protocols through the SOAP bindings. So,
message processing involves mapping to the underlying services. The SOAP specification
defines a correlation between the parts of a SOAP message and the software handlers that will
process each part of the message.

The following nodes might be required for a service request or might be returned in the
response:

• Service Node

• Document Node

• User Node

• Optionlist Node

• Option Subnode in an IDC Optionlist Node

• Resultset Subnode

• Row Subnode

• Field Subnode

Note:

In requests, Content Server services are lenient regarding where data is
specified. If you specify a data field in a field node and it is supposed to be a
document attribute, or vice versa, the service still processes the data correctly.
The response puts the data in the correct node.

31.3.1.3.1 Service Node
As the main node in the IDC namespace, the <idc:service> node has these requirements:

• This node must exist for a request to be processed.

• The required attribute IdcService defines the service you are requesting.

• The subnodes of <idc:service> are not required to carry the namespace in their tags.

For example, you can use <document> rather than <idc:document>. However, if you do
define the namespace identifier in the child nodes, it must match the identifier specified in
the service tag.

The following example shows an <idc:service> node with a PING_SERVER service request:

Example 31-1 Service Node in the IDC Namespace

<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="PING_SERVER">
</idc:service>

31.3.1.3.2 Document Node
The <document> node contains all content-item information and is the parent node of all data
nodes.

Chapter 31
Calling Content Server Services with SOAP

31-7

Attributes that are valid for your content items are defined by your particular Content Server.
For example, dID, dDocTitle, and dDocType are common attributes. These rules apply to the
<document> node:

• Custom content-item information, such as xSpec, is valid if it is defined as metadata.

• All known document fields can be used as attributes.

The following example shows a <document> node that uses the CHECKOUT_BY_NAME service:

Example 31-2 Document Node in an IDC Service Node

<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="CHECKOUT_BY_NAME">
<idc:document dDocName="soap_sample">
</idc:document>
</idc:service>

31.3.1.3.3 User Node
The <user> node contains all user information. These rules apply to the <user> node:

• Attributes that are valid for users are defined by a specific Content Server. For example,
dName, dFullName, and dEmail are common attributes.

• Custom user information is valid if it is defined as metadata.

• All known user fields can be used as attributes.

The following example shows a <user> node that specifies a user for the GET_USER_INFO
service request:

Example 31-3 User Node in an IDC Service Node

<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_USER_INFO">
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>

31.3.1.3.4 Optionlist Node
The <optionlist> node contains any option lists. The name attribute specifies the name of the
option list. Each <option> subnode contains a value in the <optionlist> node.

The following example shows an <optionlist> node with an <option> subnode that has a
locale value:

Example 31-4 Optionlist Node for Locale

<idc:optionlist name="Users_UserLocaleList">
<idc:option>
English-US
</idc:option>
</idc:optionlist>

31.3.1.3.5 Option Subnode in an IDC Optionlist Node
The <option> subnode is specified within the <optionlist> node. The option attribute
specifies the name of the option for the option list.

The following example shows <option> nodes with dDocType values:

Chapter 31
Calling Content Server Services with SOAP

31-8

Example 31-5 Option Subnodes of an Optionlist Node

<idc:optionlist name="dDocType">
<idc:option>ADACCT</idc:option>
<idc:option>ADHR</idc:option>
<idc:option>ADSALES</idc:option>
</idc:optionlist>

31.3.1.3.6 Resultset Subnode
The <resultset> subnode can be specified within a <document> or <user> node. This subnode
contains ResultSet information in a request or response. The name attribute specifies the name
of the ResultSet.

specifies a <resultset> subnode for a ResultSet that contains a revision history.

Example 31-6 Resultset Subnode for a Revision History

<idc:resultset name="REVISION_HISTORY">
<idc:row dFormat="text/plain" dInDate="4/12/02 1:27 PM" dOutDate="" dStatus="RELEASED"
dProcessingState="Y" dRevLabel="1" dID="6" dDocName="stellent" dRevisionID="1">
</idc:row>
</idc:resultset>

31.3.1.3.7 Row Subnode
The <row> subnode is specified within a <resultset> subnode, which can have multiple <row>
subnodes. Each <row> subnode specifies a row in the ResultSet.

Attributes that are valid are defined by your specific Content Server. Valid attributes are the
same fields that can appear as attributes in a <document> or <user> node.

The following example specifies a row in a ResultSet of user attributes.

Example 31-7 Row Subnode of a Resultset Subnode

<idc:resultset name="UserAttribInfo">
<idc:row dUserName="jsmith" AttributeInfo="role,contributor,15">
</idc:row>
</idc:resultset>

31.3.1.3.8 Field Subnode
The <field> subnode can be specified within a <document>, <user>, or <row> node. The name
attribute specifies the name of the field. A <field> subnode often represents data, such as
refreshSubjects or dSubscriptionID.

A <field> subnode can represent document or user metadata that a user can configure, or it
can represent custom metadata, such as xComments. The following example specifies a field
subnode that represents subscription ID data:

Field Node to Represent Metadata
<idc:field name="dSubscriptionID">
stellent
</idc:field>

Another use for a <field> subnode is to pass search result values for fields such as QueryText
and OriginalQueryText, as shown in the following example:

Chapter 31
Calling Content Server Services with SOAP

31-9

Field Subnode to Pass a Value
<idc:field name="QueryText">
dDocType <Substring> "ADSALES&"
</idc:field>

31.3.2 Special Characters
When passing special characters, such as a left angle bracket (<) or right angle bracket (>), to
WebCenter Content, you must use the XML-encoding format, which Example 31-2 shows.

Table 31-2 Special Character Formats

Standard Format XML-Encoding Format

< <
> >
" "

` (use back quotation mark if you are using universal query syntax)

& &
\ '

Note:

Some search result values, such as the QueryText and OriginalQueryText values,
are URL‐encoded in the response.

You can pass a string to Content Server for a content-item query (using universal query syntax)
in either format. Example specifies a string in standard format

Example 31-8 Parameter with a Standard-Format String

QueryText=dDocType <Substring> "ADSALES"

Example specifies a string in XML-encoded format.

Example 31-9 Parameter with an XML-Encoded String:

<idc:field name="QueryText">
dDocType <Substring> `ADSALES`
</idc:field>

31.3.3 Sample Service Calls with SOAP Response/Request
Using service calls with SOAP response/request, you can execute Content Server services in
a SOAP request. For a list of available services and the required parameters, see List of
Oracle WebCenter Content Services in Oracle Fusion Middleware Services Reference for
Oracle WebCenter Content.

These IdcCommand services are used as SOAP request examples.

Chapter 31
Calling Content Server Services with SOAP

31-10

IdcCommand Description

PING_SERVER This service evaluates whether a connection to the
server exists. See Ping the Server,.

ADD_USER This service adds a new user to the system. See
Add a New User.

EDIT_USER This service edits an existing user. See Edit
Existing User.

GET_USER_INFO This service retrieves the user list. See Get User
Information.

DELETE_USER This service deletes an existing user. See Delete
User.

CHECKIN_UNIVERSAL This service performs a Content Server controlled
check-in. See Check In Content Item.

CHECKOUT_BY_NAME This service marks the latest revision of the
specified content item as locked. See Check out
Content Item.

UNDO_CHECKOUT_BY_NAME This service reverses a content item checkout
using the content ID. See Undo Content Item
Checkout.

DOC_INFO This service retrieves content item revision
information. See Get Content Item Information.

GET_FILE This service retrieves a copy of a content item,
such as a thumbnail image, without performing a
check out. See Get File.

GET_SEARCH_RESULTS This service retrieves the search results for the
passed query text. See Get Search Results.

GET_TABLE This service exports the specified table from the
WebCenter Content database. See Get Table Data.

GET_CRITERIA_WORKFLOWS_FOR_GROUP This service returns criteria workflow information.
See Get Criteria Workflow Information.

31.3.3.1 Ping the Server
The PING_SERVER service evaluates whether a connection to the server exists.

• This service returns status information for Content Server.

• If this service is unable to execute, this message is displayed to the user: Unable to
establish connection to the server.

Tip:

Execute a PING_SERVER request before calling other services to ensure that there
is a connection to Content Server and that you are logged in as a user authorized
to execute commands.

31.3.3.1.1 Required Parameters
These parameters must be specified.

Chapter 31
Calling Content Server Services with SOAP

31-11

Parameter Description

IdcService Must be set to PING_SERVER.

31.3.3.1.2 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="PING_SERVER">
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope

31.3.3.1.3 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="PING_SERVER">
<idc:document>
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="StatusMessage">
You are logged in as 'sysadmin'.
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.2 Add a New User
The ADD_USER service adds a new user to the system.

• Given a user name, the service determines if the user is in the system. If the user does not
exist, the service will add the user.

• The most likely error is when the user name is not unique. If this service is unable to
execute, an error message is displayed to the user.

31.3.3.2.1 Required Parameters
The following parameters must be specified.

Chapter 31
Calling Content Server Services with SOAP

31-12

Parameter Description

dName The unique name.

dUserAuthType The user authorization type. This value must be set to either LOCAL or
GLOBAL.

IdcService Must be set to ADD_USER.

31.3.3.2.2 Optional Parameters
The following optional parameters may be specified.

Parameter Description

dEmail The email address for the user.

dFullName The full name of the user.

dPassword The password for the user.

31.3.3.2.3 Optional Attribute Information
This optional data defines the user's attribute information, the roles the user belongs to, and
the accounts the user has access to. Attribute information consists of a list of three comma-
delimited strings. The first string indicates the type of attribute, the second the name of the
attribute, and the third is the access number.

Note:

The user attribute information is not predefined. The user by default will belong to no
roles or accounts and will become a guest in the system.

Attribute Information Description

Access Number The access number determines the level of access or privileges
assigned to the user.

Attribute Name The attribute name is the name of the role or account to be assigned.
For example, admin, contributor, or editor can be assigned.

Attribute Type The attribute type is role or account.

Access Number

The following access numbers can be assigned to the user.

Access Level Flags Description

1 Read only.

3 Read and write.

7 Read, write, and delete.

15 Administrative privileges.

Chapter 31
Calling Content Server Services with SOAP

31-13

Attribute Name

A user can belong to multiple roles and accounts, there may be multiple role and account
information strings separated by commas in the attribute information column.

• If the user is to have the admin role, define the user attribute information as follows:

<idc:resultset name="UserAttribInfo">
<idc:row dUserName="jsmith" AttributeInfo="role,contributor,15">

• If the user is to belong to both the contributor and editor roles and has read privilege on the
account books, define the user attribute information as follows:

<idc:resultset name="UserAttribInfo">
<idc:row dUserName="jsmith"
AttributeInfo="role,contributor,15,role,editor,15,account,books,1">

Attribute Type

When defining a role, the first string specifies that this is a role attribute, the second string is
the name of the role, and the third is the default entry of 15.

When defining an account, the first string specifies that this is an account attribute, the second
string is the name of the account, and the third is the access level.

• For an attribute role, the information is in this form:

role,contributor,15
• For an attribute account where the access level determines the user's rights to the named

account, the information is in this form:

account,books,1

31.3.3.2.4 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="ADD_USER">
<idc:user dName="Jennifer" dFullName="Jennifer Anton" dPassword="password"
dEmail="email@example.com" dUserAuthType="local">
<idc:resultset name="UserAttribInfo">
<idc:row dUserName="Jennifer" AttributeInfo="role,contributor,3">
</idc:row>
</idc:resultset>
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.2.5 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="ADD_USER">
<idc:document>
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

Chapter 31
Calling Content Server Services with SOAP

31-14

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="isAdd">
1
</idc:field>
<idc:field name="copyAll">
1
</idc:field>
<idc:field name="alwaysSave">
1
</idc:field>
<idc:field name="dAttributeName">
contributor
</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="doAdminFields">
1
</idc:field>
<idc:field name="dAttributePrivilege">
3
</idc:field>
<idc:field name="dAttributeType">
role
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="changedSubjects">
userlist,1018884022874
</idc:field>
</idc:document>
<idc:user dUserAuthType="local" dEmail="email@example.com" dFullName="Jennifer Anton"
dUser="sysadmin" dPassword="password" dName="Jennifer">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.3 Edit Existing User
The EDIT_USER service edits the information for an existing user.

• Given a user name and user authorization type, the service determines if the user is in the
system. If the user does not exist, the service fails. Otherwise the user information is
updated and replaced.

• The most likely error is the user does not have the security level to perform this action. If
this service is unable to execute, an error message is displayed to the user.

Chapter 31
Calling Content Server Services with SOAP

31-15

Note:

The user attribute information replaces the current attributes. It does not add to
the list. Consequently, if the user attribute information is not defined, the user will
become a guest in the system.

31.3.3.3.1 Required Parameters
The following parameters must be specified.

Parameter Description

dName The unique name.

dUserAuthType The user authorization type. This value must be set to either LOCAL or
GLOBAL.

IdcService Must be set to EDIT_USER.

31.3.3.3.2 Optional Parameters
The following optional parameters can be specified.

Parameter Description

dEmail The email address of the user.

dFullName The full name of the user.

dPassword The password for the user.

dUserLocale The locale designation, such as English-US, English-UK, Deutsch,
Français, Español.

dUserType The defined user type.

31.3.3.3.3 Optional Attribute Information
A ResultSet containing the user's attribute information and referencing the roles to which the
user belongs and the accounts to which the user has access. Attribute information consists of
a list of three comma-delimited strings. The first string indicates the type of attribute, the
second the name of the attribute, and the third is the access number.

Note:

The user attribute information is not predefined. The user by default will belong to no
roles or accounts, and will become a guest in the system

Attribute Information Description

Access Number The access number determines the level of access or privileges
assigned to the user.

Attribute Name The attribute name is the name of the role or account to be assigned.
For example, admin, contributor, or editor may be assigned.

Chapter 31
Calling Content Server Services with SOAP

31-16

Attribute Information Description

Attribute Type The attribute types consist of role or account.

Access Number

These access numbers can be assigned to the user.

Access Level Flags Description

1 Read only.

3 Read and write.

7 Read, write, and delete.

15 Administrative privileges.

A user can belong to multiple roles and accounts, there may be multiple role and account
information strings separated by commas in the attribute information column.

• If the user is to have the admin role, define the user attribute information as follows:

<idc:resultset name="UserAttribInfo">
<idc:row dUserName="jsmith" AttributeInfo="role,contribut
or,15">

• If the user is to belong to both the contributor and editor roles and has read privilege for the
account books, define the user attribute information as follows:

<idc:resultset name="UserAttribInfo">
<idc:row dUserName="jsmith"
AttributeInfo="role,contributor,15,role,editor,15,account,books,1">

Attribute Type

In the definition of a role, the first string specifies that this is a role attribute, the second string is
the name of the role, and the third is the default entry of 15.

In the definition of an account, the first string specifies that this is an account attribute, the
second string is the name of the account, and the third is the access level.

• For an attribute role, the information is in this form:

role,contributor,15
• For an attribute account where the access level determines the user's rights to the named

account, the information is in this form:

account,books,1

31.3.3.3.4 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="EDIT_USER">
<idc:user dName="Jennifer" dFullName="Jennifer Anton" dPassword="password"
dEmail="jennifer@example.com" dUserAuthType="local">
<idc:resultset name="UserAttribInfo">
<idc:row dUserName="Jennifer" AttributeInfo="role,guest,1">
</idc:row>
</idc:resultset>

Chapter 31
Calling Content Server Services with SOAP

31-17

</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.3.5 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="EDIT_USER">
<idc:document>
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="alwaysSave">
1
</idc:field>
<idc:field name="dAttributeName">
guest
</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="doAdminFields">
1
</idc:field>
<idc:field name="dAttributePrivilege">
1
</idc:field>
<idc:field name="dAttributeType">
role
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="changedSubjects">
userlist,1018884022877
</idc:field>
</idc:document>
<idc:user dUserAuthType="local" dEmail="jennifer@example.com" dFullName="Jennifer Anton"
dUser="sysadmin" dPassword="password" dName="Jennifer">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.4 Get User Information
The GET_USER_INFO service retrieves the user list.

• Given a defined user, the service retrieves the user list.

• If this service is unable to execute, the following message is displayed to the user: Unable
to retrieve user list.

Chapter 31
Calling Content Server Services with SOAP

31-18

31.3.3.4.1 Required Parameters
These parameters must be specified.

Parameter Description

dUser The defined user.

IdcService Must be set to GET_USER_INFO.

31.3.3.4.2 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_USER_INFO">
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.4.3 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_USER_INFO">
<idc:document>
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:optionlist name="Users_UserLocaleList">
<idc:option>
English-US
</idc:option>
</idc:optionlist>
</idc:document>
<idc:user dUser="sysadmin" dName="sysadmin">
<idc:resultset name="UserMetaDefinition">
<idc:row umdName="dFullName" umdType="BigText" umdCaption="apTitleFullName"
umdIsOptionList="0" umdOptionListType="0" umdOptionListKey="" umdIsAdminEdit="0"
umdOverrideBitFlag="1">
</idc:row>
<idc:row umdName="dEmail" umdType="BigText" umdCaption="apTitleEmailAddress"

Chapter 31
Calling Content Server Services with SOAP

31-19

umdIsOptionList="0" umdOptionListType="" umdOptionListKey="" umdIsAdminEdit="0"
umdOverrideBitFlag="2">
</idc:row>
<idc:row umdName="dUserType" umdType="Text" umdCaption="apTitleUserType"
umdIsOptionList="1" umdOptionListType="combo" umdOptionListKey="Users_UserTypeList"
umdIsAdminEdit="0" umdOverrideBitFlag="4">
</idc:row>
<idc:row umdName="dUserLocale" umdType="Text" umdCaption="apTitleUserLocale"
umdIsOptionList="1" umdOptionListType="choice,locale"
umdOptionListKey="Users_UserLocaleList" umdIsAdminEdit="0" umdOverrideBitFlag="8">
</idc:row>
</idc:resultset>
<idc:resultset name="USER_INFO">
<idc:row dName="sysadmin" dFullName="System Administrator" dEmail=""
dPasswordEncoding="" dPassword="-----" dUserType="" dUserAuthType="LOCAL"
dUserOrgPath="" dUserSourceOrgPath="" dUserSourceFlags="0" dUserArriveDate=""
dUserChangeDate="" dUserLocale="" dUserTimeZone="">
</idc:row>
</idc:resultset>
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.5 Delete User
The DELETE_USER service deletes an existing user.

• Given a user name, the service deletes the user from the system.

• The most likely error is when the user has been assigned to an alias. If this service is
unable to execute, an error message is returned.

31.3.3.5.1 Required Parameters
These parameters must be specified.

Parameter Description

dName The unique name.

IdcService Must be set to DELETE_USER.

31.3.3.5.2 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="DELETE_USER">
<idc:user dName="Jennifer" >
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.5.3 Response
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="DELETE_USER">
<idc:document>
<idc:field name="changedSubjects">

Chapter 31
Calling Content Server Services with SOAP

31-20

userlist,1018884022876
</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="dUserName">
Jennifer
</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
</idc:document>
<idc:user dUser="sysadmin" dName="Jennifer">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.6 Check In Content Item
The CHECKIN_UNIVERSAL service performs a controlled check-in to Content Server:

• This service determines if the content item is new or already exists in the system by
querying the database using the content ID (dDocName) as the key.

• If the content item exists in the system, the publish state (dPublishState) must be empty.

• If a revision label (dRevLabel) is specified, this service will check if the content revision
exists in the system; an exception is thrown if the revision exists.

• This service will dispatch this request to one of these subservices:

– CHECKIN_NEW_SUB: If the content item does not exist in the server.

– CHECKIN_SEL_SUB: If the content item exists on the system and no valid revision was
specified and the content item is checked out.

– WORKFLOW_CHECKIN_SUB: If the content item exists and is part of a workflow.

• The most likely errors are mismatched parameters or when the content item was not
successfully checked in. If this service is unable to execute, this message is displayed to
the user: Content item ''{dDocName}'' was not successfully checked in.

The CHECKIN_UNIVERSAL service is a controlled check-in to Content Server. The check-in will
fall into either a new, selected, or workflow check-in process and follow the same logic as a
check-in through the browser or Repository Manager application. If the content item to be
checked in already exists in the system, the content item must be checked out for the check in
to succeed.

These are essentially the same subservices used during a controlled check-in to Content
Server. However, these subservices are not called during a BatchLoad or Archive import. This
service will check security to determine if the user has sufficient privilege to perform a check in
on the content item and if the content item (if it exists) has been checked out. Also, it will

Chapter 31
Calling Content Server Services with SOAP

31-21

determine if the content item matches a workflow criteria or belongs to an active basic
workflow.

If the content item is not found the content item is checked in using the CHECKIN_NEW_SUB
subservice. This subservice validates the check in data and determines if this content item
belongs to a criteria workflow. If the content item already exists in the system and the content
item does not belong to a workflow, the CHECKIN_SEL_SUB is used. Otherwise the content item
exists and belongs to a workflow and the WORKFLOW_CHECKIN_SUB is used.

Note:

All paths use the slash (/) as the file separator, because the backslash (\) is an
escape character. For example, primaryFile=d:/temp/myfile.txt should point to
the primary file to check in.

31.3.3.6.1 Required Parameters
These parameters must be specified.

Parameter Description

dDocAuthor The content item author (contributor).

dDocName The content item identifier (content ID).

• This field is optional if the system has been configured with
IsAutoNumber set to TRUE. In this scenario, if the dDocName is not
specified, the check in will always be new, and the system will
generate a new name for the content item.

• Otherwise, if dDocName is specified, the service will use this key to
do a look up to determine what type of check in to perform.

dDocTitle The content item title.

dDocType The content item type.

doFileCopy Set this flag to TRUE (1) or the file will be removed from your hard drive.

dSecurityGroup The security group such as PUBLIC or SECURE.

IdcService Must be set to CHECKIN_UNIVERSAL.

primaryFile The absolute path to the location of the file as seen from the server.
Use the slash as the file separator.

A primary file must be specified unless you are checking in metadata
only. If an alternate file is specified with the primary file, Oracle
WebCenter Content: Inbound Refinery will convert the alternate file.
Otherwise, the primary file will be converted.

• If a primary file is not specified, a metadata file can be used in its
place. Only one metadata file can exist, though, for each content
item (that is, a primary and alternate metadata file cannot coexist).

• If both a primary and alternate file are specified, their extensions
must be different.

Note:

Custom metadata fields that are defined must also be specified.

Chapter 31
Calling Content Server Services with SOAP

31-22

31.3.3.6.2 Additional Parameters
This parameter may be required.

Parameter Description

dDocAccount The security account for the content item.
If you have accounts enabled, you must pass this parameter.

31.3.3.6.3 Optional Parameters
These optional parameters may be specified.

Parameter Description

alternateFile The alternate file for conversion.

• Only one metafile can exist though for each content item (a primary
AND alternate meta file cannot coexist.)

• If an alternate file is specified with the primary file, Inbound
Refinery will convert the alternate file. Otherwise, the primary file
will be converted.

dCreateDate The date the content item was created. By default, this is the current
date.

dInDate The content release date. The date the content item is to be released to
the web. By default, this is the current date.

If the content release date (dInDate) is not specified, the creation date
(dCreateDate) is used. This value is auto generated if it is not supplied.

dOutDate The content expiration date. By default, this is blank and does not
specify an expiration date.

If the content expiration date (dOutDate) is not entered, the value
remains empty. This is a valid state.

dRevLabel The revision label for the content item. If set, the label will be used to
locate the specified revision.

isFinished Set to TRUE (1) if this is a workflow check-in and you have finished
editing it.

See WORKFLOW_CHECKIN for additional information.

Note:

Do not confuse the content ID (dDocName) with the internal content item revision
identifier (dID). The dID value is a generated reference to a specific rendition of a
content item

31.3.3.6.4 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/"
IdcService="CHECKIN_UNIVERSAL">
<idc:document dDocName="SoapUpload2" dDocAuthor="sysadmin" dDocTitle="Soap Upload 2

Chapter 31
Calling Content Server Services with SOAP

31-23

Document" dDocType="ADACCT" dSecurityGroup="Public" dDocAccount="">
<idc:file name="primaryFile" href="C:/stellent/custom/Soap/JavaSamples/SoapClientUpload/
soaptest.doc">
</idc:file>
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.6.5 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/"
IdcService="CHECKIN_UNIVERSAL">
<idc:document dDocAuthor="sysadmin" dDocName="SoapUpload2" dExtension="doc"
dDocAccount="" dIsPrimary="1" dRevisionID="1" dPublishType="" dInDate="4/22/02 1:31PM"
dReleaseState="N" dRevClassID="12" dCreateDate="4/22/02 1:31 PM" dIsWebFormat="0"
dPublishState="" dLocation="" dStatus="DONE" dOriginalName="12.doc" dOutDate=""
dDocID="24" dRevLabel="1" dProcessingState="Y" dDocTitle="Soap Upload 2 Document"
dID="12" dDocType="ADACCT" dSecurityGroup="Public" dFileSize="19456"
dFormat="application/msword">
<idc:field name="primaryFile:path">
c:/stellent/vault/~temp/1230750423.doc
</idc:field>
<idc:field name="dRawDocID">
23
</idc:field>
<idc:field name="changedSubjects">
documents,1019482656706
</idc:field>
<idc:field name="StatusCode">
0
</idc:field>
<idc:field name="soapFile:path">
c:/stellent/vault/~temp/1230750422.xml
</idc:field>
<idc:field name="xComments">

</idc:field>
<idc:field name="soapStartContentID">
SoapContent
</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="dActionDate">
4/22/02 1:31 PM
</idc:field>
<idc:field name="dActionMillis">
30263
</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="WebfilePath">
c:/stellent/weblayout/groups/public/documents/adacct/soapupload2~1.doc
</idc:field>

Chapter 31
Calling Content Server Services with SOAP

31-24

<idc:field name="StatusMessage">
Successfully checked in content item 'SoapUpload2'.
</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="dConversion">
PASSTHRU
</idc:field>
<idc:field name="primaryFile">
C:/stellent/custom/Soap/JavaSamples/SoapClientUpload/soaptest.doc
</idc:field>
<idc:field name="dAction">
Checkin
</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="VaultfilePath">
c:/stellent/vault/adacct/12.doc
</idc:field>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.7 Check out Content Item
The CHECKOUT_BY_NAME checks out the latest revision of the specified content item.

• Given a content item revision ID, this service attempts to locate the content item in the
system and undo the checkout.

• The service fails if the content item does not exist in the system, if the content item is not
checked out, or the user does not have sufficient privilege to undo the checkout.

• The most likely error is a content item name that does not exist. If this service is unable to
execute, an error message is displayed to the user.

Note:

This service only marks the content item as locked. It does not perform a
download.

31.3.3.7.1 Required Parameters
These parameters must be specified.

Parameter Description

dDocName The content item identifier (content ID).

IdcService Must be set to CHECKOUT_BY_NAME.

Chapter 31
Calling Content Server Services with SOAP

31-25

Note:

Do not confuse the content ID (dDocName) with the internal content item revision
identifier (dID). The dID value is a generated reference to a specific rendition of a
content item.

31.3.3.7.2 Optional Parameters
This optional parameter may be specified.

Parameter Description

dDocTitle The content item title.

31.3.3.7.3 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="CHECKOUT_BY_NAME">
<idc:document dDocName="soap_sample">
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.7.4 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="CHECKOUT_BY_NAME">
<idc:document dDocTitle="soap_sample" dID="10" dRevLabel="1" dDocAccount=""
dRevClassID="10" dDocName="soap_sample" dOriginalName="soap_sample.txt"
dSecurityGroup="Public">
<idc:field name="dActionMillis">
39964
</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="dActionDate">
4/22/02 12:20 PM
</idc:field>
<idc:field name="latestID">
10
</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="CurRevID">
10
</idc:field>
<idc:field name="CurRevIsCheckedOut">

Chapter 31
Calling Content Server Services with SOAP

31-26

0
</idc:field>
<idc:field name="dAction">
Check out
</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="CurRevCheckoutUser">
sysadmin
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="changedSubjects">
documents,1019482656687
</idc:field>
<idc:resultset name="DOC_INFO">
<idc:row dID="10" dDocName="soap_sample" dDocType="ADACCT" dDocTitle="soap_sample"
dDocAuthor="sysadmin" dRevClassID="10" dRevisionID="1" dRevLabel="1" dIsCheckedOut="1"
dCheckoutUser="sysadmin" dSecurityGroup="Public" dCreateDate="4/22/02 12:18 PM"
dInDate="4/22/02 12:18 PM" dOutDate="" dStatus="RELEASED" dReleaseState="Y" dFlag1=""
dWebExtension="txt" dProcessingState="Y" dMessage="" dDocAccount=""
dReleaseDate="4/22/02 12:19 PM" dRendition1="" dRendition2="" dIndexerState=""
dPublishType="" dPublishState="" dDocID="19" dIsPrimary="1" dIsWebFormat="0"
dLocation="" dOriginalName="soap_sample.txt" dFormat="text/plain" dExtension="txt"
dFileSize="12">
<idc:field name="xComments">

</idc:field>
</idc:row>
</idc:resultset>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.8 Undo Content Item Checkout
The UNDO_CHECKOUT_BY_NAME service reverses a content item checkout using the content ID.

• Given a content item name, this service attempts to locate the content item in the system
and undo the checkout.

• The service fails if the content item does not exist in the system, if the content item is not
checked out, or if the user does not have sufficient privilege to undo the checkout.

• This service is used by an applet or application.

• If this service is unable to execute, this message is displayed to the user: Unable to undo
checkout for ''{dDocName}''.

31.3.3.8.1 Required Parameters
These parameters must be specified.

Parameter Description

dDocName The content item identifier (content ID).

Chapter 31
Calling Content Server Services with SOAP

31-27

Parameter Description

IdcService Must be set to UNDO_CHECKOUT_BY_NAME.

Note:

Do not confuse the content ID (dDocName) with the internal content item revision
identifier (dID). The dID value is a generated reference to a specific rendition of a
content item.

31.3.3.8.2 Optional Parameters
This optional parameter may be specified.

Parameter Description

dDocTitle The content item title.

31.3.3.8.3 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/"
IdcService="UNDO_CHECKOUT_BY_NAME">
<idc:document dDocName="soap_sample">
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.8.4 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/"
IdcService="UNDO_CHECKOUT_BY_NAME">
<idc:document dCheckoutUser="sysadmin" dPublishState="" dDocTitle="soap_sample" dID="10"
dRevLabel="1" dDocAccount="" dDocName="soap_sample" dRevClassID="10"
dOriginalName="soap_sample.txt" dSecurityGroup="Public">
<idc:field name="dActionMillis">
5317
</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="dActionDate">
4/22/02 12:23 PM
</idc:field>
<idc:field name="latestID">
10
</idc:field>
<idc:field name="refreshSubMonikers">

Chapter 31
Calling Content Server Services with SOAP

31-28

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="CurRevID">
10
</idc:field>
<idc:field name="CurRevIsCheckedOut">
1
</idc:field>
<idc:field name="dAction">
Undo Checkout
</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="CurRevCheckoutUser">
sysadmin
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="changedSubjects">
documents,1019482656689
</idc:field>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.9 Get Content Item Information
The DOC_INFO service retrieves content item revision information.

• Given a content item revision ID, the service retrieves content item revision information

• The most likely errors are when the content item no longer exists in the system or when
the user does not have the security level to perform this action. If this service is unable to
execute, an error message is displayed to the user.

31.3.3.9.1 Required Parameters
These parameters must be specified.

Parameter Description

dID The generated content item revision ID.

IdcService Must be set to DOC_INFO.

31.3.3.9.2 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="DOC_INFO">
<idc:document dID="6">
</idc:document>
</idc:service>

Chapter 31
Calling Content Server Services with SOAP

31-29

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.9.3 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="DOC_INFO">
<idc:document dStatus="RELEASED" dDocFormats="text/plain" dID="6" DocUrl="HTTP://
wharristest/stellent/groups/public/documents/adacct/stellent.txt" dDocTitle="stellent">
<idc:field name="dSubscriptionAlias">
sysadmin
</idc:field>
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="dSubscriptionID">
stellent
</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="dSubscriptionType">
Basic
</idc:field>
<idc:resultset name="REVISION_HISTORY">
<idc:row dFormat="text/plain" dInDate="4/12/02 1:27 PM" dOutDate="" dStatus="RELEASED"
dProcessingState="Y" dRevLabel="1" dID="6" dDocName="stellent" dRevisionID="1">
</idc:row>
</idc:resultset>
<idc:resultset name="WF_INFO">
</idc:resultset>
<idc:resultset name="DOC_INFO">
<idc:row dID="6" dDocName="stellent" dDocType="ADACCT" dDocTitle="stellent"
dDocAuthor="sysadmin" dRevClassID="6" dRevisionID="1" dRevLabel="1" dIsCheckedOut="0"
dCheckoutUser="" dSecurityGroup="Public" dCreateDate="4/12/02 1:27 PM" dInDate="4/12/02
1:27 PM" dOutDate="" dStatus="RELEASED" dReleaseState="Y" dFlag1="" dWebExtension="txt"
dProcessingState="Y" dMessage="" dDocAccount="" dReleaseDate="4/12/02 1:27 PM"
dRendition1="" dRendition2="" dIndexerState="" dPublishType="" dPublishState=""
dDocID="11" dIsPrimary="1" dIsWebFormat="0" dLocation="" dOriginalName="stellent.txt"
dFormat="text/plain" dExtension="txt" dFileSize="8">
<idc:field name="xComments">
stellent
</idc:field>
</idc:row>
</idc:resultset>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>

Chapter 31
Calling Content Server Services with SOAP

31-30

</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.10 Get File
The GET_FILE service returns a specific rendition of a content item, the latest revision, or the
latest released revision. A copy of the file is retrieved without performing a check out.

• This command computes the dID (content item revision ID) for the revision, and then
determines the file name of a particular rendition of the revision with the computed dID. A
specified dID or a dDocName (content item name) along with a RevisionSelectionMethod
parameter can be used.

• Given a dID or a dDocName along with a RevisionSelectionMethod parameter, the service
determines the file name of a particular rendition of the revision and returns that file to the
client.

• The most likely errors are some form of mismatched parameters or a request for a revision
or rendition that does not exist. If this service is unable to execute, an error message is
displayed to the user.

Note:

Use dDocName in all requests for content items where the requester knows the
dDocName value. Error messages in Content Server are based on the assumption
that the dDocName value is present, as are other features, such as forms.

31.3.3.10.1 Required Parameters
The following parameters must be specified.

Note:

Either the content item revision ID (dID) must be specified or a content item name
(dDocName) along with a RevisionSelectionMethod parameter must be defined.

Parameter Description

dDocName The content item identifier (content ID).

• If dDocName is not present, dID must be present, and
RevisionSelectionMethod must not be present.

• If RevisionSelectionMethod is present, a rendition of a revision
of the content item with this name will be returned, if it exists.

• If RevisionSelectionMethod is not present, dDocName can be
used in error messages.

Chapter 31
Calling Content Server Services with SOAP

31-31

Parameter Description

dID The generated content item revision ID.

• If dID is not specified, dDocName, and
RevisionSelectionMethod must specified.

• A rendition of the revision of the content item with this ID will be
returned, if it exists, and the RevisionSelectionMethod parameter
does not exist or has the value Specific.

RevisionSelectionMethod The revision selection method.

If present, dDocName must be present. The value of this variable is the
method used to compute a dID from the specified dDocName. Its value
can be Specific, Latest, or LatestReleased.

• If the value is Specific, dDocName is ignored, and dID is
required, and it is used to get a rendition.

• If the value is Latest, the latest revision of the content item is used
to compute the dID.

• If the value is LatestReleased, the latest released revision of the
content item is used to compute the dID.

IdcService Must be set to GET_FILE.

31.3.3.10.2 Optional Parameter
The following optional parameters may be specified.

Parameter Description

Rendition The content item rendition. This parameter specifies the rendition of the
content item and can be set to Primary, Web, or Alternate. If
Rendition is not present, it defaults to Primary.

• If the value is Primary, the primary rendition of the selected
revision is returned.

• If the value is Web, the web viewable rendition of the selected
revision is returned.

• If the value is Alternate, the alternate rendition of the selected
revision is returned.

For example, you can use Rendition=rendition:T to get a
thumbnail image.

Note:

Do not confuse the content ID (dDocName) with the internal content item revision
identifier (dID). The dID value is a generated reference to a specific rendition of a
content item.

31.3.3.10.3 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_FILE">
<idc:document dID="10">

Chapter 31
Calling Content Server Services with SOAP

31-32

</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.10.4 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_FILE">
<idc:document dID="10">
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Receving response...
HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Connection: keep-alive
Date: Mon, 29 Apr 2002 16:09:42 GMT
Content-type: Multipart/Related; boundary=-----------------4002588859573015789;
type=text/xml; start="<SoapContent>"
Content-Length: 1717

-------------------4002588859573015789
Content-Type: text/xml; charset=utf-8
Content-ID: <SoapContent>

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_FILE">
<idc:document dID="10" dExtension="txt">
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:resultset name="FILE_DOC_INFO">
<idc:row dID="10" dDocName="soap_sample" dDocType="ADACCT" dDocTitle="soap_sample"
dDocAuthor="sysadmin" dRevClassID="10" dRevisionID="1" dRevLabel="1" dIsCheckedOut="0"
dCheckoutUser="" dSecurityGroup="Public" dCreateDate="4/22/02 12:18PM" dInDate="4/22/02
12:18 PM" dOutDate="" dStatus="RELEASED" dReleaseState="Y" dFlag1="" dWebExtension="txt"
dProcessingState="Y" dMessage="" dDocAccount="" dReleaseDate="4/22/02 12:19 PM"
dRendition1="" dRendition2="" dIndexerState="" dPublishType="" dPublishState=""
dDocID="19" dIsPrimary="1" dIsWebFormat="0" dLocation="" dOriginalName="soap_sample.txt"
dFormat="text/plain" dExtension="txt" dFileSize="12">

Chapter 31
Calling Content Server Services with SOAP

31-33

<idc:field name="xComments">

</idc:field>
</idc:row>
</idc:resultset>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

-------------------4002588859573015789
Content-Type: text/html
Content-ID: <soap_sample.txt>

...File content...
-------------------4002588859573015789--

31.3.3.11 Get Search Results
The GET_SEARCH_RESULTS service retrieves the search results for the passed query text.

• Used to display the search results to a user making a content item query.

• You can append values for Title, Content ID, and so on, in the QueryText parameter, to
refine this service.

The QueryText parameter defines the query. For use in a SOAP message, this query must
be XML-encoded. This example passes a string submitted for a content item query in both
standard format and XML-encoded format:

– Parameter with standard formatted string:

QueryText=dDocType <Substring> "ADSALES"
– Parameter with XML-encoded string:

<idc:field name="QueryText">
dDocType <Substring> `ADSALES`
</idc:field>

For more information about formatting XML‐encoded strings, see Special Characters.

• If this service is unable to execute, it displays the following message: Unable to retrieve
search results.

31.3.3.11.1 Required Parameters
The following parameters must be specified.

Parameter Description

IdcService Must be set to GET_SEARCH_RESULTS.

QueryText The user supplied text submitted for the content item query.

31.3.3.11.2 Optional Parameters
The following optional parameters can be specified.

Chapter 31
Calling Content Server Services with SOAP

31-34

Parameter Description

resultCount The number of results to return. It defaults to 25.

sortField The name of the metadata field to sort on.

• Examples: dInDate, dDocTitle, Score.

• Defaults to dInDate.

sortOrder The sort order. Allowed values are ASC (ascending) and DES
(descending).

startRow The row to begin the search results. For example, if a result returns 200
rows, and resultCount is 25, set startRow to 26 to obtain the
second set of results.

31.3.3.11.3 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/"
IdcService="GET_SEARCH_RESULTS">
<idc:document>
<idc:field name="QueryText">
dDocType <Substring> "ADSALES"
</idc:field>
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.11.4 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/"
IdcService="GET_SEARCH_RESULTS">
<idc:document StartRow="1" TotalDocsProcessed="6" TotalRows="0" QueryText="dDocType+
%3cSubstring%3e+%22ADSALES%22" EndRow="25" SearchProviders="Master_on_wharristest"
NumPages="0" PageNumber="1">
<idc:field name="refreshMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="EnterpriseSearchMaxRows">
4
</idc:field>
<idc:field name="FullRequest">
&QueryText=dDocType+%3cSubstring%3e+%22ADSALES%22
</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="changedMonikers">

Chapter 31
Calling Content Server Services with SOAP

31-35

</idc:field>
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="Text2">
<$dDocTitle$>
</idc:field>
<idc:field name="Text1">
<$dDocName$>
</idc:field>
<idc:field name="OriginalQueryText">
dDocType+%3cSubstring%3e+%22ADSALES%22
</idc:field>
<idc:resultset name="SearchResults">
</idc:resultset>
<idc:resultset name="NavigationPages">
</idc:resultset>
<idc:resultset name="Master_on_wharristest">
</idc:resultset>
<idc:resultset name="EnterpriseSearchResults">
<idc:row ProviderName="Master_on_wharristest" IDC_Name="Master_on_wharristest"
TotalRows="0" TotalDocsProcessed="6">
<idc:field name="ProviderDescription">
!csProviderLocalContentServerLabel
</idc:field>
<idc:field name="InstanceMenuLabel">
Master_on_wharristest
</idc:field>
<idc:field name="InstanceDescription">
Master_on_wharristest
</idc:field>
<idc:field name="IntradocServerHostName">
wharristest
</idc:field>
<idc:field name="HttpRelativeWebRoot">
/stellent/
</idc:field>
<idc:field name="IsImplicitlySearched">

</idc:field>
<idc:field name="UserAccounts">
#all
</idc:field>
<idc:field name="IsLocalCollection">
true
</idc:field>
<idc:field name="Selected">

</idc:field>
<idc:field name="StatusMessage">
Success
</idc:field>
<idc:field name="ResultSetName">
Master_on_wharristest
</idc:field>
<idc:field name="SearchCgiWebUrl">
/idcplg/idc_cgi_isapi.dll/stellent/pxs
</idc:field>
</idc:row>
</idc:resultset>
</idc:document>
<idc:user dUser="sysadmin">

Chapter 31
Calling Content Server Services with SOAP

31-36

</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.12 Get Table Data
The GET_TABLE service exports the specified table in the WebCenter Content database.

• Exports the specified table by creating a ResultSet and adding it to the serialized HDA file.
If the table is not found, the service will fail. It is up to the calling program that is receiving
the serialized HDA file to store this ResultSet for later use.

• The most likely error is a table name that does not exist. If this service is unable to
execute, an error message is displayed to the user.

31.3.3.12.1 Required Parameters
These parameters must be specified.

Parameter Description

IdcService Must be set to GET_TABLE.

tableName The name of table to export.

31.3.3.12.2 SOAP Request
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_TABLE">
<idc:document>
<idc:field name="tableName">
DocTypes
</idc:field>
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.12.3 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_TABLE">
<idc:document>
<idc:field name="tableName">
DocTypes
</idc:field>
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>

Chapter 31
Calling Content Server Services with SOAP

31-37

<idc:field name="changedMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:resultset name="DocTypes">
<idc:row dDocType="ADACCT" dDescription="Acme Accounting Department" dGif="adacct.gif">
</idc:row>
<idc:row dDocType="ADCORP" dDescription="Acme Corporate Department" dGif="adcorp.gif">
</idc:row>
<idc:row dDocType="ADENG" dDescription="Acme Engineering Department" dGif="adeng.gif">
</idc:row>
<idc:row dDocType="ADHR" dDescription="Acme Human Resources Department" dGif="adhr.gif">
</idc:row>
<idc:row dDocType="ADMFG" dDescription="Acme Manufacturing Department" dGif="admfg.gif">
</idc:row>
<idc:row dDocType="ADMKT" dDescription="Acme Marketing Department" dGif="admkt.gif">
</idc:row>
<idc:row dDocType="ADSALES" dDescription="Acme Sales Department" dGif="adsales.gif">
</idc:row>
</idc:resultset>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.13 Get Criteria Workflow Information
The GET_CRITERIA_WORKFLOWS_FOR_GROUP service returns criteria workflow information.

• Given a named security group, this service returns a list of workflows and related steps.

• Returns the ResultSets WorkflowsForGroup and WorkflowStepsForGroup:

– WorkflowsForGroup lists all of the workflows for this group (dWfID, dWfName).

– WorkflowStepsForGroup lists all of the steps in all of the workflows for this group
(dWfID, dWfName, dWfStepID, dWfStepName).

• Criteria workflows and subworkflows can be added, edited, enabled, disabled, and deleted
from the Criteria tab of the Workflow Admin administration applet.

• The most likely error is a named security group that does not exist or a user failing the
security check. The service throws reasonable exceptions for display to the user in these
situations.

31.3.3.13.1 Required Parameters
These parameters must be specified.

Parameter Description

dSecurityGroup The security group such as PUBLIC or SECURE.

IdcService Must be set to GET_CRITERIA_WORKFLOWS_FOR_GROUPS.

Chapter 31
Calling Content Server Services with SOAP

31-38

31.3.3.13.2 SOAP Request
<?xml version="1.0" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/"
IdcService="GET_CRITERIA_WORKFLOWS_FOR_GROUP">
<idc:document dSecurityGroup="Public" />
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.3.3.13.3 Response
<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/"
IdcService="GET_CRITERIA_WORKFLOWS_FOR_GROUP">
<idc:document dSecurityGroup="Public">
<idc:field name="changedSubjects">

</idc:field>
<idc:field name="refreshSubjects">

</idc:field>
<idc:field name="loadedUserAttributes">
1
</idc:field>
<idc:field name="changedMonikers">

</idc:field>
<idc:field name="refreshSubMonikers">

</idc:field>
<idc:field name="refreshMonikers">

</idc:field>
<idc:resultset name="WorkflowStepsForGroup">
<idc:row>
<idc:field name="dWfID">
1
</idc:field>
<idc:field name="dWfName">
TestWorkflow
</idc:field>
<idc:field name="dWfStepID">
1
</idc:field>
<idc:field name="dWfStepName">
contribution
</idc:field>
</idc:row>
<idc:row>
<idc:field name="dWfID">
1
</idc:field>
<idc:field name="dWfName">
TestWorkflow
</idc:field>
<idc:field name="dWfStepID">

Chapter 31
Calling Content Server Services with SOAP

31-39

2
</idc:field>
<idc:field name="dWfStepName">
StepOne
</idc:field>
</idc:row>
</idc:resultset>
<idc:resultset name="WorkflowsForGroup">
<idc:row>
<idc:field name="dWfID">
1
</idc:field>
<idc:field name="dWfName">
TestWorkflow
</idc:field>
</idc:row>
</idc:resultset>
</idc:document>
<idc:user dUser="sysadmin">
</idc:user>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

31.4 Using SOAP Packets in Active Server Pages
You can execute Content Server IdcCommand services from an Active Server Page by
encapsulating a SOAP packet that defines the service to execute and the required parameters.
You must have appropriate permissions to execute the commands. Some commands require
administrative access, other commands may require only write permission.

31.4.1 Sample SOAP Request
An Active Server Page can call a service from Content Server. The following description of a
sample service includes the required and optional parameters. It also provides an XML-
formatted version of the embedded SOAP request.

For more information about service calls, including required and optional parameters, see
Sample Service Calls with SOAP Response/Request.

In the following example, an XML-formatted SOAP request uses the GET_SEARCH_RESULTS
service to retrieve the search results for the passed query text.

<?xml version='1.0' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<idc:service xmlns:idc="http://www.oracle.com/IdcService/" IdcService="GET_SEARCH_RESULTS">
<idc:document>
<idc:field name="QueryText">
dDocType <Substring> "ADSALES"
</idc:field>
</idc:document>
</idc:service>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Chapter 31
Using SOAP Packets in Active Server Pages

31-40

31.4.2 Sample Active Server Page
The embedded SOAP request forms the basis of the Active Server Page. The following sample
executes GET_SEARCH_RESULTS.

For more information about service calls and examples of SOAP response and request
messages, see Sample Service Calls with SOAP Response/Request.

<%

‘ Sample ASP page of sending a DOC_INFO Soap request.

Option Explicit

Response.Write("Search Results")

%>

<%

‘ Construct the Soap request.
Dim strSoapRequest, strQueryText

strQueryText = Request.Form("QueryText")
strQueryText = Server.HtmlEncode(strQueryText)

strSoapRequest = "<?xml version='1.0' ?>" _
& "<SOAP-ENV:Envelope xmlns:SOAP-ENV=""http://schemas.xmlsoap.org/soap/envelope/"">" _
& "<SOAP-ENV:Body>" _
& "<idc:service xmlns:idc=""http://www.oracle.com/IdcService/"" IdcService=""GET_SEARCH_RESULTS"">"
_
& "<idc:document>" _
& "<idc:field name=""QueryText"">" & strQueryText & "</idc:field>" _
& "<idc:field name=""SortField"">" & Request.Form("SortField") & "</idc:field>" _
& "<idc:field name=""SortOrder"">" & Request.Form("SortOrder") & "</idc:field>" _
& "<idc:field name=""ResultCount"">" & Request.Form("ResultCount") & "</idc:field>" _
& "<idc:field name=""Auth"">Internet</idc:field>" _
& "</idc:document>" _
& "</idc:service>" _
& "</SOAP-ENV:Body>" _
& "</SOAP-ENV:Envelope>"

‘ Send the Soap request.
Dim objXmlHttp
Set objXmlHttp = Server.CreateObject("MSXML2.ServerXMLHTTP")
objXmlHttp.open "POST", "http://localhost/stellent/idcplg", False, "sysadmin", "idc"
objXmlHttp.setRequestHeader "Content-Type", "text/xml; charset=utf-8"
objXmlHttp.send(strSoapRequest)

‘ Parse the Soap response.
Dim objXmlDoc
Set objXmlDoc = Server.CreateObject("Msxml2.DOMDocument")
objXmlDoc.async = False
objXmlDoc.Load objXmlHttp.responseXml

‘ Check for errors.
Dim strResponseError
strResponseError = objXmlDoc.parseError.reason
If strResponseError <> "" Then
Response.Write(objXmlHttp.ResponseText)
DisplayBackButton()
Response.End
End If

‘ Check for a fault string.
Dim objXmlFaultNode
Set objXmlFaultNode = objXmlDoc.documentElement.selectSingleNode("//SOAP-ENV:Fault/faultstring")

Chapter 31
Using SOAP Packets in Active Server Pages

31-41

If (Not (objXmlFaultNode Is Nothing)) Then
Response.Write(objXmlFaultNode.Text)
DisplayBackButton()
Response.End
End If

‘ Check the status code.
Dim objXmlStatusCodeNode, objXmlStatusMessageNode, strStatusCode, nStatusCode, strStatusMessage
Set objXmlStatusCodeNode = objXmlDoc.documentElement.selectSingleNode("//
idc:field[@name='StatusCode']")
If (Not objXmlStatusCodeNode Is Nothing) Then
nStatusCode = CInt(objXmlStatusCodeNode.Text)
If (nStatusCode < 0) Then
Response.Write(objXmlDoc.documentElement.selectSingleNode("//
idc:field[@name='StatusMessage']").Text)
DisplayBackButton()
Response.End
End If
End If

‘ Display search results
Dim strDocName, strDocTitle, strDocType, strInDate, strComments, nCurRow, nTotalRows
Dim objXmlResultNodeList, objXmlCommentNode

Set objXmlResultNodeList = objXmlDoc.documentElement.selectNodes("//
idc:resultset[@name='SearchResults']/idc:row")
nTotalRows = objXmlResultNodeList.Length

%>
<table>
<tr>
<td>Content ID</td>
<td> </td>
<td>Title</td>
<td> </td>
<td>Type</td>
<td> </td>
<td>Release Date</td>
<td> </td>
<td>Comments</td>
</tr>

<%
For nCurRow = 0 To (nTotalRows - 1)
strDocName = GetXmlNodeValue(objXmlResultNodeList.Item(nCurRow), "dDocName")
strDocTitle = GetXmlNodeValue(objXmlResultNodeList.Item(nCurRow), "dDocTitle")
strDocType = GetXmlNodeValue(objXmlResultNodeList.Item(nCurRow), "dDocType")
strInDate = GetXmlNodeValue(objXmlResultNodeList.Item(nCurRow), "dInDate")
strComments = GetXmlNodeValue(objXmlResultNodeList.Item(nCurRow), "xComments")

%>

<tr>
<td><%=strDocName%></td>
<td> </td>
<td><%=strDocTitle%></td>
<td> </td>
<td><%=strDocType%></td>
<td> </td>
<td><%=strInDate%></td>
<td> </td>
<td><%=strComments%></td>
</tr>
<%
Next
%>

</table>

<%

Chapter 31
Using SOAP Packets in Active Server Pages

31-42

DisplayBackButton()
‘----------------------------
Function GetXmlNodeValue(objXmlRowNode, strNodeName)
‘----------------------------
Dim objXmlNode, objXmlNodeValue

Set objXmlNode = objXmlRowNode.selectSingleNode("@" & strNodeName)
If (objXmlNode Is Nothing) Then
Set objXmlNode = objXmlRowNode.selectSingleNode("idc:field[@name='" & strNodeName & "‘]")
End If

If (Not (objXmlNode Is Nothing)) Then
GetXmlNodeValue = objXmlNode.Text
End If
‘----------------------------
End Function
‘----------------------------

‘----------------------------
Sub DisplayBackButton()
‘----------------------------
%>
<form method=POST action="request.asp">
<table>
<tr>
<td><input type=submit value="Back"></td>
</tr>
</table>
</form>
<%
‘----------------------------
End Sub
‘---------------------------
%>

31.5 Generating WSDL Files to Access WebCenter Content
You can generate WSDL files for interfacing with WebCenter Content services.

31.5.1 Understanding WSDL Files
WSDL files provide the ability to pass data that can be understood by Content Server services,
which enables access to the content and content management functions within WebCenter
Content. The WSDL files provided with the component are stored in the IntradocDir/
weblayout/groups/secure/wsdl/custom/ directory.

These WSDL files are provided with the WSDL Generator component:

• CheckIn.wsdl
• DocInfo.wsdl
• GetFile.wsdl
• MetaData.wsdl
• PortalInfo.wsdl
• Search.wsdl
• Subscription.wsdl
• Workflow.wsdl

Chapter 31
Generating WSDL Files to Access WebCenter Content

31-43

Additional WSDL files can be generated using the Soap Custom WSDL administrative pages.
For more information, see Sample WSDL File.

31.5.1.1 WSDL File Structure
WSDL files are formally structured with elements that contain a description of the data to be
passed to the web service. This structure enables both the sending application and the
receiving application to interpret the data being exchanged.

WSDL elements contain a description of the operation to perform on the data and a binding to
a protocol or transport. This permits the receiving application to both process the data and
interpret how to respond or return data. Additional subelements may be contained within each
WSDL element.

The WSDL file structure includes these major elements:

• Data Types: Generally in the form of XML schema to be used in the messages.

• Message: The definition of the data in the form of a message either as a complete
document or as arguments to be mapped to a method invocation.

• Port Type: A set of operations mapped to an address. This defines a collection of
operations for a binding.

• Binding: The actual protocol and data formats for the operations and messages defined for
a particular port type.

• Service and Port: The service maps the binding to the port and the port is the combination
of a binding and the network address for the communication exchange.

Note:

The following code fragments are from the DocInfo.wsdl file provided with the
WSDL Generator component. For a complete WSDL file, see Sample WSDL
File.

31.5.1.1.1 Data Type
The Data Type <types> defines the complex types and associated elements. Web services
supports both simple data types (such as string, integer, or boolean) and complex data types.
A complex type is a structured XML document that contains several simple types or an array of
subelements.

