
Oracle® Fusion Middleware
Securing WebLogic Web Services for Oracle
WebLogic Server

15c (15.1.1.0.0)
G31688-01
October 2025

Oracle Fusion Middleware Securing WebLogic Web Services for Oracle WebLogic Server, 15c (15.1.1.0.0)

G31688-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documentation i

Conventions i

1 Overview of Web Services Security

What Type of Security Should You Configure? 1

Thread Safety 1

2 Configuring Message-Level Security

Overview of Message-Level Security 1

Web Services Security Supported Standards 2

Web Services Trust and Secure Conversation 2

Web Services SecurityPolicy 1.2 3

Main Use Cases of Message-Level Security 3

Using Policy Files for Message-Level Security Configuration 3

Using Policy Files With JAX-WS 4

WS-Policy Namespace 5

WS-SecurityPolicy Namespace 5

Version-Independent Policy Supported 5

Using the SHA-256 Secure Hash Algorithm 6

Update the Predefined SHA-1 Policies to SHA-256 7

Using the Extended Algorithm Suite (EAS) 9

Configuring Simple Message-Level Security 12

Configuring Simple Message-Level Security: Main Steps 13

Ensuring That WebLogic Server Can Validate the Client's Certificate 14

Updating the JWS File with @Policy and @Policies Annotations 14

Setting the uri Attribute 15

Setting Additional Attributes 15

Example of Using the @Policy and @Policies JWS Annotations 16

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of iv

Loading a Policy From the CLASSPATH 17

Using Key Pairs Other Than the Out-Of-The-Box SSL Pair 17

Updating a Client Application to Invoke a Message-Secured Web Service 19

Invoking a Web Service From a Client Running in a WebLogic Server Instance 21

Example of Adding Security to a JAX-WS Web Service 22

Creating and Using a Custom Policy File 29

Configuring the WS-Trust Client 30

Supported Token Types 31

Configuring WS-Trust Client Properties 31

Obtaining the URI of the Secure Token Service 32

Configuring STS URI for WS-SecureConversation: Standalone Client 32

Configuring STS URI for SAML: Standalone Client 32

Configuring STS URI Using WLST: Client On Server Side 33

Configuring STS Security Policy: Standalone Client 33

Configuring STS Security Policy Using WLST: Client On Server Side 34

Configuring the STS SOAP and WS-Trust Version: Standalone Client 34

Configuring the SAML STS Server Certificate: Standalone Client 35

Sample WS-Trust Client for SAML 2.0 Bearer Token Over HTTPS 35

Sample WS-Trust Client for SAML 2.0 Bearer Token with WSS 1.1 Message Protections 39

Configuring and Using Security Contexts and Derived Keys 44

Specification Backward Compatibility 45

WS-SecureConversation and Clusters 45

Updating a Client Application to Negotiate Security Contexts 46

Associating Policy Files at Runtime 46

Using Security Assertion Markup Language (SAML) Tokens For Identity 47

SAML Token Overview 47

Using SAML Tokens for Identity: Main Steps 48

Specifying the SAML Confirmation Method 49

Specifying the SAML Confirmation Method (Proprietary Policy Only) 50

Configuring SAML Attributes in a Web Service 52

Using SAML Attributes: Available Interfaces and Classes 52

Using SAML Attributes: Main Steps 53

SAML Attributes Example 54

Associating a Web Service with a Security Configuration Other Than the Default 63

Valid Class Names and Token Types for Credential Provider 64

Using System Properties to Debug Message-Level Security 64

Using a Client-Side Security Policy File 65

Associating a Policy File with a Client Application: Main Steps 65

Running with High Contrast and Text Magnification 66

Using WS-SecurityPolicy 1.2 Policy Files 66

Transport-Level Policies 67

Protection Assertion Policies 68

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of iv

WS-Security 1.0 Username and X509 Token Policies 68

WS-Security 1.1 Username and X509 Token Policies 69

WS-SecureConversation Policies 71

SAML Token Profile Policies 73

Choosing a Policy 74

Unsupported WS-SecurityPolicy 1.2 Assertions 75

Using the Optional Policy Assertion 76

Configuring Element-Level Security 77

Define and Use a Custom Element-Level Policy File 78

Adding the Policy Annotation to JWS File 79

Implementation Notes 80

Smart Policy Selection 80

Example of Security Policy With Policy Alternatives 81

Configuring Smart Policy Selection 83

How the Policy Preference is Determined 83

Configuring Smart Policy Selection in the Console 84

Understanding Body Encryption in Smart Policy 84

Smart Policy Selection for a Standalone Client 85

Multiple Transport Assertions 85

Example of Adding Security to Reliable Messaging Web Service 85

Overview of Secure and Reliable SOAP Messaging 86

Overview of the Example 86

How the Example Sets Up WebLogic Security 86

Files Used by This Example 87

Revised ReliableEchoServiceImpl.java 88

Revised configWss.py 89

Revised configWss_Service.py 90

Building and Running the Example 90

Securing Web Services Atomic Transactions 91

3 Configuring Transport-Level Security

Configuring Transport-Level Security Through Policy 1

Available Transport-Level Policies 2

Prerequisite: Configure SSL 3

Configuring SSL: Main Steps 3

Configuring Two-Way SSL for a Client Application 4

Configuring Transport-Level Security Through Policy: Main Steps 5

Example of Configuring Transport Security for JAX-WS 6

One-Way SSL (HTTPS and HTTP Basic Authentication Example) 6

Persisting the State of a Request over SSL 10

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iii of iv

Example of Getting SSLSocketFactory From System Properties 11

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iv of iv

Preface

This document describes securing WebLogic web services for Oracle WebLogic Server 15c.

Audience
This documentation is a resource for security software developers who secure WebLogic web
services for Oracle WebLogic Server that includes configuring transport- and message-level
security.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of ii

1
Overview of Web Services Security

The chapter describes how to configure security for WebLogic web services.
This chapter includes the following sections:

• What Type of Security Should You Configure?

• Thread Safety

For definitions of unfamiliar terms found in this and other books, see the Glossary.

What Type of Security Should You Configure?
Message-level security includes all the security benefits of SSL, but with additional flexibility
and features. Message-level security is end-to-end, which means that a SOAP message is
secure even when the transmission involves one or more intermediaries. The SOAP message
itself is digitally signed and encrypted, rather than just the connection. And finally, you can
specify that only individual parts or elements of the message be signed, encrypted, or
required.Transport-level security, however, secures only the connection itself. This means that
if there is an intermediary between the client and WebLogic Server, such as a router or
message queue, the intermediary gets the SOAP message in plain text. When the intermediary
sends the message to a second receiver, the second receiver does not know who the original
sender was. Additionally, the encryption used by SSL is "all or nothing": either the entire SOAP
message is encrypted or it is not encrypted at all. There is no way to specify that only selected
parts of the SOAP message be encrypted. Message-level security can also include identity
tokens for authentication.

Transport-level security secures the connection between the client application and WebLogic
Server with Secure Sockets Layer (SSL). SSL provides secure connections by allowing two
applications connecting over a network to authenticate the other's identity and by encrypting
the data exchanged between the applications. Authentication allows a server, and optionally a
client, to verify the identity of the application on the other end of a network connection. A client
certificate (two-way SSL) can be used to authenticate the user.

Encryption makes data transmitted over the network intelligible only to the intended recipient.

Transport-level security includes HTTP BASIC authentication as well as SSL.

Access control security answers the question "who can do what?" First you specify the
security roles that are allowed to access a web service; a security role is a privilege granted to
users or groups based on specific conditions. Then, when a client application attempts to
invoke a web service operation, the client authenticates itself to WebLogic Server, and if the
client has the authorization, it is allowed to continue with the invocation. Access control
security secures only WebLogic Server resources. That is, if you configure only access control
security, the connection between the client application and WebLogic Server is not secure and
the SOAP message is in plain text.

Thread Safety
JAX-WS clients are not thread safe.

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 2

See Are JAX-WS client proxies thread safe? for more information and workarounds regarding
JAX-WS thread safety.

Chapter 1
Thread Safety

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 2

http://cxf.apache.org/faq.html#FAQ-AreJAXWSclientproxiesthreadsafe%3F

2
Configuring Message-Level Security

The chapter describes how to configure message-level security for your WebLogic web service
using Jakarta XML Web Services (JAX-WS).
This chapter includes the following sections:

• Overview of Message-Level Security

• Main Use Cases of Message-Level Security

• Using Policy Files for Message-Level Security Configuration

• Configuring Simple Message-Level Security

• Updating a Client Application to Invoke a Message-Secured Web Service

• Example of Adding Security to a JAX-WS Web Service

• Creating and Using a Custom Policy File

• Configuring the WS-Trust Client

• Configuring and Using Security Contexts and Derived Keys

• Associating Policy Files at Runtime

• Using Security Assertion Markup Language (SAML) Tokens For Identity

• Associating a Web Service with a Security Configuration Other Than the Default

• Valid Class Names and Token Types for Credential Provider

• Using System Properties to Debug Message-Level Security

• Using a Client-Side Security Policy File

• Using WS-SecurityPolicy 1.2 Policy Files

• Choosing a Policy

• Unsupported WS-SecurityPolicy 1.2 Assertions

• Using the Optional Policy Assertion

• Configuring Element-Level Security

• Smart Policy Selection

• Multiple Transport Assertions

• Example of Adding Security to Reliable Messaging Web Service

• Securing Web Services Atomic Transactions

Overview of Message-Level Security
Message-level security specifies whether the SOAP messages between a client application
and the web service invoked by the client should be digitally signed or encrypted, or both. It
also can specify a shared security context between the web service and client in the event that
they exchange multiple SOAP messages. You can use message-level security to assure:

• Confidentiality, by encrypting message parts

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 92

• Integrity, by digital signatures

• Authentication, by requiring username, X.509, or SAML tokens

See Configuring Simple Message-Level Security for the basic steps you must perform to
configure simple message-level security. This section discusses configuration of the web
services runtime environment, as well as configuration of message-level security for a
particular web service and how to code a client application to invoke the service.

You can also configure message-level security for a web service at runtime, after a web service
has been deployed. See Associating Policy Files at Runtime for details.

Note

You cannot digitally sign or encrypt a SOAP attachment.

Web Services Security Supported Standards

Note

Standards Supported by WebLogic Web Services is the definitive source of web
service standards supported in this release.

WebLogic web services implement the following OASIS Standard 1.1 Web Services Security
(WS-Security 1.1 (http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss)
specifications, dated February 1, 2006:

• WS-Security 1.0 and 1.1

• Username Token Profile 1.0 and 1.1

• X.509 Token Profile 1.0 and 1.1

• SAML Token Profile 1.0 and 1.1

These specifications provide security token propagation, message integrity, and message
confidentiality. These mechanisms can be used independently (such as passing a username
token for user authentication) or together (such as digitally signing and encrypting a SOAP
message and specifying that a user must use X.509 certificates for authentication).

Web Services Trust and Secure Conversation
WebLogic web services implement the Web Services Trust (WS-Trust 1.3) and Web Services
Secure Conversation (WS-SecureConversation 1.3) specifications, which together provide
secure communication between web services and their clients (either other web services or
standalone Java client applications).

The WS-Trust specification defines extensions that provide a framework for requesting and
issuing security tokens, and to broker trust relationships.

The WS-SecureConversation specification defines mechanisms for establishing and sharing
security contexts, and deriving keys from security contexts, to enable the exchange of multiple
messages. Together, the security context and derived keys potentially increase the overall
performance and security of the subsequent exchanges.

Chapter 2
Overview of Message-Level Security

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 92

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Web Services SecurityPolicy 1.2
The WS-Policy specification defines a framework for allowing web services to express their
constraints and requirements. Such constraints and requirements are expressed as policy
assertions.

WS-SecurityPolicy defines a set of security policy assertions for use with the WS-Policy
framework to describe how messages are to be secured in the context of WSS: SOAP
Message Security, WS-Trust and WS-SecureConversation.

You configure message-level security for a web service by attaching one or more policy files
that contain security policy statements, as specified by the WS-SecurityPolicy specification.
See Using Policy Files for Message-Level Security Configuration for detailed information about
how the web services runtime environment uses security policy files.

For information about the elements of the Web Services SecurityPolicy 1.2 that are not
supported in this release of WebLogic Server, see Unsupported WS-SecurityPolicy 1.2
Assertions.

Main Use Cases of Message-Level Security
The implementation of the Web Services Security: SOAP Message Security specification
supports the following use cases:

• Use X.509 certificates to sign and encrypt a SOAP message, starting from the client
application that invokes the message-secured web service, to the WebLogic Server
instance that is hosting the web service and back to the client application.

• Specify the SOAP message targets that are signed, encrypted, or required: the body,
specific SOAP headers, or specific elements.

• Include a token (username, SAML, or X.509) in the SOAP message for authentication.

• Specify that a web service and its client (either another web service or a standalone
application) establish and share a security context when exchanging multiple messages
using WS-SecureConversation (WSSC).

• Derive keys for each key usage in a secure context, once the context has been established
and is being shared between a web service and its client. This means that a particular
SOAP message uses two derived keys, one for signing and another for encrypting, and
each SOAP message uses a different pair of derived keys from other SOAP messages.
Because each SOAP message uses its own pair of derived keys, the message exchange
between the client and web service is extremely secure.

Using Policy Files for Message-Level Security Configuration
You specify the details of message-level security for a WebLogic web service with one or more
security policy files. The WS-SecurityPolicy specification provides a general purpose model
and XML syntax to describe and communicate the security policies of a web service.

Chapter 2
Main Use Cases of Message-Level Security

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 92

Note

Previous releases of WebLogic Server, released before the formulation of the WS-
SecurityPolicy specification, used security policy files written under the WS-Policy
specification, using a proprietary schema for security policy. This proprietary schema
for security policy is deprecated, and it is recommended that you use the WS-
SecurityPolicy 1.2 format.

This release of WebLogic Server supports either security policy files that conform to
the WS-SecurityPolicy 1.2 specification or the web services security policy schema
first included in WebLogic Server 9, but not both in the same web service. The formats
are mutually incompatible.

For information about the predefined WS-SecurityPolicy 1.2 security policy files, see
Using WS-SecurityPolicy 1.2 Policy Files.

The security policy files used for message-level security are XML files that describe whether
and how the SOAP messages resulting from an invoke of an operation should be digitally
signed or encrypted. They can also specify that a client application authenticate itself using a
username, SAML, or X.509 token.

You use the @Policy and @Policies JWS annotations in your JWS file to associate policy files
with your web service. You can associate any number of policy files with a web service,
although it is up to you to ensure that the assertions do not contradict each other. You can
specify a policy file at both the class- and method level of your JWS file.

Note

If you specify a transport-level security policy for your web service, it must be at the
class level.

In addition, the transport-level security policy must apply to both the inbound and
outbound directions. That is, you cannot have HTTPS for inbound and HTTP for
outbound.

This section describes the following topics:

• Using Policy Files With JAX-WS

• WS-Policy Namespace

• WS-SecurityPolicy Namespace

• Version-Independent Policy Supported

• Using the SHA-256 Secure Hash Algorithm

• Using the Extended Algorithm Suite (EAS)

Using Policy Files With JAX-WS
For maximum portability, Oracle recommends that you use WS-Policy 1.2 and OASIS WS-
SecurityPolicy 1.2 with JAX-WS.

Chapter 2
Using Policy Files for Message-Level Security Configuration

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 92

WS-Policy Namespace
WebLogic Server supports WS-Policy 1.2 with the following namespace:

http://schemas.xmlsoap.org/ws/2004/09/policy

Note

WebLogic Server also supports WS-Policy 1.5 (now a W3C standard) with the
following namespace: http://www.w3.org/ns/ws-policy

WS-SecurityPolicy Namespace
The following OASIS WS-SX TC Web Services SecurityPolicy namespace is supported:

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702

In addition to this new version of the namespace, WebLogic Server continues to support the
following Web Services SecurityPolicy namespace:

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512

In most of the cases, the policy assertions are identical for either namespaces, with the
following exceptions.

• Trust10 and Trust13 assertion. Both Trust10 and Trust13 assertions are supported.

• SC10SecurityContextToken and SC13SecurityContextToken, as described in Specification
Backward Compatibility.

• Derived Key using different WSSC versions (200502, 1.3).

Version-Independent Policy Supported
This version of WebLogic Server supports version-independent policy. You can combine
protocol-specific policies such as WS-SecurityPolicy and WS-ReliableMessaging policy that
are based on different versions of the WS-Policy specification. At runtime, the merged policy
file then contains two or more different namespaces.

There are three versions of WS-SecurityPolicy in this release of WebLogic Server:

• (1) WS-SecurityPolicy 1.2 OASIS standard.

• (2) WS-SecurityPolicy 1.2, as included in WebLogic Server 10.0.

• (3) Proprietary format WebLogic Server 9.x-style policies (deprecated).

You can mix and match any version of WS-Policy with (1), (2), or a combination of (1) and (2).
However, you cannot mix and match (3) with (1) or (2) and with different versions of WS-Policy.

The version match possibilities are shown in the following Version-Independent Matrix table.

Chapter 2
Using Policy Files for Message-Level Security Configuration

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 92

http://schemas.xmlsoap.org/ws/2004/09/policy
http://www.w3.org/ns/ws-policy
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512

Table 2-1 Version-Independent Matrix

Security Policy Versions WS-Policy 1.5 WS-Policy 1.2 WS-Policy 1.5 AND
WS-Policy 1.2

WS-SecurityPolicy 1.2 OASIS standard Y Y Y

WS-SecurityPolicy 1.2 (WebLogic Server 10.0) Y Y Y

WS-SecurityPolicy 1.2 OASIS standard AND
WS-SecurityPolicy 1.2 (WebLogic Server 10.0)

Y Y Y

WebLogic Server 9.x-style Y Y N

WebLogic Server 9.x-style AND WS-
SecurityPolicy 1.2 OASIS standard or WS-
SecurityPolicy 1.2 (WebLogic Server 10.0)

N N N

If the client program wants to know what version of the policy or security policy is used, use the
versioning API to return the namespace and versioning information.

Using the SHA-256 Secure Hash Algorithm
The WebLogic Server web service security policies support both the SHA-1 and much stronger
SHA-2 (SHA-256) secure hash algorithms for hashing digital signatures. In addition to the
SHA-2 secure hash algorithm, FIPS 140-2 mode requires a stronger digital signature method
algorithm which is supported by extended algorithm suite policies. See Using the Extended
Algorithm Suite. If digital signatures in the FIPS-140 mode are not required in your
environment, then you can use the SHA-256 policies.

Note

SHA-1 Secure Hash Algorithm is not supported in FIPS mode. See Enabling FIPS
Mode in Administering Security for Oracle WebLogic Server.

The predefined web service security policies select which specific algorithm they use in the
<sp:AlgorithmSuite> element.

WebLogic Server includes policies such as Wssp1.2-2007-Wss1.1-X509-Basic256Sha256.xml
that specifically use the SHA-256 secure hash algorithm, as shown in Table 2-2.

If an SHA-256 version of a policy you want to use exists, use it instead of the older SHA-1
version.

Note

For maximum security, Oracle recommends the use of SHA-256 instead of SHA-1,
where possible.

If you already use the older SHA-1 version of a policy, Oracle recommends that you
update your web service to use the SHA-256 version.

Chapter 2
Using Policy Files for Message-Level Security Configuration

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 92

Table 2-2 Using the SHA-256 Policies

Instead of this SHA-1 policy ...Use this SHA-256 policy

Wssp1.2-2007-Https-
UsernameToken-Plain.xml

Wssp1.2-2007-Https-UsernameToken-Plain-
Basic256Sha256.xml

Wssp1.2-2007-Wss1.1-X509-
Basic256.xml

Wssp1.2-2007-Wss1.1-X509-Basic256Sha256.xml

Wssp1.2-2007-Wss1.1-
UsernameToken-Plain-X509-
Basic256.xml

Wssp1.2-2007-Wss1.1-UsernameToken-Plain-X509-
Basic256Sha256.xml

Wssp1.2-2007-Wssc1.4-
Bootstrap-Wss1.0-
UsernameToken-Plain-X509-
Basic256.xml

Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.0-UsernameToken-
Plain-X509-Basic256Sha256.xml

Wssp1.2-2007-Saml2.0-
SenderVouches-Wss1.1.xml

Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1-
Basic256Sha256.xml

Wssp1.2-2007-Saml2.0-
Bearer-Https.xml

Wssp1.2-2007-Saml2.0-Bearer-Https-Basic256Sha256.xml

Update the Predefined SHA-1 Policies to SHA-256
The predefined policies listed in this section use SHA-1 for hashing digital signatures. This
hashing algorithm might not meet your current or future security needs, as outlined in the NIST
Special Publication 800-131A, "Transitions: Recommendation for Transitioning the Use of
Cryptographic Algorithms and Key Lengths".

If you use any of these policies, Oracle recommends that you:

1. Use the predefined policy as a template to create a custom policy. See Creating and Using
a Custom Policy File for information on creating a custom policy file.

The policy files are located in ORACLE_HOMEoracle_common/modules/
com.oracle.webservices.wls.wls-soap-stack-impl.jar. Within
com.oracle.webservices.wls.wls-soap-stack-impl.jar, the policy files are located in /
weblogic/wsee/policy/runtime.

2. Edit the custom policy to change the algorithm suite to SHA-256. To do this, change the
algorithm suite inside the policy.

From:

<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic256/>
</wsp:Policy>
</sp:AlgorithmSuite>

To:

<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic256Sha256/>
</wsp:Policy>
</sp:AlgorithmSuite>

3. Use the custom policy in your web service.

Chapter 2
Using Policy Files for Message-Level Security Configuration

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 92

4. Edit the client-side policy to match. The client and web service must use the same hashing
algorithm; <AlgorithmSuite> must be the same on both sides. Otherwise, the web service
rejects the request message sent from the client.

SAML Policies
The following predefined policies use the SHA-1 algorithm. Change them as described in this
section to instead use SHA-256.

• Wssp1.2-2007-Saml2.0-Bearer-Wss1.1.xml

• Wssp1.2-2007-Saml2.0-HolderOfKey-Wss1.1-Asymmetric.xml

• Wssp1.2-2007-Saml2.0-HolderOfKey-Wss1.1-IssuedToken.xml

• Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1.xml

• Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1-Asymmetric.xml

Wss1.0 Policies
The following predefined policies use the SHA-1 algorithm. Change them as described in this
section to instead use SHA-256.

• Wssp1.2-2007-Wss1.0-UsernameToken-Digest-X509-Basic256.xml

• Wssp1.2-2007-Wss1.0-UsernameToken-Plain-X509-Basic256.xml

• Wssp1.2-2007-Wss1.0-X509-Basic256.xml

• Wssp1.2-Wss1.0-UsernameToken-Digest-X509-Basic256.xml

• Wssp1.2-Wss1.0-UsernameToken-Plain-X509-Basic256.xml

• Wssp1.2-Wss1.0-X509-Basic256.xml

• Wssp1.2-Wss1.0-X509-EncryptRequest-SignResponse.xml

• Wssp1.2-Wss1.0-X509-SignRequest-EncryptResponse.xml

Wss1.1 Policies
The following predefined policies use the SHA-1 algorithm. Change them as described in this
section to instead use SHA-256.

• Wssp1.2-2007-Wss1.1-DK-X509-SignedEndorsing.xml

• Wssp1.2-2007-Wss1.1-EncryptedKey-X509-SignedEndorsing.xml

• Wssp1.2-2007-Wss1.1-UsernameToken-Digest-DK.xml

• Wssp1.2-2007-Wss1.1-UsernameToken-Digest-EncryptedKey.xml

• Wssp1.2-2007-Wss1.1-UsernameToken-Digest-X509-Basic256.xml

• Wssp1.2-2007-Wss1.1-UsernameToken-Plain-DK.xml

• Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey.xml

• Wssp1.2-2007-Wss1.1-UsernameToken-Plain-X509-Basic256.xml

• Wssp1.2-2007-Wss1.1-X509-Basic256.xml

• Wssp1.2-Wss1.1-DK.xml

• Wssp1.2-Wss1.1-DK-X509-Endorsing.xml

Chapter 2
Using Policy Files for Message-Level Security Configuration

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 92

• Wssp1.2-Wss1.1-EncryptedKey.xml

• Wssp1.2-Wss1.1-EncryptedKey-X509-SignedEndorsing.xml

• Wssp1.2-Wss1.1-UsernameToken-DK.xml

• Wssp1.2-Wss1.1-X509-Basic256.xml

• Wssp1.2-Wss1.1-X509-EncryptRequest-SignResponse.xml

• Wssp1.2-Wss1.1-X509-SignRequest-EncryptResponse.xml

Secure Conversation Policies
The following predefined policies use the SHA-1 algorithm. Change them as described in this
section to instead use SHA-256.

• Wssp1.2-2007-Wssc1.3-Bootstrap-Https.xml

• Wssp1.2-2007-Wssc1.3-Bootstrap-Https-BasicAuth.xml

• Wssp1.2-2007-Wssc1.3-Bootstrap-Https-ClientCertReq.xml

• Wssp1.2-2007-Wssc1.3-Bootstrap-Https-UNT.xml

• Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.0.xml

• Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.1.xml

• Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.0-UsernameToken-Plain-X509-Basic256.xml

• Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.1-Saml2.0-Bearer.xml

• Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.1-UsernameToken-Plain-EncryptedKey.xml

• Wssp1.2-Wssc200502-Bootstrap-Wss1.1.xml

Using the Extended Algorithm Suite (EAS)

When using digital signatures, the WebLogic Server web service security policies include a set
of policies that support an Extended Algorithm Suite (EAS) as required by the FIPS-140-2
certification. You can attach one of these EAS policies to your web service when FIPS 140-2
certification is required. Alternatively, if one of the policies do not satisfy the requirements of
your environment, you can edit the algorithm suite in an existing policy and use that instead.

The standard algorithm suites supported in WebLogic Server web services policies, and the
abbreviations used in the algorithm suite tables, are defined in the WS-SecurityPolicy 1.3
specification, which is available at http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/
errata01/os/ws-securitypolicy-1.3-errata01-os-complete.html#_Toc325573605.

The extended algorithm suite policies, such as Wssp1.2-2007-Wss1.1-X509-Eas256.xml, use
a stronger hash algorithm of SHA-256 and stronger signature method algorithm.

Extended Algorithm Suite Signature Values lists the symmetric signature (Sym Sig) and
asymmetric signature (Asym Sig) values, and the associated algorithm URIs, for the extended
algorithm suite policies.

Chapter 2
Using Policy Files for Message-Level Security Configuration

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 92

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/errata01/os/ws-securitypolicy-1.3-errata01-os-complete.html#_Toc325573605
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/errata01/os/ws-securitypolicy-1.3-errata01-os-complete.html#_Toc325573605

Table 2-3 Extended Algorithm Suite Signature Values

Property
Algorithm

Value/
Abbreviation

Algorithm URI

[Sym Sig] HmacSha256

http://www.w3.org/2000/09/xmldsig#hmac-sha256

[Asym Sig] RsaSha256

http://www.w3.org/2000/09/xmldsig#rsa-sha256

The XML signatures for RSA-SHA256 and HMAC-SHA256 are defined in the w3c XML
Security Algorithm Cross-Reference specification, which is available at:

http://www.w3.org/TR/xmlsec-algorithms/.

Table 2-4 lists the algorithm suites for the extended algorithm suite policies.

Table 2-4 Algorithm Suites for Extended Algorithm Suite Policies

Algorithm
Suite

Diges
t

Encry
ption

Symme
tric Key
Wrap

Asymmet
ric Key
Wrap

Encrypted
Key
Derivation

Symmetri
c
Signature

Asymmet
ric
Signatur
e

Signature
Key
Derivation

Minimum
Signature
Key Length

Basic256Exn2
56

Sha25
6

Aes256 KwAes2
56

KwRsaOa
ep

PSha1L25
6

HmacSha
256

RsaSha2
56

PSha1L192 256

Basic192Exn2
56

Sha25
6

Aes192 KwAes1
92

KwRsaOa
ep

PSha1L19
2

HmacSha
256

RsaSha2
56

PSha1L192 192

Basic128Exn2
56

Sha25
6

Aes128 KwAes1
28

KwRsaOa
ep

PSha1L12
8

HmacSha
256

RsaSha2
56

PSha1L128 128

TripleDesExn2
56

Sha25
6

TripleD
es

KwTriple
Des

KwRsaOa
ep

PSha1L19
2

HmacSha
256

RsaSha2
56

PSha1L192 192

Basic256Exn2
56Rsa15

Sha25
6

Aes256 KwAes2
56

KwRsa15 PSha1L25
6

HmacSha
256

RsaSha2
56

PSha1L192 256

Basic192Exn2
56Rsa15

Sha25
6

Aes192 KwAes1
92

KwRsa15 PSha1L19
2

HmacSha
256

RsaSha2
56

PSha1L192 192

Basic128Exn2
56Rsa15

Sha25
6

Aes128 KwAes1
28

KwRsa15 PSha1L12
8

HmacSha
256

RsaSha2
56

PSha1L128 128

TripleDesExn2
56Rsa15

Sha25
6

TripleD
es

KwTriple
Des

KwRsa15 PSha1L19
2

HmacSha
256

RsaSha2
56

PSha1L192 192

The predefined web service security policies select which specific algorithm they use in the
<sp:AlgorithmSuite> element.

