
Oracle Fusion Middleware
Understanding WebLogic Web Services for
Oracle WebLogic Server

15c (15.1.1.0.0)
G31689-01
October 2025

Oracle Fusion Middleware Understanding WebLogic Web Services for Oracle WebLogic Server, 15c (15.1.1.0.0)

G31689-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documentation i

Conventions i

1 Introducing Oracle WebLogic Web Services

Overview of WebLogic Web Services 1

How Do I Choose Between SOAP and REST? 1

2 Features and Standards Supported by WebLogic Web Services

A Note About JAX-WS 2.3 RI/JDK 17 Extensions 6

Fast Infoset 6

Jakarta RESTful Web Services (JAX-RS) 7

Jakarta Web Services 3.0 7

Java Architecture for XML Binding (JAXB) 3.0 7

JSR 109: Implementing Enterprise Web Services 1.4 7

Security Assertion Markup Language (SAML) 2.0 8

Security Assertion Markup Language (SAML) Token Profile 1.1 and 1.0 8

Simple Object Access Protocol (SOAP) 1.1 and 1.2 8

SOAP Over JMS Transport 1.0 9

SOAP with Attachments API for Java (SAAJ) 2.0 9

Web Application Description Language (WADL) 2009 Membership Submission 10

Web Services Addressing (WS-Addressing) 1.0 and 2004/08 Member Submission 10

Web Services Atomic Transaction (WS-AtomicTransaction) Version 1.2, 1.1, and 1.0 10

Web Services Coordination (WS-Coordination) Version 1.2, 1.1, and 1.0 11

Web Services Description Language (WSDL) 1.1 11

Web Services MakeConnection 1.1 12

Web Services Metadata for the Java Platform 2.1 (JSR-181) 12

Web Services Policy Attachment (WS-Policy Attachment) 1.5 and 1.2 13

Web Services Policy Framework (WS-Policy) 1.5 and 1.2 13

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of iii

Web Services Reliable Messaging (WS-ReliableMessaging) 14

Web Services Reliable Messaging Policy Assertion (WS-RM Policy) 14

Web Services Secure Conversation Language (WS-SecureConversation) 15

Web Services Security (WS-Security) 1.1 and 1.0 15

Web Services Security Policy (WS-SecurityPolicy) 1.3 16

Web Services Trust Language (WS-Trust) 16

Additional Specifications Supported by WebLogic Web Services 16

3 Using the Development and Administration Tools

Using Oracle IDEs to Develop Web Services 1

Using the Administration Tools to Manage, Test, and Monitor WebLogic Web Services 1

Using Oracle Enterprise Manager Fusion Middleware Control 2

Using Oracle WebLogic Remote Console 2

Invoking the Remote Console 3

How Web Services Are Displayed In the Remote Console 3

Creating a Web Services Security Configuration 3

Using the Oracle WebLogic Scripting Tool 3

Using Oracle WebLogic Server Ant Tasks 4

Setting the Classpath for the WebLogic Ant Tasks 5

Differences in Operating System Case Sensitivity When Manipulating WSDL and XML
Schema Files 6

Using the Java Management Extensions (JMX) 7

Using the Jakarta EE Deployment API 7

Using Web Services Apache Maven Goals 8

4 Roadmap and Related Information

Roadmap for Implementing WebLogic Web Services 1

WebLogic Web Services Documentation Set 2

Related Documentation—WebLogic Server Application Development 2

5 Interoperability with Microsoft WCF/.NET

Basic Data Types Interoperability Guidelines 2

Basic Profile Interoperability Guidelines 2

Web Services Reliable Secure Profile Interoperability Guidelines 2

WS-Security Interoperability Guidelines 2

WS-SecurityPolicy Interoperability Guidelines 3

WS-SecureConversation Interoperability Guidelines 3

Using SAML Assertions Referenced from SignedInfo 3

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of iii

6 Examples for Jakarta EE Web Service Developers

Samples for WebLogic Web Service Developers 1

Web Services Samples in the WebLogic Server Distribution 1

Avitek Medical Records Application (MedRec) and Tutorials 1

Additional Web Services Samples Available for Download 1

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iii of iii

Preface

This documentation introduces web services for Oracle WebLogic Server 15c, including
interoperability and standards information.

Audience
This document is a resource for software developers who develop Jakarta EE Web Services
for Oracle WebLogic Server 15c using the Java API for XML-based Web services (JAX-WS). It
is assumed that the reader is familiar with Jakarta EE and JAX-WS concepts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of ii

1
Introducing Oracle WebLogic Web Services

WebLogic Web services for Oracle WebLogic Server are loosely coupled, distributed
environments that allow you to integrate heterogeneous applications within the enterprise or to
expose business functions to customers and partners over the Internet. These services are
characterized by the business functionality, the website which exposes that functionality, and
the set of published interfaces necessary to use the exposed functionality.
For definitions of unfamiliar terms found in this and other books, see the Glossary.

Overview of WebLogic Web Services
You can access the Web services using standard Web protocols such as XML or HTTP.
WebLogic Server supports the web service types such as Jakarta XML Web Services (JAX-
WS) 3.0 and Jakarta RESTful Web Services 3.0 (JAX-RS).

For an overview of web services and their benefits, see What Are Web Services? in
Understanding Web Services.

Table 1-1 Types of WebLogic Web Services

Web Service Type Description

Jakarta XML Web Services (JAX-
WS) 3.0

The JAX-WS implementation in Oracle WebLogic Server is extended from the JAX-WS
Reference Implementation (RI) developed by the Glassfish Community (see https://
github.com/eclipse-ee4j/metro-jax-ws).

For more information about JAX-WS, see:

• Developing JAX-WS Web Services for Oracle WebLogic Server
• JAX-WS specification: https://jakarta.ee/specifications/xml-web-services/3.0/

Jakarta RESTful Web Services 3.0
(JAX-RS)

WebLogic Server supports Jersey 2.x (JAX-RS 2.1 RI) by default in this release.
Registration as a shared library with WebLogic Server is no longer required.

For more information about JAX-RS, see:

• Developing and Securing RESTful Web Services for Oracle WebLogic Server
• JAX-RS 3.0 specification: https://jakarta.ee/specifications/restful-ws/3.0/

How Do I Choose Between SOAP and REST?
In WebLogic Server, SOAP web services are implemented using JAX-WS and RESTful web
services are implemented using JAX-RS. Follow the recommended guidelines to consider
when choosing between SOAP and REST.

See also Features and Standards Supported by WebLogic Web Services for a comparison of
the standards that are supported for JAX-WS and JAX-RS.

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 2

https://github.com/eclipse-ee4j/metro-jax-ws
https://github.com/eclipse-ee4j/metro-jax-ws
https://jakarta.ee/specifications/xml-web-services/3.0/
https://jakarta.ee/specifications/restful-ws/3.0/

Table 1-2 How to Choose Between SOAP and RESTful Web Services

Use . . . In the following scenarios . . .

SOAP Implement SOAP web services using JAX-WS in enterprise application integration
scenarios that:

• Have advanced quality of service (QoS) requirements.
• Need to call methods remotely in Java components, such as Plain Old Java

Objects (POJOs) or Jakarta Enterprise Beans (EJBs).
JAX-WS interoperates with other standards-based SOAP web services from Oracle
or other SOAP web service vendors.

JAX-WS supports the full set of WS-* protocols that provide standards for security,
reliability, and so on, and better interoperates with other clients and servers that
conform to the WS-* protocols.

For more information about SOAP web service development, see Developing JAX-
WS Web Services for Oracle WebLogic Server.

REST Implement RESTful web services using JAX-RS to integrate services over the web
when the constraints of the RESTful style are desirable, such as separate client-
server architecture, uniform interface, and so on.

For more information about RESTful web services development, see Developing and
Securing RESTful Web Services for Oracle WebLogic Server.

Chapter 1
How Do I Choose Between SOAP and REST?

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 2

2
Features and Standards Supported by
WebLogic Web Services

WebLogic web services for Oracle WebLogic Server support various features and standards.
Many specifications that define web service standards are written to allow for broad use of the
specification throughout the industry. The Oracle implementation of a particular specification
may not cover all possible usage scenarios defined in the specifications.

Note

The JAX-WS implementation in Oracle WebLogic Server is extended from the JAX-
WS Reference Implementation (RI) developed by the Glassfish Community (see
https://github.com/eclipse-ee4j/metro-jax-ws). All features defined in the JAX-
WS specification (JSR-224) are fully supported by Oracle WebLogic Server.

The JAX-WS RI also contains a variety of extensions, provided by Glassfish
contributors. Unless specifically documented, JAX-WS RI extensions are not
supported for use in Oracle WebLogic Server.

Oracle considers interoperability of web service platforms to be more important than providing
support for all possible edge cases of the web service specifications. Oracle complies with the
following specifications from the Web Services Interoperability Organization and considers
them to be the baseline for web services interoperability:

• Basic Profile 2.0 (JAX-WS only): http://docs.oasis-open.org/ws-brsp/BasicProfile/
v2.0/BasicProfile-v2.0.html

• Basic Profile Version 1.2 (JAX-WS only): http://docs.oasis-open.org/ws-brsp/
BasicProfile/v1.2/BasicProfile-v1.2.html

• Basic Profile Version 1.1 (JAX-WS only): http://www.ws-i.org/Profiles/
BasicProfile-1.1-2004-08-24.html

• Basic Security Profile 1.1 (JAX-WS only): http://docs.oasis-open.org/ws-brsp/
BasicSecurityProfile/v1.1/BasicSecurityProfile-v1.1.html

• Reliable Secure Profile Version 1.0 (JAX-WS only): http://docs.oasis-open.org/ws-
brsp/ReliableSecureProfile/v1.0/ReliableSecureProfile-v1.0.html

The WebLogic web service documentation set does not necessarily document all of the
specification requirements; it does, however, document features that are beyond the
requirements of these specifications.

The following table summarizes the features and specifications supported by WebLogic web
services.