The following code fragment for the ContentInfo set defines the Name, Title, Author, and
Group elements and specifies that they are strings.

<s:complexType name="ContentInfo">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="dDocName" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="dDocTitle" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="dDocType" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="dDocAuthor" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="dSecurityGroup" type="s:string"/>
</s:sequence>
</s:complexType>

Chapter 31
Generating WSDL Files to Access WebCenter Content

31-44

31.5.1.1.2 Message
The Message <message> defines the data as arguments to be mapped to a method
invocation.

<message name="DocInfoByIDSoapIn">
<part name="parameters" element="s0:DocInfoByID" />
</message>
<message name="DocInfoByIDSoapOut">
<part name="parameters" element="s0:DocInfobyIDResponse" />
</message>

31.5.1.1.3 Port Type
The Port Type <portType> defines a collection of operations for a binding. The DocInfo.wsdl
file provides the DocInfoSoap and the DocInfo operation name (method name) with I/O
information for processing the message.

<portType name="DocInfoSoap">
<operation name="DocInfoByID">
<input message="s0:DocInfoByIDSoapIn" />
<output message="s0:DocInfoByIDSoapOut" />
</operation>
</portType>

Note:

While a port type is a collection of operations (like classes in Java), WSDL is an
independent data abstraction that provides more functionality than simply mapping
to .NET, EJB, or CORBA objects.

31.5.1.1.4 Binding
The binding <binding> defines the actual protocol and data formats for the operations and
messages for the particular port type.

<binding name="DocInfoSoap" type="s0:DocInfoSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />
<operation name="DocInfoByID">
<soap:operation soapAction="http://wwww.oracle.com/Soap/DocInfo/" style="document" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
</binding>

31.5.1.1.5 Service and Port
The service <service> maps the binding to the port. The port is the combination of a binding
and the network address for the communication exchange. The port is used to expose a set of
port types (operations) on the defined transport.

<service name="DocInfo">
<port name="DocInfoSoap" binding="s0:DocInfoSoap">

Chapter 31
Generating WSDL Files to Access WebCenter Content

31-45

<soap:address location="http://myhost.example.com:16200/_dav/cs/idcplg" />
</port>
</service>

Note:

You can add &IsSoap=1 to the URL of a Content Server browser window to view the
underlying SOAP code for that page.

31.5.2 Sample WSDL File
This sample code presents the complete DocInfo.wsdl file. This file and the CheckIn.wsdl,
GetFile.wsdl, and Search.wsdl files are found in the IntradocDir/weblayout/groups/secure/wsdl/
custom directory for the Content Server instance.

<?xml version='1.0' encoding='utf-8' ?>
<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:s0="http://wwww.oracle.com/DocInfo/"
targetNamespace="http://wwww.oracle.com/DocInfo/"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<types>
<s:schema elementFormDefault="qualified" targetNamespace="http://www.oracle.com/DocInfo/">
<s:element name="DocInfoByID">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="dID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="extraProps" type="s0:IdcPropertyList" />
</s:sequence>
</s:complexType>
</s:element>
<s:element name="DocInfoByIDResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="DocInfoByIDResult" type="s0:DocInfoByIDResult" />
</s:sequence>
</s:complexType>
</s:element>
<s:complexType name="DocInfoByIDResult">
<s:sequence>
<s:element minOccurs="0" maxOccurs="unbounded" name="ContentInfo" type="s0:ContentInfo" />
<s:element minOccurs="0" maxOccurs="unbounded" name="Revisions" type="s0:Revisions" />
<s:element minOccurs="0" maxOccurs="unbounded" name="WorkflowInfo" type="s0:WorkflowInfo" />
<s:element minOccurs="0" maxOccurs="1" name="StatusInfo" type="s0:StatusInfo" />
</s:sequence>
</s:complexType>
<s:element name="DocInfoByName">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="dDocName" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="extraProps" type="s0:IdcPropertyList" />
</s:sequence>
</s:complexType>
</s:element>
<s:element name="DocInfoByNameResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="DocInfoByNameResult" type="s0:DocInfoByNameResult" />
</s:sequence>
</s:complexType>
</s:element>
<s:complexType name="DocInfoByNameResult">

Chapter 31
Generating WSDL Files to Access WebCenter Content

31-46

<s:sequence>
<s:element minOccurs="0" maxOccurs="unbounded" name="ContentInfo" type="s0:ContentInfo" />
<s:element minOccurs="0" maxOccurs="unbounded" name="Revisions" type="s0:Revisions" />
<s:element minOccurs="0" maxOccurs="unbounded" name="WorkflowInfo" type="s0:WorkflowInfo" />
<s:element minOccurs="0" maxOccurs="1" name="StatusInfo" type="s0:StatusInfo" />
</s:sequence>
</s:complexType>
<s:complexType name="ContentInfo">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="dDocName" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dDocTitle" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dDocType" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dDocAuthor" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dSecurityGroup" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dDocAccount" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dRevClassID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dRevisionID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dRevLabel" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dIsCheckedOut" type="s:boolean" />
<s:element minOccurs="0" maxOccurs="1" name="dCheckoutUser" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dCreateDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dInDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dOutDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dStatus" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dReleaseState" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dFlag1" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWebExtension" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dProcessingState" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dMessage" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dReleaseDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dRendition1" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dRendition2" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dIndexerState" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dPublishType" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dPublishState" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dDocID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dIsPrimary" type="s:boolean" />
<s:element minOccurs="0" maxOccurs="1" name="dIsWebFormat" type="s:boolean" />
<s:element minOccurs="0" maxOccurs="1" name="dLocation" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dOriginalName" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dFormat" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dExtension" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dFileSize" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="CustomDocMetaData" type="s0:IdcPropertyList" />
</s:sequence>
</s:complexType>
<s:complexType name="Revisions">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="dFormat" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dInDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dOutDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dStatus" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dProcessingState" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dRevLabel" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dDocName" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dRevisionID" type="s:int" />
</s:sequence>
</s:complexType>
<s:complexType name="WorkflowInfo">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="dWfID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dDocName" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfDocState" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfComputed" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfCurrentStepID" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="dWfDirectory" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dClbraName" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfName" type="s:string" />

Chapter 31
Generating WSDL Files to Access WebCenter Content

31-47

<s:element minOccurs="0" maxOccurs="1" name="dWfDescription" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dCompletionDate" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dSecurityGroup" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfStatus" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dWfType" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dProjectID" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="dIsCollaboration" type="s:boolean" />
</s:sequence>
</s:complexType>
<s:complexType name="StatusInfo">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="statusCode" type="s:int" />
<s:element minOccurs="0" maxOccurs="1" name="statusMessage" type="s:string" />
</s:sequence>
</s:complexType>
<s:complexType name="IdcPropertyList">
<s:sequence>
<s:element minOccurs="0" maxOccurs="unbounded" name="property" type="s0:IdcProperty" />
</s:sequence>
</s:complexType>
<s:complexType name="IdcProperty">
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="name" type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="value" type="s:string" />
</s:sequence>
</s:complexType>
</s:schema>
</types>
<message name="DocInfoByIDSoapIn">
<part name="parameters" element="s0:DocInfoByID" />
</message>
<message name="DocInfoByIDSoapOut">
<part name="parameters" element="s0:DocInfoByIDResponse" />
</message>
<message name="DocInfoByNameSoapIn">
<part name="parameters" element="s0:DocInfoByName" />
</message>
<message name="DocInfoByNameSoapOut">
<part name="parameters" element="s0:DocInfoByNameResponse" />
</message>
<portType name="DocInfoSoap">
<operation name="DocInfoByID">
<input message="s0:DocInfoByIDSoapIn" />
<output message="s0:DocInfoByIDSoapOut" />
</operation>
<operation name="DocInfoByName">
<input message="s0:DocInfoByNameSoapIn" />
<output message="s0:DocInfoByNameSoapOut" />
</operation>
</portType>
<binding name="DocInfoSoap" type="s0:DocInfoSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />
<operation name="DocInfoByID">
<soap:operation soapAction="http://www.oracle.com/DocInfo/" style="document" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
<operation name="DocInfoByName">
<soap:operation soapAction="http://www.oracle.com/DocInfo/" style="document" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>

Chapter 31
Generating WSDL Files to Access WebCenter Content

31-48

</binding>
<service name="DocInfo">
<port name="DocInfoSoap" binding="s0:DocInfoSoap">
<soap:address location="http://myhost.example.com:16200/_dav/cs/idcplg/idc_cgi_isapi.dll" />
</port>
</service>
</definitions>

31.5.3 Generating WSDL Files
When the WSDL Generator component is installed and enabled during Oracle WebCenter
Content installation, several folders and related HDA files are generated that expose several
services as web services. Two directories are created in the IntradocDir/data/soap directory.
The generic directory contains a generic.hda file, and the custom directory contains a
wsdl_custom.hda file. Administrators can customize or add WSDL files using the Soap Wsdl
administration pages. These pages are accessed by clicking the Soap WSDL link from the
Administration section of the Admin Applet page.

Note:

The WSDL Generator component must be enabled to generate WSDL files.

For step-by-step instructions on creating and editing a custom WSDL using the Soap Custom
Wsdl administration pages, see Customizing WSDL Files.

31.5.4 Generating Proxy Class from WSDL Files
Using the WSDL files, developers may choose to create proxy classes to plug into a
development tool. A number of software products and tool kits are available for converting
WSDL files to programming class files in languages such as Java, Visual Basic, and C#. For
example, Apache AXIS provides a SOAP to Java toolkit, and Microsoft .NET Development
Environment provides functionality to convert WSDL files to C#.

If you are using Microsoft .NET, you can use utilitywsdl.exe to generate the proxy classes:

wsdl /l:CS DocInfo.wsdl

This utility generates the file DocInfoService.cs (C# class) which contains the class
DocInfoService and the function DocInfo with the parameters specified. The return value is
the DocInfoSet class, which is all the response parameters specified, along with ErrorCode
and ErrorMessage values. If the ErrorCode is less than zero, an error has occurred in the
service call, and you can see the specifics of it in the value of ErrorMessage.

Note:

In addition to the WSDL files provided with the WSDL Generator component, you can
generate WSDL files for any WebCenter Content service. For more information, see
Generating WSDL Files.

Chapter 31
Generating WSDL Files to Access WebCenter Content

31-49

31.6 Customizing WSDL Files
The Soap Custom Wsdl administration pages provide an administrator with the ability to edit
and customize WSDL files. This chapter provides an administrative tutorial that gives step-by-
step instructions on creating and editing a custom WSDL.

The WSDL Generator component must be enabled to generate WSDL files. In addition to the
WSDL files provided with the WSDL Generator component, you can generate additional WSDL
files for any WebCenter Content service. See Generating WSDL Files, for additional
information.

For a list of available services and the required parameters, see List of Oracle WebCenter
Content Services in Oracle Fusion Middleware Services Reference for Oracle WebCenter
Content.

To create and edit a custom WSDL file with the Soap Custom WSDL administration pages:

1. In a web browser, log in to Oracle WebCenter Content Server as an administrator.

2. From the Administration tray or menu, choose Soap Wsdls.

This option displays the Wsdl List page, which Figure 31-3 shows.

Figure 31-3 Wsdl List Page

3. From the Actions menu, choose Data Lists.

This option displays the Data Lists page, which Figure 31-4 shows.

Chapter 31
Customizing WSDL Files

31-50

Figure 31-4 Data Lists Page

Note:

System-specific WSDLs cannot be deleted. You can, however, edit the WSDL
and enable or disable the complex type elements for that WSDL.

Data Lists are global lists of data that can be used with complex types, service parameters,
or other Data Lists. When a Data List is specified as a parameter or a subtype of a
complex type, all the subtypes of the Data List will appear as data types. Data Lists are
defined once but can be referenced multiple times with different WSDLs and services. All
the Data Lists have a prefix of "d:" in the data type list.

4. Choose Add Data List from the Actions menu.

The Add Data List page is displayed.

5. Enter the following information:

Name: UserMetaFields
Description: User Metadata Fields

6. Click Add.

7. In the Data List Elements Name column, enter the following names for user metadata
fields:

• dName
• dFullName

Chapter 31
Customizing WSDL Files

31-51

• dPassword
• dEmail
• dUserAuthType
For each name, choose field:string from the menu in the Type column, and make sure
Enabled is selected, as Figure 31-5 shows.

Figure 31-5 Data List Elements

8. Click Update.

You are returned to the updated Data Lists page. Note that UserMetaFields now appears
at the bottom of the list.

9. Choose Wsdl List from the Actions menu.

The Wsdl List page is displayed again, as Figure 31-6 shows.

Figure 31-6 Wsdl List Page Redisplayed

10. Choose Add Wsdl from the Actions menu.

The Add Wsdl page is displayed.

Chapter 31
Customizing WSDL Files

31-52

11. Enter the following information:

Name: UserInfo

Description: User Services

12. Click Add.

The Wsdl Information page is displayed, as Figure 31-7 shows.

Figure 31-7 Wsdl Information Page

13. Choose Add Complex Type from the Actions menu.

The Add Complex Type page is displayed.

Note:

Complex types contain other data types as subtypes. After these are created,
any service in the WSDL can use these complex types as parameters.

14. Enter the following Complex Type information:

Name: UserAttribInfo

Type: Choose resultset from the menu.

15. Click Add.

The Wsdl Information page is displayed again, as Figure 31-8 shows.

Chapter 31
Customizing WSDL Files

31-53

Figure 31-8 Wsdl Information Page Redisplayed

16. Click Edit on the UserAttribInfo line.

The Complex Type Information/Complex Type Elements page opens.

17. Enter the following Complex Type Elements, and choose the Type value for each one from
the menu.

Name Type Idc Name

dUserName field:string -

AttributeInfo field:string -

18. Click Update in the Complex Type Elements section.

You are returned to the updated Wsdl Information page. Note that User AttribInfo now
appears as a complex type.

19. Choose Add Service from the Actions menu.

The Add Service page opens.

20. Enter the following information:

Name: AddUser

IdcService: ADD_USER

21. Click Add.

The Wsdl Information page opens.

22. Choose Edit for the AddUser service.

This option displays the Service Information page, which Figure 31-9 shows.

Chapter 31
Customizing WSDL Files

31-54

Figure 31-9 Service Information Page

Note:

When you create a WSDL, you create services that correspond to the
IdcServices feature of Content Server. You also specify the request and response
parameters that you want the service to pass and receive from the Web Service
call.

23. Choose Update Request Parameters from the Actions menu.

The Request Parameters page is displayed.

24. Enter the following information, selecting the Type from the menu.

Name Type Idc Name

DataList d:UserMetaFields -

CustomUserData propertylist:CustomUserMeta -

25. Click Update.

You are returned to the updated Service Information page. Note that DataList and
CustomUserData now appear in the Request Parameters section.

26. Click Update.

You are returned to the updated Wsdl Information page, showing the service that you just
added.

27. Click Update again.

You are returned to the updated Wsdl List page. UserInfo appears at the bottom of the list.

28. Choose Generate Wsdls from the Actions menu.

A confirmation message displays after the Wsdls are generated successfully.

29. Click Back.

You are returned to the Wsdl List page.

30. Click the UserInfo link in the Name column.

Chapter 31
Customizing WSDL Files

31-55

The source code for the generated Wsdl file is displayed.

Partial Source Code, Wsdl File
 <?xml version="1.0" encoding="utf-8" ?>
- <definitions xmins:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:soap="http://schemas.smlsoap.org/wsdl/soap/"
 xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:s0="http://www.example.com/UserInfo/"
 targetNamespace="http://www.example.com/UserInfo/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 - <types>
 - <s:schema elementFormDefault="qualified"
 targetNamespace="http://www.example.com/UserInfo/">
 - <s:element name="AddUser">
 - <s:complexType>
 - <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="dName"
 type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="dFullName"
 type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="dPassword"
 type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="dEmail"
 type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="dUserAuthType"
 type="s:string: />
 <s:element minOccurs="0" maxOccurs="1" name="CustomUserData"
 type="s0:IdcPropertyList" />
 <s:element minOccurs="0" maxOccurs="1" name="extraProps"
 type="s0:IdcPropertyList" />
 </s:sequence>
 </s:complexType>
 </s:element>

31. Click the browser Back button.

You are returned to the Soap Custom Wsdl page.

Tip:

You can right click View and save the WSDL file to your desktop (for use
with .NET, and so on). However, be sure to save the file with the .wsdl file
extension rather than the default .xml file extension.

Chapter 31
Customizing WSDL Files

31-56

32
Customizing the DesktopTag Component

This chapter describes how to customize the DesktopTag component of Oracle WebCenter
Content Server to specify properties for checked out versions of Microsoft Word, Excel, and
PowerPoint files.

This chapter includes the following sections:

• About the DesktopTag Component

• Enabling the DesktopTag and OracleCleanContent Components

• Checking Out and Checking In Content Items with DesktopTag

• Adding Properties to Checked-Out Content Items

• Configuring the DesktopTag Component

32.1 About the DesktopTag Component
DesktopTag is a Content Server component that manages custom properties in files created
using the default formats of Microsoft Office applications (2002 or later versions). The
component adds custom properties to Word documents (DOC, DOCX, and DOT files), Excel
spreadsheets (XLS, XLSX, and XLT files), and PowerPoint presentations (PPT and PPTX files)
when they are checked out of Content Server, and removes this information when they are
checked in again.

The properties to be added to the Microsoft Office files are specified in the DesktopTag
configuration file. For more information, see Configuring the DesktopTag Component.

The custom properties provide information about where a content item resides in Content
Server so that the file can be checked in to the right location, with the right content
management parameters, and so on. This is particularly useful if the content item is processed
outside of Content Server after check-out; for example, in an external workflow (that is, one
that is not managed by Content Server). Also, the information can be exposed to users; for
example, in the task area of Microsoft Office applications.

DesktopTag uses the Oracle Clean Content technology to add custom properties to and
remove them from Microsoft Office files.

32.2 Enabling the DesktopTag and OracleCleanContent
Components

The DesktopTag component is included with Content Server 11gR1+. It must be enabled on
Content Server because it is not enabled by default. The DesktopTag component requires that
the OracleCleanContent component is enabled as well. The OracleCleanContent component is
enabled with typical Content Server installations.

You can enable components using Component Manager, which is accessible through the
Administration, Admin Server, Component Manager menu option. For more information
about enabling components, see Enabling and Disabling a Component in Oracle Fusion
Middleware Administering Oracle WebCenter Content.

32-1

DesktopTag can add custom properties to the following Microsoft Office applications:

• Microsoft Word 2002 (XP) and later versions

• Microsoft Excel 2002 (XP) and later versions

• Microsoft PowerPoint 2002 (XP) and later versions

32.3 Checking Out and Checking In Content Items with
DesktopTag

The DesktopTag component modifies the check-out (file get) and check-in operations for
Content Server.

32.3.1 File Get Operation
The DesktopTag component installs a service handler override for the createFileName
method, which should be called for all file get operations that go through the server (native
URL requests do not call this method). If the file type is supported by the configuration, a set of
custom properties are added to the file. These custom properties are used in various ways by
the DesktopIntegrationSuite component and are made available to other components.

32.3.2 File Check-In Operation
The DesktopTag component installs an extension filter that hooks the validateCheckinData
filter, which is part of the DesktopIntegrationSuite component. It removes the custom properties
that were added by a file get operation before the data is checked in to the server.

The ResultSet returned for this operation includes the properties that would be added to the
Microsoft Office file in a subsequent file get operation. This is provided to allow the client to
modify the file rather than having to get a new copy. This method calls the desktopTagGetFilter
extension filter, just like the file get operation.

32.4 Adding Properties to Checked-Out Content Items
The functionality offered by the DesktopTag component is provided entirely in the background.
There is no direct user interaction. It is typically used for content tracking purposes, although
the information can be exposed to users.

The properties that are added to the Microsoft Office files depend on the settings in the
DesktopTag configuration file (see Configuring the DesktopTag Component). In Figure 32-2,
the content ID (dDocName), user name (dUser), and unique content item identifier (dID) are
added to the Word document. The DISProperties custom property is always added. It lists all
custom properties added by DesktopTag (as specified in the configuration file), and is used to
ensure that the correct custom properties are deleted when a file is checked into Content
Server again.

Figure 32-1 shows an example of a Word 2003 document without any custom properties that
DesktopTag would add.

Chapter 32
Checking Out and Checking In Content Items with DesktopTag

32-2

Figure 32-1 Word 2003 Document Without Custom Properties Added by DesktopTag

Figure 32-2 shows a number of custom properties added to a Word 2003 document.

Figure 32-2 Word 2003 Document with Custom Properties Added by DesktopTag

Chapter 32
Adding Properties to Checked-Out Content Items

32-3

32.4.1 Viewing Custom Properties
Users can view the custom properties of a Microsoft Office file as follows:

• Microsoft Office XP (2002) and 2003: Choose File, then Properties, and then click the
Custom tab.

• Microsoft Office 2007: Click the Office button in the application, then choose Prepare,
then Properties, then Document Properties, then Advanced Properties, and then click
the Custom tab.

• Microsoft Office 2010: Open the File panel, then click Info, then Properties, then
Advanced Properties, and then click the Custom tab.

Figure 32-3 shows the custom properties that DesktopTag has added to a Word 2003
document.

Figure 32-3 Custom Document Properties (Microsoft Word 2003)

32.4.2 Checking In Documents from Outside Content Server
These custom document properties enable Oracle Webcenter Content: Desktop to keep track
of where a managed file resides in Content Server. This, in turn, enables users to check a
Microsoft Office document back in to Content Server even from outside a content management
integration context.

Chapter 32
Adding Properties to Checked-Out Content Items

32-4

To check in a document, the user must have a connection to the server set up. The Office add-
in looks at the CGI URL, Server, and IDCNAME properties to try to match the document to a
server, so the user must be on the same network and have access to the server.

This feature can be useful in a number of situations; for example:

• A user receives a managed Word document from someone else, as an attachment to an
email.

• A user copies a managed Word document from a server in the integration hierarchy to a
folder outside that hierarchy.

In either case, users can open the file in Microsoft Word, make changes, and then check the
file back in to the server using the Oracle WebCenter Content menu or ribbon in Word.
Desktop checks the custom properties embedded in the Word document to find out where to
upload the file to.

32.5 Configuring the DesktopTag Component
The DesktopTag component is configured using a configuration file,
desktoptag_environment.cfg, which is located in the component installation directory. This is
a plain-text file that you can edit in any text editor. The component installation directory is
MW_HOME/WCC_ORACLE_HOME/ucm/idc/components/DesktopTag.

Note:

Make sure that you restart Content Server after making changes to the DesktopTag
configuration file.

The following properties can be set in the configuration file:

• DesktopTagFormats
• DesktopTagPrefix
• DesktopTagFields
• DesktopTagPrefixCustom
• DesktopTagFieldsCustom
• DesktopTagPrefixExtended
• DesktopTagFieldsExtended
• DefaultTaskPaneUrl
• DesktopTagLog
• DesktopTagFormatsExclude

32.5.1 DesktopTagFormats Property
The value of the DesktopTagFormats property is a comma-separated list of MIME data types
that are processed for tagging. If the data type is not in the list, it is not processed. If this
parameter is commented out (using #), empty, or not included in the configuration file at all,
then all supported data types are processed.

Chapter 32
Configuring the DesktopTag Component

32-5

Example: DesktopTagFormats=application/msword,application/ms-excel
If you include a nonsupported MIME data type in the list, DesktopTag will attempt to process
the file, and an error event is included in the log file if logging is enabled.

32.5.2 DesktopTagPrefix Property
The value of the DesktopTagPrefix property is the prefix added to the names of all standard
Content Server metadata fields in the list of standard DesktopTag fields (see DesktopTagFields
Property). This prefix is not added if a specific property name is defined.If this parameter is
commented out (using #), empty, or not included in the configuration file at all, then DIS is used
as the default.

Example: DesktopTagPrefix=STD

32.5.3 DesktopTagFields Property
The value of the DesktopTagFields property is a comma-separated list of all standard Content
Server metadata fields that are added to Microsoft Office files as custom properties. You
should use the server-internal field names (for example, dDocName for the content ID). For
information about the internal field names of the standard metadata field, see Configuration
Variables in Oracle Fusion Middleware Configuration Reference for Oracle WebCenter
Content.

You can set a specific property name for a metadata field by adding it in parentheses after the
field name. This is especially useful if the property name will be exposed to end users (for
example, in the task area in Microsoft Office 2007 applications).

Example: DesktopTagFields=dID,dDocName,dUser(User Name)
Figure 32-4 shows the result of the preceding DesktopTagFields definition (assuming the
default DIS prefix is used).

Figure 32-4 Example of Property Names

Note:

The DISProperties custom property is always added. Its value is a list of all
properties added by DesktopTag.

32.5.4 DesktopTagPrefixCustom Property
The value of the DesktopTagPrefixCustom property is the prefix added to the names of all
custom Content Server metadata fields in the list of custom DesktopTag fields (see

Chapter 32
Configuring the DesktopTag Component

32-6

DesktopTagPrefixCustom Property). This prefix is not added if a specific property name is
defined.

If this parameter is commented out (using #), empty, or not included in the configuration file at
all, then DISC is used as the default.

Example: DesktopTagPrefixCustom=CST

32.5.5 DesktopTagFieldsCustom Property
The value of the DesktopTagFieldsCustom property is a comma-separated list of all custom
Content Server metadata fields that will be added to Microsoft Office files as custom properties.
You define these fields in exactly the same manner as standard metadata fields (see
DesktopTagFields Property).

Example: DesktopTagFieldsCustom=xComments(Extra Info),xArchiveStatus

Note:

The standard and custom Content Server metadata fields are processed exactly the
same by DesktopTag. The separate configuration entries are there only to make it
easier to distinguish between these fields.

32.5.6 DesktopTagPrefixExtended Property
The value of the DesktopTagPrefixExtended property is the prefix added to the names of all
custom Content Server metadata fields in the list of extended DesktopTag fields (see
DesktopTagFieldsExtended Property). This prefix is not added if a specific property name is
defined.

If this parameter is commented out (using #), empty, or not included in the configuration file at
all, then DISX is used as the default.

Example: DesktopTagPrefixExtended=EXT

32.5.7 DesktopTagFieldsExtended Property
The value of the DesktopTagFieldsExtended property is a comma-separated list of property
definitions that come from the ExtendedUserAttributes component. The general form of a
property definition is type/key/subkey(name). The type, key, and subkey values are the
parameters used by the EC_GET_PROPERTY service. If any of these values begins with the
character @, then the parameter value is taken from the specified Content Server metadata
field (see the following example).

You can set a specific property name for a metadata field by adding it in parentheses after the
field name.

Example: DesktopTagFieldsExtended=account/@dSecurityGroup/WCTPUrl
(DIS_Task_Pane_Url)
This example specifies that the property will be named DIS_Task_Pane_Url, and its value will
be the ExtendedUserAttributes item with the type account, the key value specified by the
dSecurityGroup metadata field (the security group of the content item), and the subKey
WCTPUrl.

Chapter 32
Configuring the DesktopTag Component

32-7

32.5.8 DefaultTaskPaneUrl Property
The value of the DefaultTaskPaneUrl property is a string that defines the default URL to use in
setting the DISTaskPaneUrl property, which is required to display a web page for a file in the
task area of Microsoft Office applications. Any words beginning with the character @ are
replaced by the values from the binder or by other means (currently, this applies only to
@cgiUrl).

Example: DefaultTaskPaneUrl=@cgiUrl?IdcService=GET_TASK_PANE &dID=@dID
In this example, @cgiUrl would be replaced by the Content Server Cgi URL value, and @dID
would be replaced by the value of the server-internal, unique content item identifier (dID).

As another example, if there is an extended user attribute called WebCenterUrl, then adding
the string "WebCenterUrl(DISTaskPaneUrl)" will set the DISTaskPaneUrl property to the value
of the extended user attribute called WebCenterUrl.

32.5.9 DesktopTagLog Property
The value of the DesktopTagLog property is a Boolean value that indicates whether or not to
log the operations and results of the DesktopTag component (1 = yes, 0 = no).

If this parameter is commented out (using #), empty, or not included in the configuration file at
all, then the component operations and results are not logged. The DesktopTag log information
is included in the standard Content Server log files (accessible from the server's administration
pages), as Figure 32-5 shows.

Figure 32-5 DesktopTag Event in Content Server Log File

32.5.10 DesktopTagFormatsExclude Property
The value of the DesktopTagFormatsExclude property is a comma-separated list of MIME data
types that are not processed for tagging. If the data type is not in the list, it is processed.

Example: DesktopTagFormatsExclude=application/ms-excel
There is no reason to use both DesktopTagFormats and DesktopTagFormatsExclude.

Chapter 32
Configuring the DesktopTag Component

32-8

Part VIII
Appendices

This part includes appendices that provide additional information.

Part VIII contains the following appendices:

• Idoc Script Functions and Variables

• Building a Website

• Troubleshooting

A
Idoc Script Functions and Variables

This appendix provides information about Idoc Script functions and variables, which you can
use for customizing Oracle WebCenter Content.
Idoc Script has many built-in global functions. Functions perform actions, including string
comparison and manipulation routines, date formatting, and ResultSet manipulation. Some
functions also return results, such as the results of calculations or comparisons.

Information is passed to functions by enclosing the information in parentheses after the name
of the function. Pieces of information that are passed to a function are called parameters.
Some functions do not take parameters; some functions take one parameter; some take
several. There are also functions for which the number of parameters depends on how the
function is being used.

In addition to the built-in global functions, you can define new global functions, including
custom classes, with Java code. For more information, see Getting Started with Content
Server Components, and Creating Custom Components.

Along with built-in functions, Idoc Script uses a range of variables. Variables which are used
within Idoc scripts include dynamic variables, conditional dynamic variables, and page display
variables. Many of these variables can be used both within scripts and specified individually in
the WebCenter Content config.cfg and intradoc.cfg files, or used in a web browser URL.

For details about variables that are used only in .cfg files or in a web browser URL, see
Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content.

A.1.1 abortToErrorPage()
Aborts the current page and displays an error message.

• This function evaluates the StatusCode variable, and if a negative numeric value (-1) is
returned, substitutes the display of the current page with an error page.

• The StatusMessage variable can be used as the error message string.

Type and Usage

• Global Functions

• Page Display Variables

Parameters

The only parameter is the error message string.

Output

Returns the error message string on an error page.

Example

Aborts the current page and displays Access Denied as an error message:

A-1

<$abortToErrorPage("Access Denied")$>

Aborts the current page and displays the value of the StatusMessage variable as an error
message:

<$abortToErrorPage("<$StatusMessage$>")$>

See Also

• executeService()

• IsRequestError

• StatusCode

• StatusMessage

A.1.2 addEmptyOption
Specifies that a metadata field option list has blank value as the first option in the list.

Type and Usage

• Field Display Variables

• Other Field Display Variables

Output

• Returns TRUE if the first value in the option is blank.

• Returns FALSE if the first value in the option list is not blank.

Example

Specifies that the first value in the option list is blank:

<$if ForceDocTypeChoice and isTrue(ForceDocTypeChoice)$>
 <$addEmptyOption = 1$>
<$endif$>

See Also

• fieldIsOptionList

A.1.3 AdminAtLeastOneGroup
Checks if the current user has the admin role for at least one security group.

Type and Usage

• Conditional Dynamic Variables

• Internal Security

• Users

Output

• Returns TRUE if the user is an administrator for at least one security group.

• Returns FALSE if the user is not assigned the admin role.

Appendix A
addEmptyOption

A-2

Example

Can be used to do an optional presentation for an administrator:

<$if (AdminAtLeastOneGroup)$>
 <a href="<$redirect$>">
<$endif$>

See Also

• UserAppRights

• UserIsAdmin

A.1.4 AdsSimpleAuth
Specifies whether Oracle WebCenter Content Server roles and accounts are derived from
Active Directory groups.

• When set to TRUE, only user passwords are authenticated from Active Directory; roles and
accounts must be derived from another user base (such as an LDAP server).

• When set to FALSE, roles and accounts are derived from Active Directory groups.

• Default is FALSE.

Type and Usage

• Configuration Variables, described inOracle Fusion Middleware Configuration Reference
for Oracle WebCenter Content

• External Security

Location

instance_dir/data/users/config/filter.hda

Example

Used as a configuration entry:

AdsSimpleAuth=true

A.1.5 AdsUserName
Specifies a user name that has Read permission for Active Directory.

• This setting is required only if the web server is running on a Windows Server that does not
have Read permission to Active Directory.

• The user name must be in the form DOMAIN_NAME\user_name.

• If this setting and the AdsUserPassword setting are not specified, the default is the user
name that the web server runs under.

Usage

• External Security

Appendix A
AdsSimpleAuth

A-3

Location

• Active Directory Configuration page-User Name

• instance_dir/data/users/config/filter.hda

Example

Used as a configuration entry:

AdsUserName=CORP_DOMAIN\admin_user

See Also

• AdsUserPassword

A.1.6 AdsUserPassword
Specifies the password for the AdsUserName setting, which specifies a user name that has
Read permission for Active Directory.

• This setting is required only if the web server is running on a Windows Server that does not
have Read permission to Active Directory.

• If the AdsUserName setting and this setting are not specified, the default is the user name
that the web server runs under.

Type and Usage

• Configuration Variables described in Oracle Fusion Middleware Configuration Reference
for Oracle WebCenter Content

• External Security

Location

• Active Directory Configuration page-User Password

• instance_dir/data/users/config/filter.hda

Example

Used as a configuration entry:

AdsUserPassword=idc

See Also

• AdsUserName

A.1.7 AfterLogin
Specifies whether the current page was created immediately after a login.

Type and Usage

• Conditional Dynamic Variables

• Page Display Variables

Appendix A
AdsUserPassword

A-4

Output

• Returns TRUE if the page was created immediately after a login.

• Returns FALSE if the page was not created immediately after a login.

Example

Displays an alternate URL if the page was not created immediately after a login:

<$if not AfterLogin$>
 <a href="<$redirect$>">
<$endif$>

A.1.8 AllowCheckin
Checks if the current user has checkin permission for the content item's security group.

Type and Usage

• Conditional Dynamic Variables

• Internal Security

• Users

Output

• Returns TRUE if the user has checkin permission.

• Returns FALSE if the user does not have checkin permission.

Example

Can be used to do an optional presentation for a user with checkin permission:

<$if (AllowCheckin)$>
 <a href="<$redirect$>">
<$endif$>

A.1.9 AllowCheckout
Checks whether current user has checkout permission for the content item's security group.

Type and Usage

• Conditional Dynamic Variables

• Internal Security

• Users

Output

• Returns TRUE if the user has checkout permission.

• Returns FALSE if the user does not have checkout permission.

Example

Can be used to do an optional presentation for a user with checkout permission:

Appendix A
AllowCheckin

A-5

<$if (AllowCheckout)$>
 <a href="<$redirect$>">
<$endif$>

A.1.10 AllowIntranetUsers
Checks if Microsoft network (NTLM) authentication is enabled.

Type and Usage

• Dynamic Variables

• External Security

Output

• Returns TRUE if NtlmSecurityEnabled is set to TRUE.

• Returns FALSE if NtlmSecurityEnabled is set to TRUE.

Example

Evaluates Microsoft network security:

<$AllowIntranetUsers$>

See Also

• NtlmSecurityEnabled in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content.

A.1.11 AllowReview
Checks if the current user is allowed to approve or reject the current workflow item.

Type and Usage

• Conditional Dynamic Variables

• Workflows

Output

• Returns TRUE if the user is a reviewer for the current workflow step.

• Returns FALSE if the user is not a reviewer for the current workflow step.

Example

Displays Approve and Reject buttons if the user is a reviewer:

<$if AllowReview$>
 <$include workflow_doc_action_buttons$>
<$endif$>

A.1.12 AuthorAddress
Specifies the email address of the author of a content item.

Appendix A
AllowIntranetUsers

A-6

Type and Usage

• Value Variables

• Users

Output

Returns a string or Boolean value depending on use.

• Standard use: Returns the email address of the content item's author as a string.

• Used in a conditional statement:

– Returns TRUE if the content item author has a defined email address.

– Returns FALSE if the content item author has no email address.

Example

Can be used to alert the content item author through email when a revision is made.

<$AuthorAddress$>

A.1.13 AuthorDelete
Enables authors to delete their own revisions without Delete permission to the security group.

• When set to TRUE, authors can delete their own revisions without Delete permission to the
security group.

• Default is an empty string.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Internal Security

Location

• System Properties, Content Security tab, Allow author to delete revision

• Administration, Admin Server, Content Security menu option, Allow author to delete
revision

• IntradocDir/config/config.cfg

Example

As a configuration entry:

AuthorDelete=true

As Idoc Script:

<$if AuthorDelete$>
 <$AuthorDelete$>
<$else$>
 false
<$endif$>

Appendix A
AuthorDelete

A-7

A.1.14 AutoNumberPrefix
Defines the prefix that will be added to all automatically numbered content IDs.

• Returns the automatic numbering prefix (returns value in configuration settings).

• Returns a string.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Content Items

Location

• System Properties, Options tab, Auto Name Prefix

• Administration, Admin Server, General Configuration menu option, Auto Number
Prefix

• IntradocDir/config/config.cfg

Example

As a configuration setting, defines the automatic numbering prefix:

AutoNumberPrefix=HR

As Idoc Script, returns the value of the configuration setting:

<$AutoNumberPrefix$>

See Also

• "IsAutoNumber" in the Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

A.1.15 BatchLoaderPath
Defines the path to the default batch load text file.

Returns the file path as a string.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Batch Loader

Location

DomainHome/ucm/cs/bin/intradoc.cfg

Example

• As a Windows configuration entry:

BatchLoaderPath=c:/domain/BatchLoader/batchfile.txt

Appendix A
AutoNumberPrefix

A-8

• As a Solaris/UNIX configuration entry:

BatchLoaderPath=/u1/intradoc3/batLd/batchfile
• As Idoc Script, returns the file path as a string:

<$BatchLoaderPath$>

A.1.16 break()
Often used to terminate a loop.

• The break instruction causes the innermost loop to be exited.

• Control resumes with the first statement following the end of the loop.

Type and Usage

• Global Functions

• Idoc Script

A.1.17 BrowserVersionNumber
Retrieves the version number of the client browser.

Type and Usage

• Dynamic Variables

• Clients

Output

Returns the browser version number as a string.

Example

Can be used to ensure that the user has a browser version compatible with Oracle WebCenter
Content Server.

<$BrowserVersionNumber$>

A.1.18 c
Specifies a comment in Idoc Script code.

Type and Usage

• Idoc Script Comments

• Idoc Script

Example

Places a comment in the code:

<$c = "Sets the variables to empty strings."$>

Appendix A
break()

A-9

A.1.19 cacheInclude()
This function acts similar to the inc() Idoc Script function. It will evaluate the dynamic HTML
include corresponding to includeName and display it on the page. The difference is that if
possible, it will pull the rendered html from a cache, instead of evaluating it again.

For more information, see Keywords Versus Functions.

Type and Usage

• Global Functions

• Idoc Script

Parameters

Takes three required parameters and two optional parameters. For example:

cacheInclude(includeName, scope, lifeSpan[, cacheName][, key])

Parameter Description

includeName The name of the dynamic HTML element to evaluate.

scope Set to session if each user should see different html, or application if all
users will see the same thing.

lifeSpan The lifespan of this include in the cache, in seconds.

cacheName Optional: Use if you want to place the data into a named cache instead of the
default cache. If an empty string is passed, the include will be cached into the
default cache for the session.

key Optional: If you do not want automatic name-scoping of your cache to prevent
conflicts, you can specify a unique key here.

Example

This will cache the std_page_begin include for each user for ten minutes. This is about 10 KB
per user in the cache.

<$cacheInclude("std_page_begin", "session", 600)$>

See Also

• inc()

• forceExpire()

• setExpires()

• setHttpHeader()

• setMaxAge()

A.1.20 captionEntryWidth
Specifies the width of a metadata field, as a percentage.

Type and Usage

• Other Field Display Variables

Appendix A
cacheInclude()

A-10

• Field Display

Output

Returns the width of the current metadata field, as a percentage.

Example

Used as script:

<$if isInfo$>
 <$captionFieldWidth="30%"$>
 <$captionEntryWidth="70%"$>
<$elseif isEditMode$>
 <$captionFieldWidth="20%"$>
 <$captionEntryWidth="80%"$>
<$endif$>

See Also

• captionFieldWidth

A.1.21 captionFieldWidth
Specifies the width of a metadata field caption, as a percentage.

Type and Usage

• Other Field Display Variables

• Field Display

Output

Returns the width of the current metadata field caption, as a percentage.

Example

Used as script:

<$if isInfo$>
 <$captionFieldWidth="30%"$>
 <$captionEntryWidth="70%"$>
<$elseif isEditMode$>
 <$captionFieldWidth="20%"$>
 <$captionEntryWidth="80%"$>
<$endif$>

See Also

• fieldCaptionStyle

• captionEntryWidth

A.1.22 clearSchemaData()
Clears the data from a schema ResultSet.

Type and Usage

• Global Functions

Appendix A
captionFieldWidth

A-11

• Schemas

Parameters

This function can take zero, one, or two parameters.

• If passed zero arguments, it clears the data binder. Returns no value.

• If passed one argument, the argument is the name of the ResultSet to clear the values
from the current row. Returns no value.

• If passed two arguments, the first argument is the ResultSet name and the second
argument is the key identifying the data object to clear. Returns 0 if the data does not exist
or 1 if it does exist. The use is True() or False() to conditionally execute scripts based on
the return value.

Example

<$clearSchemaData()$>

See Also

• loadSchemaData()

A.1.23 ClientControlled
Checks if the page was accessed from the ODMA Client.

This value is passed by the string for controlling the update process that is provided by the
client.

Type and Usage

• Settable Variables

• Clients

Output

• Returns TRUE if the page was accessed from the ODMA Client.

• Returns FALSE if the page was not accessed from the ODMA Client.

Example

Checks if the page was accessed from the ODMA Client:

<$ClientControlled$>

See Also

• HasLocalCopy

• IsNotLatestRev

A.1.24 computeDocUrl()
This function computes the URL to a content item based on the data on the page.
computeDocUrl() accepts two boolean (0 or 1) arguments. The first argument is that the URL is
relative or absolute and the second argument is should be that the exception be thrown or
ignored.

Appendix A
ClientControlled

A-12

For example, this function can be called to generate a URL to an item when looping over a
ResultSet of items.

The following information must be present on the page:

• dDocAccount (optional)

• dDocName
• dDocType
• dProcessingState
• dRevLabel
• dSecurityGroup
• dWebExtension

Type and Usage

• Global Functions

• Content Items

Parameters

computeDocUrl() accepts two boolean (0 or 1) arguments. There is now a second parameter.
The values are the same as the first parameter set to TRUE (1) or FALSE (0). Default value is
false.

A.1.25 computeRenditionUrl()
Returns the URL of a given rendition.

Type and Usage

• Global Functions

• Content Items

Parameters

Takes three parameters:

• The first parameter is the URL of the content item.

• The second parameter is the dRevLabel value.

• The third parameter is the dRendition1 value. Possible values of dRendition1 include:

– T = Thumbnail rendition

– X = XML rendition

Output

Returns the complete URL of the rendition as a string.

Example

Returns the URL of the rendition as a string.

<$computeRenditionUrl(url, dRevLabel, dRendition1)$>

Appendix A
computeRenditionUrl()

A-13

A.1.26 CONTENT_LENGTH
Retrieves the length in bytes of the requested content item as supplied by the client.

This variable is specific to the current gateway program request.

Note:

This setting is obsolete for Content Server version 7.0 and later. The web server filter
no longer sends this information.

Type and Usage

• Environment Variables

• Content Items

• Web Servers

Output

Returns the content length in bytes.

Example

As information output on a page or to a log:

CONTENT_LENGTH=0

As part of an Idoc Script statement or evaluation:

<$if CONTENT_LENGTH$>
<!--statement-->

A.1.27 coreContentOnly
Set this variable in the URL of a service request to display only the form. The std_page_begin
and std_page_end include files will not be displayed.

Type and Usage

• Settable Variables

• Page Display

Output

None.

A.1.28 CURRENT_DATE
Returns the current date and time.

This variable is similar to the dateCurrent() function, which is used more frequently.

Appendix A
CONTENT_LENGTH

A-14

Type and Usage

• Dynamic Variables

• Date and Time

Output

Returns a string formatted according to the user locale.

Example

Used as script:

<$CURRENT_DATE$>

See Also

• dateCurrent()

A.1.29 CURRENT_ROW
Evaluates which row of a ResultSet you are in.

The first row in a ResultSet is row zero (0).

Type and Usage

• Dynamic Variables

• ResultSets

Output

Returns the row number.

Example

Used as script:

<$CURRENT_ROW$>

A.1.30 dateCurrent()
Returns the current date and time.

Can be used to return the current date and time to the user or to create commands using date
evaluations.

Type and Usage

• Global Functions

• Date and Time

Parameters

The only optional parameter is an integer, which adjusts the date by the specified number of
days relative to the current date.

Appendix A
CURRENT_ROW

A-15

Output

Returns a date formatted according to the user locale.

Example

In the following examples, dates are formatted according to the default English-US locale:

m/d/yy h:mm XM

The following returns the current date and the current time (for example, 8/12/01 1:55 PM):

<$dateCurrent()$>

Returns the date ten days in the future and the current time (for example, 8/22/01 1:55 PM):

<$dateCurrent(10)$>

Returns the date ten days in the past and the current time (for example, 8/2/01 1:55 PM):

<$dateCurrent(-10)$>

See Also

• CURRENT_DATE

A.1.31 dcShowExportLink
This function verifies if the Dynamic Converter has been configured to convert a content item.
The returned value is based on the value for dFormat for the item.

This function is typically used on Search Result pages to conditionally display a Dynamic
Converter link.

Type and Usage

• Conditional Dynamic Variables

• Dynamic Converter

Output

• Returns TRUE if the Dynamic Converter is configured to convert the content item.

• Returns FALSE if the Dynamic Converter is not configured.

Example

<$QueryText = "dDocTitle <substring> `test`"$>
<$executeService("GET_SEARCH_RESULTS")$>
<$loop SearchResults$>
 <$if dcShowExportLink()$>
 <a href="<$HttpCgiPath$>?IdcService=
 GET_DYNAMIC_CONVERSION&dID=<dID>">
 HTML Conversion of <$dDocTitle$>
 <$endif$>
<$endloop$>

Appendix A
dcShowExportLink

A-16

A.1.32 ddAppendIndexedColumnResultSet()
This function loads a dynamicdata table into a ResultSet. It is very similar to
ddLoadIndexedColumnResultSet. The main difference is that if the Idoc Script ResultSet
already exists, the new ResultSet created from the dynamicdata table is appended to it. Any
fields found in the dynamicdata table, but not in the target ResultSet, are automatically added.

Type and Usage

• Global Functions

• Dynamicdata

Parameters

The following table lists parameters for this function.

Parameters Description

dataTableName The name of the dynamicdata table to load.

idocTableName The name of the ResultSet into which the dynamicdata table should be
appended.

indexColumn The name of an indexed column in the dynamicdata table.

indexValue The value to use to select a section of the original table. This value will be
checked in a case-insensitive manner against the indexColumn value in
each row. If it matches, that row is loaded into the ResultSet; otherwise, it is
skipped.

mappingTableName The name of a dynamicdata table used to rename the columns of the final
ResultSet. The renaming is done by mapping the column names in the
specified mapping table to the values of the first row in the same table. This
is done exactly the same in ddLoadResultSet.

Output

If the dynamicdata table is successfully loaded, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
<?commatable indexedColumns="fieldA"?>
fieldA, fieldB, fieldC
1, 2, 3
4, 5, 6
1, 3, 9
<@end@>

<$exec rsCreateResultSet("MyResultSet", "fieldA,fieldB")$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.fieldA = "first value"$>
<$MyResultSet.fieldB = "second value"$>
<$exec ddLoadIndexedColumnResultSet("MyDataTable", "MyResultSet", "fieldA", "1")$>
<$exec rsFirst("MyResultSet")$>
<$foo = MyResultSet.fieldB$> [[% (foo == 'second value') %]]<$exec
rsNext("MyResultSet")$>
<$bar = MyResultSet.fieldC$> [[% (bar == '3') %]]

Appendix A
ddAppendIndexedColumnResultSet()

A-17

See Also

• ddLoadIndexedColumnResultSet()

A.1.33 ddAppendResultSet()
This function loads a dynamicdata table into a ResultSet. It is very similar to ddLoadResultSet.
The main difference is that if the Idoc Script ResultSet already exists, the new ResultSet
created from the dynamicdata table is appended to it. Any fields found in the dynamicdata
table, but not in the target ResultSet, are automatically added.

Type and Usage

• Global Functions

• Dynamicdata

Parameters

The following table lists parameters for the function.

Parameters Description

dataTableName The name of the dynamicdata table to load.

idocTableName The name of the ResultSet into which the dynamicdata table should be
appended.

mappingTableName The name of a dynamicdata table used to rename the columns of the final
ResultSet. The renaming is done by mapping the column names in the
specified mapping table to the values of the first row in the same table. This
is done exactly the same in ddLoadResultSet.

Output

If the dynamicdata table is successfully loaded, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
field1, field2, field3
a, b, c
d, e, f
<@end@>

<$exec rsCreateResultSet("MyResultSet", "field1,field2")$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.field1 = "first value"$>
<$MyResultSet.field2 = "second value"$>
<$exec ddAppendResultSet("MyDataTable", "MyResultSet")$>
<$exec rsFirst("MyResultSet")$>
<$foo = MyResultSet.field1$> [[% (foo == 'first value') %]]
<$exec rsNext("MyResultSet")$>
<$bar = MyResultSet.field3$> [[% (bar == 'c') %]]

See Also

• ddLoadResultSet()

Appendix A
ddAppendResultSet()

A-18

• ddAppendIndexedColumnResultSet()

A.1.34 ddApplyTableSortToResultSet()
This function sorts an existing ResultSet using the rules defined in a particular dynamicdata
table.

Type and Usage

• Global Functions

• Dynamicdata

Parameters

The following table lists parameters for the function.

Parameters Description

dataTableName The name of the dynamicdata table to use for its sorting rules.

resultSetName The name of the ResultSet into which the dynamicdata table should be
appended.

Output

If the sorting is successfully performed, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
<?commatable sortcolumn="order" sortType="int" sortOrder="asc"?>
user, service, order
jane, DOC_INFO, 10
bob, GET_SEARCH_RESULTS, 20
annette, CHECKIN_NEW, 30
<@end@>

<$exec rsCreate("MyResultSet")$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.user = "james"$>
<$MyResultSet.service = "GET_FILE"$>
<$MyResultSet.order = 75$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.user = "zoe"$>
<$MyResultSet.service = "DOC_INFO_BY_NAME"$>
<$MyResultSet.order = 20$>
<$exec ddApplyTableSortToResultSet("MyDataTable", "MyResultSet")$>

A.1.35 ddGetFieldList()
This function takes a dynamicdata table and returns a comma-separated string containing the
names of the columns in the table. It is expected that many dynamicdata tables consist only of
field names without any rows just to supply comma-separated lists of values to code in the
Content Server system.

Appendix A
ddApplyTableSortToResultSet()

A-19

Type and Usage

• Global Functions

• Dynamicdata

Parameters

This function has one parameter, dataTableName, which is the name of the dynamicdata table
to load.

Output

If the dynamictable exists, it returns True.

Example

<@dynamicdata MyDataTable@>
foo,bar,baz
<@end@>

<$fieldList = ddGetFieldList("MyDataTable")$>
<$trace(fieldList, "#console")$> [[% Outputs: foo,bar,baz %]]

A.1.36 ddIncludePreserveValues()
This function executes a resource include, but protects values specified by a dynamicdata
table from being changed. The column names in the data table are used as the list of variables
names that must be protected. These variables are protected by temporarily caching them,
calling the include, and then resetting those variables back to the cached values. If a variable
was null, it is set to blank.

If one of the column names in the table starts with a dollar symbol ($), then the string that
follows is assumed to be the name of a ResultSet. In that case, it is the pointer to the
ResultSet that is temporarily cached in memory and then replaced after the resource include
has finished executing. If the ResultSet did not exist at the time of caching, then any ResultSet
that exists with that key at the end are removed. If the ResultSet is active at the time it has its
pointer cached, new ResultSets of the same name can be created during the call of the include
and the previously active ResultSet will be recovered appropriately without disturbing the loop.
The one side effect is that if a new ResultSet is created that temporarily replaces the active
ResultSet, then the algorithm for variable substitution that retrieves values first from active
ResultSets can find values for a variable from the cached active ResultSet (assuming the
variable is not found as a field in an active ResultSet with higher precedence). The cached
active ResultSet maintains its place in the active ResultSet stack,

Type and Usage

• Global Functions

• Dynamicdata

Parameters

The following table lists parameters for the function.

Appendix A
ddIncludePreserveValues()

A-20

Parameters Description

includeName The name of the resource include to execute.

dataTableName The name of the dynamicdata table to use for preserving local data and
ResultSets.

Output

A string representing the output of the executed resource include.

Example

<@dynamicdata MyPreservedFields@>
foo, bar, $baz
<@end@>

<@dynamichtml my_include@>
 <$foo = "tempValue1"$>
 <$bar = "tempValue2"$>
<@end@>

<$foo = 5$>
<$ddIncludePreserveValues("my_include", "MyPreservedFields")$>
<$trace(foo, "#console")$> [[% Outputs: 5 %]]

A.1.37 ddLoadIndexedColumnResultSet()
This function loads a dynamicdata table into a ResultSet. This function is similar to
ddLoadResultSet except that it only loads those rows whose values for indexColumn match
indexValue. The comparisons made on this column are case-insensitive.

Type and Usage

• Global Functions

• Dynamicdata

Parameters

The following table lists parameters for the function.

Parameters Description

dataTableName The name of the dynamicdata table to load.

idocTableName The name of the ResultSet into which the dynamicdata table should be
loaded.

indexColumn The name of an indexed column in the dynamicdata table.

indexValue The value to use to select a section of the original table. This value will be
checked in a case-insensitive manner against the indexColumn value in
each row. If the values match, that row is loaded into the ResultSet;
otherwise, the row is skipped.

Appendix A
ddLoadIndexedColumnResultSet()

A-21

Parameters Description

mappingTableName The name of a dynamicdata table used to rename the columns of the final
ResultSet. The renaming is done by mapping the column names in the
specified mapping table to the values of the first row in the same table. This
is done exactly the same in ddLoadResultSet.

Output

If the dynamicdata table is successfully loaded, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
<?commatable indexedColumns="fieldA"?>
fieldA, fieldB, fieldC
1, 2, 3
4, 5, 6
1, 3, 9
<@end@>

<$exec ddLoadIndexedColumnResultSet("MyDataTable", "MyResultSet", "fieldA", "1")$>
<$exec rsFirst("MyResultSet")$>
<$foo = MyResultSet.fieldB$> [[% (foo == '2') %]]
<$exec rsNext("MyResultSet")$>
<$bar = MyResultSet.fieldC$> [[% (bar == '9') %]]

See Also

• ddLoadResultSet()

A.1.38 ddLoadResultSet()
This function loads a dynamicdata table into a ResultSet.

Type and Usage

• Global Functions

• Dynamicdata

Parameters

The following table lists parameters for the function.

Parameters Description

dataTableName The name of the dynamicdata table to load.

idocTableName The name of the ResultSet into which the dynamicdata table should be
loaded.

mappingTableName The name of a dynamicdata table used to rename the columns of the final
ResultSet. The renaming is done by mapping the column names in the
specified mapping table to the values of the first row in the same table. This
is done exactly the same in ddLoadIndexedColumnResultSet.

