Oracle® Fusion Middleware
Developing Applications for Oracle WebLogic
Server

15¢ (15.1.1.0.0)
(G31429-01
October 2025

ORACLE"

Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server, 15¢ (15.1.1.0.0)
G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience i
Documentation Accessibility i
Diversity and Inclusion i
Related Documentation i
Conventions ii

1 Overview of WebLogic Server Application Development

WebLogic Server and the Jakarta EE Platform
Overview of Jakarta EE Applications and Modules
Web Application Modules

Servlets

Jakarta Server Pages

More Information on Web Application Modules
Jakarta Enterprise Beans Modules

EJB Documentation in WebLogic Server

Additional EJB Information
Connector Modules
Enterprise Applications

Jakarta EE Programming Model

Packaging and Deployment Overview
WebLogic Web Services
JMS and JDBC Modules
WebLogic Diagnostic Framework Modules

Using an External Diagnostics Descriptor

Defining an External Diagnostics Descriptor

Coherence Grid Archive (GAR) Modules
Bean Validation

0O N NN oo OB BB OWOWWWDNDNMNDNNDNPE

XML Deployment Descriptors

Automatically Generating Deployment Descriptors 13
Java-Based Command-Line Utilities 13
Upgrading Deployment Descriptors From Previous Releases of Jakarta EE and

WebLogic Server 13

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page i of xiii

Deployment Plans 14
Development Tools 15
Java API Reference and the wis-api.jar File 15
Using the wis-api.jar File 15

Using the weblogic.jar File 16
Apache Ant 16
Using a Third-Party Version of Ant 17
Changing the Ant Heap Size 17

Source Code Editor or IDE 17
Database System and JDBC Driver 17
Web Browser 17
Third-Party Software 18

2 Using Ant Tasks to Configure and Use a WebLogic Server Domain

Overview of Configuring and Starting Domains Using Ant Tasks 1
Starting Servers and Creating Domains Using the wiserver Ant Task 1
Basic Steps for Using wiserver 2
Sample build.xml Files for wiserver 3
wliserver Ant Task Reference 3
Configuring a WebLogic Server Domain Using the wiconfig Ant Task 7
What the wiconfig Ant Task Does 7
Basic Steps for Using wiconfig 8
wlconfig Ant Task Reference 8
Main Attributes 8
Nested Elements 9
create 10

delete 10

set 10

get 11

query 11

invoke 12
Example of Creating a Security Realm with the wiconfig Ant Task 12
Using the libclasspath Ant Task 13
libclasspath Task Definition 13
libclasspath Ant Task Reference 13
Main libclasspath Attributes 13
Nested libclasspath Elements 14
librarydir 14

library 14
Example libclasspath Ant Task 14

Developing Applications for Oracle WebLogic Server
G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page ii of xiii

3 Using the WebLogic Maven Plug-In

Installing Maven 1
Configuring the WebLogic Maven Plug-In 1
How to use the WebLogic Maven Plug-in 2
Basic Configuration POM File 4
Maven Plug-In Goals 6
appc 7
create-domain 10
deploy 12
distribute-app 16
install 20
list-apps 25
purge-tasks 27
redeploy 29
remove-domain 32
start-app 33
start-server 35
stop-app 37
stop-server 39
undeploy 41
uninstall 44
update-app 45
wist 48
wist-client 51
ws-clientgen 56
wsgen 61
wsimport 65
ws-wsdlc 72
WS-jWSC 75
4 Creating a Split Development Directory Environment
Overview of the Split Development Directory Environment 1
Source and Build Directories 1
Deploying from a Split Development Directory 2
Split Development Directory Ant Tasks 3
Using the Split Development Directory Structure: Main Steps 4
Organizing Jakarta EE Components in a Split Development Directory 4
Source Directory Overview 5
Enterprise Application Configuration 7
Web Applications 7

Developing Applications for Oracle WebLogic Server
G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page iii of xiii

Developing
G31429-01

EJBs
Important Notes Regarding EJB Descriptors

Organizing Shared Classes in a Split Development Directory
Shared Utility Classes
Third-Party Libraries
Class Loading for Shared Classes

Generating a Basic build.xml File Using weblogic.BuildXMLGen
weblogic.BuildXMLGen Syntax

Developing Multiple-EAR Projects Using the Split Development Directory
Organizing Libraries and Classes Shared by Multiple EARs
Linking Multiple build.xml Files

Best Practices for Developing WebLogic Server Applications

Building Applications in a Split Development Directory

10
10
10
11
11
12
13
13
14
15

Compiling Applications Using wicompile
Using includes and excludes Properties
wlcompile Ant Task Attributes
Nested javac Options
Setting the Classpath for Compiling Code
Library Element for wicompile and wlappc
Building Modules and Applications Using wlappc
wlappc Ant Task Attributes
wlappc Ant Task Syntax
Syntax Differences between appc and wlappc
weblogic.appc Reference
weblogic.appc Syntax
weblogic.appc Options

Deploying and Packaging from a Split Development Directory

O 01 01 O O W W W N N DN - -

Deploying Applications Using wideploy
Packaging Applications Using wipackage
Archive Versus Exploded Archive Directory
wlpackage Ant Task Example
wlpackage Ant Task Attribute Reference

Developing Applications for Production Redeployment

N N R R R

What is Production Redeployment?
Supported and Unsupported Application Types
Additional Application Support

Applications for Oracle WebLogic Server

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page iv of xiii

Programming Requirements and Conventions
Applications Should Be Self-Contained
Versioned Applications Access the Current Version JNDI Tree by Default
Security Providers Must Be Compatible
Applications Must Specify a Version Identifier
Applications Can Access Name and Identifier
Client Applications Use Same Version when Possible
Assigning an Application Version
Application Version Conventions
Upgrading Applications to Use Production Redeployment

A DA DA DB W W W WLWDNDNDNDDN

Accessing Version Information

8 Using Jakarta EE Annotations and Dependency Injection

Annotation Processing
Annotation Parsing
Deployment View of Annotation Configuration
Compiling Annotated Classes
Dynamic Annotation Updates
Dependency Injection of Resources
Application Life Cycle Annotation Methods
Standard JDK Annotations
javax.annotation.PostConstruct
javax.annotation.PreDestroy
javax.annotation.Resource
javax.annotation.Resources
Standard Security-Related JDK Annotations
javax.annotation.security.DeclareRoles
javax.annotation.security.DenyAll
javax.annotation.security.PermitAll
javax.annotation.security.RolesAllowed

0O N N N OO o0 o 0O A W W W NDNDNDPEFE PP

javax.annotation.security.RunAs

O Using Contexts and Dependency Injection for the Jakarta EE Platform

About CDI for the Jakarta EE Platform

Defining a Managed Bean

Injecting a Bean

Defining the Scope of a Bean

Overriding the Scope of a Bean at the Point of Injection
Using Qualifiers

a A B W NDN PP

Defining Qualifiers for Implementations of a Bean Type

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page v of xiii

Applying Qualifiers to a Bean 6
Injecting a Qualified Bean 7
Providing Alternative Implementations of a Bean Type 8
Defining an Alternative Implementation of a Bean Type 8
Selecting an Alternative Implementation of a Bean Type for an Application 9
Applying a Scope and Qualifiers to a Session Bean 9
Applying a Scope to a Session Bean 10
Applying Qualifiers to a Session Bean 10
Using Producer Methods, Disposer Methods, and Producer Fields 10
Defining a Producer Method 10
Defining a Disposer Method 11
Defining a Producer Field 12
Initializing and Preparing for the Destruction of a Managed Bean 12
Initializing a Managed Bean 12
Preparing for the Destruction of a Managed Bean 13
Intercepting Method Invocations and Life Cycle Events of Bean Classes 13
Defining an Interceptor Binding Type 14
Defining an Interceptor Class 15
Identifying Methods for Interception 16
Enabling an Interceptor 17
Applying an Interceptor on a Producer 18
Decorating a Managed Bean Class 18
Defining a Decorator Class 19
Enabling a Decorator Class 20
Assigning an EL Name to a CDI Bean Class 21
Defining and Applying Stereotypes 22
Defining a Stereotype 22
Applying Stereotypes to a Bean 23
Using Events for Communications Between Beans 23
Defining an Event Type 24
Sending an Event 24
Handling an Event 25
Injecting a Predefined Bean 26
Injecting and Qualifying Resources 27
Using CDI With JCA Technology 29
Configuring a CDI Application 29
Enabling and Disabling CDI 30
Enabling and Disabling CDI for a Domain 31
Implicit Bean Discovery 32
Enabling and Disabling Implicit Bean Discovery for a Domain 32
Supporting Third-Party Portable Extensions 33
Using the Built-in Annotation Literals 33

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page vi of xiii

Using the Configurator Interfaces 34
Bootstrapping a CDI Container 34

10 Jakarta JSON Processing

About JavaScript Object Notation (JSON)
Object Model API

Creating an Object Model from JSON Data

Creating an Object Model from Application Code

Navigating an Object Model

Writing an Object Model to a Stream
Streaming API

Reading JSON Data Using a Parser

Writing JSON Data Using a Generator
New Features for JSON Processing

JSON Pointer

JSON Patch

JSON Merge Patch

© 00 N N O 01 oW NDN P

11 Jakarta JSON Binding

About Default Mapping
About Customized Mapping
Standard Support to Handle Application or JSON Media Type for JAX-RS

12 Understanding WebLogic Server Application Classloading

Java Classloading

Java Classloader Hierarchy

Loading a Class

prefer-web-inf-classes Element

Changing Classes in a Running Program

Class Caching With the Policy Class Loader

Class Caching With Application Class Data Sharing
WebLogic Server Application Classloading

Overview of WebLogic Server Application Classloading

Application Classloader Hierarchy

Custom Module Classloader Hierarchies

Declaring the Classloader Hierarchy

User-Defined Classloader Restrictions

Servlet Reloading Disabled

© © © N O O o B W W N DNDNDPEFP P

Nesting Depth

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page vii of xiii

Module Types 9

Duplicate Entries 10
Interfaces 10
Call-by-Value Semantics 10
In-Flight Work 10
Development Use Only 10
Individual EJB Classloader for Implementation Classes 10
Application Classloading and Pass-by-Value or Reference 11
Using a Filtering Classloader 12
What is a Filtering Classloader 12
Configuring a Filtering Classloader 13
Resource Loading Order 13
Resolving Class References Between Modules and Applications 14
About Resource Adapter Classes 14
Packaging Shared Utility Classes 15
Manifest Class-Path 15
Using the Classloader Analysis Tool (CAT) 15
Opening the CAT Interface 16
How CAT Analyzes Classes 16
Identifying Class References through Manifest Hierarchies 16
Sharing Applications and Modules By Using Jakarta EE Libraries 18
Adding JARs to the Domain /lib Directory 18

13 Creating Shared Jakarta EE Libraries and Optional Packages

Overview of Shared Jakarta EE Libraries and Optional Packages 1
Library Directories 2
Versioning Support for Libraries 2
Shared Jakarta EE Libraries and Optional Packages Compared 3
Additional Information 3

Creating Shared Jakarta EE Libraries 4
Assembling Shared Jakarta EE Library Files 4
Assembling Optional Package Class Files 5
Editing Manifest Attributes for Shared Jakarta EE Libraries 5
Packaging Shared Jakarta EE Libraries for Distribution and Deployment 7

Referencing Shared Jakarta EE Libraries in an Enterprise Application 7
Overriding context-roots Within a Referenced Enterprise Library 9
URIs for Shared Jakarta EE Libraries Deployed As a Standalone Module 10

Referencing Optional Packages from a Jakarta EE Application or Module 10

Using weblogic.appmerge to Merge Libraries 12
Using weblogic.appmerge from the CLI 12
Using weblogic.appmerge as an Ant Task 12

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page viii of xiii

14

15

16

17

Integrating Shared Jakarta EE Libraries with the Split Development Directory Environment
Deploying Shared Jakarta EE Libraries and Dependent Applications

Web Application Shared Jakarta EE Library Information

Using WebApp Libraries With Web Applications

Accessing Registered Shared Jakarta EE Library Information with LibraryRuntimeMBean
Order of Precedence of Modules When Referencing Shared Jakarta EE Libraries

Best Practices for Using Shared Jakarta EE Libraries

Programming Application Life Cycle Events

13
13
13
14
15
15
16

Understanding Application Life Cycle Events
Registering Events in weblogic-application.xml
Programming Basic Life Cycle Listener Functionality

Configuring a Role-Based Application Life Cycle Listener
Examples of Configuring Life Cycle Events with and without the URI Parameter
Understanding Application Life Cycle Event Behavior During Redeployment
Programming Application Version Life Cycle Events

Understanding Application Version Life Cycle Event Behavior

Types of Application Version Life Cycle Events

Example of Production Deployment Sequence When Using Application Version Life
Cycle Events

Programming Context Propagation

o o1 o1 o0 b~ W NN R

Understanding Context Propagation

Programming Context Propagation: Main Steps
Programming Context Propagation in a Client
Programming Context Propagation in an Application

Programming Jakarta Mail with WebLogic Server

A NN P

Overview of Using Jakarta Mail with WebLogic Server Applications
Understanding Jakarta Mail Configuration Files

Configuring Jakarta Mail for WebLogic Server

Sending Messages with Jakarta Malil

Reading Messages with Jakarta Malil

Threading and Clustering Topics

W NN PP

Using Threads in WebLogic Server
Using the Work Manager API for Lower-Level Threading
Programming Applications for WebLogic Server Clusters

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page ix of xiii

18 Developing OSGi Bundles for WebLogic Server Applications

Understanding OSGi
Features Provided in WebLogic Server OSGi Implementation
Configuring the OSGi Framework
Configuring OSGi Framework Instances
Configuring OSGi Framework Instance From config.xml
Configuring OSGi Framework Instance From WLST
Configuring OSGi Framework Instance from a Java Program
Parameter Required for Installing Bundles in the Framework
Configuring OSGi Framework Persistence
Using OSGi Services
Connecting to an OSGi Console
Creating OSGi Bundles
Deploying OSGi Bundles
Preparing to Deploy an OSGi Bundle on a Target System

© © © © 0 0 N N oo & B DNMNDN P P

Preparing to Deploy Bundles as Enterprise Applications

=Y
o

Preparing to Deploy Bundles as Web Applications

=
o

Global Work Managers

=
=

Global Data Sources

[N
N

Deploying OSGi Bundles in the osgi-lib Directory

[EnN
N

Setting the Start Level and Run Level for a Bundle

[EEY
N

Accessing Deployed Bundle Objects From JNDI

H
N

Using OSGi Logging Via WebLogic Server

=
(6]

Configuring a Filtering ClassLoader for OSGi Bundles
OSGI Example

=
ol

19 Using the WebSocket Protocol in WebLogic Server

Understanding the WebSocket Protocol
Limitations of the HTTP Request-Response Model
WebSocket Endpoints
Handshake Requests in the WebSocket Protocol
Messaging and Data Transfer in the WebSocket Protocol
Understanding the WebLogic Server WebSocket Implementation
WebSocket Protocol Implementation
WebLogic WebSocket Java API
Protocol Fallback for WebSocket Messaging
Sample WebSocket Applications
Overview of Creating a WebSocket Application
Creating an Endpoint

a A A A DO WWWDNPREP PP

Creating an Annotated Endpoint

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page x of xiii

Creating a Programmatic Endpoint 6
Specifying the Path Within an Application to a Programmatic Endpoint 6
Handling Life Cycle Events for a WebSocket Connection 7
Handling Life Cycle Events in an Annotated WebSocket Endpoint 7
Handling a Connection Opened Event 8
Handling a Message Received Event 9
Handling an Error Event 10
Handling a Connection Closed Event 11
Handling Life Cycle Events in a Programmatic WebSocket Endpoint 11
Defining, Injecting, and Accessing a Resource for a WebSocket Endpoint 13
Sending a Message 14
Sending a Message to a Single Peer of an Endpoint 14
Sending a Message to All Peers of an Endpoint 15
Ensuring Thread Safety for WebSocket Endpoints 16
Encoding and Decoding a WebSocket Message 17
Encoding a Java Object as a WebSocket Message 17
Decoding a WebSocket Message as a Java Object 19
Specifying a Part of an Endpoint Deployment URI as an Application Parameter 21
Maintaining Client State 22
Configuring a Server Endpoint Programmatically 23
Building Applications that Use the Jakarta API for WebSocket 24
Deploying a WebSocket Application 25
Monitoring WebSocket Applications 26
Using WebSockets with Proxy Servers 28
Writing a WebSocket Client 29
Writing a Browser-Based WebSocket Client 29
Writing a Java WebSocket Client 30
Configuring a WebSocket Client Endpoint Programmatically 30
Connecting a Java WebSocket Client to a Server Endpoint 32

Setting the Maximum Number of Threads for Dispatching Messages from a
WebSocket Client 33
Securing a WebSocket Application 34
Applying Verified-Origin Policies 34
Authenticating and Authorizing WebSocket Clients 35
Authorizing WebSocket Clients 36
Establishing Secure WebSocket Connections 36
Avoiding Mixed Content 36
Specifying Limits for a WebSocket Connection 37
Enabling Protocol Fallback for WebSocket Messaging 37
Using the JavaScript API for WebSocket Fallback in Client Applications 37
Configuring WebSocket Fallback 37
Creating a WebSocket Object 39

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page xi of xiii

Handling Life Cycle Events for a JavaScript WebSocket Client 40
Sending a Message from a JavaScript WebSocket Client 42
Packaging and Specifying the Location of the WebSocket Fallback Client Library 43
Enabling WebSocket Fallback 43
Migrating an Application to the JSR 356 Java API for WebSocket from the Deprecated API 43
Comparison of the JSR 356 API and Proprietary WebLogic Server WebSocket API 44
Converting a Proprietary WebSocket Server Endpoint to Use the JSR 356 API 46
Replacing the /* Suffix in a Path Pattern String 47
Replacing a /* Suffix that Represents Variable Path Parameters in an Endpoint URI 47
Replacing a /* Suffix that Represents Additional Data for an Endpoint 48
Example of Converting a Proprietary WebSocket Server Endpoint to Use the JSR 356
API 49
Example of Using the Java API for WebSocket with WebLogic Server 50
A Enterprise Application Deployment Descriptor Elements
weblogic-application.xml Deployment Descriptor Elements A-1
weblogic-application A-1
ejb A-7
entity-cache A-8
max-cache-size A-9
xml A-10
parser-factory A-10
entity-mapping A-11
jdbc-connection-pool A-11
connection-factory A-12
pool-params A-13
driver-params A-17
security A-19
application-param A-19
classloader-structure A-20
listener A-20
singleton-service A-21
startup A-21
shutdown A-22
work-manager A-22
session-descriptor A-24
library-ref A-26
library-context-root-override A-26
fast-swap A-27
weblogic-application.xml Schema A-27
Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page xii of xiii

application.xml Schema A-27

B wldeploy Ant Task Reference

Overview of the wideploy Ant Task B-1
Basic Steps for Using wideploy B-1
Sample build.xml Files for wideploy B-2
wldeploy Ant Task Attribute Reference B-3
Main Attributes B-3
Nested <files> Child Element B-7

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page xiii of xiii

ORACLE’

Preface

Audience

This document describes building WebLogic Server e-commerce applications using the Jakarta
EE Platform.

This document is written for application developers who want to build WebLogic Server
applications using the Jakarta EE Platform. It is assumed that readers know Web technologies,
object-oriented programming techniques, and the Java programming language.

WebLogic Server applications are created by Java programmers, Web designers, and
application assemblers. Programmers and designers create modules that implement the
business and presentation logic for the application. Application assemblers assemble the
modules into applications that are ready to deploy on WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

ORACLE’

Preface
The following text conventions are used in this document:
Convention Meaning
boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.
italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.
nonospace Monospace type indicates commands within a paragraph, URLs, code in

examples, text that appears on the screen, or text that you enter.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page ii of ii

Overview of WebLogic Server Application
Development

Learn basic concepts about WebLogic Server applications, modules, and deployment
descriptors.
This chapter includes the following sections:

WebLogic Server and the Jakarta EE Platform

WebLogic Server Jakarta EE applications are based on standardized, modular components.
WebLogic Server provides a complete set of services for those modules and handles many
details of application behavior automatically, without requiring programming. Jakarta EE
defines module behaviors and packaging in a generic, portable way, postponing runtime
configuration until the module is deployed on an application server.

WebLogic Server implements Jakarta EE Platform 9.1 technologies (see https://
jakarta.ee/specifications/platfornf9.1/). Jakarta EE is the standard platform for
developing multi-tier enterprise applications based on the Java programming language. The
technologies that make up Jakarta EE were developed collaboratively by several software
vendors.

Jakarta EE 9.1 Platform Highlights

Jakarta EE 9.1 continues to improve API and programming models needed for today's
applications and adds features requested by the community. This release modernizes support
for many industry standards and continues simplification of enterprise ready APIs. The key
goals of the Jakarta EE 9.1 platform are to modernize the infrastructure for enterprise Java for
the cloud and microservices environments, emphasize HTML5 and HTTP/2 support, enhance
ease of development through new Contexts and Dependency Injection features, and further
enhance security and reliability of the platform.

WebLogic Server and Jakarta EE Applications

WebLogic Server Jakarta EE applications are based on standardized, modular components.
WebLogic Server provides a complete set of services for those modules and handles many
details of application behavior automatically, without requiring programming. Jakarta EE
defines module behaviors and packaging in a generic, portable way, postponing run-time
configuration until the module is actually deployed on an application server.

Jakarta EE includes deployment specifications for Web applications, EJB modules, Web
services, enterprise applications, client applications, and connectors. Jakarta EE does not
specify how an application is deployed on the target server—only how a standard module or
application is packaged. For each module type, the specifications define the files required and
their location in the directory structure.

Jakarta is platform independent, so you can edit and compile code on any platform, and test
your applications on development WebLogic Servers running on other platforms. For example,
it is common to develop WebLogic Server applications on a PC running Windows or Linux,
regardless of the platform where the application is ultimately deployed.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 18

https://jakarta.ee/specifications/platform/9.1/
https://jakarta.ee/specifications/platform/9.1/

ORACLE’

Chapter 1
Overview of Jakarta EE Applications and Modules

Overview of Jakarta EE Applications and Modules

A WebLogic Server Jakarta EE application consists of one of the following modules or
applications running on WebLogic Server: Web application modules, Jakarta Enterprise Beans
(EJB) modules, connector modules, enterprise applications, or Web services.

e Web application modules—HTML pages, servlets, Jakarta Server Pages (JSP), and
related files. See Web Application Modules.

e Jakarta Enterprise Beans (EJB) modules—entity beans, session beans, and message-
driven beans. See Jakarta Enterprise Beans Modules.

e Connector modules—resource adapters. See Connector Modules.

- Enterprise applications—Web application modules, EJB modules, resource adapters and
Web services packaged into an application. See Enterprise Applications.

« Web services—See WebLogic Web Services.

A WebLogic application can also include the following WebLogic-specific modules:

« JDBC and JMS modules—See JMS and JDBC Modules.

* WebLogic Diagnostic FrameWork (WLDF) modules—See WebL ogic Diagnostic
Framework Modules.

e Coherence Grid Archive (GAR) Modules—See Coherence Grid Archive (GAR) Modules.

Web Application Modules

Servlets

A Web application on WebLogic Server includes some required and typically, some optional
files.

* Atleast one servlet or JSP, along with any helper classes.

e Optionally, a web. xm deployment descriptor, a Jakarta EE standard XML document that
describes the contents of a WAR file.

e Optionally, a webl ogi c. xml deployment descriptor, an XML document containing WebLogic
Server-specific elements for Web applications.

A Web application can also include HTML and XML pages with supporting files such as
images and multimedia files.

Servlets are Java classes that execute in WebLogic Server, accept a request from a client,
process it, and optionally return a response to the client. An Ht t pSer vl et is most often used to
generate dynamic Web pages in response to Web browser requests.

Jakarta Server Pages

Jakarta Server Pages (JSP) are Web pages coded with an extended HTML that makes it
possible to embed Java code in a Web page. JSPs can call custom Java classes, known as
tag libraries, using HTML-like tags. The appc compiler compiles JSPs and translates them into
servlets. WebLogic Server automatically compiles JSPs if the servlet class file is not present or
is older than the JSP source file. See Building Modules and Applications Using wlappc.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 18

ORACLE Chapter 1
Jakarta Enterprise Beans Modules

You can also precompile JSPs and package the servlet class in a Web application (WAR) file
to avoid compiling in the server. Servlets and JSPs may require additional helper classes that
must also be deployed with the Web application.

More Information on Web Application Modules

See the following documentation:

e Organizing Jakarta EE Components in a Split Development Directory.

« Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

e Developing JSP Tag Extensions for Oracle WebLogic Server

Jakarta Enterprise Beans Modules

Jakarta Enterprise Beans (EJB) technology is the server-side component architecture for the
development and deployment of component-based business applications. EJB technology
enables rapid and simplified development of distributed, transactional, secure, and portable
applications based on Jakarta EE 9.1 technology.

The EJB 3.2 specification provides simplified programming and packaging model changes.
The mandatory use of Java interfaces from previous versions has been removed, allowing
plain old Java objects to be annotated and used as EJB components. The simplification is
further enhanced through the ability to place EJB modules directly inside of Web applications,
removing the need to produce archives to store the Web and EJB components and combine
them together in an EAR file.

EJB Documentation in WebLogic Server

For more information about using EJBs with WebLogic Server, see:

* For information about all the new features in EJB, see New Features and Changes in EJB
in Developing Jakarta Enterprise Beans for Oracle WebLogic Server.

» For information about basic EJB concepts and components, see Jakarta Enterprise Beans
(EJBs) in Understanding Oracle WebLogic Server.

« For instructions on how to program, package, and deploy 3.2 EJBs on WebLogic Server,
see Developing Enterprise JavaBeans for Oracle WebLogic Server.

* For instructions on how to organize and build WebLogic Server EJBs in a split directory
environment, see Creating a Split Development Directory Environment.

« For more information on how to program and package EJBs, see Developing Jakarta
Enterprise Beans Using Deployment Descriptors.

Additional EJB Information

To learn more about EJB concepts, such as the benefits of enterprise beans, the types of
enterprise beans, and their life cycles, visit the following Web sites:

e EJB 3.2 Specification (JSR-345) at http: //jcp. org/ en/ | sr/sunmary?i d=345

* The Enterprise Beans chapter of the Jakarta EE 9.1 Tutorial at htt ps://j akarta. ee/
| earn/ docs/jakartaee-tutorial/9.1/ entbeans/ejb-intro/ejb-intro.htni

o Jakarta EE 9.1 Platform: https://j akarta. ee/ specifications/platform9.1/

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 18

http://jcp.org/en/jsr/summary?id=318
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/entbeans/ejb-intro/ejb-intro.html
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/entbeans/ejb-intro/ejb-intro.html
https://jakarta.ee/specifications/platform/9.1/

ORACLE Chapter 1
Connector Modules

Connector Modules

Connectors (also known as resource adapters) contain the Java, and if necessary, the native
modules required to interact with an Enterprise Information System (EIS). A resource adapter
deployed to the WebLogic Server environment enables Jakarta EE applications to access a
remote EIS. WebLogic Server application developers can use HTTP servlets, Jakarta Server
Pages (JSP), Jakarta Enterprise Beans (EJB), and other APIs to develop integrated
applications that use the EIS data and business logic.

To deploy a resource adapter to WebLogic Server, you must first create and configure
WebLogic Server-specific deployment descriptor, webl ogi c-ra. xm file, and add this to the
deployment directory. Resource adapters can be deployed to WebLogic Server as standalone
modules or as part of an enterprise application. See Enterprise Applications.

For more information on connectors, see Developing Resource Adapters for Oracle WebLogic
Server.

Enterprise Applications

An enterprise application consists of one or more Web application modules, EJB modules, and
resource adapters. It might also include a client application.

An enterprise application can be optionally defined by an appl i cati on. xnl file, which was the
standard Jakarta EE deployment descriptor for enterprise applications.

Jakarta EE Programming Model

An important aspect of the Jakarta EE programming model is the introduction of metadata
annotations. Annotations simplify the application development process by allowing a developer
to specify within the Java class itself how the application behaves in the container, requests for
dependency injection, and so on. Annotations are an alternative to deployment descriptors that
were required by older versions of enterprise applications (1.4 and earlier).

With Jakarta EE annotations, the standard appl i cati on. xm and web. xm deployment
descriptors are optional. The Jakarta EE programming model uses the JDK annotations
feature (see https://jakarta. ee/specifications/platfornf 8/ api docs/) for Web
containers, such as EJBs, servlets, Web applications, and JSPs. See Using Jakarta EE
Annotations and Dependency Injection.

If the application includes WebLogic Server-specific extensions, the application is further
defined by a webl ogi c-appl i cation. xm file. Enterprise applications that include a client
module will also have a client-application.xm deployment descriptor and a WebLogic run-
time client application deployment descriptor. See Enterprise Application Deployment
Descriptor Elements.

Packaging and Deployment Overview

For both production and development purposes, Oracle recommends that you package and
deploy even standalone Web applications, EJBs, and resource adapters as part of an
enterprise application. Doing so allows you to take advantage of Oracle's split development
directory structure, which greatly facilitates application development. See Creating a Split
Development Directory Environment.

An enterprise application consists of Web application modules, EJB modules, and resource
adapters. It can be packaged as follows:

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 18

https://jakarta.ee/specifications/platform/8/apidocs/

ORACLE

Chapter 1
WebLogic Web Services

» For development purposes, Oracle recommends the WebLogic split development directory
structure. Rather than having a single archived EAR file or an exploded EAR directory
structure, the split development directory has two parallel directories that separate source
files and output files. This directory structure is optimized for development on a single
WebLogic Server instance. See Creating a Split Development Directory Environment.
Oracle provides the wl package Ant task, which allows you to create an EAR without having
to use the JAR utility; this is exclusively for the split development directory structure. See
Packaging Applications Using wipackage.

* For development purposes, Oracle further recommends that you package standalone Web
applications and Jakarta Enterprise Beans (EJB) as part of an enterprise application, so
that you can take advantage of the split development directory structure. See Organizing
Jakarta EE Components in a Split Development Directory.

* For production purposes, Oracle recommends the exploded (unarchived) directory format.
This format enables you to update files without having to redeploy the application. To
update an archived file, you must unarchive the file, update it, then rearchive and redeploy
it.

* You can choose to package your application as a JAR archived file using the j ar utility with
an . ear extension. Archived files are easier to distribute and take up less space. An EAR
file contains all of the JAR, WAR, and RAR module archive files for an application and an
XML descriptor that describes the bundled modules. See Packaging Applications Using

wlpackage.

The optional META- | NF/ appl i cati on. xm deployment descriptor contains an element for each
Web application, EJB, and connector module, as well as additional elements to describe
security roles and application resources such as databases. If this descriptor is present the
WebLogic deployer picks the list of modules from this descriptor. However if this descriptor is
not present, the container guesses the modules from the annotations defined on the POJO
(plain-old-Java-object) classes. See Enterprise Application Deployment Descriptor Elements.

WebLogic Web Services

Web services can be shared by and used as modules of distributed Web-based applications.
They commonly interface with existing back-end applications, such as customer relationship
management systems, order-processing systems, and so on. Web services can reside on
different computers and can be implemented by vastly different technologies, but they are
packaged and transported using standard Web protocols, such as HTTP, thus making them
easily accessible by any user on the Web.

A Web service consists of the following modules, at a minimum:

A Web service implementation hosted by a server on the Web. WebLogic JAX-WS web
services are hosted by WebLogic Server. A Web service module may include either Java
classes or EJBs that implement the Web service. Web services are packaged either as
Web application archives (WARSs) or EJB modules (JARS), depending on the
implementation.

* A standard for transmitting data and Web service invocation calls between the Web service
and the user of the Web service. WebLogic JAX-WS web services use Simple Object
Access Protocol (SOAP) 1.1 as the message format and HTTP as the connection protocol.

* A standard for describing the Web service to clients so they can invoke it. WebLogic Web
services use Web services Description Language (WSDL) 1.1, an XML-based
specification, to describe themselves.

* A standard for clients to invoke Web services—JAX-WS. See Developing JAX-WS Web
Services for Oracle WebLogic Server.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 18

ORACLE

Chapter 1
JMS and JDBC Modules

WebLogic Server also includes support for RESTful web services. For more information about
RESTful web services, see Developing and Securing RESTful Web Services for Oracle
WebLogic Server.

For more information about WebLogic Web services and the standards that are supported, see
Understanding WebLogic Web Services for Oracle WebLogic Server.

JMS and JDBC Modules

JMS and JDBC configurations are stored as modules, defined by an XML file that conforms to
the webl ogi c-j ms. xsd and j dbc- dat a- sour ce. xsd schema, respectively. These modules are
similar to standard Jakarta EE modules. An administrator can create and manage JMS and
JDBC modules as global system resources, as modules packaged with a Jakarta EE
application (as a packaged resource), or as standalone modules that can be made globally
available.

With modular deployment of JMS and JDBC resources, you can migrate your application and
the required JMS or JDBC configuration from environment to environment, such as from a
testing environment to a production environment, without opening an enterprise application file
(such as an EAR file) or a JMS or JDBC standalone module, and without extensive manual
JMS or JDBC reconfiguration.

Application developers create application modules in an enterprise-level IDE or another
development tool that supports editing of XML files, then package the JMS or JDBC modules
with an application and pass the application to a WebLogic administrator to deploy.

For more information, see:

e Configuring JMS Application Modules for Deployment
e Configuring JDBC Application Modules for Deployment

WebLogic Diagnostic Framework Modules

The WebLogic Diagnostic Framework (WLDF) provides features for generating, gathering,
analyzing, and persisting diagnostic data from WebLogic Server instances and from
applications deployed to server instances.

For server-scoped diagnostics, some WLDF features are configured as part of the
configuration for the domain. Other features are configured as system resource descriptors
that can be targeted to servers (or clusters). For application-scoped diagnostics, diagnostic
features are configured as resource descriptors for the application.

Application-scoped instrumentation is configured and deployed as a diagnostic module, which
is similar to a diagnostic system module. However, an application module is configured in an
XML configuration file named webl ogi c- di agnosti cs. xm which is packaged with the
application archive.

For detailed instructions for configuring instrumentation for applications, see Configuring
Application-Scoped Instrumentation.

Using an External Diagnostics Descriptor

WebLogic Server also supports the use of an external diagnostics descriptor so you can
integrate diagnostic functionality into an application that has not imported diagnostic
descriptors. This feature supports the deployment view and deployment of an application or a

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 18

ORACLE Chapter 1
Coherence Grid Archive (GAR) Modules

module, detecting the presence of an external diagnostics descriptor if the descriptor is defined
in your deployment plan (pl an. xm).

Defining an External Diagnostics Descriptor

First, define the diagnostic descriptor as external and configure its URI in the pl an. xm file. For
example:

<modul e-override>
<modul e- name>r evi ewSer vi ce. ear </ nodul e- nane>
<nodul e-t ype>ear </ nodul e-t ype>
</ modul e- descri pt or >
<nmodul e-descriptor external ="true">
<root - el ement >W df - resour ce</ r oot - el enent >
<uri >META- | NF/ webl ogi c- di agnosti cs. xm </ uri >

</ nmodul e- overri de>
<confi g-root>D:\pl an</ confi g-root >

Then place the external diagnostic descriptor file under the URI. Using the example above, you
would place the descriptor file under d: \ pl an\ META- | NF.

Coherence Grid Archive (GAR) Modules

A Coherence GAR module provides distributed in-memory caching and data grid computing
that allows applications to increase their availability, scalability, and performance. GAR
modules are deployed as both standalone modules and packaged with Jakarta EE applications
(as a packaged resource). A GAR module may also be made globally available.

A GAR module is defined by the coherence-application.xml deployment descriptor and must
conform to the coherence-appl i cati on. xsd XML schema. The GAR contains the artifacts that
comprise a Coherence application: Coherence configuration files, application classes (such as
entry processors, aggregators, filters), and any dependencies that are required.

Bean Validation

The Bean Validation specification (JSR 380) defines a metadata model and API for validating
data in JavaBeans components. It is supported on both the server and Jakarta EE 9.1 client;
therefore, instead of distributing validation of data over several layers, such as the browser and
the server side, you can define the validation constraints in one place and share them across
the different layers.

Bean validation is not only for validating beans. In fact, it can also be used to validate any Java
object.

Bean Validation and JNDI

Where required by the Jakarta EE specifications, the default Val i dat or and Val i dat or Fact ory
are located using JNDI under the names j ava: conp/ Val i dat or and j ava: conp/
Val i dat or Fact ory. These two artifacts reflect the validation descriptor that is in scope.

Bean Validation Configuration
Bean validation can be configured by using XML descriptors or annotation.

* Descriptors:

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 18

ORACLE

Chapter 1
XML Deployment Descriptors

— Descriptor elements override corresponding annotations.

— Weblogic Server allows one descriptor per module. Therefore, an application can have
several validation descriptors but only one is allowed per module scope.

— Validation descriptors are named val i dati on. xml and are packaged in the META- | NF
directory, except for Web modules, where the descriptor is packaged in the VIEB- | NF
directory.

* Annotations:

— Injection of the default Val i dat or and Val i dat or Fact ory is requested using the
@resour ce annotation. However, not all source files are scanned for this annotation.

— The WebLogic Connector uses bean validation internally to validate the connector
descriptors.

Once bean validation is configured, the standard set of container managed classes for a given
container will be scanned. For example, for EJBs, bean and interceptor classes are scanned.
Web application classes and ManagedBeans also support the injection of Val i dat or and

Val i dat or Fact ori es.

For more information about the classes that support bean validation, please see the related
component specifications for the list of classes that support dependency injection.

XML Deployment Descriptors

A deployment configuration refers to the process of defining the deployment descriptor values
required to deploy an enterprise application to a particular WebLogic Server domain. The
deployment configuration for an application or module is stored in three types of XML
document: Jakarta EE deployment descriptors, WebLogic Server descriptors, and WebLogic
Server deployment plans.

This section describes the Jakarta EE and WebLogic-specific deployment descriptors. See
Deployment Plans for information on deployment plans.

The Jakarta EE programming model uses the JDK annotations feature for Web containers,
such as EJBs, servlets, Web applications, and JSPs. Annotations simplify the application
development process by allowing a developer to specify within the Java class itself how the
component behaves in the container, requests for dependency injection, and so on.
Annotations are an alternative to deployment descriptors that were required by older versions
of Web applications (2.4 and earlier), enterprise applications (1.4 and earlier), and EJBs (2.x
and earlier). See Using Jakarta EE Annotations and Dependency Injection.

However, enterprise applications fully support the use of deployment descriptors, even though
the standard Jakarta EE ones are not required. For example, you may prefer to use the old
EJB 2.x programming model, or might want to allow further customizing of the EJB at a later
development or deployment stage; in these cases you can create the standard deployment
descriptors in addition to, or instead of, the metadata annotations.

Modules and applications have deployment descriptors—XML documents—that describe the
contents of the directory or JAR file. Deployment descriptors are text documents formatted with
XML tags. The Jakarta EE specifications define standard, portable deployment descriptors for
Jakarta EE modules and applications. Oracle defines additional WebLogic-specific deployment
descriptors for deploying a module or application in the WebLogic Server environment.

Table 1-1 lists the types of modules and applications and their Jakarta EE-standard and
WebLogic-specific deployment descriptors.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 18

ORACLE Chapter 1
XML Deployment Descriptors

@® Note

The XML schemas for the WebLogic deployment descriptors listed in the following
table include elements from the http://xmins.oracle.com/weblogic/weblogic-jakartaee/2.0/
weblogic-jakartaee.xsd schema, which describes common elements shared among all
WebLogic-specific deployment descriptors.

For the most current schema information, see https://www.oracle.com/webfolder/
technetwork/weblogic/wls_15.1.1.0.0.html

Table 1-1 Jakarta EE and WebLogic Deployment Descriptors

|
Module or Application Scope Deployment Descriptors

Web Application Jakarta EE web. xn
See the Servlet 5.0 Schema at https://jakarta.ee/xml/ns/jakartaee/
web-app_5_0.xsd
VEB- | NF/ beans. xm —required only if the classes in the WAR file
are to participate in Contexts and Dependency Injection (CDI)
Schema: https://jakarta.ee/xml/ns/jakartaee/beans_3_0.xsd

See Using Contexts and Dependency Injection for the Jakarta EE
Platform.

Web Application WebLogic webl ogi c. xm
Schema: http:/xmins.oracle.com/weblogic/weblogic-web-app/2.0/
weblogic-web-app.xsd
See weblogic.xml Deployment Descriptor Elements in Developing
Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

Enterprise Bean 4.0 Jakarta EE 9.1 ej b-jar.xm
See the EJB 4.0 Schema at ht t p: / / www. or acl e. conml
webf ol der/technet work/j sc/ xm /ns/javaeel ej b-
jar_3 2.xsd
META- | NF/ beans. xm —required only if the classes in the EJB JAR
file are to participate in CDI
Schema: htt p: // ww. or acl e. coml webf ol der/
technetwork/jsc/ xm /ns/javaeel/ beans 2 0. xsd

See Using Contexts and Dependency Injection for the Jakarta EE
Platform.

Enterprise Bean 3.2 WebLogic webl ogi c-ej b-jar. xm
See the EJB 3.2 Schema at: http://xmlins.oracle.com/weblogic/
weblogic-ejb-jar/2.0/weblogic-ejb-jar.xsdwebl ogi ¢- r dbrs-j ar . xm
Schema: http://xmins.oracle.com/weblogic/weblogic-rdbms-jar/2.0/
weblogic-rdbms-jar.xsd
per si st ence-confi guration. xn
Schema: htt p:// xnl ns. oracl e. coml webl ogi ¢/ persi st ence-
configuration/1.0/persistence-configuration.xsd

See Developing Enterprise JavaBeans for Oracle WebLogic Server.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 18

http://xmlns.oracle.com/weblogic/weblogic-jakartaee/2.0/weblogic-jakartaee.xsd
http://xmlns.oracle.com/weblogic/weblogic-jakartaee/2.0/weblogic-jakartaee.xsd
https://www.oracle.com/webfolder/technetwork/weblogic/wls_15.1.1.0.0.html
https://www.oracle.com/webfolder/technetwork/weblogic/wls_15.1.1.0.0.html
https://jakarta.ee/xml/ns/jakartaee/web-app_5_0.xsd
https://jakarta.ee/xml/ns/jakartaee/web-app_5_0.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_2_0.xsd
https://jakarta.ee/xml/ns/jakartaee/beans_3_0.xsd
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.9/weblogic-web-app.xsd
http://xmlns.oracle.com/weblogic/weblogic-web-app/2.0/weblogic-web-app.xsd
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.9/weblogic-web-app.xsd
http://xmlns.oracle.com/weblogic/weblogic-web-app/2.0/weblogic-web-app.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/ejb-jar_3_2.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/ejb-jar_3_2.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/ejb-jar_3_2.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_2_0.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_2_0.xsd
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/2.0/weblogic-ejb-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/2.0/weblogic-ejb-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/2.0/weblogic-rdbms-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/2.0/weblogic-rdbms-jar.xsd
http://xmlns.oracle.com/weblogic/persistence-configuration/1.0/persistence-configuration.xsd
http://xmlns.oracle.com/weblogic/persistence-configuration/1.0/persistence-configuration.xsd

ORACLE’

Chapter 1
XML Deployment Descriptors

Table 1-1 (Cont.) Jakarta EE and WebLogic Deployment Descriptors

Module or Application Scope Deployment Descriptors
Enterprise Bean 3.0 Jakarta EE ej b-jar. xm
See the EJB 4.0 Schema at ht t p: / / www. or acl e. conl
webf ol der/technet work/jsc/ xm /ns/|avaeel ej b-
jar_3_1.xsd
META- | NF/ beans. xm —required only if the classes in the EJB JAR
file are to participate in CDI
Schema: ht t p: // ww. or acl e. com’ webf ol der/
technetwork/jsc/xm /ns/javaee/ beans 1 1.xsd
See Using Contexts and Dependency Injection for the Jakarta EE
Platform.
Enterprise Bean 3.0 WebLogic webl ogi c-ej b-jar. xn
Schemahttp://xm ns. oracl e. com webl ogi ¢/ webl ogi c- ej b-
jar/ 1.6/ webl ogic-ejb-jar.xsd
webl ogi c-rdbns-jar. xm
Schema: htt p: //xni ns. oracl e. con’ webl ogi ¢/ webl ogi c-
rdbns-jar/1. 2/ webl ogi c-rdbns-j ar. xsd
persi st ence- confi guration. xm
Schema: htt p:// xni ns. oracl e. coml webl ogi ¢/ persi st ence-
configuration/1.0/persistence-configuration.xsd
See Developing Enterprise JavaBeans for Oracle WebLogic Server.
Enterprise Bean 2.1 Jakarta EE ej b-jar. xm
See the EJB 2.1 Schema at http: //j ava. sun. com xm / ns/
j2ee/ejb-jar 2 1.xsd
Enterprise Bean 2.1 WebLogic webl ogi c-ej b-jar. xn
Schema: htt p: // xm ns. oracl e. conl webl ogi ¢/ webl ogi c-
ejb-jar/ 1.6/ webl ogi c-ej b-jar.xsd
See The weblogic-ejb-jar.xml Deployment Descriptor in Developing
Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.
webl ogi c- cnp-rdbns-jar. xni
Schema: htt p: // xn ns. oracl e. conl webl ogi ¢/ webl ogi c-
rdbms-jar/ 1.2/ webl ogi c-rdbms-j ar. xsd
See The weblogic-cmp-rdbms-jar.xml Deployment Descriptor in
Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic
Server.
Web services Jakarta EE webser vi ces. xmi

See the Web services 1.4 Schema at ht t p: / / www. or acl e. conl
webf ol der/technet work/j sc/ xml /ns/javaeel
javaee web services 1 4.xsd

Developing Applications for Oracle WebLogic Server
G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 10 of 18

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/ejb-jar_3_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/ejb-jar_3_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/ejb-jar_3_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_1.xsd
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.6/weblogic-ejb-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.6/weblogic-ejb-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1.2/weblogic-rdbms-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1.2/weblogic-rdbms-jar.xsd
http://xmlns.oracle.com/weblogic/persistence-configuration/1.0/persistence-configuration.xsd
http://xmlns.oracle.com/weblogic/persistence-configuration/1.0/persistence-configuration.xsd
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.6/weblogic-ejb-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.6/weblogic-ejb-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1.2/weblogic-rdbms-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1.2/weblogic-rdbms-jar.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/javaee_web_services_1_4.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/javaee_web_services_1_4.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/javaee_web_services_1_4.xsd

ORACLE’

Chapter 1
XML Deployment Descriptors

Table 1-1 (Cont.) Jakarta EE and WebLogic Deployment Descriptors

Module or Application Scope

Deployment Descriptors

Web services WebLogic

webl ogi c- webservi ces. xn
Schema: ht t p: // xnl ns. oracl e. coml webl ogi ¢/ webl ogi c-
webservi ces/ 1. 1/ webl ogi c- webser vi ces. xsd

webl ogi c- wsee- cl i ent Handl er Chai n. xm

Schema: htt p: // xnl ns. oracl e. coml webl ogi ¢/ webl ogi c-
wsee-cl i ent Handl er Chai n/ 1. 0/ webl ogi c- wsee-

cli ent Handl er Chai n. xsd

webl ogi c- webser vi ces- pol i cy. xn

Schema: htt p: // xm ns. oracl e. coml webl ogi ¢/ webser vi ce-
policy-ref/1.1/ webservice-policy-ref.xsd

webl ogi c- wsee- st andal onecl i ent . xn

Schema: http: //xm ns. oracl e. coml webl ogi ¢/ webl ogi c-
wsee- st andal onecl i ent/ 1. 0/ webl ogi c- wsee-
st andal onecl i ent. xsd

See WebLogic Web Service Deployment Descriptor Element
Reference in WebLogic Web Services Reference for Oracle
WebLogic Server.

Resource Adapter Jakarta EE

ra.xm

See the Connector 1.7 Schema at ht t p: / / www. or acl e. com
webf ol der/t echnet work/j sc/ xm / ns/| avaee/
connector 1 7.xsd

META- | NF/ beans. xm —required only if the classes in the RAR file
are to participate in CDI

Schema: ht t p: // www. or acl e. coml webf ol der/

technetwork/j sc/ xm /ns/javaeel/ beans 2 0. xsd

See Using Contexts and Dependency Injection for the Jakarta EE
Platform.

Resource Adapter WebLogic

webl ogi c-ra. xm
Schema: http://xm ns. oracl e. coml webl ogi ¢/ webl ogi c-
connector/ 1.5/ webl ogi ¢c- connect or. xsd

See weblogic-ra.xml Schema in Developing Resource Adapters for
Oracle WebLogic Server.

Enterprise Application Jakarta EE

application. xm

See the Application 8 Schema at ht t p: / / www. or acl e. conf
webf ol der/t echnet wor k/ j sc/ xm / ns/j avaee/
application_ 8. xsd

Enterprise Application WebLogic

webl ogi c- appl i cati on. xn
Schema: htt p: // xnl ns. oracl e. coml webl ogi ¢/ webl ogi c-
application/1. 8/ webl ogic-application. xsd

See weblogic-application.xml Deployment Descriptor Elements.

Developing Applications for Oracle WebLogic Server
G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 11 of 18

http://xmlns.oracle.com/weblogic/weblogic-webservices/1.1/weblogic-webservices.xsd
http://xmlns.oracle.com/weblogic/weblogic-webservices/1.1/weblogic-webservices.xsd
http://xmlns.oracle.com/weblogic/weblogic-wsee-clientHandlerChain/1.0/weblogic-wsee-clientHandlerChain.xsd
http://xmlns.oracle.com/weblogic/weblogic-wsee-clientHandlerChain/1.0/weblogic-wsee-clientHandlerChain.xsd
http://xmlns.oracle.com/weblogic/weblogic-wsee-clientHandlerChain/1.0/weblogic-wsee-clientHandlerChain.xsd
http://xmlns.oracle.com/weblogic/webservice-policy-ref/1.1/webservice-policy-ref.xsd
http://xmlns.oracle.com/weblogic/webservice-policy-ref/1.1/webservice-policy-ref.xsd
http://xmlns.oracle.com/weblogic/weblogic-wsee-standaloneclient/1.0/weblogic-wsee-standaloneclient.xsd
http://xmlns.oracle.com/weblogic/weblogic-wsee-standaloneclient/1.0/weblogic-wsee-standaloneclient.xsd
http://xmlns.oracle.com/weblogic/weblogic-wsee-standaloneclient/1.0/weblogic-wsee-standaloneclient.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/connector_1_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/connector_1_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/connector_1_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_2_0.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_2_0.xsd
http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd
http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application_8.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application_8.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application_8.xsd
http://xmlns.oracle.com/weblogic/weblogic-application/1.8/weblogic-application.xsd
http://xmlns.oracle.com/weblogic/weblogic-application/1.8/weblogic-application.xsd

ORACLE Chapter 1
XML Deployment Descriptors

Table 1-1 (Cont.) Jakarta EE and WebLogic Deployment Descriptors

- __|]
Module or Application Scope Deployment Descriptors

Client Application Jakarta EE application-client.xm
See the Application Client 8 Schema at ht t p: / / www. or acl e. conl
webf ol der/technetwork/jsc/xm /ns/javaeel application-
client 8.xsd

META- | NF/ beans. xm —required only if the classes in the
application client JAR file are to participate in CDI
Schema: ht t p: // www. or acl e. coml webf ol der/
technet work/j sc/ xm /ns/javaee/ beans 2 0.xsd

See Using Contexts and Dependency Injection for the Jakarta EE
Platform.

Client Application WebLogic application-client.xm
Schema: htt p: //xm ns. oracl e. com’ webl ogi ¢/ webl ogi c-
application-client/1.6/webl ogic-application-
client.xsd
See Developing a Jakarta EE Application Client (Thin Client) in
Developing Stand-alone Clients for Oracle WebLogic Server.

HTTP Pub/Sub Application WebLogic webl ogi c- pubsub. xm
Schema: http: // xm ns. oracl e. coml webl ogi ¢/ webl ogi c-
pubsub/ 1. 0/ webl ogi c- pubsub. xsd

See Using the HTTP Publish-Subscribe Server in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

JMS Module WebLogic Fi | eName-j ms. xm , where Fi | eName can be anything you want.

Schema: http: //xm ns. oracl e. coml webl ogi ¢/ webl ogi c-
jnms/ 1.8/ webl ogi c-j ms. xsd

See Configuring JMS Application Modules for Deployment in
Administering JMS Resources for Oracle WebLogic Server.

JDBC Module WebLogic Fi | eName-j dbc. xnl , where Fi | eNane can be anything you want.

Schema: http: //xm ns. oracl e. coml webl ogi ¢/ j dbc- dat a-
source/ 1. 6/ dbc-dat a- source. xsd

See Configuring JDBC Application Modules for Deployment in
Administering JDBC Data Sources for Oracle WebLogic Server.

Deployment Plan WebLogic pl an. xm
Schema: ht t p: // www. or acl e. conf webf ol der/t echnet wor k/
webl ogi ¢/ depl oynent - pl an/ i ndex. ht m

See Understanding WebLogic Server Deployment in Deploying
Applications to Oracle WebLogic Server.

Resource Deployment Plan WebLogic resour ce- depl oynent - pl an. xm
Schema: htt p: // xn ns. oracl e. coml webl ogi ¢/ resour ce-
depl oynent - pl an/ 1. 0/ r esour ce- depl oynent - pl an. xsd

WLDF Module WebLogic webl ogi c- di agnosti cs. xn
Schema: htt p: // xnl ns. oracl e. conl webl ogi ¢/ webl ogi c-
di agnosti cs/ 2. 0/ webl ogi c-di agnosti cs. xsd

See Deploying WLDF Application Modules in Configuring and Using
the Diagnostics Framework for Oracle WebLogic Server.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 18

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application-client_8.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application-client_8.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application-client_8.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_2_0.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_2_0.xsd
http://xmlns.oracle.com/weblogic/weblogic-application-client/1.6/weblogic-application-client.xsd
http://xmlns.oracle.com/weblogic/weblogic-application-client/1.6/weblogic-application-client.xsd
http://xmlns.oracle.com/weblogic/weblogic-application-client/1.6/weblogic-application-client.xsd
http://xmlns.oracle.com/weblogic/weblogic-pubsub/1.0/weblogic-pubsub.xsd
http://xmlns.oracle.com/weblogic/weblogic-pubsub/1.0/weblogic-pubsub.xsd
http://xmlns.oracle.com/weblogic/weblogic-jms/1.8/weblogic-jms.xsd
http://xmlns.oracle.com/weblogic/weblogic-jms/1.8/weblogic-jms.xsd
http://xmlns.oracle.com/weblogic/jdbc-data-source/1.6/jdbc-data-source.xsd
http://xmlns.oracle.com/weblogic/jdbc-data-source/1.6/jdbc-data-source.xsd
http://www.oracle.com/webfolder/technetwork/weblogic/deployment-plan/index.html
http://www.oracle.com/webfolder/technetwork/weblogic/deployment-plan/index.html
http://xmlns.oracle.com/weblogic/resource-deployment-plan/1.0/resource-deployment-plan.xsd
http://xmlns.oracle.com/weblogic/resource-deployment-plan/1.0/resource-deployment-plan.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd

ORACLE Chapter 1
XML Deployment Descriptors

Table 1-1 (Cont.) Jakarta EE and WebLogic Deployment Descriptors

- __|]
Module or Application Scope Deployment Descriptors

Coherence Modules WebLogic coherence-appl i cation. xm

Schema: http://xmins.oracle.com/coherence/coherence-
application/1.0/coherence-application.xsd

See Developing Oracle Coherence Applications for Oracle WebLogic
Server.

When you package a module or application, you create a directory to hold the deployment
descriptors—WEB- | NF or META- | NF—and then create the XML deployment descriptors in that
directory.

Automatically Generating Deployment Descriptors

WebLogic Server provides a variety of tools for automatically generating deployment
descriptors. These are discussed in the sections that follow.

Java-Based Command-Line Utilities

WebLogic Server includes a set of Java-based command-line utilities that automatically
generate both standard Jakarta EE and WebLogic-specific deployment descriptors for Web
applications and enterprise applications.

These command-line utilities examine the classes you have assembled in a staging directory
and build the appropriate deployment descriptors based on the servlet classes, and so on.
These utilities include:

e java webl ogi c. marat hon. ddi ni t. Earl nit — automatically generates the deployment
descriptors for enterprise applications.

e java webl ogi c. marat hon. ddi ni t. Wbl ni t — automatically generates the deployment
descriptors for Web applications.

For an example of DDI ni t , assume that you have created a directory called c: \ st age that
contains the JSP files and other objects that make up a Web application but you have not yet
created the web. xm and webl ogi c. xml deployment descriptors. To automatically generate
them, execute the following command:

pronpt > java webl ogi c. marat hon. ddinit.Wblnit c:\stage

The utility generates the web. xml and webl ogi ¢. xm deployment descriptors and places them
in the WEB- | NF directory, which DDl ni t will create if it does not already exist.

Upgrading Deployment Descriptors From Previous Releases of Jakarta EE
and WebLogic Server

So that your applications can take advantage of the features in the current Jakarta EE
specification and release of WebLogic Server, Oracle recommends that you always upgrade
deployment descriptors when you migrate applications to a new release of WebLogic Server.

To upgrade the deployment descriptors in your Jakarta EE applications and modules, first use
the webl ogi c. DDConvert er tool to generate the upgraded descriptors into a temporary
directory. Once you have inspected the upgraded deployment descriptors to ensure that they

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 18

http://xmlns.oracle.com/coherence/coherence-application/1.0/coherence-application.xsd
http://xmlns.oracle.com/coherence/coherence-application/1.0/coherence-application.xsd

ORACLE

Chapter 1
Deployment Plans

are correct, repackage your Jakarta EE module archive or exploded directory with the new
deployment descriptor files.

Invoke webl ogi ¢. DDConvert er with the following command:

pronpt > java webl ogi c. DDConverter [options] archive_file_or_directory

where ar chive _file_or_directory refers to the archive file (EAR, WAR, JAR, or RAR) or
exploded directory of your enterprise application, Web application, EJB, or resource adapter.

The following table describes the webl ogi ¢c. DDConvert er command options.

Table 1-2 weblogic.DDConverter Command Options

Option Description

-d <dir> Specifies the directory to which descriptors are written.
-hel p Prints the standard usage message.

- qui et Turns off output messages except error messages.
-verbose Turns on additional output used for debugging.

The following example shows how to use the webl ogi ¢c. DDConvert er command to generate
upgraded deployment descriptors for the ny. ear enterprise application into the subdirectory
t enpdi r in the current directory:

pronpt> java webl ogi c. DDConverter -d tenpdir ny.ear

Deployment Plans

A deployment plan is an XML document that defines an application's WebLogic Server
deployment configuration for a specific WebLogic Server environment. A deployment plan
resides outside of an application's archive file, and can apply changes to deployment
properties stored in the application's existing WebLogic Server deployment descriptors.

Administrators use deployment plans to easily change an application's WebLogic Server
configuration for a specific environment without modifying existing Jakarta EE or WebLogic-
specific deployment descriptors. Multiple deployment plans can be used to reconfigure a single
application for deployment to multiple, differing WebLogic Server environments.

After programmers have finished programming an application, they export its deployment
configuration to create a custom deployment plan that administrators later use for deploying
the application into new WebLogic Server environments. Programmers distribute both the
application deployment files and the custom deployment plan to deployers (for example,
testing, staging, or production administrators) who use the deployment plan as a blueprint for
configuring the application for their environment.

WebLogic Server provides the following tools to help programmers export an application's
deployment configuration:

e webl ogi c. Pl anGener at or creates a template deployment plan with null variables for
selected categories of WebLogic Server deployment descriptors. This tool is
recommended if you are beginning the export process and you want to create a template
deployment plan with null variables for an entire class of deployment descriptors.

e The WebLogic Remote Console updates or creates new deployment plans as necessary
when you change configuration properties for an installed application. You can use the
WebLogic Remote Console to generate a new deployment plan or to add or override

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 18

ORACLE Chapter 1
Development Tools
variables in an existing plan. The WebLogic Remote Console provides greater flexibility
than webl ogi c. Pl anGener at or, because it allows you to interactively add or edit individual
deployment descriptor properties in the plan, rather than export entire categories of
descriptor properties.
For complete and detailed information about creating and using deployment plans, see:
* Understanding WebLogic Server Deployment
* Exporting an Application for Deployment to New Environments
* Understanding WebLogic Server Deployment Plans
Development Tools

To develop WebLogic Server applications, you need various tools such as Java API Reference
and the wl s-api . j ar file, source code editor or IDE, database system and JDBC driver, and
Web browser. You also need third party tools such as Apache Ant.

This section describes required and optional tools for developing WebLogic Server
applications.

Java API Reference and the wis-api.jar File

Oracle provides the Oracle Fusion Middleware Java API Reference for Oracle WebLogic
Server, which defines all of the supported Java classes available for use when developing
Jakarta EE applications for WebLogic Server. See the Java API Reference for Oracle
WebLogic Server.

In conjunction with the Java API Reference for Oracle WebLogic Server, Oracle recommends
using the W s-api . j ar file to develop and compile Jakarta EE applications for your WebLogic
Server environment. The W s- api . j ar file is located in the Wl server/server/|ib directory of
your WebLogic Server distribution and offers the following benefits:

* Developing more performant code based on tested best practices
* Avoiding deprecated or unsupported code paths

See the following sections:

Using the wis-api.jar File

Use the wl s-api . j ar file and the api . j ar file to develop and compile your Jakarta EE
applications in Integrated Development Environments (IDEs), such as Oracle JDeveloper. IDEs
provide an array of tools to simplify development of Java-based applications. The W s-api . j ar
file provides a clean and concise API jar to develop and run Jakarta EE applications for
WebLogic environments.

@ Note

The w s-api . j ar file does not reference any Jakarta EE classes. Oracle provides the
api . j ar file with a manifest classpath that includes access to Jakarta EE JARs.

You may need to include the webl ogi c. j ar file in the classpath of your development
environment to access tools such as WLST, the webl ogi c. Depl oyer utilty, and webl ogi c. appc.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 18

ORACLE Chapter 1
Development Tools

Using the weblogic.jar File

You must continue to use the webl ogi c. j ar file for runtime environments, as a client or to
develop and compile legacy applications. However, use the w s-api . j ar file to develop and
compile Jakarta EE applications for your WebLogic Server environment.

Apache Ant

The preferred Oracle method for building applications with WebLogic Server is Apache Ant.
Ant is a Java-based build tool. One of the benefits of Ant is that is it is extended with Java
classes, rather than shell-based commands. Oracle provides numerous Ant extension classes
to help you compile, build, deploy, and package applications using the WebLogic Server split
development directory environment.

Another benefit is that Ant is a cross-platform tool. Developers write Ant build scripts in
eXtensible Markup Language (XML). XML tags define the targets to build, dependencies
among targets, and tasks to execute in order to build the targets. Ant libraries are bundled with
WebLogic Server to make it easier for our customers to build Java applications out of the box.

To use Ant, you must first set your environment by executing either the set Exanpl esEnv. cnd
(Windows) or set Exanpl esEnv. sh (UNIX) commands located in the

W._SERVER\ sanpl es\ server directory, where W._SERVER is your WebLogic Server installation
directory.

For a complete explanation of ant capabilities, see: http://j akarta. apache. or g/ ant/ manual /
i ndex. ht m

@® Note

The Apache Jakarta Web site publishes online documentation for only the most
current version of Ant, which might be different from the version of Ant that is bundled
with WebLogic Server. Use the following command, after setting your WebLogic
environment, to determine the version of Ant bundled with WebLogic Server:

pronpt > ant -version

To view the documentation for a specific version of Ant, such as the version included
with WebLogic Server, download the Ant zip file from ht t p: // ar chi ve. apache. or g/
di st/ant/binaries/ and extract the documentation.

For more information on using Ant to compile your cross-platform scripts or using cross-
platform scripts to create XML scripts that can be processed by Ant, refer to any of the
WebLogic Server examples, such as ORACLE_HOVE/ W ser ver/ sanpl es/ server/ exanpl es/ src/
exanpl es/ ej b20/ basi ¢/ beanManaged/ bui | d. xm , where ORACLE_HOVME represents the directory
in which you installed WebLogic Server. For more information about the WebLogic Server code
examples, see Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

Also refer to the following WebLogic Server documentation on building examples using Ant:
ORACLE_HOVE/ W server/ sanpl es/ server/ exanpl es/ src/ exanpl es/ exanpl es. htni .

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 16 of 18

http://jakarta.apache.org/ant/manual/index.html
http://jakarta.apache.org/ant/manual/index.html
http://archive.apache.org/dist/ant/binaries/
http://archive.apache.org/dist/ant/binaries/

ORACLE Chapter 1
Development Tools

Using a Third-Party Version of Ant

You can use your own version of Ant if the one bundled with WebLogic Server is not adequate
for your purposes. To determine the version of Ant that is bundled with WebLogic Server, run
the following command after setting your WebLogic environment:

pronpt > ant -version

If you plan to use a different version of Ant, you can replace the appropriate JAR file in the
W._HOME\ server\lib\ant directory with an updated version of the file (where W._HOVE refers to
the main WebLogic installation directory, such as

c:\Oracl e\ M ddl ewar e\ Oracl e_Hore\ wl server) or add the new file to the front of your
CLASSPATH.

Changing the Ant Heap Size

By default the environment script allocates a heap size of 128 megabytes to Ant. You can
increase or decrease this value for your own projects by setting the - X option in your local
ANT_OPTS environment variable. For example:

pronpt > setenv ANT_OPTS=- Xmx128m

If you want to set the heap size permanently, add or update the MEM ARGS variable in the scripts
that set your environment, start WebLogic Server, and so on, as shown in the following snippet
from a Windows command script that starts a WebLogic Server instance:

set MEM _ARGS=- Xms32m - Xmx200m

See the scripts and commands in W._HOVE/ ser ver / bi n for examples of using the MEM _ARGS
variable.

Source Code Editor or IDE

You need a text editor to edit Java source files, configuration files, HTML or XML pages, and
Jakarta Server Pages (JSP). An editor that gracefully handles Windows and UNIX line-ending
differences is preferred, but there are no other special requirements for your editor. You can
edit HTML or XML pages and Jakarta Server Pages (JSP) with a plain text editor, or use a
Web page editor such as Dreamweaver. For XML pages, you can also use an enterprise-level
IDE with DTD validation or another development tool that supports editing of XML files.

Database System and JDBC Driver

Nearly all WebLogic Server applications require a database system. You can use any DBMS
that you can access with a standard JDBC driver, but services such as WebLogic Jakarta
Messaging (JMS) require a supported JDBC driver for Oracle, Sybase, Informix, Microsoft SQL
Server, or IBM DB2. See the Oracle Fusion Middleware Supported System Configurations
page on Oracle Technology Network to find out about supported database systems and JDBC
drivers.

Web Browser

Most Jakarta EE applications are designed to be executed by Web browser clients. WebLogic
Server supports the HTTP 1.1 and HTTP 2.0 specifications and is tested with current versions
of the Firefox and Microsoft Internet Explorer browsers.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 17 of 18

ORACLE Chapter 1
Development Tools

When you write requirements for your application, note which Web browser versions you will
support. In your test plans, include testing plans for each supported version. Be explicit about
version numbers and browser configurations. Will your application support Secure Socket
Layers (SSL) protocol? Test alternative security settings in the browser so that you can tell
your users what choices you support.

If your application uses applets, it is especially important to test browser configurations you
want to support because of differences in the JVMs embedded in various browsers. One
solution is to require users to install the Java plug-in so that everyone has the same Java run-
time version.

Third-Party Software

You can use third-party software products to enhance your WebLogic Server development
environment. WeblL ogic Developer Tools Resources provides developer tools information for
products that support the application servers.

@® Note

Check with the software vendor to verify software compatibility with your platform and
WebLogic Server version.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 18 of 18

http://www.oracle.com/technetwork/developer-tools/index.html

Using Ant Tasks to Configure and Use a
WebLogic Server Domain

Learn about how to start and stop WebLogic Server instances and configure WebLogic Server
domains using WebLogic Ant tasks in your development build scripts.
This chapter includes the following sections:

Overview of Configuring and Starting Domains Using Ant Tasks

WebLogic Server provides a pair of Ant tasks to help you perform common configuration tasks
in a development environment. The configuration tasks enable you to start and stop WebLogic
Server instances as well as create and configure WebLogic Server domains.

When combined with other WebLogic Ant tasks, you can create powerful build scripts for
demonstrating or testing your application with custom domains. For example, a single Ant build
script can:

e Compile your application using the wl conpi | e, W appc, and Web services Ant tasks.

e Create a new single-server domain and start the Administration Server using the w ser ver
Ant task.

» Configure the new domain with required application resources using the W confi g Ant
task.

* Deploy the application using the W depl oy Ant task.
e Automatically start a compiled client application to demonstrate or test product features.

The sections that follow describe how to use the configuration Ant tasks, wl server and
w confi g.

Starting Servers and Creating Domains Using the wiserver Ant

Task

The w server Ant task enables you to start, reboot, shutdown, or connect to a WebLogic
Server instance. The server instance may already exist in a configured WebLogic Server
domain, or you can create a new single-server domain for development by using the
gener at econfi g=t r ue attribute.

When you use the W ser ver task in an Ant script, the task does not return control until the
specified server is available and listening for connections. If you start up a server instance
using wiserver, the server process automatically terminates after the Ant VM terminates. If you
only connect to a currently-running server using the W server task, the server process keeps
running after Ant completes.

The w server WebLogic Server Ant task extends the standard j ava Ant task

(org. apache. tool s. ant. t askdef s. Java). This means that all the attributes of the j ava Ant
task also apply to the wl server Ant task. For example, you can use the out put and error
attributes to specify the name of the files to which output and standard errors of the wl server

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 15

ORACLE

Chapter 2
Starting Servers and Creating Domains Using the wiserver Ant Task

Ant task is written, respectively. For full documentation about the attributes of the standard
Java Ant task, see Java on the Apache Ant site (http://ant. apache. or g/ manual / Tasks/

java. htm).

@® Note

The wl server Ant task supports only non-SSL communication to WebLogic Servers. If
a domain is in secured production mode, then all communication must use SSL; the
w server Ant task will be unable to communicate with the servers in the domain.

Basic Steps for Using wiserver

To use the W server Ant task:

1.

Set your environment.

On Windows, execute the set W.SEnv. cmd command, located in the directory
W._HOME\ server\ bi n, where W._HOME is the top-level directory of your WebLogic Server
installation.

On UNIX, execute the set W.SEnv. sh command, located in the
directoryW._HOME\ ser ver\ bi n, where W._HOME is the top-level directory of your WebLogic
Server installation.

@® Note

The wl server task is predefined in the version of Ant shipped with WebLogic
Server. If you want to use the task with your own Ant installation, add the following
task definition in your build file:

<t askdef name="w server" classnane="webl ogi c. ant.taskdefs. management . W.Server"/>

2.

@® Note

On UNIX operating systems, the set W.SEnv. sh command does not set the
environment variables in all command shells. Oracle recommends that you
execute this command using the Korn shell or bash shell.

Add a call to the Wl server task in the build script to start, shutdown, restart, or connect to a
server. See wiserver Ant Task Reference for information about W ser ver attributes and
default behavior.

Execute the Ant task or tasks specified in the bui | d. xnl file by typing ant in the staging
directory, optionally passing the command a target argument:

pronpt > ant

Use ant -verbose to obtain more detailed messages from the W server task.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 15

http://ant.apache.org/manual/Tasks/java.html
http://ant.apache.org/manual/Tasks/java.html

ORACLE Chapter 2
Starting Servers and Creating Domains Using the wiserver Ant Task

Sample build.xml Files for wiserver

The following shows a minimal wl ser ver target that starts a server in the current directory
using all default values:

<target name="w server-default">
<wl server/>
</target>

This target connects to an existing, running server using the indicated connection parameters
and user name/password combination:

<target nane="connect-server">

<w server host="127.0.0.1" port="7001" usernane="webl ogi c" password="webl ogi c"
action="connect"/>
</target>

This target starts a WebLogic Server instance configured in the confi g subdirectory:

<target nanme="start-server">
<wl server dir="./config" host="127.0.0.1" port="7001" action="start"/>
</target>

This target creates a new single-server domain in an empty directory, and starts the domain's
server instance:

<target nane="new server">

<delete dir="./tnp"/>

<nkdir dir="./tmp"/>

<w server dir="./tnp" host="127.0.0.1" port="7001"

generat eConfi g="true" username="webl ogi ¢c" password="webl ogi ¢" action="start"/>
</target>

wlserver Ant Task Reference
The following table describes the attributes of the wl server Ant task.

Table 2-1 Attributes of the wiserver Ant Task
]

Attribute Description Data Type Required?
policy The path to the security policy file for the WebLogic Server File No
domain. This attribute is used only for starting server
instances.
dir The path that holds the domain configuration (for example, File No

c:\Oracl e\ M ddl ewar e\ user_proj ect s\ donai ns\ nydo
mai n). By default, W server uses the current directory.

beahome The path to the Middleware Home directory (for example, File No
c:\Oracl e\ M ddl ewar e).

webl ogi chone The path to the WebLogic Server installation directory (for File No
example, ¢:\ Oracl e\ M ddl ewar e\ wl server_12. 1).

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 15

ORACLE’

Chapter 2

Starting Servers and Creating Domains Using the wiserver Ant Task

Table 2-1 (Cont.) Attributes of the wiserver Ant Task

- __|]
Required?

Attribute

Description

Data Type

servernane

The name of the server to start, shutdown, reboot, or
connect to.

A WebLogic Server instance is uniquely identified by its
protocol, host, and port values, so if you use this set of
attributes to specify the server you want to start, shutdown or
reboot, you do not need to specify its actual name using the
server nane attribute. The only exception is when you want
to shutdown the Administration server; in this case you must
specify this attribute.

The default value for this attribute is nyser ver .

For more information on server naming convention, see
Domain and Server Name Restrictions in Understanding
Domain Configuration for Oracle WebLogic Server.

String

Required only
when shutting
down the
Administration
server.

domai nnane

The name of the WebLogic Server domain in which the
server is configured.

String

No

admi nserverurl

The URL to access the Administration Server in the domain.
This attribute is required if you are starting up a Managed
Server in the domain.

String

Required for
starting
Managed
Servers.

user nanme

The user name of an administrator account. If you omit both
the user name and passwor d attributes, W ser ver attempts
to obtain the encrypted user name and password values from
the boot . properti es file. See Boot Identity Files in the
Administering Server Startup and Shutdown for Oracle
WebLogic Server for more information on

boot . properti es.

String

No

passwor d

The password of an administrator account. If you omit both
the user name and passwor d attributes, W ser ver attempts
to obtain the encrypted user name and password values from
the boot . properti es file. See Boot Identity Files in the
Administering Server Startup and Shutdown for Oracle
WebLogic Server for more information on

boot . properti es.

String

No

pkpasswor d

The private key password for decrypting the SSL private key
file.

String

No

ti meout

The maximum time, in milliseconds, that W ser ver waits for
a server to boot. This also specifies the maximum amount of
time to wait when connecting to a running server.

The default value for this attribute is 0, which means that the

Ant task will wait indefinitely until the server transitions to
theRUNNI NG state.

long

No

ti meout Seconds

The maximum time, in seconds, that W ser ver waits for a
server to boot. This also specifies the maximum amount of
time to wait when connecting to a running server.

The default value for this attribute is 0,which means that the

Ant task will wait indefinitely until the server transitions to the
RUNNI NG state.

long

No

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 15

ORACLE Chapter 2
Starting Servers and Creating Domains Using the wiserver Ant Task

Table 2-1 (Cont.) Attributes of the wiserver Ant Task
|

Attribute Description Data Type Required?
product i onnmodeenab Specifies whether a server instance boots in development Boolean No
| ed mode or in production mode.

Development mode enables a WebLogic Server instance to
automatically deploy and update applications that are in the
domai n_nane/ aut odepl oy directory (where domai n_nane
is the name of a WebLogic Server domain). In other words,
development mode lets you use auto-deploy. Production
mode disables the auto-deployment feature. See Deploying
Applications and Modules for more information.

Valid values for this attribute are Tr ue and Fal se. The
default value is Fal se (which means that by default a server
instance boots in development mode.)

Note: If you boot the server in production mode by setting
this attribute to Tr ue, you must reboot the server to set the
mode back to development mode. Or in other words, you
cannot reset the mode on a running server using other
administrative tools, such as the WebLogic Server Scripting
Tool (WLST).

host The DNS name or IP address on which the server instance is String No
listening.

The default value for this attribute is | ocal host .

port The TCP port number on which the server instance is int No
listening.

The default value for this attribute is 7001.

generateconfig Specifies whether or not Wl server creates a new domain for Boolean No
the specified server.

Valid values for this attribute are t r ue and f al se. The
default value is f al se.

action Specifies the action W server performs: st art, shut down, String No
reboot , or connect .

The shut down action can be used with the optional
f or ceshut down attribute perform a forced shutdown.

The default value for this attribute is st art .

failonerror This is a global attribute used by WebLogic Server Ant tasks. Boolean No
It specifies whether the task should fail if it encounters an
error during the build.

Valid values for this attribute are t r ue and f al se. The
default value is f al se.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 15

ORACLE’

Chapter 2

Starting Servers and Creating Domains Using the wiserver Ant Task

Table 2-1 (Cont.) Attributes of the wiserver Ant Task

Attribute

Description Data Type

Required?

f or ceshut down

This optional attribute is used in conjunction with the Boolean
acti on="shut down" attribute to perform a forced shutdown.
For example:

<w server
host ="${wW s. host }"
port="$%{port}"
user name="${w s. user nane}"
passwor d="${w s. password}"
acti on="shut down"
forceshut down="true"/>

Valid values for this attribute are true and
fal se. The default value is false.

No

noExi t

(Optional) Leave the server process running after Ant exits. Boolean
Valid values are t r ue or f al se. The default value is f al se,

which means the server process will shut down when Ant

exits.

No

pr ot ocol

Specifies the protocol that the W ser ver Ant task uses to String
communicate with the WebLogic Server instance.

Valid values are t 3,t 3s, http, htt ps, andiiop. The
default value is t 3.

No

forcel nplicitUpgra
de

Specifies whether the wl server Ant task, if run againstan Boolean
8.1 (or previous) domain, should implicitly upgrade it.

Valid values are t r ue or f al se. The default value is f al se,
which means that the Ant task does not implicitly upgrade the
domain, but rather, will fail with an error indicating that the
domain needs to be upgraded.

For more information about upgrading domains, see
Upgrading Oracle WebLogic Server.

No.

configFile

Specifies the configuration file for your domain. String

The value of this attribute must be a valid XML file that
conforms to the XML schema as defined in the WebLogic
Server Domain Configuration Schema at htt p: //

xm ns. oracl e. com webl ogi ¢/ domai n/ 1. 0/

donai n. xsd.

The XML file must exist in the Administration Server's root
directory, which is either the current directory or the directory
that you specify with the di r attribute.

If you do not specify this attribute, the default value is
config. xm inthe directory specified by the di r attribute. If
you do not specify the dir attribute, then the default domain
directory is the current directory.

No.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 15

http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd
http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd
http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd

ORACLE’

Chapter 2
Configuring a WebLogic Server Domain Using the wiconfig Ant Task

Table 2-1 (Cont.) Attributes of the wiserver Ant Task

Attribute

Description Data Type Required?

useBoot Properties

Specifies whether to use the boot . properti es file when Boolean No
starting a WebLogic Server instance. If this attribute is set to

t rue, WebLogic Server uses the user name and encrypted

password stored in the boot . properti es file to start rather

than any values set with the user name and passwor d

attributes.

Note: The values of the user name and passwor d attributes
are still used when shutting down or rebooting the WebLogic
Server instance. The useBoot Properti es attribute applies
only when starting the server. Valid values for this attribute
aretrue and f al se. The default value is f al se.

ver bose

Specifies that the Ant task output additional information as it Boolean No
is performing its action.

Valid values for this attribute are t r ue and f al se. The

default value is f al se.

Configuring a WebLogic Server Domain Using the wiconfig Ant

Task

You can use the W confi g Ant task or the WebLogic Scripting Tool (WLST) to configure a
WebLogic Server domain.

The following sections describe how to use the wl confi g Ant task to configure a WebLogic
Server domain.

@® Note

For equivalent functionality, you should use the WebLogic Scripting Tool (WLST). See
Understanding the WebLogic Scripting Tool.

What the wiconfig Ant Task Does

The w confi g Ant task enables you to configure a WebLogic Server domain by creating,
querying, or modifying configuration MBeans on a running Administration Server instance.
Specifically, wl confi g enables you to:

Create new MBeans, optionally storing the new MBean Object Names in Ant properties.
Set attribute values on a named MBean available on the Administration Server.

Create MBeans and set their attributes in one step by nesting set attribute commands
within create MBean commands.

Query MBeans, optionally storing the query results in an Ant property reference.
Query MBeans and set attribute values on all matching results.

Establish a parent/child relationship among MBeans by nesting create commands within
other create commands.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 15

ORACLE Chapter 2
Configuring a WebLogic Server Domain Using the wiconfig Ant Task

Basic Steps for Using wiconfig

1. Setyour environment in a command shell. See Basic Steps for Using wiserver for details.

@® Note

The wl confi g task is predefined in the version of Ant shipped with WebLogic
Server. If you want to use the task with your own Ant installation, add the following
task definition in your build file:

<t askdef name="w config" classnane="webl ogi c. ant.taskdefs. management. W.Confi g"/>

2. w configis commonly used in combination with wl server to configure a new WebLogic
Server domain created in the context of an Ant task. If you will be using W confi g to
configure such a domain, first use W server attributes to create a new domain and start the
WebLogic Server instance.

3. Add an initial call to the Wl confi g task to connect to the Administration Server for a
domain. For example:

<target name="doconfig">
<w config url="t3://1ocal host: 7001" username="webl ogi c"
passwor d=passwor d>
</target>

4. Add nested create, del ete, get, set, and query elements to configure the domain.

5. [Execute the Ant task or tasks specified in the bui | d. xnl file by typing ant in the staging
directory, optionally passing the command a target argument:

pronpt > ant doconfig

Use ant -verbose to obtain more detailed messages from the w confi g task.

@® Note

Since WLST is the recommended tool for domain creation scripts, you should refer
to the WLST offline sample scripts that are installed with the software. The offline
scripts demonstrate how to create domains using the domain templates and are
located in the following directory: W._HOVE\ conmon\ t enpl at es\ scri pt s\ wl st
where W._HOME refers to the top-level installation directory for WebLogic Server.
For example, the basi cW.SDonai n. py script creates a simple WebLogic domain,
while sanpl eMedRecDonai n. py creates a domain that defines resources similar to
those used in the Avitek MedRec sample. See Understanding the WebLogic
Scripting Tool.

wiconfig Ant Task Reference

The following sections describe the attributes and elements that can be used with W confi g.

Main Attributes

The following table describes the main attributes of the wl confi g Ant task.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 15

ORACLE’

Chapter 2

Configuring a WebLogic Server Domain Using the wiconfig Ant Task

Table 2-2 Main Attributes of the wiconfig Ant Task

- __|]
Description Data Type Required
?

Attribute

url

The URL of the domain's Administration Server. String

Yes

user namnme

The user name of an administrator account. String

No

passwor d

The password of an administrator account. String

To avoid having the plain text password appear in the build file or in
process utilities such as ps, first store a valid user name and
encrypted password in a configuration file using the WebLogic
Scripting Tool (WLST) st or eUser Conf i g command. Then omit
both the user name and passwor d attributes in your Ant build file.
When the attributes are omitted, Wl conf i g attempts to login using
values obtained from the default configuration file.

If you want to obtain a user name and password from a non-default
configuration file and key file, use the user confi gfil e and
user keyfi | e attributes with Wl confi g.

See the command reference for st or eUser Confi g in the
Understanding the WebLogic Scripting Tool for more information on
storing and encrypting passwords.

No

failonerror

This is a global attribute used by WebLogic Server Ant tasks. It Boolean
specifies whether the task should fail if it encounters an error during
the build. This attribute is set to true by default.

No

userconfigfile

Specifies the location of a user configuration file to use for File
obtaining the administrative user name and password. Use this

option, instead of the user nane and passwor d attributes, in your

build file when you do not want to have the plain text password

shown in-line or in process-level utilities such as ps.

Before specifying the user confi gfi | e attribute, you must first
generate the file using the WebLogic Scripting Tool (WLST)

st oreUser Confi g command as described in the Understanding
the WebLogic Scripting Tool.

No

userkeyfile

Specifies the location of a user key file to use for encrypting and File
decrypting the user name and password information stored in a
user configuration file (the user confi gf i | e attribute).

Before specifying the user keyf i | e attribute, you must first
generate the key file using the WebLogic Scripting Tool (WLST)
st oreUser Confi g command as described in the Understanding
the WebLogic Scripting Tool.

No

Nested Elements

w confi g also has several elements that can be nested to specify configuration options:

° create

* invoke

delete
set

* get
query

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 15

ORACLE Chapter 2
Configuring a WebLogic Server Domain Using the wiconfig Ant Task

create

The cr eat e element creates a new MBean in the WebLogic Server domain. The w confi g task
can have any number of cr eat e elements.

A creat e element can have any number of nested set elements, which set attributes on the
newly-created MBean. A cr eat e element may also have additional, nested cr eat e elements
that create child MBeans.

The creat e element has the following attributes.

Table 2-3 Attributes of the create Element

]
Attribute Description Data Type Required?

name The name of the new MBean object to create. String No (W config
supplies a default
name if none is

specified.)
type The MBean type. String Yes
property The name of an optional Ant property that holds the object String No

name of the newly-created MBean.

Note: If you nest a cr eat e element inside of another cr eat e
element, you cannot specify the pr operty attribute for the
nested Cr eat e element.

delete

The del et e element removes an existing MBean from the WebLogic Server domain. del et e
takes a single attribute:

Table 2-4 Attribute of the delete Element
]

Attribute Description Data Type Required?
nbean The object name of the String Required when the del et e element is a direct child
MBean to delete. of the Wl conf i g task. Not required when nested

within a quer y element.

set

The set element sets MBean attributes on a named MBean, a newly-created MBean, or on
MBeans retrieved as part of a query. You can include the set element as a direct child of the
w confi g task, or nested within a creat e or query element.

The set element has the following attributes:

Table 2-5 Attributes of the set Element

__|]
Attribute Description Data Type Required?

attribute The name of the MBean attribute to set. String Yes

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 15

ORACLE

Chapter 2
Configuring a WebLogic Server Domain Using the wiconfig Ant Task

Table 2-5 (Cont.) Attributes of the set Element

- ___|]
Attribute Description Data Type Required?

val ue The value to set for the specified MBean attribute. String Yes
You can specify multiple object names (stored in Ant
properties) as a value by delimiting the entire value list with
quotes and separating the object names with a semicolon.

mbean The object name of the MBean whose values are being set. String Required only when the set
This attribute is required only when the set element is element is a direct child of
included as a direct child of the main wl conf i g task; it is not the Wl confi g task.

required when the set element is nested within the context of
acreate orquery element.

domai n This attribute specifies the JMX domain name for Security String No
MBeans and third-party SPI MBeans. It is not required for
administration MBeans, as the domain corresponds to the
WebLogic Server domain.

Note: You cannot use this attribute if the set element is
nested inside of a cr eat e element.

get

The get element retrieves attribute values from an MBean in the WebLogic Server domain.
The w confi g task can have any number of get elements.

The get element has the following attributes.

Table 2-6 Attributes of the get Element
|

Attribute Description Data Type Required?
attribute The name of the MBean attribute whose value you want String Yes
to retrieve.
property The name of an Ant property that will hold the retrieved String Yes
MBean attribute value.
mbean The object name of the MBean you want to retrieve String Yes

attribute values from.

query

The query elements finds MBean that match a search pattern.

The query element supports the following nested child elements:

set —performs set operations on all MBeans in the result set.

get —performs get operations on all MBeans in the result set.

cr eat e—each MBean in the result set is used as a parent of a new MBean.
del et e—performs delete operations on all MBeans in the result set.

i nvoke—invokes all matching MBeans in the result set.

w confi g can have any number of nested query elements.

query has the following attributes:

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 15

ORACLE Chapter 2
Example of Creating a Security Realm with the wiconfig Ant Task

Table 2-7 Attributes of the query Element

Attribute Description Data Type Required?
domai n The name of the WebLogic Server domain in which to search String No

for MBeans.
type The type of MBean to query. String No
name The name of the MBean to query. String No
pattern A JMX query pattern. String No
property The name of an optional Ant property that will store the query String No

results.
domai n This attribute specifies the IMX domain name for Security String No

MBeans and third-party SPI MBeans. It is not required for
administration MBeans, as the domain corresponds to the
WebLogic Server domain.

iInvoke

The i nvoke element invokes a management operation for one or more MBeans. For WebLogic
Server MBeans, you usually use this command to invoke operations other than the
get Attribute and set Attri but e that most WebLogic Server MBeans provide.

The i nvoke element has the following attributes.

Table 2-8 Attributes of the invoke Element

Attribute Description Data Type Required?
mbean The object name of the MBean you want to String You must specify either the
invoke. mbean or t ype attribute of the

invoke element.

type The type of MBean to invoke. String You must specify either the
mbean or t ype attribute of the
invoke element.

met hodNane The method of the MBean to invoke. String Yes

argunent s The list of arguments (separated by spaces) to String No
pass to the method specified by the
met hodNarne attribute.

Example of Creating a Security Realm with the wiconfig Ant Task

You can use this example to create a security realm with the wilconfig Ant task:
Example 2-1 Creating a Security Realm with wiconfig

<w config url="t3://nmyhost: 7001"
user nane="webl ogi ¢"
passwor d="passwor d" >

<create type="webl ogi c. managenent. security. Real nf name="MReal nf

property="new. provi der">
<set attribute="DefaultReal ni' val ue="fal se"/>
<create name="MAut henticator"

type="webl ogi c. security. provi ders. aut henti cati on. Def aul t Aut henticator" real m="M/Real m'/ >

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 15

ORACLE Chapter 2
Using the libclasspath Ant Task

<create nanme="MAut hori zer"
type="webl ogi c. security. provi ders. aut hori zati on. Defaul t Aut hori zer" real m=" MyReal m'/ >
<create nane="MRol eMapper"
type="webl ogi c. security. provi ders. aut hori zati on. Def aul t Rol eMapper" real m=" MyReal m'/ >
<create nanme="MCredenti al Mapper"
type="webl ogi c. security. provi ders.credential s. Defaul t Credenti al Mapper" real m="M/Real m'/ >
<create nanme="MCert Pat hProvi der"
type=""webl ogi c. security. providers. pk. WebLogi cCert Pat hProvi der" real n" MyReal ni'/ >
</create>
<set mbean="Security: Name=MyReal ' attri but e="Cert Pat hBui | der"
val ue="Security: Name=MyReal myCert Pat hProvi der "/ >
</w config>

Using the libclasspath Ant Task

Use the i bcl asspat h Ant task to build applications that use libraries, such as application
libraries and Web libraries.

The following sections describe how to build applications:

libclasspath Task Definition

To use the task with your own Ant installation, add the following task definition in your build file:

<t askdef name="libcl asspath" classname="webl ogi c. ant.taskdefs. buil d.Li bdl asspat hTask"/>

libclasspath Ant Task Reference

The following sections describe the attributes and elements that can be used with the
I'i bcl asspat h Ant task.

e Main libclasspath Attributes

e Nested libclasspath Elements

Main libclasspath Attributes

The following table describes the main attributes of the | i bcl asspat h Ant task.

Table 2-9 Attributes of the libclasspath Ant Task
|

Attribute Description Required

basedir The root of .ear or. war file to extract from. Either basedi r or basewar is
required.

basewar The name of the . war file to extract from. If basewar is specified, basedi r is

ignored and the library referenced in
basewar is used as the . war file to
extract classpath or resourcepath
information from.

tmpdir The fully qualified name of the directory to be used for Yes.
extracting libraries.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 15

ORACLE

Chapter 2
Using the libclasspath Ant Task

Table 2-9 (Cont.) Attributes of the libclasspath Ant Task
|

Attribute Description Required
cl asspat hpropert Contains the classpath for the referenced libraries. At least one of the two attributes is
y For example, if basedi r points to a . war file that references ~reauired.

Web application libraries in the webl ogi ¢. xnl file, the

cl asspat hproperty contains the VEB- | NF/ ¢l asses and
VEB- | NF/ | i b directories of the Web application libraries.
Additionally, if basedi r points to a. war file that has . war
files under VEB- | NF/ bea- ext , the cl asspat hproperty
contains the VEB- | NF/ ¢l asses and VEB- I NF/ | i b
directories for the Oracle extensions.

resour cepat hprop Contains library resources that are not classes.

erty

For example, if basedir points to a. war file that has . war
files under VIEB- | NF/ bea- ext , r esour cepat hproperty
contains the roots of the exploded extensions.

Nested libclasspath Elements

librarydir

library

l'i bcl asspat h also has two elements that can be nested to specify configuration options. At
least one of the elements is required when using the | i bcl asspat h Ant task:

The following attribute is required when using this element:

di r—Specifies that all files in this directory are registered as available libraries.

The following attribute is required when using this element:

fil e—Register this file as an available library.

Example libclasspath Ant Task

This section provides example code of al i bcl asspat h Ant task:

Example 2-2 Example libclasspath Ant Task Code

<t askdef name="li bcl asspath”
cl assname="webl ogi c. ant . t askdef s. bui | d. Li bCl asspat hTask"/ >

<I'-- Builds classpath based on libraries defined in webl ogic-application. xm. -->
<target name="init.app.libs">

<libclasspath basedir="${src.dir}" tnpdir="${tnp.dir}"

cl asspat hproperty="app.lib.classpath">
<librarydir dir="${webl ogi c. hone}/ common/ depl oyabl e-1ibraries/"/>

</libcl asspat h>
<echo nessage="app.lib.claspath is ${app.lib.classpath}" level ="info"/>
</target>

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 14 of 15

ORACLE Chapter 2
Using the libclasspath Ant Task

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 15

Using the WebLogic Maven Plug-In

Apache Maven is a software tool for building and managing Java-based projects. WebLogic
Server provides support for Maven through the provisioning of plug-ins that enable you to
perform various operations on WebLogic Server from within a Maven environment.

The webl ogi c- maven- pl ugi n provides enhanced functionality to install, start and stop servers,
create domains, execute WLST scripts, and compile and deploy applications. With the

webl ogi c- maven- pl ugi n, you can install WebLogic Server from within your Maven environment
to fulfill the local WebLogic Server requirement when needed.

See Building Java EE Projects for WebLogic Server with Maven in Developing Applications
Using Continuous Integration for additional Maven documentation.

The following sections describe using webl ogi c- maven- pl ugi n:

Installing Maven

To use the webl ogi c- maven- pl ugi n plug-in, you must first have a functional Maven installation
and a Maven repository.

WebLogic Server 15.1.1 supports Maven 3.9.4 and later versions. The distribution of Maven is
not included in the WebLogic Server or Fusion Middleware Infrastructure installers. You can
download and install your own copy of Maven from the Maven Web site: htt p: //

maven. apache. or g. Make sure you set any required variables as detailed in that
documentation, such as M2_HOME and JAVA HOME.

Run the ORACLE_HOVE\ Wl ser ver\ server\ bi n\ set W.SEnv script to configure Maven.