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 16

https://github.com/eclipse-ee4j/metro-jax-ws
http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/BasicProfile-v2.0.html
http://docs.oasis-open.org/ws-brsp/BasicProfile/v2.0/BasicProfile-v2.0.html
http://docs.oasis-open.org/ws-brsp/BasicProfile/v1.2/BasicProfile-v1.2.html
http://docs.oasis-open.org/ws-brsp/BasicProfile/v1.2/BasicProfile-v1.2.html
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
http://docs.oasis-open.org/ws-brsp/BasicSecurityProfile/v1.1/BasicSecurityProfile-v1.1.html
http://docs.oasis-open.org/ws-brsp/BasicSecurityProfile/v1.1/BasicSecurityProfile-v1.1.html
http://docs.oasis-open.org/ws-brsp/ReliableSecureProfile/v1.0/ReliableSecureProfile-v1.0.html
http://docs.oasis-open.org/ws-brsp/ReliableSecureProfile/v1.0/ReliableSecureProfile-v1.0.html

Table 2-1 Features and Standards Supported by WebLogic Web Services

Feature Description JAX-WS JAX-RS

Programming model (based
on metadata annotations)
and runtime architecture

JSR 109: Implementing Enterprise Web Services—
Programming model and runtime architecture for
implementing web services in Java that run on a Jakarta
EE application server, such as WebLogic Server. See
JSR 109: Implementing Enterprise Web Services 1.4.

Version 1.4 N/A

Programming model (based
on metadata annotations)
and runtime architecture

Web Services Metadata for the Java Platform 2.0
(JSR-181)—Standard annotations that you can use in
your Java Web Service (JWS) file to facilitate the
programming of web services. See Web Services
Metadata for the Java Platform 2.1 (JSR-181).

Supports N/A

Programming APIs Java API for XML-based Web Services (JAX-WS)—
Standards-based API for coding, assembling, and
deploying Java web services. The integrated stack
includes Jakarta Web Services 3.0, JAXB 3.0, and
Jakarta SOAP with Attachments 2.0. See Jakarta Web
Services 3.0.

See also Developing JAX-WS Web Services for Oracle
WebLogic Server.

Version 3.0 N/A

Programming APIs Java API for RESTful Web Services (JAX-RS)—
Provides a standard JAVA API for developing web
services based on the Representational State Transfer
(REST) architectural style. See Jakarta RESTful Web
Services (JAX-RS).

See also Developing and Securing RESTful Web
Services for Oracle WebLogic Server.

N/A 2.1

Data binding Java Architecture for XML Binding (JAXB)—
Implementation used to bind an XML schema to a
representation in Java code. JAXB is supported by JAX-
WS web services only. See Java Architecture for XML
Binding (JAXB) 3.0.

See also Using JAXB Data Binding in Developing JAX-
WS Web Services for Oracle WebLogic Server.

Version 2.3 Version 2.3

Web service description Web Services Description Language (WSDL)—XML-
based specification that describes a web service. See
Web Services Description Language (WSDL) 1.1.

See also Developing WebLogic Web Services Starting
from a WSDL File: Main Steps in Developing JAX-WS
Web Services for Oracle WebLogic Server.

Version 1.1 N/A

Web service description Web Application Description Language (WADL)—
XML-based specification that provides a machine-
readable description of HTTP-based Web applications.
See Web Application Description Language (WADL)
2009 Membership Submission.

N/A 2009 Member
Submission

Web service description Web Services Policy Framework (WS-Policy)—
General purpose model and corresponding syntax to
describe and communicate the policies of a web service.
See Web Services Policy Framework (WS-Policy) 1.5
and 1.2.

Versions 1.5 and
1.2

N/A

Chapter 2

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 16

Table 2-1 (Cont.) Features and Standards Supported by WebLogic Web Services

Feature Description JAX-WS JAX-RS

Web service description Web Services Policy Attachment (WS-
PolicyAttachment)—Abstract model and an XML-
based expression grammar for policies. See Web
Services Policy Attachment (WS-Policy Attachment) 1.5
and 1.2.

Versions 1.5 and
1.2

N/A

Data exchange between
web service and requesting
client

Simple Object Access Protocol (SOAP)—Lightweight
XML-based protocol used to exchange information in a
decentralized, distributed environment. See Simple
Object Access Protocol (SOAP) 1.1 and 1.2.

Versions 1.2 and
1.1

N/A

Data exchange between
web service and requesting
client

SOAP with Attachments API for Java (SAAJ) 2.0—
Implementation that developers can use to produce and
consume messages conforming to the SOAP 1.1
specification and SOAP with Attachments notes. See
SOAP with Attachments API for Java (SAAJ) 2.0.

Version 2.0 N/A

Security Web Services Security (WS-Security)—Standard set
of SOAP [SOAP11, SOAP12] extensions that can be
used when building secure web services to implement
message content integrity and confidentiality. See Web
Services Security (WS-Security) 1.1 and 1.0.

See also Securing WebLogic Web Services for Oracle
WebLogic Server.

Versions 1.1 and
1.0

N/A

Security Web Services Security Policy (WS-SecurityPolicy)—
Set of security policy assertions for use with the WS-
Policy framework. See Web Services Security Policy
(WS-SecurityPolicy) 1.3.

See also Securing WebLogic Web Services for Oracle
WebLogic Server.

Version 1.3 N/A

Security Security Assertion Markup Language (SAML)—XML
standard for exchanging authentication and
authorization data between security domains. See
Security Assertion Markup Language (SAML) 2.0 .

See also Securing WebLogic Web Services for Oracle
WebLogic Server.

Versions 2.0 N/A

Security Security Assertion Markup Language (SAML) Token
Profile—Set of WS-Security SOAP extensions that
implement SOAP message authentication and
encryption. See Security Assertion Markup Language
(SAML) Token Profile 1.1 and 1.0.

See also Securing WebLogic Web Services for Oracle
WebLogic Server.

Versions 1.1 and
1.0

N/A

Reliable communication Web Services Addressing (WS-Addressing)—
Transport-neutral mechanisms to address web services
and messages. See Web Services Addressing (WS-
Addressing) 1.0 and 2004/08 Member Submission.

Version 1.0 and
2004/08

N/A

Chapter 2

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 16

Table 2-1 (Cont.) Features and Standards Supported by WebLogic Web Services

Feature Description JAX-WS JAX-RS

Reliable communication Web Services Reliable Messaging (WS-
ReliableMessaging)—Implementation that enables two
endpoints (web service and client) running on different
WebLogic Server instances to communicate reliably in
the presence of failures in software components,
systems, or networks. See Web Services Reliable
Messaging (WS-ReliableMessaging).

See also Using Web Services Reliable Messaging in
Developing JAX-WS Web Services for Oracle WebLogic
Server.

Versions 1.2, 1.1 N/A

Reliable communication Web Services Reliable Messaging Policy Assertion
(WS-RM Policy)—Domain-specific policy assertion for
reliable messaging for use with WS-Policy and WS-
ReliableMessaging. See Web Services Reliable
Messaging Policy Assertion (WS-RM Policy).

See also Pre-packaged WS-Policy Files for Reliable
Messaging and MakeConnection in Developing JAX-WS
Web Services for Oracle WebLogic Server.

Versions 1.2 and
1.1

N/A

Reliable communication Web Services Trust Language (WS-Trust)—
Extensions that build on Web Services Security (WS-
Security) to secure asynchronous communication. See
Web Services Trust Language (WS-Trust).

See also Configuring Message-Level Security in
Securing WebLogic Web Services for Oracle WebLogic
Server.

Version 1.4 and
1.3

N/A

Reliable communication Web Services Secure Conversation Language (WS-
SecureConversation)—Extensions that build on Web
Services Security (WS-Security) and Web Services
Trust Language (WS-Trust) to secure asynchronous
communication. See Web Services Secure
Conversation Language (WS-SecureConversation).

See also Configuring Message-Level Security in
Securing WebLogic Web Services for Oracle WebLogic
Server.

Version 1.4 N/A

Asynchronous
communication

Asynchronous Request Response—When you invoke
a web service synchronously, the invoking client
application waits for the response to return before it can
continue with its work. In cases where the response
returns immediately, this method of invoking the web
service is common. However, because request
processing can be delayed, it is often useful for the
client application to continue its work and handle the
response later on. This can be accomplished using
asynchronous web service invocation. For example, see
Developing Asynchronous Clients in Developing JAX-
WS Web Services for Oracle WebLogic Server.

Supported Supported

Chapter 2

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 16

Table 2-1 (Cont.) Features and Standards Supported by WebLogic Web Services

Feature Description JAX-WS JAX-RS

Asynchronous
communication

WS-MakeConnection—Provides a mechanism for the
transfer of messages between two endpoints when the
sending endpoint is unable to initiate a new connection
to the receiving endpoint. See Web Services
MakeConnection 1.1.

See also Developing Asynchronous Clients in
Developing JAX-WS Web Services for Oracle WebLogic
Server.

Version 1.1 N/A

Atomic transactions Web Services Atomic Transaction—Defines the
Atomic Transaction coordination type that is to be used
with the extensible coordination framework described in
the Web Services Coordination specification. The WS-
AtomicTransaction and WS-Coordination specifications
define an extensible framework for coordinating
distributed activities among a set of participants. See
Web Services Atomic Transaction (WS-
AtomicTransaction) Version 1.2, 1.1, and 1.0.

See also Using Web Services Atomic Transactions in
Developing JAX-WS Web Services for Oracle WebLogic
Server.

Versions 1.2,
1.1, and 1.0

N/A

Atomic transactions Web Services Coordination—Defines an extensible
framework for providing protocols that coordinate the
actions of distributed applications. The WS-
AtomicTransaction and WS-Coordination specifications
define an extensible framework for coordinating
distributed activities among a set of participants. See
Web Services Coordination (WS-Coordination) Version
1.2, 1.1, and 1.0.

See also Using Web Services Atomic Transactions in
Developing JAX-WS Web Services for Oracle WebLogic
Server.

Versions 1.2,
1.1, and 1.0

N/A

Client event notification Web service callbacks—Callbacks notify a client of
your web service that some event has occurred. For
example, you can notify a client when the results of that
client's request are ready, or when the client's request
cannot be fulfilled.

For more information, see Using Callbacks in
Developing JAX-WS Web Services for Oracle WebLogic
Server.

