
Oracle® Fusion Middleware
Developing Scripts for Oracle WebCenter
Enterprise Capture

12c (12.2.1.4.0)
E95386-02
May 2021

Oracle Fusion Middleware Developing Scripts for Oracle WebCenter Enterprise Capture, 12c (12.2.1.4.0)

E95386-02

Copyright © 2013, 2021, Oracle and/or its affiliates.

Primary Author: Puneeta Bharani

Contributors: Oracle WebCenter development, product management, and quality assurance teams

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience x

Documentation Accessibility x

Related Documents x

Conventions x

1 Introduction to Developing Scripts with Oracle WebCenter
Enterprise Capture

Developing Scripts with WebCenter Enterprise Capture 1-1

2 Integrating the Client With Other Web Applications

Configuring a Client Integration 2-1

Example Client Integration URL 2-3

3 Creating Client Scripts

Client Events 3-1

AttachmentCreated 3-2

AttachmentRemoved 3-2

AttachmentSelected 3-2

BatchScanBegin 3-3

BatchScanComplete 3-3

BatchSelected 3-3

CaptureImage 3-3

CaptureInitialize 3-3

DBSearchComplete 3-4

DBSearchResults 3-4

DBSearchStart 3-4

DocumentCreated 3-4

DocumentRemoved 3-4

DocumentSelected 3-5

iii

FieldGotFocus 3-5

FieldLostFocus 3-5

FieldProcessKey 3-5

InitializeFields 3-5

PageCreated 3-5

PreBatchDelete 3-6

PreBatchScan 3-6

PreCaptureImage 3-6

PreDocumentProfileChange 3-6

DocumentProfileChanged 3-6

PreDownloadItem 3-7

PrePageDelete 3-7

PreReleaseBatch 3-7

PreUploadItem 3-7

PostCaptureImage 3-7

PostDownloadItem 3-8

PostUploadItem 3-8

RegionSelected 3-8

ScriptStart 3-8

Event Classes 3-8

AttachmentCreatedEvent 3-9

AttachmentRemoveEvent 3-9

AttachmentSelectedEvent 3-9

BatchDeleteEvent 3-9

BatchScanEvent 3-10

BatchSelectedEvent 3-10

DBSearchEvent 3-10

DocumentRemoveEvent 3-11

DocumentSelectedEvent 3-11

PreDocumentProfileChangeEvent 3-11

DocumentProfileChangedEvent 3-12

DownloadItemEvent 3-12

FieldEvent 3-12

ImageCaptureEvent 3-13

InitializeFieldsEvent 3-13

PageCreatedEvent 3-14

PageDeleteEvent 3-14

RegionSelectedEvent 3-14

ReleaseBatchEvent 3-14

UploadItemEvent 3-15

Capture Client Core Classes 3-15

iv

AttachmentType 3-16

AttachmentTypes 3-16

BarcodeInfo 3-16

CaptureAttachment 3-18

CaptureAttachments 3-18

CaptureBatch 3-18

CaptureBatchStatus 3-19

CaptureDataType 3-19

CaptureDocument 3-19

CaptureDocumentPage 3-20

CaptureDocumentPages 3-20

CaptureDocuments 3-20

CaptureErrorManager 3-20

CaptureField 3-21

CaptureFields 3-21

CaptureItem 3-22

CaptureItems 3-22

CaptureOperation 3-22

CaptureStateManager 3-23

CaptureWorkspace 3-23

ClientProfile 3-24

ClientReleaseProcess 3-26

ClientReleaseProcesses 3-26

ClientUI 3-27

DBLookupProfile 3-29

DBLookupResult 3-30

DbSearchResultRow 3-31

DbSearchFieldInfo 3-31

DocumentType 3-31

DocumentTypes 3-31

FieldDefinition 3-32

FieldDefinitions 3-32

ImageCaptureEngine 3-32

MicrInfo 3-33

Source 3-33

TWAINSource 3-45

Capture Client FieldEdit Classes 3-45

DataField 3-45

DateField 3-46

FloatField 3-46

IntegerField 3-46

v

PicklistEntry 3-46

PicklistField 3-47

TextField 3-47

Sample Client Scripts 3-47

Sample Client Script 1 3-47

Sample Client Script 2 3-50

Sample Client Script 3 3-51

4 Creating Recognition Processor Scripts

Recognition Processor Methods 4-1

initialize 4-2

processBatch 4-2

restoreCaptureBatch 4-3

beginPhase 4-3

endPhase 4-4

extractBatchItem 4-4

barcodesFoundOnItem 4-4

batchItemAllValidBarcodes 4-5

determineSeparatorPage 4-5

batchItemValidBarcode 4-6

determineDocType 4-6

beginDatabaseLookup 4-7

determineIndexValues 4-7

renameOrigCaptureDocTitle 4-7

createCaptureDoc 4-8

postProcess 4-8

endBatchProcess 4-9

Recognition Processor Classes 4-9

BarcodeDefinition 4-9

DocumentDefinition 4-10

PostProcessContext 4-10

ProcessorAttachment 4-11

ProcessorDocument 4-12

ProcessorItem 4-13

ProcessSeparatorPage 4-13

RecognitionJob 4-13

RecognitionJobField 4-18

RecognitionProcessorContext 4-18

SeparatorDefinition 4-21

SeparatorRuleDefinition 4-21

vi

Sample Recognition Processor Script 4-21

5 Creating Import Processor Scripts

Import Processor Events 5-1

preProcess 5-2

process 5-2

postProcess 5-2

preCreateBatch 5-2

postCreateBatch 5-2

preCreateDocument 5-3

postCreateDocument 5-3

preImportFile 5-3

postImportFile 5-3

preRelease 5-3

postRelease 5-4

preDatabaseSearch 5-4

processDatabaseSearchResults 5-4

Email Source Events 5-4

deleteMessage 5-5

moveMessage 5-5

newAttachment 5-5

newMessage 5-5

Folder Source Events 5-5

deleteDocumentFile 5-6

newFolder 5-6

renameDocumentFile 5-6

List File Source Events 5-6

deleteListFile 5-7

newFolder 5-7

newListFile 5-7

newListFileLine 5-7

renameListFile 5-7

Import Processor Classes 5-8

EmailSourceContext 5-8

FolderSourceContext 5-9

ImportJob 5-9

ImportProcessorContext 5-11

ListFileSourceContext 5-12

Sample Import Processor Scripts 5-12

Sample Import Processor Script 1 5-12

vii

Sample Import Processor Script 2 5-13

6 Creating Document Conversion Processor Scripts

DocumentConverterContext Class 6-1

Document Conversion Processor Events 6-2

Initialize 6-2

preProcessBatch 6-3

postProcessBatch 6-3

preProcessDocument 6-3

postProcessDocument 6-4

preProcessAttachment 6-4

postProcessAttachment 6-4

preProcessPage 6-4

postProcessPage 6-5

preInvokeExternalProcess 6-5

postInvokeExternalProcess 6-6

Sample Document Conversion Processor Scripts 6-6

Sample Document Conversion Processor Script 1 6-6

Sample Document Conversion Processor Script 2 6-7

Sample Document Conversion Processor Script 3 6-7

7 Creating Commit Processor Scripts

CommitEventObject Class 7-1

Commit Processor Events 7-1

preCommit 7-2

preReleaseDocument 7-2

postReleaseDocument 7-2

postCommit 7-3

Sample Commit Processor Scripts 7-3

Sample Commit Processor Script 1 7-4

Sample Commit Processor Script 2 7-4

Sample Commit Processor Script 3 7-4

8 Working with Common Capture Classes

Common Capture Classes 8-1

BatchEntity 8-1

BatchItemEntity 8-2

BatchLockEntity 8-3

BatchManagerSession 8-3

viii

BatchStatusEntity 8-14

CaptureWorkspaceEntity 8-14

DBSearchResults 8-14

DBSearchResultRow 8-15

DBSearchFieldInfo 8-15

DocumentEntity 8-15

DocumentPageEntity 8-16

DocumentTypeEntity 8-16

IndexDefinitionEntity 8-16

IndexValue 8-17

A Keycodes

ix

Preface

This guide contains information to develop scripts to customize Oracle WebCenter
Enterprise Capture components.

Audience
This guide is intended for developers responsible for customizing Oracle WebCenter
Enterprise Capture functionality.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
The complete Oracle WebCenter Content documentation set is available
from the Oracle Help Center at http://www.oracle.com/pls/topic/lookup?
ctx=fmw122140&id=wcc-books.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms defined in
text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder
variables for which you supply particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that appears
on the screen, or text that you enter.

Preface

x

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=fmw122140&id=wcc-books
http://www.oracle.com/pls/topic/lookup?ctx=fmw122140&id=wcc-books

Convention Meaning

getter/setter pattern Getter/setter pattern indicates properties that uses this
pattern. For example, to access the title property of the
Document class from code use the following:

title = document.getTitle();

Preface

xi

1
Introduction to Developing Scripts with
Oracle WebCenter Enterprise Capture

This chapter provides an introduction to developing scripts for Oracle WebCenter
Enterprise Capture.
A script is a custom piece of code consumed by the Capture client or a batch
processor (Import or Recognition) that allows you to customize functionality beyond
existing configuration settings. For example, you might incorporate a script to change
the first letter of a name to uppercase or to use a proprietary calculation to validate an
account number used in a transaction.

For scripting, Capture uses the JavaScript script engine included with the Java
Runtime Environment. Refer to the Oracle Java documentation for more information.

Scripts can be incorporated in the following Capture components:

• Client

Client Scripts are JavaScript modules that enable you to customize the behavior
of certain client events. To use one or more scripts in a client profile, a workspace
manager selects and orders them in an extension profile.

• Recognition Processor

Recognition Processor scripts allow you to customize the behavior of certain
recognition job events.

• Import Processor

Import Processor scripts allow you to customize the behavior of certain import job
events.

For more information on incorporating scripts in Capture, see Managing Oracle
WebCenter Enterprise Capture.

Developing Scripts with WebCenter Enterprise Capture
The following are the main steps for developing and incorporating scripts in Capture
components:

1. For each Capture component, write the JavaScript using the events and classes.
For more information, refer to the following component's chapter:

• Creating Client Scripts

• Creating Recognition Processor Scripts

• Creating Import Processor Scripts

2. On the Advanced tab of a selected workspace in the WebCenter Enterprise
Capture Workspace Console, a workspace manager adds the script by identifying
its component type and loading the script file.

For more information, see Managing Oracle WebCenter Enterprise Capture.

1-1

3. In a client profile or an import or Recognition Processor job, the workspace
manager then selects the script for use.

Note that workspace managers can incorporate multiple client scripts in a client
profile and specify the order in which they are executed. For more information, see
Managing Oracle WebCenter Enterprise Capture.

Chapter 1
Developing Scripts with WebCenter Enterprise Capture

1-2

2
Integrating the Client With Other Web
Applications

This chapter discusses how a web application can launch and communicate with the
Capture Client.
The web application invokes the Capture Client through a Uniform Resource Locator
(URL). Parameters such as the workspace, capture source, client profile, document
profile, and optional metadata values are passed within the URL.

For example, you might add a Scan button to a line of business web application. After
completing business application entry fields, the user clicks Scan. The Capture Client
window displays to the user and Capture immediately begins scanning a document
using a specified scanner and settings in the client profile specified in the URL.
After scanning, the document is displayed in the document pane. Metadata fields are
automatically populated with user entries, which were passed in the URL. The user
reviews the document and completes other metadata fields, then releases the batch,
scans additional batches, or closes the Capture Client.

When a web application launches the URL, the Capture Client starts and prompts the
user to log in. After logged in, the Capture Client uses the parameters, accordingly. If
the Capture Client is already running when a web application launches the URL, the
parameters will be passed to the already running instance of the Capture Client.

Configuring a Client Integration
To configure an integration between a web application and the Capture Client:

1. In the web application, add a launching point, such as a Scan button, from which
to activate the client.

2. Configure the URL and its parameters.

Parameters are listed and described in Table 2-1.

See the example integration configuration in Example Client Integration Web
Address.

Note:

In 12c, client users always have to login to the Capture Client because
the Client does not run within a browser.

Table 2-1 Client Integration URL Parameters

Parameter Description

CaptureWorkspace Specifies the workspace to which to capture
documents.

2-1

Table 2-1 (Cont.) Client Integration URL Parameters

Parameter Description

ClientProfile Optionally specifies the client profile with which to
capture documents. If you specify a profile, the Client
Profile field does not display in the client's batch
pane. If no profile is specified, the client uses the
client profile that was last used by the user on the
system.

CaptureDriver Specifies the driver to use to capture documents.

• For importing, specify
CAPTURE_IMPORT_DRIVER.

• For TWAIN scanning, specify
CAPTURE_TWAIN_DRIVER.

If neither driver ID or source name are specified, the
last used driver and source are used.

CaptureSource Specify the source to use to capture documents,
based on the selected CaptureDriver.

• For importing, specify Import Source.
• For TWAIN scanning, specify the scanner name.

This is the same scanner name as identified in
the client's Capture Source options.

If neither driver ID or source name are specified, the
client uses the driver and source that were last used
by the user on the system.

SignOutOnRelease Specify whether the business user is signed out of
Capture after releasing a batch.

• If you specify false or 0 (default), the user
remains signed in after releasing a batch by
clicking the Release button.

• If you specify true or 1, the user is signed out
after a batch is released.

SignOutOnClose Specify whether the user is signed out of Capture
after closing the window. This setting governs
whether user will be signed out or not when the
Capture client is closed.
• If you specify false or 0, the user remains

signed in the browser application (from where
the capture client was launched) after closing the
Capture client window.

• If you specify true or 1 (default), the user is
signed out by redirecting the user to the logout
URL in the browser application (from where the
capture client was launched).

ShowAllBatches Specifies if batches display in a list to client users in
the batch pane.

• If you specify false or 0 (default), the batch
list is initially empty and only shows batches
scanned during the session.

• If you specify true or 1, the batch list shows all
the batches the user is allowed to see.

Chapter 2
Configuring a Client Integration

2-2

Table 2-1 (Cont.) Client Integration URL Parameters

Parameter Description

DocumentProfile Specifies the document profile for users to use to
index documents.

• If you specify a document profile, the Document
Profile field does not display in the client's
metadata pane.

• If no profile is specified, the client uses the
document profile that was last used by the user
on the system.

Other Any other characters included in the URL are
assumed to be a metadata names and values.

When specifying date values for Capture metadata
fields having a Field Type as Date, the date must
be in the Coordinated Universal Time (UTC) format,
yyyy-MM-ddTHH:mm:ssZ.

Example Client Integration URL
Here is an example URL. (Note that this URL should be all on one line.)

oraclecapture://
CaptureWorkspace=Accounting&ClientProfile=Import%20Invoices&CaptureDriver=
CAPTURE_IMPORT_DRIVER&CaptureSource=Import%20Source&SignOutOnRelease=1&Com
pany=MyCompany&Dept=Accounting&Invoice%20Date=2015-08-04T12:00:00Z

This URL configures the client integration as follows:

• CaptureWorkspace=Accounting - Specifies Accounting as the workspace to which
to capture documents.

• ClientProfile=Import Invoices - Specifies Import Invoices as the client profile
to use.

• CaptureDriver=CAPTURE_IMPORT_DRIVER - Specifies
CAPTURE_IMPORT_DRIVER as the capture source for importing.

• CaptureSource=Import Source - Specifies Import Source as the capture source.

• SignOutOnRelease=1 - Specifies that the user is signed out after releasing a batch.

• Company=MyCompany - Passes a value of MyCompany for the Company metadata
field.

• Dept=Accounting - Passes a value of Accounting for the Dept metadata field.

• Invoice%20Date=2015-08-04T12:00:00Z - Passes a date and time value as
August 4, 2015 at 12 noon UTC time for the Invoice Date metadata field.

Chapter 2
Configuring a Client Integration

2-3

3
Creating Client Scripts

This chapter describes the various events and classes that can be used to create
scripts for Capture client.
Capture enables you to create custom scripts to suit your business requirements.
Scripts provide hooks into client events. You can create a client script that gets
executed when certain Capture client events are triggered.

Extensions allow you to customize client scripts. You can write and incorporate
JavaScript extensions to extend Capture functionality. For more information on
JavaScript extensions, see Managing Oracle WebCenter Enterprise Capture.

This chapter includes the following sections:

• Client Events

• Event Classes

• Capture Client Core Classes

• Capture Client FieldEdit Classes

• Sample Client Scripts

Client Events
Client scripts are JavaScript modules that enable you to customize the behavior of
certain client events.

This section describes the following events:

• AttachmentCreated

• AttachmentRemoved

• AttachmentSelected

• BatchScanBegin

• BatchScanComplete

• BatchSelected

• CaptureImage

• CaptureInitialize

• DBSearchComplete

• DBSearchResults

• DBSearchStart

• DocumentCreated

• DocumentRemoved

• DocumentSelected

3-1

• FieldGotFocus

• FieldLostFocus

• FieldProcessKey

• InitializeFields

• PageCreated

• PreBatchDelete

• PreBatchScan

• PreCaptureImage

• PreDocumentProfileChange

• DocumentProfileChanged

• PreDownloadItem

• PrePageDelete

• PreReleaseBatch

• PreUploadItem

• PostCaptureImage

• PostDownloadItem

• PostUploadItem

• RegionSelected

• ScriptStart

AttachmentCreated
The AttachmentCreated event occurs after an attachment has been created.

Syntax Parameter

public void
AttachmentCreated(AttachmentCreatedEvent
event);

AttachmentCreatedEvent event

AttachmentRemoved
The AttachmentRemoved event occurs after an attachment has been removed.

Syntax Parameter

public void
AttachmentRemoved(AttachmentRemoveEvent
event);

AttachmentRemoveEvent event

AttachmentSelected
The AttachmentSelected event occurs when an attachment has been selected.

Chapter 3
Client Events

3-2

Syntax Parameter

public void
AttachmentSelected(AttachmentSelectedEvent
event);

AttachmentSelectedEvent event

BatchScanBegin
The BatchScanBegin event occurs when scanning into a batch is about to begin.

Syntax Parameter

public void BatchScanBegin(BatchScanEvent
event);

BatchScanEvent event

BatchScanComplete
The BatchScanComplete event occurs when scanning into a batch is complete.

Syntax Parameter

public void BatchScanComplete(BatchScanEvent
event);

BatchScanEvent event

BatchSelected
The BatchSelected event occurs when a batch has been selected.

Syntax Parameter

public void BatchSelected(BatchSelectedEvent
event);

BatchScanEvent event

CaptureImage
The CaptureImage event occurs when an image is about to be captured from the scan
source.

Syntax Parameter

public void CaptureImage(ImageCaptureEvent
event);

ImageCaptureEvent event

CaptureInitialize
The CaptureInitialize event occurs prior to images being captured, and it can be used
to initialize properties of the Capture source.

Chapter 3
Client Events

3-3

Syntax Parameter

public void
CaptureInitialize(ImageCaptureEvent event);

ImageCaptureEvent event

DBSearchComplete
The DBSearchComplete event occurs when the database search is completed and
before the results are being processed.

Syntax Parameter

public void DBSearchComplete(DBSearchEvent
event);

DBSearchEvent event

DBSearchResults
The DBSearchResults event occurs as database search results are being processed.

Syntax Parameter

public void DBSearchResults(DBSearchEvent
event);

DBSearchEvent event

DBSearchStart
The DBSearchStart event occurs just before a database search.

Syntax Parameter

public void DBSearchStart(DBSearchEvent
event);

DBSearchEvent event

DocumentCreated
The DocumentCreated event occurs after a document has been created.

Syntax Parameter

public void DocumentCreated(CaptureDocument
document);

CaptureDocument document

DocumentRemoved
The DocumentRemoved event occurs after a document has been removed.

Syntax Parameter

public void
DocumentRemoved(DocumentRemoveEvent event);

DocumentRemoveEvent event

Chapter 3
Client Events

3-4

DocumentSelected
The DocumentSelected event occurs when a document has been selected.

Syntax Parameter

public void
DocumentSelected(DocumentSelectedEvent
event);

DocumentSelectedEvent event

FieldGotFocus
The FieldGotFocus event occurs when a metadata field receives the input focus.

Syntax Parameter

public void FieldGotFocus(FieldEvent event); FieldEvent event

FieldLostFocus
The FieldLostFocus event occurs when a field has lost the input focus.

Syntax Parameter

public void FieldLostFocus(FieldEvent event); FieldEvent event

FieldProcessKey
The FieldProcessKey event occurs when a key event happens while the focus is in a
metadata field.

Syntax Parameter

public void FieldProcessKey(FieldEvent
event);

FieldEvent event

InitializeFields
The InitializeFields event occurs before the dataFields model is initialized.

Syntax Parameter

public void
InitializeFields(InitializeFieldsEvent event)

InitializeFieldsEvent event

PageCreated
The PageCreated event occurs when a page is being added to a document.

Chapter 3
Client Events

3-5

Syntax Parameter

public void PageCreated(PageCreatedEvent
event);

PageCreatedEvent event

PreBatchDelete
The PreBatchDelete event occurs when a batch is about to be deleted.

Syntax Parameter

public void PreBatchDelete(BatchDeleteEvent
event);

BatchDeleteEvent event

PreBatchScan
The PreBatchScan event occurs before a batch is about to be scanned.

Syntax Parameter

public void PreBatchScan(BatchScanEvent
event);

BatchScanEvent event

PreCaptureImage
The PreCaptureImage event occurs before an image has been captured from the scan
source.

Syntax Parameter

public void PreCaptureImage(ImageCaptureEvent
event);

ImageCaptureEvent event

PreDocumentProfileChange
The PreDocumentProfileChange event occurs when a document profile is about to
change.

Syntax Parameter

public void
PreDocumentProfileChange(PreDocumentProfileCh
angeEvent event);

PreDocumentProfileChangeEvent
event

DocumentProfileChanged
The DocumentProfileChanged event occurs after a document profile is changed.

Chapter 3
Client Events

3-6

Syntax Parameter

public void
DocumentProfileChanged(DocumentProfil
eChangedEvent event);

DocumentProfileChangedEvent event

PreDownloadItem
The PreDownloadItem event occurs when a batch item is about to be downloaded.

Syntax Parameter

public void PreDownloadItem(DownloadItemEvent
event);

DownloadItemEvent event

PrePageDelete
The PrePageDelete event occurs when one or more pages are about to be deleted.

Syntax Parameter

public void PrePageDelete(PageDeleteEvent
event);

PageDeleteEvent event

PreReleaseBatch
The PreReleaseBatch event occurs when a batch is about to be released.

Syntax Parameter

public void PreReleaseBatch(ReleaseBatchEvent
event);

ReleaseBatchEvent event

PreUploadItem
The PreUploadItem event occurs when a batch item is about to be uploaded.