Appendix A
ddLoadResultSet()

A-22

Output

If the dynamicdata table is successfully loaded, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
fieldA, fieldB, fieldC
1, 2, 3
4, 5, 6
1, 3, 9
<@end@>

<$exec ddLoadResultSet("MyDataTable", "MyResultSet")$>
<$exec ddLoadResultSet("MyDataTable", "MyAliasedResultSet")$>
<$exec rsFirst("MyResultSet")$>
<$exec rsFirst("MyAliasedResultSet")$>
<$foo = MyResultSet.field1$> [[% (foo == 'a') %]]
<$bar = MyAliasedResultSet.alias2$> [[% (bar == 'c') %]]

See Also

• ddMergeIndexedColumnResultSet()

A.1.39 ddMergeIndexedColumnResultSet()
This function merges a dynamicdata table into a ResultSet. This function is similar to
ddMergeResultSet except that it only merges those rows whose values for indexColumn match
indexValue. The comparisons made on this column are case-insensitive.

Type and Usage

• Global Functions

• Dynamicdata

Parameters

The following table lists parameters for the function.

Parameters Description

dataTableName The name of the dynamicdata table to load.

idocTableName The name of the ResultSet into which the dynamicdata table should be
merged.

indexColumn The name of an indexed column in the dynamicdata table.

indexValue The value to use to select a section of the original table. This value is
checked in a case-insensitive manner against the indexColumn in each
row. If it matches, that row is loaded into the ResultSet; otherwise it is
skipped.

mergeType The type of merge to perform. Set this to replace to prevent the merge
from appending any new rows. Any other value for this parameter is treated
as append.

Appendix A
ddMergeIndexedColumnResultSet()

A-23

Parameters Description

mappingTableName The name of a dynamicdata table which should be used to rename the
columns of the final ResultSet. This renaming is done by mapping the
column names in this mapping table to the values of the first row in this
same table. This is done exactly as it is done in ddLoadResultSet.

Output

If the dynamicdata table is successfully merged, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
fieldA, fieldB, fieldC
1, 2, 3
4, 5, 6
1, 3, 9
<@end@>

<$exec rsCreateResultSet("MyResultSet", "fieldA,fieldB,fieldC")$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.fieldA = "4"$>
<$MyResultSet.fieldB = "8"$>
<$MyResultSet.fieldB = "23"$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.fieldA = "8"$>
<$MyResultSet.fieldB = "21"$>
<$MyResultSet.fieldB = "59"$>
<$exec ddMergeIndexedColumnResultSet("MyDataTable", "MyResultSet", "fieldA", "4",
"replace")$>
<$exec rsFirst("MyResultSet")$>
<$foo = MyResultSet.fieldB$> [[% (foo == '5') %]]
<$exec rsNext("MyResultSet")$>
<$bar = MyResultSet.fieldC$> [[% (bar == '59') %]]

See Also

• ddMergeResultSet()

A.1.40 ddMergeResultSet()
This function merges a dynamicdata table into an existing ResultSet. If the target ResultSet
does not exist, then this function acts exactly like ddLoadResultSet and the target ResultSet is
simply created. Otherwise, the merge is performed using the first column of the new ResultSet
as the merge key. By default, the merge appends any rows from the new ResultSet that do not
match any rows in the existing Idoc Script table, unless the mergeType parameter is set to
replace, in which case no new rows are added to the Idoc Script ResultSet.

Note that this merge does not replace all rows matched by a particular row of the new
ResultSet, just the first one that it finds. The matching is case-sensitive. The mergeType
parameter is optional and defaults to null.

Type and Usage

• Global Functions

• Dynamicdata

Appendix A
ddMergeResultSet()

A-24

Parameters

The following table lists parameters for the function.

Parameters Description

dataTableName The name of the dynamicdata table to load.

idocTableName The name of the ResultSet into which the dynamicdata table should be
merged.

mergeType The type of merge to perform. Set this to replace to prevent the merge
from appending any new rows. Any other value for this parameter is treated
as append.

mappingTableName The name of a dynamicdata table which should be used to rename the
columns of the final ResultSet. This renaming is done by mapping the
column names in this mapping table to the values of the first row in this
same table. This is done exactly as it is done in ddLoadResultSet.

Output

If the dynamicdata table is successfully merged, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
fieldA, fieldB, fieldC
1, 2, 3
4, 5, 6
<@end@>

<$exec rsCreateResultSet("MyResultSet", "fieldA,fieldB,fieldC")$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.fieldA = "4"$>
<$MyResultSet.fieldB = "52"$>
<$MyResultSet.fieldC = "18"$>
<$exec ddMergeResultSet("MyDataTable", "MyResultSet", "replace")$>
<$exec rsFirst("MyResultSet")$>
<$foo = MyResultSet.fieldB$> [[% (foo == 52) %]]
<$bar = MyResultSet.#numRows$> [[% (bar == 1) %]]

See Also

• ddLoadResultSet()

A.1.41 ddMergeUsingIndexedKey()
This function pulls selective rows from a dynamicdata table and use them to replace particular
row values in a target ResultSet. The values of a particular column in the target ResultSet are
used as values for an index look up into the dynamicdata table. The subtable retrieved is used
to replace column values in the target ResultSet that have matching column names. The
dynamicdata table is assumed to have only one row in the subtable selected out by the index
value. If it has more than one row, only the first row is used to merge in values into the target
ResultSet.

Type and Usage

• Global Functions

Appendix A
ddMergeUsingIndexedKey()

A-25

• Dynamicdata

Parameters

The following table lists parameters for the function.

Parameters Description

dataTableName The name of the dynamicdata table to load.

idocTableName The name of the ResultSet into which the dynamicdata table should be
merged.

indexColumn The name of an indexed column in the dynamicdata table and the name of
the column in the target ResultSet from which values are retrieved to select
out subtables in the dynamicdata table.

mappingTableName The name of a dynamicdata table which should be used to rename the
columns of the final ResultSet. This renaming is done by mapping the
column names in this mapping table to the values of the first row in this
same table. This is done exactly as it is done in ddLoadResultSet.

Output

If the dynamicdata table is successfully merged, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
<?commatable indexedColumns="fieldA"?>
fieldA, fieldB, fieldC
1, 2, 3
4, 5, 6
7, 8, 9
<@end@>

<$exec rsCreateResultSet("MyResultSet", "fieldA,fieldB,fieldC")$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.fieldA = "4"$>
<$MyResultSet.fieldB = "8"$>
<$MyResultSet.fieldB = "23"$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.fieldA = "7"$>
<$MyResultSet.fieldB = "20"$>
<$MyResultSet.fieldB = "41"$>
<$exec rsAppendNewRow("MyResultSet")$>
<$MyResultSet.fieldA = "8"$>
<$MyResultSet.fieldB = "21"$>
<$MyResultSet.fieldB = "59"$>
<$exec ddMergeIndexedColumnResultSet("MyDataTable", "MyResultSet", "fieldA")$>
<$exec rsFirst("MyResultSet")$>
<$foo = MyResultSet.fieldB$> [[% (foo == '5') %]]
<$exec rsNext("MyResultSet")$>
<$bar = MyResultSet.fieldC$> [[% (bar == '9') %]]
<$exec rsNext("MyResultSet")$>
<$bar = MyResultSet.fieldC$> [[% (bar == '59') %]]

Appendix A
ddMergeUsingIndexedKey()

A-26

A.1.42 ddSetLocal()
This function takes a dynamicdata table and iterates over it, setting local data values for each
row. The first column of the table is used as the list of keys, while the second column is used
as the list of values.

Type and Usage

• Global Functions

• Dynamicdata

Parameters

This function has one parameter, dataTableName, which is the name of the dynamicdata table
to load.

Output

If the dynamicdata table exists, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
key, value
foo, 15
bar, 23
baz, 77
<@end@>

<$exec ddSetLocal("MyDataTable")$>
<$tmp1 = #local.foo$> [[% (tmp1 == '15') %]]
<$tmp2 = #local.bar$> [[% (tmp2 == '23') %]]
<$tmp3 = #local.baz$> [[% (tmp3 == '77') %]]

See Also

• ddSetLocalByColumnsFromFirstRow()

• ddSetLocalByColumnsFromFirstRowIndexed()

A.1.43 ddSetLocalByColumnsFromFirstRow()
This function takes the first row of a dynamicdata table and, using the column names as keys,
sets a local value for each column and its corresponding value. If there is no first row, then this
function does nothing. This can be a useful method for quickly setting a lot of local values. The
filterInclude and includeColumns properties of the dynamicdata table are ignored.

Type and Usage

• Global Functions

• Dynamicdata

Parameters

This function has one parameter, dataTableName, which is the name of the dynamicdata table
to load.

Appendix A
ddSetLocal()

A-27

Output

If the dynamicdata table was successfully loaded, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
fieldA, fieldB, fieldC
foo, bar, baz
<@end@>

<$exec ddSetLocalByColumnsFromFirstRow("MyDataTable")$>
<$tmpStr1 = #local.fieldA$> [[% (tmpStr1 == 'foo') %]]
<$tmpStr2 = #local.fieldC$> [[% (tmpStr2 == 'baz') %]]

See Also

• ddSetLocal()

• ddSetLocalByColumnsFromFirstRowIndexed()

A.1.44 ddSetLocalByColumnsFromFirstRowIndexed()
This function takes the first row of a dynamicdata table, and, using the column names as keys,
sets a local value for each column and its corresponding value. If there is no first row, then this
function does nothing. This function is almost identical to
ddSetLocalByColumnsFromFirstRow(). The only difference is that this function uses the first
row given an indexed column and value instead of the very first row of the dynamicdata table.
If no indexed row is found, then this function does nothing.

Type and Usage

• Global Functions

• Dynamicdata

Parameters

The following table lists parameters for the function.

Parameters Description

dataTableName The name of the dynamicdata table to load.

indexColumn The name of an indexed column in the dynamicdata table.

indexValue The value to use to select a row of the original table. This value will be
checked in a case-insensitive manner against the indexColumn in each
row. If it matches, that row will be used and the rest of the table will be
ignored.

Output

If the dynamicdata table is successfully loaded, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
<?commatable indexedColumns="fieldB"?>

Appendix A
ddSetLocalByColumnsFromFirstRowIndexed()

A-28

fieldA, fieldB, fieldC
1, 2, 3
4, 5, 6
7, 8, 9
3, 5, 2
<@end@>

<$exec ddSetLocalByColumnsFromFirstRowIndexed("MyDataTable", "fieldB", 5)$>
<$tmpStr1 = #local.fieldA$> [[% (tmpStr1 == '4') %]]
<$tmpStr2 = #local.fieldC$> [[% (tmpStr2 == '6') %]]

See Also

• ddSetLocal()

• ddSetLocalByColumnsFromFirstRow()

A.1.45 ddSetLocalEmpty()
This function takes a dynamicdata table and iterates over it, clearing local data. The first
column is used as the keys to clear.

Type and Usage

• Global Functions

• Dynamicdata

Parameters

This function has one parameter, dataTableName, which is the name of the dynamicdata table
to use.

Output

If the dynamicdata table exists, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
key
foo
bar
baz
<@end@>

<$foo = 1$>
<$bar = 2$>
<$baz = 3$>
<$exec ddSetLocalEmpty("MyDataTable")$>
<$if foo or bar or baz$>
 [[% This will not be executed as foo, bar, and baz are all empty. %]]
<$endif$>

See Also

• ddSetLocal()

Appendix A
ddSetLocalEmpty()

A-29

A.1.46 ddSetLocalEmptyByColumns()
This function takes a dynamicdata table and uses the columns to clear values in local data.

Type and Usage

• Global Functions

• Dynamicdata

Parameters

This function has one parameter, dataTableName, which is the name of the dynamicdata table
to use.

Output

If the dynamicdata table exists, it returns TRUE.

Example

<@dynamicdata MyDataTable@>
foo, bar, baz
<@end@>

<$bar = "asdf"$>
<$exec ddSetLocalEmptyByColumns("MyDataTable")$>
<$if bar$>
 [[% This will not execute as bar will be empty. %]]
<$endif$>

See Also

• ddSetLocal()

• ddSetLocalEmpty()

A.1.47 DefaultAccounts
Defines the default accounts for anonymous users.

• This must be a comma-delimited list of accounts.

• Permissions for each account must be specified in parentheses after the account name.

• The #none entry grants privileges to content items that have no account assigned. The
#all entry grants privileges to all accounts.

• Default is #none(RWDA).

• Returns the list of accounts as a string.

Type and Usage

• Conditional Dynamic Variables

• Internal Security

• Users

Appendix A
ddSetLocalEmptyByColumns()

A-30

Location

IntradocDir/config/config.cfg

Example

As a configuration setting, defines default account information:

DefaultAccounts=BOS(R),SEA(RW),MSP/Gen(RWD)

As Idoc Script, returns the account information as a string:

<$DefaultAccounts$>

See Also

• “DefaultNetworkAccounts" in Oracle Fusion Middleware Configuration Reference for
Oracle WebCenter Content

• ExternalUserAccounts

• SelfRegisteredAccounts

A.1.48 defaultFieldInclude
Specifies the include to use to display the metadata field.

Type and Usage

• Other Field Display Variables

• Field Display

Example

Sets the default field-display include for a hidden field on a query page to
std_query_hidden_field:

<$if isFieldHidden$>
 <$if isQuery and not (fieldType like "Date") and not (fieldType like "Int")$>
 <$defaultFieldInclude = "std_query_hidden_field"$>
 <$endif$>

See Also

• fieldCaptionInclude

• fieldEntryInclude

A.1.49 defaultOptionListScript
Defines a piece of Idoc Script that displays a standard option list field.

Type and Usage

• Other Field Display Variables

• Field Display

Appendix A
defaultFieldInclude

A-31

Output

None.

Example

Generates an option list using the optList function:

<$if optionsAllowPreselect and fieldValue$>
 <$defaultOptionListScript = "<$optList " & optionListName & ":fieldValue$>"$>
<$else$>
 <$defaultOptionListScript = "<$optList " & optionListName & ":noselected$>"$>
<$endif$>

Loops on the current option list ResultSet to generate an option list:

<@dynamichtml compute_resultset_option_list_script@>
<$if not optionListKey$>
 <$optionListKey = fieldName$>
<$endif$>
<$defaultOptionListScript = "<$loop " & optionListResultSet & "$>" &
"<$inc('std_resultset_option_list_item')$>" & "<$endloop$>"$>
<@end@>

See Also

• optionListScript

• optList()

A.1.50 DelimitedUserRoles
Retrieves a comma-delimited, colon-delimited list of roles the current user belongs to.

Type and Usage

• Internal Security

• Users

Output

Returns the user role list as a string.

Example

Returns a list of roles formatted as follows:

:guest:,:PublicContributor:,:ClassifiedConsumer:

See Also

• UserRoles

A.1.51 docLoadResourceIncludes()
Loads all the includes in a specified content item for use in the display of the current page.

• The content item specified must have the file extension .idoc.

Appendix A
DelimitedUserRoles

A-32

• This function sets StatusCode as a side effect. Use the abortToErrorPage function if the
specified file must successfully load for the page to correctly display.

Type and Usage

• Global Functions

• Page Display

• Idoc Script

Parameters

Takes a CGI-encoded parameter list that specifies a content item that is checked into Content
Server. The parameter options are listed in the following table.

Optional Parameters Description

dID If dID is not present, dDocName and RevisionSelectionMethod must
be present. A rendition of the revision of the content item with this ID will
be returned, if it exists, and the RevisionSelectionMethod parameter
does not exist or has the value Specific.

dDocName It is recommended that dDocName be present in all requests for content
items where the dDocName is known. Error messages assume that it is
present, as do other features such as forms.

• If dDocName is not present, dID must be present and
RevisionSelectionMethod must not be present.

• If RevisionSelectionMethod is present, a rendition of a revision
of the content item with this name with be returned, if it exists.

• If RevisionSelectionMethod is not present, dDocName can be
used in error messages.

RevisionSelectionMethod If present, dDocName must be present. The value of this variable is the
method used to compute a dID value from the specified dDocName
value. The RevisionSelectionMethod value can be Specific,
Latest, or LatestReleased.

• Specific: The dDocName is ignored, dID is required and is used to
get a specific revision.

• Latest: The latest revision of the content item (including revisions in
a workflow) is used to compute the dID value.

• LatestReleased: The latest released revision of the content item is
used to compute the dID value.

Rendition • If not present, Rendition defaults to Primary. This parameter
specifies the rendition of the content item.

• If the value is Primary, Web, or Alternate, the primary, web-
viewable, or alternate rendition of the selected revision is returned.

Note:

When used in HCSP pages, the ampersand character (&) in the CGI-encoded
parameter list must be changed to &.

Output

None.

Appendix A
docLoadResourceIncludes()

A-33

Example

Loads the resource includes in the primary vault rendition of the latest revision of mydoc.

<$docLoadResourceIncludes("dDocName=mydoc&RevisionSelectionMethod=Latest")$>

See Also

• abortToErrorPage()

A.1.52 docRootFilename()
Retrieves the file name of a file without the extension or directory path.

• This function is typically used to extract the content ID (dDocName) part of a static URL
controlled by Content Server.

Type and Usage

• Global Functions

• Directories and Paths

Parameters

Takes one parameter:

• The only parameter is a path and file name.

Output

Returns the file name as a string.

Example

Returns the value mydoc:

docRootFilename("/groups/public/documents/adacct/mydoc.pdf")

A.1.53 DocTypeSelected
Evaluates whether the Type of the current content item matches the Type in the active
ResultSet.

Type and Usage

• Dynamic Variables

• Content Items

Output

• Returns TRUE if the content item Types match.

• Returns FALSE if the content item Types do not match.

Example

Returns value based on whether the content item type matches the type for the ResultSet.

Appendix A
docRootFilename()

A-34

<$DocTypeSelected$>

A.1.54 DocUrl
Retrieves the URL of the file in the weblayout/ directory. This variable is evaluated once per
content item, not once per service call.

Type and Usage

• Dynamic Variables

• Content Items

Output

Returns the URL of the file as a string.

Example

Used to build URL links to content items.

<$if HasUrl$>
 <a href="<$DocUrl$>"><$dDocName$>
<$else$>
 <$dDocName$>
<$endif$>

A.1.55 docUrlAllowDisclosure()
Evaluates whether a URL can be disclosed to the current user.

Type and Usage

• Global Functions

• Internal Security

Parameters

The only parameter is an absolute path, such as the following:

http://mycomputer/domain/groups/.../documents/mydoc.pdf

A full relative path can be used, such as the following:

/oracle/domain/.../documents/mydoc.pdf).

Output

Returns a Boolean value.

• Returns TRUE if the URL can be disclosed.

• Returns FALSE if the URL is restricted.

Example

Determines if the user can view the URL of the mydoc.pdf document.

<$docUrlAllowDisclosure("/domain/groups/documents/mydoc.pdf")$>

Appendix A
DocUrl

A-35

A.1.56 DownloadApplet
Enables the multiple file Download Applet.

• When set to TRUE, the Download Applet is enabled so that multiple files can be
downloaded from a search results page.

• When set to FALSE, the Download Applet is disabled.

• Default is FALSE.

Note:

The DownloadApplet/UploadApplet will continue working as applets.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Content Server

• Clients

Location

• System Properties, Options tab, Enable download applet

• Administration, Admin Server, General Configuration menu option, Enable download
applet

• IntradocDir/config/config.cfg

Example

As a configuration setting, enables the Download Applet:

DownloadApplet=true

As script, evaluates the condition of the Download Applet:

<$DownloadApplet$>

See Also

• MultiUpload

• UploadApplet

A.1.57 DownloadSuggestedName
Retrieves the default path and suggested name for a file being downloaded.

The suggested name is based on the original file name of the content item.

Type and Usage

• Dynamic Variables

Appendix A
DownloadApplet

A-36

• Content Items

• Directories and Paths

Output

Returns the path and suggested name for the downloaded file as a string.

Example

Returns the path and suggested name for the downloaded file:

<$DownloadSuggestedName$>

A.1.58 dpGet()
Function used to return the value set by the dpSet function.

Both dpGet and dpSet are used to control the logic of Content Profile rules that are to be
displayed. Commonly, a user may create an activation condition that sets a value for a
specified key. Even if the condition evaluates to false (that is, the rule fails to fire), the key is
set. Another rule can now access the key and retrieve the value when evaluating its activation
condition. By using these two functions, a user can create a dependency between rules. For
example, a user may want a rule to be evaluated only when a preceding rule is evaluated.

Type and Usage

• Global Functions

• Content Profiles

Parameters

Takes one parameter:

• Key: The designation for the value to be returned.

Example

<$myValue = dpGet("myKey")$>

See Also

• dpSet()

A.1.59 dpPromote()
Function used to 'promote' values from a rule evaluation context into the request context. After
the evaluation of all rules, the key and value specified by this function are pushed into the local
data.

Type and Usage

• Global Functions

• Content Profiles

Parameters

Takes two parameters:

Appendix A
dpGet()

A-37

• The first parameter is the designation for the value to be returned.

• The second parameter is the value to be returned.

Example

This example causes the Title field to be hidden on checkin pages:

<$dpPromote("dDocTitle:isHidden", "1")$>

See Also

• dpPromoteRs()

A.1.60 dpPromoteRs()
Similar to dpPromote, this function allows a ResultSet that is generated in a profile rule to be
promoted to the request context. The ResultSet is pushed into the DataBinder after the
evaluation of all rules. The values are not evaluated during rule activation or manipulation but
are available for page presentation.

Type and Usage

• Global Functions

• Content Profiles

Parameters

This function can take two parameters:

• The first parameter is the name of the ResultSet to push into the data.

• Optional. The second parameter is an alternate name for the ResultSet.

See Also

• dpPromote()

A.1.61 dpSet()
Function used to set temporary values during the evaluation of activation conditions or rule
values anywhere Idoc Script is evaluated.

The values are set into a working area and can be retrieved by the dpGet function call. The key
and value that is set does not persist, but is globally available for the profile being evaluated.
All key/value pairs can be accessed by the rules of the profile.

Both dpGet and dpSet are used to control the logic of Content Profile rules that are to be
displayed. Commonly, a user may create an activation condition that sets a value for a
specified key. Even if the condition evaluates to false (that is, the rule fails to fire), the key is
set. Another rule can now access the key and retrieve the value when evaluating its activation
condition. By using these two functions, a user can create a dependency between rules. For
example, a user may want a rule to be evaluated only when a preceding rule is evaluated.

Type and Usage

• Global Functions

• Content Profiles

Appendix A
dpPromoteRs()

A-38

Parameters

This function takes two parameters:

• Key: The designation for the value to be returned.

• Value: Value associated with the key.

Example

<$dpSet("myKey", "1")$>

See Also

• dpGet()

A.1.62 dWfName
Retrieves the name of the workflow.

Type and Usage

• Workflow Variables

• Workflow

Output

Returns the name of the workflow as a string.

Example

The following code in the IdcHomeDir/resources/core/templates/workflow_info.htm
template page is used to display the workflow name on the Workflow Step Information page:

<td align=right><$lc("wwLabelWorkflow")$></td>
<td><$dWfName$></td>

A.1.63 dWfStepName
Retrieves the name of the current step in the workflow.

Type and Usage

• Workflow Variables

• Workflow

Output

Returns the name of the current step as a string.

Example

The following code in the IdcHomeDir/resources/core/templates/workflow_info.htm
template page is used to display the current step name on the Workflow Step Information
page:

<td align=right><$lc("wwCurrentStep")$>
</td>

Appendix A
dWfName

A-39

<td>
 <$loop WorkflowStep$>
 <$dWfStepName$>
 <$exec RequiredUsers = dWfStepWeight$>
 <$if isTrue(dWfStepIsAll)$><$exec RequiredUsers = 0$><$endif$>
 <$endloop$>
</td>

A.1.64 EmptyAccountCheckinAllowed
Checks if an account must be specified on the checkin page.

Used on the Standard Page Resources page to display an error message if an account is not
specified.

Type and Usage

• Conditional Dynamic Variables

• Internal Security

Output

• Returns TRUE if an Account value is required.

• Returns FALSE if an Account value is not required.

Example

Evaluates whether an account number is required and displays an error message.

<$if not EmptyAccountCheckinAllowed$>
 <$isRequired = 1, requiredMsg = "Please specify an account."$>
<$endif$>

A.1.65 EnableDocumentHighlight
Enables highlighting of full-text search terms in PDF, text, and HTML files.

• When set to TRUE, search term highlighting is enabled.

• When set to FALSE, search term highlighting is disabled.

• Default is FALSE after installation of Content Server.

• Default is TRUE after installation of PDF Converter.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Searching

Location

• System Properties, Options tab, Enable search keyword highlighting

• Administration, Admin Server, General Configuration menu option, Enable search
keyword highlighting

• IntradocDir/config/config.cfg

Appendix A
EmptyAccountCheckinAllowed

A-40

Example

As a configuration setting:

EnableDocumentHighlight=false

As script, returns the value of the configuration setting:

<$EnableDocumentHighlight$>

See Also

• UseHtmlOrTextHighlightInfo

A.1.66 encodeHtml()
Idoc function used to filter data input for illegal or corruptive HTML constructs. This function is
used by default in Threaded Discussions, a component available during installation.

All input data received by Content Server when using the unsafe value for the rule parameter
applies only to well-known unsafe script tags. This functionality can be altered by using the
HtmlDataInputFilterLevel configuration variable to change the filtering that is done.

Type and Usage

• Global Functions

• Security

Parameters

Takes two required and one optional parameter:

• The first parameter is the string to encode.

• The second parameter is the rule to apply when encoding HTML constructs. The following
values are allowed:

– none: no conversion is done to HTML constructs.

– unsafe: only well-known unsafe script tags are encoded.

– exceptsafe: well-known safe script tags are not encoded.

– lfexceptsafe: recommended for use when extended comments are entered by users
and line breaks in the original text must be preserved.

• An optional parameter is also available that specifies if long strings without space
characters are to be broken up and what maximum word size to apply. Specify either
wordbreak or nowordbreak.

Output

Returns the encoded string.

See Also

• HtmlDataInputFilterLevel in the Oracle Fusion Middleware Configuration Reference for
Oracle WebCenter Content

Appendix A
encodeHtml()

A-41

A.1.67 entryCount
Retrieves the number of times the current workflow step has been entered by the current
revision.

• This variable can be used to create conditional statements, but it should not be hard-coded
or altered.

• This variable is localized in the companion file and maintained in the key:

<step_name>@<workflow_name>.entryCount

Type and Usage

• Workflow Variables

• Workflow

Output

Returns the entry count as an integer.

Example

The following code defines a jump called MaxEntry, which exits to the parent workflow and
notifies the reviewers if the last time the step was entered was more than one week ago:

<$if wfCurrentGet("entryCount")==2$>
 <$wfSet("WfJumpName","MaxEntry")$>
 <$wfSet("WfJumpTargetStep",wfExit(0,0))$>
 <$wfSet("WfJumpEntryNotifyOff","0")$>
<$endif$>

A.1.68 eval()
Evaluates a variable definition as if it were Idoc Script. Can be used to recursively evaluate a
literal string.

Type and Usage

• Global Functions

• Idoc Script

Parameters

The only parameter is a variable that defines a string to be evaluated as Idoc Script.

Output

Returns the parameter string, with any Idoc Script in the variable definition resolved.

Example

Variable one is assigned the string CompanyName, and variable two is assigned a string that
includes variable one within Idoc Script delimiters. On a page, variable one presents the string
CompanyName, variable two presents the string Welcome to <one> and eval(two) presents
the string Welcome to CompanyName.

Appendix A
entryCount

A-42

<$one="CompanyName"$>
<$two="Welcome to <$one$>"$>
<one>

<two>

<$eval(two)$>

Say you wanted to exclude all metadata fields that have the prefix xPrefix in their names. You
could use the eval() function to dynamically write and evaluate Idoc Script for this purpose:

<$loop DocMetaDefinition$>
<$if strIndexOf("xPrefix", dName) >= 0$>
 <$myScript = "<$" & dName & ":isExcluded=1$>"$>
 <$eval(myScript)$>
<$endif$>
<$endloop$>

See Also

• Keywords Versus Functions

• exec

• setResourceInclude()

A.1.69 ExclusiveCheckout
Determines whether users can check out content that was authored by another user.

• When set to TRUE, only the author or a user with Admin permission to the security group
can check out a content item.

• When set to FALSE, users with Write permission to the security group can check out
content that was authored by another user.

• Default is FALSE.

Type and Usage

• Conditional Dynamic Variables

• Internal Security

• Users

Location

• System Properties, Content Security tab, Allow only original contributor to check out

• Administration, Admin Server, Content Security menu option, Allow only original
contributor to check out

• IntradocDir/config/config.cfg

Example

As a configuration setting, only original contributor can check out a content item.

ExclusiveCheckout=true

As Idoc Script, returns the value of the configuration setting:

<$ExclusiveCheckout$>

Appendix A
ExclusiveCheckout

A-43

See Also

• isUserOverrideSet()

A.1.70 exec
Executes an Idoc Script expression and suppresses the output (does not display the
expression on the page).

• In earlier versions of Idoc Script, the exec keyword was required to suppress the value of
any variable from appearing in the output file. In the current version, the exec keyword is
needed only to suppress an expression from appearing in the output.

The first line in the following example is equivalent to the last two lines:

<$varA="stringA", varB ="stringB"$>
<$exec varA="stringA"$>
<$exec varB="stringB"$>

• The exec keyword is typically used to evaluate behind-the-scenes code, such as
specification of an include to be used later in the page.

Type and Usage

• Special Keywords

• Idoc Script

Parameters

The only parameter is an Idoc Script expression.

Output

Returns the value of the expression, but does not display the expression on the page.

Example

Evaluates the inc global function to incorporate the specified includes without displaying their
code on the page:

<@dynamichtml std_definitions@>
 <$exec inc("std_page_variable_definitions")$>
 <$exec inc("define_image_files")$>
<@end@>

See Also

• Keywords Versus Functions

• eval()

A.1.71 executeService()
Executes a Content Server service.

• This function allows the specified service to be executed while the page is being
constructed. Generally, services are executed using a tool such as IdcCommand or the
CGI URL on the browser.

Appendix A
exec

A-44

• Used with dynamic server pages.

• Services that can be called with the executeService function must be scriptable, meaning
that they do not require parameter input. Scriptable services have an access level of 32 or
more.

Type and Usage

• Global Functions

• Idoc Script

Parameters

The only parameter is the name of the service to be executed. The live data in the DataBinder
is used as parameters to the specified service.

Output

• Returns a StatusCode value of 0 if the service was executed successfully.

• Returns a StatusCode value of -1 if an error in the service execution occurred.

• All output of the executed service is suppressed, but any ResultSets and loaded values are
available.

Example

Executes a service when given a service name:

<$executeService("servicename")$>

See Also

• StatusCode

A.1.72 ExternalUserAccounts
Retrieves the default roles for users who are defined by an external user base (NTLM, Active
Directory, or LDAP).

Type and Usage

• User Read-Only Variables

• External Security

• Users

Output

• Returns a comma-delimited list of accounts, with permissions for each account specified in
parentheses after the account name.

• The #none entry grants privileges to content items that have no account assigned. The
#all entry grants privileges to all accounts.

Example

As script, returns the default account information as a string:

<$ExternalUserAccounts$>

Appendix A
ExternalUserAccounts

A-45

See Also

• ExternalUserRoles

• UserAccounts

• DefaultAccounts

• “DefaultNetworkAccounts" in the Oracle Fusion Middleware Configuration Reference for
Oracle WebCenter Content

A.1.73 ExternalUserRoles
Retrieves the default roles for users who are defined by an external user base (NTLM, Active
Directory, or LDAP).

Type and Usage

• User Read-Only Variables

• External Security

• Users

Output

• Returns the list of roles as a string.

Example

As script, returns the default role information as a string:

<$ExternalUserRoles$>

See Also

• ExternalUserAccounts

• UserRoles

A.1.74 fieldCaption
Specifies the caption label for a metadata field.

Type and Usage

• Field Information Variables

• Field Display

Output

Returns the caption of the metadata field as a string.

Example

Defines the caption for the dDocTitle metadata field as the wwTitle localized string:

<$fieldName = "dDocTitle", fieldCaption = lc("wwTitle"), isRequired = 1, fieldType =
"BigText", requiredMsg = lc("wwSpecifyTitle")$>

Appendix A
ExternalUserRoles

A-46

A.1.75 fieldCaptionInclude
Specifies the include to use to display the caption for the metadata field.

Type and Usage

• Other Field Display Variables

• Field Display

Output

None.

Example

Sets the caption display include to std_field_caption:

<$fieldCaptionInclude = "std_field_caption"$>

See Also

• defaultFieldInclude

• fieldEntryInclude

• fieldCaptionStyle

A.1.76 fieldCaptionStyle
Specifies the style of the caption for the metadata field.

The following SPAN styles are typically used for captions. They are defined in the
std_style_declaration include in the IdcHomeDir/resources/core/std_page.htm resource
file:

• searchLabel
• infoLabel
• tableEntry
• requiredField

Type and Usage

• Other Field Display Variables

• Field Display

Output

Returns the name of the caption style.

Example

Sets the caption style to requiredField:

<$if isRequired and not suppressCaptionHighlighting$>
 <$fieldCaptionStyle = "requiredField"$>
<$endif$>

Appendix A
fieldCaptionInclude

A-47

Generates the standard field caption:
<@dynamichtml std_field_caption@>
 <span class=<$fieldCaptionStyle$>><$fieldCaption$><$if not
 isFormSubmit$><$":"$><$endif$>
<@end@>

See Also

• fieldCaption

• fieldCaptionInclude

• fieldValueStyle

• “NotationForRequiredFields" and “StyleForRequiredFields" in the Oracle Fusion
Middleware Configuration Reference for Oracle WebCenter Content

A.1.77 fieldDefault
Specifies the default value for a metadata field.

Type and Usage

• Field Information Variables

• Field Display

Output

Returns the default value of the metadata field as a string.

Example

Defines the default value for the dDocTitle metadata field:

<$fieldName = "dDocTitle", fieldCaption = lc("wwTitle"), isRequired = 1,
 fieldType = "BigText", requiredMsg = lc("wwSpecifyTitle"),
 fieldDefault="Enter a Title"$>

A.1.78 fieldEditWidth
Specifies the character width of the metadata input field on the HTML page. It is set in
compute_namevalue_edit_widths, which is included in the resource
compute_std_field_includes.

Type and Usage

• Other Field Display Variables

• Field Display

Output

None.

A.1.79 fieldEntryInclude
Specifies the include to use to display the value for the metadata field.

Appendix A
fieldDefault

A-48

Type and Usage

• Other Field Display Variables

• Field Display

Example

Sets the value display include to std_checkbox_entry:

<$fieldEntryInclude = "std_checkbox_entry"$>

See Also

• defaultFieldInclude

• fieldCaptionInclude

• fieldValueStyle

A.1.80 fieldExtraScriptInclude
Specifies the name of the include file containing additional JavaScript validation for a specific
metadata field. This is set in the resource compute_std_field_includes.

Type and Usage

• Other Field Display Variables

• Field Display

A.1.81 fieldInclude
Specifies the name of the include to display a metadata field. The include file is usually
std_namevalue_field, but it can be set to another include.

This is usually set at the top of the page with xFieldName:include but can also be set by
overriding the resource compute_std_field_includes.

Type and Usage

• Other Field Display Variables

• Field Display

A.1.82 fieldIsOptionList
Specifies whether a metadata field has an option list.

• When set to TRUE, the field has an option list.

• When set to FALSE, the field does not have an option list.

• Default is FALSE.

Type and Usage

• Field Information Variables

• Field Display

Appendix A
fieldExtraScriptInclude

A-49

Output

• Returns TRUE if the field has an option list.

• Returns FALSE if the field does not have an option list.

Example

Defines the dDocAccount metadata field as an option list if predefined accounts exist:

<$if HasPredefinedAccounts$>
 <$fieldIsOptionList = 1, optionListName = "docAccounts",
 fieldOptionListType = "combo"$>
<$endif$>

See Also

• hasOptionList

• fieldOptionListType

• optionListName

A.1.83 fieldMaxLength
Specifies the maximum length of the metadata field. This is not the size of the field but the
maximum number of characters that the field can contain. It is usually set at the top of the page
with xFieldName:include but can also be set by overriding the resource
compute_std_field_includes.

Type and Usage

• Other Field Display Variables

• Field Display

A.1.84 fieldName
Specifies the internal name of a metadata field.

• Predefined metadata fields begin with a lowercase d (for example, dDocName).

• Custom metadata fields begin with a lowercase x (for example, xComments).

Type and Usage

• Field Information Variables

• Field Display

Output

Returns the name of the metadata field as a string.

Example

Defines the dDocTitle metadata field:

<$fieldName = "dDocTitle", fieldCaption = lc("wwTitle"), isRequired = 1, fieldType =
"BigText", requiredMsg = lc("wwSpecifyTitle")$>

Appendix A
fieldMaxLength

A-50

A.1.85 fieldOptionListType
Specifies the type of option list for a metadata field.

Possible values for this variable follow.

fieldOptionListType Value Corresponding Option in Configuration Manager

strict Select List Validated or Select List Not Validated

combo Edit and Select List

multi Edit and Multiselect List

access None used in Collaboration Server for member access lists)

Type and Usage

• Field Information Variables

• Field Display

Output

Returns the option list type as a string.

Example

Defines the dDocAccount option list type as combo (Edit and Select List):

<$if HasPredefinedAccounts$>
 <$fieldIsOptionList = 1, optionListName = "docAccounts",
 fieldOptionListType = "combo"$>
<$endif$>

See Also

• fieldIsOptionList

• optionListName

A.1.86 fieldType
Specifies the type of metadata field.

Possible values for this variable follow.

fieldType Value Corresponding Option in Configuration Manager

Text Text

BigText Long Text

Int Integer

Date Date

Memo Memo

Appendix A
fieldOptionListType

A-51

Type and Usage

• Field Information Variables

• Field Display

Output

Returns the metadata field type as a string.

Example

Defines the dDocTitle metadata field as a BigText (Long Text) field:

<$fieldName = "dDocTitle", fieldCaption = lc("wwTitle"), isRequired = 1,
 fieldType = "BigText", requiredMsg = lc("wwSpecifyTitle")$>

A.1.87 fieldValue
Specifies the value for a metadata field.

Type and Usage

• Field Information Variables

• Field Display

Output

Returns the value of the current metadata field.

Example

Generates the standard field value:

<@dynamichtml std_value_label@>
 <span class="<$fieldValueStyle$>"><$fieldValue$><!--""-->
<@end@>

See Also

• fieldEntryInclude

• fieldCaptionStyle

• fieldValueStyle

• optionListName

A.1.88 fieldValueStyle
Specifies the style of the value for the metadata field.

The following SPAN styles are typically used for values. They are defined in the
std_style_declaration include in the IdcHomeDir/resources/core/std_page.htm resource
file:

• tableEntry
• xxsmall

Appendix A
fieldValue

A-52

• strongHighlight

Type and Usage

• Other Field Display Variables

• Field Display

Output

Returns the name of the value style.

Example

Sets the value style:

<$if isFieldInfoOnly$>
 <$if valueStyle$>
<$fieldValueStyle = valueStyle$>
 <$else$>
<$fieldValueStyle = "tableEntry"$>
 <$endif$>
<$endif$>

Generates the standard field value:

<@dynamichtml std_value_label@>
 <span class="<$fieldValueStyle$>"><$fieldValue$><!--'"-->
<@end@>

See Also

• fieldCaptionStyle

• fieldEntryInclude

• valueStyle

A.1.89 fieldWidth
Specifies the width of a metadata field, in characters.

Type and Usage

• Field Information Variables

• Field Display

Output

Returns the width of the current metadata field.

Example

Generates the Extension field with a width of 10 characters:

<$fieldName = "dExtension", fieldCaption = lc("wwNativeExtension"),
fieldWidth = 10$>

See Also

• fieldCaptionStyle

Appendix A
fieldWidth

A-53

A.1.90 fileUrl
Retrieves the relative URL of the current dynamic server page (HCSP or HCST).

This variable is typically used in self-referencing pages, such as a form that posts back to itself.

Type and Usage

• Dynamic Variables

• Content Items

Output

Returns the URL as a string.

Example

Returns the relative URL of the current dynamic server page:

<$fileUrl$>

A.1.91 FIRSTREV
Returns the first revision label for the current revision label sequence.

Type and Usage

• Dynamic Variables

• Content Items

Output

Returns the first revision label as a string.

Example

Returns the first revision label (default is 1):

<$FIRSTREV$>

A.1.92 ForcedConversionRules
Defines the Dynamic Converter rules that will apply forced conversions upon file checkin.

• This is a comma-delimited list.

• If a content item matches any of the specified conversion rules upon checkin, the file will
be converted according to that rule. Each file can be converted into multiple renditions.

• There is no default.

Appendix A
fileUrl

A-54

Note:

The forced conversion process does not apply the same Dynamic Converter
template twice. For example, if you set ForcedConversionRules=RuleA,RuleB,
but RuleA and RuleB specify the same template with a different layout, the
conversion according to RuleB will not occur. (Best practice in this case would be
to merge the layouts and use Idoc Script to dynamically select the appropriate
layout elements.)

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Dynamic Converter

Location

IntradocDir/config/config.cfg

Example

Used as a configuration entry:

ForcedConversionRules=Rule1,Rule2,Rule3

See Also

• incDynamicConversionByRule()

• DisableForcedConversions and rule:IsFragmentOnly in the Oracle Fusion Middleware
Configuration Reference for Oracle WebCenter Content

A.1.93 forceExpire()
This function can be used to force the cache for a particular include to expire. This is useful in
the case of a change in the page display, such as adding new metadata fields, or if the user
has saved a new query, or altered which links are viewable.

If the value for includeName is null, or an empty string, then the entire cache will be eliminated.
This is useful when all includes for a particular page are placed into the same cache, and need
to be expired at the same time.

For more information about keywords versus functions, see Keywords Versus Functions.

Type and Usage

• Global Functions

• Idoc Script

Parameters

Takes two required parameters and two optional parameters. For example:

forceExpire(includeName, scope [, cacheName, key])

Appendix A
forceExpire()

A-55

Parameter Description

includeName The name of the dynamic HTML element to evaluate.

scope Set to session if each user should see different HTML, or application if all
users should see the same thing.

cacheName Optional: if you want to place this data into a named cache instead of the default
cache. If an empty string is passed, it will cache the include into the default cache
for the session.

key Optional: if you do not want automatic name-scoping of your cache to prevent
conflicts, you can specify a unique key here.

Example

This can be used as a replacement for the std_page_begin include. It will verify if the user
executed one of the standard service calls to modify the links on the standard left navigation
bar (saving a query, altering the portal design). If so, the cached html for the standard page
begin will be invalidated. Then, the next cacheInclude function will reevaluate the include, and
place it back into the cache.

<$if strEquals(IdcService, "PNE_SAVE_QUERY") or strEquals(IdcService,
"PNE_UPDATE_PORTAL_INFO")$>
<$forceExpire("std_main_page_begin", "session", "", "std_main_page_begin")$>
<$endif$>
<$cacheInclude("std_main_page_begin", "session", 600, "", "std_main_page_begin")$>

See Also

• cacheInclude()

• inc()

• setExpires()

• setHttpHeader()

• setMaxAge()

A.1.94 formatDate()
Reformats a date/time to the default date/time format.

Database-formatted dates cannot be evaluated (for example, 2001-06-15).

Long-formatted dates cannot be evaluated (for example, June 15, 2001).

Type and Usage

• Global Functions

• Date and Time

Parameters

The only parameter is a string that specifies a date/time.

Output

• Returns the date/time in the format used by dateCurrent (for example, 6/15/01 1:55 PM).

Appendix A
formatDate()

A-56

• Returns null if the parameter cannot be evaluated.

• If a time is not provided, returns a default time of 12:00 AM.

Example

The following example formats the date and time and displays it as 12/14/99 2:00 PM:

<$formatDate("12/14/1999 02:00 PM")$>

The following example formats the date, assigns the default time, and displays it as 9/15/03
12:00 AM:

<$formatDate("09/15/2003")$>

The following script formats and displays a specified date and time. Line one evaluates an
alternate date and time format and assigns it to a custom variable. Line two displays this date
to a user.

<$my_customDateTime = formatDate("06/14/2004 15:05:34")$>
Final Approval: <$my_customDateTime$>

Output:

Final Approval: 6/14/04 3:05 PM

A.1.95 formatDateDatabase()
Formats the date and time in preparation for an SQL query. Long-formatted dates cannot be
evaluated (for example, May 22, 2000).

Type and Usage

• Global Functions

• Date and Time

• “Clustering" in the Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content.

Parameters

The only parameter is a string or variable that specifies a date and time.

Output

• Returns an ODBC-formatted date and time:

[ts 'yyyy-mm-dd hh:mm:ss']
• Returns null if the parameter cannot be evaluated.

• If a time is not provided, returns a default time of 00:00:00.

Example

Formats the current date and time for an SQL query:

<$formatDateDatabase(dateCurrent())$>

Formats the date and time and displays as 2001-03-19 15:32:00:

<$formatDateDatabase("03/19/2001 3:32 PM")$>

Appendix A
formatDateDatabase()

A-57

Formats the date and time and displays as 1999-04-03 00:00:00:

<$formatDateDatabase("4/3/99")$>

A.1.96 formatDateDisplay()
Reformats a date/time to a date/time format for display to the user. Uses the "Display Date
Format" in System Properties to format the date.

Type and Usage

• Global Functions

• Date and Time

Parameters

The only parameter is a string that specifies a date/time.

Output

• Returns the date/time in the format used.

• Returns null if the parameter cannot be evaluated.

Example

<$formatDateDisplay$>

See Also

• formatDateOnlyDisplay()

A.1.97 formatDateOnly()
Reformats a date/time to the default date format and strips out the time.

Database-formatted dates cannot be evaluated (for example, 2000-02-02).

Long-formatted dates cannot be evaluated (for example, June 12, 2001).

Type and Usage

• Global Functions

• Date and Time

Parameters

The only parameter is a string that specifies a date/time.

Output

• Returns the date only in the format used by dateCurrent (for example, 7/12/00).

• Returns null if the parameter cannot be evaluated.

Example

Returns the current date only (for example, 9/12/01):

Appendix A
formatDateDisplay()

A-58

<$formatDateOnly(dateCurrent())$>

Returns the date ten days in the future (for example, 9/22/01):

<$formatDateOnly(dateCurrent(10))$>

Formats the date and time and displays the date only as 1/17/00:

<$formatDateOnly("01/17/2000 2:00 PM")$>

This script displays the current date and a date 100 days in the future. Line one assigns the
current date only to a custom variable. Line two assigns a date 100 days in the future to a
second custom variable. Line three displays these dates to a user (for example, Start Date:
10/12/01 and End Date: 1/20/02):

<$my_startDate = formatDateOnly(dateCurrent())$>
<$my_endDate = formatDateOnly(dateCurrent(100))$>
Start Date: <$my_startDate$> and End Date: <$my_endDate$>

A.1.98 formatDateOnlyDisplay()
Reformats a date to a date format for display to the user. Uses the "Display Date Format" in
System Properties to format the date.

Similar to formatDateDisplay but only formats the date.

Type and Usage

• Global Functions

• Date and Time

Parameters

The only parameter is a string that specifies a date.

Output

• Returns the date in the format used.

• Returns null if the parameter cannot be evaluated.

Example

<$formatDateOnlyDisplay$>

See Also

• formatDateDisplay()

A.1.99 formatDateOnlyFull()
Reformats a date/time to the long date format and strips out the time. Database-formatted
dates cannot be evaluated (for example, 2000-02-02).

This setting is deprecated for version 5.1 and later. Use formatDateWithPattern().

Type and Usage

• Global Functions

Appendix A
formatDateOnlyDisplay()

A-59

• Date and Time

Parameters

The only parameter is a string that specifies a date/time.

Output

• Returns a long-formatted date:

month d, yyyy
• Returns null if the parameter cannot be evaluated.

Example

Returns the current date in long format:

<$formatDateOnlyFull(dateCurrent())$>

Returns the date 365 days in the future in long format (for example, September 12, 2002):

<$formatDateOnlyFull(dateCurrent(365))$>

Formats the date only and displays as June 12, 2001:

<$formatDateOnlyFull("6/12/01 3:00 PM")$>

A.1.100 formatDateWithPattern()
Reformats a date/time to a specified date/time pattern.

When using this variable in a program (instead of dynamic page), add !rfc to the end of the
date pattern. This provides a date format that conforms to the rfc standard. If !rfc is not
added, a program will try to use the locale to create the date string, but in the case of a timed
update event, no locale is specified. Consequently, the output uses integers instead of strings
for the day and month.

Type and Usage

• Global Functions

• Date and Time

Parameters

Takes two parameters:

• The first parameter is a date string used by the Content Server instance, or a date object
created with the parseDate or dateCurrent functions.

• The second parameter is the date/time pattern, such as MM/dd/yyyy.

The capital letter Z denotes the use of a UTC time zone for the entry. The lowercase zzzz
denotes the time offset (HHMM) from the UTC time, preceded by a plus (+) or minus (-) sign
to indicate the offset.

Output

• Returns the date/time in the format specified by the pattern parameter.

• Returns null if the parameter cannot be evaluated.

Appendix A
formatDateWithPattern()

A-60

Example

Displays Wed, 5 Jul 2006 12:08:56 -0700:

<$formatDateWithPattern(dateCurrent(),"EEE, d MMM yyyy HH:mm:ss zzzz")$>

Displays 2006-07-05 14:30:33Z:

<$formatDateWithPattern(dateCurrent(),"yyyy-MM-dd HH:mm:ssZ")$>

A.1.101 formatTimeOnly()
Reformats a date/time to the default time format and strips out the date.

Type and Usage

• Global Functions

• Date and Time

Parameters

The only parameter is a string or variable that specifies a date/time.

Output

• Returns a time only in the format used by dateCurrent (for example, 1:15 PM).

• Returns null if the parameter cannot be evaluated.

Example

Returns the current time only:

<$formatTimeOnly(dateCurrent())$>

Formats the time only and displays as 5:00 PM:

<$formatTimeOnly("2/2/99 5:00 PM")$>

Formats the time only and displays as 6:14 PM:

<$formatTimeOnly("04/21/2001 18:14:00")$>

A.1.102 formatTimeOnlyDisplay()
Reformats a time to a time format for display to the user. Uses the "Display Date Format" in
System Properties to format the time.

Similar to formatDateDisplay but only formats the time.

Type and Usage

• Global Functions

• Date and Time

Parameters

The only parameter is a string that specifies the time.

Appendix A
formatTimeOnly()

A-61

Output

• Returns the time in the format used.

• Returns null if the parameter cannot be evaluated.

Example

<$formatTimeOnlyDisplay$>

See Also

• formatDateDisplay()

A.1.103 GATEWAY_INTERFACE
Retrieves the revision level of the CGI specification to which this server complies. This variable
is not request-specific; it is set for all requests.

Type and Usage

• Environment Variables

• Web Servers

Output

Returns the revision level as a string in the format CGI/revision.

Example

As information output on a page or to a log:

GATEWAY_INTERFACE=CGI/1.1

As part of an Idoc Script statement or evaluation:

<$if GATEWAY_INTERFACE$>
<!--statement-->

A.1.104 generateUniqueId
This function returns the unique ID for an HTML page. This is used with the id attribute in an
HTML element to guarantee a unique ID.

Type and Usage

• Page Variables

• Page Display

Parameters

The only parameter is the field name for which the ID will be generated.

Output

Returns the ID for an HTML page.

Appendix A
GATEWAY_INTERFACE

A-62

A.1.105 getCookie
Obtains a cookie from a browser.

This is useful for tracking user sessions when the information does not need to be stored in the
personalization.

Can be used to track the last pages navigated to, or the last searches which were run.

Type and Usage

• Settable Variables

• Web Servers

Parameters

Takes one parameter, the name of the cookie.

Example

<$myCounter=getCookie("myCounter")$>
<$if not myCounter$>
 <$myCounter=1$>
<$endif$>
Num times loaded: <$myCounter$>
<$setCookie("myCounter", myCounter+1, dateCurrent(1))$>

See Also

• setCookie

A.1.106 GetCopyAccess
Determines what permission a user must have to get a copy of a content item.

When set to TRUE, users can get a copy of a content item for which they have only Read
permission.

When set to FALSE, users must have Write permission to a content item to be able to get a
copy.

Default is FALSE.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Internal Security

Location

• System Properties, Content Security tab, Allow get copy for user with read privilege

• Administration, Admin Server, Content Security menu option, Allow get copy for user
with read privilege

• IntradocDir/config/config.cfg

Appendix A
getCookie

A-63

Example

As a configuration setting:

GetCopyAccess=true

As Idoc Script, returns the value of the configuration setting:

<$GetCopyAccess$>

A.1.107 getDebugTrace()
Retrieves the output of the debug trace.

Type and Usage

• Global Functions

• Debugging

Output

• Returns the output of the accumulated debug trace for the page being constructed.

• Returns an empty string if IsPageDebug has not been set.

Example

Retrieves the output of the debug trace and outputs the information to a page:

<$getDebugTrace()$>

See Also

• IsPageDebug

A.1.108 getErrorTrace()
Retrieves the output of the error trace.

Error trace output is encoded for display in HTML pages. For example, the < and > delimiters
are HTML-escaped, and carriage returns are converted to
 tags.

Type and Usage

• Global Functions

• Debugging

Output

• Returns the output of the accumulated error trace for the page being constructed.

• The function returns an empty string if IsPageDebug has not been set.

Example

Retrieves the output of the error trace and outputs the information to a page:

<$getErrorTrace()$>

Appendix A
getDebugTrace()

A-64

See Also

• IsPageDebug

A.1.109 getFieldConfigValue
This function returns a configuration flag for a specific field. If the field does not exist, the
default is returned instead.

Type and Usage

• Dynamic Variables

• Content Server

Parameters

Takes three parameters:

• The name of a metadata field.

• The flag to return for the field when it is found.

• A default value to return if the field does not exist.

Output

Returns the specified configuration flag.

Example

<$caption = getFieldConfigValue("dDocTitle", "fieldCaption", lc("wwTitle"))$>

A.1.110 getFieldViewDisplayValue()
Returns the display value for an item in a Schema option list.

For example, assume an option list exists for a custom metadata field named Customer. In the
database there is a schema table with the CustomerName column and a unique CustomerID
column. On checkin the CustomerName value is visible to the user, but the CustomerID value is
stored in the database. The getFieldViewDisplayValue function extracts the human-readable
CustomerName value based on the CustomerID value.

Type and Usage

• Global Functions

• Schemas

Parameters

Takes three parameters:

• The first parameter is the name of the field to be used for the option list.

• The second parameter is the name of the schema view used for the current field.

• The third parameter is the value assigned to the field.

Appendix A
getFieldConfigValue

A-65

Output

Returns the display value.

Example

<$customerName = getFieldViewDisplayValue("xCustomer", "Customer_View", "1234")$>

A.1.111 getFieldViewValue()
This function is used when defining a content rule for a field. The value of a field for a content
profile can be made dependent on a view by using this function. Because a field can have both
a default and a derived value, the view can be used to create an interdependency between
fields.

Type and Usage

• Global Functions

• Content Profiles

Parameters

Takes three parameters:

• Field. The name of a metadata field. This field must have an associated view.

• Value. A lookup key for value.

• Column name. A column in the view's table.

Output

Returns the value in the column specified using the field value as a lookup.