@® Note

The webl ogi c- maven- pl ugi n sets the Java protocol handler to webl ogi c. net . To use
the default JDK protocol handlers, specify the system property -

DUseSunHt t pHandl er =t r ue in the JVM that executes Maven. To do this, override the
environment variable MAVEN_OPTS inside the nvn. bat or mvn. sh files to set the
appropriate value. For example: set MAVEN_OPTS="- DUseSunHt t pHandl er =t rue".

For detailed information on installing and using Maven to build applications and projects, see
the Maven Users Centre at ht t p: // maven. apache. org/ users/ i ndex. htm .

Configuring the WebLogic Maven Plug-In

Use the pre-built JAR file and accompanying POM file to install and configure webl ogi c-
maven- pl ugin.

Complete the following steps to install and configure webl ogi c- maven- pl ugi n:

1. Install the Oracle Maven sync plug-in and run the push goal:

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 84

http://maven.apache.org
http://maven.apache.org
http://maven.apache.org/users/index.html

ORACLE

Chapter 3
Configuring the WebLogic Maven Plug-In

a. Change the directory to:
ORACLE_HOWE\ or acl e_conmon\ pl ugi ns\ maven\ com or acl e\ maven\ or acl e- maven-
sync\14.1.2

b. nvn install:install-file -DponFile=oracle-maven-sync-14.1. 2. pom -
Dfil e=oracl e- maven-sync-14.1. 2. ar

c. nvn comoracl e. maven: oracl e- maven- sync: push -
Dor acl eHonme=c: \ or acl e\ m ddl ewar e\ or acl e_hone\

2. To validate successful installation of the plug-in, use the Maven hel p: descri be goal. For
more information, see the Apache help plug-in describe goal documentation.

mvn hel p: descri be - Dgroupl d=com oracl e. webl ogi c
-Dartifact|d=webl ogi c- maven- pl ugi n -Dversion=14.1.2-0-0

How to use the WebLogic Maven Plug-in

There are two ways to invoke the goals in the WebLogic Maven plug-in:

e From a Maven project POM.
* From the command line.

The appc, wsgen, wsinport, ws-jwsc, ws-wsdlc, andws-clientgen goals require a POM.

Other goals will work either way. For example, i nstal |, w st, wst-client, start-server,
or st op- server work either from a POM or the command line.

The preferred and recommended way is to use a Maven POM file.
To invoke a WebLogic Maven plug-in goal from a POM file, do the following:

1. Add a build section to your POM if you do not already have one.
2. Add a plug-in section to the build section for the WebLogic Maven plug-in.

3. Add an execution section to the WebLogic Maven plug-in's pl ugi n section for each goal
that you want to execute. This section must provide the necessary parameters for the goal,
and map the goal to a phase in the Maven Lifecycle.

The following shows an example of the necessary additions, including a few goals. The
detailed descriptions of each goal later in this section present the details for parameters and
examples for each goal.

If you map multiple goals to the same lifecycle phase, they are typically executed in the order
you list them in the POM.

Example 3-1 Modifying the POM File

<bui | d>
<pl ugi ns>
<pl ugi n>
<I-- This is the configuration for the
webl ogi c- maven- pl ugi n
>
<groupl d>com oracl e. webl ogi c</ groupl d>
<artifact!|d>webl ogi c- maven-pl ugi n</artifactld>
<versi on>14. 1. 2- 0- 0</ ver si on>
<configuration>
<ni ddI ewar eHorme>/ f mvhone/ wl s14120</ m ddl ewar eHone>
</configuration>
<executions>
<l'-- Execute the appc goal during the package phase -->

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 84

http://maven.apache.org/plugins/maven-help-plugin/describe-mojo.html

ORACLE Chapter 3
Configuring the WebLogic Maven Plug-In

<execution>
<i d>w s-appc</i d>
<phase>package</ phase>
<goal s>
<goal >appc</ goal >
</ goal s>
<configuration>
<source>${project. build.directory}/${project.nane}. ${project. packagi ng} </ sour ce>
</configuration>
</ executi on>
<I'-- Deploy the application to the WebLogic Server in the
pre-integration-test phase
-->
<execution>
<i d>W s-depl oy</i d>
<phase>pre-integration-test</phase>
<goal s>
<goal >depl oy</ goal >
</ goal s>
<configuration>
<!--The admin URL where the app i s depl oyed.
Here use the plugin's default value t3://1ocal host:7001-->
<adm nurl >t3://127.0.0. 1: 7001</ admi nur| >
<user >webl ogi c</ user>
<passwor d>passwor d</ passwor d>
<!--The location of the file or directory to be depl oyed-->
<source>${project.build. directory}/${project.build.final Nane}. ${proj ect. packagi ng} </
source>
<I--The target servers where the application is deployed.
Here use the plugin's default val ue Adm nServer-->
<t arget s>Admi nServer</targets>
<ver bose>t rue</ ver bose>
<name>${ proj ect. bui | d. fi nal Nane} </ name>
</configuration>
</ executi on>
<I-- Stop the application in the pre-integration-test phase -->
<execution>
<i d>w s- st op- app</id>
<phase>pre-integration-test</phase>
<goal s>
<goal >st op- app</ goal >
</ goal s>
<configuration>
<adm nurl >t3://127.0.0. 1: 7001</ adni nur| >
<user >webl ogi c</ user>
<passwor d>passwor d</ passwor d>
<name>${ proj ect. bui | d. fi nal Nane} </ name>
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Table 3-1 lists the phases in the default Maven life cycle.

Table 3-1 Maven Lifecycle Phases

-
Phase Description

validate Validates the project is correct and all necessary information is available.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 84

ORACLE Chapter 3
Configuring the WebLogic Maven Plug-In

Table 3-1 (Cont.) Maven Lifecycle Phases

Phase Description

compile Compiles the source code of the project.

test Tests the compiled source code using a suitable unit testing framework.
These tests should not require the code be packaged or deployed.

package Takes the compiled code and package it in its distributable format, such
as a JAR.

integration-test Processes and deploys the package if necessary into an environment
where integration tests can be run.

verify Runs any checks to verify the package is valid and meets quality criteria.

install Installs the package into the local repository, for use as a dependency in

other projects locally.

deploy In an integration or release environment, copies the final package to the
remote repository for sharing with other developers and projects.

Table 3-2 shows the most common mappings of goals to phases

Table 3-2 Common Mapping of Goals to Phases

Phase Goal

validate ws-clientgen, ws-wsdlc

compile WS- j Wse

test NA

package appc

pre-integration-test® install, create-domain, start-server,

di stribute-app, deploy, purge-tasks,
redepl oy, update-app, start-app, stop-app,
wst, wist-client, andlist-apps

post-integration-test? remove- donai n, undepl oy, stop-server,
uni nstal |

verify NA

install NA

deploy NA

1 The integration-test phase has pre sub-phases that are executed before the actual execution of any integration
tests, respectively.

2 The integration-test phase has post sub-phases that are executed after the actual execution of any integration tests,
respectively.

Basic Configuration POM File

Example 3-2 illustrates a basic Jakarta EE web application pom.xml file that demonstrates the
use of the weblogic-maven-plugin appc goal.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 84

ORACLE Chapter 3
Configuring the WebLogic Maven Plug-In

Example 3-2 Basic Configuration pom.xml File

<project xm ns="http://mven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi:schemalLocati on="http://mven. apache. org/ POM 4. 0.0
http://mven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>deno. sab</ gr oupl d>
<artifactld>maven-deno</artifact!d>
<versi on>1. 0- SNAPSHOT</ ver si on>
<packagi ng>war </ packagi ng>

<nanme>maven- deno</ nane>

<properties>
<endor sed. di r >${ proj ect . bui | d. di rect ory}/ endor sed</ endor sed. di r >
<proj ect. bui | d. sour ceEncodi ng>UTF- 8</ pr oj ect . bui | d. sour ceEncodi ng>
</ properties>

<dependenci es>
<dependency>
<groupl d>com or acl e. webl ogi c</ groupl d>
<artifact!|d>webl ogi c- server-ponx/artifactld>
<versi on>14. 1. 2- 0- 0</ ver si on>
<t ype>ponx/type>
<scope>pr ovi ded</ scope>
</ dependency>
</ dependenci es>

<bui | d>
<pl ugi ns>

<I'-- WebLogic Server 14c Maven Plugin -->
<pl ugi n>
<groupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact!|d>webl ogi c- maven-pl ugi n</artifact!d>
<versi on>14. 1. 2- 0- 0</ ver si on>
</ pl ugi n>
<configuration>
</configuration>
<executions>
<execution>
<i d>W s- appc</id>
<phase>package</ phase>
<goal s>
<goal >appc</ goal >
</ goal s>
<configuration>
<sour ce>${ proj ect. buil d.directory}/ ${project.nanme}
${proj ect . packagi ng} </ sour ce>
</configuration>
</ executi on>
</ executi ons>
</ pl ugi ns>
</ bui | d>

</ proj ect>

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 84

ORACLE’

Maven Plug-In Goals

Chapter 3
Maven Plug-In Goals

See an alphabetical listing of all the Maven plug-in goals.

Table 3-3 lists all the webl ogi c- maven- pl ugi n goals. Each goal is described in detail in the

sections that follow.

Table 3-3 Maven Plug-In Goals

Goal Name Description
appc Generates and compiles the classes needed to deploy EJBs and JSPs to

WebLogic Server. Also validates the deployment descriptors for compliance
with the current specifications at both the individual module level and the
application level. Does not require a local server installation.

create-domain

Creates a domain for WebLogic Server using a domain template. This goal
supports specifying the domain directory (the last directory determines the
domain name) and the administrative username and password. For more
complex domain creation, use the W st goal.

deploy

Deploys WebLogic Server applications and modules to a running server.
Supports all deployment formats; for example, WAR, JAR, RAR, and such.

distribute-app

Prepares deployment files for deployment by copying deployment files to
target servers and validating them.

install Installs WebLogic Server.

list-apps Lists the deployment names for applications and standalone modules
deployed, distributed, or installed in the domain.

purge-tasks Flushes out retired deployment tasks.

redeploy Redeploys a running application or part of a running application.

remove-domain

Removes a domain directory.

start-app

Starts an application deployed on WebLogic Server.

start-server

Starts WebLogic Server. This goal starts WLS by running a local start script.
For starting remote servers using the node manager, use the wist goal
instead.

stop-app

Stops an application.

stop-server

Stops WebLogic Server. This goal stops WLS by running a local start script.
For stopping remote servers using the node manager, use the wist goal
instead.

undeploy Undeploys the application from WebLogic Server. Stops the deployment unit
and removes staged files from target servers.

uninstall Uninstalls WebLogic Server.

update-app Updates an application's deployment plan by redistributing the plan files and
reconfiguring the application based on the new plan contents.

wist WLST wrapper for Maven.

wist-client WLST wrapper that does not require a local server install for WLST online
commands.

ws-clientgen Generates client Web service artifacts from a WSDL.

wsgen JAX-WS service endpoint implementation class and generates all of the

portable artifacts for a JAX-WS Web service.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 84

ORACLE’

Chapter 3
Maven Plug-In Goals

Table 3-3 (Cont.) Maven Plug-In Goals
]

Goal Name Description

wsimport Maven goal that parses a WSDL and binding files and generates the Java
code needed to access it

WS-jwsc Builds a JAX-WS Web service.

ws-wsdlc Generates a set of artifacts and a partial Java implementation of the Web

service from a WSDL.

appcC

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: appc

Description

Generates and compiles the classes needed to deploy EJBs and JSPs to WebLogic Server.
Also validates the deployment descriptors for compliance with the current specifications at both
the individual module level and the application level. Does not require a local server

installation.

Parameters

Table 3-4 appc Parameters

Name Type

Required

Description

al t appdd java.lang. String

false

Specifies an alternate descriptor. May be used to specify
an alternate appl i cati on. xnl for an . ear deployment or
an alternate web. xm orej b. xnl for standalone module
deployments.

al tw sappdd java.lang. String

false

Specifies the path to an alternative WebLogic Server
application deployment descriptor.

basi cCl i entJar bool ean

false

When true, does not include deployment descriptors in
client JARs generated for EJBs. Default value is: f al se

cl asspat h java.lang. String

false

This parameter is deprecated in this release and ignored.
Use the standard Maven dependency model instead to
manipulate the effective CLASSPATH during a build.

clientJarQutputDi java.lang.String
r

false

Specifies a directory where generated client JARs will be
written.

comment ary bool ean

false

This parameter is deprecated in this release.

conpi l er java.lang. String

false

Specifies the Java compiler for compiling class files from
the generated Java source code. The Java compiler
program should be in your PATH unless you specify the
absolute path to the compiler explicitly. Default value is:
j avac

conpi |l erd ass java.lang. String

false

The class that invokes the compiler. Default value is:
com sun.tool s.javac. Main

conti nueConpi |l ati bool ean
on

false

When true, continues compilation even when there are
errors in the JSP files. Default value is: f al se

Developing Applications for Oracle WebLogic Server
G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 84

ORACLE’

Table 3-4 (Cont.) appc Parameters

Chapter 3
Maven Plug-In Goals

Name Type Required Description

debug bool ean false When true, compiles debugging information into class files.
Default value is: f al se

deprecation bool ean false When true, warns about the use of deprecated methods in
the generated Java source file when compiling the source
file into a class file. Default value is: f al se

destdir java.io.File false Specifies the directory where compiled class files are
written. Use this parameter to place compiled classes in a
directory that is already in your CLASSPATH.

enabl eHot CodeGen bool ean false This parameter is deprecated in this release.

forceGeneration bool ean false When true, forces the generation of EJB and JSP classes.
Otherwise, the classes will not be regenerated if it is
determined to be unnecessary. Default value is: f al se

i dl bool ean false When true, generates IDL for EJB remote interfaces.
Default value is: f al se

idlDirectory java.lang. String false Specifies the directory where IDL files will be written.
Default: the target directory or JAR

i dl Factories bool ean false When true, generates factory methods for valuetypes.
Default value is: f al se

i dl Met hodSi gnatur java.lang.String false Specifies the method signatures used to trigger IDL code

es generation.

i dl NoAbstract!lnte bool ean false When true, does not generate abstract interfaces and

rfaces methods or attributes that contain them. Default value is:
fal se

i dl NoVal ueTypes bool ean false Does not generate valuetypes or the methods and
attributes that contain them. Default value is: f al se

i dl Orbi x bool ean false When true, generates IDL somewhat compatible with Orbix
C++. Default value is: f al se

id Overwite bool ean false When true, overwrites existing IDL files. Default value is:
fal se

i dl Verbose bool ean false When true, displays additional status information for IDL
generation. Default value is: f al se

i dl Vi si br oker bool ean false When true, generates IDL somewhat compatible witih
Visibroker C++. Default value is: f al se

i gnor ePl anVal i dat bool ean false When true, ignores the plan file if it does not exist.

i on

iiop bool ean false When true, generates CORBA stubs for EJBs. Default
value is: f al se

iiopDirectory java.lang. String false Specifies the directory where 110P stub files will be written.
Default: the target directory or JAR

keepgener at ed bool ean false When true, preserves the generated . j ava files. Default
value is: f al se

l[ibraries java.lang. String false A comma-separated list of libraries.

l'ibrarydir java.io.File false Registers all the files in the specified directory as libraries.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 84

ORACLE Chapter 3
Maven Plug-In Goals

Table 3-4 (Cont.) appc Parameters

Name Type Required Description

| i neNunbers bool ean false When true, adds JSP line numbers to generated class files
to aid in debugging. Default value is: f al se

mani f est java.io.File false This parameter is deprecated in this release. Use the
standard Maven mechanism to specify the Manifest during
packaging.

maxfil es java.lang. I nteger false Specifies the maximum number of generated Java files to
be compiled at one time.

m ddl ewar eHorre java.lang. String false This parameter is deprecated in this release and ignored.

noexit bool ean false When true, does not exit from the execution of the appc
goal when encountering JSP compile errors. Default value
is:true

nor mi bool ean false This parameter is deprecated in this release.

nowar n bool ean false When true, suppresses compiler warnings. Default value
is: fal se

nowite bool ean false This parameter is deprecated in this release.

optinize bool ean false When true, compiles with optimization on. Default value is:
fal se

out put java.io.File false Specifies an alternate output archive or directory. When not
set, the output is placed in the source archive or directory.

pl an java.io.File false Specifies the path to an optional deployment plan.

qui et bool ean false When true, turns off output except for errors.

runti meFl ags java.lang. String false Passes a list of options to the compiler.

serverC asspath java.lang.String false This parameter is deprecated in this release and ignored.

Use the standard Maven dependency model instead to
manipulate the effective CLASSPATH.

source java.io.File false Specifies the path to the source files. Default value is: $
{project.build.directory}/${project.artifactid}.$
{project.packaging}

sour ceVersi on java.lang. String false Limits the compatibility of the Java files to a JDK no higher
than specified. For example "1.5". The default value is the
JDK version of the Java compiler used.

supressConpi | er bool ean false This parameter is deprecated in this release and ignored.
Use the standard Maven dependency model instead to add
the target classes to the effective CLASSPATH during a
build.

target Version java.lang. String false Specifies the minimum level of the JVM required to run the
compiled class files. For example, "1.5". The default value
is the JDK version of the Java compiler used.

ver bose boolean false When true, displays additional status information during the
compilation process. Default value is: f al se

ver boseJavac bool ean false When true, enables verbose output from the Java compiler.
Default value is: f al se

webl ogi cHone java.lang. String false This parameter is deprecated in this release and ignored.

writelnferredDesc bool ean false When true, writes out the descriptors with inferred

riptors information including annotations.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 84

ORACLE

Chapter 3
Maven Plug-In Goals

Usage Example

The appc goal executes the WebLogic Server application compiler utility to prepare an
application for deployment.

<execution>

<i d>W s-appc</id>

<phase>package</ phase>

<goal s>

<goal >appc</ goal >

</ goal s>

<configuration>
<source>${project.build.directory}/${project.nane}. ${project. packagi ng} </ sour ce>
</ configuration>

</ executi on>

Example 3-3 shows typical appc goal output.
Example 3-3 appc

$ mvn com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: appc
- Dsour ce=t ar get / basi cWebapp. war - Df or ceGenerati on=true
[INFQ Scanning for projects...
[1NFO
LI e
[INFQ Building basicWbapp 1.0- SNAPSHOT
I e
[1NFO
[INFQ --- webl ogi c- maven-pl ugin: 14. 1. 2-0-0: appc (default-cli) @nmain-test ---
[INFQ Running webl ogic. appc on
/' home/ oracl e/ src/tests/ main-test/target/basi cWebapp. war

I 20
[INFO BU LD SUCCESS

[INFQ] - - m o m o m e m e e e e o e o e e e e e oo
[INFQ Total tinme: 7.901s

[INFQ Finished at: Wed Aug 19 10:52:46 EST 2015

[INFQ Final Menory: 26M 692M

[INFQ

create-domain

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: cr eat e- domai n

Description

Creates a domain for WebLogic Server using a domain template. This goal supports specifying
the domain directory (the last directory determines the domain name) and the administrative
username and password. For more complex domain creation, use the wl st goal.

@® Note

Beginning in version 12.2.1, there is a single unified version of WLST that
automatically includes the WLST environment from all products in the ORACLE_HOME.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 84

ORACLE’

Chapter 3
Maven Plug-In Goals

Parameters

Table 3-5 create-domain Parameters

Name Type Required Description
domai nHone java.lang. Strin true Specifies the directory to use for creating the domain. This
g goal takes the name of the last subdirectory specified as the

domain name and sets the new domain’'s name to that value.
For example, domainHome=/weblogic/domains/MyNewDomain
causes the domain name to be set to 'MyNewDomain'.

domai nTenpl ate

java.lang. Strin false Specifies the domain template file to use to create the domain.
g The default domain template included with WebLogic Server is
used when this parameter is not specified.

fai | OnDomai nExi st bool ean false When t r ue and the domain to be created already exists, the

S

build fails and an exception is thrown. When f al se and the
domain to be created already exists, the build is successful
and the existing domain is not overwritten. If the domain does
not exist, this parameter has no effect. Default value is: f al se

m ddl ewar eHorre java.lang. Strin true The path to the Oracle Middleware install directory.
g
password java.lang. Strin true Specifies the administrative password.
g
serverC asspath java.lang. Strin false This parameter is deprecated and ignored in this release.
g
user java.lang. Strin true Specifies the administrative user name.
g
webl ogi cHore java.lang. Strin false This parameter is deprecated and ignored in this release.
g
w st Ver si on java.lang. Strin false Deprecated. As of version 12.2.1, there is a single, unified
g version of WLST. This parameter is deprecated and ignored.
wor ki ngDi r java.lang. Strin false The current working directory where the create-domain goal
g executes. The default value is: ${project.build.directory}/

weblogic-maven-plugin

Usage Example

Use the cr eat e- domai n goal to create a WebLogic Server domain from a specified WebLogic
Server installation. You specify the location of the domain using the donai nHone configuration
parameter.

When creating a domain, a user name and password are required. You can specify these using
the user and passwor d configuration parameters in your POM file or by specifying them on the
command line.

The domain name is taken from the last subdirectory specified in domai nHone.

<execution>

<i d>W s-creat e- domai n</ i d>
<phase>pre-integration-test</phase>

<goal s>

<goal >cr eat e- dormai n</ goal >

</ goal s>

<configuration>

<nmi ddI ewar eHorme>c: / dev/ wl s14110</ m ddl ewar eHone>

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 84

ORACLE Chapter 3
Maven Plug-In Goals

<domai nHone>${ pr oj ect . bui | d. di rect ory}/ base_domai n</ domai nHone>
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

</ configuration>

</ executi on>

Example 3-4 shows typical command output from the execution of the cr eat e- domai n goal.
Example 3-4 create-domain

mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: cr eat e- donai n
- Ddomai nHome=c: \ or acl e\ mi ddl ewar e\ or acl e_hone\ user _pr oj ect s\ domai ns\ maven- domai n
- Dni ddI ewar eHome=c: \ or acl e\ mi ddl ewar e\ or acl e_hone - Duser =webl ogi ¢ - Dpasswor d=password
[INFQ Scanning for projects...
[INFQ
[INFQ - -m o mmm i mm i mm oo
[INFQ Building WebLogic Server Maven Plugin 14.1.2-0-0
[INFQ - -m o mmm i mm i mm oo
[INFQ
[INFQ --- webl ogi c-maven-plugin: 14.1.2-0-0: create-domain (default-cli) @
webl ogi c- maven-pl ugin ---
[INFQ [create-domain] Domain creation script:
readTenpl ate(r' C./oracl e/ m ddl ewar e/ oracl e_hone/ W server/conmon/tenpl ates/wWs/ws.jar")
set (' Name', 'maven-domain')
cd('/ Security/ maven- domai n/ User/ webl ogi c')
set (' Name', 'webl ogoc')
set (' Password', '***')
writeDomain(r'c:/oracl e/ m ddl ewar e/ oracl e_hone/ user _
proj ect s/ domai ns/ maven- donai n')
[INFQ [Wst]script temp file = C//Users/user/AppDatalLocal / Tenp/
t est 6066166061714573929. py
[INFQ [W st]Executing: [cmd:[C //w ndows\\systenB2\\cnd. exe, /c,
C.\oracl e\ m ddl ewar e\ oracl e_horme\ W server\ common\ bi n\wl st. cnd
C:\ Users\user\ AppDat a\ Local \ Tenp\ t est 6066166061714573929. py]]
[INFQ Process being executed, waiting for conpletion.
[INFQ [exec]
[INFQ [exec] Initializing WebLogic Scripting Tool (WST) ...
[INFQ [exec]
[INFQ [exec] Welcone to WebLogic Server Administration Scripting Shell
[INFQ [exec]
[INFQ [exec] Type help() for help on avail abl e commands
[INFG [exec]
[INFO [wWst][cnd:[C\\wi ndows\\systenB2\\cnd. exe, /c,
C.\oracl e\ m ddl ewar e\ oracl e_home\ W server\ common\ bi n\wl st. cnd
C:\ Users\user\ AppDat a\ Local \ Tenp\ t est 6066166061714573929. py]] exit code=0

I 20 e
[INFQ BU LD SUCCESS

[INFQ - - mmmmmm i mm e m o e
[INFQ Total tine: 18.276s

[INFQ Finished at: Wed Aug 19 13:13:25 EDT 2015
[INFQ Final Menory: 9M 23M

I 20 T T T T T
deploy

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: depl oy

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 84

ORACLE’

Description

Chapter 3
Maven Plug-In Goals

Deploys WebLogic Server applications and modules to a running server. Supports all
deployment formats; for example, WAR, JAR, RAR, and such. Does not require a local server
installation.

Parameters

Table 3-6 deploy Parameters

Name Type Required Description

admi nur | java.lang. String [false Specifies the listen address and listen port of the
Administration Server. Default value is: t3://localhost:7001

advanced bool ean false When true, prints advanced usage options.

al t appdd java.lang. String [false Specifies an alternate descriptor. May be used to specify an
alternate application.xml for an .ear deployment or an
alternate web.xml or ejb.xml for standalone module
deployments.

appversion java.lang. String [false Version of the application to start.

debug bool ean false When true, displays debug-level messages to the standard
output. Default value is: false

enabl eSecurityVal [bool ean false When true, enables validation of security data. Default value

i dation is: false

exanpl es bool ean false When true, displays examples of how to use this plug-in.

external _stage bool ean false When true, indicates that the user wants to copy the
application in the server staging area externally or using a
third-party tool. When specified, WebLogic Server looks for
the application under StagingDirectoryName(of target server)/
applicationName. Default value is: false

fail OnError bool ean false When true, forces the Mojo to fail the build upon encountering
an error if it would otherwise just log the error. Default value is:
true

id java.lang. String |false Specifies an optional, user-supplied, unique deployment task
identifier.

['i bi npl ver java.lang. String [false Implementation version of a Jakarta EE library or optional
package. This option can be used only if the library or
package does not include an implementation version in its
manifest file.

library bool ean false Deploy as a shared Jakarta EE library or optional package.

|'i bspecver java.lang. String |false Specification version of a Jakarta EE library or optional
package. This option can be used only if the library or
package does not include a specification version in its
manifest file.

m ddl ewar eHorre java.lang. String |false This parameter is deprecated in this release and ignored.

nane java.lang. String |false Specifies the deployment name to assign to a newly-deployed
application or standalone module.

nost age bool ean false When true, does not copy the deployment files to target

servers, but leaves them in a fixed location, specified by the
source parameter. By default, nostage is true for the
Administration Server and stage is true for the Managed
Server targets.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 13 of 84

ORACLE

Table 3-6 (Cont.) deploy Parameters

Chapter 3
Maven Plug-In Goals

Name

Type

Required

Description

nover si on

bool ean

false

When true, ignores all version related code paths on the
Administration Server. Default value is: false

nowai t

bool ean

false

When true, initiates multiple tasks and then monitors them
later with the -list action. Default value is: false

passwor d

java.lang. String

false

Specifies the administrative password.

pl an

java.lang. String

false

Specifies the path to the deployment plan.

renote

bool ean

false

When true, specifies that the plug-in is not running on the
same machine as the Administration Server. In this case, the
source parameter specifies a path on the server, unless the
upload parameter is also used. Default value is: false

retiretimeout

java.lang. | ntege
r

false

Specifies the number of seconds before WebLogic Server
undeploys the currently-running version of this application or
module so that clients can start using a new version. When
not specified, a graceful retirement policy is assumed. Default
value is: -1

securityMdel

java.lang. String

false

Specifies the security model to be used for this deployment,
overriding the default security model for the security realm.
Possible values are: DDOnly, CustomRoles,
CustomRolesAndPolicies, and Advanced.

serverd asspat h

java.lang. String

false

This parameter is deprecated in this release and ignored.

source

java.lang. String

false

Specifies the address of the artifact to deploy. The address

can be one of the following:

* Acolon (:) separated list of Maven coordinates of the
form: groupld:artifactld:packaging:classifier:version.

* An archive file or exploded archive directory on the local
system. For example, /home/myhome/myapps/
helloworld.war.

e Aremote HTTP URL (http://foo/a/b.ear).

st age

bool ean

false

When true, indicates that the application needs to be copied
into the target server staging area before deployment. By
default, nostage is true for the Administration Server and
stage is true for the Managed Server targets.

subnmodul et arget s

java.lang. String

false

Specifies JMS Server targets for resources defined within a
JMS application module. Possible values have the form:
submod@mod-jms.xml@target or submoduleName@target.

targets

java.lang. String

false

Specifies a comma-separated list of targets for the current
operation. The default is AdminServer.

ti meout

java.lang. I ntege
r

false

Specifies the maximum number of seconds WebLogic Server
will wait for the deployment task to complete. The default
value of -1 means wait forever. Default value is: -1

upl oad

bool ean

false

When true, copies the source files to the Administration
Server's upload directory prior to deployment. Use this setting
when running the plug-in remotely (using the remote
parameter) and when the user lacks normal access to the
Administration Server's file system. Default value is: false.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 14 of 84

ORACLE’

Chapter 3
Maven Plug-In Goals

Table 3-6 (Cont.) deploy Parameters

Name Type Required Description

usenonexcl usi vel o |bool ean false When true, the deployment operation uses an existing lock,

ck already acquired by the same user, on the domain. This
parameter is helpful in environments where multiple
deployment tools are used simultaneously and one of the
tools has already acquired a lock on the domain configuration.
Default value is: false.

user java.lang. String |false Specifies the administrative user name.

user ConfigFile java.lang. String [false Specifies the location of a user configuration file to use for the

administrative user name and password instead of specifying
the user name and password directly in plain text.

user KeyFil e java.lang. String |false Specifies the location of a user key file to use for encrypting
and decrypting the user name and password stored in the
user configuration file.

ver bose bool ean false When true, displays additional status information. Default
value is: false

version bool ean false When true, prints the version information. Default value is:
false

webl ogi cHone java.lang. String |false This parameter is deprecated in this release and ignored.

Usage Example

Use this goal to deploy an application.

<execution>

<i d>w s- depl oy</i d>
<phase>pre-integration-test</phase>
<goal s>

<goal >depl oy</ goal >

</ goal s>

<configuration>

<adm nurl| >t 3://127.0.0.1: 7001</ adm nur | >
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

<sour ce>${proj ect. buil d.directory}/ ${project.build.final Nane}
. ${ proj ect. packagi ng} </ sour ce>

<t ar get s>Admi nServer</target s>
<verbose>t rue</ ver bose>

<nane>${ proj ect. bui | d. fi nal Name} </ nane>
</ configuration>

</ executi on>

Example 3-5 shows typical depl oy goal output.
Example 3-5 deploy

m/n com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: depl oy
- Dsour ce=C: \ webservi ces\ MySi npl eEj b. j ar

- Dpasswor d=passwor d - Duser =webl ogi ¢

[INFQ Scanning for projects..

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 84

ORACLE Chapter 3
Maven Plug-In Goals

[I NFO
[I NFO

[INFQ Building WebLogi c Server Maven Plugin 14.1.2-0-0

[INFQ

[INFQ

[INFQ --- weblogic-maven-plugin: 14. 1. 2-0-0: depl oy (default-cli) @webl ogic-
mave

n-plugin ---

webl ogi c. Depl oyer invoked with options: -noexit -adminurl t3://

| ocal host: 7001 -

depl oy -user webl ogic -source C \webservices\MSinpleE b.jar -targets
Adni nServe

;

<Aug 19, 2015> <Info> <J2EE Depl oynent SPI> <BEA-260121> <Initiati

ng depl oy operation for application, M/SinpleE b [archive:

C.\webservi ces\ /Si np

leEjb.jar], to Admi nServer .>

Task O initiated: [Deployer:149026] depl oy application MySinpl eE b on
Admi nSer ver

Task 0 conpl eted: [Deployer:149026] depl oy application MySinpl eEj b on
Admi nSer ver

Target state: deploy conpleted on Server Adm nServer

[INFO BU LD SUCCESS
[I NFO

[INFQ Total time: 9.042s
[INFQ Finished at: Wed Aug 19 13:41:11 EDT 2015
[INFQ Final Menory: 10M 25M

distribute-app

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: di stri but e-app

Description

Prepares deployment files for deployment by copying deployment files to target servers and
validating them. Does not require a local server installation.

Parameters

Table 3-7 distribute-app Parameters
|

Name Type Required Description
admi nur | java.lang. Stri |false Specifies the listen address and listen port of the
ng Administration Server. Default value is: t3://localhost:7001

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 16 of 84

ORACLE’

Table 3-7 (Cont.) distribute-app Parameters

Chapter 3
Maven Plug-In Goals

Name Type Required Description
advanced bool ean false When true, prints advanced usage options.
debug bool ean false When true, displays debug-level messages to the standard
output. Default value is: false
enabl eSecurityValida|bool ean false When true, enables validation of security data. Default value
tion is: false
exanpl es bool ean false When true, displays examples of how to use this plug-in.
external _stage bool ean false When true, indicates that the user wants to copy the
application in the server staging area externally or using a
third-party tool. When specified, WebLogic Server looks for
the application under StagingDirectoryName(of target server)/
applicationName. Default value is: false
fail OnError bool ean false When true, forces the Mojo to fail the build upon encountering
an error if it would otherwise just log the error. Default value
is: true
id java.lang. Stri |false Specifies an optional, user-supplied, unique deployment task
ng identifier.
m ddl ewar eHone java.lang. Stri |false This parameter is deprecated in this release and ignored.
ng
nane java.lang. Stri |false Specifies the deployment name to assign to a newly-deployed
ng application or standalone module.
nost age bool ean false When true, does not copy the deployment files to target
servers, but leaves them in a fixed location, specified by the
source parameter. By default, nostage is true for the
Administration Server and stage is true for the Managed
Server targets.
nover si on bool ean false When true, ignores all version related code paths on the
Administration Server. Default value is: false
nowai t bool ean false When true, initiates multiple tasks and then monitors them
later with the -list action. Default value is: false
passwor d java.lang. Stri |false Specifies the administrative password.
ng
pl an java.lang. Stri |false Specifies the path to the deployment plan.
ng
renot e bool ean false When true, specifies that the plug-in is not running on the
same machine as the Administration Server. In this case, the
source parameter specifies a path on the server, unless the
upload parameter is also used. Default value is: false
retiretimeout java.lang. I nte |false Specifies the number of seconds before WebLogic Server
ger undeploys the currently-running version of this application or
module so that clients can start using a new version. When
not specified, a graceful retirement policy is assumed. Default
value is: -1
securityMdel java.lang. Stri |false Specifies the security model to be used for this deployment,

ng

overriding the default security model for the security realm.
Possible values are: DDOnly, CustomRoles,
CustomRolesAndPolicies, and Advanced.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 17 of 84

ORACLE’

Table 3-7 (Cont.) distribute-app Parameters

Chapter 3
Maven Plug-In Goals

Name Type Required Description

serverC asspath java.lang. Stri |false This parameter is deprecated in this release and ignored.
ng

source java.lang. Stri |false Specifies the address of the artifact to distribute. The address
ng can be one of the following:

* Acolon () separated list of Maven coordinates of the
form: groupld:artifactld:packaging:classifier:version.

* An archive file or exploded archive directory on the local
system. For example, /home/myhome/myapps/
helloworld.war.

e Aremote HTTP URL (http://foo/a/b.ear).

st age bool ean false When true, indicates that the application needs to be copied
into the target server staging area before deployment. By
default, nostage is true for the Administration Server and
stage is true for the Managed Server targets.
subnodul et arget s java.lang. Stri |false Specifies JMS Server targets for resources defined within a
ng JMS application module. Possible values have the form:
submod@mod-jms.xmi@target or submoduleName @target.
targets java.lang. Stri |false Specifies a comma-separated list of targets for the current
ng operation. When not specified, all configured targets are
used. For a new application, the default target is the
Administration Server.
ti meout java.lang. | nte |false Specifies the maximum number of seconds WebLogic Server
ger will wait for the deployment task to complete. The default

value of -1 means wait forever. Default value is: -1

upl oad bool ean false When true, copies the source files to the Administration

Server's upload directory prior to deployment. Use this setting

when running the plug-in remotely (using the remote

parameter) and when the user lacks normal access to the

Administration Server's file system. Default value is: false

user java.lang. Stri |false Specifies the administrative user name.
ng
userConfigFile java.lang. Stri |false Specifies the location of a user configuration file to use for the
ng administrative user name and password instead of specifying
the user name and password directly in plain text.
user KeyFil e java.lang. Stri |false Specifies the location of a user key file to use for encrypting
ng and decrypting the user name and password stored in the
user configuration file.
ver bose bool ean false When true, displays additional status information. Default
value is: false
version bool ean false When true, prints the version information. Default value is:
false
webl ogi cHone java.lang. Stri |false This parameter is deprecated in this release and ignored.

ng

Use this goal to prepare deployment files for deployment.

<execution>
<i d>w s-di stribute-app</id>
<phase>pre-integration-test</phase>

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 18 of 84

ORACLE

Chapter 3
Maven Plug-In Goals

<goal s>

<goal >di stri but e- app</ goal >

</ goal s>

<configuration>

<adm nurl| >t 3://127.0.0.1: 7001</ adm nur | >
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

<sour ce>${proj ect. buil d. directory}/ ${project. build.final Nane}
. ${ proj ect. packagi ng} </ sour ce>
<targets>clusterl</targets>

<ver bose>t r ue</ ver hose>

<nane>${ proj ect. bui | d. fi nal Narme} </ nane>
</ configuration>

</ executi on>

Example 3-6 shows typical di st ri but e- app goal output.
Example 3-6 distribute-app

$ mvn com oracl e. webl ogi ¢: webl ogi c- maven- pl ugi n: di stri but e-app

-Dadmi nurl=t3://1ocal host: 7001 - Dst age=true - Dmi ddl ewar eHonme=/ maven/ W s14110
- Dnane=cl ust er-t est -Duser=webl ogi ¢ - Dpasswor d=password - Dt arget s=cl usterl
-Dsource=target/cl uster-test-1.0- SNAPSHOT. war

[INFQ Scanning for projects..

[1 NFO

[NFO

[INFOQ Building cluster-test 1.0-SNAPSHOT

[1 NFO

[1 NFO

[INFQ --- weblogic-maven-plugin:14.1.2-0-0:distribute-app (default-cli) @
cluster-test ---

webl ogi c. Depl oyer invoked with options: -noexit -admnurl t3://1ocal host: 7001
-distribute -user weblogic -name cluster-test -source

[home/ oracl e/ src/tests/uber-test/cluster-test/

target/cluster-test-1.0- SNAPSHOT. war -targets clusterl -stage

<Aug 19, 2015> <Info> <J2EE Depl oynent SPI> <BEA-260121>
<Initiating distribute operation for application, cluster-test [archive

[home/ oracl e/ src/tests/uber-test/cluster-test/

target/cluster-test-1.0-SNAPSHOT. war], to clusterl .>

Task O initiated: [Deployer:149026]distribute application cluster-test on
clusterl.

Task 0 conpl eted: [Deployer:149026] distribute application cluster-test on
clusterl.

Target state: distribute conpleted on Cluster clusterl

[INFQ Total tinme: 6.953s
[INFQ Finished at: Wed Aug 19 14:10:00 EST 2015
[INFQ Final Menory: 15M 429M

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 19 of 84

ORACLE Chapter 3
Maven Plug-In Goals

install

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n:instal |

Description

Installs WebLogic Server from a JAR file.

Parameters

Table 3-8 install Parameters

Name Type Required Description
artifactLocatio |java.lang.Stri [true Specifies the address of the installation. The address can be one of
n ng the following:

e Acolon (:) separated list of Maven coordinates of the form:
groupld:artifactld:packaging:classifier:version.

» Afile on the local system (/home/myhome/myapps/
wls_generic.jar).

e Aremote HTTP URL (http://myarchive/installers/
wls_generic.jar).

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 20 of 84

ORACLE’

Table 3-8 (Cont.) install Parameters

Chapter 3
Maven Plug-In Goals

Name

Type

Required

Description

i nstal | Command

java.lang. Stri
ng

false

Installs the product with a binary or jar installer (including the

quickstart installers.) The following macros are supported:

°* @INSTALLER_FILE@ - the path to the installer file.

° @INSTALL_TO_LOCATION@ - the target directory (only
relevant for the quickstart installer).

. @JAVA_HOME@ - path to the Java home.

° @JAVA_TMPDIR@ - path to the Java temporary directory.

° @RESPONSE_FILE@ - path to the OUI silent installer
response file.

* @INV_PTR_LOC_FILE@ - path to the OUI invPtrLoc file.

JAR installer example:

@JAVA_HOME@/bin/java -Xms512m -Xmx1024m -

Djava.io.tmpdir=@JAVA_TMPDIR@ -jar @INSTALLER_FILE@ -

silent -responseFile @RESPONSE_FILE@ -invPtrLoc

@INV_PTR_LOC_FILE@

Quick Start JAR installer example:

@JAVA_HOME@/bin/java -Xms512m -Xmx1024m -

Djava.io.tmpdir=@JAVA_TMPDIR@ -jar @INSTALLER_FILE@

ORACLE_HOME=@INSTALL_TO_LOCATION@

This parameter is optional.

If specified for a quickstart installer when the

supplementalQuickStartLocation parameter is supplied, the same

command is used for the supplemental quickstart installer by

replacing the @INSTALLER_FILE@ macro with the file location

derived from the supplementalQuickStartLocation parameter.

If the @INSTALLER_FILE@ macro is not being used, the install

goal replaces the argument following the '-jar' argument in the

installCommand string with the supplemental quickstart installer

JAR file name.

instal IDir

java.lang. Stri
ng

true

Deprecated. Use the middlewareHome parameter instead.

i nvPtrLoc

java.lang. Stri
ng

false

The silent installer inventory location file. This is required on Unix-
based platforms when using the binary or JAR installers.

m ddl ewar eHorre

java.lang. Stri
ng

false

The ORACLE_HOME directory to install into when using the
quickstart installer.

qui ckStartlnsta
[ler

bool ean

false

Indicates that this is a quickstart installer. The quickstart installer
requires you to specify the artifactLocation and installDir parameter.
All other parameters are ignored when this parameter is set to true.
The default value is false.

response

java.lang. Stri
ng

false

Deprecated. Use the responseFile parameter instead.

responseFil e

java.lang. Stri
ng

false

The silent installer response file. This is required when using the
binary or jar installers.

suppl enent al Qui
ckStartLocation

java.lang. Stri
ng

false

The Quick Start supplemental installer.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 21 of 84

ORACLE

Chapter 3
Maven Plug-In Goals

Usage Example

Use this goal to install WebLogic Server into a local directory so it can be used to execute
other goals, as well as to create a WebLogic Server domain for deploying and testing the
application represented as the Maven project.

® Note

The install goal creates a single managed server called nyserver, and does not create
a domain. Most other goals, including create-domain, use a default server name of
Admi nSer ver . You therefore need to override the default Adm nServer server name in
your POM.

This goal installs WebLogic Server using a specified installation distribution. You specify the
location of the distribution using the arti f act Locat i on configuration parameter, which can be
the location of the distribution as a file on the file system; an HTTP URL which can be
accessed; or a Maven coordinate of the distribution installed in a Maven repository. Specify the
artifactLocation configuration element in the webl ogi c- maven- pl ugi n section of the pom xni
file, or by using the —Darti f act Locat i on property when invoking Maven.

Example 3-7 shows an example of installing WebLogic Server using a JAR file on a Windows-
based system.

Example 3-7 Install From JAR File

m/n com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: i nstal |
-DartifactlLocation=c:\w s-tenmp\wl s _jrf _generic.jar

-Dinstal I Dir=C:\test-maven -DresponseFi | e=c:\w s-tenp\response. t xt

[INFQ Scanning for projects...

[I NFO

[I NFO

[INFQ Building Maven Stub Project (No POV 1

[I NFO

[I NFO

[INFQ --- webl ogic-maven-plugin:14.1.2-0-0:install (default-cli) @

st andal one-p

om---

[INFQ [install] ORACLE HOVE = C:\test-naven\ O acl e\ M ddl ewar e\ Oracl e_Hone
[INFQ Executing: [cnd:[C\\Wndows\\SystenB82\\cnd. exe, /c,

C. \ webl ogi c\ dev\ AUT

O D~1\ x86_64\ JDK180~3\ JDK18~1.0_4\jre\bin\java. exe - Xns1024m - Xnx1024m -
Djava.io

.tpdi r=C:\ User s\ user\ AppDat a\ Local \ Tenp\ -jar c:\wWs-tenp\ws jrf g
eneric.jar -silent -responseFile c:\w s-tenp\response.txt]]

[INFQ Process being executed, waiting for conpletion.

[INFQ [exec] Launcher log file is C \Users\user\AppData\Local\Tenp\Oralnsta
[12015-04-23_09-45- 13AM | auncher 2015- 04- 23_09- 45- 13AM | og.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 22 of 84

ORACLE Chapter 3
Maven Plug-In Goals

[INFQ [exec] Starting Oracle Universal Installer

[INFQ [exec]

[INFQ [exec] Checking if CPU speed is above 300 MHz. Actual 2491 Passed
[INFQ [exec] Checking swap space: nust be greater than 512 MB Passed
[INFQ [exec] Checking if this platformrequires a 64-bit JVM Actual 64 Pa
ssed (64-bit not required)

[INFQ [exec]

[INFQ [exec]

[INFQ [exec] Preparing to launch the Oracle Universal Installer from

C:\ User s\

user\ AppDat a\ Local \ Tenp\ O al nst al | 2015- 04- 23_09- 45- 13AM

[INFQ [exec] Log: C\Users\user\AppData\Local\Tenmp\ O al nstall2015-04-23_09-
45-13AM i nst al | 2015- 04- 23_09- 45- 13AM | og

[INFQ [exec] Copyright (c) 1996, 2015, Oracle and/or its affiliates. All
rights

reserved.

[INFQ [exec] Reading response file..

[INFQ [exec] -nocheckForUpdates / SKIP_SOFTWARE_UPDATES flag i s passed and
henc

e skipping software update

[INFQ [exec] Skipping Software Updates...

[INFQ [exec] Starting check : CertifiedVersions

[INFQ [exec] Expected result: One of 6.1,6.2,6.3

[INFQ [exec] Actual Result: 6.1

[INFQ [exec] Check conplete. The overall result of this check is: Passed
[INFQ [exec] CertifiedVersions Check: Success.

[INFQ [exec] Starting check : CheckJDKVersion

[INFQ [exec] Expected result: 1.8.0_40

[INFQ [exec] Actual Result: 1.8.0_40-ea

[INFQ [exec] Check conplete. The overall result of this check is: Passed
[INFQ [exec] CheckJDKVersion Check: Success.

[INFQ [exec] Validations are enabled for this session.

[INFQ [exec] Verifying data......

[INFOQ [exec] Copying Files...

[INFQ [exec] ----------- 20% - -------- 40%--------- 60% --------- 80%----Visit
ht

tp://ww. oracl e. com support/policies.htm for Oacle Technical Support

pol i ci es.

[INFO [exec] ---100%

[INFQ [exec]

[INFQ [exec] The installation of Oacle Fusion Mddleware 14c Infrastructure
14

.1.1.0.0 conpl eted successfully.

[INFQ [exec] Logs successfully copied to C \weblogic\src

\inventory\l ogs.

[INFQ Installer exited with code: 0

[I NFO

[INFO BU LD SUCCESS

Example 3-8 shows an example of installing WebLogic Server using a JAR file and the
i nstal | Conmand parameter on a Windows-based system.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 23 of 84

ORACLE

Chapter 3
Maven Plug-In Goals

Example 3-8 Install From JAR File With installCommand

m/n com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: i nstal |

-Di nstal | Command="@AVA HOVE@ bi n/ j ava - Xns512m - Xnx1024m

-jar @NSTALLER FILE@-silent -responseFile c:\w s-tenp\response.txt"
-DartifactlLocation=c:\w s-temp\wl s _jrf _generic.jar

- DresponseFil e=c:\wW s-t enp\response. t xt

I NFQ Scanning for projects...

[I NFO

[I NFO

[INFQ Building Maven Stub Project (No POV 1

[I NFO

[I NFO

[INFQ --- webl ogic-maven-plugin:14.1.2-0-0:install (default-cli) @

st andal one-p

om---

[INFQ [install] ORACLE HOVE = C:\test-naven\ O acl e\ M ddl ewar e\ Oracl e_Hone
[INFQ Executing: [cnd:[C\\Wndows\\SystenB82\\cnd. exe, /c,

C. \ webl ogi c\ dev\ AUT

O D~1\ x86_64\ JDK180~3\JDK18~1.0 4\jre/bin/java - Xms512m - Xnx1024m -j ar
c:\wl s-t

emp\wW s_jrf _generic.jar -silent -responseFile c:\w s-tenp\response.txt]]
[INFQ Process being executed, waiting for conpletion.

[INFQ [exec] Launcher log file is C \Users\user\AppData\Local\Tenp\Oral nsta
[12015-04-23 10-58- 13AM | auncher 2015- 04- 23_10-58- 13AM | og.

[INFQ [exec] Starting Oracle Universal Installer

[INFQ [exec]

[INFQ [exec] Checking if CPU speed is above 300 Mz. Actual 2491 Passed
[INFQ [exec] Checking swap space: nust be greater than 512 MB Passed
[INFQ [exec] Checking if this platformrequires a 64-bit JVM Actual 64
Pa

ssed (64-bit not required)

[INFQ [exec]

[INFQ [exec]

[INFQ [exec] Preparing to launch the Oracle Universal Installer from

C:\ User s\

user\ AppDat a\ Local \ Tenp\ O al nst al | 2015- 04- 23_10- 58- 13AM

[INFQ [exec] Log: C:\Users\user\AppData\Local\Tenp\ O alnstall2015-04-23 10-
58- 13AMi nst al | 2015- 04-23_10- 58- 13AM | og

[INFQ [exec] Copyright (c) 1996, 2015, Oracle and/or its affiliates. Al
rights

reserved.

[INFQ [exec] Reading response file..

[INFQ [exec] -nocheckForUpdates / SKIP_SOFTWARE UPDATES flag i s passed and
henc

e skipping software update

[INFQ [exec] Skipping Software Updates...

[INFQ [exec] Starting check : CertifiedVersions

[INFQ [exec] Expected result: One of 6.1,6.2,6.3

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 24 of 84

ORACLE Chapter 3
Maven Plug-In Goals
[INFQ [exec] Actual Result: 6.1
[INFQ [exec] Check conplete. The overall result of this check is: Passed
[INFQ [exec] CertifiedVersions Check: Success
[INFQ [exec] Starting check : CheckJDKVersion
[INFQ [exec] Expected result: 1.8.0_40
[INFQ [exec] Actual Result: 1.8.0_40-ea
[INFQ [exec] Check conplete. The overall result of this check is: Passed
[INFQ [exec] CheckJDKVersion Check: Success.
[INFQ [exec] Validations are enabled for this session
[INFQ [exec] Verifying data......
[INFOQ [exec] Copying Files...
[INFQ [exec] ----------- 20% --------- 40%--------- 60% --------- 80%----Visit
ht
tp://ww. oracl e. com support/policies.htm for Oacle Technical Support
pol i ci es.
[INFO [exec] ---100%
[INFQ [exec]
[INFQ [exec] The installation of Oacle Fusion Mddl eware 14c Infrastructure
14
.1.1.0.0 conpl eted successfully.
[INFQ [exec] Logs are located here: C:\Users\user\AppData\Local\Tenp\ O al ns
tal 1 2015- 04- 23_10- 58- 13AM
[INFQ Installer exited with code: 0
[I NFO
[INFQ BU LD SUCCESS
[I NFO
list-apps
Full Name
com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: | i st - apps
Description
Lists the deployment names for applications and standalone modules deployed, distributed, or
installed in the domain. Does not require a local server installation.
Parameters
Table 3-9 list-apps Parameters

Name Type Required Description

admi nur | java.lang. String false Specifies the listen address and listen port of the
Administration Server. Default value is: t 3: //
[ocal host: 7001

advanced bool ean false When true, prints advanced usage options.

debug bool ean false When true, displays debug-level messages to the standard
output. Default value is: f al se

exanpl es bool ean false When true, displays examples of how to use this plug-in.

Developing Applications for Oracle WebLogic Server
G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 25 of 84

ORACLE’

Table 3-9 (Cont.) list-apps Parameters

Chapter 3
Maven Plug-In Goals

Name Type Required

Description

fail OnError bool ean false

When true, forces the Mojo to fail the build upon encountering
an error if it would otherwise just log the error. Default value is:
true

m ddl ewar eHome java.lang. String false

This parameter is deprecated in this release and ignored.

noversi on bool ean false When true, ignore all version-related code paths on the
Administration Server. Default value is: f al se

nowai t bool ean false When true, initiates multiple tasks and then monitors them
later with the - | i st action.

password java.lang. String false Specifies the administrative password.

renote bool ean false When true, specifies that the plug-in is not running on the

same machine as the Administration Server. In this case, the
sour ce parameter specifies a path on the server, unless the
upl oad parameter is also used.

serverC asspath java.lang. String false

This parameter is deprecated in this release and ignored.

ti meout java.lang.Integer false Specifies the maximum number of seconds WebLogic Server
will wait for the deployment task to complete. The default value
of -1 means wait forever. Default value is: - 1

user java.lang. String false Specifies the administrative user name.

userConfigFile java.lang.String false

Specifies the location of a user configuration file to use for the
administrative user name and password instead of specifying
the user name and password directly in plain text.

user KeyFil e java.lang. String false Specifies the location of a user key file to use for encrypting
and decrypting the user name and password stored in the user
configuration file.

ver bose bool ean false When true, displays additional status information. Default value
is: fal se

version bool ean false When true, prints the version information. Default value is:

fal se

webl ogi cHone java.lang. String false

This parameter is deprecated in this release and ignored.

Use the list-apps goal to list the deployment names.

<execution>
<id>W s-1ist-apps</id>

<phase>pre-integration-test</phase>

<goal s>

<goal >l i st -apps</ goal >
</ goal s>
<configuration>

<admi nurl>t3://127.0.0.1: 7001</ adm nur | >

<user >webl ogi c</ user >
<passwor d>passwor d</ passwor d>
</ configuration>

</ executi on>

Example 3-9 shows typical | i st - apps goal output.

Developing Applications for Oracle WebLogic Server
G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 26 of 84

ORACLE

purge-tasks

Example 3-9 list-apps

mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: | i st - apps
- Duser =webl ogi ¢ - Dpasswor d=passwor d
[INFQ Scanning for projects...

[1NFO

0 =1

[INFQ Building WebLogic Server Maven Plugin 14.1.2.0

0 =

[1 NFO

Chapter 3

Maven Plug-In Goals

[INFQ --- webl ogi c-maven-plugin:14.1.2-0-0:1ist-apps (default-cli) @ webl ogic-m

aven-plugin ---
webl ogi c. Depl oyer invoked with options: -noexit -admnurl
|'istapps -user webl ogic
Sanpl esSear chWebApp
st ockBackEnd
aj axJSF
asyncServl et 30
singl et onBean
webFr agment
exanpl esVeebApp
mai n\\ebApp
annot ation
MWSi npl eEj b
st ockFront End
j sf BeanVal i dati on
programmati cSecurity
entityBeanValidation
facel et SISF
bookmar ki ngJ SF
st ockAdapt er
nol nter f aceVi em nVWAR
j dbcDat aSour ce. war
asyncMet hodOf EJB
cal endar Styl edTi ner
cdi
jaxrs
criteriaQuery
port abl eG obal JNDI Nare
mul ti partFil eHandl i ng
el enent Col | ection
Nurmber of Applications Found : 27

L =

[INFQ BU LD SUCCESS

0 =

[INFQ Total time: 8.656s
[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015
[INFQ Final Menory: 11M 28M

0 =

C\Oacl e\ M ddl ewar e\ Oracl e_Horme\ W server\server\lib>

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: pur ge- t asks

Description

Flushes out retired deployment tasks.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

t3://1ocal host: 7001 -

October 7, 2025
Page 27 of 84

ORACLE’

Chapter 3
Maven Plug-In Goals

Parameters

Table 3-10 purge-tasks Parameters

Name Type Required Description

admi nur | java.lang. String false Specifies the listen address and listen port of the
Administration Server. Default value is: t 3: //
| ocal host: 7001

debug bool ean false When true, compiles debugging information into class files.
Default value is: f al se

fail OnError bool ean false When true, forces the Mojo to fail the build upon
encountering an error if it would otherwise just log the error.
Default value is: t rue

password java.lang. String false Specifies the administrative password.

user java.lang. String false Specifies the administrative user name.

userConfigFile java.lang. String false Specifies the location of a user configuration file to use for

the administrative user name and password instead of
specifying the user name and password directly in plain text.

user KeyFil e java.lang. String false Specifies the location of a user key file to use for encrypting
and decrypting the user name and password stored in the
user configuration file.

ver bose bool ean false When true, displays additional status information during the

deployment process. Default value is: f al se

Use the purge-tasks goal to flush out retired deployment tasks.

<execution>

<i d>w s- purge</id>
<phase>pre-integration-test</phase>
<goal s>

<goal >pur ge-t asks</ goal >

</ goal s>

<configuration>

<adm nurl>t3://127.0.0.1: 7001</ adm nur| >
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>
</configuration>

</ executi on>

Example 3-11 shows typical pur ge-t asks goal output.
Example 3-10 purge-tasks

mvn com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: pur ge-t ask

s - Duser=webl ogi ¢ - Dpasswor d=password

[INFQ Scanning for projects...

[INFO

N R e T
[INFQ Building Maven Stub Project (No POV 1

N R e T
[INFO

[INFQ --- webl ogi c- maven-pl ugin: 14. 1. 2-0- 0: purge-tasks (default-cli) @standal o
ne- pom - - -

webl ogi c. Depl oyer invoked with options: -noexit -purgetasks -user webl ogic -adm
inurl t3://1ocal host: 7001

Currently there are no retired tasks.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 28 of 84

ORACLE’

redeploy

Chapter 3
Maven Plug-In Goals

o e
[INFO BU LD SUCCESS

[INBQ - m s e e e e e e e e e e e e e e
[INFQ Total time: 13.139s

[INFO Finished at: Wed Aug 19 11:33:51 EDT 2015
[INFQ Final Menory: 8M 24M

1 =

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: r edepl oy

Description

Redeploys a running application or part of a running application. Does not require a local
server installation.

Parameters

Table 3-11 redeploy Parameters

Name Type Required Description
admi nur | java.lang. Strin false Specifies the listen address and listen port of the Administration
g Server. Default value is: t 3: / /| ocal host : 7001
appversion java.lang. Strin false Version of the application to start.
g
deleteFiles java.lang.Strin false Removes the files specified in this parameter while leaving the
g application activated. This parameter is valid only for unarchived
deployments.
exanpl es bool ean false When true, displays examples of how to use this plug-in.
fail OnError bool ean false When true, forces the Mojo to fail the build upon encountering an error
if it would otherwise just log the error. Default value is: t r ue
id java.lang. Strin false Specifies an optional, user-supplied, unique deployment task
g identifier.
['i bi npl ver java.lang. Strin false Implementation version of a Jakarta EE library or optional package.
g This option can be used only if the library or package does not include
an implementation version in its manifest file.
library boolean false Deploy as a shared Jakarta EE library or optional package.
I'i bspecver java.lang. Strin false Specification version of a Jakarta EE library or optional package. This
g option can be used only if the library or package does not include a
specification version in its manifest file.
m ddl ewareHo java.lang.Strin false This parameter is deprecated in this release and ignored.
e g
name java.lang. Strin false Specifies the deployment name to assign to a newly-deployed
g application or standalone module.
password java.lang. Strin false Specifies the administrative password.
g
pl an java.lang. Strin false Specifies the path to the deployment plan.
g

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 29 of 84

ORACLE’

Table 3-11 (Cont.) redeploy Parameters

Chapter 3
Maven Plug-In Goals

Name

Type

Required

Description

renmot e

bool ean

false

When true, specifies that the plug-in is not running on the same
machine as the Administration Server. In this case, the sour ce
parameter specifies a path on the server, unless the upl oad
parameter is also used.

removePl anOv
erride

bool ean

false

Removes an overridden deployment plan during a r edepl oy or
updat e deployment action.

To remove an application override, specify the r enovePl anOverri de
attribute.

retiretimeou
t

java
er

.lang. I nteg

false

Specifies the number of seconds before WebLogic Server undeploys
the currently running version of this application or module so that
clients can start using a new version. When not specified, a graceful
retirement policy is assumed. Default value is: - 1

rm G acePeri
od

java
er

.lang. I nteg

false

Specifies the number of seconds in the grace period for RMI requests
during graceful shutdown. Can be used only when the gr acef ul
parameter is t r ue. The default value of - 1 means no grace period.
Default value is: - 1

serverd assp
ath

java

.lang. Strin

false

This parameter is deprecated in this release and ignored.

source

java

.lang. Strin

false

Specifies the address of the artifact to redeploy. The address can be

one of the following:

e Acolon (:) separated list of Maven coordinates of the form:
groupld:artifactld:packaging:classifier:version.

* An archive file or exploded archive directory on the local system.
For example, /Thome/myhome/myapps/helloworld.war.

* Aremote HTTP URL (http://foo/a/b.ear).

subnmodul et ar
gets

java

.lang. Strin

false

Specifies JMS Server targets for resources defined within a IMS
application module. Possible values have the form: subnod@rmod-
jme. xnl @ar get or subnodul eName@ ar get .

targets

java
g

.lang. Strin

false

Specifies a comma-separated list of targets for the current operation.
The default target is AdminServer.

ti meout

java
er

.lang. I nteg

false

Specifies the maximum number of seconds WebLogic Server will wait
for the deployment task to complete. The default value of -1 means
wait forever. Default value is: - 1

upl oad

bool

ean

false

When true, copies the specified source files to the Administration
Server's upl oad directory prior to redeployment. Use this setting
when running the plug-in remotely (using the r endt e parameter) and
when the user lacks normal access to the Administration Server's file
system. Default value is: f al se

user

java
g

.lang. Strin

false

Specifies the administrative user name.

user Conf i gFi
le

j ava
g

.lang. Strin

false

Specifies the location of a user configuration file to use for the
administrative user name and password instead of specifying the user
name and password directly in plain text.

user KeyFi l e

java
g

.lang. Strin

false

Specifies the location of a user key file to use for encrypting and
decrypting the user name and password stored in the user
configuration file.

ver bose

bool

ean

false

When true, displays additional status information during the
deployment process. Default value is: f al se

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 30 of 84

ORACLE Chapter 3
Maven Plug-In Goals

Table 3-11 (Cont.) redeploy Parameters

Name Type Required Description
version bool ean false When true, prints the version information. Default value is: f al se
webl ogi cHone java.lang.Strin false This parameter is deprecated in this release and ignored.

g

Use the redeploy goal to redeploy an application or part of that application.

<execution>

<i d>w s-redepl oy</i d>
<phase>pre-integration-test</phase>
<goal s>

<goal >r edepl oy</ goal >

</ goal s>

<configuration>

<adm nurl >t3://127.0.0. 1: 7001</ admi nur| >
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

<sour ce>${proj ect. build.directory}/ ${project.build.final Nane}. ${proj ect.packagi ng} </ sour
ce>

<nanme>${ pr oj ect . bui | d. fi nal Nane} </ name>
</ configuration>

</ execution>

Example 3-11 shows typical r edepl oy goal output.
Example 3-11 redeploy

mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: r edepl oy - Dsou

rce=C:\ Oracl e\ M ddl ewar e\ Oracl e_Honme\ wl server\server\|lib\MSinpl eEjb.jar -Duser
=webl ogi ¢ - Dpasswor d=password - Dname=Exanpl eEJB

[INFQ Scanning for projects...

[INFQ

[INFQ] - - mm s m e e e e
[INFQ Building WbLogic Server Maven Plugin 14.1.2.0

[INFQ] - - mm s mm e m e e i
[INFQ

[INFQ --- webl ogi c- maven-pl ugin: 14. 1. 2-0-0: redepl oy (default-cli) @webl ogic-ma
ven-plugin ---

webl ogi c. Depl oyer invoked with options: -noexit -adminurl t3://1ocal host: 7001 -
redepl oy -user webl ogi c -name Exanpl eEJB -source C:\ O acl e\ M ddl ewar e\ Oracl e_Hom
e\w server\server\lib\MSinpl eE b.jar -targets AdninServer

<Aug 19, 2015> <Info> <J2EE Depl oynent SPI> <BEA-260121> <Initi at

ing redepl oy operation for application, ExanpleEJB [archive: C\Oacle\M ddl ewar
e\Oracl e_Home\w server\server\|lib\M/SinpleEjb.jar], to AdninServer .>

Task 3 initiated: [Deployer:149026]depl oy application Exanpl eEJB on Adni nServer.

Task 3 conpl eted: [Deployer: 149026] depl oy application Exanpl eEJB on Adni nServer.

Target state: redeploy conpleted on Server Admi nServer

0 31
[INFO BU LD SUCCESS

[INFQ] - - mm o mm e e e e
[INFQ Total tine: 6.322s
[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 31 of 84

ORACLE Chapter 3
Maven Plug-In Goals

remove-domain

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: r enmove- domai n

Description

Removes a domain directory. The domain must not be running for this goal to succeed. This is
a convenience goal for the simple use case. If the domain is already removed, stdout prints a
status message but the goal does not fail.

Parameters

Table 3-12 remove-domain Parameters

Name Type Required Description
domai nHome java.lang. String true The path to the domain directory.
wor ki ngDi r java.lang.String false Specifies the current working directory.

Default value is: ${ pr oj ect . bui | d. di rect or y}/ webl ogi c-
maven- pl ugi n)

Use the remove-domain goal to remove a domain directory.

<execution>

<i d>wl s-renove- domai n</i d>

<phase>pre-integration-test</phase>

<goal s>

<goal >r enove- domai n</ goal >

</ goal s>

<configuration>

<domai nHone>${ pr oj ect . bui | d. di rect ory}/ base_domai n</ domai nHone>
</ configuration>

</ execution>

Example 3-13 shows typical r enove- domai n goal output.

Example 3-12 remove-domain

mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: r emove- donai n
- Ddomai nHome=C: \ Or acl e\ M ddl ewar e\ Or acl e_Hone\ user _pr oj ect s\ donmai ns\ base_donai n

[INFQ [renove-donai n] Executing: [cnd:[C \\Wndows\\ SystenB82\\cnd. exe, /c, rndir
/Q 1S C\Oacl e\ M ddl ewar e\ O acl e_Hone\ user _proj ect s\ dormai ns\ base_donai n] |
[INFQ Process being executed, waiting for conpletion

[INFQ [renove-donmain][cmd: [C\\Wndows\\ SystenB2\\cnd. exe, /c, rndir /Q/S C\O
racl e\ M ddl ewar e\ Or acl e_Home\ user _pr oj ect s\ donai ns\ base_dormai n]] exit code=0
01 e
[INFO BU LD SUCCESS

[ENFQO] - - - o o m o o o i iaiiiaiao
[INFQ Total tine: 4:01.074s

[INFO Finished at: Wed Aug 19 11:33:51 EDT 2015

[INFQ Final Menory: 8M 20M

I 20

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 32 of 84

ORACLE’

start-app

Chapter 3
Maven Plug-In Goals

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: start - app

Description

Starts an application deployed on WebLogic Server. Does not require a local server
installation.

Parameters

Table 3-13 start-app Parameters

Name Type Required Description

adm nnode bool ean false When true, switches the application to administration mode
so that it accepts only administration requests via a
configured administration channel. When false, production
mode is assumed. Default value is: f al se

admi nur | java.lang.String false Specifies the listen address and listen port of the
Administration Server. Default value is: t 3: / /
| ocal host : 7001

advanced bool ean false When true, prints advanced usage options.

appversion java.lang.String false Specifies the version identifier of the application. When not
specified, the currently active version of the application is
assumed.

debug bool ean false When true, displays debug-level messages to the standard
output. Default value is: f al se

domai nHone java.lang. String false This parameter is deprecated in this release and ignored.

exanpl es bool ean false When true, displays examples of how to use this plug-in.

fail OnError bool ean false When true, forces the Mojo to fail the build upon
encountering an error if it would otherwise just log the
error. Default value is: t r ue

id java.lang. String false Specifies an optional, user-supplied, unique deployment
task identifier.

m ddl ewar eHome java.lang. String false This parameter is deprecated in this release and ignored.

nane java.lang. String false Specifies the deployment name to assign to a newly-
deployed application or standalone module.

nover si on bool ean false When true, ignores all version-related code paths on the
Administration Server. Default value is: f al se

nowai t bool ean false When true, initiates multiple tasks and then monitors them
later with the - | i st action.

password java.lang. String false Specifies the administrative password.

pl anver si on java.lang. String false Specifies the version of the deployment plan. When not

specified, the currently active version of the application's
deployment plan is assumed.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 33 of 84

ORACLE

Table 3-13 (Cont.) start-app Parameters

Chapter 3
Maven Plug-In Goals

Name

Type

Required

Description

renmot e

bool ean

false

When true, specifies that the plug-in is not running on the
same machine as the Administration Server. In this case,
the sour ce parameter specifies a path on the server,
unless the upl oad parameter is also used. Default value
is: fal se

retiretimeout

java.lang. I nteger

false

Specifies the number of seconds before WebLogic Server
undeploys the currently running version of this application
or module so that clients can start using a new version.
When not specified, a graceful retirement policy is
assumed. Default value is: - 1

serverC asspath java.lang.String

false

This parameter is deprecated in this release and ignored.

submodul et ar get
S

java.lang. String

false

Specifies JMS Server targets for resources defined within a
JMS application module. Possible values have the form:
submd@rod-j ms. xm @ ar get or

subrmodul eName@ ar get .

targets

java.lang. String

false

Specifies a comma-separated list of targets for the current
operation. When not specified, all configured targets are
used. For a new application, the default target is all targets
to which the application is deployed.

ti meout

java.lang. | nteger

false

Specifies the maximum number of seconds WebLogic
Server will wait for the deployment task to complete. The
default value of - 1 means wait forever. Default value is: - 1

user

java.lang. String

false

Specifies the administrative user name.

user ConfigFile

java.lang. String

false

Specifies the location of a user configuration file to use for
the administrative user name and password instead of
specifying the user name and password directly in plain
text.

user KeyFil e

java.lang. String

false

Specifies the location of a user key file to use for
encrypting and decrypting the user name and password
stored in the user configuration file.

ver bose

bool ean

false

When true, displays additional status information during the
deployment process. Default value is: f al se

ver si on

bool ean

false

When true, prints the version information. Default value is:
fal se

webl ogi cHone

java.lang. String

false

This parameter is deprecated in this release and ignored.

Use the start-app goal to start an application

<execution>

<id>w s-start-app</id>
<phase>pre-integration-test</phase>

<goal s>

<goal >start - app</ goal >

</ goal s>

<configuration>

<adminurl >t 3://1 ocal host: 7001</ adm nur| >
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

<name>${ proj ect . bui | d. fi nal Name} </ nane>

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 34 of 84

ORACLE

start-server

Chapter 3
Maven Plug-In Goals

</ configuration>
</ executi on>

Example 3-13 shows typical st art - app goal output.
Example 3-13 start-app

mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: start - app

- Duser =webl ogi ¢ - Dpasswor d=passwor d - Dname=Exanpl eEJB

[INFQ Scanning for projects...

[INFO

RN R e
[INFQ Building WebLogic Server Maven Plugin 14.1.2.0

[INFQ - - - mm s mm i m o m o oo o
[INFO

[INFQ --- webl ogi c-maven-plugin:14.1.2-0-0:start-app (default-cli) @webl ogic-m
aven-plugin ---

webl ogi c. Depl oyer invoked with options: -noexit -adminurl t3://]ocalhost: 7001 -
start -user weblogic -name Exanpl eEJB -retiretimeout -1

<Aug 19, 2015> <Info> <J2EE Depl oyment SPI> <BEA-260121> <Initi at

ing start operation for application, ExanpleEJB [archive: null], to configured t
argets.>

Task 5 initiated: [Deployer:149026]start application Exanpl eEJB on Adm nServer.
Task 5 conpl eted: [Depl oyer:149026]start application Exanpl eEJB on Adm nServer.
Target state: start conpleted on Server AdninServer

I 20
[INFQ BU LD SUCCESS

[INFQ - - mmm i mm i m oo oo
[INFQ Total tine: 6.053s

[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015
[INFQ Final Menory: 10M 26M

I 20

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: start - server

Description

Starts WebLogic Server from a script in the current working directory. This is a convenience
goal for the simple use case. If the server is already started, stdout prints a status message but
the goal does not fail.

Parameters

Table 3-14 start-server Parameters

Name Type Required Description
comand java.lang. String[false Specifies the script to start WebLogic Server. If this
] parameter is not specified, it will default to either
startWebLogi c. sh or st art \bLogi c. cnd, based on
the platform.
domai nHone java.lang. String false Specifies the path to the WebLogic Server domain. Default

value is: ${ basedi r}/ Oracl e/ Domai ns/ mydomai n

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 35 of 84

ORACLE

Chapter 3
Maven Plug-In Goals

Table 3-14 (Cont.) start-server Parameters

Name Type Required Description

ht t pPi ngUr | java.lang. String false Specifies the URL that, when pinged, will verify that the
server is running.

m ddl ewar eHorre java.lang. String false This parameter is deprecated in this release and ignored.

serverd asspat h java.lang. String false This parameter is deprecated in this release and ignored.

ti meout Secs java.lang. | nteger false Specifies in seconds, the timeout for the script. Valid when

the wai t For Exi t parameteristrue. A zero (0) or
negative value indicates that the script will not timeout.
Default value is: - 1

webl ogi cHone

java.lang. String false This parameter is deprecated in this release and ignored.

Usage Example

The start-server goal executes a st art WebLogi ¢ command on a given domain, starting the
WebLogic Server instance.

<execution>

<id>w s-w st-start-server</id>
<phase>pre-integration-test</phase>

<goal s>

<goal >start-server</goal >

</ goal s>

<configuration>

<domai nHone>${ pr oj ect . bui | d. di rect ory}/ base_domai n</ domai nHone>
</configuration>

</ execution>

Example 3-14 shows typical st art - server goal output.

Example 3-14 start-server

mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: start -server
- Ddomai nHonme=c: \ or acl e\ m ddl ewar e\ or acl e_hone\ user _proj ect s\ dormai ns\w _server
[INFQ Scanning for projects...

[INFQ

[INFQ - - mm o m e m e e
[INFQ Building WebLogic Server Maven Plugin 14.1.2-0-0

[INFQ - - mmm i mm e m oo [INFO
[INFQ --- webl ogi c- maven-plugin: 14.1.2-0-0: start-server (default-cli)

@ webl ogi c- maven-plugin ---

.[INFQ Starting server in domain:

c:\oracl e\ n ddl ewar e\ oracl e_hore\ user _proj ect s\ donmai ns\w _server

[INFQ Check stdout file for details:

c:\oracl e\ ni ddl ewar e\ oracl e_hore\ user _proj ect s\ donai ns\w _server\ server-21831141069721263
86. out

[INFQ Process being executed, waiting for conpletion.

[INFQ Server started successful

T 2o
[INFO BU LD SUCCESS

[INFQ - - mm o m e m e e
[INFQ Total tinme: 37.725s

[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015

[INFQ Final Menory: 8M 23M

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 36 of 84

ORACLE’

stop-app

Full Name

Chapter 3
Maven Plug-In Goals

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: st op- app

Description

Stops an application. Does not require a local server installation.

Parameters

Table 3-15 stop-app Parameters

Name Type Required Description

adm nnode bool ean false When true, switches the application to administration mode so
that it accepts only administration requests via a configured
administration channel. When false, production mode is
assumed. Default value is: f al se

admi nur | java.lang. String false Specifies the listen address and listen port of the Administration
Server. Default value is: t 3: / /| ocal host: 7001

advanced bool ean false When true, prints advanced usage options.

appversion java.lang. String false Specifies the version identifier of the application. When not
specified, the currently active version of the application is
assumed.

debug bool ean false When true, displays debug-level messages to the standard
output. Default value is: f al se

donmai nHone java.lang. String false This parameter is deprecated in this release and ignored.

exanpl es bool ean false When true, displays examples of how to use this plug-in.

fail OnError bool ean false When true, forces the Mojo to fail the build upon encountering
an error if it would otherwise just log the error. Default value is:
true

gracef ul bool ean false When true, stops the application after existing HTTP clients have
completed their work. When not specified, force shutdown is
assumed.

id java.lang. String false Specifies an optional, user-supplied, unique deployment task
identifier.

i gnoresessi ons bool ean false When true, ignores pending HT TP sessions during graceful
shutdown. Can be used only when the gr acef ul parameter is
true. Default value is: f al se

m ddl ewar eHome java.lang. String false This parameter is deprecated in this release and ignored.

nane java.lang. String false Specifies the deployment name to assign to a newly-deployed
application or standalone module.

nover si on bool ean false When true, ignores all version-related code paths on the
Administration Server. Default value is: f al se

nowai t bool ean false When true, initiates multiple tasks and then monitors them later
with the - | i st action.

password java.lang. String false Specifies the administrative password.

Developing Applications for Oracle WebLogic Server

G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 37 of 84

ORACLE’

Table 3-15 (Cont.) stop-app Parameters

Chapter 3
Maven Plug-In Goals

Name Type Required Description

pl anversi on java.lang. String false Specifies the version of the deployment plan. When not
specified, the currently active version of the application's
deployment plan is assumed.

renot e bool ean false When true, specifies that the plug-in is not running on the same
machine as the Administration Server. In this case, the sour ce
parameter specifies a path on the server, unless the upl oad
parameter is also used. Default value is: f al se

rm GracePeriod java.lang.Integer false Specifies the number of seconds in the grace period for RMI
requests during graceful shutdown. Can be used only when the
gracef ul parameter istrue. The default value of - 1 means no
grace period. Default value is: - 1

serverC asspath java.lang.String false This parameter is deprecated in this release and ignored.

subnodul etarget java.lang.String false Specifies IMS Server targets for resources defined within a

S JMS application module. Possible values have the form:
submod@rod- j ms. xm @ ar get or subrmodul eNamre@ ar get .

targets java.lang. String false Specifies a comma-separated list of targets for the current
operation. When not specified, all configured targets are used.

ti meout java.lang. | nteger false Specifies the maximum number of seconds WebLogic Server
will wait for the deployment task to complete. The default value
of - 1 means wait forever. Default value is: - 1

user java.lang. String false Specifies the administrative user name.

userConfigFile java.lang.String false Specifies the location of a user configuration file to use for the
administrative user name and password instead of specifying
the user name and password directly in plain text.

user KeyFil e java.lang. String false Specifies the location of a user key file to use for encrypting and
decrypting the user name and password stored in the user
configuration file.

ver bose bool ean false When true, displays additional status information. Default value
is: fal se

ver si on bool ean false When true, prints the version information. Default value is:
fal se

webl ogi cHone java.lang. String false This parameter is deprecated in this release and ignored.

Use the stop-app goal to stop an application.

<execution>

<id>wW s-start-app</id>

<phase>pre-integration-test</phase>

<goal s>

<goal >st art - app</ goal >

</ goal s>

<configuration>

<adminurl >t 3://1 ocal host: 7001</ admi nur| >
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

<name>${ proj ect . bui | d. fi nal Name} </ nane>
</configuration>

</ execution>

Example 3-15 shows typical st op- app goal output.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 38 of 84

ORACLE

stop-server

Chapter 3
Maven Plug-In Goals

Example 3-15 stop-app

mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: stop-app - Dus

er =webl ogi ¢ - Dpasswor d=passwor d - Dname=Exanpl eEJB

[INFQ Scanning for projects...

[INFQ

L RO I R
[INFQ Building WebLogic Server Maven Plugin 14.1.2.0

[INFQ -mmmmmmmmmm et e e
[INFQ

[INFQ --- webl ogi c-maven-pl ugin: 14. 1. 2-0-0: stop-app (default-cli)
@ webl ogi c-ma

ven-plugin ---

webl ogi c. Depl oyer invoked with options: -noexit

-adminurl t3://1ocal host: 7001 -

stop -user webl ogic -name Exanpl eEJB

<Aug 19, 2015> <Info>

<J2EE Depl oyment SPI > <BEA-260121> <l niti at

ing stop operation for application, Exanpl eEJB [archive: null],

to configured ta

rgets.>

Task 6 initiated: [Deployer:149026]stop application Exanpl eEJB on
Adni nServer.

Task 6 conpl eted: [Deployer:149026] stop application Exanpl eEJB on
Adni nServer.

Target state: stop conpleted on Server Adm nServer

[INFQ Total time: 6.028s
[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015
[INFQ Final Menory: 10M 29M

C\Oacl e\ M ddl ewar e\ Oracl e_Hore\ W server\server\lib>

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: st op- server

Description

Stops WebLogic Server from a script in the current working directory. This is a convenience
goal for the simple use case. If the server is already stopped, stdout prints a status message
but the goal does not fail.

Parameters

Table 3-16 stop-server Parameters

Name Type Required Description
admi nur | java.lang. String false Specifies the listen address and listen port of the Administration
Server. Default value is: t 3: / /| ocal host: 7001
comrand java.lang. Strin false Specifies the script to stop WebLogic Server. This will default to
gl] st opWebLogi c. sh or st opWebLogi c. cnd, based on the
platform.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 39 of 84

ORACLE’

Chapter 3
Maven Plug-In Goals

Table 3-16 (Cont.) stop-server Parameters

Name Type Required Description

domai nHone java.lang. String false Specifies the path to the WebLogic Server domain. Default value
is: ${ basedi r}/ Oracl e/ Domai ns/ nydomai n

m ddl ewar eHorre java.lang. String false This parameter is deprecated in this release and ignored.

out put Log java.lang. String false Specifies the log file to which the script output will be redirected.
When not specified, it defaults to st dout .

password java.lang. String true Specifies the administrative password.

ti meout Secs java.lang. I ntege false Specifies, in seconds, the timeout for the script. This is valid

r when the wai t For Exi t parameteristrue. A zero (0) or

negative value indicates that the script will not timeout. Default
value is: - 1

user java.lang. String true Specifies the administrative user name.

wai t For Exi t bool ean false When true, the plug-in should wait for the script to complete.
Default value is: t r ue

webl ogi cHone java.lang. String false This parameter is deprecated in this release and ignored.

wor ki ngDi r java.lang. String false Specifies the working directory for the script. If you do not specify

this attribute, it defaults to the current working directory. Default
value is: ${ pr oj ect . base. di rect ory}

Usage Example

The st op- server goal stops a server instance using the st opWebLogi ¢ script in the specified
domain.

<execution>

<i d>w s-w st - st op-server</id>
<phase>post -i ntegration-test </ phase>
<goal s>

<goal >st op- server </ goal >

</ goal s>

<configuration>

<domai nHone>${ pr oj ect . bui | d. di rect ory}/ base_domai n</ domai nHone>
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

<adminurl >t 3://1 ocal host: 7001</ admi nur | >
</configuration>

</ executi on>

Example 3-16 shows typical st op- server goal output.
Example 3-16 stop-server

mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: st op- server
- Ddonai nHone=c: \ or acl e\ mi ddl ewar e\ or acl e_home\ user pr oj ect s\ domai ns\w _server
- Dwor ki ngDi r=c: \ oracl e\ m ddl ewar e\ or acl e_hone\ user _pr oj ect s\ dormai ns\w _server
- Duser =webl ogi ¢ - Dpasswor d=passwor d
[INFQ Scanning for projects...
[INFQ
=1
[INFQ Building WebLogi ¢ Server Maven Plugin 14.1.2-0-0
=1

[INFQ
[INFQ --- weblogi c-maven-plugin:14.1.2-0-0: stop-server (default-cli)

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 40 of 84

ORACLE Chapter 3
Maven Plug-In Goals

@ webl ogi ¢

-maven-plugin ---

[INFQ Stop server in domain:

c:\oracl e\ m ddl ewar e\ oracl e_home\ user _proj ect s\ dom

ai ns\w _server

[INFQ Process being executed, waiting for conpletion.

[INFO [exec] Stopping Weblogic Server...

[INFO [exec]

[INFQ [exec] Initializing WebLogic Scripting Tool (WST) ...

[INFO [exec]

[INFQO [exec] Welcone to WebLogic Server Administration Scripting Shell

[INFO [exec]

[INFQ [exec] Type help() for help on avail abl e comrands

[INFO [exec]

[INFQ [exec] Connecting to t3://1ocal host: 7001 with userid weblogic ...
[INFO [exec] Successfully connected to Admin Server "Adm nServer" that bel ongs
to domain "W _server".

[INFO [exec]

[INFQ [exec] Warning: An insecure protocol was used to connect to the

[INFO [exec] server. To ensure on-the-wire security, the SSL port or

[INFO [exec] Admin port should be used instead.

[INFO [exec]

[INFQ [exec] Shutting down the server AdminServer with force=fal se while connec
ted to Adm nServer ...

[INFQ [exec] W.ST lost connection to the WeblLogic Server that you were
[INFQ [exec] connected to, this may happen if the server was shutdown or
[INFQ [exec] partitioned. You will have to re-connect to the server once the
[INFO [exec] server is available.

[INFQ [exec] Disconnected from webl ogic server: Adm nServer

[INFO [exec] Disconnected from webl ogic server:

[INFO [exec]

[INFO [exec]

[INFQ [exec] Exiting WebLogic Scripting Tool .

[INFO [exec]

[INFQ [exec] Done

[INFQ [exec] Stopping Derby Server...

[INFQ [exec] Derby server stopped.

021 e
[INFO BU LD SUCCESS

T 21 e
[INFQ Total tine: 23.270s

[INFO Finished at: Wed Aug 19 11:33:51 EDT 2015

[INFQ Final Menory: 9M 23M

I 20

undeploy

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: undepl oy

Description

Undeploys the application from WebLogic Server. Stops the deployment unit and removes
staged files from target servers. Does not require a local server installation.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 41 of 84

ORACLE’

Parameters

Table 3-17 undeploy Parameters

Chapter 3
Maven Plug-In Goals

Name Type Required Description
admi nur | java.lang. Strin false Specifies the listen address and listen port of the Administration
g Server. Default value is: t 3: / /| ocal host : 7001
advanced bool ean false When true, prints advanced usage options.
appversion java.lang. Strin false Specifies the version identifier of the application. When not
g specified, the currently active version of the application is assumed.
debug bool ean false When true, displays debug-level messages to the standard output.
Default value is: f al se
exanpl es bool ean false When true, displays examples of how to use this plug-in.
fail OnError bool ean false When true, forces the Mojo to fail the build upon encountering an
error if it would otherwise just log the error. Default value is: t r ue
gracef ul bool ean false When true, stops the application after existing HT TP clients have
completed their work. When not specified, forced shutdown is
assumed.
id java.lang. Strin false Specifies an optional, user-supplied, unique deployment task
g identifier.
i gnor esessi ons bool ean false When true, ignores pending HT TP sessions during graceful

shutdown. Can be used only when the gr acef ul parameter is
true. Default value is: f al se

m ddl ewar eHome java.lang. Strin false

This parameter is deprecated in this release and ignored.

g
narme java.lang. Strin false Specifies the deployment name to assign to a newly-deployed
g application or standalone module.
nover si on bool ean false When true, ignores all version-related code paths on the
Administration Server. Default value is: f al se
nowai t bool ean false When true, initiates multiple tasks and then monitors them later with
the -1 i st action.
password java.lang. Strin false Specifies the administrative password.
g
pl anver si on java.lang. Strin false Specifies the version of the deployment plan. When not specified,
g the currently active version of the application's deployment plan is
assumed.
renmot e bool ean false When true, specifies that the plug-in is not running on the same

machine as the Administration Server. In this case, the sour ce
parameter specifies a path on the server, unless the upl oad
parameter is also used. Default value is: f al se

rm GracePeriod java.lang.Integ false
er

Specifies the number of seconds in the grace period for RMI
requests during graceful shutdown. Can be used only when the
graceful parameteristrue. The default value of - 1 means no
grace period. Default value is: - 1

serverC asspat java.lang.Strin false
h g

This parameter is deprecated in this release and ignored.

Developing Applications for Oracle WebLogic Server
G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 42 of 84

ORACLE’

Chapter 3
Maven Plug-In Goals

Table 3-17 (Cont.) undeploy Parameters

Name Type Required Description
subnodul etarge java.lang.Strin false Specifies JIMS Server targets for resources defined within a IMS
ts g application module. Possible values have the form: subnod@rod-
jms. xnl @arget or submodul eName@ ar get .
targets java.lang. Strin false Specifies a comma-separated list of targets for the current
g operation. When not specified, all configured targets are used.
ti meout java.lang.Integ false Specifies the maximum number of seconds WebLogic Server will
er wait for the deployment task to complete. The default value of - 1
means wait forever. Default value is: - 1
user java.lang. Strin false Specifies the administrative user name.
g
userConfigFile java.lang.Strin false Specifies the location of a user configuration file to use for the
g administrative user name and password instead of specifying the
user name and password directly in plain text.
user KeyFil e java.lang. Strin false Specifies the location of a user key file to use for encrypting and
g decrypting the user name and password stored in the user
configuration file
ver bose bool ean false When true, displays additional status information during the
deployment process. Default value is: f al se
version bool ean false When true, prints the version information. Default value is: f al se
webl ogi cHone java.lang. Strin false This parameter is deprecated in this release and ignored.
g

Use the undeploy goal to undeploy an application from WebLogic Server.

<execution>

<i d>w s-undepl oy</i d>
<phase>post -int egrati on-test </ phase>
<goal s>

<goal >undepl oy</ goal >

</ goal s>

<configuration>

<adm nurl >t3://127.0.0. 1: 7001</ adni nur| >
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

<nanme>${ proj ect . bui | d. fi nal Name} </ nane>
</ configuration>

</ executi on>

Example 3-17 shows typical undepl oy goal output.
Example 3-17 undeploy

mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: undepl oy

- Duser =webl ogi ¢ - Dpasswor d=passwor d - Dname=Exanpl eEJB

[INFQ Scanning for projects...

[INFO

N R e T
[INFQ Building WebLogic Server Maven Plugin 14.1.2.0

N R e T
[INFO

[INFQ --- webl ogi c- maven-pl ugin: 14. 1. 2-0- 0: undepl oy (default-cli)

@ webl ogi c-ma

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 43 of 84

ORACLE

uninstall

Chapter 3
Maven Plug-In Goals

ven-plugin ---

webl ogi c. Depl oyer invoked with options: -noexit

-adm nurl t3://1ocal host: 7001 -

undepl oy -user webl ogi c -name Exanpl eEJB -targets Adm nServer
<Aug 19, 2015> <Info> <J2EE Depl oynent SPI>

<BEA-260121> <l niti at

ing undepl oy operation for application, ExanpleEJB [archive: null],
to Adm nServ

er .>

Task 7 initiated: [Deployer:149026]renove application Exanpl eEJB
on Adm nServer.

Task 7 compl eted: [Depl oyer: 149026] renove application Exanpl eEJB
on Adm nServer.

Target state: undeploy conpleted on Server Adm nServer

[INFQ Total tine: 6.114s
[INFO Finished at: Wed Aug 19 11:33:51 EDT 2015
[INFQ Final Menory: 9M 26M

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: uni nst al |

Description

Uninstalls WebLogic Server.

Parameters

Table 3-18 uninstall Parameters

Name Type Required Description

i nvPtrLoc java.io.File true This parameter is deprecated and ignored.

m ddl ewar eHome java.lang. Strin true The Oracle Middleware installation directory. This parameter is
g required when uninstalling a server installed using the

Quickstart installer. Otherwise, it is ignored and the location in
the responseFile is used.

response

java.io.File true Deprecated. Use the responseFile parameter.

responseFil e

java.io.File true The silent installer response file. This is required when using
the binary or JAR installers.

Example 3-18 shows an example of uninstalling WebLogic Server in a JAR file installation.

Example 3-18 uninstall in JAR Installation

m/n com oracl e. webl ogi ¢: webl ogi c- maven- pl ugi n: uni nstal |l -DresponseFile=c:\w s-
t enp\ response. t xt
[INFQ Scanning for projects...

[I NFO

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 44 of 84

ORACLE’

update-app

Chapter 3
Maven Plug-In Goals

[INFQ Building Maven Stub Project (No POV 1

[I NFQ

[I NFQ

[INFQ --- weblogic-maven-plugin:14.1.2-0-0:uninstall (default-cli) @

st andal one

-pom - .-

[INFQ [uninstall]ORACLE_ HOVE = C:\test-maven\ Oracl e\ M ddl ewar e\ Or acl e_Home
[INFQ [uninstall]ORACLE_ HOVE = C:\test-maven\ Oracl e\ M ddl ewar e\ Or acl e_Home
[INFQ Executing: [cmd:[C\\Wndows\\SystenB82\\cnd.exe, /c, C\test-
maven\ Or acl

e\ M ddl ewar e\ Or acl e_Hone\ oui \ bi n\ dei nstal | . cnmd - noconsol e -deinstall -silent -
re

sponseFile c:\w s-tenp\response.txt]]

[INFQ Process being executed, waiting for conpletion.

[INFQ Installer exited with code: 0

[I NFO

[INFO BU LD SUCCESS
[INFO

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: updat e- app

Description

Updates an application's deployment plan by redistributing the plan files and reconfiguring the
application based on the new plan contexts. Does not require a local server installation.

Parameters

Table 3-19 update-app Parameters
|

Name Type Required Description

admi nur | java.lang. String false Specifies the listen address and listen port of the Administration
Server. Default value is: t 3: / /| ocal host: 7001

advanced bool ean false When true, prints advanced usage options.

appversion java.lang.String false Specifies the version identifier of the application. When not
specified, the currently active version of the application is
assumed.

debug bool ean false When true, displays debug-level messages to the standard
output. Default value is: f al se

donmai nHone java.lang.String false This parameter is deprecated in this release and ignored.

exanpl es bool ean false When true, displays examples of how to use this plug-in.

fail OnError bool ean false When true, forces the Mojo to fail the build upon encountering an

error if it would otherwise just log the error. Default value is: t r ue

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 45 of 84

ORACLE’

Table 3-19 (Cont.) update-app Parameters

Chapter 3
Maven Plug-In Goals

Name Type Required Description

id java.lang.String false Specifies an optional, user-supplied, unique deployment task
identifier.

m ddl ewar eHom java.lang. String false This parameter is deprecated in this release and ignored.

e

namne java.lang. String false Specifies the deployment name to assign to a newly-deployed
application or standalone module.

nover si on bool ean false When true, ignores all version-related code paths on the
Administration Server. Default value is: f al se

nowai t bool ean false When true, initiates multiple tasks and then monitors them later
with the - | i st action.

password java.lang.String false Specifies the administrative password.

pl an java.lang. String false Specifies the location of the deployment plan.

planversion java.lang.String false Specifies the version of the deployment plan. When not specified,
the currently active version of the application's deployment plan is
assumed.

renote bool ean false When true, specifies that the plug-in is not running on the same
machine as the Administration Server. In this case, the sour ce
parameter specifies a path on the server, unless the upl oad
parameter is also used. Default value is: f al se

removePl anOve | bool ean false Removes an overridden deployment plan during a r edepl oy or

rride updat e deployment action.
To remove an application override, specify the
removePl anOver ri de attribute.

rm GacePerio java.lang.Integer false Specifies the number of seconds in the grace period for RMI

d requests during graceful shutdown. Can be used only when the
gracef ul parameter istrue. The default value of - 1 means no
grace period. Default value is: - 1

serverC asspa java.lang. String false This parameter is deprecated in this release and ignored.

th

submodul etarg java.lang. String false Specifies JMS Server targets for resources defined within a JIMS

ets application module. Possible values have the form: subnod@wod-
jms. xm @ ar get or submodul eNamre@ ar get .

targets java.lang.String false The targets on which to update the application or module. This
attribute can be a comma-separated list. If no targets are
specified, all targets are updated.

ti meout java.lang.Integer false Specifies the maximum number of seconds WebLogic Server will
wait for the deployment task to complete. The default value of - 1
means wait forever. Default value is: - 1

upl oad bool ean false When true, copies the source files to the Administration Server's
upload directory prior to deployment. Use this setting when
running the plug-in remotely (using the r enot e parameter) and
when the user lacks normal access to the Administration Server's
file system. Default value is: f al se

user java.lang. String false Specifies the administrative user name.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 46 of 84

ORACLE

Table 3-19 (Cont.) update-app Parameters

Chapter 3
Maven Plug-In Goals

Name Type Required

Description

userConfigFil java.lang.String false
e

Specifies the location of a user configuration file to use for the
administrative user name and password instead of specifying the
user name and password directly in plain text.

userKeyFile java.lang.String false Specifies the location of a user key file to use for encrypting and
decrypting the user name and password stored in the user
configuration file.

verbose bool ean false When true, displays additional status information. Default value is:
fal se

Version bool ean false When true, prints the version information. Default value is: f al se

webl ogi cHome java.lang. String false

This parameter is deprecated in this release and ignored.