Syntax Parameter

public void PreUploadItem(UploadItemEvent
event);

UploadItemEvent event

PostCaptureImage
The PostCaptureImage event occurs after an image has been captured from the scan
source.

Syntax Parameter

public void
PostCaptureImage(ImageCaptureEvent event);

ImageCaptureEvent event

Chapter 3
Client Events

3-7

PostDownloadItem
The PostDownloadItem event occurs after a batch item has been downloaded.

Syntax Parameter

public void
PostDownloadItem(DownloadItemEvent event);

DownloadItemEvent event

PostUploadItem
The PostUploadItem event occurs after a batch item has been uploaded.

Syntax Parameter

public void PostUploadItem(UploadItemEvent
event);

UploadItemEvent event

RegionSelected
The RegionSelected event occurs when a region has been selected on a document
page.

Syntax Parameter

public void
RegionSelected(RegionSelectedEvent event);

RegionSelectedEvent event

ScriptStart
The ScriptStart event occurs when scripting is first initialized.

The syntax for this event is: public void ScriptStart();

Event Classes
An event class is used to define an event. This section describes the following event
classes:

• AttachmentCreatedEvent

• AttachmentRemoveEvent

• AttachmentSelectedEvent

• BatchDeleteEvent

• BatchScanEvent

• BatchSelectedEvent

• DBSearchEvent

• DocumentRemoveEvent

Chapter 3
Event Classes

3-8

• DocumentSelectedEvent

• PreDocumentProfileChangeEvent

• DocumentProfileChangedEvent

• DownloadItemEvent

• FieldEvent

• ImageCaptureEvent

• InitializeFieldsEvent

• PageCreatedEvent

• PageDeleteEvent

• RegionSelectedEvent

• ReleaseBatchEvent

• UploadItemEvent

AttachmentCreatedEvent
The AttachmentCreatedEvent class is used in events that occur when an attachment
has been created.

Property Type Description

attachment CaptureAttachment The attachment that has been created.

AttachmentRemoveEvent
The AttachmentRemoveEvent class is used in events that occur when a user removes
one or more attachments from a document.

Property Type Description

attachments List<CaptureAttachme
nt>

The attachments being removed from the
document.

AttachmentSelectedEvent
The AttachmentSelectedEvent class is used in events that occur when a user selects
an attachment.

Property Type Description

attachment CaptureAttachment The attachment that has been selected in the
batch pane.

BatchDeleteEvent
The BatchDeleteEvent class is used in events that occur when a user deletes a batch.

Chapter 3
Event Classes

3-9

Property Type Description

batches List<CaptureBatch> List of batches that will be deleted.

canceled boolean If set to True, the delete operation will be
canceled.

BatchScanEvent
The BatchScanEvent class is used in events that occur when a user scans a batch.

Property Type Description

batch CaptureBatch The batch that new items will be added to
during scan or import.

canceled boolean If set to True, the scan or import will be
canceled.

sourceFiles List<File> When using the Import Source, this contains
the list of files being imported.

operation CaptureOperation Indicates the operation that triggered this
event.

allowConfiguration boolean Setting this property to True in the
PreBatchScan event allows scanners to
display their configuration dialog, before the
first page is scanned.

BatchSelectedEvent
The BatchSelectedEvent class is used in events that occur when a user selects a
batch.

Property Type Description

batch CaptureBatch Batch that has been selected in the batch
pane.

DBSearchEvent
The DBSearchEvent class is used in events that occur when a user initiates a
database lookup.

Property Type Description

displayHitlist boolean If set to True, displays the database lookup
results.

exactMatch boolean If set to True, the search value must be an
exact match.

metadataID String Unique identifier of the metadata field being
searched.

metadataValue String Value of the metadata field being searched.

Chapter 3
Event Classes

3-10

Property Type Description

rowResults List<DbSearchResult
Row>

List of row results returned from the search.

canceled boolean If set to True, cancels the search.

DocumentRemoveEvent
The DocumentRemoveEvent class is used in events that occur when a user removes
a document from the batch.

Property Type Description

documents List<CaptureDocumen
t>

A list of documents being removed from the
batch.

destinationDocument CaptureDocument When removing a document separation, this
property contains the document to which all
pages are to be moved.

The following table describes the syntax for isRemove() method:

Syntax Description

public boolean isRemove() Returns True if a document separation is
being removed.

The following table describes the syntax for isDelete() method:

Syntax Description

public boolean isDelete() Returns True if the list of documents is
being deleted.

DocumentSelectedEvent
The DocumentSelectedEvent class is used in events that occur when a user selects a
document.

Property Type Description

document CaptureDocument The document that has been selected in the
batch pane.

PreDocumentProfileChangeEvent
The PreDocumentProfileChangeEvent class is used in events that occur when a user
is about to change a document profile.

Property Type Description

oldDocumentType DocumentType The previous document type or document
profile before change.

Chapter 3
Event Classes

3-11

Property Type Description

newDocumentType DocumentType The currently selected document type or
document profile.

canceled Boolean If set to true, the change will be reverted back
in the document type or profile drop-down.

DocumentProfileChangedEvent
The DocumentProfileChangedEvent class is used in events that occur when a user
has changed a document profile.

Property Type Description

documentType DocumentType The currently selected document type or
document profile.

DownloadItemEvent
The DownloadItemEvent class is used in events that occur when batch items are
downloaded from the server.

Property Type Description

captureItem CaptureItem After a batch is opened, indicates the current
item being downloaded from the server.

FieldEvent
The FieldEvent class is used in events that occur when a user enters a field, exits a
field, or types into a field.

Property Type Description

cancel Boolean If set to True, cancels the event.

field DataField The field this event is acting upon.

keyEvent KeyEvent The keyboard event used to generate this
event.

traversalDirection Integer Indicates which direction the field focus is
moving.

TRAVERSAL Constants:

• TRAVERSAL_UNDETERMINED = 0
• TRAVERSAL_FORWARD = 1
• TRAVERSAL_BACKWARD = 2
• TRAVERSAL_FORWARD_COMPONENT

= 3
• TRAVERSAL_BACKWARD_COMPONEN

T = 4

Chapter 3
Event Classes

3-12

ImageCaptureEvent
The ImageCaptureEvent class is used in events that occur when the user is capturing
an image.

Property Type Description

cancel boolean If set to True, the capture operation will be
canceled.

imageCount Integer Indicates how many images have been
captured.

imageFileName String Indicates the file name of image saved locally.

xdpi Integer For images, indicates the horizontal dots per
inch.

ydpi Integer For images, indicates the vertical dots per
inch.

brightness Integer The brightness value used to capture the
image.

contrast Integer The contrast value used to capture the image.

logicalBreak boolean If set to True, indicates the start of a
document.

sourceFiles List<File> When using the Import Source, contains the
list of files being imported.

sourceFileName String When using the Import Source, contains the
name of the source file being imported.

image BufferedImage For images files, contains a BufferedImage
object.

source ImageCaptureEngine The ImageCaptureEngine that created this
event.

imageFormat ImageCaptureEngine.I
mageFormat

Indicates the format that images will be saved
as Available Formats: tiffG4, tiffJpegGray,
tiffJpegColor, jpegGray, and jpegColor.

printerString String [] The imprinter or endorser strings printed on a
page during capture.

InitializeFieldsEvent

The InitializeFieldsEvent class is used in events that occur before the fieldedit control
is initialized on the client. You can use this class to modify or remove the DataFields
from the list.

Property Type Description

dataFields List <DataField> The list of DataFields that will be displayed to
the user.

Chapter 3
Event Classes

3-13

PageCreatedEvent
The PageCreatedEvent class is used when a page is created.

Property Type Description

page CaptureDocumentPag
e

The page that was created.

PageDeleteEvent
The PageDeleteEvent class is used when a page is being deleted.

Property Type Description

pages List<CaptureDocumen
tPage>

The list of pages being deleted. You can
modify this list to remove pages that you do
not want to delete.

canceled boolean If set to True, no pages will be deleted.

RegionSelectedEvent
The RegionSelectedEvent class is used in events that occur when a user selects a
region of the image in the viewer.

Property Type Description

mouseEvent MouseEvent The MouseEvent used to select the region
within the image.

selectionRectangle Rectangle The rectangle selected within the image.

image BufferedImage The BufferedImage containing the selected
portion of the image.

ReleaseBatchEvent
The ReleaseBatchEvent class is used in events that occur when a batch is about to
get released or unlocked.

Property Type Description

batches List<CaptureBatch> The list of batches that are about to be
released.

processorID String The unique identifier of the processor to which
the batches will get released.

jobID String The unique identifier of the processor job.

canceled boolean If the flag is set to True, the release will be
canceled.

releaseProcessName String The name of the process used to release the
batch.

Chapter 3
Event Classes

3-14

UploadItemEvent
The UploadItemEvent class is used in events that occur when batch items are
uploaded to the server.

Property Type Description

captureItem CaptureItem After a batch is released, indicates the current
item being uploaded to the server.

Capture Client Core Classes
This section describes the following Capture Client Core classes:

• AttachmentType

• AttachmentTypes

• BarcodeInfo

• CaptureAttachment

• CaptureAttachments

• CaptureBatch

• CaptureBatchStatus

• CaptureDataType

• CaptureDocument

• CaptureDocumentPage

• CaptureDocumentPages

• CaptureDocuments

• CaptureErrorManager

• CaptureField

• CaptureFields

• CaptureItem

• CaptureItems

• CaptureOperation

• CaptureStateManager

• CaptureWorkspace

• ClientProfile

• ClientReleaseProcess

• ClientReleaseProcesses

• ClientUI

• DBLookupProfile

• DBLookupResult

Chapter 3
Capture Client Core Classes

3-15

• DbSearchResultRow

• DbSearchFieldInfo

• DocumentType

• DocumentTypes

• FieldDefinition

• FieldDefinitions

• ImageCaptureEngine

• MicrInfo

• Source

• TWAINSource

AttachmentType
The AttachmentType class contains all properties of an attachment type.

Property Type Description

ID String The internal identifier for the attachment
type.

name String The name for the attachment type.

description String The description for the attachment type.

required Boolean Indicates if the attachment type is required.

AttachmentTypes
The AttachmentTypes class is a map of attachment types. It is of type
LinkedHashMap<String, AttachmentType> and the map key is the attachment type
ID. Use the LinkedHashMap methods to retrieve the attachment types from instances
of this class.

See the Java API documentation for more information on the LinkedHashMap class
and its methods.

BarcodeInfo
The BarcodeInfo class contains all the properties associated with a bar code detected
by a scanner.

Chapter 3
Capture Client Core Classes

3-16

Property Type Description

type Integer The type of the bar code.

Valid bar code types are:

• TWBT_3OF9 - 0
• TWBT_2OF5INTERLEAVED - 1
• TWBT_2OF5NONINTERLEAVED - 2
• TWBT_CODE93 - 3
• TWBT_CODE128 - 4
• TWBT_UCC128 - 5
• TWBT_CODABAR - 6
• TWBT_UPCA - 7
• TWBT_UPCE - 8
• TWBT_EAN8 - 9
• TWBT_EAN13 - 10
• TWBT_POSTNET - 11
• TWBT_PDF417 - 12
• TWBT_2OF5INDUSTRIAL - 13
• TWBT_2OF5MATRIX - 14
• TWBT_2OF5DATALOGIC - 15
• TWBT_2OF5IATA - 16
• TWBT_3OF9FULLASCII - 17
• TWBT_CODABARWITHSTARTSTOP -

18
• TWBT_MAXICODE - 19

text String The textual value of the bar code.

x Integer The horizontal location (in pixels) of the
bar code on the page. This value may be
null if the scanner does not supply this
information.

y Integer The vertical location (in pixels) of the bar
code on the page. This value may be
null if the scanner does not supply this
information.

confidence Integer The degree of certainty in the accuracy of
the bar code information. The value ranges
from 0 (no confidence) to 100 (supreme
confidence) or may be null or (-)1 if the
scanner does not supply this information.

rotation Integer The orientation of the bar code.

Valid orientations are:

• TWBCOR_ROT0 (Normal reading
orientation) - 0

• TWBCOR_ROT90 (Rotated 90
degrees clockwise) - 1

• TWBCOR_ROT180 (Rotated 180
degrees clockwise) - 2

• TWBCOR_ROT270 (Rotated 270
degrees clockwise) - 3

• TWBCOR_ROTX (The orientation is
not known) - 4

This value may be null if the scanner does
not supply this information.

Chapter 3
Capture Client Core Classes

3-17

CaptureAttachment
The CaptureAttachment class contains all properties of an attachment.

Property Type Description

attachmentType AttachmentType The type of attachment.

id String The internal identifier for the attachment.

pages CaptureDocumentPages The pages contained in the attachment.

parentDocument CaptureDocument The parent document owning this
attachment.

title String The title of the attachment.

The following table describes the syntax for persist() method:

Syntax Description

persist() throws BatchLockException,
CaptureException

Saves the attachment and related
document pages to the server.

CaptureAttachments
The CaptureAttachments class is a collection of attachments and is of type
Vector<CaptureAttachment>. Use the Vector methods to retrieve attachments from
instances of this class.

See the Java API documentation for more information on the Vector class and its
methods.

CaptureBatch
The CaptureBatch class contains all properties and operations for a batch.

Property Type Description

batchId String The internal identifier for the batch.

batchName String The name of the batch.

batchPath String The local path where information for this
batch is stored.

createdBy String The user that created the batch.

createdDate Date The date that the batch was created.

currentPriority Integer The priority assigned to the batch.

currentStatus CaptureBatchStatus The status assigned to the batch.

documents CaptureDocuments The documents contained in the batch.

items CaptureItems The items associated with the batch.

jobID String ID of the processor job. This property is
populated just before the batch is released.

lastModifiedDate Date The date that the batch was last modified.

Chapter 3
Capture Client Core Classes

3-18

Property Type Description

note String The note assigned to the batch.

processorID String ID of the processor to which the batch will
get released. This property is populated just
before the batch is released.

workspace CaptureWorkspace The workspace used to create the batch.

The following table describes the syntax for persist() method:

Syntax Description

persist() throws BatchLockException,
CaptureException

Saves the batch record to the server.

CaptureBatchStatus
The CaptureBatchStatus class contains the properties of a batch status.

Property Type Description

value String The description of the status.

id String The internal identifier of the status.

CaptureDataType
The CaptureDataType is an enumeration that defines the data types for metadata field
definitions. The following are valid Capture data types:

• NUMERIC

• ALPHA

• ALPHANUMERIC

• DATE

• FLOAT

CaptureDocument
The CaptureDocument class contains all properties of a document.

Property Type Description

documentType DocumentType The document profile assigned to the
document.

fields CaptureFields The metadata assigned to the document.

id String The internal identifier for the document.

pages CaptureDocumentPages The pages contained in the document.

parentBatch CaptureBatch The batch that contains this document.

title String The title of the document.

Chapter 3
Capture Client Core Classes

3-19

Property Type Description

attachments CaptureAttachments The attachments associated with this
document.

The following table describes the syntax for persist() method:

Syntax Description

persist() throws BatchLockException,
CaptureException

Saves the document, related document
pages, and metadata to the server.

CaptureDocumentPage
The CaptureDocumentPage class contains the properties of a document page.

Property Type Description

imageFilenameKey String The local filename for this page.

item CaptureItem The item associated with the page.

pageID String The internal identifier for the page.

pageNumber Integer The number of the page within the
document.

parentDocument CaptureDocument The document that contains this page.

CaptureDocumentPages
The CaptureDocumentPages class is a collection of document pages and is of type
Vector<CaptureDocumentPage>. Use the Vector methods to retrieve document pages
from instances of this class.

See the Java API documentation for more information on the Vector class and its
methods.

CaptureDocuments
The CaptureDocuments class is a collection of documents and is of type
Vector<CaptureDocument>. Use the Vector methods to retrieve documents from
instances of this class.

See the Java API documentation for more information on the Vector class and its
methods.

CaptureErrorManager
The CaptureErrorManager class manages what error messages are logged.

Property Type Description

logLevel Level The minimum level used to log messages.

Chapter 3
Capture Client Core Classes

3-20

The following table describes the syntax for logMessage() method:

Syntax Description

logMessage(Level level, String
message)

logMessage(Level level, String
message, Throwable errorException)

Logs a message with the specified log level.

or

Logs a message and error with the
specified log level.

The following table describes the parameters for logMessage() method:

Parameter Type Description

level Level The severity level for this log entry.

message String The message you wish to log.

errorException Throwable If logging an error, the exception that is the
cause of the error.

CaptureField
The CaptureField class contains the properties of a document metadata field.

Property Type Description

displayValue String The value to display for this field.

fieldName String The name of the field.

length Integer The maximum length of the field.

required boolean If True, this field is required to have a value.

value String The value for this field.

The following table describes the syntax for setDate() method:

Syntax Description

setDate(Date date) Sets the value of the metadata field to a
date.

The following table describes the parameters for setDate() method:

Parameter Type Description

date Date The date value to be set.

CaptureFields
The CaptureFields class is a map of metadata field definitions. It is of type
LinkedHashMap<String, CaptureField> and the map key is the field name. Use the
LinkedHashMap methods to retrieve the fields from instances of this class.

See the Java API documentation for more information on the LinkedHashMap class
and its methods.

Chapter 3
Capture Client Core Classes

3-21

CaptureItem
The CaptureItem class contains properties of an item (single image or non-image file)
associated with a document page.

Property Type Description

filename String The name of the file for this item.

parentBatch CaptureBatch The batch containing this item.

sourceFilename String If this item was imported, contains the
name of the file it was imported from.

sourceFormat String Non-image documents contains the format
of the document, which is typically the file
extension.

patchCode Integer The patch code for this item.

barcodes List<String> The bar codes for this item.

micrValue String The scanner's MICR text for this item.

endorsement String The scanner's endorsement text for this
item.

The following table describes the syntax for persist() method:

Syntax Description

persist() throws BatchLockException,
CaptureException

Saves the item to the server.

CaptureItems
The CaptureItems class is a map of Capture items. It is of type TreeMap<String,
CaptureItem> and the map key is the item filename. Use the TreeMap methods to
retrieve the items from instances of this class.

See the Java API documentation for more information on the TreeMap class and its
methods.

CaptureOperation
This is an enumeration that defines the capture operation being performed on the
batch. The following are valid Capture operation values:

• Create

• Append

• Insert

• Replace

Chapter 3
Capture Client Core Classes

3-22

CaptureStateManager
The CaptureStateManager class contains properties related to the current state of the
client. The instance of this class is available to all scripting events through the Capture
property.

Property Type Description

activeAttachment CaptureAttachment The active document attachment.

activeAttachmentPage CaptureDocumentPage The active document attachment page.

activeAttachmentType AttachmentType The active document attachment type.

activeBatch CaptureBatch The active batch.

activeDocument CaptureDocument The active document.

activeDocumentPage CaptureDocumentPage The active document page.

activeDocumentType DocumentType The active document profile.

activeProfile ClientProfile The active client profile.

applicationUserPath String The path the client uses for its application
data.

batchesPath String The path the client uses to cache batch
data.

captureSystemId String The internal identifier of the Capture system
that the client is connected to.

computerName String The name of the computer the client is
running on.

currentUser String The user currently logged into the client.

errorManager CaptureErrorManager The Error Manager object used for logging
information.

CaptureWorkspace
The CaptureWorkspace class contains all properties and operations for a workspace.

Property Type Description

id String The internal identifier associated with the
workspace.

fieldDefinitions FieldDefinitions The metadata defined for this workspace.

name String The name of the workspace.

statuses List<CaptureBatchStatus
>

A list of batch statuses available to this
workspace.

The following table describes the syntax for getDBLookupProfile() method:

Syntax Description

public DBLookupProfile
getDBLookupProfile(String profileId)
throws CaptureException

Retrieves the database lookup profile for
the given database lookup profile ID.

Chapter 3
Capture Client Core Classes

3-23

The following table describes the parameter for getDBLookupProfile() method:

Parameter Type Description

profileId String The identifier of the database lookup profile.

ClientProfile
The ClientProfile class contains the properties of a client profile as defined in the
Capture Workspace Console.

Property Type Description

alwaysDisplayHitList boolean If True, after a database lookup is executed,
the results are displayed regardless of the
number of results returned.

applyBrightness boolean If True, applies the brightness and contrast
settings to the selected Capture source.

batchFilterDaysOldFro
m

Integer A batch filter setting that specifies the
minimum days old a batch can be.

batchFilterDaysOldTo Integer A batch filter setting that specifies the
maximum days old a batch can be.

batchFilterPrimarySort
Field

String The batch property used for the primary
sort of the batches tree.

batchFilterPrimarySort
Order

SortOrder The primary sort order for the batches tree.

batchFilterSecondary
SortField

String The batch property used for the secondary
sort of the batches tree.

batchFilterSecondary
SortOrder

SortOrder The secondary sort order for the batches
tree.

batchFilterState Integer The batch states to include in the batch
filter.

batchPrefix String The batch prefix to use for batches created
using this profile.

batchVisibility BatchVisibility A batch filter setting that specifies when a
user sees the batch in the batches tree.

blankByteThreshold long If the number of bytes in the file size of an
image is less than the blankByteThreshold,
the page is considered to be a blank page.

brightness Integer The brightness to apply to the selected
Capture source.

captureType CaptureType Indicates whether the profile is capture-only,
capture and index, or index-only.

contrast Integer The contrast to apply to the selected
Capture source.

dBLookupMaxRecord
s

Integer The maximum number of records to return
from a database lookup.

dBLookupProfileId String The unique identifier of the database lookup
profile used by this profile.

defaultColor ColorType The default color type used during capture.

Chapter 3
Capture Client Core Classes

3-24

Property Type Description

defaultDpi Integer The default DPI to use during capture.

defaultPriority Integer A batch created from this profile will be
assigned this priority.

defaultStatusId String A batch created from this profile will be
assigned this status.

description String The description for the profile.

documentCreationTyp
e

DocumentCreationType Specifies how many pages are created per
document at capture time.

documentTypes DocumentTypes An object containing the document profiles
that this profile can assign to a batch.

id String The identifier associated with this profile.

maxPages Integer The non-image file preview page limit.

name String The name of the profile.

nonImageAction NonImageAction The action to take for non-image files.

nonImageDpi int For client profiles having a nonImageAction
property of type CONVERT, this property
contains the image DPI for non-image files.

nonImageFormat String For client profiles having a nonImageAction
property of type CONVERT, this property
contains the image format for non-image
files. This value will be either TIFF_BW or
JPEG.

nonImageJpegQuality int For client profiles having a nonImageAction
property of type CONVERT and a
nonImageFormat value of JPEG, this
property contains the JPEG image quality
for non-image files.

picklistRelationshipPro
file

String The dependent choice list used by this
profile.

prefixes List<String> The batch prefixes used in the batch filter.

preventDefaultColorOv
erride

boolean If True, the color cannot be overridden.

preventDefaultDpiOver
ride

boolean If True, the dpi cannot be overridden.

priorities List<Integer> The batch priorities used in the batch filter.

sepByteThreshold Integer If the number of bytes in the file size of an
image is less than the sepByteThreshold,
the page is considered to be a separator
sheet.

statuses List<String> The batch statuses used in the batch filter.

supportedDocumentTy
pes

List<String> A list of document profile identifiers which
represent the document profiles that this
profile can assign to a batch.

workspaceId String The unique identifier of the workspace in
which this profile is associated.