Chapter 2
Using Policy Files for Message-Level Security Configuration

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 92

http://www.w3.org/2000/09/xmldsig#hmac-sha256
http://www.w3.org/2000/09/xmldsig#rsa-sha256
http://www.w3.org/TR/xmlsec-algorithms/

Note

The extended algorithm suite policies can also be used in non-FIPS mode for
increased security. However, since they use their own namespace for the algorithm
suite, there may be interoperability issues with other platforms, if the target platform
does not support the extended algorithm suite assertion. Consider the following before
using the extended algorithm suite policies:

• If you have web services that require FIPS 140-2 certification, then use the EAS
policies.

• If you have new web services that do not need to interoperate with other platforms
but you want increased security, you can use the EAS policies.

For all other web services, you need to assess the security risk, interoperability, and
backward compatibility before converting any policy to an EAS policy.

You can either use the EAS policies as is or identify an existing policy without EAS and modify
the algorithm suite as shown:

1. Use an existing policy to create a custom policy, see Creating and Using a Custom Policy
File.

The policy files are located in ORACLE_HOME/oracle_common/modules/
com.oracle.webservices.wls.wls-soap-stack-impl.jar. Within
com.oracle.webservices.wls.wls-soap-stack-impl.jar, the policy files are
located in /weblogic/wsee/policy/runtime.

2. Edit the custom policy to change the algorithm suite to FIPS-140-2. To do this, change the
algorithm suite inside the policy.

From

<sp:AlgorithmSuite>
<wsp:Policy>
<sp:Basic256Sha256/>
</wsp:Policy>
</sp:AlgorithmSuite>

To

<sp:AlgorithmSuite>
<wsp:Policy>
<orasp:Basic256Exn256 xmlns:orasp="http://schemas.oracle.com/ws/2006/01/
securitypolicy"/>
</wsp:Policy>
</sp:AlgorithmSuite>

3. Use the custom policy in your web service.

4. Edit the client-side policy to match. The client and web service must use the same hashing
algorithm; <AlgorithmSuite> must be the same on both sides. Otherwise, the web service
rejects the request message sent from the client.

Chapter 2
Using Policy Files for Message-Level Security Configuration

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 92

Configuring Simple Message-Level Security
This section describes how to configure simple message-level security for the web services
security runtime, a particular WebLogic web service, and a client application that invokes an
operation of the web service. In this document, simple message-level security is defined as
follows:

• The message-secured web service uses the predefined WS-SecurityPolicy files to specify
its security requirements, rather than a user-created WS-SecurityPolicy file. See Using
Policy Files for Message-Level Security Configuration for a description of these files.

• The web service makes its associated security policy files publicly available by attaching
them to its deployed WSDL, which is also publicly visible.

• The web services runtime uses the out-of-the-box private key and X.509 certificate pairs,
store in the default keystores, for its encryption and digital signatures, rather than its own
key pairs. These out-of-the-box pairs are also used by the core WebLogic Server security
subsystem for SSL and are provided for demonstration and testing purposes. For this
reason Oracle highly recommends you use your own keystore and key pair in production.
To use key pairs other than out-of-the-box pairs, see Using Key Pairs Other Than the Out-
Of-The-Box SSL Pair.

Note

If you plan to deploy the web service to a cluster in which different WebLogic
Server instances are running on different computers, you must use a keystore and
key pair other than the out-of-the-box ones, even for testing purposes. The reason
is that the key pairs in the default WebLogic Server keystore, DemoIdentity.p12,
are not guaranteed to be the same across WebLogic Servers running on different
machines.

If you were to use the default keystore, the WSDL of the deployed web service
would specify the public key from one of these keystores, but the invoke of the
service might actually be handled by a server running on a different computer, and
in this case the server's private key would not match the published public key and
the invoke would fail. This problem only occurs if you use the default keystore and
key pairs in a cluster, and is easily resolved by using your own keystore and key
pairs.

• The client invoking the web service uses a username token to authenticate itself, rather
than an X.509 token.

• The client invoking the web service is a stand-alone Java application, rather than a module
running in WebLogic Server.

Later sections describe some of the preceding scenarios in more detail, as well as additional
web services security uses cases that build on the simple message-level security use case.

It is assumed in the following procedure that you have already created a JWS file that
implements a WebLogic web service and you want to update it so that the SOAP messages
are digitally signed and encrypted. It is also assumed that you use Ant build scripts to
iteratively develop your web service and that you have a working build.xml file that you can
update with new information. Finally, it is assumed that you have a client application that
invokes the non-secured web service. If these assumptions are not true, see Developing JAX-
WS Web Services for Oracle WebLogic Server.

Chapter 2
Configuring Simple Message-Level Security

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 92

Configuring Simple Message-Level Security: Main Steps
To configure simple message-level security for a WebLogic web service:

1. Update your JWS file, adding WebLogic-specific @Policy and @Policies JWS annotations
to specify the predefined policy files that are attached to either the entire web service or to
particular operations.

See Updating the JWS File with @Policy and @Policies Annotations, which describes how
to specify any policy file.

2. Recompile and redeploy your web service as part of the normal iterative development
process.

See Developing WebLogic Web Services in Developing JAX-WS Web Services for Oracle
WebLogic Server.

3. Create a keystore used by the client application. Oracle recommends that you create one
client keystore per application user.

You can use the Cert Gen utility or keytool utility to perform this step. For development
purposes, the keytool utility is the easiest way to get started. See Keytool in JDK Tool
Specifications .

See Obtaining Private Keys, Digital Signatures, and Trusted Certificate Authorities in
Administering Security for Oracle WebLogic Server.

4. Create a private key and digital certificate pair, and load it into the client keystore. The
same pair will be used to both digitally sign the client's SOAP request and encrypt the
SOAP responses from WebLogic Server.

Make sure that the certificate's key usage allows both encryption and digital signatures.
Also see Ensuring That WebLogic Server Can Validate the Client's Certificate for
information about how WebLogic Server ensures that the client's certificate is valid.

Note

Oracle requires a key length of 1024 bits or larger.

You can use the Keytool utility to perform this step. See Keytool in JDK Tool
Specifications .

See Obtaining Private Keys, Digital Signatures, and Trusted Certificate Authorities in
Administering Security for Oracle WebLogic Server.

5. Using the WebLogic Remote Console, create users for authentication in your security
realm.

See Securing Resources Using Roles and Policies for Oracle WebLogic Server.

6. Update your client application by adding the Java code to invoke the message-secured
web service.

See Using a Client-Side Security Policy File.

7. Recompile your client application.

See Developing JAX-WS Web Services for Oracle WebLogic Server for general
information.

Chapter 2
Configuring Simple Message-Level Security

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 92

https://docs.oracle.com/en/java/javase/17/docs/specs/man/index.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/index.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/index.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/index.html

See the following sections for information about additional web service security uses cases
that build on the basic message-level security use case:

• Using Key Pairs Other Than the Out-Of-The-Box SSL Pair

• Creating and Using a Custom Policy File

• Configuring and Using Security Contexts and Derived Keys

• Associating Policy Files at Runtime

• Using Security Assertion Markup Language (SAML) Tokens For Identity

• Invoking a Web Service From a Client Running in a WebLogic Server Instance

• Associating a Web Service with a Security Configuration Other Than the Default

See Using System Properties to Debug Message-Level Security for information on debugging
problems with your message-secured web service.

Ensuring That WebLogic Server Can Validate the Client's Certificate
You must ensure that WebLogic Server is able to validate the X.509 certificate that the client
uses to digitally sign its SOAP request, and that WebLogic Server in turn uses to encrypt its
SOAP responses to the client. Do one of the following:

• Ensure that the client application obtains a digital certificate that WebLogic Server
automatically trusts, because it has been issued by a trusted certificate authority.

• Create a certificate registry that lists all the individual certificates trusted by WebLogic
Server, and then ensure that the client uses one of these registered certificates.

See SSL Certificate Validation in Administering Security for Oracle WebLogic Server.

Updating the JWS File with @Policy and @Policies Annotations
Use the @Policy and @Policies annotations in your JWS file to specify that the web service
has one or more policy files attached to it. You can use these annotations at either the class or
method level.

Note

If you specify a transport-level security policy for your web service, it must be at the
class level.

In addition, the transport-level security policy must apply to both the inbound and
outbound directions. That is, you cannot have HTTPS for inbound and HTTP for
outbound.

See Loading a Policy From the CLASSPATH for an additional policy option.

The @Policies annotation simply groups two or more @Policy annotations together. Use the
@Policies annotation if you want to attach two or more policy files to the class or method. If
you want to attach just one policy file, you can use @Policy on its own.

The @Policy annotation specifies a single policy file, where it is located, whether the policy
applies to the request or response SOAP message (or both), and whether to attach the policy
file to the public WSDL of the service.

Chapter 2
Configuring Simple Message-Level Security

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 92

Setting the uri Attribute
Use the uri attribute to specify the location of the policy file, as described below:

• To specify one of the predefined security policy files that are installed with WebLogic
Server, use the policy: prefix and the name of one of the policy files, as shown in the
following example:

@Policy(uri="policy:Wssp1.2-2007-Https-BasicAuth.xml")

If you use the predefined policy files, you do not have to create one yourself or package it
in an accessible location. For this reason, Oracle recommends that you use the predefined
policy files whenever you can.

See Using Policy Files for Message-Level Security Configuration for information on the
various types of message-level security provided by the predefined policy files.

• To specify a user-created policy file, specify the path (relative to the location of the JWS
file) along with its name, as shown in the following example:

@Policy(uri="../policies/MyPolicy.xml")

In the example, the MyPolicy.xml file is located in the policies sibling directory of the one
that contains the JWS file.

• You can also specify a policy file that is located in a shared Jakarta EE library; this method
is useful if you want to share the file amongst multiple web services packaged in different
Jakarta EE archives.

Note

In this case, it is assumed that the policy file is in the META-INF/policies or WEB-
INF/policies directory of the shared Jakarta EE library. Be sure, when you package
the library, that you put the policy file in this directory.

To specify a policy file in a shared Jakarta EE library, use the policy prefix and then the
name of the policy file, as shown in the following example:

@Policy(uri="policy:MySharedPolicy.xml")

See Creating Shared Jakarta EE Libraries and Optional Packages in Developing
Applications for Oracle WebLogic Server for information on creating shared libraries and
setting up your environment so the web service can find the shared policy files.

Setting Additional Attributes
You can also set the following attributes of the @Policy annotation:

• direction specifies whether the policy file should be applied to the request (inbound)
SOAP message, the response (outbound) SOAP message, or both. The default value if
you do not specify this attribute is both. The direction attribute accepts the following
values:

– Policy.Direction.both

– Policy.Direction.inbound

– Policy.Direction.outbound

Chapter 2
Configuring Simple Message-Level Security

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 92

• attachToWsdl specifies whether the policy file should be attached to the WSDL file that
describes the public contract of the web service. The default value of this attribute is false.

Example of Using the @Policy and @Policies JWS Annotations
The following example shows how to use the @Policy and @Policies JWS annotations, with
the relevant sections shown in bold:

Example 2-1 Using @Policy and @Policies Annotations

package wssp12.wss10;

import weblogic.jws.WLHttpTransport;
import weblogic.jws.Policy;
import weblogic.jws.Policies;

import jakarta.jws.WebService;
import jakarta.jws.WebMethod;
import jakarta.jws.Oneway;

/**
 * This web service demonstrates how to use WS-SecurityPolicy 1.2
 * to enable message-level security specified in WS-Security 1.0.
 *
 * The service authenticates the client with a username token.
 * Both the request and response messages are signed and encrypted with X509
 certificates.
 *
*/
@WebService(name="Simple", targetNamespace="http://example.org")
@WLHttpTransport(contextPath="/wssp12/wss10",
 serviceUri="UsernameTokenPlainX509SignAndEncrypt")
@Policy(uri="policy:Wssp1.2-2007-Wss1.0-UsernameToken-Plain-X509-Basic256.xml")
public class UsernameTokenPlainX509SignAndEncrypt {

 @WebMethod
 @Policies({
 @Policy(uri="policy:Wssp1.2-2007-SignBody.xml"),
 @Policy(uri="policy:Wssp1.2-2007-EncryptBody.xml")})
 public String echo(String s) {

 return s;
 }

 @WebMethod
 @Policies({
 @Policy(uri="policy:Wssp1.2-2007-SignBody.xml"),
 @Policy(uri="policy:Wssp1.2-2007-Sign-Wsa-Headers.xml")})
 public String echoWithWsa(String s) {
 return s;
 }

 @WebMethod
 @Policy(uri="policy:Wssp1.2-2007-SignBody.xml",
 direction=Policy.Direction.inbound)
 @Oneway
 public void echoOneway(String s) {
 System.out.println("s = " + s);
 }

 @WebMethod
 @Policies({

Chapter 2
Configuring Simple Message-Level Security

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 92

 @Policy(uri="policy:Wssp1.2-2007-Wss1.0-X509-Basic256.xml",
direction=Policy.Direction.inbound),
 @Policy(uri="policy:Wssp1.2-2007-SignBody.xml",
direction=Policy.Direction.inbound)
 })
 @Oneway
 public void echoOnewayX509(String s) {
 System.out.println("X509SignEncrypt.echoOneway: " + s);
 }
}

The following section of the example is the binding policy for the web service, specifying the
policy:

@WebService(name="Simple", targetNamespace="http://example.org")
@WLHttpTransport(contextPath="/wssp12/wss10",
 serviceUri="UsernameTokenPlainX509SignAndEncrypt")
@Policy(uri="policy:Wssp1.2-2007-Wss1.0-UsernameToken-Plain-X509-Basic256.xml")

In the example, security policy files are attached to the web service at the method level. The
specified policy files are those predefined with WebLogic Server, which means that the
developers do not need to create their own files or package them in the corresponding archive.

The Wssp1.2-2007-SignBody.xml policy file specifies that the body and WebLogic system
headers of both the request and response SOAP message be digitally signed. The
Wssp1.2-2007-EncryptBody.xml policy file specifies that the body of both the request and
response SOAP messages be encrypted.

Loading a Policy From the CLASSPATH
This release of WebLogic Server includes a 'load policy as resource from CLASSPATH'
feature. This feature allows you to copy a policy file to the root directory of your Web
application and then reference it directly by its name (for example, mypolicy.xml') from an
@POLICY annotation in your JWS file.

To enable this feature, start WebLogic Server with -
Dweblogic.wsee.policy.LoadFromClassPathEnabled=true

If you enable this feature, be aware of the following caveat: If you were to then move the policy
file to the WEB-INF/policies directory, the same 'mypolicy.xml' reference in the @POLICY
annotation will no longer work. You would need to add the policy prefix to the @POLICY
annotation; for example, 'policy:mypolicy.xml'.

Using Key Pairs Other Than the Out-Of-The-Box SSL Pair
In the simple message-level configuration procedure, documented in Configuring Simple
Message-Level Security, it is assumed that the web services runtime uses the private key and
X.509 certificate pair that is provided out-of-the-box with WebLogic Server; this same key pair
is also used by the core security subsystem for SSL and is provided mostly for demonstration
and testing purposes. In production environments, the web services runtime typically uses its
own two private key and digital certificate pairs, one for signing and one for encrypting SOAP
messages.

The following procedure describes the additional steps you must take to enable this use case.

1. Obtain two private key and digital certificate pairs to be used by the web services runtime.
One of the pairs is used for digitally signing the SOAP message and the other for
encrypting it.

Chapter 2
Configuring Simple Message-Level Security

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 92

Although not required, Oracle recommends that you obtain two pairs that will be used only
by WebLogic web services. You must also ensure that both of the certificate's key usage
matches what you are configuring them to do. For example, if you are specifying that a
certificate be used for encryption, be sure that the certificate's key usage is specified as for
encryption or is undefined. Otherwise, the web services security runtime will reject the
certificate.

Note

Oracle requires that the key length be 1024 bits or larger.

You can use the Cert Gen utility or the keytool utility to perform this step. For development
purposes, the keytool utility is the easiest way to get started. See Keytool in JDK Tool
Specifications .

See Obtaining Private Keys, Digital Signatures, and Trusted Certificate Authorities in
Administering Security for Oracle WebLogic Server.

2. Create, if one does not currently exist, a custom identity keystore for WebLogic Server and
load the private key and digital certificate pairs you obtained in the preceding step into the
identity keystore.

If you have already configured WebLogic Server for SSL, then you have already created
an identity keystore that you can also use in this step.

You can use WebLogic's ImportPrivateKey utility and the keytool utility to perform this
step. For development purposes, the keytool utility is the easiest way to get started. See
Keytool in JDK Tool Specifications .

See Creating a Keystore and Creating a Keystore Using ImportPrivateKey in Administering
Security for Oracle WebLogic Server.

3. Using the WebLogic Remote Console, configure WebLogic Server to locate the keystore
you created in the preceding step. If you are using a keystore that has already been
configured for WebLogic Server, you do not need to perform this step.

See Configuring Keystores for Production in Administering Security for Oracle WebLogic
Server.

4. Using the WebLogic Remote Console, create the default web service security
configuration, which must be named default_wss. The default web service security
configuration is used by all web services in the domain unless they have been explicitly
programmed to use a different configuration.

5. Update the default web services security configuration you created in the preceding step to
use one of the private key and digital certificate pairs for digitally signing SOAP messages.

When you create the properties used to identify the keystore and key pair, enter the exact
value for the Name of each property (such as IntegrityKeyStore,
IntegrityKeyStorePassword, and so on), but enter the value that identifies your own
previously-created keystore and key pair in the Value fields.

6. Similarly, update the default web services security configuration you created in a preceding
step to use the second private key and digital certificate pair for encrypting SOAP
messages.

When you create the properties used to identify the keystore and key pair, enter the exact
value for the Name of each property (such as ConfidentialityKeyStore.

Chapter 2
Configuring Simple Message-Level Security

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 18 of 92

https://docs.oracle.com/en/java/javase/17/docs/specs/man/index.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/index.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/index.html

ConfidentialityKeyStorePassword, and so on), but enter the value that identifies your
own previously-created keystore and key pair in the Value fields.

Updating a Client Application to Invoke a Message-Secured Web
Service

When you update your Java code to invoke a message-secured web service, you must load a
private key and digital certificate pair from the client's keystore and pass this information, along
with a username and password for user authentication if required by the security policy, to the
secure WebLogic web service being invoked.

If the security policy file of the web service specifies that the SOAP request must be encrypted,
then the web services client runtime automatically gets the server's certificate from the policy
file that is attached to the WSDL of the service, and uses it for the encryption. If, however, the
policy file is not attached to the WSDL, or the entire WSDL itself is not available, then the client
application must use a client-side copy of the policy file; for details, see Using a Client-Side
Security Policy File.

Example 2-2 shows a Java client application under JAX-WS that invokes the message-secured
web service. The JAX-WS specific code in the sample client application is shown in bold.

. The client application takes five arguments:

• Client username for client authentication

• Client password for client authentication

• Client private key file

• Client digital certificate

• WSDL of the deployed web service

Example 2-2 Client Application Invoking a Message-Secured Web Service under JAX-
WS

package examples.webservices.security_jaxws.client;
import weblogic.security.SSL.TrustManager;
import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;
import jakarta.xml.ws.BindingProvider;
import java.util.List;
import java.util.Map;
import java.util.ArrayList;
import java.security.cert.X509Certificate;/**
 * Copyright © 1996, 2010, Oracle and/or its affiliates.
 * All rights reserved.
 */
public class SecureHelloWorldJaxwsClient {
 public static void main(String[] args) throws Throwable {
 //username or password for the UsernameToken
 String username = args[0];
 String password = args[1];
 //client private key file
 String keyFile = args[2];
 //client certificate
 String clientCertFile = args[3];
 String wsdl = args[4];
 SecureHelloWorldService service = new SecureHelloWorldService_Impl(wsdl + "?

Chapter 2
Updating a Client Application to Invoke a Message-Secured Web Service

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 19 of 92

WSDL");
 SecureHelloWorldPortType port = service.getSecureHelloWorldServicePort();
 //create credential provider and set it to the request context
 List credProviders = new ArrayList();
 //client side BinarySecurityToken credential provider -- x509
 CredentialProvider cp = new ClientBSTCredentialProvider(clientCertFile, keyFile);
 credProviders.add(cp);
 //client side UsernameToken credential provider
 cp = new ClientUNTCredentialProvider(username, password);
 credProviders.add(cp);
 Map<String, Object> requestContext = ((BindingProvider) port).getRequestContext();
 requestContext.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);
 requestContext.put(WSSecurityContext.TRUST_MANAGER, new TrustManager() {
 public boolean certificateCallback(X509Certificate[] chain,
 int validateErr) {
 // need to validate if the server cert can be trusted
 return true;
 }
 });
 String response = port.sayHello("World");
 System.out.println("response = " + response);
 }
}

The main points to note about the preceding code are:

• Import the WebLogic security TrustManager API:

import weblogic.security.SSL.TrustManager;

• Import the following WebLogic web services security APIs to create the needed client-side
credential providers, as specified by the policy files that are associated with the web
service:

import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;

• Use the ClientBSTCredentialProvider WebLogic API to create a binary security token
credential provider from the client's certificate and private key:

 CredentialProvider cp =
 new ClientBSTCredentialProvider(clientCertFile, keyFile);

• Use the ClientUNTCredentialProvider WebLogic API to create a username token from
the client's username and password, which are also known by WebLogic Server:

cp = new ClientUNTCredentialProvider(username, password);

• Use the WSSecurityContext.CREDENTIAL_PROVIDER_LIST property to pass a List object
that contains the binary security and username tokens:

import jakarta.xml.ws.BindingProvider;
:
Map<String, Object> requestContext = ((BindingProvider) port).getRequestContext();
requestContext.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);

• Use the weblogic.security.SSL.TrustManager WebLogic security API to verify that the
certificate used to encrypt the SOAP request is valid. The web services client runtime gets
this certificate from the deployed WSDL of the web service, which in production situations
is not automatically trusted, so the client application must ensure that it is okay before it
uses it to encrypt the SOAP request:

Chapter 2
Updating a Client Application to Invoke a Message-Secured Web Service

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 20 of 92

requestContext.put(WSSecurityContext.TRUST_MANAGER,
 new TrustManager() {
 public boolean certificateCallback(X509Certificate[] chain,
int validateErr) {
 return true;
 }
 });

This example shows the TrustManager API on the client side. The web service application
must implement proper verification code to ensure security.

Invoking a Web Service From a Client Running in a WebLogic Server
Instance

In the simple web services configuration procedure, described in Configuring Simple Message-
Level Security, it is assumed that a stand-alone client application invokes the message-
secured web service. Sometimes, however, the client is itself running in a WebLogic Server
instance, as part of an EJB, a servlet, or another web service. In this case, you can use the
core WebLogic Server security framework to configure the credential providers and trust
manager so that your EJB, servlet, or JWS code contains only the simple invoke of the
secured operation and no other security-related API usage.

The following procedure describes the high level steps you must perform to make use of the
core WebLogic Server security framework in this use case.

1. In your EJB, servlet, or JWS code, invoke the web service operation as if it were not
configured for message-level security. Specifically, do not create a CredentialProvider
object that contains username or X.509 tokens, and do not use the TrustManager core
security API to validate the certificate from the WebLogic Server hosting the secure web
service. The reason you should not use these APIs in your client code is that the web
services runtime will perform this work for you.

2. Using the WebLogic Remote Console, configure the required credential mapping providers
of the core security of the WebLogic Server instance that hosts your client application. The
list of required credential mapper providers depends on the policy file that is attached to
the web service you are invoking. Typically, you must configure the credential mapper
providers for both username/password and X.509 certificates. See Valid Class Names and
Token Types for Credential Provider for the possible values.

Note

WebLogic Server includes a credential mapping provider for username/passwords
and X.509. However, only username/password is configured by default.

3. Using the WebLogic Remote Console, create the actual credential mappings in the
credential mapping providers you configured in the preceding step. You must map the user
principal, associated with the client running in the server, to the credentials that are valid
for the web service you are invoking. See Configuring a WebLogic Credential Mapping
Provider in Administering Security for Oracle WebLogic Server.

4. Using the WebLogic Remote Console, configure the core WebLogic Server security
framework to trust the X.509 certificate of the invoked web service. See Configuring the
Certificate Lookup and Validation Framework in Administering Security for Oracle
WebLogic Server.

Chapter 2
Updating a Client Application to Invoke a Message-Secured Web Service

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 21 of 92

You are not required to configure the core WebLogic Server security framework, as described
in this procedure, if your client application does not want to use the out-of-the-box credential
provider and trust manager. Rather, you can override all of this configuration by using the same
APIs in your EJB, servlet, and JWS code as in the stand-alone Java code described in Using a
Client-Side Security Policy File. However, using the core security framework standardizes the
WebLogic Server configuration and simplifies the Java code of the client application that
invokes the web service.

Example of Adding Security to a JAX-WS Web Service
This section provides a simple example of adding security to a JAX-WS web service. The
example attaches four policies:

• Wssp1.2-2007-SignBody.xml

• Wssp1.2-2007-EncryptBody.xml

• Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml

• Wssp1.2-Wss1.0-UsernameToken-Plain-X509-Basic128.xml

The examples include extensive inline comments in the code.

Example 2-3 shows the web service code.

Note

This web service implements attachToWsdl=false, and therefore the web service client
needs to load a client-side version of the policy, as shown in Example 2-4.