Supported Not supported

Optimizing XML
transmission

Fast Infoset—Compressed binary encoding format that
provides a more efficient serialization than the text-
based XML format. Fast Infoset optimizes both
document size and processing performance. See Fast
Infoset.

See also Optimizing XML Transmission Using Fast
Infoset in Developing JAX-WS Web Services for Oracle
WebLogic Server.

Supported Not supported

Chapter 2

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 16

Table 2-1 (Cont.) Features and Standards Supported by WebLogic Web Services

Feature Description JAX-WS JAX-RS

Optimizing XML
transmission

Message Transmission Optimization Mechanism
(MTOM)—Defines a method for optimizing the
transmission of XML data of type xs:base64Binary or
xs:hexBinary in SOAP messages. For more
information, see Optimizing Binary Data Transmission in
Developing JAX-WS Web Services for Oracle WebLogic
Server.

Supported Not supported

SOAP Over JMS Transport SOAP over JMS transport—Typically, client
applications use HTTP/S as the connection protocol
when invoking a WebLogic web service. You can,
however, configure a WebLogic web service so that
client applications use JMS as the transport instead.
See SOAP Over JMS Transport 1.0.

For more information, see Using JMS Transport as the
Connection Protocol in Developing JAX-WS Web
Services for Oracle WebLogic Server.

Supported Not supported

Stand-alone Java SE client
access

Stand-alone Java SE client JAR file—If your computer
does not have WebLogic Server installed, you can still
invoke a web service by using the stand-alone
WebLogic web services client JAR file. See Invoking a
Web Service from a Standalone Java SE Client in
Developing JAX-WS Web Services for Oracle WebLogic
Server.

Supported Supported

The following sections describe the specifications in more detail. Specifications are listed in
alphabetical order. Additional specifications that WebLogic web services support are listed in
Additional Specifications Supported by WebLogic Web Services.

A Note About JAX-WS 2.3 RI/JDK 17 Extensions
A subset of the APIs such as com.sun.xml.ws.developer are supported as an extension to the
JDK 17 or JAX-WS 2.3 Reference Implementation (RI).

Because the APIs are not provided as part of the JDK 17 or WebLogic Server software, they
are subject to change. The APIs include, but are not limited to:

com.sun.xml.ws.api.server.AsyncProvider
com.sun.xml.ws.client.BindingProviderProperties
com.sun.xml.ws.developer.JAXWSProperties
com.sun.xml.ws.developer.SchemaValidation
com.sun.xml.ws.developer.SchemaValidationFeature
com.sun.xml.ws.developer.StreamingAttachment
com.sun.xml.ws.developer.StreamingAttachmentFeature
com.sun.xml.ws.developer.StreamingDataHandler

Fast Infoset
Fast Infoset is a compressed binary encoding format that provides a more efficient serialization
than the text-based XML format. Fast Infoset optimizes both document size and processing
performance.

Chapter 2
A Note About JAX-WS 2.3 RI/JDK 17 Extensions

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 16

When enabled, Fast Infoset converts the XML Information Set in the SOAP envelope into a
compressed binary format before transmitting the data. Fast Infoset optimizes encrypted and
signed messages, MTOM-enabled messages, and SOAP attachments, and supports both
HTTP and JMS transports.

The Fast Infoset specification, ITU-T Rec. X.891 and ISO/IEC 24824-1 (Fast Infoset) is defined
by both the ITU-T and ISO standards bodies. The specification can be downloaded from the
ITU Web site: http://www.itu.int/rec/T-REC-X.891-200505-I/en

See Optimizing XML Transmission Using Fast Infoset in Developing JAX-WS Web Services for
Oracle WebLogic Server.

Jakarta RESTful Web Services (JAX-RS)
The Jakarta RESTful Web Services (JAX-RS) specification provides a standard JAVA API for
developing web services based on the Representational State Transfer (REST) architectural
style. See https://jcp.org/en/jsr/detail?id=370.
WebLogic Server provides support for Jersey 2.x (JAX-RS 2.1 RI) by default in this release.
Registration as a shared library with WebLogic Server is no longer required.

See Developing and Securing RESTful Web Services for Oracle WebLogic Server.

Jakarta Web Services 3.0
The Jakarta Web Services 3.0 is a standards-based API for coding, assembling, and deploying
Java web services.

Namespace: http://java.sun.com/xml/ns/jaxws

See http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index5.html. The
integrated stack includes JAX-WS 3.0, Java Architecture for XML Binding (JAXB) 3.0 and
SOAP with Attachments API for Java (SAAJ) 2.0.

See Developing JAX-WS Web Services for Oracle WebLogic Server.

Java Architecture for XML Binding (JAXB) 3.0
The Java Architecture for XML Binding (JAXB) provides a convenient way to bind an XML
schema to a representation in Java code. This makes it easy for you to incorporate XML data
and processing functions in applications based on Java technology without having to know
much about XML itself.

Namespace: http://java.sun.com/xml/ns/jaxb

See https://jcp.org/aboutJava/communityprocess/mrel/jsr222/index3.html.

See Using JAXB Data Binding in Developing JAX-WS Web Services for Oracle WebLogic
Server.

JSR 109: Implementing Enterprise Web Services 1.4
The JSR 109: Implementing Enterprise Web Services defines the programming model and
runtime architecture for implementing web services in Java that run on a Jakarta EE
application server, such as WebLogic Server.

Chapter 2
Jakarta RESTful Web Services (JAX-RS)

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 16

http://www.itu.int/rec/T-REC-X.891-200505-I/en
https://jcp.org/en/jsr/detail?id=370
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index5.html
https://jcp.org/aboutJava/communityprocess/mrel/jsr222/index3.html

See the JSR 109: Implementing Enterprise Web Services specification at http://
www.jcp.org/en/jsr/detail?id=109. In particular, it specifies that programmers implement
Jakarta EE web services using one of two components:

• Java class running in the Web container

• Stateless session EJB running in the EJB container

The specification also describes a standard Jakarta EE web services packaging format,
deployment model, and runtime services, all of which are implemented by WebLogic web
services.

Security Assertion Markup Language (SAML) 2.0
The Security Assertion Markup Language (SAML) specification provides an XML standard for
exchanging authentication and authorization data between security domains.

Namespaces:

urn:oasis:names:tc:SAML:2.0:assertion

urn:oasis:names:tc:SAML:2.0:protocol

See:

• https://www.oasis-open.org/standards#samlv2.0

• Securing WebLogic Web Services for Oracle WebLogic Server.

Security Assertion Markup Language (SAML) Token Profile 1.1
and 1.0

The Web Services Security: SAML Token Profile 1.1 specification defines a set of SOAP
extensions that implement SOAP message authentication and encryption.

Namespace: urn:oasis:names:tc:SAML:1.0:assertion

See:

• https://groups.oasis-open.org/higherlogic/ws/public/document?document_id=16768

• http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf

See Securing WebLogic Web Services for Oracle WebLogic Server.

Simple Object Access Protocol (SOAP) 1.1 and 1.2
Simple Object Access Protocol (SOAP) is a lightweight XML-based protocol used to exchange
information in a decentralized, distributed environment.

Namespace: http://schemas.xmlsoap.org/wsdl/soap

See the Simple Object Access Protocol (SOAP) specification, described at http://
www.w3.org/TR/SOAP. WebLogic Server includes its own implementation of versions 1.1 and
1.2 of the SOAP specification. The protocol consists of:

• An envelope that describes the SOAP message. The envelope contains the body of the
message, identifies who should process it, and describes how to process it.

Chapter 2
Security Assertion Markup Language (SAML) 2.0

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 16

http://www.jcp.org/en/jsr/detail?id=109
http://www.jcp.org/en/jsr/detail?id=109
https://www.oasis-open.org/standards#samlv2.0
https://groups.oasis-open.org/higherlogic/ws/public/document?document_id=16768
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.0.pdf
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP

• A set of encoding rules for expressing instances of application-specific data types.

• A convention for representing remote procedure calls and responses.

This information is embedded in a Multipurpose Internet Mail Extensions (MIME)-encoded
package that can be transmitted over HTTP, HTTPs, or other Web protocols. MIME is a
specification for formatting non-ASCII messages so that they can be sent over the Internet.

The following example shows a SOAP 1.1 request for stock trading information embedded
inside an HTTP request:

POST /StockQuote HTTP/1.1
Host: www.sample.com:7001
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:GetLastStockQuote xmlns:m="Some-URI">
 <symbol>ORCL</symbol>
 </m:GetLastStockQuote>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

By default, WebLogic web services use version 1.1 of SOAP; if you want your web services to
use version 1.2, you must specify the binding type in the JWS file that implements your
service.

SOAP Over JMS Transport 1.0
SOAP over JMS services transport is supported as a connection protocol for JAX-WS
WebLogic web services.

For JAX-WS, this feature supports the new W3C SOAP over Java Message Service 1.0
standard (February 2012), available at: http://www.w3.org/TR/soapjms/

For more information, see Using JMS Transport as the Connection Protocol in Developing
JAX-WS Web Services for Oracle WebLogic Server.

SOAP with Attachments API for Java (SAAJ) 2.0
The SOAP with Attachments API for Java (SAAJ) describes how developers can produce and
consume messages conforming to the SOAP 1.1 specification and SOAP with Attachments
notes.

See the SOAP with Attachments API for Java (SAAJ) specification, described at https://
jcp.org/en/jsr/detail?id=67.

The single package in the API, javax.xml.soap, provides the primary abstraction for SOAP
messages with MIME attachments. Attachments may be entire XML documents, XML
fragments, images, text documents, or any other content with a valid MIME type. In addition,
the package provides a simple client-side view of a request-response style of interaction with a
web service.

Chapter 2
SOAP Over JMS Transport 1.0

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 16

http://www.w3.org/TR/soapjms/
https://jcp.org/en/jsr/detail?id=67
https://jcp.org/en/jsr/detail?id=67

Web Application Description Language (WADL) 2009
Membership Submission

Web Application Description Language (WADL) is an XML-based specification that provides a
machine-readable description of HTTP-based Web applications. Developers of WebLogic web
services do not need to create the WADL files; you generate these files automatically as part of
the WebLogic web services development process.

Namespace: http://wadl.dev.java.net/2009/02/wadl.xsd

See Web Application Description Language (WADL) specification at http://www.w3.org/
Submission/wadl.