Chapter 3
Capture Client Core Classes

3-25

Property Type Description

workspaceName String The name of the workspace in which this
profile is associated.

releaseProcesses ClientReleaseProcesses A list of the available client release
processes.

The following table describes the enumeration and values for the ClientProfile class:

Enumeration Value

AutoPopulateType NONE, SCANDATE, INDEXDATE,
DEFAULTVALUE, BATCHNAME,
USERID, COMPUTERNAME,
CLIENTPROFILENAME, BATCHSTATUS,
BATCHPRIORITY

BatchVisibility USER_AND_COMPUTER, USER, ALL

DocumentCreationType ONE_PAGE, TWO_PAGES,
VARIABLE_PAGES, PROMPT_USER

CaptureType CAPTURE_ONLY,
CAPTURE_AND_INDEX, INDEX_ONLY

NonImageAction DISALLOW, ALLOW, CONVERT

SortOrder ASCENDING, DESCENDING

ColorType NotSpecified, BlackAndWhite, Gray, Color

ClientReleaseProcess
The ClientReleaseProcess class contains all properties of a client release process.

Property Type Description

name String The name of the release process.

description String The description of the release process.

processorID String The processor ID of the release process.

jobID String The processor job ID of the release
process.

defaultRelease boolean Indicates if this is the default release
process.

ClientReleaseProcesses
The ClientReleaseProcesses class is a list of client release processes. It is of type
ArrayList<ClientReleaseProcess>. Use the ArrayList methods to retrieve the client
release processes from instances of this class.

See the Java API documentation for more information on the ArrayList class and its
methods.

Chapter 3
Capture Client Core Classes

3-26

ClientUI
The ClientUI class allows the user to invoke user interface related actions and can be
accessed through client scripts.

Property Type Description

batchEditForm BatchEditForm An instance of the current batch edit form.

This class includes the following methods:

• releaseBatch()

• setActiveMetadataFieldByName()

• setActiveMetadataFieldByID()

• execDBSearch()

• execDBSearch()

• selectDocument()

• refreshDocumentMetadata()

releaseBatch()

The following table describes the syntax for releaseBatch() method:

Syntax Description

public void
releaseBatch(List<CaptureBatch>
batches, String processorID, String
jobID)

Unlocks or releases a list of batches for
further processing.

The following table describes the parameters for releaseBatch() method:

Parameter Type Description

batches List<CaptureBatch> The list of batches to be released.

processorID String The unique identifier of the processor to
which the batches will get released.

jobID String The unique identifier of the processor job.

setActiveMetadataFieldByName()

The following table describes the syntax for setActiveMetadataFieldByName() method:

Syntax Description

public void
setActiveMetadataFieldByName(String
fieldName)

Moves the focus in the metadata pane to
the metadata field specified by the field
name.

The following table describes the parameter for setActiveMetadataFieldByName()
method:

Chapter 3
Capture Client Core Classes

3-27

Parameter Type Description

fieldName String The name of the metadata field to which the
focus is to be moved.

setActiveMetadataFieldByID()

The following table describes the syntax for setActiveMetadataFieldByID() method:

Syntax Description

public void
setActiveMetadataFieldByID(String
fieldID)

Moves the focus in the metadata pane to
the metadata field name specified by the
field ID.

The following table describes the parameter for setActiveMetadataFieldByID() method:

Parameter Type Description

fieldID String The unique identifier of the metadata field
to which the focus is to be moved.

execDBSearch()

The following table describes the syntax for execDBSearch() method:

Syntax Description

public void execDBSearch(String
metadataName, String metadataValue,
Boolean alwaysDisplayHitList)

Performs a database lookup for the given
metadata field name and value. This
method then updates the metadata fields in
the metadata pane with the results.

The following table describes the parameters for execDBSearch() method:

Parameter Type Description

metadataName String The name of the metadata field that is to be
looked up.

metadataValue String The value that is used to perform the
lookup.

alwaysDisplayHitList Boolean If set to True, displays the lookup results
irrespective of the number of results.

execDBSearch()

The following table describes the syntax for execDBSearch() method:

Syntax Description

public void execDBSearch(String
metadataName, String metadataValue,
Boolean alwaysDisplayHitList, Boolean
exactSearch, Integer maximumRecords)

Performs a database lookup for the given
metadata field name and value. This
method then updates the metadata fields in
the metadata pane with the results.

Chapter 3
Capture Client Core Classes

3-28

The following table describes the parameters for execDBSearch() method:

Parameter Type Description

metadataName String The name of the metadata field that is to be
looked up.

metadataValue String The value that is used to perform the
lookup.

alwaysDisplayHitList Boolean If set to True, displays the lookup results
irrespective of the number of results.

exactSearch Boolean If set to True, the result must exactly match
the value being searched. If set to False,
partial matches are also returned.

maximumRecords Integer Indicates the maximum number of records
the search returns.

selectDocument()

The following table describes the syntax for selectDocument() method:

Syntax Description

public void
selectDocument(CaptureDocument
document)

Selects the given document in the batches
tree.

The following table describes the parameters for selectDocument() method:

Parameter Type Description

document CaptureDocument The document to select.

refreshDocumentMetadata()

The following table describes the syntax for refreshDocumentMetadata() method:

Syntax Description

public void refreshDocumentMetadata() Reloads the metadata from the current
document and displays it in the metadata
pane.

DBLookupProfile
The DBLookupProfile class represents a profile for database lookup. This class
includes the following method:

execDBLookup()

The following table describes the syntax for execDBLookup() method:

Chapter 3
Capture Client Core Classes

3-29

Syntax Description

Database Lookup without sorting
DBLookupResult execDBLookup(String
searchID, String fieldID, String
value, boolean exactMatch, Integer
maxRows) throws CaptureException

Database Lookup with sorting
DBLookupResult execDBLookup(String
searchID, String fieldID,
String value, Boolean
exactMatch, String primarySortField,
Integer primarySortOrder, String
secondarySortField, Integer
secondarySortOrder, Integer maxRows)
throws CaptureException

Executes a database lookup with or without
sorting.

Sort Constants:

• SORT_ASC = 0
• SORT_DESC = 1

The following table describes the parameters for the execDBLookup() method:

Parameter Type Description

searchID String The unique identifier of the database
search defined for the database lookup
profile.

fieldID String The unique identifier of the metadata field
being searched.

value String The value being searched upon.

exactMatch Boolean If True, the value must be an exact match.

primarySortField String The field identifier used for the primary sort.

primarySortOrder Integer The sort order of the primary sort.

secondarySortField String The field identifier used for the secondary
sort.

secondarySortOrder Integer The sort order of the secondary sort.

maxRows Integer The maximum number of rows to be
returned.

DBLookupResult
The DBLookupResult class represents the result of a database lookup.

Property Type Description

searchFieldInfoList List<DbSearchFieldInfo> A list of search field information describing
the results returned by the database lookup.

searchResultRows List<DbSearchResultRo
w>

A list of search result rows returned by the
database lookup.

Chapter 3
Capture Client Core Classes

3-30

DbSearchResultRow
The DbSearchResultRow class represents one row result returned from a database
lookup.

Property Type Description

results List<String> A list of string values associated with one
search result. The values in the list will be
in the same order in which the return fields
are defined.

DbSearchFieldInfo
The DbSearchFieldInfo class represents the field information describing the results of
a database lookup.

Property Type Description

captureIndexDefID String The metadata field identifier.

dbColumnName String The name of the database column.

dbColumnType Integer The type of the database column.

captureFieldType Integer The data type of the metadata field.

DocumentType
The DocumentType class represents a document profile. A document profile dictates
what metadata fields are available to documents created from this type.

Property Type Description

fieldDefinitions FieldDefinitions The metadata applicable to the document
profile.

id String The internal identifier associated with the
document profile.

name String The name for the document profile.

description String The description for the document profile.

attachmentTypes AttachmentTypes The attachment types available to the
document profile.

DocumentTypes
The DocumentTypes class is a map of document profiles. It is of type TreeMap<String,
DocumentType> and the map key is the document profile ID. You can use the
TreeMap methods to retrieve the document profiles from instances of this class.

See the Java API documentation for more information on the TreeMap class and its
methods.

Chapter 3
Capture Client Core Classes

3-31

FieldDefinition
The FieldDefinition class represents a metadata field's definition.

Property Type Description

autoPopulateType ClientProfile.AutoPopulat
eType

Specifies how the field should be auto-
populated.

dataType CaptureDataType The data type of this field.

autoPopulateDefault String The default value for this field.

displayable boolean Indicates whether this field will be displayed
in the client.

length Integer The maximum length for this field.

id String The internal identifier for this field.

name String The name of this field.

inputMask String The input mask.

locked boolean Set to True, if the field is locked.

maxValue Float The maximum value for this field.

minValue Float The minimum value for this field.

pickListCaseInsensitiv
e

boolean If True, the choice list is case insensitive.

pickListID String The unique identifier of the choice list
associated with this field.

pickListParentFieldID String The unique identifier of the choice list
parent field.

pickListSourceID String The source identifier of the dependent
choice list for this field.

profileDisplayFormat String The format used when displaying the field.

required boolean Indicates whether this field is required to
have a value.

validationExpression String A regular expression used to validate the
values entered for this field.

FieldDefinitions
The FieldDefinitions class is a map of metadata field definitions. It is of type
LinkedHashMap<String, FieldDefinition> and the map key is the metadata field
definition ID. You can use the LinkedHashMap methods to retrieve the metadata field
definitions from instances of this class.

See the Java API documentation for more information on the LinkedHashMap class
and its methods.

ImageCaptureEngine
The ImageCaptureEngine class contains all the properties and operations associated
with image capture.

Chapter 3
Capture Client Core Classes

3-32

Property Type Description

activeSource ImageCaptureSource The active source of the Image Capture
Engine from which to capture images.

activeDriver ImageCaptureDriver The active driver of the Image Capture
Engine from which to capture images.

MicrInfo
The MicrInfo class contains all the properties associated with the magnetic data
detected by a scanner.

Property Type Description

string String The textual information read from the MICR
data.

Source
The Source class is a low-level class used to interact with a TWAIN scanner.

This class includes the following methods:

• getCurrentPrinter()

• getPrinterIndex()

• getPrinterMode()

• getPrinterString()

• getPrinterSuffix()

• getSupportedPrinters()

• isPrinterEnabled()

• isBarcodeDetectionEnabled()

• getBarcodeMaxRetries()

• getBarcodeMaxSearchPriorities()

• getBarcodeSearchMode()

• getBarcodeTimeout()

• getBarcodeSearchPriorities()

• getSupportedBarcodeTypes()

• getBarcodesDetected()

• isPatchCodeDetectionEnabled()

• getPatchCodeMaxRetries()

• getPatchCodeMaxSearchPriorities()

• getPatchCodeSearchMode()

• getPatchCodeTimeout()

Chapter 3
Capture Client Core Classes

3-33

• getPatchCodeSearchPriorities()

• getSupportedPatchCodeTypes()

• getPatchCodesDetected()

• isMicrEnabled()

• getMicrDetected()

• setPrinterIndex(int printerIndex)

• setPrinterMode(int printerMode)

• setPrinterString(String printerString)

• setPrinterString(String[] printerString)

• setPrinterSuffix(String printerSuffix)

• setBarcodeDetectionEnabled(boolean enabled)

• setBarcodeMaxRetries(int maxRetries)

• setBarcodeMaxSearchPriorities(int maxSearchPriorities)

• setBarcodeSearchMode(int searchMode)

• setBarcodeTimeout(int timeout)

• setBarcodeSearchPriorities(int[] value)

• setPatchCodeDetectionEnabled(boolean enabled)

• setPatchCodeMaxRetries(int maxRetries)

• setPatchCodeMaxSearchPriorities(int maxSearchPriorities)

• setPatchCodeSearchMode(int searchMode)

• setPatchCodeTimeout(int timeout)

• setPatchCodeSearchPriorities(int[] value)

• setMicrEnabled(boolean enabled)

getCurrentPrinter()

The following table describes the syntax for getCurrentPrinter() method:

Syntax Description

public int getCurrentPrinter()
throws InvalidStateException,
OperationException;

Returns the current imprinter or endorser.
See the setPrinter(int printer) method for
valid values.

getPrinterIndex()

The following table describes the syntax for getPrinterIndex() method:

Syntax Description

public int getPrinterIndex()
throws OperationException,
InvalidStateException;

Returns the counter value of the current
imprinter or endorser.

Chapter 3
Capture Client Core Classes

3-34

getPrinterMode()

The following table describes the syntax for getPrinterMode() method:

Syntax Description

public int getPrinterMode()
throws OperationException,
InvalidStateException;

Returns the mode of the current
imprinter or endorser. See the method
setPrinterMode(int printerMode) for the
meaning of the return value.

getPrinterString()

The following table describes the syntax for getPrinterString() method:

Syntax Description

public String[] getPrinterString()
throws OperationException,
InvalidStateException;

Returns the string or format of the current
imprinter or endorser.

getPrinterSuffix()

The following table describes the syntax for getPrinterSuffix() method:

Syntax Description

public String getPrinterSuffix()
throws OperationException,
InvalidStateException;

Returns the suffix string of the current
imprinter or endorser.

getSupportedPrinters()

The following table describes the syntax for getSupportedPrinters() method:

Syntax Description

public int[] getSupportedPrinters()
throws InvalidStateException,
OperationException;

Returns an array of the supported
imprinters or endorsers. See the
setPrinter(int printer) method for the
meaning of the return values.

isPrinterEnabled()

The following table describes the syntax for isPrinterEnabled() method:

Syntax Description

public boolean isPrinterEnabled()
throws OperationException,
InvalidStateException;

Returns whether the current imprinter or
endorser is enabled.

isBarcodeDetectionEnabled()

The following table describes the syntax for isBarcodeDetectionEnabled() method:

Chapter 3
Capture Client Core Classes

3-35

Syntax Description

public boolean
isBarcodeDetectionEnabled()
throws OperationException,
InvalidStateException;

Returns whether bar code detection is
enabled for the scanner.

getBarcodeMaxRetries()

The following table describes the syntax for getBarcodeMaxRetries() method:

Syntax Description

public int getBarcodeMaxRetries()
throws OperationException,
InvalidStateException;

Returns the number of times a search will
be retried if no bar codes are found.

getBarcodeMaxSearchPriorities()

The following table describes the syntax for getBarcodeMaxSearchPriorities() method:

Syntax Description

public int
getBarcodeMaxSearchPriorities()
throws OperationException,
InvalidStateException;

Returns the maximum number of supported
bar code search priorities.

getBarcodeSearchMode()

The following table describes the syntax for getBarcodeSearchMode() method:

Syntax Description

public int getBarcodeSearchMode()
throws OperationException,
InvalidStateException;

Returns the orientation or orientation
priority used for bar code searching.

Possible return values are:

• TWBD_HORZ - 0
• TWBD_VERT - 1
• TWBD_HORZVERT - 2
• TWBD_VERTHORZ - 3

getBarcodeTimeout()

The following table describes the syntax for getBarcodeTimeout() method:

Syntax Description

public int getBarcodeTimeout()
throws OperationException,
InvalidStateException;

Returns the maximum amount of time to
spend searching for bar codes on a page.

getBarcodeSearchPriorities()

The following table describes the syntax for getBarcodeSearchPriorities() method:

Chapter 3
Capture Client Core Classes

3-36

Syntax Description

public int[]
getBarcodeSearchPriorities()
throws OperationException,
InvalidStateException;

Returns a prioritized array of bar code types
dictating the order in which they will be
sought.

Valid bar code types are:
TWBT_3OF9, TWBT_2OF5INTERLEAVED,
TWBT_2OF5NONINTERLEAVED,
TWBT_CODE93, TWBT_CODE128,
TWBT_UCC128, TWBT_CODABAR,
TWBT_UPCA, TWBT_UPCE,
TWBT_EAN8, TWBT_EAN13,
TWBT_POSTNET, TWBT_PDF417,
TWBT_2OF5INDUSTRIAL,
TWBT_2OF5MATRIX,
TWBT_2OF5DATALOGIC,
TWBT_2OF5IATA,
TWBT_3OF9FULLASCII,
TWBT_CODABARWITHSTARTSTOP,
TWBT_MAXICODE

For definitions of valid bar code types, see
BarcodeInfo.

getSupportedBarcodeTypes()

The following table describes the syntax for getSupportedBarcodeTypes() method:

Syntax Description

public int[]
getSupportedBarcodeTypes()
throws OperationException,
InvalidStateException;

Returns an array of the bar code types
supported by the scanner.

Valid bar code types are:
TWBT_3OF9, TWBT_2OF5INTERLEAVED,
TWBT_2OF5NONINTERLEAVED,
TWBT_CODE93, TWBT_CODE128,
TWBT_UCC128, TWBT_CODABAR,
TWBT_UPCA, TWBT_UPCE,
TWBT_EAN8, TWBT_EAN13,
TWBT_POSTNET, TWBT_PDF417,
TWBT_2OF5INDUSTRIAL,
TWBT_2OF5MATRIX,
TWBT_2OF5DATALOGIC,
TWBT_2OF5IATA,
TWBT_3OF9FULLASCII,
TWBT_CODABARWITHSTARTSTOP,
TWBT_MAXICODE

For definitions of valid bar code types, see
BarcodeInfo.

getBarcodesDetected()

The following table describes the syntax for getBarcodesDetected() method:

Chapter 3
Capture Client Core Classes

3-37

Syntax Description

public BarcodeInfo[]
getBarcodesDetected();

Returns an array of BarcodeInfo objects
describing the bar codes found on the
current page by the scanner.

isPatchCodeDetectionEnabled()

The following table describes the syntax for isPatchCodeDetectionEnabled() method:

Syntax Description

public boolean
isPatchCodeDetectionEnabled()
throws OperationException,
InvalidStateException;

Returns whether the patch code detection
is enabled for the scanner.

getPatchCodeMaxRetries()

The following table describes the syntax for getPatchCodeMaxRetries() method:

Syntax Description

public int getPatchCodeMaxRetries()
throws OperationException,
InvalidStateException;

Returns the number of times a search will
be retried if no patch codes are found.

getPatchCodeMaxSearchPriorities()

The following table describes the syntax for getPatchCodeMaxSearchPriorities()
method:

Syntax Description

public int
getPatchCodeMaxSearchPriorities()
throws OperationException,
InvalidStateException;

Returns the maximum number of supported
patch code search priorities.

getPatchCodeSearchMode()

The following table describes the syntax for getPatchCodeSearchMode() method:

Syntax Description

public int getPatchCodeSearchMode()
throws OperationException,
InvalidStateException;

Returns the orientation or orientation
priority used for patch code searching.

Possible return values are: TWBD_HORZ,
TWBD_VERT, TWBD_HORZVERT,
TWBD_VERTHORZ

For definitions of possible return values, see
getBarcodeSearchMode().

Chapter 3
Capture Client Core Classes

3-38

getPatchCodeTimeout()

The following table describes the syntax for getPatchCodeTimeout() method:

Syntax Description

public int getPatchCodeTimeout()
throws OperationException,
InvalidStateException;

Returns the maximum amount of time to
spend searching for patch codes on a page.

getPatchCodeSearchPriorities()

The following table describes the syntax for getPatchCodeSearchPriorities() method:

Syntax Description

public int[]
getPatchCodeSearchPriorities()
throws OperationException,
InvalidStateException;

Returns a prioritized array of patch code
types dictating the order in which they will
be sought.

Valid patch code types are:

• TWPCH_PATCH1 - 0
• TWPCH_PATCH2 - 1
• TWPCH_PATCH3 - 2
• TWPCH_PATCH4 - 3
• TWPCH_PATCH6 - 4
• TWPCH_PATCHT - 5

getSupportedPatchCodeTypes()

The following table describes the syntax for getSupportedPatchCodeTypes() method:

Syntax Description

public int[]
getSupportedPatchCodeTypes()
throws OperationException,
InvalidStateException;

Returns an array of the patch code types
supported by the scanner.

Valid patch code types are:
TWPCH_PATCH1, TWPCH_PATCH2,
TWPCH_PATCH3, TWPCH_PATCH4,
TWPCH_PATCH6, TWPCH_PATCHT

For definitions of valid patch code types,
see getPatchCodeSearchPriorities().

getPatchCodesDetected()

The following table describes the syntax for getPatchCodesDetected() method:

Chapter 3
Capture Client Core Classes

3-39

Syntax Description

public int[] getPatchCodesDetected(); Returns an array containing the first patch
code type found on the current page by
the scanner. The return value may be null
or an empty array if no patch codes were
detected.

Valid patch code types are:
TWPCH_PATCH1, TWPCH_PATCH2,
TWPCH_PATCH3, TWPCH_PATCH4,
TWPCH_PATCH6, TWPCH_PATCHT

For definitions of valid patch code types,
see getPatchCodeSearchPriorities().

isMicrEnabled()

The following table describes the syntax for isMicrEnabled() method:

Syntax Description

public boolean isMicrEnabled()
throws OperationException,
InvalidStateException;

Returns whether MICR detection is enabled
for the scanner.

getMicrDetected()

The following table describes the syntax for getMicrDetected() method:

Syntax Description

public MicrInfo getMicrDetected(); Returns a MicrInfo object describing the
magnetic data found on the current page by
the scanner.

setPrinter(int printer)

The following table describes the syntax for setPrinter(int printer) method:

Syntax Description

public void setPrinter(int
printer) throws InvalidStateException,
OperationException;

Sets the current imprinter or endorser. Valid
values are:
• 0 - Top Pre-Imprinter
• 1 - Top Post-Imprinter
• 2 - Bottom Pre-Imprinter
• 3 - Bottom Post-Imprinter
• 4 - Top Pre-Endorser
• 5 - Top Post-Endorser
• 6 - Bottom Pre-Endorser
• 7 - Bottom Post-Endorser

setPrinterIndex(int printerIndex)

The following table describes the syntax for setPrinterIndex(int printerIndex) method:

Chapter 3
Capture Client Core Classes

3-40

Syntax Description

public void
setPrinterIndex(int printerIndex)
throws InvalidStateException,
OperationException

Sets the counter value of the current
imprinter or endorser.

setPrinterMode(int printerMode)

The following table describes the syntax for setPrinterMode(int printerMode) method:

Syntax Description

public void
setPrinterMode(int printerMode)
throws InvalidStateException,
OperationException;

Sets the mode of the current imprinter or
endorser. Valid values are:
• 0 - Single string
• 1 - Multi-line string
• 2 - Compound string

setPrinterString(String printerString)

The following table describes the syntax for setPrinterString(String printerString)
method:

Syntax Description

public void
setPrinterString(String printerString)
throws InvalidStateException,
OperationException;

Sets the string or format of a single line
to be printed to the current imprinter or
endorser.

setPrinterString(String[] printerString)

The following table describes the syntax for setPrinterString(String[] printerString)
method:

Syntax Description

public void setPrinterString(String[]
printerString) throws
InvalidStateException,
OperationException;

Sets the format of one or more lines
(if capable) to be printed to the current
imprinter or endorser.

setPrinterSuffix(String printerSuffix)

The following table describes the syntax for setPrinterSuffix(String printerSuffix)
method:

Syntax Description

public void
setPrinterSuffix(String printerSuffix)
throws InvalidStateException,
OperationException;

Sets the suffix for the current imprinter or
endorser. (Compound string mode only).