Example 2-3 Web Service SignEncrypt.java

package signencrypt;

import java.io.File;

import weblogic.jws.Policies;
import weblogic.jws.Policy;
import weblogic.jws.security.WssConfiguration;

import jakarta.activation.DataHandler;
import jakarta.activation.FileDataSource;
import jakarta.jws.WebMethod;
import jakarta.jws.WebService;
import jakarta.xml.ws.BindingType;
import jakarta.xml.ws.soap.MTOM;

import com.sun.xml.ws.developer.SchemaValidation;

/**
 *
 * Webservice which accepts a SOAP Message which is Signed And
 * Encrypted Uses the WS-Policy 1.2
 */

@WebService(name = "SignEncrypt", portName = "SignEncryptPort", serviceName =
"SignEncrypt", targetNamespace = "http://signencrypt")
@BindingType(value = "http://schemas.xmlsoap.org/wsdl/soap/http")

Chapter 2
Example of Adding Security to a JAX-WS Web Service

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 22 of 92

// Domain Level WebserviceSecurity Configuration
@WssConfiguration(value = "Basic-UNT")
@MTOM()
//@SchemaValidation

public class SignEncrypt {

 @Policies({
 @Policy(uri = "policy:Wssp1.2-2007-SignBody.xml", attachToWsdl=false),
 @Policy(uri = "policy:Wssp1.2-2007-EncryptBody.xml", attachToWsdl=false),
 /*
 * WSS 1.1 X509 with symmetric binding and authentication with plain-text
 * Username Token which is encrypted and signed using the Symmetric key
 */
 /* Use Basic-UNT WssConfiguration */
 @Policy(uri = "policy:Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-
Basic128.xml",
attachToWsdl=false)
 /*
 * The client side public certificate and private key is not required in
 * this scenario. Username token with plain text password is sent in the
 * request for authentication, and signed and encrypted with the symmetric
 * key. The symmetric key is encrypted by the server's public key. The client
 * also signs and encrypts the request header elements and body with the
 * symmetric key. The server signs and encrypts the response body with the
 * symmetric key. Both request and response messages include the signed time
 * stamps. The encryption method is Basic128.
 */
 /* Use untx509webservicesecurity WssConfiguration */

 /*
 * @Policy(uri =
 * "policy:Wssp1.2-Wss1.0-UsernameToken-Plain-X509-Basic128.xml")
 */})
 @WebMethod()
 public String echoString(String input) {
 String result = "[SignEncrypt.echoString]: " + input;
 System.out.println(result);
 return result;
 }

 @WebMethod()
 public String echoStringWithoutSecurity(String input) {
 String result = "[SignEncrypt.echoString]: " + input;
 System.out.println(result);
 return result;
 }

 @WebMethod()
 public byte[] echoStringAsByteArray(String data) {
 System.out.println("echoByteArray data: " + data);
 byte[] output = data.getBytes();
 System.out.println("Output Length : " + output.length + " Output: " +
output.toString());
 return data.getBytes();
 }

 @Policies({
 @Policy(uri = "policy:Wssp1.2-2007-SignBody.xml", attachToWsdl=false),
 @Policy(uri = "policy:Wssp1.2-2007-EncryptBody.xml", attachToWsdl=false),
 /*
 * WSS 1.1 X509 with symmetric binding and authentication with plain-text

Chapter 2
Example of Adding Security to a JAX-WS Web Service

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 23 of 92

 * Username Token which is encrypted and signed using the Symmetric key
 */
 /* Use Basic-UNT WssConfiguration */
 @Policy(uri = "policy:Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-
Basic128.xml",
attachToWsdl=false)
 /*
 * The client side public certificate and private key is not required in
 * this scenario. Username token with plain text password is sent in the
 * request for authentication, and signed and encrypted with the symmetric
 * key. The symmetric key is encrypted by the server's public key. The client
 * also signs and encrypts the request header elements and body with the
 * symmetric key. The server signs and encrypts the response body with the
 * symmetric key. Both request and response messages include the signed time
 * stamps. The encryption method is Basic128.
 */
 /* Use untx509webservicesecurity WssConfiguration */

 /*
 * @Policy(uri =
 * "policy:Wssp1.2-Wss1.0-UsernameToken-Plain-X509-Basic128.xml")
 */})
 @WebMethod()
 public byte[] echoByteArrayWithSecurity(byte[] inputData) {
 System.out.println("echoByteArrayWithSecurity data: " + inputData.length + " bytes");
 return inputData;
 }

 @WebMethod()
 public byte[] echoByteArray(byte[] inputData) {
 System.out.println("echoByteArray data: " + inputData);
 return inputData;
 }

 @WebMethod()
 public DataHandler getDataHandler(String fileName) {

 DataHandler handler = null;
 try {
 File file = new File(fileName);
 System.out.println("file: " + file.getCanonicalPath() + ", " + file.getPath());

 FileDataSource fileDataSource = new FileDataSource(file);
 handler = new DataHandler(fileDataSource);

 } catch(Exception e) {
 System.out.println("Error Creating Data Handelr: " + e.getMessage());
 }

 return handler;

 }

 @WebMethod()
 @Policies({
 @Policy(uri = "policy:Wssp1.2-2007-SignBody.xml", attachToWsdl=false),
 @Policy(uri = "policy:Wssp1.2-2007-EncryptBody.xml", attachToWsdl=false),
 /*
 * WSS 1.1 X509 with symmetric binding and authentication with plain-text
 * Username Token which is encrypted and signed using the Symmetric key
 */

Chapter 2
Example of Adding Security to a JAX-WS Web Service

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 24 of 92

 /* Use Basic-UNT WssConfiguration */
 @Policy(uri = "policy:Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-
Basic128.xml", attachToWsdl=false)
 /*
 * The client side public certificate and private key is not required in
 * this scenario. Username token with plain text password is sent in the
 * request for authentication, and signed and encrypted with the symmetric
 * key. The symmetric key is encrypted by the server's public key. The client
 * also signs and encrypts the request header elements and body with the
 * symmetric key. The server signs and encrypts the response body with the
 * symmetric key. Both request and response messages include the signed time
 * stamps. The encryption method is Basic128.
 */
 /* Use untx509webservicesecurity WssConfiguration */
 /*
 * @Policy(uri =
 * "policy:Wssp1.2-Wss1.0-UsernameToken-Plain-X509-Basic128.xml")
 */})
 public DataHandler getDataHandlerWithSecurity(String fileName) {

 DataHandler handler = null;
 try {
 File file = new File(fileName);
 System.out.println("file: " + file.getCanonicalPath() + ", " + file.getPath());

 FileDataSource fileDataSource = new FileDataSource(file);
 handler = new DataHandler(fileDataSource);

 } catch(Exception e) {
 System.out.println("Error Creating Data Handelr: " + e.getMessage());
 }

 return handler;

 }

}

As noted, the web service implements attachToWsdl=false, and therefore the web service
client needs to load a client-side version of the policy. Example 2-4 shows an example of using
the weblogic.jws.jaxws.ClientPolicyFeature class to load client-side policies.

The example includes extensive inline comments.

Example 2-4 SOAClient.java

package signencrypt.client;
import weblogic.jws.jaxws.ClientPolicyFeature;
import weblogic.jws.jaxws.policy.InputStreamPolicySource;
import weblogic.security.SSL.TrustManager;
import weblogic.wsee.policy.runtime.BuiltinPolicyFinder;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.bst.StubPropertyBSTCredProv;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;
import weblogic.wsee.security.util.CertUtils;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.xml.crypto.wss.provider.CredentialProvider;

import soa.client.Bpelprocess1ClientEp;
import soa.client.BPELProcess1;

import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;

Chapter 2
Example of Adding Security to a JAX-WS Web Service

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 25 of 92

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.URL;
import java.security.cert.X509Certificate;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;

import jakarta.activation.DataHandler;
import jakarta.activation.FileDataSource;
import javax.xml.namespace.QName;
import jakarta.xml.ws.BindingProvider;
import jakarta.xml.ws.WebServiceFeature;
import jakarta.xml.ws.soap.MTOMFeature;

public class SOAClient {

 private final static boolean debug = true;

 private final static String endpointURL =
 "http://....com:8001/soa-infra/services/default/soa/bpelprocess1_client_ep";
 private final static String certsDir = "C:/webservices/server/keystores";

 private final static String serverKeyStoreName = "default-keystore.jks";
 private final static String serverKeyStorePass = "...";
 private final static String serverCertAlias = "alice";
 private final static String serverKeyPass = "...";

 private final static String username = "weblogic";
 private final static String password = "...";

 private final static String fileName =
 "C:/webservices/farallon/owsm-interop/mtom.JPG";

 private final static String outputFileName =
 "C:/webservices/farallon/owsm-interop/output.jpg";

 private final static String[] clientPolicyFileNames =
 {
 "./policy/Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml",
 "./policy/Wssp1.2-2007-SignBody.xml",
 "./policy/Wssp1.2-2007-EncryptBody.xml" };

 private BPELProcess1 port = null;

 /**
 * Create the Stub/Port and set the Stub/Port with Client Side Security Policy
 * Feature and MTOM Feature.
 * @throws Exception
 */

 private void createStubWithClientPolicy() throws Exception {

 URL url = new URL(endpointURL + "?WSDL");

 QName serviceName =
 new QName("http://xmlns.oracle.com/SOASecurity/soa/BPELProcess1",
 "bpelprocess1_client_ep");

Chapter 2
Example of Adding Security to a JAX-WS Web Service

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 26 of 92

 Bpelprocess1ClientEp service = new Bpelprocess1ClientEp(url, serviceName);

 QName operationName =
 new QName("http://xmlns.oracle.com/SOASecurity/soa/BPELProcess1", "process");

 ClientPolicyFeature policyFeature = new ClientPolicyFeature();

 // Set the Client Side Policy on the operation with QName <operationName>

policyFeature.setEffectivePolicyForOperation(operationName, new
InputStreamPolicySource(getPolicyInputStreamArray(clientPolicyFileNames)
));
 MTOMFeature mtomFeature = new MTOMFeature();

 WebServiceFeature[] features = { policyFeature, mtomFeature };
 // WebServiceFeature[] features = { mtomFeature };
 //WebServiceFeature[] features = {policyFeature};

 port = service.getBPELProcess1Pt(features);
 }

 /**
 * Setup the Client Port/Stub used to invoke the webservice with Security
 *
 * @throws Exception
 */
 private void setUp() throws Exception {
 createStubWithClientPolicy();
 /**
 * Get the Server Public Certificate to Encrypt the Symmetric Key or the
 * SOAP Message
 */
 /**
 * Get the Server Public Certificate to Verify the Signature of the
 * Symmetric Key or the SOAP Message
 */
 X509Certificate serverCert =
 (X509Certificate) CertUtils.getCertificate(
 certsDir + "/" + serverKeyStoreName, serverKeyStorePass,
 serverCertAlias, "JKS").get(0);
 List<CredentialProvider> credProviders =
 new ArrayList<CredentialProvider>();
 /*
 * Set up UserNameToken
 */
 credProviders.add(new ClientUNTCredentialProvider(username.getBytes(),
 password.getBytes()));
 Map<String, Object> rc = ((BindingProvider) port).getRequestContext();
 /*
 * For Wssp1.2-2007-Wss1.1-UsernameToken-Plain-EncryptedKey-Basic128.xml
 * there is no need to specify the client side public certificate and
 * private key as this is a symmetric key use case. serverCert is used to
 * encrypt the Symmetric Key/Keys
 */
 rc.put(StubPropertyBSTCredProv.SERVER_ENCRYPT_CERT, serverCert);
 rc.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);
 rc.put(WSSecurityContext.TRUST_MANAGER, new TrustManager() {
 public boolean certificateCallback(X509Certificate[] chain,
 int validateErr) {
 // need to validate if the server cert can be trusted
 System.out.println("Validating Server Certificate");

Chapter 2
Example of Adding Security to a JAX-WS Web Service

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 27 of 92

 return true;
 }
 });

 }
 /**
 * Returns an array of InputStreams of the policy files
 *
 * @param policyNames
 * @return array of InputStreams of Policy's
 * @throws FileNotFoundException
 */
 private InputStream[] getPolicyInputStreamArray(String[] policyNames)
 throws FileNotFoundException {
 InputStream[] inpStreams = new InputStream[policyNames.length];
 for (int k = 0; k < policyNames.length; k++) {
 System.out.println("policy name: " + policyNames[k]);
 inpStreams[k] = getPolicyInputStream(policyNames[k]);
 }
 return inpStreams;
 }
 /**
 * Returns an InputStream of the policy file
 *
 * @param myPolicyName
 * @return
 * @throws FileNotFoundException
 */
 private InputStream getPolicyInputStream(String myPolicyName)
 throws FileNotFoundException {
 return new FileInputStream(myPolicyName);
 }
 /**
 * Invoke the webservice at endpointURL
 *
 (http://....:9003/soa-infra/services/default/soa/bpelprocess1_client_ep)
 *
 * @throws Exception
 */
 private void invokeProcess() throws Exception {
 InputStream inputstream = null;
 OutputStream outputstream = null;
 try {

 File file = new File(fileName);
 File outputFile = new File(outputFileName);

 inputstream = new BufferedInputStream(new FileInputStream(file));
 int bytesAvailable = -1;
 int counter = 0;
 int bytesRead = 0;
 int fileSize = (int) file.length();

 byte[] fileInBytes = new byte[fileSize];

 bytesRead = inputstream.read(fileInBytes);
 System.out.println("bytesRead: " + bytesRead + ", fileSize: " + fileSize + "
fileInBytes: " + fileInBytes.length);

 byte[] result = port.process(fileInBytes);
 /*byte[] input = "Hello".getBytes();
 System.out.println("input length : "+ input.length);

Chapter 2
Example of Adding Security to a JAX-WS Web Service

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 28 of 92

 byte[] result = port.process(input);*/
 if (!outputFile.exists()) {
 outputFile.createNewFile();
 }

 outputstream = new BufferedOutputStream(new FileOutputStream(outputFile));

 if (result != null) {
 System.out.println("Result Length: " + result.length);
 } else {
 System.out.println("result is null");
 }
 outputstream.write(result);

 // System.out.println(result);
 } catch (Exception e) {
 System.out.println("Error Creating Data Handler: " + e.getMessage());
 } finally {

 if (inputstream != null) {
 inputstream.close();
 }

 if (outputstream != null) {
 outputstream.close();
 }
 }
 }
 public static void main(String[] args) {
 try {
 SOAClient client = new SOAClient();
 client.setUp();
 //client.createStubWithClientPolicy();
 client.invokeProcess();
 } catch (Exception e) {
 System.out.println("Error calling SOA Webservice: " + e.getMessage());
 if (debug) {
 e.printStackTrace();
 }
 }
 }
}

Creating and Using a Custom Policy File
Although WebLogic Server includes a number of predefined web services security policy files
that typically satisfy the security needs of most programmers, you can also create and use
your own WS-SecurityPolicy file if you need additional configuration. See Using Policy Files for
Message-Level Security Configuration for general information about security policy files and
how they are used for message-level security configuration.

Note

Use of element-level security always requires one or more custom policy files to
specify the particular element path and name to be secured.

Chapter 2
Creating and Using a Custom Policy File

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 29 of 92

When you create a custom policy file, you can separate out the three main security categories
(authentication, encryption, and signing) into three separate policy files, as do the predefined
files, or create a single policy file that contains all three categories. You can also create a
custom policy file that changes just one category (such as authentication) and use the
predefined files for the other categories (Wssp1.2-2007-SignBody.xml, Wssp1.2-
SignBody.xml and Wssp1.2-2007-EncryptBody, Wssp1.2-EncryptBody). In other words, you
can mix and match the number and content of the policy files that you associate with a web
service. In this case, however, you must always ensure yourself that the multiple files do not
contradict each other.

Your custom policy file needs to comply with the standard format and assertions defined in
WS-SecurityPolicy 1.2. Note, however, that this release of WebLogic Server does not
completely implement WS-SecurityPolicy 1.2. See Unsupported WS-SecurityPolicy 1.2
Assertions. The root element of your WS-SecurityPolicy file must be <Policy>.

The following namespace declaration is recommended in this release:

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
>
. . .
</wsp:Policy>

WLS also supports other namespaces for Security Policy. For example, the following two
namespaces are also supported:

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512"
>
. . .
</wsp:Policy>

or

<wsp:Policy
xmlns:wsp="http://www.w3.org/ns/ws-policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
>
. . .
</wsp:Policy>

You can also use the predefined WS-SecurityPolicy files as templates to create your own
custom files.

Configuring the WS-Trust Client
WebLogic Server implements a WS-Trust client that retrieves security tokens from a Security
Token Service (STS) for use in Web Services Security. This WS-Trust client is used internally
by the client side WebLogic Server web service runtime.

You can configure the WS-Trust client as follows:

• Through properties on the web service client stub for a standalone web service client.

• Through MBean properties for a web service client running on the server.

In releases prior to 10g Release 3 (10.3) of WebLogic Server, the WS-Trust client could use
only security tokens from an STS that was co-located with a web service and hosted by

Chapter 2
Configuring the WS-Trust Client

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 30 of 92

WebLogic Server. However, the STS now need only be accessible to the WS-Trust client; it
does not need to be co-located.

The WS-Trust client in prior releases supported only WS-SecureConversation tokens. It now
also supports SAML tokens.

Supported Token Types
Web Service Secure Conversation Language (WS-SecureConversation) and SAML tokens are
supported. The tokens have the following namespace and URI:

• For WS-SecureConversation 1.3:

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/sct

• For WS-SecureConversation 1.2:

http://schemas.xmlsoap.org/ws/2005/02/sc
http://schemas.xmlsoap.org/ws/2005/02/sc/sct

• For SAML 2.0:

urn:oasis:names:tc:SAML:2.0:assertion

Supported confirmation methods are sender-vouches, holder-of-key and bearer.
Symmetric holder-of-key is not supported.

Configuring WS-Trust Client Properties
You set some of the configuration properties specifically for the WS-Trust client; others are
determined through configuration information generally present for a web service client. For
example, the type of token retrieved is determined by the security policy of the web service that
the web service client is invoking.

The properties that you can explicitly set and the token type they apply to are as follows.

• STS URI (WS-SecureConversation and SAML)

• STS security policy (SAML)

• STS SOAP version (SAML)

• STS WS-Trust version (SAML)

• STS Server Certificate (SAML)

This section describes the following topics:

• Obtaining the URI of the Secure Token Service

• Configuring STS URI for WS-SecureConversation: Standalone Client

• Configuring STS URI for SAML: Standalone Client

• Configuring STS URI Using WLST: Client On Server Side

• Configuring STS Security Policy: Standalone Client

• Configuring STS Security Policy Using WLST: Client On Server Side

• Configuring the STS SOAP and WS-Trust Version: Standalone Client

• Configuring the SAML STS Server Certificate: Standalone Client

Chapter 2
Configuring the WS-Trust Client

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 31 of 92

Obtaining the URI of the Secure Token Service
There are three sources from which the WS-Trust client can obtain the URI of the secure token
service (STS). The order of precedence is as follows:

• The URI for the STS, as contained in the sp:Issuer/wsa:Address element of the token
assertion in the web service's security policy.

• A configured STS URI.

• The co-located STS URI. This is the default if there is no other source (WS-
SecureConversation only).

Note

The URI for the STS, as contained in the sp:IssuedToken/sp:Issuer/wsa:Address
element of the token assertion in the web service's security policy is supported on the
STS URI only for getting the SAML token, and is not supported for getting the Secure
Conversation token in this release.

For example, the following assertion for STS URI is not supported for obtaining the
Secure Conversation token (SCT):

<sp:IssuedToken
IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/
IncludeToken/AlwaysToRecipient">
<sp:Issuer>
<a:Address>http://example.com/STS</a:Address>
</sp:Issuer>
. . .
</sp:IssuedToken>

Configuring STS URI for WS-SecureConversation: Standalone Client
For WS-SecureConversation, if the STS is co-located with the service there is no need to
configure the STS URI. However, when the STS and the service do not share the same port,
for example the service uses an HTTP port and the STS uses an HTTPs port, you need to
configure the STS URI.

The following code example demonstrates setting the STS URI on a client stub under JAX-WS.
The example assumes that the location of the STS URI is already known to the client.

String wsdl = "http://myserver/wsscsecuredservice?wsdl";
WsscSecuredService service = new WsscSecuredService_Impl(wsdl);
String sts = "https://myserver/wsscsecuredservice";
WsscSecured port = service.getWsscSecuredSoapPort();
BindingProvider provider = (BindingProvider) port;
Map context = provider.getRequestContext();
context.put(weblogic.wsee.jaxrpc.WLStub.WST_STS_ENDPOINT_ON_WSSC, sts)

Configuring STS URI for SAML: Standalone Client
When the STS is used for retrieving the SAML token, the STS is not co-located with the
service and there is no default STS URI. You must configure the STS URI in this case.

Chapter 2
Configuring the WS-Trust Client

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 32 of 92

The following code example demonstrates setting the STS URI for SAML on a client stub
under JAX-WS. The example assumes that the location of the STS URI is already known to
the client.

String wsdl = "http://myserver/wsssecuredservice?wsdl";
WsSecuredService service = new WsSecuredService_Impl(wsdl);
String sts = "https://stsserver/standaloneSTS/saml/STS";
WsscSecured port = service.getWsSecuredSoapPort();
BindingProvider provider = (BindingProvider) port;
Map context = provider.getRequestContext();
context.put(weblogic.wsee.jaxrpc.WLStub.WST_STS_ENDPOINT_ON_SAML, sts)

Configuring STS URI Using WLST: Client On Server Side
Example 2-5 demonstrates using the WebLogic Scripting Tool (WLST) to create a credential
provider for the WS-Trust client and then configuring the STS URI, as indicated by bold text.

The provider class name can be one of the following:

• weblogic.wsee.security.wssc.v200502.sct.ClientSCCredentialProvider

• weblogic.wsee.security.wssc.v13.sct.ClientSCCredentialProvider

• weblogic.wsee.security.saml.SAMLTrustCredentialProvider

Example 2-5 Configuring STS URI Using WLST

userName = sys.argv[1]
passWord = sys.argv[2]
host = sys.argv[3]+":"+sys.argv[4]
sslhost = sys.argv[3]+":"+sys.argv[5]
url="t3://"+ host connect(userName, passWord, url)
edit()
startEdit()
defaultWss = cmo.lookupWebserviceSecurity('default_wss')
#Create credential provider for SCT Trust Client
wtm = defaultWss.createWebserviceCredentialProvider('trust_client_sct_cp')
wtm.setClassName('weblogic.wsee.security.wssc.v13.sct.ClientSCCredentialProvider')

wtm.setTokenType('sct_trust')
cpm = wtm.createConfigurationProperty('StsUri')
cpm.setValue("https://" + sslhost + "/standaloneSTS/wssc13/STS")
save()
activate(block="true")
disconnect()
exit()

Configuring STS Security Policy: Standalone Client
The following code example demonstrates setting the STS security policy on a client stub,
under JAX-WS, as indicated in bold.

import weblogic.wsee.message.WlMessageContext;
. . .
String wsdl = "http://myserver/wsssecuredservice?wsdl";
WsSecuredService service = new WsSecuredService_Impl(wsdl);
WsscSecured port = service.getWsSecuredSoapPort();
BindingProvider provider = (BindingProvider) port;
Map context = provider.getRequestContext();
InputStream policy = loadPolicy();
context._setProperty(WlMessageContext.WST_BOOT_STRAP_POLICY, policy);

Chapter 2
Configuring the WS-Trust Client

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 33 of 92

Configuring STS Security Policy Using WLST: Client On Server Side
Example 2-6 demonstrates using WLST to create a credential provider for the default web
services security configuration, and then configuring the STS security policy, as indicated by
bold text. The value for the StsPolicy property must be either a policy included in WebLogic
Server (see Using WS-SecurityPolicy 1.2 Policy Files) or a custom policy file in a Jakarta EE
library (see Creating and Using a Custom Policy File).

Example 2-6 Configuring STS Security Policy Using WLST

userName = sys.argv[1]
passWord = sys.argv[2]
host = sys.argv[3]+":"+sys.argv[4]
sslhost = sys.argv[3]+":"+sys.argv[5]
samlstsurl = sys.argv[6]
url="t3://"+ host
print "Connect to the running adminSever"
connect(userName, passWord, url)
edit()
startEdit()
defaultWss = cmo.lookupWebserviceSecurity('default_wss')

#Create credential provider for SAML Trust Client

wtm = defaultWss.createWebserviceCredentialProvider('trust_client_saml_cp')
wtm.setClassName('weblogic.wsee.security.saml.SAMLTrustCredentialProvider')
wtm.setTokenType('saml_trust')
cpm = wtm.createConfigurationProperty('StsUri')
cpm.setValue(samlstsurl)
cpm = wtm.createConfigurationProperty('StsPolicy')
cpm.setValue("Wssp1.2-2007-Https-UsernameToken-Plain")
save()
activate(block="true")
disconnect()
exit()

Configuring the STS SOAP and WS-Trust Version: Standalone Client
For a SAML STS, you need to configure the WS-Trust version only if it is not the default (WS-
Trust 1.3). The supported values for WSEESecurityConstants.TRUST_VERSION are as follows:

• http://docs.oasis-open.org/ws-sx/ws-trust/200512 (WS-Trust 1.3)

• http://schemas.xmlsoap.org/ws/2005/02/trust

You also need to configure the SOAP version if it is different from the SOAP version of the
target web service for which you generated the standalone client. (See Interface
SOAPConstants (https://jakarta.ee/specifications/soap-attachments/2.0/apidocs/
jakarta.xml.soap/jakarta/xml/soap/soapconstants) for the definitions of the constants.)
The supported values for WSEESecurityConstants.TRUST_SOAP_VERSION are as follows:

• jakarta.xml.soap.SOAPConstants.URI_NS_SOAP_1_1_ENVELOPE (as per http://
schemas.xmlsoap.org/soap/envelope/)

• jakarta.xml.soap.SOAPConstants.URI_NS_SOAP_1_2_ENVELOPE (as per http://
www.w3.org/2003/05/soap-envelope)

Example 2-7 shows an example of setting the WS-Trust and SOAP versions.

Chapter 2
Configuring the WS-Trust Client

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 34 of 92

http://docs.oasis-open.org/ws-sx/ws-trust/200512
http://schemas.xmlsoap.org/ws/2005/02/trust
https://jakarta.ee/specifications/soap-attachments/2.0/apidocs/jakarta.xml.soap/jakarta/xml/soap/soapconstants
https://jakarta.ee/specifications/soap-attachments/2.0/apidocs/jakarta.xml.soap/jakarta/xml/soap/soapconstants
http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2003/05/soap-envelope
http://www.w3.org/2003/05/soap-envelope

Example 2-7 Setting the WS-Trust and SOAP Versions

// set WS-Trust version
stub._setProperty(WSEESecurityConstants.TRUST_VERSION, "http://docs.oasis-open.org/ws-
sx/ws-trust/200512");
// set SOAP version
stub._setProperty(WSEESecurityConstants.TRUST_SOAP_VERSION,
SOAPConstants.URI_NS_SOAP_1_1_ENVELOPE);

Configuring the SAML STS Server Certificate: Standalone Client
For a SAML STS, you need to configure the STS server X.509 certificate if you use a
message-level policy to protect the request and response between the STS server and the
WS-Trust client. (If you use a transport-level policy, you do not need to configure the STS
server certificate.)

Example 2-8 shows an example of setting the STS server certificate under JAX-WS, assuming
the location of the STS sever certificate is known.

Example 2-8 Setting STS Server Certificate under JAX-WS

// import
import weblogic.wsee.security.util.CertUtils;
import java.security.cert.X509Certificate;
import weblogic.wsee.jaxrpc.WLStub;
. . .

// get X509 Certificate
String stsCertLocation = "../../cert/WssIP.cer";
X509Certificate stsCert = CertUtils.getCertificate(stsCertLocation);
// set STS Server Cert
context.put(WLStub.STS_ENCRYPT_CERT,stsCert);

Sample WS-Trust Client for SAML 2.0 Bearer Token Over HTTPS
You can configure a client application to use WS-Trust to retrieve the SAML 2.0 bearer token
from STS, and then use the SAML token for authentication on the bootstrap message on
secure conversation.

In this scenario, transport-level message protection is used for WS-Trust message exchange
between a client and the SAML STS, as well as the bootstrap message on secure
conversation. A public key and private key are not required for this standalone client.

The policy for the service side is similar to the predefined WS-Policy file Wssp1.2-2007-
Wssc1.3-Bootstrap-Https-UNT.xml, except the following <sp:SupportingTokens> is used in
the policy instead:

<sp:SupportingTokens>
 <wsp:Policy>
 <sp:SamlToken
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/
AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssSamlV20Token11/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
</sp:SupportingTokens>

The policy that is used to protect the WS-Trust message between the WS-Trust client and the
remote STS server is a copy of the packaged security policy file Wssp1.2-2007-Https-

Chapter 2
Configuring the WS-Trust Client

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 35 of 92

UsernameToken-Plain.xml, which uses username token for authentication in transport-level
message protection.

Note

When using transport-level security policy to protect the bootstrap message of secure
conversation, the WS-Trust messages exchanged between the WS-Trust client and
the remote STS must also use transport-level security policy to protect the WS-Trust
messages.

When invoking the web service from the client, it is similar to a standard client application that
invokes a message-secured web service, as described in "Using a Client-Side Security Policy
File". The major difference is that you need to configure two STS endpoints: one for the
retrieved SAML token, and another for getting the Security Context Token (SCT) for Secure
Conversation.

