Oracle® Fusion Middleware

Duplicate - Oracle®, Fusion Middleware
Configuring and Using the Diagnostics
Framework for Oracle WebLogic Server

14c (14.1.2.0.0)
G31904-01
October 2025

ORACLE"

Oracle Fusion Middleware Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics
Framework for Oracle WebLogic Server, 14c (14.1.2.0.0)

G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.
Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience i
Documentation Accessibility i
Diversity and Inclusion i
Related Documentation i
Conventions ii

1 Introduction

What Is the WebLogic Diagnostics Framework? 1

2 Overview of the WLDF Architecture

Overview of the WebLogic Diagnostics Framework

Data Creation, Collection, and Instrumentation

Archive

Policies and Actions

Data Accessor

Monitoring Dashboard and Request Performance Pages
Monitoring Dashboard
Diagnostics Request Performance Page

Diagnostic Image Capture

How It All Fits Together

o 0o o MW WDN PR

3 Using the Built-in Diagnostic System Modules

Overview
Types of Built-in Diagnostic System Modules
Data Collected by Built-in Diagnostic System Modules

4 Using WLDF with Java Flight Recorder

About Java Flight Recorder
Using Java Flight Recorder with Oracle HotSpot

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page i of ix

Key Features of WLDF Integration with Java Flight Recorder 3
Java Flight Recorder Use Cases 4
Diagnosing a Critical Failure — The "Black Box" 4
Profiling During Performance Testing or in Production 5
Real-Time Application Diagnostics and Reporting 5
Obtaining the Flight Recording File 6
5 Understanding WLDF Configuration
Configuration MBeans and XML 1
Tools for Configuring WLDF 1
How WLDF Configuration Is Partitioned 2
Server-Level Configuration 2
Application-Level Configuration 2
Configuring Diagnostic Image Capture and Diagnostic Archives 3
Configuring Diagnostic Image Capture for Java Flight Recorder 3
Configuring Diagnostic System Modules 4
About the Resource Descriptor 5
WLDF Runtime Control 6
Creating a Diagnostic System Module Based on a Configured Resource Descriptor 7
Creating a Diagnostic System Module Based on an External Resource Descriptor 8
Targeting a Diagnostic System Module to a Server or Cluster 9
Dynamically Activating or Deactivating Diagnostic System Modules 9
Using WLST to Activate and Deactivate Diagnostic System Modules 9
More Information About Configuring Diagnostic System Modules 13
Configuring Diagnostic Modules for Applications 13
WLDF Configuration MBeans and Their Mappings to XML Elements 14
6 Configuring and Capturing Diagnostic Images
How Diagnostic Image Capture Is Persisted in the Server's Configuration 1
Content of the Captured Image File 1
Data Included in the Diagnostics Image Capture File 2
WLST Online Commands for Downloading Diagnostics Image Captures 3
7 Configuring Diagnostic Archives
Configuring the Archive 1
Configuring a File-Based Store 1
Configuring a JDBC-Based Store 2
Creating WLDF Tables in the Database 2
Apache Derby 2

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page ii of ix

Oracle Database 3
MySQL 6
Configuring JDBC Resources for WLDF 8
Retiring Data from the Archives 8
Configuring Data Retirement at the Server Level 8
Configuring Age-Based Data Retirement Policies for Diagnostic Archives 9
Sample Configuration 9
8 Configuring the Harvester for Metric Collection
Harvesting, Harvestable Data, and Harvested Data 1
Harvesting Data from the Different Harvestable Entities 1
Configuring the Harvester 2
Configuring the Harvester Sampling Period 3
Configuring the Types of Data to Harvest 3
Specifying Type Names for WebLogic Server MBeans and Custom MBeans 3
Harvesting from the Domain Runtime MBean Server 4
When Configuration Settings Are Validated 4
Sample Configurations for Different Harvestable Types 4
Harvester Performance Considerations 6
O Configuring Policies and Actions
Policies and Actions
Overview of Policies and Actions Configuration
Sample Policies and Actions Configuration
10 Configuring Policies
How Policies Are Configured 1
Rule Type 2
Expression Language 3
Policy Expression 3
Actions 4
Policy Schedule 4
Alarm Options 6
Severity Option 7
Enablement Option 7
Configuring Scheduled Policies 8
Configuring Calendar Based Policies 8
Configuring Smart Rule Based Policies 9
Types of Diagnostic Data that Smart Rules Evaluate 10