See Developing and Securing RESTful Web Services for Oracle WebLogic Server.

Web Services Addressing (WS-Addressing) 1.0 and 2004/08
Member Submission

The Web Services Addressing (WS-Addressing) Core provides transport-neutral mechanisms
to address web services and messages.

Namespaces:

http://www.w3.org/2005/08/addressing

http://www.w3.org/2007/05/addressing/metadata

See the Web Services Addressing (WS-Addressing) Core specification, described at http://
www.w3.org/TR/ws-addr-core. In particular, the specification defines a number of XML
elements used to identify web service endpoints and to secure end-to-end endpoint
identification in messages.

In addition to 1.0, the current release supports Web Services Addressing (August 2004
Member Submission), described at http://www.w3.org/Submission/2004/SUBM-ws-
addressing-20040810.

The Web Services Addressing (WS-Addressing) Metadata specification, described at http://
www.w3.org/TR/ws-addr-metadata, defines how the abstract properties defined in Web
Services Addressing Core are described using WSDL and how WS-Policy can be used to
indicate the support of WS-Addressing by a web service.

Web Services Atomic Transaction (WS-AtomicTransaction)
Version 1.2, 1.1, and 1.0

The Web Services Atomic Transaction (WS-AtomicTransaction) defines the Atomic Transaction
coordination type that is to be used with the extensible coordination framework described in the
Web Services Coordination specification. The WS-AtomicTransaction and WS-Coordination
specifications define an extensible framework for coordinating distributed activities among a
set of participants.

Chapter 2
Web Application Description Language (WADL) 2009 Membership Submission

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 16

http://www.w3.org/Submission/wadl
http://www.w3.org/Submission/wadl
http://www.w3.org/TR/ws-addr-core
http://www.w3.org/TR/ws-addr-core
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810
http://www.w3.org/TR/ws-addr-metadata
http://www.w3.org/TR/ws-addr-metadata

See the Web Services Atomic Transaction (WS-AtomicTransaction) specification, described at
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-
cs-01.html.

See Using Web Services Atomic Transactions in Developing JAX-WS Web Services for Oracle
WebLogic Server.

Web Services Coordination (WS-Coordination) Version 1.2, 1.1,
and 1.0

The Web Services Coordination (WS-Coordination) defines an extensible framework for
providing protocols that coordinate the actions of distributed applications.

See the Web Services Coordination (WS-Coordination) specification, described at http://
docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-
cs-01.html. The WS-AtomicTransaction and WS-Coordination specifications define an
extensible framework for coordinating distributed activities among a set of participants.

Web Services Description Language (WSDL) 1.1
Web Services Description Language (WSDL) is an XML-based specification that describes a
web service. A WSDL document describes web services operations, input and output
parameters, and how a client application connects to the web service.

Namespace: http://schemas.xmlsoap.org/wsdl

See the Web Services Description Language (WSDL) specification at http://www.w3.org/TR/
wsdl.

Developers of WebLogic web services do not need to create the WSDL files; you generate
these files automatically as part of the WebLogic web services development process.

The following example, for informational purposes only, shows a WSDL file that describes the
stock trading web services StockQuoteService that contains the method GetLastStockQuote:

<?xml version="1.0"?>
 <definitions name="StockQuote"
 targetNamespace="http://sample.com/stockquote.wsdl"
 xmlns:tns="http://sample.com/stockquote.wsdl"
 xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
 xmlns:xsd1="http://sample.com/stockquote.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <message name="GetStockPriceInput">
 <part name="symbol" element="xsd:string"/>
 </message>
 <message name="GetStockPriceOutput">
 <part name="result" type="xsd:float"/>
 </message>
 <portType name="StockQuotePortType">
 <operation name="GetLastStockQuote">
 <input message="tns:GetStockPriceInput"/>
 <output message="tns:GetStockPriceOutput"/>
 </operation>
 </portType>
 <binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>

Chapter 2
Web Services Coordination (WS-Coordination) Version 1.2, 1.1, and 1.0

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 16

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

 <operation name="GetLastStockQuote">
 <soap:operation soapAction="http://sample.com/GetLastStockQuote"/>
 <input>
 <soap:body use="encoded" namespace="http://sample.com/stockquote"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded" namespace="http://sample.com/stockquote"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>>
 </binding>
 <service name="StockQuoteService">
 <documentation>My first service</documentation>
 <port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">
 <soap:address location="http://sample.com/stockquote"/>
 </port>
 </service>
 </definitions>

The WSDL specification includes optional extension elements that specify different types of
bindings that can be used when invoking the web service. The WebLogic web services
runtime:

• Fully supports SOAP bindings, which means that if a WSDL file includes a SOAP binding,
the WebLogic web services will use SOAP as the format and protocol of the messages
used to invoke the web service.

• Ignores HTTP GET and POST bindings, which means that if a WSDL file includes this
extension, the WebLogic web services runtime skips over the element when parsing the
WSDL.

• Partially supports MIME bindings, which means that if a WSDL file includes this extension,
the WebLogic web services runtime parses the element, but does not actually create MIME
bindings when constructing a message due to a web service invoke.

See Developing WebLogic Web Services Starting from a WSDL File: Main Steps in Developing
JAX-WS Web Services for Oracle WebLogic Server.

Web Services MakeConnection 1.1
The Web Services MakeConnection provides a mechanism for the transfer of messages
between two endpoints when the sending endpoint is unable to initiate a new connection to the
receiving endpoint. For example, to enable asynchronous web service invocation from behind
a firewall.

Namespace: http://docs.oasis-open.org/ws-rx/wsmc/200702

See the Web Services MakeConnection specification at http://docs.oasis-open.org/ws-rx/
wsmc/200702/wsmc-1.1-spec-os.html.

See Developing Asynchronous Clients in Developing JAX-WS Web Services for Oracle
WebLogic Server.

Web Services Metadata for the Java Platform 2.1 (JSR-181)
Oracle recommends that you take advantage of the metadata annotations feature in Oracle
WebLogic Server. To do so, you use a programming model in which you create an annotated

Chapter 2
Web Services MakeConnection 1.1

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 16

http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os.html

Java file and then use Ant tasks to convert the file into the Java source code of a standard
Java class or EJB and automatically generate all the associated artifacts.

See http://docs.oracle.com/javase/8/docs/technotes/guides/language/
annotations.html.

The Java Web Service (JWS) annotated file (called a JWS file for simplicity) is the core of your
web service. It contains the Java code that determines how your web service behaves. A JWS
file is an ordinary Java class file that uses metadata annotations to specify the shape and
characteristics of the web service. The JWS annotations you can use in a JWS file include the
standard ones defined by the Web Services Metadata for the Java Platform specification
(JSR-181), described at http://www.jcp.org/en/jsr/detail?id=181, as well as a set of other
standard or WebLogic-specific ones, depending on the type of web service you are creating.

Note

As an alternative to using a JWS annotated file, you can program a WebLogic web
service manually by coding the standard Java class or EJB from scratch and
generating its associated artifacts by hand (deployment descriptor files, WSDL, data
binding artifacts for user-defined data types, and so on). However, the entire process
can be difficult and tedious and is not recommended.

Web Services Policy Attachment (WS-Policy Attachment) 1.5 and
1.2

The Web Services Policy Attachment (WS-Policy Attachment) specification defines an abstract
model and an XML-based expression grammar for policies. The specification defines two
general-purpose mechanisms for associating such policies with the subjects to which they
apply. This specification also defines how these general-purpose mechanisms can be used to
associate WS-Policy with WSDL and UDDI descriptions.

Namespaces:

WS-Policy Attachment 1.5: http://www.w3.org/ns/ws-policy

WS-PolicyAttachment 1.2: http://schemas.xmlsoap.org/ws/2004/09/policy

See:

• Web Services Policy 1.5 - Attachment (Recommendation): http://www.w3.org/TR/ws-
policy-attach/

• Web Services Policy 1.2 - Attachment (WS-PolicyAttachment) (Member Submission):
http://www.w3.org/Submission/WS-PolicyAttachment

See Securing WebLogic Web Services for Oracle WebLogic Server.

Web Services Policy Framework (WS-Policy) 1.5 and 1.2
The WS-Policy Framework (WS-Policy) specification provides a general purpose model and
corresponding syntax to describe and communicate the policies of a web service. WS-Policy
defines a base set of constructs that can be used and extended by other web services
specifications to describe a broad range of service requirements, preferences, and capabilities.

Namespaces:

Chapter 2
Web Services Policy Attachment (WS-Policy Attachment) 1.5 and 1.2

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 16

http://docs.oracle.com/javase/8/docs/technotes/guides/language/annotations.html
http://docs.oracle.com/javase/8/docs/technotes/guides/language/annotations.html
http://www.jcp.org/en/jsr/detail?id=181
http://www.w3.org/TR/ws-policy-attach/
http://www.w3.org/TR/ws-policy-attach/
http://www.w3.org/Submission/WS-PolicyAttachment

WS-Policy Framework 1.5: http://www.w3.org/ns/ws-policy

WS-Policy 1.2: http://schemas.xmlsoap.org/ws/2004/09/policy

See:

• Web Services Policy 1.5 - Framework (Recommendation): http://www.w3.org/TR/ws-
policy

• Web Services Policy 1.2 - Framework (WS-Policy) (Member Submission): http://
www.w3.org/Submission/WS-Policy

See Securing WebLogic Web Services for Oracle WebLogic Server.

Web Services Reliable Messaging (WS-ReliableMessaging)
The Web Services Reliable Messaging (WS-ReliableMessaging) describes how two web
services running on different WebLogic Server instances can communicate reliably in the
presence of failures in software components, systems, or networks.

Namespace: http://docs.oasis-open.org/ws-rx/wsrm/200702

See the Web Services Reliable Messaging (WS-ReliableMessaging) specification at http://
docs.oasis-open.org/ws-rx/wsrm/200702, In particular, the specification provides for an
interoperable protocol in which a message sent from a source endpoint to a destination
endpoint is guaranteed either to be delivered or to raise an error.

See Using Web Services Reliable Messaging in Developing JAX-WS Web Services for Oracle
WebLogic Server.