Chapter 3
Capture Client Core Classes

3-41

setBarcodeDetectionEnabled(boolean enabled)

The following table describes the syntax for setBarcodeDetectionEnabled(boolean
enabled) method:

Syntax Description

public void
setBarcodeDetectionEnabled(boolean
enabled) throws OperationException,
InvalidStateException;

Enables or disables bar code detection for
the scanner.

setBarcodeMaxRetries(int maxRetries)

The following table describes the syntax for setBarcodeMaxRetries(int maxRetries)
method:

Syntax Description

public void
setBarcodeMaxRetries(int maxRetries)
throws InvalidStateException,
OperationException;

Restricts the number of times a search will
be retried if no bar codes are found.

setBarcodeMaxSearchPriorities(int maxSearchPriorities)

The following table describes the syntax for setBarcodeMaxSearchPriorities(int
maxSearchPriorities) method:

Syntax Description

public void
setBarcodeMaxSearchPriorities(int
maxSearchPriorities) throws
InvalidStateException,
OperationException;

Specifies the maximum number of
supported bar code search priorities.

setBarcodeSearchMode(int searchMode)

The following table describes the syntax for setBarcodeSearchMode(int searchMode)
method:

Syntax Description

public void
setBarcodeSearchMode(int searchMode)
throws InvalidStateException,
OperationException;

Restricts bar code searching to certain
orientations, or prioritizes one orientation
over another.

Valid values are: TWBD_HORZ,
TWBD_VERT, TWBD_HORZVERT,
TWBD_VERTHORZ

For definitions of valid values, see
getBarcodeSearchMode().

setBarcodeTimeout(int timeout)

The following table describes the syntax for setBarcodeTimeout(int timeout) method:

Chapter 3
Capture Client Core Classes

3-42

Syntax Description

public void setBarcodeTimeout(int
timeout) throws InvalidStateException,
OperationException;

Restricts the total time spent on searching
for bar codes on a page.

setBarcodeSearchPriorities(int[] value)

The following table describes the syntax for setBarcodeSearchPriorities(int[] value)
method:

Syntax Description

public void
setBarcodeSearchPriorities(int[]
value) throws OperationException,
InvalidStateException;

Sets a prioritized array of bar code types
dictating the order in which they will be
sought.

Valid bar code types are:
TWBT_3OF9, TWBT_2OF5INTERLEAVED,
TWBT_2OF5NONINTERLEAVED,
TWBT_CODE93, TWBT_CODE128,
TWBT_UCC128, TWBT_CODABAR,
TWBT_UPCA, TWBT_UPCE,
TWBT_EAN8, TWBT_EAN13,
TWBT_POSTNET, TWBT_PDF417,
TWBT_2OF5INDUSTRIAL,
TWBT_2OF5MATRIX,
TWBT_2OF5DATALOGIC,
TWBT_2OF5IATA,
TWBT_3OF9FULLASCII,
TWBT_CODABARWITHSTARTSTOP,
TWBT_MAXICODE

For definitions of valid bar code types, see
BarcodeInfo.

setPatchCodeDetectionEnabled(boolean enabled)

The following table describes the syntax for setPatchCodeDetectionEnabled(boolean
enabled) method:

Syntax Description

public void
setPatchCodeDetectionEnabled(boolean
enabled) throws OperationException,
InvalidStateException;

Enables or disables patch code detection
for the scanner.

setPatchCodeMaxRetries(int maxRetries)

The following table describes the syntax for setPatchCodeMaxRetries(int maxRetries)
method:

Chapter 3
Capture Client Core Classes

3-43

Syntax Description

public void
setPatchCodeMaxRetries(int maxRetries)
throws InvalidStateException,
OperationException;

Restricts the number of times a search will
be retried if no patch codes are found.

setPatchCodeMaxSearchPriorities(int maxSearchPriorities)

The following table describes the syntax for setPatchCodeMaxSearchPriorities(int
maxSearchPriorities) method:

Syntax Description

public void
setPatchCodeMaxSearchPriorities(int
maxSearchPriorities) throws
InvalidStateException,
OperationException;

Specifies the maximum number of
supported patch code search priorities.

setPatchCodeSearchMode(int searchMode)

The following table describes the syntax for setPatchCodeSearchMode(int
searchMode) method:

Syntax Description

public void
setPatchCodeSearchMode(int searchMode)
throws InvalidStateException,
OperationException;

Restricts patch code searching to certain
orientations, or prioritizes one orientation
over another.

Valid values are: TWBD_HORZ,
TWBD_VERT, TWBD_HORZVERT,
TWBD_VERTHORZ

For definitions of valid values, see
getBarcodeSearchMode().

setPatchCodeTimeout(int timeout)

The following table describes the syntax for setPatchCodeTimeout(int timeout)
method:

Syntax Description

public void setPatchCodeTimeout(int
timeout) throws InvalidStateException,
OperationException;

Restricts the total time spent on searching
for patch codes on a page.

setPatchCodeSearchPriorities(int[] value)

The following table describes the syntax for setPatchCodeSearchPriorities(int[] value)
method:

Chapter 3
Capture Client Core Classes

3-44

Syntax Description

public void
setPatchCodeSearchPriorities(int[]
value) throws OperationException,
InvalidStateException;

Sets a prioritized array of patch code types
dictating the order in which they will be
sought.

Valid patch code types are:
TWPCH_PATCH1, TWPCH_PATCH2,
TWPCH_PATCH3, TWPCH_PATCH4,
TWPCH_PATCH6, TWPCH_PATCHT

For definitions of valid patch code types,
see getPatchCodeSearchPriorities().

setMicrEnabled(boolean enabled)

The following table describes the syntax for setMicrEnabled(boolean enabled) method:

Syntax Description

public void setMicrEnabled(boolean
enabled) throws OperationException,
InvalidStateException;

Enables or disables MICR detection for the
scanner.

TWAINSource
The TWAINSource class is an instance of ImageCaptureSource, and it represents the
source used by TWAIN scanning.

Property Type Description

deviceSource Source The low-level object used to interact with a
TWAIN scanner.

Capture Client FieldEdit Classes
The FieldEdit class is the user interface component for entering metadata values. This
section describes the following Capture Client FieldEdit classes:

• DataField

• FloatField

• IntegerField

• PicklistEntry

• PicklistField

• TextField

DataField
The DataField class represents the data for a single field of the FieldEdit component
and is the base class for the various field types.

Chapter 3
Capture Client FieldEdit Classes

3-45

Property Type Description

caption String The field caption.

fieldName String The field name.

displayFormat Format The display format for the field.

inputMask String The input mask.

fieldLock boolean If True, the field is locked.

maxLength Long The maximum length of the field.

required boolean If True, this field is required to be entered.

uncommittedText String The current text in the field.

DateField
The DataField class extends from DataField and represents a date field.

Property Type Description

value Date The value, represented by a Date object.

FloatField
This FloatField class extends from DataField and represents a float field.

Property Type Description

value Float The value, represented by a Float object.

IntegerField
The IntegerField class extends from DataField and represents an integer field.

Property Type Description

value Integer The value, represented by an Integer
object.

PicklistEntry
The PicklistEntry class is used in picklist-type fields to determine the display and
commit values. This class includes the following methods:

• getCommitValue()

• getDisplayValue()

getCommitValue()

The following table describes the syntax for getCommitValue() method:

Chapter 3
Capture Client FieldEdit Classes

3-46

Syntax Description

public String getCommitValue() Returns the commit value of the choice list
entry.

getDisplayValue()

The following table describes the syntax for getDisplayValue() method:

Syntax Description

public String getDisplayValue() Returns the display value of the choice list
entry.

PicklistField
The PicklistField class extends from DataField and represents a Pick-list (Choice List)
field.

Property Type Description

pickListCaseSensitive boolean If True, the contents of this list are sensitive
to case.

pickListEntries List<PicklistEntry> The list of entries in the choice list.

value PicklistEntry The current value of the choice list.

TextField
This TextField class extends from DataField and represents an alphanumeric field.

Property Type Description

value String The alphanumeric value of the field.

Sample Client Scripts
The section describes the following sample client scripts:

• Sample Client Script 1

• Sample Client Script 2

• Sample Client Script 3

Sample Client Script 1
This sample script customizes client behavior in the following ways:

• Prevents the client user from leaving a metadata field if the entry contains the
word test.

• Prevents the user from entering an asterisk in any metadata field.

Chapter 3
Sample Client Scripts

3-47

• Outputs event information to the java console, such as coordinates after a user
right-mouse-drags a selection on an image.

• Stops releasing the batches to predefined processors and unlocks the batches.

Note that this script also writes out a line (printIn) to the java console for each script
event, for verification or debugging purposes.

function ScriptStart() {
 java.lang.System.out.println("ScriptStart");
}

function PreBatchScan(event) { // BatchScanEvent
 java.lang.System.out.println("PreBatchScan");
}

function BatchScanBegin(event) { // BatchScanEvent
 java.lang.System.out.println("BatchScanBegin");
}

function BatchScanComplete(event) { // BatchScanEvent
 java.lang.System.out.println("BatchScanComplete");
 java.lang.System.out.println(event.getBatch().getBatchName() + " finished
Scanning.");
}

function BatchSelected(event) { // BatchSelectedEvent
 java.lang.System.out.println("BatchSelected: " +
event.getBatch().getBatchName());
}

function PreBatchDelete(event) { // BatchDeleteEvent
 java.lang.System.out.println("PreBatchDelete");
}

function CaptureImage(event) { // ImageCaptureEvent
 java.lang.System.out.println("CaptureImage");
}

function DocumentCreated(event) { // CaptureDocument
 java.lang.System.out.println("DocumentCreated");
}

function DocumentSelected(event) { // DocumentSelectedEvent
 java.lang.System.out.println("DocumentSelected: " +
event.getDocument().getTitle());
}

function FieldGotFocus(event) { // FieldEvent
 java.lang.System.out.println("FieldGotFocus");
}

function FieldLostFocus(event) { // FieldEvent
 var dataField;
 java.lang.System.out.println("FieldLostFocus");
 dataField = event.getField();
 if (dataField.getUncommittedText().equalsIgnoreCase("test")) {
 event.setCancel(true);
 java.lang.System.out.println("invalid value. script will not allow
leaving focus.");
 }

Chapter 3
Sample Client Scripts

3-48

}

function FieldProcessKey(event) { // FieldEvent
 var keyEvent;
 // java.lang.System.out.println("FieldProcessKey");
 keyEvent = event.getKeyEvent();
 if (keyEvent.getID() == java.awt.event.KeyEvent.KEY_TYPED) {
 //java.lang.System.out.println(keyEvent.getKeyChar());
 if (new java.lang.Character(keyEvent.getKeyChar()).equals(new
java.lang.Character('*'))) {
 java.lang.System.out.println("Asterisk not allowed in any field.");
 keyEvent.consume();
 }
 }
}

function PostCaptureImage(event) { // ImageCaptureEvent
 java.lang.System.out.println("PostCaptureImage");
}

function PreCaptureImage(event) { // ImageCaptureEvent
 java.lang.System.out.println("PreCaptureImage");
}

function PreUploadItem(event) { // UploadItemEvent
 java.lang.System.out.println("PreUploadItem: " +
event.getCaptureItem().getFilename());
}

function PostUploadItem(event) { // UploadItemEvent
 java.lang.System.out.println("PostUploadItem: " +
event.getCaptureItem().getFilename());
}

function DBSearchComplete(searchEvent) { // DBSearchEvent
 java.lang.System.out.println("DBSearchComplete.");
}

function DBSearchResults(searchEvent) { // DBSearchEvent
 var results;
 var resultRow;
 var searchParameters;

 java.lang.System.out.println("DBSearchResult");

 results = searchEvent.getRowResults();
 java.lang.System.out.println("Found " + results.size() + " results.");
}

function DBSearchStart(searchEvent) { // DBSearchEvent
 java.lang.System.out.println("DBSearchStart");
 java.lang.System.out.println("Metadata value being sought: " +
searchEvent.getMetadataValue());
}

function DocumentRemoved(event) { // DocumentRemovedEvent
 java.lang.System.out.println("DocumentRemoved");
}

function PostDownloadItem(event) { // DownloadItemEvent

Chapter 3
Sample Client Scripts

3-49

 java.lang.System.out.println("PostDownloadItem: " +
event.getCaptureItem().getFilename());
}

function PreDownloadItem(event) { // DownloadItemEvent
 java.lang.System.out.println("PreDownloadItem: " +
event.getCaptureItem().getFilename());
}

function RegionSelected(event) { // RegionSelectedEvent
 java.lang.System.out.println("RegionSelected");
 var rect = event.getSelectionRectangle();
 java.lang.System.out.println("Rectangle (X,Y): (" + rect.getX() + "," +
rect.getY() +
 "); (W,H): (" + rect.getWidth() + "," + rect.getHeight() + ")");
}

function PreReleaseBatch(event) { // ReleaseBatchEvent
 // Skips the postProcess setting specified in the Capture profile and only
unlocks the batch.
 event.setProcessorID(null);
 event.setJobID(null);
}

Sample Client Script 2
This sample script customizes client behavior in the following ways:

• Uses the BatchScanBegin function to restrict files that can be imported to those
with a .TIF extension only.

• Uses the DBSearchResults function to modify the results of a database lookup so
that only the first result is used, and prevents the results list from displaying.

function BatchScanBegin(event) { // BatchScanEvent
 // Check if there are files being imported.
 var sourceFilesList = event.getSourceFiles();
 if (sourceFilesList != null) {
 // Create a list to hold the filtered results.
 var filteredList = new java.util.ArrayList();

 // Loop through each of the files.
 var iterator = sourceFilesList.iterator();
 while (iterator.hasNext()) {
 // If the file name ends with ".TIF", add it to the list.
 var file = iterator.next();
 var filename = file.getName().toUpperCase();
 if (filename.endsWith(".TIF")) {
 filteredList.add(file);
 }
 }

 // Replace the original list with the filtered list.
 event.setSourceFiles(filteredList);
 }
}

function DBSearchResults(searchEvent) { // DBSearchEvent
 var results;
 var resultRow;
 var searchParameters;

Chapter 3
Sample Client Scripts

3-50

 // Return only the first search result.
 results = searchEvent.getRowResults();
 if (results.size() > 0) {
 resultRow = results.get(0);
 results.clear();
 results.add(resultRow);
 // Do not display the list of results to the user.
 searchEvent.setDisplayHitlist(false);
 }
}

Sample Client Script 3
This sample script customizes client behavior in the following ways:

• Uses the PreReleaseBatch event to copy metadata from the first document in a
batch to the remaining documents in the batch. Copying of metadata takes place
when the batch is released. The variable, fieldsToCopy, specifies which metadata
fields are to be copied. For each document to which fields are being copied, if a
field already contains a value, that value is not overwritten.

• Iterates through the documents in a batch.

• Obtains the metadata fields from a document.

• Sets the metadata field values.

• Saves the changes to a document.

function PreReleaseBatch(event) {
 // Metadata fields to copy to remaining documents
 var fieldsToCopy = new Array("Account Name", "Account Number");

 // Loop through each batch being released
 var batches = event.getBatches();
 for (var batchIdx = 0; batchIdx < batches.size(); batchIdx++) {
 var batch = batches.get(batchIdx);
 var documents = batch.getDocuments();
 if (documents.size() == 0)
 continue;
 // Get the first document from which we'll be copying
 var firstDocument = documents.get(0);
 var captureFields = [];
 // Create an array of the first document's fields
 var fieldDefs = batch.getWorkspace().getFieldDefinitions();
 for (var fieldIdx = 0; fieldIdx < fieldsToCopy.length; fieldIdx++) {
 var fieldID = fieldDefs.findByName(fieldsToCopy[fieldIdx]).getId();
 captureFields[fieldIdx] = firstDocument.getFields().get(fieldID);
 }
 // Loop through the remaining documents in the batch
 for (var documentIdx = 1; documentIdx < documents.size(); documentIdx++)
{
 var destDocument = documents.get(documentIdx);
 var fields = destDocument.getFields();
 // Copy the source document's field values to the destination
document
 for (var fieldIdx = 0; fieldIdx < captureFields.length; fieldIdx++) {
 var sourceField = captureFields[fieldIdx];
 // If the field in the source document was never set, skip it.
 if (sourceField == null)
 continue;

Chapter 3
Sample Client Scripts

3-51

 // Look up the field in the document
 var destField = fields.get(sourceField.getFieldName());
 // If it doesn't exist yet, create it
 if (destField == null)
 destField = fields.add(sourceField.getFieldName());
 // If the value hasn't been set yet, set it
 if ((destField.getValue() == null) ||
(destField.getValue().isEmpty())) {
 destField.setValue(sourceField.getValue());
 destField.setDisplayValue(sourceField.getDisplayValue());
 }
 }
 // Save the document.
 destDocument.persist();
 }
 }
}

Chapter 3
Sample Client Scripts

3-52

4
Creating Recognition Processor Scripts

This chapter describes creating Recognition Processor scripts.
The following are common uses for Recognition Processor scripts:

• Splitting a single bar code value into multiple field values.

• Assigning bar code value(s) to proper fields.

• Using custom logic to determine which pages constitute document separation.

• Performing custom auditing of server activity.

• Canceling the committing of a batch due to invalid data.

Capture enables you to create Recognition Processor scripts to customize recognition
processing. For more information, see Managing Oracle WebCenter Enterprise
Capture.

This chapter covers the following topics:

• Recognition Processor Methods

• Recognition Processor Classes

• Sample Recognition Processor Script

Recognition Processor Methods
This section provides a description of the Recognition Processor methods. Methods
are executed in the following order in Recognition Processor batch jobs:

1. initialize

2. processBatch

3. restoreCaptureBatch

4. beginPhase

5. endPhase

6. extractBatchItem

7. barcodesFoundOnItem

8. batchItemAllValidBarcodes

9. determineSeparatorPage

10. batchItemValidBarcode

11. determineDocType

12. beginDatabaseLookup

13. determineIndexValues

14. renameOrigCaptureDocTitle

15. createCaptureDoc

4-1

16. postProcess

17. endBatchProcess

Note:

Some methods are only executed under certain job configurations.

initialize
This is the very first call the Recognition Processor makes to the script. There is no
batch identified yet.

The following are the properties populated in the Recognition Processor class (rpc):

• phaseID: 0

• logger: Logger can be used to log additional entries. This property remains during
the entire process, and does not repeat for every method.

• job: current Recognition Job. This property remains during the entire process, and
does not repeat for every method.

• workspaceEntity: Current workspace entity. This property remains during the entire
process, and does not repeat for every method.

• batchManager: BatchManager can be used to audit and manipulate batches,
documents, and batch items. Use this property with caution when calling methods
within BatchManager. If this property is not used properly, batch can get corrupted.

The following table describes the syntax and parameter for this method:

Syntax Parameter

public void
initialize(RecognitionProcessorContext rpc);

RecognitionProcessorContext rpc

processBatch
The processBatch method is called before the Recognition Processor processes the
batch. The following are the properties populated in the rpc:

• phaseID: 0

• ble: At this point, the Recognition Processor has refreshed the document list for
the batch. This property will remain during the remainder of the process, and will
not repeat for the rest of the methods.

• cancelAction: You can set the flag to true to skip processing of a batch.

• processorBase: Represents a Dynamic Monitoring Service (DMS) Noun object
that can be used to collect your own set of metrics. This property will stay through
the remainder of the process and does not repeat for each method.

• DMS_Literals: Resource bundles that are being used by DMS. This property will
stay through the remainder of the process and does not repeat for each method.

The following table describes the syntax and parameter for this method:

Chapter 4
Recognition Processor Methods

4-2

Syntax Parameter

public void
processBatch(RecognitionProcessorContext
rpc);

RecognitionProcessorContext rpc

restoreCaptureBatch
The restoreCaptureBatch method is invoked when a batch that was processed earlier
was aborted due to an error or other reasons during document creation phase.
Recognition Processor must first clean up the batch to restore the batch to its original
state, before initiating processing.

The restoreCaptureBatch method is invoked when all the following conditions are met:

• Batch state indicates that the Recognition Processor last failed at the document
creation phase.

• Batch has not been modified since last process.

• Recognition job has not been modified since last process.

The Recognition Processor makes sure that both batch and job have not been
modified since the last process. In such cases, the Recognition Processor attempts
to restore the batch to its original state by removing previous documents created by
the recognition process.

The following are the properties populated in the rpc:

• phaseID: 0

• cancelAction: You can set the flag to true to skip restoring of the batch, and the
process skips processing this batch.

The following table describes the syntax and parameter for this method:

Syntax Parameter

public void
restoreCaptureBatch(RecognitionProcessorConte
xt rpc);

RecognitionProcessorContext rpc

beginPhase
The beginPhase method indicates the beginning of a phase. The following are the
properties populated in the rpc:

• phaseID: Identification of the phase. There are six different phases
(see RecognitionProcessorContext for details on RecognitionProcessorContext
phaseID).

• cancelAction: You can set the flag to true to skip certain phases. For phases that
cannot be skipped, this flag is ignored.

– Phases that can be canceled are: bar code recognition, document
classification, and indexing.

Chapter 4
Recognition Processor Methods

4-3

– Phases that cannot be canceled are: document organization, document
creation, and post-processing.

The following table describes the syntax and parameter for this method:

Syntax Parameter

public void
beginPhase(RecognitionProcessorContext rpc);

RecognitionProcessorContext rpc

endPhase
The endPhase method indicates the end of a phase. The following are the properties
populated in the rpc:

• phaseID: Identification of the phase. There are six different phases
(see RecognitionProcessorContext for details on RecognitionProcessorContext
phaseID).