Example 2-9 shows a simple example of a client application invoking a web service under JAX-
WS that is retrieving a SAML token via WS-Trust. It is associated with a security policy that
enables secure conversations by using HTTPS transport-level protection. The sections in bold
are relevant to security contexts and are described after the example:

Example 2-9 Client Application Using WS-Trust and WS-SecureConversation with
HTTPS

package examples.webservices.samlwsschttps.client;

import weblogic.security.SSL.TrustManager;
import weblogic.wsee.message.WlMessageContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.saml.SAMLTrustCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.wsee.jaxrpc.WLStub;
import weblogic.wsee.security.util.CertUtils;
import com.sun.xml.ws.developer.MemberSubmissionAddressingFeature;
import java.security.cert.X509Certificate;
import jakarta.xml.ws.*;
import javax.xml.namespace.*;
import javax.net.ssl.HttpsURLConnection;
import java.net.URL;
import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;

public class TravelAgencyClient {

 public static final String STS_POLICY = "StsHttpsUntPolicy.xml";
 static {
 HttpsURLConnection.setDefaultHostnameVerifier(new MyHostnameVerifier());
 try {
 String defaultTrustStore = new File(TravelAgencyClient.class.getResource("/
cacerts").getFile()).getCanonicalPath();
 System.out.println("Default trustStore:\t" + defaultTrustStore);
 System.setProperty("javax.net.ssl.trustStore", defaultTrustStore);

Chapter 2
Configuring the WS-Trust Client

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 36 of 92

 } catch (IOException e) {
 System.out.printf("can't find default trusted keystore");
 }
 }

 public static void main(String[] args) throws Exception {
 TravelAgencyClient client = new TravelAgencyClient();
 String wsscStsURL = System.getProperty("wsscStsURL");
 System.out.println("WSSC StS URL \t" +
wsscStsURL);
 String samlStsURL = System.getProperty("samlStsURL");
 System.out.println("StS URL \t" + samlStsURL);
 String hotelWsdlURL = System.getProperty("hotelWsdlURL");
 System.out.println("Hotel Service WSDL URL \t" + hotelWsdlURL);

 String hotelResult = client.callWsscHotelService("Travel Agency client to Hotel
Service", wsscStsURL,hotelWsdlURL, samlStsURL);
 System.out.println("Hotel Service return value: -->"+hotelResult);
 }

 public String callWsscHotelService(String hello,
 String wsscStsURL,
 String hotelWsdlURL,
 String samlStsURL) throws Exception{

 HotelService service = new HotelService(new URL(hotelWsdlURL),
 new QName("http://wsinterop.org/samples", "HotelService"));

 IHotelService port = service.getIHotelServicePort(new
MemberSubmissionAddressingFeature());

 BindingProvider provider = (BindingProvider)port;
 this.configurePort(provider, wsscStsURL, samlStsURL);

 try {
 // for securie conversation, it can call twice
 String s1 = port.getName(hello);
 String s2 = port.getName(hello + " --- " + s1) ;
 WSSCClientUtil.terminateWssc((BindingProvider)port);
 return s2;
 } catch (Exception ex) {
 ex.printStackTrace();
 throw new RuntimeException("fail to call the remote hotel service!", ex);
 }
 }

 private void configurePort(BindingProvider provider, String wsscStsURL, String
samlStsURL) throws Exception {

 Map context = provider.getRequestContext();
 InputStream policy = getPolicy(STS_POLICY);
 context.put(WlMessageContext.WST_BOOT_STRAP_POLICY, policy);
 if (null != wsscStsURL) {
 context.put(WLStub.WST_STS_ENDPOINT_ON_WSSC, wsscStsURL);
 }
 context.put(WLStub.WST_STS_ENDPOINT_ON_SAML, samlStsURL);
 context.put(WSSecurityContext.TRUST_MANAGER,
 new TrustManager() {
 public boolean certificateCallback(X509Certificate[] chain,
 int validateErr) {
 // need to validate if the server cert can be trusted
 return true;

Chapter 2
Configuring the WS-Trust Client

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 37 of 92

 }
 });
 List credProviders = buildCredentialProviderList();
 context.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);

 context.put(com.sun.xml.ws.developer.JAXWSProperties.HOSTNAME_VERIFIER, new
MyHostnameVerifier());
 }

 private static List buildCredentialProviderList() throws Exception {
 List credProviders = new ArrayList();
 credProviders.add(new SAMLTrustCredentialProvider());
 credProviders.add(getClientUNTCredentialProvider());
 return credProviders;
 }
 private static CredentialProvider getClientUNTCredentialProvider() throws Exception {
 String username = System.getProperty("target.username", "Alice");
 String password = System.getProperty("target.password", "Password1");
 return new ClientUNTCredentialProvider(username.getBytes(),
 password.getBytes());
 }
 private InputStream getPolicy(String policyName) {
 String resName = '/' + this.getClass().getPackage().getName().replace('.', '/') +
'/' + policyName;
 InputStream stsPolicy = this.getClass().getResourceAsStream(resName);
 if(stsPolicy == null) {
 throw new RuntimeException("STS policy is not correctly set!");
 }
 return stsPolicy;
 }
 public static class MyHostnameVerifier implements javax.net.ssl.HostnameVerifier {
 public boolean verify(String hostname, javax.net.ssl.SSLSession session) {
 return(true);
 }
 }
}

Note the following points in this example:

• Configure the policy for message protection between the remote STS and WS-Trust client:

context.put(WlMessageContext.WST_BOOT_STRAP_POLICY, policy);

• The bootstrap is protected by transport-level policy, and you need to set the STS endpoint
address for secure conversation:

context.put(WLStub.WST_STS_ENDPOINT_ON_WSSC, wsscStsURL);

• Set the STS endpoint address for SAML STS:

context.put(WLStub.WST_STS_ENDPOINT_ON_SAML, samlStsURL);

• For transport-level protection, you need to configure the hostname verifier:

context.put(com.sun.xml.ws.developer.JAXWSProperties.HOSTNAME_VERIFIER, new
MyHostnameVerifier());

• Set the SAML Trust Credential Provider to handle the remote SAML token retrieval:

credProviders.add(new SAMLTrustCredentialProvider());

• Set the client user name token provider to use the client's user name and password to
exchange the SAML token via the WS-Trust call:

credProviders.add(getClientUNTCredentialProvider());

Chapter 2
Configuring the WS-Trust Client

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 38 of 92

Sample WS-Trust Client for SAML 2.0 Bearer Token with WSS 1.1 Message
Protections

Similar to Example 2-9, you can configure a client application to use WS-Trust to retrieve the
SAML 2.0 bearer token from STS, and then use the SAML token for authentication on the
bootstrap message on secure conversation. However, instead of using HTTPS transport-level
message protection, it uses WS-Security 1.1 message-level protection, and HTTPS
configuration is not required.

In this scenario, the STS server's X.509 certificate is used to protect the WS-Trust message
exchange between the client and the SAML STS, and the server's X.509 certificate is used to
protect the bootstrap message on secure conversation. A public key and private key are not
required for this standalone client.

The policy for the service side is similar to the packaged WS-Policy file Wssp1.2-2007-
Wssc1.3-Bootstrap-Wss1.1.xml, except that it uses a SAML 2.0 token for authentication in the
bootstrap message instead of the client's X.509 certificate. That is, it uses a
<sp:SignedSupportingTokens> assertion with a SAML token inside the policy instead of using
a <sp:SignedEndorsingSupportingTokens> assertion.

The entire secure conversation policy is as follows:

<?xml version="1.0"?>
<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd">
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:SecureConversationToken
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/
AlwaysToRecipient">
 <wsp:Policy>
 <sp:RequireDerivedKeys/>
 <sp:BootstrapPolicy>
 <wsp:Policy>
 <sp:SignedParts>
 <sp:Body/>
 <sp:Header Namespace="http://schemas.xmlsoap.org/ws/2004/08/
addressing"/>
 <sp:Header Namespace="http://www.w3.org/2005/08/addressing"/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/
Never">
 <wsp:Policy>
 <sp:RequireDerivedKeys/>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token11/>
 </wsp:Policy>

Chapter 2
Configuring the WS-Trust Client

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 39 of 92

 </sp:X509Token>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:SignedSupportingTokens>
 <wsp:Policy>
 <sp:SamlToken
 sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/
IncludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssSamlV20Token11/>
 </wsp:Policy>
 </sp:SamlToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 <sp:RequireSignatureConfirmation/>
 </wsp:Policy>
 </sp:Wss11>
 </wsp:Policy>
 </sp:BootstrapPolicy>
 </wsp:Policy>
 </sp:SecureConversationToken>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:ProtectTokens/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>

Chapter 2
Configuring the WS-Trust Client

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 40 of 92

 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 <sp:RequireSignatureConfirmation/>
 </wsp:Policy>
 </sp:Wss11>
 <sp:Trust13>
 <wsp:Policy>
 <sp:MustSupportIssuedTokens/>
 <sp:RequireClientEntropy/>
 <sp:RequireServerEntropy/>
 </wsp:Policy>
 </sp:Trust13>
</wsp:Policy>

The policy that is used to protect the WS-Trust message between the WS-Trust client and the
remote STS server is a copy of packaged security policy Wssp1.2-2007-Wss1.1-
UsernameToken-Plain-EncryptedKey.xml, which uses the username token for authentication
and WS-Security 1.1 message-level security.

The entire security policy is as follows:

<?xml version="1.0"?>
<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" xmlns:sp="http://
docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <sp:SymmetricBinding>
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy>
 <sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/
Never">
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token11/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:SignedEncryptedSupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/IncludeToken/
AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>

Chapter 2
Configuring the WS-Trust Client

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 41 of 92

 </sp:SignedEncryptedSupportingTokens>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 <sp:RequireSignatureConfirmation/>
 </wsp:Policy>
 </sp:Wss11>
 <sp:SignedParts>
 <sp:Header Namespace="http://schemas.xmlsoap.org/ws/2004/08/addressing"/>
 <sp:Header Namespace="http://www.w3.org/2005/08/addressing"/>
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts>
 <sp:Body/>
 </sp:EncryptedParts>
</wsp:Policy>

Note

When using message-level security policy to protect the bootstrap message of secure
conversation, the WS-Trust messages exchanged between the WS-Trust client and
the remote STS must also use message-level security policy to protect the WS-Trust
messages. Mixing transport- and message-level security policy is not supported.

When invoking a web service from the WS-Trust client, the configurations are mostly similar to
the previous example. The major differences are:

• You need to configure two encryption certificates: one is the certificate of the STS for
SAML token retrieval, and the other is the certificate for the server.

• Configuring the service STS endpoint address for secure conversation is not required.
When the bootstrap message is not protected by transport-level security, by default the
STS endpoint address is the same as the service endpoint address for security
conversation.

• The SSL configuration is not required.

Example 2-10 shows a simple example of a client application invoking a web service under
JAX-WS that is retrieving a SAML token via WS-Trust. It is associated with a security policy
that enables secure conversations by using WS-Security 1.1 message-level security. The
sections in bold are relevant to security contexts and are described after the example:

Example 2-10 Client Application Using WS-Trust and WS-SecureConversation without
HTTPS

package examples.webservices.samlwssc.client;

import weblogic.security.SSL.TrustManager;
import weblogic.wsee.message.WlMessageContext;
import weblogic.wsee.security.bst.ClientBSTCredentialProvider;
import weblogic.wsee.security.saml.SAMLTrustCredentialProvider;
import weblogic.wsee.security.unt.ClientUNTCredentialProvider;
import weblogic.xml.crypto.wss.WSSecurityContext;
import weblogic.xml.crypto.wss.provider.CredentialProvider;
import weblogic.wsee.jaxrpc.WLStub;
import weblogic.wsee.security.util.CertUtils;

Chapter 2
Configuring the WS-Trust Client

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 42 of 92

import weblogic.wsee.security.wssc.utils.WSSCClientUtil;
import com.sun.xml.ws.developer.MemberSubmissionAddressingFeature;

. . .

public class TravelAgency1Client {

 public static final String STS_POLICY = "StsWss11UntPolicy.xml";

 public static void main(String[] args) throws Exception {
 TravelAgencyClient client = new TravelAgencyClient();
 String stsURL = System.getProperty("stsURL");
 System.out.println("StS URL \t" + stsURL);

 String hotelWsdlURL = System.getProperty("hotelWsdlURL");
 System.out.println("Hotel Service WSDL URL \t" + hotelWsdlURL);
 String hotelResult = client.callWsscHotelService("Travel Agency client to Hotel
Service", stsURL, hotelWsdlURL);
 System.out.println("Hotel Service return value: -->" + hotelResult);
 }

 public String callWsscHotelService(String hello,
 String stsurl,
 String hotelWsdlURL) throws Exception {

 HotelService service = new HotelService(new URL(hotelWsdlURL),
 new QName("http://wsinterop.org/samples", "HotelService"));

 IHotelService port = service.getIHotelServicePort(new
MemberSubmissionAddressingFeature());

 BindingProvider provider = (BindingProvider) port;
 this.configurePort(provider, stsurl);

 try {
 // for secure conversation, it can call twice
 String s1 = port.getName(hello);
 String s2 = port.getName(hello + " --- " + s1);
 WSSCClientUtil.terminateWssc((BindingProvider)port);
 return s2;
 } catch (Exception ex) {
 ex.printStackTrace();
 throw new RuntimeException("fail to call the remote hotel service!", ex);
 }
 }

 private void configurePort(BindingProvider provider, String stsurl) throws Exception
{

 Map context = provider.getRequestContext();
 InputStream policy = getPolicy(STS_POLICY);
 context.put(WlMessageContext.WST_BOOT_STRAP_POLICY, policy);
 context.put(WLStub.WST_STS_ENDPOINT_ON_SAML, stsurl);
 context.put(WLStub.STS_ENCRYPT_CERT, getStsCert());
 context.put(WLStub.SERVER_ENCRYPT_CERT, getServerCert());
 List credProviders = buildCredentialProviderList();
 context.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);
 context.put(WLStub.POLICY_COMPATIBILITY_PREFERENCE,
WLStub.POLICY_COMPATIBILITY_MSFT);
 }

 private static List buildCredentialProviderList() throws Exception {

Chapter 2
Configuring the WS-Trust Client

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 43 of 92

 List credProviders = new ArrayList();
 credProviders.add(new SAMLTrustCredentialProvider());
 credProviders.add(getClientUNTCredentialProvider());
 return credProviders;
 }

 . . .

 private static X509Certificate getServerCert() throws Exception {
 String defaultServerCert = new File(
TravelAgency1Client.class.getResource("/Bob.cer").getFile()).getCanonicalPath();
 String certName = System.getProperty("target.serverCert",
 defaultServerCert);
 X509Certificate cert = CertUtils.getCertificate(certName);
 return cert;
 }
}

Note the following points in this example:

• Configure the STS Server certificate for message protection between the remote STS and
WS-Trust client:

context.put(WLStub.STS_ENCRYPT_CERT, getStsCert());

• Configure the STS Server certificate for message protection of the bootstrap message of
secure conversation:

context.put(WLStub.SERVER_ENCRYPT_CERT, getServerCert());

• Optionally, if the service is a Microsoft .NET WCF service, then set the
WLStub.POLICY_COMPATIBILITY_PREFERENCE flag to WLStub.POLICY_COMPATIBILITY_MSFT
for interoperability:

context.put(WLStub.POLICY_COMPATIBILITY_PREFERENCE,
WLStub.POLICY_COMPATIBILITY_MSFT);

Configuring and Using Security Contexts and Derived Keys
Oracle provides the following predefined WS-SecurityPolicy files to configure security contexts
and derived keys:

• WS-SecureConversation 1.2 (2005/2) specification:

– Wssp1.2-Wssc200502-Bootstrap-Https.xml

– Wssp1.2-Wssc200502-Bootstrap-Wss1.0.xml

– Wssp1.2-Wssc200502-Bootstrap-Wss1.1.xml

• WS-SecureConversation 1.3 versions of the WS-SecureConversation 1.2 (2005/2) policy
files:

– Wssp1.2-Wssc1.3-Bootstrap-Https.xml

– Wssp1.2-Wssc1.3-Bootstrap-Wss1.0.xml

– Wssp1.2-Wssc1.3-Bootstrap-Wss1.1.xml

• Additional WS-SecureConversation 1.3 policy files:

– Wssp1.2-Wssc1.3-Bootstrap-Https-BasicAuth.xml

– Wssp1.2-Wssc1.3-Bootstrap-Https-ClientCertReq.xml

Chapter 2
Configuring and Using Security Contexts and Derived Keys

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 44 of 92

• WS-SecureConversation 1.4 policies:

– Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.0-UsernameToken-Plain-X509-
Basic256.xml

– Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.0-UsernameToken-Plain-X509-
Basic256Sha256.xml

– Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.1-Saml2.0-Bearer.xml

– Wssp1.2-2007-Wssc1.4-Bootstrap-Wss1.1-UsernameToken-Plain-EncryptedKey.xml

It is recommended that you use the predefined files if you want to configure security contexts,
because these security policy files provide most of the required functionality and typical default
values. See WS-SecureConversation Policies.

Note

If you are deploying a web service that uses shared security contexts to a cluster, then
you are required to also configure cross-cluster session state replication. See Failover
and Replication in a Cluster in Administering Clusters for Oracle WebLogic Server.

Code or configure your application to use the policy through policy annotations, policy attached
to the application's WSDL, or runtime policy configuration.

Specification Backward Compatibility
WebLogic web services implement the Web Services Trust (WS-Trust 1.3) and Web Services
Secure Conversation (WS-SecureConversation 1.3) specifications. Take note of the following
differences from the WS-SecureConversation version of 02/2005:

• The Web Services Secure Conversation (WS-SecureConversation 1.3) specification
requires a token service to return wst:RequestedSecurityToken to the initiating party in
response to a wst:RequestSecurityToken. One or more
wst:RequestSecurityTokenResponse elements are contained within a single
wst:RequestSecurityTokenResponseCollection.

This differs from the previous version of the specification, in which
wst:RequestSecurityTokenResponse was returned by the token service.

The token service can return wst:RequestSecurityTokenResponse if the service policy
specifies the SC10SecurityContextToken, as described in the next bullet item.

• The WS-SecurityPolicy 1.2 Errata document describes the following change to
SecureConversationToken Assertion:

<sp:SC10SecurityContextToken />

changes to

<sp:SC13SecurityContextToken />

sp:SC10SecurityContextToken continues to be supported only when used with the WS-
SecureConversation version of 02/2005.

WS-SecureConversation and Clusters
WS-SecureConversation is pinned to a particular WebLogic Server instance in the cluster. If a
SecureConversation request lands in the wrong server, it is automatically rerouted to the

Chapter 2
Configuring and Using Security Contexts and Derived Keys

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 45 of 92

correct server. If the server instance hosting the WS-SecureConversation fails, the
SecureConversation will not be available until the server instance is brought up again.

Updating a Client Application to Negotiate Security Contexts
A client application that negotiates security contexts when invoking a web service is similar to a
standard client application that invokes a message-secured web service, as described in Using
a Client-Side Security Policy File. The only real difference is that you can use the
weblogic.wsee.security.wssc.utils.WSSCClientUtil API to explicitly cancel the secure context
token.

You can configure the SCT expiration value by setting SCT lifetime property. The SCT
expiration value is then used to time out the SCT. When the timeout is reached, the web
services runtime on the client side automatically renews the SCT. The web services runtime
automatically cancels the unused secure context token when the timeout is reached.

Note

WebLogic Server provides the WSSCCLientUtil API for your convenience only; the
web services runtime automatically cancels the secure context token when the
configured timeout is reached. Use the API only if you want to have more control over
when the token is cancelled.

Associating Policy Files at Runtime
The simple message-level configuration procedure, documented in Configuring Simple
Message-Level Security, describes how to use the @Policy and @Policies JWS annotations in
the JWS file that implements your web service to specify one or more policy files that are
associated with your service. This of course implies that you must already know, at the time
you program your web service, which policy files you want to associate with your web service
and its operations. This might not always be possible, which is why you can also associate
policy files at runtime, after the web service has been deployed, using the WebLogic Remote
Console.

You can use no @Policy or @Policies JWS annotations at all in your JWS file and associate
policy files only at runtime using the WebLogic Remote Console, or you can specify some
policy files using the annotations and then associate additional ones at runtime.

At runtime, the WebLogic Remote Console allows you to associate as many policy files as you
want with a web service and its operations, even if the policy assertions in the files contradict
each other or contradict the assertions in policy files associated with the JWS annotations. It is
up to you to ensure that multiple associated policy files work together. If any contradictions do
exist, WebLogic Server returns a runtime error when a client application invokes the web
service operation.

To use the WebLogic Remote Console to associate one or more WS-Policy files to a web
service, the WS-Policy XML files must be located in either the META-INF/policies or WEB-INF/
policies directory of the EJB JAR file (for EJB implemented web services) or WAR file (for Java
class implemented web services), respectively.

Chapter 2
Associating Policy Files at Runtime

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 46 of 92

Using Security Assertion Markup Language (SAML) Tokens For
Identity

This section describes using SAML tokens for identity. The following topics are described:

• SAML Token Overview

• Using SAML Tokens for Identity: Main Steps

• Specifying the SAML Confirmation Method

• Configuring SAML Attributes in a Web Service

SAML Token Overview
The SAML Token Profile 1.1 (http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-
SAMLTokenProfile.pdf) is part of the core set of WS-Security standards, and specifies how
SAML assertions can be used for web services security. WebLogic Server supports SAML
Token Profile 1.1, including support for SAML 2.0 assertions. SAML Token Profile 1.1 is
backwards compatible with SAML Token Profile 1.0.

Note

SAML Token Profile 1.1 is supported only through WS-SecurityPolicy.

Previous releases of WebLogic Server, released before the formulation of the WS-
SecurityPolicy specification, used security policy files written under the WS-Policy
specification, using a proprietary schema for security policy. These earlier security
policy files support SAML Token Profile 1.0 and SAML 1.1 only.

In the simple web services configuration procedure, described in Configuring Simple Message-
Level Security, it is assumed that users use username tokens to authenticate themselves.
Because WebLogic Server implements the SAML Token Profile 1.1 (http://docs.oasis-
open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf) of the Web Services Security
specification, users can also use SAML tokens in the SOAP messages to authenticate
themselves when invoking a web service operation, as described in this section.

Use of SAML tokens works server-to-server. This means that the client application is running
inside of a WebLogic Server instance and then invokes a web service running in another
WebLogic Server instance using SAML for identity. Because the client application is itself a
web service, the web services security runtime takes care of all the SAML processing.

In addition to this server-to-server usage, you can also use SAML tokens from a standalone
client via WS-Trust, as described in Configuring the WS-Trust Client.

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 47 of 92

http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf

Note

It is assumed in this section that you understand the basics of SAML and how it
relates to core security in WebLogic Server. For general information, see Security
Assertion Markup Language (SAML) in Understanding Security for Oracle WebLogic
Server.

It is also assumed in the following procedure that you have followed the steps in
Configuring Simple Message-Level Security and now want to enable the additional
use case of using SAML tokens, rather than username tokens, for identity.

Using SAML Tokens for Identity: Main Steps
To use SAML tokens for identity:

1. Make sure that the SAML providers you need are configured and add the appropriate
partner entries. This step configures the core WebLogic Server security subsystem. For
details, see the following sections in Administering Security for Oracle WebLogic Server:

• Configuring a SAML Identity Assertion Provider

• Configuring a SAML Credential Mapping Provider

Note

When configuring SAML 2.0 partner entries, you must use the endpoint URL
of the target web service as the name of the partner for both WSSIdPPartner
and WSSSPPartner entries. Specify the URL as HTTPS if SSL will be used.

2. If you will be using policies that involve signatures related to SAML assertions (for
example, SAML Holder-of-Key policies) where a key referenced by the assertion is used to
sign the message, or Sender-Vouches policies where the sender's key is used to sign the
message, you need to configure keys and certificates for signing and verification.

For the Holder-of-Key scenarios, the signature from the client certificate is to prove that the
client has possession of the private key that the SAML token references. For the Sender
Vouches scenarios, the signature from the client certificate is to guarantee that the
message with the SAML token is generated by the sender.

Note

These keys and certificates are not used to create or verify signatures on the
assertions themselves. Creating and verifying signatures on assertions is done
using keys and certificates configured on the SAML security providers.

If you are using SAML Bearer policies, protection is provided by SSL and the PKI
Credential Mapping provider is not needed.

If you are using SAML tokens from a standalone client via WS-TRUST, the tokens
are passed in via the web service client stub, not via the PKI Credential Mapping
provider.

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 48 of 92

a. Configure a PKI Credential Mapping provider on the sending side, and populate it with
the keys and certificates to be used for signing. setKeypairCredential creates a
keypair mapping between the principalName, resourceid and credential action and
the keystore alias and the corresponding password.

pkiCM.setKeypairCredential(
type=<remote>, protocol=http,
remoteHost=hostname, remotePort=portnumber, path=/ContextPath/ServicePath,
username, Boolean('true'), None,
alias, passphrase)

The first (String) parameter is used to construct a Resource object that represents the
endpoint of the target web service. The userName parameter is the user on whose
behalf the signed web service message will be generated. The alias and passphrase
parameters are the alias and passphrase used to retrieve the key/certificate from the
keystore configured for the PKI Credential Mapping provider. The actual key and
certificate should be loaded into the keystore before creating the KeypairCredential.

b. Add the same certificates to the Certificate Registry on the receiving side, so they can
be validated by the web service security runtime:

reg.registerCertificate(certalias, certfile)

Specifying the SAML Confirmation Method
The WS-SecurityPolicy implies, but does not explicitly specify, the confirmation method for
SAML assertions. Consider the following general guidelines:

• For WSS1.0 Asymmetric Binding, if the SamlToken assertion is inside the
<sp:AsymmerticBinding> assertion, then the Holder of Key confirmation method is used.

For WSS1.1 Symmetric Binding, if the SamlToken assertion is inside the
<sp:EndorsingSupportingTokens> assertion, then the Holder of Key confirmation method
is used.

See Table 2-13 for examples of predefined policies that use Holder of Key confirmation.

• For WSS1.0 Asymmetric Binding, if the SamlToken assertion is inside
<sp:SignedSupportingTokens>, then the Sender Vouches confirmation method is used.

For WSS1.1 Symmetric Binding, if the SamlToken assertion is inside the
<sp:SignedSupportingTokens> assertion, and the <sp:X509Token> is used in the
<sp:EndorsingSupportingTokens> assertion, then the Sender Vouches confirmation
method is used.

For Transport Binding, two-way SSL with client certification is required for the Sender
Vouches confirmation method. Use transport-level security as described in Configuring
Transport-Level Security in this case.

See Table 2-13 for examples of predefined policies that use Sender Vouches confirmation.

• For transport-level security, if the SamlToken assertion is inside <sp:SupportingTokens>,
then the Bearer confirmation method is used. Use transport-level security as described in
Configuring Transport-Level Security in this case.

For WSS1.1 Symmetric Binding, if the SamlToken assertion is inside the
<sp:SignedSupportingTokens> assertion, and there is no
<sp:EndorsingSupportingTokens> assertion, then the Bearer confirmation method is
used.

See Table 2-13 for examples of predefined policies that use Bearer confirmation.

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 49 of 92

Specifying the SAML Confirmation Method (Proprietary Policy Only)
This section describes how to specify the SAML confirmation method in a policy file that uses
the proprietary schema for security policy.

Note

SAML 2.0 assertions use <saml2:SubjectConfirmation> elements to specify the
confirmation method; the confirmation method is not directly specified in the policy file.

When you configure a web service to require SAML tokens for identity, you can specify one of
the following confirmation methods:

• sender-vouches

• holder-of-key

• bearer

See SAML Token Profile Support in WebLogic web services, as well as the Web Services
Security: SAML Token Profile (http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-
SAMLTokenProfile.pdf) specification itself, for details about these confirmation methods.

1. Use a security policy file that specifies that SAML should be used for identity. The exact
syntax depends on the type of confirmation method you want to configure (sender-
vouches, holder-of-key).

To specify the sender-vouches confirmation method:

a. Create a <SecurityToken> child element of the <Identity><SupportedTokens>
elements and set the TokenType attribute to a value that indicates SAML token usage.

b. Add a <Claims><Confirmationmethod> child element of <SecurityToken> and specify
sender-vouches.

For example:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part"
 >
 <wssp:Identity>
 <wssp:SupportedTokens>
 <wssp:SecurityToken
 TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-
token-profile-1.0#SAMLAssertionID">
 <wssp:Claims>
 <wssp:ConfirmationMethod>sender-vouches</wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Identity>
</wsp:Policy>

To specify the holder-of-key confirmation method:

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 50 of 92

http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-SAMLTokenProfile.pdf

a. Create a <SecurityToken> child element of the <Integrity><SupportedTokens>
elements and set the TokenType attribute to a value that indicates SAML token usage.

The reason you put the SAML token in the <Integrity> assertion for the holder-of-
key confirmation method is that the web service runtime must prove the integrity of the
message, which is not required by sender-vouches.

b. Add a <Claims><Confirmationmethod> child element of <SecurityToken> and specify
holder-of-key.

For example:

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wssp="http://www.bea.com/wls90/security/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:wls="http://www.bea.com/wls90/security/policy/wsee#part">
 <wssp:Integrity>
 <wssp:SignatureAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <wssp:CanonicalizationAlgorithm
 URI="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <wssp:Target>
 <wssp:DigestAlgorithm
 URI="http://www.w3.org/2000/09/xmldsig#sha1" />
 <wssp:MessageParts
 Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">
 wsp:Body()
 </wssp:MessageParts>
 </wssp:Target>
 <wssp:SupportedTokens>
 <wssp:SecurityToken
 IncludeInMessage="true"
 TokenType="http://docs.oasis-open.org/wss/2004/01/oasis-2004-01-saml-
token-profile-1.0#SAMLAssertionID">
 <wssp:Claims>
 <wssp:ConfirmationMethod>holder-of-key</wssp:ConfirmationMethod>
 </wssp:Claims>
 </wssp:SecurityToken>
 </wssp:SupportedTokens>
 </wssp:Integrity>
</wsp:Policy>

c. By default, the WebLogic web services runtime always validates the X.509 certificate
specified in the <KeyInfo> assertion of any associated WS-Policy file. To disable this
validation when using SAML holder-of-key assertions, you must configure the web
service security configuration associated with the web service by setting a property on
the SAML token handler.

See Creating and Using a Custom Policy File for additional information about creating
your own security policy file. See Web Services Security Policy Assertion Reference in
WebLogic Web Services Reference for Oracle WebLogic Server for reference
information about the assertions.

2. Update the appropriate @Policy annotations in the JWS file that implements the web
service to point to the security policy file from the preceding step. For example, if you want
invokes of all the operations of a web service to SAML for identity, specify the @Policy
annotation at the class-level.

You can mix and match the policy files that you associate with a web service, as long as
they do not contradict each other and as long as you do not combine OASIS WS-

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 51 of 92

SecurityPolicy 1.2 files with security policy files written under Oracle's security policy
schema.

For example, you can create a simple MyAuth.xml file that contains only the <Identity>
security assertion to specify use of SAML for identity and then associate it with the web
service together with the predefined Wssp1.2-2007-EncryptBody.xml and Wssp1.2-2007-
SignBody.xml files. It is, however, up to you to ensure that multiple associated policy files
do not contradict each other; if they do, you will either receive a runtime error or the web
service might not behave as you expect.

3. Recompile and redeploy your web service as part of the normal iterative development
process.

See Developing JAX-WS Web Services in Developing JAX-WS Web Services for Oracle
WebLogic Server.