Use the update-app goal to update an application's deployment plan.

<execution>
<i d>W s- updat e- app</i d>

<phase>pre-integration-test</phase>

<goal s>

<goal >updat e- app</ goal >
</ goal s>
<configuration>

<admi nurl>t3://127.0.0.1: 7001</ adm nur| >

<user >webl ogi c</ user >
<passwor d>passwor d</ passwor d>

<name>${ proj ect. bui | d. fi nal Nane} </ name>
<pl an>${basedir}/ m sc/ mypl an. xm </ pl an>

</ configuration>
</ executi on>

Example 3-19 shows typical wl st goal output.

Example 3-19 update-app

$ mvn com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: updat e- app - Duser =webl ogi ¢
- Dpasswor d=password - Dadmi nurl =t 3://1 ocal host: 7001 - Dpl an=ni sc/ nypl an. xni

- Dnane=basi c\bapp
[INFQ Scanning for projects...

[INFO

[INFQ == ememmmmmmmmmeee e

[INFQ Building basi cWebapp 1. 0- SNAPSHOT

[INFQ - -emmmmmmmmmee oo

[NFO

[INFQ --- webl ogi c- maven-pl ugin: 14. 1. 2-0- 0: updat e- app (default-cli)

@main-test ---

webl ogi c. Depl oyer invoked with options: -noexit -adm nurl
t3://1ocal host: 7001 -update -user weblogic -plan

/ hone/ or acl e/ src/tests/ main-test/msc/nyplan.xm -nane basi cWebapp -targets Adnmi nServer

<Aug 19, 2015> <Info> <J2EE Depl oyment SPI > <BEA-260121>

<Initiating update operation for application, basicWbapp [archive:

to Admi nServer .>

Task 10 initiated: [Deployer:149026] update application basi c\Webapp on

Adnmi nSer ver.

Task 10 conpl eted: [Depl oyer:149026] updat e application basi cWebapp on

Adni nServer.
Target state: update conpleted on Server Adm nServer

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

null],

October 7, 2025
Page 47 of 84

ORACLE’

[INFQ Total tinme: 10.651s

Chapter 3
Maven Plug-In Goals

[INFO Finished at: Wd Aug 19 11:33:51 EDT 2015

[INFQ Final Menory: 18M 435M

wist

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: W st

Description

This goal is a wrapper for the WLST scripting tool. It requires a server install for WLST online

commands.

Parameters

Table 3-20 wlist Parameters

Name Type Required

Description

args java.lang. Str false
i ng

Deprecated. Use the scriptArgs parameter to specify the arguments
as a list of scriptArg elements.

Specifies a string value containing command-line arguments to pass
to the WLST Python interpreter. The arguments are delimited by
spaces. An argument that contains embedded spaces should be
guoted either with single quotes or with escaped double quotes. For
example, here is a string for args that contains two parameters:

""Thomas Paine' \"Nowis the time that tries nmen's
soul s.\""

debug bool ean false

When true, displays additional status information.
Default value is: f al se

execut eScri pt Bef or bool ean false
eFile

When true, specifies whether a script, if supplied, executes before or
after the file, if supplied. Either a file or a script is required, and both
are allowed. See f i | enanme and scri pt parameters.

Default value is: t r ue

fail OnError bool ean false

When true, the Maven build fails if the Wl st goal fails. The default
value is t r ue, and consequently any error condition will cause the
build to fail. In some cases, setting f ai | OnError to f al se will allow
the Wl st goal to ignore the error.

Default value is: t r ue

fil eName java.lang. Str false
i ng

Specifies the file path of the WLST Python script to execute. Either a
fileNane orascript parameter must be specified, and both are
allowed.

m ddl ewar eHone java.lang. Str true
i ng

The path to the Oracle Middleware install directory.

Developing Applications for Oracle WebLogic Server
G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 48 of 84

ORACLE

Chapter 3
Maven Plug-In Goals

Table 3-20 (Cont.) wist Parameters

Name Type Required Description
propertiesFile java.lang. Str false Specifies the path to a Java properties file. The property names
i ng become defined variables in the WLST Python interpreter and are

initialized to the values supplied. For example, if the properties file
contains the line "f oobar: Very inportant stuff", the variable
foobar can be used in a Python statement in the following manner:
"print('foobar has the value: ' + foobar)".

script java.lang. Str false Specifies an inline WLST Python script, for example,
ing "print('Hello, world!")"
Because Python uses indentation to demarcate nested code blocks,
scripts that contain multiple lines must be specified in the POM
without any indentation within the pom.xml, unless required for code
block demarcation.
scriptArgs java.lang. Str |false Specifies the command-line arguments to pass to the WLST Jython
i ng interpreter as a list of string values. If the argument contains any
embedded whitespace, the caller must include enclosing single
guotes or escaped double quotes within the scriptArg element's
value. If scriptArgs is specified, the args parameter (deprecated) is
ignored.
server C asspath java.lang. Str false This parameter is deprecated and ignored in this release.
ing
webl ogi cHone java.lang. Str false This parameter is deprecated and ignored in this release.
i ng
wl st Ver si on java.lang. Str false This parameter is deprecated and ignored in this release.
ing
wor ki ngDi r java.lang. Str |false The current working directory where the wist-script and create-
i ng domain goal executes. The default value is: $
{project.build.directory}/weblogic-maven-plugin

Usage Example

The w st goal enables the WebLogic Scripting Tool (WLST) to be used to execute scripts that
configure resources or perform other operations on a WebLogic Server domain. The wl st
Maven goal uses the WebLogic Server WLST standard environment so you can use it with all
your existing WLST scripts.

You can use the wl st goal to execute an external WLST script specified with the fi | eNane
configuration parameter, or you can specify a sequence of WLST commands within the
pom xm file using the scri pt configuration element:

<execution>

<i d>w s-w st-server</id>

<phase>post -int egrati on-test </ phase>

<goal s>

<goal >w st </ goal >

</ goal s>

<configuration>

<ni ddl ewar eHorme>c: / dev/ wl s14110</ ni ddl ewar eHone>

<fil eName>${ proj ect. basedir}/m sc/ configure_resources. py</fil eNane>
<args>t 3://l ocal host: 7001 webl ogi ¢ password Adm nServer</args>
<script>

print('This is a W.ST inline script\n')

print('Next, we run a W.ST script to create JVMS resources on the server\n')

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 49 of 84

ORACLE

Chapter 3
Maven Plug-In Goals

</script>

<execut eScri pt Bef or eFi | e>t rue</ execut eScri pt Bef or eFi | e>
</ configuration>

</ executi on>

Example 3-20 shows typical wl st goal output.
Example 3-20 wilst

mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: W st
-Dfi | eNane=cr eat e- dat asour ce. py

[INFQ Scanning for projects...

[INFQ

L SO R R
[INFQ Building maven-demo 1.0

L SO R R T
[INFQ

[INFQ --- webl ogi c-maven-plugin:14.1.2-0-0:wW st (default-cli) @naven-deno ---
[INFQ ++ ++
[INFQ ++ webl ogi c-maven-plugin: W st ++
[INFQ ++ ++

*** (Creating DataSource ***

Connecting to t3://1ocal host: 7001 with userid weblogic ...
Successfully connected to Admin Server 'Admi nServer' that belongs to domain 'nydomain'.

Warning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Adnmin port should be used instead.

Location changed to edit tree. This is a witable tree with
Domai nMBean as the root. To make changes you will need to start
an edit session via startEdit().

For more help, use help(edit)

Starting an edit session ...

Started edit session, please be sure to save and activate your

changes once you are done.

Activating all your changes, this may take a while ...

The edit |ock associated with this edit session is released

once the activation is conpleted.

Activation conpleted

Location changed to serverRuntine tree. This is a read-only tree with ServerRunti meMBean
as the root.

For more hel p, use hel p(serverRuntine)

**** DataSource Details ****

Nane: cp

Driver Nane: Oracle JDBC driver

Dat aSour ce: oracle.jdbc. xa.client. O acl eXADat aSour ce

Properties: {user =deno}

State: Runni ng

L SO R R

[INFQ BU LD SUCCESS

By default, the wl st goal is bound to the pre-integration-test phase. To override the default
phase binding for a goal, you can explicitly bind plug-in goals to a particular life cycle phase,

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 50 of 84

ORACLE

wist-client

Chapter 3
Maven Plug-In Goals

for example, to the post-integration-test phase, as shown below. The pom xn file binds the
w st goal to both the pre- and post-integration-test phases (a dual phase target). As shown,
you can run different scripts in different phases, overriding the default settings, and make
modifications according to your needs.

Example pom xni file
<proj ect >

<executions>
<execution>
<i d>W.S_SETUP_RESOURCES</ i d>
<phase>pre-integration-test</ phase>
<goal s>
<goal >W st </ goal >
</ goal s>
<configuration>
<fil eName>src/ mai n/ wl st/ creat e- dat asour ce. py</fil eName>
</configuration>
</ execution>

<execution>
<i d>W.S_TEARDOAN_RESOURCES</ i d>
<phase>post-integration-test</ phase>
<goal s>
<goal >W st </ goal >
</ goal s>
<configuration>
<fil eName>src/ mai n/ w st/ renove- dat asour ce. py</fi | eName>
</configuration>
</ execution>
</ executions>

</ proj ect>

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: W st -cl i ent

Description

This goal is a WLST wrapper that does not require a local server install for WLST online
commands. If a local server install is not present, this goal supports only WLST online
commands.

Parameters

Table 3-21 wist-client Parameters

Name Type Required Description

args java.lang. Stri false Deprecated. Use the scriptArgs parameter to specify the
ng arguments as a list of scriptArg elements.

debug bool ean false When true, displays additional status information.

Default value is: f al se

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 51 of 84

ORACLE Chapter 3
Maven Plug-In Goals

Table 3-21 (Cont.) wist-client Parameters

Name Type Required Description
execut eScri pt Befo bool ean false When true, specifies whether a script, if supplied, executes before
reFile or after the file, if supplied. Either a file or a script is required, and

both are allowed. See fi | enane and scri pt parameters.
Default value is: t r ue

failOnError bool ean false When true, the Maven build fails if the Wl st goal fails. The default
value is t r ue, and consequently any error condition will cause the
build to fail. In some cases, setting f ai | OnError to f al se will
allow the wl st goal to ignore the error.

Default value is: t rue

fileNane java.lang. Stri false Specifies the file path of the WLST Python script to execute. Either
ng afileName orascript parameter must be specified, and both
are allowed.
m ddl ewar eHone java.lang. Stri false The path to the Oracle Middleware install directory.
ng This parameter is required for any WLST offline commands. If a

WLST script uses offline commands without specifying a valid
middlewareHome, this Wl st - ¢l i ent goal fails.

propertiesFile java.lang. Stri false Specifies the path to a Java properties file. The property names
ng become defined variables in the WLST Python interpreter and are
initialized to the values supplied. For example, if the properties file
contains the line "f oobar: Very inportant stuff",the
variable f oobar can be used in a Python statement in the following
manner: "print (' foobar has the value: ' + foobar)".

script java.lang. Stri false Specifies an inline WLST Python script, for example,
ng "print('Hello, world!")"
Because Python uses indentation to demarcate nested code
blocks, scripts that contain multiple lines must be specified in the
POM without any indentation within the pom.xml, unless required
for code block demarcation.

scriptArgs java.lang. Str |[false Specifies the command-line arguments to pass to the WLST
i ng Jython interpreter as a list of string values. If the argument
contains any embedded whitespace, the caller must include
enclosing single quotes or escaped double quotes within the
scriptArg element's value. If scriptArgs is specified, the args
parameter (deprecated) is ignored.

Running Scripts With Fusion Middleware Dependencies

If you use the wist-client goal to run WLST scripts that contain Fusion Middleware
dependencies, you must first include the com.oracle.fmwshare dependency to pull in the
necessary libraries needed by those scripts.

The com.oracle.fmwshare dependency must be listed before any Fusion Middleware
dependencies.

For example, to run a WLST script for SOA, add a dependency on com.oracle.fmwshare and
SOA, similar to the following:

<pl ugi n>

<groupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact!|d>webl ogi c- maven- pl ugi n</artifactld>
<versi on>14. 1. 2- 0- 0</ ver si on>

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 52 of 84

ORACLE Chapter 3
Maven Plug-In Goals

<execut i ons>
<execution>
<id>soa-w st-client</id>
<goal s>
<goal >W st -client</goal >
</ goal s>
<configuration>
<fil eName>${ proj ect . basedir}/m sc/ doSoaSt uf f. py</fil eNane>
<script Args>
<scri pt Arg>${ admi nUser Nane} </ scri pt Ar g>
<scri pt Ar g>${ admi nPasswor d} </ scri pt Ar g>
<script Arg>${adm nUrl }</scri pt Arg>
</scriptArgs>
</ configuration>
</ executi on>
</ executions>
<dependenci es>
<dependency>
<groupl d>com or acl e. f mshar e</ gr oupl d>
<artifact!|d>f mwshare-w st-dependenci es</artifact!|d>
<versi on>14. 1. 2- 0- 0</ ver si on>
<type>ponx/type>
</ dependency>
<dependency>
<groupl d>com or acl e. soa</ gr oupl d>
<artifactld>soa-w st-dependenci es</artifactld>
<versi on>14. 1. 2- 0- 0</ ver si on>
<type>ponx/type>
</ dependency>
</ dependenci es>
</ pl ugi n>

Usage Example

The wl st -cl i ent goal enables the WebLogic Scripting Tool (WLST) to be used to execute
scripts that configure resources or perform other operations on a WebLogic Server domain.
The wl st -cl i ent goal does not require a local server install for WLST online commands.

The w st -cl i ent Maven goal uses the WebLogic Server WLST standard environment so you
can use it with all your existing WLST scripts.

You can use the wl st -cl i ent goal to execute an external WLST script specified with the
fileNane configuration parameter, you can specify a sequence of WLST commands within the
pom xnl file using the scri pt configuration element, or you can use both mechanisms.

For example:

<execution>

<i d>w s-w st-server</id>

<phase>post -int egrati on-test </ phase>

<goal s>

<goal >wl st-cl i ent </ goal >

</ goal s>

<configuration>

<fil eName>${proj ect.basedir}/m sc/configure_resources. py</fil eName>
<args>t 3:// some- host : 7001 webl ogi ¢ password Admi nServer </ ar gs>
<script>

print('This is a W.ST inline script\n')

print(' Next, we run a WLST script to create JMS resources on the server\n')
</script>

<execut eScri pt Bef or eFi | e>t rue</ execut eScri pt Bef or eFi | e>

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 53 of 84

ORACLE Chapter 3
Maven Plug-In Goals

</ configuration>
</ executi on>

Example 3-20 shows typical wl st - cl i ent goal output.
Example 3-21 wilst-client

mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: W st-cl i ent
-Dfi | eNane=cr eat e- dat asour ce. py

[INFQ Scanning for projects...

[INFQ

L SO LR
[INFQ Building maven-dermo 1.0

L SO R TR
[INFQ

[INFQ --- webl ogi c-maven-plugin:14.1.2-0-0:wW st (default-cli) @naven-deno ---
[INFQ ++ ++
[INFQ ++ webl ogi c-maven-plugin: w st ++
[INFQ ++ ++

*** (Creating DataSource ***

Connecting to t3://some-host: 7001 with userid weblogic ...
Successfully connected to Admin Server 'Admi nServer' that belongs to domain 'nydomain'.

Warning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Adnmin port should be used instead.

Location changed to edit tree. This is a witable tree with
Domai nMBean as the root. To make changes you will need to start
an edit session via startEdit().

For more help, use help(edit)

Starting an edit session ...

Started edit session, please be sure to save and activate your

changes once you are done.

Activating all your changes, this may take a while ...

The edit |ock associated with this edit session is released

once the activation is conpleted.

Activation conpleted

Location changed to serverRuntine tree. This is a read-only tree with ServerRunti meMBean
as the root.

For more hel p, use hel p(serverRuntine)

**** DataSource Details ****

Nane: cp

Driver Nane: Oracle JDBC driver

Dat aSour ce: oracle.jdbc. xa.client. O acl eXADat aSour ce

Properties: {user =deno}

State: Runni ng

N O R

[INFQ BU LD SUCCESS

As another example, assume that you have the following simple WLST script:

try:
connect (' webl ogi c', ' password','t3://10.151. 69. 120: 7001")
I'istApplications()

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 54 of 84

ORACLE Chapter 3
Maven Plug-In Goals

print (' TEST PASS')
except:
print(' TEST FAIL'")

You can supply this WLST script with the fi | eName configuration parameter, as shown in
Example 3-22.

Example 3-22 wist-client Script Example

C:\Oracl e\ M ddl ewar e\ Or acl e_Horre\ or acl e_comon\ pl ugi ns\ maven\ com or acl e\ maven\ or

acl e-maven-sync\ 14. 1. 2>nvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: W st-cl i ent
-Dfi | eNane=t est . py

[INFQ Scanning for projects...

[INFQ

[INFQ --m o mmmmmm i m e m oo e

[INFQ Building Maven Stub Project (No POV 1

[INFQ - - mmm i mm i mm o m oo e

[INFQ

[INFQ --- weblogi c-maven-plugin:14.1.2-0-0:wi st-client (default-cli) @standalo

ne- pom - - -

[INFQ [wW st-client]No niddl ewareHome specified.

Connecting to t3://10.151.69.120: 7001 with userid weblogic ...

Successful l'y connected to Admin Server "Adm nServer" that belongs to domain "bas

e_domai n".

Warning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Adnmin port should be used instead.

j axwsej b30ws
TEST PASS

I 20
[INFO BU LD SUCCESS

[INFQ - - mmmmmm i mm oo
[INFQ Total tinme: 29.197s

[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2020

[INFQ Final Menory: 18M 45M

By default, the wl st goal is bound to the pre-integration-test phase. To override the default
phase binding for a goal, you can explicitly bind plug-in goals to a particular life cycle phase,
for example, to the post-integration-test phase, as shown below. The pom xni file binds the
w st goal to both the pre- and post-integration-test phases (a dual phase target). As shown,
you can run different scripts in different phases, overriding the default settings, and make
modifications according to your needs.

Example pom xni file
<proj ect >

<executions>
<execution>
<i d>W.S_SETUP_RESOURCES</ i d>
<phase>pre-integration-test</ phase>
<goal s>
<goal >w st </ goal >
</ goal s>
<configuration>
<fil eName>src/ mai n/ w st/ creat e- dat asour ce. py</fil eName>
</configuration>
</ execution>

<execution>

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 55 of 84

ORACLE

Chapter 3
Maven Plug-In Goals

<i d>W.S_TEARDOM RESOURCES</ i d>
<phase>post-integration-test</ phase>
<goal s>
<goal >W st </ goal >
</ goal s>
<configuration>
<fil eName>src/ mai n/ w st/ renove- dat asour ce. py</fi | eName>
</ configuration>
</ executi on>
</ executions>

</ pr oj ect>
exit() is Trapped

exit() exits WLST from the user session and closes the scripting shell. By default, WLST calls
System exit (0) for the current WLST JVM when exiting WLST. Because wist-client runs
inside the same JVM as the Maven build process, the entire Maven build process would exit.
To provide for this, the Maven implementation traps WLST exi t () calls and throws an
exception.

Calling exit() explicitly from a WLST script is discouraged.

For example, assume you were to modify the previous WLST script example to include exi t (),
as follows:

try:
connect (' webl ogi c', ' password','t3://10.151. 69. 120: 7001")
I'istApplications()
exit()
print (' TEST PASS')
except:
print(' TEST FAIL")

When the Maven implementation traps exi t (), it throws an exception:

Warning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Adnmin port should be used instead.

j axwsej b30ws

Exiting WebLogic Scripting Tool.

TEST FAIL

I 200
[INFO BU LD SUCCESS

I 20

[INFQ Total tine: 29.250s
[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2020
[INFQ Final Menory: 19M 45M

I 200

ws-clientgen

Deprecated

This goal is deprecated in this release.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 56 of 84

ORACLE’

Full Name

Chapter 3
Maven Plug-In Goals

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: ws- cl i ent gen

Description

Parameters

Table 3-22 briefly describes the ws- cl i ent gen parameters. These parameters are more fully
described in Table 2-3 WebLogic-specific Attributes of the clientgen Ant Task in WebLogic Web
Services Reference for Oracle WebLogic Server.

Table 3-22 ws-clientgen Parameters
C___ |

Name Type Required Description

bi ndi ng java.lang. String false Specifies one or more customization files that specify JAX-WS and

bi ndi ngs JAXB custom binding declarations or SOAP handler files. If there is
only one binding element, both <bi ndi ng>. / fi | enane</ bi ndi ng>
and <bi ndi ngs><bi ndi ng>. / fi | enane</ bi ndi ng></ bi ndi ngs>
are allowed.
See Table 3-23 for a description of bi ndi ngs parameters.

catal og java.lang. String false Specifies an external XML catalog file to resolve external entity
references.
For more information about creating XML catalog files, see Using XML
Catalogs in Developing JAX-WS Web Services for Oracle WebLogic
Server

copyVsdl bool ean false Controls where the WSDL should be copied in the ws-clientgen goal 's
destination dir.

debug bool ean false Turns on additional debug output.

debugLevel bool ean false Uses Ant debug levels.

destDir java.io.File true Specifies the directory into which the ws-clientgen goal generates the
client source code, WSDL, and client deployment descriptor files.
You must specify either the dest Fi | e or dest Di r attribute, but not
both.

fail OnError bool ean false Specifies whether the ws-clientgen goal continues executing in the
event of an error. The default value is True.

fork bool ean false Specifies whether to execute javac using the JDK compiler externally.
The default value is false.

genRuntineCat bool ean false Specifies whether the ws-clientgen goal should generate the XML

al og catalog artifacts in the client runtime environment. This value defaults
to true.

i ncl udeAnt Run bool ean false Specifies whether to include the Ant run-time libraries in the classpath.

tinme

i ncl udeJavaRu bool ean false Specifies whether to include the default run-time libraries from the

ntime

executing VM in the classpath.

jmstransportc JMSTransportClie false

|i ent nt

Invoking a WebLogic Web service using JMS transport.

Table 3-25 describes the parameters of the j nst r ansportcl i ent
parameter.

packageNane java.lang.String

false

Specifies the package name into which the generated client interfaces
and stub files are packaged.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 57 of 84

ORACLE Chapter 3
Maven Plug-In Goals

Table 3-22 (Cont.) ws-clientgen Parameters

Name Type Required Description

produce Fi | eSet false There is only one FileSet.

produces Li st<Fil eSet> There is more than one FileSet.

ver bose bool ean false Turns on verbose output

wsdl java.lang. String true Specifies a full path name or URL of the WSDL that describes a Web

service (either WebLogic or non-WebLogic) for which the client
component files should be generated.

wsdl Location java.lang.String false Controls the value of the wsdlLocation attribute generated on the
WebSer vi ce or WebSer vi cePr ovi der annotation.

xauthfile java.lang. String false Specifies the authorization file.

xm Cat al og java.lang. String false Not used.

Table 3-23 describes the parameters of the bi ndi ngs parameter.

Table 3-23 Binding Parameters

Name Type Required Description
file java.lang. Strin false Specifies a customization file that contains JAX-WS and JAXB
g custom binding declarations or SOAP handler files.

Table 3-24 describes the parameters of the xn Cat al og parameter.

Table 3-24 xmlCatalog Parameters

Name Type Required Description

refid java.lang. String false Specifies the directories (separated by semi-colons) that the ws-
j wsc goal should search for JWS files to compile.

Table 3-25 describes the parameters of the j mst ransport cl i ent parameter.

Table 3-25 jmstransportclient Parameters

Name Type Required Description
desti nati onName java.lang. Strin false JNDI name of the destination queue or topic. Default value is
g com or acl e. webservi ces. j ms. Request Queue.
desti nationType java.lang. Strin false Valid values include: QUEUE or TOPIC. Default value is QUEUE.
g
repl yToNane java.lang. Strin false JNDI name of the JMS destination to which the response
g message is sent.
target Service java.lang. Strin false Port component name of the Web service.
g
jndilnitial Context java.lang.Strin false Name of the initial context factory class used for INDI lookup.
Factory g Default value is webl ogi ¢. j ndi . W.I ni ti al Cont ext Fact ory.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 58 of 84

ORACLE’

Chapter 3
Maven Plug-In Goals

Table 3-25 (Cont.) jmstransportclient Parameters

Name Type Required Description
j ndi ConnectionFact java.lang.Strin NA JNDI name of the connection factory that is used to establish a
or yNane g JMS connection. Default value is
com oracl e. webservi ces. j ms. Connect i onFact ory.
j ndi Url java.lang. Strin NA JNDI provider URL. Default value is t 3: / /| ocal host : 7001.
g
del i veryMode java.lang. Strin NA Delivery mode indicating whether the request message is
g persistent. Valid values are PERSISTENT and
NON_PERSISTENT. Default value is PERSISTENT.
timeToLive [ong false Lifetime, in milliseconds, of the request message. Default value
is 180000L.
priority i nt false JMS priority associated with the request and response message.
Default value is 0.
j ndi Cont ext Paranmet java.lang. Strin false JNDI properties, in a format like:
er g someParameterNamel=someValuel ,
someParameterName2=someValue2.
bi ndi ngVer si on java.lang. Strin false Version of the SOAP JMS binding. Default value is 1.0.
g
runAsPri nci pal java.lang. Strin false Principal used to run the listening MDB.
g
runAsRol e java.lang. Strin false Role used to run the listening MDB.
g
messageType java.lang. Strin false Message type to use with the request message. Valid values are
g com oracl e. webservi ces. api . j ms. JMSMessageType. BYTE
Sand
com oracl e. webservi ces. api . j ms. JMSMessageType. TEXT
. Default value is BYTES.
enabl eHt t pwsdl Acce bool ean false Boolean flag that specifies whether to publish the WSDL through
SS HTTP. Default value is true.
mdbPer Destinati on bool ean false Boolean flag that specifies whether to create one listening
message-driven bean (MDB) for each requested destination.
Default value is true.
activationConfig java.lang. Strin false Activation configuration properties passed to the JMS provider.
g
cont ext Pat h java.lang. Strin false The deployed context of the web service.
g
servicelri java.lang. Strin false Web service URI portion of the URL.
g
por t Name java.lang. Strin false The name of the port in the generated WSDL.
g

Usage Example

The ws- cl i ent gen goal generates client Web service artifacts from a WSDL.

This goal benefits from the convention-over-configuration approach, allowing you to execute it

using the defaults of the project.

There are two ways to run the ws-clientgen goal:

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 59 of 84

ORACLE Chapter 3
Maven Plug-In Goals

e From the command line. For example, after you define an alias:

m/n —Dvari abl eNamel=val uel —Dvari abl eNane2=val ue2
com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: ws-cl i ent gen

* By specifying the Maven gener at e- r esour ces life cycle phase. Then run nvn gener at e-
resour ces in the same directory of pom.xml.

To do this, modify the pom xni file to specify the gener at e- r esour ces life cycle phase, the
ws-cl i ent gen goal, and include any parameters you need to set. Consider the following
example:

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<proj ect>
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>maven_pl ugi n. si npl e</ gr oupl d>
<artifactld>maven_pl ugi n_sinple</artifactld>
<ver si on>1. 0</ versi on>

<bui | d>
<pl ugi ns>
<pl ugi n>

<groupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact!d>webl ogi c- maven- pl ugi n</artifactld>
<versi on>14. 1. 2- 0- 0</ ver si on>
<executions>
<execution>
<id>clientgen</id>
<phase>generate-resources</ phase>
<goal s>
<goal >ws-clientgen</ goal >
</ goal s>
<configuration>
<wsdl >${ basedi r}/ AddNunber s. wsdl </ wsdl >
<dest ${ pr oj ect . bui | d. out put Di rect ory} </ dest Di r >
<packageNanme>maven_pl ugi n. si npl e. cl i ent </ packageName>
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</bui I d>
</ proj ect>

Example 3-23 shows typical ws- cl i ent gen goal output.

Example 3-23 ws-clientgen

m/n -f C \maven-doc\jwsc-test-2\clientgen_pomxm generate-resources
[INFQ Scanning for projects..

[NFO

[NFO

[INFQ Building maven_plugin_sinple 1.0
[I NFO

[1NFQ|
[INFQ --- weblogic-maven-plugin:14.1.2-0-0:ws-clientgen (clientgen) @

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 60 of 84

ORACLE Chapter 3
Maven Plug-In Goals

maven_pl ugi n_sim
ple ---
[INFQ Executing standal one. ..

[INFQ Executing Maven goal 'clientgen'..
calling method public static void
webl ogi c. wsee. t ool s. cli entgen. MavenC i ent Gen. e
xecut e(or g. apache. maven. pl ugi n. | oggi ng. Log, j ava. util.Mp) throws
j ava.lang. Throw
abl e
[INFQ Consider using <depends>/<produces> so that wsinport won't do
unnecessary
conpil ation
[WARNI NG parsing WSDL. ..
[WARNI NG
[WARNI NG
[WARNI NG
[WARNI NG Cenerating code. .
[WARNI NG
[WARNI NG
[WARNI NG Conpi | i ng code. .
[WARNI NG
[I NFO

[INFO BU LD SUCCESS

wsgen

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: wsgen

Description

Maven goal that reads a JAX-WS service endpoint implementation class and generates all of
the portable artifacts for a JAX-WS Web service. Use the wsgen goal when you are starting
from Java classes.

You can then package the service endpoint interface and implementation class, value types,
and generated classes, if any, into a WAR file, and deploy the WAR to a Web container.

The wsgen goal provides a wrapper for the JAX-WS Maven wsgen plug-in goal.

Parameters

Table 3-26 describes the wsgen parameters.

Table 3-26 wsgen Parameters
|

Name Type Required Description

args java.lang. Strin false Specifies optional command-line options. Multiple elements can
g be specified, and each token must be placed in its own list.

destDir java.io.File false Specifies the full pathname of where to place output generated

classes. Use xnoconpi | e to turn this off. The default is $
{project.build. outputDirectory}).

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 61 of 84

https://www.mojohaus.org/jaxws-maven-plugin/wsgen-mojo.html

ORACLE’

Table 3-26 (Cont.) wsgen Parameters

Chapter 3
Maven Plug-In Goals

Name Type Required Description
encodi ng java.lang. Strin false Specifies the character encoding of the output files, such as the
g deployment descriptors and XML files. Examples of character
encodings are SHIFT-JIS and UTF-8. The default value is platform
dependent.
ext ensi on bool ean false ext ensi on is always set to t r ue and you do not need to set it.
Extensions are not limited to Oracle JAX-WS vendor extensions.
execut abl e java.lang. Strin false Name of the executable. Can be wsgen.
g
genVédl bool ean false Specifies that a WSDL file should be generated in $
{resourceDestDir}. By default, the WSDL is not generated.
i nl i neSchenas bool ean false Generates inline schemas in a generated WSDL. The default is
fal se.
The genWsdl parameter must be setto t r ue.
jmstransportserv bool ean false Use JMS transport for Web services. It can be omitted. See
ice Table 3-34 for a description of j mst r anspor t servi ce
parameters.
keep bool ean false Specifies whether to keep generated files. The defaultis t r ue.
met adat a java.io.File false Metadata file for the wsgen task, as described in External Web
Service Metadata in JAX-WS Release Documentation.
Unmatched files are ignored.
port Name java.lang. Strin false Specify the port name to use in the generated WSDL. The
g genWsdl parameter must be setto t r ue.
pr ot ocol java.lang. Strin false Use in conjunction with genWsd| to specify the protocol to use in
g the wsdl : bi ndi ng. The genWdl parameter must be settotrue.
Valid values are soapl. 1 and Xsoapl. 2.
The default is soap soapl. 1. Xsoapl. 2 is non-standard and you
can use it only in conjunction with the extension option.
resourceDestDir java.io.File false Specifies the directory to contain the generated WSDL files. The
defaultis ${ pr oj ect . bui | d. di rect ory}/ gener at ed-
sour ces/ wsdl . The genWsdl parameter must be set to true.
sei java.lang. Strin false Specifies the service endpoint implementation class name.
g
servi cename java.lang. Strin false Specify the service name (Wsdl : servi cenane) to use in the
g generated WSDL. The gen\Wédl parameter must be set to true.
sourceDestDi r java.io.File false Specify where to place generated source files. This parameter
also sets keep to true. The default is $
{project.build. directory}/generated-sources/wsgen.
ver bose bool ean false Output messages about what the tool is doing.
Default value is: f al se.
VMAr gs java.util.List false Specify optional JVM options. You can specify multiple elements,
and each token must be placed in its own list.
xdonotoverwite bool ean false No description provided

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 62 of 84

https://javaee.github.io/metro-jax-ws/doc/user-guide/ch03.html#users-guide-external-metadata
https://javaee.github.io/metro-jax-ws/doc/user-guide/ch03.html#users-guide-external-metadata

ORACLE Chapter 3
Maven Plug-In Goals

Table 3-26 (Cont.) wsgen Parameters

- __|]
Name Type Required Description

xnoconpi |l e bool ean false Turns off compilation after code generation, and lets the generated
sources be compiled by Maven during the compilation phase. The
defaultis f al se.

This parameter also sets keep to true.

Usage Example

The wsgen goal reads a JAX-WS service endpoint implementation class and generates all of
the portable artifacts for a JAX-WS Web service.

Specify the Maven pr ocess- ¢l asses life cycle phase. Then, run mvn process-cl asses in the
same directory of the POM file.

To do this, modify the pom xnl file to specify the process- cl asses life cycle phase, the wsgen
goal, and include any parameters you need to set. Consider the following example:

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<proj ect>
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>maven_pl ugi n. si npl e</ gr oupl d>
<artifact!ld>maven_pl ugi n_sinple</artifactld>
<versi on>1. 0</ versi on>
<bui | d>
<sour ceDi rectory>. </ sourceDirectory>
<pl ugi ns>
<pl ugi n>
<groupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact|d>webl ogi c- maven- pl ugi n</artifactld>
<versi on>14. 1. 2- 0- 0</ ver si on>
<executions>
<execution>
<i d>wsgen</i d>
<phase>pr ocess- cl asses</ phase>
<goal s>
<goal >wsgen</ goal >
</ goal s>
<configuration>
<dest Di r>${ proj ect. build.directory}/wsgenQut put/</destDir>
<sei >nyexanpl e. | Pl nf o</ sei >
<ver bose>t r ue</ ver bose>
<genWsdl >t r ue</ genVédl >
</ configuration>
</ execution>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</bui I d>
</ project>

Example 3-24 shows typical wsgen goal output.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 63 of 84

ORACLE

Chapter 3
Maven Plug-In Goals

Example 3-24 wsgen

m/n -Dfi | e=pom xm process-cl asses
[INFQ Scanning for projects...

[I NFO

[I NFO

[INFQ Building maven_plugin_sinple 1.0

[I NFO

[I NFO

[INFQ --- maven-resources-plugin:2.5: resources (default-resources) @
maven_pl ug

insimle ---

[debug] execute contextualize

[WARNI NG Using platformencoding (Cpl252 actually) to copy filtered
resour ces,

i.e. build is platformdependent!

[INFQ skip non existing resourceDirectory

C.\Oacl e\ M ddl ewar e\ Oracl e_Hone\ or ac

| e_comon\ pl ugi ns\ maven\ com or acl e\ naven\ or acl e- maven-

sync\ 14. 1. 2\ src\ mai n\resou

rces
[I NFO

[INFQ --- nmaven-conpiler-plugin:2.3.2:compile (default-conpile) @
maven_pl ugin_

simle ---

[WARNING File encoding has not been set, using platformencodi ng Cpl252,
i.e. b

uild is platform dependent!

[INFQ Conpiling 1 source file to

C.\Oacl e\ M ddl ewar e\ Oracl e_Hone\ or acl e_common

\ pl ugi ns\ maven\ com or acl e\ maven\ or acl e- maven-sync\ 14. 1. 2\t arget\ cl asses
[I NFO

[INFQ --- webl ogi c-maven-pl ugin: 14. 1. 2-0- 0: wsgen (wsgen) @

maven_pl ugi n_sinpl e

[INFQ Processing: myexanmple.lPlnfo

[WARNI NG Using platformencoding (Cpl252), build is platformdependent!
[INFQ jaxws:wsgen args: [-keep, -s,

"C\Oracl e\M ddl eware\ O acl e_Hone\oracl e_co

mon\ pl ugi ns\ maven\ com or acl e\ maven\ or acl e- maven- sync\ 14. 1. 2\ t ar get \ gener at ed-
S0

urces\wsgen', -d,

"C.\Oracl e\ M ddl ewar e\ O acl e_Hone\ or acl e_conmon\ pl ugi ns\ maven\

com oracl e\ maven\ or acl e- maven-sync\ 14. 1. 2\ t ar get \wsgenQut put', -verbose,
ext ens

ion, -wsdl, -r,

"C\Oracl e\ M ddl ewar e\ Or acl e_Hone\ or acl e_conmon\ pl ugi ns\ maven\ co

m or acl e\ naven\ or acl e- maven-sync\ 14. 1. 2\t ar get \ gener at ed- sour ces\ wsdl ',
myexanpl

e. | Pl nf o]

myexanpl e\ j axws\ Get | pAddr ess. j ava

myexanpl e\ j axws\ Get | pAddr essResponse. j ava

[1NFQ

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 64 of 84

ORACLE’

[INFO BU LD SUCCESS
[INFO

[INFQ Total time: 21.309s
[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015
[INFQ Final Merory: 8M 32M

[INFO

In this example, the wsgen goal creates the following files:

target
cl asses
MVETA- | NF
wsdl
| PI nf oServi ce. wsd
| Pl nfoServi ce_schemal. xsd
myexanpl e
| PInfo.class
gener at ed- sour ces
wsdl
| PI nf oServi ce. wsd
| Pl nf oServi ce_schemal. xsd
wsgen
myexanpl e
j axws
Get | pAddr ess. j ava
CGet | pAddr essResponse. j ava
wsgenout put
myexanpl e
j axws
Get | pAddr ess. cl ass
Get | pAddr essResponse. cl ass

wsimport

Full Name

com or acl e. webl ogi c: webl ogi ¢c- maven- pl ugi n: wsi nport

Description

Chapter 3
Maven Plug-In Goals

Maven goal that parses a WSDL and binding files and generates the Java code needed to

access it. Use the wsi nport goal when you are starting from a WSDL.

The wsi nport goal provides a wrapper for the JAX-WS Maven wsimport goal.

Parameters

Table 3-27 describes the wsi nport parameters.

Developing Applications for Oracle WebLogic Server
G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 65 of 84

https://javaee.github.io/metro-jax-ws/doc/user-guide/ch04.html#wsimport-overview

ORACLE’

Table 3-27 wsimport Parameters

Chapter 3
Maven Plug-In Goals

Name Type Required Description

args java.lang. String false Specifies optional command-line options. Multiple elements can
be specified, and each token must be placed in its own list.

bindingDirectory java.io.File false Directory containing binding files.

bi ndi ngFi | es java.util.List false List of files to use for bindings. If not specified, all . xm files in
the bi ndi ngDi rect ory are used.

cat al og java.io.File false Catalog file to resolve external entity references support TR9401,
XCatalog, and OASIS XML Catalog format.

destDir java.io.File false Specifies the full pathname of where to place output generated
classes. Use xnoconpi | e to turn this off. The default is $
{project.build. outputDirectory}).

encodi ng java.lang. String false Specifies the character encoding of the output files, such as the
deployment descriptors and XML files. Examples of character
encodings are SHIFT-JIS and UTF-8. The default is platform
dependent.

execut abl e java.lang. String false Name of the executable. Can be wsi nport .

ext ensi on bool ean false ext ensi on is always set to t r ue and you do not need to set it.
Extensions are not limited to Oracle JAX-WS vendor extensions.

genJWs bool ean false Generate stubbed JWS implementation file. The default is
fal se.

ht t ppr oxy java.lang. String false Set HTTP/HTTPS proxy. Format is
[user[: password] @ proxyHost [: proxyPort].

i npl DestDir java.io.File false Specify where to generate JWS implementation file.

i npl Port Name java.lang. String false Local portion of port name for generated JWS implementation.
Implies genJW5=t r ue. Note: It is a QName string, formatted as:
"{" + Namespace URI + "}" + local part.

i npl ServiceNane java.lang. String false Local portion of service name for generated JWS
implementation. Implies genJW5=t r ue. Note: It is a QName
string, formatted as: "{" + Namespace URI + "}" + local part.

jmstransportclien JMSTransportClie false Invoking a WebLogic Web service using JMS transport.

t nt Table 3-25 describes the parameters of the
jmetransportclient parameter.

jmsUri jmsUri false Override jmsUri defined in a WSDL file. Requires
extensi on=true.

keep bool ean false Specifies whether to keep generated files. The default is t r ue.

packageNane java.lang. String false The package in which the source files will be generated.

qui et bool ean false Suppress wsimport output. The default is f al se.

sourceDestDi r java.io.File false Specify where to place generated source files. This parameter
also sets keep to true. The default is $
{project.build.directory}/generated-sources/
wsi mport .

staleFile java.io.File false The folder containing flag files used to determine if the output is

stale.

If you do not specify a folder, the default is $
{project.build. directory}/jaxws/stale.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 66 of 84

ORACLE Chapter 3
Maven Plug-In Goals

Table 3-27 (Cont.) wsimport Parameters

- ___|]
Name Type Required Description

target java.lang. String false Generate code as per the given JAXWS specification version.
Setting "2. 0" will cause JAX-WS to generate artifacts that run
with JAX-WS 2.0 runtime.

ver bose bool ean false Output messages about what the tool is doing. Default value is:
fal se.

VIMAr gs java.lang. String false Specify optional JVM options. You can specify multiple elements,
and each token must be placed in its own list.

wsdl Di rectory java.io.File false Directory containing WSDL files.

wsdl Fil es java.util.List false List of files to use for WSDLs. If not specified, all .wsdl files in the

wsdl Di rect ory will be used.

wsdl Locat i on java.lang. String false @ebSer vi ce. wsdl Locat i on and
@ebServi ceC i ent.wsdl Locati on value.

Can end with asterisk, in which case relative path of the WSDL
will be appended to the given wsdl Locat i on.

Example:

<configuration>
<wsdl Di rect ory>src/ nywsdl s</wsdl Di rect ory>
<wsdl Fi | es>
<wsdl Fi | e>a. wsdl </ wsdl Fi | e>
<wsdl Fi | e>b/ b. wsdl </ wsdl Fi | >
<wsdl Fi | e>${basedi r}/src/ nmywsdl s/
c. wsdl </ wsdl Fi |l e>
</wsdl Fi | es>
<wsdl Locat i on>htt p://exanpl e. com
nywebser vi ces/ *</ wsdl Locat i on>
</ configuration>

wsdl Locat i on for a. wsdl will be http://example.com/
mywebservices/a.wsdl

wsdl Locat i on for b/ b. wsdl will be http://example.com/
mywebservices/b/b.wsdl

wsdl Locat i on for ${ basedi r}/ src/ mywsdl s/ c. wsdl will be
file://absolute/path/to/c.wsdl

Note: External binding files cannot be used if asterisk notation is

in place.
wsdl Url s java.util.List false List of external WSDL URLSs to be compiled.
xaddi ti onal Header bool ean false Maps headers not bound to the request or response messages
S to Java method parameters.
xaut hFi | e java.io.File false Specify the location of authorization file.
xdebug bool ean false Turn on debug message. The default is f al se.
xdi sabl eAut henti ¢ bool ean false Disable Authenticator used by JAX-WS RI, xaut hf i | e will be
at or ignored if set.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 67 of 84

ORACLE

Chapter 3
Maven Plug-In Goals

Table 3-27 (Cont.) wsimport Parameters

Name Type Required Description

xdi sabl eSSLHost na bool ean false Disable the SSL Hostname verification while fetching WSDL(s).

meVerification

Xj CArgs java.util.List false Specify optional XJC-specific parameters that should simply be
passed to xjc using -B option of WsImport command.
Multiple elements can be specified, and each token must be
placed in its own list.

xnoAddr essi ngDat a bool ean false Binding W3C Endpoi nt Ref er enceType to Java. By default

Bi ndi ng Wslmport follows spec and does not bind
Endpoi nt Ref er enceType to Java and uses the spec provided
WBCEndpoi nt Ref er ence.

xnoconpi | e bool ean false Turns off compilation after code generation, and lets the
generated sources be compiled by Maven during the compilation
phase. The defaultis t r ue.
This parameter also sets keep to true.

xuseBaseResour ceA bool ean false No description provided by JAX-WS Maven wsimport.

ndURLToLoadWsDL

Usage Example

The wsi nport goal parses a WSDL and binding files and generates Java code needed to
access the Web service.

You can use the wsi nport goal in two ways:

* To generate the client-side artifacts. Then, implement the client to invoke the Web service.

* To create your own implementation of the Web service. Use wsi nport goal with the genJWs
parameter to generate portable artifacts and a stubbed implementation file. You then
implement the service endpoint.

Specify the Maven gener at e- sour ces life cycle phase. Then, run nvn gener at e- sour ces in the
same directory of the POM file.

Assume that you want to import the WSDL shown in Example 3-25.
Example 3-25 WSDL to Import

<?xnm version='1.0" encoding=' UTF-8' ?><!-- Published by JAX-WS Rl at
http://jax-ws.dev.java.net. R's version is JAX-Ws R 2.2.9-b14041
svn-revi si on#14041. --><!-- CGenerated by JAX-WS Rl at
http://jax-ws.dev.java.net. R's version is JAX-Ws R 2.2.9-b14041
svn-revi si on#14041. --><definitions
xm ns: wsu="http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-wssecurity-
uti
lity-1.0.xsd" xm ns:wsp="http://ww.w3.org/ns/ws-policy" xmns:wspl_
2="http://schenas. xm soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns: wsam="ht t p: // www. W3. or g/ 2007/ 05/ addr essi ng/ net adat a"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xmns:tns="http://ws.web.wWs.ny.org/"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns="http://schemas. xm soap. or g/ wsdl /"
t arget Nanespace="http://ws. web. w s. my. org/" nane="Sanpl eVs" >

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 68 of 84

https://javaee.github.io/metro-jax-ws/doc/user-guide/ch04.html#wsimport-overview

ORACLE Chapter 3
Maven Plug-In Goals

<types>
<xsd: schena>
<xsd:inport namespace="http://ws.web.w s.ny.org/"
schemalLocat i on="x. xsd"/ >
</ xsd: schema>
</types>
<message name="hel | 0" >
<part name="paraneters" element="tns:hello"/>
</ message>
<message name="hel | oResponse" >
<part name="paraneters" el ement="tns: hel | oResponse"/>
</ message>
<port Type nane="Sanpl eVs" >
<operation nane="hel | 0">
<input wsam Action="http://ws.web.w s. my.org/ Sanpl eVs/
hel | oRequest" nessage="tns: hello"/>
<out put wsam Action="http://ws.web. W s. ny. or g/ Sanpl e/
hel | oResponse" message="t ns: hel | oResponse"/ >
</ operation>
</ port Type>
<bi ndi ng xm ns: soapj me="http://ww. w3. or g/ 2010/ soapj ns/ "
name="Sanpl eWsPort Bi ndi ng" type="tns: Sanpl eW" >

<soapj ms: j ndi I ni tial Cont ext Fact or y>webl ogi ¢. j ndi . W.I ni ti al Cont ext Fact ory</
soapj ns: j ndi | ni tial Cont ext Fact ory>

<soapj ms: j ndi Connect i onFact or yName>com or acl e. webservi ces. api . j ns. Connect i onFa
ct ory</ soapj ms: j ndi Connect i onFact or yNane>
<soapj ms: j ndi Url >t 3://1 ocal host: 7001</ soapj ns: j ndi Url >
<soapj ms: bi ndi ngVer si on>SOAP_JM5_1_0</ soapj ns: bi ndi ngVer si on>
<soapj ms: desti nati onNanme>com or acl e. webservi ces. api . j ns. Request Queue</
soapj ns: dest i nat i onName>
<soapj ms: t ar get Servi ce>Sanpl eV </ soapj ns: t ar get Servi ce>
<soapj ms: ti meToLi ve>180000</ soapj ns: ti neTolLi ve>
<soapj ns: del i ver yMode>PERS| STENT</ soapj ns: del i ver yMode>
<soapj ms: priority>0</soapj nms:priority>
<soapj ms: nessageType>BYTES</ soapj ns: nessageType>
<soapj ms: dest i nati onType>QUEUE</ soapj ns: dest i nati onType>
<soap: bi nding transport="http://ww:.w3. org/ 2010/ soapj ns/ "
styl e="document"/ >
<operation nane="hel | 0">
<soap: operation soapAction=""/>
<i nput >
<soap: body use="literal"/>
</input>
<out put >
<soap: body use="literal"/>
</ out put >
</ operation>
</ bi ndi ng>
<servi ce name="Sanpl eW" >
<port name="Sanpl eWsPort" bi ndi ng="t ns: Sanpl eWsPort Bi ndi ng" >
<soap: addr ess
| ocati on="] ns:j ndi:com oracl e. webservi ces. api . j n6. Request Queue?
t ar get Servi ce=Sanpl
eWs&anp; j ndi URL=t 3://

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 69 of 84

ORACLE Chapter 3
Maven Plug-In Goals

| ocal host: 7001&anp; messageType=BYTES&anp; del i ver yMode=PERSI STENT"/ >
</ port>
</ service>
</ definitions>

To import this WSDL, modify the pom xm file to specify the gener at e- sour ces life cycle phase,
the wsi nport goal, the WSDL location, and include any parameters you need to set. This
example uses a local WSDL file for demonstration purposes.

Consider the following example:

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<proj ect>
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>maven_pl ugi n. si npl e</ gr oupl d>
<artifact!ld>maven_pl ugin_sinple</artifactld>
<versi on>1. 0</ ver si on>
<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact!|d>webl ogi c- maven- pl ugi n</artifactld>
<version>14. 1. 2- 0- 0</ ver si on>
<executions>
<execution>
<i d>wsi nport -j nssanpl e</i d>
<goal s>
<goal >wsi nport </ goal >
</ goal s>
<phase>gener at e- sour ces</ phase>
<configuration>
<wsdl Fi | es>
<wsdl Fi | e>${basedi r}/i mport - exanpl e/ Sanpl eV$. wsdl </ wsdl Fi | e>
</wsdl Fi | es>
<genJW5>t r ue</ genJWs>
</ configuration>
</ execution>
</ executions>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ project>

Example 3-26 shows typical wsi nport goal output.

Example 3-26 wsimport

mvn -Dfi | e=pom xnm gener at e- sour ces
[INFQ Scanning for projects..

[I NFO

[I NFO

[INFQ Building maven_plugin_sinple 1.0
[I NFO

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 70 of 84

ORACLE

Chapter 3
Maven Plug-In Goals

[INFQ
[INFQ --- webl ogic-maven-plugin: 14. 1. 2-0- 0: wsi nport (wsi nport-jnssanple) @
mave
n_plugin_sinple ---
[INFQ Processing: file:/C/Oacle/Mddleware..../inport-exanple/ Sanpl eWs. wsdl
[WARNI NG Using platformencoding (Cpl252), build is platform dependent!
[INFQ jaxws:wsinport args: [-keep, -s,
"C\Oracle\M ddl eware\...\inport-exanpl e\target\generat ed- sour ces\wsi nport', -
d,

"C\Oracle\M ddl eware...\inport-exanpl e\target\classes', -extension,

- Xnoconpile, -jnms, -jmsuri, jms:jndi:null?targetServi
ce=nul |, -httpproxy:some-proxy-nane, -generateJWs, -inplDestDir,
"C\Oacle\Mddl eware...\inport-exanple',
“file:/C/Oaclel/ Mddleware...inport-exanpl e/ Sanpl eWs. wsdl "]
parsing WSDL. ..

Cenerating code. ..

[INFO BU LD SUCCESS
[INFO

[INFQ Total time: 20.888s
[INFQ Finished at: Finished at: Wed Aug 19 11:33:51 EDT 2015
[INFQ Final Merory: 7M 23M

[INFO

In this example, the wsi nport goal creates the following files:

org
ny
W s
web
ws
Sanpl eWs_Sanpl eVsPort | npl . java
tar get
cl asses
gener at ed- sour ces
wsi nport
org
ny
w's
web
ws
Hel 1 o.java
Hel | oResponse. j ava
bj ect Factory. java
package-info.java
Sanpl eV§. j ava
Sampl eWs_Servi ce. java
j axws

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 71 of 84

ORACLE’

ws-wsdlc

Chapter 3
Maven Plug-In Goals

stal e
. 2b48c6ef 28bc8a45aa2da4246¢c0c4ac90cf 82¢57

Deprecated

This goal is deprecated in this release.

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: ws-wsdl ¢

Description

Maven goal to generate a set of artifacts and a partial Java implementation of the Web service
from a WSDL.

The ws-wsdl ¢ goal provides a Maven wrapper for the wsdlc Ant task, which is described in
WebLogic Web Services Reference for Oracle WebLogic Server.

Parameters

Table 3-28 briefly describes the ws- wsdl ¢ parameters. These parameters are more fully
described in Table 2-3 WebLogic-specific Attributes of the clientgen Ant Task in WebLogic Web
Services Reference for Oracle WebLogic Server.

Table 3-28 ws-wsdlc Parameters

Name Type Required Description
bi ndi ngs java.lang. Strin false Customization files that specify JAX-WS and JAXB custom binding
g declarations or SOAP handler files.
cat al og java.lang. Strin false Specifies an external XML catalog file.
g For more information about creating XML catalog files, see Using
XML Catalogs in Developing JAX-WS Web Services for Oracle
WebLogic Server
debug bool ean false Specifies the flag to set when debugging the process. Default value
is false.
debugLevel java.lang. Strin false Uses Ant debug levels.
g
destinpl Dir java.lang. Strin false Specifies the directory into which the stubbed-out JWS
g implementation file is generated.
dest JavadocDir java.lang.Strin false Specifies the directory into which the Javadoc that describes the
g JWS interface is generated.
dest JwsDi r java.lang. Strin true Specifies the directory into which the JAR file that contains the JWS
g interface and data binding artifacts should be generated.
expl ode bool ean false Specifies the flag to set if you want exploded output. Defaults to true.
fail OnError bool ean false Specifies whether the ws-clientgen goal continues executing in the
event of an error. The default value is true
fork bool ean false Specifies whether to execute javac using the JDK compiler

externally. The default value is false.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 72 of 84

ORACLE

Chapter 3
Maven Plug-In Goals

Table 3-28 (Cont.) ws-wsdlc Parameters
|

Name Type Required Description
i ncl udeAnt Runt bool ean false Specifies whether to include the Ant run-time libraries in the
ine classpath. The default value is true.
i ncl udeJavaRun bool ean false Specifies whether to include the default run-time libraries from the
time executing VM in the classpath. The default value is false.
optinm ze bool ean false Specifies the flag to set if you want optimization. Defaults to true.
packageNane java.lang. Strin false Specifies the package into which the generated JWS interface and
g implementation files should be generated.
srcPort Name java.lang. Strin false Specifies the name of the WSDL port from which the JWS interface
g file should be generated. Set the value of this parameter to the value
of the name parameter of the port parameter that corresponds to
the Web service port for which you want to generate a JWS
interface file.
The port parameter is a child of the ser vi ce parameter in the
WSDL file. If you do not specify this attribute, ws- wsdl ¢ generates a
JWS interface file from the service specified by sr cSer vi ceNane.
srcServiceNane java.lang. Strin false Specifies the name of the Web service from which the JWS interface
g file should be generated.
src\Vsdl java.lang. Strin true Specifies the name of the WSDL from which to generate the JAR file
g that contains the JWS interface and data binding artifacts.
ver bose bool ean false Specifies the flag to set if you want verbose output. Default value is

false.

Usage Example

The ws-wsdl ¢ goal generates a set of artifacts and a partial Java implementation of the Web
service from a WSDL.

This goal benefits from the convention-over-configuration approach, allowing you to execute it
using the defaults of the project.

There are two ways to run the ws-wsdl ¢ goal:

From the command line. For example, after you define an alias:

mv/n —Dvari abl eNamel=val uel -Dvari abl eName2=val ue2
com or acl e. webl ogi c: webl ogi c- naven- pl ugi n: ws-wsdl ¢

By specifying the Maven gener at e- r esour ces life cycle phase.

To do this, modify the pom xn file to specify the gener at e- r esour ces life cycle phase, the
ws-wsdl ¢ goal, and include any parameters you need to set. Then run nvn gener at e-
resour ces in the same directory of pom.xml.

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<proj ect>

<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>maven_pl ugi n. si npl e</ gr oupl d>
<artifact!ld>maven_pl ugin_sinple</artifactld>
<ver si on>1. 0</ versi on>
<bui | d>

<pl ugi ns>

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 73 of 84

ORACLE Chapter 3
Maven Plug-In Goals

<pl ugi n>
<groupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact|d>webl ogi c- maven- pl ugi n</artifactld>
<versi on>14. 1. 2- 0- 0</ ver si on>
<executions>
<execution>
<i d>wsdl c</i d>
<phase>generate-resources</ phase>
<goal s>
<goal >ws-wsdlc</ goal >
</ goal s>
<configuration>
<src\Wédl >${ basedi r}/ AddNurber s. wsdl </ sr c\Wdl >
<dest JwsDi r >${ proj ect. bui | d. di rectory}/jwsl npl </ dest JwsDi r >
<dest | mpl Di r>${ proj ect. bui | d. di rect ory}/ out put </ dest | npl Di r>
<packageNane>maven_pl ugi n. si npl e</ packageNane>
<verbose>t rue</ ver bose>
</configuration>
</ execution>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</buil d>
</ project>

Example 3-27 shows typical ws-wsdl ¢ goal output.

Example 3-27 ws-wsdic

m/n -f wsdl c_pom xnl generat e-resources

[INFQ Scanning for projects..

[1 NFO

[1 NFO

[INFQ Building maven_plugin_sinple 1.0

[1 NFO

[1 NFO

[INFQ --- weblogic-maven-plugin:14.1.2-0-0:ws-wsdl ¢ (wsdlc) @
maven_pl ugin_sinmple ---

[INFQ Executing standal one..

[INFO Executing Maven goal 'wsdlic'...

calling method public static void

webl ogi c. wsee. t ool s. wsdl ¢c. MavenWsdl c. execut e(0

rg. apache. maven. pl ugi n. | oggi ng. Log, j ava. util.Map) throws java.lang. Throwabl e
Catal og dir = C\Users\mven\ AppDat a\ Local \ Tenp\ _ckr59b

Downl oad file [AddNumbers.wsdl] to C: \Users\maven\ AppDat a\ Local \ Tenp\ _ckr59b
srcWdl is redefined as [C \Users\maven\ AppDat a\ Local \ Tenp\ _ckr 59b\ AddNunber
s.wsdl]

[1NFO

[INFO BU LD SUCCESS

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 74 of 84

ORACLE

WS-JWSC

Chapter 3
Maven Plug-In Goals

Deprecated

This goal is deprecated in this release.

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: ws-j wsc

Description
Maven goal to build a JAX-WS web service.

The ws- j wsc goal provides a Maven wrapper for the jwsc Ant task, which is described in
WebLogic Web Services Reference for Oracle WebLogic Server.

Nested Configuration in module Elements

The ws-j wsc goal supports nested configuration elements, as shown in bold in Example 3-28.
See Introduction to the POM for information on Maven projects with multiple modules.

Example 3-28 Nested Configuration Elements

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<proj ect>
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>com t est . ws</ gr oupl d>
<artifactld>test-ws-jwscl</artifactld>
<versi on>1. 0</ versi on>

<bui | d>
<pl ugi ns>
<pl ugi n>

<groupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact!|d>webl ogi c- maven- pl ugi n</artifactld>
<versi on>14. 1. 2- 0- 0</ ver si on>
<executions>
<execution>
<id>first-jwsc</id>
<phase>gener at e- r esour ces</ phase>
<goal s>
<goal >ws-j wsc</ goal >
</ goal s>
<configuration>
<srcDir>${basedir}/src/min/java</srcDr>
<dest Di r>${proj ect. buil d. directory}/jwscCQut put
I ${proj ect.build.final Name}</destDir>
<listfiles>true</listfiles>
<debug>t r ue</ debug>

<module>
<name>pocr eat e</ nane>
<cont ext Pat h>mypub</ cont ext Pat h>
<conpi | edWdl >D: \ maven-t est\ order_wsdl . j ar</conpi | edV¢dl >

<jws>

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 75 of 84

http://maven.apache.org/guides/mini/guide-multiple-modules.html

ORACLE Chapter 3
Maven Plug-In Goals

<fil e>exanpl es/ wsee/ jwsc/ POCreatel npl.java</fil e>
<transport Type>
<type>W.Ht t pTransport </ type>
<servi celUri >POCr eat e</ servi celri >
<por t Nane>PQOCr eat ePor t </ por t Name>
</transport Type>
</jws>
<jws>

</jws>
<descri pt or s>
<descri pt or >"resour ces/ web. xnl "<descri ptor/ >
<descri pt or>"resour ces/ webl ogi c. xm " <descriptor />
</ descriptors>
</module>
<module>

</module>
</modules>
</configuration>
</ execution>
</ executions>
</ pl ugi n>
</ pl ugi ns>
</ buil d>
</ project>

These nested configuration elements for ws-j wsc have the following conditions:

* You must use at least one of the following elements: j ws, j wses, nodul e, or nodul es.
e Collection elements such as j wses and nodul es elements can be omitted.

» If there is only one child element within the collection element, the collection element can
also be removed.

For example, if there is only one j ws element, use j ws. If there are multiple j ws elements,
add all of the j ws elements under a j wses element.

e As with the JWSC ant task, if modul e has only one j ws child element, then other sub
elements of nodul e can be nested into j wsc and j wsc/ transport Type.

Example 3-29 shows an example without a module el enent in which the j ws parameter is a
child of ws-j wsc.

Example 3-29 jws Element as Child of ws-jwsc Goal

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<proj ect>
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>com t est . ws</ groupl d>
<artifactld>test-ws-jwsc</artifactld>
<ver si on>1. 0</ ver si on>

<bui | d>
<pl ugi ns>
<pl ugi n>

<groupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact|d>webl ogi c- maven-pl ugi n</artifactld>

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 76 of 84

ORACLE Chapter 3
Maven Plug-In Goals

<versi on>14. 1. 2- 0- 0</ ver si on>
<executions>
<execution>
<id>first-jwsc</id>
<phase>conpi | e</ phase>
<goal s>
<goal >ws-j wsc</ goal >
</ goal s>
<configuration>
<srcDir>${basedir}/src/ min/java</srcDir>
<dest Di r>${project.build. directory}/jwscQutput/
${project.build.final Nane}</destDir>
<jws> <l-- no parent <module> -->
<file>examples/wsee/jwsc/POCreatelmpl. java</file>
<compiledWsdI>${project._build.directory}/
purchaseorder_wsdl.jar>
<transportType>
<type>WLHttpTransport</type>
</transportType>
</jws>
</configuration>
</ execution>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</bui I d>
</ project>

ws-jwsc Parameters

Table 3-29 briefly describes the ws- j wsc parameters. These parameters are more fully
described in Table 2-3 WebLogic-specific Attributes of the clientgen Ant Task in WebLogic Web
Services Reference for Oracle WebLogic Server.

Table 3-29 ws-jwsc Parameters
|

Name Type Required Description
applicationXmjava.lang. Stri false Specifies the full name and path of the application.xml deployment
| ng descriptor of the Enterprise Application. If you specify an existing file, the

ws-jwsc goal updates it to include the Web services information. However,
jwsc does not automatically copy the updated application.xml file to the
destDir; you must manually copy this file to the destDIR. If the file does
not exist, jwsc creates it.

The ws-jwsc goal also creates or updates the corresponding weblogic-
application.xml file in the same directory. If you do not specify this
attribute, jwsc creates or updates the file destDir/META-INF/
application.xml, where destDir is the jwsc attribute.

debug bool ean false Turns on additional debug output.
destDir java.lang. Stri true Specifies the full pathname of the directory that will contain the compiled
ng JWS files, XML Schemas, WSDL, and generated deployment descriptor
files, all packaged into a JAR or WAR file.
dest Encoding java.lang.Stri false Specifies the character encoding of the output files, such as the
ng deployment descriptors and XML files. Examples of character encodings

are SHIFT-JIS and UTF-8. The default value of this attribute is UTF-8.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 77 of 84

ORACLE Chapter 3
Maven Plug-In Goals

Table 3-29 (Cont.) ws-jwsc Parameters

- ___|]
Name Type Required Description

jws Jws false There is only one <jws> element.
See Table 3-30 for a description of j Ws parameters.

j wses Jws false It contains more than one< jws> element.

keepGener at ed bool ean false Specifies whether the Java source files and artifacts generated by this
goal should be regenerated if they already exist.

If you specify false, new Java source files and artifacts are always
generated and any existing artifacts are overwritten. If you specify true,
the goal regenerates only those artifacts that have changed, based on the
timestamp of any existing artifacts

listfiles bool ean false Specifies whether to list all of the files.

modul e Modul e false It contains one <module> element.
See Table 3-31 for a description of nodul e parameters.

modul es Modul e false It contains more than one <module> element.
optinize bool ean false Specifies the flag to set when optimization is required. Defaults to true.
sourcepath java.lang. Stri true The full pathname of top-level directory that contains the Java files
ng referenced by the JWS file, such as JavaBeans used as parameters or
user-defined exceptions.
srcDir java.lang. Stri true Specifies the full pathname of the top-level directory that contains the
ng JWS file you want to compile.
srcEncoding java.lang.Stri false Specifies the character encoding of the input files, such as the JWS file or
ng configuration XML files.

Examples of character encodings are SHIFT-JIS and UTF-8. The default
value of this attribute is the character encoding set for the JVM.

ver bose bool ean false Specifies verbose output

jws Parameter

As described in jws, the j ws parameter specifies the name of a JWS file that implements your
Web service and for which the ws- j wsc goal should generate Java code and supporting
artifacts, and then package them into a deployable WAR file inside of an Enterprise
Application.

You can specify the j ws parameter in two ways:

* Animmediate child element of the ws- j wsc goal. In this case, ws- j wsc generates a
separate WAR file for each JWS file. You typically use this method if you are specifying just
one JWS file to the ws- j wsc goal.

e A child element of the modul e parameter, which in turn is a child of the ws- j wsc goal. In this
case, Ws- j wsc generates a single WAR file that includes all the generated code and
artifacts for all the JWS files grouped within the module parameter.

This method is useful if you want all JWS files to share supporting files, such as common
Java data types.

Table 3-30 describes the child parameters of the j ws parameter. The description specifies
whether the parameter applies in the case that j ws is a child of the ws- j wsc goal, is a child of
modul e, or both.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 78 of 84

ORACLE’

Chapter 3
Maven Plug-In Goals

Table 3-30 jws Parameters
. __]
Name Type Required Description Child of ws-
jwsc, module,
or both
conpi | edsdl java.lang. Str false Specifies the full pathname of the JAR file generated ~ both
ing by the ws- wsdl ¢ goal based on an existing WSDL file.
Only required for the "starting from WSDL" use case.
cont ext Pat h java.lang. Str false Specifies the deployed context of the web service. WS-jWSC
i ng
expl ode bool ean false Specifies the flag to set when you want exploded WS-jwsc
output. Defaults to true.
file java.lang. Str true The name of the JWS file that you want to compile. both
i ng The ws-jwsc goal looks for the file in the srcdir
directory.
gener at eV\d| bool ean true Specifies whether the generated WAR file includes the both
WSDL file in the WEB-INF directory. Default value is
false.
j metransportse bool ean false Use JMS transport for Web services. It can be omitted. ws-jwsc
rvice See Table 3-34 for a description of
j metransport servi ce parameters.
nanme java.lang. Str false Specifies the name of the generated WAR file (or WS-jWSC
i ng exploded directory, if the explode attribute is set to
true) that contains the deployable Web service.
transport Type transportType false Used when it contains only one transport t ype both
element. It can be omitted.
See Table 3-33 for a description of t ransport Type
parameters.
transport Types transportType false Used when it contains more than one transporttype both
element. It can be omitted.
See Table 3-33 for a description of t r anspor t Type
parameters.
wsdl Onl'y bool ean false Specifies that only a WSDL file should be generated ~ ws-jwsc

for this JWS file. The default value is false.

Table 3-31 module Parameters

module Parameters

As described in module, the modul e parameter groups one or more j ws parameters together so
that their generated code and artifacts are packaged in a single Web application (WAR) file.
The nmodul e parameter is a child of the ws-j wsc goal.

Table 3-31 describes the parameters of the module parameter.

Name Type Required Description
clientgen java.lang. Strin false There is only one <clientgen> element. It can be omitted.
g
clientgens java.lang. Strin false There is more than one <clientgen> element. It can be omitted.

g

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 79 of 84

ORACLE’

Chapter 3
Maven Plug-In Goals

Table 3-31 (Cont.) module Parameters
|

Name Type Required Description
contextPath java.lang.Strin false Specifies the deployed context of the Web service.
g
descri ptor java.lang. Strin false Specifies the web.xml descriptor to use if a new one should not be
g generated. The path should be fully qualified. The files should be
separated by ", ".
ej bV I nVar bool ean false Specifies whether to package EJB-based Web services in a WAR file
instead of a JAR file.
expl ode bool ean false Specifies the flag to set when you want exploded output. Defaults to
true.
Fi | eSet Fi | eSet false Used when it contains one FileSet element. It can be omitted.
Fil eSets Fi | eSet false Used when it contains more than one FileSet element. It can be
omitted.
generat eWsdl bool ean true Specifies whether the generated WAR file includes the WSDL file in the
WEB-INF directory. Default value is false.
j ws Jws false Used when it contains one jws element. It can be omitted.
j wses Jws false Used when it contains more than one jws element. It can be omitted.
narme java.lang. Strin false Specifies the name of the WAR to use when evaluating the ear file.
g
wsdl Onl'y bool ean false Specifies that only a WSDL file should be generated for this JWS file.
The default value is false.
zipfileset java.lang. Strin false There is only one <zipfileset> element.
g

FileSet Parameters

As described in jwsfileset, the Fi | eSet parameter specifies one or more directories in which
the ws-j wsc goal searches for JWS files to compile. The list of JWS files that ws- j wsc finds is
then treated as if each file had been individually specified with the j ws parameter of nodul e.

The Fi | eSet parameter is a child of the ws- j wsc goal.

Table 3-32 describes the parameters of the FileSet parameter.

Table 3-32 FileSet Parameters
]

Name Type Required Description

srchDir java.lang. Stri true Specifies the directories (separated by semi-colons) that the ws-jwsc
ng goal should search for JWS files to compile.

prefix java.lang. Stri false Prefix to use.
ng

sourcelnclude java.lang.Stri false Specifies the explicit includes-list for the file set.

S ng

sourceExclude java.lang.Stri false Specifies the explicit excludes-list for the file set.

S ng

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 80 of 84

ORACLE Chapter 3
Maven Plug-In Goals

TransportType Parameters

As described in WLHttpTransport, WLHttpsTransport, and WLIJMSTransport, you use transport
parameters to specify the transport type, context path, and service URI sections of the URL
used to invoke the Web service, as well as the name of the port in the generated WSDL.

The ws-j wsc goal combines these transport parameters into one, Tr ansport Type.

Table 3-32 describes the parameters of the t ransport Type parameter.

Table 3-33 transportType Parameters
|

Name Type Required Description
transport TypeNane java.lang.Stri true Specifies the value is WLHttpTransport, WLHttpsTransport, or
ng WLJIMSTransport.
Default value is WLHttpTransport.
servicelri java.lang. Stri false Specifies the Web service URI portion of the URL.
ng
cont ext Pat h java.lang. Stri false Specifies the deployed context of the Web service.
ng
port Name java.lang. Stri false Specifies the name of the port in the generated WSDL.
ng

Table 3-34 describes the parameters of the j mst ransport servi ce parameter.

Table 3-34 jmstransportservice Parameters
|

Name Type Required Description
desti nati onName java.lang. St false JNDI name of the destination queue or topic. Default value is
ring com oracl e. webservi ces. j ms. Request Queue.
desti nationType java.lang. St false Valid values include: QUEUE or TOPIC. Default value is QUEUE.
ring
repl yToNane java.lang. St false JNDI name of the JMS destination to which the response message is
ring sent.
target Service java.lang. St false Port component name of the Web service.
ring
jndilnitial Contex java.lang.St false Name of the initial context factory class used for JINDI lookup. Default
t Factory ring value is webl ogi c. j ndi . W.I ni ti al Cont ext Factory.
j ndi ConnectionFac java.lang. St JNDI name of the connection factory that is used to establish a IMS
t or yName ring connection. Default value is
com oracl e. webservi ces. j ms. Connect i onFact ory.
jndi Url java.lang. St JNDI provider URL. Default value is t 3: / /| ocal host : 7001.
ring
del i veryMode java.lang. St Delivery mode indicating whether the request message is persistent.
ring Valid values are PERSISTENT and NON_PERSISTENT. Default
value is PERSISTENT.
timeToLive | ong false Lifetime, in milliseconds, of the request message. Default value is
180000L.
priority i nt false JMS priority associated with the request and response message.

Default value is 0.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 81 of 84

ORACLE’

Chapter 3
Maven Plug-In Goals

Table 3-34 (Cont.) jmstransportservice Parameters
|

Name Type Required Description
j ndi Cont ext Parame java.lang. St false JNDI properties, in a format like:
ter ri ng someParameterNamel=someValuel ,
someParameterName2=someValue2.
bi ndi ngVer si on java.lang. St false Version of the SOAP JMS binding. Default value is 1.0.
ring
runAsPri nci pal java.lang. St false Principal used to run the listening MDB.
ring
runAsRol e java.lang. St false Role used to run the listening MDB.
ring
messageType java.lang. St false Message type to use with the request message. Valid values are
ring com oracl e. webservi ces. api . j ms. JMSMessageType. BYTES
and
com oracl e. webservi ces. api . j ms. IMSMessageType. TEXT.
Default value is BYTES.
enabl eHt t pvsdl Acc bool ean false Boolean flag that specifies whether to publish the WSDL through
ess HTTP. Default value is true.
mdbPer Dest i nati on bool ean false Boolean flag that specifies whether to create one listening message-
driven bean (MDB) for each requested destination. Default value is
true.
activationConfig java.lang.St false Activation configuration properties passed to the JMS provider.
ring
cont ext Pat h java.lang. St false The deployed context of the web service.
ring
servicelri java.lang. St false Web service URI portion of the URL.
ring
por t Name java.lang. St false The name of the port in the generated WSDL.

ring

Usage Example

The ws- j wsc goal builds a JAX-WS web service.

This goal benefits from the convention-over-configuration approach, allowing you to execute it

using the defaults of the project.

To run the ws- j wsc goal, specify the Maven gener at e- r esour ces phase.

To do this, modify the pom xnl file to specify the gener at e- r esour ces phase, the ws-j wsc goal,
and include any pa parameters you need to set. Then run mvn gener at e-r esour ces in the

same directory of pom.xml.

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<proj ect>
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<gr oupl d>maven_pl ugi n. si npl e</ gr oupl d>
<artifact!ld>maven_pl ugi n_sinple</artifactld>

<ver si on>1. 0</ versi on>

<bui | d>

<pl ugi ns>

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 82 of 84

ORACLE Chapter 3
Maven Plug-In Goals

<pl ugi n>
<groupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact|d>webl ogi c- maven- pl ugi n</artifactld>
<versi on>14. 1. 2- 0- 0</ ver si on>
<executions>
<execution>
<i d>j wsc</id>
<phase>generate-resources</ phase>
<goal s>
<goal >ws-jwsc</ goal >
</ goal s>
<configuration>
<dest Di r>${project.build. directory}/jwscQutput/
<listfiles>true</listfiles>
<debug>t r ue</ debug>
<jws> <l-- no parent <module> -->
<file>examples/wsee/jwsc/POCreatelmpl. java</file>
<compiledWsdI>${project._build.directory}/
purchaseorder_wsdl.jar>

<transportType>
<type>WLHttpTransport</type>
</transportType>
</jws>
<verbose>t rue</ ver bose>
</ configuration>
</ execution>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ project>

Example 3-30 shows typical ws- j wsc goal output.

Example 3-30 ws-jwsc

m/n -f jwsc_pom xm generat e-resources
INFQ Scanning for projects..

[1NFO

[INFQ Building maven_plugin_sinple 1.0

[1 NFO

[1 NFO

[INFQ --- webl ogic-maven-plugin:14.1.2-0-0:ws-jwsc (jwsc) @
maven_pl ugin_sinmple ---

[INFO Executing standal one..

INFQ Executing Maven goal 'jwsc'..

cal ling method public static void

webl ogi c. wsee. t ool s. j ws. MavenJwsc. execut e(or g. apache. maven. pl ugi n. | oggi ng. Log
java.util.Mp) throws java.lang. Throwabl e

[EarFile] Application File : C\maven-doc\jwsc-test-2\output\META-

I NF\ appl i cation. xm

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 83 of 84

ORACLE Chapter 3
Maven Plug-In Goals

[INFO BU LD SUCCESS

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 84 of 84

Creating a Split Development Directory
Environment

To create a WebLogic Server split development directory that you can use to develop a Jakarta
EE application or module, you have to organize the Jakarta EE components and shared
classes, generate a basic build.xml file, and develop multiple EAR projects.

This chapter includes the following sections:

Overview of the Split Development Directory Environment

The WebLogic split development directory environment consists of a directory layout and
associated Ant tasks that help you repeatedly build, change, and deploy Jakarta EE
applications.

Compared to other development frameworks, the WebLogic split development directory
provides these benefits:

* Fast development and deployment. By minimizing unnecessary file copying, the split
development directory Ant tasks help you recompile and redeploy applications quickly
without first generating a deployable archive file or exploded archive directory.

« Simplified build scripts. The Oracle-provided Ant tasks automatically determine which
Jakarta EE modules and classes you are creating, and build components in the correct
order to support common classpath dependencies. In many cases, your project build script
can simply identify the source and build directories and allow Ant tasks to perform their
default behaviors.

- Easy integration with source control systems. The split development directory provides
a clean separation between source files and generated files. This helps you maintain only
editable files in your source control system. You can also clean the build by deleting the
entire build directory; build files are easily replaced by rebuilding the project.

Source and Build Directories

The source and build directories form the basis of the split development directory environment.
The source directory contains all editable files for your project—Java source files, editable
descriptor files, JSPs, static content, and so forth. You create the source directory for an
application by following the directory structure guidelines described in Organizing Jakarta EE
Components in a Split Development Directory.

The top level of the source directory always represents an enterprise application (. ear file),
even if you are developing only a single Jakarta EE module. Subdirectories beneath the top
level source directory contain:

* Enterprise Application Modules (EJBs and Web applications)

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 15

ORACLE Chapter 4
Overview of the Split Development Directory Environment

@® Note

The split development directory structure does not provide support for developing
new Resource Adapter components.

« Descriptor files for the enterprise application (appl i cati on. xm and webl ogi c-
application.xn)

« Utility classes shared by modules of the application (for example, exceptions, constants)

e Libraries (compiled. j ar files, including third-party libraries) used by modules of the
application

The build directory contents are generated automatically when you run the Wl conpi | e ant task
against a valid source directory. The w conpi | e task recognizes EJB, Web application, and
shared library and class directories in the source directory, and builds those components in an
order that supports common class path requirements. Additional Ant tasks can be used to build
Web services or generate deployment descriptor files from annotated EJB code.

Figure 4-1 Source and Build Directories

Source Directory Build Process Build Directory
Java Source, JSPs, :
Annotated .EJB Compiled Classes
Static HTML and Generated Deployment
Graphics Descriptors

Editable Deployment
Descriptors

Third-Party
JAR Files

The build directory contains only those files generated during the build process. The
combination of files in the source and build directories form a deployable Jakarta EE
application.

The build and source directory contents can be place in any directory of your choice. However,
for ease of use, the directories are commonly placed in directories named sour ce and bui | d,
within a single project directory (for example, \ mypr oj ect\ bui | d and \ nypr oj ect\ sour ce).

Deploying from a Split Development Directory

All WebLogic Server deployment tools (webl ogi c. Depl oyer, W depl oy, and the WebLogic
Remote Console) support direct deployment from a split development directory. You specify
only the build directory when deploying the application to WebLogic Server.

WebLogic Server attempts to use all classes and resources available in the source directory for
deploying the application. If a required resource is not available in the source directory,
WebLogic Server then looks in the application's build directory for that resource. For example,
if a deployment descriptor is generated during the build process, rather than stored with source
code as an editable file, WebLogic Server obtains the generated file from the build directory.

WebLogic Server discovers the location of the source directory by examining
the . beabui | d. t xt file that resides in the top level of the application's build directory. If you

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 15

ORACLE’

Chapter 4
Overview of the Split Development Directory Environment

ever move or modify the source directory location, edit the . beabui | d. t xt file to identify the
new source directory name.

Deploying Applications Using wideploy describes the w depl oy Ant task that you can use to
automate deployment from the split directory environment.

Figure 4-2 shows a typical deployment process. The process is initiated by specifying the build
directory with a WebLogic Server tool. In the figure, all compiled classes and generated
deployment descriptors are discovered in the build directory, but other application resources
(such as static files and editable deployment descriptors) are missing. WebLogic Server uses
the hidden . beabui | d. t xt file to locate the application's source directory, where it finds the
required resources.

Figure 4-2 Split Directory Deployment

Deploy m—
Source Directory Build Directory
Java Source, JSPs,)
Annotated .EJB Compiled Classes <«
Static HTML and Generated Deployment
Graphics Descriptors <
Edltag;ig?ﬂg:’;mem beabuild.txt -«
Third-Party
JAR Files

Split Development Directory Ant Tasks

Oracle provides a collection of Ant tasks designed to help you develop applications using the
split development directory environment. Each Ant task uses the source, build, or both
directories to perform common development tasks:

e w conpi | e—This Ant task compiles the contents of the source directory into subdirectories
of the build directory. W conpi | e compiles Java classes and also processes
annotated . ej b files into deployment descriptors, as described in Compiling Applications
Using wicompile.

e W appc—This Ant task invokes the appc compiler, which generates JSPs and container-
specific EJB classes for deployment. See Building Modules and Applications Using
wlappc.

* w depl oy—This Ant task deploys any format of Jakarta EE applications (exploded or
archived) to WebLogic Server. To deploy directly from the split development directory
environment, you specify the build directory of your application. See wideploy Ant Task
Reference.

e w package—This Ant task uses the contents of both the source and build directories to
generate an EAR file or exploded EAR directory that you can give to others for
deployment.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 15

ORACLE’

Chapter 4
Using the Split Development Directory Structure: Main Steps

Using the Split Development Directory Structure: Main Steps

In a split development directory structure, you can develop and deploy applications faster,
simplify build scripts, and integrate with source control systems.

The following steps illustrate how you use the split development directory structure to build and
deploy a WebLogic Server application.

1.

Create the main EAR source directory for your project. When using the split development
directory environment, you must develop Web applications and EJBs as part of an
enterprise application, even if you do not intend to develop multiple Jakarta EE modules.
See Organizing Jakarta EE Components in a Split Development Directory.

Add one or more subdirectories to the EAR directory for storing the source for Web
applications, EJB components, or shared utility classes. See Organizing Jakarta EE
Components in a Split Development Directory and Organizing Shared Classes in a Split
Development Directory.

Store all of your editable files (source code, static content, editable deployment
descriptors) for modules in subdirectories of the EAR directory. Add the entire contents of
the source directory to your source control system, if applicable.

Set your WebLogic Server environment by executing either the set W.SEnv. cmd (Windows)
or set W.SEnv. sh (UNIX) script. The scripts are located in the W._HOVE\ ser ver\ bi n\
directory, where W._HOME is the top-level directory in which WebLogic Server is installed.

@® Note

On UNIX operating systems, the set W.SEnv. sh command does not set the
environment variables in all command shells. Oracle recommends that you
execute this command using the Korn shell or bash shell.

Use the webl ogi c. Bui | dXM_Gen utility to generate a default bui | d. xn file for use with your
project. Edit the default property values as needed for your environment. See Generating a
Basic build.xml File Using weblogic.BuildXMLGen.

Use the default targets in the bui | d. xnl file to build, deploy, and package your application.
See Generating a Basic build.xml File Using weblogic.BuildXMLGen for a list of default
targets.

Organizing Jakarta EE Components in a Split Development

Directory

The split development directory structure requires each project to be staged as a Jakarta EE
enterprise application. Oracle therefore recommends that you stage even standalone Web
applications and EJBs as modules of an enterprise application, to benefit from the split
directory Ant tasks. This practice also allows you to easily add or remove modules at a later
date, because the application is already organized as an EAR.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 15

ORACLE Chapter 4
Organizing Jakarta EE Components in a Split Development Directory

@® Note

If your project requires multiple EARS, see also Developing Multiple-EAR Projects
Using the Split Development Directory.

The following sections describe the basic conventions for staging the following module types in
the split development directory structure:

» Enterprise Application Configuration

e Web Applications
« EJBs
e Shared Utility Classes

e Third-Party Libraries

The directory examples are taken from the spl i tdi r sample application installed in
ORACLE_HOVE\ W server\ sanpl es\ server\ exanpl es\ src\ exanpl es\splitdir, where
ORACLE_HOVE represents the directory you specified as the Oracle Home when you installed
WebLogic Server; for example, C.\ Oracl e\ M ddl ewar e\ Or acl e_Horre. For more information
about the WebLogic Server code examples, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

Source Directory Overview

The following figure summarizes the source directory contents of an enterprise application
having a Web application, EJB, shared utility classes, and third-party libraries. The sections
that follow provide more details about how individual parts of the enterprise source directory
are organized.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 15

ORACLE’

Figure 4-3 Overview of Enterprise Application Source Directory

Source

|
helloWorldEar

— build.xml
— META-INF

application.xml

— helloWebApp
— hello.jsp
— WEB-INF

— web.xml

— SIc

— static

Static files*

— helloEJB

___ Java Source Files

Developing Applications for Qracle WEEL-ogib"&ErTeﬁ' INF
G31429-01
Copyright © 2007, 2025, Oracle and/or its affilfates.

weblogic-application.xml

— weblogic.xml

Java Source Files
(in package directories)

HTML, Graphics,

(in package directories)

weblooic-aib-1ar. xml

Chapter 4

Organizing Jakarta EE Components in a Split Development Directory

October 7, 2025
Page 6 of 15

ORACLE Chapter 4
Organizing Jakarta EE Components in a Split Development Directory

Enterprise Application Configuration

The top level source directory for a split development directory project represents an enterprise
application. The following figure shows the minimal files and directories required in this
directory.

Figure 4-4 Enterprise Application Source Directory

Source
=

|
helloWorldEar

build.xml
META-INF
application.xml

weblogic-application.xml

The enterprise application directory will also have one or more subdirectories to hold a Web
application, EJB, utility class, and/or third-party Jar file, as described in the following sections.

Web Applications

Web applications use the basic source directory layout shown in the figure below.

Developing Applications for Oracle WebLogic Server

G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 15

ORACLE Chapter 4
Organizing Jakarta EE Components in a Split Development Directory

Figure 4-5 Web Application Source and Build Directories

Source Build

> =

helloWorldEar helloWorldEar
| hellowebApp L hellowebApp
|
: hello.jsp L WEB-INF
|
|
| WEB-INF L classes
|
: — src — jsp_servlet
|
|
! L Java Source Files L Compiled JSPs
1 (in package directories) and Servlets
|
|
: — web.xml | Java Class Files
: (in package directories)
| — weblogic.xml
|
1 Fm— == -
v————- static* :

== HTML, Graphics,
Static files

Key

* Not used in helloWorldEar sample

The key directories and files for the Web application are:

* hel | oWebApp\ —The top level of the Web application module can contain JSP files and
static content such as HTML files and graphics used in the application. You can also store
static files in any named subdirectory of the Web application (for example,
hel | oVebApp\ graphi cs or hel | oWebApp\ static.)

* hel | oWebApp\ VEB- | NF\ —Store the Web application's editable deployment descriptor files
(web. xm and webl ogi c. xn) in the VEB- | NF subdirectory.

e hel | oWebApp\ VEB- | NF\ sr ¢ —Store Java source files for Servlets in package subdirectories
under VEEB- | NF\ src.

When you build a Web application, the appc Ant task and j spc compiler compile JSPs into
package subdirectories under hel | o\\ebApp\ VEB- | NF\ cl asses\j sp_servl et in the build
directory. Editable deployment descriptors are not copied during the build process.

EJBs

EJBs use the source directory layout shown in the figure below.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 15

ORACLE Chapter 4
Organizing Jakarta EE Components in a Split Development Directory

Figure 4-6 EJB Source and Build Directories

Source Build

> =

helloWorldEar helloWorldEar
|— helloEJB L helloEJB

'_ Java Source Files Java Class Files

| (in package directories) (in package directories)

|

I— JIF ;\d_E?f;—_llil;*_] META-INF
-ir—— ejb-jar.xml* ejb-jar.xml
:—- weblogic-ejb-jar.xml* weblogic-ejb-jar.xml

Key

* Not used in helloWorldEar sample

The key directories and files for an EJB are:

e hel | oEJB\ —Store all EJB source files under package directories of the EJB module
directory. The source files can be either . j ava source files, or annotated . ej b files.

e hel | oEJB\ META- | NF\ —Store editable EJB deployment descriptors (ejb-jar.xml and
weblogic-ejb-jar.xml) in the META- | NF subdirectory of the EJB module directory. The
hel | oWr | dEar sample does not include a hel | oEJB\ META- | NF subdirectory, because its
deployment descriptors files are generated from annotations in the . ej b source files. See
Important Notes Regarding EJB Descriptors.

During the build process, EJB classes are compiled into package subdirectories of the
hel | oEJB module in the build directory. If you use annotated . ej b source files, the build
process also generates the EJB deployment descriptors and stores them in the

hel | oEJB\ META- | NF subdirectory of the build directory.

Important Notes Regarding EJB Descriptors

EJB deployment descriptors should be included in the source META- | NF directory and treated
as source code only if those descriptor files are created from scratch or are edited manually.
Descriptor files that are generated from annotated . ej b files should appear only in the build
directory, and they can be deleted and regenerated by building the application.

For a given EJB component, the EJB source directory should contain either:

* EJB source code in . j ava source files and editable deployment descriptors in META- | NF
or:

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 15

ORACLE Chapter 4
Organizing Shared Classes in a Split Development Directory

» EJB source code with descriptor annotations in . ej b source files, and no editable
descriptors in META- | NF.

In other words, do not provide both annotated . ej b source files and editable descriptor files for
the same EJB component.

Organizing Shared Classes in a Split Development Directory

The WebLogic split development directory also helps you store shared utility classes and
libraries that are required by modules in your enterprise application.

The following sections describe the directory layout and classloading behavior for shared utility
classes and third-party JAR files.

Shared Utility Classes

Enterprise applications frequently use Java utility classes that are shared among application
modules. Java utility classes differ from third-party JARs in that the source files are part of the
application and must be compiled. Java utility classes are typically libraries used by application
modules such as EJBs or Web applications.

Figure 4-7 Java Utility Class Directory

Source Build
| |
helloWorldEar helloWorldEar
L appUtils L APP-INF
L Java Source Files L Java Class Files
(in package directories) (in package directories)

Place the source for Java utility classes in a named subdirectory of the top-level enterprise
application directory. Beneath the named subdirectory, use standard package subdirectory
conventions.

During the build process, the W conpi | e Ant task invokes the javac compiler and compiles
Java classes into the APP- | NF/ cl asses/ directory under the build directory. This ensures that
the classes are available to other modules in the deployed application.

Third-Party Libraries

You can extend an enterprise application to use third-party . j ar files by placing the files in the
APP- I NF\ |i b\ directory, as shown below:

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 15

ORACLE’

Chapter 4
Generating a Basic build.xml File Using weblogic.BuildXMLGen

Figure 4-8 Third-party Library Directory

Source

|
helloWorldEar

L APP-INF

L lib

L Third-Party JAR Files

Third-party JARs are generally not compiled, but may be versioned using the source control
system for your application code. For example, XML parsers, logging implementations, and
Web application framework JAR files are commonly used in applications and maintained along
with editable source code.

During the build process, third-party JAR files are not copied to the build directory, but remain
in the source directory for deployment.

Class Loading for Shared Classes

The classes and libraries stored under APP- | NF/ cl asses and APP- | NF/ | i b are available to all
modules in the enterprise application. The application classloader always attempts to resolve
class requests by first looking in APP- 1 NF/ cl asses, then APP- 1 NF/ | i b.

Generating a Basic build.xml File Using weblogic.BuildXMLGen

After you set up your source directory structure, use the webl ogi c. Bui | dXM_Gen utility to create
a basic bui | d. xn file. webl ogi c. Bui | dXM_Gen is a convenient utility that generates an Ant
build.xml file for enterprise applications that are organized in the split development directory
structure. The utility analyzes the source directory and creates build and deploy targets for the
enterprise application as well as individual modules. It also creates targets to clean the build
and generate new deployment descriptors.

Additionally, optional packages are supported as Jakarta EE shared libraries in

webl ogi c. Bui | dXM_.Gen, whereby all manifests of an application and its modules are scanned
to look for optional package references. If optional package references are found they are
added to the compile and appc tasks in the generated bui | d. xm file.

For example, if a library located at | i b\ echol i b. j ar is referenced as an optional package, the
tasks generated by webl ogi c. Bui | dXM_Gen will contains an appc task that would appear as
follows:

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 15

ORACLE Chapter 4
Generating a Basic build.xml File Using weblogic.BuildXMLGen

<target name="appc" description="Runs webl ogi c. appc on your application">
<wl appc source="${dest.dir}" verbose="${verbose}">
<library file="lib\echolib\echolib.jar" />
</w appc>
</target>

The compile and appc tasks for modules also use the li b\ echol i b\ echol i b. j ar library.

weblogic.BuildXMLGen Syntax

The syntax for webl ogi c. Bui | dXM_Gen is as follows:

java webl ogi c. Bui | dXM.Gen [options] <source directory>

where opt i ons include:

e -hel p—Print standard usage message.
e -versi on—Print version information.
e -projectNane <project name>—Name of the Ant project.

e -d <directory>—Directory where bui | d. xn is created. The default is the current
directory.

e -file <build. xml >—Name of the generated build file.

e -librarydir <directories>—Create build targets for shared Jakarta EE libraries in the
comma-separated list of directories. See Creating Shared Jakarta EE Libraries and
Optional Packages.

e -usernane <usernanme>—User name for deploy commands.
e -password <password>—User password.