Example

In the following example, the view table for the field xEmployee has a column called type.
Using the value as specified in the xEmployee metadata field, this function provides a lookup
into this table and returns the type column value.

getFieldViewValue("xEmployee", #active.xEmployee, "type")

A.1.112 getFreeMemory()
This function returns the amount of free memory in the Java Virtual Machine (JVM). This is a
performance auditing function used on the System Audit Information page.

Type and Usage

• Global Functions

• Debugging

Output

The amount of free JVM memory in megabytes.

Appendix A
getFieldViewValue()

A-66

Example

<$freeMem = getFreeMemory()$>

See Also

• getTotalMemory()

A.1.113 getHelpPage
This function returns a relative URL to a help page based on the name of the page.

Type and Usage

• Dynamic Variables

• Page Display

Parameters

The name of the page used.

Example

<input type=Button value="<$lc("wwQuickHelp")$>"
 onClick="QuickHelp('<$getHelpPage("QH_AdvancedSearch")$>', 'Search')">

A.1.114 getOptionListSize
This function returns the size of an option list. It is used to determine whether to display custom
user metadata fields on the User Profile page.

Type and Usage

• Dynamic Variables

• Page Display

Parameters

The only parameter is the option list to be sized.

Output

Returns the size of the specified option list.

A.1.115 getParentValue()
This function returns a parent value from a Schema view. This is needed before generating the
dependent option list for the current field.

In most cases this function returns the same value as the internal parent value parameter
because most option lists trigger their dependency on the unique key for the parent field.
However, this is not a requirement for complex dependent choice lists.

Type and Usage

• Global Functions

Appendix A
getHelpPage

A-67

• Schemas

Parameters

Takes four parameters:

• The name of the schema view used for the current field.

• The name of the schema relation between this field and the parent field.

• The name of the parent field.

• The internal value for the parent field. This may be different than the value displayed on
the page. This is often a unique number stored internally.

Example

<$parentValue=getParentValue("xState", "Country_State", "xCountry", "123")$>

A.1.116 getRequiredMsg()
This function is used on presentation pages to populate the Java script with the desired error
message. The error message is set from the content rule user interface for a field that is
designated as required. It returns a required message based on the following algorithm:

1. The function looks for the fieldname:requiredMsg value.

2. If the value exists, it is localized.

3. If the value is undefined or the message is empty, the function returns the default message
and does not localize it. To localize the message, the caller of the function must use the lc
function on the default message before passing it to this function (getRequiredMsg).

Type and Usage

• Global Functions

• Content Profiles

Parameters

Takes two parameters:

• Fieldname: Field associated with the error message.

• Message: Default message to be used.

See Also

• lc()

A.1.117 getTextFile()
Gets the web version of a text file and returns its contents to a string.

• This can be used only with files that have a format containing text, such as text/html,
text/plain, or text/xml. Specifically, the dFormat field of the content item must start with
text. For example, if an HCSP file is checked in, Formats: text/hcsp is displayed in the
Content Info display; therefore, the content is displayed by the getTextFile() function.

Appendix A
getRequiredMsg()

A-68

• There must be enough information to determine the content item's web URL. The dID
value is the only required metadata field.

The following information must be present:

– dDocName, dWebExtension, dSecurityGroup, dRevLabel, and dDocType.

– If Accounts are enabled, dDocAccount must also be specified.

This information is available automatically after a GET_SEARCH_RESULTS call or after a
DOC_INFO call.

• This function should be wrapped with a cacheInclude call for greater performance. That
can, however, create a security issue if all docs go to the same cache.

Type and Usage

• Global Functions

• Idoc Script

Parameters

This function does not take parameters but uses variables on the page to determine the
document's URL.

Example

<$loop SearchResults$>
 <$fullDocument=getTextFile()$>
 <h2><$dDocTitle$></h2>
 <div><$fullDocument$></div>
<$endloop$>

See Also

• cacheInclude()

A.1.118 getTotalMemory()
This function returns the amount of total memory in the Java Virtual Machine (JVM). This is a
performance auditing function used on the System Audit Information page to determine how
much memory the server is using.

Type and Usage

• Global Functions

• Debugging

Output

The total JVM memory in megabytes.

Example

<$totalMem = getTotalMemory()$>

See Also

• getFreeMemory()

Appendix A
getTotalMemory()

A-69

A.1.119 getUserValue()
Retrieves the value of a user metadata field for the current user.

The parameter must refer to a column in the Users database table. Unlike the user
personalization functions that have no support for global reference, information assigned to the
user in the Users table can be available to the Content Server instance.

Type and Usage

• Global Functions

• Idoc Script

• Users

Parameters

The only parameter is a user-related variable.

Output

• Returns the value of the metadata field for the current user.

• Evaluates to TRUE if the user value was retrieved.

• Evaluates to FALSE if an error in retrieval occurred.

• Returns a StatusCode value of -1 if the value is unspecified or unknown.

Example

Returns the user type of the currently logged on user:

<$getUserValue('dUserType')$>

A.1.120 getValue()
This function has multiple uses:

• Retrieves the value of a particular metadata field from local, active, or environment data.

• Retrieves the value of a particular column from a specific ResultSet.

• Retrieves information about ResultSet rows.

Type and Usage

• Global Functions

• Idoc Script

• ResultSets

Parameters

Takes two parameters:

• The first parameter is either the type of data or the name of a ResultSet.

• The second parameter is the name of a metadata field, the column name, or a ResultSet
row parameter.

Appendix A
getUserValue()

A-70

Variations

You can also use a shorthand format that returns results identical to the getValue(arg1,arg2)
function. The format uses the form <$arg1.arg2$>, where arg1 and arg2 are the literal string
arguments "arg1" and "arg2" to the getValue function.

Note:

Data types (local, active, and env) and ResultSet parameters must start with the
crosshatch (#) symbol.

The following parameter combinations can be used.

getValue and Shorthand Formats Description

getValue("#local",fieldName)
<$#local.fieldName$>

Retrieves the value of the specified metadata
field from the local data.

getValue("#active",fieldName)
<$#active.fieldName$>

Attempts to retrieve the value of the specified
metadata field from the data in the following
order:

1. Local data

2. Active ResultSets

3. All other ResultSets

4. Environment settings

getValue("#env",fieldName)
<$#env.fieldName$>

Retrieves the value of the specified metadata
field from the environment settings.

getValue(ResultSetName,fieldName)

<$ResultSetName.fieldName$>
Retrieves the value of the specified metadata
field from the current row of the specified
ResultSet.

getValue(ResultSetName,columnName)
<$ResultSetName.columnName$>

Retrieves the value of the specified column from
the current row of the specified ResultSet.

getValue(columnName)
<$columnName$>

Retrieves the value of the specified column from
the current row of the current ResultSet.

getValue(ResultSetName,"#row")
<$ResultSetName.#row$>

Retrieves the number of the current row in the
specified ResultSet.

The first row is 0.

getValue(ResultSetName,"#numRows")
<$ResultSetName.#numRows$>

Retrieves the total number of rows in the
specified ResultSet.

getValue(ResultSetName,"#isRowPresent")
<$ResultSetName.#isRowPresent$>

Checks if at least one row is present in the
specified ResultSet.

This is useful when looping manually with
rsNext.

getValue(ResultSetName,"#isEmpty")
<$ResultSetName.#isEmpty$>

Checks if the specified ResultSet does not
contain any rows.

Appendix A
getValue()

A-71

Output

• For output values, see the preceding subsection, Variations.

• Returns an empty string if a value is not found.

Example

• Gets the content ID from the ResultSet named DOC_INFO:

<$name = getValue("DOC_INFO","dDocName")$>

or

<$name = <$DOC_INFO.dDocName$>
• Checks to see if the passed parameter dDocType (which is in the local data) equals the

value in the active ResultSet:

<$loop DocTypes$>
<$if strEquals(#active.dDocType, getValue("#local","dDocType"))$>
<!--do special HTML for selected document type-->
<$endif$>
<!-- additional statement-->
<$endloop$>

See Also

• Special Keywords

A.1.121 getValueForSpecifiedUser()
Retrieves the value of a user attribute for a specific user. This function can be useful for
defining extended workflow functionality.

Type and Usage

• Global Functions

• Users

• Workflow

Parameters

Takes two parameters:

• The first parameter is the user name.

• The second parameter is the name of a column in the Users database table that specifies
a user attribute (such as dFullName, dUserType, or dEmail).

Output

• Returns the value of the user attribute for the specified user.

• Returns an empty string if the value is not found.

Example

Retrieves the full name for mjones.

Appendix A
getValueForSpecifiedUser()

A-72

<$getValueForSpecifiedUser('mjones', 'dFullName')$>

A.1.122 getViewValue()
Returns the display value for an item in a Schema option list.

For example, assume an option list exists for a custom metadata field named Customer. In the
database there is a schema table with the CustomerName and a unique CustomerID. On checkin
the CustomerName is visible to the user but the CustomerID is what is stored in the database.
The getFieldViewDisplayValue function extracts the human-readable CustomerName based on
the CustomerID.

Type and Usage

• Global Functions

• Schemas

Parameters

This function takes three parameters:

• The name of the schema view used for the current field.

• The value stored in the database for the ID.

• The column name associated with the view.

Output

Returns the display value.

Example

<$custName = getViewValue("Customer_View", "1234", "CustomerName")$>
<$custRegion = getViewValue("Customer_View", "1234", "CustomerRegion")$>

See Also

• getFieldViewDisplayValue()

A.1.123 getViewValueResultSet()
This function loads a schema table and places it on the page as a ResultSet named
SchemaData. The column names in the ResultSet are the same as the names in the database
table.

This function is most useful to obtain a list of dependent choices based on a parent value.

Type and Usage

• Global Functions

• Schemas

Parameters

Takes three parameters:

• The name of the schema view used.

Appendix A
getViewValue()

A-73

• The relation for the schema and the view.

• The value for the schema parent.

Example

Assume you have a schema table and view for a list of countries. The view is named
Country_view.

To output the contents of that table to the page, use the following code.

<$getViewValuesResultSet("Country_View", "", "")$>
<$loop SchemaData$>
<$count = 0, num = rsNumFields("SchemaData")$>
 <$loopwhile count < num$>
 <$fieldName=rsFieldByIndex("SchemaData", count)$>
 <$fieldName$> = <$getValue("SchemaData", fieldName)$>
 <$count = count + 1$>
 <$endloop$>
<$endloop$>

This will output the table even if you do not know the column name.

In the following example, assume you have a DCL for the fields Country and State. The list of
States depends on which Country is selected. To obtain the list of States when the Country is
US, use this code:

<$getViewValuesResultSet("State_View", "Country_State", "US")$>

A.1.124 hasAppRights()
Checks if the current user has rights to an administrative application.

Type and Usage

• Global Functions

• Internal Security

Parameters

The only parameter is one of the following administrative applications:

• UserAdmin

• WebLayout

• RepoMan

• Workflow

• ConfigMan

• Archiver

Output

• Returns TRUE if the user has rights to the specified application.

• Returns FALSE if the user does not have rights to the specified application.

• Returns a StatusCode value of -1 if the value is unspecified or unknown.

Appendix A
hasAppRights()

A-74

Example

Evaluates whether the current user has rights to the specified application.

<$hasAppRights('RepoMan')$>

A.1.125 HasExternalUsers
Indicates to Content Server that an external user database is present.

When set to TRUE, the system recognizes external users. If a custom component has been
written to support an external user integration (such as LDAP), this should be set to TRUE.

Default is FALSE.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Content Server

• External Security

Location

IntradocDir/config/config.cfg

Example

As a configuration setting:

HasExternalUsers=true

As Idoc Script, returns the value of the configuration setting:

<$HasExternalUsers$>

See Also

• NtlmSecurityEnabled in the Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

A.1.126 HasLocalCopy
Checks whether the client computer has a copy of the requested content item in the download
target directory.

Generally used to query the user whether to overwrite when downloading. For example, this
variable is used by the Oracle ODMA Client.

Type and Usage

• Settable Variables

• Content Items

• Clients

Appendix A
HasExternalUsers

A-75

Output

• Returns TRUE if a local copy is detected.

• Returns FALSE if a local copy is not detected.

Example

Checks for a local copy of the content item:

<$HasLocalCopy$>

See Also

• ClientControlled

• IsNotLatestRev

A.1.127 hasOptionList
Specifies that the metadata field has an option list.

Type and Usage

• Other Field Display Variables

• Field Display

Output

• Returns TRUE if the field has an option list.

• Returns FALSE if the field does not have an option list.

Example

Specifies that the field has an option list:

<$hasOptionList=1$>

Generates the option list values if the field has an option list:

<$if hasOptionList$>
 <$if isQuery$></td><td><$endif$>
 <$include std_option_list_entry$>
<$endif$>

See Also

• fieldIsOptionList

A.1.128 HasOriginal
Checks if an original file exists for a revision.

This variable checks for a dOriginalName value.

It is possible for a content item to be checked in but to not have an original file (for example,
when a Basic workflow has been started but files have not been checked in at the initial
contribution step).

Appendix A
hasOptionList

A-76

Type and Usage

• Dynamic Variables

• Content Items

Output

• Returns TRUE if an original file exists.

• Returns FALSE if no original file exists.

Example

Checks for an original file:

<$if HasOriginal and not isNew$>

A.1.129 HasPredefinedAccounts
Checks if the current user has permission to any predefined accounts. Predefined accounts
are those that are created in the User Admin utility.

Type and Usage

• Conditional Dynamic Variables

• Internal Security

• Users

Output

• Returns TRUE if the user is assigned to any predefined accounts.

• Returns FALSE if the user is not assigned to any predefined accounts.

Example

Displays the Accounts option list if the user is assigned to any predefined accounts:

<$if HasPredefinedAccounts$>
 <$fieldIsOptionList = 1, optionListName = "docAccounts", fieldOptionListType =
"combo"$>
<$endif$>

A.1.130 HasUrl
Checks if a file exists in the weblayout directory for the current content item.

Type and Usage

• Conditional Dynamic Variables

• Content Items

Output

• Returns TRUE if a weblayout file exists.

• Returns FALSE if no weblayout file exists.

Appendix A
HasPredefinedAccounts

A-77

Example

Checks for a weblayout file:

<$if HasUrl$>
 <$include doc_url_field$>
<$endif$>

A.1.131 HeavyClient
Checks if the checkin is through the Content Server ODMA client or Upload applet.

Type and Usage

• Conditional Dynamic Variables

• Clients

Output

• Returns TRUE if the ODMA client or Upload applet is being used for checkin.

• Returns FALSE if the ODMA client and Upload applet are not being used for checkin.

Example

Checks for check in method:

<$HeavyClient$>

A.1.132 HelpDir
Defines the path to the directory that contains the online help files.

This path can be set separately for the Content Server instance and the Oracle WebCenter
Content: Inbound Refinery instance.

Returns the path as a string.

Default for the Content Server instance is install_dir/weblayout/help.

The default for Inbound Refinery is SharedDir/help.

Type and Usage

• Directories and Paths

Location

• Content Server: IntradocDir/config/config.cfg
• Inbound Refinery: install_dir/IdcRefinery/shared/idcrefinery.cfg

Example

Used as a configuration entry for the Content Server instance:

HelpDir=c:/stellent/weblayout/help/

Used as a configuration entry for the Inbound Refinery instance:

Appendix A
HeavyClient

A-78

HelpDir=c:/stellent/IdcRefinery/shared/help/

A.1.133 htmlRefreshTimeout
Similar to DefaultHtmlRefreshTimeoutInSeconds. Defines the time, in seconds, that a Work In
Progress page, My Checked-Out Content page or My Workflow Assignments page refreshes.

htmlRefreshTimeout can be set in the URL or the service's databinder. This can be used to set
a different refresh time for different pages. If that is needed, do not set
DefaultHtmlRefreshTimeoutInSeconds in the config.cfg file, but instead set
htmlRefreshTimeout in the URL or databinder.

Type and Usage

• Dynamic Variables

• Page Display

Example

In the page's URL:

&htmlRefreshTimeout=90

See Also

• “DefaultHtmlRefreshTimeoutInSeconds" in the Oracle Fusion Middleware Configuration
Reference for Oracle WebCenter Content

• htmlRefreshUrl

A.1.134 htmlRefreshUrl
Used to set the URL of the page to load after a Work In Progress page, My Checked-Out
Content page or My Workflow Assignments page is refreshed. The default is the current page.
This variable can be set in the URL of the page or the databinder of the service.

Type and Usage

• Dynamic Variables

• Page Display

Example

In the page's URL:

&htmlRefreshUrl=http://www.home.com

See Also

• DefaultHtmlRefreshTimeoutInSeconds in the Oracle Fusion Middleware Configuration
Reference for Oracle WebCenter Content

• htmlRefreshUrl

A.1.135 HttpAbsoluteCgiPath
Retrieves the Content Server CGI path as a complete URL.

Appendix A
htmlRefreshTimeout

A-79

This variable cannot be modified directly; to change the path, use the HttpAbsoluteCgiRoot
configuration setting, described in Oracle Fusion Middleware Configuration Reference for
Oracle WebCenter Content.

Type and Usage

• Dynamic Variables

• Directories and Paths

Output

Returns the path as a string.

Example

Returned for a Content Server domain:

HttpAbsoluteCgiPath=http://localhost/domain/idcplg/

(or returned for a master Content Server domain)

Returned for a proxied Content Server instance (stellent_2):

HttpAbsoluteCgiPath=http://localhost/stellent/idcplg/stellent_2/pxs

See Also

• HttpBrowserFullCgiPath

• HttpCgiPath

• HttpAbsoluteCgiRoot in the Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

A.1.136 HttpAdminCgiPath
Retrieves the Content Server CGI path as a relative URL.

Type and Usage

• Dynamic Variables

• Directories and Paths

Output

Returns the Content Server CGI path as a string.

Example

Returned for a Content Server instance:

HttpAdminCgiPath=/idcplg/idc_cgi_isapi-instance.dll/cs-admin/pxs

(returned for a master or proxied Content Server instance)

A.1.137 HttpBrowserFullCgiPath
This variable is used to set explicit control over the CGI path construction made for applets and
the Content Server instance.

Appendix A
HttpAdminCgiPath

A-80

Content Server evaluates the HTTP address in the address bar of the browser. If the
HttpIgnoreWebServerInternalPortNumber configuration entry is not sufficient to assist the
evaluation, HttpBrowserFullCgiPath can be set with an explicit answer.

Specify a relative path to the Content Server instance (idc1 in the example that follows).

Type and Usage

• Dynamic Variables

• Directories and Paths

• Clients

Example

HttpBrowserFullCgiPath=http://localhost/idc1/idcplg

See Also

• HttpIgnoreWebServerInternalPortNumber in the Oracle Fusion Middleware Configuration
Reference for Oracle WebCenter Content

A.1.138 HttpCgiPath
Retrieves the Content Server CGI path.

The following configuration settings are used to determine the value of this variable.

Variable Description

UseSSL When set to TRUE, the secure sockets layer (SSL) is used (https instead
of http).

isAbsoluteCgi Defines whether the complete URL is used instead of a relative path. This
is an internal flag set by the Content Server instance and is not intended for
user configuration.

Type and Usage

• Dynamic Variables

• Directories and Paths

Output

Returns the path as a string.

Example

Returned for a Content Server instance:

HttpCgiPath=/domain/idcplg

(or returned for a master Content Server instance)

Returned for a proxied Content Server (stellent_2):

HttpCgiPath=/stellent/idcplg/stellent_2/pxs

Appendix A
HttpCgiPath

A-81

See Also

• HttpAbsoluteCgiPath

• HttpEnterpriseCgiPath

• UseSSL

A.1.139 HttpCommonRoot
Retrieves the URL of the common directory.

Multiple Content Server instances can share resources from one Content Server installation.
This variable defines the URL path to the DomainHome/ucm/cs/common/ directory of the Content
Server instance whose resources are being shared. For example, the HttpCommonRoot
defines the prefix to use for accessing the shared common directory where web applets are
located.

Type and Usage

• Dynamic Variables

• Directories and Paths

Output

Returns the relative URL as a string. If the URL is external, the complete URL is returned
rather than the relative path.

Example

Returned for a Content Server instance:

HttpCommonRoot=/domain/common/

(returned for a master or proxied Content Server instance)

See Also

• HttpHelpRoot

• HttpImagesRoot

• HttpSharedRoot

• HttpWebRoot

A.1.140 HttpEnterpriseCgiPath
Retrieves the CGI path of a Content Server instance as a relative URL.

Retrieves the CGI path of a master Content Server instance. When multiple Content Server
instances share the same web login, one of them is designated as the master or enterprise
server.

Type and Usage

• Dynamic Variables

• Directories and Paths

Appendix A
HttpCommonRoot

A-82

Output

Returns the Content Server CGI path as a string.

Returns the master Content Server CGI path as a string.

Example

Returned for a Content Server instance:

HttpEnterpriseCgiPath=/idcplg/idc_cgi_isapi-instance.dll

(returned for a master or proxied Content Server)

See Also

• HttpCgiPath

A.1.141 HttpHelpRoot
Retrieves the URL of the help directory.

Multiple Content Server instances can share online help files from one Content Server
installation. This variable defines the URL path to the DomainHome/ucm/cs/weblayout/help/
directory of the Content Server instance whose help files are being shared.

Type and Usage

• Dynamic Variables

• Directories and Paths

Output

Returns the relative URL as a string. If the URL is external, the complete URL is returned
rather than the relative path.

Example

Returned for a Content Server instance:

HttpHelpRoot=/domain/help/

(returned for a master or proxied Content Server)

See Also

• HttpCommonRoot

• HttpImagesRoot

• HttpSharedRoot

• HttpWebRoot

A.1.142 HttpImagesRoot
Retrieves the URL of the images directory.

Appendix A
HttpHelpRoot

A-83

Multiple Content Server instances can share user interface images from one Content Server
installation. This variable defines the URL path to the DomainHome/ucm/cs/weblayout/images/
directory of the Content Server instance whose image files are being shared.

Type and Usage

• Dynamic Variables

• Directories and Paths

Output

Returns the relative URL as a string. If the URL is external, the complete URL is returned
rather than the relative path.

Example

Returned for a Content Server:

HttpImagesRoot=/domain/images/

Returned for a master or proxied Content Server:

See Also

• HttpCommonRoot

• HttpHelpRoot

• HttpSharedRoot

• HttpWebRoot

A.1.143 HttpLayoutRoot
Retrieves the URL of the folder containing the current layout files. This is useful if you have
additional JavaScript resources specific to the current layout.

Type and Usage

• Dynamic Variables

• Directories and Paths

A.1.144 HttpRelativeAdminRoot
Retrieves the relative URL for a Content Server instance.

Defaults to /cs-admin/ during installation.

Type and Usage

• Dynamic Variables

• Directories and Paths

Output

Returns the relative URL as a string.

Appendix A
HttpLayoutRoot

A-84

Example

Returned for a Content Server instance:

HttpRelativeAdminRoot=/cs-admin/

(returned for a master or proxied Content Server)

A.1.145 HttpRelativeWebRoot
Defines the web server root directory as a relative URL.

• A relative root such as /domain/ is used rather than a full root such as http://
www.mycomputer.com/domain/.

• Returns the relative web root directory as a string.

• There is no default value.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Directories and Paths

• Web Servers

Location

• System Properties, Internet tab, Http Relative Web Root

• Content Server: IntradocDir/config/config.cfg

Example

As a configuration setting, defines the relative web root:

HttpRelativeWebRoot=/domain/

As Idoc Script, returns the relative web root as a string:

<$HttpRelativeWebRoot$>

See Also

• HttpAbsoluteWebRoot in the Oracle Fusion Middleware Configuration Reference for
Oracle WebCenter Content

A.1.146 HttpServerAddress
Defines the web server address as a partial URL.

A partial URL such as mycomputer is used rather than a full address such as http://
www.mycomputer.com/.

Returns the web server address as a string.

There is no default value.

Appendix A
HttpRelativeWebRoot

A-85

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Directories and Paths

• Web Servers

Location

• System Properties, Internet tab, HTTP Server Address

• Content Server: IntradocDir/config/config.cfg

Example

As a configuration setting, defines the web server address:

HttpServerAddress=mycomputer

As Idoc Script, returns the web server address as a string:

<$HttpServerAddress$>

See Also

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• IdcCommandServerHost in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• IntradocServerHostName in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

A.1.147 HttpSharedRoot
Retrieves the URL path of the shared directory.

Multiple Content Server instances can share resources from one Oracle Content Server
installation. This variable defines the URL path to the shared/ directory of the Content Server
instance whose resource files are being shared.

Type and Usage

• Dynamic Variables

• Content Server

• Directories and Paths

Output

Returns the relative URL as a string. If the URL is external, the complete URL is returned
rather than the relative path.

Example

Returned for a master or proxied Content Server:

HttpSharedRoot=/domain/

Appendix A
HttpSharedRoot

A-86

See Also

• HttpCommonRoot

• HttpHelpRoot

• HttpImagesRoot

• HttpWebRoot

A.1.148 HttpSystemHelpRoot
Similar to the HttpHelpRoot variable except this variable returns the path to the help files for
the default system language.

Type and Usage

• Dynamic Variables

• Directories and Paths

Output

Returns the path to the help files.

Example

HttpSystemHelpRoot=/domain/help/

See Also

• HttpCommonRoot

• HttpHelpRoot

• HttpImagesRoot

• HttpWebRoot

A.1.149 HttpWebRoot
Retrieves the URL path of the weblayout/ directory.

Multiple Content Server instances can share resources from one Content Server installation.
This variable defines the URL path to the DomainHome/ucm/cs/weblayout/ directory of the
Content Server instance whose resource files are being shared.

The following configuration settings determine the value of this variable.

Variable Description

UseSSL When set to TRUE, the secure sockets layer (SSL) is used (https instead
of http).

isAbsoluteWeb Defines whether the complete URL is used instead of a relative path. This
is an internal flag set by the Content Server instance and is not intended for
user configuration.

Appendix A
HttpSystemHelpRoot

A-87

Type and Usage

• Dynamic Variables

• Directories and Paths

Output

Returns the relative URL as a string. If the URL is external, the complete URL is returned
rather than the relative path.

Example

Returned for a Content Server instance:

HttpWebRoot=/domain/

(returned for a master or proxied Content Server)

See Also

• UseSSL

• HttpCommonRoot

• HttpHelpRoot

• HttpImagesRoot

• HttpSharedRoot

A.1.150 HTTP_ACCEPT
Retrieves a list of content types that the browser can accept.

Type and Usage

• Environment Variables

• Web Servers

Output

Returns a list of content types as a comma-delimited string.

Example

As information output on a page or to a log:

HTTP_ACCEPT=text/xml,application/xml,application/xhtml+xml,text/html;
q=0.9,text/plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif;
q=0.2,text/css,*/*;q=0.1

As part of an Idoc Script statement or evaluation:

<$if HTTP_ACCEPT$>
<!--statement-->

A.1.151 HTTP_ACCEPT_ENCODING
Retrieves a list of compression encodings that the browser supports.

Appendix A
HTTP_ACCEPT

A-88

As of Content Server version 7.0, HTML files are compressed for delivery. GZIP compression
is the default.

Type and Usage

• Environment Variables

• Web Servers

Output

Returns a list of compression encodings as a comma-delimited string.

Example

As information output on a page or to a log:

HTTP_ACCEPT_ENCODING=gzip, deflate, compress;q=0.9

As part of an Idoc Script statement or evaluation:

<$if HTTP_ACCEPT_ENCODING$>
<!--statement-->

A.1.152 HTTP_ACCEPT_LANGUAGE
Retrieves a list of ISO languages that are set for the browser.

This variable might be useful for estimating which user locale to set for new or guest users.

Type and Usage

• Environment Variables

• Web Servers

Output

Returns a list of languages as a comma-delimited string.

Example

As information output on a page or to a log:

HTTP_ACCEPT_LANGUAGE=en-us,en;q=0.50

As part of an Idoc Script statement or evaluation:

<$if HTTP_ACCEPT_LANGUAGE$>
<!--statement-->

A.1.153 HTTP_COOKIE
Retrieves the name/value pair of the cookie in the HTTP request header.

Type and Usage

• Environment Variables

• Web Servers

Appendix A
HTTP_ACCEPT_LANGUAGE

A-89

Output

Returns a string in the format name1=string1; name2=string2.

Example

As information output on a page or to a log:

HTTP_COOKIE=IntradocAuth=Basic; IntrdocLoginState=1

As part of an Idoc Script statement or evaluation:

<$if HTTP_COOKIE$>
<!--statement-->

A.1.154 HTTP_HOST
Retrieves the name of the web server.

Type and Usage

• Environment Variables

• Idoc Script

Output

Returns the web server name as a string.

Example

As information output on a page or to a log:

HTTP_HOST=centralserver

As part of an Idoc Script statement or evaluation:

<$if HTTP_HOST$>
<!--statement-->

A.1.155 HTTP_INTERNETUSER
Retrieves the CGI parameter that the web server security filter passes to the system so that
the system can set the user.

If this variable is not set, the value of the REMOTE_USER variable is used.

If HTTP_INTERNETUSER and REMOTE_USER variables are not set, the user is anonymous.

Type and Usage

• Environment Variables

• Web Servers

Output

Returns the user name as a string.

Appendix A
HTTP_HOST

A-90

Example

As information output on a page or to a log:

HTTP_INTERNETUSER=admin

As part of an Idoc Script statement or evaluation:

<$if HTTP_INTERNETUSER$>
<!--statement-->

A.1.156 HTTP_REFERER
Retrieves the complete URL of the referenced directory on the local server.

Type and Usage

• Environment Variables

• Web Servers

Output

Returns the complete URL as a string.

Example

As information output on a page or to a log:

HTTP_REFERER=http://centralserver/domain/

As part of an Idoc Script statement or evaluation:

<$if HTTP_REFERER$>
<!--statement-->

A.1.157 HTTP_USER_AGENT
Retrieves the client browser type, version number, library, and platform for which the browser is
configured.

Type and Usage

• Environment Variables

• Web Servers

Output

Returns a string in the format software/version (library) (platform).

Example

As information output on a page or to a log:

HTTP_USER_AGENT=Mozilla/4.7 [en] (WinNT; U)

As part of an Idoc Script statement or evaluation:

Appendix A
HTTP_REFERER

A-91

<$if HTTP_USER_AGENT$>
<!--statement-->

A.1.158 idocTestForInclude()
This function tests to find out if a dynamichtml resource exists.

Type and Usage

• Global Functions

• Dynamicdata

Parameters

This function has one parameter: includeName is the name of the dynamichtml resource.

Output

If the resource exists, then it returns TRUE.

Example

<$if idocTestForInclude("std_page_begin")$> <$include std_page_begin$><$endif$>

A.1.159 inc()
Adds the code from an include resource to the page.

This function does the same thing as the include keyword, except that it can take an Idoc
Script variable as the parameter. For more information, see Keywords Versus Functions.

Type and Usage

• Global Functions

• Idoc Script

Parameters

The only parameter is a variable that defines the name of an include.

Output

Displays the code that is defined in the specified include resource.

Example

Say you wanted to execute some Idoc Script for some, but not all, of your custom metadata
fields. You could dynamically create includes based on the field names (such as
specific_include_xComments) by executing this Idoc Script:

<$loop DocMetaDefinition$>
 <$myInclude = "specific_include_" & dName$>
 <$exec inc(myInclude)$>
<$endloop$>

Note the use of the exec keyword, which suppresses the output of the include specified by the
inc function. If you don't use exec before the inc function, the HTML inside the specified
include will be displayed on the page.

Appendix A
idocTestForInclude()

A-92

If the specific_include_xComments field does not exist, this code will not throw an error
because the output is not being displayed.

See Also

• include

• setResourceInclude()

A.1.160 incDynamicConversionByRule()
Returns the results of converting the LatestReleased revision of a document using the
template and layout associated with a particular Dynamic Converter conversion rule.

Fragments created through forced conversions can be referenced directly using this function.

Type and Usage

• Global Functions

• Dynamic Converter

Parameters

Takes two parameters:

• The first parameter is the content ID of a document.

• The second parameter is the name of a conversion rule.

Output

Retrieves the specified document converted according to the template and layout defined for
the specified conversion rule.

Example

Retrieves the converted rendition of the content item with a content ID of PhoneList, converted
according to conversion rule RuleA:

<$incDynamicConversionByRule("PhoneList","RuleA")$>

See Also

• ForcedConversionRules

A.1.161 incGlobal()
Includes the entire contents of a text file in the display of the current page.

This function is used to generate the default portal page.

A global include file is a text file that contains HTML code, Idoc Script code, or both. It is
loaded on server startup.

Global include files must have the .inc extension and must be located in the
DomainHome/ucm/cs/data/pages/ directory.

Appendix A
incDynamicConversionByRule()

A-93

Type and Usage

• Global Functions

• Idoc Script

Parameters

The only parameter is the name of a global include file without the .inc file extension.

Output

Displays the code that is defined in the specified global include file.

Example

When you change the portal page using the Update Portal function in the Web Layout Editor, a
global include file called portal_message.inc is created to contain your modified text. This file
is then referenced in the pne_home_page.htm template file as follows:

<$incGlobal("portal_message")$>

A.1.162 include
Adds the code from an include resource (defined by <@dynamichtml include_name@>) to the
page.

This keyword is the most commonly used command in Idoc Script, as it allows you to reuse
small chunks of code on multiple template pages.

For more information, see Includes.

Type and Usage

• Special Keywords

• Idoc Script Comments

Parameters

The only parameter is the name of the include.

Output

Displays the code that is defined in the specified include resource.

Example

The following includes are used to create the beginning and end of most Content Server web
pages. These includes are defined in the following file:

IdcHomeDir/resources/core/standard_page.htm
<$include std_html_head_declarations$>
<$include body_def$>
<$include std_page_begin$>
 Hello World!
<$include std_page_end$>

Appendix A
include

A-94

See Also

• Keywords Versus Functions

• setResourceInclude()

• inc()

A.1.163 incTemplate()
Adds the contents of a Content Server template to a page, after evaluating any Idoc Script.

You can use this function to include the content of an entire template. However, this usage is
discouraged because resource includes are usually sufficiently flexible to support all
requirements for the sharing of Idoc Script between pages.

Type and Usage

• Global Functions

• Idoc Script

Parameters

The only parameter is the name of a Content Server template file without the .htm file
extension.

Output

Displays the code that is defined in the specified template.

Example

Retrieves the new_look template file.

<$incTemplate("new_look")$>

A.1.164 indexerSetCollectionValue()
This function modifies the logic of the search indexer. This function is designed to allow
calculation of cumulative statistics about the index collection.

Type and Usage

• Global Functions

• Content Items

Parameters

Takes two parameters:

• The first parameter is the name of the flag used.

• The second parameter is the value attributed to the flag.

Any name and value can be used. These values become available the next time the resource
include is executed for the index collection.

Appendix A
incTemplate()

A-95

A.1.165 InstanceDescription
Defines a description for the instance.

The instance description is used in the Content Server interface.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Content Server

Location

• System Properties, Server tab, Instance Description

• IntradocDir/config/config.cfg

Example

As a configuration entry:

InstanceDescription=Master_on_Server1

As Idoc Script, returns the server instance description as a string:

<$InstanceDescription$>

See Also

• IDC_Name in the Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• InstanceMenuLabel in the Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

A.1.166 isActiveTrace()
Checks if a section is being traced in the core.

Type and Usage

• Global Functions

• Debugging

Output

Returns active trace results.

Example

<$isActiveTrace()$>

See Also

• isVerboseTrace

Appendix A
InstanceDescription

A-96

A.1.167 isCheckin
Specifies if the current page is a checkin page.

When set to TRUE, the current page is identified as a checkin page.

When set to FALSE, the current page is not identified as a checkin page.

Type and Usage

• Page Display Variables

• Page Display

Output

• Returns TRUE if the page is a checkin page.

• Returns FALSE if the page is not a checkin page.

Example

Set at the top of a page:

isCheckin=1

Used as script:

<$if isCheckin or isUpdate or isQuery$>
 <$isFormSubmit = 1$>
 <$if not isQuery$>
 <$isEditMode = 1$>
 <$formName = "Checkin"$>
 <$endif$>
 <$else$>
 <$isFormSubmit = ""$>
 <$isEditMode = ""$>
<$endif$>

A.1.168 IsCheckinPreAuthed
Checks if a checkin application preauthorized the current checkin by getting a security token.

Type and Usage

• Conditional Dynamic Variables

• Internal Security

• Users

Output

• Returns TRUE if the checkin is preauthorized.

• Returns FALSE if the checkin is not preauthorized.

Example

Checks for checkin preauthorization:

Appendix A
isCheckin

A-97

<$IsCheckinPreAuthed$>

A.1.169 isComponentEnabled
Checks if the defined component in enabled.

Type and Usage

• Conditional Dynamic Variables

• Content Server

Parameters

The only parameter is the component name.

Output

• Returns TRUE if the defined component is enabled.

• Returns FALSE if the defined component is not enabled.

Example

<$isComponentEnabled("Folders")$>

A.1.170 IsContributor
Used to evaluate whether a user is a contributor. Generally used to determine whether to show
special links on a page (for example, std_page uses it to decide whether to display the Content
Manager link).

Type and Usage

• Conditional Dynamic Variables

• Content Server

Output

• Returns TRUE if the user is a contributor.

• Returns FALSE if the user is not a contributor.

Example

Used to evaluate whether a user is a contributor:

<$if IsContributor$>

A.1.171 IsCriteriaSubscription
Evaluates whether a subscription to the content item is criteria-based rather than based on the
content ID (dDocName).

Type and Usage

• Conditional Dynamic Variables

Appendix A
isComponentEnabled

A-98

• Content Server

Output

• Returns TRUE if the subscription is criteria-based.

• Returns FALSE if the subscription is to a particular content item.

Example

Evaluates whether subscription is criteria based:

<$IsCriteriaSubscription$>

A.1.172 IsCurrentNav
Checks if the page currently being displayed is the same as the page being looped over while
building the Next/Previous navigation on search results pages.

Type and Usage

• Conditional Dynamic Variables

• Page Display

• Searching

Output

• Returns TRUE if the navigation loop is at the same page as the current page.

• Returns FALSE if the navigation loop is not at the same page as the current page.

Example

If the navigation loop is at the current page, the page number is displayed as plain text. If the
navigation loop is not at the current page, the page number is displayed as a hypertext link:

<$loop NavigationPages$>
<$if IsCurrentNav$>
 <$HeaderPageNumber$>
<$else$>
 <a href="<$strRemoveWs(inc("searchapi_navigation_specific_page"))$>">
 <$HeaderPageNumber$>
<$endif$>
<$endloop$>

A.1.173 isDocPage
Specifies if the current page is a page that displays metadata (such as search, checkin, and
content information pages).

When set to TRUE, the current page is identified as a document page.

When set to FALSE, the current page is not identified as a document page.

Type and Usage

• Page Display Variables

• Page Display

Appendix A
IsCurrentNav

A-99

Output

• Returns TRUE if the page is a document page.

• Returns FALSE if the page is not a document page.

Example

Set at the top of a page:

isDocPage=1

Used as script:

<$if isDocPage$>
 <!--statement-->
<$endif$>

A.1.174 IsDynamic
Checks if the page is presented dynamically to the user.

Most pages viewed by the user are dynamic. However, some static pages are designed to be
delivered to the user without changes. Examples are the guest portal page and the content of
some auto generated emails.

Type and Usage

• Conditional Dynamic Variables

• Page Display

Output

• Returns TRUE if the page is being presented dynamically to the user.

• Returns FALSE if the page is static or cannot be displayed.

Example

Evaluates whether the page is presented dynamically:

<$if IsDynamic$>
 <a href="<$redirect$>">
<$endif$>

A.1.175 IsDynamicConverterEnabled
Enables Dynamic Converter.

This value is set to FALSE during initial WebCenter Content installation.

This value is set to TRUE during Dynamic Converter installation.

Default is FALSE.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

Appendix A
IsDynamic

A-100

• Dynamic Converter

Location

• System Properties, Options tab, Enable Dynamic Converter

• Administration, Admin Server, General Configuration menu option, Enable Dynamic
Converter

• IntradocDir/config/config.cfg

Example

As a configuration setting, enables Dynamic Converter functionality:

IsDynamicConverterEnabled=true

As Idoc Script, used to evaluate whether dynamic converter functionality is enabled:

<$if IsDynamicConverterEnabled and isTrue(IsDynamicConverterEnabled)$>
 <tr>
 <td align="center" width="75">
 <a href="<$HttpCgiPath$>?IdcService=GET_TEMPLATE_CONVERSIONS">
 <img src="<$HttpImagesRoot$><$admin_conversion_image$>" border="0"
 width="<$adminImageWidth$>" height="<$adminImageHeight$>">
 </td>
 <td width="10">
 </td>
 <td width="245">
 <a href="<$HttpCgiPath$>?IdcService=GET_TEMPLATE_CONVERSIONS">
 <$lc("wwTemplateConversions")$>
 </td>
 </tr>
<$endif$>

A.1.176 isEditMode
Specifies if metadata fields on the current page can be edited.

This variable is set on checkin and content information update pages.

When set to TRUE, metadata fields on the current page can be edited.

When set to FALSE, metadata fields on the current page cannot be edited.

Type and Usage

• Page Display Variables

• Page Display

Output

• Returns TRUE if metadata fields on the current page can be edited.

• Returns FALSE if metadata fields on the current page cannot be edited.

Example

Set at the top of a page:

isEditMode=1

Appendix A
isEditMode

A-101

Used as script:

<$if isCheckin or isUpdate or isQuery$>
 <$isFormSubmit = 1$>
 <$if not isQuery$>
 <$isEditMode = 1$>
 <$formName = "Checkin"$>
 <$endif$>
 <$else$>
 <$isFormSubmit = ""$>
 <$isEditMode = ""$>
<$endif$>

A.1.177 IsEditRev
Checks whether the current revision is in an Editor step in a workflow.

When set to TRUE, reviewers can check out, edit, and check in the revision.

This variable is set by defining a workflow step as an Editor step in the Workflow Admin tool.
This variable is evaluated on the checkin page.

Type and Usage

• Value Variables

• Content Items

• Workflow

Output

• Returns TRUE if the current revision is in an Editor step in a workflow.

• Returns FALSE if the current revision is not in an Editor step in a workflow.

Example

Provides workflow details:

<$if IsEditRev$>
 addCheckinValue("IdcService", "WORKFLOW_CHECKIN");
if (form.isFinished.checked)
 addCheckinValue("isFinished", form.isFinished.value);
<$else$>
 addCheckinValue("IdcService", "CHECKIN_SEL");
<$endif$>

A.1.178 isExcluded
Completely excludes the metadata field from the page.

Type and Usage

• Common Field Display Variables

• Page Display

Output

• Returns TRUE if the metadata field is excluded from the page.

Appendix A
IsEditRev

A-102

• Returns FALSE if the metadata field is not excluded from the page.

Example

Excludes the current metadata field from the page:

<$isExcluded=1$>

Sets a custom variable depending on the active value of isExcluded for the current metadata
field:

<$isCustomExcluded = getValue("#active", fieldName & ":isExcluded")$>
$isCustomRelocated = getValue("#active", fieldName & ":isRelocated")$>
<$if isCustomExcluded or (isCustomRelocated and not isRelocated) or isExcluded or
(isFieldHidden and not isFormSubmit)$>
 <$isFieldExcluded = 1$>
<$endif$>

See Also

• is Field Excluded

• isHidden

• isInfoOnly

• isRelocated

• optionListScript

A.1.179 IsExternalUser
Checks if the user is accessing the Content Server instance from an external system, such as
an LDAP system.

Or a proxied server.

Type and Usage

• Conditional Dynamic Variables

• Users

Output

• Returns TRUE if the user is accessing the Content Server instance from an external system.

• Returns FALSE if the user is accessing the Content Server instance directly.

Example

Checks if user is at an external location:

<$IsExternalUser$>

A.1.180 IsFailedConversion
Checks if the Oracle WebCenter Content: Inbound Refinery system has failed to convert the
content item.

Appendix A
IsExternalUser

A-103

Type and Usage

• Value Variables

• Content Items

• Inbound Refinery

Output

• Returns TRUE if the conversion process failed.

• Returns FALSE if no conversion failure was detected.

Example

Displays text if the conversion process was not complete:

<$if IsFailedConversion$>
 <p>
 The Refinery was unable to complete the conversion process.</p>
<$endif$>

A.1.181 IsFailedIndex
Checks if the Indexer has failed to index the content item.

Type and Usage

• Value Variables

• Content Items

• Indexing

Output

• Returns TRUE if the Indexer was unable to index the content item.

• Returns FALSE if the content item was indexed successfully.

Example

Displays text if the content item was not indexed:

<$if IsFailedIndex $>
 <p>
 Unable to index content item.</p>
<$endif$>

A.1.182 sawflies()
Checks if a string or expression evaluates to FALSE.

Type and Usage

• Global Functions

• Idoc Script

Appendix A
IsFailedIndex

A-104

Parameters

The only parameter is the string or expression to be evaluated.

Output

If the parameter is a string:

• Returns TRUE if the string begins with F, f, N, or n, or is 0.

• Returns FALSE if the string begins with any other character.

If the parameter is not a string:

• Returns TRUE if the value is 0.

• Returns FALSE if the value is not 0.

Example

Evaluates the string false and returns TRUE (1):

<$isFalse("false")$>

Evaluates that the integer five is greater than one and returns FALSE (0):

<$isFalse(5>1)$>

Evaluates the result of the equation as zero and returns TRUE (1):

<$isFalse(1-1)$>

Evaluates the string equality statement as true and returns FALSE (0):

<$isFalse(strEquals("abc","abc"))$>

See Also

• isTrue()

A.1.183 is Field Excluded
Specifies that the metadata field is excluded.

Type and Usage

• Other Field Display Variables

• Field Display

Output

• Returns TRUE if the field is excluded.

• Returns FALSE if the field is not excluded.

Example

Determines if the metadata field is excluded:

<$if isCustomExcluded or (isCustomRelocated and not isRelocated) or isExcluded or
(isFieldHidden and not isFormSubmit)$>

Appendix A
is Field Excluded

A-105

 <$isFieldExcluded = 1$>
<$endif$>

See Also

• isExcluded

• isFieldHidden

• isFieldInfoOnly

• isFieldMemo

A.1.184 isFieldHidden
Specifies that the metadata field is hidden.

Type and Usage

• Other Field Display Variables

• Field Display

Output

• Returns TRUE if the field is hidden.

• Returns FALSE if the field is not hidden.

Example

Determines if the metadata field is hidden:

<$if isHidden or isCustomHidden$>
 <$isFieldHidden = 1$>
<$else$>
 <$isFieldHidden = ""$>
<$endif$>

See Also

• isHidden

• is Field Excluded

• isFieldInfoOnly

• isFieldMemo

A.1.185 isFieldInfoOnly
Specifies that the metadata field is an information only field.

Type and Usage

• Other Field Display Variables

• Field Display

Output

• Returns TRUE if the field is an information only field.

Appendix A
isFieldHidden

A-106

• Returns FALSE if the field is not an information only field.

Example

Determines if the metadata field is information only:

<$if isInfo or isCustomInfo or isFieldHidden or isInfoOnly$>
 <$isFieldInfoOnly = 1$>
<$else$>
 <$isFieldInfoOnly = ""$>
<$endif$>

See Also

• isInfoOnly

• is Field Excluded

• isFieldHidden

• isFieldMemo

A.1.186 isFieldMemo
Specifies that the metadata field is a memo field.

Type and Usage

• Other Field Display Variables

• Field Display

Output

• Returns TRUE if the field is a memo field.

• Returns FALSE if the field is not a memo field.

Example

Determines if the field is a memo field:

<@dynamichtml compute_std_entry_type_info@>
<$if not hasOptionList and #active.fieldType like "Memo"$>
 <$isFieldMemo = 1$>
<$else$>
 <$isFieldMemo = ""$>
<$endif$>
<@end@>

See Also

• is Field Excluded

• isFieldHidden

• isInfoOnly

A.1.187 IsFilePresent
Checks if the page currently being displayed is for the revision being looped over while building
the Revision History table on a content information page.

Appendix A
isFieldMemo

A-107

Type and Usage

• Conditional Dynamic Variables

• Content Items

Output

• Returns TRUE if the loop is at the same revision as the current revision.

• Returns FALSE if the loop is not at the same revision as the current revision.

Example

If the loop is at the current revision, the revision number is displayed as plain text. If the loop is
not at the current revision, the revision number is displayed as an active button.

<@dynamichtml doc_rev_info@>
<$if IsFilePresent$>
 <td width=10% align=center><$dRevLabel$></td>
 <td nowrap width=30%><$dInDate$></td>
 <td nowrap width=30%>
 <$if dOutDate$><$dOutDate$><$else$><$lc("wwNone")$><$endif$></td>
 <td width=20%>
 <$rptDisplayMapValue("StatusList", dStatus)$></td>
 <$else$>
 <td width=10%><form action="<$HttpCgiPath$>" method=GET>
 <input type=hidden name=IdcService value="DOC_INFO">
 <input type=hidden name=dID value="<dID>">
 <input type=hidden name=dDocName value="<$dDocName$>">
 <input type=submit value=" <$dRevLabel$> ">
 </form></td>
...
<@end@>

A.1.188 isFormSubmit
Specifies if the current page is a submittable HTML form.

When set to TRUE, the current page is a submittable HTML form.

When set to FALSE, the current page is not a submittable HTML form.

Type and Usage

• Page Display Variables

• Page Display

Output

• Returns TRUE if the page is a submittable HTML form.

• Returns FALSE if the page is not a submittable HTML form.

Example

Set at the top of a page:

isFormSubmit=1

Appendix A
isFormSubmit

A-108

Adds a colon after the field captions if the page is not a submittable HTML form:

<@dynamichtml std_field_caption@>
 <span class=<$fieldCaptionStyle$>>
 <$fieldCaption$><$if not isFormSubmit$><$":"$><$endif$>

<@end@>

A.1.189 IsFullTextIndexed
Checks if the Indexer has full-text indexed the content item.

Type and Usage

• Conditional Dynamic Variables

• Content Items

• Indexing

Output

• Returns TRUE if the content item has been full-text indexed.

• Returns FALSE if the content item has not been full-text indexed.

Example

Provides a specified URL if the content item is full-text indexed:

<$if IsFullTextIndexed$>
 <a href="<$redirect$>">
<$endif$>

A.1.190 isHidden
Hides the metadata field from the user but includes the field as hidden data on the page.

Type and Usage

• Common Field Display Variables

• Field Display

Output

• Returns TRUE if the metadata field is hidden on the page.

• Returns FALSE if the metadata field is not hidden the page.

Example

Hides the current metadata field from the user:

<$isHidden=1$>

Sets a custom variable depending on the active value of isHidden for the current metadata
field:

<$isCustomHidden = getValue("#active", fieldName & ":isHidden")$>
 <$if isHidden or isCustomHidden$>
<$isFieldHidden = 1$>

Appendix A
IsFullTextIndexed

A-109

<$else$>
 <$isFieldHidden = ""$>
<$endif$>

See Also

• isExcluded

• isFieldHidden

• isInfoOnly

• isRelocated

• optionListScript

A.1.191 isInfo
Specifies if the current page is an information-only page.

When set to TRUE, the current page is identified as an information-only page.

When set to FALSE, the current page is not identified as an information-only page.

Type and Usage

• Page Display Variables

• Page Display

Output

• Returns TRUE if the page is an information-only page.

• Returns FALSE if the page is not an information-only page.

Example

Set at the top of a page:

isInfo=1

Used as script:

<$if isInfo$>
 <$captionFieldWidth="30%"$>
 <$captionEntryWidth="70%"$>
<$elseif isEditMode$>
 <$captionFieldWidth="20%"$>
 <$captionEntryWidth="80%"$>
<$endif$>

A.1.192 isInfoOnly
Displays the metadata field as information only, not as an input field.

Type and Usage

• Common Field Display Variables

• Field Display

Appendix A
isInfo

A-110

Output

• Returns TRUE if the metadata field is displayed as information only.

• Returns FALSE if the metadata field can be edited.

Example

Displays the current metadata field as information only:

<$isInfoOnly=1$>

Sets a custom variable depending on the active value of isInfoOnly for the current metadata
field:

<<$isCustomInfo = getValue("#active", fieldName & ":isInfoOnly")$>
<$if isInfo or isCustomInfo or isFieldHidden or isInfoOnly$>
 <$isFieldInfoOnly = 1$>
<$else$>
 <$isFieldInfoOnly = ""$>
<$endif$>

See Also

• isExcluded

• isFieldInfoOnly

• isHidden

• isRelocated

• optionListScript

A.1.193 IsIntranetAuthOnly
Sets the default authorization type to intranet.

When set to TRUE, the web server filter assumes the authorization type to be intranet. The
first time a user logs in to the Content Server instance and accesses a CGI URL, NTLM
security is used rather than Oracle database security.

When set to FALSE, no authorization type is assumed.

Default is FALSE.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• External Security

• Web Servers

Location

IntradocDir/config/config.cfg

Example

Used as a configuration entry:

Appendix A
IsIntranetAuthOnly

A-111

IsIntranetAuthOnly=true

A.1.194 IsJava
Displays the local data of a Content Server web page.

This variable can be set as a flag on a page or as a parameter to a service call.

Type and Usage

• Settable Variables

• Debugging

Output

When set to TRUE, returns the local data in the DataBinder, in HDA format.

Example

When included in the code on a Content Server web page, displays the local data of a page:

<$IsJava=1$>

When included in a Content Server URL, displays the local data for the New Checkin page:

http://myinstance.com/idcplg/idc_cgi_isapi-instance.dll?
IdcService=CHECKIN_NEW_FORM&IsJava=1

A.1.195 isLayoutEnabled()
Used to determine if a particular layout is installed and enabled.

Type and Usage

• Global Functions

• Content Server

Parameters

Takes one parameter, the ID of the layout.

Example

In the std_resources.htm file:

<$if isLayoutEnabled("Trays")$><$do Publish=1$><$endif$>

A.1.196 isLinkActive
Used by Idoc Script to determine whether to include the profile in a display of profiles for
check-in or search based on specified conditions, such as a user's name. If the specified
condition or conditions evaluate to true, the value of IsLinkActive is set to true (1) and the
profile is included in the list of available profiles.

Type and Usage

• Conditional Dynamic Variables

Appendix A
IsJava

A-112

• Content Server

• Personalization Functions

Parameters

There are no parameters, just the setting of 1 or 0 (true or false) based on the evaluated
condition or conditions.

Example

Here is the default script for a condition set with a single clause. If the user name matches
"guest", then isLinkActive is set to 1 and the profile is included in the list of available profiles
for that user.

<$if getUserValue("dName") like "guest"$>
<$isLinkActive=1$>
<$endif$>

A.1.197 IsLocalSearchCollectionID
Checks if the content item is in the local search collection. Searches for the content item's
content ID in the local search collection.

Type and Usage

• Conditional Dynamic Variables

• Content Server

Output

• Returns TRUE if the content item is in the local collection.

• Returns FALSE if the content item is not found in the local collection.

Example

Evaluates whether a content item is from a local collection:

<@dynamichtml searchapi_define_result_doc_parameters@>
<$exec IsLocalSearchCollection="1"$>
<$if not IsLocalSearchCollectionID$>
 <!--Collection has external ID-->
<$exec IsLocalSearchCollection=""$>

A.1.198 IsLoggedIn
Checks if the current user is logged in.

Type and Usage

• Conditional Dynamic Variables

• Internal Security

• Users

Output

• Returns TRUE if the user has logged in.

Appendix A
IsLocalSearchCollectionID

A-113

• Returns FALSE if the user has not logged in.

Example

Checks whether the user is logged in and has an email address before performing a function.