Note

The WebLogic Server WS-ReliableMessaging supports backward compatibility with
older versions of the specification. For example, a WS-ReliableMessaging 1.2 web
service can be accessed by clients conforming to either the WS-ReliableMessaging
1.2 or 1.1 specifications. However, a WS-ReliableMessaging 1.2/1.1 client cannot
communicate with a WS-ReliableMessaging 1.0 server. Note that WS-
ReliableMessaging 1.2 (client or service) is supported on JAX-WS only.

Web Services Reliable Messaging Policy Assertion (WS-RM
Policy)

The Web Services Reliable Messaging Policy Assertion (WS-RM Policy) specification defines a
domain-specific policy assertion for reliable messaging for use with WS-Policy and WS-
ReliableMessaging. This specification enables an RM Destination and an RM Source to
describe their requirements for a given sequence.

Namespace: http://docs.oasis-open.org/ws-rx/wsrmp/200702

See:

• Version 1.2 (JAX-WS only): http://docs.oasis-open.org/ws-rx/wsrmp/200702/
wsrmp-1.2-spec-os.html

Chapter 2
Web Services Reliable Messaging (WS-ReliableMessaging)

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 16

http://www.w3.org/TR/ws-policy
http://www.w3.org/TR/ws-policy
http://www.w3.org/Submission/WS-Policy
http://www.w3.org/Submission/WS-Policy
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.2-spec-os.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.2-spec-os.html

• Version 1.1 (JAX-WS only): http://docs.oasis-open.org/ws-rx/wsrmp/200702/
wsrmp-1.1-spec-os-01.html

See Using Web Services Reliable Messaging in Developing JAX-WS Web Services for Oracle
WebLogic Server.

Web Services Secure Conversation Language (WS-
SecureConversation)

The Web Services Secure Conversation Language (WS-SecureConversation) specification
defines extensions that build on Web Services Security (WS-Security) 1.1 and 1.0 and Web
Services Trust Language (WS-Trust) to provide secure communication across one or more
messages.

Namespace: http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512

Specifically, the specification defines mechanisms for establishing and sharing security
contexts, and deriving keys from established security contexts (or any shared secret).

See:

• Version 1.4 (JAX-WS): http://docs.oasis-open.org/ws-sx/ws-secureconversation/
v1.4/ws-secureconversation.html

See Securing WebLogic Web Services for Oracle WebLogic Server.

Web Services Security (WS-Security) 1.1 and 1.0
Namespaces: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecuritysecext-1.0.xsd, http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurityutility-1.0.xsd, http://docs.oasis-open.org/wss/oasis-wss-wssecurity-
secext-1.1.xsd

The following description of Web Services Security is taken directly from the OASIS standard
1.1 specification, titled Web Services Security: SOAP Message Security, dated February 2006:

This specification proposes a standard set of SOAP [SOAP11, SOAP12] extensions that can
be used when building secure web services to implement message content integrity and
confidentiality. This specification refers to this set of extensions and modules as the Web
Services Security: SOAP Message Security or WSS: SOAP Message Security.

This specification is flexible and is designed to be used as the basis for securing web services
within a wide variety of security models including PKI, Kerberos, and SSL. Specifically, this
specification provides support for multiple security token formats, multiple trust domains,
multiple signature formats, and multiple encryption technologies. The token formats and
semantics for using these are defined in the associated profile documents.

This specification provides three main mechanisms: ability to send security tokens as part of a
message, message integrity, and message confidentiality. These mechanisms by themselves
do not provide a complete security solution for web services. Instead, this specification is a
building block that can be used in conjunction with other web service extensions and higher-
level application-specific protocols to accommodate a wide variety of security models and
security technologies.

These mechanisms can be used independently (for example, to pass a security token) or in a
tightly coupled manner (for example, signing and encrypting a message or part of a message

Chapter 2
Web Services Secure Conversation Language (WS-SecureConversation)

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 16

http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/ws-secureconversation.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/v1.4/ws-secureconversation.html

and providing a security token or token path associated with the keys used for signing and
encryption).

See the OASIS Web Service Security Web page at http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wss.

WebLogic web services also implement the following token profiles:

• Web Services Security: SOAP Message Security

• Web Services Security: Username Token Profile

• Web Services Security: X.509 Certificate Token Profile

• Web Services Security: SAML Token Profile 1.0 and 1.1

See Securing WebLogic Web Services for Oracle WebLogic Server.

Web Services Security Policy (WS-SecurityPolicy) 1.3
The Web Services Security Policy (WS-SecurityPolicy) defines a set of security policy
assertions for use with the WS-Policy framework to describe how messages are to be secured
in the context of WS-Security, WS-Trust and WS-SecureConversation.

Namespace: http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200802

See the Web Services Security Policy (WS-SecurityPolicy) specification at http://
docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/ws-securitypolicy.html.

All the asynchronous features of WebLogic web services (callbacks, conversations, and web
service reliable messaging) use addressing in their implementation, but web service
programmers can also use the APIs that conform to this specification stand-alone if additional
addressing functionality is needed.

See Securing WebLogic Web Services for Oracle WebLogic Server.

Web Services Trust Language (WS-Trust)
The Web Services Trust Language (WS-Trust) defines extensions that provides a framework
for requesting and issuing security tokens, and to broker trust relationships.

Version 1.4 Namespace: http://docs.oasis-open.org/ws-sx/ws-trust/200802

Version 1.3 Namespace: http://docs.oasis-open.org/ws-sx/ws-trust/200512

See the Web Services Trust Language (WS-Trust) specifications at:

• Version 1.4 (JAX-WS): https://www.oasis-open.org/standards#wstrustv1.4

See Securing WebLogic Web Services for Oracle WebLogic Server.

Additional Specifications Supported by WebLogic Web Services
• XML Schema Part 1: Structures described at http://www.w3.org/TR/xmlschema-1

• XML Schema Part 2: Data Types described at http://www.w3.org/TR/xmlschema-2

Chapter 2
Web Services Security Policy (WS-SecurityPolicy) 1.3

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 16

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/ws-securitypolicy.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/ws-securitypolicy.html
https://www.oasis-open.org/standards#wstrustv1.4
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2

3
Using the Development and Administration
Tools

Oracle provides helpful tools for developing and administering WebLogic web services for
Oracle WebLogic Server, such as Oracle IDEs to develop web services, administration tools to
manage, test, and monitor WebLogic Web services, Oracle WebLogic Scripting Tool, Java
Management Extensions (JMX), and so on.

Using Oracle IDEs to Develop Web Services
Oracle JDeveloper and Oracle Enterprise Pack for Eclipse (OEPE) tools are available to
develop web services.

• Oracle JDeveloper—Oracle's full-featured Java IDE, can be used for end-to-end
development of web services. Developers can build Java classes or EJBs, expose them as
web services, automatically deploy them to an instance of Oracle WebLogic Server, and
immediately test the running web service. Alternatively, JDeveloper can be used to drive
the creation of web services from WSDL descriptions. JDeveloper also is Ant-aware. You
can use this tool to build and run Ant scripts for assembling the client and for assembling
and deploying the service. See Developing and Securing Web Services in Developing
Applications with Oracle JDeveloper.

• Oracle Enterprise Pack for Eclipse (OEPE)—Provides a collection of plug-ins to the
Eclipse IDE platform that facilitate development of WebLogic web services. For more
information, see the Eclipse IDE platform online help.

Using the Administration Tools to Manage, Test, and Monitor
WebLogic Web Services

Basic administration of web services is very similar to basic administration of standard Java
Platform, Enterprise Edition (Jakarta EE) applications and modules. These standard tasks
include deploying and monitoring the Enterprise application, configuring the policy files, and so
on.

When you use the jwsc Ant task to compile and package a WebLogic web service, the task
packages it as part of an Enterprise application. The web service itself is packaged inside the
Enterprise application as a Web application WAR file, by default. However, if your JWS file
implements a session bean then the web service is packaged as an EJB JAR file.

The standard tasks include:

• Deploying the Enterprise application that contains the web service.

• Starting and stopping the deployed Enterprise application.

• Configuring the Enterprise application and the archive file which implements the actual
web service. You can configure general characteristics of the Enterprise application, such
as the deployment order, or module-specific characteristics, such as session time-out for
Web applications or transaction type for EJBs.

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 8

• Creating and updating the Enterprise application's deployment plan.

• Monitoring the Enterprise application.

• Testing the Enterprise application.

The following provides examples of administrative tasks are specific to web services:

• Configuring the policy files associated with a web service endpoint or its operations.

• Viewing the SOAP handlers associated with the web service.

• Viewing the WSDL of the web service.

• Creating a web service security configuration.

There are a variety of ways to administer Jakarta EE modules and applications that run on
WebLogic Server, including web services, as described in the following sections.

Using Oracle Enterprise Manager Fusion Middleware Control
The Oracle Enterprise Manager Fusion Middleware Control (Fusion Middleware Control) is a
Web browser-based, graphical user interface that you can use to administer and monitor a
farm.

A farm is a collection of managed components. It can contain Oracle WebLogic Server
domains, one or more Managed Servers and the Oracle Fusion Middleware system
components that are installed, configured, and running in the domain.

Fusion Middleware Control organizes a wide variety of performance data and administrative
functions into distinct, Web-based home pages for the farm, Oracle WebLogic Server domain,
components, and applications. The Fusion Middleware Control home pages make it easy to
locate the most important monitoring data and the most commonly used administrative
functions—all from your Web browser.

For more information about managing, testing, and monitoring web services using the
Enterprise Manager, see Administering Web Services.

Fusion Middleware Control is available as part of the Oracle Fusion Middleware product; it is
not available to you if you purchase the standalone version of Oracle WebLogic Server. See
Getting Started Using Oracle Enterprise Manager Fusion Middleware Control in Administering
Oracle Fusion Middleware.

Using Oracle WebLogic Remote Console
The WebLogic Remote Console is a web browser-based, graphical user interface that you use
to manage a WebLogic Server domain, one or more WebLogic Server instances, clusters, and
applications, including web services, that are deployed to the server or cluster.