The following table describes the syntax and parameter for this method:

Syntax Parameter

public void
endPhase(RecognitionProcessorContext rpc);

RecognitionProcessorContext rpc

extractBatchItem
The extractBatchItem method is executed during the bar code recognition phase.
The Recognition Processor extracts batch items, one at a time, into a directory right
before the Recognition Processor performs bar code recognition on the page. Then
the Recognition Processor informs you where the items are located.

The following are the properties populated in the rpc:

• phaseID: 1.

• extractPath: The directory where the batch item is located.

The following table describes the syntax and parameter for this method:

Syntax Parameter

public void
extractBatchItem(RecognitionProcessorContext
rpc);

RecognitionProcessorContext rpc

barcodesFoundOnItem
The barcodesFoundOnItem method is invoked after the Recognition Processor
processed the batch item, collected and recognized bar codes on this item.

The following are the properties populated in the rpc:

• phaseID: 1.

• batchItem: Current batch item that is used to perform bar code recognition.

Chapter 4
Recognition Processor Methods

4-4

• patchCodeRead: Patch code value found on the batch item.

• barCodesRead: A combination of bar codes read on the page and existing bar
codes on the batch item.

The following table describes the syntax and parameter for this method:

Syntax Parameter

public void
barcodesFoundOnItem(RecognitionProcessorConte
xt rpc);

RecognitionProcessorContext rpc

batchItemAllValidBarcodes
The batchItemAllValidBarcodes method is called after the Recognition Processor has
finished validating bar codes on a specific batch item.

The following are the properties populated in the rpc:

• phaseID: 2.

• batchItem: Current batch item that is used to perform bar code validation.

• validBarCodes: A list of name and value pairs of the valid bar codes found on the
batch item. This list includes all bar codes definitions in the recognition job. You
can change the value, but you must not change the name, or add or remove items
from the list.

The following table describes the syntax and parameter for this method:

Syntax Parameter

public void
batchItemAllValidBarcodes(RecognitionProcesso
rContext rpc);

RecognitionProcessorContext rpc

determineSeparatorPage
The determineSeparatorPage method is called after the Recognition Processor has
validated a page as a separator. This method is only invoked if a separator page is
defined for a recognition job.

The following are the properties populated in the rpc:

• phaseID: 2.

• batchItem: Current batch item that is to determine whether the page is a separator
or not.

• validBarCodes: A list of name and value pairs for the valid bar codes found on the
batch item. This list includes all bar code definitions in the recognition job.

• separator: This object is null unless this batch item is a valid separator page. If you
want to make changes, you must either set the separator to null or to a valid object
of class ProcessSeparatorPage.

Recognition Processor's hierarchical separator feature processes and organizes
documents within a hierarchy of levels. You can change the level determined by
the Recognition Processor. However, if the level does not fit into a recognition job

Chapter 4
Recognition Processor Methods

4-5

definition, the Recognition Processor uses either the lowest level (level<=0) or highest
level (level>=max defined level). The level property of the separator object is used for
the hierarchy separator page type only. For any other document organization type, this
value is ignored. Level should always begin with 1.

The following table describes the syntax and parameter for this method:

Syntax Parameter

public void
determineSeparatorPage(RecognitionProcessorCo
ntext rpc);

RecognitionProcessorContext rpc

batchItemValidBarcode
The batchItemValidBarcode method passes in one valid bar code recognized on a
specific batch item. This method call will only happen when the document organization
type is Same bar code value on each page and Optimize Bar Code Recognition is
turned on.

When the Recognition Processor cannot find a bar code on a page, it will try to
determine the separator bar code value on the next page. validBarcode is populated
with the bar code found on the next page. If bar code is not found, validBarcode is set
to null. In such cases, this method is called right after the Recognition Processor has
determined the bar code value.

The following are the properties populated in the rpc:

• phaseID: 2.

• batchItem: Next page batch item that is to determine the separator bar code value.

• validBarcode: Name and value pair for the separator bar code. You can change
the value if required.

The following table describes the syntax and parameter for this method:

Syntax Parameter

public void
batchItemValidBarcode(RecognitionProcessorCon
text rpc);

RecognitionProcessorContext rpc

determineDocType
The determineDocType method is called after the Recognition Processor has identified
a document type as either the default document type or one of the dynamic document
type mappings. docTypeID can be null if the Recognition Processor is unable to
identify it.

The following are the properties populated in the rpc:

• phaseID: 3.

• document: Contains the current document information. Some properties are
specific to certain document organization type. You can modify the document's
metadata values by using the indexValues property of the document object.

Chapter 4
Recognition Processor Methods

4-6

The following table describes the syntax and parameter for this method:

Syntax Parameter

public void
determineDocType(RecognitionProcessorContext
rpc);

RecognitionProcessorContext rpc

beginDatabaseLookup
The beginDatabaseLookup method is called after the Recognition Processor has
determined the lookup value, and before the actual execution of the lookup is called.

The following are the properties populated in the rpc:

• phaseID: 4.

• dbLookupValue: You can modify the lookup value.

• cancelAction: You can cancel lookup.

The following table describes the syntax and parameter for this method:

Syntax Parameter

public void
beginDatabaseLookup(RecognitionProcessorConte
xt rpc);

RecognitionProcessorContext rpc

determineIndexValues
The determineIndexValues method is called after the Recognition Processor has
determined all metadata values for a particular document. You can modify the
metadata values.

The following are the properties populated in the rpc:

• phaseID: 4.

• document: Contains the current document information. Some properties are
specific to certain document organization types. You can modify the metadata
values of the document by using the indexValues property of the document object.

The following table describes the syntax and parameter for this method:

Syntax Parameter

public void
determineIndexValues(RecognitionProcessorCont
ext rpc);

RecognitionProcessorContext rpc

renameOrigCaptureDocTitle
The renameOrigCaptureDocTitle method is called before the Recognition Processor
renames the original document as unindexed. This applies to all document
organization types except the Do not perform document organization type.

Chapter 4
Recognition Processor Methods

4-7

The following are the properties populated in the rpc:

• phaseID: 5.

• unIndexedDocTitle: You can change the title.

The following table describes the syntax and parameter for this method:

Syntax Parameter

public void
renameOrigCaptureDocTitle(RecognitionProcesso
rContext rpc);

RecognitionProcessorContext rpc

createCaptureDoc
Before the Recognition Processor creates the Capture document, it is possible to
customize the document title, document type id, metadata values, and document
comments. You can also change the batch items associated with this document,
although in the case of the Do not perform document organization type, changing
batch items does not affect the outcome.

Note:

You must be careful while changing batch items as it may possibly leave
orphan items in the batch, that are not associated with any documents.

The following are the properties populated in the rpc:

• phaseID: 5.

• document: Capture document that the Recognition Processor is about to create.

The following table describes the syntax and parameter for this method:

Syntax Parameter

public void
createCaptureDoc(RecognitionProcessorContext
rpc);

RecognitionProcessorContext rpc

postProcess
The postProcess method is invoked after the Recognition Processor has determined
all post-process settings, but before any actual changes take place.

The following is the property populated in the rpc:

• phaseID: 6.

The following table describes the syntax and parameter for this method:

Chapter 4
Recognition Processor Methods

4-8

Syntax Parameter

public void
postProcess(RecognitionProcessorContext rpc,
PostProcessContext ppc);

RecognitionProcessorContext rpc

PostProcessContext ppc

endBatchProcess
The endBatchProcess method indicates that the Recognition Processor has finished
processing the batch.

The following is the property populated in the rpc:

• phaseID: 0

The syntax for this method is: public void
endBatchProcess(RecognitionProcessorContext rpc);

Recognition Processor Classes
The Recognition Processor classes can be used to design Recognition Processor
scripts. This section describes the following classes:

• BarcodeDefinition

• DocumentDefinition

• PostProcessContext

• ProcessorAttachment

• ProcessorDocument

• ProcessorItem

• ProcessSeparatorPage

• RecognitionJob

• RecognitionJobField

• RecognitionProcessorContext

• SeparatorDefinition

• SeparatorRuleDefinition

In addition to the following classes that can be used to design Recognition Processor
scripts, there are some common classes that pertain to the Recognition Processor and
the Import Processor. For more information on the common classes, see Common
Capture Classes.

BarcodeDefinition
The BarcodeDefinition class contains the constants for the bar code validation rule
type. This class represents one bar code definition specified in the third train stop of
Recognition Processor Job.

Chapter 4
Recognition Processor Classes

4-9

Property Type Description

barcodeName String Name of the bar code definition .

validationRule Integer Bar code validation rule; values are 0-4, as
defined in the constants.

The following are the constants for the bar
code validation rule type:

• 0 – Does not have a validation rule
specified.

• 1 – Uses the bar code length to
validate.

• 2 – Uses the mask to validate.
• 3 – Uses a regular expression to

validate.
• 4 – Uses a choice list to validate.

validationLength Integer Validation length.

validationMask String Validation mask.

validationRegularExpr
ession

String Validation regular expression.

pickListSourceID String Validation choice list source identifier.

pickListID String Validation choice list identifier.

DocumentDefinition
When a document profile is set to Determine dynamically using bar code, you can
define Document Profile and Bar Code Value Mappings. Each mapping is represented
by a DocumentDefinition class.

Property Type Description

docTypeID String Unique identifier of the Document Type.

mappingType Integer This sets whether to determine document
type based on a literal value or a choice list.
The values are 0 and 1, as defined in the
constants:

• 0 – To compare bar code value
detected with a literal value specified.

• 1 – The document type mapping option
that determines document type based
on values in the choice list.

value String Literal string specified.

pickListSourceID String Choice list source ID specified.

pickListID String Choice list ID specified.

PostProcessContext
The PostProcessContext class represents all the settings needed to apply to
a batch after processing is completed. If there is any error during processing,
PostProcessContext data is populated from the setting of Post Process train stop of
Recognition Processor Job.

Chapter 4
Recognition Processor Classes

4-10

Property Type Description

renameBatch String Name that the batch will be renamed to
during post process. If null, the batch will
not be renamed.

priority int Priority that the batch will be changed to
during post process. If the priority is not
valid (<0 or >10), the batch priority will
remain the same.

status BatchStatusEntity Status entity object that the batch will be
associated with during post process. If null,
the batch status will remain the same.

batchState int If there were some errors during the
recognition process, the batch state will be
preset to 16; otherwise, the batch state will
be preset to 1.

emailRecipients List<String> A list of email recipients that email
notification will be sent to. If empty, email
will not be sent.

emailSubject String Subject line of the email notification.

emailMessage String Main message body of email notification. If
empty, email will not be sent.

processorID String The Recognition Processor ID to which the
current batch will be released.

processorJobID String The Recognition Processor job ID to which
the current batch will be released.

comment String Represents the batch note.

errorMessage String Error that occurred during the batch
processing.

ProcessorAttachment
The ProcessorAttachment class is a representation of a logical capture document
attachment that Recognition Processor has identified. In the last phase of the
document creation phase, the Recognition Processor attempts to create document
attachment to the associated capture documents, based on a collection of
ProcessorAttachments.

Property Type Description

attachmentTypeID String Unique identifier of the attachment type.

batchItems List<String> Batch items associated with this
attachment.

separator ProcessSeparatorPage Separator page for this attachment. This
property only applies to hierarchy separator
organization type.

title String Title for this attachment.

Chapter 4
Recognition Processor Classes

4-11

ProcessorDocument
The ProcessorDocument class is a representation of a logical capture document that
Recognition Processor has identified. In the last phase of the document creation
phase, the Recognition Processor attempts to create documents within the batch,
based on a collection of ProcessorDocument.

Property Type Description

title String Title of the document, which is populated
during the document creation phase.

batchItems List<String> All batch items associated with this
document. This is populated during the
document organization phase.

validBarcodes List<ProcessorItem> Valid bar codes associated with this
document. This is a combination of all
valid bar codes found for all batch
items associated with this document.
This is populated during the document
organization phase.

failureStatus int Status of the current document:

• 0 – No error
• 1 – Failed to validate bar code. This

is the case when the Recognition
Processor finds duplicate bar codes in
a document that matches the bar code
validation rule, and the job setting is to
clear the value.

• 2 – Document exceeded maximum
page rule.

• 3 – Unable to determine document
type.

• 4 – No database search result found,
and job setting is to prevent commit
when no record is found.

docTypeID String Document type ID associated with the
document. If null, the document type has
not been determined.

comment String Comments for the document. It is usually
error detail for 'failureStatus,' which you can
customize through script.

captureDocID String This is only used in the Do not perform
document organization type, where the
Recognition Processor does not organize
documents, and does not create any
Capture documents. This ID is the Capture
document ID.

separator ProcessSeparatorPage Separator page of this document. This
applies to the Do not perform document
organization and multiple page document
with separator organization types.

Chapter 4
Recognition Processor Classes

4-12

Property Type Description

hierarchySeparators List<ProcessSeparatorPa
ge>

Separator pages for this document. This
applies to the multiple pages with hierarchy
separator organization type.

indexValues List<IndexValue> List of metadata names and values.

attachments List<ProcessorAttachme
nt>

A list of attachments associated with this
document.

ProcessorItem
The ProcessorItem class is a representation of an item identified by Name and Value
properties. This class holds the name and value pair for a metadata field. In this case,
this class holds a particular bar code's name and value.

Property Type Description

name String Indicates the bar code name for the
ProcessorItem.

value String Specifies the value for the ProcessorItem.

ProcessSeparatorPage
The ProcessSeparatorPage class represents a separator page that has been identified
by Recognition Processor.

Property Type Description

include boolean Indicates whether this separator page will
be deleted after commit.

level int This is only used in the hierarchy separator
pages organization type. Level always
starts with 1.

name String Separator page name.

batchItemID String The batch item with which this separator
page is associated.

validBarcodes List<ProcessorItem> Used only in hierarchical separator pages
that holds all the valid bar codes for this
batch item.

attachmentTypeID String This is the attachment type ID that is
associated with the separator page that
has been detected by the Recognition
Processor.

RecognitionJob
The RecognitionJob class represents a Recognition Process Job and contains the
constants for the bar code symbologies.

Chapter 4
Recognition Processor Classes

4-13

Property Type Description

workspaceName String Name of the workspace with which this job
is associated.

workspaceID String The unique identifier of the workspace with
which this job is associated.

jobID String The unique identifier of the job .

lastModifiedDateTime Date Date and time the job was last modified.

lastModifiedUserID String ID of the user that last modified the job.

jobName String The name of the job.

description String The description of the job.

scriptID String The identifier of the script with which this
job is associated.

barcodes List<BarcodeDefinition> List of bar code definitions.

autoDetectBarcodes Boolean Determines whether Enable Auto-detect
Bar Codes is turned on.

validateCheckSum Boolean Determines whether Validate Optional
Checksum is turned on.

symbologies List<Integer> A list of selected bar code symbologies
for recognition: values are from 0 - 21,
as defined in the constants for bar code
symbologies earlier in this section.

The constants for the bar code symbologies
are as follows:

• 0 – codabar
• 1 – code 128
• 2 – code 39
• 3 – code 93
• 4 – EAN-13
• 5 – EAN-8
• 6 – interleaved 2/5
• 7 – UCC/EAN 128
• 8 – UPC-A
• 9 – UPC-E
• 10 – Airline(IATA) 2/5
• 11 – Code 32
• 12 – Datalogic 2/5
• 13 – Industrial 2/5
• 14 – ISBN Addon 2
• 15 – ISBN Addon 5
• 16 – Matrix 2/5
• 17 – Postnet/Planet
• 18 – Patch Code
• 19 – Data Matrix
• 20 – PDF417
• 21 – QR code

Chapter 4
Recognition Processor Classes

4-14

Property Type Description

batchOrganization Integer Document organization type; values ranges
from 0 - 4.

The following are constants for the
document organization type:

• 0 – Fixed number of pages per
document.

• 1 – (None) Do not perform document
organization.

• 2 – Same bar code value on each
page.

• 3 – Separator pages
• 4 – Hierarchical separator pages.

documentPageCount Integer For the Fixed number of pages per
document document organization type, this
property refers to the maximum number of
pages per document.

pagesPerDoc2ReadB
arcodes

Integer For the None: Do not perform document
organization document organization type,
this property refers to the number of pages
per document to read bar codes.

maxPageCountPerDo
c

Integer For the Same bar code value on each page,
or Separator pages document organization
type, this property refers to the maximum
number of pages per document.

multiPageDocBarcode BarcodeDefinition For the Same bar code value on each page
document organization type, this property
refers to the bar code that determines
document separation.

optimizeBarcodeDetec
tion

Boolean For the Same bar code value on each page
document organization type, this property
determines whether to optimize bar code
detection.

coverPages List<SeparatorDefinition> For the Separator pages, Hierarchical
separator pages, None: Do not
perform document organization document
organization type, this property holds the
data that defines the separator page. When
the hierarchical separator page is used, the
list may contain more than one separator
page definition, while in the other two
scenarios, the list will only contain one
separator page definition.

multiBarcodeValuesO
ption

Integer Actions to take if more than one value is
found for a bar code within a document;
values are 0-2 as defined in the constants.

The following are actions to take when
multiple bar code values are found for a bar
code definition:

• 0 – Use the first bar code value found.
• 1 – Use the last bar code value found.
• 2 – Do not use the bar code values.

Chapter 4
Recognition Processor Classes

4-15

Property Type Description

dynamicDocType Integer Options on how the Dynamic Document
Profile is determined; values are 0-2 as
defined in the constants.

The following values show how the
document type is dynamically determined:

• 0 – The document type is not
dynamically determined.

• 1 – The document type is dynamically
determined based on a bar code value.

• 2 – The document type is dynamically
determined based on a separator
page.

defaultDocTypeID String The identifier for the Default Document
Profile.

docTypeBarCode BarcodeDefinition When the Document Profile is being
dynamically determined using the bar code,
this property represents the selected bar
code.

docTypeMappings List<DocumentDefinition
>

When the Document Profile is being
dynamically determined using the bar code,
this mapping represents the Document
Profile and Bar Code Value Mappings.

jobFields List<RecognitionJobField
>

Field mappings information.

dblookupUsing Integer Type of value the database lookup will be
using; values are 0-2 as defined in the
constants.

The following are values used by database
lookup:

• 0 – No database lookup is configured.
• 1 – Use a bar code value to perform

database lookup.
• 2 – Use the index field value to perform

database lookup.

dblookupBarcodeField BarcodeDefinition Bar code definition that is selected for
database lookup.

dblookupIndexDefID String Metadata field ID that is selected for
database lookup.

dblookupProfile String Database lookup profile ID.

dblookupSearchField String Database lookup search field ID.

dblookupMultipleReco
rdAction

Integer Actions to take when more than one record
is found during database lookup; values are
0-1 as defined in the constants.

The following show actions to take when a
database lookup finds multiple records:

• 0 – Use the first record found during
database lookup.

• 1 – Do not populate the database
lookup result.

Chapter 4
Recognition Processor Classes

4-16

Property Type Description

dblookupNoMatchActi
on

Integer Actions to take when no record is found
during database lookup; values are 0-1 as
defined in the constants.

The following show what action to take
when a database lookup finds no match:

• 0 – Permit the batch to be committed
even when no database record is
found.

• 1 – Do not allow the batch to be
committed when no match is found.

renamePrefix String Part of post-process setting. When there is
no system error, this is the batch prefix to
rename, if required.

renameEmail String Part of post-process setting. When there is
no system error, this is the email address
to send email notification to rename, if
required.

renameStatus String Part of post-process setting. When there is
no system error, this is the batch status to
change, if required.

renamePriority Integer Part of post-process setting. When there is
no system error, this is the batch priority to
change, if required.

processorID String Part of post-process setting. When there is
no system error, this is the batch processor
ID to which the batch will be released.

processorJobID String Part of post-process setting. When there is
no system error, this is the batch processor
job ID to which the batch will be released.

failureRenamePrefix String Part of post-process setting. When there is
a system error, this is the batch prefix to
rename, if required.

failureRenameEmail String Part of post-process setting. When there is
a system error, this is the email address
to which notification should be sent, if
required.

failureRenameStatus String Part of post-process setting. When there is
a system error, this is the batch status to
change, if required.

failureRenamePriority Integer Part of post-process setting. When there is
a system error, this is the batch priority to
change, if required.

failureProcessorID String Part of post-process setting. When there is
a system error, this is the batch processor
ID to which the batch will be released.

failureProcessorJobID String Part of post-process setting. When there is
a system error, this is the batch processor
job ID to which the batch will be released.

online boolean Indicates whether this recognition job is
active or not.

Chapter 4
Recognition Processor Classes

4-17

Property Type Description

sourceDocAttachment
s

Integer Options for source document attachments.
The following are the possible values:
• 0 – Include all attachments to create

documents.
• 1– Include attachments with matching

Document Profile attachment types.
• 2 – Do not include attachments.

RecognitionJobField
The RecognitionJobField class represents each field in the Fields train stop.

Property Type Description

indexDefID String Metadata ID to populate with property
values.

autoPopulate Integer Auto-populate type; values are 0-5, as
defined in the constants.

The following are the constants for the auto-
populate type:

• 0 – Does not auto-populate the index
value.

• 1 – Auto-populates the index value with
the bar code value.

• 2 – Auto-populates the index value with
the batch name.

• 3 – Auto-populates the index value with
a default value.

• 4 – Auto-populates the index value with
the index date.

• 5 – Auto-populates the index value with
the scan date.

populateValue String For the bar code type, this represents the
bar code definition name; for the default
type, this represents a default value.

RecognitionProcessorContext
The RecognitionProcessorContext class is a context object that contains relevant
attributes that relates to the recognition processing.

property Type Description

logger Logger An instance of java.util.logging.Logger that
can be used to log additional entries.

job RecognitionJob Current job being used.

ble BatchLockEntity A lock entity which contains the batch
currently being processed.

workspaceEntity CaptureWorkspaceEntity Current workspace that is being used.

Chapter 4
Recognition Processor Classes

4-18

property Type Description

phaseID int An integer that identifies the current phase:

• 0 – pre batch process. In this
step, Recognition Processor performs
resource initialization, batch validation,
and clean up if required.

• 1 – bar code recognition. In this step,
Recognition Processor goes through
all batch items for all documents,
extracts batch items one at a time, and
performs bar code recognition based
on recognition settings.

• 2 – document organization. In this
step, Recognition Processor finds
valid bar codes based on barcode
definition configuration, and creates
logical documents based on document
processing settings.

• 3 – document classification. In
this step, Recognition Processor
determines property document type
for each logical document created in
previous step based on Document
Profile settings.

• 4 – indexing. In this step,
Recognition Processor performs
database lookup based on database
lookup configuration, and determines
index values for all logical documents
based on fields settings.

• 5 – document creation. In this
step, Recognition Processor creates
actual capture documents based on
the logical documents determined,
populates document indexes, and
assigns document type. If any warnings
or errors occurred during process,
document comments are updated.