<@dynamichtml subscription_action_script@>
function allowSubscription(form)
 {<$if IsLoggedIn$>
 <$if IsUserEmailPresent$>
 <$else$>
…}
<@end@>

A.1.199 IsMac
Checks if the client browser is running on a Macintosh operating system.

Type and Usage

• Conditional Dynamic Variables

• Clients

Output

• Returns TRUE if the client browser is running on a Mac.

• Returns FALSE if the client browser is not running on a Mac.

Example

Redirects to a different URL if the browser is running on a Mac:

<$if IsMac$>
 <a href="<$redirect$>">
<$endif$>

A.1.200 IsMaxRows
Checks if there are more results on a Work In Progress or Report page than the MaxQueryRows
setting allows. For more information, see "MaxQueryRows" in the Oracle Fusion Middleware
Configuration Reference for Oracle WebCenter Content.

Type and Usage

• Conditional Dynamic Variables

• Page Display

Output

• Returns TRUE if the number of results is greater than the number of rows permitted.

• Returns FALSE if the number of results is less than the number of rows permitted.

Example

Returns an error message if the maximum number of rows is exceeded:

Appendix A
IsMac

A-114

<$elseif IsMaxRows$>
<table border=0 cellpadding=1 cellspacing=1 width="100%">
 <tr>
 <$lc("wwOutputLimitedByMaxRows")$>

</tr>
</table>

A.1.201 isMultiOption
Specifies that a metadata field option list allows multiple values to be selected.

Type and Usage

• Other Field Display Variables

• Field Display

Output

• Returns TRUE if the field is a multiselect option list.

• Returns FALSE if the field is not a multiselect option list.

Example

Specifies that the field is a multiselect option list:

<$isMultiOption=1$>

Determines the type of option list:

<$if #active.fieldOptionListType like "*multi*"$>
 <$exec isMultiOption=1$>
<$elseif #active.fieldOptionListType like "access*"$>
 <$exec isAccessList=1$>
 <$exec isStrictList=1$>
<$elseif not (#active.fieldOptionListType like "*combo*")$>
 <!--Strict choice-->
 <$exec isStrictList=1$>
<$endif$>

See Also

• isStrictList

A.1.202 IsMultiPage
Checks if multiple pages are needed for search results. This variable depends on the number
of rows displayed per page, which is defined by the ResultCount input variable (default is 25).

Type and Usage

• Conditional Dynamic Variables

• Page Display

• Searching

Appendix A
isMultiOption

A-115

Output

• Returns TRUE if the number of search results is greater than the number of rows permitted
per page.

• Returns FALSE if the number of search results is less than the number of rows permitted
per page.

Example

Evaluates number of rows and determines if multiple pages are needed:

<$IsMultiPage$>

A.1.203 isNew
Checks if the content item is new or a revision. This variable is set to TRUE by the
CHECKIN_NEW_FORM and CHECKIN_SIMILAR_FORM standard services.

Type and Usage

• Value Variables

• Content Items

• Page Display

Output

• Returns TRUE if the content item is new.

• Returns FALSE if the content item is a revision to an existing content item.

Example

If the content item is new, a specified service is performed:

<$if isNew$>
 <input type=hidden name=IdcService value="CHECKIN_NEW">
<$endif$>

If the content item is a revision, the original content item author is used:

<$if not isNew$>value="<$dDocAuthor$>"<$endif$>

If the content item is new, the default accounts for the current user are used:

<$if isNew$>
 <$defaultAccounts$>
<$endif$>

A.1.204 IsNotLatestRev
Checks if the revision is the last revision to be checked in. This is not necessarily the last
released revision.

Type and Usage

• Value Variables

Appendix A
isNew

A-116

• Content Items

Output

• Returns TRUE if the content item is other than the latest revision to be checked in.

• Returns FALSE if the content item is the latest revision to be checked in.

Example

Checks for the latest revision:

<$IsNotLatestRev$>

See Also

• ClientControlled

• HasLocalCopy

A.1.205 IsNotSyncRev
Checks whether the file on the client computer matches the most current revision by
performing a revision ID (dID) comparison.

This variable is generally used to display an error message when the local copy of a content
item has not been updated to the latest revision.

This variable is used to interface with client-side products, such as Desktop.

Type and Usage

• Conditional Dynamic Variables

• Content Items

Output

• Returns TRUE if revisions do not match.

• Returns FALSE if revisions match.

Example

Checks for a match with the latest revision and displays an error message:

<$if IsNotSyncRev$>
The local copy of this content item has not been updated to the latest revision.
 Use Get Native File or Check Out to update your local copy of <$dDocName$>.
<$endif$>

A.1.206 IsOverrideFormat
Enables users to select a different conversion format upon checkin.

When set to TRUE, a Format option list is displayed for the Primary File and Alternate File on
the checkin page.

Default is FALSE.

Appendix A
IsNotSyncRev

A-117

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Field Display

Location

• System Properties, Options tab, Allow override format on check in

• Administration, Admin Server, General Configuration menu option, Allow override
format on check in

• IntradocDir/config/config.cfg

Example

As a configuration setting:

IsOverrideFormat=true

As Idoc Script, returns the value of the override format function:

<$IsOverrideFormat$>

A.1.207 IsPageDebug
Enables a trace of all includes and calls to the Idoc Script eval function.

The contents of the eval function and any dynamically assigned includes are also shown as
part of the trace. The trace is indented by one + character per nested level of include or eval
call. The trace also shows any error messages (without the nested location information) and
the output of any calls to the Idoc Script trace function.

Note:

This setting is not supported in Internet Explorer version 6.

Type and Usage

• Settable Variables

• Debugging

Output

Results of the trace can be viewed through the debug menu toolbar options, which are
accessed from the debug trace displayed at the bottom of the web page.

Click the debug trace to display the debug menu toolbar, then click any of the following options.

Element Description

hide all Hides any open debug popups.

idocscript trace Displays a tree structure view of all includes being called.

Appendix A
IsPageDebug

A-118

Element Description

request binder Displays information on Local Data and ResultSets. The request binder is
the DataBinder sent to the server, that is, the service name and any
service-specific parameters. Click a heading to expand the view of detailed
information.

response binder Displays information on Local Data and ResultSets. The response binder
is the DataBinder immediately after the service is processed but before the
response page is generated. Click a heading to expand the view of
detailed information.

final page binder Displays information on Local Data and ResultSets. The final page binder
reflects what was changed in the DataBinder while the page was being
generated. Click a heading to expand the view of detailed information.

javascript log Displays Logger Console window with default setting of Verbose. Select
checkboxes to display the following options: info, warn, error, time, window,
trace, global, schema, javascript, LogReader. Click Pause or Clear to
control the speed and amount of information displayed on the Logger
Console.

If you are interested in API-level interaction with Content Server, consult the request and
response binders. For example, when you do a SOAP request or use other service-based
APIs, the information in the final page binder is meaningless. When you append IsJava=1 to
the request, the response binder in HDA format is returned.

If you are interested in customization, page generation, and so on, you may want to consult the
final page binder and, in some cases, determine how it differs from the response binder.

Example

Used as a configuration setting in the Content Server config.cfg file, so it applies to the entire
server:

IsPageDebug=1

In a web browser, added to the end of the page's URL in the Address field:

&IsPageDebug=1

Used on a template page or in an Idoc Script include:

<$IsPageDebug=1$>

See Also

• eval()

• setResourceInclude()

• trace()

A.1.208 IsPromptingForLogin
Checks if the Content Server instance is set to prompt for login or if login is being handled
programmatically.

This variable is set to TRUE in situations such as cookie login pages, where the last request
failed because the user is not logged in yet.

Appendix A
IsPromptingForLogin

A-119

Type and Usage

• Conditional Dynamic Variables

• Content Server

• External Security

Output

• Returns TRUE if the Content Server instance is set to prompt for login.

• Returns FALSE if login is being handled programmatically.

Example

Evaluates if server is set to prompt for login:

<$IsPromptingForLogin$>

A.1.209 IsProxiedServer
Specifies that the Content Server instance is a proxied server.

When set to TRUE, the Content Server instance is a proxied server.

For a master Content Server instance, there is no default.

For a proxied Content Server instance, the default is TRUE.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Content Server

Location

IntradocDir/config/config.cfg

Example

Used as a configuration entry:

IsProxiedServer=true

A.1.210 isQuery
Specifies if the current page is a search page.

When set to TRUE, the current page is identified as a search page.

When set to FALSE, the current page is not identified as a search page.

Type and Usage

• Page Display Variables

• Page Display

Appendix A
IsProxiedServer

A-120

Output

• Returns TRUE if the page is a search page.

• Returns FALSE if the page is not a search page.

Example

Set at the top of a page:

isQuery=1

Used as script:

<$if isCheckin or isUpdate or isQuery$>
 <$isFormSubmit = 1$>
 <$if not isQuery$>
<$isEditMode = 1$>
<$formName = "Checkin"$>
 <$endif$>
 <$else$>
<$isFormSubmit = ""$>
<$isEditMode = ""$>
<$endif$>

A.1.211 isRelocated
Excludes the metadata field unless the local variable is set to TRUE while the include is
evaluated.

This variable is typically used to set a custom location for a metadata field. It allows a field to
be defined on a page more than once, with the location of the field that is actually generated
depending on the value of this variable.

Type and Usage

• Common Field Display Variables

• Field Display

Output

• Returns TRUE if the metadata field is included at that location on the page.

• Returns FALSE if the metadata field is excluded from that location on the page.

Example

Includes the current metadata field on the page:

<$isRelocated=1$>

Sets a custom variable depending on the active value of isRelocated for the current metadata
field:

<$isCustomExcluded = getValue("#active", fieldName & ":isExcluded")$>
<$isCustomRelocated = getValue("#active", fieldName & ":isRelocated")$>
<$if isCustomExcluded or (isCustomRelocated and not isRelocated) or isExcluded or
(isFieldHidden and not isFormSubmit)$>
 <$isFieldExcluded = 1$>
<$endif$>

Appendix A
isRelocated

A-121

See Also

• isExcluded

• isHidden

• isInfoOnly

• optionListScript

A.1.212 IsRequestError
Checks if there is a request error condition present in the Content Server instance by
evaluating the StatusCode variable.

If StatusCode is set to a negative numeric value (-1), there is a request error condition present
in the Content Server instance.

The typical behavior when a request error condition is present is to abort the display of the
current page and substitute an error page.

Type and Usage

• Conditional Dynamic Variables

• Debugging

• Content Server

Output

• Returns TRUE if there is a request error condition present in the Content Server instance
(StatusCode = -1).

• Returns FALSE if there is no request error condition present on the Content Server instance
(StatusCode is other than a negative numeric value).

Example

Evaluates the request error condition:

<$IsRequestError$>

See Also

• abortToErrorPage()

• executeService()

• StatusCode

A.1.213 isRequired
Specifies if a value is required for a metadata field.

When set to TRUE, the metadata field is required.

When set to FALSE, the metadata field is optional.

Appendix A
IsRequestError

A-122

Type and Usage

• Field Information Variables

• Field Display

Output

• Returns TRUE if the metadata field is required.

• Returns FALSE if the metadata field is optional.

Example

Defines the dDocTitle metadata field as a required field:

<$fieldName = "dDocTitle", fieldCaption = lc("wwTitle"), isRequired = 1,
 fieldType = "BigText", requiredMsg = lc("wwSpecifyTitle")$>

See Also

• requiredMsg

A.1.214 IsSavedQuery
Checks if a query has been saved to the current user's portal navigation bar.

Type and Usage

• Settable Variables

• Page Display

• Searching

Output

• Returns TRUE if the current query has been saved.

• Returns FALSE if the current query has not been saved or no query is found.

Example

Evaluates query status:

<$IsSavedQuery$>

A.1.215 IsSoap
Displays the local SOAP data of a Content Server web page.

This variable can be set as a flag on a page or as a parameter to a service call.

Type and Usage

• Settable Variables

• Debugging

Appendix A
IsSavedQuery

A-123

Output

When set to TRUE, returns the underlying SOAP code, in XML format.

Example

When included in the code on a Content Server web page:

<$IsSoap=1$>

When included in a Content Server URL:

http://myinstance.com/idcplg/idc_cgi_isapi-instance.dll?
IdcService=CHECKIN_NEW_FORM&IsSoap=1

A.1.216 isStrictList
Specifies that a metadata field option list does not allow multiple values to be selected.

Type and Usage

• Other Field Display Variables

• Field Display

Output

• Returns TRUE if the field is not a multiselect option list.

• Returns FALSE if the field is a multiselect option list.

Example

Specifies that the field is not a multiselect option list:

<$isStrictList=1$>

Determines the type of option list:

<$if #active.fieldOptionListType like "*multi*"$>
 <$exec isMultiOption=1$>
<$elseif #active.fieldOptionListType like "access*"$>
 <$exec isAccessList=1$>
 <$exec isStrictList=1$>
<$elseif not (#active.fieldOptionListType like "*combo*")$>
 <!--Strict choice-->
 <$exec isStrictList=1$>
<$endif$>

See Also

• isMultiOption

A.1.217 IsSubAdmin
Checks if the current user has subadministrator rights to at least one administrative application.

Type and Usage

• Conditional Dynamic Variables

Appendix A
isStrictList

A-124

• Internal Security

• Users

Output

• Returns TRUE if the user has subadministrator rights.

• Returns FALSE if the user does not have subadministrator rights.

Example

Checks whether the user is logged in and has subadministrator rights before performing a
function.

<@dynamichtml subscription_action_script@>
 function allowSubscription(form)
 {
 <$if IsLoggedIn$>
 <$if IsSubAdmin$>
 <$else$>
 …
 }
<@end@>

A.1.218 IsSun
Checks if the client browser is running on a Sun system.

Type and Usage

• Conditional Dynamic Variables

• Clients

Output

• Returns TRUE if the client browser is running on Sun.

• Returns FALSE if the client browser is not running on Sun.

Example

Redirects to a different URL if the browser is running on Sun:

<$if IsSun$>
 <a href="<$redirect$>">
<$endif$>

A.1.219 IsSysManager
Checks if the current user has the sysmanager role, meaning the user has access to Content
Server administration. This variable is usually used to conditionally display specific navigation
links.

Type and Usage

• Conditional Dynamic Variables

• Internal Security

Appendix A
IsSun

A-125

• Users

Output

• Returns TRUE if the user has the sysmanager role.

• Returns FALSE if the user does not have the role

A.1.220 isTrue()
Checks if a string or expression evaluates to TRUE.

Type and Usage

• Global Functions

• Idoc Script

Parameters

The only parameter is the string or expression to be evaluated.

Output

If the parameter is a string:

• Returns TRUE if the string begins with T, t, Y, y, or is 1.

• Returns FALSE if the string begins with any other character.

If the parameter is not a string:

• Returns TRUE if the value is not 0.

• Returns FALSE if the value is 0.

Example

Evaluates the string yes and returns TRUE (1):

<$isTrue("yes")$>

Evaluates that the integer five is greater than one and returns TRUE (1):

<$isTrue(5>1)$>

Evaluates the result of the equation as zero and returns FALSE (0):

<$isTrue(1-1)$>

Evaluates the string equality statement as true and returns TRUE (1):

<$isTrue(strEquals("abc","abc"))$>

See Also

• sawflies()

A.1.221 isUpdate
Specifies if the current page is a content information update page.

Appendix A
isTrue()

A-126

When set to TRUE, the current page is identified as a content information update page.

When set to FALSE, the current page is not identified as a content information update page.

Type and Usage

• Page Display Variables

• Page Display

Output

• Returns TRUE if the page is a content information update page.

• Returns FALSE if the page is not a content information update page.

Example

Set at the top of a page:

isUpdate=1

Used as script:

<$if isCheckin or isUpdate or isQuery$>
 <$isFormSubmit = 1$>
 <$if not isQuery$>
 <$isEditMode = 1$>
 <$formName = "Checkin"$>
 <$endif$>
 <$else$>
 <$isFormSubmit = ""$>
 <$isEditMode = ""$>
<$endif$>

A.1.222 isUploadFieldScript
Specifies that an include is being used inside JavaScript. It is used to determine how metadata
fields are uploaded.

When set to TRUE, the include is being used inside JavaScript.

When set to FALSE, the include is being used inside JavaScript.

Type and Usage

• Page Display Variables

• Page Display

Output

• Returns TRUE if the include is being used inside JavaScript.

• Returns FALSE if the include is not being used inside JavaScript.

Example

Set in the include that defines the JavaScript wrapper:

<@dynamichtml std_upload_java_script@>
 <script language="JavaScript">

Appendix A
isUploadFieldScript

A-127

 // Java script for uploading.
 <$isUploadFieldScript = 1$>
 <$include std_upload_info_script$>
 <$isUploadFieldScript = ""$>
 </script>
<@end@>

Used as script:

<$if isUploadFieldScript$>
 <$defaultFieldInclude = "std_file_entry"$>
<$else$>
 <$defaultFieldInclude = "std_nameentry_row"$>
 <$fieldCaptionInclude = "std_field_caption"$>
 <$fieldEntryInclude = "std_file_entry"$>
<$endif$>

A.1.223 IsUploadSockets
Used by the Upload applet to determine whether the upload socket should be used.

This is an internal flag and is not intended for user configuration.

Type and Usage

• Conditional Dynamic Variables

• Clients

• External Security

Output

• Returns TRUE if the upload socket is defined for use with the Upload applet.

• Returns FALSE if the upload socket should not be used.

Example

N/A

A.1.224 IsUserEmailPresent
Checks if an email address is defined for the current user.

Type and Usage

• Conditional Dynamic Variables

• Users

Output

• Returns TRUE if an email address is defined for the user.

• Returns FALSE if an email address is not defined for the user.

Example

Checks whether the user is logged in and has an email address before performing a function.

Appendix A
IsUploadSockets

A-128

<@dynamichtml subscription_action_script@>
 function allowSubscription(form)
 {
 <$if IsLoggedIn$>
 <$if IsUserEmailPresent$>
 <$else$>
 …
 }
<@end@>

A.1.225 isUserOverrideSet()
Enables users to check in content for other users.

This affects the Author option list on checkin pages. By default, only administrators are allowed
to specify another user as the Author during checkin.

Type and Usage

• Global Functions

• Internal Security

• Users

Parameters

The only parameter is the value TRUE or FALSE.

Output

Evaluates to TRUE if the user override is enabled.

Example

Enables users to check in content items with another user specified as the Author:

<$isUserOverrideSet(true)$>

See Also

• ExclusiveCheckout

A.1.226 isValidateFile()
Used as a parameter to the Upload applet. This variable verifies that the file to be uploaded
exists. In order to be used, a component must be created that overwrites the applet definition
as defined in the std_multiupload_applet_definition include in the std_page.htm resource
file.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Content Server

Example

Used as a configuration entry:

Appendix A
isUserOverrideSet()

A-129

isValidateFile=true

A.1.227 isVerboseTrace
Checks if a section is being traced in the core. Verbose trace generates a full report.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Debugging

Output

• Returns TRUE if tracing is set to Verbose.

• Returns FALSE if tracing is set to any other debug level.

Example

<$isVerboseTrace()$>

See Also

• isActiveTrace()

A.1.228 IsWindows
Checks if the client browser is running on a Windows operating system.

Type and Usage

• Conditional Dynamic Variables

• Clients

Output

• Returns TRUE if the client browser is running on Windows.

• Returns FALSE if the client browser is not running on Windows.

Example

Redirects to a different URL if the browser is running on Windows:

<$if IsWindows$>
 <a href="<$redirect$>">
<$endif$>

A.1.229 IsWorkflow
Checks if the content item on a checkin page is in a workflow.

Type and Usage

• Conditional Dynamic Variables

• Workflow

Appendix A
isVerboseTrace

A-130

Output

• Returns TRUE if the content item is in a workflow.

• Returns FALSE if the content item is not in the workflow.

A.1.230 IsXml
Displays a raw dump of the HTML form when set to TRUE in a URL to a HCSP or HCSF file.
This is useful for extracting form data or submitting forms from a remote application.

Type and Usage

• Settable Variables

• Debugging

Output

• Returns the XML data contained in the form.

See Also

• IsJava

• IsSoap

A.1.231 isZoneSearchField
This function is used to specify a field for full text searching.

Type and Usage

• Settable Variables

• Searching

Parameters

The name of the field to be checked.

A.1.232 js()
Formats a string for use in a "..." JavaScript literal string declaration.

This function performs string manipulation such as changing double quotes to single quotes.

Type and Usage

• Global Functions

• Strings

Parameters

The only parameter is the string.

Appendix A
IsXml

A-131

Output

Returns a string formatted for use in a JavaScript string declaration.

Example

Formats the string variablestring for use in a JavaScript string declaration:

<$js("variablestring")$>

A.1.233 jsFilename()
Used by the schema. Encodes a string that may contain non-ASCII characters into the valid
filename strings required for the operating system and Java Script (performs an encoding
function).

Type and Usage

• Global Functions

• Schemas

Parameters

The only parameter is the string to be encoded.

Output

Returns an encoded string.

Example

<$jsFilename(fileName)$>

A.1.234 Json
Displays the local data of a Content Server web page.

This variable can be set as a flag on a page or as a parameter to a service call.

Type and Usage

• Settable Variables

• Debugging

Output

When set to TRUE, returns the local data in the DataBinder in a JavaScript object, in compliance
with the JSON (Javascript over network) specification.

Example

When included in the code on a Content Server web page, displays the local data of a page:

<$Json=1$>

When included in a Content Server URL, displays the local data for the New Checkin page:

Appendix A
jsFilename()

A-132

http://myinstance.com/idcplg/idc_cgi_isapi-instance.dll?
IdcService=CHECKIN_NEW_FORM&Json=1

A.1.235 lastEntryTs
Retrieves the timestamp from the last time the workflow step was entered.

This variable can be used to create conditional statements, but it should not be hard-coded or
altered.

The last entry time is localized in the companion file and maintained in the key:

<step_name>@<workflow_name>.lastEntryTs

Type and Usage

• Workflow Variables

• Date and Time

Output

Returns the timestamp in the format defined by dateCurrent.

Example

The following code defines a jump called LastEntry, which exits to the parent workflow and
notifies the reviewers if the last time the step was entered was more than one week ago:

<$if parseDate(wfCurrentGet("lastEntryTs")) < parseDate(dateCurrent(-7))$>
 <$wfSet("WfJumpName","LastEntry")$>
 <$wfSet("WfJumpTargetStep",wfExit(0,0))$>
 <$wfSet("WfJumpEntryNotifyOff","0")$>
<$endif$>

A.1.236 lc()
Retrieves the value of a localization string based on the current user's locale.

Type and Usage

• Global Functions

• Localization

Parameters

Takes one required parameter and any number of optional parameters:

• The first parameter is the localization key (such as apLabelHelp or wwMyString).

• The optional parameters are expressions that are resolved according to arguments inside
curly braces in the localized string (for example, {1}).

Output

• Returns the value of the localization string for the current user's locale.

• Returns the string ID (such as wwMyString) if the value is not found.

Appendix A
lastEntryTs

A-133

Example

Retrieves the options for metadata search operators on a search page:

<select name="op" >
 <option value="Contains"><$lc("wwContains")$>
 <option value="Matches"><$lc("wwMatches")$>
 <option value="Starts"><$lc("wwStarts")$>
 <option value="Ends"><$lc("wwEnds")$>
 <option selected value="Substring"><$lc("wwSubstring")$>
</select>

Sets the subject line for a workflow started notification email. If the name of the workflow
(dWfName) is Marketing, the resulting value in English is Workflow 'Marketing' has been
started.

<@dynamichtml wf_started_subject@>
 <$lc("wwWfStarted", dWfName)$>
<@end@>

A.1.237 lcCaption()
Function that wraps a string into a caption. This will usually place a colon to the right of the
string. For right-to-left reading languages, such as Hebrew and Arabic, the colon is placed on
the left of the string.

Type and Usage

• Global Functions

• Localization

Parameters

Takes one required parameter:

• The string to be wrapped.

• optional parameters are expressions that are resolved according to arguments inside curly
braces in the localized string (for example, {1}).

A.1.238 LmDefaultLayout()
Defines the default layout to use (for example, Trays or Top Menus).

The default installation value is Trays.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Content Server

Location

IntradocDir/config/config.cfg

Appendix A
lcCaption()

A-134

Example

LmDefaultLayout=Top Menus

A.1.239 LmDefaultSkin()
Defines the default skin to use (for example, Oracle, Oracle2).

Type and Usage

• Global Functions

• Content Server

Location

IntradocDir/config/config.cfg

Example

LmDefaultSkin=Oracle

A.1.240 lmGetLayout()
Retrieves the layout chosen by the user (for example, Trays or Top Menus).

Type and Usage

• Global Functions

• Content Server

Parameters

None.

Example

<$lmGetLayout()$>

See Also

• lmGetSkin()

A.1.241 lmGetSkin()
Retrieves the skin selected by the user.

Type and Usage

• Global Functions

• Content Server

Parameters

None.

Appendix A
LmDefaultSkin()

A-135

Example

<$lmGetSkin()$>

See Also

• lmGetSkin()

A.1.242 loadCollectionInfo()
Loads metadata for a search collection.

Used by the search service to load metadata about a search collection.

This function is not intended for user configuration.

Type and Usage

• Global Functions

• Searching

Parameters

Takes one parameter, the name of the search collection to be loaded.

Output

None.

Example

Loads search collection information:

<$loadCollectionInfo(collection_name)$>

A.1.243 loadDocMetaDefinition()
Loads the DocMetaDefinition database table into the active data as a ResultSet.

After the DocMetaDefinition database table is loaded, it can be looped on.

Type and Usage

• Global Functions

• ResultSets

Parameters

None.

Output

None.

Example

Loads the DocMetaDefinition table into the active data as a ResultSet.

Appendix A
loadCollectionInfo()

A-136

<$loadDocMetaDefinition()$>

A.1.244 loadDocumentProfile()
Loads a content profile as specified by the trigger value for page presentation. This is called
during the presentation of Search, Check In, Info, and Update pages. This function is called on
request and the page on which it is called determines the action (for example, search, or info).

This information is dependent on context. The isCheckin, isUpdate, isQuery, or isInfo
variables are set in local data and direct the loadDocumentProfile function to the page to be
loaded and presented.

Type and Usage

• Global Functions

• Content Profiles

Parameters

None.

Output

None.

Example

<$loadDocumentProfile()$>

See Also

• utLoadDocumentProfiles()

A.1.245 loadEnterpriseSearchCollections
This function loads the ResultSet EnterpriseSearchCollections, used to display a list of
remote Content Server instances that can be queried with Enterprise Search. This data is used
on a Search page to allow the user to select which servers to query.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes one parameter. When set to zero, the ResultSet will not include the names of servers
that are automatically searched.

A.1.246 loadEnterpriseSearchResults
This function renames certain ResultSets on the page to support Enterprise Search. It is used
when looping over the ResultSet EnterpriseSearchResults. It loads the ResultSet from the
specific server and renames it to SearchResults. This helps to simplify the IdocScript used on
the Search Results page.

Appendix A
loadDocumentProfile()

A-137

Type and Usage

• Global Functions

• ResultSets

Parameters

None

A.1.247 loadSchemaData()
Loads the data from a schema ResultSet into the local data of the current data binder.

Type and Usage

• Global Functions

• Schemas

Parameters

This function can take zero, one, or two parameters.

• If passed zero arguments, it fills the data binder with the data in the active ResultSet's row.
Returns no value.

• If passed one argument, the argument is the name of the ResultSet to get the values from
the current row. Returns no value.

• If passed two arguments, the first argument is the ResultSet name and the second
argument is the key identifying the data object to load. Returns 0 if the data does not exist
or 1 if it does exist. The use is True() or False() to conditionally execute scripts based on
the return value.

Example

<$loadSchemaData()$>

See Also

• clearSchemaData()

A.1.248 loadSearchOperatorTables()
Loads mappings between the full set of operator names and the search syntax. Used on the
Search page.

Type and Usage

• Global Functions

• ResultSets

Parameters

None.

Appendix A
loadSchemaData()

A-138

Output

Returns expressions associated with operator names (search operator map).

Example

<$loadSearchOperatorTables()$>

A.1.249 loadUserMetaDefinition()
This function loads the custom user metadata definition. This exists in the UserMetaDefinition
table which is placed on the page as a ResultSet. This is used on LDAP administration pages
to help administers map user metadata to the Content Server instance.

Type and Usage

• Global Functions

• ResultSets

Parameters

None.

A.1.250 LocalGroupServer
Specifies a Windows Server on which local groups are treated like global (domain) groups for
NTLM security.

When the UseLocalGroups setting is TRUE, local groups on the Windows Server specified by
this setting are mapped to roles and accounts as if they were global (domain) groups in the
default master domain.

Default is the domain controller of the default master domain.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• External Security

Location

• Configure NT Domain Security page, Local Group Server

• instance_dir/data/users/config/filter.hda

Example

Used as a configuration entry:

LocalGroupServer=server1

See Also

• UseLocalGroups in the Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content.

Appendix A
loadUserMetaDefinition()

A-139

A.1.251 localPageType
This function returns the page type for a page in the library folders. This may be a directory or
a query page. This function is usually used by the Layout Manager API. When Trays is the
chosen layout, the function is used to construct a tree view of the library's pages.

Type and Usage

• Page Display Variables

• Page Display

Parameters

Takes one parameter, the link data used to construct the tree view.

A.1.252 MajorRevSeq
Defines the major sequence for revision numbers.

Returns the major revision label sequence (returns the value of the configuration setting).

Returns a string.

Default is 1-99.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Content Server

Location

• System Properties, Options tab, Major Revision Label Sequence

• Administration, Admin Server, General Configuration menu option, Major Revision
Label Sequence

• IntradocDir/config/config.cfg

Example

As a configuration setting:

MajorRevSeq=A-Z

As script, returns the value of the configuration setting:

<$MajorRevSeq$>

See Also

• MinorRevSeq

A.1.253 MaxCollectionSize
Defines the number of files to be passed to the Indexer in one batch.

Appendix A
localPageType

A-140

Valid range is 1 to 65535.

A value of 2000 is recommended for large index collections. Lower values will result in
inefficient indexing performance.

Returns the number of files per batch.

Default is 25.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Indexing

Location

• Repository Manager, Indexer tab, Configure, Content Items Per Indexer Batch

• IntradocDir/config/config.cfg

Example

As a configuration setting, defines the batch size:

MaxCollectionSize=25

As script, returns the value from configuration files:

<$MaxCollectionSize$>

A.1.254 maxLength
Sets the maximum number of characters allowed in a metadata field.

Type and Usage

• Common Field Display Variables

• Field Display

Output

Returns the maximum length of the field.

Example

Sets the maximum length of the field to 100 characters:

<$maxLength=100$>

Specifies a custom field length based on the length of the current field:

<$customFieldLength = getValue("#active", fieldName & ":maxLength")$>

A.1.255 MinorRevSeq
Defines the minor sequence for revision numbers.

Returns the minor revision label sequence (returns the value of the configuration setting).

Appendix A
maxLength

A-141

Returns a string.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Content Server

Location

• System Properties, Options tab, Minor Revision Label Sequence

• Administration, Admin Server, General Configuration menu option, Minor Revision
Label Sequence

• IntradocDir/config/config.cfg

Example

As a configuration setting:

MinorRevSeq=a-c

As script, returns the value of the configuration setting:

<$MinorRevSeq$>

See Also

• MajorRevSeq

A.1.256 MSIE
Checks whether the client browser is Microsoft Internet Explorer.

Type and Usage

• Dynamic Variables

• Clients

Output

• Returns TRUE if the client browser is Internet Explorer.

• Returns FALSE if the client browser is not Internet Explorer.

Example

Redirects to a different URL if the browser is anything other than Internet Explorer:

<$if not MSIE$>
 <a href="<$redirect$>">
<$endif$>

A.1.257 MultiUpload
Enables the multiple-file Upload Applet.

Appendix A
MSIE

A-142

When set to TRUE, the Upload Applet is enabled so that multiple files can be zipped and
checked in as a single content item.

When set to FALSE, the Upload Applet is disabled. The default is FALSE.

To see the Upload Applet on the Checkin page, select Enable upload applet on the User
Profile page, then click Update. Once the checkin begins, a progress bar shows in the applet.

DisableHttpUploadChunking is set to true by default in the config.cfg file. To enable
chunking, set DisableHttpUploadChunking=false. However, if chunking is enabled, the
requestaudit tracing shows the following output for every chunk uploaded:

requestaudit 11.15 15:55:47.835 IdcServerThread-32 CHUNKED_UPLOAD
dUser=sysadmin][IsJava=1] 8.361(secs)

To specify how big a file must be to trigger chunking, set AppletChunkThreshold. This defaults
to 1 MB, and does not need to be set if 1 MB is sufficient.

AppletChunkThreshold=10000000

To specify the chunk size, set AppletChunkSize, which also defaults to 1 MB. This does not
need to be set unless you want something other than 1 MB chunks.

AppletChunkSize=10000000

The CHUNKED_UPLOAD service is used for uploading from the Upload Applet with chunking
enabled. This service takes each chunk of the upload and places it in the ucm/vault/~temp
directory. As chunks are uploaded, each chunk is appended to the main file. Once the upload
completes, the file is moved to its proper location in the vault.

Chunking the upload for large files has the benefit of retrying the upload from the point of
failure, if a network issue occurs during the upload (without having to start the entire upload
over again.

A sample CHUNKED_UPLOAD POST request body is shown below:

Note:

Square quoted parts are descriptions, not parts of actual request. This request body
is only for uploading one file.

Appendix A
MultiUpload

A-143

Figure A-1 Sample CHUNKED_UPLOAD POST request body

To see chunkedrequest tracing in the Content Server output, enable this setting in the
config.cfg file, and on the System Audit Information page, enable the tracing section
chunkedrequest.

ChunkedRequestTrace=true

The chunkedrequest tracing output will look like the output in the following example. Note that
TranedSize means "transactioned size" or the total size uploaded so far:

chunkedrequest 11.15 15:55:47.780 IdcServerThread-32 In doUpload()
chunkedrequest 11.15 15:55:47.780 IdcServerThread-32 TranedSize: 15000000
chunkedrequest 11.15 15:55:47.780 IdcServerThread-32 Retrieve Session: 983887704
chunkedrequest 11.15 15:55:47.831 IdcServerThread-32 Leaving doUpload()
chunkedrequest 11.15 15:55:47.831 IdcServerThread-32 Register new entry in
ChunkSessionManager.
chunkedrequest 11.15 15:55:47.831 IdcServerThread-32 SessionID: 983887704TimeOut:
213222ms.
chunkedrequest 11.15 15:55:47.831 IdcServerThread-32 Session 983887704 is inserted in
timeout queue at index 0
requestaudit 11.15 15:55:47.835 IdcServerThread-32 CHUNKED_UPLOAD [dUser=sysadmin]
[IsJava=1] 8.361(secs)

Appendix A
MultiUpload

A-144

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Content Server

• Clients

Location

• System Properties, Options tab, Enable upload applet

• Administration, Admin Server, General Configuration menu option, Enable upload
applet

• IntradocDir/config/config.cfg

Example

As a configuration setting, enables the Upload Applet:

MultiUpload=true

As script, evaluates the condition of the Upload Applet:

<$MultiUpload$>

See Also

• DownloadApplet

• UploadApplet

A.1.258 NoMatches
Checks whether matches were found from a search query.

Generally used to display a message on the search results page.

Type and Usage

• Dynamic Variables

• Searching

Output

• Returns TRUE if no matches were found.

• Returns FALSE if any matches were found.

Example

Displays text if no matches were found from a query:

<$if NoMatches$>
 <p>
 Found no matches out of <$TotalDocsProcessed$> documents searched matching the
query.</p>
<$endif$>

Appendix A
NoMatches

A-145

A.1.259 noMCPrefill
Specifies that the MultiCheckin component should not prefill metadata fields.

This variable can be used on special pages such as custom HCST and Contribution Folders
component pages.

When set to TRUE, the MultiCheckin component will not prefill metadata fields.

When set to FALSE, the MultiCheckin component will prefill metadata fields.

Type and Usage

• Page Display Variables

• Page Display

Output

• Returns TRUE if the MultiCheckin component will not prefill metadata fields.

• Returns FALSE if the MultiCheckin component will prefill metadata fields.

Example

Set near the top of the page:

noMCPrefill=1

Used as script:

<$noMCPrefill$>

A.1.260 NotificationQuery
This setting defines criteria for the automatic query that searches for expired content.

If NotificationQuery is not set, the default value is all content that expires in the next seven
days.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Content Server

Parameters

There is one parameter, the query to be used. The query can be one of the following. For
sample queries, see the following Example section.

• An Idoc Script query, built from Idoc Script.

• A URL encoded query. This uses the URL displayed in the web browser address when a
search is performed.

• A plain text query which defines the search variables.

Appendix A
noMCPrefill

A-146

Location

IntradocDir/config/config.cfg

Example

Idoc Script Example

When used in conjunction with database indexing, the following query provides email
notification for all documents that expire in seven days:

NotificationQuery=dOutDate < '<$dateCurrent(7)$>'>

URL Encoded Example

The following query returns all content expiring after August 1, 2007. The URL from the
browser address line is copied, beginning with the QueryText portion:

NotificationQuery=QueryText=dOutDate+%3C+%608%2F1%2F06%60&SearchProviders= [...}

Plain Text Query

The following query returns all content expiring after August 1, 2007:

NotificationQuery=8/1/07

See Also

• "EnableExpirationNotifier" in the Oracle Fusion Middleware Configuration Reference for
Oracle WebCenter Content

• "NotificationIntervalInDays" in the Oracle Fusion Middleware Configuration Reference for
Oracle WebCenter Content

• "NotificationMaximum" in the Oracle Fusion Middleware Configuration Reference for
Oracle WebCenter Content

• "NotifyExtras" in the Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• "NotifyTime" in the Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

A.1.261 OneMatch
Checks if only one match was found from a search query.

Generally used to display a message on the search results page.

Type and Usage

• Dynamic Variables

• Searching

Output

• Returns TRUE if only one match was found.

• Returns FALSE if no matches or more than one match were found.

Appendix A
OneMatch

A-147

Example

Displays text if only one match was found from a query:

<$if OneMatch$>
 <p>
 Found <$TotalRows$> document matching the query.</p>
<$endif$>

A.1.262 optionListKey
Specifies the name of a ResultSet column that contains option list values.

Type and Usage

• Other Field Display Variables

• Field Display

Output

Returns the values of the option list ResultSet column.

Example

Specifies dFormat as the column in the DocFormats ResultSet to get option list values from for
the standard Format field on a checkin page:

<@dynamichtml std_override_format_field@>
<$if not isInfo and IsOverrideFormat$>
<$fieldIsOptionList = 1, optionListResultSet = "DocFormats",
 optionListKey = "dFormat",
 optionListValueInclude = "std_override_format_option_value",
 addEmptyOption = 1, emptyOptionLabel = lc("wwEmptyFormatOption")$>
<$include std_display_field$>
<$endif$>
<@end@>7

See Also

• optionListResultSet

A.1.263 optionListName
Specifies the name of an option list.

For standard metadata fields, this is the name of the internal option list. For more information,
see Internal Option Lists.

For custom metadata fields, this is the name of the field with a suffix of .options.

Type and Usage

• Other Field Display Variables

• Field Display

Appendix A
optionListKey

A-148

Output

Returns the option list name.

Example

Sets the option list name to docAuthors if the field is not restricted to a single user:

<$if SingleUser$>
 <$isInfoOnly = 1$>
 <$else$>
 <$fieldIsOptionList = 1, optionListName = "docAuthors"$>
 <$if HasExternalUsers$><$fieldOptionListType= "combo"$>
 <$endif$>
<$endif$>

Defines the default option list script:

<$if optionsAllowPreselect and fieldValue$>
 <$defaultOptionListScript = "<$optList " & optionListName & ":fieldValue$>"$>
<$else$>
 <$defaultOptionListScript = "<$optList " & optionListName & ":noselected$>"$>
<$endif$>

See Also

• defaultOptionListScript

• fieldValue

• optionListScript

• optList()

• fieldIsOptionList

• fieldOptionListType

A.1.264 optionListResultSet
Specifies the name of a ResultSet that contains option list values.

Type and Usage

• Other Field Display Variables

• Field Display

Output

Returns the option list ResultSet.

Example

Specifies DocFormats as the option list ResultSet for the standard Format field on a search
page:

<@dynamichtml std_format_fields@>
<$if ClientControlled or dFormat or dExtension$>
<$fieldName = "dFormat", fieldCaption = lc("wwNativeFormat"),
 optionListResultSet = "DocFormats"$> <$include std_display_field$>
<$fieldName = "dExtension", fieldCaption = lc("wwNativeExtension"),

Appendix A
optionListResultSet

A-149

 fieldWidth = 10$>
<$include std_display_field$>
<$endif$>
<@end@>

Creates an option list by looping over a ResultSet:

<@dynamichtml compute_resultset_option_list_script@>
 <$if not optionListKey$>
<$optionListKey = fieldName$>
 <$endif$>
 <$defaultOptionListScript = "<$loop " & optionListResultSet & "$>" &
 "<$inc('std_resultset_option_list_item')$>" & "<$endloop$>"$>
<@end@>

See Also

• optionListKey

• defaultOptionListScript

• optionListValueInclude

A.1.265 optionListScript
When this variable is set to a non-empty value, the eval function is used when displaying the
option list for the field. This variable allows the standard implementation of option lists (defined
by the defaultOptionListScript variable) to be overridden.

Type and Usage

• Common Field Display Variables

• Field Display

Output

• Returns TRUE if the value is nonempty.

• Returns FALSE if the value is an empty string.

Example

Defines a custom script for creation of an option list:

<$customOptionListScript = getValue("#active", fieldName & ":optionListScript")$>

See Also

• defaultOptionListScript

A.1.266 optionListValueInclude
Specifies an include that defines the values for an option list.

Type and Usage

• Other Field Display Variables

• Field Display

Appendix A
optionListScript

A-150

Output

Returns the include code.

Example

Defines std_override_format_option_value as the option list value include:

<@dynamichtml std_override_format_field@>
<$if not isInfo and IsOverrideFormat$>
<$fieldIsOptionList = 1, optionListResultSet = "DocFormats",
 optionListKey = "dFormat",
 optionListValueInclude = "std_override_format_option_value",
 addEmptyOption = 1, emptyOptionLabel = lc("wwEmptyFormatOption")$>
<$include std_display_field$>
<$endif$>
<@end@>
<@dynamichtml std_override_format_option_value@>
<$dDescription$>
<@end@>

Specifies the include to use to display options in an option list from a ResultSet:

<@dynamichtml std_resultset_option_list_item@>
<$curValue = getValue("#active", optionListKey)$>
<option value="<$curValue$>" <$if optionsAllowPreselect and strEquals(curValue,
fieldValue)$>selected<$endif$>>
<$if optionListValueInclude$>
<$inc(optionListValueInclude)$>
<$else$>
<$curValue$>
<$endif$>
<@end@>

See Also

• optionListResultSet

A.1.267 optionsAllowPreselect
Specifies that the metadata field option list can be prefilled with its last value.

Type and Usage

• Other Field Display Variables

• Field Display

Output

• Returns TRUE if the option list can be prefilled.

• Returns FALSE if the option list cannot be prefilled.

Example

Specifies that the option list can be prefilled:

<$optionsAllowPreselect=1$>

Determines if the option list will be prefilled:

Appendix A
optionsAllowPreselect

A-151

<$if optionsAllowPreselect and fieldValue$>
<$defaultOptionListScript = "<$optList " & optionListName & ":fieldValue$>"$>
<$else$>
<$defaultOptionListScript = "<$optList " & optionListName & ":noselected$>"$>
<$endif$>

A.1.268 optList()
Generates an option list.

This function is used extensively to create option lists on Content Server pages.

This function only produces output when used with a service that calls loadMetaOptionsList

Type and Usage

• Global Functions

• Field Display

Parameters

Takes one parameter and one optional argument to the parameter:

The only parameter is a field name, option list key, or variable.

• Field name syntax is <$optList fieldName$>. For custom metadata fields, the field name
will resolve to <$optList xFieldName.options$>, or you can specify the .options suffix
directly.

• Option list key syntax is <$optList ListName$>.

– For standard metadata fields, the ListName value is the name of the internal option list
(such as docAuthors). For more information, see Internal Option Lists.

– For custom metadata fields, the ListName is the name of the option list key, such as
FieldNameList.

• Variable syntax is <$optList variable$>. The variable must resolve to a field name or an
option list key.

• One of the following optional arguments can be added to the parameter:

– :noselected-No values are selected when the option list is displayed.

– :fieldValue-The value specified by the fieldValue variable is selected as the default
value in the option list.

Output

Returns a list of values.

Example

This script generates a list of possible authors from the internal docAuthors list:

<$optList docAuthors$>

This script generates a list of the options specified in the xRegion custom metadata field:

<$optList xRegion.options$>

Appendix A
optList()

A-152

This script generates an option list from the variable optionListName and specifies the default
value:

<$if optionsAllowPreselect and fieldValue$>
 <$defaultOptionListScript = "<$optList " & optionListName & ":fieldValue$>"$>
<$else$>
 <$defaultOptionListScript = "<$optList " & optionListName & ":noselected$>"$>
<$endif$>

See Also

• Option Lists

• defaultOptionListScript

• optionListName

• optionListScript

• optionsAllowPreselect

• rsMakeFromList()

A.1.269 PageParent
Checks whether a directory page in the Library has a parent page.

Type and Usage

• Value Variables

• Page Display

Output

• Returns TRUE if the directory page is a child (subfolder) of another directory page.

• Returns FALSE if the directory page is not a child (subfolder).

Example

Checks if the directory page is a subfolder:

<$PageParent$>

A.1.270 parseDataEntryDate()
Parses a date but uses the failover logic for using the alternate parsing formats.

Dates convert to milliseconds when used with standard comparison operators. For example,
the expression (60*60*1000) equals one hour.

A common usage of this function is to adjust the current time using a multiplication expression
that represents a number of seconds, minutes, hours, or days.

Type and Usage

• Global Functions

• Date and Time

Appendix A
PageParent

A-153

Parameters

The only parameter is an expression to be parsed.

Output

Returns a Java date object, which is converted to a string for display.

Example

<$parseDataEntryDate$>

A.1.271 parseDate
Parses a date/time to allow evaluation and arithmetic.

Dates convert to milliseconds when used with standard comparison operators. For example,
the expression (60*60*1000) equals one hour.

A common usage of this function is to adjust the current time using a multiplication expression
that represents a number of seconds, minutes, hours, or days.

Type and Usage

• Global Functions

• Date and Time

Parameters

The only parameter is an expression to be parsed.

Output

Returns a Java date object, which is converted to a string for display.

Example

Each of the following expressions returns the date and time one day in the past:

<$parseDate(dateCurrent(-1))$>
<$parseDate(dateCurrent()-(24*60*60*1000))$>
<$dateCurrent(-1)$>
<$dateCurrent()-(24*60*60*1000)$>

Returns the time one hour in the future. The first line adds one hour using a time multiplication
expression, assigns that time and date to a custom variable, and suppresses the output. The
second line references the custom variable and defines that only the time is displayed:

<$exec my_customParseTime parseDate(dateCurrent()+(1000*60*60))$>
<$formatTimeOnly(my_customParseTime)$>

Returns the date one year in the future. The first line adds one year using a time multiplication
expression, assigns that time and date to a custom variable, and suppresses the output. The
second line references the custom variable and defines that only the date in long format is
displayed:

<$exec my_customParseTime parseDate(dateCurrent()+(1000*60*60*24*365))$>
<$formatTimeOnly(my_customParseTime)$>

Appendix A
parseDate

A-154

This script evaluates whether the date seven days in the future is greater than the expiration
date and returns a message to the user if true:

<$if dOutDate$>
 <$if dateCurrent(7) > parseDate(dOutDate)$>
Content item expires in one week.
 <$endif$>
<$endif$>

This script uses parseDate within a conditional statement for customized workflow jumps. The
script specifies that if the last time we entered this step was four days ago, go to the first step
in workflow wf_late and set the return step to be the next step:

<$if parseDate(wfCurrentGet("lastEntryTs")) < dateCurrent(‐4)$>
 <$wfSet("wfJumpName", "lateJump")$>
 <$wfSet("wfJumpTargetStep", "step_1@wf_late")$>
 <$wfSet("wfJumpReturnStep", wfCurrentStep(1))$>
 <$wfSet("wfJumpEntryNotifyOff", "0")$>
<$endif$>

See Also

• dateCurrent()

A.1.272 parseDateWithPattern()
Parses a date/time to a specified date/time pattern.

Dates convert to milliseconds when used with standard comparison operators. For example,
the expression (60*60*1000) equals one hour.

A common usage of this function is to adjust the current time using a multiplication expression
that represents a number of seconds, minutes, hours, or days.

Type and Usage

• Global Functions

• Date and Time

Parameters

Takes two parameters:

• The first parameter is a date string used by the Content Server instance, or a date object
created with the parseDate or dateCurrent function.

• The second parameter is the date/time pattern, which is a standard Java
SimpleDateFormat pattern string, such as MM/dd/yyyy.

Output

Returns a Java date object, which is converted to a string for display.

Example

Displays the current date and time in the format specified by the pattern (for example, Wed, 4
Jul 2001 12:08:56 -0700):

<$parseDateWithPattern(dateCurrent(),"EEE, d MMM yyyy HH:mm:ss Z")$>

Appendix A
parseDateWithPattern()

A-155

See Also

• parseDate

• dateCurrent()

• formatDateWithPattern()

A.1.273 PATH_INFO
This setting is obsolete. The web server filter no longer sends this information.

Retrieves additional information about the file system path to the CGI computer.

When the virtual path is returned by the PATH_TRANSLATED variable, any additional
information at the end of this path is also returned as PATH_INFO.

This variable is specific to the current gateway program request.

Type and Usage

• Environment Variables

• Web Servers

Output

Returns the additional virtual path information as a string.

Example

Retrieves additional CGI path information:

<$PATH_INFO$>

See Also

• PATH_TRANSLATED

A.1.274 PATH_TRANSLATED
Retrieves the file system path to the CGI computer, for example:

c:/domain/weblayout/idcplg/idc_cgi_isapi-idcm1.dll.

This variable is specific to the current gateway program request.

Type and Usage

• Environment Variables

• Web Servers

Output

Returns the virtual path as a string.

Example

Retrieves the CGI path:

Appendix A
PATH_INFO

A-156

<$PATH_TRANSLATED$>

A.1.275 pneNavigation()
Enables the left sidebar navigation.

Type and Usage

• Global Functions

• Page Display

Parameters

Set as a name/value pair:

pneNavigation=1

Default value is 1 (enabled).

To disable this function, it must be set to a null string.

Output

Evaluates to TRUE or FALSE.

Example

Enables the sidebar navigation:

<$pneNavigation=1$>

To force the sidebar navigation off, set it to a null string:

<$pneNavigation=""$>

Setting the definition to other than 1 or a null string value is invalid and will not disable the
sidebar navigation:

<$pneNavigation=0$>

A.1.276 proxiedBrowserFullCgiWebUrl
Returns the complete CGI path of a proxied Content Server instance.

Type and Usage

• Global Functions

• Directories and Paths

Parameters

The only parameter is the relative web root of the proxied Content Server instance. This value
is found in the HttpRelativeWebRoot setting.

Output

Returns the complete CGI path of the specified proxy as a string.

Appendix A
pneNavigation()

A-157

Example

Returns http://<localhost/idcplg/idc_cgi_isapi-idcm1.dll/intradoc4/pxs:

<$proxiedBrowserFullCgiWebUrl("/intradoc4/")$>

See Also

• HttpRelativeWebRoot

A.1.277 proxiedCgiWebUrl
Returns the CGI path of a proxied Content Server instance.

Type and Usage

• Global Functions

• Directories and Paths

Parameters

The only parameter is the relative w root of the proxied Content Server instance. This value is
found in the HttpRelativeWebRoot setting.

Output

Returns the CGI path of the specified proxy as a string.

Example

Returns /idcplg/idc_cgi_isapi-idcm1.dll/intradoc4/pxs:

<$proxiedCgiWebUrl("/intradoc4/")$>

See Also

• HttpRelativeWebRoot

A.1.278 QUERY_STRING
Retrieves the string that follows the ? delimiter in the URL for a query.

This variable is specific to the current CGI request.

Type and Usage

• Environment Variables

• Searching

• Web Servers

Output

Returns the query information as a string.

Example

As information output on a page or to a log:

Appendix A
proxiedCgiWebUrl

A-158

QUERY_STRING=IdcService=GET_DOC_PAGE&Action=GetTemplatePage&Page=STD_QUERY_PAGE

As part of an Idoc Script statement or evaluation:

<$if QUERY_STRING$>
<!--statement-->

A.1.279 regexMatches()
Searches a string for a specific pattern using a regular expression to do matching. Regular
expression constructs can contain characters, character classes, and other classes and
quantifiers. For details about the Java API for Class Pattern, see http://www.oracle.com/
technetwork/java/index.html.

This feature is only available with JVM 1.4 or later versions; this is the default version for
WebCenter Content version 7.0 and later.

Type and Usage

• Global Functions

• Content Server

Parameters

Takes two parameters:

• The first parameter is the string to match.

• The second parameter is the expression.

Example

The following example returns FALSE, because the string does not match the expression:

<$regexMatches("abcdef","abc")$>

The following example returns TRUE because the wild cards are present. If standard wild cards
such as the asterisk (*) were used instead of the dot-asterisk (.*) convention, the match would
fail.

<$regexMatches("abcdef", ".*abc.*")$>

See Also

• Operators

• regexReplaceAll()

• regexReplaceFirst()

• strEquals()

• strIndexOf()

A.1.280 regexReplaceAll()
Searches a string for a specific pattern using a regular expression to do matching and
replacing. Regular expression constructs can contain characters, character classes, and other
classes and quantifiers. For details about the Java API for Class Pattern, see http://
www.oracle.com/technetwork/java/index.html.

Appendix A
regexMatches()

A-159

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

This feature is available only with JVM 1.4 or later versions; this is the default version for
WebCenter Content version 11.1.1.7.0 and later.

It replaces all instances of the regular expression with the replacement string.

Type and Usage

• Global Functions

• Content Items

Parameters

Takes three parameters:

• The first parameter is the original string.

• The second parameter is the string to match.

• The third parameter is the replacement string.

Example

The following example returns xyzdef xyzdef:

<$regexReplaceAll("abcdef abcdef","abc","xyz")$>

See Also

• Operators

• regexMatches()

• regexReplaceFirst()

• strEquals()

• strIndexOf()

• strSubstring()

A.1.281 regexReplaceFirst()
Searches a string for a specific pattern using a regular expression to do matching and replaces
the first instance with a replacement string. Regular expression constructs can contain
characters, character classes, and other classes and quantifiers. For details about the Java
API for Class Pattern, see http://www.oracle.com/technetwork/java/index.html.

This feature is only available only with JVM 1.4 or later versions; this is the default version for
WebCenter Content version 11.1.1.7.0 and later.

Type and Usage

• Global Functions

• Content Items

Parameters

Takes three parameters:

• The first parameter is the original string.

• The second parameter is the string to match.

Appendix A
regexReplaceFirst()

A-160

http://www.oracle.com/technetwork/java/index.html

• The third parameter is the replacement string.

Example

The following example returns xyzdef abcdef:

<$regexReplaceFirst("abcdef abcdef","abc","xyz")$>

See Also

• Operators

• regexMatches()

• regexReplaceAll()

• strEquals()

• strIndexOf()

• strSubstring()

A.1.282 REMOTE_ADDR
Returns the IP address of the remote host making the request.

This variable is specific to the current gateway program request.