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page iii of ix

Smart Rule Example 10

Chaining Policies 11
Configuring Log Policies 11
Configuring Instrumentation Policies 12
Creating Complex Policy Expressions Using WLDF Java EL Extensions 13

Writing Collected Metrics Policy Expressions Using Beans 14

Accessing MBean Data in Collected Metrics 14
Working with Complex MBean Attributes 15
Performing Bulk Queries on Collected Metrics from MBeans 16
Writing Collected Metrics Policy Expressions Using Functions 18
Examining Trends in Metric Values over Time 19
Extracting and Examining Collected Metrics in Policy Expressions 20
Lifecycle of Data Collection 21

11 Configuring Actions

Actions Overview
Types of Actions
Variables for Customizable Actions
Action Timeout
Configuring JMX Actions
Configuring JMS Actions
Configuring SNMP Actions
Configuring Log Actions
Configuring REST Actions
Configuring SMTP Actions
Configuring Image Actions
Configuring Elastic Actions
Elastic Scaling Operations Cannot Be Cancelled After Starting

© © 0 N O 0o 0o B~ B W WDN PP

Limiting Server Shutdown Time During Scale Down Operations

=Y
o

Configuring Script Actions

=
o

Configuring Heap Dump Actions

[EEY
N

Configuring Thread Dump Actions

12 Configuring Instrumentation

Concepts and Terminology
Instrumentation Scope
Configuration and Deployment
Joinpoints, Pointcuts, and Diagnostic Locations
Diagnostic Monitor Types

W NN PP P

Diagnostic Actions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page iv of ix

Instrumentation Configuration Files
XML Elements Used for Instrumentation
<Instrumentation> XML Elements
<wldf-instrumentation-monitor> XML Elements
Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types

© © oo o1 O b

Configuring Server-Scoped Instrumentation
Configuring Application-Scoped Instrumentation 10
Comparing System-Scoped to Application-Scoped Instrumentation 11
Overview of the Steps Required to Instrument an Application 12
Creating a Descriptor File for a Delegating Monitor 13
Creating a Descriptor File for a Custom Monitor 13
Defining Pointcuts for Custom Monitors 14
Annotation-based Pointcuts 16

13 Configuring the Dyelnjection Monitor to Manage Diagnostic Contexts

Contents, Life Cycle, and Configuration of a Diagnostic Context
Context Life Cycle and the Context ID
Dyes, Dye Flags, and Dye Vectors
Where Diagnostic Context Is Configured

Overview of the Process

Configuring the Dye Vector by Using the Dyelnjection Monitor
Dyes Supported by the Dyelnjection Monitor
PROTOCOL Dye Flags
THROTTLE Dye Flag
When Diagnostic Contexts Are Created

Using Throttling to Control the Volume of Instrumentation Events
Configuring the THROTTLE Dye
How Throttling is Handled by Delegating and Custom Monitors

0O N OO OO OO0 O b WDNDNPFP P

Using weblogic.diagnostics.context

14 Accessing Diagnostic Data With the Data Accessor

Data Stores Accessed by the Data Accessor
Accessing Diagnostic Data Online
Accessing Data Using the Remote Console
Accessing Data Programmatically Using Runtime MBeans
Using WLST to Access Diagnostic Data Online
Using the WLDF Query Language with the Data Accessor
Accessing Diagnostic Data Offline

W W W W NN NDN PP

Accessing Diagnostic Data Programmatically

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page v of ix

Resetting the System Clock Can Affect How Data Is Archived and Retrieved 8

15 Deploying WLDF Application Modules

Deploying a Diagnostic Module as an Application-Scoped Resource

Using Deployment Plans to Dynamically Control Instrumentation Configuration
Using a Deployment Plan: Overview

Creating a Deployment Plan Using weblogic.PlanGenerator

Sample Deployment Plan for Diagnostics

Enabling Java HotSwap

Deploying an Application with a Deployment Plan

D o1 o~ A WODN P

Updating an Application with a Modified Plan

16 Configuring and Using WLDF Programmatically

How WLDF Generates and Retrieves Data
Mapping WLDF Components to Beans and Packages
Programming Tools
Configuration and Runtime APIs
Configuration APIs
Runtime APIs
WLDF Packages
Programming WLDF: Examples
Example: DiagnosticContextExample.java
Example: HarvesterMonitor.java
Notification Listeners