• 6 – post processing. In this step,
Recognition Processor releases a
batch according to post processing
configuration. Batch may also get
renamed, batch status and priority
changed, and email message sent if
required.

cancelAction boolean In certain calls, the user is allowed to
cancel the action (for example, bar code
recognition or database lookup).

batchItem BatchItemEntity Current batch item being processed. This
is specifically used during bar code
recognition and bar code validation (part of
the document organization phase).

patchCodeRead Integer Patch code found on a batch item. This is
only used during the bar code recognition
phase.

Chapter 4
Recognition Processor Classes

4-19

property Type Description

barcodesRead List<String> All bar codes associated with a batch
item, which includes original bar codes
associated with the batch item, and
bar codes read through the bar code
recognition engine. This is only used during
the bar code recognition phase.

validBarcodes List<ProcessorItem> List of valid bar codes found for a specific
batch item. This only applies to the bar
code validation step (part of the document
organization phase).

ProcessorDocument also contains a list of
valid bar codes, which is associated with a
specific document. It is a collection of all
valid bar codes found on all batch items
associated with the document.

validBarcode ProcessorItem Specific to the bar code that determines
document separation and optimized
bar code recognition setting. If batch
organization type is bar code on every
page, optimized recognition is turned on,
and the barcode on a given page is null
(barcode not found), then validBarcode
contains the barcode for the following page.

separator ProcessSeparatorPage Specific for organization types that involve a
separator page. If the separator is null, then
this batch item is not a separator page.

document ProcessorDocument Used for the document classification,
indexing, and document creation phase. It
contains everything you must know about
the document.

dbLookupValue String Used only before database lookup is
executed. You can change the lookup value.

unIndexedDocTitle String Specific to the Document Creation phase.
The first capture document holds all batch
items for which the Recognition Processor
is unable to determine the document they
belong to. This property allows you to
customize the first Capture document title.
The default title is unindexed; if this value is
null, then the first document title will remain
unchanged.

extractPath String Path to which batch items were extracted.
This is specific during the bar code
recognition phase. You should not modify
this property.

processorBase Noun DMS Noun that holds the Recognition
Processor metrics data.

DMS_Literals ResourceBundle Resource bundle that is being used by
DMS.

Chapter 4
Recognition Processor Classes

4-20

property Type Description

batchManager BatchManagerSession An instance of
oracle.odc.batchmanager.BatchManagerSe
ssion that can be used to perform batch
related operations.

SeparatorDefinition
The SeparatorDefinition class represents the definition on what is considered a
separator page.

Property Type Description

name String Name of the separator page.

deleteUponCommit Boolean Determines whether to delete the separator
page after commit.

operator Integer Operator used for rules; values are 0 and 1:

• 0 – The OR operator, used in
cover page definition rules. For rules
separated using this operator, any one
rule must match the rule condition.

• 1 – The AND operator, used in
cover page definition rules. For rules
separated using this operator, all rules
must match the rule condition.

docTypeID String If the document type is dynamically
determined based on a separator page,
this is the ID of the document type for this
separator page.

rules List<SeparatorRuleDefini
tion>

Collection of rules associated with this
separator page.

SeparatorRuleDefinition
The SeparatorRuleDefinition class represents one rule that applies to a separator
definition.

Property Type Description

name String Name of the rule.

operator Integer Operator used for patch code and bar
codes selected; values are 0 and 1. For
more information, see SeparatorDefinition.

patchCode String Patch code selected for this rule.

barcodes List<String> Bar codes selected for this rule.

Sample Recognition Processor Script
The following steps are involved in configuring a batch job:

Chapter 4
Sample Recognition Processor Script

4-21

• Set the job to detect PDF417 bar codes.

• Set the PDF417 bar code on the page to be | delimited, and has 10 fields
concatenated together.

• Define three bar code definitions: processorDate, Title, and Amount (with no
validation rules).

• Map the three bar code definitions to three index fields.

The Recognition Processor script parses a PDF417 bar code found on a batch item,
parses the value, and applies appropriate parsed text to the three bar code definitions.
This sample script allows you to modify the processing behavior based on the job
configuration steps:

function batchItemAllValidBarcodes (rpc) {
 // Obtain current batch item
 var batchItem = rpc.getBatchItem();

 // obtain bar code count.
 var count = batchItem.getBarcodeCount();

 // All barcodes on a batch item.
 var allBarcodes;

 // bar code of interest.
 var barcodeValue;

 // after parsed barcode value.
 var parsed;

 // Obtain bar code value if there is a bar code found.
 if (count > 0) {
 allBarcodes = batchItem.getBarcodes();
 barcodeValue = allBarcodes[0];

 // Parse the bar code value by | character.
 var regex = "|";
 parsed = barcodeValue.split(regex);
 var len = parsed.length;

 // It should get splitted into 10 strings.
 if (len == 10) {
 // This is the barcode we want, populate valid bar codes.
 populateValues(rpc, parsed);
 }

 }
}

function populateValues(rpc, parsed) {
 var valid = rpc.getValidBarcodes();
 var i;

 for (i=0; i<valid.size(); i++) {
 var bar = valid.get(i);

 if (bar.getName() == "processDate") {
 bar.setValue(parsed[5]);
 } else if (bar.getName() == "Title") {
 bar.setValue(parsed[6]);

Chapter 4
Sample Recognition Processor Script

4-22

 } else if (bar.getName() == "Amount") {
 bar.setValue(parsed[4]);
 }
 }
}

Chapter 4
Sample Recognition Processor Script

4-23

5
Creating Import Processor Scripts

This chapter describes creating Import Processor scripts.
You can develop scripts for the Import Processor to perform a wide variety of
functions. Some common tasks include:

• Skipping the importing of certain image files

• Changing Capture batch properties

• Skipping the importing of a batch

• Adding page level metadata values during importing

• After importing, moving images to a different folder

Capture enables you to create Import Processor scripts to customize the importing
process. For more information, see Managing Oracle WebCenter Enterprise Capture.

This chapter contains the following sections:

• Import Processor Events

• Email Source Events

• Folder Source Events

• List File Source Events

• Import Processor Classes

• Sample Import Processor Script

Import Processor Events
Import Processor scripts are JavaScript modules that enable you to customize the
behavior of certain Import Processor events.

This section describes the following Import Processor events:

• preProcess

• process

• postProcess

• preCreateBatch

• postCreateBatch

• preCreateDocument

• postCreateDocument

• preImportFile

• postImportFile

• preRelease

5-1

• postRelease

• preDatabaseSearch

• processDatabaseSearchResults

preProcess
The preProcess event occurs prior to the pre-processing of the import source.
Initialization code can be performed here. The processing can be canceled by setting
the cancel property to True in the ctx parameter.

Syntax Parameter

public void preProcess(ImportProcessorContext
ctx);

ImportProcessorContext ctx

process
The process event signals the start of the import process.

Syntax Parameter

public process(ImportProcessorContext ctx); ImportProcessorContext ctx

postProcess
The postProcess event occurs after the import source has been processed.

Syntax Parameter

public void
postProcess(ImportProcessorContext ctx);

ImportProcessorContext ctx

preCreateBatch
The preCreateBatch event occurs prior to a new batch being created. The batch
creation can be canceled by setting the cancel property to True in the ctx parameter.

Syntax Parameter

public void
preCreateBatch(ImportProcessorContext ctx);

ImportProcessorContext ctx

postCreateBatch
The postCreateBatch event occurs immediately after a batch is created, but before
any documents have been created.

Syntax Parameter

public void
postCreateBatch(ImportProcessorContext ctx);

ImportProcessorContext ctx

Chapter 5
Import Processor Events

5-2

preCreateDocument
The preCreateDocument event occurs prior to a new document being created. The
document creation can be canceled by setting the cancel property to True in the ctx
parameter.

Syntax Parameter

public void
preCreateDocument(ImportProcessorContext
ctx);

ImportProcessorContext ctx

postCreateDocument
The postCreateDocument event occurs after a new document has been created.

Syntax Parameter

public void
postCreateDocument(ImportProcessorContext
ctx);

ImportProcessorContext ctx

preImportFile
The preImportFile event occurs prior to a file being imported. The importing of files can
be canceled by setting the cancel property to True in the ctx parameter.

Syntax Parameter

public void
preImportFile(ImportProcessorContext ctx);

ImportProcessorContext ctx

postImportFile
The postImportFile event occurs after a file is imported.

Syntax Parameter

public void
postImportFile(ImportProcessorContext ctx);

ImportProcessorContext ctx

preRelease
The preRelease event occurs prior to a batch being released. The releasing of a batch
can be canceled by setting the cancel property to True in the ctx parameter.

Syntax Parameter

public void preRelease(ImportProcessorContext
ctx);

ImportProcessorContext ctx

Chapter 5
Import Processor Events

5-3

postRelease
The postRelease event occurs after a batch has been released.

Syntax Parameter

public void
postRelease(ImportProcessorContext ctx);

ImportProcessorContext ctx

preDatabaseSearch
The preDatabaseSearch event occurs prior to a database lookup. A database search
can be canceled by setting the cancelDBSearch property to True in the ctx parameter.

Syntax Parameter

public void
preDatabaseSearch(ImportProcessorContext
ctx);

ImportProcessorContext ctx

processDatabaseSearchResults
The processDatabaseSearchResults event occurs after the database lookup has
returned the search results.

Syntax Parameter

public void
processDatabaseSearchResults(ImportProcessorC
ontext ctx);

ImportProcessorContext ctx

Email Source Events
This section describes the following email source events:

• deleteMessage

• moveMessage

• newAttachment

• newMessage

Note:

If you select the import source for emails as Microsoft Exchange Web
Service, then you should invoke corresponding (getExchange) methods in
the script. See
ImportProcessorContext and EmailSourceContext classes for information on
new methods that have been introduced.

Chapter 5
Email Source Events

5-4

deleteMessage
The deleteMessage event occurs in the email message post-processing step when
an email message is about to be deleted. To prevent the email message from being
deleted, set the cancel property to True in the ctx parameter.

Syntax Parameter

public void
deleteMessage(ImportProcessorContext ctx,
EmailSourceContext emailCtx);

ImportProcessorContext ctx

EmailSourceContext emailCtx

moveMessage
The moveMessage event occurs in the email message post-processing step when an
email message is about to be moved to an email folder. To prevent the email message
from being moved, set the cancel property to True in the ctx parameter.

Syntax Parameter

public void
moveMessage(ImportProcessorContext ctx,
EmailSourceContext emailCtx);

ImportProcessorContext ctx

EmailSourceContext emailCtx

newAttachment
The newAttachment event occurs when a new email attachment is about to be
processed. To prevent the attachment from being imported, set the cancel property
to True in the ctx parameter.

Syntax Parameter

public void
newAttachment(ImportProcessorContext ctx,
EmailSourceContext emailCtx);

ImportProcessorContext ctx

EmailSourceContext emailCtx

newMessage
The newMessage event occurs when a new email message is about to be processed.
To prevent the email message from being imported, set the cancel property to True in
the ctx parameter.

Syntax Parameter

public void newMessage(ImportProcessorContext
ctx, EmailSourceContext emailCtx);

ImportProcessorContext ctx

EmailSourceContext emailCtx

Folder Source Events
This section describes the following folder source events:

Chapter 5
Folder Source Events

5-5

• deleteDocumentFile

• newFolder

• renameDocumentFile

deleteDocumentFile
The deleteDocumentFile event occurs in the folder post-processing step when a file
from the folder is about to be deleted. To prevent the document file from being deleted,
set the cancel property to True in the ctx parameter.

Syntax Parameter

public void
deleteDocumentFile(ImportProcessorContext
ctx, FolderSourceContext folderCtx);

ImportProcessorContext ctx

FolderSourceContext folderCtx

newFolder
The newFolder event occurs when a new folder is about to be processed. To exclude
this folder from being processed, set the cancel property to True in the ctx parameter.

Syntax Parameter

public void newFolder(ImportProcessorContext
ctx, FolderSourceContext folderCtx);

ImportProcessorContext ctx

FolderSourceContext folderCtx

renameDocumentFile
The renameDocumentFile event occurs in the folder post-processing step when a
file from the folder is about to be renamed. To prevent the document file from being
renamed, set the cancel property to True in the ctx parameter.

Syntax Parameter

public void
renameDocumentFile(ImportProcessorContext
ctx, FolderSourceContext folderCtx);

ImportProcessorContext ctx

FolderSourceContext folderCtx

List File Source Events
This section describes the following list file source events:

• deleteListFile

• newFolder

• newListFile

• newListFileLine

• renameListFile

Chapter 5
List File Source Events

5-6

deleteListFile
The deleteListFile event occurs in the list file post-processing step when a list file is
about to be deleted. To prevent the list file from being deleted, set the cancel property
to True in the ctx parameter.

Syntax Parameter

public void
deleteListFile(ImportProcessorContext ctx,
ListFileSourceContext listFileCtx);

ImportProcessorContext ctx

ListFileSourceContext listFileCtx

newFolder
The newFolder event occurs when a new folder containing list files is about to be
processed. To exclude the folder from being processed, set the cancel property to True
in the ctx parameter.

Syntax Parameter

public void newFolder(ImportProcessorContext
ctx, ListFileSourceContext listFileCtx);

ImportProcessorContext ctx

ListFileSourceContext listFileCtx

newListFile
The newListFile event occurs when a new list file is about to be processed. To prevent
the list file from being processed, set the cancel property to True in the ctx parameter.

Syntax Parameter

public void
newListFile(ImportProcessorContext ctx,
ListFileSourceContext listFileCtx);

ImportProcessorContext ctx

ListFileSourceContext listFileCtx

newListFileLine
The newListFileLine event occurs when a new line in the list file is about to be
processed. To prevent the list file line from being processed, set the cancel property to
True in the ctx parameter.

Syntax Parameter

public void
newListFileLine(ImportProcessorContext ctx,
ListFileSourceContext listFileCtx);

ImportProcessorContext ctx

ListFileSourceContext listFileCtx

renameListFile
The renameListFile event occurs in the list file post-processing step when a list file
is about to be renamed. To prevent the list file from being renamed, set the cancel
property to True in the ctx parameter.

Chapter 5
List File Source Events

5-7

Syntax Parameter

public void
renameListFile(ImportProcessorContext ctx,
ListFileSourceContext listFileCtx);

ImportProcessorContext ctx

ListFileSourceContext listFileCtx

Import Processor Classes
This section describes the following Import Processor classes:

• EmailSourceContext

• FolderSourceContext

• ImportJob

• ImportProcessorContext

• ListFileSourceContext

In addition to the following event classes that can be used to design Import Processor
scripts, there are some common classes that pertain to the Recognition Processor and
the Import Processor. For more information on the common classes, see Common
Capture Classes.

EmailSourceContext
The EmailSourceContext class contains all classes used in the processing of an email
source.

Property Type Description

account String Name of the email account currently being
processed.

attachmentFilename String File name of the email message attachment
currently being processed.

Standard IMAP connection uses the following properties:

folder Folder Email folder currently being processed.

message Message Email message currently being processed.

EWS connection uses the following properties:

getExchangeMessage microsoft.exchange.webs
ervices.data.core.service.
item.EmailMessage

Email message currently being processed.

getExchangeFolder microsoft.exchange.webs
ervices.data.core.service.
folder.Folder

Email folder currently being processed.

For more information on the Folder and Message class definitions, see the Javamail
API documentation.

Chapter 5
Import Processor Classes

5-8

FolderSourceContext
The FolderSourceContext class contains all classes used in the processing of a folder
source.

Property Type Description

folderName String Name of the directory currently being
processed.

documentFilename String Name of the file currently being processed.

renamedDocumentFil
ename

String If the post-processing step indicates the file
should have a prefix added to it or the
extension changed, this property indicates
the changed file name.

ImportJob
Import jobs are configured within a Capture Workspace to import batches from import
sources such as a file system folder, a delimited list file, or an inbox/folder of an email
server.

Property Type Description

jobID String A value that uniquely identifies the job in the
system.

workspaceID String Identifier of the workspace to which the job
belongs.

jobName String A human-readable name for the job.

dbSearchID String Identifier of the database search to use
when processing the job.

dbSearchFieldID String Identifier of the database search field to use
when processing the job.

imageDownsample Integer Determines how to sample an image:

• 0 – None (retain image format).
• 1 – Down-sample color to 8 bit

grayscale.
• 2 – Down-sample color or grayscale to

black and white.

jpegQuality Integer The JPEG quality ratio 0 to 99.

batchPrefix String Batch prefix to use when creating batch
names.

defaultBatchStatusID String Identifier of the batch status to associate
with batches created by this job.

defaultPriority Integer Default priority assigned to batches ranging
from 0 to 10.

defaultDocumentTypeI
D

String Default document profile for documents
created by this job.

Chapter 5
Import Processor Classes

5-9

Property Type Description

searchResultOption Integer Determines how to handle database
lookups that return more than one result.

• 0 – Use the first record.
• 1 – Ignore results (do not populate

fields).

scriptID String Unique identifier of a script to use for this
job.

importFrequency Integer A value, specified in seconds, that
determines how often a job should be
polled for work to process. The following
values are possible:

• 0 – Inactive
• 30 – Every 30 seconds
• 60 – Every 1 minute
• 300 – Every 5 minutes
• 900 – Every 15 minutes
• 1800 – Every 30 minutes
• 3600 – Every 1 hour
• -1 – Daily (Specify Time)

hour Integer If the importFrequency is set to Daily, this
specifies the hour of the day.

minute Integer If the importFrequency is set to Daily, this
specifies the minute of the day.

lastCheck Date Date or time the job was last checked for
processing. This will be updated by the
Import Job Scheduler after a job is polled
for work to process.

fieldMappings Map<String,
FieldMappingInfo>

A set of values that map Capture fields to
import source metadata fields.

importSourceClassNa
me

String Name of the Java class that provides the
implementation of the import source for this
job.

batchProcessorClass
Name

String Name of the class that will be used to
process the batch when it is released. If
this value is null, the batch lock will be
discarded and the batch will be put in a
READY state.

batchProcessorJobID String A unique identifier for a batch processor
job. If this value is null, either the processor
does not support jobs or the batch is going
to be put in a READY state.

imageFailureAction Integer Specifies the action to be taken if an invalid
image is encountered:

• 0 – Abort the batch
• 1 – Skip the item

locale Locale Specifies the locale of the list file source.

defaultDateFormat String Specifies the default date format of dates in
the list file source.

description String Description of this job.

Chapter 5
Import Processor Classes

5-10

Property Type Description

encoding String Specifies the file encoding of the list file
source.

isJobOnline Boolean Indicates whether this job should be
processed.

preserveImageFiles Boolean If True, prevents image files from being
altered during import.

ImportProcessorContext
The ImportProcessorContext class contains properties relevant to the job being
processed. An instance of this class is created before processing is started and is
passed to an import source at various stages throughout processing.

Property Type Description

cancel Boolean When this boolean value is set to True, it
will cancel the operation being performed.

cancelDBSearch Boolean When this boolean value is set to True, it
will cancel the database lookup.

dBSearchResults DBSearchResults Contains the results from a database
lookup.

sourceName String Name of the import source that the current
Import Job is configured to use.

logger Logger An instance of java.util.logging.Logger that
can be used to log additional entries.

importCancelAction Integer This property specifies the action to be
taken if a script sets the cancel property
to True in the preImportFile event. The
value may be set to one of the following
constants:
• CANCEL_ACTION_SKIP = 0 — Skips

importing the file into the batch
• CANCEL_ACTION_ABORT = 1 —

Aborts the entire batch

importJob ImportJob Current Import Job being processed.

batchLock BatchLockEntity Contains the batch lock entity for the batch,
after a new batch has been created.

importSourceFile String Name of the file currently being processed.

documentEntity DocumentEntity Document entity associated with the file
currently being processed.

documentPageEntity DocumentPageEntity Document page entity associated with the
file currently being processed.

lastMultiPageTiffNumb
er

Integer Contains the current page number of a
multi-page TIFF file being processed.

workspaceEntity CaptureWorkspaceEntity Workspace entity associated with the
current batch.

batchManager BatchManagerSession Batch manager object used for batch
operations.

Chapter 5
Import Processor Classes

5-11

Property Type Description

isExchangeMail Boolean Checks whether the current email import
job is using exchange web service APIs.

ListFileSourceContext
The ListFileSourceContext class contains all classes used in the processing of a list
file source.

Property Type Description

folderName String Name of the folder currently being
processed.

listFilename String Name of the list file currently being
processed.

listFileLine String Contents of the line currently being
processed in the list file.

documentFilename String Name of the file currently being processed
from the current line in the list file.

renamedListFilename String If the post-processing step indicates the list
file should have a prefix added to it or the
extension changed, this property indicates
the changed list file name.

Sample Import Processor Scripts
The section describes the following sample Import Processor scripts:

• Sample Import Processor Script 1

• Sample Import Processor Script 2

Sample Import Processor Script 1
The following sample script sets each document's title to the name of the file being
imported. When the documents are later committed, their document title can be
mapped to an output field.

importClass(java.io.File);

function preCreateDocument(event) { // ImportProcessorContext
 var document; // DocumentEntity
 var sourceFile; // File

 sourceFile = new File(event.getImportSourceFile());
 document = event.getDocumentEntity();

 // Set the document title to be the name of the source file
 document.setDocumentTitle(sourceFile.getName());
}

Chapter 5
Import Processor Classes

5-12

Sample Import Processor Script 2
The following sample script demonstrates using the preCreateDocument event to
obtain the base file name of the file being imported and assign that name to a
metadata field. In addition, this script shows how to look up the definition of a
metadata field by name, locate and create an IndexValue, and set the value of an
IndexValue.

function preCreateDocument(ctx) {
 // Get the base name of the file being imported.
 var sourceFile = new java.io.File(ctx.getImportSourceFile());
 var baseFileName = sourceFile.getName();

 // Strip off any file extension.
 var dotPos = baseFileName.lastIndexOf('.');
 if (dotPos > -1)
 baseFileName = baseFileName.substring(0, dotPos);

 // Update the "File Name" metadata field with the base name of the file.
 updateIndex(ctx, "File Name", baseFileName);
}

// Update a metadata field
function updateIndex(ctx, indexName, commitValue) {
 var doc = ctx.getDocumentEntity();
 var workspace = ctx.getWorkspaceEntity();

 // Locate the index definition object by the index name.
 var indexDef = findIndexDefinitionByName(workspace, indexName);
 if (indexDef != null) {
 // Get the ID for the index field.
 var indexID = indexDef.getIndexFieldID();
 // Get the index value object for the given document and index ID.
 var indexValue = getIndexValue(doc, indexID);
 // Set the commit value for the index field.
 indexValue.setFieldValue(commitValue);
 }
}

// Search the workspace to find the index definition by name
function findIndexDefinitionByName(workspace, indexName) {
 var indexDefs = workspace.getIndexDefinitions();
 var size = indexDefs.size();
 var foundIndexDef = null;
 for (var i = 0; i < size; i++) {
 var indexDef = indexDefs.get(i);
 if (indexName.equals(indexDef.getFieldName())) {
 // An index by this name was found.
 foundIndexDef = indexDef;
 break;
 }
 }
 return foundIndexDef;
}

// Search the index values of the document for an IndexValue object with the
given ID.
// If one is found, return it; Otherwise, create one and return it.
function getIndexValue(doc, indexDefID) {

Chapter 5
Import Processor Classes

5-13

 // Look through all existing document indexes to see if our index is present.
 var indexes = doc.getIndexes();
 var size = indexes.size();
 var foundIndexValue = null;
 for (var i = 0; i < size; i++) {
 var indexValue = indexes.get(i);
 if (indexDefID.equals(indexValue.getFieldID())) {
 // An index by this ID was found.
 foundIndexValue = indexValue;
 break;
 }
 }

 if (foundIndexValue == null) {
 // The index value wasn't found, so create one with blank values.
 foundIndexValue = new Packages.oracle.odc.data.IndexValue(indexDefID,
"", "");
 // Add it to the document's index collection.
 indexes.add(foundIndexValue);
 }

 // Return the IndexValue object.
 return foundIndexValue;
}

Chapter 5
Import Processor Classes

5-14

6
Creating Document Conversion Processor
Scripts

Similar to other batch processors, the Document Conversion Processor allows
customization of document conversion jobs using JavaScript (Nashorn). Here you
learn how to create Document Conversion Processor scripts.