Type and Usage

• Environment Variables

• Web Servers

Output

Returns the IP address as a string.

Example

As information output on a page or to a log:

REMOTE_ADDR=207.0.0.1

As part of an Idoc Script statement or evaluation:

<$if REMOTE_ADDR$>
<!--statement-->

See Also

• REMOTE_HOST

A.1.283 REMOTE_HOST
Returns the name of the remote host making the request.

This variable is specific to the current gateway program request.

Type and Usage

• Environment Variables

Appendix A
REMOTE_ADDR

A-161

• Web Servers

Output

• Returns the host name as a string.

• If the hostname is unknown to the server, returns the value of REMOTE_ADDR as a string.

Example

As information output on a page or to a log:

REMOTE_HOST=207.0.0.1

As part of an Idoc Script statement or evaluation:

<$if REMOTE_HOST$>
<!--statement-->

See Also

• REMOTE_ADDR

A.1.284 REQUEST_METHOD
Retrieves the method that was used to make the request.

This variable is specific to the current gateway program request.

Type and Usage

• Environment Variables

• Web Servers

Output

Returns the request method as a string.

Example

As information output on a page or to a log:

REQUEST_METHOD=GET

As part of an Idoc Script statement or evaluation:

<$if REQUEST_METHOD$>
<!--statement-->

A.1.285 requiredMsg
Specifies the error message to be displayed if a required metadata field does not have a value
upon checkin.

Type and Usage

• Field Information Variables

• Field Display

Appendix A
REQUEST_METHOD

A-162

Output

Returns the error message as a string.

Example

Defines the required field error message for the dDocTitle metadata field as the
wwSpecifyTitle localized string:

<$fieldName = "dDocTitle", fieldCaption = lc("wwTitle"), isRequired = 1, fieldType =
"BigText", requiredMsg = lc("wwSpecifyTitle")$>

See Also

• isRequired

A.1.286 ResultsTitle
Defines a title for the search results page.

This variable is used by the Web Layout Editor to name the search results page and display a
heading at the top of that page.

Usage

• Page Display

• Searching

Output

Returns the page title as a string.

Example

As an HDA entry, names the search results page:

@Properties LocalData
ResultsTitle=Content Items
@end

As a script, returns the defined name:

<$if ResultsTitle$>ResultsTitle=<$url(ResultsTitle)$>

A.1.287 rptDisplayMapValue()
This function is meant for internal use only.

This function returns a localized string representation of an internal key code. These key codes
are used to store status and state flags for content items. This function is used on the Content
Information page and workflow pages to display descriptions of the internal state.

Type and Usage

• Global Functions

• Localization

Appendix A
ResultsTitle

A-163

Parameters

Takes two parameters:

• The name of the table where the keys are stored.

• The key to be localized.

A.1.288 rs()
This function returns a ResultSet given the name of the ResultSet. Because the actual object it
returns is a ResultSet, certain actions can be performed on the return value that cannot be
performed on the return values of other functions. In particular, the loop syntax can be applied
to the result.

Type and Usage

• Global Functions

• ResultSets

Parameters

This function has one parameter, resultSetName, which is the name of the ResultSet to return.

Output

A ResultSet object if found, otherwise null.

Example

Suppose MyResultSet is the name of a ResultSet, then you could loop on the ResultSet using
the following syntax:

<$loop rs("MyResultSet")$>... Script inside loop ...<$endloop$>

This function also can be used when temporarily assigning variables when calling Idoc Script
functions. In particular, the following example will temporarily assign the variable rsParam to
point to the same ResultSet as pointed to by MyResultSet for the duration of the call to include
the resource include my_include. If the result of the rs function is assigned to a variable, then
that variable will have a shared pointer to the ResultSet creating the same effect as if
rsCreateReference were called.

<$inc("my_include", rsParam=rs("MyResultSet"))$>

A.1.289 rsAddFields()
Adds new fields to a ResultSet. This function will only add the field if it is not already present.
Note that setValue(...) can also add new fields but it only works on ResultSets that are
nonempty and are on a currently valid row.

Type and Usage

• Global Functions

• ResultSets

Appendix A
rs()

A-164

Parameters

Takes two parameters:

• The first parameter is the name of the ResultSet to get new fields (columns) added.

• The second parameter is a comma separated list of fields to add.(the column names to be
added).

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails.

Example

<$rsAddFields(rsName, fieldsList)$>

A.1.290 rsAddFieldsWithDefaults()
This function adds new fields to an existing ResultSet. Unlike rsAddFields, this function
provides the ability to specify default values for any fields that are added. Note that
rsAddFieldsWithDefaults never over-writes any data in fields that already exist; it only adds
new fields to a ResultSet.

Type and Usage

• Global Functions

• ResultSets

Parameters

The following table lists parameters for the function.

Parameters Description

resultSetName The name of the ResultSet.

newFields A comma-separated list of fields to append to the ResultSet. Any specified
fields that already exist in the ResultSet are ignored.

defaultValues An optional comma-separated list of default values that are set for the new
fields in each row. Each value in this list corresponds to the new field in the
same spot of the list newFields. If you need to set a default value with a
comma in it, you can use '^' as a comma. If the defaultValues list is longer
or shorter than newFields list, then the function ignores the extra default
values or uses the empty string for unspecified default values, respectively.

Output

Nothing.

Example

Adding fields

<$rsCreateResultSet("MyList", "field1,field2,field3")$><$rsAppendRowValues("MyList",
"A,B,C,D,E,F")$><$rsAddFieldsWithDefaults("MyList", "field4,field5,field6")$>

Appendix A
rsAddFieldsWithDefaults()

A-165

In this basic example, we create a ResultSet named MyList, fill it with some values, then add
three more fields to MyList, without setting default values. The resulting table will look like the
following:

field1 field2 field3 field4 field5 field6

A B C

D E F

Adding fields with default

<$rsCreateResultSet("MyList", "field1,field2,field3")$><$rsAppendRowValues("MyList",
"A,B,C,D,E,F")$><$rsAddFieldsWithDefaults("MyList", "field4,field5,field6", "X,Y,Z")$>

Here we define default values for the new fields. The resulting table will look like the following:

field1 field2 field3 field4 field5 field6

A B C X Y Z

D E F X Y Z

When a field already exists

<$rsCreateResultSet("MyList", "field1,field2,field3")$><$rsAppendRowValues("MyList",
"A,B,C,D,E,F")$><$rsAddFieldsWithDefaults("MyList", "field1,field4,field5", "X,Y,Z")$>

In this case, we try and add a field that already exists in MyList. This action is completely
ignored, and old field values are preserved. The resulting table will look like the following:

field1 field2 field3 field4 field5

A B C X Y

D E F X Y

Fewer default values specified

<$rsCreateResultSet("MyList", "field1,field2,field3")$><$rsAppendRowValues("MyList",
"A,B,C,D,E,F")$><$rsAddFieldsWithDefaults("MyList", "field4,field5,field6", "X,Y")$>

Notice in this example how there are not enough default values in the default value list for all
fields. In this case, it just fills in blanks for the unspecified column.

field1 field2 field3 field4 field5 field6

A B C X Y

D E F X Y

See Also

• rsAddFields()

Appendix A
rsAddFieldsWithDefaults()

A-166

A.1.291 rsAddRowCountColumn()
This function adds a new field whose value for each row is the row count for that row. The
count starts at 0. This function is useful to use just before using rsSort(...) on XML data
island ResultSets (inside .hcsp files) so that the original row location can be preserved.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes two parameters:

• The first parameter is the name of ResultSet to be modified so that it has an new row count
column.

• The second parameter is the name of the field that will hold the row count.

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails.

Example

<$rsAddRowCountColumn(rsName, countFieldName)$>

A.1.292 rsAppend()
This function is similar in nature to rsMerge, except there are no merge test criteria. All rows
from the ResultSet rsNameSource are appended to the ResultSet rsNameTarget. In addition, all
fields in rsNameSource not in rsNameTarget will be added to rsNameTarget. Useful for doing a
simple combining of ResultSets.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes two parameters:

• The first parameter is the ResultSet that will be modified by the merge.

• The second parameter is the ResultSet containing the rows that will be appended to the
target.

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails.

Appendix A
rsAddRowCountColumn()

A-167

Example

<$rsAppend("targetRsetName", "sourceRsetName")$>

See Also

• rsMerge()

A.1.293 rsAppendNewRow()
Appends a new row to the end of the ResultSet. The current row is not affected.

Type and Usage

• Global Functions

• ResultSets

Parameters

The only parameter is the name of the ResultSet to receive the new row.

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails or the ResultSet is empty.

Example

<$rsAppendNewRow("SearchResults")$>

A.1.294 rsAppendRowValues()
A utility function for adding new rows to a ResultSet. The values list is a comma-delimited list
of values (using the escape rule of ',' -> '^', '^' -> '#^', '#' -> '##' to encode each value) split up
into rows. Assume nfields is the number of fields in the ResultSet. The values list is split up into
rows by counting nfields values to create a new row and then taking the next nfields values to
create each following row and so on. If the number of values is not an exact multiple of nfields
then the last row has its fields values padded out with empty strings. This function is useful for
compactly hard coding ResultSets using Idoc Script.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes two parameters:

• The first parameters the name of the ResultSet that is to get new rows.

• The second parameter is the new values to add.

Output

• Returns TRUE if the function is successful.

Appendix A
rsAppendNewRow()

A-168

• Returns FALSE if the function fails.

Example

<$rowValues = "a1, b1, a2, b2"$>
<$rsCreateResultSet("ResultSet1", "ColumnA,ColumnB")$>
<$rsAppendRowValues("ResultSet1", rowValues$>
<table border=2>
 <tr><td>ColumnA</td><td>ColumnB</td></tr>
 <$loop ResultSet1$>
 <tr><td><$ColumnA$></td><td><$ColumnB$></td>
</tr>
<$endloop$>
</table>

The resulting HTML would look like the following.

Column A Column B

A1 B1

A2 B2

A.1.295 rsCopyFiltered()
This function copies only selected rows from one ResultSet to create another ResultSet. Any
prior ResultSet with name rsNameTarget will be replaced. The rows are selected by testing
each row's value of filterField using a test against the pattern in filterPattern. The
pattern match is the same as used in the Idoc Script like operator.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes four parameters:

• The first parameter is the ResultSet that is providing the rows to copy.

• The second parameter is the new ResultSet created by the copy.

• The third parameter is the name of the field being tested.

• The fourth parameter is the pattern match to apply to see if the row should be copied.

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails.

Example

<$rsCopyFiltered(rsNameSource, rsNameTarget, filterField, filterPattern)$>

Appendix A
rsCopyFiltered()

A-169

A.1.296 rsCreateReference()
This function sets an Idoc Script variable with a shared reference to a preexisting ResultSet in
the request data.

Type and Usage

• Global Functions

• ResultSets

Parameters

This function has the following parameters.

Parameters Description

sourceResultSet The name of a preexisting ResultSet.

targetResultSet The name of the variable that will share a reference to precisely the same
ResultSet.

Output

If successful, returns TRUE.

Example

The current value of <$MyResultSet.field2$> and <$MyResultSetAlias.field2$> will both be
the letter E.

<$rsCreateResultSet("MyResultSet", "field1,field2,field3")$>
<$rsAppendRowValues("MyResultSet", "A,B,C,D,E,F")$>
<$rsCreateReference("MyResultSet", "MyResultSetAlias")$>
<$rsNext("MyResultSetAlias")$>

A.1.297 rsCreateResultSet()
Creates a ResultSet initialized with the list of fields in fieldList. All the fields will be set as
string type.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes two parameters:

• The first parameter is the name of the ResultSet to create.

• The second parameter is a comma separated list of fields.

Output

• Returns TRUE if the function is successful.

Appendix A
rsCreateReference()

A-170

• Returns FALSE if the function fails.

Example

<$rsCreateResultSet(rsName, fieldList)$>

A.1.298 rsDeleteRow()
Deletes the current row in the ResultSet. The current row is advanced to the next row (or
points to after the end of the ResultSet if the end row in the ResultSet is deleted).

Type and Usage

• Global Functions

• ResultSets

Parameters

The only parameter is the name of the ResultSet whose current row is deleted.

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails or the ResultSet is empty.

Example

<$rsDeleteRow("Folders")$>

A.1.299 rsDocInfoRowAllowDisclosure()
Checks if the current user is allowed to view the URL of the content item referenced by the
current row of a ResultSet.

This function is useful for selectively showing the URLs of a ResultSet generated by a content
item query.

Type and Usage

• Global Functions

• ResultSets

• Internal Security

Parameters

The only parameter is the name of a ResultSet whose current row contains information about a
content item.

Output

• Returns TRUE if the user is allowed to view the URL of the content item.

• Returns FALSE if the user is not allowed view the URL or the ResultSet is empty.

Appendix A
rsDeleteRow()

A-171

Example

Checks if the user can view the URL of the content item in the current row of resultSet1.

<$rsDocInfoRowAllowDisclosure("resultSet1")$>

A.1.300 rsExists()
Checks to see if a ResultSet exists.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes one parameter, the name of the ResultSet.

Output

• Returns TRUE if the ResultSet is found.

• Returns FALSE if the ResultSet does not exist or if it is empty.

Example

<$if rsExists("resultSet1")$>
 code to execute if TRUE
<$endif$>

A.1.301 rsFieldByIndex()
Retrieves the name of the field at a specified column index, starting from zero.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes two parameters:

• The name of the ResultSet.

• The index number.

Example

<$rsFieldName = rsFieldByIndex("resultSet1", "2")$>

A.1.302 rsFieldExists()
Checks to see if the named ResultSet contains the specific field.

Appendix A
rsExists()

A-172

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes two parameters:

• The name of the ResultSet to be searched.

• The name of the field to be found.

Output

• Returns TRUE if the field is found.

• Returns FALSE if the field does not exist.

Example

<$if rsFieldExists("resultSet1", "FieldName1")$>
 code to execute if TRUE
<$endif$>

A.1.303 rsFindRowPrimary()
Searches the first column of a ResultSet for a matching value.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes two parameters:

• The first parameter is the name of a ResultSet whose first column is to be searched.

• The second parameter is the value to be searched for.

Output

• Returns TRUE if the specified value is found in the first column of the specified ResultSet.

• Returns FALSE if the specified value is not found.

Example

Searches the first column of resultSet1 until a value matching value1 is found.

<$rsFindRowPrimary("resultSet1","value1")$>

A.1.304 rsFirst()
Moves to the first row in a ResultSet.

Appendix A
rsFindRowPrimary()

A-173

Type and Usage

• SGlobal Functions

• ResultSets

Parameters

The only parameter is the name of a ResultSet.

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails or the ResultSet is empty.

Example

Advances the SearchResults ResultSet to the first row:

<$exec rsFirst("SearchResults")$>

A.1.305 rsInsertNewRow()
Inserts a row just before the current row of the ResultSet being manipulated. The new row then
becomes the current row.

Type and Usage

• Global Functions

• ResultSets

Parameters

The only parameter is the name of the ResultSet in which to have a new row inserted.

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails.

Example

<$rsInsertNewRow("SearchResults")$>

A.1.306 rsIsRowPresent()
Checks the status of the current row in a ResultSet.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes one parameter, the name of the ResultSet.

Appendix A
rsInsertNewRow()

A-174

Output

• Returns TRUE if the ResultSet is currently on a valid row.

• Returns FALSE if not on a valid row.

Example

<$if rsIsRowPresent("resultSet1")$>
 code to execute if TRUE
<$endif$>

A.1.307 rsLoopInclude()
This function loops on a ResultSet, executing a resource include once for each row. During the
execution of this include, the ResultSet is temporarily made active (as is done with the
standard <$loop ...$> construction).

Type and Usage

• Global Functions

• ResultSets

Parameters

This function has the following parameters:

Parameters Description

ResultSetName The name of the ResultSet to loop over.

includeName The name of the resource include to execute.

Output

The combined output of the various iterations of the resource include.

Example

<$rsLoopInclude(resultSetName, includeName)$>

A.1.308 rsLoopSingleRowInclude()
This function temporarily promotes a ResultSet to be active while executing a single resource
include. It functions much like rsLoopInclude, however the include is only executed once for
the current row of the ResultSet.

Type and Usage

• Global Functions

• ResultSets

Parameters

This function has the following parameters.

Appendix A
rsLoopInclude()

A-175

Parameters Description

ResultSetName The name of the ResultSet to make active.

includeName The name of the resource include to execute.

Output

The output of the resource include.

Example

<$rsLoopSingleRowInclude(resultSetName, includeName)$>

See Also

• rsLoopInclude()

A.1.309 rsMakeFromList()
Creates a single-column ResultSet from an option list.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes two required parameters and one optional parameter:

• The first parameter is the name of the ResultSet to be created.

• The second parameter is the name of an existing option list (for example, docAccounts or
xMyCustomField.options).

• The third optional parameter is the name of the ResultSet column. If no value is specified,
the column name defaults to row.

Output

Creates a ResultSet with one column, populated by the values in the specified option list.

Example

Creates two ResultSets called ListA and ListB from the securityGroups and docAuthors
option lists:

<$lista = "securityGroups"$>
<$rsMakeFromList("ListA", lista)$>
<$rsMakeFromList("ListB", "docAuthors", "name")$>
<table border=2>
 <tr><td>Security Groups</td><td>Authors</td></tr>
 <tr>
 <td><$loop ListA$><row>

 <$endloop$></td>
 <td><$loop ListB$><$name$>

 <$endloop$></td>

Appendix A
rsMakeFromList()

A-176

 </tr>
</table>

The ResultSets would look like this:

@ResultSet ListA
1
row
Public
Secure
@end
@ResultSet ListB
1
name
hchang
pkelly
sysadmin
user1
@end

The resulting HTML would look like the following table.

ListA ListB

Security Groups Authors

Security Groups hchang

Public okelly

Secure sysadmin

Secure user1

See Also

• rsMakeFromString()

• Option Lists

• optList()

A.1.310 rsMakeFromString()
Creates a single-column ResultSet from a string.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes two required parameters and one optional parameter:

• The first parameter is the name of the ResultSet to be created.

• The second parameter is a comma-delimited list of strings to be parsed (such as a,b,c,d),
or a variable that has a comma-delimited string as its value.

• The third optional parameter is the name of the ResultSet column. If no value is specified,
the column name defaults to row.

Appendix A
rsMakeFromString()

A-177

Output

Creates a ResultSet with one column, populated by the specified string values.

Example

Creates two ResultSets, called StringA and StringB:

<$stringa = "a,b,c,d"$>
<$rsMakeFromString("StringA", stringa)$>
<$rsMakeFromString("StringB", "A,B,C,D", "name")$>
<table border=2>
 <tr><td>StringA</td><td>StringB</td></tr>
 <tr>
 <td><$loop StringA$><row>

 <$endloop$></td>
 <td><$loop StringB$><$name$>

 <$endloop$></td>
 </tr>
</table>

The ResultSets would look like this:

@ResultSet StringA
1
row
a
b
c
d
@end
@ResultSet StringB
1
name
A
B
C
D
@end

The resulting HTML would look like the following table.

Stringa Stringb

A A

B B

C C

D D

See Also

• rsMakeFromList()

A.1.311 rsMerge()
Merges the rows of one ResultSet into another. If the value from the rsNameSource ResultSet
in the rsCommonField field matches the value for the same field in a row for rsNameTarget,
then that row will be replaced. Otherwise, the row from rsNameSource will be appended. If

Appendix A
rsMerge()

A-178

there are multiple rows in rsNameTarget that are matched by the same value, then only the first
row is replaced and it is replaced by the last row in rsNameSource that has a matching row. Any
fields in the ResultSet rsNameSource that are not in rsNameTarget are added as new fields to
rsNameTarget. This function is best performed on ResultSets that have only unique values in
the rsCommonField field so that issues with multiple matches are avoided.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes three parameters:

• The first parameter (rsNameTarget) is the ResultSet that will be modified by the merge.

• The second parameter (rsNameSource) is the ResultSet containing the rows that will be
merged into the target.

• The third parameter (rsCommonField) is the field that occurs in both results sets that will
be used as the basis of the merge.

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails.

Example

<$rsMerge(rsNameTarget, rsNameSource, commonField$>

See Also

• rsAppend()

A.1.312 rsMergeDelete()
Analogous to rsMergeReplaceOnly, except matching rows in the ResultSet rsNameTarget are
removed instead of replaced. It is useful for removing rows from one ResultSet that already
occur in another.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes three parameters:

• The first parameter (rsNameTarget) is the ResultSet that will be modified by the merge.

• The second parameter (rsNameSource) is the ResultSet containing the rows that will be
merged into the target.

• The third parameter (rsCommonField) is the field that occurs in both results sets that will
be used as the test for which rows to remove from rsNameTarget.

Appendix A
rsMergeDelete()

A-179

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails.

Example

<$rsMergeDelete(rsNameTarget, rsNameSource, rsCommonField)$>

A.1.313 rsMergeReplaceOnly()
Similar to rsMerge, but rows are only replaced; none are appended to the ResultSet
rsNameTarget. In addition, new fields from rsNameSource are not added to rsNameTarget.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes three parameters:

• The first parameter (rsNameTarget) is the ResultSet that will be modified by the merge.

• The second parameter (rsNameSource) is the ResultSet containing the rows that will be
merged into the target.

• The third parameter (rsCommonField) is the field that occurs in both results sets that will
be used as the basis of the merge

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails.

Example

<$rsMergeReplaceOnly(rsNameTarget, rsNameSource, rsCommonField) $>

A.1.314 rsNext()
Moves to the next row in a ResultSet.

Type and Usage

• Global Functions

• ResultSets

Parameters

The only parameter is the name of a ResultSet.

Output

• Returns TRUE if the function is successful.

Appendix A
rsMergeReplaceOnly()

A-180

• Returns FALSE if the function fails or the ResultSet is empty.

Example

Advances the SearchResults ResultSet to the next row:

<$exec rsNext("SearchResults")$>

A.1.315 rsNumFields()
Provides a count of the number of fields in a ResultSet. This is useful when combined with
rsFieldByIndex.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes one parameter, the name of the ResultSet.

Output

Returns the number of fields.

Example

<$numFields = rsNumFields("resultSet1")$>

See Also

• rsFieldByIndex()

A.1.316 rsNumRows()
Provides a count of the number of rows in a ResultSet.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes one parameter, the name of the ResultSet.

Output

Returns the number of rows.

Example

<$numRows = rsNumRows("resultSet1")$>

Appendix A
rsNumFields()

A-181

A.1.317 rsRemove()
Removes a ResultSet.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes one parameter, the name of the ResultSet.

Example

<$rsRemove("resultSet1")$>

A.1.318 rsRename()
Renames a ResultSet.

If you use a variable to define the new ResultSet name, you will need to loop over the new
ResultSet variable manually using rsFirst, rsNext, and #isRowPresent. For example:

<$rsNewName="MySearchResults"$>
<$rsRename("SearchResults", rsNewName)$>
 <$rsFirst(rsNewName)$>
 <$loopwhile getValue(rsNewName, "#isRowPresent")$>
 <!--output code-->
 <$rsNext(rsNewName)$>
 <$endloop$>

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes two parameters:

• The first parameter is the name of an existing ResultSet.

• The second parameter is the new ResultSet name. The call will fail if the ResultSet already
exists.

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails.

Example

Renames the SearchResults ResultSet to MySearchResults:

<$rsRename("SearchResults", "MySearchResults")$>

Appendix A
rsRemove()

A-182

A.1.319 rsRenameField()
Renames a field in the ResultSet.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes three parameters:

• The first parameter is the name of the ResultSet whose field is being renamed.

• The second parameter is the current name of the field.

• The third parameter is the new name of the field.

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails.

Example

Renames the invoice field to outlays in the warehouse ResultSet.

<$exec rsRenameField("warehouse", "invoice", "outlays")$>

A.1.320 rsSetRow()
Moves to a specified row in a ResultSet.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes two parameters:

• The first parameter is the name of the ResultSet.

• The second parameter is the number of the row.

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails or the ResultSet is empty.

Example

Advances the SearchResults ResultSet to the 10th row:

<$exec rsSetRow("SearchResults",10)$>

Appendix A
rsRenameField()

A-183

A.1.321 rsSort()
Sorts a ResultSet by a particular column.

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes four parameters. For example:

rsSort(rsName,sortCol,sortType,sortOrder)

Parameter Description

rsName The name of the ResultSet.

sortCol The name of the column to sort by.

sortType The type of sort (defaults to int):

string: sort alphabetically

int: sort numerically

date: sort by date

sortOrder The sort order (defaults to asc):

asc: ascending order

desc: descending order

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails or the ResultSet is empty.

Example

Sorts the SearchResults ResultSet by content ID in descending order:

<$rsSort("SearchResults","dDocName","string","desc")$>

A.1.322 rsSortTree()
Sorts a ResultSet that is a representation of an XML data structure (with nodes, parent nodes,
and depth attributes).

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes seven parameters. For example:

rsSortTree(rsName,itemIdCol,parentIdCol,nestLevelCol,sortCol,sortType,sortOrder)

Appendix A
rsSort()

A-184

Parameter Description

rsName The name of the ResultSet.

itemIdCol The name of the column that contains the unique ID for each node.

parentIdCol The name of the column that contains the ID for the parent node, if one exists.

nestLevelCol The name of the column that contains the nest level (depth) for each node.

sortCol The name of the column to sort by.

sortType The type of sort (defaults to int):

string: sort alphabetically

int: sort numerically

date: sort by date

sortOrder The sort order (defaults to asc):

asc: ascending order

desc: descending order

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails or the ResultSet is empty.

Example

Sorts the discussionPosts ResultSet by the itemNumber column in ascending order:

<$rsSortTree("discussionPosts", "discussionPosts!itemNumber",
 "discussionPosts!parentNumber", "dpItemNestLevel",
 "discussionPosts!itemNumber", "int", "asc")$>

A.1.323 SafeDir
Retrieves the location where extra Content Server files are moved by the Content Server
Analyzer utility.

Default is a subdirectory in the log directory specified by the IdcAnalyzeLogDir setting.

This variable is not settable.

Type and Usage

• Other Read-Only Variable

• Debugging

• Directories and Paths

Example

As script, returns the value of the configuration setting:

<$SafeDir$>

See Also

• "IdcAnalyzeLogDir" in the Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

Appendix A
SafeDir

A-185

A.1.324 SCRIPT_NAME
Retrieves the relative path to the CGI linking file.

The CGI linking file is the executable file for the web server security filter, which is a different
file for each operating system and web server. For example, the file name is nph-idc_cgi.exe
for Solaris.

Type and Usage

• Environment Variables

• Web Servers

Output

Returns the relative path as a string.

Example

As information output on a page or to a log:

SCRIPT_NAME=/idcplg/idc_cgi_isapi-instance>.dll

As part of an Idoc Script statement or evaluation:

<$if SCRIPT_NAME$>
<!--statement-->

A.1.325 SelfRegisteredAccounts
Defines the default accounts and permissions to be given to self-registered users.

This is a comma-delimited list.

Permissions for each account must be specified in parentheses after the account name.

The #none entry grants privileges to content items that have no account assigned. The #all
entry grants privileges to all accounts.

There is no default value.

Returns the list of accounts as a string.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Internal Security

Location

IntradocDir/config/config.cfg

Example

As a configuration setting:

SelfRegisteredAccounts=#none(RWDA),USERS/<$NewUser$>,BOS(R)

Appendix A
SCRIPT_NAME

A-186

As script, returns the defined account information as a string:

<$SelfRegisteredAccounts$>

See Also

• UseSelfRegistration

• SelfRegisteredAccounts

A.1.326 SelfRegisteredRoles
Defines the default roles to be given to self-registered users.

This is a comma-delimited list.

There is no default value.

Returns the roles as a string.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Internal Security

Location

IntradocDir/config/config.cfg

Example

As a configuration setting:

SelfRegisteredRoles=guest,salesRole

As script, returns the defined roles as a string:

<$SelfRegisteredRoles$>

See Also

• UseSelfRegistration

• SelfRegisteredRoles

A.1.327 SERVER_NAME
Retrieves the hostname, DNS alias, or IP address of the web server as it would appear in a
self-referencing URL.

This variable is not request-specific; it is set for all requests.

Type and Usage

• Environment Variables

• Web Servers

Appendix A
SelfRegisteredRoles

A-187

Output

Returns the server information as a string.

Example

As information output on a page or to a log:

SERVER_NAME=centralserver

As part of an Idoc Script statement or evaluation:

<$if SERVER_NAME$>
<!--statement-->

A.1.328 SERVER_PORT
Retrieves the web server port number to which the request was sent.

This variable is specific to the current gateway program request.

Type and Usage

• Environment Variables

• Web Servers

Output

Returns the port number as a string.

Example

As information output on a page or to a log:

SERVER_PORT=80

As part of an Idoc Script statement or evaluation:

<$if SERVER_PORT$>
<!--statement-->

A.1.329 SERVER_PROTOCOL
Returns the protocol and revision of the incoming request.

This variable is specific to the current gateway program request.

Type and Usage

• Environment Variables

• Web Servers

Output

Returns a string in the format protocol/revision.

Appendix A
SERVER_PORT

A-188

Example

As information output to a log:

SERVER_PROTOCOL=HTTP/1.0

As part of an Idoc Script statement or evaluation:

<$if SERVER_PROTOCOL$>
<!--statement-->

A.1.330 SERVER_SOFTWARE
This setting is obsolete for the 7.0 version and later.

The web server filter no longer sends this information.

Returns the name and version of the web server software that is answering the request.

This is also the server running the gateway.

This variable is not request-specific; it is set for all requests.

Type and Usage

• Environment Variables

• Web Servers

Output

Returns a string in the format name/version.

Example

As information output on a page or to a log:

SERVER_SOFTWARE=Microsoft-IIS/4.0

As part of an Idoc Script statement or evaluation:

<$if SERVER_SOFTWARE$>
<!--statement-->

A.1.331 setContentType()
Sets the content type for the returned page so the browser renders it properly. For example, a
content type (file-format type or MIME type) of text/plain, application/excel, or text/xml.

Type and Usage

• Global Functions

• ResultSets

Parameters

The only parameter is the content type.

Appendix A
SERVER_SOFTWARE

A-189

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails.

Example

<$setContentType("text/plain")$>

A.1.332 setCookie
Sets a cookie value in a browser.

Used to retain session information or information about anonymous users.

An expiration date can also be passed to make the cookie expire at a specified time.

Note:

Do not store secure data in a cookie. You should limit the use of cookies due to the
risk of malicious users setting cookies on your site.

Type and Usage

• Settable Variables

• Web Servers

Parameters

This function can take three parameters:

• The first parameter is the name of the cookie.

• The second parameter is the value to be set.

• The third optional parameter is an expiration indicator specifying when the cookie will
expire.

Example

The following example sets the cookie myCounter in the user's browser and increments the
value when the user visits the page. The cookie will expire in one day.

<$myCounter=getCookie("myCounter")$>
<$if not myCounter$>
 <$myCounter=1$>
<$endif$>
Num times loaded: <$myCounter$>
<$setCookie("myCounter", myCounter+1, dateCurrent(1))$>

See Also

• getCookie

Appendix A
setCookie

A-190

A.1.333 setExpires()
This function can be used to set an absolute time for an expiration of a page. This is best used
for pages with a long life that may be requested frequently. Due to problems in time
synchronization between the client and the server, it is not totally reliable, especially for short-
lived caches. The data must follow one of the acceptable HTTP date formats.

Refer to the W3 Protocols for more information:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.3

Type and Usage

• Global Functions

• Idoc Script

Parameters

The only parameter is an absolute date, formatted in the manner HTTP requires, after which
this page should be refreshed

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails.

Example

This will cause the page to expire at the given absolute time. Note that all time stamps must be
in the GMT time zone.

<$setExpires("Sat, 02 Aug 2003 24:00:00 GMT")$>

This is a way to use other Idoc Script functions to set the expiration date to 14 days from the
current date.

<$date=formatDateWithPattern(dateCurrent(14), "EEE, dd MMM yyyy")$>
<$setExpires(date & " 24:00:00 GMT"))$> >

See Also

• setHttpHeader()

A.1.334 setHttpHeader()
This function can be used to set any HTTP header. Values include, but are not limited to,
Cache-Control, Content-Type, Last-Modified, or any of the other acceptable HTTP headers.

Refer to the W3 Protocols for more information:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.3

Type and Usage

• Global Functions

• Idoc Script

Appendix A
setExpires()

A-191

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.3

Parameters

Takes two parameters. For example:

setHttpHeader(headerName, headerValue)

Parameter Description

headerName The name of a valid HTTP header.

headerValue The value for the header.

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails.

Example

This sets the content-type to XML, to enable your browser to render it with the passed XSLT.

<$setHttpHeader("Content-Type", "text/xml")$>

See Also

• setMaxAge()

A.1.335 setMaxAge()
This function can be used to set an absolute time for an expiration of a page. This is best used
for pages with a long life that may be requested frequently. Due to problems in time
synchronization between the client and the server, it is not totally reliable, especially for short-
lived caches. The data must follow one of the acceptable HTTP date formats.

Refer to the W3 Protocols for more information:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.3

Type and Usage

• Global Functions

• Idoc Script

Parameters

The only parameter is the lifetime of this page in seconds.

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails.

Example

This will expire the content of the page immediately:

<$setMaxAge(0)$>

Appendix A
setMaxAge()

A-192

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.3

This will set the cache lifetime for this page to 10 minutes, and tell the browser that it
absolutely must try to refresh the page after that time is up:

<$setMaxAge(600)$>
<$setHttpHeader("Cache-Control", "must-revalidate")$>

See Also

• setHttpHeader()

A.1.336 setResourceInclude()
Defines an include.

This function allows dynamically constructed script to be assigned to an include (much as the
eval function enables such script to be parsed and evaluated).

If the specified include already exists, the super keyword can be used in the new script to refer
to the existing include.

Type and Usage

• Global Functions

• Idoc Script

Parameters

Takes two parameters:

• The first parameter is the name of the include.

• The second parameter is a string that defines the contents of the include. This string can
contain Idoc Script.

Output

Returns 0 if the include could not be parsed, 1 if it can be parsed.

Use exec to suppress this behavior.

Example

Uses the string "My name is resource include" to dynamically construct script:

<$setResourceInclude("my_name","My name is <my_name>")$>

Uses the super keyword to modify the std_display_field include:

<$myInclude="<$include super.std_display_field$>"
<$setResourceInclude("std_display_field",myInclude)$>

The following example suppresses the returned result:

<$exec setResourceInclude("std_display_field",myInclude)$>

A.1.337 setValue()
The target can either be #local or the name of a ResultSet. If the target is #local, then the
parameter name identifies the name of a local data variable whose value is to be set by the
parameter value. If the target area is nonempty and is not #local, then a field in a ResultSet

Appendix A
setResourceInclude()

A-193

named by the parameter target is being set. If the ResultSet exists and is currently on a valid
current row, then that particular column's value (column named by the parameter name) on
that row will be set with the value in the parameter value. If the field is currently not a part of
that ResultSet, then the field will be added as a new column to the ResultSet and the value will
be set. If the target ResultSet is not on a valid row, then this function will have no effect (but an
internal exception will be reported on the server output). This function should be contrasted
with getValue().

Type and Usage

• Global Functions

• ResultSets

Parameters

Takes three parameters:

• The first parameter is the target area to be set (either #local or the name of a ResultSet)

• The second parameter is the name of key that holds the value to be set (either a local
variable or a ResultSet field)

• The third parameter is the value to be set.

Output

• Returns TRUE if the function is successful.

• Returns FALSE if the function fails.

Example

<$setValue(target, name, value)$>

A.1.338 SharedWeblayoutDir
Specifies the path to the weblayout directory for proxied Content Server instances.

Typically, this setting is used to point to the master Content Server instance when you don't
want to duplicate the /weblayout/help/ and /weblayout/images/ directories on the proxied
Content Server instance.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Directories and Paths

Location

IntradocDir/config/config.cfg

Example

Used as a configuration entry:

SharedWeblayoutDir=c:/stellent/weblayout/

Appendix A
SharedWeblayoutDir

A-194

A.1.339 SingleGroup
Evaluates if the current revision is in a contributor step of a Basic workflow.

Type and Usage

• Conditional Dynamic Variables

• Content Items

• Workflow

Output

• Returns TRUE if the revision is in a contributor step.

• Returns FALSE if the revision is not in a contributor step.

Example

Evaluates if revision is in a contributor step:

<$if not SingleGroup$>

A.1.340 SourceID
Provides the content ID for the current dynamic server page.

This variable returns the same value as ref:dID. For more information, see Metadata
References in Dynamic Server Pages.

Type and Usage

• Content Read-Only Variable

• Content Items

Output

Returns the content ID as a string.

Example

Sets the dID variable to the value of the current HCSF page:

<input type=hidden name="dID" value="<$SourceID$>">

A.1.341 StatusCode
Indicates if the last function call was successful or failed. This variable is set at the end of a
service call.

Certain functions set this variable to zero (0) upon success.

Certain functions set this variable to a negative numeric value (-1) upon failure. Typically, the
abortToErrorPage function is called to display an error page with the StatusMessage value
from the most recent function call.

Appendix A
SingleGroup

A-195

Type and Usage

• Dynamic Variables

• Content Server

Output

• Returns 0 if the last function call was successful.

• Returns -1 if the last function call failed.

Example

Returns the current status code:

<$StatusCode$>

See Also

• abortToErrorPage()

• getUserValue()

• hasAppRights()

• StatusMessage

A.1.342 StatusMessage
Defines the error message for the last function call. This variable is set at the end of a service
call, but it can be set during a service call.

This variable is typically displayed on an error page when the abortToErrorPage function is
called.

Type and Usage

• Dynamic Variables

• Content Server

Output

• Returns OK if the last function call was successful.

• Returns a localized error message if the last function call failed.

Example

Returns the current status message:

<$StatusMessage$>

See Also

• abortToErrorPage()

• StatusCode

Appendix A
StatusMessage

A-196

A.1.343 stdSecurityCheck()
Checks if the current user has access to the requested content item based on the standard
security model.

The active data is checked to determine if the standard (or default) security model allows the
user to have access to the content item. This enables a custom implementation of security to
still execute the standard security model as a baseline.

Type and Usage

• Global Functions

• Internal Security

Parameters

None.

Output

• Returns TRUE if the current user has access to the content item.

• Returns FALSE if the current user does not have access to the content item.

Example

Compares the permission level of the user to the requested content item:

<$stdSecurityCheck()$>

A.1.344 strCenterPad()
Pads equal space on both sides of a string. An equal number of spaces is added to each side
of the string to make it at least the specified length. A character will be added to the length of
the string if required.

Note:

For string concatenation, string inclusion, and simple comparison, use the string
operators described in Special String Operators.

Type and Usage

• Global Functions

• Strings

Parameters

Takes two parameters:

• The first parameter is the string.

• The second parameter is the string length.

Appendix A
stdSecurityCheck()

A-197

Output

Returns a string with spaces on both sides.

Example

Pads equal space on each side and creates a string seven characters long, using the form
<space><space>inf<space><space>:

<$strCenterPad("inf", 7)$>

Pads equal space on each side and creates a string nine characters long, using the form
<space><space><space>inf<space><space><space>:

<$strCenterPad("inf", 8)$>

Pads equal space on each side and creates a string nine characters long, using the form
<space><space><space>inf<space><space><space>:

<$strCenterPad("inf", 9)$>

A.1.345 strCommaAppendNoDuplicates()
This function appends a new token to an existing string. It returns the string plus a comma plus
the new token. If the token already exists in the string, it is not added.

Type and Usage

• Global Functions

• Strings

Parameters

Takes two parameters:

• The first parameter is the string.

• The second parameter is the token.

Example

<$myString = strCommaAppendNoDuplicates(myString, "A")$>
<$myString = strCommaAppendNoDuplicates(myString, "B")$>
<$myString = strCommaAppendNoDuplicates(myString, "C")$>
<$myString = strCommaAppendNoDuplicates(myString, "A")$>
<$myString = strCommaAppendNoDuplicates(myString, "B")$>

A.1.346 strConfine()
Confines a string to a maximum length and appends padding if necessary.

If the string equals or is shorter than the specified length, it is unaffected.

If the string is longer than the specified length, it is shortened and three padding characters are
appended to equal the specified length. The character used for padding can be specified by
changing the StrConfineOverflowChars variable.

Appendix A
strCommaAppendNoDuplicates()

A-198

Note:

For string concatenation, string inclusion, and simple comparison, use the string
operators described in Special String Operators.

Type and Usage

• Global Functions

• Strings

Parameters

Takes two parameters:

• The first parameter is the string.

• The second parameter is the maximum string length.

Output

Returns a string.

Example

Confines the string and appends three padding characters (dots) to make it a string five
characters long, using the form in<dot><dot><dot>:

<$strConfine("inform", 5)$>

Confines the string and appends padding characters (dots) to make it a string five characters
long, using the form i<dot><dot><dot><dot>:

<$strConfine("i", 5)$>

Confines the string to a maximum of ten characters in length, so this six-character string is
unaffected:

<$strConfine("inform", 10)$>

Confines the string to a maximum of six characters in length, so this six-character string is
unaffected:

<$strConfine("inform", 6)$>

See Also

• StrConfineOverflowChars

A.1.347 StrConfineOverflowChars
Defines a string padding character.

Defines the character used for padding by the strConfine Idoc Script function.

The default is a period (dot).

Appendix A
StrConfineOverflowChars

A-199

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Strings

Location

IntradocDir/config/config.cfg

Example

Used as a configuration entry:

StrConfineOverflowChars=.

See Also

• strConfine()

A.1.348 strEquals()
Checks if two strings are equal, including case.

Note:

For string concatenation, string inclusion, and simple comparison, use the string
operators described in Special String Operators.

Type and Usage

• Global Functions

• Strings

Parameters

Takes two parameters:

• The first parameter is a string.

• The second parameter is the string to be compared to the first parameter.

Output

• Returns TRUE if the strings are equal.

• Returns FALSE if strings are not equal.

Example

Evaluates whether the strings are equal and returns TRUE (1):

<$strEquals("Home","Home")$>

Evaluates whether the strings are equal and returns FALSE (0):

Appendix A
strEquals()

A-200

<$strEquals("home","Home")$>

See Also

• regexMatches()

• regexReplaceAll()

• regexReplaceFirst()

• strEquals()

A.1.349 strEqualsIgnoreCase()
Checks if two strings are equal, not including case.

Note:

For string concatenation, string inclusion, and simple comparison, use the string
operators described in Special String Operators.

Type and Usage

• Global Functions

• Strings

Parameters

Takes two parameters:

• The first parameter is a string.

• The second parameter is the string to be compared to the first parameter.

Output

• Returns TRUE if the strings are equal.

• Returns FALSE if strings are not equal.

Example

Evaluates whether the strings are equal and returns TRUE (1):

<$strEqualsIgnoreCase("home","Home")$>

Evaluates whether the strings are equal and returns FALSE (0):

<$strEqualsIgnoreCase("home","page")$>

See Also

• strEquals()

Appendix A
strEqualsIgnoreCase()

A-201

A.1.350 strGenerateRandom()
This function generates a random string of hexadecimal characters. It outputs as many
characters as specified by the length parameter. If length is not specified, it defaults to 16
characters.

Type and Usage

• Global Functions

• Strings

Parameters

Takes the length of the string as a parameter.

A.1.351 strIndexOf()
Determines if one string is a substring of another.

Note:

For string concatenation, string inclusion, and simple comparison, use the string
operators described in Special String Operators.

Type and Usage

• Global Functions

• Strings

Parameters

Takes two parameters:

• The first parameter is a string.

• The second parameter is the possible substring.

Output

• If the second string is a substring of the first, returns an index value that indicates where in
the first string the substring begins. The first character has an index value of 0.

• If the second string is not a substring of the first, returns a value of -1.

Example

Evaluates whether xy is a substring of xyz and returns the index value 0:

<$if strIndexOf("xyz","xy") >=0$> check for substring <$endif$>

Evaluates whether yz is a substring of xyz and returns the index value 1:

<$if strIndexOf("xyz","yz") >=0$> check for substring <$endif$>

Appendix A
strGenerateRandom()

A-202

Evaluates whether ab is a substring of xyz and returns the index value –1 to indicate that this is
not a substring:

<$if strIndexOf("xyz","ab") >=0$> check for substring <$endif$>

A.1.352 strLeftFill()
Fills the left side of a string with characters to make it a specified length.

Note:

For string concatenation, string inclusion, and simple comparison, use the string
operators described in Special String Operators.

Type and Usage

• Global Functions

• Strings

Parameters

Takes three parameters:

• The first parameter is the string.

• The second parameter is the fill character.

• The third parameter is the length.

Output

Returns a string, left-filled with the specified character if necessary,.

Example

Formats the string sleep by left-filling with the character Z to ten spaces. This returns the string
ZZZZZsleep:

<$strLeftFill("sleep",'Z',10)$>

Returns the string sleep:

<$strLeftFill("sleep",'Z',4)$>

A.1.353 strLeftPad()
Pads extra space to the left of a string to make it a specified length.

Note:

For string concatenation, string inclusion, and simple comparison, use the string
operators described in Special String Operators.

Appendix A
strLeftFill()

A-203

Type and Usage

• Global Functions

• Strings

Parameters

Takes two parameters:

• The first parameter is the string.

• The second parameter is the length.

Output

Returns a string, left-filled with spaces if necessary.

Example

Pads extra space on the left to make it a string five characters long, using the form
<space><space>inf:

<$strLeftPad("inf", 5)$>

Returns the string information:

<$strLeftPad("information", 5)$>

A.1.354 strLength()
Evaluates the length of a string.

Note:

For string concatenation, string inclusion, and simple comparison, use the string
operators described in Special String Operators.

Type and Usage

• Global Functions

• Strings

Parameters

The only parameter is the string.

Output

Returns an integer value.

Example

Evaluates the length of the string home and returns the integer 4:

<$strLength("home")$>

Appendix A
strLength()

A-204

A.1.355 strLower()
Formats a string in all lowercase letters.

Note:

For string concatenation, string inclusion, and simple comparison, use the string
operators described in Special String Operators.

Type and Usage

• Global Functions

• Strings

Parameters

The only parameter is the string.

Output

Returns a string in all lowercase letters.

Example

Evaluates the string Home and returns home.

<$strLower("Home")$>

A.1.356 strRemoveWs()
Removes empty spaces from a string.

Note:

For string concatenation, string inclusion, and simple comparison, use the string
operators described in Special String Operators.

Type and Usage

• Global Functions

• Strings

Parameters

The only parameter is the string.

Output

Returns a string with no spaces.

Appendix A
strLower()

A-205

Example

Formats the string h o m e as the string home:

<$strRemoveWs("h o m e")$>

A.1.357 strReplace()
Replaces an existing substring with another substring.

If there are multiple occurrences of the substring to be replaced, they will all be replaced by the
new substring.

Note:

For string concatenation, string inclusion, and simple comparison, use the string
operators described in Special String Operators.

Type and Usage

• Global Functions

• Strings

Parameters

Takes three parameters:

• The first parameter is the string on which the substitution will be performed.

• The second parameter is the substring to be replaced.

• The third parameter is the substring that will replace the existing substring.

Output

Returns a string.

Example

Replaces the word classified with restricted and results in the string This document is
restricted.

<$strReplace("This document is classified.","classified","restricted")$>

Replaces the slashes in the date with periods, giving a date in the form 6.20.2001:

<$strReplace(formatDateOnly(dateCurrent()),"/",".")$>

A.1.358 strReplaceIgnoreCase()
Replaces an existing substring with another substring, performing the search without using
case sensitivity.

If there are multiple occurrences of the substring to be replaced, they will all be replaced by the
new substring.

Appendix A
strReplace()

A-206

Type and Usage

• Global Functions

• Strings

Parameters

Takes three parameters:

• The first parameter is the string on which the substitution will be performed.

• The second parameter is the substring to be replaced.

• The third parameter is the substring that will replace the existing substring.

Output

Returns a string.

Example

<$hello = "Hello world! I love the world!"$>
<$strReplaceIgnoreCase(hello, "WORLD", "universe")$>

A.1.359 strRightFill()
Fills the right side of a string with characters to make it a specified length.

Note:

For string concatenation, string inclusion, and simple comparison, use the string
operators described in Special String Operators.

Type and Usage

• Global Functions

• Strings

Parameters

Takes three parameters:

• The first parameter is the string.

• The second parameter is the fill character.

• The third parameter is the length.

Output

Returns a string, right-filled with the specified character if necessary,.

Example

Formats the string sleep by right filling with the character Z to ten spaces. This returns the
string sleepZZZZZ:

Appendix A
strRightFill()

A-207

<$strRightFill("sleep",'Z',10)$>

Returns the string sleep:

<$strRightFill("sleep",'Z',4)$>

A.1.360 strRightPad()
Pads extra space to the right of a string to make it a specified length.

Note:

For string concatenation, string inclusion, and simple comparison, use the string
operators described in Special String Operators.

Type and Usage

• Global Functions

• Strings

Parameters

Takes two parameters:

• The first parameter is the string.

• The second parameter is the length.

Output

Returns a string, right-filled with spaces if necessary.

Example

Pads extra space on the right to make it a string five characters long, using the form
inf<space><space>:

<$strRightPad("inf", 5)$>

Returns the string information:

<$strRightPad("information", 5)$>

A.1.361 strSubstring()
Retrieves a substring from a string.

The first character has an index value of 0.

Note:

For string concatenation, string inclusion, and simple comparison, use the string
operators described in Special String Operators.

Appendix A
strRightPad()

A-208

Type and Usage

• Global Functions

• Strings

Parameters

Takes either two or three parameters:

• The first parameter is the string.

• The second parameter is a number representing the start index.

• The third optional parameter is a number representing the stop index.

Output

Returns a substring.

• If the stop index parameter is specified, the substring starting with the character at the start
index and ending one character before the stop index is returned.

• If the stop index parameter is not specified, the substring from the start index to the end of
the string is returned.

Example

Retrieves the first two characters of the string my:

<$strSubstring("mystring",0,2)$>

Retrieves the string after the second character string:

<$strSubstring("mystring",2)$>

See Also

• regexReplaceAll()

• regexReplaceFirst()

A.1.362 strTrimWs()
Removes spaces from the beginning and end of a string.

Note:

For string concatenation, string inclusion, and simple comparison, use the string
operators described in Special String Operators.

Type and Usage

• Global Functions

• Strings

Appendix A
strTrimWs()

A-209

Parameters

The only parameter is the string.

Output

Returns a string with no leading or trailing spaces.

Example

Formats the string " homepage " as the string homepage:

<$strTrimWs(" homepage ")$>

A.1.363 strUpper()
Formats a string in all uppercase letters.

Note:

For string concatenation, string inclusion, and simple comparison, use the string
operators described in Special String Operators.

Type and Usage

• Global Functions

• Strings

Parameters

The only parameter is the string.

Output

Returns a string in all uppercase letters.

Example

Evaluates the string Home and returns HOME.

<$strUpper("Home")$>

A.1.364 SysAdminAddress
Defines the system administrator email address.

This is the address used in workflow and subscription notification emails that come from the
Content Server instance.

Returns a string.

There is no default value.

Appendix A
strUpper()

A-210

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Users

• Content Server

Location

• System Properties, Internet tab, Administrator Mail Address

• Administration, Admin Server, Internet Configuration menu option, Administrator
Mail Address

• IntradocDir/config/config.cfg

Example

As a configuration setting:

SysAdminAddress=admin@example.com

As script, returns the value of the configuration setting:

<$SysAdminAddress$>

See Also

• "MailServer" in the Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• "SmtpPort" in the Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

A.1.365 TemplateClass
Retrieves the classification of the template for the current page.

This variable makes it possible to create conditional content in a template based on the identity
of the template. Use this variable within a template page to determine the source of the pages
delivered by the server.

For standard templates, this variable is defined in the class column of the IntradocTemplates
table in the templates.hda file.

For search results templates, this variable evaluates to Results.

For report templates, this variable evaluates to Reports.

For dynamic server pages, this variable is typically IdcDynamicFile.

Type and Usage

• Template Read-Only Variables

• Page Display

• Templates

Appendix A
TemplateClass

A-211

Output

Returns a string.

Example

This markup displays a table of template information on the page:

<TABLE>
 <TR><TD>Template Name</TD>
 <TD><$TemplateName$></TD></TR>
 <TR><TD>Template Class</TD>
 <TD><$TemplateClass$></TD></TR>
 <TR><TD>Template Type</TD>
 <TD><$TemplateType$></TD></TR>
 <TR><TD>Template File Path</TD>
 <TD><$TemplateFilePath$></TD></TR>
</TABLE>

See Also

• TemplateFilePath

• TemplateName

• TemplateType

A.1.366 TemplateFilePath
Retrieves the path from where the template was actually loaded.

This variable makes it possible to create conditional content in a template based on the identity
of the template. Use this variable within a template page to determine the source of the pages
delivered by the server.

Type and Usage

• Template Read-Only Variables

• Page Display

• Templates

Output

Returns the path as a string.

Example

This markup displays a table of template information on the page:

<TABLE>
 <TR><TD>Template Name</TD>
 <TD><$TemplateName$></TD></TR>
 <TR><TD>Template Class</TD>
 <TD><$TemplateClass$></TD></TR>
 <TR><TD>Template Type</TD>
 <TD><$TemplateType$></TD></TR>
 <TR><TD>Template File Path</TD>
 <TD><$TemplateFilePath$></TD></TR>
</TABLE>

Appendix A
TemplateFilePath

A-212

See Also

• TemplateClass

• TemplateName

• TemplateType

A.1.367 TemplateName
Retrieves the internal name of the template for the current page. For example, DOC_INFO or
CHECKIN_NEW_FORM.

This variable makes it possible to create conditional content in a template based on the identity
of the template. Use this variable within a template page to determine the source of the pages
delivered by the server.

Type and Usage

• Template Read-Only Variables

• Page Display

• Templates

Output

Returns the template name as a string.

Example

This markup displays a table of template information on the page:

<TABLE>
 <TR><TD>Template Name</TD>
 <TD><$TemplateName$></TD></TR>
 <TR><TD>Template Class</TD>
 <TD><$TemplateClass$></TD></TR>
 <TR><TD>Template Type</TD>
 <TD><$TemplateType$></TD></TR>
 <TR><TD>Template File Path</TD>
 <TD><$TemplateFilePath$></TD></TR>
</TABLE>

See Also

• TemplateClass

• TemplateFilePath

• TemplateType

A.1.368 TemplateType
Provides the template type for the current page.

This variable makes it possible to create conditional content in a template based on the identity
of the template. Use this variable within a template page to determine the source of the pages
delivered by the server.

Appendix A
TemplateName

A-213

For standard templates, this variable is defined in the formtype column of the
IntradocTemplates table in the templates.hda file.

For search results templates, this variable is defined in the formtype column of the
SearchResultTemplates table in the templates.hda file.

For report templates, this variable is defined in the datasource column of the IntradocReports
table in the reports.hda file.

For dynamic server pages, this variable is either hcsp or hcsf.

Type and Usage

• Template Read-Only Variables

• Page Display

• Templates

Output

Returns the template type as a string.

Example

This markup displays a table of template information on the page:

<TABLE>
 <TR><TD>Template Name</TD>
 <TD><$TemplateName$></TD></TR>
 <TR><TD>Template Class</TD>
 <TD><$TemplateClass$></TD></TR>
 <TR><TD>Template Type</TD>
 <TD><$TemplateType$></TD></TR>
 <TR><TD>Template File Path</TD>
 <TD><$TemplateFilePath$></TD></TR>
</TABLE>

See Also

• TemplateClass

• TemplateFilePath

• TemplateName

A.1.369 toInteger()
Converts a string to an integer.