4. Create a client application that runs in a WebLogic Server instance to invoke the main web
service using SAML as identity. See Invoking a Web Service From a Client Running in a
WebLogic Server Instance for details.

Configuring SAML Attributes in a Web Service
A SAML assertion is a piece of data produced by a SAML authority regarding either an act of
authentication performed on a subject, attribute information about the subject, or authorization
data applying to the subject with respect to a specified resource.

The SAML specification (see http://www.oasis-open.org) allows additional, unspecified
information about a particular subject to be exchanged between SAML partners as attribute
statements in an assertion. A SAML attribute assertion is therefore a particular type of SAML
assertion that conveys site-determined information about attributes of a Subject.

Attribute data is of type String.

Attributes are often name/value pairs (for example name=position, value=team lead), with
multiple values being possible, but there is no requirement that they follow this model.

SAML attributes can be examined on the target partner service, and they can be used as extra
information for authentication or authorization.

Use of SAML attributes works server-to-server. This means that the client application providing
the attributes is running inside of a WebLogic Server instance. It then invokes a web service
running in the same or other WebLogic Server instance to consume the attributes. Because the
client application is itself a web service, the web services security runtime takes care of all the
SAML processing.

Using SAML Attributes: Available Interfaces and Classes
You can use the classes and interfaces listed in Table 2-5 to implement SAML attributes. See
Java API Reference for Oracle WebLogic Server.

Table 2-5 SAML Attribute Classes and Interfaces

Interface or Class Description

weblogic.wsee.security.saml
.SAML2CredentialProvider

Credential Provider for SAML 2.0 assertions.

weblogic.wsee.security.saml
.SAMLAttributeStatementData

This interface represents the attributes in a single attribute
statement.

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 52 of 92

http://www.oasis-open.org

Table 2-5 (Cont.) SAML Attribute Classes and Interfaces

Interface or Class Description

weblogic.wsee.security.saml
.SAMLAttributeStatementData
Impl()

This class represents the attributes in a single attribute statement.

weblogic.wsee.security.saml
.SAMLAttributeData

SAML attribute Info interface for SAML 2.0 attributes.

weblogic.wsee.security.saml
.SAMLAttributeDataImpl()

Class that implements
weblogic.wsee.security.saml.SAMLAttributeData.

weblogic.wsee.security.saml
.SAMLAttributeStatementData
Helper

Helper function to get the SAMLAttributeStatementData object

Of the classes and interfaces listed in Table 2-5, the SAMLAttributeData interface deserves
additional mention. It has the methods shown in Table 2-6.

Table 2-6 SAMLAttributeData Methods

Method Description

getAttributeName() Get the attribute name.

getAttributeNameFormat() Get the attribute name format.

getAttributeFriendlyName() Get the Attribute friendly name.

getAttributeValues() Get the collection of attribute values.

isSAML20() Check if this is a SAML 2.0 attribute. Return true if it is a SAML 2.0
attribute, false otherwise

setAttributeName(String
attributeName)

Set the attribute name.

setAttributeNameFormat(Stri
ng attributeNameFormat)

Set the attribute name format.

setAttributeFriendlyName(St
ring attributeFriendlyName)

Set the attribute friendly name.

setAttributeValues(Collecti
on<String> attributeValues)

Set the collection of attribute values.

addAttributeValue(String
attributeValue)

Add one attribute value.

getAttributeNameSpace() Get the namespace of the attribute.

setAttributeNameSpace(Strin
g attributeNameSpace)

Set the namespace of the attribute.

getSAML2AttributeInfo() Get a SAML 2.0 attribute info object from this object.

isEmpty() Check if this attribute data element does not have values.

Using SAML Attributes: Main Steps
The SAML2CredentialProvider classes provide mechanisms to add attributes into SAML
assertions via the web service context.

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 53 of 92

On the SAML partner, you then use the
SAMLAttributeStatementDataHelper.getSAMLAttributeStatementData method to map
attributes from incoming SAML assertions based on the web service context.

To do this:

• The SAML2CredentialProvider (on the SAML Identity Provider site) determines the
attributes to use and how to package them.

Implement both the SAMLAttributeStatementData and SAMLAttributeData interfaces to
package the attributes.

• The SAML partner uses the WebServiceContext to get the attributes, and determines what
to do with them.

Use the SAMLAttributeStatementDataHelper class to get the
SAMLAttributeStatementData object, from which you get the SAMLAttributeData object.

SAML Attributes Example
This section describes a simple application that implements SAML attributes for SAML 2.0.
This example is available in the WebLogic Server installation in
WLS_HOME\samples\server\examples\src\examples\webservices\saml\saml20sv.

Example 2-11 shows an example of a web service (the "client") running on a WebLogic Server
instance.

This web service adds four attributes to the WebServiceContext. The first attribute has no
value; the second uses a static value. The values for attributes three and four are computed
based on the authenticated Subject.

Example 2-11 Web Service That Adds Attributes to the WebServiceContext

@WebService(serviceName = "ProxyService", name = "IProxy", targetNamespace = "http://
www.oracle.com/2008/12/interop")
 public class ProxyService{

 @WebMethod(operationName = "Echo")
 @WebResult(name = "EchoResponse")
 public String echo(@WebParam(name = "EchoRequest")String hello,
 @WebParam(name = "partenerWsdlURL") String partenerWsdlURL){
 try{
 PartnerService service =
 new PartnerService(new URL(partenerWsdlURL),
 new QName("http://www.oracle.com/2008/12/
interop", "PartnerService"));

 IPartner port = service.getIPartnerPort();
 BindingProvider provider = (BindingProvider) port;
 Map context = provider.getRequestContext();
 context.put(WLStub.SAML_ATTRIBUTE_ONLY, "True");

 List credProviders = buildCredentialProviderList();
 context.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);

 String result = port.echo(hello);
 return result+" I'm ProxyService Echo!\n";

 } catch(Exception ex){
 throw new RuntimeException(ex);
 }
 }

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 54 of 92

 private static List buildCredentialProviderList() throws Exception {
 List credProviders = new ArrayList();
 credProviders.add(new MySAMLCredentialProvider1());

 return credProviders;
 }

 /**
 * This Credential Provider is for SAML 2.0 Sender Vouches
 */

 private static class MySAMLCredentialProvider1 extends SAML2CredentialProvider {

 public SAMLAttributeStatementData getSAMLAttributeData(Subject subject) {

 System.out.println(" Providing SAML Attributes from
MySAMLCredentialProvider1 for Subject =" + subject);
 // There are four types of attributes in this test

 SAMLAttributeStatementData attributes = new SAMLAttributeStatementDataImpl();

 String xmlns = "www.oracle.com/webservices/saml/test";
 // 1. The attribute without value

 SAMLAttributeData attribute1 = new SAMLAttributeDataImpl();
 attribute1.setAttributeName("test.no.value.attribute");
 // Friendly name is optional. It is set in this example.
 attribute1.setAttributeFriendlyName("Type 1 - No Value");
 attribute1.setAttributeNameSpace(xmlns);
 attributes.addAttributeInfo(attribute1);

 // 2. Static attribute that has static value

 SAMLAttributeData attribute2 = new SAMLAttributeDataImpl();
 attribute2.setAttributeName("test.static.attribute");
 attribute2.setAttributeFriendlyName("Type 2 - Static Attribute");
 attribute2.setAttributeNameSpace(xmlns);
 attribute2.addAttributeValue("static.attribute.value");
 attributes.addAttributeInfo(attribute2);

 // 3. Subjust dependent attributes

 SAMLAttributeData attribute3 = new SAMLAttributeDataImpl();
 attribute3.setAttributeName("test.subject.dependent.attribute");
 attribute3.setAttributeFriendlyName("Type 3 - Subject Dependent Attribute");
 attribute3.setAttributeNameSpace(xmlns);
 if (hasUser("Alice", subject)) {
 attribute3.addAttributeValue("Alice A");
 } else if (hasUser("Bob", subject)) {
 attribute3.addAttributeValue("Bob B");
 } else {
 attribute3.addAttributeValue("Hacker X");
 }
 attributes.addAttributeInfo(attribute3);

 // 4. Multiple value attributes

 SAMLAttributeData attribute4 = new SAMLAttributeDataImpl();
 attribute4.setAttributeName("test.multi.value.attribute");
 attribute4.setAttributeFriendlyName("Type 4 - Multi-Value Attribute");
 attribute4.setAttributeNameSpace(xmlns);

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 55 of 92

 if (hasUser("Alice", subject)) {
 attribute4.addAttributeValue("Team Lead");
 attribute4.addAttributeValue("Programmer");
 } else if (hasUser("Bob", subject)) {
 attribute4.addAttributeValue("System Admin");
 attribute4.addAttributeValue("QA");
 } else {
 attribute4.addAttributeValue("Hacker");
 attribute4.addAttributeValue("meber of unkown");
 }
 attributes.addAttributeInfo(attribute4);
 return attributes;
 }

 private static boolean hasUser(String user, Subject subject) {
 if (null == user || null == subject) {
 return false;
 }
 Set principals = subject.getPrincipals();
 if (null == principals || principals.isEmpty()) {
 return false;
 }
 for (Iterator it = principals.iterator(); it.hasNext();) {
 Object obj = it.next();
 if (obj instanceof Principal) {
 Principal p = (Principal) obj;
 // System.out.println("principal =[" + p + "]");
 if (user.equals(p.getName())) {
 return true;
 }
 } else if (obj instanceof WLSPrincipal) {
 WLSPrincipal principal = (WLSPrincipal) obj;
 // System.out.println("principal =[" + principal + "]");
 if (user.equals(principal.getName())) {
 return true;
 }
 }
 }
 return false;
 }

 }

}

This example invokes the SAMLAttributeStatementDataImpl() class to get an
SAMLAttributeStatementData object, and then invokes SAMLAttributeDataImpl() to get a
SAML2AttributeStatementInfo object.

In this example, the SAMLAttributeData class uses SAML 2.0. SAMLAttributeDataImpl() is
shown in Example 2-12.

Example 2-12 SAMLAttributeDataImpl Implementation

package weblogic.wsee.security.saml;

import com.bea.security.saml2.providers.SAML2AttributeInfo;

import java.util.Collection;
import java.util.ArrayList;
import java.util.List;
import java.util.Iterator;

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 56 of 92

/**
 *
 */
public class SAMLAttributeDataImpl implements SAMLAttributeData {
 public static final String SAML_2_0_ATTRNAME_FORMAT_BASIC =
SAML2AttributeInfo.ATTR_NAME_FORMAT_BASIC;

 /**
 * the name of the attribute
 */
 private String attributeName;

 private String attributeNameSpace;
 /**
 * the name format of the attribute for SAML 2.0. Defaults to basic.
 */
 private String attributeNameFormat = SAML_2_0_ATTRNAME_FORMAT_BASIC;
 /**
 * the friendly name of the attribute, this is for SAML 2.0 only.
 */
 private String attributeFriendlyName;
 /**
 * the values of the attribute.
 */
 private Collection<String> attributeValues;
 /**
 * is a SAML 2.0 attribute info
 */
 private boolean isSAML20;

 public SAMLAttributeDataImpl() {

 }

 public SAMLAttributeDataImpl(String attributeName, Collection<String>
attributeValues) {
 this.attributeName = attributeName;
 this.attributeValues = attributeValues;
 }

 public SAMLAttributeDataImpl(String attributeName, String
 attributeNameFormat, String attributeFriendlyName, String namespace,
 Collection<String> attributeValues) {
 this.attributeName = attributeName;
 this.attributeNameFormat = attributeNameFormat;
 this.attributeFriendlyName = attributeFriendlyName;
 this.attributeValues = attributeValues;
 this.attributeNameSpace = namespace;
 }

 public SAMLAttributeDataImpl(SAML2AttributeInfo saml2AttributeInfo) {
 if (null == saml2AttributeInfo) {
 throw new IllegalArgumentException("Null SAML2AttributeInfo found ");
 }
 this.attributeName = saml2AttributeInfo.getAttributeName();
 this.attributeNameFormat = saml2AttributeInfo.getAttributeNameFormat();
 this.attributeFriendlyName = saml2AttributeInfo.getAttributeFriendlyName();
 this.attributeValues = saml2AttributeInfo.getAttributeValues();
 this.isSAML20 = true;
 }

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 57 of 92

 /**
 * get the attribute name
 *
 * @return string of the attribute name
 */
 public String getAttributeName() {
 return attributeName;
 }

 /**
 * set the attribute name
 *
 * @param attributeName string of the attribute name
 */
 public void setAttributeName(String attributeName) {
 if (null == attributeName) {
 throw new IllegalArgumentException("attributeName cannot be null");
 }
 this.attributeName = attributeName;
 }

 /**
 * get the attribute name format for SAML 2.0 only
 *
 * @return String of the attribute name format,
default is SAML_2_0_ATTRNAME_FORMAT_BASIC for SAML 2.0.
 */
 public String getAttributeNameFormat() {
 return attributeNameFormat;
 }
 /**
 * set et the attribute name format
 *
 * @param attributeNameFormat String of the attribute name format
 */
 public void setAttributeNameFormat(String attributeNameFormat) {
 this.attributeNameFormat = attributeNameFormat;
 }
 /**
 * get the Attribute Friendly Name
 *
 * @return String of the Attribute Friendly Name
 */
 public String getAttributeFriendlyName() {
 return attributeFriendlyName;
 }
 /**
 * set the Attribute Friendly Name
 *
 * @param attributeFriendlyName the Attribute Friendly Name
 */
 public void setAttributeFriendlyName(String attributeFriendlyName) {
 this.attributeFriendlyName = attributeFriendlyName;
 }
 /**
 * get the Attribute Value
 *
 * @return collection of attribute values
 */
 public Collection<String> getAttributeValues() {
 return attributeValues;
 }

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 58 of 92

 /**
 * set collection of attribute values
 *
 * @param attributeValues collection of attribute values to be set
 */
 public void setAttributeValues(Collection<String> attributeValues) {
 this.attributeValues = attributeValues;
 }
 /**
 * add one attribute value
 *
 * @param attributeValue String of attribute value to be added
 */
 public void addAttributeValue(String attributeValue) {
 if (this.attributeValues == null) {
 this.attributeValues = new ArrayList();
 }
 if (null == attributeValue) {
 this.attributeValues.add("");
 } else {
 this.attributeValues.add(attributeValue);
 }
 }
 /**
 * add attribute values
 *
 * @param newAttributeValues collection of attribute values to be added
 */
 public void addAttributeValues(Collection<String> newAttributeValues) {
 if (this.attributeValues == null || this.attributeValues.isEmpty()) {
 this.setAttributeValues(newAttributeValues);
 return;
 }
 if (null == newAttributeValues || newAttributeValues.isEmpty()) {
 this.attributeValues.add("");
 return;
 }
 Iterator iter = newAttributeValues.iterator();
 while (iter.hasNext()) {
 this.attributeValues.add((String) iter.next());
 }
 }
 /**
 * get the namespace of the Attribute.
 *
 * @return string of attribute namespace
 */
 public String getAttributeNameSpace() {
 return attributeNameSpace;
 }
 /**
 * set attributeNameSpace.
 *
 * @param attributeNameSpace attributeNameSpace to be set
 */
 public void setAttributeNameSpace(String attributeNameSpace) {
 this.attributeNameSpace = attributeNameSpace;
 }
 /**
 * set this data object to SAML 2.0 attribute object
 * @param saml20 true if it is a SAML 2.0 attribute data
 */

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 59 of 92

 public void setSAML20(boolean saml20) {
 this.isSAML20 = saml20;
 }
 /**
 * check if this is a SAML 2.0 Attributes
 *
 * @return true if it is a SAML 2.0 attribute, false otherwise
 */
 public boolean isSAML20() {
 return isSAML20;
 }
 /**
 * get a SAML2AttributeInfo object from this object
 *
 * @return SAML2AttributeInfo for SAML 2.0
 */
 public SAML2AttributeInfo getSAML2AttributeInfo() {
 SAML2AttributeInfo sai = new SAML2AttributeInfo();
 sai.setAttributeFriendlyName(this.attributeFriendlyName);
 sai.setAttributeName(this.attributeName);
 if (null == this.attributeNameFormat || this.attributeNameFormat.length() ==0) {
 sai.setAttributeNameFormat(SAML_2_0_ATTRNAME_FORMAT_BASIC);
 } else {
 sai.setAttributeNameFormat(this.attributeNameFormat);
 }
 sai.addAttributeValues(this.attributeValues);
 return sai;
 }
 /**
 * This method will add all attribute values into the first SAMLAttributeData
 object, and return a single SAMLAttributeData object.
 * Please note that the attribute name will not be verified in this method.
 *
 * @param attributeList SAMLAttributeData objects to be merged
 * @return a single SAMLAttributeData object
 */
 static public SAMLAttributeData consolation(List<SAMLAttributeData>
 attributeList) {
 if (null == attributeList || attributeList.size() == 0) {
 return null;
 }
 if (attributeList.size() == 1) {
 attributeList.get(0);
 }
 SAMLAttributeData data = attributeList.get(0);
 for (int i=1; i < attributeList.size(); i++) {
 data.addAttributeValues(attributeList.get(i).getAttributeValues());
 }
 return data;
 }
 /**
 * Check if this attribute data element does not have vlaues
 * @return true if the data is empty, no values; false otherwise
 */
 public boolean isEmpty() {
 if ((null == this.attributeValues) || (this.attributeValues.isEmpty())) {
 return true;
 }
 if (this.attributeValues.size() == 1) {
 Object a[] = this.attributeValues.toArray();
 if ("".equals(a[0])) {
 return true;

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 60 of 92

 }
 }
 return false;
 }
 /**
 * Return a String for the array of value String, concatenated with "; "
 * @return a string for all values
 */
 public String valuesToString(String existing) {
 if ((null == this.attributeValues) || (this.attributeValues.isEmpty())) {
 return existing;
 }
 Object a[] = this.attributeValues.toArray();
 if (this.attributeValues.size() == 1) {
 if (a[0] == null) {
 return existing;
 }
 if (existing == null) {
 return (String) a[0];
 } else {
 return existing + "; " + (String) a[0];
 }
 }
 StringBuffer sb = new StringBuffer();
 if (existing != null) {
 sb.append(existing);
 }
 for (int i=0; i < a.length; i++) {
 sb.append("; ");
 if (a[i] != null) {
 sb.append((String) a[i]);
 }
 }
 return sb.toString();
 }
 public String toString() {
 StringBuffer sb = new StringBuffer();
 sb.append("Name=" + this.attributeName);
 if (isSAML20()) {
 if (null != this.attributeFriendlyName) {
 sb.append(" FriendlyName=" + this.attributeFriendlyName);
 }
 } else {
 if (null != this.attributeNameSpace) {
 sb.append(" Namespace=" + this.attributeNameSpace);
 }
 }
 String value = this.valuesToString(null);
 if (null != value) {
 sb.append(" Value=" + value);
 }
 return sb.toString();
 }
}

Example 2-13 shows the PartnerService code that determines if the web service context has
attributes, and then gets them. This example relies on the
SAMLAttributeStatementDataHelper class.

The predefined policy used in this example, Wssp1.2-2007-Saml2.0-SenderVouches-
Wss1.1.xml, is described in Table 2-13.

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 61 of 92

Example 2-13 Web Service That Gets Attributes From the WebServiceContext

package jaxws.interop.saml;

import weblogic.jws.Policies;
import weblogic.jws.Policy;
import weblogic.wsee.util.AccessException;
import weblogic.wsee.security.saml.SAMLAttributeStatementData;
import weblogic.wsee.security.saml.SAMLAttributeStatementDataHelper;
import weblogic.wsee.security.saml.SAMLAttributeData;

import jakarta.jws.WebMethod;
import jakarta.jws.WebParam;
import jakarta.jws.WebResult;
import jakarta.jws.WebService;
import jakarta.annotation.Resource;
import jakarta.xml.ws.WebServiceContext;

/**
 * ID Propagation using SAML 2.0 token [sender-vouches] with message protection (WSS
11) .
 *
 * This example will work for canned policy like:
 * - Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1.xml
 */

@Policies(
 {
 @Policy(uri = "policy:Wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1.xml"),
 @Policy(uri = "policy:Wssp1.2-2007-SignBody.xml"),
 @Policy(uri = "policy:Wssp1.2-2007-EncryptBody.xml")
 }
)
@WebService(serviceName = "PartnerService", name = "IPartner", targetNamespace = "http://
www.oracle.com/2008/12/interop")
public class PartnerService{
 @Resource
 WebServiceContext ctx;

 @WebMethod(operationName = "Echo")
 @WebResult(name = "EchoResponse")
 public String echo(@WebParam(name = "EchoRequest")String hello){
 try {
 this.checkSamlAttributesFromRequestMesasge();
 return hello+"! I'm PartnerService for SAML 2.0 SenderVouches WSS1.1!\n";
 }catch(Exception ex){
 throw new RuntimeException(ex);
 }
 }

 private void checkSamlAttributesFromRequestMesasge() throws AccessException {

 SAMLAttributeStatementData attributes =
SAMLAttributeStatementDataHelper.getSAMLAttributeStatementData(ctx);
 if (null == attributes) {
 throw new AccessException("No SAML Attributes Data found");
 }

 SAMLAttributeData testData =
attributes.getAttributeInfo("test.no.value.attribute");

Chapter 2
Using Security Assertion Markup Language (SAML) Tokens For Identity

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 62 of 92

 if (null == testData) {
 throw new AccessException("Missing SAML Attribute Data of
\"test.no.value.attribute\"");
 }
 if (!attributes.hasAttributeInfo("test.no.value.attribute")) {
 throw new AccessException("Missing SAML Attribute Data of
\"test.no.value.attribute\"");
 }
 if (!attributes.hasAttributeInfo("test.static.attribute")) {
 throw new AccessException("Missing SAML Attribute Data of
\"test.static.attribute\"");
 }
 if (!
attributes.hasAttributeValue("test.static.attribute","static.attribute.value")) {
 throw new AccessException("Missing or wrong SAML Attribute Value of
\"static.attribute.value\" for attribute \"test.static.attribute\" ");
 }
 if (!attributes.hasAttributeValue("test.subject.dependent.attribute","Alice A")) {
 throw new AccessException("Missing or wrong SAML Attribute Value of \"Alice
A\" for attribute - \"test.multi.value.attribute\" ");
 }
 if (!attributes.hasAttributeValue("test.multi.value.attribute","Programmer")) {
 throw new AccessException("Missing or wrong SAML Attribute Value on
\"Programmer\" for attribute \"test.multi.value.attribute\" ");
 }
 if (!attributes.hasAttributeValue("test.multi.value.attribute","Team Lead")) {
 throw new AccessException("Missing or wrong SAML Attribute Value on \"Team
Lead\" for attribute \"test.multi.value.attribute\" ");
 }
 }
}

Associating a Web Service with a Security Configuration Other
Than the Default

Many use cases previously discussed require you to use WebLogic Remote Console to create
the default web service security configuration called default_wss. After you create this
configuration, it is applied to all web services that either do not use the
@weblogic.jws.security.WssConfiguration JWS annotation or specify the annotation with
no attribute.

There are some cases, however, in which you might want to associate a web service with a
security configuration other than the default; such use cases include specifying different
timestamp values for different services.

To associate a web service with a security configuration other than the default:

1. Create a Web Service Security Configuration in WebLogic Remote Console with a name
that is not default_wss.

2. Update your JWS file, adding the @WssConfiguration annotation to specify the name of
this security configuration. See weblogic.jws.security.WssConfiguration in the WebLogic
Web Services Reference for Oracle WebLogic Server for additional information and an
example.

Chapter 2
Associating a Web Service with a Security Configuration Other Than the Default

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 63 of 92

Note

If you are going to package additional web services in the same Web application,
and these web services also use the @WssConfiguration annotation, then you
must specify the same security configuration for each web service. See
weblogic.jws.security.WssConfiguration in the WebLogic Web Services Reference
for Oracle WebLogic Server.

3. Recompile and redeploy your web service as part of the normal iterative development
process.

See Invoking Web Services in Developing JAX-WS Web Services for Oracle WebLogic
Server.

Note

All web services security configurations are required to specify the same password
digest use. Inconsistent password digest use in different web service security
configurations will result in a runtime error.

Valid Class Names and Token Types for Credential Provider
When you create a security configuration, you need to supply the class name of the credential
provider for this configuration. The valid class names and token types you can use are as
follows:

• weblogic.wsee.security.bst.ClientBSTCredentialProvider. The token type is x509.

• weblogic.wsee.security.unt.ClientUNTCredentialProvider. The token type is ut.

• weblogic.wsee.security.wssc.v13.sct.ClientSCCredentialProvider. The token type is
sct.

• weblogic.wsee.security.wssc.v200502.sct.ClientSCCredentialProvider. The token
type is sct.

• weblogic.wsee.security.saml.SAMLTrustCredentialProvider. The token type is saml.

Using System Properties to Debug Message-Level Security
The following table lists the system properties you can set to debug problems with your
message-secured web service.

Table 2-7 System Properties for Debugging Message-Level Security

System Property Data Type Description

weblogic.xml.crypto.dsig.verbos
e

Boolean Prints information about digital signature
processing.

weblogic.xml.crypto.encrypt.ver
bose

Boolean Prints information about encryption
processing.

weblogic.xml.crypto.keyinfo.ver
bose

Boolean Prints information about key resolution
processing.

Chapter 2
Valid Class Names and Token Types for Credential Provider

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 64 of 92

Table 2-7 (Cont.) System Properties for Debugging Message-Level Security

System Property Data Type Description

weblogic.xml.crypto.wss.verbose Boolean Prints information about web service
security token and token reference
processing.

Using a Client-Side Security Policy File
The section Using Policy Files for Message-Level Security Configuration describes how a
WebLogic web service can be associated with one or more security policy files that describe
the message-level security of the web service. These policy files are XML files that describe
how a SOAP message should be digitally signed or encrypted and what sort of user
authentication is required from a client that invokes the web service. Typically, the policy file
associated with a web service is attached to its WSDL, which the web services client runtime
reads to determine whether and how to digitally sign and encrypt the SOAP message request
from an operation invoke from the client application.

Sometimes, however, a web service might not attach the policy file to its deployed WSDL or
the web service might be configured to not expose its WSDL at all. In these cases, the web
services client runtime cannot determine from the service itself the security that must be
enabled for the SOAP message request. Rather, it must load a client-side copy of the policy
file. This section describes how to update a client application to load a local copy of a policy
file.

Example 2-4 shows an example of using a client-side policy file from a JAX-WS web service.

The client-side policy file is typically exactly the same as the one associated with a deployed
web service. If the two files are different, and there is a conflict in the security assertions
contained in the files, then the invoke of the web service operation returns an error.

You can specify that the client-side policy file be associated with the SOAP message request,
response, or both. Additionally, you can specify that the policy file be associated with the entire
web service, or just one of its operations.

Associating a Policy File with a Client Application: Main Steps
The following procedure describes the high-level steps to associate a security policy file with
the client application that invokes a web service operation.

It is assumed that you have created the client application that invokes a deployed web service,
and that you want to update it by associating a client-side policy file. It is also assumed that
you have set up an Ant-based development environment and that you have a working
build.xml file that includes a target for running the clientgen Ant task.

See Invoking Web Services in Developing JAX-WS Web Services for Oracle WebLogic Server.

1. Create the client-side security policy files and save them in a location accessible by the
client application. Typically, the security policy files are the same as those configured for
the web service you are invoking, but because the server-side files are not exposed to the
client runtime, the client application must load its own local copies.

See Creating and Using a Custom Policy File for information about creating security policy
files.

2. Update the build.xml file that builds your client application.

Chapter 2
Using a Client-Side Security Policy File

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 65 of 92

3. Update your Java client application to load the client-side policy files

4. Rebuild your client application by running the relevant task. For example:

prompt> ant build-client

When you next run the client application, it will load local copies of the policy files that the web
service client runtime uses to enable security for the SOAP request message.

Note

If you have a web services operation that already have a security policy (for example,
one that was set in the WSDL file that was stored when generating the client from the
server policy), then when you use this procedure to programmatically set the client-
side security policy, all previously-existing policies will be removed.

Running with High Contrast and Text Magnification
Running the WebLogic Server Administration Console while using high contrast or text
magnification can lead to the following problems in some browsers:

1. When using the Microsoft Windows High Contrast mode, some images and navigation
controls are not displayed or are distorted.

2. When running with text magnification some text may be overlapped or difficult to read.

Using WS-SecurityPolicy 1.2 Policy Files
WebLogic Server includes a number of WS-SecurityPolicy files you can use in most web
services applications. The policy files are located in ORACLE_HOMEoracle_common/modules/
com.oracle.webservices.wls.wls-soap-stack-impl.jar. Within
com.oracle.webservices.wls.wls-soap-stack-impl.jar, the policy files are located in /
weblogic/wsee/policy/runtime.

There are two sets of these policies. In most of the cases, they perform identical functions, but
the policy uses different namespace.