After running webl ogi ¢. Bui | dXM_Gen, edit the generated bui | d. xm file to specify properties
for your development environment. The list of properties you need to edit are shown in the
listing below:

Example 4-1 build.xml Editable Properties

<!-- BU LD PROPERTI ES ADJUST THESE FOR YOUR ENVI RONMVENT - ->
<property name="tnp.dir" value="/tnmp" />
<property name="dist.dir" value="${tnp.dir}/dist"/>
<property nane="app.nane" val ue="hel | oWorl dEar" />
<property name="ear" val ue="${dist.dir}/${app. nane}.ear"/>
<property name="ear.expl oded" val ue="${dist.dir}/${app. nane}_expl oded"/>
<property nanme="verbose" value="true" />
<property nanme="user" val ue="USERNAME" />
<property nane="password" val ue="PASSWORD" />
<property nane="servernane" val ue="mnyserver" />
<property nanme="admi nurl" val ue="iiop://Ilocal host:7001" />

In particular, make sure you edit the t np. di r property to point to the build directory you want to
use. By default, the bui | d. xm file builds projects into a subdirectory t np. di r named after the
application (/ t np/ hel | oWor | dEar in the above listing).

The following listing shows the default main targets created in the bui | d. xnl file. You can view
these targets at the command prompt by entering the ant - proj ect hel p command in the EAR
source directory.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 15

ORACLE

Chapter 4
Developing Multiple-EAR Projects Using the Split Development Directory

Example 4-2 Default build.xml Targets

appc Runs webl ogi c. appc on your application

bui I d Conpi | es hel | oWor| dEar application and runs appc
cl ean Del etes the build and distribution directories
conpil e Onl'y conpiles helloWrl dEar application, no appc

conpil e. appStartup Conpiles just the appStartup nmodul e of the application
conpi l e. appUtils Conpi l es just the appUtils modul e of the application
conpile.build.orig Conpiles just the build.orig nmodule of the application
conpi | e. hel | oEJB Conpi | es just the hell oEJB modul e of the application
conpi | e. hel | owebApp Conpiles just the hel | oWebApp nodul e of the application

conpi | e. j avadoc Conpi | es just the javadoc nodul e of the application

depl oy Depl oys (and redepl oys) the entire helloWrl| dEar application
descriptors CGenerates application and nodul e descriptors

ear Package a standard J2EE EAR for distribution

ear . expl oded Package a standard expl oded J2EE EAR

redepl oy. appStartup Redepl oys just the appStartup nodul e of the application
redepl oy. appUils Redepl oys just the appUils nmodule of the application
redepl oy. build.orig Redeploys just the build.orig nodule of the application
redepl oy. hel | oEJB Redepl oys just the hell oEIJB nodul e of the application
redepl oy. hel | oVebApp Redepl oys just the hell oWebApp nmodul e of application
redepl oy. j avadoc Redepl oys just the javadoc nodul e of the application
undepl oy Undepl oys the entire hel |l oWrl dEar application

Developing Multiple-EAR Projects Using the Split Development

Directory

Projects that require building multiple enterprise applications simultaneously require slightly
different conventions and procedures in organizing libraries and classes shared by multiple
EARs and linking multiple build.xml files.

The split development directory examples and procedures described previously have dealt with
projects consisting of a single enterprise application. Projects that require building multiple
enterprise applications simultaneously require slightly different conventions and procedures, as
described in the following sections.

@ Note

The following sections refer to the MedRec sample application, which consists of three
separate enterprise applications as well as shared utility classes, third-party JAR files,
and dedicated client applications. The MedRec source and build directories are
installed under ORACLE_HOVE/ user _pr oj ect s/ domai n/ nedr ec, where ORACLE_HOME is
the directory you specified as Oracle Home when you installed Oracle WebLogic
Server. For more information about the WebLogic Server samples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

Organizing Libraries and Classes Shared by Multiple EARS

For single EAR projects, the split development directory conventions suggest keeping third-
party JAR files in the APP- I NF/ i b directory of the EAR source directory. However, a multiple-
EAR project would require you to maintain a copy of the same third-party JAR files in the APP-
I NF/ | 'i b directory of each EAR source directory. This introduces multiple copies of the source
JAR files, increases the possibility of some JAR files being at different versions, and requires
additional space in your source control system.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 15

ORACLE’

Chapter 4
Developing Multiple-EAR Projects Using the Split Development Directory

To address these problems, consider editing your build script to copy third-party JAR files into
the APP- 1 NF/ | i b directory of the build directory for each EAR that requires the libraries. This
allows you to maintain a single copy and version of the JAR files in your source control system,
yet it enables each EAR in your project to use the JAR files.

The MedRec sample application installed with WebLogic Server uses this strategy, as shown in
the following figure.

Figure 4-9 Shared JAR Files in MedRec

=>— >

I |
build build

L L

L APP-INF L APP-INF

L lib L lib

medrecEar physicianEar

— commons-*jar — commons-*.jar
— exceptions.jar — exceptions.jar
— struts.jar — struts.jar

— utils.jar — utils.jar

— value.jar — value.jar

MedRec takes a similar approach to utility classes that are shared by multiple EARs in the
project. Instead of including the source for utility classes within the scope of each ear that
needs them, MedRec keeps the utility class source independent of all EARs. After compiling
the utility classes, the build script archives them and copies the JARs into the build directory
under the APP- | NF/ LI B subdirectory of each EAR that uses the classes, as shown in figure

Figure 4-9.

Linking Multiple build.xml Files

When developing multiple EARSs using the split development directory, each EAR project
generally uses its own bui | d. xni file (perhaps generated by multiple runs of

webl ogi c. Bui | dXMLGen.). Applications like MedRec also use a main bui | d. xn file that calls
the other bui | d. xmi files for each EAR in the application suite.

Ant provides a core task (named ant) that allows you to execute other project build files within
a main bui | d. xnl file. The following line from the MedRec main build file shows its usage:

<ant inheritAll="false" dir="${root}/startupEar" antfile="build.xm"/>

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 15

ORACLE Chapter 4
Best Practices for Developing WebLogic Server Applications

The above task instructs Ant to execute the file named bui | d. xm in the / st art upEar
subdirectory. The i nherit All parameter instructs Ant to pass only user properties from the
main build file to the bui | d. xm file in /st art upEar.

MedRec uses multiple tasks similar to the above to build the st art upEar, medr ecEar, and
physi ci anEar applications, as well as building common utility classes and client applications.

Best Practices for Developing WebLogic Server Applications

The WebLogic Server documentation library includes a number of recommended best
practices for application development, including topics such as packaging, distribution,
deployment, and more.

Oracle recommends the following "best practices" for application development.

» Package applications as part of an enterprise application. See Packaging Applications
Using wipackage.

* Use the split development directory structure. See Organizing Jakarta EE Components in a
Split Development Directory.

» For distribution purposes, package and deploy in archived format. See Packaging
Applications Using wilpackage.

* In most other cases, it is more convenient to deploy in exploded format. See Archive
versus Exploded Archive Directory.

* Never deploy untested code on a WebLogic Server instance that is serving production
applications. Instead, set up a development WebLogic Server instance on the same
computer on which you edit and compile, or designate a WebLogic Server development
location elsewhere on the network.

« Evenif you do not run a development WebLogic Server instance on your development
computer, you must have access to a WebLogic Server distribution to compile your
programs. To compile any code using WebLogic or Jakarta EE APIs, the Java compiler
needs access to the webl ogi c. j ar file and other JAR files in the distribution directory.
Install WebLogic Server on your development computer to make WebLogic distribution
files available locally.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 15

Building Applications in a Split Development
Directory

To build WebLogic Server Jakarta EE applications in WebLogic split development directory
environment you have to compile applications using w conpi | e and build modules and
applications using w appc.

This chapter includes the following sections:

Compiling Applications Using wicompile

You can use the wl conpi | e Ant task to invoke the javac compiler to compile your application's
Java components in a split development directory structure.

The basic syntax of W conpi | e identifies the source and build directories, as in this command
from the hel | oWr | dEar sample:

<wW conpile srcdir="%{src.dir}" destdir="${dest.dir}"/>

@® Note

Deployment descriptors are no longer mandatory as of Java EE 5; therefore, exploded
module directories must indicate the module type by using the .war or . j ar suffix when
there is no deployment descriptor in these directories. The suffix is required so that

wl conpi | e can recognize the modules. The . war suffix indicates the module is a Web
application module and the . j ar suffix indicates the module is an EJB module.

The following is the order in which events occur using this task:
1. W conpil e compiles the Java components into an output directory:

ORACLE_HOMEW server\ sanpl es\ server\ exanpl es\ bui | d\ hel | oWr | dEar\ APP- | NF\ ¢l asses\

where ORACLE_HOME represents the directory in which the WebLogic Server code examples
are configured. For more information about the WebLogic Server code examples, see
Sample Applications and Code Examples in Understanding Oracle WebLogic Server.

2. w conpi | e builds the EJBs and automatically includes the previously built Java modules in
the compiler's classpath. This allows the EJBs to call the Java modules without requiring
you to manually edit their classpath.

3. Finally, wl conpi | e compiles the Java components in the Web application with the EJB and
Java modules in the compiler's classpath. This allows the Web applications to refer to the
EJB and application Java classes without requiring you to manually edit the classpath.

Using includes and excludes Properties

More complex enterprise applications may have compilation dependencies that are not
automatically handled by the wicompile task. However, you can use the include and exclude

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 7

ORACLE’

Chapter 5
Compiling Applications Using wicompile

options to wicompile to enforce your own dependencies. The includes and excludes properties
accept the names of enterprise application modules—the names of subdirectories in the
enterprise application source directory—to include or exclude them from the compile stage.

The following line from the hel | oWr | dEar sample shows the appSt art up module being
excluded from compilation:

<wl conpile srcdir="${src.dir}" destdir="${dest.dir}"
excl udes="appSt artup"/ >

wicompile Ant Task Attributes

Table 5-1 contains Ant task attributes specific to wl conpi | e.

Table 5-1 wicompile Ant Task Attributes

Attribute Description

srcdir The source directory.

destdir The build/output directory.

cl asspath Allows you to change the classpath used by wl conpi | e.

i ncl udes Allows you to include specific directories from the build.

excl udes Allows you to exclude specific directories from the build.

librarydir Specifies a directory of shared Java EE libraries to add to the classpath.

See Creating Shared Java EE Libraries and Optional Packages.

Nested javac Options

The w conpi | e Ant task can accept nested javac options to change the compile-time behavior.
For example, the following W conpi | e command ignores deprecation warnings and enables
debugging:

<wl conpi l e srcdir="${nysrcdir}" destdir="${nybuilddir}">
<javac deprecation="fal se" debug="true"
debugl evel ="1i nes, vars, source"/>

</w conpi | e>

Setting the Classpath for Compiling Code

Most WebLogic services are based on Jakarta EE standards and are accessed through
standard Jakarta EE packages. The WebLogic and other Java classes required to compile
programs that use WebLogic services are packaged in the W s-api . j ar file in the | i b directory
of your WebLogic Server installation. In addition to W s-api . j ar, include the following in your
compiler's CLASSPATH:

e Thelib\tools.jar file in the JDK directory, or other standard Java classes required by
the Java Development Kit you use.

e The exanpl es. property file for Apache Ant (for examples environment). This file is
discussed in the WebLogic Server documentation on building examples using Ant located
at: sanmpl es\ server\ exanpl es\ src\ exanpl es\ exanpl es. ht n

* Classes for third-party Java tools or services your programs import.

e Other application classes referenced by the programs you are compiling.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 7

ORACLE’

Chapter 5
Building Modules and Applications Using wlappc

Library Element for wicompile and wlappc

The i brary element is an optional element used to define the name and optional version
information for a module that represents a shared Jakarta EE library required for building an
application, as described in Creating Shared Jakarta EE Libraries and Optional Packages. The
l'i brary element can be used with both wl conpi | e and w appc, described in Building Modules
and Applications Using wlappc.

The name and version information are specified as attributes to the library element, described
in Table 5-2.

Table 5-2 Library attributes
|

Attribute Description

file Required filename of a Jakarta EE library

nanme The optional name of a required Jakarta EE library.

speci ficationversion An optional specification version required for the
library.

i npl enent ati onversion An optional implementation version required for the
library.

The format choices for both speci fi cati onversi on and i npl enent ati onver si on are
described in Referencing Shared Jakarta EE Libraries in an Enterprise Application. The
following output shows a sample | i br ary reference:

<library file="c:\mylibs\lib.jar" name="ReqLib" specificationversion="920"
i npl enent ati onversion="1.1" />

Building Modules and Applications Using wlappc

To reduce deployment time, use the webl ogi c. appc Java class (or its equivalent Ant task
w appc) to pre-compile a deployable archive file, (WAR, JAR, or EAR). Precompiling with
webl ogi c. appc generates certain helper classes and performs validation checks to ensure
your application is compliant with the current Jakarta EE specifications.

The application-level checks include checks between the application-level deployment
descriptors and the individual modules, as well as validation checks across the modules.

Additionally, optional packages are supported as Jakarta EE shared libraries in appc, whereby
all manifests of an application and its modules are scanned to look for optional package
references.

w appc is the Ant task interface to the webl ogi c. appc compiler. The following section describe
the wl appc options and usage. Both webl ogi c. appc and the wl appc Ant task compile modules
in the order in which they appear in the appl i cati on. xni deployment descriptor file that
describes your enterprise application.

wlappc Ant Task Attributes

Table 5-3 describes Ant task options specific to wl appc. These options are similar to the
webl ogi c. appc command-line options, but with a few differences.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE’

@® Note

Chapter 5
Building Modules and Applications Using wlappc

See weblogic.appc Reference for a list of webl ogi c. appc options.

See also Library Element for wicompile and wlappc.

Table 5-3 wlappc Ant Task Attributes

Option Description
print Prints the standard usage message.
version Prints appc version information.

output <file>

Specifies an alternate output archive or directory. If not set,
the output is placed in the source archive or directory.

forceCeneration

Forces generation of EJB and JSP classes. Without this flag,
the classes may not be regenerated (if determined to be
unnecessary).

| i neNunbers

Adds line numbers to generated class files to aid in
debugging.

witelnferredDescriptors

Specifies that the application or module contains deployment
descriptors with annotation information.

basi cCl i entJar

Does not include deployment descriptors in client JARs
generated for EJBs.

i dl Generates IDL for EJB remote interfaces.
idl Qverwite Always overwrites existing IDL files.
i dl Ver bose Displays verbose information for IDL generation.

i dl NoVal ueTypes

Does not generate valuetypes and the methods/attributes
that contain them.

i dl NoAbstract | nterfaces

Does not generate abstract interfaces and methods/attributes
that contain them.

i dl Factories Generates factory methods for valuetypes.

i dl Vi si br oker Generates IDL somewhat compatible with Visibroker 4.5 C+
+,

i dl Orbi x Generates IDL somewhat compatible with Orbix 2000 2.0 C+

+.

idlDirectory <dir>

Specifies the directory where IDL files will be created
(default: target directory or JAR)

i dl Met hodSi gnatures <>

Specifies the method signatures used to trigger IDL code
generation.

iiop

Generates CORBA stubs for EJBs.

iiopDirectory <dir>

Specifies the directory where 1IOP stub files will be written
(default: target directory or JAR)

keepgener at ed

Keeps the generated . j ava files.

[ibrarydir

Specifies a directory of shared Jakarta EE libraries to add to
the classpath. See Creating Shared Jakarta EE Libraries and
Optional Packages.

conpiler <java.jdt>

Selects the Java compiler to use. Defaults to JDT.

debug

Compiles debugging information into a class file.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE Chapter 5
Building Modules and Applications Using wlappc

Table 5-3 (Cont.) wlappc Ant Task Attributes

Option Description

optinize Compiles with optimization on.

nowar n Compiles without warnings.

ver bose Compiles with verbose output.

deprecation Warns about deprecated callls.

nor m Passes flags through to Symantec's s;j.

runtineflags Passes flags through to Java runtime

cl asspath <pat h> Selects the classpath to use during compilation.
clientJarQutputDir <dir> Specifies a directory to place generated client jar files. If not

set, generated jar files are placed into the same directory
location where the JVM is running.

advanced Prints advanced usage options.

wlappc Ant Task Syntax

The basic syntax for using the Wl appc Ant task determines the destination source directory
location. This directory contains the files to be compiled by W appc.

<wl appc source="${dest.dir}" />

The following is an example of a W appc Ant task command that invokes two options (i dl and
idl OrverWite)from Table 5-3.

<w appc source="${dest.dir}"idl ="true" id OrverWite="true" />

Syntax Differences between appc and wlappc

There are some syntax differences between appc and W appc. For appc, the presence of a flag
in the command is a Boolean. For W appc, the presence of a flag in the command means that
the argument is required.

To illustrate, the following are examples of the same command, the first being an appc
command and the second being a wl appc command:

java webl ogi c. appc -idl foo.ear
<wl appc source="${dest.dir} idl ="true"/>

weblogic.appc Reference

The following sections describe how to use the command-line version of the appc compiler.
The webl ogi c. appc command-line compiler reports any warnings or errors encountered in the
descriptors and compiles all of the relevant modules into an EAR file, which can be deployed to
WebLogic Server.

weblogic.appc Syntax

Use the following syntax to run appc:

pronpt >j ava webl ogi c. appc [options] <ear, jar, or war file or directory>

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 7

ORACLE’

weblogic.appc Options

Chapter 5
Building Modules and Applications Using wlappc

The following are the available appc options:

Table 5-4 weblogic.appc Options

Option Description
-print Prints the standard usage message.
-version Prints appc version information.

-output <file>

Specifies an alternate output archive or directory. If not set, the
output is placed in the source archive or directory.

-forceGeneration

Forces generation of EJB and JSP classes. Without this flag, the
classes may not be regenerated (if determined to be unnecessary).

-library

<file[[@ame=<string>]
[@i bspecver=<ver si on>]
[@i bi npl ver =<ver si on|
string>]]>

A comma-separated list of shared Java EE libraries. Optional name
and version string information must be specified in the format
described in Referencing Shared Java EE Libraries in an Enterprise

Application.

-writelnferredDescriptors

Specifies that the application or module contains deployment
descriptors with annotation information.

-l'i neNunber s

Adds line numbers to generated class files to aid in debugging.

-basi cCientJar

Does not include deployment descriptors in client JARs generated
for EJBs.

-idl Generates IDL for EJB remote interfaces.
-idl Qverwite Always overwrites existing IDL files.
-idl Verbose Displays verbose information for IDL generation.

-i dl NoVal ueTypes

Does not generate valuetypes and the methods/attributes that
contain them.

-idl NoAbstract|nterfaces

Does not generate abstract interfaces and methods/attributes that
contain them.

-idl Factories Generates factory methods for valuetypes.
-idl Visibroker Generates IDL somewhat compatible with Visibroker 4.5 C++.
-idl O bix Generates IDL somewhat compatible with Orbix 2000 2.0 C++.

-idlDirectory <dir>

Specifies the directory where IDL files will be created (default: target
directory or JAR)

-idl Met hodSi gnatures <>

Specifies the method signatures used to trigger IDL code
generation.

-iiop

Generates CORBA stubs for EJBs.

-iiopDirectory <dir>

Specifies the directory where IIOP stub files will be written (default:
target directory or JAR)

- keepgener at ed

Keeps the generated . j ava files.

-conpi |l er <javac>

Selects the Java compiler to use.

-g Compiles debugging information into a class file.
-0 Compiles with optimization on.
-nowarn Compiles without warnings.

Developing Applications for Oracle WebLogic Server
G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 7

ORACLE Chapter 5
Building Modules and Applications Using wlappc

Table 5-4 (Cont.) weblogic.appc Options
]

Option Description

-verbose Compiles with verbose output.

- deprecation Warns about deprecated calls.

- nor ni Passes flags through to Symantec's sj.
-J<option> Passes flags through to Java runtime.

-cl asspath <pat h> Selects the classpath to use during compilation.

-clientJarQutputDir <dir> Specifies a directory to place generated client jar files. If not set,
generated jar files are placed into the same directory location where
the JVM is running.

-advanced Prints advanced usage options.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 7

Deploying and Packaging from a Split
Development Directory

To deploy and package WebLogic Server Jakarta EE applications in WebLogic split
development directory environment use w depl oy and W package tasks.
This chapter includes the following sections:

Deploying Applications Using wideploy

The w depl oy task provides an easy way to deploy directly from the split development
directory. W conmpi | e provides most of the same arguments as the webl ogi c. Depl oyer
directory.

To deploy from a split development directory, you simply identify the build directory location as
the deployable files, as in:

<wl depl oy user="${user}" password="${password}"
action="depl oy" source="${dest.dir}"
name="hel | oWor | dEar" />

The above task is automatically created when you use webl ogi ¢. Bui | dXM.Gen to create the
bui | d. xnl file.

See wldeploy Ant Task Reference, for a complete command reference.

Packaging Applications Using wipackage

Use W package when you want to deliver your application to another group or individual for
evaluation, testing, performance profiling, or production deployment.

The w package Ant task uses the contents of both the source and build directories to create
either a deployable archive file (. EAR file), or an exploded archive directory representing the
enterprise application (exploded . EAR directory).

Archive Versus Exploded Archive Directory

For production purposes, it is convenient to deploy enterprise applications in exploded
(unarchived) directory format. This applies also to standalone Web applications, EJBs, and
connectors packaged as part of an enterprise application. Using this format allows you to
update files directly in the exploded directory rather than having to unarchive, edit, and
rearchive the whole application. Using exploded archive directories also has other benefits, as
described in Deployment Archive Files Versus Exploded Archive Directories in Deploying
Applications to Oracle WebLogic Server.

You can also package applications in a single archived file, which is convenient for packaging
modules and applications for distribution. Archive files are easier to copy, they use up fewer file
handles than an exploded directory, and they can save disk space with file compression.

The Java classloader can search for Java class files (and other file types) in a JAR file the
same way that it searches a directory in its classpath. Because the classloader can search a

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 2

ORACLE

Chapter 6
Packaging Applications Using wipackage

directory or a JAR file, you can deploy Jakarta EE modules on WebLogic Server in either a

JAR (archived) file or an exploded (unarchived) directory.

wlpackage Ant Task Example

In a production environment, use the wl package Ant task to package your split development
directory application as a traditional EAR file that can be deployed to WebLogic Server.
Continuing with the MedRec example, you would package your application as follows:

<w package tofile="\physicianEAR physici anEAR ear"

srcdi r="\ physi ci anEAR"
dest di r="\bui | d\ physi ci anEAR"/ >

<w package todir="\physi ci anEAR\ expl odedphysi ci anEar"

srcdir="\'src\ physi ci anEAR"
destdi r="\bui | d\ physi ci anEAR" />

wlpackage Ant Task Attribute Reference

The following table describes the attributes of the wl package Ant task.

Table 6-1 Attributes of the wipackage Ant Task
|

Attribute Description Data Type Required?

tofile Name of the EAR archive file into which the String You must specify one of the following
w package Ant task packages the split development two attributes: tof i l e ort odir.
directory application.

todir Name of an exploded directory into which the String You must specify one of the following
w package Ant task packages the split development two attributes: tof il e ortodir.
directory application.

srcdir Specifies the source directory of your split String Yes.
development directory application.
The source directory contains all editable files for your
project—Java source files, editable descriptor files,
JSPs, static content, and so forth.

destdir Specifies the build directory of your split development String Yes.

directory application.

It is assumed that you have already executed the

w conpi | e Ant task against the source directory to
generate the needed components into the build
directory; these components include compiled Java
classes and generated deployment descriptors.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 2

Developing Applications for Production
Redeployment

You can program and maintain applications with WebLogic Server using the production
redeployment strategy.
This chapter includes the following sections:

What is Production Redeployment?

Production redeployment enables an administrator to redeploy a new version of an application
in a production environment without stopping the deployed application or otherwise interrupting
the application's availability to clients.

Production redeployment works by deploying a new version of an updated application
alongside an older version of the same application. WebLogic Server automatically manages
client connections so that only new client requests are directed to the new version. Clients
already connected to the application during the redeployment continue to use the older, retiring
version of the application until they complete their work.

See Using Production Redeployment to Upgrade Applications for more information.

Supported and Unsupported Application Types

Production redeployment only supports HTTP clients and RMI clients. Your development and
design team must ensure that applications using production redeployment are not accessed by
an unsupported client.

WebLogic Server does not detect when unsupported clients access the application, and does
not preserve unsupported client connections during production redeployment.

Enterprise applications can contain any of the supported Jakarta EE module types. Enterprise
applications can also include application-scoped JMS and JDBC modules.

If an enterprise application includes a JCA resource adapter module, the module:

* Must be JCA 1.5 compliant
e Must implement the webl ogi c. connect or . ext ensi ons. Suspendabl e interface

* Must be used in an application-scoped manner, having enabl e- access- out si de- app set to
fal se (the default value).

Before resource adapters in a newer version of the EAR are deployed, resource adapters in
the older application version receive a callback. WebLogic Server then deploys the newer
application version and retires the entire older version of the EAR.

For a complete list of production redeployment requirements for resource adapters, see
Production Redeployment in Developing Resource Adapters for Oracle WebLogic Server.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE Chapter 7
Programming Requirements and Conventions

Additional Application Support

Additional production redeployment support is provided for enterprise applications that are
accessed by inbound JMS messages from a global JMS destination, and that use one or more
message-driven beans as consumers. For this type of application, WebLogic Server suspends
message-driven beans in the older, retiring application version before deploying message-
driven beans in the newer version. Production redeployment is not supported with JIMS
consumers that use the JIMS API for global JMS destinations. If the message-driven beans
need to receive all messages published from topics, including messages published while bean
are suspended, use durable subscribers.

Programming Requirements and Conventions

WebLogic Server performs production redeployment by deploying two instances of an
application simultaneously. You must observe certain programming conventions to ensure that
multiple instances of the application can co-exist in a WebLogic Server domain.

The following sections describe each programming convention required for using production
redeployment:

Applications Should Be Self-Contained

As a best practice, applications that use the in-place redeployment strategy should be self-
contained in their use of resources. This means you should generally use application-scoped
JMS and JDBC resources, rather than global resources, whenever possible for versioned
applications.

If an application must use a global resource, you must ensure that the application supports
safe, concurrent access by multiple instances of the application. This same restriction also
applies if the application uses external (separately-deployed) applications, or uses an external
property file. WebLogic Server does not prevent the use of global resources with versioned
applications, but you must ensure that resources are accessed in a safe manner.

Looking up a global JNDI resource from within a versioned application results in a warning
message. To disable this check, set the INDI environment property

webl ogi c. j ndi . W.Cont ext . ALLOW GLOBAL_RESOURCE_LOOKUP to t r ue when performing the
JNDI lookup.

Similarly, looking up an external application results in a warning unless you set the JNDI
environment property, webl ogi c. j ndi . W.Cont ext . ALLOW EXTERNAL_APP_LOOKUP, to t r ue.

Versioned Applications Access the Current Version JNDI Tree by Default

WebLogic Server binds application-scoped resources, such as JMS and JDBC application
modules, into a local JNDI tree available to the application. As with non-versioned applications,
versioned applications can look up application-scoped resources directly from this local tree.
Application-scoped JMS modules can be accessed via any supported JMS interfaces, such as
the JMS API or a message-driven bean.

Application modules that are bound to the global JNDI tree should be accessed only from
within the same application version. WebLogic Server performs version-aware JNDI lookups
and bindings for global resources deployed in a versioned application. By default, an internal
JNDI lookup of a global resource returns bindings for the same version of the application.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE

Chapter 7
Programming Requirements and Conventions

If the current version of the application cannot be found, you can use the JNDI environment
property webl ogi c. j ndi . W.Cont ext . RELAX_VERSI ON_LOOKUP to return bindings from the
currently active version of the application, rather than the same version.

@® Note

Set webl ogi c. j ndi . W.Cont ext . RELAX_VERSI ON_LOCKUP to t r ue only if you are certain
that the newer and older version of the resource that you are looking up are
compatible with one another.

Security Providers Must Be Compatible

Any security provider used in the application must support the WebLogic Server application
versioning SSPI. The default WebLogic Server security providers for authorization, role
mapping, and credential mapping support the application versioning SSPI.

Applications Must Specify a Version |dentifier

In order to use production redeployment, both the current, deployed version of the application
and the updated version of the application must specify unique version identifiers. See
Assigning an Application Version.

Applications Can Access Name and Identifier

Versioned applications can programmatically obtain both an application name, which remains
constant across different versions, and an application identifier, which changes to provide a
unigue label for different versions of the application. Use the application name for basic display
or error messages that refer to the application's name irrespective of the deployed version. Use
the application ID when the application must provide unique identifier for the deployed version
of the application. See Accessing Version Information for more information about the MBean
attributes that provide the name and identifier.

Client Applications Use Same Version when Possible

As described in What is Production Redeployment?, WebLogic Server attempts to route a
client application's requests to the same version of the application until all of the client's in-
progress work has completed. However, if an application version is retired using a timeout
period, or is undeployed, the client's request will be routed to the active version of the
application. In other words, a client's association with a given version of an application is
maintained only on a "best-effort basis."

This behavior can be problematic for client applications that recursively access other
applications when processing requests. WebLogic Server attempts to dispatch requests to the
same versions of the recursively-accessed applications, but cannot guarantee that an
intermediate application version is not undeployed manually or after a timeout period. If you
have a group of related applications with strict version requirements, Oracle recommends
packaging all of the applications together to ensure version consistency during production
redeployment.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE Chapter 7
Assigning an Application Version

Assigning an Application Version

Oracle recommends that you specify the version identifier in the MANI FEST. MF of the
application, and automatically increment the version each time a new application is released
for deployment. This ensures that production redeployment is always performed when the
administrator redeploys the application.

For testing purposes, a deployer can also assign a version identifier to an application during
deployment and redeployment. See Assigning a Version Identifier During Deployment and
Redeployment in Deploying Applications to Oracle WebLogic Server.

Application Version Conventions

WebLogic Server obtains the application version from the value of the Wbl ogi c- Appl i cati on-
Ver si on property in the MANI FEST. M- file. The version string can be a maximum of 215
characters long, and must consist of valid characters as identified in Table 7-1.

Table 7-1 Valid and Invalid Characters

]
Valid ASCII Characters Invalid Version Constructs

a-z
A-Z
0-9

period ("."), underscore ("_"), or hyphen
("-") in combination with other
characters

For example, the following manifest file content describes an application with version
"v920. bet a":

Mani fest-Version: 1.0
Created-By: 1.4.1 05-b01 (Sun M crosystens Inc.)
Wbl ogi c- Appl i cati on- Versi on: v920. beta

Upgrading Applications to Use Production Redeployment

You can upgrade applications for deployment to WebLogic Server to use production
redeployment.

If you are upgrading applications for deployment to WebLogic Server 9.2 or later, note that the
Name attribute retrieved from AppDepl oynent MBean now returns a unique application identifier
consisting of both the deployed application name and the application version string.
Applications that require only the deployed application name must use the new

Appl i cati onNane attribute instead of the Name attribute. Applications that require a unique
identifier can use either the Name or Appl i cationl denti fi er attribute, as described in
Accessing Version Information.

Accessing Version Information

Your application code can use new MBean attributes to retrieve version information for display,
logging, or other uses.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE

Chapter 7
Accessing Version Information

The following table describes the read-only attributes provided by Appl i cati onMBean.

Table 7-2 Read-Only Version Attributes in ApplicationMBean

Attribute Name

Description

Appl i cati onName

A String that represents the deployment name of the application

Versionldentifier

A String that uniquely identifies the current application version across all versions of the
same application

Applicationldentifier

A String that uniquely identifies the current application version across all deployed
applications and versions

Appl i cati onRunt i meMBean also provides version information in the new read-only attributes
described in the following table.

Table 7-3 Read-Only Version Attributes in ApplicationRuntimeMBean

Attribute Name

Description

Appl i cati onName

A String that represents the deployment name of the application

Appl i cationVersion

A string that represents the version of the application.

ActiveVersionState

An integer that indicates the current state of the active application version. Valid states
for an active version are:

* ACTIVATED—indicates that one or more modules of the application are active and
available for processing new client requests.

PREPARED—indicates that WebLogic Server has prepared one or more modules
of the application, but that it is not yet active.

UNPREPARED—indicates that no modules of the application are prepared or
active.

See the Java API Reference for Oracle WebLogic Server for more information.

Note that the currently active version does not always correspond to the last-deployed

version, because the administrator can reverse the production redeployment process.

See Rolling Back the Production Redeployment Process in Deploying Applications to
Oracle WebLogic Server.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 5

Using Jakarta EE Annotations and
Dependency Injection

Learn about Jakarta EE MetaData annotations and dependency injection (DI) in WebLogic
Server.
This chapter includes the following sections:

Annotation Processing

Annotations simplify the application development process by allowing developers to specify
within the Java class itself how the application component behaves in the container, requests
for dependency injection, and so on. Annotations are an alternative to deployment descriptors
that were required by older versions of enterprise applications (Java EE 1.4 and earlier).

With Jakarta EE annotations, the standard appl i cati on. xm and web. xm deployment
descriptors are optional. The Jakarta EE programming model uses the JDK annotations
feature for Web containers, such as EJBs, servlets, Web applications, and JSPs (see https: //
[avaee. gi t hub.io/javaee-spec/javadocs/).

Annotation Parsing

The application components can use annotations to define their needs. Annotations reduce or
eliminate the need to deal with deployment descriptors. Annotations simplify the development
of application components. The deployment descriptor can still override values defined in the
annotation. One usage of annotations is to define fields or methods that need Dependency
Injection (DI). Annotations are defined on the POJO (plain old Java object) component classes
like the EJB or the servlet.

An annotation on a field or a method can declare that fields/methods need injection, as
described in Dependency Injection of Resources. Annotations may also be applied to the class
itself. The class-level annotations declare an entry in the application component's environment
but do not cause the resource to be injected. Instead, the application component is expected to
use JNDI or component context lookup method to lookup the entry. When the annotation is
applied to the class, the JNDI name and the environment entry type must be specified
explicitly.

Deployment View of Annotation Configuration

The Jakarta EE Deployment API provides a way for developers to examine deployment
descriptors. For example, consider an EJB Module that has no deployment descriptors.
Assuming that it has some classes that have been declared as EJBs using annotations, a user
of Session Helper will still be able to deal with the module as if it had the deployment
descriptor. So the developer can modify the configuration information and it will be written out
in a deployment plan. During deployment, such a plan will be honored and will override
information from annotations.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 8

https://javaee.github.io/javaee-spec/javadocs/
https://javaee.github.io/javaee-spec/javadocs/

ORACLE Chapter 8
Dependency Injection of Resources

Compiling Annotated Classes

The WebLogic Server utility appc (and its Ant equivalent wl appc) and Apprer ge support
metadata annotations. The appmer ge and appc utilities take an application or module as inputs
and process them to produce an output application or module respectively. When used with -
writelnferredDescriptors flag, the output application/module will contain deployment
descriptors with annotation information. The descriptors will also have the net adat a- conpl et e
attribute set to t r ue, as no annotation processing needs to be done if the output application or
module is deployed directly. However, setting of nmet adat a- conpl et e attribute to t r ue will also
restrict appner ge and appc from processing annotations in case these tools are invoked on a
previously processed application or module.

The original descriptors must be preserved in such cases to with an . ori g suffix. If a developer
wants to reapply annotation processing on the output application, they must restore the
descriptors and use the -wri t el nf erredDescri pt or s flag again. If appner ge or appc is used
with -wri t el nferredDescri ptors on an enterprise application for which no standard
deployment descriptor exists, the descriptor will be generated and written out based on the
inference rules in the Jakarta EE specification.

For more information on using appc, see weblogic.appc Reference. For more information on
using appner ge, see Using weblogic.appmerge to Merge Libraries.

Dynamic Annotation Updates

Deployed modules can be updated using updat e deployment operation. If such an update has
changes to deployment descriptor or updated classes, the container must consider annotation
information again while processing the new deployment descriptor.

Containers use the descriptor framework's two-phase update mechanism to check the
differences between the current and proposed descriptors. This mechanism also informs the
containers about any changes in the non-dynamic properties. The containers then deal with
such non-dynamic changes in their own specific ways. The container must perform annotation
processing on the proposed descriptor to make sure that it is finding the differences against the
right reference.

Similarly, some of the classes from a module could be updated during an update operation. If
the container knows that these classes could affect configuration information through
annotations, it makes sure that nothing has changed.

Dependency Injection of Resources

Dependency injection (DI) allows application components to declare dependencies on external
resources and configuration parameters via annotations. The container reads these
annotations and injects resources or environment entries into the application components.

Dependency injection is simply an easier-to-program alternative to using the j avax interfaces
or JNDI APIs to look up resources.

A field or a method of an application component can be annotated with the @esour ce
annotation. Note that the container will unbox the environment entry as required to match it to
a primitive type used for the injection field or method. Example 8-1 illustrates how an
application component uses the @esour ce annotation to declare environment entries.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 8

ORACLE

Application

Chapter 8
Standard JDK Annotations

Example 8-1 Dependency Injection of Environment Entries

Il fields

/1 The maxi mum nunmber of tax exenptions, configured by the Depl oyer.
@Resour ce int maxExenptions;
/1 The m ni mum number of tax exenptions, configured by the Depl oyer.
@Resource int mnExenptions;

In the above code the @esour ce annotation has not specified a name; therefore, the container
would look for an env- ent ry name called <cl ass- name>/ naxExenpt i ons and inject the value of
that entry into the maxExenpt i ons variable. The field or method may have any access qualifier
(public, private, etc.). For all classes except application client main classes, the fields or
methods must not be static. Because application clients use the same life cycle as Jakarta EE
applications, no instance of the application client main class is created by the application client
container. Instead, the static main method is invoked. To support injection for the application
client main class, the fields or methods annotated for injection must be static.

Life Cycle Annotation Methods

An application component may need to perform initialization of its own after all resources have
been injected. To support this case, one method of the class can be annotated with the

@ost Const ruct annotation. This method will be called after all injections have occurred and
before the class is put into service. This method will be called even if the class doesn't request
any resources to be injected. Similarly, for classes whose life cycle is managed by the
container, the @r eDest r oy annotation can be applied to one method that will be called when
the class is taken out of service and will no longer be used by the container. Each class in a
class hierarchy may have @ost Construct and @r eDest r oy methods.

The order in which the methods are called matches the order of the class hierarchy, with
methods on a superclass being called before methods on a subclass. From the Jakarta EE
side only the application client container is involved in invoking these life cycle methods for
Java EE clients. The life cycle methods for Java EE clients must be static. The Java EE client
just supports the @ost Construct callback.

Standard JDK Annotations

Examine a listing of reference information related to standard JDK annotations.

For information about EJB-specific annotations for WebLogic Server EJBs, see Developing
Enterprise JavaBeans for Oracle WebLogic Server.

For information about Web component-specific annotations WebLogic Server applications, see
WebLogic Annotation for Web Components in Developing Web Applications, Servlets, and
JSPs for Oracle WebLogic Server.

javax.annotation.PostConstruct

Target: Method

Specifies the life cycle callback method that the application component should execute before
the first business method invocation and after dependency injection is done to perform any
initialization. This method will be called after all injections have occurred and before the class

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 8

ORACLE

Chapter 8
Standard JDK Annotations

is put into service. This method will be called even if the class doesn't request any resources to
be injected.

You must specify a @ost Const ruct method in any component that includes dependency
injection.

Only one method in the component can be annotated with this annotation.
The method annotated with @ost Const r uct must follow these requirements:

e The method must not have any parameters, except in the case of EJB interceptors, in
which case it takes an javax.interceptor.InvocationContext object as defined by the EJB
specification.

e The return type of the method must be voi d.

e The method must not throw a checked exception.

e The method may be publ i c, prot ect ed, package private orprivate.
« The method must not be st ati ¢ except for the application client.

e The method may be final ornon-final, exceptin the case of EIJBs where it must be
non-final .

e If the method throws an unchecked exception, the class must not be put into service. In the
case of EJBs, the method annotated with PostConstruct can handle exceptions and
cleanup before the bean instance is discarded.

This annotation does not have any attributes.

javax.annotation.PreDestroy

Target: Method

Specifies the life cycle callback method that signals that the application component is about to
be destroyed by the container. You typically apply this annotation to methods that release
resources that the class has been holding.

Only one method in the bean class can be annotated with this annotation.
The method annotated with @r eDest r oy must follow these requirements:

e The method must not have any parameters, except in the case of EJB interceptors, in
which case it takes an javax.interceptor.InvocationContext object as defined by the EJB
specification.

e The return type of the method must be voi d.

e The method must not throw a checked exception.

e The method may be publ i c, prot ect ed, package private orprivate.
e The method must not be st ati ¢ except for the application client.

* The method may be final ornon-final, exceptin the case of EIJBs where it must be
non-final .

e If the method throws an unchecked exception, the class must not be put into service. In the
case of EJBs, the method annotated with PreDest r oy can handle exceptions and cleanup
before the bean instance is discarded.

This annotation does not have any attributes.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 8

ORACLE Chapter 8
Standard JDK Annotations

javax.annotation.Resource

Target: Class, Method, Field

Specifies a dependence on an external resource, such as a JDBC data source or a JMS
destination or connection factory.

If you specify the annotation on a field or method, the application component injects an
instance of the requested resource into the bean when the bean is initialized. If you apply the
annotation to a class, the annotation declares a resource that the component will look up at
runtime.

Attributes

Table 8-1 Attributes of the javax.annotation.Resource Annotation

- ___|]
Name Description Data Type Required?

name Specifies the INDI name of the resource. String No

If you apply the @Resour ce annotation to a field, the default value of the
name attribute is the field name, qualified by the class name. If you apply
it to a method, the default value is the component property name
corresponding to the method, qualified by the class name. If you apply
the annotation to class, there is no default value and thus you are
required to specify the attribute.

type Specifies the Java data type of the resource. d ass No

If you apply the @Resour ce annotation to a field, the default value of the
t ype attribute is the type of the field. If you apply it to a method, the
default is the type of the component property. If you apply it to a class,
there is no default value and thus you are required to specify this

attribute.
aut henticat Specifies the authentication type to use for the resource. Aut henticati No
i onType Valid values for this attribute are: onType

e AuthenticationType. CONTAI NER
e AuthenticationType. APPLI CATI ON
Default value is Aut hent i cat i onType. CONTAI NER

shareabl e Indicates whether a resource can be shared between this component Bool ean No
and other components.

Valid values for this attribute are t r ue and f al se. Default value ist r ue.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 8

ORACLE Chapter 8
Standard Security-Related JDK Annotations

Table 8-1 (Cont.) Attributes of the javax.annotation.Resource Annotation

- ___|]
Name Description Data Type Required?

mappedName Specifies a WebLogic Server-specific name to which the component String No
reference should be mapped.

However, if you do not specify a JNDI nhame in the WebLogic
deployment descriptor file, then the value of nappedNane will always be
used as the JNDI name to look up. For example:

@Resour ce(mappedName = "http:// ww. bea. cont';)
URL url;

@Resour ce(mappedName="cust oner DB")

Dat aSour ce db;

@Resour ce(mappedName = "j ms/ Connect i onFact ory")
Connecti onFact ory connectionFactory;
@resour ce(mappedNanme = "j s/ Queue")

Queue queue;

In other words, MappedNane is honored as JNDI name only when there
is no JNDI name specified elsewhere, typically in the WebLogic
deployment descriptor file.

description Specifies a description of the resource. String No

javax.annotation.Resources

Target: Class

Specifies an array of @Resour ce annotations. Since repeated annotations are not allowed, the
Resources annotation acts as a container for multiple resource declarations.

Attributes

Table 8-2 Attributes of the javax.annotation.Resources Annotation
|

Name Description Data Type Required?
val ue Specifies the array of @Resour ce Resour ce[] Yes
annotations.

Standard Security-Related JDK Annotations

Examine a listing of reference information related to standard security-related JDK annotations.

javax.annotation.security.DeclareRoles

Target: Class
Defines the security roles that will be used in the Jakarta EE container.

You typically use this annotation to define roles that can be tested from within the methods of
the annotated class, such as using the i sUser | nRol e method. You can also use the annotation
to explicitly declare roles that are implicitly declared if you use the @ol esAl | owed annotation
on the class or a method of the class.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 8

ORACLE

Chapter 8
Standard Security-Related JDK Annotations

You create security roles in WebLogic Server using the WebLogic Remote Console. For
information about security, see Security Roles in the Oracle WebLogic Remote Console Online
Help.

Attributes

Table 8-3 Attributes of the javax.annotation.security.DeclareRoles Annotation

__|]
Name Description Data Type Required?

val ue Specifies an array of security roles that String[] Yes
will be used in the Jakarta EE container.

javax.annotation.security.DenyAll

Target: Method

Specifies that no security role is allowed to access the annotated method, or in other words,
the method is excluded from execution in the Jakarta EE container.

This annotation does not have any attributes.

javax.annotation.security.PermitAll

Target: Method

Specifies that all security roles currently defined for WebLogic Server are allowed to access the
annotated method.

This annotation does not have any attributes.

javax.annotation.security.RolesAllowed

Target: Class, Method

Specifies the list of security roles that are allowed to access methods in the Jakarta EE
container.

If you specify it at the class-level, then it applies to all methods in the application component. If
you specify it at the method-level, then it only applies to that method. If you specify the
annotation at both the class- and method-level, the method value overrides the class value.

You create security roles in WebLogic Server using the WebLogic Remote Console. For
information about security, see Security Roles in the Oracle WebLogic Remote Console Online
Help.

Attributes

Table 8-4 Attributes of the javax.annotation.security.RolesAllowed Annotation

. __|
Name Description Data Type Required?

val ue List of security roles that are allowed to String[] Yes
access methods of the Jakarta EE container.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 8

ORACLE Chapter 8
Standard Security-Related JDK Annotations

javax.annotation.security.RunAs

Target: Class
Specifies the security role which actually executes the Jakarta EE container.
The security role must exist in the WebLogic Server security realm and map to a user or group.

Attributes

Table 8-5 Attributes of the javax.annotation.security.RunAs Annotation

___|
Name Description Data Type Required?

val ue Specifies the security role that the String Yes
Jakarta EE container should run as.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 8

Using Contexts and Dependency Injection for
the Jakarta EE Platform

WebLogic Server provides an implementation of the Contexts and Dependency Injection (CDI)
specification. The CDI specification defines a set of services for using injection to specify
dependencies in an application. CDI provides contextual life cycle management of beans, type-
safe injection points, a loosely coupled event framework, loosely coupled interceptors and
decorators, alternative implementations of beans, bean navigation through the Unified
Expression Language (EL), and a service provider interface (SPI) that enables CDI extensions
to support third-party frameworks or future Jakarta EE components.

This chapter includes the following sections:

About CDI for the Jakarta EE Platform

CDI for the Jakarta EE Platform specification was formerly called Web Beans. CDI injection
simplifies the use of managed beans with JSF technology in Web applications.

CDl is specified by Java Specification Request (JSR) 365: Contexts and Dependency Injection
for the Java 2.0. CDI uses the following related specifications:

« JSR 330: Dependency Injection for Java

» Jakarta EE 8 Managed Beans Specification, which is a part of Jakarta Platform Enterprise
Edition in https://jakarta.ee/specifications/platform/9/jakarta-platform-spec-9.pdf JSR 366:
Java Platform, Enterprise Edition 9 (Java EE 8) Specification

* Interceptors specification, which is a part of JSR 345: Enterprise JavaBeans 3.2

CDI provides the following features:

e Contexts. This feature enables you to bind the life cycle and interactions of stateful
components to well-defined but extensible life cycle contexts.

- Dependency injection. This feature enables you to inject components into an application
in a type-safe way and to choose at deployment time which implementation of a particular
interface to inject.

CDl is integrated with the major component technologies in Jakarta EE, namely:
e Servlets

e Jakarta Server Pages (JSP)

e Jakarta Server Faces (JSF)

e Jakarta Enterprise Beans (EJB)

e Jakarta EE Connector architecture (JCA)

* Web services

Such integration enables standard Jakarta EE objects, such as Servlets and EJB components,
to use CDI injection for dependencies. CDI injection simplifies, for example, the use of
managed beans with JSF technology in Web applications.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 34

https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=365
http://jcp.org/en/jsr/summary?id=330
https://jcp.org/en/jsr/detail?id=366
https://jcp.org/en/jsr/detail?id=366
http://jcp.org/en/jsr/detail?id=345

ORACLE

Chapter 9
Defining a Managed Bean

See Introduction to Contexts and Dependency Injection for the Java EE Platform in the Java
EE 8 Tutorial.

CDI 2.0 Examples

Oracle provides Jakarta EE 9 examples that demonstrate new features in CDI 2.0, such as:

« Asynchronous Events — Demonstrates how to produce async events and how singleton
EJBs can consume these events.

* Observer Ordering — Demonstrates how singleton EJBs can consume events according to
the priority.

* Interception Factory — Demonstrates how to produce a class instance with adding the
specified annotation dynamically by InterceptionFactory.

For more information, see the CDI 2.0 examples in the WebLogic Server distribution kit:

O acl e HOVE\ W server\ sanpl es\ server\ exanpl es\ src\ exanpl es\j avaee8\ cdi
where ORACLE_HOME represents the directory in which you installed WebLogic Server. See
Sample Applications and Code Examples in Understanding Oracle WebLogic Server.

CDI 1.1 Example

A Java EE 7 example that show how to use CDI is provided in the CDI sample application,
which is installed in

Oracl e_HOVE\ W server\sanmpl es\ server\ exanpl es\ src\ exanpl es\j avaee7\ cdi
where ORACLE_HOME represents the directory in which you installed WebLogic Server. See
Sample Applications and Code Examples in Understanding Oracle WebLogic Server.

Defining a Managed Bean

A managed bean is the basic component in a CDI application and defines the beans that CDI
can create and manage.

A bean is a source of the objects that CDI can create and manage. See About Beans in The
Java EE 8 Tutorial .

To define a managed bean, define a top-level plain old Java object (POJO) class that meets
either of the following conditions:

* The class is defined to be a managed bean by any other Jakarta EE specification.

* The class meets all of the conditions that are required by JSR 346 as listed in About CDI
Managed Beans in The Java EE 8 Tutorial .

@® Note

No special declaration, such as an annotation, is required to define a managed bean.
To make the managed beans of an application available for injection, you must
configure the application as explained in Configuring a CDI Application.

Injecting a Bean

To use the beans that you define, inject them into another bean that an application such as a
Jakarta Server Faces can use.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 34

https://javaee.github.io/tutorial/cdi-basic.html
https://javaee.github.io/tutorial/cdi-basic003.html#GJEBJ
https://javaee.github.io/tutorial/cdi-basic004.html#GJFZI
https://javaee.github.io/tutorial/cdi-basic004.html#GJFZI

ORACLE

Chapter 9
Defining the Scope of a Bean

See Injecting Beans in The Java EE 8 Tutorial .

CDI ensures type-safe injection of beans by selecting the bean class on the basis of the Java
type that is specified in the injection point, not the bean name. CDI also determines where to
inject a bean from the Java type in the injection point.

In this respect, CDI bean injection is different than the resource injection that was introduced in
the Java EE 5 specification, which selects the resource to inject from the string name of the
resource. For example, a data source that is injected with the javax.annotation.Resource
annotation is identified by its string name.

To inject a bean, obtain an instance of the bean by creating an injection point in the class that
is to use the injected bean. Create the injection point by annotating one of the following
program elements with the j avax. i nj ect. I nj ect annotation:

* Aninstance class field

e Aninitializer method parameter

* A bean constructor parameter

Example 9-1 shows how to use the @ nj ect annotation to inject a bean into another bean.

Example 9-1 Injecting a Bean into Another Bean

This example annotates an instance class field to inject an instance of the bean class G eeti ng
into the class Printer.

import jakarta.inject.lInject;

public class Printer {
@nject Geeting greeting;

}

Defining the Scope of a Bean

The scope of a bean defines the duration of a user's interaction with an application that uses
the bean. To enable a Web application to use a bean that injects another bean class, the bean
must be able to hold state over the duration of the user's interaction with the application.

To define the scope of a bean, annotate the class declaration of the bean with the scope. The
javax. enterprise. context package defines the following scopes:

* @Request Scoped

e (@essionScoped

e @pplicationScoped

e (@onversationScoped

* (@ependent

For information about these scopes, see Using Scopes in The Java EE 8 Tutorial .

If you do not define the scope of a bean, the scope of the bean is @ependent by default. The
@ependent scope specifies that the bean's life cycle is the life cycle of the object into which
the bean is injected.

The predefined scopes except @ependent are contextual scopes. CDI places beans of
contextual scope in the context whose life cycle is defined by the Jakarta EE specifications.
For example, a session context and its beans exist during the lifetime of an HTTP session.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 34

https://javaee.github.io/tutorial/cdi-basic007.html#GJBAN
https://javaee.github.io/javaee-spec/javadocs/javax/annotation/Resource.html
https://javaee.github.io/javaee-spec/javadocs/javax/inject/Inject.html
https://javaee.github.io/javaee-spec/javadocs/javax/enterprise/context/package-frame.html
https://javaee.github.io/tutorial/cdi-basic008.html#GJBBK

ORACLE’

Chapter 9
Overriding the Scope of a Bean at the Point of Injection

Injected references to the beans are contextually aware. The references always apply to the

bean that is associated with the context for the thread that is making the reference. The CDI

container ensures that the objects are created and injected at the correct time as determined
by the scope that is specified for these objects.

Example 9-2 shows how to define the scope of a bean.
Example 9-2 Defining the Scope of a Bean
This example defines the scope of the Account ant bean class to be @equest Scoped.

The Account ant class in this example is qualified by the @eanCount er qualifier. For more

information, see Using Qualifiers.

package com exanpl e. managers;

i mport jakarta.enterprise.context.Request Scoped,;
@Request Scoped

@eanCount er
public class Accountant inplenents Manager

{
=

Overriding the Scope of a Bean at the Point of Injection

Overriding the scope of a bean at the point of injection enables an application to request a new
instance of the bean with the default scope @ependent . The @ependent scope specifies that
the bean's life cycle is the life cycle of the object into which the bean is injected.

The CDI container provides no other life cycle management for the instance. For more
information about scopes, see Defining the Scope of a Bean.

@ Note

The effects of overriding the scope of a bean may be unpredictable and undesirable,
particularly if the overridden scope is @request or @essi on.

To override the scope of a bean at the point of injection, inject the bean by using the
javax. enterprise.inject.Newannotation instead of the @ nj ect annotation. For more
information about the @ nj ect annotation, see Injecting a Bean.

Using Qualifiers

Qualifiers enable you to provide more than one implementation of a particular bean type.

When you use qualifiers, you select between implementations at development time. See Using
Qualifiers in The Java EE 8 Tutorial .

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 34

https://javaee.github.io/javaee-spec/javadocs/javax/enterprise/inject/New.html
https://javaee.github.io/tutorial/cdi-basic006.html#GJBCK
https://javaee.github.io/tutorial/cdi-basic006.html#GJBCK

ORACLE Chapter 9
Using Qualifiers

@® Note

To select between alternative implementations at deployment time, use alternatives as
explained in Providing Alternative Implementations of a Bean Type.

Using qualifiers involves the tasks that are explained in the following sections:

Defining Qualifiers for Implementations of a Bean Type

A gqualifier is an application-defined annotation that enables you to identify an implementation
of a bean type. Define a qualifier for each implementation of a bean type that you are
providing.

Define qualifiers only if you are providing multiple implementations of a bean type and if you
are not using alternatives. If no qualifiers are defend for a bean type, CDI applies the
predefined qualifier @ef aul t when a bean of the type is injected.

@® Note

CDI does not require a qualifier to be unique to a particular bean. You can define a
qualifier to use for more than one bean type.

To define a qualifier:

1. Define a Java annotation type to represent the qualifier.

2. Annotate the declaration of the annotation type with the j avax. i nj ect. Qualifier
annotation.

3. Specify that the qualifier is to be retained by the virtual machine at run time.

Use the | ava. | ang. annot at i on. Ret ent i on(RUNTI ME) meta-annotation for this purpose.

4. Specify that the qualifier may be applied to the program elements METHOD, FI ELD,
PARAMETER, and TYPE.

Use the j ava. | ang. annot ati on. Target ({ METHOD, FIELD, PARAMETER, TYPE}) meta-
annotation for this purpose.

The following examples show how to define qualifiers @eanCount er and @eopl eManager for
different implementations of the same bean type.

Example 9-3 Defining the @BeanCounter Qualifier
This example defines the @eanCount er qualifier.

package com exanpl e. managers;

import static java.lang.annotation. El ement Type. FI ELD;
import static java.lang.annotation. El ement Type. METHOD;
import static java.lang.annotation. El ement Type. PARAMETER;
import static java.lang.annotation. El ement Type. TYPE;

import static java.lang.annotation. RetentionPolicy. RUNTI MVE;

i mport java.lang.annotation. Retention;
inport java.lang.annotation. Target;

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 34

https://javaee.github.io/javaee-spec/javadocs/javax/inject/Qualifier.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/annotation/Retention.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/annotation/Target.html

ORACLE

import jakarta.inject.Qualifier;

@ualifier
@Ret ent i on(RUNTI VE)

Chapter 9
Using Qualifiers

@ar get ({ METHOD, FIELD, PARAMETER, TYPE})
public @nterface BeanCounter {}

Example 9-4 Defining the @PeopleManager Qualifier

This example defines the @eopl eManager qualifier.

package com exanpl e. managers;

import static java.lang.
import static java.lang.
import static java.lang.
import static java.lang.
import static java.lang.

annot ati on
annot ati on
annot ati on
annot ati on
annot ati on

. El ement Type. FI ELD;

. El ement Type. METHOD,

. El ement Type. PARAMETER;

. El ement Type. TYPE;

. Retenti onPol i cy. RUNTI ME;

import java.lang.annotation. Retention;
i mport java.lang.annotation. Target;

import jakarta.inject.Qualifier;

@ualifier
@Ret ent i on(RUNTI VE)

@ar get ({ METHOD, FIELD, PARAMETER TYPE})
public @nterface Peopl eManager {}

Applying Qualifiers to a Bean

Applying qualifiers to a bean identifies the implementation of the bean type. You can apply any
number of qualifiers or no qualifiers to a bean. If you do not apply any qualifiers to a bean, CDI
implicitly applies the predefined qualifier @ef aul t to the bean.

@ Note

CDI does not require a qualifier to be unique to a particular bean. You can apply the
same qualifier to different types of beans in the set of beans that are available in the

application.

To apply qualifiers to a bean, annotate the class declaration of the bean with each qualifier to
apply. Any qualifier that you apply to a bean must be defined as explained in Defining
Qualifiers for Implementations of a Bean Type.

The following examples show how to apply the qualifiers @eanCount er and @eopl eManager to
different implementations of the Manager bean type.

Example 9-5 Applying the @BeanCounter Qualifier to a Bean

This example applies the @eanCount er qualifier to the Account ant class. The Account ant
class is an implementation of the Manager bean type. The @eanCount er qualifier is defined in

Example 9-3.

package com exanpl e. managers;

@eanCount er

Developing Applications for Oracle WebLogic Server
G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 34

ORACLE

Chapter 9
Using Qualifiers

public class Accountant inplenents Manager

{...}
Example 9-6 Applying the@ PeopleManager Qualifier to a Bean

This example applies the @eopl eManager qualifier to the Boss class. The Boss class is an
implementation of the Manager bean type. The @&eopl eManager qualifier is defined in

Example 9-4.
package com exanpl e. managers;
@eopl eManager

public class Boss inplenents Manager

{..}

Injecting a Qualified Bean

To inject a qualified bean, create an injection point and annotate the injection point with the
bean's qualifiers. The qualifiers at the injection point define the overall requirements of the
injection target. The CDI application must contain a CDI managed bean that matches the type
of the injection point and the qualifiers with which the injection point is annotated. Otherwise, a
deployment error occurs. For more information about how to create an injection point, see

Injecting a Bean.

If you do not annotate the injection point, the predefined qualifier @ef aul t is applied to the
injection point by default.

CDI resolves the injection point by first matching the bean type and then matching
implementations of that type with the qualifiers in the injection point.

Only one active bean class may match the bean type and qualifiers in the injection point.
Otherwise, an error occurs.

A bean class is active in one of the following situations:

e The bean class is an alternative that is enabled.
e The bean class is not an alternative and no alternatives for its bean type are enabled.

For information about alternatives, see Providing Alternative Implementations of a Bean Type.

Example 9-7 shows how to inject a qualified bean.
Example 9-7 Injecting a Qualified Bean

This example injects the @eanCount er implementation of the Manager bean type. The Manager
bean type is implemented by the following classes:

e Account ant, which is shown in Example 9-5
e Boss, which is shown in Example 9-6

In this example, the Account ant class is injected because the bean type and qualifier of this
class match the bean type and qualifier in the injection point.

package com exanpl e. managers;
inport jakarta.inject.lnject;

public class PennyPincher {
@nj ect @eanCounter Manager accountant;

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 34

ORACLE’

Chapter 9
Providing Alternative Implementations of a Bean Type

Providing Alternative Implementations of a Bean Type

The environments for the development, testing, and production deployment of an enterprise
application may be very different. Differences in configuration, resource availability, and
performance requirements may cause bean classes that are appropriate to one environment to
be unsuitable in another environment. By providing alternative implementations of a bean type,
you can modify an application at deployment time to meet such differing requirements.

Different deployment scenarios may also require different business logic in the same
application. For example, country-specific sales tax laws may require country-specific sales tax
business logic in an order-processing application.

CDI enables you to select from any number of alternative bean type implementations for
injection instead of a corresponding primary implementation. See Using Alternatives in CDI
Applications in The Java EE 8 Tutorial .

@® Note

To select between alternative implementations at development time, use qualifiers as

explained in Using Qualifiers.

Providing alternative implementations of a bean type involves the tasks that are explained in
the following sections:

Defining an Alternative Implementation of a Bean Type

To define an alternative implementation of a bean type:

1. Write a bean class of the same bean type as primary implementation of the bean type.

To ensure that any alternative can be injected into an application, you must ensure that all
alternatives and the primary implementation are all of the same bean type. For information
about how to inject a bean, see Injecting a Bean.

2. Annotate the class declaration of the implementation with the
javax.enterprise.inject.Alternative annotation.

® Note

To ensure that the primary implementation is selected by default, do not annotate
the class declaration of the primary implementation with @\ t er nati ve.

The following examples show the declaration of the primary implementation and an alternative
implementation of a bean type. The alternative implementation is a mock implementation that
is intended for use in testing.

Example 9-8 Declaring a Primary Implementation of a Bean Type
This example declares the primary implementation O der | npl of the bean type Or der .

package com exanpl e. or der processor;

public class Orderlnpl inplements Order {

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 34

https://javaee.github.io/tutorial/cdi-adv002.html#GJSDF
https://javaee.github.io/tutorial/cdi-adv002.html#GJSDF
https://javaee.github.io/javaee-spec/javadocs/javax/enterprise/inject/Alternative.html

ORACLE’

Chapter 9
Applying a Scope and Qualifiers to a Session Bean

-

Example 9-9 Declaring an Alternative Implementation of a Bean Type

This example declares the alternative implementation MockQr der | npl of the bean type O der.
The declaration of the primary implementation of this bean type is shown in Example 9-8.

package com exanpl e. or der processor;
import jakarta.enterprise.inject.Alternative;

@\ ternative
public class MckOderlnpl inmplements Oder {

}...

Selecting an Alternative Implementation of a Bean Type for an Application

By default, CDI selects the primary implementation of a bean type for injection into an
application. If you require an alternative implementation to be injected, you must select the
alternative explicitly.

To select an alternative implementation for an application:

1. Add acl ass element for the alternative to the al t ernati ves element in the beans. xni file.
2. Inthe cl ass element, provide the fully qualified class name of the alternative.

For more information about the beans. xnil file, see Configuring a CDI Application.

Example 9-16 shows a cl ass element in the beans. xm file for selecting an alternative
implementation of a bean type.

Example 9-10 Selecting an Alternative Implementation of a Bean Type

This example selects the alternative implementation
com exanpl e. or der processor. MockOr der | npl .

<alternatives>
<cl ass>com exanpl e. or der processor. MockOr der | npl </ cl ass>
</alternatives>

Applying a Scope and Qualifiers to a Session Bean

CDI enables you to apply a scope and qualifiers to a session bean.
A session bean is an EJB component that meets either of the following requirements:

e The class that implements the bean is annotated with one of the following annotations:

— Jakarta.ejb.Singl eton, which denotes a singleton session bean

— Jakarta.ejb. Stateful, which denotes a stateful session bean

— jakarta.ejb. Statel ess, which denotes a stateless session bean

e The bean is listed in the ej b-j ar. xm deployment-descriptor file.

For more information about session beans, see:

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 34

https://jakarta.ee/specifications/enterprise-beans/4.0/apidocs/jakarta/ejb/singleton
https://jakarta.ee/specifications/enterprise-beans/4.0/apidocs/jakarta/ejb/stateful
https://jakarta.ee/specifications/enterprise-beans/4.0/apidocs/jakarta/ejb/stateless

ORACLE’

Chapter 9
Using Producer Methods, Disposer Methods, and Producer Fields

Developing Enterprise JavaBeans Using Deployment Descriptors for Oracle WebLogic Server

See the following sections:

Applying a Scope to a Session Bean

The scopes that CDI allows you to apply to a session bean depend on the type of the session
bean as shown in Table 9-1.

Table 9-1 Allowed CDI Scopes for Session Beans

|
Session Bean Type Allowed Scopes

Singleton Either of the following scopes:
e Dependent
e Application

Stateful Any

Stateless Dependent

For more information about scopes in CDI, see Defining the Scope of a Bean.

When CDI injects a reference to a stateful session bean, CDI creates the bean, injects the
bean's fields, and manages the stateful session bean according to its scope. When the context
is destroyed, CDI calls the stateful session bean's remove method to remove the bean.

Applying Qualifiers to a Session Bean

CDI allows you to apply any qualifier to a session bean. CDI does not restrict the type of
qualifier that you can apply to a session bean. For more information about qualifiers in CDI,

see Using Qualifiers.

Using Producer Methods, Disposer Methods, and Producer

Fields

A producer method is a method that generates an object that can then be injected. A disposer
method enables an application to perform customized cleanup of an object that a producer
method returns. A producer field is a field of a bean that generates an object.

A producer field is a simpler alternative to a producer method.

See Jakarta Contexts and Dependency Injection: Advanced Topics in the Jakarta EE Tutorial.

Defining a Producer Method

A producer method enables an application to customize how CDI managed beans are created.
This customization involves overriding the process that CDI normally uses to resolve beans. A
producer method enables you to inject an object that is not an instance of a CDI bean class.

A producer method must be a method of a CDI bean class or session bean class. However, a
producer method may return objects that are not instances of CDI bean classes. In this
situation, the producer method must return an object that matches a bean type.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 34

https://jakarta.ee/learn/docs/jakartaee-tutorial/current/cdi/cdi-adv/cdi-adv.html

ORACLE

Chapter 9
Using Producer Methods, Disposer Methods, and Producer Fields

A producer method can have any number of parameters. If necessary, you can apply qualifiers
to these parameters. All parameters of a producer method are injection points. Therefore, the
parameters of a producer method do not require the @ nj ect annotation.

To define a producer method, annotate the declaration of the method with the
javax. enterprise.inject.Produces annotation.

If the producer method sometimes returns null, set the scope of the method to dependent.

@ Note

Calling a producer method directly in application code does not invoke CDI.

For an example of the definition of a producer method, see Example 9-11.

Defining a Disposer Method

If you require customized cleanup of an object that a producer method returns, define a
disposer method in the class that declares the producer method.

To define a disposer method, annotate the disposed parameter in the declaration of the
method with the [avax. ent er pri se. i nj ect. Di sposes annotation. The type of the disposed
parameter must be the same as the return type of the producer method.

A disposer method matches a producer method when the disposed object's injection point
matches both the type and qualifiers of the producer method. You can define one disposer
method to match to several producer methods in the class.

Example 9-11 shows how to use the @r oduces annotation to define a producer method and
the @i sposes annotation to define a disposer method.

Example 9-11 Defining a Producer Method and Disposer Method
This example defines the producer method connect and the disposer method cl ose.

The producer method connect returns an object of type Connect i on. In the disposer method
cl ose, the parameter connect i on is the disposed parameter. This parameter is of type
Connect i on to match the return type of the producer method.

At run time, the CDI framework creates an instance of SoneC ass and then calls the producer
method. Therefore, the CDI framework is responsible for injecting the parameters that are
passed to the producer method.

The scope of the producer method is @Request Scoped. When the request context is destroyed,
if the Connect i on object is in the request context, CDI calls the disposer method for this object.
In the call to the disposer method, CDI passes the Connect i on object as a parameter.

import jakarta.enterprise.inject.Produces;
import jakarta.enterprise.inject.Disposes;

i mport jakarta.enterprise.context.Request Scoped,;

public class SomeC ass {
@roduces @request Scoped
public Connection connect(User user) {
return createConnection(user.getld(),
user. get Password());

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 34

https://javaee.github.io/javaee-spec/javadocs/javax/enterprise/inject/Produces.html
https://javaee.github.io/javaee-spec/javadocs/javax/enterprise/inject/Disposes.html

ORACLE’

Chapter 9
Initializing and Preparing for the Destruction of a Managed Bean

private Connection createConnection(
String id, String password) {...}

public void cl ose(@isposes Connection connection) {
connection. cl ose();
}

}

Defining a Producer Field

A producer field is a simpler alternative to a producer method. A producer field must be a field
of a managed bean class or session bean class. A producer field may be either static or
nonstatic, subject to the following constraints:

* In a session bean class, the producer field must be a static field.
* In a managed bean class, the producer field can be either static or nonstatic.

To define a producer field, annotate the declaration of the field with the
javax. enterprise.inject.Produces annotation.

If the producer field may contain a null when accessed, set the scope of the field to dependent.

@® Note

Using a producer field directly in application code does not invoke CDI.

Producer fields do not have disposers.

Initializing and Preparing for the Destruction of a Managed Bean

CDI managed bean classes and their superclasses support the annotations for initializing and
preparing for the destruction of a managed bean.

These annotations are defined in JSR 250: Common Annotations for the Java Platform. For
more information, see Using Jakarta EE Annotations and Dependency Injection.

Initializing a Managed Bean

Initializing a managed bean specifies the life cycle callback method that the CDI framework
should call after dependency injection but before the class is put into service.

To initialize a managed bean:

1. Inthe managed bean class or any of its superclasses, define a method that performs the
initialization that you require.

2. Annotate the declaration of the method with the | akart a. annot at i on. Post Const r uct
annotation.

When the managed bean is injected into a component, CDI calls the method after all
injection has occurred and after all initializers have been called.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 34

https://javaee.github.io/javaee-spec/javadocs/javax/enterprise/inject/Produces.html
http://jcp.org/en/jsr/detail?id=250
https://jakarta.ee/specifications/platform/9/apidocs/jakarta/annotation/postconstruct

ORACLE Chapter 9
Intercepting Method Invocations and Life Cycle Events of Bean Classes

@® Note

As mandated by JSR 250, if the annotated method is declared in a superclass, the
method is called unless a subclass of the declaring class overrides the method.

Preparing for the Destruction of a Managed Bean

Preparing for the destruction of a managed bean specifies the life cycle callback method that
signals that an application component is about to be destroyed by the container.

To prepare for the destruction of a managed bean:

1. Inthe managed bean class or any of its superclasses, define a method that prepares for
the destruction of the managed bean.

In this method, perform any cleanup that is required before the bean is destroyed, such a
releasing resources that the bean has been holding.

2. Annotate the declaration of the method with the | akart a. annot ati on. PreDest r oy
annotation.

CDiI calls the method before starting the logic for destroying the bean.

@® Note

As mandated by JSR 250, if the annotated method is declared in a superclass, the
method is called unless a subclass of the declaring class overrides the method.

Intercepting Method Invocations and Life Cycle Events of Bean
Classes

Intercepting a method invocation or a life cycle event of a bean class interposes an interceptor
class in the invocation or event. When an interceptor class is interposed, additional actions that
are defined in the interceptor class are performed.

An interceptor class simplifies the maintenance of code for tasks that are frequently performed
and are separate from the business logic of the application. Examples of such tasks are
logging and auditing.

@ Note

The programming model for interceptor classes is optimized for operations that are
separate from the business logic of the application. To intercept methods that perform
operations with business semantics, use a decorator class as explained in Decorating
a Managed Bean Class.

The interceptors that were introduced in the Java EE 5 specification are specific to EJB
components. For more information about Java EE 5 interceptors, see Specifying Interceptors
for Business Methods or Life Cycle Callback Events in Developing Enterprise JavaBeans for
Oracle WebLogic Server.

Developing Applications for Oracle WebLogic Server
G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 13 of 34

https://jakarta.ee/specifications/platform/9/apidocs/jakarta/annotation/predestroy

ORACLE

Chapter 9
Intercepting Method Invocations and Life Cycle Events of Bean Classes

CDI enables you to use interceptors with the following types of Jakarta EE managed objects:

e CDI managed beans
* EJB session beans

e EJB message-driven beans

@® Note

You cannot use interceptors with EJB entity beans because CDI does not support
EJB entity beans.

See Using Jakarta EE Interceptors in the Jakarta EE Tutorial.

Intercepting method invocations and life cycle events of bean classes involves the tasks that
are explained in the following sections:

Defining an Interceptor Binding Type

An interceptor binding type is an application-defined annotation that associates an interceptor
class with an intercepted bean. Define an interceptor binding type for each type of interceptor
that you require.

@® Note

CDI does not require an interceptor binding type to be unique to a particular
interceptor class. You can define an interceptor binding type to use for more than one
interceptor class.

To define an interceptor binding type:

1. Define a Java annotation type to represent the interceptor binding type.

2. Annotate the declaration of the annotation type with the
javax.interceptor.|nterceptorBi ndi ng annotation.

3. Specify that the interceptor binding type is to be retained by the virtual machine at run time.

Use the j ava. | ang. annot ati on. Ret enti on(RUNTI ME) meta-annotation for this purpose.

4. Specify that the interceptor binding type may be applied to the program elements METHOD
and TYPE.

Use the | ava. | ang. annot at i on. Tar get ({ METHOD, TYPE}) meta-annotation for this
purpose.

Example 9-12 Defining An Interceptor Binding Type
This example defines the @r ansact i onal interceptor binding type.

package com exanpl e. bi | | paynent.interceptor;

import static java.lang.annotation. El ement Type. METHOD;
import static java.lang.annotation. El ement Type. TYPE;
import static java.lang.annotation. RetentionPolicy. RUNTI MVE;

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 34

https://jakarta.ee/learn/docs/jakartaee-tutorial/current/supporttechs/interceptors/interceptors.html
https://javaee.github.io/javaee-spec/javadocs/javax/interceptor/InterceptorBinding.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/annotation/Retention.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/annotation/Target.html

ORACLE Chapter 9
Intercepting Method Invocations and Life Cycle Events of Bean Classes

i mport java.lang.annotation. Retention;
i mport java.lang.annotation. Tar get;

i mport javax.interceptor.|nterceptorBinding;

@ nt er cept or Bi ndi ng

@rar get ({ METHOD, TYPE})

@Ret ent i on(RUNTI VE)

public @nterface Transactional {}

Defining an Interceptor Class

An interceptor class is used to interpose in method invocations or life cycle events that occur in
an associated target bean class. In an interceptor class, provide the code for tasks that are
frequently performed and are separate from the business logic of the application, such as
logging and auditing.

To define an interceptor class:

1. Define a Java class to represent the interceptor.
2. Annotate the declaration of the class with the following annotations:

e Javax.interceptor.lnterceptor

e The interceptor binding types that are defined for the class

You can apply any number of interceptor binding types to an interceptor class.

@® Note

CDI does not require an interceptor binding type to be unique to a particular
interceptor class. You can apply the same interceptor binding type to multiple
interceptor classes.

3. Implement the interceptor methods in the class.

CDI does not require the signature of an interceptor method to match the signature of the
intercepted method.

4. Identify the interceptor methods in the class.

An interceptor method is the method that is invoked when a method invocation or a life
cycle event of a bean class is intercepted.

To identify an interceptor method, annotate the declaration of the method with the
appropriate annotation for the type of the interceptor method.

Interceptor Method Type Annotation

Method invocation javax.interceptor. Aroundl nvoke
EJB timeout j avax. interceptor. AroundTi neout
Initialization of a managed bean or EJB | avax. annot at i on. Post Const r uct
component

Destruction of a managed bean or EJB] avax. annot ati on. PreDest r oy
component

Activation of a stateful session bean javax. ej b. Post Activate
Passivation of a stateful session bean javax.ejb. PrePassivate

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 34

https://javaee.github.io/javaee-spec/javadocs/javax/interceptor/Interceptor.html
https://javaee.github.io/javaee-spec/javadocs/javax/interceptor/AroundInvoke.html
https://javaee.github.io/javaee-spec/javadocs/javax/interceptor/AroundTimeout.html
https://javaee.github.io/javaee-spec/javadocs/javax/annotation/PostConstruct.html
https://javaee.github.io/javaee-spec/javadocs/javax/annotation/PreDestroy.html
https://javaee.github.io/javaee-spec/javadocs/javax/ejb/PostActivate.html
https://javaee.github.io/javaee-spec/javadocs/javax/ejb/PrePassivate.html

ORACLE Chapter 9
Intercepting Method Invocations and Life Cycle Events of Bean Classes

@® Note

An interceptor class can have multiple interceptor methods. However, an
interceptor class can have no more than one interceptor method of a given type.

Example 9-13 shows how to define an interceptor class.
Example 9-13 Defining an Interceptor Class

This example defines the interceptor class for which the @r ansacti onal interceptor binding
type is defined. The manageTr ansact i on method of this class is an interceptor method. The
@ransacti onal interceptor binding is defined in Example 9-12.

package com exanpl e. bil | paynment.interceptor;

i nport javax.annotation. Resource;
inport jakarta.interceptor.*;

@ransactional @nterceptor
public class Transactionlnterceptor {
@esource User Transaction transaction;
@\r ound! nvoke
public Object manageTransaction(lnvocationContext ctx)
throws Exception {

}

Identifying Methods for Interception

Identifying methods for interception associates the methods with the interceptor that is invoked
when the methods are invoked. CDI enables you to identify all methods of a bean class or only
individual methods of a bean class for interception.

e To identify all methods of a bean class for interception, annotate the declaration of the
bean class with the appropriate interceptor binding type.

e Toidentify an individual method of a bean class for interception, annotate the declaration of
the method with the appropriate interceptor binding type.

CDI does not require the signature of an intercepted method to match the signature of the
interceptor method. To determine the arguments and return type of an intercepted method, an
interceptor must query an interceptor context. Therefore, you can intercept any method or life
cycle event in a bean class without any knowledge at compilation time of the interfaces of bean
class.

@® Note

An implementation of a Java EE 5 interceptor must be declared in the annotation on
the method that is to be intercepted. A CDI interceptor uses an interceptor binding to
identify an interceptor method and to relate an intercepted method to its interceptor
method. Both the intercepted method and the interceptor method must be annotated
with the binding. In this way, the intercepted method and the interceptor are related to
each other only through the interceptor binding.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 16 of 34

ORACLE

Chapter 9
Intercepting Method Invocations and Life Cycle Events of Bean Classes

Example 9-14 Identifying All Methods of a Bean Class for Interception

This example identifies all methods of the Shoppi ngCart class for interception by the
@t ansacti onal interceptor.

package com exanpl e. bi | | paynent.interceptor;

@ransacti onal
public class ShoppingCart {

}

Example 9-15 Identifying an Individual Method of a Class for Interception

This example identifies only the checkout method of the Shoppi ngCart class for interception by
the @ransacti onal interceptor.

package com exanpl e. bil | payment.interceptor;
public class ShoppingCart {

@ransactional public void checkout() {

}

Enabling an Interceptor

By default, an interceptor is disabled. If you require an interceptor to be interposed in method
invocations and events, you must enable the interceptor explicitly.

To enable an interceptor:
1. Add acl ass element for the interceptor to the i nt er cept or s element in the beans. xm file.
2. Inthe cl ass element, provide the fully qualified class name of the interceptor.

Ensure that the order of t he cl ass elements in the beans. xn file matches the order in
which the interceptors are to be invoked.

CDl interceptors are invoked in the order in which they are declared in the beans. xnl file.
Interceptors that are defined in the ej b-j ar. xm file or by the
javax.interceptor.|nterceptors annotation are called before the CDI interceptors.
Interceptors are called before CDI decorators.

@® Note

Java EE 5 interceptors are invoked in the order in which they are annotated on an
intercepted method.

For more information about the beans. xn file, see Configuring a CDI Application.

Example 9-16 shows a cl ass element in the beans. xm file for enabling an interceptor class.
Example 9-16 Enabling an Interceptor Class

This example enables the interceptor class
com exanpl e. bi I | paynent. i nterceptor. Transactionl nt er cept or. The interceptor class is

defined in Example 9-13.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 17 of 34

https://javaee.github.io/javaee-spec/javadocs/javax/interceptor/Interceptors.html

ORACLE Chapter 9
Decorating a Managed Bean Class

<interceptors>
<cl ass>com exanpl e. bi | | payment . i nterceptor. Transacti onl nt er cept or </ cl ass>
</interceptors>

Applying an Interceptor on a Producer

In CDI 1.x, the interceptor is not bound to a producer bean. CDI 2.0 introduces the interface
javax.enterprise.inject.spi.lnterceptionFactory<T>, which allows to apply interceptors
programmatically to the return value of a producer method.

The I nterceptionFact ory interface allows to create a wrapper instance whose method
invocations are intercepted by method interceptors and forwarded to a provided instance.

publ i cinterfacel nterceptionFactory<T> {
I nterceptionFact ory<T> i gnor eFi nal Met hods() ;
Annot at edTypeConfi gurat or <T> configure();
T createlnterceptedlnstance(T instance);

You can obtain an implementation of | nt er cepti onFact ory by calling the
BeanManager . creat el nt er cepti onFact ory() . The following example shows a producer
method using the | nt er cepti onFactory:

@r oduces

@Request Scoped

publ i ¢ Product createlnterceptedProduct(InterceptionFactory<Product>

i nterceptionFactory) {
i nterceptionFactory.configure().add(ActionBinding.Literal.|NSTANCE);
return interceptionFactory. createlnterceptedl nstance(new Product());

}

See Using Interceptors in CDI Applications in Java EE 8 Tutorial for more information about
using interceptors.

Decorating a Managed Bean Class

Decorating a managed bean class enables you to intercept invocations of methods in the
decorated class that perform operations with business semantics.

You can decorate any managed bean class.

@® Note

The programming model for decorator classes is optimized for operations that perform
the business logic of the application. To intercept methods that are separate from the
business logic of an application, use an interceptor class as explained in Intercepting
Method Invocations and Life Cycle Events of Bean Classes.

See Using Decorators in The Java EE 8 Tutorial .

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 18 of 34

https://javaee.github.io/tutorial/cdi-adv006.html
https://javaee.github.io/tutorial/cdi-adv007.html#GKHQF

ORACLE

Chapter 9
Decorating a Managed Bean Class

Decorating a managed bean class involves the tasks that are explained in the following
sections:

Defining a Decorator Class

A decorator class intercepts invocations of methods in the decorated class that perform
operations with business semantics. A decorator class and an interceptor class are similar
because both classes provide an around-method interception. However, a method in a
decorator class has the same signature as the intercepted method in the decorated bean
class.

To define a decorator class:

1.

Write a Java class that implements the same interface as the bean class that you are
decorating.

If you want to intercept only some methods of the decorated class, declare the decorator
class as an abstract class. If you declare the class as abstract, you are not required to
implement all the methods of the bean class that you are decorating.

Annotate the class declaration of the decorator class with the j avax. decor at or . Decor at or
annotation.

Implement the methods of the decorated bean class that you want to intercept.

If the decorator class is a concrete class, you must implement all the methods of the bean
class that you are decorating.

You must ensure that the intercepting method in a decorator class has the same signature
as the intercepted method in the decorated bean class.

Add a delegate injection point to the decorator class.

A decorator class must contain exactly one delegate injection point. A delegate injection
point injects a delegate object, which is an instance of the decorated class, into the
decorator object.

You can customize how any method in the decorator object handles the implementation of
the decorated method. CDI allows but does not require the decorator object to invoke the
corresponding delegate object. Therefore, you are free to choose whether the decorator
object invokes the corresponding delegate object.

a. Inthe decorator class, inject an instance of the bean class that you are decorating.

b. Annotate the injection point with the j avax. decor at or . Del egat e annotation.

c. Apply qualifiers that you require to the injection point, if any.

If you apply qualifiers to the injection point, the decorator applies only to beans whose
bean class matches the qualifiers of the injection point.

@ Note

No special declaration, such as an annotation, is required to define a decorated bean
class. An enabled decorator class applies to any bean class or session bean that
matches the bean type and qualifiers of the delegate injection point.

Example 9-17 shows the definition of a decorator class.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 19 of 34

https://javaee.github.io/javaee-spec/javadocs/javax/decorator/Decorator.html
https://javaee.github.io/javaee-spec/javadocs/javax/decorator/Delegate.html

ORACLE

Chapter 9
Decorating a Managed Bean Class

Example 9-17 Defining a Decorator Class

This example defines the decorator class Dat aAccessAut hDecor at or . This class decorates any
bean of type Dat aAccess.

Because only some methods of the decorated class are to be intercepted, the class is declared
as an abstract class. This class injects a delegate instance del egat e of the decorated
implementation of the Dat aAcess bean type.

i mport jakarta.decorator.*;
i mport javax.inject.lnject;
import java.lang. Override;

@ecor at or
public abstract class Dat aAccessAut hDecor at or
i npl enent s Dat aAccess {

@nj ect @el egate DataAccess del egate;

@verride

public void del ete(Chject object) {
aut hori ze(Secur eActi on. DELETE, object);
del egat e. del et e(obj ect) ;

}

private void authorize(SecureAction action, Object object) {

}
}

Enabling a Decorator Class

By default, a decorator class is disabled. If you require a decorator class to be invoked in a CDI
application, you must enable the decorator class explicitly.

To enable an decorator class:

1. Add a cl ass element for the decorator class to the decor at or s element in the beans. xn
file.

2. Inthe cl ass element, provide the fully qualified class name of the decorator class.

Ensure that the order of the cl ass elements in the beans. xnl file matches the order in
which the decorator classes are to be invoked.

@ Note

Any interceptor classes that are defined for an application are invoked before the
application's decorator classes.

For more information about the beans. xnl file, see Configuring a CDI Application.

Example 9-18 shows a cl ass element in the beans. xn file for enabling a decorator class.
Example 9-18 Enabling a Decorator Class

This example enables the decorator class
com exanpl e. bi I | paynent . decor at or. Dat aAccessAut hDecor at or .

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 20 of 34

ORACLE Chapter 9
Assigning an EL Name to a CDI Bean Class

<decor at or s>
<cl ass>com exanpl e. bi | | paynent . decor at or . Dat aAccessAut hDecor at or </ cl ass>
</ decorat or s>

Assigning an EL Name to a CDI Bean Class

EL enables components in the presentation layer to communicate with managed beans that
implement application logic.

Components in the presentation layer are typically Jakarta Server Faces (JSF) pages and
Jakarta Server Pages (JSP) pages. See JSP Expression Language in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

In the scripting languages in JSP pages and JSF pages, the syntax of an injected variable is
identical to the syntax of a built-in variable of these languages. Any CDI bean that is injected
into a JSP page or JSF page must be accessible through an EL name. See Giving Beans EL
Names in The Java EE 8 Tutorial .

To assign an EL name to a CDI bean class, annotate the class declaration of the bean class
with the j avax. i nj ect . Named annotation.

If you do not specify a name, the EL name is the unqualified class name with the first character
in lower case. For example, if the unqualified class name is Shoppi ngCart , the EL name is
shoppi ngCart .

To specify a name, set the val ue element of the @aned annotation to the name that you
require.

® Note

To assign an EL name to a CDI bean class, you must annotate the bean class
declaration with the @laned annotation. If the class is not annotated with @Naned, the
CDI bean class does not have an EL name.

The following example shows how to use the @anmed annotation to assign an EL name to a
CDI bean class. This example assigns the EL name cart to the Shoppi ngCart class.

i mport javax.enterprise.context.SessionScoped;

@essi onScoped

@\aned("cart")
public class ShoppingCart {
public String getTotal () {

}

}

Any bean that a JSP page or JSF page accesses must conform to the JavaBeans standard. To
access a CDI managed bean from a JSP page or JSF page through the bean's EL name, use
a syntax that is similar to the syntax for JavaBeans components.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 21 of 34

https://javaee.github.io/tutorial/cdi-basic009.html#GJBAK
https://javaee.github.io/tutorial/cdi-basic009.html#GJBAK
https://javaee.github.io/javaee-spec/javadocs/javax/inject/Named.html

ORACLE’

Chapter 9
Defining and Applying Stereotypes

The following example shows how an instance of the Shoppi ngCart class is accessed in a JSF
page through the EL name that is assigned to the class.

Example 9-19 Accessing a Bean Through its EL Name

This example accesses an instance of the Shoppi ngCart class to display the value of its t ot al
property in a JSF page.

This property is returned by the get Tot al getter method of the Shoppi ngCart class.

<h: out put Text val ue="#{cart.total }"/>

Defining and Applying Stereotypes

In a large application in which several beans perform similar functions, you may require the
same set of annotations to be applied to several bean classes. Defining a stereotype requires
you to define the set of annotations only once.

You can then use the stereotype to guarantee that the same set of annotations is applied to all
bean classes that require the annotations. See Using Stereotypes in The Java EE 8 Tutorial .

Defining and applying stereotypes involves the tasks that are explained in the following
sections:

Defining a Stereotype

A stereotype is an application-defined annotation type that incorporates other annotation types.
To define a stereotype:

1. Define a Java annotation type to represent the stereotype.
2. Annotate the declaration of the annotation type with the following annotations:

e javax.enterprise.inject.Stereotype

* The other annotation types that you want the stereotype to incorporate
You can specify the following annotation types in a stereotype:

— A default scope—see Defining the Scope of a Bean

— @\ ternati ve—see Providing Alternative Implementations of a Bean Type

— One or more interceptor bindings—see Intercepting Method Invocations and Life
Cycle Events of Bean Classes

— @amed—see Assigning an EL Name to a CDI Bean Class

3. Specify that the stereotype is to be retained by the virtual machine at run time.

Use the | ava. | ang. annot ati on. Ret ent i on(RUNTI ME) meta-annotation for this purpose.
4. Specify that the stereotype may be applied to the program element TYPE.

Use the j ava. | ang. annot ati on. Tar get (TYPE) meta-annotation for this purpose.

The following example shows the definition of a stereotype.
Example 9-20 Defining a Stereotype

This example defines the stereotype @\ct i on, which specifies the following for each bean that
the stereotype annotates:

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 22 of 34

https://javaee.github.io/tutorial/cdi-adv008.html#GKHQC
https://javaee.github.io/javaee-spec/javadocs/javax/enterprise/inject/Stereotype.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/annotation/Retention.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/annotation/Target.html

ORACLE’

Chapter 9
Using Events for Communications Between Beans

* The default scope is request scope unless the scope is overridden with a scope
annotation.

e The default EL name is assigned to the bean unless the name is overridden with the
@amed annotation.

e The interceptor bindings @ecur e and @t ansact i onal are applied to the bean. The
definition of these interceptor bindings is beyond the scope of this example.

i mport javax.enterprise.inject.Stereotype;

i mport javax.inject.Naned;

i mport javax.enterprise.context.Request Scoped;

import static java.lang.annotation. El ement Type. TYPE;

import static java.lang.annotation. RetentionPolicy. RUNTI MVE;
i mport java.lang.annotation. Retention;

i mport java.lang.annotation. Target;

@Request Scoped

@ecur e

@ransact i onal

@aned

@t er eot ype

@ar get (TYPE)

@Ret ent i on(RUNTI VE)

public @nterface Action {}

Applying Stereotypes to a Bean

To apply stereotypes to a bean, annotate the class declaration of the bean with each
stereotype to apply. You can apply any number of stereotypes to a bean. Any stereotype that
you apply to a bean must be defined as explained in Defining a Stereotype.

Example 9-21 shows how to apply stereotypes to a bean.
Example 9-21 Applying Stereotypes to a Bean

This example applies the stereotypes @Act i on and @bck to the bean class MockLogi nAct i on.
The definition of the @\ct i on stereotype is shown in Example 9-20. The definition of the @bck
stereotype is beyond the scope of this example.

@\ction
@mbck
public class MckLogi nAction extends LoginAction {

}...

Using Events for Communications Between Beans

Events enable beans to communicate information without any compilation-time dependency.

At run time, your application may perform operations that generate information or cause state
changes that must be communicated between beans. For example, an application may require
stateful beans in one architectural tier of the application to synchronize their internal state with
state changes that occur in a different tier.

Events enable beans to communicate this information without any compilation-time
dependency. One bean can define an event, another bean can send the event, and yet another
bean can handle the event. The beans can be in separate packages and even in separate tiers
of the application. See Using Events in The Java EE 8 Tutorial .

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 23 of 34

https://javaee.github.io/tutorial/cdi-adv005.html#GKHIC

ORACLE

Chapter 9
Using Events for Communications Between Beans

Using events for communications between beans involves the tasks that are explained in the
following sections:

Defining an Event Type

An event type is a Java class that represents the information that you want to communicate
between beans. For example, an event type may represent the state information that a stateful
bean must synchronize with state changes in a different tier of an application.

Define an event type for each set of changes that you want to communicate between beans.

To define an event type:

1.

Define a Java class to represent the event type.
Ensure that the class meets these requirements:

* The class is declared as a concrete Java class.
e The class has no type variables.

The event types of the event include all superclasses and interfaces of the run time
class of the event object. An event type must not contain a type variable. Any Java
type can be an observed event type.

If necessary, define any qualifiers to further distinguish events of this type. For more
information, see Defining Qualifiers for Implementations of a Bean Type.

Provide code in the class to populate the event payload of event objects that are
instantiated from the class.

The event payload is the information that you want the event to contain. You can use a
JavaBeans property with getter and setter methods to represent an item of information in
the event payload.

Sending an Event

To communicate a change that occurs in response to an operation, your application must send
an event of the correct type when performing the operation. CDI provides a predefined event
dispatcher object that enables application code to send an event and select the associated
qualifiers at run time.

To send an event:

1.
2.

Obtain an instance of the event type to send.

Call methods of the event instance to populate the event payload of the event object that
you are sending.

Inject an instance of the parameterized | avax. ent er pri se. event . Event interface.

If you are sending a qualified event, annotate the injection point with the event qualifier.
Call the fi re method of the injected Event instance.

* Inthe call to the fi re method, pass as a parameter the event instance that you are
sending. This method fires the event synchronously and notifies any observer
methods.

e The event can be fired asynchronously using the fireAsync() method. Invocation of
this method returns immediately and the obserer methods are notified asynchronously.
See Firing Events in The Java EE 8 Tutorial .

Example 9-22 shows how to send an event.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 24 of 34

https://javaee.github.io/javaee-spec/javadocs/javax/enterprise/event/Event.html
https://javaee.github.io/tutorial/cdi-adv005.html#GKHNF

ORACLE Chapter 9
Using Events for Communications Between Beans

Example 9-22 Sending an Event

This example injects an instance of the event of type User with the qualifier @oggedI n. The
fire method sends only User events to which the @ogged! n qualifier is applied.

inport javax.enterprise.event.Event;

i mport javax.enterprise.context.SessionScoped;

inport javax.inject.Inject;
inport java.io.Serializable;

@essi onScoped
public class Login inplenents Serializable {

@nj ect @oggedln Event <User> userLoggedl nEvent;
private User user;

public void | ogin(Credentials credentials) {
[l... use credentials to find user

if (user !'=null) {
user Loggedl nEvent . fire(user);

}

}

Handling an Event

Any CDI managed bean class can handle events.
To handle an event:

1. Inyour bean class, define a method to handle the event.

@® Note

If qualifiers are applied to an event type, define one method for each qualified
type.