One instance of WebLogic Server in each domain is configured as an Administration Server.
The Administration Server provides a central point for managing a WebLogic Server domain.
All other WebLogic Server instances in a domain are called Managed Servers. In a domain
with only a single WebLogic Server instance, that server functions both as Administration
Server and Managed Server. The Administration Server hosts the WebLogic Remote Console,
which is a Web Application accessible from any supported Web browser with network access
to the Administration Server.

The following sections provide more details on the following topics:

Chapter 3
Using Oracle Enterprise Manager Fusion Middleware Control

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 8

Invoking the Remote Console
To invoke the WebLogic Remote Console in your browser, enter the following URL:

http://hostname:port/rconsole

https://hostname:port/rconsole

Where hostname and port match the values you set when you deployed Hosted WebLogic
Remote Console.

For more information, see Oracle WebLogic Remote Console Online Help.

How Web Services Are Displayed In the Remote Console
Web services are typically deployed to WebLogic Server as part of an Enterprise Application.
The Enterprise Application can be either archived as an EAR, or be in exploded directory
format. The web service itself is almost always packaged as a Web Application; the only
exception is if your JWS file implements a session bean in which case it is packaged as an
EJB. The web service can be in archived format (WAR or EJB JAR file, respectively) or as an
exploded directory.

It is not required that a web service be installed as part of an Enterprise application; it can be
installed as just the Web Application or EJB. However, Oracle recommends that users install
the web service as part of an Enterprise application. The WebLogic Ant task used to create a
web service, jwsc, always packages the generated web service into an Enterprise application.

Creating a Web Services Security Configuration
When a deployed WebLogic web service has been configured to use message-level security
(encryption and digital signatures, as described by the WS-Security specification), the web
services runtime determines whether a web service security configuration is also associated
with the service. This security configuration specifies information such as whether to use an
X.509 certificate for identity, whether to use password digests, the keystore to be used for
encryption, and so on. A single security configuration can be associated with many web
services.

Using the Oracle WebLogic Scripting Tool
The WebLogic Scripting Tool (WLST) is a command-line scripting interface that you can use to
interact with and configure WebLogic Server domains and instances, as well as deploy Jakarta
EE modules and applications (including web services) to a particular WebLogic Server
instance. Using WLST, system administrators and operators can initiate, manage, and persist
WebLogic Server configuration changes.

See:

• Web Services Custom WLST Commands in WLST Command Reference for Infrastructure
Components

• Understanding the WebLogic Scripting Tool

Chapter 3
Using the Oracle WebLogic Scripting Tool

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 8

Using Oracle WebLogic Server Ant Tasks
WebLogic Server includes a variety of Ant tasks that you can use to centralize many of the
configuration and administrative tasks into a single Ant build script. Use wlserver, wlconfig,
and wldeploy for basic Ant tasks.

The Ant tasks can:

• Create, start, and configure a new WebLogic Server domain, using the wlserver and
wlconfig Ant tasks.

• Deploy a compiled application to the newly-created domain, using the wldeploy Ant task.

• Generate web services and clients, and download a WSDL to a local directory.

The following table summarizes the steps to use the web services Ant tasks.

Table 3-1 Steps to Use the Web Services Ant Tasks

Step Description

1 Set up your environment. On Windows NT, execute the setDomainEnv.cmd command, located in your
domain directory. The default location of WebLogic Server domains is
ORACLE_HOME\user_projects\domains\domainName, where ORACLE_HOME
represents the directory you specified as the Oracle Home when you installed
WebLogic Server and domainName is the name of your domain.

On UNIX, execute the setDomainEnv.sh command, located in your domain
directory. The default location of WebLogic Server domains is ORACLE_HOME/
user_projects/domains/domainName, where ORACLE_HOME represents the
directory you specified as the Oracle Home when you installed WebLogic Server
and domainName is the name of your domain.

2 Create the build.xml file that
contains a call to the web
services Ant tasks.

The following example shows a simple build.xml file with a single target called
clean:

<project name="my-webservice">
 <target name="clean">
 <delete>
 <fileset dir="tmp" />
 </delete>
 </target>
</project>

This clean target deletes all files in the tmp subdirectory. Later sections provide
examples of specifying the Ant task in the build.xml file.

Chapter 3
Using Oracle WebLogic Server Ant Tasks

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 8

Table 3-1 (Cont.) Steps to Use the Web Services Ant Tasks

Step Description

3 For each WebLogic web service
Ant task you want to execute,
add an appropriate task
definition and target to the
build.xml file using the
<taskdef> and <target>
elements.

The following example shows how to add the jwsc Ant task to the build file; the
attributes of the task have been removed for clarity:

<taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />
<target name="build-service">
 <jwsc attributes go here...>
 ...
 </jwsc>
</target>

Note: You can name the WebLogic web services Ant tasks anything you want by
changing the value of the name attribute of the relevant <taskdef> element. For
consistency, however, this document uses the names jwsc, clientgen, wsdlc,
and wsdlget throughout.

4 Execute the Ant task or tasks
specified in the build.xml file.

Type ant in the same directory as the build.xml file and specify the target. For
example:

prompt> ant build-service

5 Specify the context path and
service URI used in the URL
that invokes the web service.
(Optional)

You can set this information in several ways, as described in Defining the Context
Path of a WebLogic Web Service in Developing JAX-WS Web Services for Oracle
WebLogic Server.

For more information, see:

• Ant Task Reference in WebLogic Web Services Reference for Oracle WebLogic Server

• The following sections in Developing Applications for Oracle WebLogic Server:

– Using Ant Tasks to Configure and Use a WebLogic Server Domain

– wldeploy Ant Task Reference

Setting the Classpath for the WebLogic Ant Tasks
Each WebLogic Ant task accepts a classpath attribute or element so that you can add new
directories or JAR files to your current CLASSPATH environment variable.

The following example shows how to use the classpath attribute of the jwsc Ant task to add a
new directory to the CLASSPATH variable:

<jwsc srcdir="MyJWSFile.java"
 classpath="${java.class.path};my_fab_directory"
 ...
</jwsc>

The following example shows how to add to the CLASSPATH by using the <classpath>
element:

<jwsc ...>
 <classpath>
 <pathelement path="${java.class.path}" />
 <pathelement path="my_fab_directory" />
 </classpath>

Chapter 3
Using Oracle WebLogic Server Ant Tasks

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 8

...
</jwsc>

The following example shows how you can build your CLASSPATH variable outside of the
WebLogic web service Ant task declarations, then specify the variable from within the task
using the <classpath> element:

<path id="myClassID">
 <pathelement path="${java.class.path}"/>
 <pathelement path="${additional.path1}"/>
 <pathelement path="${additional.path2}"/>
</path>
<jwsc>
 <classpath refid="myClassID" />
...
</jwsc>

Note

The Java Ant utility included in WebLogic Server uses the ant (UNIX) or ant.bat
(Windows) configuration files in the WL_HOME\server\bin directory to set various Ant-
specific variables, where WL_HOME is the top-level directory of your WebLogic Server
installation If you need to update these Ant variables, make the relevant changes to
the appropriate file for your operating system.

Differences in Operating System Case Sensitivity When Manipulating WSDL
and XML Schema Files

Many WebLogic web service Ant tasks have attributes that you can use to specify a file, such
as a WSDL or an XML Schema file.

The Ant tasks process these files in a case-sensitive way. This means that if, for example, the
XML Schema file specifies two user-defined types whose names differ only in their
capitalization (for example, MyReturnType and MYRETURNTYPE), the clientgen Ant task correctly
generates two separate sets of Java source files for the Java representation of the user-
defined data type: MyReturnType.java and MYRETURNTYPE.java.

However, compiling these source files into their respective class files might cause a problem if
you are running the Ant task on Microsoft Windows, because Windows is a case insensitive
operating system. This means that Windows considers the files MyReturnType.java and
MYRETURNTYPE.java to have the same name. So when you compile the files on Windows, the
second class file overwrites the first, and you end up with only one class file. The Ant tasks,
however, expect that two classes were compiled, thus resulting in an error similar to the
following:

c:\src\com\bea\order\MyReturnType.java:14:
class MYRETURNTYPE is public, should be declared in a file named MYRETURNTYPE.java
public class MYRETURNTYPE
 ^

To work around this problem rewrite the XML Schema so that this type of naming conflict does
not occur, or if that is not possible, run the Ant task on a case sensitive operating system, such
as Unix.

Chapter 3
Using Oracle WebLogic Server Ant Tasks

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 8

Using the Java Management Extensions (JMX)
A managed bean (MBean) is a Java bean that provides a Java Management Extensions (JMX)
interface. JMX is the Jakarta EE solution for monitoring and managing resources on a network.
Like SNMP and other management standards, JMX is a public specification and many vendors
of commonly used monitoring products support it.

WebLogic Server provides a set of MBeans that you can use to configure, monitor, and
manage WebLogic Server resources through JMX. WebLogic web services also have their
own set of MBeans that you can use to perform some web service administrative tasks.

There are two types of MBeans: runtime (for read-only monitoring information) and
configuration (for configuring the web service after it has been deployed).

The configuration web services MBeans are:

• WebserviceSecurityConfigurationMBean

• WebserviceCredentialProviderMBean

• WebserviceSecurityMBean

• WebserviceSecurityTokenMBean

• WebserviceTimestampMBean

• WebserviceTokenHandlerMBean

The runtime web services MBeans are:

• WseeRuntimeMBean

• WseeHandlerRuntimeMBean

• WseePortRuntimeMBean

• WseeOperationRuntimeMBean

• WseePolicyRuntimeMBean

See MBean Reference for Oracle WebLogic Server and the following sections in Developing
Custom Management Utilities Using JMX for Oracle WebLogic Server:

• Understanding WebLogic Server MBeans

• Accessing WebLogic Server MBeans with JMX

• Managing a Domain's Configuration with JMX

Using the Jakarta EE Deployment API
The Jakarta EE Deployment architecture defines the contracts that enable tools or application
programmers to configure and deploy applications on any Jakarta EE platform product. The
contracts define a uniform model between tools and Jakarta EE platform products for
application deployment configuration and deployment.

The J2EE Application Deployment specification (JSR-88), described at http://
jcp.org/en/jsr/detail?id=88, defines a standard API that you can use to configure an
application for deployment to a target application server environment.