Note:

For string concatenation, string inclusion, and simple comparison, use the string
operators described in Special String Operators.

Type and Usage

• Global Functions

Appendix A
toInteger()

A-214

• Strings

Parameters

The only parameter is the string.

Output

Returns an integer value. If the string does not evaluate to a number, or evaluates to a non-
integer number, an error is thrown.

Example

Converts the string 4 to an integer and returns the value 4:

<$toInteger("4")$>

A.1.370 trace()
Enables logging a debug or trace message to the IsPageDebug output. A message can also be
output to the console or to the system logs.

Type and Usage

• Global Functions

• Debugging

Parameters

Takes one required and two optional parameters:

• The first parameter is the message which is output. The value can be one of the following:

– A string. If the string is passed as the only parameter, the IsPageDebug variable must
be set for this function to execute. The string is added to the accumulated debug trace.

– #local, which prepares a dump of all current local variables.

– #all, which prepares a full HDA dump of all local data, ResultSets, and environment
data.

• The second (optional) parameter is the location where the message will be relayed. The
values can be the following:

– #console, to display to a console

– #log to log a message in the HTML log files

– the name of a variable (such as StatusMessage). In that case, the message is
appended to the current value.

• The third (optional) parameter is for the appropriate tracing section and is only relevant if
the location parameter is set to #console.

Example

The following example logs the string message to the system console, which is always logged:

<$trace("message", "#console")$>

The following example logs the string message to the system console in the pagecreation
tracing section.

Appendix A
trace()

A-215

<$trace("message", "#console", "pagecreation")$>

The following example logs the string message to the HTML Content Server log file.

<$trace("message", "#log")$>

The following example dumps all local variables and their values to the system console.

<$trace("#local", "#console")$>

The following example dumps all local variables, ResultSets, and environment variables to the
system console.

<$trace("#all", "#console")$>

The following example dumps all data to the variable MyTraceDump, which can then be
displayed on the page. This is useful for HCSP developers who may not have the appropriate
access rights to view the console logs.

<$trace("#all", "MyTraceDump")$>
<$MyTraceDump$>

See Also

• IsPageDebug

A.1.371 UploadApplet
Enables the multiple file Upload Applet.

Note:

This setting is only for use by custom legacy versions of the Upload Applet. It should
not be enabled when the standard MultiUpload variable is enabled.

When set to TRUE, the Upload Applet is enabled so that multiple files can be zipped and
checked in as a single content item.

When set to FALSE, the Upload Applet is disabled.

Default is FALSE.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Content Server

• Clients

Location

IntradocDir/config/config.cfg

Example

As a configuration setting, enables the Upload Applet:

Appendix A
UploadApplet

A-216

UploadApplet=true

As script, evaluates the condition of the Upload Applet:

<$UploadApplet$>

See Also

• DownloadApplet

• MultiUpload

A.1.372 url()
Formats a string for use in a URL.

This function converts blank spaces and reserved characters to an escape sequence.

Type and Usage

• Global Functions

• Strings

Parameters

The only parameter is the string.

Output

Returns a string formatted for use in a URL.

Example

Formats the string home page as home%20page:

<$url("home page")$>

Formats the string home/page as home%2fpage:

<$url("home/page")$>

Formats the string home?page as home%3fpage:

<$url("home?page")$>

A.1.373 urlEscape7Bit()
This function returns a URL-encoded version of the string parameter. This is similar to the url
function but it only encodes characters that are not 7-bit clean (ASCII). Therefore this function
can be called repeatedly on the same string.

If the url function is used to double encode a string, every % character is encoded to %25.

Type and Usage

• Global Functions

• Strings

Appendix A
url()

A-217

Parameters

The only parameter is the string.

Output

Returns a string formatted for use in a URL.

Example

<$path = "mÿ fïlë.txt"$>
20fïlë.txt = <$url(path)$>
mÿ%2520fïlë.txt = <$url(url(path))$>
m%ff%20f%efl%eb.txt = <$urlEscape7Bit(url(path))$>
m%ff%20f%efl%eb.txt= <$urlEscape7Bit(urlEscape7Bit(url(path)))$>

See Also

• url()

A.1.374 UseHtmlOrTextHighlightInfo
Checks whether full-text search keyword highlighting is enabled and the file format supports
highlighting (such as PDF, HTM, or TXT).

If the EnableDocumentHighlight setting is TRUE, keyword highlighting is enabled.

Type and Usage

• Dynamic Variables

• Searching

Output

• Returns TRUE if highlighting is enabled.

• Returns FALSE if highlighting is not enabled.

Example

Returns search keyword highlighting status:

<$UseHtmlOrTextHighlightInfo$>

See Also

• UseXmlUrl

• EnableDocumentHighlight

A.1.375 UserAccounts
Retrieves a comma-delimited list of accounts the current user is assigned to.

• The #none entry indicates privileges to content items that have no account assigned.

• The #all entry indicates privileges to all accounts.

Appendix A
UseHtmlOrTextHighlightInfo

A-218

Type and Usage

• User Read-Only Variables

• Internal Security

• Users

Output

Returns the account list as a string.

Example

For example:

UserAccounts=BOS,SEA,MSP/Gen

This markup displays user variables on a page:

<$if UserName$>
 Logon Name: <$UserName$>

 User Name: <$UserFullName$>

 E-mail Address: <$UserAddress$>

 Accounts: <$UserAccounts$>

<$endif$>

A.1.376 UserAddress
Retrieves the email address of the current user.

Type and Usage

• User Read-Only Variables

• Users

Output

Returns the email address as a string.

Example

This markup displays user variables on a page:

<$if UserName$>
 Logon Name: <$UserName$>

 User Name: <$UserFullName$>

 E-mail Address: <$UserAddress$>

 Default Account: <$UserDefaultAccount$>

<$endif$>

A.1.377 UserAppRights
Checks the application rights of the current user.

Type and Usage

• User Read-Only Variables

Appendix A
UserAddress

A-219

• Internal Security

• Users

Output

Returns a bit flag number specifying the user's rights.

Admin Application Bit Flag

User Admin 1

Web Layout Editor 2

Repository Manager 4

Workflow Admin 8

Configuration Manager 16

Archiver 32

Example

Displays application rights of the current user:

<$UserAppRights$>

For example, the following combinations would result in the following numbers:

• User Admin + Web Layout Editor = 3

• Repository Manager + Workflow Admin + Archiver = 44

• All six applications = 63

See Also

• AdminAtLeastOneGroup

• UserIsAdmin

A.1.378 UserDefaultAccount
Retrieves the default account for the current user.

Type and Usage

• User Read-Only Variables

• Internal Security

• Users

Output

Returns the account name as a string.

Example

This markup displays user variables on a page:

<$if UserName$>
 Logon Name: <$UserName$>

 User Name: <$UserFullName$>

Appendix A
UserDefaultAccount

A-220

 E-mail Address: <$UserAddress$>

 Default Account: <$UserDefaultAccount$>

<$endif$>

A.1.379 UserFullName
The full name of the current user.

Type and Usage

• User Read-Only Variables

• Users

Output

• Returns the user's full name as a string.

• If the user is not logged in, returns the string anonymous.

Example

This markup displays user variables on a page:

<$if UserName$>
 Logon Name: <$UserName$>

 User Name: <$UserFullName$>

 E-mail Address: <$UserAddress$>

 Default Account: <$UserDefaultAccount$>

<$endif$>

A.1.380 userHasAccessToAccount()
This function returns TRUE if the user has access to a named account at a specific privilege
level. The privilege is a one-character representation of the access level, as follows:

• R: Read. Specified as 1.

• W: Write. Specified as 2.

• D: Delete. Specified as 4.

• A: Administration. Specified as 8.

Type and Usage

• Global Functions

• Internal Security

• Users

Parameters

Takes two parameters:

• The first is the account name.

• The second is the access level to be checked.

Appendix A
UserFullName

A-221

Output

• Returns TRUE if the current user has the specified access.

• Returns FALSE if the user does not have the specified access.

Example

Evaluates whether the user has Read access to the specified account:

<$userHasAccessToAccount("profile_account", 1)$>

Evaluates whether the user has Read and Write access to the specified account:

<$userHasAccessToAccount("profile_account", 3)$>

A.1.381 userHasGroupPrivilege()
This function returns TRUE if the user has the specified privilege to the specified group. The
privilege is a one-character representation of the access level, as follows:

• R: Read

• W: Write

• D: Delete

• A: Administration

Type and Usage

• Global Functions

• Internal Security

• Users

Parameters

Takes two parameters:

• The security group to be checked.

• The access level to be checked.

Output

• Returns TRUE if the current user does have the specified access.

• Returns FALSE if the user does not have the specified access.

Example

Evaluates whether the user has the specified role:

<$userHasGroupPrivilege("Public", "R")$>
<$userHasGroupPrivilege("Secure", "A")$>

A.1.382 userHasRole()
Checks if the current user has a particular role.

Appendix A
userHasGroupPrivilege()

A-222

Type and Usage

• Global Functions

• Internal Security

• Users

Parameters

The only parameter is the name of a role.

Output

• Returns TRUE if the current user does not have the specified role.

• Returns FALSE if the user does not have the specified role.

Example

Evaluates whether the user has the specified role:

<$userHasRole("admin")$>

A.1.383 UserIsAdmin
Checks if the current user has rights to any administration apps.

Type and Usage

• Conditional Dynamic Variables

• Internal Security

• Users

Output

• Returns TRUE if the user has any administrative rights.

• Returns FALSE if the user does not have any administrative rights.

Example

Evaluates administrative rights of user:

<$UserIsAdmin$>

See Also

• AdminAtLeastOneGroup

• UserAppRights

A.1.384 UserLanguageID
Returns the two-letter code that represents the user's preferred language, as in en for English,
fr for French, or ja for Japanese.

This is useful when constructing URLs to localized content.

Appendix A
UserIsAdmin

A-223

Type and Usage

• Conditional Dynamic Variables

• Localization

Output

Returns the code for the preferred language.

A.1.385 UserLocaleId
Returns the full name for a user's locale, as in English-US, English-UK or Japanese.

The locale contains information about language, date, and number formatting.

Type and Usage

• Conditional Dynamic Variables

• Localization

Output

Returns the name of the preferred language.

A.1.386 UserName
Retrieves the username of the current user.

Type and Usage

• Read-Only Variables

• Users

Output

• Returns the username as a string.

• If the user is not logged in, evaluates to the string anonymous.

Example

This markup displays user variables on a page:

<$if UserName$> Logon Name: <$UserName$>

 User Name: <$UserFullName$>

 E-mail Address: <$UserAddress$>

 Default Account: <$UserDefaultAccount$>

<$endif$>

A.1.387 UserRoles
Retrieves a comma-delimited list of roles the current user belongs to.

Type and Usage

• User Read-Only Variables

Appendix A
UserLocaleId

A-224

• Internal Security

• Users

Output

Returns the user role list as a string.

Example

For example:

PublicContributor,ClassifiedConsumer

References the list of user roles:

<$if UserRoles$>
 <$include optional_field$>
<$endif$>

A.1.388 UseSelfRegistration
Enables users to create their own user profile.

• Self-registered users are global users.

• Default roles and accounts can be set for self-registered users using SelfRegisteredRoles
and SelfRegisteredAccounts.

• When set to TRUE, a Self-Registration link is displayed under the Login link in the portal
navigation bar. (The portal page must be updated in the Web Layout Editor for the link to
appear.)

Default is FALSE.

Usage

• Internal Security

• Users

Location

IntradocDir/config/config.cfg

Example

As a configuration setting:

UseSelfRegistration=true

As script, returns the value of the configuration setting:

<$UseSelfRegistration$>

See Also

• SelfRegisteredAccounts

• SelfRegisteredRoles

Appendix A
UseSelfRegistration

A-225

A.1.389 UseSSL
Enables the secure sockets layer (SSL).

• This setting affects the variables HttpWebRoot and HttpCgiPath.

• Use the Secure Sockets Layer only if you are using an SSL-enabled web server.

• When set to TRUE, SSL is used (https instead of http).

Default is FALSE.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• External Security

• Web Servers

Location

• System Properties, Internet tab, Use Secure Sockets Layer

• IntradocDir/config/config.cfg

Example

As a configuration setting, enables SSL:

UseSSL=true

As script, returns the value of the configuration setting:

<$UseSSL$>

See Also

• HttpCgiPath

• HttpWebRoot

A.1.390 UseXmlUrl
Checks if search keyword highlighting for XML documents is enabled. When set to TRUE, an
XML URL is constructed when performing a keyword search.

Type and Usage

• Conditional Dynamic Variables

• Read-Only Variables

Output

• Returns TRUE if XML keyword highlighting is enabled.

• Returns FALSE if XML keyword highlighting is not enabled.

Appendix A
UseSSL

A-226

Example

Returns the status of search keyword highlighting for XML documents.

<$UseXmlUrl$>

See Also

• UseHtmlOrTextHighlightInfo

• EnableDocumentHighlight

A.1.391 utGetValue()
Returns the value of a user property from a specified personalization (user topic) file.

User topic files are HDA files that are located in the IntradocDir/data/users/profiles/us/
username/ directories.

Type and Usage

• Global Functions

• Personalization

Parameters

Takes two parameters:

• The first parameter is the name of a user topic HDA file.

• The second parameter is the name of a property defined in the user topic file.

Output

Returns the value of the property in the specified user topic file.

Example

Returns the value of the emailFormat property in the current user's pne_portal.hda file:

<$utGetValue("pne_portal","emailFormat")$>

See Also

• utLoad()

• utLoadResultSet()

A.1.392 utLoad()
Loads a personalization (user topic) file so it is available for use by the utGetValue and
utLoadResultSet functions.

User topic files are HDA files that are located in the IntradocDir/data/users/profiles/us/
username/ directories.

Type and Usage

• Global Functions

Appendix A
utGetValue()

A-227

• Personalization

Parameters

The only parameter is the name of a user topic HDA file.

Example

Loads the current user's wf_in_queue.hda file and makes it available to other user topic
functions:

<$utLoad("wf_in_queue")$>

See Also

• utGetValue()

• utLoadResultSet()

A.1.393 utLoadDocumentProfiles()
Used to retrieve information about a user's current My Check In and My Search links for
content profiles.

Type and Usage

• Global Functions

• Content Profiles

Parameters

Takes two parameters:

• The user topic name.

• The name of the ResultSet containing the content profiles available for the user on the
personalization links.

Example

<$utLoadDocumentProfiles("pne_portal", "PneDocumentProfiles")

See Also

• loadDocumentProfile()

A.1.394 utLoadResultSet()
Loads a ResultSet specified in a personalization (user topic) file into the DataBinder.

User topic files are HDA files that are located in the IntradocDir/data/users/profiles/us/
username/ directories.

Type and Usage

• Global Functions

• Personalization

• ResultSets

Appendix A
utLoadDocumentProfiles()

A-228

Parameters

Takes two parameters:

• The first parameter is the name of a user topic HDA file.

• The second parameter is the name of a ResultSet defined in the user topic file.

Output

• Returns TRUE if the ResultSet is successfully loaded into the DataBinder.

• Returns FALSE if the function fails.

Example

Loads the SavedQueries ResultSet from the current user's pne_portal.hda file into the
DataBinder:

<$utLoadResultSet("pne_portal","SavedQueries")$>

See Also

• utGetValue()

• utLoad()

A.1.395 valueStyle
Specifies the style of the value for the metadata field.

The following SPAN styles are typically used for values. They are defined in the
std_style_declaration include in the WC_CONTENT_ORACLE_HOME/shared/config/resources/
std_page.htm resource file:

• tableEntry

• xxsmall

• strongHighlight

Type and Usage

• Field Information Variables

• Field Display

Output

Returns the name of the value style.

Example

Sets the value style:

<$if isFieldInfoOnly$>
 <$if valueStyle$>
 <$fieldValueStyle = valueStyle$>
 <$else$>
 <$fieldValueStyle = "tableEntry"$>
 <$endif$>
<$endif$>

Appendix A
valueStyle

A-229

Uses the xxsmall style for the field value when the Download applet is used:

<$if useDownloadApplet$>
 <$valueStyle="xxsmall", fieldValue =
strTrimWs(inc("download_file_by_ applet_form_content"))$>
<$else$>
 <$fieldValue = strTrimWs(inc("doc_file_get_copy"))$>
<$endif$>

See Also

• fieldValueStyle

A.1.396 WebProxyAdminServer
Defines if an Administration Server is controlling the Content Server instance.

• When set to TRUE, the Content Server instance is directly controlled by an Administration
Server.

• When set to FALSE, the Content Server instance is not directly controlled by an
Administration Server. (However, the Content Server instance could be controlled by the
Administration Server of a different instance.)

• For a master Content Server instance, the default is TRUE.

• For a proxied Content Server instance, the default is FALSE.

Type and Usage

• Configuration Variables in Oracle Fusion Middleware Configuration Reference for Oracle
WebCenter Content

• Content Server

Location

IntradocDir/config/config.cfg

Example

Used as a configuration entry:

WebProxyAdminServer=false

A.1.397 wfAction
Retrieves the action that is currently being performed on the revision.

• This variable is set after the Exit event of a workflow step, so it is normally evaluated
during the Entry event of the next step.

• The possible actions are:

– APPROVE

– REJECT

– CHECKIN

– CONVERSION

– META_UPDATE

Appendix A
WebProxyAdminServer

A-230

– TIMED_UPDATE

– RESUBMIT

Type and Usage

• Workflow Variables

• Workflow

Output

Returns the name of the action as a string.

Example

If the revision is in the process of being rejected, notify the original author:

<$if wfAction like "REJECT"$>
 <$wfSet("wfJumpName", "notifyAuthor")$>
 <$wfSet("wfJumpEntryNotifyOff", "0")$>
 <$wfNotify(dDocAuthor, "user")$>
<$endif$>

If the revision is currently being approved but the metadata value of xDept is not HR, terminate
the approval and display an error page:

<$if wfAction like "APPROVE" and not(xDept like "HR")$>
 <$abortToErrorPage("The revision is not in HR.")$>
<$endif$>

A.1.398 wfAddActionHistoryEvent()
Inserts an event into the WorkflowActionHistory table, in the workflow's companion data. The
three parameters to this function are required. The rest of the row's values are computed or
inherited from local data.

Type and Usage

• Workflow Functions

• Workflow

Parameters

Takes three parameters:

• The first parameter is the workflow action.

• The second parameter is the message associated with the action.

• The third parameter is a comma-delimited list of users for the current workflow step. For a
function that computes the current list, see wfComputeStepUserList().

See Also

• wfComputeStepUserList()

A.1.399 wfAdditionalExitCondition
Retrieves the exit condition that has been defined for the current step.

Appendix A
wfAddActionHistoryEvent()

A-231

Type and Usage

• Workflow Variables

• Workflow

Output

Returns the exit condition as a string.

Example

The following code in the IdcHomeDir/resources/core/templates/workflow_info.htm
template page is used to display the exit condition on the Workflow Step Information page:

<$wfDisplayCondition(dWfName, currentStepName, "wfAdditionalExitCondition")$>

Typical exit condition output for this variable would look like:

dSecurityGroup like "Secure"

A.1.400 wfAddUser()
Adds a user, alias, or workflow token to the list of reviewers for a workflow step. This function
can only be used inside a token.

Type and Usage

• Workflow Functions

• Workflow

Parameters

Takes two parameters:

• The first parameter indicates the user name, alias, or token name.

• The second parameter indicates the type, either user or alias.

Example

Adds the user mjones as a reviewer:

<$wfAddUser("mjones", "user")$>

Adds the original author token and the hr alias as reviewers:

<$wfAddUser(dDocAuthor, "user")$>
<$wfAddUser("hr", "alias")$>

A.1.401 wfComputeStepUserList()
Computes the list of users from the current step in the workflow.

Type and Usage

• Workflow Functions

• Workflow

Appendix A
wfAddUser()

A-232

Output

Returns a comma-delimited list of users.

See Also

• wfAddActionHistoryEvent()

A.1.402 wfCurrentGet()
Retrieves a local state value from the companion file.

Type and Usage

• Workflow Functions

• Workflow

Parameters

The only parameter is the key.

Output

Returns the local state value from the companion file.

Example

Returns the value of the local key <step_name>@<workflow_name>.myKey:

<$wfCurrentGet("myKey")$>

See Also

• wfGet()

A.1.403 wfCurrentSet()
Sets the local state value of a key in the companion file.

Type and Usage

• Workflow Functions

• Workflow

Parameters

Takes two parameters:

• The first parameter is the key.

• The second parameter is the value.

Example

Sets the key <step_name>@<workflow_name>.myKey to myValue:

<$wfCurrentSet("myKey", "myValue")$>

Appendix A
wfCurrentGet()

A-233

See Also

• wfSet()

A.1.404 wfCurrentStep()
Retrieves the name of a step relative to the current step.

Type and Usage

• Workflow Functions

• Workflow

Parameters

The only parameter is an integer that represents the number of steps relative to the current
step.

Output

• Returns a step name.

• Reaching the beginning or the end of the workflow returns the name of the first or last step,
respectively.

Example

Returns the current step name:

<$wfCurrentStep(0)$>

Returns the previous step name:

<$wfCurrentStep(-1)$>

Returns the next step name:

<$wfCurrentStep(1)$>

To actually move to the next step you must set up a jump, as in this example:

<$wfSet("wfJumpName", "move to next step")$>
<$wfSet("wfJumpTargetStep", wfCurrentStep(1))$>
<$wfSet("wfJumpEntryNotifyOff", "0")$>

A.1.405 wfDisplayCondition()
Retrieves the exit condition for a workflow step.

Type and Usage

• Workflow Functions

• Workflow

Parameters

Takes three parameters:

Appendix A
wfCurrentStep()

A-234

• The first parameter is the workflow name.

• The second parameter is the step name.

• The third parameter is the exit condition to be displayed.

Output

Returns the exit condition expression.

Example

The following code in the IdcHomeDir/resources/core/templates/workflow_info.htm
template page is used to display the exit condition on the Workflow Step Information page:

<$wfDisplayCondition(dWfName, currentStepName, "wfAdditionalExitCondition")$>

where:

• dWfName is the internal variable for the workflow name.

• currentStepName is set earlier in the template page to be equal to dWfName, which is the
internal variable for the step name.

• wfAdditionalExitCondition is the internal variable for the exit condition expression.
Typical exit condition output would look like:

dSecurityGroup like "Secure"

A.1.406 wfExit()
Exits a workflow step. This function moves the revision to a particular step in a workflow
according to the function parameters and resets the parent list information. To completely exit a
workflow, use wfExit(100,100) or any parameters that ensure that the revision returns to the
parent workflow and then gets moved past the last step in that workflow.

Type and Usage

• Workflow Functions

• Workflow

Parameters

Takes two parameters:

• The first parameter indicates the number of jumps to rewind.

• The second parameter indicates the target step relative to the step determined by the first
parameter.

Example

Exits to the parent step in the workflow:

<$wfExit(0,0)$>

Returns to the previous jump step:

<$wfExit(1,0)$>

Returns to the previous jump step and moves to the next step in that workflow:

Appendix A
wfExit()

A-235

<$wfExit(1,1)$>

A.1.407 wfGet()
Retrieves a state value from the companion file.

Type and Usage

• Workflow Functions

• Workflow

Parameters

The only parameter is the state key.

Output

Returns the state value from the companion file.

Example

Returns the current jump name:

<$wfGet("wfJumpName")$>

See Also

• wfCurrentGet()

A.1.408 wfGetStepTypeLabel
This function takes an internal workflow step-type value and turns it into a human-readable
label. For example, :C:CA:CE: is the three states :C: (contribution), :CA: (autocontribute or
original author step), and :CE: (edit revision). After application of the Idoc Script function, the
label might become “Auto Contributor, Edit Revision".

Here are the possible current states.

States Description

:CA: Auto contribution step or step that occurs before all administrator
defined workflow steps ("original author handles document
rejection").

:CE: Edit current revision. All edits replace current revision.

:CN: Create new revision. All edit create new revision.

:R: Review. Document can be approved or rejected.

:C: Contribution. The document can be edited.

A workflow document step state has all the states that are true for it combined as a single
fields with multiple values separated by colons (:) (redundant colons are eliminated). So a
contributor/reviewer step that creates new revisions would have the state :R:C:CE:. Order
does not matter, but :C: must be present even though it can be presumed by the presence
of :CE:, which also implies that the step is a contributor step. The value :C: accurately
describes one capability of the current workflow step, and Content Server does not chase
implication rules (:CE: -> :C:), so the Content Server system will see the absence of :C:

Appendix A
wfGet()

A-236

(even with :CE: present) as a statement that the workflow step does not allow core contributor
types of activities (such as checkout or undo checkout).

Type and Usage

• Workflow Variables

• Workflow

Parameters

The only parameter is the internal workflow step type value.

Example

<$wfGetStepTypeLabel(stepType)$>

A.1.409 wfIsFinishedDocConversion()
Indicates if the document will not be in GENWWW after the current action finishes.

If this Idoc Script function returns true, the conversion process has finished and the content
item is no longer in GENWWW.

Type and Usage

• Workflow Functions

• Workflow

Output

• Returns TRUE if the document has finished conversion.

• Returns FALSE if the content item is still in GENWWW and has not finished conversion.

Example

<$wfIsFinishedDocConversion()$>

A.1.410 wfIsNotificationSuppressed()
Returns TRUE if this workflow is currently suppressing all workflow notifications for this
particular workflow event. Suppression includes notification into both the workflow in queue
and email until either the current action is ended or the wfSetSuppressNotification function
is used to re-enable notification.

Suppression of notifications is temporary. If notification is enabled or allowed to remain on for a
later workflow action, all notifications that were not sent out for the current step are then sent
out and workflows in queues are appropriated updated.

Type and Usage

• Workflow Functions

• Workflow

Output

• Returns TRUE if notifications are suppressed.

Appendix A
wfIsFinishedDocConversion()

A-237

• Returns FALSE if notifications are not suppressed.

Example

<$wfIsNotificationSuppressed()$>

See Also

• wfSetSuppressNotification()

A.1.411 wfIsReleasable()
Indicates if the document is released as far as the workflow is concerned. The document may
be still in GENWW or DONE, but if this Idoc Script function returns true, then the workflow is
not preventing the release of the document. If it returns false, then the document will not be
released until the workflow allows it to be released. This Idoc Script function takes no
parameters. It evaluates the active release state value for any document info that may be
present (in Idoc Script terms it checks if #active.dReleaseState is not the value E).

Type and Usage

• Workflow Functions

• Workflow

Output

• Returns TRUE if the document is available to be released.

• Returns FALSE if the content item is not available to be released. For example, the content
item has not completed the check in and/or conversion process.

Example

<$wfIsReleasable()$>

A.1.412 wfJumpEntryNotifyOff
Turns the jump entry notification on and off.

• If this variable is TRUE, reviewers will not be notified when the jump is entered.

• If this variable is FALSE, reviewers will be notified when the jump is entered.

Type and Usage

• Workflow Variables

• Workflow

Output

Returns TRUE or FALSE.

Example

The following code sets the step entry notification to 0, which means that reviewers will be
notified upon jump entry:

<$wfSet("wfJumpEntryNotifyOff","0")$>

Appendix A
wfIsReleasable()

A-238

A.1.413 wfJumpMessage
Defines a message that will be included in the notification email that is sent to users when a
jump is entered.

• If no message is specified, the email message will include only the information in the email
template.

• The jump message can include Idoc Script, which must be executed using the eval
function. For example:

<$eval(dDocName)$> is ready for your review.

Type and Usage

• Workflow Variables

• Workflow

Output

Returns the message as a string.

Example

The following code includes the message This is the message text in the email message that
notifies users upon jump entry:

<$wfSet("wfJumpMessage","This is the message text")$>

See Also

• eval()

A.1.414 wfJumpName
Retrieves the name of the current jump.

Type and Usage

• Workflow Variables

• Workflow

Output

Returns the jump name as a string.

Example

The following code sets the name of the current jump to MyJump:

<$wfSet("wfJumpName","MyJump")$>

A.1.415 wfJumpReturnStep
Retrieves the name of the step in the parent workflow that the revision returns to upon exiting a
workflow after the current jump.

Appendix A
wfJumpMessage

A-239

• The return step applies only if the revision properly completes the last step in the workflow
that was jumped to and exits the workflow normally. Consequently, the return step is not
applied when the revision jumps to another workflow.

• In the companion file, the return step is stored in the local key:

<step_name>@<workflow_name>.returnStep

Type and Usage

• Workflow Variables

• Workflow

Output

Returns the step name as a string.

Example

The following code sets the return step to be the next step in the parent workflow:

<$wfSet("wfJumpReturnStep",wfCurrentStep(1))$>

A.1.416 wfJumpTargetStep
Retrieves the name of the step the revision will jump to if the condition is met.

The target step can be referred to symbolically (such as wfCurrentStep(1)) or explicitly (such
as MyStep@MyWorkflow). It is strongly recommended that you use symbolic references in step
event scripts. They make the script easier to modify and reuse.

Type and Usage

• Workflow Variables

• Workflow

Output

Returns the step name as a string.

Example

The following code sets the target step explicitly. When the jump criteria is met, the revision
jumps to a step named step_1 in the Marketing workflow:

<$wfSet("wfJumpTargetStep","step_1@Marketing")$>

The following code sets the target step symbolically. When the jump criteria is met, the revision
jumps to the first step in the current workflow:

<$wfSet("wfJumpTargetStep",WfStart)$>

A.1.417 wfLoadDesign()
This function is used to obtain information about the existing steps in a workflow or about exit
conditions in a workflow.

Appendix A
wfJumpTargetStep

A-240

This function loads the IntradocDir/data/workflow/design/workflowname.hda file and
returns a ResultSet containing design information for a workflow. The workflowname value
corresponds to the value for the dWfName variable, usually available on workflow pages, email
templates, and jump scripts.

Type and Usage

• Workflow Functions

• Workflow

Parameters

Takes one parameter, the name of the workflow.

Output

Returns the information as a ResultSet.

Example

<$wfLoadDesign(WorkflowName)$>

A.1.418 wfMailSubject
Defines the subject line of a workflow email notification.

If no subject line is specified, the email will use the default subject for the type of notification
(review, reject, or workflow started).

Idoc Script can be included in the subject string.

Type and Usage

• Workflow Variables

• Workflow

Output

Returns the subject line as a string.

Example

Notifies the original author with the subject line Content has been released:

<$wfMailSubject="File <$dDocName$> has been released"$>
<$wfNotify(dDocAuthor, "user")$>

See Also

• wfNotify()

• wfMessage

A.1.419 wfMessage
Defines a message that will be included in a workflow email notification.

Appendix A
wfMailSubject

A-241

If no message is specified, the email will use the default message for the type of notification
(review, reject, or workflow started).

Idoc Script can be included in the message string.

Type and Usage

• Workflow Variables

• Workflow

Output

Returns the message as a string.

Example

Notifies the original author with the message Content has been released:

<$wfMessage="File <$dDocName$> has been released"$>
<$wfNotify(dDocAuthor, "user")$>

See Also

• wfNotify()

• wfMailSubject

A.1.420 wfNotify()
Sends an email message to a specified user, alias, or workflow token.

The wfMailSubject and wfMessage variables can be set to customize the notification message.

Type and Usage

• Workflow Functions

• Workflow

Parameters

Takes two parameters and an optional third parameter:

• The first parameter specifies the user name, alias, or token to be notified.

• The second parameter indicates the type, either user, alias or token.

• The optional third parameter specifies the name of the email template to use for
constructing the message. (For template definitions, see the IdcHomeDir/resources/core/
templates/templates.hda file.)

Example

Notifies the original author:

<$wfNotify(dDocAuthor, "user")$>

Notifies all users in the myAlias alias, using the IdcHomeDir/resources/core/templates/
reject_mail.htm file as a template:

<$wfNotify("myAlias", "alias", "WF_REJECT_MAIL")$>

Appendix A
wfNotify()

A-242

See Also

• wfMailSubject

• wfMessage

A.1.421 wfParentList
Retrieves a list (parent list) of the workflow steps that the revision has visited. This tells the
system where jumps occurred and how to unwind the steps during an error, a reject, or an exit.

This variable can be used to create conditional statements, but it should not be hard-coded or
altered.

If the parent list is unwound due to an error, reject, or exit, steps are removed from the list, so
the parent list may not reflect the complete step history.

The parent list is global, and is not localized with a step name.

Steps in the parent list are listed with the most recent step first. Steps are separated with a
pound sign (#). An asterisk before a step name indicates that it is a jump step. For example:

Step_B@Workflow_2#*Step_A@Workflow_2#Step_1@Workflow_1

Type and Usage

• Workflow Variables

• Workflow

Output

Returns the parent list as a string.

Example

One use for the parent list is to simulate the jumps that a content item has visited when you are
testing a workflow script. For example, on the Test tab or the Edit Script screen, selecting a
content item and clicking Load Item's Workflow State could result in the following line:

wfParentList=step_1@Marketing#contribution@Marketing

A.1.422 wfReleaseDocument
Causes a workflow to release all outstanding document revisions for a document that are
currently being locked by the workflow. Such released revisions are free to be evaluated by the
indexing engine and one of the released revisions may be full-text indexed as a result.

This function can only be used in the context of the evaluation of Idoc Script for a workflow
step going through a workflow event. The function will have no effect if the document has
already been released by the workflow. Note that this function does not cause the document to
exit workflow.

Any new revision that is created for the document will be back in a "locked" (unreleasable)
state. In other words, this function releases current revisions but has no implications for any
new revision that may be created. This function takes no parameters and returns no result. It
acts on the current active workflow document.

Appendix A
wfParentList

A-243

Type and Usage

• Workflow Variables

• Workflow

Example

<$wfReleaseDocument()$>

A.1.423 wfSet()
Sets a key with a particular value in the companion file.

Type and Usage

• Workflow Functions

• Workflow

Parameters

Takes two parameters:

• The first parameter is the key.

• The second parameter is the value.

Example

Sets the key wfJumpName to MyJump:

<$wfSet("wfJumpName", "MyJump")$>

See Also

• wfCurrentSet()

A.1.424 wfSetSuppressNotification()
Sets an internal flag indicating if workflow notification will be sent out during the current action
(check in, update, resubmit, and so on).

The suppression is on both email and updates to the workflow in queue. An additional use for
this function is to suppress workflow notification until after a document has been converted.
This prevents a document from advancing out of the auto-contributor workflow step when the
document finishes a conversion.

Type and Usage

• Workflow Functions

• Workflow

Parameters

Takes one parameter, the internal flag. If set to 1 (TRUE), notifications are suppressed. If set to 0
(FALSE), notifications are not suppressed.

Appendix A
wfSet()

A-244

Example

<$wfSetSuppressNotification(1)$>

See Also

• wfIsNotificationSuppressed()

A.1.425 WfStart
Sends the revision to the first step in the current workflow. Note that this variable begins with
an uppercase W.

Type and Usage

• Workflow Variables

• Workflow

Example

Sets the target step for a jump to restart the workflow:

<$wfSet("wfJumpTargetStep",WfStart)$>

A.1.426 wfUpdateMetaData()
Defines a metadata value for the current content item revision in a workflow.

The wfUpdateMetaData function can be used only for updating custom metadata fields. You
cannot use this function to update standard, predefined fields

Type and Usage

• Workflow Functions

• Workflow

Parameters

Takes two parameters:

• The first parameter is the name of the metadata field.

• The second parameter is the value of the metadata field.

Example

Defines "This is my comment." as the value of the Comments field:

<$wfUpdateMetaData("xComments", "This is my comment.")$>

A.1.427 xml()
Formats a string for use in XML.

This function replaces non-alphanumeric characters with the correct XML sequence that
represents the character. For example, the ampersand "&" character is replaced with the
"&" sequence.

Appendix A
WfStart

A-245

When using a double-quote character within a string, a backslash "\" must precede the double-
quote to display it as a character. If the backslash is not used as an escape flag, the double-
quote is interpreted as ending the string.

Type and Usage

• Global Functions

• Strings

Parameters

The only parameter is the string.

Output

Returns a string formatted for use in a URL.

Example

Escapes the ampersand and returns the XML formatted string, "Me & you."

<$xml("Me & you.")$>

Escapes the non-alphanumeric characters and returns the XML-formatted string, "Test the
", >, and < characters."

<$xml("Test the \", >, and < characters.")$>

Appendix A
xml()

A-246

B
Building a Website

This appendix describes the Web Layout Editor and how it is used to build a website.
The following topics are covered:

• Planning a Website

• Working with Web Pages

• Managing Web Pages

• Working with Reports

• Writing Queries

B.1 Planning a Website
Administrators are responsible for planning the website. Subadministrators with WebLayout
rights can create directory pages for groups and accounts if they have permissions for those
groups and accounts.

This section covers these topics:

• The Web Layout

• Defining the Site Structure and Displaying Criteria

• Task Sequence

B.1.1 The Web Layout
From the Home page, the Library (Table of Contents) link displays the top level of your Web
Layout. Although a Web Layout is not required and might not be necessary for all applications,
it provides an effective means for grouping files and navigating. When a Web Layout is not
created, the Search function provides the only access to files in the core Oracle WebCenter
Content Server. However, other products, like Site Studio, and extras, like Folders and
Categorization Folders, provide other means of navigation.

Active and Historical reports are other features introduced later in this section. Web viewable
files always have lowercase names.

Figure B-1 shows an example of a Web Layout using Local Pages, URLs, and Queries as site-
building features.

B-1

Figure B-1 Web Layout Example

On the Library Web pages, these features are displayed as links with a title next to a file-folder
icon. When you click a folder that represents a query, the result produces a set of links to files
that match the query's criteria.

B.1.2 Defining the Site Structure and Displaying Criteria
Define the website structure in the Web Hierarchy pane of the Web Layout Editor. Then define
criteria to display specific files when the user clicks a folder (or link). The criteria for each link is
based on the metadata for each file. Besides executing a query, links can jump to another
page of links, go to a URL, or display a report. The following examples demonstrate how links
are setup to display files.

• Example 1: To enable users to access engineering forms from a link named Forms, create
a content type named Forms using the Configuration Manager. Then, create a query with
Type equal to Forms using the Web Layout Editor.

For information about how to create a content type. For details, see "Defining Content
Types" in Oracle Fusion Middleware Managing Oracle WebCenter Content.

• Example 2: To enable users to access specific Standard Work Procedures, create a
content type called SWP, and create a query of Type equal to SWP and Content Name
substring of 7200.

B.1.3 Task Sequence
The following steps demonstrate the typical sequence of tasks for creating a website with the
Web Layout Editor:

1. Gather information. The first step is to gather information about how your users would
intuitively retrieve information; what do they want and how would they typically search for
it? How does this impact security?

2. Customize metadata. If necessary, customize your site's metadata by creating any
additional fields that might be useful.

Appendix B
Planning a Website

B-2

For more information, see "Customizing Repository Fields and Metadata" in Oracle Fusion
Middleware Managing Oracle WebCenter Content.

3. Define content types. Define the content types to support your site.

For more information, see "Defining Content Types" in Oracle Fusion Middleware
Managing Oracle WebCenter Content.

4. Define security groups, users, and roles. Create security groups and users, and assign
roles to users to establish their permissions (see Managing Security Groups, Roles, and
Permissions in Oracle Fusion Middleware Administering Oracle WebCenter Content).

5. Design the website. Create the website layout. Although a website provides a structure
that allows navigation to locate and display files, it is not required. Some companies prefer
users to use only the search engine to find files, others prefer to use both a navigation
structure and a search engine. To design the website, it is helpful to first draw a website
structure as shown in Figure B-2.

Figure B-2 Example Website Structure

B.2 Working with Web Pages
After completing the initial plan, build the website and determine how it functions. Revise it if it
does not perform properly or is not manageable. Continue this process until you have a design
that is going to work for you and the users.

The links on a page jump to one of these:

• Local page

• URL

• Query

• Report

The links all look similar and can be combined on the same page as shown on the local page
in Figure B-3:

Appendix B
Working with Web Pages

B-3

Figure B-3 Links in Example Local Page

A local page is one of two types: a directory or a report. A local page that is a directory can
contain links that open another local page, open a URL, or run a query. Only administrators
can create a local page that is a report. Administrators or subadministrators with appropriate
rights can create a local page that is a directory.

An external URL is a link to a specified URL (Web address). You can link to any URL address
or web page on the intranet or Internet.

A search query produces a page containing links to files that meet the criteria of a defined
query. The page looks the same as a page resulting from a content search.

Note:

Queries can inherit the security group, the account or both that the page links are on.
If the security group or account is inherited, it automatically restricts the query to files
in that security group or account.

Reports are either Active or Historical. Active reports appear as a file folder link and perform a
database query each time they are run, generating a display of current information. Like Active
Reports, Historical Reports appear as a file folder link, but they contain information that was
queried at the time they were initially run. They do not perform a database query each time
they are opened, and the report is only changed if it is updated.

B.3 Managing Web Pages
Subadministrators do not have access to the Query Result Pages function in the Options menu
nor to any applications for which they do not have rights. Additionally, subadministrators have
viewing, editing, and deleting restricted rights as described in these sections:

• Adding a New Web Page

• Editing Web Page Properties

• Creating a Local Page Link

• Creating an External URL Link

• Editing a Hierarchical Web Page Structure

B.3.1 Adding a New Web Page
To add a new Web page to the Web layout:

Appendix B
Managing Web Pages

B-4

1. In the Web Page Hierarchy Pane, click Add.

The Add Web Page Screen opens.

2. Enter information about the new page.

3. Click OK.

B.3.2 Editing Web Page Properties
To edit the properties of a Web page:

1. Select the page in the Web Page Hierarchy Pane.

2. Click Edit in the Page Properties Pane.

The Edit Page Properties Screen opens.

3. Edit the properties.

4. Click OK.

B.3.3 Creating a Local Page Link
To create a local page link:

1. Select the page in the Web Page Hierarchy Pane under which you want to locate the new
local page.

2. In the Page Links Pane, click Add.

The Add Page Link Screen opens.

3. Select Local Page, and click OK.

4. Enter information about the new local page into the Edit Local Page Link Screen.

5. When done, click OK.

B.3.4 Creating an External URL Link
To create an external URL link:

1. Select the page in the Web Page Hierarchy Pane under which you want to locate the new
URL.

2. In the Page Links Pane, click Add.

The Add Page Link Screen opens:

3. Select External URL, and click OK.

4. Enter information about the URL into the Edit External URL Screen.

5. When done, click OK.

6. Refresh the browser to display the new page.

B.3.5 Editing a Hierarchical Web Page Structure
To edit a hierarchical Web page structure, the objective is to insert a page, making it the new
parent of the hierarchical page.

For example:

Appendix B
Managing Web Pages

B-5

1. Create a structure.

2. Select QSTest directory with the Page Link PCTest also selected.

3. Click Page LinksDelete.

4. Select the Index directory and select Page LinksAdd.

5. Create a new page.

• Title the page NewEngPage.

• Type a Description as NewEngPage.

6. Click OK.

The NewEngPage opens in the Web Page Hierarchy Pane.

7. Select QSTest and click Page LinksAdd.

8. Select Local Page.

9. Click OK.

The NewEngPage now appears under QSTest.

10. Select NewEngPage and click Page LinksAdd.

11. Select Local PageOK.

Note that the Page name is PCTest.

The NewEngPage has now been entered with PCTest as its child and the External URL in
2ndTest has been preserved.

The following image shows a hierarchical web page structure created by this example
procedure.

Appendix B
Managing Web Pages

B-6

B.4 Working with Reports
This section covers these topics:

• About Reports

• Defining an Active Report

• Defining a Historical Report

• Editing a Query Expression in an Active Report

B.4.1 About Reports
You can define two types of reports with the Web Layout Editor: Active Reports and Historical
Reports.

• Active Reports appear as a file-folder link and perform a database query each time they
are run, generating a display of current information. You can define active reports and edit
their query expressions.

• Like Active Reports, Historical Reports appear as a file-folder link, but they contain
information that was queried at the time they were initially run. They do not perform a
database query each time they are opened, and the report is changed only if the database
is updated. The procedure for creating a Historical Report is almost the same as creating
an Active Report. The only difference is the Create Historical Report screen has an extra
field (Rows Per Page) to specify the number of rows each page of the report can contain.

B.4.2 Defining an Active Report
To define an active report:

1. In the Web Layout Editor, add a new Web page, and select Active Report as the Page
Type.

2. In the Active Report Specification pane of the Web Layout Editor, click Edit Report Query.

3. Define the query by entering information on the Edit Active Report Query Screen.

4. Click OK.

B.4.3 Defining a Historical Report
To prepare an Archive Historical Report:

1. In the WebLayout Editor, add a new Web page and select Historical Report as the Page
Type.

2. In the Historical Report Specification pane of the Web Layout Editor, click Create Report
Data.

3. When you create the report data in the Create Historical Report Screen, specify Archive
History for the data source.

4. Write a query for the report that returns the data you want to retrieve. For example, specify
the content ID.

5. When done specifying information for the report, click OK.

Appendix B
Working with Reports

B-7

B.4.4 Editing a Query Expression in an Active Report
To edit the query expression in an active report:

1. In the Web Page Hierarchy Pane, select the report you want to edit.

2. In the Active Report Specification pane, click Edit Report Query.

3. In the Query Expression window on the Edit Active Report Query Screen, select the query
line to edit.

4. Make changes to the query as necessary, and click Update.

Caution:

If you clear the Custom Query Expression check box, the expression reverts to
its original definition; all modifications are lost.

5. Click OK. If a query is not specified, all values are returned.

B.5 Writing Queries
This section covers these topics:

• Custom Query Expressions

Creating a Query Link

• Editing the Query Expression in a Query Link

• Adding a Query Results Page

• Editing a Query Results Page

• Deleting a Query Results Page

B.5.1 Custom Query Expressions
You can write custom query expressions when you define query links. The method you use to
write custom queries varies depending on the kind of query you write.

To write directory custom queries, use Idoc Script, a proprietary scripting language. To write
report queries, you can use SQL script and Idoc Script. Idoc Script is described in detail in
Configuration Variables chapter of Oracle Fusion Middleware Configuration Reference for
Oracle WebCenter Content. Basic SQL script is briefly described below.

Note:

Your SQL syntax is dependent on your database. Different databases expect different
syntax for items like wildcards, and so forth. See your database documentation for
specific syntax information.

SQL script involves operators, which are words that show logical relationships between the
words in your query. The following table contains some basic operators and their use.

Appendix B
Writing Queries

B-8

Operator Use

AND Returns files that contain the specified words.

OR Returns files that contain at least one specified word.

= Equal

<> or ! Not equal

< Less than

> Greater than

<+ Less than or equal to

>+ Greater than or equal to

IN Finds a position in a table.

BETWEEN Finds a value in a range.

NOT Excludes the files that contain the specified condition.

The following are examples of SQL script:

• Finds all files that have an internal revision ID less than 50000:

dID < '50000'
• Finds all files that have a content ID between 10000 and 50000:

dDocName BETWEEN '10000' AND '50000'

B.5.2 Creating a Query Link
To create a query link:

1. In the Web Page Hierarchy Pane, select the page where you want to locate the new query
link.

2. In the Page Links pane, click Add.

The Add Page Link Screen opens.

3. Select Query, and click OK.

The Query Link Definition Screen opens.

4. Enter information into the screen.

5. When done, click OK.

When adding Idoc Script variables and HTML tags to the Text 1 and Text 2 fields, keep in mind
that any resulting HTML tags can affect the display of the search results page. For more
information, see Configuration Variables in Oracle Fusion Middleware Configuration Reference
for Oracle WebCenter Content.

B.5.3 Editing the Query Expression in a Query Link
To edit the query expression in a query link:

1. In the Page Links Pane of the Web Layout Editor, select the query you want to edit.

2. Click Edit.

The Query Link Definition Screen opens.

Appendix B
Writing Queries

B-9

3. In the Query Expression area, select the query line to edit.

4. Make changes to the metadata, Operator, metadata Value fields as necessary, then click
Update.

5. Click OK.

Note:

If you clear the Custom Query Expression check box, the expression reverts to
its original definition; all modifications are lost.

B.5.4 Adding a Query Results Page
Follow these instructions to add a query results page. This task is available for administrators,
not for subadministrators with WebLayout rights:

1. From the Web Layout Editor menu, select Options, then select Query Results Pages.

The Query Result Pages screen opens.

2. Click Add to display the Add Result Page.

3. Enter information for the new page. Observe the field descriptions for Add/Edit Query
Results Page.

4. Click OK.

B.5.5 Editing a Query Results Page
Follow these instructions to edit a query results page. This task is available for administrators,
not for subadministrators with WebLayout rights:

1. From the Web Layout Editor menu, select Options, then Query Results Pages, then
select the name of the page.

2. Click Edit.

The Add/Edit Query Results Page opens.

3. Make the necessary changes, and click OK.

B.5.6 Deleting a Query Results Page
Follow these instructions to delete a query results page. This task is available for
administrators, not for subadministrators with WebLayout rights:

1. From the Web Layout Editor menu, select Options, then Query Results Pages, then
select the name of the page.

2. Click Delete.

3. When prompted, click OK to verify the deletion.

Appendix B
Writing Queries

B-10

C
Annotations XML Structure

This appendix provides information about the changes in the Annotations XML Structure for
imaging in WebCenter Content 12c.

The document content that is moved during migration from Imaging 11g to WebCenter Content
12c is optimized using the following data items:

• Annotations

Annotations are created by users while interacting with the 11g Imaging Viewer which is
replaced by the WCC ADF UI viewer. The annotation structures are migrated and
converted during this upgrade process.

• Supporting Content

Supporting Content is generally the output of the OFR (Oracle Forms Recognition) process
which generates an XML data file that IPM stored/attached to the IPM document.

The Annotations and Supporting Content files were stored as separate documents within
Content Server in 11g, but in the 12c they are moved to the directory-based Attachments
mechanism available in Content Server.

In WebCenter Content 12c, the Annotations XML structure has undergone some modifications.
For information about the specific changes to the annotations XML structure, see Changes to
Annotations XML Structure.

C.1 Changes to Annotations XML Structure
The following table gives an overview of the Annotation XML structure changes in WebCenter
Content 12c:

Table C-1 Changes to Annotations XML Structure

Description 11g 12c What has changed

Main Structure <AnnotationSet>

<noteAnnot>

<pageNumber>

<<Properties as tags>>

<noteAnnot>

</AnnotatiionSet>

<document>

<page id="1" ….>

<note <<Properties as
attributes>> >

</note>

</page>

<page id ="2" … >

</page>

</document>

The structure is now page-
wise. 11g structure was a
bunch of annotations
grouped as a set.

C-1

Table C-1 (Cont.) Changes to Annotations XML Structure

Description 11g 12c What has changed

Example of a single
Redact Annotation

<redactAnnot>

<annType>REDACT</
annType>

<uniqueId>IPM-2_2.IPM_0
00785-REDACT-
A5796285966849967960B
</uniqueId>

<pageNumber>1</
pageNumber>

<createDate>Mon Oct 13
16:06:47 IST 2014</
createDate>

<modifiedDate>Mon Oct
13 16:06:53 IST 2014</
modifiedDate>

<createdBy>ipmadmin</
createdBy>

<modifiedBy>ipmadmin</
modifiedBy>

<color>

<a>255

<r>0</r>

<g>0</g>

0

</color>

<securitySetting>STANDA
RD</securitySetting>

<opacity>100</opacity>

<readOnly>false</
readOnly>

<startPoint>

<x>0.5379901960784313
</x>

<y>0.17140151515151514
</y>

</startPoint>

<endPoint>

<x>0.6727941176470589
</x>

<y>0.29829545454545453
</y>

</endPoint>

</redactAnnot>

<redact id="1"
permissions="Standard"
locX="0.40448114"
locY="0.3042292"
width="0.058372643"
height="0.035925422"
bgColor="00,00,00,ff">

<auditEvent id="1"
createdBy="weblogic"
createdOn="2014-12-10T
23:58:39-08:00"
type="created"/>

<auditEvent id="2"
createdBy="weblogic"
createdOn="2014-12-10T
23:59:19-08:00"
type="modified"/>

</redact>

Tags used to describe the
annotation properties are
converted into attributes
like 'Opacity', 'bgcolor'.

The startPoint, endPoint
tags have are to get
'width', 'height' and 'x,y'
co-ordinates.

Appendix C
Changes to Annotations XML Structure

C-2

Table C-1 (Cont.) Changes to Annotations XML Structure

Description 11g 12c What has changed

Note Text in a Note
Annotation

<noteAnnot>

<<Other Properties>>

<noteText><html>

<head>

</head>

<body>

<p style="margin-top:
0">

sticky

</p>

</body>

</html>

</noteText>

<note id="6"
permissions="Standard"
note="<html>

<head>

 </
head>

<body>
 <p
style="margin-top:
0">

sticky
 </p>

</body>
</
html>
"

bgImage="MISC.NOTE"
locX="-15.647406"
locY="-15.790814"
width="32.0" height="32.0"
orientation="0"
fgColor="00,00,00,ff"
bgColor="ff,ff,00,ff">

A change from tags to
attribute.

ArrowType in Line
Annot

<lineAnnot>

<<Other Properties>>

<arrowType>NONE</
arrowType>

</lineAnnot>

<line id="2"
permissions="Standard"
locX="0.3567217"
locY="0.049567986"
width="0.04304245"
height="0.04592997"
fgColor="ff,00,00,ff">

<customField
name="arrowType"
value="NONE"/>

<customField
name="lineWeight"
value="1"/>

</line>

StampType in
Stamp Annot

<stampAnnot>

<<Other Properties>>
<stampType>APPROVED
</stampType>

</stampAnnot>

<stamp id="9"
permissions="Standard"
bgImage="STAMPS.APPR
OVED" locX="0.1991342"
locY="0.070336394"
width="0.15873016"
height="0.13455658"
orientation="0"
fgColor="ff,ff,ff,ff">

The Stamp type was a
separate tag and is now
replaced by the value in
bgImage.

C.2 Annotations Security
This feature explains how to leverage the service to gain access to the annotation XML file. It
applies to both the IPM advanced viewer as well as the Unified viewer.

The users are granted one or more of the following security permissions:

• Standard: Annotations appear on the document page for all users. They may be applied
and changed only by users granted Standard annotation security permissions.

Appendix C
Annotations Security

C-3

• Restricted: Annotations are visible to all users but can be modified only by a user having
the restricted permission. If you do not have the restricted permission (permission to
change restricted documents), you can view the annotation but cannot alter it or change
the permissions.

• Hidden: Annotations are visible only to the users that have been granted the hidden
permission. Only users having the hidden permission can mark an annotation as hidden or
modify the existing hidden annotations.

Note:

If no annotation security is assigned, user cannot create new or modify the existing
annotations. However, the users can still view all the Standard and Restricted
annotations. This ensures that redaction annotations are applied to all users having
rights to view a document.

The users granted with the specific security level, the same security level can be assigned to
an annotation. For example, users assigned the restricted security level can grant only the
restricted security level to the annotation they create. Users that have been assigned the
standard and restricted security levels by an administrator can specify a security level of
standard or restricted, but not hidden.

Annotation Retrieval

You can open any document in Imaging and can add annotations to it. You need to add
annotations having three security levels (Standard, Restricted, and Hidden).

Once these are added, the annotations can be retrieved by using the following service:

http://host:ucmport/cs/idcplg?
dID=<dIDValue>&IdcService=GET_FILE&Rendition=annotationRendition&AuxRenditionT
ype=System

where <dIDValue> is the WebCenter Content’s unique identifier of the document.