2. Inthe signature of the method, define a parameter for passing the event to the method.
Ensure that the type of the parameter is the same as the Java type of the event.

3. Annotate the parameter in the method signature with the
javax. enterprise. event. Gbserves annotation.

If necessary,

* set elements of the @hser ves annotation to specify whether the method is conditional
or transactional. See Using Observer Methods to Handle Events in The Java EE 8
Tutorial .

e set the observer method order using @i ority annotation to specify the order in
which the observer methods for an event are invoked. See Observer Method Ordering
in The Java EE 8 Tutorial .

4. |If the event type is qualified, apply the qualifier to the annotated parameter.

5. In the method body, provide code for handling the event payload of the event object.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 25 of 34

https://javaee.github.io/javaee-spec/javadocs/javax/enterprise/event/Observes.html
https://javaee.github.io/tutorial/cdi-adv005.html#GKHNF
https://javaee.github.io/tutorial/cdi-adv005.html#GKHNF

ORACLE

Chapter 9
Injecting a Predefined Bean

Example 9-23 shows how to declare an observer method for receiving qualified events of a
particular type. Example 9-24 shows how to declare an observer method for receiving all
events of a particular type.

Example 9-23 Handling a Qualified Event of a Particular Type

This example declares the af t er Logi n method in which the parameter user is annotated with
the @bser ves annotation and the @ogged! n qualifier. This method is called when an event of
type User with the qualifier @ogged! n is sent.

inport javax.enterprise.event.Qbserves;

public void afterLogi n(@bserves @oggedln User user) {

}

Example 9-24 Handling Any Event of a Particular Type

This example declares the af t er Logi n method in which the parameter user is annotated with
the @bser ves annotation. This method is called when any event of type User is sent.

import javax.enterprise.event.serves;

public void afterlLogi n(@bserves User user) {

}

Injecting a Predefined Bean

Predefined beans are injected with dependent scope and the predefined default qualifier

@efaul t.

CDI provides predefined beans that implement the following interfaces:

jakarta.transaction.UserTransaction
Java Transaction API (JTA) user transaction.

java.security.Principal

The abstract notion of a principal, which represents any entity, such as an individual, a
corporation, and a login ID.

The principal represents the identity of the current caller. Whenever the injected principal is
accessed, it always represents the identity of the current caller.

For example, a principal is injected into a field at initialization. Later, a method that uses the
injected principal is called on the object into which the principal was injected. In this situation,
the injected principal represents the identity of the current caller when the method is run.

javax.validation.Validator

Validator for bean instances.

The bean that implements this interface enables a Val i dat or object for the default bean
validation Val i dat or Fact ory object to be injected.

javax.validation.ValidatorFactory

Factory class for returning initialized Val i dat or instances.

The bean that implements this interface enables the default bean validation
Val i dat or Fact ory object to be injected.

To inject a predefined bean, create an injection point by using the
jakarta. annot ati on. Resour ces annotation to obtain an instance of the bean. For the bean
type, specify the class name of the interface that the bean implements.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 26 of 34

https://javadoc.io/static/jakarta.platform/jakarta.jakartaee-api/11.0.0/jakarta/transaction/UserTransaction.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/security/Principal.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.xml/javax/xml/validation/Validator.html
https://javaee.github.io/javaee-spec/javadocs/javax/validation/ValidatorFactory.html
https://javadoc.io/static/jakarta.platform/jakarta.jakartaee-api/11.0.0/jakarta/annotation/Resource.html

ORACLE

Chapter 9
Injecting and Qualifying Resources

Predefined beans are injected with dependent scope and the predefined default qualifier
@efaul t .

For more information about injecting resources, see Resource Injection in The Java EE 8
Tutorial .

Example 9-25 shows how to use the @resour ce annotation to inject a predefined bean.
Example 9-25 Injecting a Predefined Bean

This example injects a user transaction into the servlet class Transacti onSer vl et . The user
transaction is an instance of the predefined bean that implements the
javax. transaction. User Transacti on interface.

i mport jakarta.annotation.Resources;
import jakarta.servlet.http.*;

public class TransactionServlet extends HtpServlet {
@resour ce User Transaction transaction;

}

Injecting and Qualifying Resources

Java EE 5 resource injection relies on strings for configuration. Typically, these strings are
JNDI names that are resolved when an object is created. CDI ensures type-safe injection of
beans by selecting the bean class on the basis of the Java type that is specified in the injection
point.

Even in a CDI bean class, Java EE 5 resource injection is required to access real resources
such as data sources, Java Message Service (JMS) resources, and Web service references.
Because CDI bean classes can use Java EE 5 resource injection, you can use producer fields
to minimize the reliance on Java EE 5 resource injection. In this way, CDI simplifies how to
encapsulate the configuration that is required to access the correct resource.

To minimize the reliance on Java EE 5 resource injection:
1. Use Java EE 5 resource injection in only one place in the application.
2. Use producer fields to translate the injected resource type into a CDI bean.

You can the inject this CDI bean into the application in the same way as any other CDI
bean.

For more information about producer fields, see Defining a Producer Field.
The following example shows how to use Java EE 5 annotations to inject resources.

i nport javax.annotation. Resource;

i nport javax. persistence. PersistenceContext;
i nport javax. persistence. PersistenceUnit;
inport javax.ejb.EJB;

inport javax.xm .ws.\WebServiceRef;

public class SomeC ass {

@\ebSer vi ceRef (1 ookup="j ava: app/ servi ce/ Paynent Servi ce")
Paynent Servi ce paynent Servi ce;

@EJB(ej bLi nk="../paynent .| ar#Payment Servi ce")
Paynent Servi ce paynent Servi ce;

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 27 of 34

https://javaee.github.io/tutorial/injection001.html#BABHDCAI

ORACLE

Chapter 9
Injecting and Qualifying Resources

@Resour ce(| ookup="j ava: gl obal / env/ j dbc/ Cust omer Dat asour ce")
Dat asour ce cust oner Dat abase;

@er si st enceCont ext (uni t Name=" Cust oner Dat abase")
EntityManager custoner Dat abasePer si st enceCont ext ;

@er si st encelni t (uni t Nane=" Cust oner Dat abase")
Entit yManager Fact ory cust omer Dat abasePersi st encelnit;

}

The following example shows how to inject the same set of resources by combining Java EE 5
resource injection with CDI producer fields.

The declaration of the Soned ass class is annotated with @\ppl i cati onScoped to set the scope
of this bean to application. The @ependent scope is implicitly applied to the producer fields.

inport javax.enterprise.context.ApplicationScoped;
inport javax.enterprise.inject.Produces;

inport javax.annotation. Resource;

inport javax. persistence. PersistenceContext;
inport javax.persistence. PersistenceUnit;

inport javax.ejb.EJB;

javax. xm . ws. WebSer vi ceRef ;

@\ppl i cati onScoped
public class SomeC ass {

@r oduces
@\ebSer vi ceRef (1 ookup="j ava: app/ servi ce/ Paynment Ser vi ce")
Paynent Servi ce paynent Servi ce;

@r oduces
@EJB(ej bLi nk="../their.jar#Payment Service")
Paynent Servi ce payment Servi ce;

@roduces @cust oner Dat abase
@resour ce(| ookup="j ava: gl obal / env/j dbc/ Cust omer Dat asour ce")
Dat asour ce cust oner Dat abase;

@roduces @cust oner Dat abase
@er si st enceCont ext (uni t Name=" Cust oner Dat abase")
EntityManager custoner Dat abasePer si st enceCont ext ;

@roduces @cust oner Dat abase
@er si st enceUni t (uni t Name="Cust omer Dat abase")
EntityManager Fact ory cust omer Dat abasePersi stenceUnit;

}

CDI enables you to use Jakarta EE resources in CDI applications in a way that is consistent
with CDI. To use Jakarta EE resources in this way, inject the resources as CDI beans into other
beans.

The following example shows how to inject a Jakarta EE resource as a CDI bean into another
bean.

This example injects a persistence unit resource into a request-scoped bean.

inport javax.enterprise.context.Request Scoped;
inport javax.enterprise.inject.Inject;

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 28 of 34

ORACLE’

Chapter 9
Using CDI With JCA Technology

@Request Scoped
public class SomeCt herd ass {

@nj ect @ust oner Dat abase
private EntityManagerFactory enf;

}

Another class, for example Yet Anot her 0 ass, could inject a field of type SomeQt her d ass. If an
instance of SomeQ her C ass does not already exist in the current request context, CDI
performs the following sequence of operations:

1. Constructing the instance of SomeC her d ass
2. Injecting the reference to the entity manager factory by using the producer field.
3. Saving the new instance of SomeQ her G ass in the current request context

In every case, CDI injects the reference to this instance of SoneQ her C ass into the field in
Yet Anot her O ass. When the request context is destroyed, the instance of SoneQ her G ass and
its reference to the entity manager factory are destroyed.

Using CDI With JCA Technology

WebLogic Server supports CDI in embedded resource adapters and global resource adapters.
To enable a resource adapter for CDI, provide a beans. xn file in the META- | NF directory of the
packaged archive of the resource adapter.

For more information about the beans. xnl file, see Configuring a CDI Application.

All classes in the resource adapter are available for injection. All classes in the resource
adapter can be CDI managed beans except for the following classes:

* Resource adapter beans. These beans are classes that are annotated with the
j avax. resource. spi . Connect or annotation or are declared as corresponding elements in
the resource adapter deployment descriptor ra. xnl .

* Managed connection factory beans. These beans are classes that are annotated with
the j avax. resource. spi . Connecti onDefi ni ti on annotation or the
javax. resource. spi . ConnectionDefinitions annotation, or are declared as
corresponding elementsinra. xm .

« Activation specification beans. These beans are classes that are annotated with the
j avax.resource. spi . Activation annotation or are declared as corresponding elements in
ra.xm.

* Administered object beans. These beans are classes that are annotated with the
j avax. resource. spi . Adm ni st eredQbj ect annotation or are declared as corresponding
elementsinra. xm .

Configuring a CDI Application

Configuring a CDI application enables CDI services for the application. You must configure a
CDI application to identify the application as a CDI application. No special declaration, such as
an annotation, is required to define a CDI managed bean. And no module type is defined
specifically for packaging CDI applications.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 29 of 34

https://javaee.github.io/javaee-spec/javadocs/javax/resource/spi/Connector.html
https://javaee.github.io/javaee-spec/javadocs/javax/resource/spi/ConnectionDefinition.html
https://javaee.github.io/javaee-spec/javadocs/javax/resource/spi/ConnectionDefinitions.html
https://javaee.github.io/javaee-spec/javadocs/javax/resource/spi/Activation.html
https://javaee.github.io/javaee-spec/javadocs/javax/resource/spi/AdministeredObject.html

ORACLE

Chapter 9
Enabling and Disabling CDI

To configure a CDI application, provide a file that is named beans. xm in the packaged archive
of the application. The beans. xnl file must be an instance of the extensible markup language
(XML) schema beans_2_0. xsd.

If your application does not use any alternatives, interceptors, or decorators, the beans. xn file
can be empty. However, you must provide the beans. xnl file even if the file is empty.

If your CDI application uses alternatives, interceptors, or decorators, you must enable these
items by declaring them in the beans. xm file. For more information, see:

» Selecting an Alternative Implementation of a Bean Type for an Application

» Enabling an Interceptor

« Enabling a Decorator Class

The required location of the beans. xnl file depends on the type of the application:

e For a Web application, the beans. xm file must be in the WEB- | NF directory.

e For an EJB module, resource archive (RAR) file, application client JAR file, or library JAR
file, the beans. xnl file must be in the META- | NF directory.

You can provide CDI bean archives in the | i b directory of an EJB module. You must provide a
beans. xnl file in the META- | NF directory of each CDI bean archive the | i b directory of an EJB
module.

Example 9-26 shows a beans. xm file for configuring a CDI application.
Example 9-26 beans.xml File for Configuring a CDI Application
This example configures a CDI application by enabling the following classes:

e The alternative implementation com exanpl e. or der processor. MockQr der | npl
e The interceptor class com exanpl e. bi | | paynent.interceptor. Transacti onl nt erceptor
e The decorator class com exanpl e. bi | | payment . decor at or . Dat aAccessAut hDecor at or

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://xm ns.jcp.org/xm/ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schenmalLocat i on="
http://xmns.jcp.org/ xm/ns/javaee
http://xmns.jcp.org/xm/ns/javaeel/ beans_1_1.xsd">
<al ternatives>
<cl ass>com exanpl e. or der processor . MockOr der | npl </ cl ass>
</alternatives>
<interceptors>
<cl ass>com exanpl e. bi | | payment . i nt ercept or. Transacti onl nt er cept or </ cl ass>
</interceptors>
<decor at or s>
<cl ass>com exanpl e. bi | | payment . decor at or . Dat aAccessAut hDecor at or </ cl ass>
</ decorat or s>
</ beans>

Enabling and Disabling CDI

CDI for a domain is enabled by default. However, even when an application does not use CDI,
there is some CDI initialization that occurs when you deploy an application in WebLogic
Server. To maximize deployment performance for applications that do not use CDI, you can
disable CDI.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 30 of 34

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_2_0.xsd

ORACLE

Chapter 9
Enabling and Disabling CDI

You can control whether CDI is enabled in the domain by setting the Pol i cy parameter on the
CDI container. When this parameter is set to Enabl ed, CDI is enabled for all applications in the
domain. When the Pol i cy parameter is set to Di sabl ed, CDI is disabled for all applications in

the domain.

You can disable CDI only for a domain.

Enabling and Disabling CDI for a Domain

To disable CDI for every application that is deployed to a domain, add the following lines to the
config.xmn file:

<donai n>

<cdi - cont ai ner>

<pol i cy>Di sabl ed</ pol i cy>
</ cdi - cont ai ner >

<donai n>

You can use the WLST scripting tool to enable or disable CDI for a domain. The following
examples demonstrate how to use WLST to enable and disable CDI for a domain whether you
are online or offline.

Example 9-27 Enabling CDI While Online

In the following example, WebLogic Server is running. The arguments username and password
represent the credentials for the user who is connecting WLST to the server, and url represents
the listen address and listen port of the server instance (for example, localhost:7001). Also
note that domain represents the domain name.

connect (' user', ' password','url")
donai nConfi g()
edit()
cd(' Cdi Cont ai ner/ nydonai n')
startEdit()
set (' Policy', ' Enabled') // 'Enabled or 'Disabled
val i dat e()
save()
activate(bl ock="true")

Example 9-28 Enabling CDI While Offline

In the following example, domain represents the path of your domain (for example, /
or acl e/ W s/ mydomain). Also note that mydomai n must match the domain name.

r eadDomai n(' donain')
create(' mydomai n',"' Cdi Cont ai ner")
cd(' Cdi Cont ai ner/ nydomai n')
set('Policy', ' Enabled) // 'Enabled or 'Disabled
updat eDomai n()
cl oseDomai n()

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 31 of 34

ORACLE Chapter 9
Implicit Bean Discovery

Implicit Bean Discovery

CDI 1.1 and Java EE 7 introduced the concept of implicit bean archives. An implicit bean
archive is an archive of a JAR or a WAR file that does not contain a beans. xm file; it contains
beans that can be managed by CDI.

This can significantly increase the time that it takes to deploy an application. This increase in
time is especially noticeable when applications built for releases prior to Java EE 7 are
deployed on a Java EE 7 application server. To be compatible with CDI 1.0, WebLogic Server
contains an option that sets the container to ignore the archive even when the beans. xmi file
is not present.

You control whether implicit bean discovery is enabled in the domain by setting the i nplicit-
bean- di scover y- enabl ed parameter on the CDI container. When this parameter is set to 1,
implicit bean discovery is enabled for all applications in the domain. When the i npli ci t - bean-
di scovery- enabl ed parameter is set to 0, implicit bean discovery is disabled for all applications
in the domain.

You can disable implicit bean discovery only for a domain.

Enabling and Disabling Implicit Bean Discovery for a Domain

To disable implicit bean discovery for every application that is deployed to a domain, add the
following lines confi g. xm file:

<donai n>

<cdi - cont ai ner >

<inplicit-bean-discovery-enabl ed>fal se</inplicit-bean-di scobery-enabl ed>
</ cdi - cont ai ner >

<donai n>

You can use WLST scripting too to enable or disable this feature. The following examples
demonstrate how to use WLST to enable and disable implicit bean discovery for a domain
whether you are online or offline.

Example 9-29 Enabling Implicit Bean Discovery Using WLST Online

In the following example, WebLogic Server is running. The arguments username and password
represent the credentials for the user who is connecting WLST to the server, and url represents
the listen address and listen port of the server instance (for example, localhost:7001). Also
note that domain represents the domain name.

connect (" user', ' password','url")

domai nConfi g()

edit()

cd(' Cdi Cont ai ner/ mydomai n')

startEdit()

set (' I nplicitBeanDi scoveryEnabled ,1) // 1 to enable 0 to disable
val i date()

save()

activate(bl ock="true")

Example 9-30 Enabling Implicit Bean Discovery Using WLST Offline

In the following example, domain represents the path of your domain (for example, /
or acl e/ W s/ mydomain). Also note that mydomai n must match the domain name.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 32 of 34

ORACLE’

Chapter 9
Supporting Third-Party Portable Extensions

r eadDomai n(domai n)

create(' nydomain', "' Cdi Contai ner')
cd(' Cdi Cont ai ner/ mydonai n')

set (' I nplicitBeanD scoveryEnabled', 1)
/1 1 to enable 0 to disable

updat eDomai n()

cl oseDomai n()

Supporting Third-Party Portable Extensions

Using the

CDl is intended to be a foundation for frameworks, extensions, and integration with other
technologies.

CDI exposes SPIs that enable the development of portable extensions to CDI, such as:

* Integration with business process management engines
* Integration with third-party frameworks such as Spring, Seam, GWT or Wicket
* New technology that is based upon the CDI programming model

The SPIs that enable the development of portable extensions to CDI are provided in the
jakarta.enterprise.inject.spi package.

Code in CDI extensions can handle events that are sent by the CDI framework.

For more information, see "Portable extensions" in JSR 365: Contexts and Dependency
Injection for the Java EE platform.

Built-in Annotation Literals

CDI 2.0 introduces new built-in annotation literals that can be used for creating instances of

annotations.

Syntax

The following are the new built-in annotations that define a Li t eral static nested class:

Table 9-2 Built-in Annotation Literals

Classes Package

Any jakarta.enterprise.inject
Def aul t jakarta.enterprise.inject
New jakarta.enterprise.inject
Speci al i zed jakarta.enterprise.inject
Vet eod jakarta.enterprise.inject
Alternative jakarta.enterprise.inject
Typed jakarta.enterprise.inject
Nonbi ndi ng jakarta.enterprise.util
Initialized jakarta.enterprise.context
Dest royed jakarta.enterprise.context
Request Scoped j akarta.enterprise.context
Sessi onScoped jakarta.enterprise.context
Appl i cationScoped jakarta.enterprise.context

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 33 of 34

https://javadoc.io/doc/jakarta.platform/jakarta.jakartaee-api/latest/jakarta/enterprise/inject/spi/package-summary.html
https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=365

ORACLE’

Using the

Chapter 9
Using the Configurator Interfaces

Table 9-2 (Cont.) Built-in Annotation Literals

Classes Package
Dependent jakarta.enterprise.context
Conver sat i onScoped jakarta.enterprise.context

Example 9-31 Built-in Annotation Literals

Default defaultLiteral = new Default.Literal();

Configurator Interfaces

CDI 2.0 introduced some new configurator interfaces which can be used for dynamically
defining or modifying CDI objects.

The newly introduced configurator interfaces are:
e Annot at edTyeConf i gur at or

e | njectionPoint Configurator

e BeanAttributesConfigurator

e BeanConfi gurator

e (bserver Met hodConfi gur at or

e Producer Confi gurat or

See Using the Configurators Interfaces in Java EE 8 Tutorial for more information.

Bootstrapping a CDI Container

CDI 2.0 provides the standard API for bootstrapping a CDI container in Java SE. You must
explicitly bootstrap the CDI container using the SeCont ai ner I ni ti al i zer abstract class and its
static method newl nst ance().

You can configure the CDI container using the API
javax.enterprise.inject.se.SeContainerlnitializer before itis bootstrapped and the
SeContainerlnitializer.initialize() method bootstraps the container and returns a
SeCont ai ner instance.

See Configuring the CDI Container in Java EE 8 Tutorial for more information.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 34 of 34

https://javaee.github.io/tutorial/cdi-adv010.html
https://javaee.github.io/tutorial/cdi-bootstrap-se8002.html

Jakarta JSON Processing

WebLogic Server supports Jakarta JSON Processing by including the JSR-374 reference
implementation for use with applications deployed on a WebLogic Server instance.
This chapter includes the following sections:

To learn more about JSON concepts, see Jakarta JSON Processing in the Jakarta EE Tutorial.

About JavaScript Object Notation (JSON)

JSON is a lightweight data-interchange format that is widely used as a common format to
serialize and deserialize data in applications that communicate with each other over the
Internet. These applications are often created using different programming languages and run
in very different environments.

JSON is suited to this scenario because it is an open standard, it is easy to read and write, and
it is more compact than other representations. RESTful web services typically make extensive
use of JSON as the format for the data inside requests and responses, with the JSON
representations usually being more compact than the counterpart XML representations since
JSON does not have closing tags.

Jakarta JSON Processing provides a convenient way to process (parse, generate, transform,
and query) JSON text. For generating and parsing JSON data, there are two programming
models, which are similar to those used for XML documents:

e The object model creates a tree that represents the JSON data in memory. The tree can
then be navigated and analyzed. Although the JSON data created in memory is immutable
and cannot be modified, the object model is the most flexible and allows for processing
that requires access to the complete contents of the tree. However, it is often slower than
the streaming model and requires more memory. The object model generates JSON output
by navigating the entire tree at once.

For information about using the object model, see Object Model API.

e The streaming model uses an event-based parser that reads JSON data one element at
a time. The parser generates events and stops for processing when an object or an array
begins or ends, when it finds a key, or when it finds a value. Each element can be
processed or discarded by the application code, and then the parser proceeds to the next
event. This approach is adequate for local processing, in which the processing of an
element does not require information from the rest of the data. The streaming model
generates JSON output to a given stream by making a function call with one element at a
time.

For information about using the streaming model, see Streaming API.

Object Model API

The object model APl is a high-level API that provides immutable object models for JISON
object and array structures.

These JSON structures are represented as object models using the Java types JsonQbj ect
and JsonArray. The interface j akart a. j son. JsonChj ect provides a map view to access the

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 10

https://jakarta.ee/specifications/jsonp/1.1/
https://jakarta.ee/learn/docs/jakartaee-tutorial/current/web/jsonp/jsonp.html

ORACLE

Chapter 10
Object Model API

unordered collection of zero or more name-value pairs from the model. Similarly, the
jakarta.json.JsonArray interface provides a list view to access the ordered sequence of zero
or more values from the model.

The object model API uses builder patterns to create these object models. The
jakarta.json.Jsonhj ect Bui | der and j akarta.json. JsonArrayBuil der interfaces provide
methods to create models of type Jsonthj ect and JsonArr ay, respectively.

These object models can also be created from an input source using the
j akarta.json. JsonReader interface. Similarly, these object models can be written to an output
source using the j akarta. j son. JsonWi t er interface.

The following sections show examples of using the object model API:

Creating an Object Model from JSON Data

The following example shows how to create an object model from JSON data in a text file:

import java.io.FileReader;

i mport jakarta.json.Json;

i mport jakarta.json.JsonReader;

i mport jakarta.json.JsonStructure;

JsonReader reader = Json.createReader(new Fil eReader ("jsondata.txt"));
JsonStructure jsonst = reader.read();

The object reference j sonst can be either of type JsonQbj ect or of type JsonArray, depending
on the contents of the file. Jsonbj ect and JsonArray are subtypes of JsonSt ruct ure. This
reference represents the top of the tree and can be used to navigate the tree or to write it to a
stream as JSON data.

Creating an Object Model from Application Code

The following example shows how to create an object model from application code:

i mport jakarta.json.Json;
inport jakarta.json.JsonQbject;

JsonObj ect nodel = Json. createCbj ect Bui | der ()
.add("firstNanme", "Duke")
.add("l ast Nane", "Java")
.add("age", 18)
.add("street Address", "100 Internet Dr")
.add("city", "JavaTown")
.add("state", "JA")
.add("postal Code", "12345")
.add(" phoneNunbers", Json. creat eArrayBui |l der ()
.add(Json. creat eQbj ect Bui | der ()
.add("type", "nmobile")
.add("nurber”, "111-111-1111"))
.add(Json. creat eQbj ect Bui | der ()
.add("type", "home")
.add("nunber", "222-222-2222")))
Cbui 1 d();

The object reference model represents the top of the tree, which is created by nesting
invocations to the add methods and is built by invoking the bui | d method. The
javax. j son. Jsonbj ect Bui | der interface contains the following add methods:

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 10

https://jakarta.ee/learn/docs/jakartaee-tutorial/current/web/jsonp/jsonp.html
https://javaee.github.io/javaee-spec/javadocs/javax/json/JsonObjectBuilder.html

ORACLE

Chapter 10
Object Model API

JsonChj ect Bui | der add(String nanme, Bi gDecimal val ue)
JsonChj ect Bui | der add(String name, Biglnteger val ue)
JsonChj ect Bui | der add(String name, bool ean val ue)
JsonChbj ect Bui | der add(String name, double val ue)
JsonChj ect Bui | der add(String name, int val ue)
JsonChbj ect Bui | der add(String name, JsonArrayBuilder builder)
JsonChj ect Bui | der add(String name, JsonQbjectBuil der buil der)
JsonChj ect Bui | der add(String name, JsonVal ue val ue)
JsonChj ect Bui | der add(String name, |ong val ue)
JsonChj ect Bui | der add(String name, String val ue)
JsonChj ect Bui | der addNul | (String name)

The j akarta.json. JsonArrayBui |l der interface contains similar add methods that do not have
a name (key) parameter. You can nest arrays and objects by passing a new JsonAr r ayBui | der
object or a new Json(bj ect Bui | der object to the corresponding add method, as shown in this
example.

The resulting tree represents the JISON data from JSON Syntax.

Navigating an Object Model

The following example shows a simple approach to navigating an object model:

i mport jakarta.json.JsonVal ue;
i mport jakarta.json.Jsonject;
i mport jakarta.json.JsonArray;
i mport jakarta.json.JsonNunber;
import jakarta.json.JsonString;

public static void navigateTree(JsonVal ue tree, String key) {
if (key !'=null)
Systemout.print("Key " + key + ": ");
switch(tree. getVal ueType()) {

case OBJECT:
Systemout. println("OBJECT");
JsonChj ect object = (JsonObject) tree;
for (String nane : object.keySet())

navi gat eTr ee(obj ect. get (name), nane);

br eak;

case ARRAY:
System out. println("ARRAY");
JsonArray array = (JsonArray) tree;
for (JsonValue val : array)

navi gat eTree(val, null);

br eak;

case STRI NG
JsonString st = (JsonString) tree;
Systemout.printIn("STRING" + st.getString());
br eak;

case NUMBER:
JsonNunber num = (JsonNunber) tree;
Systemout.printIn("NUMBER " + numtoString());
br eak;

case TRUE:

case FALSE:

case NULL:
Systemout. println(tree.getVal ueType().toString());
br eak;

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 10

https://jakarta.ee/learn/docs/jakartaee-tutorial/current/web/jsonp/jsonp.html#_json_syntax

ORACLE’

Chapter 10
Object Model API

The navi gat eTr ee method can be used with the models shown in Creating an Object Model
from JSON Data and Creating an Object Model from Application Code as follows:

navi gat eTree(nmodel , null);

The navi gat eTr ee method takes two arguments: a JSON element and a key. The key is used
only to help print the key-value pairs inside objects. Elements in a tree are represented by the
JsonVal ue type. If the element is an object or an array, a new invocation to this method is
made for every element contained in the object or array. If the element is a value, it is printed to
standard output.

The JsonVal ue. get Val ueType method identifies the element as an object, an array, or a value.
For objects, the Json(bj ect . keySet method returns a set of strings that contains the keys in
the object, and the JsonChj ect . get (Stri ng name) method returns the value of the element
whose key is nanme. For arrays, JsonArray implements the Li st <JsonVal ue> interface. You can
use enhanced f or loops with the Set <St ri ng> instance returned by JsonObj ect . keySet and
with instances of JsonAr ray, as shown in this example.

The navi gat eTr ee method for the model shown in Creating an Object Model from Application
Code produces the following output:

OBJECT

Key firstName: STRING Duke

Key |astNane: STRING Java

Key age: NUMBER 18

Key street Address: STRING 100 Internet Dr
Key city: STRING JavaTown

Key state: STRING JA

Key postal Code: STRING 12345
Key phoneNumbers: ARRAY

OBJECT

Key type: STRING mobile

Key nunmber: STRING 111-111-1111
OBJECT

Key type: STRING hone

Key nunber: STRING 222-222-2222

Writing an Object Model to a Stream

The object models created in Creating an Object Model from JSON Data and Creating an
Object Model from Application Code can be written to a stream using the
jakarta.json.JsonWiter interface as follows:

import java.io.StringWiter;
import jakarta.json.JsonWiter;

StringWiter stWiter = new StringWiter();
JsonWiter jsonWiter = Json.createWiter(stWiter);
jsonWiter.witeQject(nodel);

jsonWiter.close();

String jsonData = stWiter.toString();
Systemout. println(jsonData);

The Json.createWiter nethod takes an output streamas a paranmeter. The
JsonWiter.witeChject method wites the object to the stream The JsonWiter.close
met hod cl oses the underlying output stream

The foll owing exanple uses try-with-resources to close the JSON witer automatically:

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 10

ORACLE’

StringWiter stWiter = new StringWiter();
try (JsonWiter jsonWiter = Json.createWiter(stWiter)) {
jsonWiter.witeQject(nodel);

}

String jsonData = stWiter.toString();
Systemout. println(jsonData);

Streaming API

The streaming API is a low-level API designed to process large amounts of JSON data

efficiently.

This API consists of the following interfaces:

Chapter 10
Streaming API

Interface Description

javax.json.stream.JsonParser Contains methods to parse JSON in a streaming way.

This interface provides forward, read-only access to JSON data
using the pull parsing programming model. In this model the
application code controls the thread and calls methods in the parser
interface to move the parser forward or to obtain JSON data from

the current state of the parser.

j akarta.json.stream JsonGen Contains methods to write JSON to an output source in a streaming

erator way.

This interface provides methods to write JSON to an output source.
The generator writes name-value pairs in JSON objects and values

in JSON arrays.

The following sections show examples of using the streaming API:

Reading JSON Data Using a Parser

The streaming API is the most efficient approach for parsing JSON text. The following example
shows how to create a JsonPar ser object and how to parse JSON data using events:

i mport jakarta.json.Json;
i mport jakarta.json.stream JsonParser;

JsonParser parser = Json. createParser(new StringReader(jsonData));

whi l e (parser.hasNext()) {

JsonPar ser. Event event = parser.next();
switch(event) {

case START_ARRAY:

case END_ARRAY:

case START_OBJECT:

case END_OBJECT:

case VALUE_FALSE:

case VALUE_NULL:

case VALUE_TRUE:

Systemout. println(event.toString());

br eak;
case KEY_NAME:
Systemout.print(event.toString() + " " +
parser.getString() + " - ");
br eak;

case VALUE_STRI NG
case VALUE_NUMBER:

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 10

https://javaee.github.io/javaee-spec/javadocs/javax/json/stream/JsonParser.html

ORACLE

Chapter 10
Streaming API

Systemout.println(event.toString() +" " +
parser.getString()):
br eak;

}

This example consists of three steps:

1. Obtain a parser instance by invoking the Json. cr eat ePar ser static method.

2. lterate over the parser events using the JsonPar ser. hasNext and the JsonPar ser . next
methods.

3. Perform local processing for each element.

The example shows the ten possible event types from the parser. The parser's next method
advances it to the next event.

For the event types KEY_NAME, VALUE_STRI NG, and VALUE_NUMBER, you can obtain the content of
the element by invoking the JsonPar ser . get St ri ng method.

For VALUE_NUMBER events, you can also use the following methods:

START_OBJECT

KEY_NAME firstName - VALUE_STRI NG Duke
KEY_NAME | ast Nane - VALUE_STRI NG Java
KEY_NAME age - VALUE_NUMBER 18

KEY_NAME street Address - VALUE_STRING 100 Internet Dr
KEY_NAME city - VALUE_STRI NG JavaTown
KEY_NAME state - VALUE_STRI NG JA

KEY_NAME post al Code - VALUE_STRI NG 12345
KEY_NAME phoneNunbers - START_ARRAY
START_OBJECT

KEY_NAME type - VALUE_STRI NG nobil e
KEY_NAME nunber - VALUE_STRING 111-111-1111
END_OBJECT

START_OBJECT

KEY_NAME type - VALUE _STRI NG hone

KEY_NAME nunber - VALUE_STRI NG 222- 222- 2222
END_OBJECT

END_ARRAY

END_OBJECT

Writing JSON Data Using a Generator

The following example shows how to write JSON data to a file using the streaming API:

FileWiter witer = new FileWiter("test.txt");
JsonGenerat or gen = Json. createGenerator(witer);
gen.witeStartoject()
.write("firstNane", "Duke")
.write("lastName", "Java")
.wite("age", 18)
.wite("streetAddress", "100 Internet Dr")
.wite("city", "JavaTown")
.wite("state", "JA")
.wite("postal Code", "12345")
.writeStartArray("phoneNurmbers")
.witeStartOhject()
.wite("type", "nobile")
.write("nunber”, "111-111-1111")
.writeEnd()
.writeStartObject()

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 10

ORACLE

Chapter 10
New Features for JSON Processing

.wite("type", "home")
.wite("nunmber”, "222-222-2222")
.writeEnd()
.writeEnd()
.witeEnd();
gen. close();

This example obtains a JISON generator by invoking the Json. cr eat eGener at or static method,
which takes a writer or an output stream as a parameter. The example writes JSON data to the
test. txt file by nesting invocationstothewite, witeStartArray, witeStartCbject, and
wri t eEnd methods. The JsonGener at or . ¢l ose method closes the underlying writer or output
stream.

New Features for JSON Processing

The j akart a. j son API supports new features of JSON Processing such as JSON Pointer,
JSON Patch, and JSON Merge Patch. These features can be used to retrieve, transform or
manipulate values in an object model.

In this section, the following sample JSON document is used to demonstrate the new features
of JSON Processing. This sample contains name-value pairs and the value for the name
"phoneNunber s" used in this sample, is an array whose elements are two objects.

{
"firstName": "Duke",

"] ast Name": "Java",

"age": 18,

"street Address": "100 Internet Dr",

"city": "JavaTown",

"state": "JA",

"post al Code": "12345",

"phoneNunbers": [
{ "Mobile": "111-111-1111" },
{ "Home": "222-222-2222" }

]

}

This section includes the following topics:

JSON Pointer

JSON Pointer defines a string syntax for referencing a location in the target.

A JSON Pointer, when applied to a target JsonVal ue, defines a reference location in the target.
An empty JSON Pointer string defines a reference to the target itself.

JsonPoi nt er provides the following methods:

where cont act s is Json(hj ect contacts = Json. creat eReader (new
StringReader (j sonstring)).readject();

e add() - Adds new value or member.
[*add*/

JsonPoi nter pointer = Json.createPointer("/email");
contacts = pointer.add(contacts, Json. createVal ue("duke@xanpl e. cont'));

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 10

ORACLE

Chapter 10
New Features for JSON Processing

cont ai nsVal ue() - Checks if the value is present.

[*cont ai nsVal ue*/
JsonPoi nter pNane = Json. createPointer("/firstNane");
bool ean exi st = pNane. cont ai nsVal ue(“John”);

get Val ue() - Fetches a single value.

/ *get Val ue*/
JsonPoi nt er pPhone = Json. creat ePoi nter ("/phoneNunber/0");
Jsonval ue nobi | eNumber = (pPhone. get Val ue(contacts);

remove() - Removes the value at the target location.

[*renove*/
JsonPoi nter pRenove = Json. creat ePoi nter("/phoneNunber/0");
contacts = pRenove. renove(contacts);

repl ace() - Replaces the value at the target location.

[*repl ace*/
JsonPoi nter pAge = Json. createPointer("/age");
pAge. repl ace(contact s, 30);

The following is the resultant JSON document after running the JSON Pointer examples:

{

"firstNane": "Duke",
"l ast Nane": "Java",
"age": 30,
"email": "duke@xanpl e. cont,
"street Address": "100 Internet Dr",
"city": "JavaTown",
"state": "JA",
"post al Code": "12345",
"phoneNunmbers": |

{ "Home": "222-222-2222" }
]

See JSON Pointer RFC.

JSON Patch

JSON Patch defines a format for expressing a sequence of operations to be applied to a JSON
document.

JsonPat ch mainly consists of two interfaces:

JsonPat ch - Provides appl y(), t oJsonArray() methods.

JsonPat chBui | der - Provides add(), copy(), nove(), repl ace(), renove(), andtest()
methods.

A JsonPat ch can be constructed using the following approaches:

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 10

https://tools.ietf.org/html/rfc6901

ORACLE

Chapter 10
New Features for JSON Processing

Constructing a JSON Patch with JsonPat chBui | der

Jsonhj ect contacts = buil dPerson();
JsonPat chBui | der buil der = Json. creat ePat chBui |l der();
JsonObj ect result = builder.add("/emil","john@xanple. con')
.replace("/age", 30)
.remove("/ phoneNunber ")
.test("/firstName", "John")
.copy("/address/| ast Name", "/
| ast Nane")
Cbui 1 d()
.apply(contacts);

Constructing a JSON Patch with JsonPat ch

JsonArray patch=Json. createArrayBuil der().add(Json. creat eChj ect Bui | der ()
.add("op", "repl ace")
.add("path", "/ age")
.add("val ue", 30))
Cbuild();

JsonPat ch jsonPatch = Json. creat ePat ch(pat ch);

Jsonbj ect resultl = jsonPatch. appl y(buil dPerson());

command: [{"op":"replace","path":"/age", "val ue": 30}

See JSON Patch RFC.

JSON Merge Patch

JSON Merge Patch defines a format and processing rules for applying operations to a JSON
document that are based upon specific content of the target document.

JsonMer gePat ch describes changes to be made to a target JSON document using a syntax
that closely mimics the document being modified.

Table 10-1 JsonMergePatch syntax
]

Original Patch Result
{"a™:"b"} {"a™"c"} {"a™"c"}
{"a":"b"} {"b™:"c"} {"a":"b","b":"c"}
{"a":"b"} {"a":null} {
{"a":"b","b":"c"} {"a":null} {"b":"c"}

You can create a JSON Merge Patch from:

An existing JSONVer gePat ch

JsonVal ue contacts = ... ; // The target to be patched
JsonVal ue patch = ... ; // JSON Merge Patch

JsonMer gePat ch nergePat ch = Json. cr eat eMer gePat ch(pat ch);
JsonVal ue result = mergePatch. appl y(contacts);

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 10

https://tools.ietf.org/html/rfc6902

ORACLE’

Chapter 10
New Features for JSON Processing

A difference between two JsonVal ues

/1 The source object

JsonVal ue source = ... ;

/1 The nodified object

JsonVal ue target = ... ;

/1 The diff between source and target in a Json Merge Patch format
JsonMer gePat ch nergePat ch = Json. creat eMergeDi ff(source, target);

See JSON Merge Patch RFC.

If you selected to install the Server Examples, the JSON P examples are located in the
ORACLE_HOVE\ W server\ sanpl es\ server\ exanpl es\ src\ exanpl es\j avaee8\ j sonp directory,
where ORACLE_HOME represents the directory in which you installed WebLogic Server.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 10 of 10

https://tools.ietf.org/html/rfc7396

Jakarta JSON Binding

Jakarta JSON Binding (JSON-B) is a standard binding layer for converting Java objects to or
from JSON messages. Oracle WebLogic Server 15.1.1.0.0 supports the Jakarta JSON Binding
specification by including the JSR-367 reference implementation for use with applications
deployed on a WebLogic Server instance.

JSON-B defines a default mapping algorithm for converting existing Java classes to JSON,
while enabling developers to customize the mapping process through the use of Java
annotations. For more information, see:

» JSON Binding in the Jakarta EE Tutorial.
« JSON Binding User Guide

e JSON Binding in the Jakarta EE Platform.

This chapter includes the following sections:

About Default Mapping

Default mapping is a set of rules used by the JSON-B engine by default without any
customization annotations and custom configuration provided.

This mapping is used for serializing and deserializing basic Java types (such as
java.lang. String, java.lang. Long, and j ava. | ang. Bool ean), Java SE types (such as
java. math. Bi gl nteger andjava.util.Optional), and Java date and time classes.

The main entry point in JSON-B is the Jsonb class. It provides a set of overloaded t 0Json and
f romJson methods to serialize Java objects to JSON documents and deserialize them back.
Jsonb instances are thread safe and can be reused. It is recommended to have a single
instance per configuration type.

You can map an object, a collection, or a generic collection:
* Mapping an object

To map an object, you must first create a Jsonb instance, and use the t oJson method to
serialize to JSON and the fromJson method to deserialize back to an object.

* Mapping a collection or a generic collection

JSON-B supports collections and generic collections handling. For proper deserialization,
the runtime type of the resulting object needs to be passed to JSON-B during
deserialization.

For more information about default mapping, see:

e Default Mapping in JSON Binding User Guide

e Using the Default Mapping in Overview of the JSON Binding API

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 2

https://jakarta.ee/specifications/jsonb/1.0/
https://jakarta.ee/learn/docs/jakartaee-tutorial/current/web/jsonb/jsonb.html
http://json-b.net/index.html
https://jakarta.ee/learn/docs/jakartaee-tutorial/current/web/jsonb/jsonb.html#_main_classes_and_interfaces_in_bind
http://json-b.net/index.html
https://jakarta.ee/learn/docs/jakartaee-tutorial/current/web/jsonb/jsonb.html#_main_classes_and_interfaces_in_bind

ORACLE Chapter 11
About Customized Mapping

About Customized Mapping

You can customize your mapping in many ways. Use JSON-B annotations for compile time
customizations and JsonbConfi g class for runtime customizations.

JSON-B supports the following customizations:

e Creating custom configurations with formatted output
e Changing property names

e Customizing the order of serialized properties
e Ignoring properties

e Changing the default null handling

e Using custom instantiation

e Changing the date and number formats

e Using binary encoding

e Using adapters

e Using serializer and deserializer classes

e Using strict I-JSON support

For more information about customized mapping, see:

e Customized Mapping in the JSON Binding 2.0 User Guide (https://jakarta.ee/specifications/
jsonb/2.0/jakarta-jsonb-spec-2.0.pdf)

e Customizing Mapping in the JSON Binding 2.0 User Guide in (https://jakarta.ee/
specifications/jsonb/2.0/jakarta-jsonb-spec-2.0.pdf)

Standard Support to Handle Application or JSON Media Type for
JAX-RS

In a product that supports Jakarta JSON Binding, implementations must support entity
providers for all Java types supported by JSON-B in combination with the media types -
application/json,text/json, and any other media types matching */j son or */ *+j son.

@® Note

If both JISON-B and JSON-P are supported in the same environment, entity providers
for JISON-B take precedence over those for JSON-P, for all types except JsonVal ue
and its sub-types. Note the precedence with JISON-P.

If you selected to install the WebLogic Server Examples, you'll find an example that
demonstrates how to use Jakarta JSON Binding with JAX-RS in the

ORACLE_HOVE\ W server\ sanpl es\ server\ exanpl es\ src\ exanpl es\j avaee8\j sonb\jaxrs
directory of your WebLogic Server distribution, where ORACLE_HOME represents the directory in
which you installed WebLogic Server. For more information about the WebLogic Server code
examples, see Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 2

Understanding WebLogic Server Application
Classloading

Java classloader is a part of the Java virtual machine (JVM) that loads classes into memory.
WebLogic Server Jakarta EE application classloading enables WebLogic Server to host
multiple isolated applications within the same JVM.

This chapter includes the following sections:

Java Classloading

Classloaders are a fundamental module of the Java language. A classloader is a part of the
Java virtual machine (JVM) that loads classes into memory; a classloader is responsible for
finding and loading class files at run time. Every successful Java programmer needs to
understand classloaders and their behavior.

Java Classloader Hierarchy

Classloaders contain a hierarchy with parent classloaders and child classloaders. The
relationship between parent and child classloaders is analogous to the object relationship of
super classes and subclasses. The bootstrap classloader is the root of the Java classloader
hierarchy. The Java virtual machine (JVM) creates the bootstrap classloader, which loads the
Java development kit (JDK) internal classes and j ava. * packages included in the JVM. (For
example, the bootstrap classloader loads j ava. | ang. String.)

The extensions classloader is a child of the bootstrap classloader. The extensions classloader
loads any JAR files placed in the extensions directory of the JDK. This is a convenient means
to extending the JDK without adding entries to the classpath. However, anything in the
extensions directory must be self-contained and can only refer to classes in the extensions
directory or JDK classes.

The system classpath classloader extends the JDK extensions classloader. The system
classpath classloader loads the classes from the classpath of the JVM. Application-specific
classloaders (including WebLogic Server classloaders) are children of the system classpath
classloader.

@® Note

What Oracle refers to as a "system classpath classloader" is often referred to as the
"application classloader" in contexts outside of WebLogic Server. When discussing
classloaders in WebLogic Server, Oracle uses the term "system" to differentiate from
classloaders related to Jakarta EE applications or libraries (which Oracle refers to as
"application classloaders").

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 19

ORACLE Chapter 12
Java Classloading

Loading a Class

Classloaders use a delegation model when loading a class. The classloader implementation
first checks its cache to see if the requested class has already been loaded. This class
verification improves performance in that its cached memory copy is used instead of repeated
loading of a class from disk. If the class is not found in its cache, the current classloader asks
its parent for the class. Only if the parent cannot load the class does the classloader attempt to
load the class. If a class exists in both the parent and child classloaders, the parent version is
loaded. This delegation model is followed to avoid multiple copies of the same form being
loaded. Multiple copies of the same class can lead to a C assCast Except i on.

Classloaders ask their parent classloader to load a class before attempting to load the class
themselves. Classloaders in WebLogic Server that are associated with Web applications can
be configured to check locally first before asking their parent for the class. This allows Web
applications to use their own versions of third-party classes, which might also be used as part
of the WebLogic Server product. The prefer-web-inf-classes Element section discusses this in
more detail.

prefer-web-inf-classes Element

The webl ogi c. xm Web application deployment descriptor contains a <pr ef er - web- i nf -

cl asses> element (a sub-element of the <cont ai ner - descri pt or > element). By default, this
element is set to Fal se. Setting this element to Tr ue subverts the classloader delegation model
so that class definitions from the Web application are loaded in preference to class definitions
in higher-level classloaders. This allows a Web application to use its own version of a third-
party class, which might also be part of WebLogic Server. See weblogic.xml Deployment
Descriptor Elements.

When using this feature, you must be careful not to mix instances created from the Web
application's class definition with instances created from the server's definition. If such
instances are mixed, a O assCast Except i on results.

Example 12-1 illustrates the pref er - web- i nf - cl asses element, its description and default
value.

Example 12-1 prefer-web-inf-classes Element
/ * %

* |f true, classes located in the WEB-INF directory of a web-app will be
* | oaded in preference to classes |oaded in the application or system

* ¢l assl oader.

* @lefault false

*/

bool ean i sPreferWebl nfd asses();

voi d set Pref er\ebl nf Cl asses(bool ean b);

Changing Classes in a Running Program

WebLogic Server allows you to deploy newer versions of application modules such as EJBs
while the server is running. This process is known as hot-deploy or hot-redeploy and is closely
related to classloading.

Java classloaders do not have any standard mechanism to undeploy or unload a set of
classes, nor can they load new versions of classes. In order to make updates to classes in a
running virtual machine, the classloader that loaded the changed classes must be replaced
with a new classloader. When a classloader is replaced, all classes that were loaded from that

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 19

ORACLE

Chapter 12
Java Classloading

classloader (or any classloaders that are offspring of that classloader) must be reloaded. Any
instances of these classes must be re-instantiated.

In WebLogic Server, each application has a hierarchy of classloaders that are offspring of the
system classloader. These hierarchies allow applications or parts of applications to be
individually reloaded without affecting the rest of the system. Weblogic Server Application
Classloading discusses this topic.

Class Caching With the Policy Class Loader

The Policy Class Loader (PCL) is the default system class loader when starting WebLogic
Server using a startWebLogic script. The Policy Class Loader improves class loader
performance and server startup time through class caching and indexing and is supported in
any WebLogic mode (development or production).

The Policy Class Loader caches loaded classes in a cache file. Upon subsequent starts, the
cached classes are preloaded in bulk, improving performance in use cases that load a large
number of classes from the system class loader, such as server startup. The Policy Class
Loader also contains an eager index, which maps package names and JAR files containing the
source code. This index improves lookup time for classes and reduces the time spent looking
for missing classes or resources. Cached files are generated in the DOVAI N_HOVE/ ser ver s/
webl ogi c_nane/ cache/ cl assl oader directory.

® Note
Class Caching with the Policy Class Loader is only supported for JDK 8.

Policy Class Loader by default has the class caching not enabled. In WebLogic Server 12.1.3,
you could enable class caching in development mode by setting the CLASS_CACHE environment
variable in the st art WebLogi ¢ script. For pre-existing 12.1.3 start scripts, continue to use the
CLASS_CACHE variable to enable class caching. See Configuring Class Caching in Developing
Applications for Oracle WebLogic Server 12c¢ (12.1.3).

As of WebLogic Server 12.2.1, new domains use the Policy Class Loader by default for class
caching. Any 12.1.3 domains that upgrade to 12.2.1 also automatically use the Policy Class
Loader.

® Note

If you want to disable the Policy Class Loader and use the standard system class
loader in JVM, set USE_JVM SYSTEM LOADER=t r ue when you run the st art WebLogi ¢
script.

Class Caching With Application Class Data Sharing

The Application Class Data Sharing (AppCDS) is a class loader optimization that supports
archive files of predefined, validated, and linked classes.

This implementation improves the startup time of Oracle WebLogic Server and allows multiple
JVMs on the same machine to share memory pages, thereby reducing overall memory usage.

To use this feature, do the following:

1. Generate Class List During WebLogic Server Trial

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 19

http://www.oracle.com/pls/topic/lookup?ctx=fmw121300&id=WLPRG493

ORACLE’

Chapter 12
WebLogic Server Application Classloading

2. Generate AppCDS Archive
3. Run WebLogic Server With AppCDS Archive

Generate Class List During WebLogic Server Trial

Generate a class list by starting the WebLogic Server with the following option:

.IstartWebLogi c. sh generat eC assLi st

By default, the class list will be generated at $DOVAI N_HOVE/ WebLogi c. ¢l assl i st. You can
change this by setting the value of APPCDS_CLASS LI ST when starting the WebLogic Server. For
example:

APPCDS _CLASS LI ST=ny. cl asslist ./startWbLogic.sh generateC assLi st

When you use class caching with AppCDS, the Policy Class Loader (PCL) will be disabled.

Generate AppCDS Archive

Generate an AppCDS archive using the command:

. I gener at eAr chi ve. sh

By default, the class list file will be available at $DOMAI N_HOVE/ WebLogi c. cl assl i st, and the
archive file will be generated at $DOMAI N_HOVE/ WebLogi ¢. j sa. You can change these filenames
by setting the value of APPCDS_CLASS LI ST and APPCDS_ARCHI VE respectively, when running the
gener at eAr chi ve. sh command. For example:

APPCDS _CLASS LI ST=ny. cl asslist APPCDS_ARCHI VE=nyArchive.jsa ./
gener at eAr chi ve. sh

Run WebLogic Server With AppCDS Archive

After you generate an AppCDS archive, run the WebLogic Server using this archive:

./ start\WebLogi c. sh useArchive

You can change the default location of the AppCDS archive by setting the value of
APPCDS_ARCHI VE when starting the WebLogic Server. For example:

APPCDS_ARCHI VE=nyAr chi ve.jsa ./start\WbLogi c. sh useArchive

AppCDS is not compatible with Policy Class Loader. Therefore, Policy Class Loader will be
disabled.

WebLogic Server Application Classloading

WebLogic Server classloading is centered on the concept of an application. An application is
normally packaged in an Enterprise Archive (EAR) file containing application classes.
WebLogic Server application classloading allows WebLogic Server to host multiple isolated
applications within the same JVM.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 19

ORACLE Chapter 12
WebLogic Server Application Classloading

Overview of WebLogic Server Application Classloading

WebLogic Server classloading is centered on the concept of an application. An application is
normally packaged in an Enterprise Archive (EAR) file containing application classes.
Everything within an EAR file is considered part of the same application. The following may be
part of an EAR or can be loaded as standalone applications:

 AnEJB JAR file
e A Web application WAR file

e Aresource adapter RAR file

® Note
See the following sections for more information:

— For information on resource adapters and classloading, see About Resource
Adapter Classes.

— Forinformation on overriding generic application files while classloading, see
Generic File Loading Overrides in Deploying Applications to Oracle WebLogic
Server.

If you deploy an EJB and a Web application separately, they are considered two applications. If
they are deployed together within an EAR file, they are one application. You deploy modules
together in an EAR file for them to be considered part of the same application.

Every application receives its own classloader hierarchy; the parent of this hierarchy is the
system classpath classloader. This isolates applications so that application A cannot see the
classloaders or classes of application B. In hierarchy classloaders, no sibling or friend
concepts exist. Application code only has visibility to classes loaded by the classloader
associated with the application (or module) and classes that are loaded by classloaders that
are ancestors of the application (or module) classloader. This allows WebLogic Server to host
multiple isolated applications within the same JVM.

Application Classloader Hierarchy

WebLogic Server automatically creates a hierarchy of classloaders when an application is
deployed. The root classloader in this hierarchy loads any EJB JAR files in the application. A
child classloader is created for each Web application WAR file.

Because it is common for Web applications to call EJBs, the WebLogic Server application
classloader architecture allows Jakarta Server Page (JSP) files and servlets to see the EJB
interfaces in their parent classloader. This architecture also allows Web applications to be
redeployed without redeploying the EJB tier. In practice, it is more common to change JSP files
and servlets than to change the EJB tier.

The following graphic illustrates this WebLogic Server application classloading concept.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 19

ORACLE Chapter 12
WebLogic Server Application Classloading

Figure 12-1 WebLogic Server Classloading

System Classpath Loader

1

Application 1 Application 2

WebLogic Server

EIE1 EIB 2 EIES3

|

WebApp 1 WebApp 2 WebApp 3

If your application includes servlets and JSPs that use EJBs:

» Package the servlets and JSPs in a WAR file

* Package the Jakarta Enterprise Beans (EJB) in an EJB JAR file
e Package the WAR and JAR files in an EAR file

* Deploy the EAR file

Although you could deploy the WAR and JAR files separately, deploying them together in an
EAR file produces a classloader arrangement that allows the servlets and JSPs to find the EJB
classes. If you deploy the WAR and JAR files separately, WebLogic Server creates sibling
classloaders for them. This means that you must include the EJB home and remote interfaces
in the WAR file, and WebLogic Server must use the RMI stub and skeleton classes for EJB
calls, just as it does when EJB clients and implementation classes are in different JVMs. This
concept is discussed in more detail in the next section Application Classloading and Pass-by-
Value or Reference.

® Note

The Web application classloader contains all classes for the Web application except
for the JSP class. The JSP class obtains its own classloader, which is a child of the
Web application classloader. This allows JSPs to be individually reloaded.

Custom Module Classloader Hierarchies

You can create custom classloader hierarchies for an application allowing for better control
over class visibility and reloadability. You achieve this by defining a cl assl oader-structure
element in the webl ogi c- appl i cati on. xm deployment descriptor file.

The following diagram illustrates how classloaders are organized by default for WebLogic
applications. An application level classloader exists where all EJB classes are loaded. For
each Web module, there is a separate child classloader for the classes of that module.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 19

ORACLE

Chapter 12
WebLogic Server Application Classloading

For simplicity, JSP classloaders are not described in the following diagram.

Figure 12-2 Standard Classloader Hierarchy

Application Classloader

[EJB 1] [EJB 2]
Web Application 1 Web Application 2
Classloader Classloader

This hierarchy is optimal for most applications, because it allows call-by-reference semantics
when you invoke EJBs. It also allows Web modules to be independently reloaded without
affecting other modules. Further, it allows code running in one of the Web modules to load
classes from any of the EJB modules. This is convenient, as it can prevent a Web module from
including the interfaces for EJBs that it uses. Note that some of those benefits are not strictly
Jakarta EE-compliant.

The ability to create custom module classloaders provides a mechanism to declare alternate
classloader organizations that allow the following:

¢ Reloading individual EJB modules independently
* Reloading groups of modules to be reloaded together
* Reversing the parent child relationship between specific Web modules and EJB modules

* Namespace separation between EJB modules

Declaring the Classloader Hierarchy

You can declare the classloader hierarchy in the WebLogic-specific application deployment
descriptor webl ogi c- appl i cation. xn .

The DTD for this declaration is as follows:

< ELEMENT cl assl oader-structure (nodul e-ref*, classloader-structure*)>
<! ELEMENT nodul e-ref (nmodul e-uri)>
<! ELEMENT nodul e-uri (#PCDATA) >

The top-level element in webl ogi c- appl i cati on. xn includes an optional cl assl oader -

st ruct ur e element. If you do not specify this element, then the standard classloader is used.
Also, if you do not include a particular module in the definition, it is assigned a classloader, as
in the standard hierarchy. That is, EJB modules are associated with the application root
classloader, and Web application modules have their own classloaders.

The cl assl oader - st ruct ur e element allows for the nesting of cl assl oader - structure
stanzas, so that you can describe an arbitrary hierarchy of classloaders. There is currently a
limitation of three levels. The outermost entry indicates the application classloader. For any
modules not listed, the standard hierarchy is assumed.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 19

ORACLE Chapter 12
WebLogic Server Application Classloading

@® Note

JSP classloaders are not included in this definition scheme. JSPs are always loaded
into a classloader that is a child of the classloader associated with the Web module to
which it belongs.

For more information on the DTD elements, refer to Enterprise Application Deployment
Descriptor Elements.

The following is an example of a classloader declaration (defined in the cl assl oader -
struct ure element in webl ogi c- appl i cation. xm):

<cl assl oader - struct ure>
<modul e-ref >
<nodul e-uri >ej bl.jar </ nodul e-uri >
</ modul e-ref>
<modul e-ref >
<modul e-uri >web3. war </ nodul e-uri >
</ modul e-ref>

<cl assl oader - struct ure>
<modul e-ref>
<nmodul e-uri >webl. war </ nodul e-uri >
</ modul e-ref>
</ cl assl oader - structure>

<cl assl oader - struct ure>
<modul e-ref>
<modul e- uri >ej b3.j ar </ nodul e-uri >
</ modul e-ref>
<modul e-ref>
<modul e-uri >web2. war </ nodul e-uri >
</ modul e-ref>

<cl assl oader - struct ure>
<modul e-ref>
<modul e- uri >web4. war </ nodul e-uri >
</ modul e-ref>
</ cl assl oader - structure>
<cl assl oader - struct ure>
<modul e-ref>
<modul e-uri >ej b2. j ar </ nodul e-uri >
</ modul e-ref>
</ cl assl oader - structure>
</ cl assl oader - structure>
</ cl assl oader-structure>

The organization of the nesting indicates the classloader hierarchy. The above stanza leads to
a hierarchy shown in the following diagram.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 19

ORACLE

Chapter 12
WebLogic Server Application Classloading

Figure 12-3 Example Classloader Hierarchy
Application Classloader

[EJB 1] [WEB 3]

T

[WEB 1] [EJB 3] [WEB 2]

L]

[WEB 4] [EJB 2]

User-Defined Classloader Restrictions

User-defined classloader restrictions give you better control over what is reloadable and
provide inter-module class visibility. This feature is primarily for developers. It is useful for
iterative development, but the reloading aspect of this feature is not recommended for
production use, because it is possible to corrupt a running application if an update includes
invalid elements. Custom classloader arrangements for namespace separation and class
visibility are acceptable for production use. However, programmers should be aware that the
Jakarta EE specifications say that applications should not depend on any given classloader
organization.

Some classloader hierarchies can cause modules within an application to behave more like
modules in two separate applications. For example, if you place an EJB in its own classloader
so that it can be reloaded individually, you receive call-by-value semantics rather than the call-
by-reference optimization Oracle provides in our standard classloader hierarchy. Also note that
if you use a custom hierarchy, you might end up with stale references. Therefore, if you reload
an EJB module, you should also reload the calling modules.

There are some restrictions to creating user-defined module classloader hierarchies; these are
discussed in the following sections.

Servlet Reloading Disabled

If you use a custom classloader hierarchy, servlet reloading is disabled for Web applications in
that particular application.

Nesting Depth

Nesting is limited to three levels (including the application classloader). Deeper nestings lead
to a deployment exception.

Module Types

Custom classloader hierarchies are currently restricted to Web and EJB modules.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 19

ORACLE Chapter 12
WebLogic Server Application Classloading

Duplicate Entries

Duplicate entries lead to a deployment exception.

Interfaces

The standard WebLogic Server classloader hierarchy makes EJB interfaces available to all
modules in the application. Thus other modules can invoke an EJB, even though they do not
include the interface classes in their own module. This is possible because EJBs are always
loaded into the root classloader and all other modules either share that classloader or have a
classloader that is a child of that classloader.

With the custom classloader feature, you can configure a classloader hierarchy so that a
callee's classes are not visible to the caller. In this case, the calling module must include the
interface classes. This is the same requirement that exists when invoking on modules in a
separate application.

Call-by-Value Semantics

The standard classloader hierarchy provided with WebLogic Server allows for calls between
modules within an application to use call-by-reference semantics. This is because the caller is
always using the same classloader or a child classloader of the callee. With this feature, it is
possible to configure the classloader hierarchy so that two modules are in separate branches
of the classloader tree. In this case, call-by-value semantics are used.

In-Flight Work

Be aware that the classloader switch required for reloading is not atomic across modules. In
fact, updates to applications in general are not atomic. For this reason, it is possible that
different in-flight operations (operations that are occurring while a change is being made) might
end up accessing different versions of classes depending on timing.

Development Use Only

The development-use-only feature is intended for development use. Because updates are not
atomic, this feature is not suitable for production use.

Individual EJB Classloader for Implementation Classes

WebLogic Server allows you to reload individual EJB modules without requiring you to reload
other modules at the same time and having to redeploy the entire EJB module. This feature is
similar to how JSPs are currently reloaded in the WebLogic Server servlet container.

Because EJB classes are invoked through an interface, it is possible to load individual EJB
implementation classes in their own classloader. This way, these classes can be reloaded
individually without having to redeploy the entire EJB module. Below is a diagram of what the
classloader hierarchy for a single EJB module would look like. The module contains two EJBs
(Foo and Bar). This would be a sub-tree of the general application hierarchy described in the
previous section.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 19

ORACLE Chapter 12
WebLogic Server Application Classloading

Figure 12-4 Example Classloader Hierarchy for a Single EJB Module

Module Classloader

Foo.class Bar.class
FooHome.class BarHome.class

[Any other classes either generated or from the JAR file]

Foo Classloader Bar Classloader

Foolmpl.class Barlmpl.class

To perform a partial update of files relative to the root of the exploded application, use the
following command line:

Example 12-2 Performing a Partial File Update

java webl ogi c. Depl oyer -adminurl url -user user -password password
-name nyapp -redepl oy nyej b/ foo.class

After the - r edepl oy command, you provide a list of files relative to the root of the exploded
application that you want to update. This might be the path to a specific element (as above) or
a module (or any set of elements and modules). For example:

Example 12-3 Providing a List of Relative Files for Update

java webl ogi c. Depl oyer -adminurl url -user user -password password
-name nyapp -redepl oy nmywar myejb/foo.class anotherejb

Given a set of files to be updated, the system tries to figure out the minimum set of things it
needs to redeploy. Redeploying only an EJB i npl class causes only that class to be
redeployed. If you specify the whole EJB (in the above example, anot her ej b) or if you change
and update the EJB home interface, the entire EJB module must be redeployed.

Depending on the classloader hierarchy, this redeployment may lead to other modules being
redeployed. Specifically, if other modules share the EJB classloader or are loaded into a
classloader that is a child to the EJB's classloader (as in the WebLogic Server standard
classloader module) then those modules are also reloaded.

Application Classloading and Pass-by-Value or Reference

Modern programming languages use two common parameter passing models: pass-by-value
and pass-by-reference. With pass-by-value, parameters and return values are copied for each
method call. With pass-by-reference, a pointer (or reference) to the actual object is passed to
the method. Pass by reference improves performance because it avoids copying objects, but it
also allows a method to modify the state of a passed parameter.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 19

ORACLE

Chapter 12
WebLogic Server Application Classloading

WebLogic Server includes an optimization to improve the performance of Remote Method
Interface (RMI) calls within the server. Rather than using pass by value and the RMI
subsystem's marshalling and unmarshalling facilities, the server makes a direct Java method
call using pass by reference. This mechanism greatly improves performance and is also used
for EJB 2.0 local interfaces.

RMI call optimization and call by reference can only be used when the caller and callee are
within the same application. As usual, this is related to classloaders. Because applications
have their own classloader hierarchy, any application class has a definition in both classloaders
and receives a ClassCastException error if you try to assign between applications. To work
around this, WebLogic Server uses call-by-value between applications, even if they are within
the same JVM.

@® Note

Calls between applications are slower than calls within the same application. Deploy
modules together as an EAR file to enable fast RMI calls and use of the EJB 2.0 local
interfaces.

Using a Filtering Classloader

In WebLogic Server, any JAR file present in the system classpath is loaded by the WebLogic
Server system classloader. All applications running within a server instance are loaded in
application classloaders which are children of the system classloader. In this implementation of
the system classloader, applications cannot use different versions of third-party JARs which
are already present in the system classloader. Every child classloader asks the parent (the
system classloader) for a particular class and cannot load classes which are seen by the
parent.

For example, if a class called com f 0o. Baz exists in both $SCLASSPATH as well as the application
EAR, then the class from the $CLASSPATH is loaded and not the one from the EAR. Since

webl ogi c. j ar is in the $CLASSPATH, applications cannot override any WebLogic Server
classes.

The following sections define and describe how to use a filtering classloader:

« Whatis a Filtering Classloader

« Configuring a Filtering Classloader

 Resource Loading Order

What is a Filtering Classloader

The Fil teringd assLoader provides a mechanism for you to configure deployment descriptors
to explicitly specify that certain packages should always be loaded from the application, rather
than being loaded by the system classloader. This allows you to use alternate versions of
applications such as Xerces and Ant. Though the Fi | t eri ngCl assLoader lets you bundle and
use 3rd party JARs in your application, it is not recommended that you filter out API classes,
like classes in j avax packages or webl ogi ¢ packages.

The Fil teringC assLoader sits between the application classloader and the system
classloader. It is a child of the system classloader and the parent of the application classloader.
The Fi |l teringd assLoader intercepts the | oadC ass(String cl assName) method and
compares the cl assName with a list of packages specified in webl ogi c- appl i cation. xm file. If

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 19

ORACLE Chapter 12
WebLogic Server Application Classloading

the package matches the cl assNane, the Fi | t eri ngd assLoader throws a
Q assNot FoundExcept i on. This exception notifies the application classloader to load this class
from the application.

Configuring a Filtering Classloader

To configure the Fi | t eri ngd assLoader to specify that a certain package is loaded from an
application, add a pref er - appl i cati on- packages descriptor element to webl ogi c-

appl i cation.xm which details the list of packages to be loaded from the application. The
following example specifies that or g. apache. [0g4j . * and ant | r. * packages are loaded from
the application, not the system classloader:

<prefer-application-packages>
<package- name>or g. apache. | og4j . *</ package- nane>
<package- name>ant | r. *</ package- name>

</ prefer-application-packages>

The prefer-application-packages descriptor element can also be defined in webl ogi c. xm .
See prefer-application-packages.

You can specify that a certain package be loaded for a WAR file included within an EAR file by
configuring the Fi | t eri ngQ assLoader in the webl ogi c. xnl file of the WAR file.

For example, A. ear contains B. war . A. ear defines the Fi |l teringC assLoader in webl ogi c-
application. xm , and B. war defines a different Fi | t eri ngC assLoader in webl ogi c. xnl .
When you deploy A. ear, B. war loads the package defined in the Fi | t eri ngQ assLoader in
webl ogi c. xm . The WAR-level Fi | t eri ngCl assLoader has priority over the EAR-level
Filteringd assLoader for this WAR file.

For aid in configuring filtering classloaders, see Using the Classloader Analysis Tool (CAT).

Resource Loading Order

The resource loading order is the order in which j ava. | ang. C assLoader methods

get Resour ce() and get Resour ces() return resources. When filtering is enabled, this order is
slightly different from the case when filtering is disabled. Filtering is enabled implies that there
are one or more package patterns in the Fi | t eri ngC assLoader . Without any filtering (default),
the resources are collected in the top-down order of the classloader tree. For instance, if Web
(1) requests resources, the resources are grouped in the following order: Sys (3), App (2) and
Web(1). See Example 12-4.

@® Note

The resources are returned in the default Java EE delegation model beneath the
Fi | teringd assLoader. Only the resources from the parent of the
Filteringd assLoader are appended to the end of the enumeration being returned.

Example 12-4 Using the System Classloader

System (3)
I
A||0p (2)
Veb (1)

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 19

ORACLE Chapter 12
Resolving Class References Between Modules and Applications

To be more explicit, given a resource / META- | NF/ f 0o. xm which exists in all the classloaders,
would return the following list of URLS:

META- I NF/ foo. xm - fromthe System O assLoader (3)
META- I NF/ foo. xm - fromthe App C assLoader (2)
META- I NF/ foo. xm - fromthe Wb C assLoader (1)

When filtering is enabled, the resources from the child of the Fi | t eri ngCl assLoader (an
application classloader) down to the calling classloader are returned before the ones from the
system classloader. In Example 12-5, if the same resource existed in all the classloaders (D),
(B) and (A) one would get them in the following order if requested by the Web classloader:

META- I NF/ foo. xml - fromthe App C assLoader (B)
META- I NF/ foo. xml - fromthe Web C assLoader (A)
META- I NF/ foo. xm - fromthe System C assLoader (D)

Example 12-5 Using a Filtering Classloading Implementation

System (D)
|
Filteringd assLoader (filterList :=x.y.*) (O

I
A{Jp (B)
Veb (A)

If the application classloader requested the same resource, the following order would be
obtained.

META- I NF/ foo.xm - fromthe App C assLoader (B)
META- I NF/ foo. xm - fromthe System O assLoader (D)

For get Resour ce(), only the first descriptor is returned and get Resour ceAsSt rean() returns
the i nput St r eamof the first resource.

Resolving Class References Between Modules and Applications

WebLogic Server deploys applications in separate classloaders to maintain independence and
to facilitate dynamic redeployment and undeployment. Because of this, you need to package
your application classes in such a way that each module has access to the classes it depends
on.

Your applications may use many different Java classes, including Enterprise Beans, servlets
and Jakarta Pages, utility classes, and third-party packages. In some cases, you may have to
include a set of classes in more than one application or module. This section describes how
WebLogic Server uses multiple classloaders so that you can stage your applications
successfully.

For more information about analyzing and resolving classloading issues, see Using the
Classloader Analysis Tool (CAT).

About Resource Adapter Classes

Each resource adapter now uses its own classloader to load classes (similar to Web
applications). As a result, modules like Web applications and EJBs that are packaged along
with a resource adapter in an application archive (EAR file) do not have visibility into the
resource adapter's classes. If such visibility is required, you must place the resource adapter
classes in APP-INF/classes. You can also archive these classes (using the JAR utility) and
place them in the APP-INF/lib of the application archive.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 19

ORACLE

Chapter 12
Using the Classloader Analysis Tool (CAT)

Make sure that no resource-adapter specific classes exist in your WebLogic Server system
classpath. If you need to use resource adapter-specific classes with Web modules (for
example, an EJB or Web application), you must bundle these classes in the corresponding
module's archive file (for example, the JAR file for EJBs or the WAR file for Web applications).

Packaging Shared Utility Classes

WebLogic Server provides a location within an EAR file where you can store shared utility
classes. Place utility JAR files in the APP-1NF/ | i b directory and individual classes in the APP-

I NF/ cl asses directory. (Do not place JAR files in the / cl asses directory or classes inthe /lib
directory.) These classes are loaded into the root classloader for the application.

This feature obviates the need to place utility classes in the system classpath or place classes
in an EJB JAR file (which depends on the standard WebLogic Server classloader hierarchy).
Be aware that using this feature is subtly different from using the manifest Cl ass- Pat h
described in the following section. With this feature, class definitions are shared across the
application. With manifest C ass- Pat h, the classpath of the referencing module is simply
extended, which means that separate copies of the classes exist for each module.

Manifest Class-Path

Using the

The Jakarta EE specification provides the manifest O ass- Pat h entry as a means for a module
to specify that it requires an auxiliary JAR of classes. You only need to use this manifest

A ass- Pat h entry if you have additional supporting JAR files as part of your EJB JAR or WAR
file. In such cases, when you create the JAR or WAR file, you must include a manifest file with
a C ass- Pat h element that references the required JAR files.

The following is a simple manifest file that references a utility.jar file:

Mani f est-Version: 1.0 [CRLF]
C ass-Path: utility.jar [CRLF]

In the first line of the manifest file, you must always include the Mani f est - Ver si on attribute,
followed by a new line (CR | LF |CRLF) and then the O ass- Pat h attribute. More information
about the manifest format can be found at: htt ps: // docs. oracl e. com en/j avalj avase/ 17/
docs/specs/jar/jar. htm

The manifest O ass- Pat h entries refer to other archives relative to the current archive in which
these entries are defined. This structure allows multiple WAR files and EJB JAR files to share a
common library JAR. For example, if a WAR file contains a manifest entry of y. j ar s, this entry
should be next to the WAR file (not within it) as follows:

[<di rectory>/x. war
/<directory>/y.jars

The manifest file itself should be located in the archive at META- | NF/ MANI FEST. M.

See http://docs.oracle.com javase/tutorial/deploynent/jar/nanifestindex. htnl.

Classloader Analysis Tool (CAT)

CAT is a web-based class analysis tool that simplifies filtering classloader configuration and
aids you in analyzing classloading issues, such as detecting conflicts, debugging application
classpaths and class conflicts, and proposes solutions to help you resolve them.

CAT is a standalone web application, distributed as a single WAR file, W s- cat . war , exposing
its features through a web-based front end.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 19

https://docs.oracle.com/en/java/javase/17/docs/specs/jar/jar.html
https://docs.oracle.com/en/java/javase/17/docs/specs/jar/jar.html
http://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html

ORACLE

Chapter 12
Using the Classloader Analysis Tool (CAT)

To access the CAT application, you must first update your existing domain with the
ORACLE_HOVE\ W server\ conmon\t enpl ates\wW s\wW s_cat . j ar template. CAT is deployed just
like any other web application. The CAT web application is located at W._HOVE/ server/|i b/
w s-cat . war . You can deploy it to any WebLogic Server version 10.3.x and later.

@® Note

CAT is not supported on IBM SDK for Java because some functions of the CAT
application depend on HotSpot implementation.

Opening the CAT Interface

CAT has a simple web GUI that displays all your currently running applications and modules.

To begin using CAT, open your browser to htt p://w s-host: port/w s-cat/ and then enter
your console login credentials.

In the navigation pane, select the application or module that you want to analyze; a brief
description of it is shown in the right-side pane. Use the right-side pane to perform actions and
analyses on the selected application or module, such as:

* Analyze classloading conflicts
* View the system and application classloaders

e Generate reports

How CAT Analyzes Classes

CAT analyzes classes loaded by the system classpath classloader and the WebLogic Server
main application classloaders, defined here as the filtering, application, and module
classloaders. You can perform analysis at the class, package, or JAR level. The results for
each action you select can be shown in either a basic view or a detailed view.

Here are some of the tasks which you can perform using CAT:

» Display basic information about applications and modules

* Analyze classloading conflicts

* Review proposed solutions

e Get suggestions for configuring filtering classloaders

» Display the classloader hierarchy and the entire classpath for each classloader

e Search for a class (or a resource) on a classloader

Identifying Class References through Manifest Hierarchies

Applications can have multiple manifest references to classes that are not directly present in
the applications's classpath, but which are chained into the Classpath by manifest references.
In some cases, application developers may not be aware that additional classes have been
unknowingly pulled into the application's classpath from other JARs, which in turn have
manifest references to other JARSs.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 16 of 19

ORACLE Chapter 12
Using the Classloader Analysis Tool (CAT)

CAT has the ability to search through an application's or module's classpath to detect and
display the underlying chained manifest references, as shown in the following Sample EAR
with Manifest Hierarchies example:

cat 4nf . ear

+ ejb.jar
+- web-nf-in-root.war
+ lib

+ applib.jar
+ apputil _1.jar
+ apputil_1 1.jar
+ apputil_1 1 1.jar
+ apputil_1 2.jar
+ apputil_1 2 1.jar
+ ejbutil_1.jar
+ ejbutil_1 1.jar
+ ejbutil_1 2.jar
+ ejbutil_1 2 1.jar
+ webutil _1.jar
+ webutil _1 1.jar
+ webutil _1 1 1.jar
+ webutil _2.jar
+ webutil _2 1.jar

The ej b. j ar has a manifest reference to ej buti| _1.j ar, which has references to both
ejbutil_1 1.jar andejbutil_1 2.jar, which has a further reference toejbutil 1 2 1.jar,
as follows:
ejb.jar
-> ejbutil_1.jar
->ejbutil_1 1.jar
->ejbutil_1 2.jar
->ejbutil_1 2 1.jar

Using CAT to Display the Manifest References

1. Open the CAT tool, as described in Opening the CAT Interface.

2. Use the navigation pane to select the running application or module to analyze.

Note: The manifest references can best be analyzed from the module level rather than the
application level.

3. Inthe Summary for Application pane, click the Classloader Tree view to list all the
classloaders for the selected application/module.

e Selecting the detailed view from the menu displays the classpath of each classloader.
e The hash code of each classloader is an active URL.
4. Click the classloader hash code URL you want to analyze.

5. The Classloader page defaults to the basic view, so select the detailed view to see the
classpath and the classes loaded by the classloader.

6. Enter one of the loaded classnames in the Resource to analyze field (using the format
pckgnane. cl assname, and click Analyze Resource.

7. The Manifest References section of the detailed output provides the list of chained
manifest references for the selected classname.

Continuing with Sample EAR with Manifest Hierarchies example, the output should look
like this:

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 17 of 19

ORACLE’

Chapter 12
Sharing Applications and Modules By Using Jakarta EE Libraries

pat h/ t o/ user _proj ects/applications/cat4nf/y79s0z/ejb.jar
pat h/ t o/ user _proj ects/applications/catdnf/y79s0z/ejbutil _1.jar
pat h/ t o/ user _proj ects/applications/cat4nf/y79s0z/ejbutil _1 2.jar
pat h/to/ user _projects/applications/catdnf/y79s0z/ejbutil_1 2 1.jar

Sharing Applications and Modules By Using Jakarta EE Libraries

Jakarta EE libraries provide an easy way to share one or more different types of Jakarta EE
modules among multiple enterprise applications.

A Jakarta EE library is a single module or collection of modules that is registered with the
Jakarta EE application container upon deployment. For more information, see Creating Shared
Jakarta EE Libraries and Optional Packages.

Adding JARSs to the Domain /ii» Directory

WebLogic Server includes a | i b subdirectory, located in the domain directory, that you can use
to add one or more JAR files, so that the JAR file classes are available within a separate
system level classloader to all Jakarta EE applications running on WebLogic Server instances
in the domain.

The JARS in the domain /| i b directory will not be appended to the system classpath. The
classloader that gets created is a child of the system classloader. Any classes that are in JARs
in the domain /| i b directory will only be visible to Jakarta EE applications, such as EAR files.
Classes in the system classpath cannot access classes in the domain /| i b directory.

The | i b subdirectory is intended for JAR files that change infrequently and are required by all
or most applications deployed in the server. For example, you might use the | i b directory to
store third-party utility classes that are required by all Jakarta EE deployments in a domain.
Third-party utility classes will be made available because the domain /| i b classloader will be
the parent of any Jakarta EE application.

The | i b directory is not recommended as a general-purpose method for sharing a JARs
between one or two applications deployed in a domain, or for sharing JARs that need to be
updated periodically. If you update a JAR in the | i b directory, you must reboot all servers in the
domain in order for applications to realize the change. If you need to share a JAR file or
Jakarta EE modules among several applications, use the Jakarta EE libraries feature
described in Creating Shared Jakarta EE Libraries and Optional Packages.

To share JARs using the | i b directory:

1. Shutdown all servers in the domain.
2. Copy the JAR file(s) to share into a | i b subdirectory of the domain directory. For example:

nkdir DOVAIN HOVE\wW _server\lib
cp c:\3rdpartyjars\utility.jar
DOVAIN HOVE\W _server\lib

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 18 of 19

ORACLE Chapter 12
Adding JARs to the Domain /lib Directory

@® Note

WebLogic Server must have read access to the | i b directory during startup.

The Administration Server does not automatically copy files in the | i b directory to
Managed Servers on remote machines. If you have Managed Servers that do not
share the same physical domain directory as the Administration Server, you must
manually copy JAR file(s) to the domai n_nane/ | i b directory on the Managed
Server machines.

3. Start the Administration Server and all Managed Servers in the domain.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 19 of 19

Creating Shared Jakarta EE Libraries and
Optional Packages

You can share components and classes among applications using shared Jakarta EE libraries
supported in WebLogic Server.
This chapter includes the following sections:

Overview of Shared Jakarta EE Libraries and Optional Packages

The shared Jakarta EE library feature in WebLogic Server provides an easy way to share one
or more different types of Jakarta EE modules among multiple enterprise applications. A
shared Jakarta EE libraries can be referenced by enterprise applications and you can also
create libraries that can be referenced only by another Web application.

A shared Jakarta EE library is a single module or collection of modules that is registered with
the Jakarta EE application container upon deployment. A shared Jakarta EE library can be any
of the following:

* Standalone EJB module

» Standalone Web application module

* Multiple EJB modules packaged in an enterprise application

* Multiple Web application modules package in an enterprise application
* Single plain JAR file

Oracle recommends that you package a shared Jakarta EE library into its appropriate archive
file (EAR, JAR, or WAR). However, for development purposes, you may choose to deploy
shared Jakarta EE libraries as exploded archive directories to facilitate repeated updates and
redeployments.

After the shared Jakarta EE library has been registered, you can deploy enterprise applications
that reference the library. Each referencing application receives a reference to the required
library on deployment, and can use the modules that make up the library as if they were
packaged as part of the referencing application itself. The library classes are added to the
class path of the referencing application, and the primary deployment descriptors of the
referencing application or module are merged (in memory) with those of the modules that
make up the shared Jakarta EE library.

In general, this topic discusses shared Jakarta EE libraries that can be referenced only by
enterprise applications. You can also create libraries that can be referenced only by another
Web application. The functionality is very similar to application libraries, although the method of
referencing them is slightly different. See Web Application Shared Jakarta EE Library
Information for details.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 16

ORACLE

Chapter 13
Overview of Shared Jakarta EE Libraries and Optional Packages

@® Note

WebLogic Server also provides a simple way to add one or more JAR files to the
WebLogic Server System classpath, using the | i b subdirectory of the domain
directory. See Adding JARs to the Domain /lib Directory.

Library Directories

The Jakarta EE platform provides several mechanisms for applications to use optional
packages and shared libraries. Libraries can be bundled with an application or may be installed
separately for use by any application. An EAR file may contain a directory that contains
libraries packaged in JAR files. The | i brary-directory element of the EAR file's deployment
descriptor contains the name of this directory. If a | i brary-direct ory element isn't specified,
or if the EAR file does not contain a deployment descriptor, the directory named | i b is used.
An empty | i brary-directory element may be used to specify that there is no library directory.
All files in this directory (but not in subdirectories) with a . j ar extension must be made
available to all components packaged in the EAR file, including application clients. These
libraries may reference other libraries, either bundled with the application or installed
separately.

This feature is similar to the APP-1 NF/ | i b feature supported in WebLogic Server. If both APP-
INF/libandlibrary-directory exist, then the jars in the | i brary-di rect ory would take
precedence; that is, they would be placed before the APP- I NF/ |i b jar files in the classpath. For
more information on APP- | NF/ | i b, see Resolving Class References Between Modules and
Applications and Organizing Shared Classes in a Split Development Directory.

Versioning Support for Libraries

WebLogic Server supports versioning of shared Jakarta EE libraries, so that referencing
applications can specify a required minimum version of the library to use, or an exact, required
version. WebLogic Server supports two levels of versioning for shared Jakarta EE libraries, as
described in the Optional Package Versioning document at ht t ps: // docs. or acl e. conf

j avase/ 8/ docs/ t echnot es/ gui des/ ext ensi ons/ versi oning. htm :

* Specification Version—Identifies the version number of the specification (for example, the
Jakarta EE specification version) to which a shared Jakarta EE library or optional package
conforms.

* Implementation Version—Identifies the version number of the actual code implementation
for the library or package. For example, this would correspond to the actual revision
number or release number of your code. Note that you must also provide a specification
version in order to specify an implementation version.

As a best practice, Oracle recommends that you always include version information (a
specification version, or both an implementation and specification version) when creating
shared Jakarta EE libraries. Creating and updating version information as you develop shared
components allows you to deploy multiple versions of those components simultaneously for
testing. If you include no version information, or fail to increment the version string, then you
must undeploy existing libraries before you can deploy the newer one. See Deploying Shared
Jakarta EE Libraries and Dependent Applications.

Versioning information in the referencing application determines the library and package
version requirements for that application. Different applications can require different versions of
a given library or package. For example, a production application may require a specific
version of a library, because only that library has been fully approved for production use. An

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 16

https://docs.oracle.com/javase/8/docs/technotes/guides/extensions/versioning.html
https://docs.oracle.com/javase/8/docs/technotes/guides/extensions/versioning.html

ORACLE Chapter 13
Overview of Shared Jakarta EE Libraries and Optional Packages

internal application may be configured to always use a minimum version of the same library.
Applications that require no specific version can be configured to use the latest version of the
library. Referencing Shared Jakarta EE Libraries in an Enterprise Application.

Shared Jakarta EE Libraries and Optional Packages Compared

Optional packages and shared Jakarta EE libraries have the following features in common:

e Both are registered with WebLogic Server instances at deployment time.
e Both support an optional implementation version and specification version string.

e Applications that reference shared Jakarta EE libraries and optional packages can specify
required versions for the shared files.

e Optional packages can reference other optional packages, and shared Jakarta EE libraries
can reference other shared Jakarta EE libraries.

Optional packages differ from shared Jakarta EE Libraries in the following basic ways:

* Optional packages are plain JAR files, whereas shared Jakarta EE libraries can be plain
JAR files, Jakarta EE enterprise applications, or standalone Jakarta EE modules (EJB and
Web applications). This means that libraries can have valid Jakarta EE and WebLogic
Server deployment descriptors. Any deployment descriptors in an optional package JAR
file are ignored.

* Any Jakarta EE application or module can reference an optional package (using META- | NF/
MANI FEST. MF), whereas only enterprise applications and Web applications can reference a
shared Jakarta EE library (using webl ogi c-appl i cation.xnml orwebl ogi c. xm).

In general, use shared Jakarta EE libraries when you need to share one or more EJB, Web
application or enterprise application modules among different enterprise applications. Use
optional packages when you need to share one or more classes (packaged in a JAR file)
among different Jakarta EE modules.

Plain JAR files can be shared either as libraries or optional packages. Use optional packages if
you want to:

e Share a plain JAR file among multiple Jakarta EE modules
» Reference shared JAR files from other shared JARs
e Share plain JARs as described by the Jakarta EE 5.0 specification

Use shared Jakarta EE libraries to share a plain JAR file if you only need to reference the JAR
file from one or more enterprise applications, and you do not need to maintain strict
compliance with the Jakarta EE specification.

@® Note

Oracle documentation and WebLogic Server utilities use the term shared Jakarta EE
library to refer to both libraries and optional packages. Optional packages are called
out only when necessary.

Additional Information

For information about deploying and managing shared Jakarta EE libraries, optional packages,
and referencing applications from the administrator's perspective, see Deploying Shared

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 16

ORACLE Chapter 13
Creating Shared Jakarta EE Libraries

Jakarta EE Libraries and Dependent Applications in Deploying Applications to Oracle
WebLogic Server.

Creating Shared Jakarta EE Libraries

You can deploy the Jakarta EE modules such as an EJB, a Web application, an enterprise
application, a plain Java class, and others as a shared Jakarta EE library. These modules can
be shared among multiple enterprise applications in WebLogic Server.

To create a new shared Jakarta EE library:

1. Assemble the shared Jakarta EE library into a valid, deployable Jakarta EE module or
enterprise application. The library must have the required Jakarta EE deployment
descriptors for the Jakarta EE module or for an enterprise application.

See Assembling Shared Jakarta EE Library Files.

2. Assemble optional package classes into a working directory.

See Assembling Optional Package Class Files.

3. Create and edit the MANI FEST. M file for the shared Jakarta EE library to specify the name
and version string information.

See Editing Manifest Attributes for Shared Jakarta EE Libraries.

4. Package the shared Jakarta EE library for distribution and deployment.

See Packaging Shared Jakarta EE Libraries for Distribution and Deployment.

Assembling Shared Jakarta EE Library Files

The following types of Jakarta EE modules can be deployed as a shared Jakarta EE library:

* An EJB module, either an exploded directory or packaged in a JAR file.

* A Web application module, either an exploded directory or packaged in a WAR file.
* An enterprise application, either an exploded directory or packaged in an EAR file.
e Aplain Java class or classes packaged in a JAR file.

* A shared Jakarta EE library referenced from another library. (See Web Application Shared
Jakarta EE Library Information.)

Shared Jakarta EE libraries have the following restrictions:

* You must ensure that context roots in Web application modules of the shared Jakarta EE
library do not conflict with context roots in the referencing enterprise application. If
necessary, you can configure referencing applications to override a library's context root.
See Referencing Shared Jakarta EE Libraries in an Enterprise Application.

* Shared Jakarta EE libraries cannot be nested. For example, if you are deploying an EAR
as a shared Jakarta EE library, the entire EAR must be designated as the library. You
cannot designate individual Jakarta EE modules within the EAR as separate, named
libraries.

* As with any other Jakarta EE module or enterprise application, a shared Jakarta EE library
must be configured for deployment to the target servers or clusters in your domain. This
means that a library requires valid Jakarta EE deployment descriptors as well as WebLogic
Server-specific deployment descriptors and an optional deployment plan. See Deploying
Applications to Oracle WebLogic Server.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 16

ORACLE Chapter 13
Creating Shared Jakarta EE Libraries

Oracle recommends packaging shared Jakarta EE libraries as enterprise applications, rather
than as standalone Jakarta EE modules. This is because the URI of a standalone module is
derived from the deployment name, which can change depending on how the module is
deployed. By default, WebLogic Server uses the deployment archive filename or exploded
archive directory name as the deployment name. If you redeploy a standalone shared Jakarta
EE library from a different file or location, the deployment name and URI also change, and
referencing applications that use the wrong URI cannot access the deployed library.

If you choose to deploy a shared Jakarta EE library as a standalone Jakarta EE module,
always specify a known deployment name during deployment and use that name as the URI in
referencing applications.

Assembling Optional Package Class Files

Any set of classes can be organized into an optional package file. The collection of shared
classes will eventually be packaged into a standard JAR archive. However, because you will
need to edit the manifest file for the JAR, begin by assembling all class files into a working
directory:

1. Create a working directory for the new optional package. For example:
nkdi r /apps/ nyOpt Pkg

2. Copy the compiled class files into the working directory, creating the appropriate package
sudirectories as necessary. For example:

nkdir -p /apps/ myOpt Pkg/ or g/ nyor g/ myPr oduct
cp /build/classes/ myOpt Pkg/ or g/ myOr g/ nyProduct/ *. cl ass /apps/ nyOpt Pkg/ or g/ myQr g/
nmyProduct

3. Ifyou already have a JAR file that you want to use as an optional package, extract its
contents into the working directory so that you can edit the manifest file:

cd /apps/ myOpt Pkg
jar xvf [build/libraries/nyLib.jar

Editing Manifest Attributes for Shared Jakarta EE Libraries

The name and version information for a shared Jakarta EE library are specified in the META-
| NF/ MANI FEST. MF file. Table 13-1 describes the valid shared Jakarta EE library manifest
attributes.

Table 13-1 Manifest Attributes for Jakarta EE Libraries

- __|]
Attribute Description

Ext ensi on- Name An optional string value that identifies the name of the shared Jakarta EE library. Referencing
applications must use the exact Ext ensi on- Nane value to use the library.

As a best practice, always specify an Ext ensi on- Nanme value for each library. If you do not
specify an extension hame, one is derived from the deployment name of the library. Default
deployment names are different for archive and exploded archive deployments, and they can
be set to arbitrary values in the deployment command.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 16

ORACLE Chapter 13
Creating Shared Jakarta EE Libraries

Table 13-1 (Cont.) Manifest Attributes for Jakarta EE Libraries

- __|]
Attribute Description

Speci fication-Version An optional String value that defines the specification version of the shared Jakarta EE library.
Referencing applications can optionally specify a required Speci fi cati on- Versi on for a
library; if the exact specification version is not available, deployment of the referencing
application fails.

The Speci fi cati on- Versi on uses the following format:

Major/minor version format, with version and revision numbers separated by periods (such as
"9.0.1.1")

Referencing applications can be configured to require either an exact version of the shared
Jakarta EE library, a minimum version, or the latest available version.
The specification version for a shared Jakarta EE library can also be set at the command-line

when deploying the library, with some restrictions. See Deploying Shared Jakarta EE Libraries
and Dependent Applications.

| npl enent ati on- An optional String value that defines the code implementation version of the shared Jakarta
Ver si on EE library. You can provide an | npl ement at i on- Ver si on only if you have also defined a
Speci fication- Version.

| npl ement at i on- Ver si on uses the following formats:

* Major/minor version format, with version and revision numbers separated by periods (such
as "9.0.1.1")

» Text format, with named versions (such as "9011Beta" or "9.0.1.1.B")

If you use the major/minor version format, referencing applications can be configured to

require either an exact version of the shared Jakarta EE library, a minimum version, or the

latest available version. If you use the text format, referencing applications must specify the

exact version of the library.

The implementation version for a shared Jakarta EE library can also be set at the command-
line when deploying the library, with some restrictions. See Deploying Shared Jakarta EE
Libraries and Dependent Applications.

To specify attributes in a manifest file:

1. Open (or create) the manifest file using a text editor. For the example shared Jakarta EE
library, you would use the commands:

cd /apps/nyLibrary
nkdir META-INF
emacs META- | NF/ MANI FEST. MF

For the optional package example, use:

cd /apps/ myOpt Pkg
nkdir META- I NF

emacs META- | NF/ MANI FEST. MF

2. Inthe text editor, add a string value to specify the name of the shared Jakarta EE library.
For example:

Ext ensi on- Nanme: nyExt ensi on

Applications that reference the library must specify the exact Ext ensi on- Nane in order to
use the shared files.