N N o o o o o bW R B

HarvesterMonitor.java

[EnN
N

Example: IMXAccessorExample.java

17 Using Debug Patches

Dynamic Application of Debug Patches
Specifying the Debug Patch Directory
Configuring the WLDF Debug Patch Agent
WLST Commands for Debug Patches
Dynamically Activating a Debug Patch

W NN PR

Dynamically Deactivating Debug Patches

A Smart Rule Reference

About the Parameters You Specify for Smart Rules A-1
Cluster Scope Smart Rules A-3

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page vi of ix

ClusterLowThroughput A-4

ClusterHighProcessCpulLoadAverage A-5
ClusterHighThroughput A-7
ClusterLowPendingUserRequests A-8
ClusterHighStuckThreads A-10
ClusterLowQueuelength A-11
ClusterHighPendingUserRequests A-13
ClusterLowProcessCpulLoadAverage A-14
ClusterHighldleThreads A-16
ClusterLowSystemlLoadAverage A-17
ClusterHighQueueLength A-19
ClusterLowHeapFreePercent A-21
ClusterHighSystemLoadAverage A-22
ClusterHighHeapFreePercent A-24
ClusterLowSystemCpulLoadAverage A-25
ClusterLowldleThreads A-27
ClusterGenericMetricRule A-28
ClusterHighSystemCpulLoadAverage A-30
Server Scope Smart Rules A-32
ServerLowldleThreads A-34
ServerHighThroughput A-35
ServerGenericMetricRule A-36
ServerLowPendingUserRequests A-38
ServerLowProcessCpulLoadAverage A-39
ServerHighSystemLoadAverage A-40
ServerLowQueuelength A-42
ServerLowThroughput A-43
ServerHighQueuelLength A-44
ServerHighSystemCpulLoadAverage A-45
ServerHighPendingUserRequests A-47
ServerLowSystemCpulLoadAverage A-48
ServerHighHeapFreePercent A-49
ServerHighStuckThreads A-50
ServerHighProcessCpulLoadAverage A-52
ServerLowSystemLoadAverage A-53
ServerLowHeapFreePercent A-54
ServerHighldleThreads A-55

B WLDF Beans and Functions Reference

WLDF Beans Reference B-1
clusterRuntime B-1

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page vii of ix

domainRuntime B-2

instrumentationEvent B-3
log B-5
platform B-6
resource B-7
runtime B-7
Functions Reference B-8
wis:tableChanges B-8
wis:tableAverages B-9
wis:extract B-9
wlis:average B-10
wls:changes B-10
wis:aliveServersCount B-10

C WLDF Query Language

Components of a Query Expression C-1
Supported Operators C-1
Operator Precedence C-2
Numeric Relational Operations Supported on String Column Types C-3
Supported Numeric Constants and String Literals C-3
About Variables in Expressions C-3
Creating Policy Expressions C-4
Creating Log Event Policy Expressions C-4
Creating Instrumentation Event Policy Expressions C-5
Creating Harvester Policy Expressions C-6
Creating Data Accessor Queries C-7
Data Store Logical Names C-7
Data Store Column Names C-8
Creating Log Filter Expressions C-9
Building Complex Expressions C-9

D WLDF Instrumentation Library

Diagnostic Monitor Library D-1
Diagnostic Action Library D-9
TraceAction D-9
DisplayArgumentsAction D-10
TraceElapsedTimeAction D-11
TraceMemoryAllocationAction D-11
StackDumpAction D-12
ThreadDumpAction D-12

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page viii of ix

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

MethodInvocationStatisticsAction D-13
Instrumenting an Application with MethodInvocationStatisticsAction and Querying
the Results D-14
Configuring the Harvester to Collect MethodInvocationStatisticsAction Data D-17
Configuring Policies Based on MethodInvocationStatistics Metrics D-19
Using JMX to Collect Data D-19
MemoryAllocationStatisticsAction D-19
Using Wildcards in Expressions
Using Wildcards in Harvester Instance Names E-1
Examples E-1
Specifying Complex and Nested Harvester Attributes E-2
Examples E-3
Using the Accessor with Harvested Complex or Nested Attributes E-4
Using Wildcards in Policy Instance Names E-4
Specifying Complex Attributes in Harvester Policies E-5
WebLogic Scripting Tool Examples
WLST Commands for Diagnostics F-1
Example: Dynamically Creating Dyelnjection Monitors F-2
Example: Configuring a Policy and a JMX Action F-4
Example: Writing a IMXWatchNoatificationListener Class F-6
Example: Registering MBeans and Attributes For Harvesting F-9
Example: Setting the WLDF Diagnostic Volume F-12
Example: Capturing a Diagnostic Image F-12
Example: Retrieving a JFR File from a Diagnostic Image Capture F-14
WLDF Query Language-Based Policies
Types of Policies G-1
Policy Configuration Options G-1
Configuring Harvester Policies Using the WLDF Query Language G-2
Configuring Log Policies Using the WLDF Query Language G-3
Configuring Instrumentation Policies Using the WLDF Query Language G-4