Chapter 3
Using the Java Management Extensions (JMX)

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 8

http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88

The Deployment architecture makes it easier to deploy applications: Deployers do not have to
learn all the features of many different Jakarta EE deployment tools in order to deploy an
application on many different Jakarta EE platform products.

See Deploying Applications to Oracle WebLogic Server for more information.

Using Web Services Apache Maven Goals
Apache Maven is a software tool for building and managing Java-based projects. WebLogic
Server provides support for Maven through the provisioning of plug-ins that enable you to
perform various operations on WebLogic Server from within a Maven environment.

WebLogic Server provides support for the following web services Maven goals.

Table 3-2 Web Services Maven Goals

Maven Goal Description

ws-clientgen Generates client web service artifacts from a WSDL.

ws-wsdlc Generates a set of artifacts and a partial Java implementation of the
web service from a WSDL.

ws-jwsc Builds a JAX-WS web service.

See Using the WebLogic Development Maven Plug-in in Developing Applications for Oracle
WebLogic Server for complete documentation.

Chapter 3
Using Web Services Apache Maven Goals

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 8

4
Roadmap and Related Information

Understand how to implement WebLogic web services for Oracle WebLogic Server using a
roadmap that lists common tasks for creating, deploying, and invoking WebLogic web services,
along with a summary of related documentation.

Roadmap for Implementing WebLogic Web Services
The roadmap provides common tasks for creating, deploying, and invoking WebLogic web
services, such as reviewing the supported standards, running the samples, developing and
administering web services using JAX-WS, and more.

Table 4-1 Roadmap for Implementing WebLogic Web Services

Task More Information

Review supported standards Features and Standards Supported by WebLogic Web Services

Run samples Examples for Jakarta EE Web Service Developers

Develop and administer web services using
JAX-WS

Developing JAX-WS Web Services for Oracle WebLogic Server

Develop and administer RESTful web
services using JAX-RS

Developing and Securing RESTful Web Services for Oracle WebLogic
Server

Secure the web service—Oracle Web
Services Manager (OWSM) policies

Securing Web Services and Managing Policies with Oracle Web Services
Manager

Secure the web service—WebLogic web
service policies

Securing WebLogic Web Services for Oracle WebLogic Server

Attach OWSM policies • Attaching Policies in Securing Web Services and Managing Policies with
Oracle Web Services Manager

• Attaching Policies in Developing Applications with Oracle JDeveloper

Attach WebLogic web service policies • Using Oracle Web Service Manager Security Policies in Securing
WebLogic Web Services for Oracle WebLogic Server

• Attaching Policies in Developing Applications with Oracle JDeveloper

Administer web services—Fusion Middleware
Control

Administering Web Services

Test web services • Testing Web Services in Administering Web Services
• Testing and Debugging Web Services in Developing Applications with

Oracle JDeveloper

Monitor web service performance • Monitoring and Auditing Web Services in Administering Web Services

Create custom OWSM policy file Creating Custom Assertions in Developing Extensible Applications with
Oracle Web Services Manager

Create custom WebLogic web service policy
file

Creating and Using a Custom Policy File in Securing WebLogic Web
Services for Oracle WebLogic Server

Interoperate WebLogic and Oracle WSM web
service policies

Interoperability Guide for Oracle Web Services Manager

Upgrade Upgrading WebLogic Web Services in Upgrading Oracle WebLogic Server

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 3

WebLogic Web Services Documentation Set
This document is part of a larger WebLogic web services documentation set that covers a
comprehensive list of web services topics.

Table 4-2 WebLogic Web Services Documentation Set

Document Description

Understanding Web Services Develop web services for Oracle Fusion Middleware 14c.

Understanding WebLogic Web
Services for Oracle WebLogic Server
(This Document)

Introduces WebLogic web services, the standards that are
supported, interoperability information, and relevant samples and
documentation.

Understanding Oracle Web Services
Manager

Introduces WebLogic web services, the standards that are
supported, interoperability information, and relevant samples and
documentation.

Developing JAX-WS Web Services
for Oracle WebLogic Server

Describes how to develop WebLogic web services using JAX-
WS. The guide includes use cases and examples, iterative
development procedures, typical JWS programming steps, data
type information, and how to invoke a web service.

Developing and Securing RESTful
Web Services for Oracle WebLogic
Server

Describes how to develop WebLogic web services that conform
to the Representational State Transfer (REST) architectural style
using Java API for RESTful Web Services (JAX-RS).

Securing WebLogic Web Services for
Oracle WebLogic Server

Describes how to develop and configure message-level (digital
signatures and encryption), transport-level, and access control
security for a web service.

Securing Web Services and
Managing Policies with Oracle Web
Services Manager

Describes how to secure web services using Oracle Web
Services Manager (OWSM) policies.

Administering Web Services Administer web services for Oracle Fusion Middleware 14c.

WebLogic Web Services Reference
for Oracle WebLogic Server

Reference information on JWS annotations, Ant tasks, reliable
messaging WS-Policy assertions, security WS-Policy assertions,
and deployment descriptors.

Interoperability Guide for Oracle Web
Services Manager

Interoperate with OWSM.

Developing Extensible Applications
for Oracle Web Services Manager

Develop custom assertions for OWSM.

Related Documentation—WebLogic Server Application
Development

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, refer to the documents such as Developing Applications for Oracle WebLogic
Server, Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server,
Developing XML Applications for Oracle WebLogic Server, and so on.

Chapter 4
WebLogic Web Services Documentation Set

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 3

Table 4-3 Related Documentation—WebLogic Server Application Development

Review this document . . . To learn how to . . .

Developing Applications for
Oracle WebLogic Server

Develop WebLogic Server components (such as Web applications and
EJBs) and applications.

Developing Web Applications,
Servlets, and JSPs for Oracle
WebLogic Server

Develop Web applications, including servlets and JSPs, that are
deployed and run on WebLogic Server.

Developing Enterprise
JavaBeans, Version 2.1, for
Oracle WebLogic Server

Develop EJBs that are deployed and run on WebLogic Server.

Developing XML Applications
for Oracle WebLogic Server

Design and develop applications that include XML processing.

Deploying Applications to
Oracle WebLogic Server

Deploy WebLogic Server applications. Use this guide for both
development and production deployment of your applications.

Configuring Applications for
Production Deployment in
Deploying Applications to
Oracle WebLogic Server

Configure your applications for deployment to a production WebLogic
Server environment.

Tuning Performance of Oracle
WebLogic Server

Monitor and improve the performance of WebLogic Server applications.

System Administration in
Understanding Oracle
WebLogic Server

Administer WebLogic Server and its deployed applications.

Chapter 4
Related Documentation—WebLogic Server Application Development

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 3

5
Interoperability with Microsoft WCF/.NET

Oracle performs interoperability testing, in conjunction with Microsoft, to ensure that WebLogic
web services for Oracle WebLogic Server can access and consume web services created
using Microsoft Windows Communication Foundation (WCF)/.NET 3.0, 3.5, and Framework
4.0, and vice versa.
Table 5-1 describes the interoperability tests that were completed on JAX-WS web services.

Table 5-1 Completed Interoperability Tests

Area Interoperability Guidelines

Basic and complex data types Basic Data Types Interoperability Guidelines

WS-I Basic Profile 2.0, 1.2, and 1.1 Basic Profile Interoperability Guidelines

Note: WS-I Basic Profile 2.0 and 1.2 applies to JAX-WS only.
WS-I Basic Profile 1.1 applies to JAX-WS web services.

Web Services Reliable Secure Profile
(WS-RSP) 1.0

Web Services Reliable Secure Profile Interoperability Guidelines

Web Services Security (WS-Security)
1.0 and 1.1

WS-Security Interoperability Guidelines

Web Services Security Policy (WS-
SecurityPolicy) 1.2

WS-SecurityPolicy Interoperability Guidelines

Web Services Secure Conversation
Language (WS-SecureConversation)
1.3

WS-SecureConversation Interoperability Guidelines

Web Services Policy Framework (WS-
Policy) 1.5

No interoperability restrictions.

Web Services Addressing (WS-
Addressing) 0.9 and 1.0

N/A

Message Transmission Optimization
Mechanism (MTOM)

N/A

SAML Assertions Using SAML Assertions Referenced from SignedInfo

In addition, the following combined features were tested:

• MTOM and WS-Security

• WS-ReliableMessaging and MTOM

• WS-ReliableMessaging 1.2 and WS-Addressing 1.0 (JAX-WS)

• WS-ReliableMessaging 1.1 and WS-Addressing 1.0 (JAX-WS)

• WS-ReliableMessaging 1.2 and WS-SecureConversation 1.4

• WS-ReliableMessaging 1.1 and WS-SecureConversation 1.3

• WS-ReliableMessaging 1.0 and WS-SecureConversation 1.3

• WS-Policy 1.5 and WS-SecurityPolicy 1.2

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 4

The following sections describe the interoperability issues and guidelines that were identified
during the testing.

Basic Data Types Interoperability Guidelines
When using the anyType class with Microsoft .NET 3.0/3.5 the Java data type returned cannot
be guaranteed. If a specific Java data type is required, avoid using anyType.

Basic Profile Interoperability Guidelines
Follow the basic profile interoperability guidelines to test the WS-I Basic Profiles.

The WS-I Basic Profile 1.2 and 2.0 profiles were tested between WebLogic web services JAX-
WS and the Microsoft .NET Framework 4.0. No interoperability restrictions were found.

Web Services Reliable Secure Profile Interoperability Guidelines
The Web Services Reliable Secure Profile implementations for WebLogic web services and
Microsoft .NET Web are compatible with few caveats.

• For WS-ReliableMessaging security, you must use WS-SecureConversation as per the
guidelines in the WS-I Reliable Secure Profile Version 1.0 Working Group Draft
specification at http://www.ws-i.org/Profiles/ReliableSecureProfile-1.0.html.

• Asynchronous reliable messaging plus WS-SecureConversation or WS-Trust is only
supported for WebLogic web service JAX-WS clients and Microsoft .NET services.

WS-Security Interoperability Guidelines
WebLogic Server lists interoperability guidelines for WS-Security, such as defining the security
policies, Microsoft .NET 3.0/3.5 guidelines, and so on.

• Use of <sp:Strict> layout assertions (shown below) cannot be guaranteed.