3. As a best practice, enter the optional version information for the shared Jakarta EE library.
For example:

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 16

ORACLE Chapter 13
Referencing Shared Jakarta EE Libraries in an Enterprise Application

Ext ensi on- Nanme: nyExt ensi on
Speci fication-Version: 2.0
| npl enent ation-Version: 9.0.0

Using the major/minor format for the version identifiers provides the most flexibility when
referencing the library from another application (see Table 13-2)

® Note

Although you can optionally specify the Specification-Version and Implementation-
Version at the command line during deployment, Oracle recommends that you
include these strings in the MANI FEST. M file. Including version strings in the
manifest ensures that you can deploy new versions of the library alongside older
versions. See Deploying Shared Jakarta EE Libraries and Dependent

Applications.

Packaging Shared Jakarta EE Libraries for Distribution and Deployment

If you are delivering the shared Jakarta EE Library or optional package for deployment by an
administrator, package the deployment files into an archive file (an . EAR file or standalone
module archive file for shared Jakarta EE libraries, or a simple . JAR file for optional packages)
for distribution. See Deploying Applications Using wideploy.

Because a shared Jakarta EE library is packaged as a standard Jakarta EE application or
standalone module, you may also choose to export a library's deployment configuration to a
deployment plan, as described in Deploying Applications to Oracle WebLogic Server. Optional
package . JAR files contain no deployment descriptors and cannot be exported.

For development purposes, you may choose to deploy libraries as exploded archive directories
to facilitate repeated updates and redeployments.

Referencing Shared Jakarta EE Libraries in an Enterprise
Application

A Jakarta EE application can reference a registered shared Jakarta EE library using entries in
the application's webl ogi c- appl i cati on. xm deployment descriptor.

Table 13-2 describes the XML elements that define a library reference.

Table 13-2 weblogic-application.xml Elements for Referencing a Shared Jakarta EE Library

Element Description

[ibrary-ref ['ibrary-ref is the parent element in which you define a reference to a shared Jakarta EE
library. Enclose all other elements within | i brary-ref .

['ibrary-name A required string value that specifies the name of the shared Jakarta EE library to use. | i brary-
name must exactly match the value of the Ext ensi on- Nane attribute in the library's manifest file.
(See Table 13-2))

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 16

ORACLE

Chapter 13
Referencing Shared Jakarta EE Libraries in an Enterprise Application

Table 13-2 (Cont.) weblogic-application.xml Elements for Referencing a Shared Jakarta EE Library

Element

Description

speci fication-
version

An optional String value that defines the required specification version of the shared Jakarta EE
library. If this element is not set, the application uses a matching library with the highest
specification version. If you specify a string value using major/minor version format, the
application uses a matching library with the highest specification version that is not below the
configured value. If all available libraries are below the configured speci fi cati on-versi on, the
application cannot be deployed. The required version can be further constrained by using the
exact - mat ch element, described below.

If you specify a String value that does not use major/minor versioning conventions (for example,
9.2BETA) the application requires a shared Jakarta EE library having the exact same string value
in the Speci fi cati on- Ver si on attribute in the library's manifest file. (See Table 13-2.)

i npl enent ati on-
version

An optional String value that specifies the required implementation version of the shared Jakarta
EE library. If this element is not set, the application uses a matching library with the highest
implementation version. If you specify a string value using major/minor version format, the
application uses a matching library with the highest implementation version that is not below the
configured value. If all available libraries are below the configured i npl enent at i on- versi on,
the application cannot be deployed. The required implementation version can be further
constrained by using the exact - mat ch element, described below.

If you specify a String value that does not use major/minor versioning conventions (for example,
9.2BETA) the application requires a shared Jakarta EE library having the exact same string value
in the | npl enent at i on- Ver si on attribute in the library's manifest file. (See Table 13-2.)

exact - mat ch

An optional Boolean value that determines whether the application should use a shared Jakarta
EE library with a higher specification or implementation version than the configured value, if one is
available. By default this element is false, which means that WebLogic Server uses higher-
versioned libraries if they are available. Set this element to true to require the exact matching
version as specified in the speci fi cati on-versi on and i npl enent ati on-ver si on elements.

cont ext - root

An optional String value that provides an alternate context root to use for a Web application
shared Jakarta EE library. Use this element if the context root of a library conflicts with the context
root of a Web application in the referencing Jakarta EE application.

Web application shared Jakarta EE library refers to special kind of library: a Web application that
is referenced by another Web application. See Web Application Shared Jakarta EE Library
Information.

For example, this simple entry in the webl ogi c- appl i cati on. xm descriptor references a
shared Jakarta EE library, myLi brary:

<library-ref>
<l'i brary-name>nyLi brary</li brary-name>
</library-ref>

In the above example, WebLogic Server attempts to find a library name nyLi br ary when
deploying the dependent application. If more than one copy of nyLi brary is registered,
WebLogic Server selects the library with the highest specification version. If multiple copies of
the library use the selected specification version, WebLogic Server selects the copy having the
highest implementation version.

This example references a shared Jakarta EE library with a requirement for the specification
version:

<library-ref>

<l i brary-name>nyLi brary</|ibrary-name>

<speci fication-version>2. 0</ speci fication-versi on>
<[library-ref>

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 16

ORACLE

Chapter 13
Referencing Shared Jakarta EE Libraries in an Enterprise Application

In the above example, WebLogic Server looks for matching libraries having a specification
version of 2.0 or higher. If multiple libraries are at or above version 2.0, WebLogic Server
examines the selected libraries that use Float values for their implementation version and
selects the one with the highest version. Note that WebLogic Server ignores any selected
libraries that have a non-Float value for the implementation version.

This example references a shared Jakarta EE library with both a specification version and a
non-Float value implementation version:

<library-ref>

<l'i brary-name>nyLi brary</library-name>

<speci fication-versi on>2. 0</ speci fi cati on-versi on>

<i npl enent ati on- ver si on>81Bet a</ i npl enent at i on- ver si on>
</library-ref>

In the above example, WebLogic Server searches for a library having a specification version of
2.0 or higher, and having an exact match of 81Bet a for the implementation version.

The following example requires an exact match for both the specification and implementation
versions:

<library-ref>
<l'i brary-name>nyLi brary</library-name>
<speci fication-versi on>2. 0</ speci fi cati on- versi on>
<i npl enent ati on-versi on>8. 1</ i npl enent at i on- ver si on>
<exact - mat ch>t rue</ exact - mat ch>

</library-ref>

The following example specifies a cont ext - r oot with the library reference. When a WAR
library reference is made from webl ogi c- appl i cati on. xm , the cont ext -root may be
specified with the reference:

<library-ref>
<l'i brary-name>nyLi brary</library-name>
<cont ext - r oot >nywebapp</ cont ext - r oot >
</library-ref>

Overriding context-roots Within a Referenced Enterprise Library

A Jakarta EE application can override cont ext - r oot s within a referenced EAR library using
entries in the application's webl ogi c- appl i cati on. xm deployment descriptor. Table 13-3
describes the XML elements that override cont ext - r oot in a library reference.

Table 13-3 weblogic-application.xml Elements for Overriding a Shared Jakarta EE Library

Element

Description

cont ext - r oot

An optional String value that overrides the cont ext - r oot elements declared in libraries. In the
absence of this element, the library's cont ext - r oot is used.

Only a referencing application (for example, a user application) can override the cont ext - r oot
elements declared in its libraries.

overri de-val ue

An optional String value that specifies the value of the | i brary- cont ext - r oot - overri de element
when overriding the context-root elements declared in libraries. In the absence of these elements, the
library's cont ext - r oot is used.

The following example specifies a cont ext - r oot - over ri de, which in turn, refers to the old
cont ext -root specified in one of its libraries and the new cont ext - r oot that should be used
instead. (override):

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 16

ORACLE’

Chapter 13
Referencing Optional Packages from a Jakarta EE Application or Module

<library-ref>
<li brary-name>nyLi brary</library-name>
<speci fication-version>2. 0</ speci fication-versi on>
<i npl enent ati on-versi on>8. 1</i npl enent ati on-ver si on>
<exact - mat ch>t r ue</ exact - mat ch>
</library-ref>
<library-context-root-override>
<cont ext - r oot >webapp</ cont ext - r oot >
<overri de-val ue>nywebapp</ overri de-val ue>
</library-context-root-override>

In the above example, the current application refers to nyLi brary, which contains a Web
application with a cont ext - r oot of webapp. The only way to override this reference is to
declare al i brary-cont ext-root-override that maps webapp to mywebapp.

URIs for Shared Jakarta EE Libraries Deployed As a Standalone Module

When referencing the URI of a shared Jakarta EE library that was deployed as a standalone
module (EJB or Web application), note that the module URI corresponds to the deployment
name of the shared Jakarta EE library. This can be a name that was manually assigned during
deployment, the name of the archive file that was deployed, or the name of the exploded
archive directory that was deployed. If you redeploy the same module using a different file
name or from a different location, the default deployment name also changes and referencing
applications must be updated to use the correct URI.

To avoid this problem, deploy all shared Jakarta EE libraries as enterprise applications, rather
than as standalone modules. If you choose to deploy a library as a standalone Jakarta EE
module, always specify a known deployment name and use that name as the URI in
referencing applications.

Referencing Optional Packages from a Jakarta EE Application or

Module

Any Jakarta EE archive (JAR, WAR, RAR, EAR) can reference one or more registered optional
packages using attributes in the archive's manifest file.

Table 13-4 Manifest Attributes for Referencing Optional Packages

Attribute

Description

Ext ensi on-Li st |ogical _name A required String value that defines a logical name for an optional package

[.]

dependency. You can use multiple values in the Ext ensi on- Li st attribute to
designate multiple optional package dependencies. For example:

Ext ensi on- Li st: dependencyl dependency2

[logical_name-] Ext ensi on- Nane A required string value that identifies the name of an optional package dependency.

This value must match the Ext ensi on- Nane attribute defined in the optional
package's manifest file.

If you are referencing multiple optional packages from a single archive, prepend the
appropriate logical name to the Ext ensi on- Name attribute. For example:

dependencyl- Ext ensi on- Nane: myOpt Pkg

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 16

ORACLE

Chapter 13
Referencing Optional Packages from a Jakarta EE Application or Module

Table 13-4 (Cont.) Manifest Attributes for Referencing Optional Packages

Attribute

Description

[logical_name-] Speci fication- An optional String value that defines the required specification version of an optional

Ver si on

package. If this element is not set, the archive uses a matching package with the
highest specification version. If you include a speci fi cati on- ver si on value using
the major/minor version format, the archive uses a matching package with the highest
specification version that is not below the configured value. If all available package are
below the configured speci fi cati on- ver si on, the archive cannot be deployed.

If you specify a String value that does not use major/minor versioning conventions (for
example, 9.2BETA) the archive requires a matching optional package having the exact
same string value in the Speci fi cat i on- Ver si on attribute in the package's
manifest file. (See Table 13-2.)

If you are referencing multiple optional packages from a single archive, prepend the
appropriate logical name to the Speci fi cat i on- Ver si on attribute.

[logical_name-] | npl ement ati on- An optional String value that specifies the required implementation version of an

Ver si on

optional package. If this element is not set, the archive uses a matching package with
the highest implementation version. If you specify a string value using the major/minor
version format, the archive uses a matching package with the highest implementation
version that is not below the configured value. If all available libraries are below the
configured i npl enent at i on- ver si on, the application cannot be deployed.

If you specify a String value that does not use major/minor versioning conventions (for
example, 9.2BETA) the archive requires a matching optional package having the exact
same string value in the | npl enent at i on- Ver si on attribute in the package's
manifest file. (See Table 13-2.)

If you are referencing multiple optional packages from a single archive, prepend the
appropriate logical name to the | npl ement at i on- Ver si on attribute.

For example, this simple entry in the manifest file for a dependent archive references two
optional packages, myAppPkg and ny3r dPart yPkg:

Extension-List: internal 3rdparty
i nternal - Ext ensi on- Nanme: nyAppPkg
3rdparty- Ext ensi on- Nane: mny3rdPartyPkg

This example requires a specification version of 2.0 or higher for ny AppPkg:

Extension-List: internal 3rdparty

i nternal - Ext ensi on- Nanme: nyAppPkg
3rdparty- Ext ensi on- Name: ny3rdPartyPkg
internal - Specification-Version: 2.0

This example requires a specification version of 2.0 or higher for nyAppPkg, and an exact
match for the implementation version of ny3r dPart yPkg:

Extension-List: internal 3rdparty

i nt ernal - Ext ensi on- Nanme: nyAppPkg
3rdparty- Ext ensi on- Name: ny3rdPart yPkg
i nternal - Speci fication-Version: 2.0
3rdparty- I npl enentation-Version: 8.1GA

By default, when WebLogic Server deploys an application or module and it cannot resolve a
reference in the application's manifest file to an optional package, WebLogic Server prints a
warning, but continues with the deployment anyway. You can change this behavior by setting
the system property webl ogi c. appl i cati on. Requi reOpt i onal Packages to t r ue when you start
WebLogic Server, either at the command line or in the command script file from which you start
the server. Setting this system property to t r ue means that WeblLogic Server does not attempt

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 16

ORACLE’

Chapter 13
Using weblogic.appmerge to Merge Libraries

to deploy an application or module if it cannot resolve an optional package reference in its
manifest file.

Using weblogic.appmerge to Merge Libraries

You can use webl ogi c. appner ge to understand a library merge by examining the merged
application you have written to disk.

webl ogi c. appner ge is a tool that is used to merge libraries into an application, with merged
contents and merged descriptors. It also has the ability to write a merged application to disk.

Using weblogic.appmerge from the CLI

Invoke webl ogi c. appmer ge using the following syntax:

java webl ogi c. appnerge [options] <ear, jar, war file, or directory>
where valid options are shown in Table 13-5:

Table 13-5 weblogic.appmerge Options

Option Comment
-hel p Print the standard usage message.
-version Print version information.

-output <file>

Specifies an alternate output archive or directory. If not set, output is placed in the
source archive or directory.

-plan <file>

Specifies an optional deployment plan.

-verhbose Provide more verbose output.

-library <file> Comma-separated list of libraries. Each library may optionally set its name and
versions, if not already set in its manifest, using the following syntax:
<file> [@ane=<string>@i bspecver=<version> @i bi npl ver=<versi on|
string>].

-librarydir <dir> Registers all files in specified directory as libraries.

-writelnferredDescriptors Specifies that the application or module contains deployment descriptors with

annotation information.

Example:

$ java webl ogi c. appnerge -output Conpl eteSportsApp.ear -library
\Weat her . war, Cal endar . ear Sport sApp. ear

Using weblogic.appmerge as an Ant Task

The ant task provides similar functionality as the command line utility. It supports sour ce,
out put, l'ibraryDir, pl an and ver bose attributes as well as multiple <l i br ar y> sub-elements.
Here is an example:

<t askdef name="appmerge" cl assname="webl ogi c. ant.taskdefs. | 2ee. AppMer geTask"/ >
<appner ge source="SportsApp. ear" out put="Conpl et eSportsApp. ear" >

<library file="Wather.war"/>

<library file="Cal endar.ear"/>
</ appmer ge>

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 16

ORACLE’

Chapter 13
Integrating Shared Jakarta EE Libraries with the Split Development Directory Environment

Integrating Shared Jakarta EE Libraries with the Split
Development Directory Environment

You can generate a basic build.xml file in the shared Jakarta EE library directories and then
build the applications in a split development directory.

The Bui | dXM_Gen includes a - |i brarydi r option to generate build targets that include one or
more shared Jakarta EE library directories. See Generating a Basic build.xml File Using
weblogic.BuildXMLGen.

The wl conpi | e and W appc Ant tasks include a | i brarydi r attribute and | i brary element to
specify one or more shared Jakarta EE library directories to include in the classpath for
application builds. See Building Applications in a Split Development Directory.

Deploying Shared Jakarta EE Libraries and Dependent
Applications

Shared Jakarta EE libraries are registered with one or more WebLogic Server instances by
deploying them to the target servers and indicating that the deployments are to be shared.
Shared Jakarta EE libraries must be targeted to the same WebLogic Server instances you
want to deploy applications that reference the libraries.

If you try to deploy a referencing application to a server instance that has not registered a
required library, deployment of the referencing application fails. See Registering Libraries with
WebLogic Server in Deploying Applications to Oracle WebLogic Server for more information.

See Deploying Applications the Oracle WebLogic Remote Console Online Help for detailed
instructions on installing (deploying) a shared Jakarta EE library using the WebLogic Remote
Console and for targeting the library to the server or cluster to which the application that is
referencing the library is also targeted.

If you use the wl depl oy Ant task as part of your iterative development process, use the
library,liblnplVer,and!|ibSpecVer attributes to deploy a shared Jakarta EE library. See
wldeploy Ant Task Reference, for details and examples.

After registering a shared Jakarta EE library, you can deploy applications and archives that
depend on the library. Dependent applications can be deployed only if the target servers have
registered all required libraries, and the registered deployments meet the version requirements
of the application or archive. See Deploying Applications that Reference Libraries in Deploying
Applications to Oracle WebLogic Server for more information.

Web Application Shared Jakarta EE Library Information

Some of the shared Jakarta EE libraries can be referenced only by enterprise applications. You
can also create libraries that can be referenced only by another Web application. The
functionality is very similar to application libraries, although the method of referencing them is
slightly different.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 16

ORACLE

Chapter 13
Using WebApp Libraries With Web Applications

@® Note

For simplicity, this section uses the term Web application library when referring to a
shared Jakarta EE library that is referenced only by another Web application.

In particular:

« Web application libraries can only be referenced by other Web applications.

e Rather than update the webl ogi c-appl i cation. xn file, Web applications reference Web
application libraries by updating the webl ogi ¢. xm deployment descriptor file. The
elements are almost the same as those described in Referencing Shared Jakarta EE
Libraries in an Enterprise Application; the only difference is that the <cont ext - r oot > child
element of <l i brary-ref > is ignored in this case.

* You cannot reference any other type of shared Jakarta EE library (EJB, enterprise
application, or plain JAR file) from the webl ogi c¢. xm deployment descriptor file of a Web
application.

Other than these differences in how they are referenced, the way to create, package, and
deploy a Web application library is the same as that of a standard shared Jakarta EE library.

Using WebApp Libraries With Web Applications

Just as standard shared Jakarta EE applications can be deployed to WebLogic Server as
application-libraries, astandard Web application can be deployed to WebLogic Server as
a webapp- i brary so that other Web applications can refer to these libraries.

Web application libraries facilitate the reuse of code and resources. Such libraries also help
you separate out third-party Web applications or frameworks that your Web application might
be using. Furthermore, common resources can be packaged separately as libraries and
referenced in different Web applications, so that you don't have to bundle them with each Web
application. When you include a webapp- | i brary in your Web application, at deployment time
the container merges all the static resources, classes, and JAR files into your Web application.

The first step in using a WebApp library is to register a Web application as a webapp-1ibrary.
This can be accomplished by deploying a Web application using either the WebLogic Remote
Console or the webl ogi c. Depl oyer tool as a library. To make other Web applications refer to
this library, their webl ogi c. xn file must have a | i brary-ref element pointing to the webapp-
l'i brary, as follows:

<library-ref>

<li brary-name>BaseWebApp</|i brary- name>

<speci fication-version>2. 0</specification-versi on>

<i npl enent ati on-versi on>8. lbet a</i npl enent ati on-ver si on>
<exact - mat ch>f al se</ exact - mat ch>

</library-ref>

When multiple libraries are present, the CLASSPATH r esour ce path precedence order follows
the order in which the | i brary-refs elements appear in the webl ogi c. xn file.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 16

ORACLE Chapter 13
Accessing Registered Shared Jakarta EE Library Information with LibraryRuntimeMBean

Accessing Registered Shared Jakarta EE Library Information
with LibraryRuntimeMBean

You can use different types of MBeans to obtain information about the shared Jakarta EE
library and access the libraries that the applications use.

Each deployed shared Jakarta EE library is represented by a Li br ar yRunt i meMBean. You can
use this MBean to obtain information about the library itself, such as its name or version. You
can also obtain the Appl i cati onRunt i neMBeans associated with deployed applications.

Appl i cationRunti neMBean provides two methods to access the libraries that the application is
using:

e getLibraryRunti mes() returns the shared Jakarta EE libraries referenced in the
webl ogi c-appl i cation. xn file.

e get Optional PackageRuntinmes() returns the optional packages referenced in the manifest
file.

See the Java API Reference for Oracle WebLogic Server.

Order of Precedence of Modules When Referencing Shared
Jakarta EE Libraries

When an enterprise application references one or more shared Jakarta EE libraries, and the
application is deployed to WebLogic Server, the server internally merges the information in the
webl ogi c-appl i cation. xn file of the referencing enterprise application with the information in
the deployment descriptors of the referenced libraries.

The order in which WebLogic Server internally merges the information is as follows:

1. When the enterprise application is deployed, WebLogic Server reads its webl ogi c-
application.xm deployment descriptor.

2. WebLogic Server reads the deployment descriptors of any referenced shared Jakarta EE
libraries. Depending on the type of library (enterprise application, EJB, or Web application),
the read file might be webl ogi c- appl i cati on. xnl, webl ogi c. xm , webl ogi c-ej b-jar. xm ,
and so on.

3. WebLogic Server first merges the referenced shared Jakarta EE library deployment
descriptors (in the order in which they are referenced, one at a time) and then merges the
webl ogi c- appl i cation. xm file of the referencing enterprise application on top of the
library descriptor files.

As a result of the way the descriptor files are merged, the elements in the descriptors of the
shared Jakarta EE libraries referenced first in the webl ogi c- appl i cati on. xnl file have
precedence over the ones listed last. The elements of the enterprise application's descriptor
itself have precedence over all elements in the library descriptors.

For example, assume that an enterprise application called nyApp references two shared
Jakarta EE libraries (themselves packaged as enterprise applications): nyLi bA and myLi bB, in
that order. Both the myApp and nyLi bA applications include an EJB module called nyEJB, and
both the nyLi bA and nyLi bB applications include an EJB module called nyQ her EJB.

Further assume that once the nmyApp application is deployed, a client invokes, via the nyApp
application, the myEJB module. In this case, WebLogic Server actually invokes the EJB in the

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 16

ORACLE

Chapter 13
Best Practices for Using Shared Jakarta EE Libraries

myApp application (rather than the one in myLi bA) because modules in the referencing
application have higher precedence over modules in the referenced applications. If a client
invokes the myQ her EJB EJB, then WebLogic Server invokes the one in nyLi bA, because the
library is referenced first in the webl ogi c- appl i cation. xm file of nyApp, and thus has
precedence over the EJB with the same name in the nyLi bB application.

Best Practices for Using Shared Jakarta EE Libraries

Keep in mind these best practices when developing shared Jakarta EE libraries and optional
packages:

Use shared Jakarta EE Libraries when you want to share one or more Jakarta EE modules
(EJBs, Web applications, enterprise applications, or plain Java classes) with multiple
enterprise applications.

If you need to deploy a standalone Jakarta EE module, such as an EJB JAR file, as a
shared Jakarta EE library, package the module within an enterprise application. Doing so
avoids potential URI conflicts, because the library URI of a standalone module is derived
from the deployment name.

If you choose to deploy a shared Jakarta EE library as a standalone Jakarta EE module,
always specify a known deployment name during deployment and use that name as the
URI in referencing applications.

Use optional packages when multiple Jakarta EE archive files need to share a set of Java
classes.

If you have a set of classes that must be available to applications in an entire domain, and
you do not frequently update those classes (for example, if you need to share 3rd party
classes in a domain), use the domain /| i b subdirectory rather than using shared Jakarta
EE libraries or optional packages. Classes in the / | i b subdirectory are made available
(within a separate system level classloader) to all Jakarta EE applications running on
WebLogic Server instances in the domain.

Always specify a specification version and implementation version, even if you do not
intend to enforce version requirements with dependent applications. Specifying versions
for shared Jakarta EE libraries enables you to deploy multiple versions of the shared files
for testing.

Always specify an Ext ensi on- Nane value for each shared Jakarta EE library. If you do not
specify an extension name, one is derived from the deployment name of the library. Default
deployment names are different for archive and exploded archive deployments, and they
can be set to arbitrary values in the deployment command

When developing a Web application for deployment as a shared Jakarta EE library, use a
unigue context root. If the context root conflicts with the context root in a dependent
Jakarta EE application, use the cont ext -r oot element in the EAR's webl ogi c-
application.xm deployment descriptor to override the library's context root.

Package shared Jakarta EE libraries as archive files for delivery to administrators or
deployers in your organization. Deploy libraries from exploded archive directories during
development to allow for easy updates and repeated redeployments.

Deploy shared Jakarta EE libraries to all WebLogic Server instances on which you want to
deploy dependent applications and archives. If a library is not registered with a server
instance on which you want to deploy a referencing application, deployment of the
referencing application fails.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 16 of 16

Programming Application Life Cycle Events

Learn how to create applications that respond to WebLogic Server application life cycle events.
This chapter includes the following sections:

Understanding Application Life Cycle Events

Application life cycle listener events provide handles on which developers can control behavior
during deployment, undeployment, and redeployment. Learn how you can use the application
life cycle listener events.

Four application life cycle events are provided with WebLogic Server, which can be used to
extend listener, shutdown, and startup classes. These include:

» Listeners—attachable to any event. Possible methods for Listeners are:

public void preStart(ApplicationLifecycl eEvent evt) {}

The preStart event is the beginning of the prepare phase, or the start of the application
deployment process.

public void postStart(ApplicationLifecycleEvent evt) {}

The postStart event is the end of the activate phase, or the end of the application
deployment process. The application is deployed.

public void preStop(ApplicationLifecycleEvent evt) {}

The preStop event is the beginning of the deactivate phase, or the start of the
application removal or undeployment process.

public void postStop(ApplicationLifecycl eEvent evt) {}

The postStop event is the end of the remove phase, or the end of the application
removal or undeployment process.

e Shutdown classes only get postStop events.

@® Note

Application-scoped shutdown classes have been deprecated as of release 9.0 of
WebLogic Server. Use life cycle listeners instead.

e Startup classes only get preStart events.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 7

ORACLE Chapter 14
Registering Events in weblogic-application.xml

@® Note

Application-scoped shutdown classes have been deprecated as of release 9.0 of
WebLogic Server. Use life cycle listeners instead.

For Startup and Shutdown classes, you only implement a mai n{} method. If you
implement any of the methods provided for Listeners, they are ignored.

No renove{} method is provided in the Appl i cati onLi f ecycl eLi st ener, because
the events are only fired at startup time during deployment (prestart and poststart)
and shutdown during undeployment (prestop and poststop).

Registering Events in weblogic-application.xml

You must register the application life cycle listener events in the webl ogi c- appl i cati on. xm
deployment descriptor in order to use them.

See Enterprise Application Deployment Descriptor Elements. Define the following elements:

« |istener—Used to register user defined application life cycle listeners. These are classes
that extend the abstract base class
webl ogi c. application. ApplicationLifecycl eLi stener.

e shut down—Used to register user-defined shutdown classes.

e startup—Used to register user-defined startup classes.

Programming Basic Life Cycle Listener Functionality

You can create a listener by extending the abstract class (provided with WebLogic Server)
webl ogi c. appl i cation. ApplicationLifecycl eLi st ener. The container then searches for
your listener.

You override the following methods provided in the WebLogic Server
ApplicationLifecycl eli stener abstract class to extend your application and add any
required functionality:

e preStart{}
e postStart{}
e preStop{}

e post Stop{}

Example 14-1 illustrates how you override the ApplicationLifecycleListener. In this example, the
public class MyListener extends ApplicationLifecycleListener.

Example 14-1 MyListener

i mport webl ogi c. application. ApplicationLifecycleListener;
i mport webl ogi c. application. ApplicationLifecycl eEvent;
public class MListener extends ApplicationLifecycleListener {
public void preStart(ApplicationLifecycleEvent evt) {
Systemout.println
("MyListener(preStart) -- we shoul d al ways see you..");
} Il preStart
public void postStart(ApplicationLifecycleEvent evt) {
Systemout.println

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 7

ORACLE

Chapter 14
Programming Basic Life Cycle Listener Functionality

("MyListener(postStart) -- we should al ways see you..");
} Il postStart
public void preStop(ApplicationLifecycl eEvent evt) {
Systemout. println
("MyListener(preStop) -- we should always see you..");
} Il preStop
public voi d postStop(ApplicationLifecycl eEvent evt) {
Systemout. println
("MyLi stener(postStop) -- we shoul d al ways see you..");
} Il postStop
public static void main(String[] args) {
Systemout.println
("MyListener(nmain): in nain .. we should never see you..");
} /] main

}

Example 14-2 illustrates how you implement the shutdown class. The shutdown class is
attachable to preStop and postStop events. In this example, the public class MyShut down does
not extend Appl i cati onLi f ecycl eLi st ener because a shutdown class declared in the

webl ogi c-appl i cati on. xm deployment descriptor does not need to depend on any WebLogic
Server-specific interfaces.

Example 14-2 MyShutdown

i mport webl ogi c. application. ApplicationLifecycl eLi stener;
i mport webl ogi c. application. ApplicationLifecycl eEvent;
public class MyShutdown {
public static void main(String[] args) {
Systemout. println
("MyShut down(main): in main .. should be for post-stop");
} /] main

}

Example 14-3 illustrates how you implement the startup class. The startup class is attachable
to preStart and postStart events. In this example, the public class MySt art up does not extend
Appl i cationLifecycl eLi st ener because a startup class declared in the webl ogi c-
application. xm deployment descriptor does not need to depend on any WebLogic Server-
specific interfaces.

Example 14-3 MyStartup

i mport webl ogi c. application. ApplicationLifecycleListener;
i nport webl ogi c. application. ApplicationLifecycl eEvent;
public class MyStartup {
public static void main(String[] args) {
Systemout. printin
("MyStartup(main): in main .. should be for pre-start");
} I/ main

}

Configuring a Role-Based Application Life Cycle Listener

You can configure an application life cycle event with role-based capability where a user
identity can be specified to startup and shutdown events using the r un- as- pri nci pal - name
element. However, if the run- as- pri nci pal - nane identity defined for the application life cycle
listener is an administrator, the application deployer must have administrator privileges;
otherwise, deployment will fail.

1. Follow the basic programming steps outlined in Programming Basic Life Cycle Listener
Functionality.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE’

Chapter 14
Examples of Configuring Life Cycle Events with and without the URI Parameter

2. Within the | i st ener element add the r un-as- pri nci pal - name element to specify the user
who has privileges to startup and/or shutdown the event. For example:

<listener>
<li stener-class>nyApp. MySessi onAttri buteli stenerC ass</|istener-class>
<run- as- princi pal - name>j avaj oe</ run-as- pri nci pal - name>

</listener>

The identity specified here should be a valid user name in the system. If r un- as- pri nci pal -
name is not specified, the deployment initiator user identity will be used as the r un- as identity
for the execution of the application life cycle listener.

Examples of Configuring Life Cycle Events with and without the
URI Parameter

You can configure application life cycle events with or without using the URI parameter in the
webl ogi c- appl i cati on. xm deployment descriptor file.

The following examples illustrate how you configure application life cycle events in the

webl ogi c- appl i cati on. xm deployment descriptor file. The URI parameter is not required. You
can place classes anywhere in the application $CLASSPATH. However, you must ensure that the
class locations are defined in the $CLASSPATH. You can place listeners in APP- | NF/ ¢l asses or
APP- | NF/ 1'i b, if these directories are present in the EAR. In this case, they are automatically
included in the $CLASSPATH.

The following example illustrates how you configure application life cycle events using the URI
parameter. In this case, the archive f 00. j ar contains the classes and exists at the top level of
the EAR file. For example: nyEar/f oo.j ar.

Example 14-4 Configuring Application Life Cycle Events Using the URI Parameter

<li stener>
<li stener-class>M/Li stener</listener-class>
<listener-uri>foo.jar</listener-uri>

</listener>

<startup>
<startup-class>MStartup</startup-class>
<startup-uri>foo.jar</startup-uri>

</startup>

<shut down>
<shut down- cl ass>My Shut down</ shut down- cl ass>
<shut down- uri >f 0o. j ar </ shut down- uri >

</ shut down>

The following example illustrates how you configure application life cycle events without using
the URI parameter.

Example 14-5 Configuring Application Life Cycle Events without Using the URI
Parameter

<listener>

<l istener-class>MWListener</listener-class>
</listener>
<startup>

<startup-class>M/St artup</startup-class>
</startup>
<shut down>

<shut down- cl ass>MyShut down</ shut down- cl ass>
</ shut down>

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE Chapter 14
Understanding Application Life Cycle Event Behavior During Redeployment

Understanding Application Life Cycle Event Behavior During
Redeployment

Application life cycle events are only triggered if a full redeployment of the application occurs.
During a full redeployment of the application—provided the application life cycle events have
been registered—the application life cycle first commences the shutdown sequence, next re-
initializes its classes, and then performs the startup sequence.

For example, if your listener is registered for the full application life cycle set of events
(preStart, postStart, preStop, postStop), during a full re-deployment, you see the following
sequence of events:

1. preStop{}
2. post Stop{}

3. Initialization takes place. (Unless you have set debug flags, you do not see the
initialization.)

4. preStart{}
5. postStart{}

Programming Application Version Life Cycle Events

Learn how to create applications that respond to WebLogic Server application version life cycle
events.

Understanding Application Version Life Cycle Event Behavior

WebLogic Server provides application version life cycle event naotifications by allowing you to
extend the Appl i cati onVersi onLi f ecycl eLi st ener class and specify a life cycle listener in
webl ogi c- appl i cati on. xm . See Enterprise Application Deployment Descriptor Elements and
Examples of Configuring Life Cycle Events with and without the URI Parameter.

Application version life cycle events are invoked:

* For both static and dynamic deployments.
* Using either anonymous ID or using user identity.
* Only if the current application is versioned; otherwise, version life cycle events are ignored.

* For all application versions, including the version that registers the listener. Use the
Appl i cationVersionLi fecycl eEvent. i sOanVersi on method to determine if an event
belongs to a particular version. See the Appl i cati onVersi onLi f ecycl eEvent class for
more information on types of version life cycle events.

Types of Application Version Life Cycle Events

Four application version life cycle events are provided with WebLogic Server:

e public void preDepl oy(ApplicationVersionLifecycleEvent evt)

— The preDel oy event is invoked when an application version deploy or redeploy
operation is initiated.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 7

ORACLE Chapter 14
Programming Application Version Life Cycle Events

e public void postDepl oy(ApplicationVersionLifecycl eEvent evt)

— The post Del oy event is invoked when an application version is deployed or redeployed
successfully.

e public void preUndepl oy(ApplicationVersionLifecycl eEvent evt)

— The preUndel oy event is invoked when an application version undeploy operation is
initiated.

e public void postDel ete(ApplicationVersionLifecycleEvent evt)

— The post Del et e event is invoked when an application version is deleted.

@® Note

A post Del et e event is only fired after the entire application version is
completely removed. It does not include a partial undeploy, such as
undeploying a module or from a subset of targets.

Example of Production Deployment Sequence When Using Application
Version Life Cycle Events

The following table provides an example of a deployment (V1), production redeployment (V2),
and an undeploy (V2).

Table 14-1 Sequence of Deployment Actions and Application Version Life Cycle Events

Deployment action Time Version V1 Version V2
Deployment of Version ~ TO preDepl oy(V1) invoked.

V1

Deployment of Version T1 Deployment starts.

V1

Deployment of Version T2 Application life cycle listeners for V1 are

Vi registered.

Deployment of Version T3 V1 is active version, Deployment is complete.

V1

Deployment of Version T4 post Depl oy(V1) invoked.

V1

Deployment of Version ~ T5 Application Listeners gets post Depl oy(V1).

V1

Production T6 pr eDepl oy(V2) invoked.
Redeployment of Version

V2

Production T7 Application version listener receives

Redeployment of Version preDepl oy(V1).

V2

Production T8 Deployment starts.
Redeployment of Version

V2

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE Chapter 14
Programming Application Version Life Cycle Events

Table 14-1 (Cont.) Sequence of Deployment Actions and Application Version Life Cycle Events

Deployment action Time Version V1 Version V2

Production T9 Application life cycle listeners for V2

Redeployment of Version are registered.

V2

Production T10 If deploy(V2) succeeds, V1 ceases to be active If deploy(V2) succeeds, V2 replaces

Redeployment of Version version. V1 as active version.

Ve Deployment is complete.

Production T11 post Depl oy(V2) invoked.

Redeployment of Version Note: This event occurs even if the

V2 deployment fails.

Production T12 Application version listener gets

Redeployment of Version post Depl oy(V2) . If deploy(V2) fails, V1

V2 remains active.

Production T13 Application listeners gets

Redeployment of Version post Depl oy(V2).

V2

Production T14 If deploy(V2) succeeds, V1 begins retirement.

Redeployment of Version

V2

Production T15 Application listeners for V1 are unregistered.

Redeployment of Version

V2

Production T16 V1 is retired.

Redeployment of Version

V2

Undeployment of V2 T17 pr eUndepl oy(v2) invoked.

Undeployment of V2 T18 Application listeners gets
preUndepl oy(v2) invoked.

Undeployment of V2 T19 Undeployment begins.

Undeployment of V2 T20 V2 is no longer active version.

Undeployment of V2 T21 Application version listeners for V2
are unregistered.

Undeployment of V2 T22 Undeployment is complete.

Undeployment of V2 T23 If the entire application is
undeployed, post Del et e(V2) is
invoked.

Note: This event occurs even if the
undeployment fails.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 7

Programming Context Propagation

Learn how to use the context propagation APIs in WebLogic Server applications.
This chapter includes the following sections:

Understanding Context Propagation

Context propagation allows programmers to associate information with an application, which is
then carried along with every request. Furthermore, downstream components can add or
modify this information so that it can be carried back to the originator.

Context propagation attaches information to a request through a Wr kCont ext . This information
follows the request to any process that supports context propagation through a

Propagat i onMbde. Context propagation is also known as work areas, work contexts, or
application transactions.

Common use-cases for context propagation are any type of application in which information,
usually related to the request, needs to be carried outside the application or to another
application, rather than the information being an integral part of the application. Examples of
these use cases include diagnostics monitoring, application transactions, and application load-
balancing. The ability of context propagation to tie information to a request greatly simplifies
managing such data, in contrast to maintaining a map of request data in each application and
then implementing custom code to transmit such information between applications or threads.

However, context propagation can occur within an application. For example, if an application
submits work through a Work Manager, part of the processing occurs in different threads.
Context propagation uses a Pr opagat i onMbde to carry information to other threads.

Programming context propagation has two parts: first you code the client application to create
a Wr kCont ext Map and Wr kCont ext , and then add user data to the context, and then you code
the invoked application itself to get and possibly use this data. The invoked application can be
of any type: EJB, Web service, servlet, JMS topic or queue, and so on. See Programming
Context Propagation: Main Steps for details.

The WebLogic context propagation APIs are in the webl ogi c. wor kar ea package. The following
table describes the main interfaces and classes.

Table 15-1 Interfaces and classes of the WebLogic Context Propagation API

. ___]
Interface or Class Description

Wr kCont ext Map Interface Main context propagation interface used to tag applications with data and propagate that
information via application requests. Wr kCont ext Maps is part of the client or
application's JNDI environment and can be accessed through JNDI by looking up the
name j ava: conp/ Wor kCont ext Map.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE’

Chapter 15
Programming Context Propagation: Main Steps

Table 15-1 (Cont.) Interfaces and classes of the WebLogic Context Propagation API

Interface or Class Description

Wor kCont ext Interface Interface used for marshaling and unmarshaling the user data that is passed along with an
application. This interface has four implementing classes for marshaling and unmarshaling
the following types of data: simple 8-hit ASCII contexts (Asci i Wor kCont ext), long
contexts (LongWr kCont ext), Serializable context (Seri al i zabl eWor kCont ext), and
String contexts (St ri ng\Wr kCont ext).
Wor kCont ext has one subinterface, Pri m ti veWr kCont ext , used to specifically
marshal and unmarshal a single primitive data item.

Wor kCont ext Qut put/ | nput Interfaces representing primitive streams used for marshaling and unmarshaling,

Interfaces respectively, Wor kCont ext implementations.

Propagat i onMbde Interface Defines the propagation properties of Wor kCont ext s. Specifies whether the WorkContext

is propagated locally, across threads, across RMI invocations, across JMS queues and
topics, or across SOAP messages. If not specified, default is to propagate data across
remote and local calls in the same thread.

PrimtiveContextFactory Convenience class for creating Wr kCont ext s that contain only primitive data.

Class

For the complete API documentation about context propagation, see the webl ogi c. wor kar ea
Javadocs.

Programming Context Propagation: Main Steps

You can associate information to a request on a client, retrieve that information on the server,
and then retrieve the value updated by the server instance using context propagation.

The following procedure describes the high-level steps to use context propagation with
WebLogic Server. This example demonstrates how to associate information to a request on a
client, how to retrieve that information on the server, and then how to retrieve the value
updated by the server instance. It is assumed in the procedure that you have already set up
your iterative development environment and have an existing client and application that you
want to update to use context propagation by using the webl ogi ¢. wor kar ea API.

1.

Update your client application to create the Wr kCont ext Map and Wr kCont ext objects and
then add user data to the context.

See Programming Context Propagation in a Client.

If your client application is standalone (rather than running in a Jakarta EE component
deployed to WebLogic Server), ensure that its CLASSPATH includes the Jakarta EE
application client, also called the thin client.

See Developing Stand-alone Clients for Oracle WebLogic Server.

Update your application (EJB, Web service, servlet, and so on) to also create a
Wor kCont ext Map and then get the context and user data that you added from the client
application.

See Programming Context Propagation in an Application.

Programming Context Propagation in a Client

You can program context propagation to get “associated” user information when a client
invokes an application.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE Chapter 15
Programming Context Propagation in a Client

The following sample Java code shows a standalone Java client that invokes a Web service;
the example also shows how to use the webl ogi ¢. wor kar ea. * context propagation APIs to
associate user information with the invoke. The code relevant to context propagation is shown
in bold and explained after the example.

For the complete API documentation about context propagation, see the webl ogi c. wor kar ea
Javadocs.

@® Note

See Developing JAX-WS Web Services for Oracle WebLogic Server for information on
creating Web services and client applications that invoke them.

package exanpl es. workarea.client;
inport java.rm.RenoteException;
inport javax.xnl.rpc. ServiceException;
inport javax.xn .rpc. Stub;
inport javax.namng.lnitial Context;
i nport javax.nam ng. Nani ngExcepti on;
import weblogic.workarea.WorkContextMap;
import weblogic.workarea.WorkContext;
import weblogic.workarea.PrimitiveContextFactory;
import weblogic.workarea.PropagationMode;
import weblogic.workarea.PropertyReadOnlyException;
/**
* This is a sinple standal one client application that invokes the

* the <code>sayHel | o</ code> operation of your WrkArea Wb service.
*

*/
public class Min {
public final static String SESSION_ | D= "session_id_key";
public static void main(String[] args)
throws Servi ceException, RenoteException, Nani ngException,
Propert yReadOnl yExcept i on{
Your Wor kAr eaServi ce service = new Your WrkAreaService(args[0] + "?WsDL");
Your Wor kAr eaPort Type port = service. get WrkAreaPort();
WorkContextMap map = (WorkContextMap)new InitialContext().lookup(*java:comp/
WorkContextMap™);
WorkContext stringContext = PrimitiveContextFactory.create(""A String
Context™);
/1 Put a string context
map.put(SESSION_ID, stringContext, PropagationMode.SOAP);
try {
String result = null;
result = port.sayHello("H there!");

Systemout.println("Got result: " + result);
} catch (RenoteException e) {
throw e;
}
}

}

In the preceding example:

* The following code shows how to import the needed webl ogi c. wor kar ea. * classes,
interfaces, and exceptions:

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE

Chapter 15
Programming Context Propagation in an Application

i nport webl ogi c. wor kar ea. Wr kCont ext Map;

i nport webl ogi c. wor kar ea. Wr kCont ext ;

i nport webl ogi c. wor kar ea. PrinitiveContextFactory;

i nport webl ogi c. wor kar ea. Propagat i onMbde;

i nport webl ogi c. wor kar ea. Propert yReadOnl yExcept i on;

e Substitute your implementation of the Wor kAr ea service and port for your Web service for
Your Wor kAr eaSer vi ce and Your Wor kKAr eaPor t Type.

e The following code shows how to create a Wor kCont ext Map by doing a JNDI lookup of the
context propagation-specific JNDI name j ava: conp/ Wor kCont ext Map:

Wor kCont ext Map map = (Wor kCont ext Map)
new I nitial Context().lookup("java: conp/ Wr kCont ext Map") ;

e The following code shows how to create a Wr kCont ext by using the
PrimtiveContextFactory. In this example, the Wr kCont ext consists of the simple String
value A String Context. This String value is the user data that is passed to the invoked
Web service.

Wor kCont ext stringContext =
PrimtiveContextFactory.create("A String Context");

e The following code saves the st ri ngCont ext under the SESSI ON_| D key in the
Wor kCont ext Map. Specifying the propagation mode of SOAP causes the propagation of the
stringCont ext along any SOAP message sent to servers supporting context propagation.

map. put (SESSI ON_I D, stringContext, Propagationhde. SOAP);

Programming Context Propagation in an Application

You can program context propagation to get the user data and other associated information
when the applications are invoked.

The following sample Java code shows a simple Java Web service (JWS) file that implements
a Web service. The JWS file also includes context propagation code to get the user data that is
associated with the invoke of the Web service. The code relevant to context propagation is
shown in bold and explained after the example.

For the complete API documentation about context propagation, see the webl ogi ¢. wor kar ea
Javadocs.

@® Note

See Developing JAX-WS Web Services for Oracle WebLogic Server for information on
creating Web services and client applications that invoke them.

package exanpl es. wor kar ea;

inport javax.nam ng.!nitial Context;

/1 lmport the Context Propagation classes
import weblogic.workarea;

import weblogic.workarea.WorkContextMap;
import weblogic.workarea.WorkContext;

i mport javax.jws.\WbMet hod,;

i mport javax.jws.\WebServi ce;

i mport webl ogi c.jws. WHtt pTransport;
@¥ebSer vi ce(name="\Wor kAr eaPort Type",

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE

Chapter 15
Programming Context Propagation in an Application

servi ceName="\Wor kAr eaSer vi ce",
target Nanespace="http://exanpl e.org")
@\LHt t pTransport (cont ext Pat h="wor kar ea",
serviceUri ="WrkAreaService",
por t Name="\or kAr eaPort")
/**
* This JWs file fornms the basis of sinple WbLogic
* Web service with a single operation: sayHello

*|
public class WrkCont ext Awar e\ebServi ce {
public final static String SESSION ID = "session_i d_key";
@\ébMet hod()
public String sayHello(String message) {
try {
WorkContextMap map = (WorkContextMap) new InitialContext().lookup(*java:comp/
WorkContextMap™);
WorkContext localwc = map.get(SESSION_ID);
WorkContext modifiedLocalWC = PrimitiveContextFactory.create(localwc.get() + "
could be replaced by a new value...");
map.put(SESSION_ID, newLocalWC, PropagationMode.SOAP);
Systemout.println("local context: " + localwc);
Systemout.println("sayHello: " + message);
return "The server received message: " + nessage + ", with SESSION.ID: " + |ocal we;
} catch (Throwable t) {
return "error";

}
}
}

In the preceding example:

e The following code shows how to import the needed context propagation APIs; in this
case, only the WorkContextMap and WorkContext interfaces are needed:

i nport webl ogi c. wor kar ea. Wor kCont ext Map;
i nport webl ogi c. wor kar ea. Wor kCont ext ;

e The following code shows how to create a Wor kCont ext Map by doing a JNDI lookup of the
context propagation-specific JNDI name j ava: conp/ Wr kCont ext Map:

Wr kCont ext Map map = (Wor kCont ext Map)
new I nitial Context().lookup("java: comp/ WrkCont ext Map");

e The propagation mode is SOAP only, meaning that propagation occurs both to the server
with the request and to the client with the response. The following code shows how the
server instance could modify the stri ngCont ext :

Wor kCont ext nodi fi edLocal WC = PrimitiveContextFactory.create(localw.get() + " could
be replaced by a new value...");

e The following code replaces the work context with an updated value. When retrieving
SESSI ON_| D on the client after the server returns the response, the value updated by the
server is now present on the client.

map. put (SESSI ON_I D, newLocal WC, Propagati onMbde. SOAP) ;

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 5

Programming Jakarta Mail with WebLogic
Server

Learn how to program Jakarta Mail with WebLogic Server to add email capabilities to your
WebLogic Server applications.
This chapter includes the following sections:

Overview of Using Jakarta Mail with WebLogic Server
Applications

WebLogic Server includes the Jakarta Mail API version 1.5 reference implementation. Using
the Jakarta Mail API, you can add email capabilities to your WebLogic Server applications.
Jakarta Mail provides access from Java applications to Internet Message Access Protocol
(IMAP)- and Simple Mail Transfer Protocol (SMTP)-capable mail servers on your network or
the Internet. It does not provide mail server functionality; you must have access to a mail
server to use Jakarta Mail.

Documentation for using the Jakarta Mail APl is available at https://j akarta. ee/
specifications/mil/1.6/.This section describes how you can use Jakarta Mail in the
WebLogic Server environment.

The webl ogi c. j ar file contains the following Jakarta Mail API packages:

e jakarta.mail

* jakarta.mail.event

e jakarta.mail.internet
e jakarta.mail.search

The webl ogi c. j ar also contains the Java Activation Framework (JAF) package, which Jakarta
Mail requires.

The j akarta. mai | package includes providers for Internet Message Access protocol (IMAP)
and Simple Mail Transfer Protocol (SMTP) mail servers. There is a separate POP3 provider for
Jakarta Mail, which is not included in webl ogi c. j ar . You can download the POP3 provider at
https://maven.java. net/content/repositories/rel eases/ conf sun/ mail/pop3 and add it to
the WebLogic Server classpath if you want to use it.

Understanding Jakarta Mail Configuration Files

Jakarta Mail depends on configuration files that define the mail transport capabilities of the
system. The webl ogi c. j ar file contains the standard configuration files which enable IMAP
and SMTP mail servers for Jakarta Mail and define the default message types Jakarta Mail can
process.

Unless you want to extend Jakarta Mail to support additional transports, protocols, and
message types, you do not have to modify any Jakarta Mail configuration files. If you do want
to extend Jakarta Mail, see https://javaee. github.io/javamil/ThirdPartyProducts. Then

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 4

https://jakarta.ee/specifications/mail/1.6/
https://jakarta.ee/specifications/mail/1.6/
https://maven.java.net/content/repositories/releases/com/sun/mail/pop3
https://javaee.github.io/javamail/ThirdPartyProducts

ORACLE Chapter 16
Configuring Jakarta Mail for WebLogic Server

add your extended Jakarta Mail package in the WebLogic Server classpath in front of
webl ogic.jar.

Configuring Jakarta Mail for WebLogic Server

To configure Jakarta Mail for use in WebLogic Server, you create a mail session in the
WebLogic Remote Console. This allows server-side modules and applications to access
Jakarta Mail services with JNDI, using session properties you preconfigure for them.

For example, by creating a mail session, you can designate the mail hosts, transport and store
protocols, and the default mail user in the WebLogic Remote Console so that modules that use
Jakarta Mail do not have to set these properties. Applications that are heavy email users
benefit because the mail session creates a single j avax. mai | . Sessi on object and makes it
available via JNDI to any module that needs it.

To use the WebLogic Remote Console to create a mail session, see Configure Access to
JavaMail in the Oracle WebLogic Remote Console Online Help.

You can override any properties set in the mail session in your code by creating a

java. util.Properties object containing the properties you want to override. See Sending
Messages with Jakarta Mail. Then, after you look up the mail session object in JNDI, call the
Sessi on. get | nst ance() method with your Properti es object to get a customized session.

Sending Messages with Jakarta Mall

You can send a message using Jakarta Mail within a WebLogic Server module.
Here are the steps to send a message with Jakarta Mail:

1. Import the INDI (naming), JavaBean Activation, and Jakarta Mail packages. You will also
need to import j ava. util. Properti es:

import java.util.*;

import javax.activation.*;
import jakarta.mail.*;

import jakarta.mail.internet.*;
inport javax.nam ng.*;

2. Look up the Mail Session in JNDI:

Initial Context ic = new Initial Context();
Sessi on session = (Session) ic.lookup("nyMail Session");

3. If you need to override the properties you set for the Session in the WebLogic Remote
Console, create ajava. util.Properties object and add the properties you want to
override. Then call get | nst ance() to get a new Session object with the new properties.

Properties props = new Properties();
props.put("mail.transport.protocol", "snp");
props.put ("mail.sntp.host", "nmailhost");

/1 use mail address from HTM. formfor from address
props.put(“mail.front', enmil Address);

Sessi on sessi on2 = session. getlnstance(props);

4. Construct a M meMessage. In the following example, to, subject, and messageTxt are String
variables containing input from the user.

Message msg = new M meMessage(session2);
msg. set From() ;
msg. set Reci pi ent s(Message. Reci pi ent Type. TO,
I nt ernet Addr ess. parse(to, false));

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 4

ORACLE

Chapter 16
Reading Messages with Jakarta Mail

nsg. set Subj ect (subj ect);

nmeg. set Sent Dat e(new Date());

/1 Content is stored in a MME multi-part nessage
/1 with one body part

M meBodyPart nbp = new M neBodyPart ();

nbp. set Text (messageTxt);

Mil tipart nmp = new M nmeMul tipart();

np. addBodyPar t (nmbp) ;

nmsg. set Cont ent (np) ;

5. Send the message.
Transport. send(nsg);

The JNDI lookup can throw a Nani ngExcept i on on failure. Jakarta Mail can throw a
Messagi ngExcept i on if there are problems locating transport classes or if communications with
the mail host fails. Be sure to put your code in a try block and catch these exceptions.

Reading Messages with Jakarta Mail

The Jakarta Mail API provides several options for reading messages, such as reading a
specified message number or range of message numbers, or pre-fetching specific parts of
messages into the folder's cache.

The Jakarta Mail API allows you to connect to a message store, which could be an IMAP
server or POP3 server. Messages are stored in folders. With IMAP, message folders are stored
on the mail server, including folders that contain incoming messages and folders that contain
archived messages. With POP3, the server provides a folder that stores messages as they
arrive. When a client connects to a POP3 server, it retrieves the messages and transfers them
to a message store on the client.

Folders are hierarchical structures, similar to disk directories. A folder can contain messages or
other folders. The default folder is at the top of the structure. The special folder name INBOX
refers to the primary folder for the user, and is within the default folder. To read incoming mail,
you get the default folder from the store, and then get the INBOX folder from the default folder.

The API provides several options for reading messages. See the Jakarta Mail API for more
information.

Here are steps to read incoming messages on a POP3 server from within a WebLogic Server
module:

1. Import the JNDI (naming), JavaBean Activation, and Jakarta Mail packages. You will also
need to import j ava. util . Properties:

import java.util.*;

i mport javax.activation.*;
import jakarta.mail.*;

import jakarta.mail.internet.*;
i mport javax.nam ng.*;

2. Look up the Mail Session in JNDI:

Initial Context ic = new Initial Context();
Session session = (Session) ic.lookup("nyMil Session");

3. If you need to override the properties you set for the Session in the WebLogic Remote
Console, create a Properties object and add the properties you want to override. Then
call get I nst ance() to get a new Session object with the new properties:

Properties props = new Properties();
props. put ("mail.store.protocol", "pop3");

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 4

ORACLE

Chapter 16
Reading Messages with Jakarta Mail

props. put ("mail.pop3. host", "nmailhost");
Sessi on sessi on2 = session. getlnstance(props);

Get a St or e object from the Session and call its connect () method to connect to the mail
server. To authenticate the connection, you need to supply the mailhost, user name, and
password in the connect method:

Store store = session.getStore();
store. connect (mai | host, usernane, password);

Get the default folder, then use it to get the INBOX folder:

Fol der fol der = store. getDefaul t Fol der();
fol der = fol der. getFol der ("I NBOX");

Read the messages in the folder into an array of Messages:
Message[] messages = fol der. get Messages();

Operate on messages in the Message array. The Message class has methods that allow
you to access the different parts of a message, including headers, flags, and message
contents.

Reading messages from an IMAP server is similar to reading messages from a POP3 server.
With IMAP, however, the Jakarta Mail API provides methods to create and manipulate folders
and transfer messages between them. If you use an IMAP server, you can implement a full-
featured, Web-based mail client with much less code than if you use a POP3 server. With
POP3, you must provide code to manage a message store via WebLogic Server, possibly
using a database or file system to represent folders.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 4

Threading and Clustering Topics

Learn how to use threads in WebLogic Server as well as how to program applications for use
in WebLogic Server clusters.
This chapter includes the following sections:

Using Threads in WebLogic Server

WebLogic Server is a sophisticated, multi-threaded application server and it carefully manages
resource allocation, concurrency, and thread synchronization for the modules it hosts. To
obtain the greatest advantage from WebLogic Server's architecture, construct your application
modules created according to the standard Jakarta EE APIs.

In most cases, avoid application designs that require creating new threads in server-side
modules:

« Applications that create their own threads do not scale well. Threads in the JVM are a
limited resource that must be allocated thoughtfully. Your applications may break or cause
WebLogic Server to thrash when the server load increases. Problems such as deadlocks
and thread starvation may not appear until the application is under a heavy load.

e Multithreaded modules are complex and difficult to debug. Interactions between
application-generated threads and WebLogic Server threads are especially difficult to
anticipate and analyze.

In some situations, creating threads may be appropriate, in spite of these warnings. For
example, an application that searches several repositories and returns a combined result set
can return results sooner if the searches are done asynchronously using a new thread for each
repository instead of synchronously using the main client thread.

If you must use threads in your application code, create a pool of threads so that you can
control the number of threads your application creates. Like a JDBC connection pool, you
allocate a given number of threads to a pool, and then obtain an available thread from the pool
for your runnable class. If all threads in the pool are in use, wait until one is returned. A thread
pool helps avoid performance issues and allows you to optimize the allocation of threads
between WebLogic Server execution threads and your application.

Be sure you understand where your threads can deadlock and handle the deadlocks when
they occur. Review your design carefully to ensure that your threads do not compromise the
security system.

To avoid undesirable interactions with WebLogic Server threads, do not let your threads call
into WebLogic Server modules. For example, do not use enterprise beans or servlets from
threads that you create. Application threads are best used for independent, isolated tasks,
such as conversing with an external service with a TCP/IP connection or, with proper locking,
reading or writing to files. A short-lived thread that accomplishes a single purpose and ends (or
returns to the thread pool) is less likely to interfere with other threads.

Avoid creating daemon threads in modules that are packaged in applications deployed on
WebLogic Server. When you create a daemon thread in an application module such as a
servlet, you will not be able to redeploy the application because the daemon thread created in
the original deployment will remain running.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 2

ORACLE’

Chapter 17
Using the Work Manager API for Lower-Level Threading

Be sure to test multithreaded code under increasingly heavy loads, adding clients even to the
point of failure. Observe the application performance and WebLogic Server behavior and then
add checks to prevent failures from occurring in production.

Using the Work Manager API for Lower-Level Threading

The Work Manager provides a simple API for concurrent execution of work items. This enables
Jakarta EE-based applications (including servlets and EJBs) to schedule work items for
concurrent execution, which will provide greater throughput and increased response time.

After an application submits work items to a Work Manager for concurrent execution, the
application can gather the results. The Work Manager provides common "join" operations,
such as waiting for any or all work items to complete. The Work Manager for Application
Servers specification provides an application-server-supported alternative to using lower-level
threading APIs, which are inappropriate for use in managed environments such as servlets and
EJBs, as well as being too difficult to use for most applications.

See Using Work Managers to Optimize Scheduled Work in Administering Server Environments
for Oracle WebLogic Server

Programming Applications for WebLogic Server Clusters

There are certain requirements and restrictions when you deploy JSPs and servlets, and EJBs
to a WebLogic Server cluster. Also you need to understand the implications of binding
clustered objects in the JNDI tree when you develop EJBs or custom RMI objects in a cluster.

JSPs and servlets that will be deployed to a WebLogic Server cluster must observe certain
requirements for preserving session data. See Requirements for HTTP Session State
Replication in Administering Clusters for Oracle WebLogic Server for more information.

EJBs deployed in a WebLogic Server cluster have certain restrictions based on EJB type. See
Understanding WebLogic Enterprise JavaBeans in Developing Jakarta Enterprise Beans Using
Deployment Descriptors for information about the capabilities of different EJB types in a
cluster. EJBs can be deployed to a cluster by setting clustering properties in the EJB
deployment descriptor.

If you are developing either EJBs or custom RMI objects for deployment in a cluster, also refer
to Using WebLogic JNDI in a Clustered Environment in Developing JNDI Applications for
Oracle WebLogic Server to understand the implications of binding clustered objects in the JNDI
tree.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 2

Developing OSGI Bundles for WebLogic
Server Applications

Learn about the OSGi environment in WebLogic Server and how to deploy OSGi bundles to
WebLogic Server. Developers who want to use OSGi in their applications can easily share
OSGi facilities, such as the OSGi service registry, class loaders, and other OSGi services.
For general information about OSGi, see http: //ww. 0Sgi . org.

This chapter includes the following sections:

Understanding OSGi

OSGi is a Java modularity system developed and maintained by the OSGi Alliance, of which
Oracle is a member.

The OSGi specifications and related Javadoc together describe a comprehensive operating
environment for Java applications:

* You can download the OSGi Service Platform Core Specification from ht t ps: //
docs. osqi . org/ specification/.

« The OSGi Javadoc is available from ht t ps: // docs. osqgi . or g/ speci fi cation/.

As described on the OSGi Alliance Web page, "The OSGi Alliance is a worldwide consortium
of technology innovators that advances a proven and mature process to create open
specifications that enable the modular assembly of software built with Java technology.
Modularity reduces software complexity; OSGi is the best model to modularize Java.."

The OSGi Architecture Web page further describes the OSGi technology as "...a set of
specifications that define a dynamic component system for Java. These specifications enable a
development model where applications are (dynamically) composed of many different
(reusable) components. The OSGi specifications enable components to hide their
implementations from other components while communicating through services, which are
objects that are specifically shared between components. This surprisingly simple model has
far reaching effects for almost any aspect of the software development process."

OSGi offers you the following benefits:

e Versioning of package wiring, for both implementors and users of interfaces.

e The "uses" directive allows for intelligent wiring of class loaders and helps ensure a
consistent class space.

e Flexible and dynamic security.
e Dynamic service wiring through an active registry.

e Various standard OSGi specifications provided by multiple vendors.

Features Provided in WebLogic Server OSGI Implementation

WebLogic Server allows you to configure and manage one or more instances of an OSGi
framework. You can also create and deploy your own OSGi bundles.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 15

http://www.osgi.org
https://docs.osgi.org/specification/
https://docs.osgi.org/specification/
https://docs.osgi.org/javadoc/
https://www.osgi.org/about/
https://www.osgi.org/resources/architecture/

ORACLE

Chapter 18
Configuring the OSGi Framework

WebLogic Server allows you to add a list of OSGi frameworks (maintained via
OsgiFrameWorkMBean MBeans) to the server configuration. After the OSGi framework has
been booted, a bundle object for the framework is placed into the local server JNDI tree.
Applications can then get this bundle from JNDI and thereafter use that as their entry point into
the OSGi system.

Applications can also deploy their own OSGi bundles. One specific OSGi bundle from the
chosen framework instance can be used in the application classloader hierarchy.

WebLogic Server allows you to:

» Configure and manage one or more instances of an OSGi framework using WLST.

WebLogic Server includes the Apache Felix implementation of the OSGi framework. See
http://felix.apache. org for information on Felix.

e Create and deploy your own OSGi bundles.

WebLogic Server includes an OSGi bundle containing the OSGi API. You can use this API
to create your own OSGi bundles.

e One specific OSGi bundle from the chosen framework instance can be used in the
application classloader hierarchy.

e Access OSGi bundles directly from JNDI.

e Deploy and undeploy OSGi bundles.

* Log OSGi status via the WebLogic Server logging mechanism.
e Incorporate the OSGi services of your choice.

e Enable OSGi persistence.

e Manage OSGi bundle start levels for deployed bundles.

These topics are described in the sections that follow.

Configuring the OSGI Framework

OSGi framework provides a secure and managed Java framework. You can configure and
manage one or more instances of the framework and ensure persistence.

As described in the OSGi Service Platform Core Specification, "The Framework forms the core
of the OSGi Service Platform Specifications. It provides a general-purpose, secure, and
managed Java framework that supports the deployment of extensible and downloadable
applications known as bundles. "

WebLogic Server includes the Felix implementation of OSGi framework. You can configure and
manage one or more instances of the Felix OSGi framework.

@® Note

WebLogic Server supports only the Felix framework. Other OSGi Frameworks are not
supported and have not been tested.

Configuring OSGi Framework Instances

WebLogic Server includes an OSGi framework by default, but it does not automatically start it.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 15

http://felix.apache.org
https://docs.osgi.org/specification/

ORACLE’

Chapter 18
Configuring the OSGi Framework

You must configure WebLogic Server to boot an OSGi framework when WebLogic Server
boots. You can do this in three ways, according to your preference:

- Edit the DOVAI N_HOVE\ confi g\ confi g. xm deployment descriptor file to add an entry for
the OSGi server and set the attribute values. You specify the OSGi framework you want
the WebLogic Server instance to use.

* Use WLST to create the OSGi framework and set the attribute values. WLST then stores
the values in the DOVAI N_HOME\ confi g\ confi g. xm deployment descriptor file.

e Write a Java program to create the OSGi framework and set the attribute values.

In all three cases, configuration of an OSGi framework instance is controlled by the
OsgiFrameWorkMBean. For each framework associated with an OsgiFrameWorkMBean,

WebLogic Server boots an OSGi framework with a unique name.

You configure the OSGi framework attributes shown in Table 18-1.

Table 18-1 OSGi Framework Attributes
]

Attribute Usage

Target This attribute is required. You must select a target (servers or clusters) on
which an MBean will be deployed from the list of servers or clusters in the
current domain on which this item can be deployed.

Name The name of the framework instance. The name of a given framework instance

must be unique within a WebLogic Server server instance.

Implementation Class

The name of the framework implementation class for the
org. osgi . framewor k. | aunch. Franewor kFact or y class. The default value
is or g. apache. fel i x. f ramewor k. Framewor kFact ory.

Deploy Installation
Bundles

Determines whether OSGi bundles are installed in the framework. This
attribute is "populate" by default. See Parameter Required for Installing
Bundles in the Framework for more information.

Dynamically Created

Determines whether the MBean is created dynamically or is persisted to
config.xm .

Init Properties

The standard Felix properties to be used when initializing the framework. All
standard properties and all properties specific to the framework can be set.
See Example 18-3 for an example of setting the Init Properties from a Java
program.

The Apache Felix Framework Configuration Properties are described in
http://felix.apache. org/docunentation/ subprojects/apache-
felix-framework/apache-felix-franmework-configuration-
properties. htnl.

Framework Boot
delegation

The name of the or g. 0sgi . f ramewor k. boot del egat i on property. Note that
this value, if set, will take precedence over anything specified in the init-
properties.

Framework System
Packages Extra

The name of the or g. 0sgi . f ramewor k. syst em packages. ext r a property.
Note that this value, if set, will take precedence over anything specified in the
init-properties.

Register Global Data
Sources

Boolean. Returns true if global data sources should be added to the OSGi
service registry.

Register Global Work
Managers

Boolean. Returns true if global work managers should be added to the OSGi
service registry.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 15

http://felix.apache.org/documentation/subprojects/apache-felix-framework/apache-felix-framework-configuration-properties.html

ORACLE

Configuring OSGi Framework Instance From config.xml

Chapter 18
Configuring the OSGi Framework

Example 18-1 shows an example of updating confi g. xnl to add the OSGi framework to be
used by WebLogic Server. Add the <osgi - f r amewor k> element just before the </ donai n>
element.

If you need to add multiple OSGi framework instances, add multiple <osgi - f r anewor k>
elements. Remember that each <name> element must be unique within the server.

After you add this element, you must reboot the WebLogic Server instance.

Example 18-1 Configuring OSGi Framework Instance From config.xml

<osgi - f ramewor k>

<nane>t est - 0sgi - f rame</ nane>
<t ar get >Admi nServer</target>

</ osgi - f ramewor k>

Configuring OSGi Framework Instance From WLST

Example 18-2 shows an example of using WLST to add the OSGi framework to be used by the
WebLogic Server instance.

Example 18-2 Configuring OSGi Framework Instance From WLST

java webl ogi c. W.ST

connect (' webl ogic', 'password')

edit()

startEdit()
w s:/nydonai n/edit !> cmo.createOsgiFramework("test-osgi-frame®)
[MBeanSer ver I nvocat i onHandl er] com bea: Nane=t est - osgi - f r ane, Type=0sgi Fr amewor k

target Server =cno. | ookupSer ver (' Adm nServer')

cd("' Osgi Framewor ks')

cd('test-osgi-frane')

cno. addTar get (t ar get Server)

W s:/nydonai n/edit !> save()

W s:/nydonain/edit !> activate()

W s:/ nydonai n/ edi t/ OCsgi Frameworks> I s('a')

dr w

test-osgi-frane

W s:/ nydonai n/ edi t/ Osgi Framewor ks> cd('test-osgi-frane')
W s:/ nydonai n/ edi t/ Osgi Framewor ks/ test-osgi -frame> Is('a')

-TW
-TW
-r--
-ITW

Depl oyl nstal | ati onBundl es
Depl oyment Or der

Dynani cal | yCreat ed
Factoryl npl ement ati ond ass

ramewor kFact ory

-r--
-TW
-TW
-TW
-TW
-TW
-TW
-TW
-r--

I d

I nitProperties

Nane

Not es

O gGsgi Framewor kBoot del egati on

Or gGsgi Framewor kSyst enPackagesExtra
Regi st er G obal Dat aSour ces

Regi st er @ obal Wr kManager s

Type

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

popul at e

1000

fal se

org. apache. felix. framework. F

0

nul |
test-osgi-frame
nul |

nul |

nul |

true

true

Osgi Framewor k

October 7, 2025
Page 4 of 15

ORACLE Chapter 18
Configuring the OSGi Framework

Configuring OSGi Framework Instance from a Java Program

Example 18-3 shows an example of using a Java program to add the OSGi framework to be
used by the WebLogic Server instance. Comments in the code describe each operation.

Example 18-3 Configuring OSGi Framework from Java Program

/** . .inports onitted
*/
/**
* Create an OSG framework instance with the designated name
*
* @ar am franmewor kNane
*/
protected void createOSG Framewor kl nstance(String franmewor kNane) {
creat eOSG Framewor kI nst ance(framewor kNarme, null, null, null, null, null);

}

protected void createOSG Framewor kl nstance(String franmewor kNane,
String isRegisterd obal WrkManagers,
String isRegisterd obal DataSour ces,
String depl oyl nstall ationBundl es,
String orgGCsgi Franmewor kBoot del egat i on,
String orgQOsgi Framewor kSyst enPackagesExtra) {
creat eOSG Framewor kI nst ance(f r amewor kNarre,

null,

i sRegi st er G obal Wr kManager s,

i sRegi st er G obal Dat aSour ces,

depl oyl nst al | ati onBundl es,

or gGsgi Framewor kBoot del egat i on,

or gGsgi Franmewor kSyst emPackagesExtra);

*

Create a fresh framework

@ar am i sRegi st er @ obal Wr kManager s

@ar am i sRegi st er @ obal Dat aSour ces

@ar am depl oyl nstal I ati onBundl es

@ar am or gOsgi Framewor kBoot del egati on

@ar am or gOsgi Framewor kSyst enPackagesExtra

O

-~

protected void createOSG Framewor kl nstance(String franmewor kNane,
Properties initProp,
String isRegisterd obal WrkManager s,
String isRegisterd obal DataSour ces,
String depl oyl nstallationBundl es,
String orgCsgi Franmewor kBoot del egat i on,
String orgQCsgi Framewor kSyst enPackagesExtra) {

f ramewor ki nst ances. add(f r amewor kNane) ;

if (initProp == null) {

initProp = new Properties();
}
i nitProp.setProperty("w stest.framework.instance. name", frameworkNane);
[linitProp.setProperty("felix.cache.locking", "false");
[1initProp.setProperty("org.osgi.framework.storage.clean", "onFirstinit");

MBeanSer ver Connecti on connection = null;

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 15

ORACLE Chapter 18
Configuring the OSGi Framework

try {

/1 Initiate the necessary MBean facilities.

connection = initConnection();

/1 Switch the edit session on.

bj ect Nane domai nMBean = start Edi t Sessi on(connection);

/1 Get the current WebLogic server Mean:
bj ect Nane serverMBean = nul | ;
bj ect Nane[] server MBeans = (Chject Name[]) connection. getAttribute(donai nMBean, "Servers");
for (ObjectName objectNane : serverMBeans) {
| og("found server: " + objectNange);
server MBean = obj ect Nane;

}

/]l Get or create an Gsgi Franewor kMBean:
bj ect Nane osgi Franewor kMBean = nul | ;
bj ect Nane[] osgi Framewor kMBeans = ((bj ect Name[]) connection. get Attri but e(domai niVBean,
"Osgi Framewor ks");
| og(" osgi Framewor kMBeans. | engt h=" + osgi Franmewor kMBeans. | engt h) ;
for (bjectName objectNane : osgi Franewor kMBeans) {
String osgi Framewor kNane = (String) connection. getAttribute(objectName, "Nane");
log("-------------- > " + 0sgi Framewor kNane) ;
i f (osgi Franewor kNane. equal s(framewor kNanme)) {
osgi Framewor kMBean = obj ect Nang;
| og("Found OSG framework instance: " + franeworkNang);
br eak;
}
}

i f (osgi FrameworkMBean != null) {

log("WII destroy the franework instance: " + osgi Franewor kMBean);
connection. i nvoke(osgi Framewor kMBean,

"removeTarget",

new (bject[] { serverMBean },

new String[] { "javax. management. Cbj ect Nane" });
connection. i nvoke(domai nMBean,

"destroyOsgi Framewor k",

new Object[] { osgi Framewor kMBean 1},

new String[] { "javax. management. Cbj ect Nane" });

}

log("WII create a new framework instance fromscratch");
osgi Framewor kMBean = ((bj ect Name) connecti on. i nvoke(domai niVBean,
"creat eCsgi Framewor k",
new Qbject[] { frameworkNare },
new String[] { "java.lang. String" });

/1 Set common properties:
if (initProp !'=null) {
Attribute initPropAttr = new Attribute("InitProperties", initProp);
connection. set Attribute(osgi Framewor kMBean, initPropAttr);
}
Attribute systenPackagesExtraAttr = new Attribute(" O gOsgi Framewor kSyst enPackagesExtra”,
"j avax. nam ng, webl ogi c. wor k, j avax. sql ") ;
connection. set Attribute(osgi Framewor kMBean, systenPackagesExtraAttr);
connection. i nvoke(osgi Fr amewor kMBean,
"addTarget",
new Qbject[] { serverMBean },
new String[] { "javax.managenent. bj ect Nane" });

/1 Set individual property to the OSG framework instance:

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 15

ORACLE Chapter 18
Configuring the OSGi Framework

if (isRegisterd obal WorkManagers != null) {
Attribute attr = new Attribute("Registerd obal WrkManagers",
Bool ean. par seBool ean(i sRegi st er @ obal Wr kManagers)) ;
connection. set Attribute(osgi Framewor kMBean, attr);

}

if (isRegisterd obal DataSources !'= null) {
Attribute attr = new Attribute("Registerd obal Dat aSour ces",
Bool ean. par seBool ean(i sRegi st er @ obal Dat aSour ces)) ;
connection. setAttribute(osgi Framewor kMBean, attr);

}

if (deploylnstallationBundles !'= null) {
Attribute attr = new Attribute("DeploylnstallationBundl es", deploylnstallationBundles);
connection. set Attribute(osgi Framewor kMBean, attr);

}

if (orgGsgi Framewor kBoot del egation !'= null) {
Attribute attr = new Attribute("OrgGsgi Franewor kBoot del egati on", orgQOsgi Framewor kBoot del egati on);
connection. set Attribute(osgi Framewor kMBean, attr);

}

if (orgGsgi Framewor kSyst enPackagesExtra !'= null) {
Attribute attr = new Attribute("OrgOsgi Franewor kSyst enPackagesExtra”,
or gGsgi Franmewor kSyst emPackagesExtra);
connection. setAttribute(osgi Framewor kMBean, attr);

}

MBeanl nfo m = connection. get MBeanl nf o(osgi Fr amewor kMBean) ;

log("Attributes are as below");

for (MBeanAttributelnfo mai : mi.getAttributes()) {
(bj ect val ue = connection.getAttribute(osgi Framewor kMBean, nai.getName());
Systemout. printf(" % 40s = %\n", mai.getName(), value);

}

/1 Save your changes
bj ect Nane cfgMgr = (Chj ect Name) connection. getAttribute(service, "ConfigurationManager");
connection.invoke(cfgMr, "save", null, null);

Parameter Required for Installing Bundles in the Framework

The OsgiFrameWorkMBean MBean Depl oy I nstal | ati on Bundl es attribute controls whether
or not bundles present in the osgi - | i b directory (described later in this chapter in Deploying
OSGi Bundles in the osgi-lib Directory) are actually installed into the framework.

The Depl oy Installation Bundl es parameter accepts the following values:

e ignore — None of the bundles in this directory are installed and started.

e popul at e — The bundles are installed and started if possible. This is the default.
Furthermore, a few extra packages are added to the boot delegation classpath parameters
in order to enable the bundles in the osgi - | i b directory if they are not already there.

It is not be considered a failure that causes the system to not boot if these bundles do not
properly resolve and therefore cannot be started.

Configuring OSGI Framework Persistence

OSGi has a persistence mechanism, described in htt p: // ww. 0sgi . or g/ j avadoc/ r 4v43/
core/org/osgi/framework/ | aunch/ Framewor k. ht mi , in which all installed bundles must be
started in accordance with each bundle's persistent autostart setting.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 15

https://osgi.org/javadoc/r4v43/core/org/osgi/framework/launch/Framework.html
https://osgi.org/javadoc/r4v43/core/org/osgi/framework/launch/Framework.html

ORACLE

Chapter 18
Configuring the OSGi Framework

This persistence mechanism is disabled by default. However, you can use the standard Felix
Init property shown in Table 18-1 to enable the OSGi persistence mechanism.

Note: WebLogic Server is not directly involved in the OSGi persistence mechanism. In
particular, WebLogic Server does not fail the data over to other servers.

Using OSGi Services

You can make standard OSGi services available to your OSGi bundle. To do this, import the
correct packages for the Felix framework and make sure that the application bundle has the
required authorization.

These services are described in the OSGi Service Platform Core Specification (htt ps://
www. 0sgi . or g/ resour ces/) and include but are not limited to standard Framework supplied
services such as the Package Admin Service, Conditional Permission Admin Service, or the
StartLevel Service.

See the Apache Felix Tutorial Example 1, Service Event Listener Bundle for an example of
creating a simple bundle that listens for OSGi service events.

Connecting to an OSGi Console

To view details such as the versions, lifecycle state, and others in the OSGi framework that you
configured, you have to connect to an OSGi console. There are many Felix consoles.
However, WebLogic Server includes the Apache Felix implementation of the OSGi framework.
WebLogic Server release includes a version of Apache Felix that corresponds to the OSGi R6
framework. For information about the specific version of Apache Felix that is included in
WebLogic Server, see Third-Party Products in Oracle Fusion Middleware in Oracle® Fusion
Middleware Licensing Information User Manual. The content of this document applies to all
versions of WebLogic Server 12c. This framework is packaged as
org.apache.felix.org.apache.felix.main.jar in the WebLogic Server distribution. There are other
shells and consoles such as the GoGo console, all of them involve the same basic steps.

1. Getting the required bundles

2. Starting the required bundles

3. Connecting to the console

To connect to Apache Felix Remote Shell in the development environment, do the following:

1. Download the Felix Shell and Felix Remote Shell bundles from the downloads page in
http://felix.apache.org.

2. Install and start these bundles in one of following ways:
e Place the bundles under $ORACLE_HOVE/ Wl server/server/osgi-lib

* Create an application that contains these two bundles and then deploy that application
after creating the OSGi framework.

3. Create and start an OSGi framework.
Use telnet to connect to the console which listens on localhost port 6666 by default.
* hel p lists all the available commands

e ps lists all bundles and what state they are in

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 15

https://www.osgi.org/resources/
https://www.osgi.org/resources/
http://felix.apache.org/documentation/tutorials-examples-and-presentations/apache-felix-osgi-tutorial/apache-felix-tutorial-example-1.html
http://felix.apache.org/downloads.cgi

ORACLE Chapter 18
Creating OSGi Bundles

Creating OSGI Bundles

You use the OSGi API bundle that is located in W server/server/lib/
org. apache. felix. org. apache. fel i x. mai n. j ar to create your own OSGi bundle.

See the Apache Felix Tutorial Example 1, Service Event Listener Bundle for an example of
creating a simple bundle. As described in this example, the | nport - Package attribute of the
manifest file informs the framework of the bundle's dependencies on external packages. All
bundles with an activator must import or g. osgi . f ramewor k because it contains the core OSGi
class definitions.

Deploying OSGi Bundles

After you create an OSGi bundle you can deploy the OSGi bundle on a target system and in
the osgi - 1i b directory. In WebLogic Server you can deploy OSGi bundles from inside a JAR,
EAR, or WAR file.

Preparing to Deploy an OSGi Bundle on a Target System

You can deploy OSGi bundles from inside a JAR, EAR, or WAR file, as appropriate for your
application.

Before you do this, you must first specify which OSGi framework you want your bundle to use,
and identity the bundle to WebLogic Server.

@ Note

If the OSGi framework instance you specify does not exist on the target server, the
OSGi bundle fails to deploy.

How you do this depends on whether your bundle is inside a WAR file or an EAR file:

« WAR — The framework instance and bundle name must be in an element in the Web
application's webl ogi c. xml deployment descriptor file.

 EAR — The framework instance and bundle name must be in an element in the
application's webl ogi c- appl i cati on. xm deployment descriptor file.

If the EAR file contains WAR files, then the bundles inside the WAR files are deployed
using the webl ogi ¢c. xm deployment descriptor file from the embedded WAR files.

The sections that follow describe the required steps in detail.

For more information about WebLogic Server deployment descriptors, see Deploying
Applications to Oracle WebLogic Server.

Preparing to Deploy Bundles as Enterprise Applications

Before you deploy your OSGi bundle, you must first:

1. Use either the DOMAI N_HOVE\ confi g\ confi g. xm deployment descriptor file or WLST to
add an entry for the OSGi framework, as described in Configuring OSGi Framework
Instances.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 15

http://felix.apache.org/documentation/tutorials-examples-and-presentations/apache-felix-osgi-tutorial/apache-felix-tutorial-example-1.html

ORACLE

Chapter 18
Deploying OSGi Bundles

2. Inthe EAR file that contains the OSGi bundle, add both the name of the OSGi framework
and the name of the bundle itself to the webl ogi c- appl i cati on. xm deployment descriptor
file.

Example 18-1 shows an example of updating confi g. xm to add the OSGi framework used by
the WebLogic Server.

Example 18-4 shows an example of updating webl ogi c- appl i cati on. xm to add both the
name of the OSGi framework and the name and location of the bundle.

Example 18-4 Adding the Framework and Bundle to weblogic-application.xml

<osgi - framewor k- r ef erence>
<nanme>t est - 0sgi - f rame</ name>
<appl i cati on-bundl e- synmbol i c- nane>com or acl e. webl ogi c. test.client
</ appl i cati on-bundl e- synbol i c- name>
<bundl es-di rect ory>rashi/osgi-|ib</bundl es-directory>
</ osgi - f ramewor k- r ef er ence>

The stanza in Example 18-4 tells the WebLogic Server to attach to the OSGi framework named
"test-osgi-frame" and to find the bundle in that server with the symbolic name
com oracl e. webl ogi c. test. client inorder to find classes from that OSGi framework.

Preparing to Deploy Bundles as Web Applications

Before you install your bundle as a WAR file, you must first:

1. Use either the DOMAI N_HOVE\ confi g\ confi g. xnl deployment descriptor file or WLST to
add an entry for the OSGi framework, as described in Configuring OSGi Framework
Instances.

2. Add both the name of the OSGi framework and the name of the bundle itself to the web
application's webl ogi ¢c. xm deployment descriptor file.

Example 18-1 shows an example of updating confi g. xm to add the OSGi framework used by
the WebLogic Server.

Example 18-5 shows an example of updating webl ogi c. xm to add both the name of the OSGi
framework and the name and location of the bundle.

Example 18-5 Adding the Framework and Bundle to weblogic.xml

<osgi - framewor k-ref erence>
<nanme>t est - 0sgi - f rame</ nanme>
<appl i cati on-bundl e- symbol i c- nane>com or acl e. webl ogi c. test.client
</ appl i cati on-bundl e- synbol i c- name>
<bundl es-di rect ory>rashi/osgi-|ib</bundl es-directory>
</ osgi - f ramewor k- r ef er ence>

The stanza in Example 18-4 tells the WebLogic Server to attach to the OSGi framework named
"test-osgi-frame" and to find the bundle in that server with the symbolic name
com oracl e. webl ogi c. test. client inorder to find classes from that OSGi framework.

Global Work Managers

Work Managers prioritize work based on rules you define and by monitoring actual run time
performance statistics. This information is then used to optimize the performance of your
application. See Using Work Managers to Optimize Scheduled Work in Administering Server
Environments for Oracle WebLogic Server.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 15

ORACLE Chapter 18
Deploying OSGi Bundles

The OSGi implementation can take advantage of global work managers if the Register Global
Work Managers MBean attribute is set to true, as described in Table 18-1.

You can determine which global work manager is in use from a Java application, as shown in
Example 18-7.

Example 18-6 Determining Global Work Managers

Il Get the global scoped work nanager service:
Servi ceReference[] ref WrBvcs = bc. get Servi ceRef er ences(Wor kManager . cl ass. get Canoni cal Narre(),
"(nane=QA obal ScopedWor kManager)");
if (refWiBves !'= null) {
| ogger. set Attribute(franeworkl nstanceNane, bundl eldentifier + " _WrkMnager _Count",
ref WiSves. | engt h);
for (int i =0; i <refWvcs.length; i++) {
Servi ceRef erence ref Wivc = ref Wives[i];
Wor kManager wm = (Wor kManager) bc. get Servi ce(ref WrSvc) ;
| ogger. set Attribute(franeworkl nstanceNane, bundleldentifier + " _\WrkMnager" + (i + 1),
wm get Name()) ;
bc. unget Servi ce(ref Wrvc) ;
}
}

Global Data Sources

In WebLogic Server, you can configure database connectivity by configuring JDBC data
sources and multi data sources and then targeting or deploying the JDBC resources to servers
or clusters in your WebLogic domain, as described in WebLogic Server Data Sources in
Understanding Oracle WebLogic Server.

The OSGi implementation can take advantage of global data sources if the Register Global
Data Sources MBean attribute is set to true, as described in Table 18-1.

You can determine which global data source is in use from a Java application, as shown in
Example 18-7.

Example 18-7 Determining Global Data Sources

/1 Get the global data source services:
Servi ceReference[] refDsSvcs =
bc. get Servi ceRef er ences(Dat aSour ce. cl ass. get Canoni cal Nane(), "(nanme=0sgi DS)");
if (refDsSves !'= null) {
| ogger. set Attribute(franmeworklnstanceNane, bundleldentifier + "_DataSource_Count",
ref DsSves. | ength);
for (int i =0; i <refDsSvcs.length; i++) {
String data = null;
Servi ceRef erence ref DsSvc = refDsSves[i];
Dat aSource ds = (DataSource) bc. get Service(refDsSvc);
Connection conn = nul |;
Statenent stnt = nul|;
ResultSet rs = null;
try {
conn = ds. get Connection();
stm = conn.createStatement();
rs = stnt.executeQuery("select * fromdual");
rs.next();
data = rs.getString(0);
} catch (SQLException e) {

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 15

ORACLE Chapter 18
Accessing Deployed Bundle Objects From JNDI

Deploying OSGi Bundles in the osgi-lib Directory

@® Note

The OsgiFrameWorkMBean MBean Depl oy Instal | ati on Bundl es attribute controls
whether or not bundles present in the osgi - | i b directory are actually installed, as
described in Parameter Required for Installing Bundles in the Framework. This
attribute is true by default, and the bundles are installed.

To deploy a bundle with the start-level of 1, create the W._HOVE/ server/ osgi - | i b directory if it
does not already exist, and then copy the archive file (EAR, WAR) file to it.

Any files in this directory that end with . j ar, . ear, or . war are considered an OSGi bundle to
be installed into a framework when it starts.

W. HOVE/ server/osgi -1i b is consulted only when the server first boots, and is not monitored
for changes thereafter. If you add a new OSGi bundle to the W._HOVE/ server/osgi-lib
directory and want to deploy it, you must reboot WebLogic Server.

Setting the Start Level and Run Level for a Bundle

To deploy a bundle with the start-level of 1, copy the archive file (EAR, WAR) file to the
W._HOME/ server/ osgi-1ib directory.

In addition, the W._HOVE/ server/ osgi -1 i b directory supports a start- and run-level scheme
based on subdirectories.

If you create subdirectories with names that begin with a number between 1 and 32K (for
example 2, 3, 4), then the archive files under those directories are installed and started with the
given run-level.

Accessing Deployed Bundle Objects From JNDI

After the OSGi server has been booted, a bundle object is placed into the local server JNDI
tree. Applications can therefore get this bundle from JNDI and thereafter use that as the entry
point into the OSGi system.

The or g. osgi . framewor k. Bundl e is placed into the j ava: app/ 0sgi / Bundl e INDI environment
of the application.

One specific OSGi bundle from the chosen framework instance can be used in the application
classloader hierarchy.

Example 18-8 shows how to access a bundle that you create from JNDI.
Example 18-8 Accessing Your OSGi Bundle From JNDI
public static final String BUNDLE JNDI _NAME = "java: app/ osgi/ Bundl e";

String bundl eSynbolicNane = nul | ;

Bundl e bundle = nul |;
Osgilnfo info = new Osgilnfo();
Li st<String> errorMessages = new ArrayList<String>();

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 15

ORACLE Chapter 18

Accessing Deployed Bundle Objects From JNDI

try {

}

Context initCtx = new Initial Context();

bundl e = (Bundle) initCx.|ookup(Constants. BUNDLE JNDI _NAME);

catch (Nam ngException e) {

error Messages. add(e.toString());

Systemout.println("Failed to | ookup bundle fromJND due to " + e);

if (bundie !'= null) {

bundl eSynbol i cNane = bundl e. get Synbol i cNane() + "_" + bundl e. get Version();
i nfo.setCurrentBundl e(bundl eSynbol i cNane) ;

Bundl eCont ext bc = bundl e. get Bundl eCont ext () ;
if (bc !=null) {

/] Get the start level service:
StartlLevel startlLevel Svc = null;
Servi ceRef erence startlLevel Sr = bc. get Servi ceRef erence("org. osgi.service.startlevel.StartLevel");
if (startLevel Sr !'= null) {
startLevel Svc = (StartLevel) bc.getService(startLevel Sr);

}

Li st<String> allInstalledBundl es = new ArrayList<String>();

Li st<String> al | ActivatedBundl es = new ArrayList<String>();

Map<String, List<String>> services = new HashMap<String, List<String>>();
Map<String, String> startlLevels = new HashMap<String, String>();

for (Bundle b : bc.getBundles()) {

/I Collect all the installed and activated bundl es:
String bundleld = b.get SynbolicNane() + "_" + b.getVersion();
al | I nstal | edBundl es. add(bundl el d);
if (b.getState() == Bundle. ACTIVE) {
al | Acti vat edBundl es. add(bundl el d) ;
}

/1 Collect the registered services:
Servi ceReference[] srs = b. getRegi steredServices();
if (srs !=null) {
List<String> list = new ArrayList<String>();
for (ServiceReference sr : srs) {
list.add(sr + "-->" + bc.getService(sr));
}

services. put (bundleld, list);

}

Il Collect the start levels:
if (startlLevel Svc !'= null) {
startLevel s. put(bundl el d, startLevel Svc. getBundl eStartLevel (b) + "");
}
1

info.setAlllnstalledBundl es(alllnstalledBundles);
info.set All Activat edBundl es(al | Acti vat edBundl es);
i nfo.setRegi steredServices(services);
info.setStartLevel s(startLevels);

/1 Query the work manager services:
Li st<String> workManagers = new ArrayList<String>();

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 15

ORACLE Chapter 18
Using OSGi Logging Via WebLogic Server

try {
Servi ceReference[] wnBrs = bc. get Servi ceRef er ences(Wr kManager . cl ass. get Canoni cal Nane(), null);

if (wrBrs !'= null) {
for (ServiceReference sr : wnfrs) {
Wor kManager wm = (Wor kManager) bc. get Servi ce(sr);
wor kManager s. add(wm get Nanme()) ;

}

} catch (InvalidSyntaxException e) {
e.printStackTrace(Systemout);

}
i nf o. set Wor kManager s(wor kManager s) ;

/1 Query the data source services:
Li st<String> dataSources = new ArrayList<String>();

try {
Servi ceReference[] dsSrs = bc. get Servi ceRef er ences(Dat aSour ce. cl ass. get Canoni cal Name(), null);

if (dsSrs !'= null) {
for (ServiceReference sr : dsSrs) {
dat aSour ces. add(sr. get Property("nane").toString());

}

} catch (InvalidSyntaxException e) {
e.printStackTrace(Systemout);

}

i nf 0. set Dat aSour ces(dat aSour ces) ;

}
}

String bundl eFileNane = null;

try {
Bundl el ntrospect introspection = new Bundl el ntrospect();

bundl eFi | eNane = introspection. whi chBundl eFile();
i nfo.setCurrentBundl eFi | eName(bundl eFi | eNane) ;

} catch (Throwable e) {
error Messages. add(e.toString());
/le.printStackTrace(Systemout);

}

i nfo.setErrorMessages(errorMessages);

return info;

}

Using OSGI Logging Via WebLogic Server

The Apache Felix implementation of the OSGi Log service is installed by default when you
install WebLogic Server. The OSGi bundle registers with the OSGi logging service and sends
logs from the OSGi logger to the WebLogic Server logger.

The Apache Felix implementation of the OSGi Log service is installed by default in the
installation directory W._HOVE/ server/osgi-1ib.

An OSGi bundle com or acl e. webl ogi c. osgi . | ogger _rel num j ar is also installed in W._HOVE/
server/osgi-1ib. This bundle registers itself with the OSGi logging service and sends logs
from the OSGi logger to the WebLogic Server logger.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 15

ORACLE’

Chapter 18
Configuring a Filtering ClassLoader for OSGi Bundles

The logger system name is OSG For Apps. The messages severity levels are mapped between
OSGi and WebLogic Server as shown in Table 18-2.

Table 18-2 OSGi and WebLogic Server Logging Severity Mapping

OSGi Severity Levels WebLogic Server Severity Level
LogLevel.LOG_ERROR Severities.ERROR
LogLevel.LOG_WARNING Severities. WARNING
LogLevel.LOG_INFO Severities.INFO
LogLevel.LOG_DEBUG Severities.DEBUG

Configuring a Filtering ClassLoader for OSGI Bundles

You can use a filtering classloader to specify the use of alternate library versions that are
deployed as OSGi bundles.

To configure the Fi | t eri ngd assLoader to specify that a certain package is loaded from an
application, add a pref er - appl i cati on- packages descriptor element to webl ogi c-

appl i cation. xm , which details the list of packages to be loaded from the application. The
following example specifies that or g. apache. | og4j . * and ant | r. * packages are loaded from
the application, not the system classloader:

<prefer-application-packages>
<package- nanme>or g. apache. | og4j . *</ package- nane>
<package- name>ant | r. *</ package- nane>

</ prefer-application-packages>

Place packages in WEB- | NF/ | i b or in WEB- | NF/ osgi - | i b if the package is an OSGi bundle. You
can either add OSGi bundle dependencies directly to VEB- | NF/ 0sgi - | i b or configure the

org. osgi . framework. syst em packages. extra property (see Table 18-1) in your OSGi
framework instance to export the necessary j avax packages that the application needs.