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ix of ix

ORACLE’

Preface

Audience

This document describes and tells how to configure and use the monitoring and diagnostic
services provided by WebLogic Diagnostics Framework (WLDF).

WLDF provides features for monitoring and diagnosing problems in running WebLogic Server
instances and clusters and in applications deployed to them. Therefore, the information in this
document is directed both to system administrators and to application developers. It also
contains information for third-party tool developers who want to build tools to support and
extend WLDF.

It is assumed that readers are familiar with Web technologies and the operating system and
platform where WebLogic Server is installed.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation

e Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server describes
how to use WLDF logging services to monitor server, subsystem, and application events.

e The WLDF system resource descriptor conforms to the webl ogi c- di agnosti cs. xsd
schema, available at http://xmIns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-

diagnostics.xsd.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd

ORACLE
Preface

Samples and Tutorials

Oracle provides a variety of code examples and tutorials that show WebLogic Server
configuration and API use, and provide practical instructions on how to perform key
development tasks. For more information, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

WLDF Samples Available for Download

Additional WLDF samples for download can be found at htt p: / / www. or acl e. coml

t echnet wor k/ i ndexes/ sanpl ecode/ i ndex. ht m . These examples are distributed as . zi p files
that you can unzip into an existing WebLogic Server samples directory structure. These
samples include Oracle-certified ones, as well as samples submitted by fellow developers.

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which user supply
particular values.

nonospace Monospace type indicates commands within a
paragraph, URLSs, code in examples, text that
appears on the screen, or text that user enter.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page ii of ii

http://www.oracle.com/technetwork/indexes/samplecode/index.html
http://www.oracle.com/technetwork/indexes/samplecode/index.html

Introduction

The WebLogic Diagnostics Framework (WLDF) is a monitoring and diagnostic framework that
defines and implements a set of services that run within WebLogic Server processes and
participate in the standard server life cycle.

Using WLDF, you can create, collect, analyze, archive, and access diagnostic data generated
by a running server and the applications deployed within its containers. This data provides
insight into the run-time performance of servers and applications and enables you to isolate
and diagnose faults when they occur.

What Is the WebLogic Diagnostics Framework?

The WebLogic Diagnostics Framework (WLDF) is a suite of services and APIs that provide the
ability to collect and surface metrics that provide visibility into server and application
performance.Independent Software Vendors (ISVs) can use these APIs, using standard
interfaces such as WLST, REST, and JMX, to develop custom monitoring and diagnostic tools
for integration with WLDF.

The suite of services, components, and APIs provided by WLDF for collecting and analyzing
data includes the following:

* Integration with Oracle HotSpot—If WebLogic Server is configured with Oracle HotSpot,
WLDF can generate diagnostic information about WebLogic Server that is captured in the
Java Flight Recorder file.

e Built-in diagnostic system modules—A set of diagnostic modules available out-of-the-box
that you can enable dynamically to capture basic performance data about the JVM, the
WebLogic Server run time, and primary WebLogic Server subsystems, including JDBC
data sources, messaging, and Jakarta EE containers, such as servlets, EJBs, and
resource adapters. The built-in diagnostic modules can also be cloned and modified,
providing a simple way to create custom diagnostic system modules.

* Monitoring Dashboard—Graphically presents the current and historical operating state of
WebLogic Server and hosted applications, including information gathered by the built-in
diagnostic system modules. The Monitoring Dashboard, which is accessed from the
WebLogic Remote Console, provides a set of tools for organizing and displaying diagnostic
data into views, which surface some of the more critical run-time WebLogic Server
performance metrics and the change in those metrics over time.

« Diagnostic Image Capture—Creates a diagnostic snapshot from the server that can be
used for post-failure analysis. The diagnostic image capture includes Java Flight Recorder
data, if it is available, that can be viewed in Java Mission Control.