The first set has a prefix of "Wssp1.2-2007-". These security policy files conform to the OASIS
WS-SecurityPolicy 1.2 specification and have the following namespace:

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
 >

The second set carries over from WebLogic Server version 10.0 and has the prefix "Wssp1.2-":

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512"
 >

Oracle recommends that you use the new policy namespace, as those are official namespaces
from OASIS standards and they will perform better when interoperating with other vendors.
The old policies having the prefix of "Wssp1.2-" are mainly for users who want to interoperate
with existing applications that already use this version of the policies.

Chapter 2
Using WS-SecurityPolicy 1.2 Policy Files

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 66 of 92

The following sections describe the available WS-SecurityPolicy 1.2 policy files:

• Transport-Level Policies

• Protection Assertion Policies

• WS-Security 1.0 Username and X509 Token Policies

• WS-Security 1.1 Username and X509 Token Policies

• WS-SecureConversation Policies

• SAML Token Profile Policies

In addition, see Choosing a Policy and Configuring Smart Policy Selection for information
about how to choose the best security policy approach for your web services implementation
and for information about WS-SecurityPolicy 1.2 elements that are not supported in this
release of WebLogic Server.

Transport-Level Policies
These policies require use of the https protocol to access WSDL and invoke web services
operations:

Note

If you specify a transport-level security policy for your web service, it must be at the
class level.

In addition, the transport-level security policy must apply to both the inbound and
outbound directions. That is, you cannot have HTTPS for inbound and HTTP for
outbound.

Table 2-8 Transport Level Policies

Policy File Description

Wssp1.2-2007-
Https.xml

One way SSL.

Wssp1.2-2007-Https-
BasicAuth.xml

One way SSL with Basic Authentication. A 401 challenge occurs if the
Authorization header is not present in the request.

Wssp1.2-2007-Https-
UsernameToken-
Digest.xml

One way SSL with digest Username Token.

Wssp1.2-2007-Https-
UsernameToken-
Plain.xml

One way SSL with plain text Username Token.

Wssp1.2-2007-Https-
UsernameToken-Plain-
Basic256Sha256.xml

Same as Wssp1.2-2007-Https-UsernameToken-Plain.xml but uses
a stronger hash algorithm of Sha-256.

Wssp1.2-Https.xml One way SSL.

Wssp1.2-Https-
BasicAuth.xml

One way SSL with Basic Authentication. A 401 challenge occurs if the
Authorization header is not present in the request.

Chapter 2
Using WS-SecurityPolicy 1.2 Policy Files

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 67 of 92

Table 2-8 (Cont.) Transport Level Policies

Policy File Description

Wssp1.2-Https-
UsernameToken-
Digest.xml

One way SSL with digest Username Token.

Wssp1.2-Https-
UsernameToken-
Plain.xml

One way SSL with plain text Username Token.

Wssp1.2-Https-
ClientCertReq.xml

Two way SSL. The recipient checks for the initiator's public certificate. Note
that the client certificate can be used for authentication.

Protection Assertion Policies
Protection assertions are used to identify what is being protected and the level of protection
provided. Protection assertion policies cannot be used alone; they should be used only in
combination with X.509 Token Policies. For example, you might use Wssp1.2-2007-Wss1.1-
X509-Basic256.xml together with Wssp1.2-2007-SignBody.xml. The following policy files
provide for the protection of message parts by signing or encryption:

Table 2-9 Protection Assertion Policies

Policy File Description

Wssp1.2-2007-
SignBody.xml

All message body parts are signed.

Wssp1.2-2007-
EncryptBody.xml

All message body parts are encrypted.

Wssp1.2-2007-Sign-
Wsa-Headers.xml

WS-Addressing headers are signed.

Wssp1.2-SignBody.xml All message body parts are signed.

Wssp1.2-
EncryptBody.xml

All message body parts are encrypted.

Wssp1.2-Sign-Wsa-
Headers.xml

WS-Addressing headers are signed.

Wssp1.2-2007-
SignAndEncryptWSATHea
ders.xml

WS-AtomicTransaction headers are signed and encrypted.

Wssp1.2-2007-Wsp1.5-
SignAndEncryptWSATHea
ders.xml

WS-AtomicTransaction headers are signed and encrypted. Web Services
Policy 1.5 is used.

WS-Security 1.0 Username and X509 Token Policies
The following policies support the Username Token or X.509 Token specifications of WS-
Security 1.0:

Chapter 2
Using WS-SecurityPolicy 1.2 Policy Files

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 68 of 92

Table 2-10 WS-Security 1.0 Policies

Policy File Description

Wssp1.2-2007-Wss1.0-
X509-Basic256.xml

Mutual Authentication with X.509 Certificates. The message is signed and
encrypted on both request and response. The algorithm of Basic256
should be used for both sides.

Wssp1.2-2007-Wss1.0-
UsernameToken-Digest-
X509-Basic256.xml

Username token with digested password is sent in the request for
authentication. The encryption method is Basic256.

Wssp1.2-2007-Wss1.0-
UsernameToken-Plain-
X509-Basic256.xml

Username token with plain text password is sent in the request for
authentication, signed with the client's private key and encrypted with
server's public key. The client also signs the request body and includes its
public certificate, protected by the signature in the message. The server
signs the response body with its private key and sends its public certificate
in the message. Both request and response messages include signed time
stamps. The encryption method is Basic256.

Wssp1.2-Wss1.0-
UsernameToken-Plain-
X509-Basic256.xml

Username token with plain text password is sent in the request for
authentication, signed with the client's private key and encrypted with
server's public key. The client also signs the request body and includes its
public certificate, protected by the signature in the message. The server
signs the response body with its private key and sends its public certificate
in the message. Both request and response messages include signed time
stamps. The encryption method is Basic256.

Wssp1.2-Wss1.0-
UsernameToken-Plain-
X509-TripleDesRsa15.xml

Username token with plain text password is sent in the request for
authentication, signed with the client's private key and encrypted with
server's public key. The client also signs the request body and includes its
public certificate, protected by the signature in the message. The server
signs the response body with its private key and sends its public certificate
in the message. Both request and response messages include signed time
stamps. The encryption method is TripleDes.

Wssp1.2-Wss1.0-
UsernameToken-Digest-
X509-Basic256.xml

Username token with digested password is sent in the request for
authentication. The encryption method is Basic256.

Wssp1.2-Wss1.0-
UsernameToken-Digest-
X509-TripleDesRsa15.xml

Username token with digested password is sent in the request for
authentication. The encryption method is TripleDes.

Wssp1.2-Wss1.0-X509-
Basic256.xml

Mutual Authentication with X.509 Certificates. The message is signed and
encrypted on both request and response. The algorithm of Basic256
should be used for both sides.

Wssp1.2-Wss1.0-X509-
TripleDesRsa15.xml

Mutual Authentication with X.509 Certificates and message is signed and
encrypted on both request and response. The algorithm of TripleDes
should be used for both sides

Wssp1.2-Wss1.0-X509-
EncryptRequest-
SignResponse.xml

This policy is used where only the server has X.509v3 certificates (and
public-private key pairs). The request is encrypted and the response is
signed.

WS-Security 1.1 Username and X509 Token Policies
The following policies support the Username Token or X.509 Token specifications of WS-
Security 1.1:

Chapter 2
Using WS-SecurityPolicy 1.2 Policy Files

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 69 of 92

Table 2-11 WS-Security 1.1 Username and X509 Token Policies

Policy File Description

Wssp1.2-2007-Wss1.1-
X509-Basic256.xml

WSS 1.1 X509 with asymmetric binding.

Wssp1.2-2007-Wss1.1-
X509-Basic256Sha256.xml

Same as Wssp1.2-2007-Wss1.1-X509-Basic256.xml but uses a stronger
hash algorithm of Sha-256.

Wssp1.2-2007-Wss1.1-
UsernameToken-Digest-
X509-Basic256.xml

WSS 1.1 X509 with asymmetric binding and authentication with digested
Username Token.

Wssp1.2-2007-Wss1.1-
UsernameToken-Plain-
X509-Basic256.xml

WSS 1.1 X509 with asymmetric binding and authentication with plain-text
Username Token.

Wssp1.2-2007-Wss1.1-
UsernameToken-Plain-
X509-Basic256Sha256.xml

Same as Wssp1.2-2007-Wss1.1-UsernameToken-Plain-X509-
Basic256.xml but uses a stronger hash algorithm of Sha-256.

Wssp1.2-2007-Wss1.1-
X509-Eas256.xml

This policy is similar to policy Wssp1.2-2007-Wss1.1-X509-Basic256.xml
but uses an extended algorithm suite, which has a stronger hash algorithm
of Sha-256 and stronger signature method algorithm. This policy is
supported in FIPS-140 mode.

Wssp1.2-2007-Wss1.1-
EncryptedKey-X509-
SignedEndorsing.xml

WSS 1.1 X509 with symmetric binding and protected by signed endorsing
supporting token.

Wssp1.2-2007-Wss1.1-
UsernameToken-Digest-
EncryptedKey.xml

WSS 1.1 X509 with symmetric binding and authentication with digested
Username Token.

Wssp1.2-2007-Wss1.1-
UsernameToken-Plain-
EncryptedKey.xml

WSS 1.1 X509 with symmetric binding and authentication with plain-text
Username Token.

Wssp1.2-2007-Wss1.1-DK-
X509-SignedEndorsing.xml

WSS 1.1 X509 with derived key symmetric binding and protected by
signed endorsing supporting token.

Wssp1.2-2007-Wss1.1-
UsernameToken-Digest-
DK.xml

WSS 1.1 X509 with derived key symmetric binding and authentication with
digested Username Token.

Wssp1.2-2007-Wss1.1-
UsernameToken-Plain-
DK.xml

WSS 1.1 X509 with derived key symmetric binding and authentication with
plain-text Username Token.

Wssp1.2-Wss1.1-X509-
Basic256.xml

This policy is similar to policy Wssp1.2-Wss1.0-X509-Basic256.xml except
it uses additional WS-Security 1.1 features, including Signature
Confirmation and Thumbprint key reference.

Wssp1.2-Wss1.1-
EncryptedKey.xml

This is a symmetric binding policy that uses the WS-Security 1.1
Encrypted Key feature for both signature and encryption. It also uses WS-
Security 1.1 features, including Signature Confirmation and Thumbprint
key reference.

Wssp1.2-Wss1.1-
UsernameToken-DK.xml

WSS 1.1 X509 with derived key symmetric binding and authentication with
plain-text Username Token.

Wssp1.2-Wss1.1-
EncryptedKey-X509-
SignedEndorsing.xml

This policy has all of the features defined in policy Wssp1.2-Wss1.1-
EncryptedKey.xml, and in addition it uses sender's key to endorse the
message signature. The endorsing key is also signed with the message
signature.

Chapter 2
Using WS-SecurityPolicy 1.2 Policy Files

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 70 of 92

Table 2-11 (Cont.) WS-Security 1.1 Username and X509 Token Policies

Policy File Description

Wssp1.2-Wss1.1-DK.xml This policy has all of features defined in policy Wssp1.2-Wss1.1-
EncryptedKey.xml, except that instead of using an encrypted key, the
request is signed using DerivedKeyToken1, then encrypted using a
DerivedKeyToken2. Response is signed using DerivedKeyToken3, and
encrypted using DerivedKeyToken4.

Wssp1.2-Wss1.1-DK-X509-
Endorsing.xml

This policy has all features defined in policy Wssp1.2-Wss1.1-DK.xml, and
in addition it uses the sender's key to endorse the message signature.

Wssp1.2-Wss1.1-X509-
EncryptRequest-
SignResponse.xml

This policy is similar to policy Wssp1.2-Wss1.0-X509-EncryptRequest-
SignResponse.xml, except that it uses additional WSS 1.1 features,
including Signature Confirmation and Thumbprint key reference.

Wssp1.2-Wss1.1-X509-
SignRequest-
EncryptResponse.xml

This policy is the reverse of policy Wssp1.2-Wss1.1-X509-
EncryptRequest-SignResponse.xml: the request is signed and the
response is encrypted.

WS-SecureConversation Policies
The policies in Table 2-12 implement WS-SecureConversation 1.3, 1.4, and WS-
SecureConversation 2005/2.

Note

As described in Developing JAX-WS Web Services for Oracle WebLogic Server, if you
are using a template to configure your domain, the Advanced JAX-WS template
(wls_webservice_jaxws) is required for any JAX-WS web service that uses WS-
SecureConversation.

If you specify a WS-SecureConversation policy for your web service, it must be at the class
level.

Table 2-12 WS-SecureConversation Policies

Policy File Description

Wssp1.2-2007-Wssc1.3-
Bootstrap-Https-
BasicAuth.xml

One way SSL with Basic Authentication. Timestamp is included. The
algorithm suite is Basic256. The signature is encrypted.

Wssp1.2-2007-Wssc1.4-
Bootstrap-Wss1.0-
UsernameToken-Plain-
X509-
Basic256Sha256.xml

This policy is similar to policy Wssp1.2-2007-Wssc1.4-Bootstrap-
Wss1.0-UsernameToken-Plain-X509-Basic256.xml, but uses a
stronger hash algorithm of Sha-256.

Wssp1.2-2007-Wssc1.3-
Bootstrap-Https-
ClientCertReq.xml

Two way SSL. The recipient checks for the initiator's public certificate. Note
that the client certificate can be used for authentication.

Wssp1.2-2007-Wssc1.3-
Bootstrap-Https-
UNT.xml

SSL Username token authentication.

Chapter 2
Using WS-SecurityPolicy 1.2 Policy Files

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 71 of 92

Table 2-12 (Cont.) WS-SecureConversation Policies

Policy File Description

Wssp1.2-2007-Wssc1.3-
Bootstrap-Https.xml

WS-SecureConversation handshake (RequestSecurityToken and
RequestSecurityTokenResponseCollection messages) occurs in https
transport. The application messages are signed and encrypted with
DerivedKeys. The signature is also encrypted.

Wssp1.2-2007-Wssc1.3-
Bootstrap-Wss1.0.xml

WS-SecureConversation handshake is protected by WS-Security 1.0. The
application messages are signed and encrypted with DerivedKeys. The
soap:Body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages are both signed and
encrypted. The WS-Addressing headers are signed. Timestamp is
included and signed. The signature is encrypted. The algorithm suite is
Basic256.

Wssp1.2-2007-Wssc1.3-
Bootstrap-Wss1.1.xml

WS-SecureConversation handshake is protected by WS-Security 1.1. The
application messages are signed and encrypted with DerivedKeys. The
soap:Body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages are both signed and
encrypted. The WS-Addressing headers are signed. Signature and
encryption use derived keys from an encrypted key.

Wssp1.2-2007-Wssc1.4-
Bootstrap-Wss1.0-
UsernameToken-Plain-
X509-Basic256.xml

WS-SecureConversation handshake is protected by WS-Security 1.0 X509
with asymmetric binding and authentication with plain-text Username
Token, similar to the Wssp1.2-2007-Wss1.0-UsernameToken-Plain-
X509-Basic256.xml policy.

The SOAP body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages for the handshake
are both signed and encrypted. The application messages are signed and
encrypted with derived keys from a secure conversation token encrypted
key. The WS-Addressing headers are signed. The policy use WS-Policy
1.5 namespace "http://www.w3.org/ns/ws-policy".

Wssp1.2-2007-Wssc1.4-
Bootstrap-Wss1.0-
UsernameToken-Plain-
X509-Eas256.xml

This policy is similar to policy Wssp1.2-2007-Wssc1.4-Bootstrap-
Wss1.0-UsernameToken-Plain-X509-Basic256.xml but uses an
extended algorithm suite, which has a stronger hash algorithm of Sha-256
and stronger signature method algorithm. This policy is supported in
FIPS-140 mode.

Wssp1.2-2007-Wssc1.4-
Bootstrap-Wss1.1-
Saml2.0-Bearer.xml

WS-SecureConversation handshake is protected by WS-Security 1.1 X509
with asymmetric binding and authentication with SAML 2.0 Bearer Token.

The SOAP body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages for the handshake
are both signed and encrypted. The application messages are signed and
encrypted with derived keys from a secure conversation token encrypted
key. The WS-Addressing headers are signed. The policy use WS-Policy
1.5 namespace "http://www.w3.org/ns/ws-policy".

Wssp1.2-2007-Wssc1.4-
Bootstrap-Wss1.1-
UsernameToken-Plain-
EncryptedKey.xml

WS-SecureConversation handshake is protected by WS-Security 1.1 X509
with asymmetric binding and authentication with plain-text Username
Token, which is similar to the Wssp1.2-2007-Wss1.1-UsernameToken-
Plain-EncryptedKey.xml policy.

The SOAP body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages for the handshake
are both signed and encrypted. The application messages are signed and
encrypted with derived keys from a secure conversation token encrypted
key. The WS-Addressing headers are signed. The policy use WS-Policy
1.5 namespace "http://www.w3.org/ns/ws-policy".

Chapter 2
Using WS-SecurityPolicy 1.2 Policy Files

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 72 of 92

Table 2-12 (Cont.) WS-SecureConversation Policies

Policy File Description

Wssp1.2-Wssc1.3-
Bootstrap-Https-
BasicAuth.xml

One way SSL with Basic Authentication. Timestamp is included. The
algorithm suite is Basic256. The signature is encrypted.

Wssp1.2-Wssc1.3-
Bootstrap-Https-
ClientCertReq.xml

Two way SSL. The recipient checks for the initiator's public certificate. Note
that the client certificate can be used for authentication.

Wssp1.2-Wssc1.3-
Bootstrap-Https.xml

WS-SecureConversation handshake (RequestSecurityToken and
RequestSecurityTokenResponseCollection messages) occurs in https
transport. The application messages are signed and encrypted with
DerivedKeys. The signature is also encrypted.

Wssp1.2-Wssc1.3-
Bootstrap-Wss1.0.xml

WS-SecureConversation handshake is protected by WS-Security 1.0. The
application messages are signed and encrypted with DerivedKeys. The
soap:Body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages are both signed and
encrypted. The WS-Addressing headers are signed. Timestamp is
included and signed. The signature is encrypted. The algorithm suite is
Basic256.

Wssp1.2-Wssc1.3-
Bootstrap-Wss1.1.xml

WS-SecureConversation handshake is protected by WS-Security 1.1. The
application messages are signed and encrypted with DerivedKeys. The
soap:Body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages are both signed and
encrypted. The WS-Addressing headers are signed. Signature and
encryption use derived keys from an encrypted key.

Wssp1.2-Wssc200502-
Bootstrap-Https.xml

WS-SecureConversation handshake (RequestSecurityToken and
RequestSecurityTokenResponse messages) occurs in https transport. The
application messages are signed and encrypted with DerivedKeys.

Wssp1.2-Wssc200502-
Bootstrap-Wss1.0.xml

WS-SecureConversation handshake is protected by WS-Security 1.0. The
application messages are signed and encrypted with DerivedKeys. The
soap:Body of the RequestSecurityToken and
RequestSecurityTokenResponse messages are both signed and
encrypted. The WS-Addressing headers are signed. Timestamp is
included and signed. The algorithm suite is Basic128.

Wssp1.2-Wssc200502-
Bootstrap-Wss1.1.xml

WS-SecureConversation handshake is protected by WS-Security 1.1. The
application messages are signed and encrypted with DerivedKeys. The
soap:Body of the RequestSecurityToken and
RequestSecurityTokenResponse messages are both signed and
encrypted. The WS-Addressing headers are signed. Signature and
encryption use derived keys from an encrypted key.

SAML Token Profile Policies
The policies shown in Table 2-13 implement WS-Security SAML Token Profile 1.0 and 1.1.

Table 2-13 WS-Security SAML Token Profile Policies

Policy File Description

Wssp1.2-2007-Saml2.0-
SenderVouches-
Wss1.1.xml

The message is signed and encrypted on both request and response with
WSS1.1 X509 symmetric binding. SAML 2.0 token is sent in the request
for authentication with Sender Vouches confirmation method, signed by
the X509 token.

Chapter 2
Using WS-SecurityPolicy 1.2 Policy Files

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 73 of 92

Table 2-13 (Cont.) WS-Security SAML Token Profile Policies

Policy File Description

Wssp1.2-2007-Saml2.0-
SenderVouches-Wss1.1-
Basic256Sha256.xml

This policy is similar to policy Wssp1.2-2007-Saml2.0-SenderVouches-
Wss1.1.xml but uses a stronger hash algorithm of Sha-256.

Wssp1.2-2007-Saml2.0-
SenderVouches-Wss1.1-
Asymmetric.xml

The message is signed and encrypted on both request and response with
WSS1.1 asymmetric binding. It uses additional WS-Security 1.1 features,
including Signature Confirmation and Thumbprint key reference. SAML 2.0
token is sent in the request for authentication with Sender Vouches
confirmation method, signed by the X509 token.

Wssp1.2-2007-Saml2.0-
SenderVouches-Wss1.1-
Eas256.xml

This policy is similar to policy Wssp1.2-2007-Saml2.0-SenderVouches-
Wss1.1.xml but uses an extended algorithm suite, which has a stronger
hash algorithm of Sha-256 and stronger signature method algorithm. This
policy is supported in FIPS-140 mode.

Wssp1.2-2007-Saml2.0-
HolderOfKey-Wss1.1-
Asymmetric.xml

The message is signed and encrypted on both request and response with
WSS1.1 asymmetric binding. It uses additional WS-Security 1.1 features,
including Signature Confirmation and Thumbprint key reference. SAML 2.0
token is sent in the request for authentication with Holder of Key
confirmation method, in which the key inside the SAML Token is used for
the signature.

Wssp1.2-2007-Saml2.0-
Bearer-Https.xml

One-way SSL uses SAML 2.0 token with Bearer confirmation method for
Authentication.

WebLogic Server supports the SAML 2.0 Bearer confirmation method at
the transport level, using Wssp1.2-2007-Saml2.0-Bearer-Https.xml.

If you specify a transport-level security policy for your web service, it must
be at the class level. In addition, the transport-level security policy must
apply to both the inbound and outbound directions. That is, you cannot
have HTTPS for inbound and HTTP for outbound.

Wssp1.2-2007-Saml2.0-
Bearer-Https-
Basic256Sha256.xml

Same as Wssp1.2-2007-Saml2.0-Bearer-Https.xml but uses a stronger
hash algorithm of Sha-256.

Choosing a Policy
WebLogic Server's implementation of WS-SecurityPolicy 1.2 makes a wide variety of security
policy alternatives available to you. When choosing a security policy for your web service, you
should consider your requirements in these areas:

• Performance

• Security

• Interoperability

• Credential availability (X.509 certificate, username token, clear or digest password)

Whenever possible, Oracle recommends that you:

• Use a policy packaged in WebLogic Server rather than creating a custom policy.

• Use a WS-SecurityPolicy 1.2 policy rather than a WebLogic Server 9.x style policy, unless
you require features that are not yet supported by WS-SecurityPolicy 1.2 policies.

• Use transport-level policies (Wssp1.2-2007-Https-*.xml) only where message-level
security is not required.

Chapter 2
Choosing a Policy

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 74 of 92

• Use WS-Security 1.0 policies if you require interoperability with that specification. Use one
of the following, depending on your authentication requirements and credential availability:

– Wssp1.2-2007-Wss1.0-UsernameToken-Plain-X509-Basic256.xml

– Wssp1.2-2007-Wss1.0-UsernameToken-Digest-X509-Basic256.xml

– Wssp1.2-2007-Wss1.0-X509-Basic256.xml

• Use WS-Security 1.1 policies if you have strong security requirements. Use one of the
following:

– Wssp1.2-2007-Wss1.1-EncryptedKey-X509-SignedEndorsing.xml

– Wssp1.2-2007-Wss1.1-DK-X509-SignedEndorsing.xml

– Wssp1.2-Wss1.1-EncryptedKey-X509-SignedEndorsing.xml

– Wssp1.2-Wss1.1-DK-X509-Endorsing.xml

• Use a WS-SecureConversation policy where WS-ReliableMessaging plus security are
required:

– Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.0.xml

– Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.1.xml

– Wssp1.2-Wssc1.3-Bootstrap-Wss1.0.xml

– Wssp1.2-Wssc1.3-Bootstrap-Wss1.1.xml

– Wssp1.2-Wssc200502-Bootstrap-Wss1.0.xml

– Wssp1.2-Wssc200502-Bootstrap-Wss1.1.xml

Unsupported WS-SecurityPolicy 1.2 Assertions
The WS-SecurityPolicy 1.2 assertions in Version-Independant Policy Supported are not
supported in this release of WebLogic Server.

Note

New WS-SecurityPolicy 1.3 assertions are also not supported in this release.

Table 2-14 Web Services SecurityPolicy 1.2 Unsupported Assertions

Specificatio
n

Assertion Remarks

5.1.1 TokenInclusion includeTokenPolicy=Once is not supported.

5.4.1 UsernameToken Only <sp:UsernameToken11> and Password Derived
Keys are not supported in this release. Other
Username Tokens assertions are supported.

5.4.2 IssuedToken WS-Trust Policy assertion is not supported in this
release.

5.4.4 KerberosToken Not supported in this release.

5.4.5 SpnegoContextToken Not supported in this release.

5.4.9 RelToken Not supported in this release.

Chapter 2
Unsupported WS-SecurityPolicy 1.2 Assertions

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 75 of 92

Table 2-14 (Cont.) Web Services SecurityPolicy 1.2 Unsupported Assertions

Specificatio
n

Assertion Remarks

5.4.11 KeyValueToken Not supported in this release.

6.5 Token Protection Token Protection in cases where
includeTokenPolicy="Never", or in cases where the
Token is not in the Message, is not supported in this
release.

7.1 AlgorithmSuite /sp:AlgorithmSuite/wsp:Policy/sp:XPathFilter20
assertion, /sp:AlgorithmSuite/wsp:Policy/sp:XPath10
assertion and /sp:AlgorithmSuite/wsp:Policy/
sp:SoapNormalization10 are not supported in this
release.

8.1 SupportingTokens Not supported in this release:

../sp:SignedParts assertion, ../sp:SignedElements
assertion ../sp:EncryptedParts assertion ../
sp:EncryptedElements assertion

8.2

8.3

8.4

8.5

SignedSupportingTokens

EndorsingSupportingTokens

SignedEndorsingSupportingToke
ns

SignedEncryptedSupportingToke
ns

Not supported in this release:

../sp:SignedParts assertion

../sp:SignedElements assertion

../sp:EncryptedParts assertion

../sp:EncryptedElements assertion

../sp:SignedEncryptedSupportingTokens assertion

The runtime will not be able to endorse the supporting
token in cases where the token is not in the Message
(such as for includeTokenPolicy=Never/Once).

8.6 EncryptedSupportingTokens UserName Token is the only
EncryptionSupportingTokens supported in this
release.

Other type of tokens are not supported.

8.7 EndorsingEncryptedSupportingT
okens

Not supported in this release.

8.8 SignedEndorsingEncryptedSupp
ortingTokens

Not supported in this release.

9.1 WSS10 Assertion <sp:MustSupportRefExternalURI> and
<sp:MustSupportRefEmbeddedToken> are not
supported in this release.

9.2 WSS11 Assertion <sp:MustSupportRefExternalURI> and
<sp:MustSupportRefEmbeddedToken> are not
supported in this release.

10.1 Trust13 Assertion MustSupportClientChallenge,
MustSupportServerChallenge are not supported in this
release. This assertion is supported only in WS-
SecureConversation policy.

Using the Optional Policy Assertion
WebLogic Server supports the Optional WS-Policy assertion. Consider the use of Optional in
the following example:

Chapter 2
Using the Optional Policy Assertion

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 76 of 92

<sp:SignedEncryptedSupportingTokens>
 <wsp:Policy>
 <sp:UsernameToken
 sp:IncludeToken="…/IncludeToken/AlwaysToRecipient" wsp:Optional="true" >
 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
</sp:SignedEncryptedSupportingTokens>

In the example, specifying the Username Token for authorization is optional. The client can
continue if it cannot generate the Username Token because the user is anonymous or when
there is no security context.

During the Security Policy enforcement process, the message is not rejected if the missing
element has the Policy assertion with the attribute of wsp:Optional="true".

The following security policy assertions are now supported by the Optional policy assertion:

• Username Token

• SAML Token

• Signature parts or signature elements

• Encryption parts or encryption elements

• Derive Key Token

Configuring Element-Level Security
WebLogic Server supports the element-level assertions defined in WS-SecurityPolicy 1.2.
These assertions allow you to apply a signature or encryption to selected elements within the
SOAP request or response message, enabling you to target only the specific data in the
message that requires security and thereby reduce the computational requirements.

In addition, the assertion RequiredElements allows you to ensure that the message contains a
specific header element.

The following element-level assertions are available:

• EncryptedElements (http://docs.oasis-open.org/ws-sx/ws-securitypolicy/
200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826516)

• ContentEncryptedElements (http://docs.oasis-open.org/ws-sx/ws-securitypolicy/
200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826517)

• SignedElements (http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-
securitypolicy-1.2-spec-os.html#_Toc161826513)

• RequiredElements (http://docs.oasis-open.org/ws-sx/ws-securitypolicy/
200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826518)

In order to specify an element-level assertion, you must identify the particular request element
or response element to which it applies.