For more information on filtering classloaders, see Using a Filtering ClassLoader.

OSGI Example

WebLogic Server includes two simple example OSGi bundles: client and server. The server
bundle (ServerBundle) exports a packet that the client bundle (ClientBundle) imports. The
example produces an HTML page that displays the deployed OSGi bundles.

WebLogic Server includes an example that demonstrates how to deploy OSGi bundles to
WebLogic Server. If you installed the WebLogic Server examples, the OSGi example source
code is available in ORACLE_HOVEW _ser ver/ exanpl es/ src/ exanpl es/ osgi / 0sgi App, where
ORACLE_HOME represents the directory in which the WebLogic Server code examples are
configured. For more information about the WebLogic Server code examples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 15

Using the WebSocket Protocol in WebLogic

Server

WebLogic Server supports the WebSocket protocol (RFC 6455), which provides full-duplex

communications between two peers over the TCP protocol. The WebLogic Server
implementation of the WebSocket protocol and its accompanying API enable you to develop
and deploy applications that communicate bidirectionally with clients. Although you can use the
WebSocket protocol for any type of client-server communication, the implementation is most
commonly used to communicate with browsers running Web pages that use the World Wide
Web Consortium (W3C) JavaScript WebSocket API. The WebLogic Server implementation of
the WebSocket protocol also supports Java clients.

This chapter includes the following sections:

Understanding the WebSocket Protocol

WebSocket is an application protocol that provides simultaneous two-way communication over
a single TCP connection between a client and a server. The WebSocket protocol enables the
client and the server to send data independently.

As part of the HTML5 specification (ht t p: // www. w3. or g/ TR/ ht ml 5/), the WebSocket Protocol
is supported by most browsers. A browser that supports the WebSocket protocol provides a
JavaScript API to connect to endpoints, send messages, and assign callback methods for
WebSocket events (such as opened connections, received messages, and closed
connections).

For general information about the WebSocket Protocol, see https://|akarta. ee/
specifications/websocket/1.1/.

Limitations of the HTTP Request-Response Model

In the traditional request-response model used in HTTP, the client requests resources and the
server provides responses. The exchange is always initiated by the client; the server cannot
send any data without the client requesting it first. This model worked well for the World Wide
Web when clients made occasional requests for documents that changed infrequently, but the
limitations of this approach are increasingly apparent as content changes quickly and users
expect a more interactive experience on the web. The WebSocket protocol addresses these
limitations by providing a full-duplex communication channel between the client and the server.
Combined with other client technologies, such as JavaScript and HTML5, WebSocket enables
web applications to deliver a richer user experience.

WebSocket Endpoints

In a WebSocket application, the server publishes a WebSocket endpoint and the client uses
the endpoint's URI to connect to the server.

A WebSocket endpoint is represented by a URI in one of the following formats:

ws: // host: port/path?query
wss: // host: port/path?query

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 50

http://www.w3.org/TR/html5/
https://jakarta.ee/specifications/websocket/1.1/
https://jakarta.ee/specifications/websocket/1.1/

ORACLE

Chapter 19
Understanding the WebSocket Protocol
The ws scheme represents an unencrypted WebSocket connection.
The wss scheme represents an encrypted WebSocket connection.
The remaining components in these formats are as follows:

host
The host as defined in [RFC3986], Section 3.2.2.

port
Optional. The port as defined in [REC3986], Section 3.2.3. The default port number is 80 for
unencrypted connections and 443 for encrypted connections.

path
The path as defined in [REC3986], Section 3.3. In a WebSocket endpoint, the path indicates
the location of the endpoint within a server.

query
Optional. A query as defined in [RFC3986], Section 3.4.

Handshake Requests in the WebSocket Protocol

To initiate a WebSocket connection, the client sends a handshake request to a WebSocket
endpoint that the server has published. The client locates the endpoint by using the end point's
URI. The connection is established if the handshake request passes validation, and the server
accepts the request. The handshake is compatible with existing HTTP-based infrastructure:
web servers interpret the handshake as an HTTP connection upgrade request.

Example 19-1 Handshake Request from a WebSocket Client

The following example shows a handshake request from a client.

CGET /path/t o/ websocket / endpoi nt HTTP/ 1.1
Host: | ocal host

Upgrade: websocket

Connection: Upgrade

Sec- WebSocket - Key: xqBt 31 mM\zJbYgRI NXEFI kg==
Origin: http://1ocal host

Sec- WebSocket - Version: 13

Example 19-2 Server Response to a Handshake Request from a WebSocket Client

The following example shows a handshake from a server in response to a handshake request
from a client.

HTTP/ 1.1 101 Switching Protocol s

Upgr ade: websocket

Connection: Upgrade

Sec- WebSocket - Accept: K7DJLdLool W G MOpvWFB3y 3FE8=

The server applies a known operation to the value of the Sec- WebSocket - Key header to
generate the value of the Sec- WebSocket - Accept header. The client applies the same
operation to the value of the Sec- WebSocket - Key header. If the result matches the value
received from the server, the connection is established successfully. The client and the server
can send messages to each other after a successful handshake.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 50

http://tools.ietf.org/html/rfc3986#section-3.2.2
http://tools.ietf.org/html/rfc3986#section-3.2.3
http://tools.ietf.org/html/rfc3986#section-3.3
http://tools.ietf.org/html/rfc3986#section-3.4

ORACLE’

Chapter 19
Understanding the WebLogic Server WebSocket Implementation

Messaging and Data Transfer in the WebSocket Protocol

The WebSocket protocol is symmetrical after the connection has been established: the client
and the WebLogic Server instance can send messages to each other at any time while the
connection is open, and they can close the connection at any time. Typically, clients connect to
only one server, but servers accept connections from multiple clients.

WebSocket supports text messages (encoded as UTF-8) and binary messages. The control
frames in WebSocket are close, ping, and pong (a response to a ping frame). Ping and pong
frames may also contain application data.

Understanding the WebLogic Server WebSocket Implementation

The WebLogic Server WebSocket implementation supports JSR 356 Java API for Websocket.

For more information about the Jakarta WebSocket, see https://jakarta. ee/
speci fications/websocket/1.1/.

@ Note

The proprietary WebLogic Server WebSocket API that was introduced in release
12.1.2 is deprecated but remains supported for backward compatibility.

Although the Jakarta WebSocket coexists with the proprietary WebLogic Server
WebSocket API, an application cannot contain calls to both APIs. Only one of the APIs
can be used in an application.

Information about how to use the deprecated API is available in the documentation for
Oracle WebLogic Server 12c¢ (12.1.2) in Chapter 17, Using WebSockets in WebLogic
Server in Developing Applications for Oracle WebLogic Server 12c (12.1.2).

The WebLogic Server WebSocket implementation includes the following components:

WebSocket Protocol Implementation

The WebSocket protocol implementation in WebLogic Server is provided by the reference
implementation of the Jakarta WebSocket specification. This implementation of the WebSocket
protocol handles connection upgrades, establishes and manages connections, and handles
exchanges with the client.

WebLogic WebSocket Java API

The WebLogic WebSocket APl is provided by the reference implementation of JSR 356 Java
API for WebSocket. This API consists of the following packages:

Jakarta.websocket.server
This package contains annotations, classes, and interfaces to create and configure server
endpoints.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 50

https://jakarta.ee/specifications/websocket/1.1/
https://jakarta.ee/specifications/websocket/1.1/
http://www.oracle.com/pls/topic/lookup?ctx=fmw121200&id=WLPRG806
http://www.oracle.com/pls/topic/lookup?ctx=fmw121200&id=WLPRG806

ORACLE’

Chapter 19
Overview of Creating a WebSocket Application

jJakarta.websocket
This package contains annotations, classes, interfaces, and exceptions that are common to
client and server endpoints.

The API reference documentation for these packages is available in the following sections of
the Java EE 8 Specification APIs:

* Package jakarta.websocket

 Package jakarta.websocket.server

Protocol Fallback for WebSocket Messaging

Protocol fallback provides a mechanism for using an alternative transport for WebSocket
messaging when the WebSocket protocol is not supported. Typically the WebSocket protocol is
not supported either because the WebSocket object is not available or because WebSocket
frames are blocked by a firewall. In this release, the only supported alternative transport is
HTTP Long Polling.

Protocol fallback enables you to rely on standard programming APIs to perform WebSocket
messaging regardless of whether or not the runtime environment supports the WebSocket
protocol. For more information, see Enabling Protocol Fallback for WebSocket Messaging.

Sample WebSocket Applications

If the WebLogic Server Examples component is installed and configured on your machine, you
can use the WebSocket examples to demonstrate using WebSockets in WebLogic Server. For
more information about running these examples, see Sample Applications and Code Examples
in Understanding Oracle WebLogic Server.

Overview of Creating a WebSocket Application

Jakarta WebSocket enables you to create, configure, and deploy WebSocket endpoints in web
applications. The WebSocket client API specified in JSR-356 also enables you to access
remote WebSocket endpoints from any Java application.

The process for creating and deploying a WebSocket endpoint is as follows:
1. Create an endpoint class.

2. Implement the lifecycle methods of the endpoint.

3. Add your business logic to the endpoint.
4

Deploy the endpoint inside a web application.

Creating an Endpoint

The container creates one instance of an endpoint for each connection to its deployment URI.
Each instance retains user state for each connection and simplifies development.

The Jakarta API for WebSocket enables you to create the following kinds of endpoints:
e Annotated endpoints
* Programmatic endpoints

The process is different for programmatic endpoints and annotated endpoints. In most cases, it
is easier to create and deploy an annotated endpoint than a programmatic endpoint.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 50

https://javadoc.io/static/jakarta.platform/jakarta.jakartaee-api/11.0.0/jakarta/websocket/package-summary.html
https://javadoc.io/static/jakarta.platform/jakarta.jakartaee-api/11.0.0/jakarta/websocket/server/package-summary.html

ORACLE

Chapter 19
Creating an Endpoint

@® Note

As opposed to servlets, WebSocket endpoints are instantiated multiple times. The
container creates one instance of an endpoint for each connection to its deployment
URI. Each instance is associated with one and only one connection. This behavior
facilitates keeping user state for each connection and simplifies development because
only one thread is executing the code of an endpoint instance at any given time.

Creating an Annotated Endpoint

Creating an annotated endpoint enables you to handle life cycle events for a WebSocket
connection by annotating methods of the endpoint class. For more information, see Handling
Life Cycle Events in an Annotated WebSocket Endpoint. An annotated endpoint is deployed
automatically with the application.

The Jakarta API for WebSocket enables you to create annotated server endpoints and
annotated client endpoints.

To created an annotated server endpoint:

1. Write a Plain Old Java Object (POJO) class to represent the server endpoint.
The class must have a public no-argument constructor.

2. Annotate the class declaration of the POJO class with the
j avax. websocket . server. Server Endpoi nt annotation.

This annotation denotes that the class represents a WebSocket server endpoint.

3. .Set the value element of the Ser ver Endpoi nt annotation to the relative path to which the
endpoint is to be deployed.

The path must begin with a forward slash (/).

Example 19-3 Declaring an Annotated Server Endpoint Class

The following example shows how to declare an annotated server endpoint class. For an
example of how to declare a programmatic endpoint class to represent the same endpoint, see

Example 19-5.

This example declares the annotated server endpoint class EchoEndpoi nt. The endpoint is to
be deployed to the /echo path relative to the application.

i mport j avax.websocket . server. Server Endpoi nt;

@ver ver Endpoi nt ("/ echo")
public class EchoEndpoint {

Example 19-4 Declaring an Annotated Client Endpoint Class
To create an annotated client endpoint:

1. Write a Plain Old Java Object (POJO) class to represent the client endpoint.

The class can have a constructor that takes arguments. However, to connect such an
endpoint to a server endpoint, you must use the variant of the connectToServer method
that takes an instance. You cannot use the variant that takes a class. For more information,
see Connecting a Jakarta WebSocket Client to a Server Endpoint

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 50

ORACLE’

Chapter 19
Creating an Endpoint

2. Annotate the class declaration of the POJO class with the
j avax. websocket . C i ent Endpoi nt annotation.

This annotation denotes that the class represents a WebSocket client endpoint.

The following example shows how to declare an annotated client endpoint class.
This example declares the annotated client endpoint class Exanpl eEndpoi nt .

inport javax.websocket. d ientEndpoint;

@ i ent Endpoi nt
public class Exanpl eEndpoint {

}...

Creating a Programmatic Endpoint

Creating a programmatic endpoint requires you to handle life cycle events for a WebSocket
connection by overriding methods of the endpoint's superclass. For more information, see
Handling Life Cycle Events in a Programmatic WebSocket Endpoint. A programmatic endpoint
is not deployed automatically with the application. You must deploy the endpoint explicitly. For
more information, see Specifying the Path Within an Application to a Programmatic Endpoint.

To create a programmatic endpoint, extend the j avax. websocket . Endpoi nt class.

Example 19-5 shows how to declare a programmatic endpoint class. For an example of how to
declare an annotated endpoint class to represent the same endpoint, see Example 19-3.

Example 19-5 Declaring a Programmatic Endpoint Class

This example declares the programmatic endpoint class EchoEndpoi nt . For an example that
shows how to specify the path within an application to this endpoint, see Example 19-6.

i mport j avax.websocket . Endpoi nt;

public class EchoEndpoint extends Endpoint {

Specifying the Path Within an Application to a Programmatic Endpoint

To enable remote clients to connect to a programmatic endpoint, you must specify the path
within an application to the endpoint.

To specify the path within an application to a programmatic endpoint:

1. Invoke the j avax. websocket . server. Server Endpoi nt Confi g. Bui | der. creat e static
method to obtain an instance of the
j avax. websocket . server. Server Endpoi nt Confi g. Bui | der class.

In the invocation of the cr eat e method, pass the following information as parameters to the
method:

e The class of the endpoint
e The path relative to the application at which the endpoint is to be available

2. Invoke the bui | d method on the Ser ver Endpoi nt Confi g. Bui | der object that you obtained
in the previous step.

When you deploy your application, the endpoint is available at the following URI:

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 50

https://javaee.github.io/javaee-spec/javadocs/javax/websocket/Endpoint.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/ServerEndpointConfig.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/ServerEndpointConfig.Builder.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/ServerEndpointConfig.Builder.html#build--

ORACLE’

Chapter 19
Handling Life Cycle Events for a WebSocket Connection

ws: // host:port/application/path
The replaceable items in this URI are as follows:

host
The host on which the application is running.

port
The port on which WebLogic Server listens for client requests.

application
The name with which the application is deployed.

path
The path that you specified in the invocation of the cr eat e method.

For example, the URI to the endpoint at the / echo path relative to the / echoapp application
running on the local host is ws: / /| ocal host : 8890/ echoapp/ echo.

Example 19-6 shows how to perform this task in a single line of Java code.
Example 19-6 Specifying the Path Within an Application to a Programmatic Endpoint

This example specifies / echo as the path within an application to the programmatic endpoint
EchoEndpoi nt from Example 19-5.

i nport javax.websocket. server. ServerEndpoi nt Confi g. Bui | der;

Server Endpoi nt Confi g. Bui | der. creat e(EchoEndpoi nt. cl ass, "/echo"). build();

Handling Life Cycle Events for a WebSocket Connection

Different life cycle events for a WebSocket connection such as connection opened, message
received, error, and connection closed are handled differently in an annotated endpoint and a
programmatic endpoint.

How to handle life cycle events for a WebSocket connection depends on whether the endpoint
of the connection is an annotated endpoint or a programmatic endpoint. For more information,
see:

Handling Life Cycle Events in an Annotated WebSocket Endpoint

Handling a life cycle event in an annotated WebSocket involves the following tasks:

1. Adding a method to your endpoint class to handle the event

The allowed method parameters are defined by the annotation that you will use to
designate the event.

2. Annotating the method declaration with the annotation that designates the event that the
method is to handle.

Table 19-1 lists the life cycle events in a WebSocket endpoint and the annotations available in
the | akart a. websocket package to designate the methods that handle them. The examples in
the table show the most common parameters for these methods. Each example in the table
includes an optional j akart a. websocket . server parameter. A Sessi on object represents a
conversation between a pair of WebSocket endpoints.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 50

https://javadoc.io/static/jakarta.platform/jakarta.jakartaee-api/11.0.0/jakarta/websocket/package-summary.html
https://javadoc.io/static/jakarta.platform/jakarta.jakartaee-api/11.0.0/jakarta/websocket/server/package-summary.html

ORACLE’

Chapter 19
Handling Life Cycle Events for a WebSocket Connection

For details about the combinations of parameters that are allowed by an annotation, see the

API reference documentation for the annotation.

Table 19-1 Annotations in jakarta.websocket for WebSocket Endpoint Lifecycle Events

. __|
Event Annotation Example

Connection opened OnQpen

@nQpen

public voi d open(Session session,

Endpoi nt Confi g conf)

{1}
Message received OnMessage

@nMessage

public String nmessage (String nmsg) { }
Error OnError

@neError

public void error(Session session,

Throwabl e error) { }

Connection closed Ond ose

@nd ose
public void cl ose(Session session,

{1}

C oseReason reason)

Handling a Connection Opened Event

Handle a connection opened event to notify users that a new WebSocket conversation has

begun.

To handle a connection opened event, annotate the method for handling the event with the

OnQpen annotation.

Example 19-7 shows how to handle a connection opened event.

Example 19-7 Handling a Connection Opened Event

This example prints the identifier of the session when a WebSocket connection is opened.

i mport j avax.websocket . OnQpen;
i mport j avax.websocket . Sessi on;

~ @npen

public void openedConnection (Session session) {

Systemout. println("WbSocket opened: "
}

Developing Applications for Oracle WebLogic Server
G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

+ session.getld()):

October 7, 2025
Page 8 of 50

https://javaee.github.io/javaee-spec/javadocs/javax/websocket/OnOpen.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/OnMessage.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/OnError.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/OnClose.html

ORACLE Chapter 19
Handling Life Cycle Events for a WebSocket Connection

Handling a Message Received Event

The Jakarta API for WebSocket enables you to handle the following types of incoming
messages:

* Text messages
e Binary messages

« Pong messages

1. Add a method to your endpoint class to handle the type of the incoming message.

Ensure that the data type of the parameter for receiving the message is compatible with
the type of the message as shown in the following table.

Message Type Data Type of the Parameter for Receiving the Message

Text Any one of the following data types depending on how the message is to be
received:
« To receive the whole message: j ava. l ang. String

* To receive the whole message converted to a Java primitive or class
equivalent to that type: the primitive or class equivalent

» To receive the message in parts: St ri ng and boolean pair
« To receive the whole message as a blocking stream: j ava. i 0. Reader

« To receive the message encoded as a Java object: any type for which the
endpoint has a text decoder (j avax. websocket . Decoder . Text or
j avax. websocket . Decoder . Text St ream)

Binary Any one of the following data types depending on how the message is to be
received:
« To receive the whole message: byte array or j ava. ni 0. Byt eBuf f er
« To receive the message in parts: byte array and boolean pair, or
Byt eBuf f er and boolean pair
« To receive the whole message as a blocking stream:
java.io.lnputStream
« To receive the message encoded as a Java object: any object type for
which the endpoint has a binary decoder
(Lavax. websocket . Decoder. Bi nary or
j avax. websocket . Decoder . Bi narySt ream

Pong j avax. websocket . PongMessage

2. Annotate the method declaration with the OnMessage annotation.

You can have at most three methods annotated with @nMessage in an endpoint, one
method for each message type: text, binary, and pong.

@ Note

For an annotated endpoint, you add methods for handling incoming messages to your
endpoint class. You are not required to create a separate message handler class.
However, for a programmatic endpoint, you must create a separate message handler
class.

To compare how to handle incoming messages for an annotated endpoint and a
programmatic endpoint, see Example 19-8 and Example 19-12.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 50

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/io/Reader.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/Decoder.Text.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/Decoder.TextStream.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/nio/ByteBuffer.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/io/InputStream.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/Decoder.Binary.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/Decoder.BinaryStream.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/PongMessage.html

ORALCLE Chapter 19
Handling Life Cycle Events for a WebSocket Connection

Example 19-8 Handling Incoming Text Messages for an Annotated Endpoint

The following example shows how to handle incoming text messages for an annotated
endpoint.

This example replies to every incoming text message by sending the message back to the
peer of this endpoint. The method that is annotated with the OnMessage annotation is a method
of the endpoint class, not a separate message handler class.

For an example of how to perform the same operation for a programmatic endpoint, see
Example 19-12.

i mport java.io.lCException;

i nport javax.websocket.OnMessage;
i mport j avax.websocket . Sessi on;

@nMessage
public String onMessage(String nsg) throws | OException {
return nsg;

}

Example 19-9 Handling all Types of Incoming Messages

This example handles incoming text messages, binary messages, and pong messages. Text
messages are received whole as St ri ng objects. Binary messages are received whole as
Byt eBuf f er objects.

i mport java.nio.ByteBuffer;

i nport javax.websocket.OnMessage;
inport javax.websocket.PongMessage;
inport javax.websocket. Sessi on;

@nMessage
public void textMssage(Session session, String nmsg) {
Systemout.println("Text nmessage: " + msQ);

}

@nMessage

public void binaryMessage(Sessi on session, ByteBuffer nsg) {
Systemout. println("Binary message: " + msg.toString());

}
@nMessage
public void pongMessage(Sessi on session, PongMessage nsg) {
Systemout. println("Pong message: " +
msg. get Appl i cationData().toString());

Handling an Error Event

You need handle only error events that are not modeled in the WebSocket protocol, for
example:

e Connection problems
* Runtime errors from message handlers
e Conversion errors in the decoding of messages

To handle an error event, annotate the method for handling the event with the OnEr r or
annotation.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 50

ORACLE Chapter 19
Handling Life Cycle Events for a WebSocket Connection

Example 19-10 shows how to handle an error event.
Example 19-10 Handling an Error Event
This example prints a stack trace in response to an error event.

i mport javax.websocket.OnError;
i mport j avax.websocket . Sessi on;

@neError
public void error(Session session, Throwable t) {
t.printStackTrace();

}

Handling a Connection Closed Event

You need handle a connection closed event only if you require some special processing before
the connection is closed, for example, retrieving session attributes such as the ID, or any
application data that the session holds before the data becomes unavailable after the
connection is closed.

To handle a connection closed event, annotate the method for handling the event with the
OnCl ose annotation.

Example 19-11 shows how to handle a connection closed event.
Example 19-11 Handling a Connection Closed Event

This example prints the message Soneone i s di sconnecting... in response to a connection
closed event.

inport javax.websocket.Ond ose;
i mport j avax.websocket . Sessi on;

@nd ose
public void bye(Session remte) {
System out. println("Someone is disconnecting...");

}

Handling Life Cycle Events in a Programmatic WebSocket Endpoint

Table 19-2 summarizes how to handle lifecycle events in a programmatic WebSocket endpoint.

Table 19-2 Handling Life Cycle Events in a Programmatic WebSocket Endpoint

Event How to Handle

Connection opened Override the abstract onOpen method of the Endpoi nt class.

Message received 1. Declare that your endpoint class implements the message handler interface

j avax. websocket . MessageHand| er. Parti al or
j avax. websocket . MessageHand! er . Wol e.

2. Register your message handler by invoking the addMessageHandl er
method of your endpoint's Sessi on object.

3. Implement the onMessage method of the message handler interface that
your endpoint class implements.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 50

https://javaee.github.io/javaee-spec/javadocs/javax/websocket/Endpoint.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/MessageHandler.Partial.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/MessageHandler.Whole.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/Session.html

ORALCLE Chapter 19
Handling Life Cycle Events for a WebSocket Connection

Table 19-2 (Cont.) Handling Life Cycle Events in a Programmatic WebSocket Endpoint

|
Event How to Handle

Error Optional: Override the onEr r or method of the Endpoi nt class.

If you do not override this method, the onEr r or method that your endpoint
inherits from the Endpoi nt class is called when an error occurs.

Connection closed Optional: Override the onCl 0se method of the Endpoi nt class.

If you do not override this method, the onCl 0se method that your endpoint
inherits from the Endpoi nt class is called immediately before the connection is
closed.

Example 19-12 shows how handle incoming text messages for a programmatic endpoint by
handling connection opened events and message received events.

Example 19-12 Handling Incoming Text Messages for a Programmatic Endpoint

This example echoes every incoming text message. The example overrides the onOpen method
of the Endpoi nt class, which is the only abstract method of this class.

The Sessi on parameter represents a conversation between this endpoint and the remote
endpoint. The addMessageHand| er method registers message handlers, and the
get Basi cRenot e method returns an object that represents the remote endpoint.

The message handler is implemented as an anonymous inner class. The onMessage method of
the message handler is invoked when the endpoint receives a text message.

For more information about sending a message, see Sending a Message.

For an example of how to perform the same operation for an annotated endpoint, see
Example 19-8.

i mport java.io.lOException;

inport javax.websocket. Endpoi nt Confi g;
i mport javax.websocket . MessageHandl er;
i mport j avax.websocket . Sessi on;

@verride
public void onCpen(final Session session, EndpointConfig config) {
sessi on. addMessageHand| er (new MessageHandl er. Wol e<String>() {
@verride
public void onMessage(String nsg) {
try {
sessi on. get Basi cRenot e() . sendText (nmsg) ;
} catch (I COexceptione) { ... }

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 50

https://javaee.github.io/javaee-spec/javadocs/javax/websocket/OnError.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/OnClose.html

ORACLE’

Chapter 19
Defining, Injecting, and Accessing a Resource for a WebSocket Endpoint

Defining, Injecting, and Accessing a Resource for a WebSocket

Endpoint

The Jakarta API for WebSocket allows you to use Contexts and Dependency Injection (CDI) to

inject and access a resource that a WebSocket endpoint requires. You can use the injected
resource from within a method for handling a lifecycle event for a WebSocket connection.

For more information about CDI, see Using Contexts and Dependency Injection for the Jakarta

EE Platform.
To define, inject, and access a resource for a WebSocket endpoint:

1. Define a managed bean to represent the resource to inject.

For more information, see Defining a Managed Bean.

2. Inthe endpoint class, inject the managed bean.
For more information, see Injecting a Bean.
3. From within the relevant method, invoke methods of the injected bean as required.

The following examples show how to define, inject, and access a resource for a WebSocket
endpoint:

e« Example 19-13

 Example 19-14
Example 19-13 Defining a Managed Bean for a WebSocket Endpoint

This example defines the managed bean class | nj ect edSi npl eBean.
i mport javax.annot ati on. Post Const ruct;
public class InjectedSinpl eBean {

private static final String TEXT =" (fromyour server)";
private bool ean postConstructCalled = fal se;

public String getText() {
return postConstructCalled ? TEXT : null;

}

@Post Const ruct
public void postConstruct() {
post Construct Cal l ed = true;

}
}

Example 19-14 Injecting and Accessing a Resource for a WebSocket Endpoint

This example injects an instance of the I nj ect edSi npl eBean managed bean class into the
server endpoint Si npl eEndpoi nt . When the endpoint receives a message, it invokes the

get Text method on the injected bean. The method returns the text (sent from your server).

The endpoint then sends back a message which is a concatenation of the original message
and gathered data.

The I nj ect edSi npl eBean managed bean class is defined in Example 19-13.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 13 of 50

ORACLE Chapter 19
Sending a Message

i mport javax.websocket. OnMessage;
i mport j avax.websocket . server. Server Endpoint;

i mport javax. annotati on. Post Construct;
i mport javax.inject.lnject;

@er ver Endpoi nt (val ue = "/sinple")
public class SinpleEndpoint {

private bool ean postConstructCalled = fal se;

@nj ect
| nj ect edSi npl eBean bean;

@nMessage
public String echo(String nessage) {
return postConstructCalled ?
String.format ("%%", nessage, bean.getText()) :
"Post Construct was not cal |l ed";

}

@Post Const r uct
public void postConstruct() {
post Construct Cal l ed = true;

}
}

Sending a Message

The Jakarta API for WebSocket enables you to send text messages, binary messages, and
ping frames from an endpoint to its connected peers.

* Text messages
e Binary messages

e Ping frames

Sending a Message to a Single Peer of an Endpoint

To send a message to a single peer of an endpoint:

1. Obtain the Sessi on object from the connection.

The Sessi on object is available as a parameter in the lifecycle methods of the endpoint.
How to obtain this object depends on whether the message that you are sending is a
response to a message from a peer.

* If the message is a response, obtain the Sessi on object from inside the method that
received the message.

e If the message is not a response, store the Sessi on object as an instance variable of
the endpoint class in the method for handling a connection opened event. Storing the
Sessi on object in this way enables you to access it from other methods.

2. Use the Sessi on object to obtain an object that implements one of the subinterfaces of
j avax. websocket . Renot eEndpoi nt .

* If you are sending the message synchronously, obtain a Renot eEndpoi nt . Basi ¢
object. This object provides blocking methods for sending a message.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 50

https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.Basic.html

ORACLE Chapter 19
Sending a Message

To obtain a Renot eEndpoi nt . Basi ¢ object, invoke the Sessi on. get Basi cRenpt e()
method.

* If you are sending the message asynchronously, obtain a Renot eEndpoi nt . Async
object. This object provides non-blocking methods for sending a message.

To obtain a Renpt eEndpoi nt . Async object, invoke the Sessi on. get AsyncRenot e()
method.

3. Use the Renot eEndpoi nt object that you obtained in the previous step to send the
message to the peer.

The following list shows some of the methods you can use to send a message to the peer:

e void Renpt eEndpoint. Basi c. sendText (String text)

Send a text message to the peer. This method blocks until the whole message has
been transmitted.

 void Renpt eEndpoi nt. Basi c. sendBi nar y(Byt eBuf f er dat a)

Send a binary message to the peer. This method blocks until the whole message has
been transmitted.

e voi d Renot eEndpoi nt. sendPi ng(Byt eBuf f er appDat a)

Send a ping frame to the peer.

 void Renot eEndpoi nt. sendPong(Byt eBuf f er appDat a)

Send a pong frame to the peer.

Example 19-15 demonstrates how to use this procedure to reply to every incoming text
message. For an example of how to send a message as the return value of a method, see

Example 19-8.

Example 19-15 Sending a Message to a Single Peer of an Endpoint

This example replies to every incoming text message by sending the message back to the
peer of this endpoint.

i mport java.io.lOException;

inport javax.websocket.OnMessage;
i mport j avax.websocket . Sessi on;

@nMessage
public void onMessage(Session session, String msg) {

try {
sessi on. get Basi cRenot e() . sendText (nsgQ) ;
} catch (I Oexceptione) { ... }

}

Sending a Message to All Peers of an Endpoint

Some WebSocket applications must send messages to all connected peers of the application's
WebSocket endpoint, for example:

* A stock application must send stock prices to all connected clients.

* A chat application must send messages from one user to all other clients in the same chat
room.

* An online auction application must send the latest bid to all bidders on an item.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 50

https://javaee.github.io/javaee-spec/javadocs/javax/websocket/Session.html#getBasicRemote--
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.Async.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/Session.html#getAsyncRemote--
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.Basic.html#sendText-java.lang.String-
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.Basic.html#sendBinary-java.nio.ByteBuffer-
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.html#sendPing-java.nio.ByteBuffer-
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.html#sendPong-java.nio.ByteBuffer-

ORACLE

Chapter 19
Sending a Message

However, each instance of an endpoint class is associated with one and only one connection
and peer. Therefore, to send a message to all peers of an endpoint, you must iterate over the
set of all open WebSocket sessions that represent connections to the same endpoint.

To send a message to all peers of an endpoint:

1. Obtain the set of all open WebSocket sessions that represent connections to the endpoint.

Invoke the get OpenSessi ons method on the endpoint's Sessi on object for this purpose.

2. Send the message to each open session that you obtained in the previous step.
a. Use the session to obtain a Renot eEndpoi nt object.
b. Use the Renot eEndpoi nt object to send the message.

See Sending a Message to a Single Peer of an Endpoint

Example 19-16 Sending a Message to All Peers of an Endpoint
This example forwards incoming text messages to all connected peers.

i mport java.io.lCException;

i mport j avax.websocket. OnMessage;
i mport j avax.websocket . Sessi on;
i mport j avax.websocket . server. Server Endpoi nt;

@er ver Endpoi nt ("/ echoal | ")
public static class EchoAl | Endpoint {

@nMessage
public void nmessageRecei ved(Sessi on session, String msg) {
for (Session sess : session.getOpenSessions()) {

try {
sess. get Basi cRenot e() . sendText (nsg) ;

} catch (1 CException e) {
/1 handl e exception
}

}

Ensuring Efficiency when Sending a Message to All Peers of an Endpoint

In a real-world application, in which many messages are being sent, you can use multiple
threads to ensure that the application sends messages efficiently.

If too many WebSocket connections are open, using one thread to broadcast messages is
inefficient, because the time it takes for a client to receive a message depends on its location in
the iteration process. If thousands of WebSocket connections are open, then iteration is slow,
causing some clients to receive messages early and other clients to receive messages much
later. This delay is unacceptable in certain situations; for example, a stock application should
ensure that each client receives stock price data as early as possible.

To increase efficiency, the application can partition open WebSocket connections into groups
and then use multiple threads to broadcast messages to each group of WebSocket
connections.

Ensuring Thread Safety for WebSocket Endpoints

The Jakarta API for WebSocket specification requires that Jakarta EE implementations
instantiate endpoint classes once per connection. This requirement facilitates the development
of WebSocket endpoints because you are guaranteed that only one thread is executing the

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 16 of 50

https://javaee.github.io/javaee-spec/javadocs/javax/websocket/Session.html#getOpenSessions--

ORACLE

Chapter 19
Encoding and Decoding a WebSocket Message

code in a WebSocket endpoint class at any given time. When you introduce a new thread in an
endpoint, you must ensure that variables and methods accessed by more than one thread are
thread safe.

Encoding and Decoding a WebSocket Message

The Jakarta API for WebSocket provides support for converting between WebSocket
messages and custom Java types by using encoders and decoders. This mechanism simplifies
WebSocket applications because it decouples the business logic from the serialization and
deserialization of objects.

An encoder takes a Java object and produces a representation that can be transmitted as a
WebSocket text message or binary message. For example, encoders typically produce
JavaScript Object Notation (JSON), Extensible Markup Language (XML), or binary
representations. A decoder performs the reverse function: it reads a WebSocket message and
creates a Java object.

@® Note

If you want to send and receive multiple Java types as the same type of WebSocket
message, define the types to extend a common class. For example, if you want to
send and receive the Java types MessageA and MessageB as text messages, define the
types to extend the common class Message.

Defining the types in this way enables you to implement a single decoder class for
multiple types.

Encoding a Java Object as a WebSocket Message

You can have more than one encoder for text messages and more than one encoder for binary
messages. Like endpoints, encoder instances are associated with one and only one
WebSocket connection and peer. Therefore, only one thread is executing the code of an
encoder instance at any given time.

To encode a Java object as a WebSocket message:

1. For each custom Java type that you want to send as a WebSocket message, implement
the appropriate interface for the type of the WebSocket message:

e For a text message, implement j akart a. websocket . Encoder . Text <T>.

* For a binary message, implement j akart a. websocket . Encoder . Bi nar y<T>.

These interfaces specify the encode method.
2. Specify that your endpoint will use your encoder implementations.

* For an annotated endpoint, add the names of your encoder implementations to the
encoder s optional element of the Ser ver Endpoi nt annotation.

e For a programmatic endpoint, pass a list of the names of your encoder
implementations as a parameter of the encoder s method of a
j avax. websocket . server. Server Endpoi nt Confi g. Bui | der object.

3. Use the sendbj ect (Cbj ect dat a) method of the Renot eEndpoi nt . Basi ¢ or
Renot eEndpoi nt . Async interfaces to send your objects as messages.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 17 of 50

https://javadoc.io/static/jakarta.platform/jakarta.jakartaee-api/11.0.0/jakarta/websocket/Encoder.Text.html
https://javadoc.io/static/jakarta.platform/jakarta.jakartaee-api/11.0.0/jakarta/websocket/Encoder.Binary.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/ServerEndpointConfig.Builder.html

ORACLE

Chapter 19
Encoding and Decoding a WebSocket Message

The container looks for an encoder that matches your type and uses it to covert the object
to a WebSocket message.

The following examples show how to send the Java types
com exanpl e. game. nessage. MessageA and com exanpl e. ganme. nessage. MessageB as text
messages:

° Example 19-17
 Example 19-18
° Example 19-19
Example 19-17 Implementing an Encoder Interface

This example implements the Encoder . Text <MessageA> interface.

package com exanpl e. gane. encoder ;

inport javax.websocket.EncodeExcepti on;
i nport javax.websocket. Encoder;
i nport javax.websocket. Endpoi nt Confi g;

i nport com exanpl e. gane. message. MessageA,

public class MessageAText Encoder inplenents Encoder. Text <MessageA> {
@verride
public void init(EndpointConfig ec) { }
@verride
public void destroy() { }

@verride

public String encode(MessageA nsgA) throws EncodeException {
/1 Access nsgA's properties and convert to JSON text...
return nsgAJsonString;

}
The implementation of Encoder . Text <MessageB> is similar.
Example 19-18 Defining Encoders for an Annotated WebSocket Endpoint

This example defines the encoder classes MessageAText Encoder . cl ass and
MessageBText Encoder . cl ass for the WebSocket server endpoint EncEndpoi nt .

package com exanpl e. gane;
i nport javax.websocket. server. ServerEndpoi nt;

i mport com exanpl e. gane. encoder . MessageAText Encoder ;
i mport com exanpl e. gane. encoder . MessageBText Encoder ;

@er ver Endpoi nt (
val ue = "/nyendpoint",
encoders = { MessageAText Encoder. cl ass, MessageBText Encoder. cl ass }

public class EncEndpoint { ... }

Example 19-19 Sending Java Objects Encoded as WebSocket Messages

This example uses the sendObj ect method to send MessageA and MessageB objects as
WebSocket messages.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 18 of 50

ORACLE

Chapter 19
Encoding and Decoding a WebSocket Message

i mport j avax.websocket . Sessi on;

i mport com exanpl e. gane. nessage. MessageA,
i mport com exanpl e. gane. nessage. MessageB;

MessageA nsgA = new MessageA(...);
MessageB nsgB = new MessageB(...);
sessi on. get Basi cRenot e. sendQhj ect (nsgA) ;
sessi on. get Basi cRenot e. sendQhj ect (nsgB) ;

Decoding a WebSocket Message as a Java Object

Unlike encoders, you can have at most one decoder for binary messages and one decoder for
text messages. Like endpoints, decoder instances are associated with one and only one
WebSocket connection and peer, so only one thread is executing the code of a decoder
instance at any given time.

To decode a WebSocket message as a Java object:

1. Implement the appropriate interface for the type of the WebSocket message:

* For a text message, implement j akart a. websocket . Decoder . Text <T>.

e For a binary message, implement j akart a. websocket . Decoder . Bi nar y<T>.

These interfaces specify the wi | | Decode and decode methods.
2. Specify that your endpoint will use your decoder implementations.

e For an annotated endpoint, add the names of your decoder implementations to the
decoder s optional element of the Ser ver Endpoi nt annotation.

* For a programmatic endpoint, pass a list of the names of your decoder
implementations as a parameter of the decoder s method of a
j avax. websocket . server. Server Endpoi nt Confi g. Bui | der object.

3. Ensure that the method in your endpoint for handling a message received event takes your
custom Java type as a parameter.

See Handling Life Cycle Events for a WebSocket Connection.

When the endpoint receives a message that can be decoded by one of the decoders you
specified, the container calls the method that takes your custom Java type as a parameter
if this method exists.

The following examples show how to decode WebSocket text messages as the Java types
com exanpl e. garme. nessage. MessageA and com exanpl e. gane. nessage. MessageB:

 Example 19-20
 Example 19-21

 Example 19-22

These examples assume that the Java types com exanpl e. gane. nessage. MessageA and
com exanpl e. game. nessage. MessageB extend the com exanpl e. ganme. nessage. Message class.

Example 19-20 Implementing a Decoder Interface
This example implements the Decoder . Text <Message> interface.

Because only one decoder for text messages is allowed for an endpoint, the implementation is
a decoder for the Message superclass. This decoder is used for decoding the subclasses of
Message.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 19 of 50

https://javadoc.io/static/jakarta.platform/jakarta.jakartaee-api/11.0.0/jakarta/websocket/Decoder.Text.html
https://javadoc.io/static/jakarta.platform/jakarta.jakartaee-api/11.0.0/jakarta/websocket/Decoder.Binary.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/ServerEndpointConfig.Builder.html#decoders-java.util.List-

ORACLE

Chapter 19
Encoding and Decoding a WebSocket Message

package com exanpl e. game. decoder ;

i mport javax.websocket . DecodeExcepti on;
i mport j avax.websocket . Decoder;
i mport j avax.websocket . Endpoi nt Confi g;

i mport com exanpl e. gane. message. Message;

i mport com exanpl e. gane. nessage. MessageA,
i mport com exanpl e. gane. nessage. MessageB;

public class MessageText Decoder inplenents Decoder. Text <Message> {

@verride

public void init(EndpointConfig ec) { }
@verride

public void destroy() { }

@verride

public Message decode(String string) throws DecodeException {
/1 Read message. ..
if (/* nessage is an A message */)
return new MessageA(...);
else if (/* message is a B nessage */)
return new MessageB(...);

}

@verride

public bool ean willDecode(String string) {
/] Determine if the message can be converted into either a
/1 MessageA object or a MessageB object. ..
return canDecode;

}

Example 19-21 Defining a Decoder for an Annotated WebSocket Endpoint

This example defines the decoder class MessageText Decoder . ¢l ass for the WebSocket server
endpoint EncEndpoi nt .

For completeness, this example also includes the definitions of the encoder classes
MessageAText Encoder . cl ass and MessageBText Encoder . ¢l ass from Example 19-18.

package com exanpl e. gane;
i nport javax.websocket. server. ServerEndpoi nt;

i mport com exanpl e. gane. encoder . MessageAText Encoder ;
i mport com exanpl e. gane. encoder . MessageBText Encoder ;
i mport com exanpl e. gane. decoder . MessageText Decoder ;

@er ver Endpoi nt (
val ue = "/nyendpoint",
encoders = { MessageAText Encoder. cl ass, MessageBText Encoder. cl ass },
decoders = { MessageText Decoder. cl ass }

public class EncEndpoint { ... }

Example 19-22 Receiving WebSocket Messages Encoded as Java Objects

This example defines the method message that receives MessageA objects and MessageB
objects.

i mport j avax.websocket. OnMessage;
i mport j avax.websocket . Sessi on;

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 20 of 50

ORACLE Chapter 19
Specifying a Part of an Endpoint Deployment URI as an Application Parameter

i mport com exanpl e. gane. message. Message;
i mport com exanpl e. gane. nessage. MessageA,
i mport com exanpl e. gane. nessage. MessageB;

@nMessage
public void nessage(Session session, Message nsg) {
if (nmeg instanceof MessageA) {
/1 W received a MessageA object...
else if (msg instanceof MessageB) {
/1 W received a MessageB object. ..

}
}

Specifying a Part of an Endpoint Deployment URI as an
Application Parameter

The Ser ver Endpoi nt annotation enables you to use a level 1 URI template to specify parts of
an endpoint deployment URI as application parameters. A URI template describes a range of
URIs through variable expansion.

For more information about URI templates, see http://tools.ietf.org/htm /rfc6570.

To specify a part of an endpoint deployment URI as an application parameter:

1. Setthe val ue element of the Ser ver Endpoi nt annotation to the URI template that you want
to use.

In the URI template, enclose each variable for expansion in a pair of braces.

2. Declare each variable for expansion as a parameter in a method for handling one of the
following types of event:

e Connection opened

* Connection closed

* Message received

The type of the parameter can be St ri ng, a primitive type, or a boxed version of them.

3. Annotate the declaration of the parameter with the j avax. websocket . server. Pat hPar am
annotation.

4, Setthe value element of the Pat hPar amannotation to the name of the variable.

5. Inthe body of the method that takes the parameter, provide logic for expanding the
variable.

Example 19-23 shows how to specify a part of an endpoint deployment URI as an application
parameter.

Example 19-23 Specifying a Part of an Endpoint Deployment URI as an Application
Parameter

This example specifies an endpoint deployment URI as a URI template that contains the
variable {r oom nane}. The variable is expanded through the r oonNane parameter of the open
method to determine which chat room the user wants to join.

i mport j avax.websocket . Endpoi nt Confi g;

i mport j avax.websocket . OnQpen;

i mport j avax.websocket . Sessi on;

i mport javax.websocket . server. Pat hPar am

i mport j avax.websocket . server. Server Endpoi nt;

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 21 of 50

http://tools.ietf.org/html/rfc6570
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/PathParam.html

ORACLE

Chapter 19
Maintaining Client State

@er ver Endpoi nt ("/ chat roons/ {r oom nane}")
public class Chat Endpoint {
@nQpen
public void open(Session session,
Endpoi nt Config c,
@pat hPar an({"room nane") String roomNane) {
/1 Add the client to the chat roomof their choice ...

Code in the body of the open method to expand the {r oom nane} variable is not shown in this
example.

If the endpoint is deployed inside a web application called chat app at a local Jakarta EE server
in port 8080, clients can connect to the endpoint using any of the following URIs:

http://1 ocal host: 8080/ chat app/ chat r oons/ cur r ent news
http://1ocal host: 8080/ chat app/ chat r oons/ nusi ¢
http://1 ocal host: 8080/ chat app/ chat r oons/ cars
http://1ocal host: 8080/ chat app/ chat r oons/ t echnol ogy

Maintaining Client State

Because the container creates an instance of the endpoint class for every connection, you can
define and use instance variables to store client state information.

In addition, the Sessi on. get User Properti es method provides a modifiable map to store user
properties.

To store information common to all connected clients, you can use class (static) variables;
however, you are responsible for ensuring thread-safe access to them.

Example 19-24 shows how to maintain client state.
Example 19-24 Maintaining Client State

This example replies to incoming text messages with the contents of the previous message
from each client.

i mport java.io.lCOException;

i mport javax.websocket . OnMessage;

i mport j avax.websocket . OnQpen;

i mport j avax.websocket . Sessi on;

i mport javax.websocket . server. Server Endpoi nt;

@>er ver Endpoi nt ("/ del ayedecho")
public class Del ayedEchoEndpoint {
@nQpen
public void open(Session session) {
session. get User Properties(). put("previousMsg", " ");
}
@nMessage
public void message(Session session, String msg) {
String prev = (String) session.getUserProperties()
.get ("previ ousMsg");
session. get User Properties(). put("previousMsg", nsg);

try {
sessi on. get Basi cRenot e() . sendText (prev);
} catch (1 COExceptione) { ... }

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 22 of 50

ORACLE Chapter 19
Configuring a Server Endpoint Programmatically

Configuring a Server Endpoint Programmatically

The Jakarta API for WebSocket enables you to configure how the container creates server
endpoint instances.

You can provide custom endpoint configuration logic for:

* Accessing the details of the handshake request for a WebSocket connection
* Performing custom checks on the Ori gi n HTTP header

e Modifying the WebSocket handshake response

e Choosing a WebSocket subprotocol from those requested by the client

e Controlling the instantiation and initialization of endpoint instances

e Specifying the extensions that a server endpoint will support

To configure a server endpoint programmatically:

1. Extend the j avax. websocket . server. Server Endpoi nt Confi g. Confi gur at or class.

2. Override the methods that perform the configuration operations for which you require
custom logic, as shown in the following table.

Configuration Operation Method to Override

Accessing the details of the handshake request nodi f yHandshake
for a WebSocket connection

Performing custom checks on the Ori gi n HTTP checkOrigin
header

Modifying the WebSocket handshake response nodi f yHandshake

Choosing a WebSocket subprotocol from those get Negot i at edSubpr ot ocol
requested by the client

Controlling the instantiation and initialization of ~ get Endpoi nt | nst ance
endpoint instances

Specifying the extensions that a server endpoint get Negot i at edExt ensi ons
will support

3. Inthe server endpoint class, set the confi gur at or element of the Ser ver Endpoi nt
annotation to the configurator class.

The following examples show how to configure a server endpoint programmatically:

* Example 19-25
* Example 19-26
Example 19-25 Extending the ServerEndpointConfig.Configurator Class

This example extends the Ser ver Endpoi nt Confi g. Confi gurat or class to make the handshake
request object available to endpoint instances.

i mport j avax.websocket . HandshakeResponse;
i mport j avax.websocket . server. Server Endpoi nt Confi g. Confi gurat or;
i mport j avax.websocket . server. HandshakeRequest ;

public class CustonConfigurator extends ServerEndpoint Config. Configurator {
Developing Applications for Oracle WebLogic Server

G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 23 of 50

https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/ServerEndpointConfig.Configurator.html#getEndpointInstance-java.lang.Class-
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/ServerEndpointConfig.Configurator.html#modifyHandshake-javax.websocket.server.ServerEndpointConfig-javax.websocket.server.HandshakeRequest-javax.websocket.HandshakeResponse-
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/ServerEndpointConfig.Configurator.html#checkOrigin-java.lang.String-
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/ServerEndpointConfig.Configurator.html#modifyHandshake-javax.websocket.server.ServerEndpointConfig-javax.websocket.server.HandshakeRequest-javax.websocket.HandshakeResponse-
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/ServerEndpointConfig.Configurator.html#getNegotiatedSubprotocol-java.util.List-java.util.List-
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/ServerEndpointConfig.Configurator.html#getEndpointInstance-java.lang.Class-
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/ServerEndpointConfig.Configurator.html#getNegotiatedExtensions-java.util.List-java.util.List-
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/ServerEndpoint.html#configurator--

ORACLE Chapter 19
Building Applications that Use the Jakarta API for WebSocket

@verride

public voi d nodi f yHandshake(Ser ver Endpoi nt Confi g conf,
HandshakeRequest req,
HandshakeResponse resp) {

conf. get User Properties(). put ("handshakereq", req);

Example 19-26 Specifying a Custom Configurator for a Server Endpoint Class

This example specifies the custom configurator class Cust onConf i gur at or. cl ass for the
server endpoint class M/Endpoi nt .

The custom configurator enables instances of the server endpoint class to access the
handshake request object. The server endpoint class uses the handshake request object to
access the details of the handshake request, such as its headers or the Ht t pSessi on object.

inport javax.websocket. Endpoi nt Confi g;

inport javax.websocket.HandshakeResponse;

i mport j avax.websocket . OnQpen;

i mport j avax.websocket . Sessi on;

inport javax.websocket. server. HandshakeRequest;
inport javax.websocket. server. ServerEndpoi nt;
inport java.util.List;

i mport java.util.Mp;

@er ver Endpoi nt (
val ue = "/ nmyendpoint",
configurator = CustonConfigurator.class

)
public class MyEndpoint {

@nQpen
public void open(Session s, EndpointConfig conf) {
HandshakeRequest req = (HandshakeRequest) conf.get User Properties()
. get ("handshakereq");
Map<String, Li st<String>> headers = req. get Headers();

Building Applications that Use the Jakarta API for WebSocket

The Jakarta API for WebSocket is located within the W server/server/lib/api.jar file. To
build applications that use the Jakarta API for WebSocket, define this library in the classpath
when compiling the application.

You can also use Maven to build applications that use the Jakarta API for WebSocket. If you
are using Maven, obtain the Maven artifact that contains the Jakarta API for WebSocket from
maven central as j avax. websocket . j avax. websocket - api : 1. 0. For more information, see
Using the WebLogic Maven Plug-In.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 24 of 50

https://javaee.github.io/javaee-spec/javadocs/javax/servlet/http/HttpSession.html

ORACLE Chapter 19
Deploying a WebSocket Application

Deploying a WebSocket Application

In WebLogic Server, you deploy a WebSocket application as part of a standard Jakarta EE
Web application archive (WAR), either as a standalone Web application or a WAR module
within an enterprise application.

You do not need to configure the WebSocket endpoint in the web. xm file, or any other
deployment descriptor, or perform any type of dynamic operation to register or enable the
WebSocket endpoint.

However, you can optionally set the context initialization properties the are listed in Table 19-3.
To indicate that these properties are specific to WebLogic Server and not part of the JSR 356
specification, their fully qualified names contain the prefix webl ogi c. websocket .

Table 19-3 Context Initialization Properties for a WebSocket Application

__|
Property Type Description

webl ogi c. websocket . tyrus.in |ntege The maximum underlying buffer size in bytes for receiving
coni ng-buf fer-size r messages. The application cannot process messages that
are larger than this size.

This parameter affects the following server sessions and

client sessions:

e All server sessions in the same application

* Only client sessions that are connected with the
server-instantiated
j avax. websocket . server. Server Cont ai ner
object in the application

You can override this setting for clients sessions by
setting a property of the same name for a client
endpoint. For more information, see Configuring a
WebSocket Client Endpoint Programmatically.
The default buffer size is 4194315, of which 4 Mbytes are
for the payload and 11 bytes are for the frame overhead.

webl ogi c. websocket . tyrus. se |ntege The maximum period in milliseconds after which an idle
ssion-max-idl e-ti meout r connection times out. The default value is 30000, which
corresponds to 30 seconds.

webl ogi c. websocket . tyrus.cl String WebSocket cluster uses Coherence as part of its

ust er implementation to establish communication among all the
members in the cluster. WebSocket clustering enables
horizontal scaling, allows you to send messages to all
members of the cluster, increases the maximum number
of connected clients, and decreases broadcast execution
time. Clustering is disabled by default.

To enable clustering set the value to true.

Example 19-27 shows how to set context initialization properties for a WebSocket application.
Example 19-27 Setting Context Initialization Properties for a WebSocket Application
This example sets context initialization parameters for a WebSocket application as follows:

e The maximum underlying buffer size for receiving messages is set to 16777227 bytes.

e The maximum period after which an idle connection times out is set to 60,000 milliseconds,
which corresponds to 1 minute.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 25 of 50

https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/ServerContainer.html

ORACLE Chapter 19
Monitoring WebSocket Applications

* Enable WebSocket cluster using managed Coherence server to establish communication
among all members.

® Note

Clustering requires a managed Coherence server with local storage enabled. See,
Configure Coherence Cluster Member Storage Settings in Administering Clusters
for Oracle WebLogic Server.

<?xm version="1.0" encodi ng="UTF-8"?>
<web-app version="3.0" ...>

<cont ext - par an»
<par am name>webl ogi c. websocket . t yrus. i ncom ng- buf f er - si ze</ par am nane>
<param val ue>16777227</ par am val ue>

</ cont ext - par an»

<cont ext - par an»
<par am name>webl ogi ¢. websocket . t yrus. sessi on- max-i dl e-ti meout </ par am nane>
<par am val ue>60000</ par am val ue>

</ cont ext - par an»

<cont ext - par an»
<par am name>webl ogi ¢. websocket . tyrus. cl uster </param nane>
<par am val ue>t rue</ paramval ue>

</ cont ext - par an»

</ web- app>

Monitoring WebSocket Applications

You can monitor message statistics and runtime properties for WebSocket applications and
endpoints. Endpoint-level monitoring collects information per individual endpoint, while
application-level monitoring aggregates information from all endpoints deploying in the given
application.

WebSocket Monitoring Properties

The following table details the types of properties monitored at runtime and whether monitoring
occurs at the application or endpoint level. For message-related properties, WebLogic Server
uses bytes for message size and distinguishes three types of messages: text, binary, and

control.
Property Description Monitoring Level
Open session count The number of current open application, endpoint
sessions for the WebSocket
application or endpoint.
Maximum open sessions count The highest number of open application, endpoint
sessions for the WebSocket
application or endpoint since
server startup.
Error counts The list of errors with the number application, endpoint

of times each error has occurred.
Errors are represented by
throwable class names.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 26 of 50

ORACLE Chapter 19
Monitoring WebSocket Applications

Property Description Monitoring Level

Sent messages count The number of sent messages for application, endpoint
the WebSocket application or
endpoint since monitoring began.

Statistics are provided per
individual message type (text,
binary, and control) and as a total
count.

Received messages count The number of received application, endpoint
messages for the WebSocket
application or endpoint since
monitoring began.

Statistics are provided per
individual message type (text,
binary, and control) and as a total
count.

Sent messages count per second The number of sent messages application, endpoint
per second for the WebSocket
application or endpoint since
monitoring began.
Statistics are provided per

individual message type (text,
binary, and control) and as a total

count.
Received messages count per The number of received application, endpoint
second messages per second for the

WebSocket application or
endpoint since monitoring began.

Statistics are provided per
individual message type (text,
binary, and control) and as a total
count.

Minimum sent message size The smallest sent message size application, endpoint
for the WebSocket application or
endpoint since monitoring began.

Statistics are provided per
individual message type (text,
binary, and control) and as a total
count.

Minimum received message size The smallest received message application, endpoint
size for the WebSocket
application or endpoint since
monitoring began.

Statistics are provided per
individual message type (text,
binary, and control) and as a total
count.

Maximum sent message size The largest sent message size for application, endpoint
the WebSocket application or
endpoint since monitoring began.

Statistics are provided per
individual message type (text,
binary, and control) and as a total
count.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 27 of 50

ORACLE’

Chapter 19
Using WebSockets with Proxy Servers

Property Description Monitoring Level

Maximum received message size The largest received message application, endpoint
size for the WebSocket
application or endpoint since
monitoring began.

Statistics are provided per
individual message type (text,
binary, and control) and as a total
count.

Average sent message size The average sent message size application, endpoint
for the WebSocket application or
endpoint since monitoring began.

Statistics are provided per
individual message type (text,
binary, and control) and as a total
count.

Average received message size The average received message application, endpoint
size for the WebSocket
application or endpoint since
monitoring began.

Statistics are provided per
individual message type (text,
binary, and control) and as a total
count.

Endpoint path The path on which the endpoint is endpoint only
registered, relative to the
application context root.

Endpoint class name The name of the endpoint class. endpoint only

To access monitored metrics for WebSocket applications and endpoints at runtime, use the
following MBeans:

* WebAppConponent Runt i neMBean

 \\ebsocket Appl i cati onRunti neMBean

\Wbsocket BaseRunt i neMBean

* \Websocket Endpoi nt Runt i neMBean

« \\ebsocket MessageSt ati sticsRunti meMBean

Using WebSockets with Proxy Servers

Clients accessing WebSocket applications must either connect directly to the WebLogic Server
instance or through a Web proxy server that supports the WebSocket protocol.

The following proxy servers support the WebSocket protocol:
e Oracle HTTP Server
* Apache HTTP Server when used with the Oracle WebLogic Server Proxy Plug-In

For information about the specific versions of Apache HTTP Server supported for use with the
Oracle WebLogic Server Proxy Plug-In, see the Oracle Fusion Middleware Supported System
Configurations page on the Oracle Technology Network.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 28 of 50

ORACLE Chapter 19
Writing a WebSocket Client

Writing a WebSocket Client

A WebSocket client application is typically a browser-based client. The Jakarta API for
WebSocket can also be used to write a Jakarta WebSocket client.

Writing a Browser-Based WebSocket Client

A browser-based WebSocket client application is typically a composite of HTML5 technologies,
including HTML markup, CSS3, and JavaScript that makes use of the WebSocket JavaScript
API. For more information about HTML5, see htt p: // ww. w3. org/ TR/ ht m 5/.

Most browsers support the W3C WebSocket API that can be used to create and work with the
WebSocket protocol. For information about the W3C WebSocket API, see: http://
www. w3. or g/ TR/ websocket s/ .

If the WebSocket protocol is not guaranteed to be supported in the runtime environment, use
the JavaScript API for WebSocket fallback in your browser-based client. This API provides an
implementation of the standard W3C WebSocket API. The API also provides a mechanism for
using an alternative transport for WebSocket messaging when the WebSocket protocol is not
supported. For more information, see Enabling Protocol Fallback for WebSocket Messaging.

The following steps show an example of the execution flow on a client that is sending
messages to a WebLogic Server instance using the WebSockets Protocol.

1. The client opens a WebSocket connection to the server hosting the WebSocket endpoint,
using the ws: // orwss: // protocol prefix. For more information, see Establishing Secure
WebSocket Connections.

var url = ((w ndow. | ocation.protocol == "https:") ? "wss:" : "ws:")
+ "//" + window. | ocation. host
+ "/ websocket - hel | owor | d-w s/ hel | owor | d_del ay. ws";

var ws = new WebSocket (url);

2. The client registers listeners with the WebSocket object to respond to events, such as
opening, closing, and receiving messages. Based on the event and the information
received, the client performs the appropriate action.

ws. onopen = function(event) {
docunent. get El ement Byl d("status").inner HTM. = " OPEN'

}

ws. onnessage = function(event) {
meg = event.data
docunent . get El enent Byl d("short_nsg").innerHTM. =
event . dat a;

}

3. The client sends messages to the server over the WebSocket object as needed by the
application.

function sendMsg() {
/1 Check if connection is open before sending
if(ws == null || ws.readyState != 1) {
docunent . get El ement Byl d("reason"). i nner HTM.
= "Not connected can't send nsg"
} else {
ws. send(document . get El ement Byl d(" nane") . val ue);
}

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 29 of 50

http://www.w3.org/TR/html5/
http://www.w3.org/TR/websockets/
http://www.w3.org/TR/websockets/

ORACLE Chapter 19
Writing a WebSocket Client

<input id="send_button" class="button" type="button" val ue="send"
oncl i ck="sendMsg()"/>

Writing a Java WebSocket Client

The j akart a. websocket package contains annotations, classes, interfaces, and exceptions
that are common to client and server endpoints. Use the APIs in this package for writing a Java
WebSocket client in the same way as for writing a server. Additional programming tasks that
are specific to writing a client are described in the subsections that follow.

Configuring a WebSocket Client Endpoint Programmatically

WebLogic Server provides properties for configuring how the container creates client endpoint
instances. To indicate that these properties are specific to WebLogic Server and not part of the
JSR 356 specification, their fully qualified names contain the prefix webl ogi c. websocket .

WebLogic Server provides properties for the following:

* HTTP proxy configuration. WebLogic Server supports client connections to a remote
server WebSocket endpoint through an HTTP proxy as defined in the WebSocket Protocol
(RFC 6455).

Properties for HTTP proxy configuration are listed in Table 19-4.

» Secure Sockets Layer (SSL) configuration. WebLogic Server supports client
connections to a remote server WebSocket endpoint over SSL with wss scheme.

Properties for SSL configuration are listed in Table 19-5.

* Buffer size for incoming messages. WebLogic Server supports limiting the size of
incoming messages for WebSocket client endpoints.

Properties for buffer size configuration are described in Table 19-6.

Table 19-4 HTTP Proxy Configuration Properties for a Java WebSocket Client
]

Property Type Description

webl ogi c. websocket.clie String The name of the HTTP proxy host. If you are configuring

nt . PROXY_HOST proxy settings for a JavaScript client, you must specify this
property.

webl ogi c. websocket.clie Integer Optional. The port number for connections to the HTTP

nt . PROXY_PORT proxy host. If you specify an HTTP proxy host without the

port number, the port number defaults to 80.

webl ogi c. websocket.clie String Optional. The user name for logging in to the proxy host.
nt . PROXY_USERNAME

webl ogi c. websocket.clie String Optional. The user name for logging in to the proxy host.
nt . PROXY_PASSWORD

Table 19-5 SSL Configuration Properties for a Java WebSocket Client

]
Property Type Description

webl ogi c. websocket.clien String Optional. A comma-separated list of supported versions of
t. SSL_PROTOCOLS the SSL protocol.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 30 of 50

ORACLE

Chapter 19
Writing a WebSocket Client

Table 19-5 (Cont.) SSL Configuration Properties for a Java WebSocket Client
]

Property Type

Description

webl ogi c. websocket. clien String
t. SSL_TRUSTSTORE

Optional. The path to the keystore file, which contains the
security certificates for use in SSL encryption.

webl ogi c. websocket.clien String
t. SSL_TRUSTSTORE_PWD

Optional. The password for the keystore.

Table 19-6 Buffer-Size Configuration Properties for a Java WebSocket Client
|

Property Type

Description

webl ogi c. websocket.tyrus |Intege
.incom ng-buf f er-size r

The maximum underlying buffer size in bytes for receiving
messages. The client cannot process messages that are
larger than this size.

If set, this property overrides the value of the context
initialization property of the same name that is described in
Table 19-3.

The default buffer size is 4194315, of which 4 Mbytes are for
the payload and 11 bytes are for the frame overhead.

@® Note

Configure a client endpoint before connecting the client to its server endpoint.

To configure a WebSocket client endpoint programmatically:

1. Obtain ajavax. websocket. d i ent Endpoi nt Confi g object.

a. Invoke the | avax. websocket . C i ent Endpoi nt Confi g. Bui | der. cr eat e static method

to obtain an instance of the d i ent Endpoi nt Confi g. Bui | der class.

b. Invoke the bui | d method on the O i ent Endpoi nt Confi g. Bui | der object that you

obtained in the previous step.

2. Set each configuration property that you want to change to its new value.

a. Invoke the get User Properti es method on the O i ent Endpoi nt Confi g object that you

obtained in the previous step to obtain a modifiable j ava. uti | . Map object that contains

the user properties.

b. Invoke the put method on the Map object that you obtained in the previous step.

In the invocation of the put method, provide the property name and its new value as

parameters to the method.

Example 19-28 shows how to configure a WebSocket client endpoint programmatically.

Example 19-28 Configuring a WebSocket Client Endpoint Programmatically

This example programmatically configures a WebSocket client endpoint as follows:

e The name of the HTTP proxy host is set to pr oxy. exanpl e. com

e The port number for connections to the HTTP proxy host is set to 80.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 31 of 50

https://javaee.github.io/javaee-spec/javadocs/javax/websocket/ClientEndpointConfig.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/ClientEndpointConfig.Builder.html#create--
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/ClientEndpointConfig.Builder.html#build--
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/EndpointConfig.html#getUserProperties--
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-

ORACLE’

Chapter 19
Writing a WebSocket Client

The path to the keystore file is set to / export/ keyst ore.
The password for the keystore is set to the keyst or e_passwor d.

The maximum underlying buffer size for receiving messages is set to 16777227 bytes, that
is 16 Mbytes for the payload and 11 bytes for the frame overhead.

i mport javax.websocket. d i ent Endpoi nt Confi g;

Qi ent Endpoi nt Config cec = O ientEndpoint Config. Buil der.create().build();

/1 configure the proxy host

cec. get User Properties(). put("webl ogi c. websocket . cl i ent. PROXY_HOST",
"proxy. exanpl e. cont');

/1 configure the proxy port

cec. get User Properties().put("webl ogi c. websocket. cli ent. PROXY_PORT", 80);

/1 configure the trust keystore path

cec. get User Properties(). put("webl ogi c. websocket . client.SSL_TRUSTSTORE",
"/ export/keystore");

/1 configure the trust keystore's password

cec. get User Properties(). put("webl ogi c. websocket . client.SSL_TRUSTSTORE_PWD',
"keyst ore_password");

Il for receiving 16 Myte payl oad

cec. get User Properties(). put("webl ogi c. websocket . tyrus.incom ng-buffer-size",
16 * 1024 * 1024 + 11);

Connecting a Java WebSocket Client to a Server Endpoint

To connect a Java WebSocket client to a server endpoint:

1.

Invoke the | avax. websocket . Cont ai ner Provi der. get WebSocket Cont ai ner () static
method to obtain the client's | avax. websocket . WebSocket Cont ai ner instance.

Invoke the overloaded connect ToSer ver method on the WebSocket Cont ai ner object that
you obtained in the previous step.

The variant of the method to invoke depends on whether the endpoint is an annotated
endpoint or a programmatic endpoint and whether support for Jakarta EE services such as
dependency injection are required.

Endpoint Type Support for Variant of the connectToServer Method
Jakarta EE
Services
Annotated Not required connectToServer(Obj ect
annot at edEndpoi nt I nstance, URI path)
Annotated Required connectToServer(O ass<?>
annot at edEndpoi nt d ass, UR pat h)
Programmatic Not required connectToServer(Endpoi nt endpoi nt | nst ance,
Qi ent Endpoi nt Confi g cec, UR path)
Programmatic Required connectToServer(C ass<? ext ends Endpoi nt >
endpoi nt d ass, O ientEndpoint Config cec, URI
pat h)

In the invocation of the connect ToSer ver method, provide the following information as
parameters to the method:

e The client WebSocket endpoint

e The complete path to the server WebSocket endpoint

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 32 of 50

https://javaee.github.io/javaee-spec/javadocs/javax/websocket/ContainerProvider.html#getWebSocketContainer--
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/WebSocketContainer.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/WebSocketContainer.html#connectToServer-java.lang.Object-java.net.URI-
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/WebSocketContainer.html#connectToServer-java.lang.Class-java.net.URI-
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/WebSocketContainer.html#connectToServer-javax.websocket.Endpoint-javax.websocket.ClientEndpointConfig-java.net.URI-
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/WebSocketContainer.html#connectToServer-java.lang.Class-javax.websocket.ClientEndpointConfig-java.net.URI-

ORACLE

Chapter 19
Writing a WebSocket Client

If the client endpoint is a programmatic endpoint, you must also provide configuration
information for the endpoint.

Example 19-4 shows how to connect a Java WebSocket client to a server endpoint.
Example 19-29 Connecting a Java WebSocket Client to a Server Endpoint

This example connects the Java WebSocket client O i ent Exanpl e to the WebSocket server
endpoint at ws: / / exanpl e. com 80/ echoser ver/ echo. The WebSocket client endpoint is
represented by the class Exanpl eEndpoi nt . The declaration of the Exanpl eEndpoi nt class is

shown in Example 19-4.

i mport java.io.lOException;
import java.net.URl;

i mport j avax.websocket . O oseReason;

i mport j avax.websocket . Cont ai ner Provi der;
i mport j avax.websocket . Sessi on;

i mport javax.websocket.\WebSocket Cont ai ner;

public class CientExanple {

public static void main(String[] args) throws Exception {
WebSocket Cont ai ner contai ner = Cont ai ner Provi der. get WebSocket Cont ai ner () ;
Sessi on session = contai ner. connect ToSer ver (Exanpl eEndpoi nt . cl ass,
new URI ("ws://exanpl e. com 80/ echoserver/echo"));

session. close();

}

Setting the Maximum Number of Threads for Dispatching Messages from a
WebSocket Client

By default, the maximum number of threads for dispatching messages from a WebSocket
client depends on how many processors are available:

e If 20 or fewer processors are available, the maximum number of threads is 20.

e If more than 20 processors are available, the maximum number of threads is equal to the
number of available processors.

To set the maximum number of threads for dispatching messages from a WebSocket client:
® Inthejava command to launch your client application, set the system property
webl ogi c. websocket . cl i ent. max- ai o-t hr eads to the number that you require.

Example 19-30 shows how to set the maximum number of threads for dispatching messages
from a WebSocket client.

Example 19-30 Setting the Maximum Number of Threads for Dispatching Messages
from a WebSocket Client

This example sets the maximum number of threads for dispatching messages from the
WebSocket client O i ent Exanpl e to 50.

java - Dwebl ogi c. websocket . cli ent. nmax-ai o-threads=50 Cient Exanpl e

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 33 of 50

ORACLE Chapter 19
Securing a WebSocket Application

Securing a WebSocket Application

In WebLogic Server, you deploy a WebSocket application as a Web application archive (WAR),
either as a standalone Web application or a WAR module within an enterprise application.
Therefore, many security practices that you apply to securing Web applications can apply to
WebSocket applications.

For information about Web application security, see Developing Secure Web Applications in
Developing Applications with the WebLogic Security Service.

The following sections describe security considerations for WebSocket applications in
WebLogic Server:

Applying Verified-Origin Policies

Modern browsers use same-origin policies to prevent scripts that are running on Web pages
loaded from one origin from interacting with resources from a different origin. The WebSocket
Protocol (RFC 6455) uses a verified-origin policy that enables the server to decide whether or
not to consent to a cross-origin connection.

When a script sends an opening handshake request to a WebSocket application, an Ori gi n
HTTP header is sent with the WebSocket handshake request. If the application does not verify
the Ori gi n, then it accepts connections from any origin. If the application is configured not to
accept connections from origins other than the expected origin, then the WebSocket
application can reject the connection.

You can ensure that the WebSocket application verifies the Ori gi n by extending the
j avax. websocket . server. Server Endpoi nt Confi g. Confi gur at or class.

The following code example demonstrates applying a verified-origin policy:

i mport javax.websocket . server. Server Endpoi nt Confi g;
public class MyConfigurator extends ServerEndpoint Config. Configurator {

private static final String ORIRGN = "http://ww. exanpl e. com 7001";

@verride
public bool ean checkOrigin(String origi nHeader Val ue) {

return ORI G N. equal s(origi nHeader Val ue)
}

For more information, see Configuring a Server Endpoint Programmatically.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 34 of 50

https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/ServerEndpointConfig.Configurator.html#getEndpointInstance-java.lang.Class-

ORACLE

Chapter 19
Securing a WebSocket Application

@® Note

Nonbrowser clients (for example, Java clients) are not required to send an Ori gi n
HTTP header with the WebSocket handshake request. If a WebSocket handshake
request does not include an Ori gi n header, then the request is from a nonbrowser
client; if a handshake request includes an Ori gi n header, then the request may be
from either a browser or a nonbrowser client.

Because nonbrowser clients can send arbitrary Ori gi n headers, the browser origin
security model is not recommended for nonbrowser clients.

Authenticating and Authorizing WebSocket Clients

The WebSocket Protocol (RFC 6455) does not specify an authentication method for
WebSocket clients during the handshake process. You can use standard Web container
authentication and authorization functionality to prevent unauthorized clients from opening
WebSocket connections on the server.

All configurations of the <aut h- met hod> element that are supported for Web applications can
also be used for WebSocket applications. These authentication types include BASIC, FORM,
CLIENT-CERT, and so on. See Developing Secure Web Applications in Developing
Applications with the WebLogic Security Service.

You can secure the path to the endpoint within your application by configuring the relevant
<security-constraint>elementin the web. xm deployment descriptor file of the WebSocket
application. By configuring <securi t y- constrai nt >, clients must authenticate themselves
before sending WebSocket handshake requests. Otherwise, the server rejects the WebSocket
handshake request. For more information about the <securi ty- constrai nt > element, see
web.xml Deployment Descriptor Elements in Developing Web Applications, Serviets, and JSPs
for Oracle WebLogic Server.

The following code example demonstrates securing the path to the endpoint within your
application, where the path is / deno:

<security-constraint>
<web-resour ce-col | ecti on>
<web- r esour ce- name>Secur ed WebSocket Endpoi nt </ web-resour ce- nane>
<url -pattern>/deno</url-pattern>
<ht t p- met hod>GET</ ht t p- met hod>
</ web-resour ce-col | ecti on>
<aut h-constrai nt>
<r ol e- name>user </ r ol e- nane>
</ aut h-constrai nt >
</security-constraint>
<l ogi n-config>
<aut h- met hod>FORMK/ aut h- et hod>
<forml ogi n-confi g>
<form | ogi n- page>/ | ogi n. j sp</form | ogi n- page>
<formerror-page>/ error.jsp</formerror-page>
</form ogi n-config>
</l ogi n-config>
<security-role>
<r ol e- name>user </ r ol e- name>
</security-rol e>

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 35 of 50

ORACLE

Chapter 19
Securing a WebSocket Application

Authorizing WebSocket Clients

You can configure a WebSocket application to implement BASIC and DIGEST authentication
methods and authorize certain clients by manipulating handshake message headers through
the j avax. websocket . O i ent Endpoi nt Confi g. Confi gurat or class. If the application does not
authorize a client to create a WebSocket connection, the server rejects the WebSocket
handshake request from that client.

To check the value of the origin header that the client passed during the opening handshake,
use the checkOri gi n method of the

j avax. websocket . server. Server Endpoi nt Conf i g. Confi gur at or class. To provide custom
checks, you can override this method. For more information, see Configuring a Server
Endpoint Programmatically.

A JSR356 code example for Authorization is required.

Establishing Secure WebSocket Connections

To establish a WebSocket connection, the client sends a handshake request to the server.
When using the ws scheme to open the WebSocket connection, the handshake request is a
plain HTTP request; the data being transferred over the established WebSocket connection is
not encrypted.

To establish a secure WebSocket connection and prevent data from being intercepted,
WebSocket applications should use the wss scheme. The wss scheme ensures that clients
send handshake requests as HTTPS requests, encrypting transferred data by TLS/SSL.

You can configure a WebSocket application to accept only HTTPS handshake requests, where
all WebSocket connections must be encrypted and unencrypted WebSocket handshake
requests are rejected. Specify the <user - dat a- const r ai nt > element in the web. xm
deployment descriptor file of the WebSocket application. For more information about the

<user - dat a- const r ai nt > element, see web.xml Deployment Descriptor Elements in
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

The following code example demonstrates configuring the <user - dat a- const r ai nt > element:

<security-constraint>

<web- r esour ce-col | ecti on>
<web-r esour ce- nane>Secur ed \WebSocket Endpoi nt </ web- r esour ce- name>
<url - pattern>/demo</url-pattern>
<ht t p- net hod>GET</ ht t p- met hod>

</ web-resource-col | ection>

<aut h-constrai nt >
<rol e- nane>user </ rol e- nane>

</ aut h-constraint >

<user - dat a- constrai nt >
<t ransport - guar ant ee>CONFI DENTI AL</ t ransport - guar ant ee>

</ user-dat a-constraint>

</security-constraint>

Avoiding Mixed Content

If a script attempts to open a WebSockets connection through the ws: // URI (using a plain
HTTP request), but the top-level Web page is retrieved through an HTTPS request, the Web
page is referred to as mixed content. Although most browsers no longer allow mixed content,
some still do. WebSocket applications should avoid mixed content, because it allows certain
information that should be protected, such as JSESSI ONI D and cookies, to be exposed.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 36 of 50

https://javaee.github.io/javaee-spec/javadocs/javax/websocket/ClientEndpointConfig.Configurator.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/ServerEndpointConfig.Configurator.html#checkOrigin-java.lang.String-
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/ServerEndpointConfig.Configurator.html

ORACLE Chapter 19
Enabling Protocol Fallback for WebSocket Messaging

For more information about mixed content, see "Web Security Context: User Interface
Guidelines" at ht t p: / / www. W3. or g/ TR/ wsc- ui / #secur epage.

Specifying Limits for a WebSocket Connection

By specifying limits for a WebSocket connection, you can prevent clients from exhausting
server resources, such as memory, sockets, and so forth.

You can specify the following limits for a WebSocket connection:

« Maximum message size. To set the maximum message size for a WebSocket
connection, set the naxMessageSi ze element of the onMessage annotation to the size in
bytes.

+ Idle timeout value. To set the idle timeout value for a WebSocket connection, invoke one
of the following methods:

— For an individual connection, invoke the set Max| dl eTi mreout method of the Sessi on
object.

— For the entire container, invoke the set Def aul t MaxSessi onl dl eTi meout method of a
VebSocket Cont ai ner object.

Enabling Protocol Fallback for WebSocket Messaging

Protocol fallback provides a mechanism for using an alternative transport for WebSocket
messaging when the WebSocket protocol is not supported. Typically the WebSocket protocol is
not supported either because the WebSocket object is not available or because WebSocket
frames are blocked by a firewall. In this release, the only supported alternative transport is
HTTP Long Polling.

Protocol fallback enables you to rely on standard programming APIs to perform WebSocket
messaging regardless of whether or not the runtime environment supports the WebSocket
protocol.

® Note

To support WebSocket fallback, the server must use the JSR 356 Java API for
WebSocket, not the proprietary WebLogic Server WebSocket API.

Using the JavaScript API for WebSocket Fallback in Client Applications

The JavaScript API for WebSocket fallback provides an implementation of the standard W3C
WebSocket API and additional APIs to facilitate WebSocket fallback. For information about the
JavaScript API for WebSocket fallback, see JavaScript APl Reference for WebSocket Fallback.
For information about the W3C WebSocket API, see: htt p: / / ww. w3. or g/ TR/ websocket s/ .

When you use the standard W3C WebSocket JavaScript API, code your application without
regard to whether the WebSocket protocol is supported.

Configuring WebSocket Fallback

WebLogic Server provides properties for configuring WebSocket fallback as listed in
Table 19-7.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 37 of 50

http://www.w3.org/TR/wsc-ui/#securepage
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/OnMessage.html#maxMessageSize--
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/Session.html#setMaxIdleTimeout-long-
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/WebSocketContainer.html#setDefaultMaxSessionIdleTimeout-long-
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/WebSocketContainer.html
http://www.w3.org/TR/websockets/

ORACLE’

Chapter 19
Enabling Protocol Fallback for WebSocket Messaging

Table 19-7 WebSocket Fallback Configuration Properties
|

Property Type Default Description

baselr | string The location of the scri pt s directory, relative to the
HTML context of the page.
The structure of the scri pt s directory must be
preserved. The scri pt s directory can be moved to
wherever it can be reached, but its content must not
change after it was created.

debug integer 0 The debug level.

ENCCDE_FOR_| E_BE integer 10 The version of the Internet Explorer browser below which

LOW Basel6 encoding is to be used for framed data.

ENFORCE_ENCCODI NG Boolean false Whether Basel6 encoding is to be used.

NB_TRY_FOR_EACH_ integer 2 The maximum number of consecutive retries to establish

TRANSPORT a connection on a given transport.

PI NG_| NTERVAL integer 25000 Interval in milliseconds between consecutive pings to the
server.

SERVER _PI NG_ENAB Boolean true Whether pings from the client to the server are enabled.

LED

transport string none The enforced transport, which can be one of the following
transports:
* \ebSocket
XMHt pRequest

TRY_AGAI N_I NTERV integer 1000 The number of seconds after which an unsuccessful

AL connection attempt is repeated with the same transport.
The retry count for the transport is not incremented.
If the attempt fails within this number of milliseconds, the
retry count is incremented by 1.

WEBSOCKET_CREATI integer 1000 The number of milliseconds after which creation of a

ON_TI MEQUT

WebSocket connection is considered to have failed.

If the WebSocket protocol is available, WebLogic Server uses that protocol even if protocol
fallback is enabled. WebLogtic Server uses the value of the TRY_AGAI N_I NTERVAL property and
the NB_TRY_FOR _EACH TRANSPORT property as follows to determine whether the WebSocket
protocol is available if a connection attempt fails:

e If the connection is not established within TRY_AGAI N_| NTERVAL milliseconds, the attempt is
repeated with same transport. The retry count for this transport is not incremented.

« If the attempt fails within TRY_AGAI N_| NTERVAL milliseconds, the retry count is incremented

by 1.

e If the retry count reaches the value of NB_TRY_FOR_EACH TRANSPORT, the next transport is

tried.

« If the retry count for the last transport reaches the value of NB_TRY_FOR_EACH _TRANSPCRT,
the connection is closed, that is, the oncl ose function is called on the client.

To configure WebSocket fallback:

1. Construct a JSON object in which you set the configuration properties that you require.

For details about these properties, see Table 19-7.

Developing Applications for Oracle WebLogic Server
G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 38 of 50

ORACLE Chapter 19
Enabling Protocol Fallback for WebSocket Messaging

2. Pass the object as a parameter to one of the following functions:

« If the fallback mechanism cannot be guaranteed to be present, pass the object as the
parameter to the OraSocket . confi gur e function before constructing the WebSocket
object.

To ensure that your application does not fail if the JavaScript library for WebSocket
fallback is unavailable, call the OraSocket . confi gur e function in atry/cat ch block.

« Otherwise, pass the object as the second, optional parameter of the WebSocket
object's constructor.

Example 19-31 shows how to configure WebSocket fallback.
Example 19-31 Configuring WebSocket Fallback

This example enforces the XM_Ht t pRequest transport, sets the debug level to 10, and disables
pings from the client to the server.

try {
var config = {};
config = { transport: XMHttpRequest, debug: 10, SERVER PI NG ENABLED: fal se };
OraSocket . config(config);
} catch (err) {
consol e. | og("Error creating WebSocket:" + JSON.stringify(err));

Creating a WebSocket Object

A WebSocket object represents a WebSocket connection from the client to a remote host.

To create a WebSocket object, invoke the WebSocket constructor, passing the following
information as parameters:

e The URL to which the client should connect
« Optionally, a JSON object that contains configuration settings for WebSocket fallback

For more information about the JSON object, see Configuring WebSocket Fallback.

Example 19-32 shows how to create a WebSocket object.
Example 19-32 Creating a WebSocket Object

This example creates the WebSocket Object ws. The example uses standard JavaScript
functions to determine the URL to which the client should connect from the URL of the
document that contains this code.

var URI _SUFFI X = "/websocket - 101/ ws- 101- app";

var ws;

var connectionStatus = "Connecting...";

var calledBy = docunent.location.toString();

var machine, port, secured;

var regExp = new RegExp("(http|ws) (. ?2):[/1{2 ([~ | :]*):?2(\\d*)/(.*)");
var matches = regExp. exec(cal | edBy);

secured = matches[2];

machi ne = mat ches[3];

port mat ches[4] ;

statusFld = docunent.get El enent Byl d(' status');

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 39 of 50

ORACLE Chapter 19
Enabling Protocol Fallback for WebSocket Messaging

try

{
var wsURI = "ws" + secured + "://" + machine + ":" + port + URI _SUFFI X;
ws = new WebSocket (wsURI);

}

catch (err)

{

var mess = 'WebSocket creation error:' + JSON. stringify(err);
connectionStatus = "Unable to connect.";

if (statusFld !== undefined)
statusFl d.i nnerHTM. = ness;
el se
al ert(ness);

Handling Life Cycle Events for a JavaScript WebSocket Client

Handling lifecycle events for a JavaScript WebSocket client involves writing the WebSocket
object's callback functions as listed in Table 19-8. The table also provides a cross-reference to
an example that shows how to handle each type of event.

Table 19-8 Callback Functions for Handling Life Cycle Events

Event Callback Function Example

Connection opened onopen Example 19-33

Message received onnessage Example 19-34

Error onerror Example 19-35

Connection closed oncl ose Example 19-36
® Note

The creation of the ws WebSocket object in the examples is shown in Example 19-32.

Example 19-33 Handling a Connection Opened Event for a JavaScript WebSocket
Client

This example uses standard JavaScript functions to display the current date and time followed
by the message Connecti on opened when a connection is opened.

ws. onopen = function()
{

try

{

var text;
try

{
text = 'Message:"';
}

catch (err)

{

text = '<smal | >Connect ed</snmal | > ;

}

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 40 of 50

ORACLE Chapter 19
Enabling Protocol Fallback for WebSocket Messaging

pronpt Fl d. i nner HTM. = text;
if (nbMessReceived === 0)
statusFld.innerHTM. = "";
stat usFl d. i nnerHTM. += ((nbMessReceived === 0?"":"
") + "<snmal | >" +
(new Date()).format("d-MY Hi:s._Z") +
"</smal | >: " +
Connection opened.' + "");
stat usFl d. scrol | Top = statusFl d. scrol | Hei ght;
nbMessRecei ved++;
1
catch (err) {}

b

Example 19-34 Handling a Message Received Event for a JavaScript WebSocket Client

This example uses standard JavaScript functions to display the current time followed by the
content of the message when a message is received.

ws. onmessage = function(nessage) // nessage/ event

{
var json = {};
i f (typeof(message.data) === 'string')
{
try
{
json = JSON. parse(nmessage. data);
catch (e)
{
consol e. 1 og(e);
consol e.log(' This doesn\'t look like valid JSON ' + nessage.data);
}
}
if (json.type !== undefined & json.type === 'nessage' &&
typeof (j son. appdata.text) === "string') // it's a single message, text

var dt = new Date();
/**
* Add nessage to the chat wi ndow
*/
var existing = contentFld.innerHTM.; // Content already there
var toDisplay = "";
try { toDisplay = json.appdata.text; }
catch (err) {}
contentFl d.innerHTM. = existing +
("A "+
+ (dt.getHours() < 10 ? '0" + dt.getHours() : dt.getHours()) + ':'
+ (dt.getMnutes() <10 ? '0" + dt.getMnutes() : dt.getMnutes())
+': " + toDisplay + '
');
content Fl d. scrol | Top = contentFl d.scroll Hei ght;

el se // Unexpected

{

}
b

var payload = {};

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 41 of 50

ORACLE Chapter 19
Enabling Protocol Fallback for WebSocket Messaging

Example 19-35 Handling an Error Event for a JavaScript WebSocket Client

This example uses standard JavaScript functions to display the current date and time followed
by an error message when an error occurs.

ws.onerror = function(error)

if (nbMessReceived === 0)
statusFl d.innerHTM. = "";
stat usFl d.inner HTM. += ((nbMessReceived === 0?"":"
") + "<smal|>" +

(new Date()).format("d-MY Hi:s._ Z") +
"</smal|>:" + error.err + "");
statusFl d. scrol | Top = statusFld.scroll Hei ght;
nbMessRecei ved++;

b

Example 19-36 Handling a Connection Closed Event for a JavaScript WebSocket Client

This example uses standard JavaScript functions to display the current date and time followed
by the message Connecti on cl osed when a connection is closed.

ws. oncl ose = function()

i f (nbMessReceived === 0)
statusFl d.innerHTM. = "";
statusFl d.innerHTM. += ((nbMessReceived === 0?"":"
") + "<smal | >" +

(new Date()).format("d-MY Hi:s._ Z") +
"</smal | > " + ' Connection closed +
"");
pronpt Fl d. i nner HTM. = ' Connection cl osed';
b

Sending a Message from a JavaScript WebSocket Client

To send a message from a JavaScript WebSocket client:

1. Define a function for sending the message.

2. Inthe body of the function for sending the message, call the send function of the
WebSocket object.

3. Call the function that you defined for sending the message.

The following examples shows how to send a message from a JavaScript WebSocket client:

* Example 19-37
* Example 19-38
Example 19-37 Defining a Function for Sending a Message

This example defines the function send for sending a message.

The creation of the ws WebSocket object in this example is shown in Example 19-32.

var send = function(ness)

{

ws. send(ness) ;

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 42 of 50

ORACLE’

Chapter 19
Migrating an Application to the JSR 356 Java API for WebSocket from the Deprecated API

Example 19-38 Calling a Function for Sending a Message

This example calls the send function for sending the contents of the text field when the user
clicks Send.

The definition of the send function is shown in Example 19-37.

<input type="text" id="input" style="border-radius:2px; border:1px solid #ccc;

mar gi n-t op: 10px; paddi ng: 5px; wi dt h: 400px; "

pl acehol der =" Type your nessage here"/>

<button onclick="javascri pt:send(docunent. get El ement Byl d(' i nput').val ue);">Send</ button>

Packaging and Specifying the Location of the WebSocket Fallback Client

Library

Package the or asocket . nin.j s file in the scri pt s directory of your web application.

In the client application, add the following scri pt element to specify the location of
orasocket.mn.js.

<script type="text/javascript" src="scripts/orasocket.nmin.js"></script>

Enabling WebSocket Fallback

By default, WebSocket fallback is disabled.

To enable WebSocket fallback, set the com oracl e. tyrus. f al | back. enabl ed context
parameter to t r ue in the application's deployment descriptor file web. xm .

<?xm version="1.0" encodi ng="UTF-8"?>
<web- app version="3.0" ...>

<cont ext - par an»
<descri ption>Enabl e fal | back mechani sm</description>
<par am nanme>com or acl e. tyrus. f al | back. enabl ed</ par am nanme>
<par am val ue>t rue</ par am val ue>
</ cont ext - par an>
</ web- app>

Migrating an Application to the JSR 356 Java API for WebSocket
from the Deprecated AP!

To ensure compatibility of your WebSocket applications with future releases of WebLogic
Server, use the JSR 356 Java API for WebSocket instead of the deprecated packages.

As of WebLogic Server 12.1.3, the packages webl ogi c. websocket and

webl ogi c. websocket . annot at i on are deprecated and will be removed in a future release.
After these packages have been removed, you will no longer be able to use these packages
for connections over the WebSocket protocol.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 43 of 50

ORACLE Chapter 19
Migrating an Application to the JSR 356 Java API for WebSocket from the Deprecated API

Comparison of the JSR 356 API and Proprietary WebLogic Server
WebSocket API

Table 19-9 shows the proprietary WebLogic Server WebSocket API and the corresponding
JSR 356 API to use to perform tasks for developing a WebSocket application. The table shows
only the JSR 356 API to use for an annotated endpoint. For each task, the table also provides
a cross-reference to instructions for performing the task by using the JSR 356 API.

Table 19-9 Comparison of the JSR 356 API and Proprietary WebLogic Server

WebSocket API
]
Task Proprietary WebLogic Server JSR 356 API Instructions
WebSocket API
gr:zzﬁni zg:ser . \ebSocket Li st ener interface :ﬁ;ggtsﬂdpm nt %ﬂ?&ﬂ
or WebSocket Adapt er Endooint
superclass
2. \WebSocket annotation
Handle a onMpen method of a OnOoen annotation on the Handling a
connection opened \WebSocket Li st ener object method that handles the Connection
event event Opened Event
Handle a message One of the following variants of the OnMessage annotation on Handling a
received event overloaded onMessage method of the method that handles Message
aWebSocket Li st ener object: the event Received Event
» For a message that consists of
a text data frame:
onMessage(WebSocket Conne
ction connection, String
payl oad)
» For a message that consists of
a binary data frame:
onMessage(VebSocket Conne
ction connection, byte[]
payl oad)
Handle an error onError method of a OnError annotation on the Handling an
event \WebSocket Li st ener object method that handles the ~ Error Event
event
Handle a ond ose method of a Ond ose annotation on the Handling a
connection closed WebSocket Li st ener object method that handles the ~ Connection
event event Closed Event

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 44 of 50

https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/ServerEndpoint.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/OnOpen.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/OnMessage.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/OnError.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/OnClose.html

ORACLE Chapter 19
Migrating an Application to the JSR 356 Java API for WebSocket from the Deprecated API

Table 19-9 (Cont.) Comparison of the JSR 356 API and Proprietary WebLogic Server

WebSocket API
]
Task Proprietary WebLogic Server JSR 356 API Instructions
WebSocket API
Send a message One of the following methods of a 1. Sessi on interface Sending a
\ebSocket Connect i on object: - Message to a
. i Single Peer of an
- send(String nessage) 2. Oneof the following ~ =INgle Feer oran
= Endpoint
- send(byte[] nessage) methods of the
. sendPin Sessi on object
SENCHLd get Basi cRenot e()
« sendPong
- strean(bool ean | ast, get AsyncRennt g()
String fragment) 3. One of the following
e strean(bool ean | ast, methods of the
byte[] fragment, int Renot eEndpoi nt . Ba
off, int length) si c_object or
Renot eEndpoi nt . As
ync object:
sendText
sendBi nary
sendPi ng
sendPong
Send a message to 1. get WebSocket Cont ext get OpenSessi ons_ Sending a
all peers connected method of the Sessi on Message to All
to an endpoint method of a i Peers of an
0 an endpo WebSocket Connect i on object OPiect Endpoint

2. get WebSocket Connecti ons
method of the
WebSocket Cont ext object
obtained by the previous call

Set the maximum nmaxMessageSi ze element of the maxMessageSi ze element

message size fora WebSocket annotation of the onMessage
WebSocket annotation

connection

Set the idle timeout ti neout element of the One of the following APIs:
value for a \WebSocket annotation « For an individual
WebSocket connection:
connection set Maxl dl eTi meout

method of the
Sessi on object

. For the entire
container:
set Def aul t MaxSess
i onldl eTi meout

method of a
WebSocket Cont ai ne
I object
Set the maximum maxConnect i ons element of the Not supported by JSR 356
number of open \WebSocket annotation Java API for Websocket
connections on a
WebSocket
connection

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 45 of 50

https://javaee.github.io/javaee-spec/javadocs/javax/websocket/Session.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/Session.html#getBasicRemote--
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/Session.html#getAsyncRemote--
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.Async.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.Async.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/Session.html#getOpenSessions--
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/OnMessage.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/Session.html#setMaxIdleTimeout-long-
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/WebSocketContainer.html#setDefaultMaxSessionIdleTimeout-long-
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/WebSocketContainer.html#setDefaultMaxSessionIdleTimeout-long-
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/WebSocketContainer.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/WebSocketContainer.html

ORACLE’

Chapter 19
Migrating an Application to the JSR 356 Java API for WebSocket from the Deprecated API

Converting a Proprietary WebSocket Server Endpoint to Use the JSR 356

API

To convert a proprietary WebSocket server endpoint to use the JSTR 356 API:

1.