This chapter covers the following topics:

• DocumentConverterContext Class

• Document Conversion Processor Events

• Sample Document Conversion Processor Scripts

DocumentConverterContext Class
The DocumentConverterContext class contains properties relevant to the job being
processed. An instance of this class is created before processing starts, and this
instance is passed on to document conversion events at various stages of processing.

The following table lists the DocumentConverterContext fields. When a document
conversion event is invoked, the corresponding DocumentConverterContext field is
exposed to the event.

Property Type Description

cancel Boolean When the boolean value is set to true, it
will cancel the operation being performed.

logger Logger An instance of
java.util.logging.Logger that can
be used to log additional entries.

docConverterJob DocConverterJob The current document conversion job
being processed.

ble BatchLockEntity After a new batch is created, this property
contains the Batch Lock entity for the
batch.

activeDocument DocumentEntity The current active document being
processed.

activeAttachment DocumentEntity The current active attachment being
processed.

activePage DocumentPageEntity The current active page being processed.

externalProgramPath String The fully-qualified path to an external
application that will be used to convert
documents.

externalProgramCommand
Line

String The fully-qualified path to an external
application that will be used to convert
documents.

6-1

Property Type Description

externalProgramSuccessC
ode

int The value returned from an external
program that indicates a successful
conversion.

externalProgramMonitoring
Method

int The monitoring method used to monitor
the external program. The valid values
are:

0 - Process duration

1 - Output file

externalProgramTimeout int When
externalProgramMonitoriingMethod
is 1 (Process duration), this value
contains the number of minutes to allow
the program to run before the program
is considered to have timed-out due to a
fault or hang. When this value is reached,
the external program is terminated and an
exception is thrown.

externalProgramDestFile File A File object representing the destination
file that the external program will
generate. Create and pass a File object
in the script.

Document Conversion Processor Events
Document Conversion Processor scripts are JavaScript modules that enable you to
customize the behavior of certain Document Conversion Processor events.

This section describes the following Document Conversion Processor events:

• Initialize

• preProcessBatch

• postProcessBatch

• preProcessDocument

• postProcessDocument

• preProcessAttachment

• postProcessAttachment

• preProcessPage

• postProcessPage

• preInvokeExternalProcess

• postInvokeExternalProcess

Initialize
The Initialize event signals that the document conversion processor job is in the
initialization phase. The initialize method is invoked when the job starts. The
DocumentConversionContext instance for the entire job is initialized at this point and

Chapter 6
Document Conversion Processor Events

6-2

passed into the method. An implementer can use this method to perform initialization
tasks, such as creating database connections or creating temporary paths.

Syntax Parameter

public
initialize(DocumentConverterContext
ctx);

DocumentConverterContext ctx

preProcessBatch
The preProcessBatch event occurs before a new batch is processed.

Syntax Parameter

public
preProcessBatch(DocumentConverterCon
text ctx);

DocumentConverterContext ctx

Associated DocumentConversionContext Properties

• cancel: If set to true, the batch is not processed.

• ble: At this point, this property will be initialized.

postProcessBatch
The postProcessBatch event occurs after the document conversion process is
complete. An implementer can close database connections as well as cleanup
temporary files and directories.

Syntax Parameter

public
postProcessBatch(DocumentConverterCo
ntext ctx);

DocumentConverterContext ctx

preProcessDocument
The preProcessDocument event occurs when the document, which is a part of the
batch, is active for the conversion job. If there are multiple documents, this event is
signaled for each document.

Syntax Parameter

public
preProcessDocument(DocumentConverter
Context ctx);

DocumentConverterContext ctx

Associated DocumentConversionContext Properties

• cancel: If set to true, the document is not processed.

• ble: A reference to the associated BatchLockEntity.

• activeDocument: A reference to the document that is about to be processed.

Chapter 6
Document Conversion Processor Events

6-3

postProcessDocument
The postProcessDocument event occurs after the document, which is a part of the
batch, has completed the conversion job. If there are multiple documents, this event is
signaled for each document.

Syntax Parameter

public
postProcessDocument(DocumentConverte
rContext ctx);

DocumentConverterContext ctx

preProcessAttachment
The preProcessAttachment event occurs when the attachment, which is a part of the
batch, is active for the conversion job. If there are multiple attachments, this event is
signaled for each attachment.

Syntax Parameter

public
preProcessAttachment(DocumentConvert
erContext ctx);

DocumentConverterContext ctx

Associated DocumentConversionContext Properties

• cancel: If set to true, the attachment is not processed.

• ble: A reference to the associated BatchLockEntity.

• activeAttachment: A reference to the attachment that is about to be processed.

postProcessAttachment
The postProcessAttachment event occurs after the attachment, which is a part of the
batch, has completed the conversion job. If there are multiple attachments, this event
is signaled for each attachment.

Syntax Parameter

public
postProcessAttachment(DocumentConver
terContext ctx);

DocumentConverterContext ctx

preProcessPage
The preProcessPage event occurs when the page, which is a part of the batch or
document, is about to be sent to a conversion job. If there are multiple pages, this
event is signaled for each page.

Chapter 6
Document Conversion Processor Events

6-4

Syntax Parameter

public
preProcessPage(DocumentConverterCont
ext ctx);

DocumentConverterContext ctx

Associated DocumentConversionContext Properties

• cancel: If set to true, the page is not processed.

• ble: A reference to the associated BatchLockEntity.

• activeAttachment: A reference to the page that is about to be processed.

postProcessPage
The postProcessPage event occurs after the page, which is a part of the batch or
document, has completed the conversion job. If there are multiple pages, this event is
signaled for each page.

Syntax Parameter

public
postProcessPage(DocumentConverterCon
text ctx);

DocumentConverterContext ctx

preInvokeExternalProcess
The preInvokeExternalProcess method is invoked right before an external conversion
program is invoked.

Syntax Parameter

public
preInvokeExternalProcess(DocumentCon
verterContext ctx);

DocumentConverterContext ctx

Associated DocumentConversionContext Properties

• cancel: If set to true, the page is not processed.

• ble: A reference to the associated BatchLockEntity.

• externalProgramPath: The path to the external program to execute.

• externalProgramCommandLine: The command line to pass to the external
program.

• externalProgramSuccessCode: The integer value that represents a successful run
when the external program terminates.

• externalProgramMonitoringMethod: The method used to monitor the external
program for hangs.

• externalProgramTimeout: The duration in minutes that the external program is
allowed to run before the program is terminated.

Chapter 6
Document Conversion Processor Events

6-5

• externalProgramDestFile: The output file to be generated by the external program;
create and pass this File object in the script.

postInvokeExternalProcess
The postInvokeExternalProcess method is invoked soon after an external conversion
program is completed.

Syntax Parameter

public
postInvokeExternalProcess(DocumentCo
nverterContext ctx);

DocumentConverterContext ctx

Sample Document Conversion Processor Scripts
The section contains the following sample Document Conversion Processor scripts:

• Sample Document Conversion Processor Script 1

• Sample Document Conversion Processor Script 2

• Sample Document Conversion Processor Script 3

Sample Document Conversion Processor Script 1
The following script prints all events when a batch goes through conversion:

//doc conversion job script to print at the specific events
function initialize(event) {
 java.lang.System.out.println("initialize");
}
function preProcessBatch(event){
 java.lang.System.out.println("In preProcessBatch");
 java.lang.System.out.println("Batch name preProcessBatch:
"+event.getBle().getBatch().getBatchName());
}
function postProcessBatch(event){
 java.lang.System.out.println("In postProcessBatch");
 java.lang.System.out.println("Batch name postProcessBatch:
"+event.getBle().getBatch().getBatchName());
}
function preProcessDocument(event){
 java.lang.System.out.println("In preProcessDocument");
 java.lang.System.out.println("Title name preProcessDocument:
"+event.getActiveDocument().getDocumentTitle());
}
function postProcessDocument(event){
 java.lang.System.out.println("In postProcessDocument");
}
function preProcessAttachment(event){
 java.lang.System.out.println("In preProcessAttachment");
 java.lang.System.out.println("Attachment name:
"+event.getActiveAttachment().getDocumentTitle());
}
function postProcessAttachment(event){
 java.lang.System.out.println("In postProcessAttachment");
}

Chapter 6
Sample Document Conversion Processor Scripts

6-6

function preProcessPage(event){
 java.lang.System.out.println("In preProcessPage");
 java.lang.System.out.println("Page name:
"+event.getActivePage().getDocumentEntity().getDocumentTitle());
}
function postProcessPage(event){
 java.lang.System.out.println("In postProcessPage");
}
function preInvokeExternalProcess(event){
 java.lang.System.out.println("In preInvokeExternalProcess");
}
function postInvokeExternalProcess(event){
 java.lang.System.out.println("In postInvokeExternalProcess");
}

Sample Document Conversion Processor Script 2
The following script cancels operation at the preProcessBatch event:

function initialize(event) {
 java.lang.System.out.println("initialize");
}
function preProcessBatch(event){
 var isCancel = true;
 event.setCancel(isCancel);
 java.lang.System.out.println("preProcessBatch and about to cancel
operation.");
 java.lang.System.out.println("Batch name preProcessBatch:
"+event.getBle().getBatch().getBatchName());
}
function postProcessBatch(event){
 java.lang.System.out.println("postProcessBatch - this line will not be
printed.");
 java.lang.System.out.println("Batch name postProcessBatch:
"+event.getBle().getBatch().getBatchName());
}

Sample Document Conversion Processor Script 3
The following script changes the batch name in the preProcessDocument event:

function preProcessDocument(event){
 java.lang.System.out.println("preProcessDocument
batch-"+event.getBle().getBatch().getBatchName());
 event.getBle().getBatch().setBatchName("BatchInPreDocumentConv");
}

function postProcessDocument(event){
 java.lang.System.out.println("postProcessDocument
batch-"+event.getBle().getBatch().getBatchName());
}

Chapter 6
Sample Document Conversion Processor Scripts

6-7

7
Creating Commit Processor Scripts

This chapter describes creating Commit Processor scripts. The Commit Processor
scripting allows customization of commit processor jobs using user-defined JavaScript.

This chapter covers the following topics:

• CommitEventObject Class

• Commit Processor Events

• Sample Commit Processor Scripts

CommitEventObject Class
The CommitEventObject class contains the properties relevant to the batches or
documents being processed. An instance of this class is created before the processing
begins and is passed to commit drivers at various stages throughout the processing.

The following table lists the CommitEventObject fields:

Property Type Description

cancel java.lang.Boolean If set to True, the processing operation is
canceled.

logger Logger An instance of java.util.logging.Logger
that can be used to log data to log files.

workingDirectory java.io.File The current working directory from where
the commit driver processes documents.

batch BatchEntity Contains the batch information.

document DocumentEntity The current active document which is
being processed.

attachmentFileNames DocumentEntity The current active attachments which is
being processed.

exportDriverInformation ExportDriverInformatio
n

The export driver information for the
attachments.

dateCommitted java.util.Date The date on which the document has
been committed.

commitProfile CommitProfileEntity The current commit profile used by the
Commit Processor.

documentFileName java.lang.String The file name of the document.

Commit Processor Events
Commit Processor scripts are JavaScript modules that enable you to customize the
behavior of certain Commit Processor events.

This section describes the following Commit Processor events:

7-1

• preCommit

• preReleaseDocument

• postReleaseDocument

• postCommit

preCommit
The preCommit event occurs prior to a document being committed to a repository. The
user-defined method can use this functionality to take action for the commit profile
being processed by the commit driver. Setting the cancel attribute to true allows all the
documents to skip this commit profile and move onto next active commit profile.

Syntax Parameter

public preCommit (CommitEventObject
commitEventObject)

CommitEventObject

commitEventObject

Associated CommitEventObject Properties

• cancel: If set to true, this commit profile will be skipped and the system will try to
commit the documents with the next active commit profile defined in the capture
console.

• batch: At this point, this property has been initialized.

• commitProfile: The commit profile has been set.

preReleaseDocument
The preReleaseDocument event occurs prior to a document being released. It allows
the user-defined script to take action for the document being released. The cancel
property also allows to cancel further processing of the document by canceling and
moving onto the next document.

Syntax Parameter

public preReleaseDocument
(CommitEventObject
commitEventObject)

CommitEventObject

commitEventObject

Associated CommitEventObject Properties

• cancel: If set to true, this document will not be processed further.

• batch: This property has been initialized.

• commitProfile: The commit profile has been set.

• document: This property has been set to the current document being committed.

• documentFileName: This property is also initialized.

postReleaseDocument
The postReleaseDocument event occurs after each document has been released or
committed to the repository. It will allow the user-defined script to take action for

Chapter 7
Commit Processor Events

7-2

the document after release. Setting the cancel property to true at this point will not
have any effect. This method might not be triggered if there is some problem while
committing the document. The Commit Profile "Error Handling Policy" will override the
behavior.

For example: Cancel to next commit profile defined in Commit Profile's "Error
Handling Policy" will skip to the next active commit profile in case of an error and
then this method will not be called.

Syntax Parameter

public postReleaseDocument
(CommitEventObject
commitEventObject)

CommitEventObject

commitEventObject

Associated CommitEventObject Properties

• cancel: If set to true, it will not have any effect.

• batch: This property has been initialized.

• commitProfile: The commit profile has been set.

• document: This property has been set to the current document being committed.

• documentFileName: This property is also initialized at this point.

postCommit
The postCommit event occurs after a batch has been processed for a given commit
profile. It will allow the user-defined script to later on take some cleanup or logging
action. This method execution does not mean that the documents have been
committed successfully to the repository. Setting the cancel property to true at this
point will not have an effect.

Syntax Parameter

public postCommit (CommitEventObject
commitEventObject)

CommitEventObject

commitEventObject

Associated CommitEventObject Properties

• cancel: If set to true, it will have no effect.

• batch: This property has been initialized.

• commitProfile: The commit profile has been set.

Sample Commit Processor Scripts
The section contains the following sample Commit Processor scripts:

• Sample Commit Processor Script 1

• Sample Commit Processor Script 2

• Sample Commit Processor Script 3

Chapter 7
Sample Commit Processor Scripts

7-3

Sample Commit Processor Script 1
The following script prints all events when a batch goes through commit:

//commit processor javascript to print at the specific events
function preCommit(event){
 java.lang.System.out.println("In preCommit");
 java.lang.System.out.println("Batch name preCommit:
"+event.getBatch().getBatchName());
}
function preReleaseDocument(event){
 java.lang.System.out.println("In preReleaseDocument");
 java.lang.System.out.println("Batch name preReleaseDocument:
"+event.getBatch().getBatchName());
}
function postReleaseDocument(event){
 java.lang.System.out.println("In postReleaseDocument");
 java.lang.System.out.println("Batch name postReleaseDocument:
"+event.getBatch().getBatchName());
}
function postCommit(event){
 java.lang.System.out.println("In postCommit");
 java.lang.System.out.println("Batch name postCommit:
"+event.getBatch().getBatchName());
}

Sample Commit Processor Script 2
The following script cancels operation at the preCommit event:

function preProcessBatch(event){
 event.setCancel(true);
 java.lang.System.out.println("preCommit about to cancel operation commit
profile operation.");
 java.lang.System.out.println("preCommit: Batch name
"+event.getBatch().getBatchName());
}
function preReleaseDocument(event){
 java.lang.System.out.println("postProcessBatch - this method will not be
called.");
 java.lang.System.out.println("postProcessBatch: Batch name
"+event.getBatch().getBatchName());
}

Sample Commit Processor Script 3
The following script cancels the document commit at the preReleaseDocument event:

function preReleaseDocument(event){
 event.setCancel(true);
 java.lang.System.out.println("preReleaseDocument
batch-"+event.getBatch().getBatchName());
}

Chapter 7
Sample Commit Processor Scripts

7-4

8
Working with Common Capture Classes

This chapter describes the common Capture classes that pertain to the Recognition
Processor and the Import Processor.
This is in addition to the classes that you can use to design the Recognition Processor
scripts and the Import Processor scripts. For more information on the Recognition
Processor and Import Processor classes, see Recognition Processor Classes and
Import Processor Classes.

Common Capture Classes
The following are the classes that pertain to the Recognition Processor and the Import
Processor:

• BatchEntity

• BatchItemEntity

• BatchLockEntity

• BatchManagerSession

• BatchStatusEntity

• CaptureWorkspaceEntity

• DBSearchResults

• DBSearchResultRow

• DBSearchFieldInfo

• DocumentEntity

• DocumentPageEntity

• DocumentTypeEntity

• IndexDefinitionEntity

• IndexValue

BatchEntity
The BatchEntity class represents a batch within a Capture Workspace. A batch is a
collection of batch items and documents.

Property Type Description

itemID String The unique batch item identifier.

id Integer The unique batch ID.

8-1

Property Type Description

state Integer The current state of the batch, which will be
one of the following values:

• 1 – READY
• 2 – LOCKED
• 16 – ERROR
• 32 – PROCESSING

errorMessage String An error message related to processing
failure.

status BatchStatusEntity A reference to a BatchStatusEntity that
represents the current status of the batch.

priority Integer The current priority value of the batch.

itemCount Integer The number of items in the batch.

userID String The user id of the user that created the
batch.

workstationID String The host name of the system that created
the batch.

comment byte[] A comment or note regarding the batch.

dateTime Date The date and time the batch was created.

workspace CaptureWorkspaceEntity A reference to the workspace to which the
batch belongs.

documents List<DocumentEntity> A list of DocumentEntity references that
exist in the batch.

items List<BatchItemEntity> A list of batch items associated with the
batch.

lastModifiedDateTime Date The date and time the batch was last
modified.

lastModifiedUserID String The ID of the user that last modified the
batch.

batchName String The name of the batch.

BatchItemEntity
The BatchItemEntity class represents a batch item within a batch. BatchItemEntities
are associated with DocumentPageEntities that are used to form documents within a
batch.

Property Type Description

itemID String The unique batch item identifier.

sourceFileName String The original file name of the item. Useful if
the item is an imported file.

sourceFormat String For non–image files, this is generally the
file extension (DOC, XLS, PDF). For image
files, the value will be empty.

patchCode Integer A patch code value if a patch code was
read.

Chapter 8
Common Capture Classes

8-2

Property Type Description

barcodeCount Integer The number of barcodes that were read
during barcode detection.

linkCount Integer The number of documents the item is linked
to.

fileLength Long The size of the item in bytes.

barcodes String[] An array of strings that represent barcode
values that were read during barcode
recognition.

BatchLockEntity
The BatchLockEntity class represents a lock on a batch. The lock is used to prevent
users and processors from accessing the same batch simultaneously.

Property Type Description

id String The unique batch lock ID.

batch BatchEntity A reference to the locked batch.

batchName String The name of the batch to which the batch
lock is applied.

workspace CaptureWorkspaceEntity A reference to the workspace to which the
batch belongs.

workspaceName String The name of the workspace to which the
batch belongs.

lockDate Date The date that the batch lock was created.

userID String The ID of the user who locked the batch.

computerName String The name of the computer used to lock the
batch.

processID String The process ID used to lock the batch.

BatchManagerSession
The BatchManagerSession class provides methods to audit actions and manipulate
batch, document, document page, and batch item objects. This includes create, read,
update, delete, move, and so on.

This class includes the following methods:

• auditActivity()

• calculateTotalDocumentPagesInBatch()

• createDocument()

• createDocumentAttachments()

• deleteDocument()

• findDocumentByID()

• findBatchItemByID()

Chapter 8
Common Capture Classes

8-3

• linkItemToDocument()

• loadBatchItems()

• loadDocumentPages()

• loadDocuments()

• loadDocumentAttachments()

• persistBatch()

• persistBatchItem()

• persistDocument()

• unlinkDocumentPage()

• deleteDocumentPages()

• insertItemsIntoDocument()

• splitDocument()

• mergeDocuments()

auditActivity()

The following table describes the syntax for auditActivity() method:

Syntax Description

public void
auditActivity(BatchLockEntity ble,
Integer actionID, int dataInt, float
dataFloat, String dataText1, String
dataText2, String dataText3, String
dataText4, String dataText5) throws
CaptureException

Writes an audit record to the database for a
process defined action.

The following table describes the parameters for auditActivity() method:

Parameter Type Description

ble BatchLockEntity The batch lock for the batch being acted on.

actionID Integer The identifier of the action to log. This is
specific to the process.

dataInt int A process and action specific integer.

dataFloat Float A process and action specific float.

dataText1 String A process and action specific text value.

dataText2 String A process and action specific text value.

dataText3 String A process and action specific text value.

dataText4 String A process and action specific text value.

dataText5 String A process and action specific text value.

calculateTotalDocumentPagesInBatch()

The following table describes the syntax for calculateTotalDocumentPagesInBatch()
method:

Chapter 8
Common Capture Classes

8-4

Syntax Description

public Integer
calculateTotalDocumentPagesInBatch(Str
ing batchID) throws CaptureException)

Calculates the total number of batch items
that are linked to documents.

The following table describes the parameters for
calculateTotalDocumentPagesInBatch() method:

Parameter Type Description

batchID String The identifier of the batch.