* Archive—Captures and persists data events, log records, and metrics from server
instances and applications.

e Instrumentation—Adds diagnostic code to WebLogic Server instances and the applications
running on them to execute diagnostic actions at specified locations in the code. The
Instrumentation component provides the means for associating a diagnostic context with
requests so they can be tracked as they flow through the system. The WebLogic Remote
Console includes a Performance page, which shows real-time and historical views of
method performance information that has been captured through the WLDF

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 2

ORACLE Chapter 1
What Is the WebLogic Diagnostics Framework?

instrumentation capabilities, serving as a tool that can help identify performance problems
in applications.

* Harvester—Captures metrics from run-time MBeans, including WebLogic Server MBeans
and custom MBeans, which can be archived and later accessed for viewing historical data.

* Policies and Actions—Provides the means for monitoring server and application states and
sending notifications based on criteria set in the policies.

* Logging services—Manage logs for monitoring server, subsystem, and application events.
The WebLogic Server logging services are documented separately from the rest of the
WebLogic Diagnostics Framework. See Related Documentation.

WLDF provides a set of standardized application programming interfaces (APIs) that enable
dynamic access and control of diagnostic data, as well as improved monitoring that provides
visibility into the server. These APIs can be accessed using the JMX and the WebLogic
Scripting Tool (WLST), as described in Configuring and Using WLDF Programmatically.

WLDF enables dynamic access to server data through standard interfaces, and the volume of
data accessed at any given time can be modified without shutting down and restarting the
server.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 2

Overview of the WLDF Architecture

WebLogic Diagnostics Framework (WLDF) consists of various components that work together
to collect, archive, and access diagnostic information about a WebLogic Server instance and
the application it hosts.This chapter provides an overview of the WLDF architecture, describes
its components, and illustrates how all components work together to collect and access
diagnostic information about a WebLogic Server and the application it hosts.

@® Note

Concepts are presented in this section in a way to help you understand how WLDF
works. Some of this differs from the way WLDF is surfaced in its configuration and run-
time APIs and in the WebLogic Server Console. If you want to start configuring and
using WLDF right away, you can safely skip this discussion and start with Using the
Built-in Diagnostic System Modules.

The following topics summarize WLDF and its architectural components:

Overview of the WebLogic Diagnostics Framework

The WLDF components interact with each other to process data at the server level. WLDF
consists of the following components:

« Data creators (data publishers and data providers that are distributed across WLDF
components)

» Data collectors (the Logger and the Harvester components)
e Archive component

e Accessor component

¢ Instrumentation component

* Policies and Actions component

* Image Capture component

e Monitoring Dashboard

Data creators generate diagnostic data that is consumed by the Logger and the Harvester.
Those components coordinate with the Archive to persist the data, and they coordinate with
the Policies and Actions subsystem to provide automated monitoring. The Accessor interacts
with the Logger and the Harvester to expose current diagnostic data and with the Archive to
present historical data. The Image Capture facility provides the means for capturing a
diagnostic snapshot of a key server state. The Major WLDF components are shown in

Figure 2-1.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 7

ORACLE Chapter 2
Data Creation, Collection, and Instrumentation

Figure 2-1 Major WLDF Components

Instrumentation . nfﬂoggit?:ns
Data Creators Data Collectors Accessor
Data Publishers Logger
Data Providers Harvester B":;AL‘E;':E'E
C';':;;Efe Archive

All of the framework components operate at the server level and are only aware of server
scope. All the components exist entirely within the server process and participate in the
standard server lifecycle. All artifacts of the framewaork are configured and stored on a per
server basis.

Data Creation, Collection, and Instrumentation

Diagnostic data is collected from a number of logically classified sources.The sources are
logically classified as either data providers, data creators that are sampled at regular intervals
to harvest current values, or data publishers, data creators that synchronously generate
events.

Data providers and data publishers are distributed across components, and the generated data
can be collected by the Logger or the Harvester, as shown in Figure 2-2.

Figure 2-2 Relationship of Data Creation Components to Data Collection Components

Service Codebase

Catalog
Logging
Logger —>
Debugging
Database
Instrumentation
. > Archiver —
Monitors
Database

MBean Server

WLS Runtime
MBeans

Harvester

Custom
MBeans

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 7

ORACLE

Archive

Chapter 2
Archive

Figure 2-2 shows that invocations of the server logging infrastructure serve as inline data
publishers, and that the generated data is collected as events. (The logging infrastructure can
be invoked through the catalog infrastructure, the debugging model, or directly through the
Logger.)