Convert your WebSocket class to an annotated server endpoint class.

Converting a WWebSocket class to an annotated endpoint class requires fewer changes than
converting the WebSocket class to a programmatic endpoint class.

a. Convert the WbSocket class to a POJO class by removing the ext ends
WebSocket Adapt er clause or i npl ements WebSocket Li st ener clause from the class
declaration.

b. Replace the webl ogi c. websocket . annot at i on. WebSocket annotation on the class
declaration with the j avax. websocket . server. Server Endpoi nt annotation.

For more information, see Creating an Annotated Endpoint.

@® Note

If the pat hPat t er ns element of your existing endpoint contains the / * suffix,
you must rewrite your code to achieve the same result as the / * suffix. For
more information, see Replacing the /* Suffix in a Path Pattern String.

Annotate the declaration of each method for handling a life cycle event with the annotation
that designates the event that the method handles.

For more information, see Handling Life Cycle Events in an Annotated WebSocket
Endpoint.

Replace each reference to the webl ogi ¢. websocket . WebSocket Connect i on interface with
a reference to the j avax. websocket . Sessi on interface.

Replace each method invocation on the WebSocket Connect i on object with an invocation of
the corresponding method on the Sessi on object.

For example, the cl ose method of a WebSocket Connect i on object takes a
webl ogi c. websocket . O osi ngMessage object as a parameter. In the cl ose method of a
Sessi on object the corresponding parameter is a j avax. websocket . Cl oseReason object.

Change each method invocation on a Sessi on object to send a message as follows:

a. Add an invocation of the get Basi cRenpt e method or get AsyncRenpt e method to obtain
a reference to the object that represents the peer of this endpoint.

b. Replace the method in the deprecated API for sending the message with the
corresponding method in the JSR 356 API.

The method of the JSR 356 API is a method of the

j avax. websocket . Renot eEndpoi nt . Basi ¢ object or

j avax. websocket . Renot eEndpoi nt . Async object to which you obtained a reference in
the previous step.

For more information, see Sending a Message.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 46 of 50

https://javaee.github.io/javaee-spec/javadocs/javax/websocket/server/ServerEndpoint.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/Session.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/CloseReason.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/Session.html#getBasicRemote--
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/Session.html#getAsyncRemote--
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.Basic.html
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.Async.html

ORACLE’

Chapter 19

Migrating an Application to the JSR 356 Java API for WebSocket from the Deprecated API

Deprecated API
Method

RemoteEndpoint.Basic
Method

RemoteEndpoint.Async Method

send(String
message)

sendText(String text)

One of the following methods:
sendText(String text)

sendText(String text, SendHandl er
handl er)

send(byt e[]
message)

sendBinary(ByteBuffer
data)

One of the following methods:
sendBinary (Byt eBuffer data)

sendBinary(Byt eBuf f er dat a,
SendHandl er handl er)

sendPing(byt e[]

sendPing(Byt eBuf f er

sendPing(Byt eBuf f er

message) appl i cati onDat a) appl i cationDat a)
sendPong(byt e[] sendPong(Byt eBuf f er sendPong(Byt eBuf f er
message) appl i cati onDat a) appl i cationDat a)
stream(bool ean sendText(Stri ng No corresponding method.
last, String partial Message,

fragment) bool ean i sLast)

stream(bool ean sendBinary(Byt eBuf fer ~ No corresponding method.
ast, byte[] partial Byte, bool ean

fragnment, int
off, int length)

i sLast)

6. Replace references ininport clauses to classes in the deprecated API with references to
the classes in the JSR 356 API that your endpoint uses.

7. Recompile and re-deploy the application that uses the server endpoint.

Replacing the /* Suffix in a Path Pattern String

The pat hPat t er ns element of the WebSocket annotation in the deprecated API accepts the / *
suffix in a path pattern string. The / * suffix matches the path pattern with any resource path
that starts with the path pattern before the / * suffix. For example, the resource path / ws/ chat
is matched by path pattern / ws/ *.

No equivalent to the / * suffix exists in the JSR 356 API. If your existing endpoint relies on

the / * suffix, you must rewrite your code to achieve the same result as the / * suffix. How to
rewrite your code depends on whether the / * suffix represents variable path parameters in an
endpoint URI or additional data for an endpoint.

Replacing a /* Suffix that Represents Variable Path Parameters in an Endpoint URI

The / * suffix in a path pattern string might represent one or more variable path parameters in
an endpoint URI. In this situation, use a URI template instead of the / * suffix.

The JSR 356 API supports only level 1 URI templates in which path parameters are clearly
separated by slashes (/). Therefore, in the URI template, you must define one variable for
expansion for each variable path parameter that replaces the / * suffix in your existing
endpoint.

For example, if one variable path parameter replaces the / * suffix in your existing endpoint,
define a URI template similar to the following example:

/ws/ { paraml}

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 47 of 50

https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.Basic.html#sendText%28java.lang.String%29
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.Async.html#sendText%28java.lang.String%29
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.Async.html#sendText%28java.lang.String,%20javax.websocket.SendHandler%29
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.Basic.html#sendBinary%28java.nio.ByteBuffer%29
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.Async.html#sendBinary%28java.nio.ByteBuffer%29
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.Async.html#sendBinary%28java.nio.ByteBuffer,%20javax.websocket.SendHandler%29
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.html#sendPing%28java.nio.ByteBuffer%29
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.html#sendPing%28java.nio.ByteBuffer%29
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.html#sendPong%28java.nio.ByteBuffer%29
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.html#sendPong%28java.nio.ByteBuffer%29
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.Basic.html#sendText%28java.lang.String,%20boolean%29
https://javaee.github.io/javaee-spec/javadocs/javax/websocket/RemoteEndpoint.Basic.html#sendBinary%28java.nio.ByteBuffer,%20boolean%29

ORACLE Chapter 19
Migrating an Application to the JSR 356 Java API for WebSocket from the Deprecated API

The URI /ws/ t est matches the template in the preceding example. The par ant variable is
expanded to t est .

Similarly, if two variable path parameters replace the / * suffix in your existing endpoint, define
a URI template similar to the following example:

/ws/ { paraml}/{ par anR}

The URI/ws/ t est/ chat matches the template in the preceding example. The par anl variable
is expanded to t est and the par an? variable is expanded to chat .

For more information, see Specifying a Part of an Endpoint Deployment URI as an Application
Parameter.

Replacing a /* Suffix that Represents Additional Data for an Endpoint

The / * suffix in a path pattern string might represent additional data for an endpoint that is
transferred as part of the URI. In this situation, use query parameters instead of the / * suffix.

The JSR 356 specification does not forbid or restrict the use of query parameters in any way.
Therefore, you can use a query parameter to transfer any data provided that the following
conditions are met:

* URLs are shorter than their maximum allowed length.
e All data is properly encoded.

To obtain an endpoint's query parameters, invoke the method of the endpoint's Sessi on object
that obtains the parameters in the required format:

« To obtain the parameters as a single string that contains the entire query, invoke the
get QueryStri ng method. See Example 19-39.

e To obtain the parameters as a map that contains a list of query parameters, invoke the
get Request Par anet er Map method. See Example 19-40.

Example 19-39 Obtaining Query Parameters as a Single String

This example obtains the query parameters in the request URI / echo?
f oo=bar, baz, mane, padne, humas the application output "# foo=bar, baz, mane, padme, hunt .

i mport j avax.websocket . OnQpen;
i mport j avax.websocket . Sessi on;
i mport j avax.websocket . server. Server Endpoi nt;

@er ver Endpoi nt ("/ echo")
public class EchoEndpoint {

@nQOpen
public void onCpen(Session session) throws | CException {
Systemout.printin("# " + session.getQueryString());

}

...
}

Example 19-40 Obtaining Query Parameters as a Map

This example obtains the query parameters in the request URI / echo?
f oo=bar & 0o=baz&f oo=nane&f oo=padme&f oo=humas the Li st <Stri ng>
[bar, baz, mane, padne, huni.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 48 of 50

https://jakarta.ee/specifications/websocket/1.1/apidocs/javax/websocket/package-summary
https://jakarta.ee/specifications/websocket/1.1/apidocs/javax/websocket/package-summary

ORACLE

Chapter 19
Migrating an Application to the JSR 356 Java API for WebSocket from the Deprecated API

i mport j avax.websocket . OnQpen;

i mport j avax.websocket . Sessi on;

i mport javax.websocket . server. HandshakeRequest ;
i mport javax.websocket . server. Server Endpoint;
import java.util.List;

i mport java.util.Mp;

@er ver Endpoi nt ("/ echo")
public class EchoEndpoint {

@nQpen
public void onQpen(Session session) throws | OException {
Systemout.printin("# " + session. get Request Paranet er Map(). get ("fo0"));

}

...
}

Example of Converting a Proprietary WebSocket Server Endpoint to Use the
JSR 356 API

Example 19-41 shows how to convert a proprietary WebSocket server endpoint to use he JSR
356 API from the deprecated API.

Example 19-41 Converting a WebSocket Server Endpoint to Use the JSR 356 API

This example shows the changes that are required to convert a WebSocket server endpoint to
the use JSR 356 API instead of the deprecated API.

In this example, lines of deprecated code are commented out with the // comment characters.
Lines of code from the JSR 356 API are indicated by the comment // JSR 356.

package exanpl es. webapp. ht M 5. websocket ;

/linport webl ogi c. websocket . C osi ngMessage; Depr ecat ed
/linport webl ogi c. websocket . WebSocket Adapt er; Depr ecat ed
/linport webl ogi c. websocket . WebSocket Connection; Deprecated
/linport webl ogi c. websocket . annot ati on. \ebSocket ; Deprecat ed

i nport javax.websocket. C oseReason; /1 JSR 356
i nport javax.websocket.OnMessage; /1 JSR 356
i nport javax.websocket. Sessi on; /1 JSR 356
i nport javax.websocket . server. ServerEndpoint; /1 JSR 356

inport java.io.lOException;

/| @ebSocket (Deprecated

/1 timeout = -1, Deprecated

/1 pathPatterns = {"/ws"} Depr ecat ed

1)
@ver ver Endpoi nt ("/ws") //JSR 356

/I'public class Messagelistener extends WebSocket Adapter { Deprecated
public class MessageListener {

|/ @verride Not required. Replaced by @nMessage in a PQJO cl ass
@nMessage //JSR 356

//'public void onMessage(\WebSocket Connection connection, String payload) { Deprecated
public void onMessage(Session connection, String payload) //JSR 356

throws | CException { /1 ISR 356

/'l Sends message fromthe browser back to the client.

String msgContent = "Message \"" + payload + "\" has been received by server.";
try {

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 49 of 50

ORACLE Chapter 19
Example of Using the Java API for WebSocket with WebLogic Server

/1l connection. send(nsgCont ent); Deprecated
connecti on. get Basi cRenot e() . sendText (nsgContent); //JSR 356
} catch (1 CException e) {
/1 connection. cl ose(C osi ngMessage. SC_GO NG_AWAY) ; Deprecat ed
connection. cl ose(new /1 JSR 356
O oseReason(O oseReason. C oseCodes. GO NG_AVWAY, "Going away.")); //JSR 356
}
}
}

Example of Using the Java API for WebSocket with WebLogic
Server

Examine an example in which a server endpoint echoes text that a user has sent from a client.
When the user sends a text message, the server appends the text (from your server) to the
message and sends the message back to the user.

Example 19-42 Using the Java API for WebSocket with WebLogic Server

package com exanpl e. websocket . sanpl e. echo;
i mport java.io.lCOException;

i mport j avax.websocket.OnError;

inport javax.websocket.OnMessage;

i mport j avax. websocket . OnQpen;

i mport j avax.websocket . Sessi on;

i mport j avax.websocket . server. Server Endpoi nt;

@er ver Endpoi nt ("/ echo")
public class EchoEndpoint {

@nQpen
public void onOpen(Session session) throws | OException {
sessi on. get Basi cRenot e() . sendText ("onQpen is invoked.");

}

@nMessage
public String echo(String nessage) {
return message + " (fromserver)";

}

@neError
public void onError(Throwable t) {
t.printStackTrace();

}

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 50 of 50

Enterprise Application Deployment Descriptor
Elements

Learn about enterprise application deployment descriptors such as appl i cati on. xnl (a Java
EE standard deployment descriptor) and webl ogi c- appl i cati on. xm (a WebLogic-specific
application deployment descriptor).

With Java EE annotations, the standard appl i cati on. xm deployment descriptor is optional.
Annotations simplify the application development process by allowing developers to specify
within the Java class itself how the application component behaves in the container, requests
for dependency injection, and so on. Annotations are an alternative to deployment descriptors
that were required by older versions of enterprise applications (Java EE 1.4 and earlier). See
Using Java EE Annotations and Dependency Injection.

The webl ogi c- appl i cation. xnl file is also optional if you are not using any WebLogic Server
extensions.

This appendix includes the following sections:

weblogic-application.xml Deployment Descriptor Elements

The webl ogi c- appl i cation. xn file is the WebLogic Server-specific deployment descriptor
extension for the appl i cati on. xm Java EE deployment descriptor. This is where you
configure features such as shared Java EE libraries referenced in the application and EJB
caching.

The following sections describe the many of the individual elements that are defined in the
weblogic-application.xml Schema.

The file is located in the META- | NF subdirectory of the application archive. The following
sections describe elements that can appear in the file.

weblogic-application

The webl ogi c- appl i cati on element is the root element of the application deployment
descriptor.

The following table describes the elements you can define within a webl ogi c- appl i cati on
element.

Table A-1 weblogic-application Elements
|

Element Required? Maximum Description
Number In File
<ej b> Optional 1 Contains information that is specific to the EJB modules that are

part of a WebLogic application. Currently, one can use the €] b
element to specify one or more application level caches that can
be used by the application's entity beans.

For more information on the elements you can define within the
ej b element, see gjb.

Developing Applications for Oracle WebLogic Server

G31429-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-1 of A-27

ORACLE

Table A-1 (Cont.) weblogic-application Elements

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum Description
Number In File
<xm > Optional 1 Contains information about parsers and entity mappings for
XML processing that is specific to this application.
For more information on the elements you can define within the
xm element, see xml.
<j dbc- Optional Unbounded Zero or more. Specifies an application-scoped JDBC connection
connecti on- pool.
pool > For more information on the elements you can define within the
j dbc- connecti on- pool element, see jdbc-connection-pool.
<security> Optional 1 Specifies security information for the application.
For more information on the elements you can define within the
security element, see security.
<application- Optional Unbounded Zero or more. Used to specify un-typed parameters that affect

par anp

the behavior of container instances related to the application.

The parameters listed here are currently supported. Also, these

parameters in webl ogi c- appl i cation. xm can determine

the default encoding to be used for requests and for responses.

« webapp. encodi ng. def aul t —Can be set to a string
representing an encoding supported by the JDK. If set, this
defines the default encoding used to process servlet
requests and servlet responses. This setting is ignored if
webapp. encodi ng. usevndef aul t is setto true. This
value is also overridden for request streams by the i nput -
charset element of webl ogi c. xm .

« webapp. encodi ng. usevndef aul t —Can be settot r ue
orfal se.Iftrue, the system property fi | e. encodi ng is
used to define the default encoding.

The following parameter is used to affect the behavior of Web

applications that are contained in this application.

< webapp. getreal pat h. accept _cont ext _pat h—This is
a compatibility switch that may be setto t rue or f al se. If
settot rue, the context path of Web applications is allowed
in calls to the servlet API get Real Pat h.

Example:

<appl i cati on-paran»

<par am nane>webapp. encodi ng. def aul t
</ par am nane>

<par am val ue>UTF8</ par am val ue>

</ applicati on- paranp

For more information on the elements you can define within the
appl i cati on- par amelement, see application-param.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-2 of A-27

ORACLE’

Table A-1 (Cont.) weblogic-application Elements

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Element

Required?

Maximum
Number In File

Description

<cl assl oader -
structure>

Optional

Unbounded

A classloader-structure element allows you to define the
organization of classloaders for this application. The declaration
represents a tree structure that represents the classloader
hierarchy and associates specific modules with particular nodes.
A module's classes are loaded by the classloader that its
associated with this element.

Example:

<cl assl oader - struct ure>

<modul e-ref>

<modul e-uri >ej bl.jar</nmodul e-uri>
</ modul e-ref >

</ cl assl oader-structure>

<cl assl oader - struct ure>

<modul e-ref>

<modul e-uri >ej b2. j ar</ modul e-uri >
</ modul e-ref >

</ cl assl oader-structure>

For more information on the elements you can define within the
cl assl oader - struct ur e element, see classloader-structure.

<l'istener>

Optional

Unbounded

Zero or more. Used to register user-defined application lifecycle
listeners. These are classes that extend the abstract base class
webl ogi c. appl i cation. ApplicationLifecycl eLi st ener

For more information on the elements you can define within the
|'i st ener element, see listener.

<si ngl et on-
service>

Optional

Unbounded

Zero or more. Used to register user-defined singleton services.
These are classes that implement the interface
webl ogi c. cl uster. si ngl eton. Si ngl et onSer vi ce.

For more information on the elements you can define within the
si ngl et on- servi ce element, see singleton-service.

<startup>

Optional

Unbounded

Zero or more. Used to register user-defined startup classes.

For more information on the elements you can define within the
st art up element, see startup.

Note: Application-scoped startup and shutdown classes have
been deprecated as of release 9.0 of WebLogic Server. Instead,
you should use lifecycle listener events in your applications. For
details, see Programming Application Life Cycle Events

<shut down>

Optional

Unbounded

Zero or more. Used to register user defined shutdown classes.

For more information on the elements you can define within the
shut down element, see shutdown.

Note: Application-scoped startup and shutdown classes have
been deprecated as of release 9.0 of WebLogic Server. Instead,
you should use lifecycle listener events in your applications. For
details, see Programming Application Life Cycle Events.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-3 of A-27

ORACLE Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-1 (Cont.) weblogic-application Elements

Element Required? Maximum Description
Number In File

<nmodul e> Optional Unbounded Represents a single WebLogic application module, such as a
JMS or JDBC module.

This element has the following child elements:

* nane—The name of the module.

* type—The type of module. Valid values are JMS, JDBC,
Interception, or GAR.

« pat h—The path of the XML file that fully describes the
module, relative to the root of the enterprise application.

The following example shows how to specify a IMS module
called Vr kf | ows, fully described by the XML file j ns/
VWor kf | ows-j ms. xm :

<modul e>
<name>Wor kf | ows</ nane>
<type>JMS</type>
<pat h>j ns/ Wor kf | ows-j nms. xm </ pat h>
</ modul e>
<l'ibrary-ref> Optional Unbounded A reference to a shared Java EE library.

For more information on the elements you can define within the
I'i brary element, see library-ref.

<fair-share- Optional Unbounded Specifies a fair share request class, which is a type of Work
request > Manager request class. In particular, a fair share request class
specifies the average percentage of thread-use time required to
process requests.
The <fai r-share-request > element can take the following
child elements:
* nane—The name of the fair share request class.
- fair-share—An integer representing the average
percentage of thread-use time.
See Using Work Managers to Optimize Scheduled Work.

<response- Optional Unbounded Specifies a response time request class, which is a type of Work
tine-request > manager class. In particular, a response time request class
specifies a response time goal in milliseconds.

The <r esponse-t i ne- r equest > element can take the
following child elements:

* nanme—The name of the response time request class.
« goal - ms—The integer response time goal.

See Using Work Managers to Optimize Scheduled Work.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-4 of A-27

ORACLE

Table A-1 (Cont.) weblogic-application Elements

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum
Number In File

Description

<cont ext - Optional Unbounded
request >

Specifies a context request class, which is a type of Work
manager class. In particular, a context request class assigns
request classes to requests based on context information, such
as the current user or the current user's group.

The <cont ext - r equest > element can take the following child

elements:

* name—The name of the context request class.

« cont ext - case—An element that describes the context.

The <cont ext - case> element can itself take the following child

elements:

* user-namne or gr oup- name—The user or group to which
the context applies.

e request-cl ass- name—The name of the request class.

See Using Work Managers to Optimize Scheduled Work.

<max-threads- Optional Unbounded
constraint>

Specifies a max-t hr eads- const r ai nt Work Manager
constraint. A Work Manager constraint defines minimum and
maximum numbers of threads allocated to execute requests and
the total number of requests that can be queued or executing
before WebLogic Server begins rejecting requests.

The max-threads constraint limits the number of concurrent

threads executing requests from the constrained work set.

The <max- t hr eads- const r ai nt > element can take the

following child elements:

* nanme—The name of the max-thread-constraint.

e Either count or pool - name—The integer maximum
number of concurrent threads, or the name of a connection
pool which determines the maximum.

See Using Work Managers to Optimize Scheduled Work.

<m n-threads- Optional Unbounded
constraint>

Specifies a m n-t hr eads- const rai nt Work Manager
constraint. A Work Manager constraint defines minimum and
maximum numbers of threads allocated to execute requests and
the total number of requests that can be queued or executing
before WebLogic Server begins rejecting requests.

The min-threads constraint guarantees a number of threads the
server will allocate to affected requests to avoid deadlocks.

The <m n-t hr eads- const r ai nt > element can take the
following child elements:

. nanme—The name of the min-thread-constraint.

e count —The integer minimum number of threads.

See Using Work Managers to Optimize Scheduled Work.

Developing Applications for Oracle WebLogic Server
G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-5 of A-27

ORACLE’

Table A-1 (Cont.) weblogic-application Elements

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Element

Required?

Maximum
Number In File

Description

<capaci ty>

Optional

Unbounded

Specifies a capaci t y Work Manager constraint. A Work
Manager constraint defines minimum and maximum numbers of
threads allocated to execute requests and the total number of
requests that can be queued or executing before WebLogic
Server begins rejecting requests.

The capacity constraint causes the server to reject requests
only when it has reached its capacity.

The <capaci t y> element can take the following child elements:
* nanme—The name of the capacity constraint.

* count —The integer thread capacity.

See Using Work Managers to Optimize Scheduled Work.

<wor k- manager >

Optional

Unbounded

Specifies the Work Manager that is associated with the
application.

For more information on the elements you can define within the
wor k- manager element, see work-manager.

See Using Work Managers to Optimize Scheduled Work for
detailed information on Work Managers.

<appl i cati on-
admi n- node-
trigger>

Optional

Unbounded

Specifies the number of stuck threads needed to bring the

application into administration mode.

You can specify the following child elements:

e max-stuck-thread-ti me—The maximum amount of
time, in seconds, that a thread should remain stuck.

« stuck-thread- count —Number of stuck threads that
triggers the stuck thread work manager.

<sessi on-
descri ptor>

Optional

Unbounded

Specifies a list of configuration parameters for servlet sessions.

For more information on the elements you can define within the
<sessi on- descri pt or > element, see session-descriptor.

<library-
cont ext - r oot -
override>

Optional

Unbounded

Zero or more. Used to override the context-root of a Web
module specified in the deployment descriptor of a library
referenced by this application.

For more information on the elements you can define within the
<li brary-context-root-override>element, see library-
context-root-override.

<conponent -
factory-cl ass-
name>

Optional

Used to enable the Spring extension by setting this element to
org.springframework. jee.interfaces. Spri ngConponen
t Fact ory. This element exists in EJB, Web, and application
descriptors. A module-level descriptor overwrites an application-
level descriptor. If set to null (default), the Spring extension is
disabled.

<prefer-
application-
packages>

Optional

Used for filtering ClassLoader configuration. Specifies a list of
packages for classes that must always be loaded from the
application.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-6 of A-27

ORACLE Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-1 (Cont.) weblogic-application Elements

Element Required? Maximum Description
Number In File

<prefer- Optional 1 Used for filtering ClassLoader configuration. Specifies a list of
application- resources that must always be loaded from the application, even
resour ces> if the resources are found in the system classloader.

Note that the resource loading behavior is different from the
resource loading behavior when <pr ef er - appl i cati on-
packages> is used.

In that case, application resources get a preference over system

resources. The resources captured in this element are never
looked up in the system classloader.

<f ast - swap> Optional 1 Specifies whether FastSwap deployment is used to minimize
redeployment since Java classes are redefined in-place without
reloading the ClassLoader.

See Using FastSwap Deployment to Minimize Redeployment in
Deploying Applications to Oracle WebLogic Server.

For information on the elements you can define within the
<f ast - swap> element, see fast-swap.

<ready- Optional 1 To use the ReadyApp framework, register an EAR-based

regi stration> application with the framework by adding the following code to
the application's WebLogic deployment descriptor META-
| NF\ webl ogi c-application. xm:
<wl s: ready-registration>true</w s: ready-
regi stration>
When the application starts, the state of the application is set to
NOT READY.

Note: The prefix W S: may not be required, depending on the
contents of the webl ogi c- appl i cation. xm file. If the
rest of the tags do not have the prefix, you can ignore the prefix.
For more information, see Deploying Applications to Oracle
WebLogic Server.

ejb

The following table describes the elements you can define within an ej b element.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-7 of A-27

ORACLE Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-2 ejb Elements
|

Element Required Maximum Description
? Number in File
<entity-cache> Optional Unbounded Zero or more. The ent i ty- cache element is used to define a

named application level cache that is used to cache entity EJB
instances at runtime. Individual entity beans refer to the
application-level cache that they must use, referring to the cache
name. There is no restriction on the number of different entity
beans that may reference an individual cache.

To use application-level caching, you must specify the cache
using the <ent it y- cache- r ef > element of the webl ogi c- ej b-
jar.xm descriptor. Two default caches named

Excl usi veCache and Mil ti Ver si onCache are used for this
purpose. An application may explicitly define these default
caches to specify non-default values for their settings. Note that
the caching-strategy cannot be changed for the default caches.
By default, a cache uses max- beans- i n- cache with a value of
1000 to specify its maximum size.

Example:

<entity-cache>
<entity-cache-nane>Excl usi veCache</entity-cache-
name>

<max- cache- si ze>

<megabyt es>50</ megabyt es>

</ max- cache-si ze>

</entity-cache>

For more information on the elements you can define within the
entity-cache element, see entity-cache.

<start-nbds-with- Optional 1 Allows you to configure the EJB container to start Message

application Driven BeanS (MDBS) with the application. If set to true, the
container starts MDBS as part of the application. If set to false,
the container keeps MDBS in a queue and the server starts them
as soon as it has started listening on the ports.

entity-cache

The following table describes the elements you can define within a enti ty- cache element.

Table A-3 entity-cache Elements

Element Required? Maximum Description
Number in File

<entity-cache- Required 1 Specifies a unique name for an entity bean cache. The
name> name must be unique within an ear file and may not be
the empty string.
Example:
<entity-cache- name>Excl usi veCache</entity-
cache- nane>

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-8 of A-27

ORACLE

Table A-3 (Cont.) entity-cache Elements

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum Description
Number in File
<max- beans-i n- Optional 1 Specifies the maximum number of entity beans that are

cache>

If you specify this
element, you cannot
also specify <max-
cache-si ze>.

allowed in the cache. If the limit is reached, beans may
be passivated. This mechanism does not take into
account the actual amount of memory that different
entity beans require. This element can be set to a value
of 1 or greater.

Default Value: 1000

<max-cache-si ze> Optional 1 Used to specify a limit on the size of an entity cache in
If you specify this terms of memory size—expressed either in terms of
element, you cannot bytes or megabytes. A bean provider should provide an
also specify <max- estimate of the average size of a bean in the
beans-i n-cache>. webl ogi c- ej b-j ar. xn descriptor if the bean uses a
cache that specifies its maximum size using the max-
cache- si ze element. By default, a bean is assumed to
have an average size of 100 bytes.
For more information on the elements you can define
within the ej b element, see max-cache-size.
<max-queries-in- Optional 1 Specifies the maximum SQL queries that can be
cache> present in the entity cache at a given moment.
<cachi ng- Optional 1 Specifies the general strategy that the EJB container
strategy> uses to manage entity bean instances in a particular

application level cache. A cache buffers entity bean
instances in memory and associates them with their
primary key value.

The cachi ng- st r at egy element can only have one of
the following values:

» Excl usi ve—Caches a single bean instance in
memory for each primary key value. This unique
instance is typically locked using the EJB
container's exclusive locking when it is in use, so
that only one transaction can use the instance at a
time.

e Ml ti Versi on—Caches multiple bean instances
in memory for a given primary key value. Each
instance can be used by a different transaction
concurrently.

Default Value: Mil ti Ver si on

Example:

<cachi ng- st r at egy>Excl usi ve</ cachi ng-
strategy>

max-cache-size

The following table describes the elements you can define within a max- cache- si ze element.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-9 of A-27

ORACLE Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-4 max-cache-size Elements

Element Required? Maximum Description
Number in File

<byt es> You must specify either <bytes> 1 The size of an entity cache in terms of memory
or <megabyt es> size, expressed in bytes.

<megabyt es> You must specify either <byt es> 1 The size of an entity cache in terms of memory
or <megabyt es> size, expressed in megabytes.

xml

The following table describes the elements you can define within an xm element.

Table A-5 xml Elements

Element Required Maximum Description

? Number in File
<par ser - Optional 1 The parent element used to specify a particular XML parser or transformer
factory> for an enterprise application.

For more information on the elements you can define within the par ser -
fact ory element, see parser-factory.

<entity- Optional Unbounded Zero or More. Specifies the entity mapping. This mapping determines the
mappi ng> alternative entity URI for a given public or system ID. The default place to
look for this entity URI is the | i b/ xm / r egi st ry directory.
For more information on the elements you can define within the enti t y-
mappi ng element, see entity-mapping.

parser-factory

The following table describes the elements you can define within a par ser - f act ory element.

Table A-6 parser-factory Elements

Element Required? Maximum Description
Number in File

<saxpar ser - Optional 1 Allows you to set the SAXParser Factory for the XML parsing

factory> required in this application only. This element determines the
factory to be used for SAX style parsing. If you do not specify the
saxpar ser - f act ory element setting, the configured SAXParser
Factory style in the Server XML Registry is used.

Default Value: Server XML Registry setting

<docunent - bui | der- Optional 1 Allows you to set the Document Builder Factory for the XML

factory> parsing required in this application only. This element determines
the factory to be used for DOM style parsing. If you do not specify
the docunent - bui | der - f act ory element setting, the configured
DOM style in the Server XML Registry is used.

Default Value: Server XML Registry setting

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-10 of A-27

ORACLE Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-6 (Cont.) parser-factory Elements

Element Required? Maximum Description
Number in File

<t ransf or mer - Optional 1 Allows you to set the Transformer Engine for the style sheet

factory> processing required in this application only. If you do not specify a
value for this element, the value configured in the Server XML
Registry is used.

Default value: Server XML Registry setting.

entity-mapping

The following table describes the elements you can define within an ent i t y- mappi ng element.

Table A-7 entity-mapping Elements

Element Required Maximum Description
? Number in File

<entity-mappi ng- Required 1 Specifies the name for this entity mapping.
name>
<public-id> Optional 1 Specifies the public ID of the mapped entity.
<systemi d> Optional 1 Specifies the system ID of the mapped entity.
<entity-uri> Optional 1 Specifies the entity URI for the mapped entity.
<when-t o- cache> Optional 1 Legal values are:

e cache-on-reference

e cache-at-initialization

e cache-never

The default value is cache- on-ref er ence.
<cache-ti meout - Optional 1 Specifies the integer value in seconds.
i nterval >

jdbc-connection-pool

® Note

The j dbc- connect i on- pool element is deprecated. To define a data source in your
enterprise application, you can package a JDBC module with the application. See
Configuring JDBC Application Modules for Deployment in Administering JDBC Data
Sources for Oracle WebLogic Server.

The following table describes the elements you can define within a j dbc- connect i on- pool
element.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-11 of A-27

ORACLE Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-8 jdbc-connection-pool Elements

Element Required? Maximum Description
Number in File

<dat a- sour ce- Required 1 Specifies the INDI name in the application-specific INDI tree.

j ndi - nane>

<connecti on- Required 1 Specifies the connection parameters that define overrides for default
factory> connection factory settings.

e user-nanme—~Optional. The user - nane element is used to
override User Name in the JDBCDat aSour ceFact or yMBean.

e url —Optional. The url element is used to override URL in the
JDBCDat aSour ceFact or yMBean.

e driver-class-name—Optional. The dri ver - ¢l ass- nane
element is used to override Dri ver Nane in the
JDBCDat aSour ceFact or yMBean.

e connecti on- par ans—zZero or more.

e paraneter+ (param val ue, par am nanme)—One or more

For more information on the elements you can define within the
connect i on-fact ory element, see connection-factory.

<pool - par ans> Optional 1 Defines parameters that affect the behavior of the pool.

For more information on the elements you can define within the pool -
par ans element, see pool-params.

<driver-paranms> Optional 1 Sets behavior on WebLogic Server drivers.

For more information on the elements you can define within the
driver - parans element, see driver-params.

<acl - name> Optional 1 DEPRECATED.

connection-factory

The following table describes the elements you can define within a connecti on-factory
element.

Table A-9 connection-factory Elements

Element Required? Maximum Description
Number in File

<factory-name> Optional 1 Specifies the name of a JDBCDat aSour ceFact or yMBean in the
config.xm file.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-12 of A-27

ORACLE

Table A-9 (Cont.) connection-factory Elements

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum Description
Number in File
<connecti on- Optional 1 Specifies the connection properties for the connection factory.
properties> Elements that can be defined for the connect i on- properties
element are:

user - nane—Optional. Used to override UserName in the
JDBCDataSourceFactoryMBean.

passwor d—Optional. Used to override Password in the
JDBCDataSourceFactoryMBean.

ur | —Optional. Used to override URL in the
JDBCDataSourceFactoryMBean.

driver-cl ass- name—Optional. Used to override DriverName in
the JDBCDataSourceFactoryMBean

connecti on- par ans—Zero or more. Used to set parameters
which will be passed to the driver when making a connection.
Example:

<connect i on- par ans>

<par anet er >
<description>Desc of param
</ description>
<par am nanme>f oo</ par am nane>
<par am val ue>xyz</ param val ue>
</ par anet er >

</ connecti on- par ans>

pool-params

The following table describes the elements you can define within a pool - par ans element.

Developing Applications for Oracle WebLogic Server
G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-13 of A-27

ORACLE

Table A-10 pool-params Elements

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum Description

Number in File
<si ze- Optional 1 Defines parameters that affect the number of connections in the pool.
parans> e initial-capacity—Optional. Theinitial - capacity element

defines the number of physical database connections to create when
the pool is initialized. The default value is 1.

max- capaci t y—Optional. The max- capaci t y element defines the
maximum number of physical database connections that this pool
can contain. Note that the JDBC Driver may impose further limits on
this value. The default value is 1.

capaci ty-i ncr ement —Optional. The capaci ty- i ncr enent
element defines the increment by which the pool capacity is
expanded. When there are no more available physical connections to
service requests, the pool creates this number of additional physical
database connections and adds them to the pool. The pool ensures
that it does not exceed the maximum number of physical connections
as set by max- capaci ty. The default value is 1.

shrinki ng- enabl ed—Optional. The shri nki ng- enabl ed element
indicates whether or not the pool can shrink back to its i ni ti al -
capaci t y when connections are detected to not be in use.

shri nk- peri od- m nut es—Optional. The shri nk- peri od-

m nut es element defines the number of minutes to wait before
shrinking a connection pool that has incrementally increased to meet
demand. The shri nki ng- enabl ed element must be setto t r ue for
shrinking to take place.

shrink-frequency- seconds—Optional.

hi ghest - num wai t er s—Optional.

hi ghest - num unavai | abl e—Optional.

<xa- par ans> Optional 1 Defines the parameters for the XA DataSources.

debug- | evel —Optional. Integer. The debug- | evel element
defines the debugging level for XA operations. The default value is 0.
keep-conn-until -tx-conpl et e- enabl ed—Optional. Boolean. If
you set the keep- conn-unti | -t x- conpl et e- enabl ed element to
t r ue, the XA connection pool associates the same XA connection
with the distributed transaction until the transaction completes.

end- onl y- once- enabl ed—Optional. Boolean. If you set the end-
onl y-once- enabl ed element to t r ue, the XAResour ce. end()
method is only called once for each pending XAResour ce. start ()
method.

recover - onl y- once- enabl ed—Optional. Boolean. If you set the
recover-only-once-enabled element to true, recover is only called one
time on a resource.

t x- cont ext - on- cl ose- needed—Optional. Set the t x- cont ext -
on-cl ose- needed element to t r ue if the XA driver requires a
distributed transaction context when closing various JDBC objects
(for example, result sets, statements, connections, and so on). If set
tot rue, the SQL exceptions that are thrown while closing the JDBC
objects in no transaction context are swallowed.

new- conn-f or-comm t - enabl ed—Optional. Boolean. If you set the
new conn-for-conm t-enabl ed elementto t r ue, a dedicated XA
connection is used for commit/rollback processing of a particular
distributed transaction.

Developing Applications for Oracle WebLogic Server
G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-14 of A-27

ORACLE Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-10 (Cont.) pool-params Elements

Element Required? Maximum Description
Number in File

<xa- params> Optional 1 e prepared-statenent-cache-si ze—Deprecated. Optional. Use
Conti nued. . . the prepared-statement-cache-size element to set the size of the
prepared statement cache. The size of the cache is a number of
prepared statements created from a particular connection and stored
in the cache for further use. Setting the size of the prepared
statement cache to O turns it off.
Note: Pr epar ed- st at enent - cache- si ze is deprecated. Use cache-
sizeindriver-parans/ prepar ed- st at enent . See driver-params for
more information.

« keep-1 ogi cal - conn- open- on-r el ease—Optional. Boolean. Set
the keep- | ogi cal - conn- open-on-rel ease elementto true, to
keep the logical JDBC connection open when the physical XA
connection is returned to the XA connection pool. The default value is
fal se.

- local-transaction-support ed—Optional. Boolean. Set the
| ocal -transacti on-supported totrue if the XA driver supports
SQL with no global transaction; otherwise, set it to f al se. The
default value is f al se.

e resource-heal t h-nonitori ng- enabl ed—Optional. Set the
resour ce- heal t h-moni t ori ng- enabl ed element to t r ue to
enable JTA resource health monitoring for this connection pool.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-15 of A-27

ORACLE

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-10 (Cont.) pool-params Elements

Element Required? Maximum
Number in File

Description

<xa- params> Optional 1 e Xa-set-transaction-tinmeout —Optional.
Conti nued. .. Used in: xa-params
Example:
<xa-set-transaction-timeout>
true
</xa-set-transaction-timeout>
« Xa-transaction-tinmeout —Optional.
When the xa- set-transacti on-ti meout value is set to true, the
transaction manager invokes setTransactionTimeout on the resource
before calling XAResource.start. The Transaction Manager passes
the global transaction timeout value. If this attribute is set to a value
greater than 0, then this value is used in place of the global
transaction timeout.
Default value: 0
Used in: xa-params
Example:
<xa-transaction-tinmeout>
30
</ xa-transaction-timeout >
e rollback-1ocal t x- upon- conncl ose—Optional.
When the r ol | back-1 ocal t x- upon- conncl ose element is true,
the connection pool calls r ol | back() on the connection before
putting it back in the pool.
Default value: false
Used in: xa-params
Example:
<rollback-localtx-upon-connclose>
true </rollback-localtx-upon-connclose>
<l ogi n- Optional 1 Sets the number of seconds to delay before creating each physical
del ay- database connection. Some database servers cannot handle multiple
seconds> requests for connections in rapid succession. This property allows you to
build in a small delay to let the database server catch up. This delay
occurs both during initial pool creation and during the lifetime of the pool
whenever a physical database connection is created.
<| eak- Optional 1 Enables JDBC connection leak profiling. A connection leak occurs when a
profiling- connection from the pool is not closed explicitly by calling the cl ose()
enabl ed> method on that connection. When connection leak profiling is active, the

pool stores the stack trace at the time the connection object is allocated
from the pool and given to the client. When a connection leak is detected
(when the connection object is garbage collected), this stack trace is
reported.

This element uses extra resources and will likely slowdown connection
pool operations, so it is not recommended for production use.

Developing Applications for Oracle WebLogic Server
G31429-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-16 of A-27

ORACLE

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-10 (Cont.) pool-params Elements

Element Required?

Maximum
Number in File

Description

<connection- Optional
check-
par ans>

1

. Defines whether, when, and how connections in a pool is checked to
make sure they are still alive.

« tabl e-name—Optional. The t abl e- name element defines a table in
the schema that can be queried.

e check-on-reserve- enabl ed—Optional. If the check-on-reserve-
enabled element is set to true, then the connection will be tested
each time before it is handed out to a user.

e check-on-rel ease- enabl ed—Optional. If the check- on-
rel ease- enabl ed element is set to t r ue, then the connection will
be tested each time a user returns a connection to the pool.

e refresh-m nut es—Optional. If the r ef r esh- m nut es element is
defined, a trigger is fired periodically (based on the number of
minutes specified). This trigger checks each connection in the pool to
make sure it is still valid.

« check-on-creat e- enabl ed—Optional. If set to t r ue, then the
connection will be tested when it is created.

e connection-reserve-tinmeout - seconds—Optional. Number of
seconds after which the call to reserve a connection from the pool will
timeout.

e connection-creation-retry-frequency-seconds—Optional.
The frequency of retry attempts by the pool to establish connections
to the database.

- inactive-connection-tineout-seconds—Optional. The number
of seconds of inactivity after which reserved connections will forcibly
be released back into the pool.

<connecti on- Optional 1 « test-frequency-seconds—Optional. The number of seconds
check- between database connection tests. After every test-frequency-
par ans> seconds interval, unused database connections are tested using
Conti nued. . . t abl e- nane. Connections that do not pass the test will be closed
and reopened to re-establish a valid physical database connection. If
t abl e- nane is not set, the test will not be performed.
e init-sgl —Optional. Specifies a SQL query that automatically runs
when a connection is created.
<j dbcxa- Optional 1 This is an internal setting.
debug- I evel >
<renove- Optional 1 Controls whether a connection is removed from the pool when the
i nfected- application asks for the underlying vendor connection object. Enabling this
connecti ons- attribute has an impact on performance; it essentially disables the pooling
enabl ed> of connections (as connections are removed from the pool and replaced

with new connections).

driver-params

The following table describes the elements you can define within a dri ver - par anms element.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-17 of A-27

ORACLE Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-11 driver-params Elements

Element Required? Maximum Description
Number in File

<st at enent > Optional 1 Defines the dri ver - par ans statement. Contains the following optional
element: profiling-enabl ed.
Example:

<stat ement >
<profiling-enabl ed>true
</ profiling-enabl ed>

</ st at ement >

<prepar ed- Optional 1 Enables the running of JDBC prepared statement cache profiling.

st at ement > When enabled, prepared statement cache profiles are stored in
external storage for further analysis. This is a resource-consuming
feature, so it is recommended that you turn it off on a production
server. The default value is false.

- profiling-enabl ed—Optional.

e cache-profiling-threshol d—Optional. The cache-
profiling-threshol d element defines a number of statement
requests after which the state of the prepared statement cache is
logged. This element minimizes the output volume. This is a
resource-consuming feature, so it is recommended that you turn it
off on a production server.

« cache- si ze—Optional. The cache- si ze element returns the
size of the prepared statement cache. The size of the cache is a
number of prepared statements created from a particular
connection and stored in the cache for further use.

e paraneter-1|oggi ng- enabl ed—Optional. During SQL roundtrip
profiling it is possible to store values of prepared statement
parameters. The par anet er - | oggi ng- enabl ed element enables
the storing of statement parameters. This is a resource-consuming
feature, so it is recommended that you turn it off on a production
server.

e max- paraneter -1 engt h—Optional. During SQL rounditrip
profiling it is possible to store values of prepared statement
parameters. The max- par anet er - | engt h element defines
maximum length of the string passed as a parameter for JDBC
SQL roundtrip profiling. This is a resource-consuming feature, so
you should limit the length of data for a parameter to reduce the
output volume.

e cache-type—Optional.

<rowprefetch- Optional 1 Specifies whether to enable row prefetching between a client and
enabl ed> WebLogic Server for each ResultSet.

When an external client accesses a database using JDBC through
Weblogic Server, row prefetching improves performance by fetching
multiple rows from the server to the client in one server access.
WebLogic Server ignores this setting and does not use row prefetching
when the client and WebLogic Server are in the same JVM

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-18 of A-27

ORACLE Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-11 (Cont.) driver-params Elements

Element Required? Maximum Description
Number in File

<rowprefetch- Optional 1 Specifies the number of result set rows to prefetch for a client.

slze> The optimal value depends on the particulars of the query. In general,
increasing this number increases performance, until a particular value
is reached. At that point further increases do not result in any
significant increase in performance.
Note: Typically you will not see any increase in performance after 100
rows. The default value should be adequate for most situations.

Valid values for this element are between 2 and 65536. The default

value is 48.
<stream chunk- Optional 1 Specifies the data chunk size for streaming data types, which are
si ze> pulled from WebLogic Server to the client as needed.

security

The following table describes the elements you can define within a security element.

Table A-12 security Elements

Element Required? Maximum Description
Number in File

<r eal m nane> Optional 1 Names a security realm to be used by the application. If none is
specified, the system default realm is used
<security-role- Optional Unbounded Declares a mapping between an application-wide security role
assi gnnent > and one or more WebLogic Server principals.
Example:

<security-rol e-assi gnnment >

<rol e- nane>
Payrol | Adni n

</rol e-nane>

<princi pal - name>
Tanya

</ princi pal - nane>

<princi pal - name>
Fred

</ principal - nane>

<princi pal - name>
system

</ principal - nane>

</security-rol e-assi gnment >

application-param

The following table describes the elements you can define within a appl i cat i on- param
element.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-19 of A-27

ORACLE Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-13 application-param Elements

Element Required? Maximum Description
Number in File

<description> Optional 1 Provides a description of the application parameter.
<par am nane> Required 1 Defines the name of the application parameter.
<paramval ue> Required 1 Defines the value of the application parameter.

classloader-structure

The following table describes the elements you can define within a cl assl oader-structure
element.

Table A-14 classloader-structure Elements

Element Required? Maximum Description
Number in File

<nodul e-ref> Optional Unbounded The following list describes the elements you can define within a
nmodul e-ref element:

« nodul e- uri —Zero or more. Defined within the modul e- r ef

element.
<cl assl oader - Optional Unbounded Allows for arbitrary nesting of classloader structures for an
structure> application. However, for this version of WebLogic Server, the

depth is restricted to three levels.

listener

The following table describes the elements you can define within a | i st ener element.

Table A-15 listener Elements

- ___|]
Element Required? Maximum Number in File Description

<listener-class> Required 1 Name of the user's
implementation of
ApplicationLifecyclelis
tener.

<l'istener-uri> Optional 1 A JAR file within the EAR that
contains the implementation.
If you do not specify the
|istener-uri,itis assumed
that the class is visible to the
application.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-20 of A-27

ORACLE Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-15 (Cont.) listener Elements

- ___|]
Element Required? Maximum Number in File Description

<run-as- princi pal - name> Optional 1 Specific a user identity to
startup and shutdown
application lifecycle events.
The identity specified here
should be a valid user name
in the system. If r un- as-
princi pal - name is not
specified, the deployment
initiator user identity will be
used as the run- as identity
for the execution of the
application lifecycle listener.

Note: If the run- as-

pri nci pal - name identity
defined for the application
lifecycle listener is an
administrator, the application
deployer must have
administrator privileges;
otherwise, deployment will
fail.

singleton-service

The following table describes the elements you can define within a si ngl et on- servi ce
element.

Table A-16 singleton-service Elements

Element Required? Maximum Description
Number in File

<cl ass-name> Required 1 Defines the name of the class to be run when the application is being
deployed.

<si ngl et on- Optional 1 Defines a JAR file within the EAR that contains the si ngl et on- ser vi ce.

uri> If si ngl et on-uri is not defined, then its assumed that the class is visible

to the application.

startup

The following table describes the elements you can define within a start up element.

@® Note

Application-scoped startup and shutdown classes have been deprecated as of release
9.0 of WebLogic Server. Instead, you should use lifecycle listener events in your
applications. For details, see Programming Application Life Cycle Events.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-21 of A-27

ORACLE Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-17 startup Elements

Element Required Maximum Number Description

? in File
<startup- Required 1 Defines the name of the class to be run when the application is being
class> deployed.
<startup- Optional 1 Defines a JAR file within the EAR that contains the st art up- cl ass. If
uri> startup-uri is not defined, then its assumed that the class is visible to

the application.

shutdown

The following table describes the elements you can define within a shut down element.

@® Note

Application-scoped startup and shutdown classes have been deprecated as of release
9.0 of WebLogic Server. Instead, you should use lifecycle listener events in your
applications. For details, see Programming Application Life Cycle Events.

Table A-18 shutdown Elements

Element Required Maximum Description
Optional Number in File
<shut down- Required 1 Defines the name of the class to be run when the application is
cl ass> undeployed.
<shut down-uri > Optional 1 Defines a JAR file within the EAR that contains the shut down-

cl ass. If you do not define the shut down- uri element, it is
assumed that the class is visible to the application.

work-manager

The following table describes the elements you can define within a work-manager element.

See Using Work Managers to Optimize Scheduled Work for examples and information on Work
Managers.

Table A-19 work-manager Elements

Element Required Maximum Description
? Number in File
<nane> Required 1 The name of the Work Manager.
<response-ti me- Optional 1 See the description of the <r esponse-ti me- r equest > element in
request - cl ass> weblogic-application for information on this child element of <wor k-
manager >.

If you specify this element, you cannot also specify <f ai r - shar e-
request - cl ass>, <cont ext - request - ¢l ass>, or <r equest -
cl ass- nane>.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-22 of A-27

ORACLE’

Table A-19 (Cont.) work-manager Elements

Appendix A
weblogic-application.xml Deployment Descriptor Elements

- __|]
Element Required Maximum

?

Number in File

Description

<fair-share- Optional
request - cl ass>

1

See the description of the <f ai r - shar e- r equest > element in
weblogic-application for information on this child element of <wor k-
manager >.

If you specify this element, you cannot also specify <r esponse-
time-request - cl ass>, <cont ext - request - cl ass>, or
<request - cl ass- name>,

<context-request- Optional 1 See the description of the <cont ext - r equest > element in

class> weblogic-application for information on this child element of <wor k-
manager >.
If you specify this element, you cannot also specify <f ai r - shar e-
request - cl ass>, <response-ti ne-request - cl ass>, or
<request - cl ass- nane>.

<request - cl ass- Optional 1 The name of the request class.

name> If you specify this element, you cannot also specify <f ai r - shar e-
request - cl ass>, <cont ext - request - ¢l ass>, or <r esponse-
time-request-class>.

<m n-t hr eads- Optional 1 See the description of the <mi n-t hr eads- const r ai nt > element

constraint> in weblogic-application for information on this child element of
<wor k- manager >.
If you specify this element, you cannot also specify <ni n-
t hr eads- constr ai nt - name>.

<m n-t hr eads- Optional 1 The name of the min-threads constraint.

constrai nt - name> If you specify this element, you cannot also specify <mi n-
t hr eads- const rai nt >.

<max-t hr eads- Optional 1 See the description of the <max- t hr eads- const r ai nt > element

constraint> in weblogic-application for information on this child element of
<wor k- manager >.
If you specify this element, you cannot also specify <nax-
t hr eads- constrai nt - nane>.

<max-t hr eads- Optional 1 The name of the max-threads constraint.

constrai nt - name> If you specify this element, you cannot also specify <max-
t hr eads- const rai nt >.

<capaci ty> Optional 1 See the description of the <capaci t y> element in weblogic-
application for information on this child element of <wor k-
manager >.
If you specify this element, you cannot also specify <capaci t y-
nane>.

<capaci t y- name> Optional 1 The name of the thread capacity constraint.

If you specify this element, you cannot also specify <capaci t y>.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-23 of A-27

ORACLE Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-19 (Cont.) work-manager Elements
|

Element Required Maximum Description

? Number in File
<wor k- manager - Optional 1 Used to specify a Stuck Thread Work Manager component that can
shut down-tri gger> shut down the Work Manager in response to stuck threads.

You can specify the following child elements:

e max- st uck-thread-ti ne—The maximum amount of time, in
seconds, that a thread should remain stuck.

e stuck-thread- count —Number of stuck threads that triggers
the stuck thread work manager.

If you specify this element, you cannot also specify <i gnor e-

st uck-t hreads>.

<i gnor e- st uck- Optional 1 Specifies whether the Work Manager should ignore stuck threads
t hr eads> and never shut down even if threads become stuck.

If you specify this element, you cannot also specify <wor k-
manager - shut down-tri gger >.

session-descriptor

The following table describes the elements you can define within a session-descriptor element.

Table A-20 session-descriptor Elements
. ___ |

Element Require Maximum Description
d? Number in File

<tinmeout-secs> Optional 1 Specifies the number of seconds after which the session times out.
Default value is 3600 seconds.

<i nvalidation- Optional 1 Specifies the number of seconds of the invalidation trigger interval.

interval - secs> Default value is 60 seconds.

<debug- enabl ed> Optional 1 Specifies whether debugging is enabled for HTTP sessions.
Default value is f al se.

<id-1ength> Optional 1 Specifies the length of the session ID.
Default value is 52.

<tracki ng-enabl ed> Optional 1 Specifies whether session tracking is enabled between HTTP
requests.

Default value is t r ue.

<cache-si ze> Optional 1 Specifies the cache size for JDBC and file persistent sessions.
Default value is 1028.

<max-in- menory- Optional 1 Specifies the maximum sessions limit for memory/replicated
sessi ons> sessions.

Default value is -1, or unlimited.

<cooki es-enabl ed> Optional 1 Specifies the Web application container should set cookies in the
response.

Default value is t r ue.

<cooki e- nane> Optional 1 Specifies the name of the cookie that tracks sessions.
Default name is JSESSI ONI D.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-24 of A-27

ORACLE’

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-20 (Cont.) session-descriptor Elements

Element Require Maximum Description
d? Number in File
<cooki e- pat h> Optional 1 Specifies the session tracking cookie path.
Default value is / .
<cooki e- domai n> Optional 1 Specifies the session tracking cookie domain.
Default value is nul | .
<cooki e- comment > Optional 1 Specifies the session tracking cookie comment.
Default value is nul | .
<cooki e- secur e> Optional 1 Specifies whether the session tracking cookie is marked secure.
Default value is f al se.
<cooki e- max- age- Optional 1 Specifies that maximum age of the session tracking cookie.
secs> Default value is - 1, or unlimited.
<persistent-store- Optional 1 Specifies the type of storage for session persistence.
type> You can specify the following values:
e menory—Default value.
« replicat ed—Requires clustering.
« replicated_ if _clustered—Defaults to nenory in non-
clustered case.
- file
e jdbc
- cookie
<persistent-store- Optional 1 Specifies the name of the cookie that holds the attribute name and
cooki e- nane> values when using cooki e-based session persistence.
Default value is W.COKI E.
<persistent-store- Optional 1 Specifies the name of the directory when using f i | e-based session
dir> persistence. The directory is relative to the temporary directory
defined for the Web application.
Default value is sessi on_db.
<persistent-store- Optional 1 Specifies the name of the JDBC connection pool when using j dbc-
pool > based session persistence.
<persistent-store- Optional 1 Specifies the name of the database table when using j dbc-based
tabl e> session persistence.
Default value is W _ser vl et _sessi ons.
<j dbc- col um-nane- Optional 1 Alternative name for the W _max_i nactive_i nterval column
max- i nactive- name when using j dbc-based session persistence. Required for
i nterval > certain databases that do not support long column names
<j dbc-connection- Optional 1 DEPRECATED
ti meout - secs>
<url-rewiting- Optional 1 Specifies whether URL rewriting is enabled.

enabl ed>

Default value is t r ue.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-25 of A-27

ORACLE’

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-20 (Cont.) session-descriptor Elements

Element Require Maximum Description
d? Number in File
<htt p- proxy- Optional 1 Specifies whether WebLogic Server adds the following HTTP header
cachi ng- of - cooki es> to the response:
Cache-control : no-cache=set-cookie
This header specifies that proxy caches should not cache the
cookies.
Default value is t r ue, which means that the header is NOT added.
Set this element to f al se if you want the header added to the
response.
<encode- session-i d- Optional 1 Specifies whether WebLogic Server should encode the session ID in
i n-query- par ans> the path parameters.
Default value is f al se.
<noni tori ng- Optional 1 Used to tag runtime information for different sessions. For example,
attri but e- name> set this element to user nane if you have a user nane attribute that is
guaranteed to be unique.
<sharing-enabl ed> Optional 1 Specifies whether HTTP sessions are shared across multiple Web

applications.
Default value is f al se.

library-ref

The following table describes the elements you can define within al i brary-ref element.

See Creating Shared Java EE Libraries and Optional Packages, for additional information and

examples.

Table A-21 library Elements

Element Required? Maximum Description
Number in File
<library-name> Required 1 Specifies the name of the referenced shared Java EE library.
<specification- Optional 1 Specifies the minimum specification-version required.
ver si on>
<i npl enent ati on- Optional 1 Specifies the minimum implementation-version required.
versi on>
<exact - mat ch> Optional 1 Specifies whether there must be an exact match between the
specification and implementation version that is specified and that
of the referenced library.
Default value is f al se.
<cont ext - root > Optional 1 Specifies the context-root of the referenced Web application's

shared Java EE library.

library-context-root-override

The following table describes the elements you can define within a | i brary- cont ext - r oot -
overri de element to override cont ext -r oot elements within a referenced EAR library. See

library-ref.

Developing Applications for Oracle WebLogic Server

G31429-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Appendix A-26 of A-27

ORACLE Appendix A
weblogic-application.xml Schema

See Creating Shared Java EE Libraries and Optional Packages, for additional information and
examples.

Table A-22 library-context-root-override Elements

Element Require Maximum Description

d? Number in File
<cont ext - Optional 1 Overrides the cont ext - r oot elements declared in libraries. In the absence
root > of this element, the library's cont ext - r oot is used.

Only a referencing application (for example, a user application) can override
the cont ext - r oot elements declared in its libraries.

<overri de- Optional 1 Specifies the value of the | i brary- cont ext - r oot - overri de element
val ue> when overriding the cont ext - r oot elements declared in libraries. In the
absence of these elements, the library's cont ext - r oot is used.

fast-swap

The following table describes the elements you can define within a f ast - swap element.

For more information about FastSwap Deployment, see Using FastSwap Deployment to
Minimize Redeployment in Deploying Applications to Oracle WebLogic Server.

Table A-23 fast-swap Elements

Element Required? Maximum Description
Number in File

<enabl ed> Optional 1 Set to t r ue to enable FastSwap deployment in your application.

<refresh-interval > Optional 1 FastSwap checks for changes in application classes when an
incoming HTTP request is received. Subsequent HTTP requests
arriving within the r ef resh-i nt er val seconds will not trigger a
check for changes. The first HTTP request arriving after the
refresh-interval seconds have passed, will cause FastSwap
to perform a class-change check again.

<redefinition- Optional 1 FastSwap class redefinitions are performed asynchronously by
task-limt> redefinition tasks. They can be controlled and inspected using JIMX
interfaces.

Specifies the number of redefinition tasks that will be retained by
the FastSwap system. If the number of tasks exceeds this limit,
older tasks are automatically removed.

weblogic-application.xml Schema

See http://xn ns. oracl e. com webl ogi ¢/ webl ogi c-application/1. 6/ webl ogic-
application. xsd for the XML Schema of the webl ogi c- appl i cati on. xm deployment
descriptor file.

application.xml Schema

For more information about appl i cati on. xnl deployment descriptor elements, see the Java
EE 6 schema available at htt p: // ww. or acl e. coml webf ol der/t echnet work/jsc/ xm /ns/
javaeel/ application 7.xsd.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-27 of A-27

http://xmlns.oracle.com/weblogic/weblogic-application/1.6/weblogic-application.xsd
http://xmlns.oracle.com/weblogic/weblogic-application/1.6/weblogic-application.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application_7.xsd

wldeploy Ant Task Reference

Learn about the different tools to deploy applications and standalone modules to WebLogic
Server.
This appendix includes the following sections:

Overview of the wideploy Ant Task

The w depl oy Ant task enables you to perform webl ogi c. Depl oyer functions using attributes
specified in an Ant XML file.

You can use w depl oy along with other WebLogic Server Ant tasks to create a single Ant build
script that:

» Builds your application from source, using wl conpi | e, appc, and the Web services Ant
tasks.

* Creates, starts, and configures a new WebLogic Server domain, using the w server and
w confi g Ant tasks.

* Deploys a compiled application to the newly-created domain, using the wl depl oy Ant task.

See Using Ant Tasks to Configure and Use a WebLogic Server Domain, for more information
about w server and w confi g. See Building Applications in a Split Development Directory, for
information about W conpi | e.

Basic Steps for Using wideploy

To use the wideploy Ant task you must perform several required and some optional steps.

1. Set your environment.

On Windows platforms, execute the set W.SEnv. cnd command, located in the directory
W._HOME\ server\ bi n, where W._HOME is the top-level directory of your WebLogic Server
installation.

On UNIX, execute the set W.SEnv. sh command, located in the directory W._HOVE/ ser ver/
bi n, where W._HOME is the top-level directory of your WebLogic Server installation.

@® Note

On UNIX operating systems, the set W.SEnv. sh command does not set the
environment variables in all command shells. Oracle recommends that you
execute this command using the Korn shell or bash shell.

2. Inthe staging directory, create the Ant build file (bui | d. xm by default). If you want to use
an Ant installation that is different from the one installed with WebLogic Server, start by
defining the W depl oy Ant task definition:

<t askdef name="w depl oy" cl assname="webl ogi c. ant . t askdef s. managenent . W.Depl oy"/ >

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-1 of B-8

ORACLE Appendix B
Sample build.xml Files for wideploy

3. If necessary, add task definitions and calls to the wl server and w confi g tasks in the build
script to create and start a new WebLogic Server domain. See Using Ant Tasks to
Configure and Use a WebLogic Server Domain, for information about wl server and
w confi g.

4. Add a call to W depl oy to deploy your application to one or more WebLogic Server
instances or clusters. See Sample build.xml Files for wideploy and wideploy Ant Task
Attribute Reference.

5. [Execute the Ant task or tasks specified in the bui | d. xnl file by typing ant in the staging
directory, optionally passing the command a target argument:

pronpt > ant

Sample build.xml Files for wideploy

Examine these sample bui | d. xm files which show how to deploy an application on a single
WebLogic Server instance, undeploy the application, perform a partial redeploy of the
application, undeploy a particular file in the application, and deploy a Java EE library.

The following example shows a W depl oy target that deploys an application to a single
WebLogic Server instance:

<target nane="depl oy">
<wl depl oy
action="depl oy" verbose="true" debug="true"
name="Depl oyExanpl e" source="out put/redepl oyEAR'
user ="webl ogi ¢" passwor d="webl ogi c"
adminurl="t3://1ocal host:7001" targets="nyserver" />
</target>

The following example shows a corresponding task to undeploy the application; the example
shows that when you undeploy or redeploy an application, you do not specify the source
archive file or exploded directory, but rather, just its deployed name:

<target name="undepl oy">
<wl depl oy

action="undepl oy" verbose="true" debug="true"
nanme="Depl oyExanpl e"
user ="webl ogi ¢c" passwor d="webl ogi c"
adm nurl ="t 3://1ocal host: 7001" targets="nyserver"
failonerror="false" />

</target>

The following example shows how to perform a partial redeploy of the application; in this case,
just a single WAR file in the application is redeployed:

<target name="redeploy_partial ">
<wl depl oy
action="redepl oy" verbose="true"
name="Depl oyExanpl e"
user ="webl ogi ¢c" passwor d="webl ogi c"
adnminurl ="t 3://1 ocal host: 7001" targets="nyserver"
del t aFi | es="exanpl es/ gener al / r edepl oy/ Si npl el npl . war" />
</target>

The following example uses the nested <fi | es> child element of w depl oy to specify a
particular file in the application that should be undeployed:

<target name="undepl oy_partial ">
<w depl oy

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-2 of B-8

ORACLE Appendix B

wideploy Ant Task Attribute Reference

action="undepl oy" verbose="true" debug="true"

name="Depl oyExanpl e"

user ="webl ogi ¢c" passwor d="webl ogi c"

adm nurl ="t 3://1ocal host: 7001" targets="nyserver"

failonerror="fal se">

<files
dir="${current-dir}/output/redepl oyEAR exanpl es/ general / r edepl oy"
i ncl udes="Si npl el npl . jsp" />

</ W depl oy>
</target>

The following example shows how to deploy a Java EE library called nyLi br ary whose source
files are located in the out put / nyLi br ary directory:

<target name="depl oy">
<wl depl oy action="depl oy" name="nyLi brary"
source="out put/myLi brary" library="true"
user ="webl ogi ¢" passwor d="webl ogi c"
verbose="true" admnurl="t3://1ocal host:7001"
targets="nyserver" />
</target>

wldeploy Ant Task Attribute Reference

The following sections describe the attributes and child element <f i | es> of the Wl depl oy Ant
task.

Main Attributes

The following table describes the main attributes of the wl depl oy Ant task.

These attributes mirror some of the arguments of the webl ogi c. Depl oyer command. Oracle
provides an Ant task version of the webl ogi c. Depl oyer command so that developers can
easily deploy and test their applications as part of the iterative development process. Typically,
however, administrators use the webl ogi c. Depl oyer command, and not the W depl oy Ant task,
to deploy applications in a production environment. For that reason, see the weblogic.Deployer
Command-Line Reference in Deploying Applications to Oracle WebLogic Server for the full and

complete definition of the attributes of the wi depl oy Ant task. The table below is provided just
as a quick summary.

Table B-1 Attributes of the wideploy Ant Task

Attribute Description Data Type

action The deployment action to perform. String
Valid values are depl oy, cancel , undepl oy, redepl oy, di stribute, start, and st op.

adm nnode Specifies that the deployment action puts the application into Administration mode. Boolean

Administration mode restricts access to an application to a configured Administration channel.

Valid values for this attribute are t r ue and f al se. Default value is f al se, which means that by

default the application is deployed in production mode so that all clients can access it
immediately.

Developing Applications for Oracle WebLogic Server

G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-3 of B-8

ORACLE Appendix B
wideploy Ant Task Attribute Reference

Table B-1 (Cont.) Attributes of the wideploy Ant Task

- ___|]
Attribute Description Data Type

admi nur | The URL of the Administration Server. String

The format of the value of this attribute is pr ot ocol : / / host : port, where pr ot ocol is either
http ort 3, host is the host on which the Administration Server is running, and port is the
port which the Administration Server is listening.

Note: In order to use the HTTP protocol, you must enable the HTTP tunnelling option in the
WebLogic Remote Console.

al | versi ons Specifies that the action (redeploy, stop, and so on) applies to all versions of the application. Boolean
Valid values for this attribute are t r ue and f al se. The default value is f al se.

al tappdd Specifies the name of an alternate Java EE deployment descriptor (appl i cati on. xm) to use String
for deployment.
If you do not specify this attribute, and you are deploying an enterprise application, the default
deployment descriptor is called appl i cati on. xm and is located in the META-INF
subdirectory of the main application directory or archive (specified by the sour ce attribute.)

al tw sappdd Specifies the name of an alternate WebLogic Server deployment descriptor (webl ogi c- String
appl i cation. xn) to use for deployment.

If you do not specify this attribute, and you are deploying an enterprise application, the default
deployment descriptor is called webl ogi c- appl i cation. xm and is located in the META-INF
subdirectory of the main application directory or archive (specified by the sour ce attribute.)

appversion The version identifier of the deployed application. String
debug Enable W depl oy debugging messages. Boolean
del et eFi | es Specifies whether to remove static files from a server's staging directory. Boolean

This attribute is valid only for unarchived deployments, and only for applications deployed using
st age mode. You must specify target servers when using this attribute.

Specifying the del et eFi | es attributes indicates that WebLogic Server should remove only
those files that it copied to the staging area during deployment.

This attribute can be used only in combination with act i on="r edepl oy".

Because the del et eFi | es attribute deletes all specified files, Oracle recommends that you
use caution when using the del et eFi | es attribute and that you do not use it in production
environments.

Valid values for this attribute are true and false. Default value is false.

del taFiles Specifies a comma- or space-separated list of files, relative to the root directory of the String
application, which are to be redeployed.
Use this attribute only in conjunction with act i on="r edepl oy" to perform a partial redeploy of
an application.

enabl eSecur Specifies whether or not to enable validation of security data. Boolean
ityValidati valid values for this attribute are true and false. Default value is false.

on

external Sta Specifies whether the deployment uses ext er nal _st age deployment mode. Boolean
ge In this mode, the Ant task does not copy the deployment files to target servers; instead, you

must ensure that deployment files have been copied to the correct subdirectory in the target
servers' staging directories.

You can specify only one of the following attributes: st age, nost age, or ext er nal _st age. If
none is specified, the default deployment mode to Managed Servers is St age; the default
mode to the Administration Server and in single-server cases is nost age.

See Controlling Deployment File Copying with Staging Modes.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-4 of B-8

ORACLE Appendix B
wideploy Ant Task Attribute Reference

Table B-1 (Cont.) Attributes of the wideploy Ant Task

- ___|]
Attribute Description Data Type

fail onerror Thisis a global attribute used by WebLogic Server Ant tasks. It specifies whether the task Boolean
should fail if it encounters an error during the build.

Valid values for this attribute are true and false. Default value is true.

gracef ul Stops the application after existing HTTP clients have completed their work. Boolean

You can use this attribute only when stopping or undeploying an application, or in other words,
you must also specify either the act i on="st op" or acti on="undepl oy" attributes.

Valid values for this attribute are t r ue and f al se. Default value is f al se.

id Identification used for obtaining status or cancelling the deployment. String

You assign a unique ID to an application when you deploy it, and then subsequently use the ID
when redeploying, undeploying, stopping, and so on.

If you do not specify this attribute, the Ant task assigns a unique ID to the application.

i gnor esessi This option immediately places the application into Administration mode without waiting for Boolean
ons current HTTP sessions to complete.

You can use this attribute only when stopping or undeploying an application, or in other words,
you must also specify either the acti on="st op" or acti on="undepl oy" attributes.

Valid values for this attribute are t r ue and f al se. Default value is f al se.

['i bl mpl Ver Specifies the implementation version of a Java EE library or optional package. String

This attribute can be used only if the library or package does not include a implementation
version in its manifest file. You can specify this attribute only in combination with the | i brary
attribute.

See Creating Shared Java EE Libraries and Optional Packages.

library Identifies the deployment as a shared Java EE library or optional package. You must specify Boolean
the | i brary attribute when deploying or distributing any Java EE library or optional package.

Valid values for this attribute are t r ue and f al se. Default value is f al se.
See Creating Shared Java EE Libraries and Optional Packages.

Ii bSpecVer Provides the specification version of a Java EE library or optional package. String

This attribute can be used only if the library or package does not include a specification version
in its manifest file. You can specify this attribute only in combination with the | i br ar y attribute.

See Creating Shared Java EE Libraries and Optional Packages.

nane The deployment name for the deployed application. String

If you do not specify this attribute, WebLogic Server assigns a deployment name to the
application, based on its archive file or exploded directory.

nost age Specifies whether the deployment uses nostage deployment mode. Boolean

In this mode, the Ant task does not copy the deployment files to target servers, but leaves them
in a fixed location, specified by the sour ce attribute. Target servers access the same copy of
the deployment files.

You can specify only one of the following attributes: st age, nost age, or ext er nal _st age. If
none is specified, the default deployment mode to Managed Servers is St age; the default
mode to the Administration Server and in single-server cases is nost age.

See Controlling Deployment File Copying with Staging Modes.

noversi on Indicates that the W depl oy Ant task should ignore all version related code paths on the Boolean
Administration Server. This behavior is useful when deployment source files are located on
Managed Servers (not the Administration Server) and you want to use the external_stage
staging mode.
If you use this option, you cannot use versioned applications.
Valid values for this attribute are true and false. Default value is false.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-5 of B-8

ORACLE Appendix B
wideploy Ant Task Attribute Reference

Table B-1 (Cont.) Attributes of the wideploy Ant Task

- ___|]
Attribute Description Data Type

nowai t Specifies whether Wl depl oy returns immediately after making a deployment call (by deploying Boolean
as a background task).

passwor d The administrative password. String

To avoid having the plain text password appear in the build file or in process utilities such as ps,
first store a valid user name and encrypted password in a configuration file using the WebLogic
Scripting Tool (WLST) st or eUser Conf i g command. Then omit both the user name and
passwor d attributes in your Ant build file. When the attributes are omitted, W depl oy attempts
to login using values obtained from the default configuration file.

If you want to obtain a user name and password from a non-default configuration file and key
file, use the userconfi gfi | e and user keyfi | e attributes with W depl oy.

See the command reference for st or eUser Conf i g in the WLST Command Reference for
WebLogic Server for more information on storing and encrypting passwords.

pl an Specifies a deployment plan to use when deploying the application or module. String

By default, Wl depl oy does not use an available deployment plan, even if you are deploying
from an application root directory that contains a plan.

pl anver si on The version identifier of the deployment plan. String

renmot e Specifies whether the server is located on a different machine. This affects how filenames are Boolean
transmitted.
Valid values for this attribute are t r ue and f al se. Default value is f al se, which means that
the Ant task assumes that all source paths are valid paths on the local machine.

removePl anO| Removes an overridden deployment plan during a redeploy or update deployment action. String
verride To remove an application override, specify the removePlanOverride attribute.
You can specify the removePlanOverride attribute for the redeploy deployment actions.

retireti meo Specifies the number of seconds before WebLogic Server undeploys the currently-running int
ut version of this application or module so that clients can start using the new version.

It is assumed, when you specify this attribute, that you are starting, deploying, or redeploying a
new version of an already-running application.

See Redeploying Applications in a Production Environment.

securityMd Specifies the security model to use for this deployment. Possible security models are: String
el e Deployment descriptors only
e Customize roles
e Customize roles and policies
e Security realm configuration (advanced model)
Valid actual values for this attribute are DDOnl y, Cust onRol es, Cust onRol esAndPol i ¢y, or
Advanced.

See Options for Securing Web application and EJB Resources for more information on these
security models.

source The archive file or exploded directory to deploy. File

st age Specifies whether the deployment uses stage deployment mode. Boolean
In this mode, the Ant task copies deployment files to target servers' staging directories.

You can specify only one of the following attributes: st age, nost age, or ext er nal _st age. If
none is specified, the default deployment mode to Managed Servers is st age; the default
mode to the Administration Server and in single-server cases is nost age.

See Controlling Deployment File Copying with Staging Modes.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-6 of B-8

ORACLE Appendix B
wideploy Ant Task Attribute Reference

Table B-1 (Cont.) Attributes of the wideploy Ant Task
|

Attribute Description Data Type
submodul et a Specifies JMS server targets for resources defined within a JIMS application module. String
rgets The value of this attribute is a comma-separated list of JIMS server names.

See Using Sub-Module Targeting with IMS Application Modules.

targets The list of target servers to which the application is deployed. String

The value of this attribute is a comma-separated list of the target servers, clusters, or virtual
hosts.

If you do not specify a target list when deploying an application, the target defaults to the
Administration Server instance.

timeout The maximum number of seconds to wait for a deployment to succeed. int

upl oad Specifies whether the source file(s) are copied to the Administration Server's upload directory ~ Boolean
prior to deployment.

Use this attribute when you are on a remote machine and you cannot copy the deployment files
to the Administration Server by other means.

Valid values for this attribute are t r ue and f al se. Default value is f al se.

usenonexcl u Specifies that the deployment action (deploy, redeploy, stop, and so on) uses the existing lock Boolean
si vel ock on the domain that has already been acquired by the same user performing the action.

This attribute is particularly useful when the user is using multiple deployment tools (Ant task,
command line, and so on) simultaneously and one of the tools has already acquired a lock on
the domain.

Valid values for this attribute are t r ue and f al se. Default value is f al se.

user The administrative user name. String
userconfi gf Specifies the location of a user configuration file to use for obtaining the administrative user String
ile name and password. Use this option, instead of the user and passwor d attributes, in your

build file when you do not want to have the plain text password shown in-line or in process-level
utilities such as ps.

Before specifying the user confi gf i | e attribute, you must first generate the file using the
WebLogic Scripting Tool (WLST) st or eUser Confi g command as described in the WLST
Command Reference for Oracle WebLogic Server.

userkeyfil e Specifies the location of a user key file to use for encrypting and decrypting the user name and String
password information stored in a user configuration file (the user confi gf i | e attribute).
Before specifying the user keyf i | e attribute, you must first generate the key file using the
WebLogic Scripting Tool (WLST) st or eUser Conf i g command as described in the WLST
Command Reference for Oracle WebLogic Server.

ver bose Specifies whether Wl depl oy displays verbose output messages. Boolean

Nested <files> Child Element

The w depl oy Ant task also includes the <fi | es> child element that can be nested to specify a
list of files on which to perform a deployment action (for example, a list of JSPs to undeploy.)

@® Note

Use of <fi | es> to redeploy a list of files in an application has been deprecated as of
release 9.0 of WebLogic Server. Instead, use the del t aFi | es attribute of wideploy.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-7 of B-8

ORACLE Appendix B
wideploy Ant Task Attribute Reference

The <fi| es> element works the same as the standard <fi | eset > Ant task (except for the
difference in actual task name). Therefore, see the Apache Ant Web site athttp://

ant . apache. org/ manual / Types/fil eset. htm for detailed reference information about the
attributes you can specify for the <fi | es> element.

Developing Applications for Oracle WebLogic Server
G31429-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-8 of B-8

http://ant.apache.org/manual/Types/fileset.html
http://ant.apache.org/manual/Types/fileset.html

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Overview of WebLogic Server Application Development
	WebLogic Server and the Jakarta EE Platform
	Overview of Jakarta EE Applications and Modules
	Web Application Modules
	Servlets
	Jakarta Server Pages
	More Information on Web Application Modules

	Jakarta Enterprise Beans Modules
	EJB Documentation in WebLogic Server
	Additional EJB Information

	Connector Modules
	Enterprise Applications
	Jakarta EE Programming Model
	Packaging and Deployment Overview

	WebLogic Web Services
	JMS and JDBC Modules
	WebLogic Diagnostic Framework Modules
	Using an External Diagnostics Descriptor
	Defining an External Diagnostics Descriptor

	Coherence Grid Archive (GAR) Modules
	Bean Validation
	XML Deployment Descriptors
	Automatically Generating Deployment Descriptors
	Java-Based Command-Line Utilities
	Upgrading Deployment Descriptors From Previous Releases of Jakarta EE and WebLogic Server

	Deployment Plans
	Development Tools
	Java API Reference and the wls-api.jar File
	Using the wls-api.jar File
	Using the weblogic.jar File

	Apache Ant
	Using a Third-Party Version of Ant
	Changing the Ant Heap Size

	Source Code Editor or IDE
	Database System and JDBC Driver
	Web Browser
	Third-Party Software

	2 Using Ant Tasks to Configure and Use a WebLogic Server Domain
	Overview of Configuring and Starting Domains Using Ant Tasks
	Starting Servers and Creating Domains Using the wlserver Ant Task
	Basic Steps for Using wlserver
	Sample build.xml Files for wlserver
	wlserver Ant Task Reference

	Configuring a WebLogic Server Domain Using the wlconfig Ant Task
	What the wlconfig Ant Task Does
	Basic Steps for Using wlconfig
	wlconfig Ant Task Reference
	Main Attributes
	Nested Elements
	create
	delete
	set
	get
	query
	invoke

	Example of Creating a Security Realm with the wlconfig Ant Task
	Using the libclasspath Ant Task
	libclasspath Task Definition
	libclasspath Ant Task Reference
	Main libclasspath Attributes
	Nested libclasspath Elements
	librarydir
	library

	Example libclasspath Ant Task

	3 Using the WebLogic Maven Plug-In
	Installing Maven
	Configuring the WebLogic Maven Plug-In
	How to use the WebLogic Maven Plug-in
	Basic Configuration POM File

	Maven Plug-In Goals
	appc
	create-domain
	deploy
	distribute-app
	install
	list-apps
	purge-tasks
	redeploy
	remove-domain
	start-app
	start-server
	stop-app
	stop-server
	undeploy
	uninstall
	update-app
	wlst
	wlst-client
	ws-clientgen
	wsgen
	wsimport
	ws-wsdlc
	ws-jwsc

	4 Creating a Split Development Directory Environment
	Overview of the Split Development Directory Environment
	Source and Build Directories
	Deploying from a Split Development Directory
	Split Development Directory Ant Tasks

	Using the Split Development Directory Structure: Main Steps
	Organizing Jakarta EE Components in a Split Development Directory
	Source Directory Overview
	Enterprise Application Configuration
	Web Applications
	EJBs
	Important Notes Regarding EJB Descriptors

	Organizing Shared Classes in a Split Development Directory
	Shared Utility Classes
	Third-Party Libraries
	Class Loading for Shared Classes

	Generating a Basic build.xml File Using weblogic.BuildXMLGen
	weblogic.BuildXMLGen Syntax

	Developing Multiple-EAR Projects Using the Split Development Directory
	Organizing Libraries and Classes Shared by Multiple EARs
	Linking Multiple build.xml Files

	Best Practices for Developing WebLogic Server Applications

	5 Building Applications in a Split Development Directory
	Compiling Applications Using wlcompile
	Using includes and excludes Properties
	wlcompile Ant Task Attributes
	Nested javac Options
	Setting the Classpath for Compiling Code
	Library Element for wlcompile and wlappc

	Building Modules and Applications Using wlappc
	wlappc Ant Task Attributes
	wlappc Ant Task Syntax
	Syntax Differences between appc and wlappc
	weblogic.appc Reference
	weblogic.appc Syntax
	weblogic.appc Options

	6 Deploying and Packaging from a Split Development Directory
	Deploying Applications Using wldeploy
	Packaging Applications Using wlpackage
	Archive Versus Exploded Archive Directory
	wlpackage Ant Task Example
	wlpackage Ant Task Attribute Reference

	7 Developing Applications for Production Redeployment
	What is Production Redeployment?
	Supported and Unsupported Application Types
	Additional Application Support

	Programming Requirements and Conventions
	Applications Should Be Self-Contained
	Versioned Applications Access the Current Version JNDI Tree by Default
	Security Providers Must Be Compatible
	Applications Must Specify a Version Identifier
	Applications Can Access Name and Identifier
	Client Applications Use Same Version when Possible

	Assigning an Application Version
	Application Version Conventions

	Upgrading Applications to Use Production Redeployment
	Accessing Version Information

	8 Using Jakarta EE Annotations and Dependency Injection
	Annotation Processing
	Annotation Parsing
	Deployment View of Annotation Configuration
	Compiling Annotated Classes
	Dynamic Annotation Updates

	Dependency Injection of Resources
	Application Life Cycle Annotation Methods

	Standard JDK Annotations
	javax.annotation.PostConstruct
	javax.annotation.PreDestroy
	javax.annotation.Resource
	javax.annotation.Resources

	Standard Security-Related JDK Annotations
	javax.annotation.security.DeclareRoles
	javax.annotation.security.DenyAll
	javax.annotation.security.PermitAll
	javax.annotation.security.RolesAllowed
	javax.annotation.security.RunAs

	9 Using Contexts and Dependency Injection for the Jakarta EE Platform
	About CDI for the Jakarta EE Platform
	Defining a Managed Bean
	Injecting a Bean
	Defining the Scope of a Bean
	Overriding the Scope of a Bean at the Point of Injection
	Using Qualifiers
	Defining Qualifiers for Implementations of a Bean Type
	Applying Qualifiers to a Bean
	Injecting a Qualified Bean

	Providing Alternative Implementations of a Bean Type
	Defining an Alternative Implementation of a Bean Type
	Selecting an Alternative Implementation of a Bean Type for an Application

	Applying a Scope and Qualifiers to a Session Bean
	Applying a Scope to a Session Bean
	Applying Qualifiers to a Session Bean

	Using Producer Methods, Disposer Methods, and Producer Fields
	Defining a Producer Method
	Defining a Disposer Method
	Defining a Producer Field

	Initializing and Preparing for the Destruction of a Managed Bean
	Initializing a Managed Bean
	Preparing for the Destruction of a Managed Bean

	Intercepting Method Invocations and Life Cycle Events of Bean Classes
	Defining an Interceptor Binding Type
	Defining an Interceptor Class
	Identifying Methods for Interception
	Enabling an Interceptor
	Applying an Interceptor on a Producer

	Decorating a Managed Bean Class
	Defining a Decorator Class
	Enabling a Decorator Class

	Assigning an EL Name to a CDI Bean Class
	Defining and Applying Stereotypes
	Defining a Stereotype
	Applying Stereotypes to a Bean

	Using Events for Communications Between Beans
	Defining an Event Type
	Sending an Event
	Handling an Event

	Injecting a Predefined Bean
	Injecting and Qualifying Resources
	Using CDI With JCA Technology
	Configuring a CDI Application
	Enabling and Disabling CDI
	Enabling and Disabling CDI for a Domain

	Implicit Bean Discovery
	Enabling and Disabling Implicit Bean Discovery for a Domain

	Supporting Third-Party Portable Extensions
	Using the Built-in Annotation Literals
	Using the Configurator Interfaces
	Bootstrapping a CDI Container

	10 Jakarta JSON Processing
	About JavaScript Object Notation (JSON)
	Object Model API
	Creating an Object Model from JSON Data
	Creating an Object Model from Application Code
	Navigating an Object Model
	Writing an Object Model to a Stream

	Streaming API
	Reading JSON Data Using a Parser
	Writing JSON Data Using a Generator

	New Features for JSON Processing
	JSON Pointer
	JSON Patch
	JSON Merge Patch

	11 Jakarta JSON Binding
	About Default Mapping
	About Customized Mapping
	Standard Support to Handle Application or JSON Media Type for JAX-RS

	12 Understanding WebLogic Server Application Classloading
	Java Classloading
	Java Classloader Hierarchy
	Loading a Class
	prefer-web-inf-classes Element
	Changing Classes in a Running Program
	Class Caching With the Policy Class Loader
	Class Caching With Application Class Data Sharing

	WebLogic Server Application Classloading
	Overview of WebLogic Server Application Classloading
	Application Classloader Hierarchy
	Custom Module Classloader Hierarchies
	Declaring the Classloader Hierarchy
	User-Defined Classloader Restrictions
	Servlet Reloading Disabled
	Nesting Depth
	Module Types
	Duplicate Entries
	Interfaces
	Call-by-Value Semantics
	In-Flight Work
	Development Use Only

	Individual EJB Classloader for Implementation Classes
	Application Classloading and Pass-by-Value or Reference
	Using a Filtering Classloader
	What is a Filtering Classloader
	Configuring a Filtering Classloader
	Resource Loading Order

	Resolving Class References Between Modules and Applications
	About Resource Adapter Classes
	Packaging Shared Utility Classes
	Manifest Class-Path

	Using the Classloader Analysis Tool (CAT)
	Opening the CAT Interface
	How CAT Analyzes Classes
	Identifying Class References through Manifest Hierarchies

	Sharing Applications and Modules By Using Jakarta EE Libraries
	Adding JARs to the Domain /lib Directory

	13 Creating Shared Jakarta EE Libraries and Optional Packages
	Overview of Shared Jakarta EE Libraries and Optional Packages
	Library Directories
	Versioning Support for Libraries
	Shared Jakarta EE Libraries and Optional Packages Compared
	Additional Information

	Creating Shared Jakarta EE Libraries
	Assembling Shared Jakarta EE Library Files
	Assembling Optional Package Class Files
	Editing Manifest Attributes for Shared Jakarta EE Libraries
	Packaging Shared Jakarta EE Libraries for Distribution and Deployment

	Referencing Shared Jakarta EE Libraries in an Enterprise Application
	Overriding context-roots Within a Referenced Enterprise Library
	URIs for Shared Jakarta EE Libraries Deployed As a Standalone Module

	Referencing Optional Packages from a Jakarta EE Application or Module
	Using weblogic.appmerge to Merge Libraries
	Using weblogic.appmerge from the CLI
	Using weblogic.appmerge as an Ant Task

	Integrating Shared Jakarta EE Libraries with the Split Development Directory Environment
	Deploying Shared Jakarta EE Libraries and Dependent Applications
	Web Application Shared Jakarta EE Library Information
	Using WebApp Libraries With Web Applications
	Accessing Registered Shared Jakarta EE Library Information with LibraryRuntimeMBean
	Order of Precedence of Modules When Referencing Shared Jakarta EE Libraries
	Best Practices for Using Shared Jakarta EE Libraries

	14 Programming Application Life Cycle Events
	Understanding Application Life Cycle Events
	Registering Events in weblogic-application.xml
	Programming Basic Life Cycle Listener Functionality
	Configuring a Role-Based Application Life Cycle Listener

	Examples of Configuring Life Cycle Events with and without the URI Parameter
	Understanding Application Life Cycle Event Behavior During Redeployment
	Programming Application Version Life Cycle Events
	Understanding Application Version Life Cycle Event Behavior
	Types of Application Version Life Cycle Events
	Example of Production Deployment Sequence When Using Application Version Life Cycle Events

	15 Programming Context Propagation
	Understanding Context Propagation
	Programming Context Propagation: Main Steps
	Programming Context Propagation in a Client
	Programming Context Propagation in an Application

	16 Programming Jakarta Mail with WebLogic Server
	Overview of Using Jakarta Mail with WebLogic Server Applications
	Understanding Jakarta Mail Configuration Files
	Configuring Jakarta Mail for WebLogic Server
	Sending Messages with Jakarta Mail
	Reading Messages with Jakarta Mail

	17 Threading and Clustering Topics
	Using Threads in WebLogic Server
	Using the Work Manager API for Lower-Level Threading
	Programming Applications for WebLogic Server Clusters

	18 Developing OSGi Bundles for WebLogic Server Applications
	Understanding OSGi
	Features Provided in WebLogic Server OSGi Implementation
	Configuring the OSGi Framework
	Configuring OSGi Framework Instances
	Configuring OSGi Framework Instance From config.xml
	Configuring OSGi Framework Instance From WLST
	Configuring OSGi Framework Instance from a Java Program
	Parameter Required for Installing Bundles in the Framework

	Configuring OSGi Framework Persistence
	Using OSGi Services
	Connecting to an OSGi Console

	Creating OSGi Bundles
	Deploying OSGi Bundles
	Preparing to Deploy an OSGi Bundle on a Target System
	Preparing to Deploy Bundles as Enterprise Applications
	Preparing to Deploy Bundles as Web Applications
	Global Work Managers
	Global Data Sources

	Deploying OSGi Bundles in the osgi-lib Directory
	Setting the Start Level and Run Level for a Bundle

	Accessing Deployed Bundle Objects From JNDI
	Using OSGi Logging Via WebLogic Server
	Configuring a Filtering ClassLoader for OSGi Bundles
	OSGI Example

	19 Using the WebSocket Protocol in WebLogic Server
	Understanding the WebSocket Protocol
	Limitations of the HTTP Request-Response Model
	WebSocket Endpoints
	Handshake Requests in the WebSocket Protocol
	Messaging and Data Transfer in the WebSocket Protocol

	Understanding the WebLogic Server WebSocket Implementation
	WebSocket Protocol Implementation
	WebLogic WebSocket Java API
	Protocol Fallback for WebSocket Messaging
	Sample WebSocket Applications

	Overview of Creating a WebSocket Application
	Creating an Endpoint
	Creating an Annotated Endpoint
	Creating a Programmatic Endpoint
	Specifying the Path Within an Application to a Programmatic Endpoint

	Handling Life Cycle Events for a WebSocket Connection
	Handling Life Cycle Events in an Annotated WebSocket Endpoint
	Handling a Connection Opened Event
	Handling a Message Received Event
	Handling an Error Event
	Handling a Connection Closed Event

	Handling Life Cycle Events in a Programmatic WebSocket Endpoint

	Defining, Injecting, and Accessing a Resource for a WebSocket Endpoint
	Sending a Message
	Sending a Message to a Single Peer of an Endpoint
	Sending a Message to All Peers of an Endpoint
	Ensuring Thread Safety for WebSocket Endpoints

	Encoding and Decoding a WebSocket Message
	Encoding a Java Object as a WebSocket Message
	Decoding a WebSocket Message as a Java Object

	Specifying a Part of an Endpoint Deployment URI as an Application Parameter
	Maintaining Client State
	Configuring a Server Endpoint Programmatically
	Building Applications that Use the Jakarta API for WebSocket
	Deploying a WebSocket Application
	Monitoring WebSocket Applications
	Using WebSockets with Proxy Servers
	Writing a WebSocket Client
	Writing a Browser-Based WebSocket Client
	Writing a Java WebSocket Client
	Configuring a WebSocket Client Endpoint Programmatically
	Connecting a Java WebSocket Client to a Server Endpoint
	Setting the Maximum Number of Threads for Dispatching Messages from a WebSocket Client

	Securing a WebSocket Application
	Applying Verified-Origin Policies
	Authenticating and Authorizing WebSocket Clients
	Authorizing WebSocket Clients

	Establishing Secure WebSocket Connections
	Avoiding Mixed Content
	Specifying Limits for a WebSocket Connection

	Enabling Protocol Fallback for WebSocket Messaging
	Using the JavaScript API for WebSocket Fallback in Client Applications
	Configuring WebSocket Fallback
	Creating a WebSocket Object
	Handling Life Cycle Events for a JavaScript WebSocket Client
	Sending a Message from a JavaScript WebSocket Client

	Packaging and Specifying the Location of the WebSocket Fallback Client Library
	Enabling WebSocket Fallback

	Migrating an Application to the JSR 356 Java API for WebSocket from the Deprecated API
	Comparison of the JSR 356 API and Proprietary WebLogic Server WebSocket API
	Converting a Proprietary WebSocket Server Endpoint to Use the JSR 356 API
	Replacing the /* Suffix in a Path Pattern String
	Replacing a /* Suffix that Represents Variable Path Parameters in an Endpoint URI
	Replacing a /* Suffix that Represents Additional Data for an Endpoint

	Example of Converting a Proprietary WebSocket Server Endpoint to Use the JSR 356 API

	Example of Using the Java API for WebSocket with WebLogic Server

	A Enterprise Application Deployment Descriptor Elements
	weblogic-application.xml Deployment Descriptor Elements
	weblogic-application
	ejb
	entity-cache

	max-cache-size
	xml
	parser-factory
	entity-mapping

	jdbc-connection-pool
	connection-factory
	pool-params
	driver-params

	security
	application-param
	classloader-structure
	listener
	singleton-service
	startup
	shutdown
	work-manager
	session-descriptor
	library-ref
	library-context-root-override
	fast-swap

	weblogic-application.xml Schema
	application.xml Schema

	B wldeploy Ant Task Reference
	Overview of the wldeploy Ant Task
	Basic Steps for Using wldeploy
	Sample build.xml Files for wldeploy
	wldeploy Ant Task Attribute Reference
	Main Attributes
	Nested <files> Child Element