The following table describes the values that are returned for
calculateTotalDocumentPagesInBatch() method:

Value Type Description

return Integer An integer representing the total number of
document pages in the batch.

createDocument()

The following table describes the syntax for createDocument() method:

Syntax Description

public String createDocument(String
batchLockID, DocumentEntity doc,
Integer insertionPoint) throws
BatchLockException, CaptureException

Associates a document object with the
specified locked batch.

The following table describes the parameters for createDocument() method:

Parameter Type Description

batchLockID String The unique identifier of the batch lock.

doc DocumentEntity The document entity that is to be
associated with the batch.

insertionPoint Integer The document number where this doc
should be inserted.

The following table describes the values that are returned for createDocument()
method:

Value Type Description

return String The unique document identifier.

createDocumentAttachments()

The following table describes the syntax for createDocumentAttachments() method:

Chapter 8
Common Capture Classes

8-5

Syntax Description

public void
createDocumentAttachments(String
batchLockID, List<DocumentEntity>
documents, List<BatchItemEntity>
items, Integer insertionPoint,
Boolean reNumberFirstDocument,
String parentDocID) throws
BatchLockException, CaptureException

Creates a collection of DocumentEntities
as attachments to a specified document
and BatchItemEntities to the database. A
client might call this method to create a
series of batch items and document entities
rather than making repeated requests to the
server.

The following table describes the parameters for createDocumentAttachments()
method:

Parameter Type Description

batchLockID String The unique identifier of the batch lock.

documents List<DocumentEntity> A collection of document objects that
require database persistence.

items List<BatchItemEntity> A collection of batch item objects that
require database persistence.

insertionPoint Integer An integer that represents where the
document will be inserted.

reNumberFirstDocum
ent

Boolean A Boolean indicating whether the first
document should be renumbered. You
should specify False, if the first document
already exists in the database.

parentDocID String An identifier of a parent document to
associate the attachments with.

deleteDocument()

The following table describes the syntax for deleteDocument() method:

Syntax Description

public void deleteDocument(String
batchLockID, String documentID) throws
BatchLockException, CaptureException

Deletes a document in the specified locked
batch.

The following table describes the parameters for deleteDocument() method:

Parameter Type Description

batchLockID String The unique identifier of the batch lock.

documentID String The unique identifier of the document to
delete.

findDocumentByID()

The following table describes the syntax for findDocumentByID() method:

Chapter 8
Common Capture Classes

8-6

Syntax Description

public DocumentEntity
findDocumentByID(String docID) throws
CaptureException

Locates a DocumentEntity by its identifier.

The following table describes the parameters for findDocumentByID() method:

Parameter Type Description

docID String The unique identifier of the document to
locate.

The following table describes the values that are returned for findDocumentByID()
method:

Value Type Description

return DocumentEntity If a matching document is found, the
associated entity of the document will be
returned. If a match could not be found,
then null is returned.

findBatchItemByID()

The following table describes the syntax for findBatchItemByID() method:

Syntax Description

public BatchItemEntity
findBatchItemByID(String docPageID)
throws CaptureException

Locates the BatchItemEntity for the
specified docPageID.

The following table describes the parameters for findBatchItemByID() method:

Parameter Type Description

docPageID String The unique identifier of the batch item to
locate.

The following table describes the values that are returned for findBatchItemByID()
method:

Value Type Description

return BatchItemEntity If a matching batch item is found, the
associated entity of the batch item will be
returned. If a match could not be found,
then null is returned.

linkItemToDocument()

The following table describes the syntax for linkItemToDocument() method:

Chapter 8
Common Capture Classes

8-7

Syntax Description

public DocumentPageEntity
linkItemToDocument(String batchLockID,
String imageID, String documentID,
Integer documentPage) throws
CaptureException, BatchLockException

Associates a batch item with a document.

The following table describes the parameters for linkItemToDocument() method:

Parameter Type Description

batchLockID String The identifier of the batch lock.

imageID String The identifier of the batch item.

documentID String The document identifier.

documentPage Integer The page number for this item.

The following table describes the values that are returned for linkItemToDocument()
method:

Value Type Description

return DocumentPageEntity A DocumentPageEntity reference
containing the linked page.

loadBatchItems()

The following table describes the syntax for loadBatchItems() method:

Syntax Description

public List<BatchItemEntity>
loadBatchItems(String batchID) throws
CaptureException

Returns a list of batch items belonging to
the specified batch.

The following table describes the parameters for loadBatchItems() method:

Parameter Type Description

batchID String The unique identifier of the batch.

The following table describes the values that are returned for loadBatchItems()
method:

Value Type Description

return List<BatchItemEntity> A collection of items belonging to the batch.

loadDocumentPages()

The following table describes the syntax for loadDocumentPages() method:

Chapter 8
Common Capture Classes

8-8

Syntax Description

public List<DocumentPageEntity>
loadDocumentPages(String documentID)
throws CaptureException

Returns a collection of document objects
associated with a batch.

The following table describes the parameters for loadDocumentPages() method:

Parameter Type Description

documentID String The document identifier.

The following table describes the values that are returned for loadDocumentPages()
method:

Value Type Description

return List<DocumentPageEntit
y>

A collection of document pages associated
with the document.

loadDocuments()

The following table describes the syntax for loadDocuments() method:

Syntax Description

public List<DocumentEntity>
loadDocuments(String batchID) throws
CaptureException

Returns a collection of document objects
associated with a batch.

The following table describes the parameters for loadDocuments() method:

Parameter Type Description

batchID String The unique identifier of the batch.

The following table describes the values that are returned for loadDocuments()
method:

Value Type Description

return List<DocumentEntity> A collection of document pages associated
with the document.

loadDocumentAttachments()

The following table describes the syntax for loadDocumentAttachments() method:

Syntax Description

public List<DocumentEntity>
loadDocumentAttachments(String docID)
throws CaptureException

Returns a collection of document objects
attached to a specified document.

Chapter 8
Common Capture Classes

8-9

The following table describes the parameters for loadDocumentAttachments() method:

Parameter Type Description

docID String The unique identifier of the source
document.

The following table describes the values that are returned for
loadDocumentAttachments() method:

Value Type Description

return List<DocumentEntity> A collection of documents attached to the
source document.

persistBatch()

The following table describes the syntax for persistBatch() method:

Syntax Description

public void persistBatch(String
batchLockID, BatchEntity be) throws
BatchLockException, CaptureException

Persists the specified batch to the
database.

The following table describes the parameters for persistBatch() method:

Parameter Type Description

batchLockID String The unique identifier of the batch lock.

be BatchEntity The batch entity that is to be updated.

persistBatchItem()

The following table describes the syntax for persistBatchItem() method:

Syntax Description

public BatchItemEntity
persistBatchItem(String batchLockID,
BatchItemEntity entity) throws
BatchLockException, CaptureException

Persists an item to the specified locked
batch.

The following table describes the parameters for persistBatchItem() method:

Parameter Type Description

batchLockID String The identifier of the batch lock.

entity BatchItemEntity A BatchItemEntity to persist.

The following table describes the values that are returned for persistBatchItem()
method:

Chapter 8
Common Capture Classes

8-10

Value Type Description

return BatchItemEntity A reference to the BatchItemEntity object
that was persisted.

persistDocument()

The following table describes the syntax for persistDocument() method:

Syntax Description

public void persistDocument(String
batchLockID, DocumentEntity document)
throws CaptureException

Persists a specific document entity within a
batch.

The following table describes the parameters for persistDocument() method:

Parameter Type Description

batchLockID String The identifier of the batch lock.

document DocumentEntity A DocumentEntity to persist.

unlinkDocumentPage()

The following table describes the syntax for unlinkDocumentPage() method:

Syntax Description

public void unlinkDocumentPage(String
batchLockID, String documentPageID)
throws BatchLockException,
CaptureException

Unlinks a document page in the specified
pages collection from their associated
document.

The following table describes the parameters for unlinkDocumentPage() method:

Parameter Type Description

batchLockID String The unique identifier of the batch lock.

documentPageID String The identifier of the page to unlink.

deleteDocumentPages()

The following table describes the syntax for deleteDocumentPages() method:

Syntax Description

public void deleteDocumentPages(String
batchLockID, List<DocumentPageEntity>
pages) throws BatchLockException,
CaptureException

Unlinks the specified document pages in
the pages collection from their associated
document.

The following table describes the parameters for deleteDocumentPages() method:

Chapter 8
Common Capture Classes

8-11

Parameter Type Description

batchLockID String The unique identifier of the batch lock.

pages List<DocumentPageEntit
y>

A collection of pages that require unlinking
from their respective documents.

insertItemsIntoDocument()

The following table describes the syntax for insertItemsIntoDocument() method:

Syntax Description

public void
insertItemsIntoDocument(String
batchLockID, String docID, Integer
insertionPoint, List<BatchItemEntity>
items) throws BatchLockException,
CaptureException

Persists batch item entities in the items
collection to the database and creates links
to the items in the specified document.

The following table describes the parameters for insertItemsIntoDocument() method:

Parameter Type Description

batchLockID String The unique identifier of the batch lock.

docID String The identifier of the document to which
items will be inserted.

insertionPoint Integer The point at which the items must be
inserted.

items List<BatchItemEntity> A collection of items that need persistence.

splitDocument()

The following table describes the syntax for splitDocument() method:

Syntax Description

public DocumentEntity
splitDocument(String batchLockID,
String sourceDocID, Integer
docBreakPoint, String newDocTitle)
throws BatchLockException,
CaptureException

Breaks a source document into a new
document at the specified break point. A
new document is created in the database
and all pages from the source document
starting at the specified breakpoint will be
moved into the new document and removed
from the source.

The following table describes the parameters for splitDocument() method:

Parameter Type Description

batchLockID String A valid batch lock identifier for the batch
being manipulated.

sourceDocID String The source document containing the pages
to branch.

Chapter 8
Common Capture Classes

8-12

Parameter Type Description

docBreakPoint Integer The starting page number of pages to
move.

newDocTitle String The title of the new document to be created.

The following table describes the values that are returned for splitDocument() method:

Value Type Description

return DocumentEntity A new document entity that contains the
pages from the source branch.

mergeDocuments()

The following table describes the syntax for mergeDocuments() method:

Syntax Description

public void mergeDocuments(String
batchLockID, MetadataMergeOption
mergeOption,DocAttachmentIncludeOption
attachmentIncludeOption,
DocumentEntity sourceDocument,
List<DocumentEntity>
destinationDocuments, boolean
addToBeginning) throws
CaptureException, BatchLockException

Merges two documents into one.

The following table describes the parameters for mergeDocuments() method:

Parameter Type Description

batchLockID String The identifier of the batch lock.

mergeOption MetadataMergeOption Indicates how to handle document indexes
during merge. Following are the possible
values:
• discardSourceValues
• applySourceValuesOverwrite
• applySourceValuesDoNOTOverwrite

attachmentIncludeOpti
on

DocAttachmentIncludeO
ption

Indicates how to handle document
attachments during merge. Following are
the possible values:
• doNotInclude
• includeAll
• includeOnlyMatches (Include only

those attachments with matching
attachment types.)

sourceDocument DocumentEntity Source document entity.

destinationDocuments List<DocumentEntity> The destination documents collection.

addToBeginning Boolean Indicates whether the source document
is to be merged to the beginning of the
destination documents collection or not.

Chapter 8
Common Capture Classes

8-13

BatchStatusEntity
The BatchStatusEntity class defines a batch status within a Capture Workspace. Batch
statuses may be associated with batches within a Capture Workspace.

Property Type Description

statusID String The unique identifier of the status.

value String The text value of the status.

workspaceEntity CaptureWorkspaceEntity A reference to the workspace where the
status is defined.

CaptureWorkspaceEntity
The CaptureWorkspaceEntity class represents a workspace in the Capture system. A
workspace defines metadata, document profiles, and batch statuses.

Property Type Description

workspaceID String The unique workspace identifier.

workspaceName String The name of the workspace.

description String A description of the workspace.

dateCreated Date The date the workspace was created.

dateLastModified Date The date the workspace was last modified.

createdBy String The user ID of the user that created the
workspace.

lastModifiedBy String The user ID of the user that last modified
the workspace.

indexDefinitions List<IndexDefinitionEntity
>

A list of index definition entities that have
been defined in the workspace.

statuses List<BatchStatusEntity> A list of batch statuses defined in the
workspace.

documentTypes List<DocumentTypeEntity
>

A list of document profiles that have been
defined in the workspace.

DBSearchResults
The DBSearchResults class contains information returned from executing a database
lookup. It contains a list of the rows returned as well as a list of the search field
information describing the columns of the rows.

Property Type Description

resultsList List<DbSearchResultRo
w>

A list of rows from the database lookup.

fieldInfoList List<DbSearchFieldInfo> A list of search field information describing
the columns used in the database lookup.

Chapter 8
Common Capture Classes

8-14

DBSearchResultRow
The DbSearchResultRow class represents one row result returned from a database
lookup.

Property Type Description

results List<String> A list of string values associated with one
search result. The values in the list will be
in the same order in which the return fields
are defined.

DBSearchFieldInfo
The DbSearchFieldInfo class represents the field information describing the results of
a database lookup.

Property Type Description

captureIndexDefID String The metadata field ID.

dbColumnName String The name of the database column.

dbColumnType Integer The type of the database column.

captureFieldType Integer The data type of the metadata field.

DocumentEntity
The DocumentEntity class represents a document within a batch. A document consists
of a collection of DocumentPageEntity references which refer to BatchItemEntity
references.

Property Type Description

documentID String A value that uniquely identifies the
document.

documentTitle String The document title.

documentNumber Integer The document's position within the batch.

batchEntity BatchEntity A reference to the batch to which the
document belongs.

documentPages List<DocumentPageEntit
y>

A list of document page entity references
that make up the document.

documentType DocumentTypeEntity A reference to the documentType
associated with the document.

indexes List<IndexValue> A list of index values for the document.

documentState Integer The current state of the document which
will be one of the following values:

• 1 (READY) – Document is ready to be
committed.

• 2 (ON HOLD) – Document will not be
committed by the Commit Processor.

Chapter 8
Common Capture Classes

8-15

Property Type Description

lastModifiedDateTime Date The date and time the document was last
modified.

lastModifiedUserID String The ID of the user that last modified the
document.

DocumentPageEntity
The DocumentPageEntity class represents a page within a document. It refers to a
BatchItemEntity within a batch and contains a page number that represents the page's
position within the parent document.

Property Type Description

docPageID String A value that uniquely identifies the
document page.

batchItemEntity BatchItemEntity A reference to the BatchItemEntity
associated with the document page.

documentEntity DocumentEntity A reference to the DocumentEntity to which
the page belongs.

pageNumber int The position of the page within a document.

DocumentTypeEntity
The DocumentTypeEntity class defines a document profile within a Capture
Workspace. A DocumentTypeEntity consists of a name, description, and list of index
definition fields that pertain to the document profile.

Property Type Description

docTypeID String The unique identifier of the document
profile.

docTypeName String The name of the document profile.

description String The description of the document type.

workspaceEntity CaptureWorkspaceEntity The parent workspace to which the
document profile belongs.

fields List<IndexDefinitionEntity
>

A list of IndexFieldDefinitionEntity object
references that are associated with the
document profile.

IndexDefinitionEntity
The IndexDefinitionEntity represents an index definition defined in a workspace. An
index definition defines a metadata field that can be used for input.

Property Type Description

indexFieldID String The unique identifier of the index definition.

Chapter 8
Common Capture Classes

8-16

Property Type Description

fieldName String The name of the field.

workspaceEntity CaptureWorkspaceEntity A reference to the parent workspace where
the field is defined.

dataType Integer The data type of the field.

• 0 – NUMERIC
• 1 – ALPHA NUMERIC
• 3 – DATE
• 4 – FLOAT

maxLength Integer The maximum number of characters the
field will hold.

minValue Float The minimum value allowed.

maxValue Float The maximum value allowed.

required Boolean Set to True, if the field is required to have a
value at commit time; set to False if it is not.
The default value is False.

defaultValue String A default value for the field.

inputMask String The input mask defined for the field.

displayFormat String The field's display format.

locked Boolean Indicates if the field is locked for input.

autoPopulate Integer Includes the following:

• 0 – None
• 1 – Default Value
• 2 – Scan Date
• 3 – Current Date
• 4 – Batch Name
• 5 – User ID
• 6 – Host Name
• 7 – Profile Name
• 8 – Batch Status
• 9 – Batch Priority
• 10 – Document Type

validationExpression String The regular expression string used to
validate the field value.

IndexValue
The IndexValue class represents the value of a metadata field in a document. It
contains a display value that is presented to the user as well as a fieldValue which will
be used at commit time.

Property Type Description

fieldID String The unique identifier of the
IndexDefinitionEntity that is associated with
the index value.

fieldValue String The value of the field that will be used when
the document is committed.

Chapter 8
Common Capture Classes

8-17

Property Type Description

displayValue String A value that is presented to the user. This
value will not be used at commit time.

Chapter 8
Common Capture Classes

8-18

A
Keycodes

If you need to specify a keycode in a JavaScript, refer to the following location:

http://docs.oracle.com/javase/7/docs/api/java/awt/event/KeyEvent.html

A-1

http://docs.oracle.com/javase/7/docs/api/java/awt/event/KeyEvent.html

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Developing Scripts with Oracle WebCenter Enterprise Capture
	Developing Scripts with WebCenter Enterprise Capture

	2 Integrating the Client With Other Web Applications
	Configuring a Client Integration
	Example Client Integration URL

	3 Creating Client Scripts
	Client Events
	AttachmentCreated
	AttachmentRemoved
	AttachmentSelected
	BatchScanBegin
	BatchScanComplete
	BatchSelected
	CaptureImage
	CaptureInitialize
	DBSearchComplete
	DBSearchResults
	DBSearchStart
	DocumentCreated
	DocumentRemoved
	DocumentSelected
	FieldGotFocus
	FieldLostFocus
	FieldProcessKey
	InitializeFields
	PageCreated
	PreBatchDelete
	PreBatchScan
	PreCaptureImage
	PreDocumentProfileChange
	DocumentProfileChanged
	PreDownloadItem
	PrePageDelete
	PreReleaseBatch
	PreUploadItem
	PostCaptureImage
	PostDownloadItem
	PostUploadItem
	RegionSelected
	ScriptStart

	Event Classes
	AttachmentCreatedEvent
	AttachmentRemoveEvent
	AttachmentSelectedEvent
	BatchDeleteEvent
	BatchScanEvent
	BatchSelectedEvent
	DBSearchEvent
	DocumentRemoveEvent
	DocumentSelectedEvent
	PreDocumentProfileChangeEvent
	DocumentProfileChangedEvent
	DownloadItemEvent
	FieldEvent
	ImageCaptureEvent
	InitializeFieldsEvent
	PageCreatedEvent
	PageDeleteEvent
	RegionSelectedEvent
	ReleaseBatchEvent
	UploadItemEvent

	Capture Client Core Classes
	AttachmentType
	AttachmentTypes
	BarcodeInfo
	CaptureAttachment
	CaptureAttachments
	CaptureBatch
	CaptureBatchStatus
	CaptureDataType
	CaptureDocument
	CaptureDocumentPage
	CaptureDocumentPages
	CaptureDocuments
	CaptureErrorManager
	CaptureField
	CaptureFields
	CaptureItem
	CaptureItems
	CaptureOperation
	CaptureStateManager
	CaptureWorkspace
	ClientProfile
	ClientReleaseProcess
	ClientReleaseProcesses
	ClientUI
	DBLookupProfile
	DBLookupResult
	DbSearchResultRow
	DbSearchFieldInfo
	DocumentType
	DocumentTypes
	FieldDefinition
	FieldDefinitions
	ImageCaptureEngine
	MicrInfo
	Source
	TWAINSource

	Capture Client FieldEdit Classes
	DataField
	DateField
	FloatField
	IntegerField
	PicklistEntry
	PicklistField
	TextField

	Sample Client Scripts
	Sample Client Script 1
	Sample Client Script 2
	Sample Client Script 3

	4 Creating Recognition Processor Scripts
	Recognition Processor Methods
	initialize
	processBatch
	restoreCaptureBatch
	beginPhase
	endPhase
	extractBatchItem
	barcodesFoundOnItem
	batchItemAllValidBarcodes
	determineSeparatorPage
	batchItemValidBarcode
	determineDocType
	beginDatabaseLookup
	determineIndexValues
	renameOrigCaptureDocTitle
	createCaptureDoc
	postProcess
	endBatchProcess

	Recognition Processor Classes
	BarcodeDefinition
	DocumentDefinition
	PostProcessContext
	ProcessorAttachment
	ProcessorDocument
	ProcessorItem
	ProcessSeparatorPage
	RecognitionJob
	RecognitionJobField
	RecognitionProcessorContext
	SeparatorDefinition
	SeparatorRuleDefinition

	Sample Recognition Processor Script

	5 Creating Import Processor Scripts
	Import Processor Events
	preProcess
	process
	postProcess
	preCreateBatch
	postCreateBatch
	preCreateDocument
	postCreateDocument
	preImportFile
	postImportFile
	preRelease
	postRelease
	preDatabaseSearch
	processDatabaseSearchResults

	Email Source Events
	deleteMessage
	moveMessage
	newAttachment
	newMessage

	Folder Source Events
	deleteDocumentFile
	newFolder
	renameDocumentFile

	List File Source Events
	deleteListFile
	newFolder
	newListFile
	newListFileLine
	renameListFile

	Import Processor Classes
	EmailSourceContext
	FolderSourceContext
	ImportJob
	ImportProcessorContext
	ListFileSourceContext
	Sample Import Processor Scripts
	Sample Import Processor Script 1
	Sample Import Processor Script 2

	6 Creating Document Conversion Processor Scripts
	DocumentConverterContext Class
	Document Conversion Processor Events
	Initialize
	preProcessBatch
	postProcessBatch
	preProcessDocument
	postProcessDocument
	preProcessAttachment
	postProcessAttachment
	preProcessPage
	postProcessPage
	preInvokeExternalProcess
	postInvokeExternalProcess

	Sample Document Conversion Processor Scripts
	Sample Document Conversion Processor Script 1
	Sample Document Conversion Processor Script 2
	Sample Document Conversion Processor Script 3

	7 Creating Commit Processor Scripts
	CommitEventObject Class
	Commit Processor Events
	preCommit
	preReleaseDocument
	postReleaseDocument
	postCommit

	Sample Commit Processor Scripts
	Sample Commit Processor Script 1
	Sample Commit Processor Script 2
	Sample Commit Processor Script 3

	8 Working with Common Capture Classes
	Common Capture Classes
	BatchEntity
	BatchItemEntity
	BatchLockEntity
	BatchManagerSession
	BatchStatusEntity
	CaptureWorkspaceEntity
	DBSearchResults
	DBSearchResultRow
	DBSearchFieldInfo
	DocumentEntity
	DocumentPageEntity
	DocumentTypeEntity
	IndexDefinitionEntity
	IndexValue

	A Keycodes