You use XPath expressions in policy files to identify these elements, via either XPath Version
1.0 (http://www.w3.org/TR/xpath) or XPath Filter Version 2.0 (http://www.w3.org/TR/
xmldsig-filter2/) syntax. The examples in this section use the default syntax, XPath Version
1.0.

Chapter 2
Configuring Element-Level Security

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 77 of 92

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826516
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826516
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826517
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826517
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826513
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826513
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826518
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826518
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xmldsig-filter2/
http://www.w3.org/TR/xmldsig-filter2/

Because each of these assertions identifies one or more particular elements in web service
message, you must use custom security policy files for all element-level security assertions.
These custom policy files are typically combined with predefined security policy files, with the
predefined files defining the way that signing or encryption is performed, and the custom policy
files identifying the particular elements that are to be signed or encrypted.

Define and Use a Custom Element-Level Policy File
The first step is to determine the XPath expression that identifies the target element. To do this,
you need to understand the format of the SOAP messages used by your web service, either
through direct inspection or via analysis of the service's WSDL and XML Schema.

How you determine the format of the SOAP message, and therefore the required XPath
expression, is heavily dependent on the tools you have available and is outside the scope of
this document. For example, you might do the following:

1. Run the web service without element-level security.

2. Turn on SOAP tracing.

3. Inspect the SOAP message in the logs.

4. Produce the XPath expression from the SOAP message.

Or, you might have a software tool that allows you to produce a sample SOAP request for a
given WSDL, and then use it to generate the XPath expression.

Consider the example of a web service that has a "submitOrderRequest" operation that will
receive a SOAP request of the form shown in Example 2-14.

The sections in bold will be later used to construct the custom element-level policy.

Example 2-14 submitOrderRequest SOAP Request

<env:Envelope
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
 <env:Header/>
 <env:Body>
 <ns1:submitOrderRequest
 xmlns:ns1="http://www.oracle.com/OrderService">
 <ns1:OrderRequest>
 <ns1:orderNumber>4815162342</ns1:orderNumber>
 <ns1:creditCard>
 <ns1:cctype>MasterCard</ns1:cctype>
 <ns1:expires>12-01-2020</ns1:expires>
 <ns1:ccn>1234-567890-4444</ns1:ccn>
 </ns1:creditCard>
 </ns1:OrderRequest>
 </ns1:submitOrderRequest>
 </env:Body>
</env:Envelope>

Assume that you require that the <ns1:creditCard> element and its child elements be
encrypted. To do this, you use the information obtained from the bold sections of Example 2-14
to create a custom security policy file, perhaps called EncryptCreditCard.xml.

Consider the example shown in Example 2-15.

Example 2-15 EncryptCreditCard.xml Custom Policy File

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

Chapter 2
Configuring Element-Level Security

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 78 of 92

 xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512">
 <sp:EncryptedElements xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <sp:XPath xmlns:myns="http://www.oracle.com/OrderService">
/soapenv:Envelope/soapenv:Body/myns:submitOrderRequest/myns:OrderRequest/myns:creditCard
 </sp:XPath>
 </sp:EncryptedElements>
</wsp:Policy>

As described in the WS-SecurityPolicy 1.2 Specification (http://docs.oasis-open.org/ws-
sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826516),
the /sp:EncryptedElements/sp:XPath element contains a string specifying an XPath
expression that identifies the nodes to be confidentiality protected. The XPath expression is
evaluated against the S:Envelope element node of the message. Multiple instances of this
element may appear within this assertion and should be treated as separate references.

Note the following:

• The root element must be <wsp:Policy> with the prefix (in this case wsp) mapping to the full
WS-Policy namespace.

• The assertion (in this case EncryptedElements) must also be namespace-qualified with the
full WS-SecurityPolicy 1.2 namespace, as indicated by the "sp" prefix.

• The creditCard element in the SOAP message is namespace-qualified (via the ns1
prefix), and has parent elements: OrderRequest, submitOrderRequest, Body, and
Envelope. Each of these elements is namespace-qualified.

The XPath query (beginning with /soapenv:Envelope…) matches the location of the
creditCard element:

 /soapenv:Envelope/soapenv:Body/myns:submitOrderRequest/myns:OrderRequest/
myns:creditCard

• The namespace prefixes in the SOAP message need not match the prefixes in the custom
security policy file. It is important only that the full namespaces to which the prefixes map
are the same in both the message and policy assertion.

• WebLogic Server handles the mapping of SOAP 1.1 and SOAP 1.2 namespaces, and WS-
Addressing 2004/08 and WS-Addressing 1.0 namespaces.

Adding the Policy Annotation to JWS File
After you have created your custom policy, add a Policy annotation to your JWS file so that the
ElementEncryption policy is used for submitOrder web service requests, as shown in
Example 2-16.

Example 2-16 Adding Policy Annotation for Custom Policy File

@WebMethod
@Policies({
 @Policy(uri="policy:Wssp1.2-2007-Wss1.1-UsernameToken-Plan-X509-Basic256.xml"),
 @Policy(uri="../policies/EncryptCreditCard.xml",
 direction=Policy.Direction.inbound)})

public String submitOrderRequest (OrderRequest orderRequest) {
 return orderService.processOrder(orderRequest);
}

Because the creditCard element is present in the SOAP request, but not the response, the
code fragment configures the EncryptedElements custom policy only in the "inbound" direction.

Chapter 2
Configuring Element-Level Security

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 79 of 92

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826516
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html#_Toc161826516

To specify a user-created policy file, specify the path (relative to the location of the JWS file)
along with its name, as shown in the following example:

@Policy(uri="../policies/MyPolicy.xml")

In the example, the MyPolicy.xml file is located in the policies sibling directory of the one that
contains the JWS file.

You can also specify a policy file that is located in a shared Jakarta EE library; this method is
useful if you want to share the file amongst multiple web services packaged in different Jakarta
EE archives.

Note

In this case, it is assumed that the policy file is in the META-INF/policies or WEB-INF/
policies directory of the shared Jakarta EE library. Be sure, when you package the
library, that you put the policy file in this directory.

To specify a policy file in a shared Jakarta EE library, use the policy prefix and then the name
of the policy file, as shown in the following example:

@Policy(uri="policy:MySharedPolicy.xml")

See Creating Shared Jakarta EE Libraries and Optional Packages in Developing Applications
for Oracle WebLogic Server for information on creating shared libraries and setting up your
environment so the web service can find the shared policy files.

Implementation Notes
Keep the following considerations in mind when implementing element-level security:

• You can include multiple element-level assertions in a policy; all are executed.

• You can include multiple <sp:XPath> expressions in a single assertions; all are executed.

• The EncryptedElements assertion causes the identified element and all of its children to be
encrypted.

• The ContentEncryptedElements assertion does not encrypt the identified element, but
does encrypt all of its children.

• The RequiredElements assertion may be used to test for the presence of a top-level
element in the SOAP header. If the element is not found, a SOAP Fault will be raised.

RequiredElements assertions cannot be used to test for elements in the SOAP Body.

Smart Policy Selection
Multiple policy alternatives for any given web service are supported, which provides the service
with significant flexibility.

Consider that a web service might support any of the following:

• Different versions of the standard. For example, the web service might allow WSRM 1.0
and WSRM 1.1, WSS1.0 and WSS 1.1, WSSC 1.1 and WWSSC 1.2.

• Different credentials for authentication. For example, the web service might allow either
username token, X509, or SAML token for authentication.

Chapter 2
Smart Policy Selection

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 80 of 92

• Different security requirements for internal and external clients. For example, external
authentication might require a SAML token, while internal employee authentication
requires only a username token for authentication.

The web services client can also handle multiple policy alternatives. The same client can
interoperate with different services that have different policy or policy alternatives.

For example, the same client can talk to one service that requires SAML 1.1 Token Profile 1.0
for authentication, while another service requires SAML 2.0 Token Profile 1.1 for
authentication.

Example of Security Policy With Policy Alternatives
Example 2-17 shows an example of a security policy that supports both WS-Security 1.0 and
WS-Security 1.1.

Note

Within the <wsp:ExactlyOne> element, each policy alternative is encapsulated within a
<wsp:All> element.

Example 2-17 Policy Defining Multiple Alternatives

<?xml version="1.0"?>
<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512">
<wsp:ExactlyOne>
 <wsp:All>
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/IncludeToken/
AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token
 sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/
IncludeToken/Never">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>

Chapter 2
Smart Policy Selection

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 81 of 92

 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:ProtectTokens/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:SignedParts>
 <sp:Body/>
 </sp:SignedParts>
 <sp:Wss10>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 </wsp:Policy>
 </sp:Wss10>
 </wsp:All>
 <wsp:All>
 <sp:AsymmetricBinding>
 <wsp:Policy>
 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/IncludeToken/
AlwaysToRecipient">
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token11/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token
 sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/
IncludeToken/Never">
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509V3Token11/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:ProtectTokens/>
 <sp:OnlySignEntireHeadersAndBody/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:SignedParts>

Chapter 2
Smart Policy Selection

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 82 of 92

 <sp:Body/>
 </sp:SignedParts>
 <sp:Wss11>
 <wsp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 <sp:MustSupportRefThumbprint/>
 <sp:MustSupportRefEncryptedKey/>
 <sp:RequireSignatureConfirmation/>
 </wsp:Policy>
 </sp:Wss11>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

Configuring Smart Policy Selection
You can configure multiple policy alternatives for a single web service by creating a custom
policy, as shown in Example 2-17. You then configure the web service client to make a policy
selection preference.

You can configure the policy selection preferences for the web service client by using the
WebLogic Remote Console, and using stubs.

The following preferences are supported:

• Security

• Performance

• Compatibility

How the Policy Preference is Determined
The web services runtime uses your policy selection preference to examine the policy
alternatives and select the best choice.

If there are multiple policy choices, the system uses the configured preference list, the
availability of the credential, and setting of the optional function to determine the best selection
policy.

If multiple policy alternatives exist for a client, the following selection rules are used:

• If the preference is not set, the first policy alternative will be picked, except if the policy
alternative is defined as wsp:optional=true.

• If the preference is set to security first, then the policy that has the most security features is
selected.

• If the preference is set to compatibility/interop first, then the policy that has the lowest
version is selected.

• If the preference is set to performance first, then the policy with the fewest security
features is selected.

For the optional policy assertions, the following selection rules are used:

• If the default policy selection preference is set, then the optional attribute on any assertion
is ignored.

• If the Compatibility or Performance preference is set, then any assertion with an optional
attribute is ignored; therefore the assertion is ignored.

Chapter 2
Smart Policy Selection

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 83 of 92

• If the security policy selection preference is set, optional assertions are included and
alternative assertions are never generated.

Configuring Smart Policy Selection in the Console
Perform the following steps to configure smart policy selection in WebLogic Remote Console:

1. If you do not already have a functional web services security configuration, create a web
services security configuration.

2. In the Edit Tree, go to Security, then Web Service Securities and select the web
services security configuration that you want to configure.

3. From the Policy Selection Preference drop-down list, select an option:

• None (default)

• Security then Compatibility then Performance (SCP)

• Security then Performance then Compatibility (SPC)

• Compatibility then Security then Performance (CSP)

• Compatibility then Performance then Security (CPS)

• Performance then Compatibility then Security (PCS)

• Performance then Security then Compatibility (PSC)

4. Save and commit your changes.

Understanding Body Encryption in Smart Policy
In smart policy selection scenarios, whether or not the Body will be encrypted (for example,
<sp:EncryptedParts> <sp:Body /></sp:EncryptedParts>) depends on the following policy
selection preference rules:

• Default -- The first policy alternative will be used for the determination. If the encrypted
body assertion is in the first policy alternative, the body is encrypted. If the encrypted body
assertion is not in the first policy alternative, the body is not encrypted.

• SCP, SPC -- encrypted

• PCS, PSC -- not encrypted

• CPS -- not encrypted

• CSP -- encrypted

Consider the following two examples. In Example 2-18, the encrypted body assertion is in the
first policy alternative. Therefore, in the default preference case the body is encrypted. For
policy selection preferences other than the default, the other preference rules apply.

Example 2-18 Body Assertion in First Policy Alternative

<?xml version="1.0"?>
<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
>
<wsp:ExactlyOne>
<sp:EncryptedParts>
<sp:Body/>
</sp:EncryptedParts>
<sp:EncryptedParts/>

Chapter 2
Smart Policy Selection

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 84 of 92

</wsp:ExactlyOne>
</wsp:Policy>

By contrast, in Example 2-19, the encrypted body assertion is not in the first policy alternative.
Therefore, in the default preference case the body is not encrypted. For policy selection
preferences other than the default, the other preference rules apply.

Example 2-19 Body Assertion Not in First Policy Alternative

<?xml version="1.0"?>
<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"
>
<wsp:ExactlyOne>
<sp:EncryptedParts/>
<sp:EncryptedParts>
<sp:Body/>
</sp:EncryptedParts>
</wsp:ExactlyOne>
</wsp:Policy>

Smart Policy Selection for a Standalone Client
You can set the policy selection preference via the stub property.

The following example sets the stub property for security, compatibility, and performance
preferences for JAX-WS:

BindingProvider bindingProvider = (BindingProvider) port;
Map<String,Object> rc =
(Map<String,Object>)bindingProvider.getRequestContext();
rc.put(WLStub.POLICY_SELECTION_PREFERENCE,
WLStub.PREFERENCE_COMPATIBILITY_PERFORMANCE_SECURITY);

If the policy selection preference is not set, then the default preference (None) is used.

Multiple Transport Assertions
If there are multiple available transport-level assertions in your security policies, WebLogic
Server uses the policy that requires https. If more than one policy alternative requires https,
WebLogic Server randomly picks one of them. You should therefore avoid using multiple policy
alternatives that contain mixed transport-level policy assertions.

Example of Adding Security to Reliable Messaging Web Service
This section describes an update to an example that is optionally included with WebLogic
Server:

• EXAMPLES_HOME\wl_server\examples\src\examples\webservices\wsrm_security

This section shows how to update the example to use the most recent version of the policy file.
Oracle recommends that you use the new policy namespace, as shown in the revised
example, as those are official namespaces from OASIS standards and they will perform better
when interoperating with other vendors.

Chapter 2
Example of Adding Security to Reliable Messaging Web Service

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 85 of 92

Overview of Secure and Reliable SOAP Messaging
Reliable SOAP messaging is a framework whereby an application running in one WebLogic
Server instance can reliably invoke a web service running on another WebLogic Server
instance. Reliable is defined as the ability to guarantee message delivery between the two web
services.

WebLogic web services conform to the WS-ReliableMessaging 1.1 specification, which
describes how two web services running on different WebLogic Server application servers can
communicate reliably in the presence of failures in software components, systems, or
networks. In particular, the specification describes an interoperable protocol in which a
message sent from a source endpoint (client web service) to a destination endpoint (web
service whose operations can be invoked reliably) is guaranteed either to be delivered,
according to one or more delivery assurances, or to raise an error. The WS-ReliableMessaging
specification defines an interoperable way to provide security by composing WS-
ReliableMessaging with WS-SecureConversation and associating a reliable sequence with a
secure session. At sequence creation time, the sending side needs to present a Security Token
Reference to point to a Security Context Token that will be used to identify the owner of the
sequence. All subsequent sequence messages and protocol messages in both directions will
need to demonstrate proof-of-possession of the referenced key.

WebLogic reliable SOAP messaging works only between two web services. This means that
you can invoke a WebLogic web service reliably only from another web service, and not from a
standalone client application. This example shows how to create both types of web services
(source and destination). The WsrmSecurityClient.java class is a standalone Java
application that then invokes the source web service.

Overview of the Example
The existing example shows how to provide security functionality on top of reliability for web
services messaging by creating two WebLogic web services:

• web service whose operations can be invoked using reliable and secure SOAP messaging
(destination endpoint). The destination ReliableEchoService web service has two
operations that can be invoked reliably and in a secure way: echo and echoOneway.

• Client web service that invokes an operation of the first web service in a reliable and
secure way (source endpoint). The source ReliableEchoClientService web service has
one operation for invoking the echo and echoOneway operations of the
ReliableEchoService web service reliably and in a secure way within one conversation:
echo.

The existing example includes functional code and an extensive instructions.html file that
describes its use and function, how to build it, and so forth This section does not repeat that
information, but instead concentrates on the changes made to the example, and the reasons
for the changes.

How the Example Sets Up WebLogic Security
The configWSS.py WLST script sets up security for the WebLogic Server instance that hosts
the source and destination web service. The security requirements are dictated by the WS-
SecurityPolicy files associated with the destination web service.

The Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.0.xml policy imposes the following
requirements:

Chapter 2
Example of Adding Security to Reliable Messaging Web Service

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 86 of 92

• WS-SecureConversation handshake is protected by WS-Security 1.0.

• The application messages are signed and encrypted with DerivedKeys.

• The soap:Body of the RequestSecurityToken and
RequestSecurityTokenResponseCollection messages (part of the WS-SecureConversation
handshake) are both signed and encrypted.

• The WS-Addressing headers are signed.

• Timestamp is included and signed.

• The signature is encrypted.

• The algorithm suite is Basic256.

In response, the configWSS.py WLST script performs the following functions:

• Enables X.509 tokens for the default IdentityAsserter in the default security realm.

• Creates the default web service security configuration.

• Configures a credential provider for the Security Context Token.

• Configures a credential provider for Derived Key.

• Configures a BinarySecurityTokenHandler token handler for X.509 tokens.

• Configures a ServerBSTCredentialProvider credential provider for X.509 tokens.

• Configures keystores for confidentiality and integrity.

• Configures the PKI credential mapper. This maps the initiator and target resource to a key
pair or public certificate

In addition, the configWSSRuntime.py WLST script also performs the following function:

• Sets up the PKI credential mapper (configured by configWSS.py) to invoke the destination
web service.

Files Used by This Example
The example uses the files shown in the Version-Independent Matrix table in Version-
Independent Policy Supported. The contents of revised source files are shown in subsequent
sections.

Table 2-15 Files Used in WSRM/Security Example

File Description

build.xml Ant build file that contains targets for building and running the example.

ReliableEchoClientSer
viceImpl.java

JWS file that implements the source web service that reliably invokes the
echoOneWay and echo operation of the ReliableEchoService web service
in a secure way. This JWS file uses the @ServiceClient annotation to
specify the web service it invokes reliably.

ReliableEchoServiceIm
pl.java

JWS file that implements the reliable destination web service. This JWS
file uses the @Policy annotation to specify a WS-Policy file that contains
reliable SOAP messaging assertions.

ws_rm_configuration.p
y

WLST script that configures a SAF Agent, FileStore, JMS Server, and JMS
queue, which are required for reliable SOAP messaging. Execute this
script for the WebLogic Server instance that hosts the reliable destination
web service. The out-of-the-box Examples server has already been
configured for the source web service that invokes an operation reliably.

Chapter 2
Example of Adding Security to Reliable Messaging Web Service

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 87 of 92

Table 2-15 (Cont.) Files Used in WSRM/Security Example

File Description

configWss.py WLST script that configures a credential provider for Security Context
Token, a credential provider for Derived Key, a credential provider for
x.509, KeyStores for Confidentiality and Integrity, and PKI Cred Mapper
that are required for secure SOAP messaging. Execute this script for the
WebLogic Server instance that hosts the source and destination web
service. Remember to restart the Weblogic server after executing this
script

configWss_Service.py WLST script that configures a credential provider for Security Context
Token, a credential provider for Derived Key, a credential provider for
x.509, KeyStores for Confidentiality and Integrity that are required by the
server host the destination web service for secure SOAP messaging.
Execute this script for the WebLogic Server instance that hosts the
destination web service when the source and destination web service are
hosted in two servers. Remember to restart the Weblogic server after
executing this script.

configWssRuntime.py WLST script that configures a KeyPair Credential for invoking the
destination web service.

certs/
testServerCertTempCer
t.der

Server-side certificate, used create client-side BinarySecurityToken
credential provider.

certs/
clientKeyStore.jks

Client-side key store, used to create client-side BinarySecurityToken
credential provider.

certs/
serverKeyStore.jks

Server-side key store, used to create Server-side BinarySecurityToken
credential provider.

WsrmSecurityClient.ja
va

Standalone Java client application that invokes the source WebLogic web
service, that in turn invokes an operation of the ReliableEchoService web
service in a reliable and secure way.

Revised ReliableEchoServiceImpl.java
The ReliableEchoServiceImpl.java JWS file is the same as that in
EXAMPLES_HOME\wl_server\examples\src\examples\webservices\wsrm_security\ReliableE
choServiceImpl.java, with the revised Policy annotation shown in bold.

Example 2-20 ReliableEchoServiceImpl.java

@WebService(name = "ReliableEchoPort",
 serviceName = "ReliableEchoService")
@WLHttpTransport(contextPath = "WsrmSecurity", serviceUri = "ReliableEchoService")
@Policies({
 @Policy(uri="policy:Wssp1.2-2007-Wssc1.3-Bootstrap-Wss1.0.xml"),
 @Policy(uri="policy:Reliability1.1_SequenceSTR")}
)

You can specify the @Policy annotation at both the class- and method- level. In this example,
the annotation is used at the class-level to specify the predefined WS-Policy files, which means
all public operations of the web service are associated with the specified WS-Policy files.

Chapter 2
Example of Adding Security to Reliable Messaging Web Service

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 88 of 92

Revised configWss.py
The ReliableEchoServiceImpl web service does not explicitly invoke any WebLogic Server API
to handle the requirements imposed by any associated policy files, nor does this web service
have to understand which, if any, security providers, tokens, or other such mechanisms are
involved.

The script file configWss.py uses WLST to create and configure the default web service
security configuration, default_wss, for the active security realm. (The default web service
security configuration is used by all web services in the domain unless they have been
explicitly programmed to use a different configuration.) Further, this script makes sure that
x509 tokens are supported, creates the needed security providers, and so forth.

The configWss.py file is the same as that in
EXAMPLES_HOME\wl_server\examples\src\examples\webservices\wsrm_security\configWss
.py, with the changes shown in bold. The build.xml file provides the command input.

Note

Long lines in this script have been formatted for readability.

Example 2-21 configWss.py

:
#Create credential provider for SCT
cpName='default_sct_cp'
wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)
if wtm == None:
 print 'creating new webservice credential provider : ' + cpName
 wtm = defaultWss.createWebserviceCredentialProvider(cpName)
 wtm.setClassName('weblogic.wsee.security.wssc.v13.sct.
 ServerSCCredentialProvider')
 wtm.setTokenType('sct')
 cpm = wtm.createConfigurationProperty('TokenLifeTime')
 cpm.setValue('43200000')
else:
 print 'found exsiting bean for: ' + cpName

#Create credential provider for DK
cpName='default_dk_cp'
wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)
if wtm == None:
 wtm = defaultWss.createWebserviceCredentialProvider(cpName)
 wtm.setClassName('weblogic.wsee.security.wssc.v13.
 dk.DKCredentialProvider')
 wtm.setTokenType('dk')
 cpm = wtm.createConfigurationProperty('Label')
 cpm.setValue('WS-SecureConversationWS-SecureConversation')
 cpm = wtm.createConfigurationProperty('Length')
 cpm.setValue('16')
else:
 print 'found exsiting bean for: DK ' + cpName
:

Chapter 2
Example of Adding Security to Reliable Messaging Web Service

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 89 of 92

Revised configWss_Service.py
The configWss_Service.py script is similar to configWss.py, but it is used only when the
source and destination web service are hosted in two servers.

The configWss_Service.py file is the same as that in
EXAMPLES_HOME\wl_server\examples\src\examples\webservices\wsrm_security\configWss
_Service.py, with the changes shown in bold. The build.xml file provides the command input.

Note

Long lines in this script have been formatted for readability.

Example 2-22 configWss_Service.py

:
 #Create credential provider for SCT
cpName='default_sct_cp'
wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)
if wtm == None:
 print 'creating new webservice credential provider : ' + cpName
 wtm = defaultWss.createWebserviceCredentialProvider(cpName)
 wtm.setClassName('weblogic.wsee.security.wssc.
 v13.sct.ServerSCCredentialProvider')
 wtm.setTokenType('sct')
 cpm = wtm.createConfigurationProperty('TokenLifeTime')
 cpm.setValue('43200000')
else:
 print 'found exsiting bean for: ' + cpName

#Create credential provider for DK
cpName='default_dk_cp'
wtm=defaultWss.lookupWebserviceCredentialProvider(cpName)
if wtm == None:
 wtm = defaultWss.createWebserviceCredentialProvider(cpName)
 wtm.setClassName('weblogic.wsee.security.wssc.v13.dk.
 DKCredentialProvider')
 wtm.setTokenType('dk')
 cpm = wtm.createConfigurationProperty('Label')
 cpm.setValue('WS-SecureConversationWS-SecureConversation')
 cpm = wtm.createConfigurationProperty('Length')
 cpm.setValue('16')
else:
 print 'found existing bean for: DK ' + cpName
:

Building and Running the Example
After you have changed the example to use the new policy namespace, follow the steps in the
EXAMPLES_HOME\wl_server\examples\src\examples\webservices\wsrm_security\instructi
ons.html file to build and run the example.

There are no changes needed to these steps.

Chapter 2
Example of Adding Security to Reliable Messaging Web Service

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 90 of 92

Securing Web Services Atomic Transactions
When using web services atomic transactions, as described in Using Web Services Atomic
Transactions in Developing JAX-WS Web Services for Oracle WebLogic Server, it is
recommended that you secure the application message headers that contain the coordination
context and IssuedTokens using one of the following predefined policies:

• Wssp1.2-2007-SignAndEncryptWSATHeaders.xml—Specifies that the WS-
AtomicTransaction headers are signed and encrypted.

• Wssp1.2-2007-Wsp1.5-SignAndEncryptWSATHeaders.xml—Specifies that the WS-
AtomicTransaction headers are signed and encrypted. Web Services Policy 1.5 is used.

Note

Because header encryption is available as part of the WS-Security 1.1 standard, it is
highly recommended that you use only WS-Security 1.1 binding policies in conjunction
with the policies listed above to secure the application request messages. WS-
Security 1.1 binding policies contain <sp:Wss11> assertion in the policy and -Wss1.1
in the predefined policy name. If WS-Security 1.0 policies are used, WebLogic Server
encrypts the header into WS-Security 1.0 non-standard format.

You can attach policies using one of the following methods:

• At design time, using the @Policy and @Policies annotations, as described in Example of
Adding Security to a JAX-WS Web Service.

• At deployment time, use the WebLogic Remote Console to associate policy files at
runtime.

The following example shows how to secure a web services atomic transaction
programmatically, using the @Policy and @Policies annotations. Relevant code is shown in
bold.

package jaxws.interop.rsp;
...
import jakarta.jws.WebService;
import jakarta.xml.ws.BindingType;
import weblogic.wsee.wstx.wsat.Transactional;
import weblogic.wsee.wstx.wsat.Transactional.TransactionalFlowType;
import weblogic.wsee.wstx.wsat.Transactional.Version;
import weblogic.jws.Policy;
import weblogic.jws.Policies;
...
@WebService(
 portName = "FlightServiceBindings_Basic",
 serviceName = "FlightService",
 targetNamespace = "http://wsinterop.org/samples",
 wsdlLocation = "/wsdls/FlightService.wsdl",
 endpointInterface = "jaxws.interop.rsp.IFlightService"
)
@BindingType("http://schemas.xmlsoap.org/wsdl/soap/http")
@jakarta.xml.ws.soap.Addressing
public class FlightServiceImpl implements IFlightService {
...
 @Transactional(value = Transactional.TransactionFlowType.SUPPORTS,
 version = Transactional.Version.WSAT12)

Chapter 2
Securing Web Services Atomic Transactions

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 91 of 92

 @Policies({
 @Policy(uri="policy:Wssp1.2-2007-EncryptBody.xml"
 @Policy(uri="policy:Wssp1.2-2007-SignAndEncryptWSATHeaders.xml"
 @Policy(uri="policy:Wssp1.2-2007-SignBody.xml"
 @Policy(uri="policy:Wssp1.2-2007-Wss1.1-X509-Basic256.xml"
 })
 public FlightReservationResponse reserveFlight(FlightReservationRequest request) {
 //replace with your impl here
 FlightReserverationEnitity entity = new FlightReserverationEnitity();
 entity.setAirlineID(request.getAirlineID());
 entity.setFlightNumber(request.getFlightNumber());
 entity.setFlightType(request.getFlightType());
 boolean successful = saveRequest(entity);
 FlightReservationResponse response = new FlightReservationResponse();
 if (!successful) {
 response.setConfirmationNumber("OF" + CONF_NUMBER++ + "-" + request.getAirlineID() +
 String.valueOf(entity.getId()));
 } else if (request.getFlightNumber() == null ||
 request.getFlightNumber().trim().endsWith("LAS")) {
 successful = false;
 response.setConfirmationNumber("OF" + "- No flight available for " +
 request.getAirlineID());
 } else {
 response.setConfirmationNumber("OF" + CONF_NUMBER++ + "-" + request.getAirlineID() +
 String.valueOf(entity.getId()));
 }
 response.setSuccess(successful);
 return response;
 }

Chapter 2
Securing Web Services Atomic Transactions

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 92 of 92

3
Configuring Transport-Level Security

The chapter describes how to configure transport-level security for your WebLogic web service
using Jakarta XML Web Services (JAX-WS).
Transport-level security refers to securing the connection between a client application and a
web service with Secure Sockets Layer (SSL).