<sp:Layout>
 <wsp:Policy>
 <sp:Strict/>
 </wsp:Policy>
</sp:Layout>

Instead, you should define your policy as follows:

<sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
</sp:Layout>

• The following assertions are not supported by Microsoft .NET 3.0/3.5:

– Digest password in UsernameToken

– <sp:EncryptedSupportingTokens>

– Element-level signature

– Element-level encryption

Chapter 5
Basic Data Types Interoperability Guidelines

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 4

http://www.ws-i.org/Profiles/ReliableSecureProfile-1.0.html

• Support of asymmetric binding for WS-Security 1.1 cannot be guaranteed on
Microsoft .NET 3.0/3.5.

WS-SecurityPolicy Interoperability Guidelines
WebLogic Server provides WS-SecurityPolicy interoperability guidelines to be followed.

In this release, WebLogic Server and Microsoft .NET 3.5 support Web Services Security Policy
(WS-SecurityPolicy) 1.3. Microsoft .NET 3.0 supports the December 2005 draft version of the
WS-SecurityPolicy specification.

In the December 2005 draft version of the specification, the
<sp:SignedEncryptedSupportingTokens> policy assertion is not supported. As a result,
Microsoft .NET 3.0 encrypts the UsernameToken in the <sp:SignedSupportingTokens> policy
assertion. If you use the <sp:SignedSupportingTokens> policy assertion without encrypting the
UsernameToken, the WebLogic Server and Microsoft .NET web services will not interoperate.

WS-SecureConversation Interoperability Guidelines
Use the interoperability guidelines for WS-SecureConversation, such as usage of
<sp:SignBeforeEncrypt>, setCompatibilityPreference("msft") method, and so on.

• Oracle recommends that you do not use <sp:EncryptBeforeSigning/> unless there is a
security requirement. Instead, use <sp:SignBeforeEncrypt> (the default).

• Although WebLogic Server web services support cookie mode conversations, this feature
is a Microsoft proprietary implementation, and may not be supported by other vendors.

• When using <sp:BootstrapPolicy> policy assertion, you should refer to the guidelines
defined in WS-Security Interoperability Guidelines.

• There is no standard method of supporting cancel and renew of WS-SecureConversation
defined in the WS-SecurityPolicy or WS-SecureConversation specifications. The method
used by Microsoft .NET to support cancel and renew of WS-SecureConversation is not
compatible with WebLogic Server 10.x. As a result:

– For a Microsoft .NET client to interoperate with a WebLogic Server web service, the
Compatibility flag must be set on the server side via the web service Security MBean
using the setCompatibilityPreference("msft") method.

– For a WebLogic Server web service client to interoperate with a WebLogic Server web
service that has the Compatibility flag set, the client must set this flag as well, as
follows:

stub._setProperty(WLStub.POLICY_COMPATIBILITY_PREFERENCE,"msft");

For examples, see Example 5-1 and #unique_76/unique_76_Connect_42_BABFFEIF.

Using SAML Assertions Referenced from SignedInfo
When the SAML assertion is referenced in the <ds:SignedInfo> element of a <ds:Signature>
element in a <wsee:Security> header, Microsoft .NET does not support a SAML assertion that
is referenced from <wsse:SecurityTokenReference>. Use of <wsse:SecurityTokenReference>
is defined as a best practice in the WS-Security specification.

See https://groups.oasis-open.org/higherlogic/ws/public/document?
document_id=16768.

Chapter 5
WS-SecurityPolicy Interoperability Guidelines

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 4

https://groups.oasis-open.org/higherlogic/ws/public/document?document_id=16768
https://groups.oasis-open.org/higherlogic/ws/public/document?document_id=16768

For compatibility with Microsoft .NET, you must set the
WLStub.POLICY_COMPATIBILITY_PREFERENCE flag to WLStub.POLICY_COMPATIBILITY_MSFT flag
in web service client code. When the flag is set, the SAML assertion will be signed with direct
reference, rather than using a SecurityTokenReference.

The following provides an example of how to set the Microsoft .NET compatibility flag for a
JAX-WS web service client:

Example 5-1 Setting the Microsoft .NET Compatibility Flag in a JAX-WS Web Service Client

. . .
import weblogic.wsee.jaxrpc.WLStub;
. . .
public String test(String hello) throws Exception {
 . . .
 BindingProvider provider = (BindingProvider)port;
 Map context = provider.getRequestContext();
 . . .
 . . .
 context.put(WLStub.POLICY_COMPATIBILITY_PREFERENCE, WLStub.POLICY_COMPATIBILITY_MSFT);
 try {
 String result = port.getName(hello);
 System.out.println("MSFT Result was: " + result);
 return result;
 } catch (Exception e) {
 throw new RuntimeException (e);
 }
}

Chapter 5
Using SAML Assertions Referenced from SignedInfo

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 4

6
Examples for Jakarta EE Web Service
Developers

Oracle provides a variety of samples that web service developers can use to learn more about
WebLogic web services for Oracle WebLogic Server.

Samples for WebLogic Web Service Developers
Oracle provides a variety of code samples for web services developers. The samples and
tutorials illustrate WebLogic web services in action, and provide practical instructions on how to
perform key web service development tasks. Oracle recommends that you run the web service
samples before programming your own application that use web services.

Web services samples include:

Web Services Samples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in the
ORACLE_HOME\wlserver\samples\server\examples\src\examples\webservices directory,
where ORACLE_HOME represents the directory in which you installed WebLogic Server. See
Sample Applications and Code Examples in Understanding Oracle WebLogic Server.

Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample Jakarta EE application shipped with WebLogic Server that
simulates an independent, centralized medical record management system. The MedRec
application provides a framework for patients, doctors, and administrators to manage patient
data using a variety of different clients.

MedRec demonstrates WebLogic Server and Jakarta EE features, and highlights Oracle-
recommended best practices. MedRec is optionally installed with the WebLogic Server
installation. You can start MedRec from the ORACLE_HOME\user_projects\domains\medrec
directory, where ORACLE_HOME is the directory you specified as the Oracle Home when you
installed Oracle WebLogic Server. See Sample Applications and Code Examplesin
Understanding Oracle WebLogic Server.

Additional Web Services Samples Available for Download
The additional Web services samples include Oracle-certified ones, and the samples submitted
by fellow developers. Your use rights and restrictions for each sample code item described in
the applicable license agreement.

Additional API samples for download can be found at http://www.oracle.com/technetwork/
indexes/samplecode/index.html.

Understanding WebLogic Web Services for Oracle WebLogic Server
G31689-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 1

http://www.oracle.com/technetwork/indexes/samplecode/index.html
http://www.oracle.com/technetwork/indexes/samplecode/index.html

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Introducing Oracle WebLogic Web Services
	Overview of WebLogic Web Services
	How Do I Choose Between SOAP and REST?

	2 Features and Standards Supported by WebLogic Web Services
	A Note About JAX-WS 2.3 RI/JDK 17 Extensions
	Fast Infoset
	Jakarta RESTful Web Services (JAX-RS)
	Jakarta Web Services 3.0
	Java Architecture for XML Binding (JAXB) 3.0
	JSR 109: Implementing Enterprise Web Services 1.4
	Security Assertion Markup Language (SAML) 2.0
	Security Assertion Markup Language (SAML) Token Profile 1.1 and 1.0
	Simple Object Access Protocol (SOAP) 1.1 and 1.2
	SOAP Over JMS Transport 1.0
	SOAP with Attachments API for Java (SAAJ) 2.0
	Web Application Description Language (WADL) 2009 Membership Submission
	Web Services Addressing (WS-Addressing) 1.0 and 2004/08 Member Submission
	Web Services Atomic Transaction (WS-AtomicTransaction) Version 1.2, 1.1, and 1.0
	Web Services Coordination (WS-Coordination) Version 1.2, 1.1, and 1.0
	Web Services Description Language (WSDL) 1.1
	Web Services MakeConnection 1.1
	Web Services Metadata for the Java Platform 2.1 (JSR-181)
	Web Services Policy Attachment (WS-Policy Attachment) 1.5 and 1.2
	Web Services Policy Framework (WS-Policy) 1.5 and 1.2
	Web Services Reliable Messaging (WS-ReliableMessaging)
	Web Services Reliable Messaging Policy Assertion (WS-RM Policy)
	Web Services Secure Conversation Language (WS-SecureConversation)
	Web Services Security (WS-Security) 1.1 and 1.0
	Web Services Security Policy (WS-SecurityPolicy) 1.3
	Web Services Trust Language (WS-Trust)
	Additional Specifications Supported by WebLogic Web Services

	3 Using the Development and Administration Tools
	Using Oracle IDEs to Develop Web Services
	Using the Administration Tools to Manage, Test, and Monitor WebLogic Web Services
	Using Oracle Enterprise Manager Fusion Middleware Control
	Using Oracle WebLogic Remote Console
	Invoking the Remote Console
	How Web Services Are Displayed In the Remote Console
	Creating a Web Services Security Configuration

	Using the Oracle WebLogic Scripting Tool
	Using Oracle WebLogic Server Ant Tasks
	Setting the Classpath for the WebLogic Ant Tasks
	Differences in Operating System Case Sensitivity When Manipulating WSDL and XML Schema Files

	Using the Java Management Extensions (JMX)
	Using the Jakarta EE Deployment API
	Using Web Services Apache Maven Goals

	4 Roadmap and Related Information
	Roadmap for Implementing WebLogic Web Services
	WebLogic Web Services Documentation Set
	Related Documentation—WebLogic Server Application Development

	5 Interoperability with Microsoft WCF/.NET
	Basic Data Types Interoperability Guidelines
	Basic Profile Interoperability Guidelines
	Web Services Reliable Secure Profile Interoperability Guidelines
	WS-Security Interoperability Guidelines
	WS-SecurityPolicy Interoperability Guidelines
	WS-SecureConversation Interoperability Guidelines
	Using SAML Assertions Referenced from SignedInfo

	6 Examples for Jakarta EE Web Service Developers
	Samples for WebLogic Web Service Developers
	Web Services Samples in the WebLogic Server Distribution
	Avitek Medical Records Application (MedRec) and Tutorials

	Additional Web Services Samples Available for Download