In Imaging, the document name has the <ApplicationId>.<dDocName> format. For example,
5.IPM_000603. In order to find the <dID> of the document, search Content Server for a
document having dDocName. For example, search for a document having dDocName as
IPM_000603. From the search results and the Document Info page of the document, you can
obtain the dID.

If this retrieval is requested by a user who does not have Hidden permission, the user will not
be able to see the hidden annotation in the resulting XML file.

If this retrieval is requested by a user who has all the annotation permissions, the user should
be able to see all annotations.

Adding or Updating Annotations

Use the EDIT_RENDITIONS service. The dID and renditionKeys are mandatory parameters.
Each rendition key takes .name, .action=edit, .file, and .description.

• dID is the ID of the parent document to which you want to add annotations.

• .action=edit is always "edit".

• .name is the extRenditionName of the rendition.

Appendix C
Annotations Security

C-4

• .description is the extRenditionDescription of the rendition.

• .file is the extRenditionPath of the rendition.

RIDC code example:

DataBinder dataBinder = idcClient.createBinder();
 dataBinder.putLocal("IdcService", "EDIT_RENDITIONS");
 dataBinder.putLocal("dID", "1234");
 dataBinder.putLocal("renditionKeys", "aRendition0");
 dataBinder.putLocal("aRendition0.name", "annotationRendition");
 dataBinder.putLocal("aRendition0.action", "edit");
 dataBinder.addFile("aRendition0.file", new
File("annotationRendition.xml"));
 dataBinder.putLocal("AuxRenditionType", “System”));

where <dIDValue> is the WebCenter Content’s unique identifier of the document.

In Imaging, the document name has the <ApplicationId>.<dDocName> format. For example,
5.IPM_000603. In order to find the <dID> of the document, search Content Server for a
document having dDocName. For example, search for a document having dDocName as
IPM_000603. From the search results and the Document Info page of the document, you can
obtain the dID.

We can use the same EDIT_RENDITIONS service with action as ‘edit’ for both adding or updating
annotations.

The IPM or WebCenter Content viewer can be used to create annotations for a sample
document and then the resulting annotation XML file can be retrieved by using the GET_FILE
service. This should give us the format of the XML file that can be used to add or update
annotations. For the structure of the XML file, see Annotations XML Structure.

Deleting Annotations

Deleting an annotation is similar to the updating of the annotation XML file. In case of deletion,
the annotation is removed and the XML file is updated.

Appendix C
Annotations Security

C-5

D
Troubleshooting

This appendix describes how to use troubleshooting aids to resolve problems with customizing
Oracle WebCenter Content Server.

This appendix includes the following sections:

• About Troubleshooting Aids

• Viewing Server Errors

• Viewing Page Data

• Monitoring Resource Loading

D.1 About Troubleshooting Aids
Several troubleshooting aids are available to help evaluate Content Server pages as they are
used.

D.2 Viewing Server Errors
Syntax errors and other mistakes in component files or dynamic server pages can cause errors
in Content Server. If the Content Server instance fails, it reports the error in the following
locations:

• If you run Content Server from a command prompt, you can view the error in the console
window.

• If you can log in to Content Server, from the Administration menu, choose Log Files and
then Content Server Logs.

The Log Files for Content Server page displays a list of recent logs. Click a log to open it.

• You can view the Content Server log files in the DomainHome/ucm/cs/weblayout/groups/
secure/logs directory.

D.3 Viewing Page Data
The IsJava setting displays the local data of a Content Server web page.

• In a web browser, add the following code in the Address box to the end of the page's URL:

&IsJava=1
• On a template page or in an include, use the following code:

<$IsJava=1$>
The IsPageDebug setting displays a tree structure view of all includes being called on a Content
Server web page. The debug trace appears at the bottom of the web page.

• In a web browser, add the following code in the Address box to the end of the page's URL:

&IsPageDebug=1

D-1

• On a template page or in an include, use the following code:

<$IsPageDebug=1$>

Note:

You can also set the IsPageDebug variable in the config.cfg file if you want the
setting to apply for the whole server.

• To place a marker in the script debug trace, place the following code at the point where you
want to see a value or perform a step:

<$trace("marker code")$>

For example, you can use the following code to insert the current user name in the debug
trace (the eval function must be used to evaluate Idoc Script):

<$trace(eval("The user name is <$UserName$>"))$>
For more information about IsJava and IsPageDebug, see IsJava and IsPageDebug sections
respectively in Oracle Fusion Middleware Configuration Reference for Oracle WebCenter
Content.

D.4 Monitoring Resource Loading
Three configuration settings enable you to view the loading of resources when you run Content
Server from a command line. Set any of these variables equal to 1 in the IntradocDir/config/
config.cfg file:

• TraceResourceLoad logs all resources loaded, resource overrides, resource conflicts, and
resource merges.

• TraceResourceOverride logs when a system resource is overridden by a component
resource or a component resource is loaded twice.

• TraceResourceConflict logs when a system resource is overridden twice by component
resources.

For more information about these configuration setting, see TraceResourceLoad,
TraceResourceOverride, and TraceResourceConflict sections in Oracle Fusion Middleware
Configuration Reference for Oracle WebCenter Content.

Appendix D
Monitoring Resource Loading

D-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Getting Started with Oracle WebCenter Content
	1 Introduction to Developing with Oracle WebCenter Content
	1.1 Overview of WebCenter Content Architecture
	1.1.1 WebCenter Content Directories and Files
	1.1.1.1 Terminology for WebCenter Content Directories
	1.1.1.2 The bin Directory
	1.1.1.3 The config Directory
	1.1.1.4 The components Directory
	1.1.1.5 The custom Directory
	1.1.1.6 The resources Directory
	1.1.1.7 The weblayout Directory

	1.1.2 Resources

	1.2 Customization Types
	1.3 Customization Planning
	1.4 Recommended Skills and Tools for Customizing Content Server
	1.5 Content Server Behavior
	1.5.1 Startup Behavior
	1.5.1.1 Startup Steps
	1.5.1.2 Effects of Configuration Loading

	1.5.2 Resource Caching
	1.5.3 Page Assembly
	1.5.4 Database Interaction
	1.5.5 Localized String Resolution
	1.5.6 Application Integrations

	2 Installing and Configuring Oracle JDeveloper
	2.1 Install JDeveloper
	2.2 Install WebCenter Content Connection Extension for JDeveloper
	2.3 Creating an Integrated WebLogic Server Domain
	2.4 Configuring JDeveloper for Defining Seeded Customizations

	Part II Working with the Idoc Script Custom Scripting Language
	3 Introduction to the Idoc Script Custom Scripting Language
	3.1 Idoc Naming Conventions
	3.2 Idoc Script Syntax
	3.2.1 Idoc Script Tags
	3.2.2 Idoc Script Comments

	3.3 Idoc Script Uses
	3.3.1 Includes
	3.3.1.1 Include Example
	3.3.1.2 Super Tag
	3.3.1.3 Super Tag Example

	3.3.2 Variables
	3.3.2.1 Variable Creation
	3.3.2.2 Variable References
	3.3.2.3 Variable Values
	3.3.2.4 Comma Separators
	3.3.2.5 Variable Reference in a Conditional
	3.3.2.6 Variable Reference Search Order
	3.3.2.7 Regular Variables

	3.3.3 Functions
	3.3.3.1 Personalization Functions

	3.3.4 Conditionals
	3.3.4.1 Conditional Example

	3.3.5 Looping
	3.3.5.1 ResultSet Looping
	3.3.5.2 ResultSet Looping Example
	3.3.5.3 While Looping
	3.3.5.4 While Looping Example
	3.3.5.5 End a Loop

	3.3.6 Administration Interface
	3.3.6.1 Workflow Admin
	3.3.6.2 Web Layout Editor
	3.3.6.3 Batch Loader
	3.3.6.4 Archiver
	3.3.6.5 System Properties
	3.3.6.6 Email

	3.4 Special Keywords
	3.4.1 Keywords Versus Functions
	3.4.1.1 exec Keyword
	3.4.1.2 eval Function
	3.4.1.3 include Keyword
	3.4.1.4 inc Function

	3.5 Operators
	3.5.1 Comparison Operators
	3.5.2 Special String Operators
	3.5.3 Numeric Operators
	3.5.4 Boolean Operators

	3.6 Metadata Fields
	3.6.1 Metadata Field Naming
	3.6.2 Standard Metadata Fields
	3.6.2.1 Common Metadata Fields
	3.6.2.2 Other Fields

	3.6.3 Option Lists
	3.6.3.1 Internal Option Lists
	3.6.3.2 Option List Script
	3.6.3.3 Methods for Creating an Option List

	3.6.4 Metadata References in Dynamic Server Pages

	3.7 Merge Includes for Formatting Results
	3.8 Scoped Local Variables

	4 Using Idoc Script Variables and Functions with Oracle WebCenter Content
	4.1 Using Different Types of Idoc Script Variables and Functions
	4.1.1 Conditional Dynamic Variables
	4.1.2 Dynamic Variables
	4.1.3 Environment Variables
	4.1.4 Global Functions
	4.1.5 Page Variables
	4.1.5.1 Page Display Variables
	4.1.5.2 Field Display Variables
	4.1.5.2.1 Field Information Variables
	4.1.5.2.2 Common Field Display Variables
	4.1.5.2.3 Other Field Display Variables

	4.1.6 Read-Only Variables
	4.1.6.1 Template Read-Only Variables
	4.1.6.2 User Read-Only Variables
	4.1.6.3 Content Read-Only Variable
	4.1.6.4 Other Read-Only Variable

	4.1.7 Settable Variables
	4.1.8 Workflows
	4.1.8.1 Workflow Functions
	4.1.8.2 Workflow Variables

	4.1.9 Value Variables

	4.2 Using Idoc Script Variables and Functions with Different Features of Oracle WebCenter Content
	4.2.1 Batch Loader
	4.2.2 Clients
	4.2.3 Content Items
	4.2.4 Content Profiles
	4.2.5 Content Server
	4.2.6 Conversion
	4.2.6.1 Inbound Refinery
	4.2.6.2 Dynamic Converter

	4.2.7 Database
	4.2.8 Date and Time
	4.2.9 Debugging
	4.2.10 Directories and Paths
	4.2.11 Dynamicdata
	4.2.12 Field Display
	4.2.13 Idoc Script
	4.2.13.1 Keywords

	4.2.14 Indexing
	4.2.15 Localization
	4.2.16 Page Display
	4.2.17 Personalization
	4.2.18 ResultSets
	4.2.19 Schemas
	4.2.20 Searching
	4.2.21 Security
	4.2.21.1 Internal Security
	4.2.21.2 External Security

	4.2.22 Strings
	4.2.23 Templates
	4.2.24 Users
	4.2.25 Web Servers
	4.2.26 Workflow
	4.2.26.1 Global Function
	4.2.26.2 Workflow Functions
	4.2.26.3 Other Variables

	Part III Changing the Look and Feel of the Content Server Interface
	5 Customizing the Content Server Interface
	5.1 About Customizing the Content Server Interface
	5.1.1 Types of Skins and Layouts
	5.1.2 Skins
	5.1.3 Layouts

	5.2 Choosing a Different Skin or Layout
	5.3 Configure a Default Skin and Layout for New Users and Guests
	5.4 Modify the Template for a Skin or Layout
	5.4.1 About Dynamic Publishing
	5.4.2 IdocScript Files for Dynamic Publishing
	5.4.3 Navigation Engine Reference
	5.4.3.1 Dynamic Data Tables for Content Server Navigation
	5.4.3.1.1 CoreMenuItems
	5.4.3.1.2 CoreMenuItemRelationships
	5.4.3.1.3 CoreMenuItemsFlags
	5.4.3.1.4 CoreMenuItemsImages
	5.4.3.1.5 CoreMenuItemsDynamicLoadCallbacks
	5.4.3.1.6 CoreMenuItemsExitLinks
	5.4.3.1.7 CoreMenuItemsTrayDocLinks

	5.4.3.2 List of LinkType Values
	5.4.3.3 List of Flags
	5.4.3.4 Global Javascript Variables
	5.4.3.5 Access to Menu Items and Nodes
	5.4.3.6 11g Support for NavBuilder Functions

	5.5 Alter the Anonymous User Interface
	5.5.1 Altering the Anonymous User Interface

	5.6 Changing the URL of the Login Page
	5.7 Creating and Publishing a New Layout
	5.8 Optimize the Use of Published Files
	5.8.1 Bundling Files
	5.8.2 Referencing Published Files

	6 Customizing the WebCenter Content User Interface
	6.1 Customizing the WebCenter Content User Interface
	6.2 Install and Configure Oracle JDeveloper Studio Edition
	6.3 Setting up the WccAdfCustomization Application
	6.4 Define a Custom Skin and Generating WccAdfCustomSkin.jar
	6.4.1 Designing and Testing Customizations in the Custom Skin
	6.4.1.1 Customizing the Branding Bar Logo with Your Own Images
	6.4.1.2 Customizing the Default Font Size
	6.4.1.3 Customizing Selectors

	6.4.2 Packaging the Custom Skin As WccAdfCustomSkin.jar

	6.5 Define MDS Seeded Customizations and Generating WccAdfCustomization.mar
	6.5.1 Defining customer Layer Values
	6.5.2 Defining Seeded Customizations for Each Layer Value of the customer Layer
	6.5.3 Defining MDS Seeded Customizations
	6.5.4 Packaging Seeded Customizations in WccAdfCustomization.mar

	6.6 Applying Customizations to the Installed Environment
	6.6.1 Applying a Custom Skin
	6.6.2 Applying the Seeded Customizations to the WebCenter Content User Interface

	7 Creating Dynamic Server Pages
	7.1 About Dynamic Server Pages
	7.1.1 Page Types
	7.1.1.1 IDOC File
	7.1.1.2 HCST File
	7.1.1.3 HCSP File
	7.1.1.4 HCSF File

	7.2 Altering the Appearance and Navigation of Web Pages
	7.2.1 Syntax
	7.2.1.1 Idoc Script Expressions
	7.2.1.2 Comparison Operators
	7.2.1.3 Special Characters
	7.2.1.4 References to Metadata

	7.2.2 Idoc Script Functions
	7.2.2.1 docLoadResourceIncludes Function
	7.2.2.1.1 Requirements for Calling the docLoadResourceIncludes Function
	7.2.2.1.2 Parameters

	7.2.2.2 executeService Function

	7.2.3 Development Recommendations
	7.2.3.1 General Guidelines
	7.2.3.2 HCSF Guidelines

	7.2.4 HCSF Pages
	7.2.4.1 Load Section
	7.2.4.1.1 HTML Declaration
	7.2.4.1.2 docLoadResourceIncludes Function
	7.2.4.1.3 Meta Element
	7.2.4.1.4 Variables and Includes

	7.2.4.2 Data Section
	7.2.4.2.1 Data Section Structure
	7.2.4.2.2 The idcformrules Element
	7.2.4.2.3 Metadata Elements
	7.2.4.2.4 Nested Elements
	7.2.4.2.5 Referencing XML Elements
	7.2.4.2.6 Form Elements
	7.2.4.2.7 ResultSets

	7.2.4.3 Form Section
	7.2.4.3.1 Form Begin
	7.2.4.3.2 Form Properties
	7.2.4.3.3 Form Fields
	7.2.4.3.4 Form Buttons
	7.2.4.3.5 Form End

	7.3 Creating an IDOC File with Custom Includes for Dynamic Server Pages
	7.4 Creating an HCST Page
	7.5 Creating an HCSP Page
	7.6 Creating an HCSF Page
	7.6.1 Common Code for Forms
	7.6.1.1 Retrieving File Information
	7.6.1.2 Referencing a File Extension
	7.6.1.3 Defining Form Information
	7.6.1.4 Defining Form Fields
	7.6.1.5 Defining Hidden Fields
	7.6.1.6 Submitting a Form

	7.7 Verifying the Display of an HCST, HCSP, or HCSF Page in a Web Browser

	Part IV Modifying the Functionality of Content Server
	8 Changing System Settings
	8.1 About Changing System Settings
	8.2 Changing System Settings Through the Configuration Pages
	8.3 Changing System Settings Through the System Properties Application
	8.4 Customizing the Library and System Home Page with the Web Layout Editor
	8.5 Defining Security and Accounts for Users with the User Admin Application

	9 Changing Configuration Information
	9.1 About Changing Configuration Information
	9.2 Changing Configurations with the Idoc Script Custom Scripting Language
	9.3 Changing Configurations with Development Tools and Technologies

	10 Customizing Services
	10.1 About Customizing Services
	10.2 Customizing Services for Communicating with Content Server
	10.3 Customizing Services for Accessing the Database

	11 Generating Actions Menus
	11.1 About Generating Actions Menus
	11.2 Creating Display Tables
	11.2.1 Headline View Tables
	11.2.2 Classic View Tables
	11.2.3 Thumbnail View Tables

	11.3 Customizing Actions Menus
	11.4 Customizing Actions Menus

	Part V Customizing Content Server with Components
	12 Getting Started with Content Server Components
	12.1 About Standard, System, and Custom Components
	12.1.1 Component Files Overview
	12.1.2 Using Components
	12.1.2.1 Advantages of Using Components
	12.1.2.2 Constraints
	12.1.2.3 Installed Components

	12.1.3 About Directories and Files
	12.1.3.1 HDA Files
	12.1.3.1.1 Elements in HDA Files
	12.1.3.1.2 The idccs_components.hda, idcibr_components.hda, or idcurm_components.hda File
	12.1.3.1.3 Component Definition Files

	12.1.3.2 Custom Resource Files
	12.1.3.3 Data Binder
	12.1.3.3.1 LocalData
	12.1.3.3.2 ResultSets
	12.1.3.3.3 Environment

	12.1.3.4 Manifest File
	12.1.3.5 Other Files
	12.1.3.5.1 Customized Site Files
	12.1.3.5.2 Component ZIP File
	12.1.3.5.3 Custom Installation Parameter Files

	12.1.3.6 Typical Directory Structure

	12.1.4 Development Recommendations
	12.1.4.1 Creating a Component
	12.1.4.2 Work with Component Files
	12.1.4.3 Using a Development Content Server
	12.1.4.4 Component File Organization
	12.1.4.5 Naming Conventions

	12.2 Tools for Managing Components
	12.2.1 Component Wizard
	12.2.2 Managing Custom Components with Advanced Component Manager
	12.2.3 ComponentTool

	12.3 Component Files
	12.3.1 The idc Product _components.hda File
	12.3.2 Components ResultSet
	12.3.3 Component Definition (Glue) File
	12.3.3.1 ResourceDefinition ResultSet
	12.3.3.1.1 ResourceDefinition ResultSet Columns

	12.3.3.2 MergeRules ResultSet
	12.3.3.2.1 MergeRules ResultSet Columns

	12.3.3.3 Filters ResultSet
	12.3.3.4 ClassAliases ResultSet

	12.4 Resources for Assembling Web Pages

	13 Enabling and Disabling Components for Content Server
	13.1 About Enabling and Disabling Components
	13.2 Enabling a Component
	13.3 Disabling a Component

	14 Updating Component Configurations
	14.1 About Updating Component Configurations
	14.2 Updating a Component Configuration with the Advanced Component Manager
	14.3 Updating a Component Configuration Through the Configuration for instance Screen

	15 Customizing Content Tracker
	15.1 About Content Tracker
	15.1.1 Content Tracker Accesses and Services
	15.1.2 Content Tracker Components and Functions
	15.1.2.1 DataBinder Dump Facility
	15.1.2.1.1 Values for the DataBinder Dump Facility
	15.1.2.1.2 Location of the DataBinder Object Dump Files
	15.1.2.1.3 Names of the DataBinder Object Dump Files

	15.1.2.2 Performance Optimization
	15.1.2.3 Installation Considerations

	15.2 Customizing Content Tracker with Configuration Variables
	15.2.1 About Configuration Variables
	15.2.1.1 Access Control Lists and Secure Mode
	15.2.1.2 Values for the Security Checks Preference Variable
	15.2.1.3 File Types for Entries in the SctAccessLog

	15.2.2 Setting Content Tracker Configuration Variables
	15.2.3 Tracking External Users and Content Items

	15.3 Configuring Service Calls
	15.3.1 About the Service Call Configuration File
	15.3.1.1 General Service Call Logging
	15.3.1.2 Extended Service Call Tracking Function
	15.3.1.2.1 Service Call ResultSet Combinations
	15.3.1.2.2 General Purpose Columns in the Output Table

	15.3.1.3 Service Call Configuration File Contents
	15.3.1.4 ResultSet Examples
	15.3.1.4.1 ServiceExtraInfo ResultSet Entries
	15.3.1.4.2 Linked Service Entries and Field Map ResultSets

	15.3.2 About the Content Tracker Logging Service
	15.3.3 Managing Service Call Information
	15.3.3.1 Manually Editing the SctServiceFilter.hda File
	15.3.3.2 Setting Required DataBinder Fields to Call the Content Tracker Logging Service
	15.3.3.3 Calling the Content Tracker Logging Service from an Application
	15.3.3.4 Calling the Content Tracker Logging Service from Idoc Script

	15.3.4 Service Call Management and the User Interface
	15.3.4.1 Adding, Editing, or Deleting Service Entries
	15.3.4.2 Adding, Editing, or Deleting Field Map ResultSets

	15.4 Customizing the Activity Metrics SQL Queries
	15.4.1 Tracking Access to Content Items by External Users

	15.5 Tracking Indirect Access to Content with Web Beacons
	15.5.1 Web Beacon Use Cases
	15.5.2 Web Beacon Overview
	15.5.3 Web Beacon Object
	15.5.4 Web Beacon References
	15.5.4.1 Format Structure for URL References
	15.5.4.2 Placement and Retrieval Scheme
	15.5.4.3 Data Capture and Storage

	15.5.5 Reduction Processing for Web Beacon References
	15.5.6 Limitations and Guidelines
	15.5.6.1 Limitations
	15.5.6.2 Guidelines

	15.5.7 Examples of Web Beacon Embedding
	15.5.7.1 Embedded HTML Example
	15.5.7.2 Embedded JavaScript Example
	15.5.7.3 Served JavaScript Example

	16 Customizing Content Categorizer
	16.1 About Content Categorizer
	16.2 Setting Up and Customizing Content Categorizer for Your Site

	17 Downloading Custom Components
	17.1 About Downloading Custom Components
	17.2 Downloading a Component from the Advanced Component Manager
	17.3 Downloading a Component from Oracle Technology Network

	18 Creating Custom Components
	18.1 About Creating Custom Components
	18.2 Creating Resources for a Component
	18.2.1 HTML Includes
	18.2.1.1 The Super Tag
	18.2.1.2 Editing an HTML Include Resource

	18.2.2 Dynamic Data Tables
	18.2.2.1 Specifying Table Formats
	18.2.2.2 Editing a Dynamic Data Table Resource
	18.2.2.3 Specifying Table Properties
	18.2.2.3.1 Merge Properties
	18.2.2.3.2 Assembly Properties
	18.2.2.3.3 Sort Properties
	18.2.2.3.4 Filter and Include Properties

	18.2.2.4 Using Dynamicdata Idoc Script Functions

	18.2.3 String Resources
	18.2.3.1 String Parameters
	18.2.3.2 Editing a String Resource

	18.2.4 Dynamic Tables
	18.2.4.1 Merge Rules for Dynamic Tables
	18.2.4.2 Editing a Dynamic Table Resource

	18.2.5 Static Tables
	18.2.5.1 Merge Rules for Static Tables
	18.2.5.2 Editing a Static Table Resource

	18.2.6 Queries
	18.2.6.1 Query Example
	18.2.6.2 Editing a Query Resource

	18.2.7 Services
	18.2.7.1 Service Example
	18.2.7.1.1 Attributes
	18.2.7.1.2 Actions

	18.2.7.2 Editing a Service Resource

	18.2.8 Templates
	18.2.8.1 Template and Report Pages
	18.2.8.1.1 Template Page Example
	18.2.8.1.2 Report Page Example

	18.2.8.2 Editing a Template Resource

	18.2.9 Environment Resources
	18.2.9.1 Environment Resource Example
	18.2.9.2 Editing an Environment Resource

	18.3 Creating a Component Definition File
	18.4 Restarting Content Server to Apply a Component

	19 Installing Components
	19.1 About Installing Components
	19.2 Packaging a Component for Installation
	19.3 Installing a Component with the Advanced Component Manager
	19.4 Installing a Component with the Component Wizard
	19.5 Installing a Component with the ComponentTool Utility

	20 Uninstalling Components
	20.1 About Uninstalling Components
	20.2 Uninstalling a Component from Content Server

	Part VI Customizing Records
	21 Customizing Disposition Actions
	21.1 About Customizing Disposition Actions
	21.2 Managing Custom Dispositions
	21.2.1 Creating or Editing a Custom Disposition Action
	21.2.2 Viewing Information About a Custom Disposition Action
	21.2.3 Deleting a Custom Disposition Action

	21.3 Disabling a Custom Disposition Action
	21.4 Creating a Custom Disposition Action
	21.5 Create Disposition Rules for Physical Content

	22 Customizing Bar Codes
	22.1 About Customizing Bar Codes
	22.2 Adding a Custom Bar Code Range
	22.3 Processing Nonstandard Bar Code Data
	22.3.1 Header and Footer Information
	22.3.2 Data Information
	22.3.2.1 Transaction Codes
	22.3.2.1.1 Location
	22.3.2.1.2 Object

	23 Creating Custom Reports
	23.1 About Creating Custom Reports
	23.1.1 Creating Custom Reports using Default Templates

	23.2 Creating Custom Templates
	23.3 Creating Templates with Oracle Business Intelligence Publisher
	23.4 Creating or Editing New Report Sources
	23.5 Downloading a BI XML Data File

	Part VII Integrating WebCenter Content into Your Environment
	24 Getting Started with Integrating WebCenter Content into Your Environment
	24.1 About Integration Methods
	24.2 Overview of Web Services
	24.3 Folders, Contribution Folders, and WebDAV Integration
	24.3.1 Virtual Folders
	24.3.2 WebDAV Integration
	24.3.2.1 WebDAV Clients
	24.3.2.2 WebDAV Servers
	24.3.2.3 WebDAV Architecture

	25 Configuring WebCenter Content Web Services for Integration
	25.1 About Configuring WebCenter Content Web Services for Integration
	25.1.1 Technologies for Web Services
	25.1.2 WebCenter Content Web Services

	25.2 Configuring Web Service Security Through Web Service Policies
	25.3 Configuring SAML Support

	26 Using the IdcCommand Utility to Access Content Server
	26.1 About the IdcCommand Utility
	26.2 Setting Up IdcCommand
	26.2.1 Specifying a Command File
	26.2.1.1 Command File Syntax
	26.2.1.2 Precedence
	26.2.1.3 Special Tags and Characters

	26.2.2 Specifying Configuration Options
	26.2.2.1 Command File
	26.2.2.2 User
	26.2.2.3 Log File
	26.2.2.4 Connection Mode

	26.3 Running IdcCommand
	26.4 Using the Launcher
	26.4.1 Quotation Rules
	26.4.2 Computed Settings
	26.4.3 Launcher Environment Variables
	26.4.4 User Interface
	26.4.5 Configuring the Launcher
	26.4.6 Configuration File Example

	26.5 Calling Services Remotely

	27 Using the COM API for Integration
	27.1 About the COM API
	27.2 Calling Content Server Services with the IntradocClient OCX component
	27.2.1 OCX Interface
	27.2.2 IdcClient OCX Description
	27.2.2.1 OCX Events
	27.2.2.2 OCX Methods
	27.2.2.3 OCX Properties
	27.2.2.4 IdcClient OCX Interface

	27.2.3 IdcClient OCX Control Setup
	27.2.3.1 Setting Up the IdcClient OCX Component
	27.2.3.2 Creating a Visual Interface

	27.2.4 IdcClient Events
	27.2.4.1 IntradocBeforeDownload
	27.2.4.2 IntradocBrowserPost
	27.2.4.3 IntradocBrowserStateChange
	27.2.4.4 IntradocRequestProgress
	27.2.4.5 IntradocServerResponse

	27.2.5 IdcClient OCX Methods
	27.2.5.1 AboutBox
	27.2.5.2 Back
	27.2.5.3 CancelRequest
	27.2.5.4 DoCheckoutLatestRev
	27.2.5.5 DownloadFile
	27.2.5.6 DownloadNativeFile
	27.2.5.7 Drag
	27.2.5.8 EditDocInfoLatestRev
	27.2.5.9 Forward
	27.2.5.10 GoCheckinPage
	27.2.5.11 Home
	27.2.5.12 InitiateFileDownload
	27.2.5.13 InitiatePostCommand
	27.2.5.14 Move
	27.2.5.15 Navigate
	27.2.5.16 NavigateCgiPage
	27.2.5.17 Refresh Browser
	27.2.5.18 SendCommand
	27.2.5.19 SendPostCommand
	27.2.5.20 SetFocus
	27.2.5.21 ShowDMS
	27.2.5.22 ShowDocInfoLatestRev
	27.2.5.23 ShowWhatsThis
	27.2.5.24 StartSearch
	27.2.5.25 Stop
	27.2.5.26 UndoCheckout
	27.2.5.27 ViewDocInfo
	27.2.5.28 ViewDocInfoLatestRev
	27.2.5.29 ZOrder

	27.3 Using the ODMA API to Access Content Server from a Desktop Application
	27.3.1 ODMA Client
	27.3.2 ODMA Interfaces

	28 Using RIDC to Access Content Server
	28.1 About Remote Intradoc Client
	28.1.1 Supported Protocols
	28.1.2 Supported URL Formats
	28.1.3 Required Environments
	28.1.4 HttpClient Libraries
	28.1.5 Convenience Classes

	28.2 Initializing Connections
	28.3 Configuring Clients
	28.3.1 Configuring Clients for Intradoc Connections
	28.3.2 Configuring SSL
	28.3.2.1 Installing and Enabling SecurityProviders Component
	28.3.2.2 Creating Self-Signed Key Pairs and Certificates
	28.3.2.2.1 Creating Client and Server Keys
	28.3.2.2.2 Self-Signing Certificates
	28.3.2.2.3 Exporting Certificates
	28.3.2.2.4 Importing Certificates

	28.3.2.3 Configuring an Incoming Provider for SSL Communication
	Sample Code for Verifying SSL Incoming Provider

	28.3.2.4 Configuring an Outgoing Provider for SSL Communication
	Verifying SSL Outgoing Provider

	28.3.3 Configuring JAX-WS
	28.3.3.1 Setting LPA Mode for a Service
	28.3.3.2 Setting a GPA Service Policy for a Domain
	28.3.3.3 Setting a GPA Client Policy for a Domain

	28.3.4 Add GPA for the Web Service Client
	28.3.5 Changing Default Settings

	28.4 Authenticating Users
	28.5 Using Services
	28.6 Handling Connection Pooling
	28.7 Sending and Receiving Streams
	28.8 Reusing Binders for Multiple Requests
	28.9 Setting User Security
	28.10 Using RIDC Filters

	29 Accessing Imaging User Interface Functions Through URL Tools
	29.1 About Accessing Imaging User Interface Functions Through URL Tools
	29.2 Using URL Tool
	29.3 Supported URL Tool Parameters
	29.4 Viewer URL Tool

	30 Using the Content Server JCR Adapter
	30.1 About the Java Content Repository Adapter
	30.1.1 JCR Data Model
	30.1.2 JCR Adapter Data Model for Content Server

	30.2 Installing Required APIs and Runtime Libraries
	30.2.1 Installing ADF Runtime Libraries
	30.2.2 Deploying Remote Intradoc Client (RIDC)
	30.2.3 Deploying the JCR API
	30.2.4 Installing the JCR Integration Libraries
	30.2.5 Installing the XML Integration Files

	30.3 Deploying the JCR Adapter
	30.4 Configuring Communication with Content Server
	30.4.1 Supplying a Communication Method
	30.4.2 Configuring Socket Communication (Listener Port)
	30.4.3 Configuring Secure Socket Communication (SSL)
	30.4.4 Configuring Web Communication (Web Server Filter)
	30.4.5 Configuring the User Agent
	30.4.6 Supplying Cache Settings

	30.5 Finding Information About a Content Item
	30.5.1 Revisions
	30.5.2 Documents
	30.5.3 DocMeta
	30.5.4 RevClasses

	30.6 Using a Search Index
	30.7 Using the File Store Provider

	31 Configuring Web Services with WSDL, SOAP, and the WSDL Generator
	31.1 About Configuring Web Services with WSDL, SOAP, and the WSDL Generator
	31.1.1 Web Services Framework
	31.1.1.1 XML Data
	31.1.1.2 WSDL Interface
	31.1.1.3 SOAP Communication
	31.1.1.4 UDDI Registry
	31.1.1.5 DIME Message Format
	31.1.1.6 How the Enabling Technologies Work Together
	31.1.1.7 Implementation Architecture
	31.1.1.8 Implementation on .NET
	31.1.1.9 The SOAP Protocol

	31.2 Accessing Content Server with a SOAP Client
	31.2.1 Using a Java SOAP Client

	31.3 Calling Content Server Services with SOAP
	31.3.1 SOAP Packet Format
	31.3.1.1 HTTP Headers
	31.3.1.2 Namespaces
	31.3.1.3 Nodes
	31.3.1.3.1 Service Node
	31.3.1.3.2 Document Node
	31.3.1.3.3 User Node
	31.3.1.3.4 Optionlist Node
	31.3.1.3.5 Option Subnode in an IDC Optionlist Node
	31.3.1.3.6 Resultset Subnode
	31.3.1.3.7 Row Subnode
	31.3.1.3.8 Field Subnode

	31.3.2 Special Characters
	31.3.3 Sample Service Calls with SOAP Response/Request
	31.3.3.1 Ping the Server
	31.3.3.1.1 Required Parameters
	31.3.3.1.2 SOAP Request
	31.3.3.1.3 Response

	31.3.3.2 Add a New User
	31.3.3.2.1 Required Parameters
	31.3.3.2.2 Optional Parameters
	31.3.3.2.3 Optional Attribute Information
	31.3.3.2.4 SOAP Request
	31.3.3.2.5 Response

	31.3.3.3 Edit Existing User
	31.3.3.3.1 Required Parameters
	31.3.3.3.2 Optional Parameters
	31.3.3.3.3 Optional Attribute Information
	31.3.3.3.4 SOAP Request
	31.3.3.3.5 Response

	31.3.3.4 Get User Information
	31.3.3.4.1 Required Parameters
	31.3.3.4.2 SOAP Request
	31.3.3.4.3 Response

	31.3.3.5 Delete User
	31.3.3.5.1 Required Parameters
	31.3.3.5.2 SOAP Request
	31.3.3.5.3 Response

	31.3.3.6 Check In Content Item
	31.3.3.6.1 Required Parameters
	31.3.3.6.2 Additional Parameters
	31.3.3.6.3 Optional Parameters
	31.3.3.6.4 SOAP Request
	31.3.3.6.5 Response

	31.3.3.7 Check out Content Item
	31.3.3.7.1 Required Parameters
	31.3.3.7.2 Optional Parameters
	31.3.3.7.3 SOAP Request
	31.3.3.7.4 Response

	31.3.3.8 Undo Content Item Checkout
	31.3.3.8.1 Required Parameters
	31.3.3.8.2 Optional Parameters
	31.3.3.8.3 SOAP Request
	31.3.3.8.4 Response

	31.3.3.9 Get Content Item Information
	31.3.3.9.1 Required Parameters
	31.3.3.9.2 SOAP Request
	31.3.3.9.3 Response

	31.3.3.10 Get File
	31.3.3.10.1 Required Parameters
	31.3.3.10.2 Optional Parameter
	31.3.3.10.3 SOAP Request
	31.3.3.10.4 Response

	31.3.3.11 Get Search Results
	31.3.3.11.1 Required Parameters
	31.3.3.11.2 Optional Parameters
	31.3.3.11.3 SOAP Request
	31.3.3.11.4 Response

	31.3.3.12 Get Table Data
	31.3.3.12.1 Required Parameters
	31.3.3.12.2 SOAP Request
	31.3.3.12.3 Response

	31.3.3.13 Get Criteria Workflow Information
	31.3.3.13.1 Required Parameters
	31.3.3.13.2 SOAP Request
	31.3.3.13.3 Response

	31.4 Using SOAP Packets in Active Server Pages
	31.4.1 Sample SOAP Request
	31.4.2 Sample Active Server Page

	31.5 Generating WSDL Files to Access WebCenter Content
	31.5.1 Understanding WSDL Files
	31.5.1.1 WSDL File Structure
	31.5.1.1.1 Data Type
	31.5.1.1.2 Message
	31.5.1.1.3 Port Type
	31.5.1.1.4 Binding
	31.5.1.1.5 Service and Port

	31.5.2 Sample WSDL File
	31.5.3 Generating WSDL Files
	31.5.4 Generating Proxy Class from WSDL Files

	31.6 Customizing WSDL Files

	32 Customizing the DesktopTag Component
	32.1 About the DesktopTag Component
	32.2 Enabling the DesktopTag and OracleCleanContent Components
	32.3 Checking Out and Checking In Content Items with DesktopTag
	32.3.1 File Get Operation
	32.3.2 File Check-In Operation

	32.4 Adding Properties to Checked-Out Content Items
	32.4.1 Viewing Custom Properties
	32.4.2 Checking In Documents from Outside Content Server

	32.5 Configuring the DesktopTag Component
	32.5.1 DesktopTagFormats Property
	32.5.2 DesktopTagPrefix Property
	32.5.3 DesktopTagFields Property
	32.5.4 DesktopTagPrefixCustom Property
	32.5.5 DesktopTagFieldsCustom Property
	32.5.6 DesktopTagPrefixExtended Property
	32.5.7 DesktopTagFieldsExtended Property
	32.5.8 DefaultTaskPaneUrl Property
	32.5.9 DesktopTagLog Property
	32.5.10 DesktopTagFormatsExclude Property

	Part VIII Appendices
	A Idoc Script Functions and Variables
	A.1.1 abortToErrorPage()
	A.1.2 addEmptyOption
	A.1.3 AdminAtLeastOneGroup
	A.1.4 AdsSimpleAuth
	A.1.5 AdsUserName
	A.1.6 AdsUserPassword
	A.1.7 AfterLogin
	A.1.8 AllowCheckin
	A.1.9 AllowCheckout
	A.1.10 AllowIntranetUsers
	A.1.11 AllowReview
	A.1.12 AuthorAddress
	A.1.13 AuthorDelete
	A.1.14 AutoNumberPrefix
	A.1.15 BatchLoaderPath
	A.1.16 break()
	A.1.17 BrowserVersionNumber
	A.1.18 c
	A.1.19 cacheInclude()
	A.1.20 captionEntryWidth
	A.1.21 captionFieldWidth
	A.1.22 clearSchemaData()
	A.1.23 ClientControlled
	A.1.24 computeDocUrl()
	A.1.25 computeRenditionUrl()
	A.1.26 CONTENT_LENGTH
	A.1.27 coreContentOnly
	A.1.28 CURRENT_DATE
	A.1.29 CURRENT_ROW
	A.1.30 dateCurrent()
	A.1.31 dcShowExportLink
	A.1.32 ddAppendIndexedColumnResultSet()
	A.1.33 ddAppendResultSet()
	A.1.34 ddApplyTableSortToResultSet()
	A.1.35 ddGetFieldList()
	A.1.36 ddIncludePreserveValues()
	A.1.37 ddLoadIndexedColumnResultSet()
	A.1.38 ddLoadResultSet()
	A.1.39 ddMergeIndexedColumnResultSet()
	A.1.40 ddMergeResultSet()
	A.1.41 ddMergeUsingIndexedKey()
	A.1.42 ddSetLocal()
	A.1.43 ddSetLocalByColumnsFromFirstRow()
	A.1.44 ddSetLocalByColumnsFromFirstRowIndexed()
	A.1.45 ddSetLocalEmpty()
	A.1.46 ddSetLocalEmptyByColumns()
	A.1.47 DefaultAccounts
	A.1.48 defaultFieldInclude
	A.1.49 defaultOptionListScript
	A.1.50 DelimitedUserRoles
	A.1.51 docLoadResourceIncludes()
	A.1.52 docRootFilename()
	A.1.53 DocTypeSelected
	A.1.54 DocUrl
	A.1.55 docUrlAllowDisclosure()
	A.1.56 DownloadApplet
	A.1.57 DownloadSuggestedName
	A.1.58 dpGet()
	A.1.59 dpPromote()
	A.1.60 dpPromoteRs()
	A.1.61 dpSet()
	A.1.62 dWfName
	A.1.63 dWfStepName
	A.1.64 EmptyAccountCheckinAllowed
	A.1.65 EnableDocumentHighlight
	A.1.66 encodeHtml()
	A.1.67 entryCount
	A.1.68 eval()
	A.1.69 ExclusiveCheckout
	A.1.70 exec
	A.1.71 executeService()
	A.1.72 ExternalUserAccounts
	A.1.73 ExternalUserRoles
	A.1.74 fieldCaption
	A.1.75 fieldCaptionInclude
	A.1.76 fieldCaptionStyle
	A.1.77 fieldDefault
	A.1.78 fieldEditWidth
	A.1.79 fieldEntryInclude
	A.1.80 fieldExtraScriptInclude
	A.1.81 fieldInclude
	A.1.82 fieldIsOptionList
	A.1.83 fieldMaxLength
	A.1.84 fieldName
	A.1.85 fieldOptionListType
	A.1.86 fieldType
	A.1.87 fieldValue
	A.1.88 fieldValueStyle
	A.1.89 fieldWidth
	A.1.90 fileUrl
	A.1.91 FIRSTREV
	A.1.92 ForcedConversionRules
	A.1.93 forceExpire()
	A.1.94 formatDate()
	A.1.95 formatDateDatabase()
	A.1.96 formatDateDisplay()
	A.1.97 formatDateOnly()
	A.1.98 formatDateOnlyDisplay()
	A.1.99 formatDateOnlyFull()
	A.1.100 formatDateWithPattern()
	A.1.101 formatTimeOnly()
	A.1.102 formatTimeOnlyDisplay()
	A.1.103 GATEWAY_INTERFACE
	A.1.104 generateUniqueId
	A.1.105 getCookie
	A.1.106 GetCopyAccess
	A.1.107 getDebugTrace()
	A.1.108 getErrorTrace()
	A.1.109 getFieldConfigValue
	A.1.110 getFieldViewDisplayValue()
	A.1.111 getFieldViewValue()
	A.1.112 getFreeMemory()
	A.1.113 getHelpPage
	A.1.114 getOptionListSize
	A.1.115 getParentValue()
	A.1.116 getRequiredMsg()
	A.1.117 getTextFile()
	A.1.118 getTotalMemory()
	A.1.119 getUserValue()
	A.1.120 getValue()
	A.1.121 getValueForSpecifiedUser()
	A.1.122 getViewValue()
	A.1.123 getViewValueResultSet()
	A.1.124 hasAppRights()
	A.1.125 HasExternalUsers
	A.1.126 HasLocalCopy
	A.1.127 hasOptionList
	A.1.128 HasOriginal
	A.1.129 HasPredefinedAccounts
	A.1.130 HasUrl
	A.1.131 HeavyClient
	A.1.132 HelpDir
	A.1.133 htmlRefreshTimeout
	A.1.134 htmlRefreshUrl
	A.1.135 HttpAbsoluteCgiPath
	A.1.136 HttpAdminCgiPath
	A.1.137 HttpBrowserFullCgiPath
	A.1.138 HttpCgiPath
	A.1.139 HttpCommonRoot
	A.1.140 HttpEnterpriseCgiPath
	A.1.141 HttpHelpRoot
	A.1.142 HttpImagesRoot
	A.1.143 HttpLayoutRoot
	A.1.144 HttpRelativeAdminRoot
	A.1.145 HttpRelativeWebRoot
	A.1.146 HttpServerAddress
	A.1.147 HttpSharedRoot
	A.1.148 HttpSystemHelpRoot
	A.1.149 HttpWebRoot
	A.1.150 HTTP_ACCEPT
	A.1.151 HTTP_ACCEPT_ENCODING
	A.1.152 HTTP_ACCEPT_LANGUAGE
	A.1.153 HTTP_COOKIE
	A.1.154 HTTP_HOST
	A.1.155 HTTP_INTERNETUSER
	A.1.156 HTTP_REFERER
	A.1.157 HTTP_USER_AGENT
	A.1.158 idocTestForInclude()
	A.1.159 inc()
	A.1.160 incDynamicConversionByRule()
	A.1.161 incGlobal()
	A.1.162 include
	A.1.163 incTemplate()
	A.1.164 indexerSetCollectionValue()
	A.1.165 InstanceDescription
	A.1.166 isActiveTrace()
	A.1.167 isCheckin
	A.1.168 IsCheckinPreAuthed
	A.1.169 isComponentEnabled
	A.1.170 IsContributor
	A.1.171 IsCriteriaSubscription
	A.1.172 IsCurrentNav
	A.1.173 isDocPage
	A.1.174 IsDynamic
	A.1.175 IsDynamicConverterEnabled
	A.1.176 isEditMode
	A.1.177 IsEditRev
	A.1.178 isExcluded
	A.1.179 IsExternalUser
	A.1.180 IsFailedConversion
	A.1.181 IsFailedIndex
	A.1.182 sawflies()
	A.1.183 is Field Excluded
	A.1.184 isFieldHidden
	A.1.185 isFieldInfoOnly
	A.1.186 isFieldMemo
	A.1.187 IsFilePresent
	A.1.188 isFormSubmit
	A.1.189 IsFullTextIndexed
	A.1.190 isHidden
	A.1.191 isInfo
	A.1.192 isInfoOnly
	A.1.193 IsIntranetAuthOnly
	A.1.194 IsJava
	A.1.195 isLayoutEnabled()
	A.1.196 isLinkActive
	A.1.197 IsLocalSearchCollectionID
	A.1.198 IsLoggedIn
	A.1.199 IsMac
	A.1.200 IsMaxRows
	A.1.201 isMultiOption
	A.1.202 IsMultiPage
	A.1.203 isNew
	A.1.204 IsNotLatestRev
	A.1.205 IsNotSyncRev
	A.1.206 IsOverrideFormat
	A.1.207 IsPageDebug
	A.1.208 IsPromptingForLogin
	A.1.209 IsProxiedServer
	A.1.210 isQuery
	A.1.211 isRelocated
	A.1.212 IsRequestError
	A.1.213 isRequired
	A.1.214 IsSavedQuery
	A.1.215 IsSoap
	A.1.216 isStrictList
	A.1.217 IsSubAdmin
	A.1.218 IsSun
	A.1.219 IsSysManager
	A.1.220 isTrue()
	A.1.221 isUpdate
	A.1.222 isUploadFieldScript
	A.1.223 IsUploadSockets
	A.1.224 IsUserEmailPresent
	A.1.225 isUserOverrideSet()
	A.1.226 isValidateFile()
	A.1.227 isVerboseTrace
	A.1.228 IsWindows
	A.1.229 IsWorkflow
	A.1.230 IsXml
	A.1.231 isZoneSearchField
	A.1.232 js()
	A.1.233 jsFilename()
	A.1.234 Json
	A.1.235 lastEntryTs
	A.1.236 lc()
	A.1.237 lcCaption()
	A.1.238 LmDefaultLayout()
	A.1.239 LmDefaultSkin()
	A.1.240 lmGetLayout()
	A.1.241 lmGetSkin()
	A.1.242 loadCollectionInfo()
	A.1.243 loadDocMetaDefinition()
	A.1.244 loadDocumentProfile()
	A.1.245 loadEnterpriseSearchCollections
	A.1.246 loadEnterpriseSearchResults
	A.1.247 loadSchemaData()
	A.1.248 loadSearchOperatorTables()
	A.1.249 loadUserMetaDefinition()
	A.1.250 LocalGroupServer
	A.1.251 localPageType
	A.1.252 MajorRevSeq
	A.1.253 MaxCollectionSize
	A.1.254 maxLength
	A.1.255 MinorRevSeq
	A.1.256 MSIE
	A.1.257 MultiUpload
	A.1.258 NoMatches
	A.1.259 noMCPrefill
	A.1.260 NotificationQuery
	A.1.261 OneMatch
	A.1.262 optionListKey
	A.1.263 optionListName
	A.1.264 optionListResultSet
	A.1.265 optionListScript
	A.1.266 optionListValueInclude
	A.1.267 optionsAllowPreselect
	A.1.268 optList()
	A.1.269 PageParent
	A.1.270 parseDataEntryDate()
	A.1.271 parseDate
	A.1.272 parseDateWithPattern()
	A.1.273 PATH_INFO
	A.1.274 PATH_TRANSLATED
	A.1.275 pneNavigation()
	A.1.276 proxiedBrowserFullCgiWebUrl
	A.1.277 proxiedCgiWebUrl
	A.1.278 QUERY_STRING
	A.1.279 regexMatches()
	A.1.280 regexReplaceAll()
	A.1.281 regexReplaceFirst()
	A.1.282 REMOTE_ADDR
	A.1.283 REMOTE_HOST
	A.1.284 REQUEST_METHOD
	A.1.285 requiredMsg
	A.1.286 ResultsTitle
	A.1.287 rptDisplayMapValue()
	A.1.288 rs()
	A.1.289 rsAddFields()
	A.1.290 rsAddFieldsWithDefaults()
	A.1.291 rsAddRowCountColumn()
	A.1.292 rsAppend()
	A.1.293 rsAppendNewRow()
	A.1.294 rsAppendRowValues()
	A.1.295 rsCopyFiltered()
	A.1.296 rsCreateReference()
	A.1.297 rsCreateResultSet()
	A.1.298 rsDeleteRow()
	A.1.299 rsDocInfoRowAllowDisclosure()
	A.1.300 rsExists()
	A.1.301 rsFieldByIndex()
	A.1.302 rsFieldExists()
	A.1.303 rsFindRowPrimary()
	A.1.304 rsFirst()
	A.1.305 rsInsertNewRow()
	A.1.306 rsIsRowPresent()
	A.1.307 rsLoopInclude()
	A.1.308 rsLoopSingleRowInclude()
	A.1.309 rsMakeFromList()
	A.1.310 rsMakeFromString()
	A.1.311 rsMerge()
	A.1.312 rsMergeDelete()
	A.1.313 rsMergeReplaceOnly()
	A.1.314 rsNext()
	A.1.315 rsNumFields()
	A.1.316 rsNumRows()
	A.1.317 rsRemove()
	A.1.318 rsRename()
	A.1.319 rsRenameField()
	A.1.320 rsSetRow()
	A.1.321 rsSort()
	A.1.322 rsSortTree()
	A.1.323 SafeDir
	A.1.324 SCRIPT_NAME
	A.1.325 SelfRegisteredAccounts
	A.1.326 SelfRegisteredRoles
	A.1.327 SERVER_NAME
	A.1.328 SERVER_PORT
	A.1.329 SERVER_PROTOCOL
	A.1.330 SERVER_SOFTWARE
	A.1.331 setContentType()
	A.1.332 setCookie
	A.1.333 setExpires()
	A.1.334 setHttpHeader()
	A.1.335 setMaxAge()
	A.1.336 setResourceInclude()
	A.1.337 setValue()
	A.1.338 SharedWeblayoutDir
	A.1.339 SingleGroup
	A.1.340 SourceID
	A.1.341 StatusCode
	A.1.342 StatusMessage
	A.1.343 stdSecurityCheck()
	A.1.344 strCenterPad()
	A.1.345 strCommaAppendNoDuplicates()
	A.1.346 strConfine()
	A.1.347 StrConfineOverflowChars
	A.1.348 strEquals()
	A.1.349 strEqualsIgnoreCase()
	A.1.350 strGenerateRandom()
	A.1.351 strIndexOf()
	A.1.352 strLeftFill()
	A.1.353 strLeftPad()
	A.1.354 strLength()
	A.1.355 strLower()
	A.1.356 strRemoveWs()
	A.1.357 strReplace()
	A.1.358 strReplaceIgnoreCase()
	A.1.359 strRightFill()
	A.1.360 strRightPad()
	A.1.361 strSubstring()
	A.1.362 strTrimWs()
	A.1.363 strUpper()
	A.1.364 SysAdminAddress
	A.1.365 TemplateClass
	A.1.366 TemplateFilePath
	A.1.367 TemplateName
	A.1.368 TemplateType
	A.1.369 toInteger()
	A.1.370 trace()
	A.1.371 UploadApplet
	A.1.372 url()
	A.1.373 urlEscape7Bit()
	A.1.374 UseHtmlOrTextHighlightInfo
	A.1.375 UserAccounts
	A.1.376 UserAddress
	A.1.377 UserAppRights
	A.1.378 UserDefaultAccount
	A.1.379 UserFullName
	A.1.380 userHasAccessToAccount()
	A.1.381 userHasGroupPrivilege()
	A.1.382 userHasRole()
	A.1.383 UserIsAdmin
	A.1.384 UserLanguageID
	A.1.385 UserLocaleId
	A.1.386 UserName
	A.1.387 UserRoles
	A.1.388 UseSelfRegistration
	A.1.389 UseSSL
	A.1.390 UseXmlUrl
	A.1.391 utGetValue()
	A.1.392 utLoad()
	A.1.393 utLoadDocumentProfiles()
	A.1.394 utLoadResultSet()
	A.1.395 valueStyle
	A.1.396 WebProxyAdminServer
	A.1.397 wfAction
	A.1.398 wfAddActionHistoryEvent()
	A.1.399 wfAdditionalExitCondition
	A.1.400 wfAddUser()
	A.1.401 wfComputeStepUserList()
	A.1.402 wfCurrentGet()
	A.1.403 wfCurrentSet()
	A.1.404 wfCurrentStep()
	A.1.405 wfDisplayCondition()
	A.1.406 wfExit()
	A.1.407 wfGet()
	A.1.408 wfGetStepTypeLabel
	A.1.409 wfIsFinishedDocConversion()
	A.1.410 wfIsNotificationSuppressed()
	A.1.411 wfIsReleasable()
	A.1.412 wfJumpEntryNotifyOff
	A.1.413 wfJumpMessage
	A.1.414 wfJumpName
	A.1.415 wfJumpReturnStep
	A.1.416 wfJumpTargetStep
	A.1.417 wfLoadDesign()
	A.1.418 wfMailSubject
	A.1.419 wfMessage
	A.1.420 wfNotify()
	A.1.421 wfParentList
	A.1.422 wfReleaseDocument
	A.1.423 wfSet()
	A.1.424 wfSetSuppressNotification()
	A.1.425 WfStart
	A.1.426 wfUpdateMetaData()
	A.1.427 xml()

	B Building a Website
	B.1 Planning a Website
	B.1.1 The Web Layout
	B.1.2 Defining the Site Structure and Displaying Criteria
	B.1.3 Task Sequence

	B.2 Working with Web Pages
	B.3 Managing Web Pages
	B.3.1 Adding a New Web Page
	B.3.2 Editing Web Page Properties
	B.3.3 Creating a Local Page Link
	B.3.4 Creating an External URL Link
	B.3.5 Editing a Hierarchical Web Page Structure

	B.4 Working with Reports
	B.4.1 About Reports
	B.4.2 Defining an Active Report
	B.4.3 Defining a Historical Report
	B.4.4 Editing a Query Expression in an Active Report

	B.5 Writing Queries
	B.5.1 Custom Query Expressions
	B.5.2 Creating a Query Link
	B.5.3 Editing the Query Expression in a Query Link
	B.5.4 Adding a Query Results Page
	B.5.5 Editing a Query Results Page
	B.5.6 Deleting a Query Results Page

	C Annotations XML Structure
	C.1 Changes to Annotations XML Structure
	C.2 Annotations Security

	D Troubleshooting
	D.1 About Troubleshooting Aids
	D.2 Viewing Server Errors
	D.3 Viewing Page Data
	D.4 Monitoring Resource Loading