SSL provides secure connections by allowing two applications connecting over a network to
authenticate the other's identity and by encrypting the data exchanged between the
applications. Authentication allows a server, and optionally a client, to verify the identity of the
application on the other end of a network connection. A client certificate (two-way SSL) can be
used to authenticate the user.

See Secure Sockets Layer (SSL) in Understanding Security for Oracle WebLogic Server for
general information about SSL and the implementations included in WebLogic Server.

Transport-level security includes HTTP BASIC authentication as well as SSL.

This chapter includes the following sections:

• Configuring Transport-Level Security Through Policy

• Available Transport-Level Policies

• Prerequisite: Configure SSL

• Configuring Transport-Level Security Through Policy: Main Steps

• Example of Configuring Transport Security for JAX-WS

• Persisting the State of a Request over SSL

Configuring Transport-Level Security Through Policy
WebLogic Server includes the predefined transport-level policy files described in Available
Transport-Level Policies, which typically satisfy the security needs of most programmers and
use cases.

You can also create and use your own WS-SecurityPolicy file if you need additional
configuration, as described in Creating and Using a Custom Policy File. If you need to do this,
you can use the predefined WS-SecurityPolicy files as templates to create your own custom
files. The policy .xml files are located in WL_HOME/server/lib/weblogic.jar. Within
weblogic.jar, the policy files are located in /weblogic/wsee/policy/runtime.

For example, the Oracle-supplied Wssp1.2-2007-Saml2.0-Bearer-Https.xml policy file
includes the following assertion indicating that the policy requires one-way SSL, as shown
here.

Example 3-1 Specifying SSL in a Policy

<sp:TransportToken>
<wsp:Policy>
<sp:HttpsToken/>
</wsp:Policy>
</sp:TransportToken>

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 12

If you needed to instead use two-way SSL, you could create a custom policy that adds the
RequireClientCertificate assertion, as shown below.

Example 3-2 Two-Way SSL in a Policy

<sp:TransportToken>
<wsp:Policy>
<sp:HttpsToken >
<wsp:Policy>
<sp:RequireClientCertificate/>
</wsp:Policy>
</sp:HttpsToken>
</wsp:Policy>
</sp:TransportToken>

The Wssp1.2-2007-Https-BasicAuth.xml policy file requires both SSL and HTTP BASIC
Authentication, as shown below.

Example 3-3 SSL and HTTP Basic Authentication in a Policy

<sp:TransportToken>
<wsp:Policy>
<sp:HttpsToken>
<wsp:Policy>
<sp:HttpBasicAuthentication/>
</wsp:Policy>
</sp:HttpsToken>
</wsp:Policy>
</sp:TransportToken>

Available Transport-Level Policies
These policies require use of the https protocol to access the WSDL and invoke web services
operations:

Table 3-1 Transport Level Policies

Policy File Description

Wssp1.2-2007-Saml2.0-
Bearer-Https.xml

One-way SSL uses SAML 2.0 token with Bearer confirmation method for
Authentication.

Wssp1.2-2007-Saml2.0-
Bearer-Https-
Basic256Sha256.xml

Same as Wssp1.2-2007-Saml2.0-Bearer-Https.xml but uses a
stronger hash algorithm of Sha-256.

Wssp1.2-2007-
Https.xml

One way SSL.

Wssp1.2-2007-Https-
BasicAuth.xml

One way SSL with Basic Authentication. A 401 challenge occurs if the
Authorization header is not present in the request.

Wssp1.2-2007-Https-
ClientCertReq.xml

Two way SSL. The recipient checks for the initiator's public certificate. Note
that the client certificate can be used for authentication.

Set Two Way Client Cert Behavior to Client Certs Requested But Not
Enforced. See Set Up TLS in Oracle WebLogic Remote Console Online
Help .

Wssp1.2-2007-Https-
UsernameToken-
Digest.xml

One way SSL with digest Username Token.

Chapter 3
Available Transport-Level Policies

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 12

Table 3-1 (Cont.) Transport Level Policies

Policy File Description

Wssp1.2-2007-Https-
UsernameToken-
Plain.xml

One way SSL with plain text Username Token.

Wssp1.2-2007-Https-
UsernameToken-Plain-
Basic256Sha256.xml

Same as Wssp1.2-2007-Https-UsernameToken-Plain.xml but uses
a stronger hash algorithm of Sha-256.

Wssp1.2-Https.xml One way SSL.

Wssp1.2-Https-
BasicAuth.xml

One way SSL with Basic Authentication. A 401 challenge occurs if the
Authorization header is not present in the request.

Wssp1.2-Https-
UsernameToken-
Digest.xml

One way SSL with digest Username Token.

Wssp1.2-Https-
UsernameToken-
Plain.xml

One way SSL with plain text Username Token.

Wssp1.2-Https-
ClientCertReq.xml

Two way SSL. The recipient checks for the initiator's public certificate. Note
that the client certificate can be used for authentication.

Prerequisite: Configure SSL
Before you can use a transport-level policy to protect a web service, you must configure SSL
for the core WebLogic Server security subsystem.

The out-of-the-box private key and X.509 certificate pairs are provided for demonstration and
testing purposes. For this reason Oracle highly recommends you use your own keystore and
key pair in production.

You can configure one-way SSL where WebLogic Server is required to present a certificate to
the client application, or two-way SSL where both the client applications and WebLogic server
present certificates to each other.

To configure two-way or one-way SSL for the core WebLogic Server security subsystem, see
Configuring SSL in Administering Security for Oracle WebLogic Server.

If you configure two-way SSL for WebLogic Server, you must also configure SSL for the client
application, as described in Configuring Two-Way SSL for a Client Application.

Configuring SSL: Main Steps
This section summarizes the procedure described in Setting Up SSL: Main Steps. The steps
are described here for your convenience; see Setting Up SSL: Main Steps for complete
information.

To set up SSL:

1. Configure identity and trust, as described in Configuring Keystores:

a. Obtain digital certificates, private keys, and trusted CA certificates from the CertGen
utility, the keytool utility, or a reputable vendor such as Entrust or Verisign. You can
also use the digital certificates, private keys, and trusted CA certificates provided by

Chapter 3
Prerequisite: Configure SSL

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 12

the WebLogic Server kit. The demonstration digital certificates, private keys, and
trusted CA certificates should be used in a development environment only.

b. Store the private keys, digital certificates, and trusted CA certificates. Private keys and
trusted CA certificates are stored in a keystore.

c. Configure the identity and trust keystores for WebLogic Server in WebLogic Remote
Console. See Configure Keystores in Oracle WebLogic Remote Console Online Help.

2. Set SSL configuration options for the private key alias and password in WebLogic Remote
Console.

Optionally, set configuration options that require the presentation of client certificates (for
two-way SSL). See Set Up TLS in Oracle WebLogic Remote Console Online Help.

Configuring Two-Way SSL for a Client Application

Note

web services using asynchronous or reliable messaging will automatically use the
server's SSL certificate when establishing a new connection (back from the receiving
service to the sending service) for the purposes of sending asynchronous responses,
acknowledgments, and so forth.

If you configured two-way SSL for WebLogic Server, the client application must present a
certificate to WebLogic Server, in addition to WebLogic Server presenting a certificate to the
client application as required by one-way SSL. You must also follow these requirements:

• Create a client-side keystore that contains the client's private key and X.509 certificate
pair.

The SSL package of Java SE requires that the password of the client's private key must be
the same as the password of the client's keystore. For this reason, the client keystore can
include only one private key and X.509 certificate pair.

• Configure the core WebLogic Server's security subsystem, mapping the client's X.509
certificate in the client keystore to a user. See Configuring a User Name Mapper in
Administering Security for Oracle WebLogic Server.

• Create a truststore which contains the certificates that the client trusts; the client
application uses this truststore to validate the certificate it receives from WebLogic Server.
Because of the Java SE password requirement described in the preceding bullet item, this
truststore must be different from the keystore that contains the key pair that the client
presents to the server.

You can use the Cert Gen utility or the keytool utility to perform this step. For development
purposes, the keytool utility is the easiest way to get started. See Keytool in JDK Tool
Specifications .

See Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authorities in
Administering Security for Oracle WebLogic Server.

• Set Two Way Client Cert Behavior to "Client Certs Requested But Not Enforced." See
Set Up TLS in Oracle WebLogic Remote Console Online Help.

• When you run the client application that invokes the web service, specify the following
properties:

– -Djavax.net.ssl.trustStore=trustStore

Chapter 3
Prerequisite: Configure SSL

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 12

https://docs.oracle.com/en/java/javase/17/docs/specs/man/index.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/index.html

– -Djavax.net.ssl.trustStorePassword=trustStorePassword

where trustStore specifies the name of the client-side truststore that contains the list of
trusted certificates (one of which should be the server's certificate) and
trustStorePassword specifies the truststore's password.

The preceding properties are in addition to the standard properties you must set to
specify the client-side keystore:

– -Djavax.net.ssl.keyStore=keyStore

– -Djavax.net.ssl.keyStorePassword=keyStorePassword

Configuring Transport-Level Security Through Policy: Main Steps
To configure transport-level web services security via one or more policy files:

1. As outlined in Prerequisite: Configure SSL, configure SSL for the core WebLogic Server
security subsystem.

You can configure one-way SSL where WebLogic Server is required to present a certificate
to the client application, or two-way SSL where both the client applications and WebLogic
server present certificates to each other.

To configure two-way or one-way SSL for the core WebLogic Server security subsystem,
see Configuring SSL in Administering Security for Oracle WebLogic Server.

2. Use @Policy or @Policies JWS annotations in your JWS file, or associate policy files only
at runtime using WebLogic Remote Console, or specify some policy files using the
annotations and then associate additional ones at runtime.

See Table 3-1 for a description of the available transport-level policies.

Note

If you specify a transport-level security policy for your web service, it must be at
the class level.

In addition, the transport-level security policy must apply to both the inbound and
outbound directions. That is, you cannot have HTTPS for inbound and HTTP for
outbound.

The following example attaches the policy at the class level:

@Policy(uri="policy:Wssp1.2-2007-Saml2.0-Bearer-Https.xml")
public class EchoService {

3. If you added @Policy or @Policies JWS annotations in your JWS file, compile and
redeploy your web service as part of the normal iterative development process.

4. When you run the client application that invokes the web service, specify certain properties
to indicate the SSL implementation that your application should use. In particular:

• To specify the Sun SSL implementation, use the following properties:

-Djavax.net.ssl.trustStore=trustStore

where trustStore specifies the name of the client-side truststore that contains the list of
trusted certificates (one of which should be the server's certificate). To disable host
name verification, also specify the following property:

Chapter 3
Configuring Transport-Level Security Through Policy: Main Steps

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 12

-Dweblogic.wsee.client.ssl.stricthostchecking=false

See Configuring Two-Way SSL for a Client Application for additional details about two-
way SSL.

Example of Configuring Transport Security for JAX-WS
This section describes a simple example for configuring JAX-WS with Transport Security from
a standalone client for one-way SSL.

See the following documentation for additional prerequisite information:

• Configuring SSL in Administering Security for Oracle WebLogic Server

• Set Up TLS in Oracle WebLogic Remote Console Online Help

• Configure Keystores in Oracle WebLogic Remote Console Online Help

One-Way SSL (HTTPS and HTTP Basic Authentication Example)
The web service Java source is shown in Example 3-4:

Note

If you specify a transport-level security policy for your web service, it must be at the
class level.

In addition, the transport-level security policy must apply to both the inbound and
outbound directions. That is, you cannot have HTTPS for inbound and HTTP for
outbound.

Example 3-4 Web Service One-Way SSL Example

package httpbasicauth
import jakarta.jws.WebMethod;
import jakarta.jws.WebService;

import weblogic.jws.Policy;

@WebService(name="HttpsBasicAuth", portName="HttpsBasicAuthSoapPort"
 targetNamespace="https://httpsbasicauth")

// Security Policy for Https and Http Basic Authentication
@Policy(uri = "policy:Wssp1.2-2007-Https-BasicAuth.xml)

public class HttpsBasicAuth {

 public HttpsBasicAuth() {}

 WebMethod()
 public String echoString(String input) {

 return("[HttpsBasicAuth.echoString]: " + input);

 }

Chapter 3
Example of Configuring Transport Security for JAX-WS

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 12

}

The standalone Java web service client code that uses "weblogic.net" as the Java protocol
handler is shown in Example 3-5:

Example 3-5 Web Service Client One-Way SSL Example With weblogic.net

package httpbasicauth.client

import java.net.URL;
import java.security.cert.X509Certificate;
import java.util.Map;

import javax.xml.namespace.QName;

import jakarta.xml.ws.BindingProvider;

import httpsbasicauth.client.HttpsBasicAuthService;
import httpsbasicauth.client.HttpsBasicAuth;

public class HttpsBasicAuthClient

 private final static String ENDPOINT =;
 private final static String TARGET_NAMESPACE = "https://httpsbasicauth
 private final static String USERNAME =;
 private final static String PASSWORD =;
 private final static String TRUST_STORE_LOCATION =;
 private final static String TARGET_NAMESPACE =;

 private HttpsBasicAuthService service;
 private HttpsBasicAuth stub;

 public HttpsBasicAuthClient() {

 try {
 // This ignores the host name verifcation for the Public Certificate used by the
Server
 System.setProperty("weblogic.security.SSL.ignoreHostnameVerification","true");

 System.setProperty("java.protocol.handler.pkgs", "weblogic.net");
 System.setProperty("weblogic.security.TrustKeyStore","CustomTrust");
 System.setProperty("weblogic.security.CustomTrustKeyStoreFileName",
"TRUST_STORE_LOCATION");

System.setProperty("weblogic.security.CustomTrustKeyStorePassPhrase","TRUST_STORE_PASSWOR
D");
 System.setProperty("weblogic.security.CustomTrustKeyStoreType","JKS");

 URL url = new URL(endpoint+"?WSDL");
 QName serviceName = new QName(TARGET_NAMESPACE, "HttpsBasicAuthService");

 service = new HttpsBasicAuthService();

 stub = service.getHttpsBasicAuthSoapPort();

 BindingProvider bp = (BindingProvider) stub;

 Map<String,Object> context = bp.getRequestContext();

 context.put(BindingProvider.USERNAME_PROPERTY, USERNAME)

Chapter 3
Example of Configuring Transport Security for JAX-WS

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 12

 context.put(BindingProvider.PASSWORD_PROPERTY, PASSWORD);
 context.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, ENDPOINT);

 } catch (Exception e) {
 System.out.println("Error in creating the stub : " + e.getMessage());
 if (verbose) e.printStackTrace();
 }
 }

 public void invokeEchoString() throws Exception {

 String output = stub.echoString(ENDPOINT);

 System.out.println("[HttpsBasicAuthClient.invokeGEchoString]: " + output);

 }

 public static void main(String[] argv) throws Exception {

 HttpsBasicAuthClient client = new HttpsBasicAuthClient();

 System.setProperty("weblogic.wsee.verbose","*");

 System.out.println("----------------------");
 System.out.println(" Invoking echoString ");
 client.invokeEchoString();

 }

}

The standalone Java web service client code that uses the default Java protocol handler is
shown in Example 3-6:

Example 3-6 Web Service Client One-Way SSL Example With java.net

package httpbasicauth.client

import java.net.URL;
import java.security.cert.X509Certificate;
import java.util.Map;

import javax.xml.namespace.QName;

import jakarta.xml.ws.BindingProvider;

import httpsbasicauth.client.HttpsBasicAuthService;
import httpsbasicauth.client.HttpsBasicAuth;

public class HttpsBasicAuthClient

 private final static String ENDPOINT =;
 private final static String TARGET_NAMESPACE = "https://httpsbasicauth
 private final static String USERNAME =;
 private final static String PASSWORD =;
 private final static String TRUST_STORE_LOCATION =;
 private final static String TARGET_NAMESPACE =;

 private HttpsBasicAuthService service;
 private HttpsBasicAuth stub;

 public HttpsBasicAuthClient() {

Chapter 3
Example of Configuring Transport Security for JAX-WS

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 12

 try {

 System.setProperty("java.protocol.handler.pkgs", "java.net");
 System.setProperty("javax.net.ssl.trustStore", TRUST_STORE_LOCATION);
 System.setProperty("javax.net.ssl.trustStorePassword", TRUST_STORE_PASSWORD);

 URL url = new URL(ENDPOINT+"?WSDL");
 QName serviceName = new QName(TARGET_NAMESPACE, "HttpsBasicAuthService");

 service = new HttpsBasicAuthService();

 stub = service.getHttpsBasicAuthSoapPort();

 BindingProvider bp = (BindingProvider) stub;

 Map<String,Object> context = bp.getRequestContext();

 context.put(BindingProvider.USERNAME_PROPERTY, USERNAME)
 context.put(BindingProvider.PASSWORD_PROPERTY, PASSWORD);
 context.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, ENDPOINT);

 } catch (Exception e) {
 System.out.println("Error in creating the stub : " + e.getMessage());
 if (verbose) e.printStackTrace();
 }

 }

 public void invokeEchoString() throws Exception {

 String output = stub.echoString(ENDPOINT);

 System.out.println("[HttpsBasicAuthClient.invokeGEchoString]: " + output);

 }

 public static void main(String[] argv) throws Exception {

 HttpsBasicAuthClient client = new HttpsBasicAuthClient();

 System.setProperty("weblogic.wsee.verbose","*");

 System.out.println("----------------------");
 System.out.println(" Invoking echoString ");
 client.invokeEchoString();

 }

}

The related portion of the ant build file is shown in Example 3-7:

Example 3-7 Ant Build File

<property name="output.dir" value="../../build/httpsbasicauth" />
<property name="service.dir" value="${output.dir}/httpsbasicauthApp" />
<property name="output.dir.client" value="${output.dir}/client" />
<property name="clientclasses.dir" value="${output.dir}/client" />
<property name="service.name" value="HttpsBasicAuth" />
<property name="wsdl.name" value="HttpsBasicAuthService" />

Chapter 3
Example of Configuring Transport Security for JAX-WS

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 12

<property name="packageName" value="httpsbasicauth.client" />

<path id="client.class.path">
 <pathelement path="${java.class.path}" />
 <pathelement path="${clientclasses.dir}" />
</path>

<taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
<taskdef name="jwsc" classname="weblogic.wsee.tools.anttasks.JwscTask"/>

 <target name="jwsc">

 <jwsc srcdir="." destdir="${output.dir.server}" sourcepath="../" debug="true"
keepGenerated="true">

 <module name="HttpsBasicAuth" contextPath="httpsbasicauth">

 <jws file="HttpsBasicAuth.java" type="JAXWS" generateWsdl="true">
 <WLHttpTransport contextPath="httpsbasicauth" serviceUri="httpsbasicauth"/>
 </jws>

 </jwsc>

 </target>

 <target name="client">

 <clientgen wsdl="jar:file:${service.dir}/${service.name}.war!/WEB-INF/$
{wsdl.name}.wsdl"
 type="JAXWS"
 destDir="${clientclasses.dir}"
 packageName="${packageName}">

 </clientgen>

 <javac srcdir="${clientclasses.dir}"
 destdir="${clientclasses.dir}"
 includes="**/*.java"
 classpathref="client.class.path" />

 <javac srcdir="./"
 destdir="${clientclasses.dir}"
 includes="HttpsBasicAuthClient.java"
 classpathref="client.class.path" />

 </target>

 <target name="run">

 <java classname="httpsbasicauth.client.HttpsBasicAuthClient"
 classpathref="client.class.path"
 fork="true" />
 </target>

Persisting the State of a Request over SSL
Oracle WebLogic Server includes a two-way SSL client API for JAX-WS that you can use to
construct an SSLSocketFactory from system properties or from a new
weblogic.wsee.jaxws.sslclient.PersistentSSLInfo class. The API can persist SSL info for

Chapter 3
Persisting the State of a Request over SSL

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 12

Reliable Messaging, callbacks, and so forth, and supports the following well-known system
properties:

• weblogic.wsee.client.ssl.relaxedtrustmanager

• weblogic.security.SSL.ignoreHostnameVerification

The following new classes are available. See the Javadoc for complete descriptions.

• weblogic.wsee.jaxws.sslclient.SSLClientUtil. This class has the following methods:

– public static SSLSocketFactory getSSLSocketFactory(KeyManager[] kms,
TrustManager[] tms);

– public static SSLSocketFactory getSSLSocketFactory(PersistentSSLInfo sslInfo);

– public static SSLSocketFactory getSSLSocketFactoryFromSysProperties();

• weblogic.wsee.jaxws.sslclient.PersistentSSLInfo, a Javabean for setting SSL info.

• weblogic.wsee.jaxws.JAXWSProperties, includes a CLIENT_PERSISTENT_SSL_INFO
property.

Example of Getting SSLSocketFactory From System Properties
Example 3-8 shows an example of getting the SSLSocketFactory from system properties and
using them in the request context.

Note

The clientKeyStore and clientKeyStorePasswd have this restriction: the SSL package
of Java SE requires that the password of the client's private key must be the same as
the password of the client's keystore. For this reason, the client keystore can include
only one private key and X.509 certificate pair.

Example 3-8 Getting SSLSocketFactory From System Properties

String clientKeyStore = ...;
 String clientKeyStorePasswd = ...;
 String trustKeystore = ...;
 String trustKeystorePasswd = ...;

 System.setProperty("javax.net.ssl.keyStore", clientKeyStore);
 System.setProperty("javax.net.ssl.keyStorePassword", clientKeyStorePasswd);
 System.setProperty("javax.net.ssl.trustStore", trustKeystore);
 System.setProperty("javax.net.ssl.trustStorePasswd", trustKeystorePasswd);

 ((BindingProvider) port).getRequestContext().put(
 JAXWSProperties.SSL_SOCKET_FACTORY,
 SSLClientUtil.getSSLSocketFactoryFromSysProperties());

Example 3-9 shows an example of getting SSLSocketFactory from persistent info
(PersistentSSLInfo), as well as directly setting a SSLSocketFactory if persistence is not
needed.

Example 3-9 Getting SSLSocketFactory from PersistentSSLInfo

String clientKeyStore = ...;
 String clientKeyStorePasswd = ...;
 String clientKeyAlias = ...;

Chapter 3
Persisting the State of a Request over SSL

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 12

 String clientKeyPass = ...;
 String trustKeystore = ...;
 String trustKeystorePasswd = ...;

 PersistentSSLInfo sslInfo = new PersistentSSLInfo();
 sslInfo.setKeystore(clientKeyStore);
 sslInfo.setKeystorePassword(clientKeyStorePasswd);
 sslInfo.setKeyAlias(clientKeyAlias);
 sslInfo.setKeyPassword(clientKeyPass);
 sslInfo.setTrustKeystore(trustKeystore);

 //user can print out the sslInfo for debug
 System.out.print(sslInfo.toString());

//Put sslInfo into requestContext for persistence, it might be required by JAX-WS
advance features, such as, RM, Callback
 ((BindingProvider) port).getRequestContext().put(
 JAXWSProperties.CLIENT_PERSISTENT_SSL_INFO, sslInfo);

 //Alternatively, you can directly set a SSLSocketFactory if persistence is
not necessary. Note: The following line should be omitted if sslInfo is set with
above line.
 ((BindingProvider) port).getRequestContext().put(
 JAXWSProperties.SSL_SOCKET_FACTORY,
 SSLClientUtil.getSSLSocketFactory(sslInfo));

sslInfo can set a key alias (clientKeyAlias) that points to a key in keystore (as an SSL client-
side key) in the event that the client keystore has multiple keys.

Chapter 3
Persisting the State of a Request over SSL

Securing WebLogic Web Services for Oracle WebLogic Server
G31688-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 12

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Overview of Web Services Security
	What Type of Security Should You Configure?
	Thread Safety

	2 Configuring Message-Level Security
	Overview of Message-Level Security
	Web Services Security Supported Standards
	Web Services Trust and Secure Conversation
	Web Services SecurityPolicy 1.2

	Main Use Cases of Message-Level Security
	Using Policy Files for Message-Level Security Configuration
	Using Policy Files With JAX-WS
	WS-Policy Namespace
	WS-SecurityPolicy Namespace
	Version-Independent Policy Supported
	Using the SHA-256 Secure Hash Algorithm
	Update the Predefined SHA-1 Policies to SHA-256
	SAML Policies
	Wss1.0 Policies
	Wss1.1 Policies
	Secure Conversation Policies

	Using the Extended Algorithm Suite (EAS)

	Configuring Simple Message-Level Security
	Configuring Simple Message-Level Security: Main Steps
	Ensuring That WebLogic Server Can Validate the Client's Certificate
	Updating the JWS File with @Policy and @Policies Annotations
	Setting the uri Attribute
	Setting Additional Attributes
	Example of Using the @Policy and @Policies JWS Annotations
	Loading a Policy From the CLASSPATH

	Using Key Pairs Other Than the Out-Of-The-Box SSL Pair

	Updating a Client Application to Invoke a Message-Secured Web Service
	Invoking a Web Service From a Client Running in a WebLogic Server Instance

	Example of Adding Security to a JAX-WS Web Service
	Creating and Using a Custom Policy File
	Configuring the WS-Trust Client
	Supported Token Types
	Configuring WS-Trust Client Properties
	Obtaining the URI of the Secure Token Service
	Configuring STS URI for WS-SecureConversation: Standalone Client
	Configuring STS URI for SAML: Standalone Client
	Configuring STS URI Using WLST: Client On Server Side
	Configuring STS Security Policy: Standalone Client
	Configuring STS Security Policy Using WLST: Client On Server Side
	Configuring the STS SOAP and WS-Trust Version: Standalone Client
	Configuring the SAML STS Server Certificate: Standalone Client

	Sample WS-Trust Client for SAML 2.0 Bearer Token Over HTTPS
	Sample WS-Trust Client for SAML 2.0 Bearer Token with WSS 1.1 Message Protections

	Configuring and Using Security Contexts and Derived Keys
	Specification Backward Compatibility
	WS-SecureConversation and Clusters
	Updating a Client Application to Negotiate Security Contexts

	Associating Policy Files at Runtime
	Using Security Assertion Markup Language (SAML) Tokens For Identity
	SAML Token Overview
	Using SAML Tokens for Identity: Main Steps
	Specifying the SAML Confirmation Method
	Specifying the SAML Confirmation Method (Proprietary Policy Only)

	Configuring SAML Attributes in a Web Service
	Using SAML Attributes: Available Interfaces and Classes
	Using SAML Attributes: Main Steps
	SAML Attributes Example

	Associating a Web Service with a Security Configuration Other Than the Default
	Valid Class Names and Token Types for Credential Provider
	Using System Properties to Debug Message-Level Security
	Using a Client-Side Security Policy File
	Associating a Policy File with a Client Application: Main Steps
	Running with High Contrast and Text Magnification

	Using WS-SecurityPolicy 1.2 Policy Files
	Transport-Level Policies
	Protection Assertion Policies
	WS-Security 1.0 Username and X509 Token Policies
	WS-Security 1.1 Username and X509 Token Policies
	WS-SecureConversation Policies
	SAML Token Profile Policies

	Choosing a Policy
	Unsupported WS-SecurityPolicy 1.2 Assertions
	Using the Optional Policy Assertion
	Configuring Element-Level Security
	Define and Use a Custom Element-Level Policy File
	Adding the Policy Annotation to JWS File

	Implementation Notes

	Smart Policy Selection
	Example of Security Policy With Policy Alternatives
	Configuring Smart Policy Selection
	How the Policy Preference is Determined
	Configuring Smart Policy Selection in the Console
	Understanding Body Encryption in Smart Policy
	Smart Policy Selection for a Standalone Client

	Multiple Transport Assertions

	Example of Adding Security to Reliable Messaging Web Service
	Overview of Secure and Reliable SOAP Messaging
	Overview of the Example
	How the Example Sets Up WebLogic Security

	Files Used by This Example
	Revised ReliableEchoServiceImpl.java
	Revised configWss.py
	Revised configWss_Service.py
	Building and Running the Example

	Securing Web Services Atomic Transactions

	3 Configuring Transport-Level Security
	Configuring Transport-Level Security Through Policy
	Available Transport-Level Policies
	Prerequisite: Configure SSL
	Configuring SSL: Main Steps
	Configuring Two-Way SSL for a Client Application

	Configuring Transport-Level Security Through Policy: Main Steps
	Example of Configuring Transport Security for JAX-WS
	One-Way SSL (HTTPS and HTTP Basic Authentication Example)

	Persisting the State of a Request over SSL
	Example of Getting SSLSocketFactory From System Properties