The Instrumentation component creates monitors and inserts them at well-defined points in the
flow of execution. These monitors publish data directly to the Archive.

Components registered with the MBean Server may also make themselves known as data
providers by registering with the Harvester. Collected data is then exposed to both the Policies
and Actions system for automated monitoring and to the Archive for persistence.

The Archive component of WLDF captures the state of the system and archives it for future
access in diagnosing critical faults in the system. It creates a historical archive using several
persistent components.

The past state is often critical in diagnosing faults in a system. This requires that the state be
captured and archived for future access, creating a historical archive. In WLDF, the Archive
meets this need with several persistence components. Both events and harvested metrics can
be persisted and made available for historical review.

Traditional logging information, which is human readable and intended for inclusion in the
server log, is persisted through the standard logging appenders. New event data that is
intended for system consumption is persisted into an event store using an event archiver.
Metric data is persisted into a data store using a data archiver. The relationship of the Archive
to the Logger and the Harvester is shown in Figure 2-3.

The Archive provides access interfaces so that the Accessor may expose any of the persisted
historical data.

Figure 2-3 Relationship of the Archive to the Logger and the Harvester

Logger Archive

Filters —> LogAppenders —> Log Storage

Instrumentation

Monitors —> Event Archive — > Event Storage

Harvester

Harvest Table ———> Data Archive ——> Data Storage

Policies and Actions

The Policies and Actions component of WLDF is used to create automated monitors that
observe specific diagnostic states and send notifications based on configured rules.

A policy can monitor log data, event data from the Instrumentation component, or metric data
from a data provider that is harvested by the Harvester. The Policy Manager is capable of
managing policies that are composed of a number of policy expressions. These relationships
are shown in Figure 2-4.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 7

ORACLE Chapter 2
Data Accessor

Figure 2-4 Relationship of the Logger and the Harvester to the Policies and Actions
System

Logger

Policy Appender
Policies and Actions

Instrumentation Policy — Action
) —
Monitors L
Policy Expression
Harvester

Harvest Table

One or more actions can be configured for use by a policy. By default, every policy logs an
event in the server log. SMTP, SNMP, JMX, elastic, REST, script, log, and JMS actions are also
supported.

Data Accessor

The Data Accessor component of WLDF provides access to all the data collected by WLDF,
including log, event, and metric data. It interacts with the Archive component to get historical
data including logged event data and persisted metrics.

When accessing data in a running server, a JMX-based access service is used. The Accessor
provides for data lookup by type, by component, and by attribute. It permits time-based filtering
and, in the case of events, filtering by severity, source and content.

Tools may need to access data that was persisted by a currently inactive server. In this case,
an offline Accessor is also provided. You can use it to export archived data to an XML file for
later access. To use the Accessor in this way, you must use the WebLogic Scripting Tool
(WLST) and must have physical access to the machine.

The relationship of the Accessor to the Harvester and the Archive is shown in Figure 2-5.

Figure 2-5 Relationship of the Online and Offline Accessors to the Archive

Accessor Archive
Historical Log Appenders
Event Archive
Offline Accessor

Historical Data Archive

Monitoring Dashboard and Request Performance Pages

The WebLogic Remote Console displays the Monitoring Dashboard and Diagnostics Request
Performance pages. The diagnostics data collected is visually represented in these pages. The
Monitoring Dashboard displays the current and historical operating state of WebLogic Server

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 7

ORACLE

Chapter 2
Diagnostic Image Capture

and hosted applications. The Diagnostics Request Performance page shows real-time and
historical views of method performance information.

The following sections provide more information about the web pages that visually display the
diagnostic data:

Monitoring Dashboard

The Monitoring Dashboard displays the current and historical operating state of WebLogic
Server and hosted applications by providing visualizations of metric runtime MBean attributes,
which surface some of the more critical runtime performance metrics and the change in those
metrics over time. Historical operating state is represented by collected metrics that have been
persisted into the Archive. To view collected metrics from the Archive, you must configure the
Harvester to capture the data you want to monitor.

The Monitoring Dashboard displays metric information in a series of views. A view is a
collection of one or more charts that display metrics. The Monitoring Dashboard includes a
predefined set of built-in views of available runtime metrics for all running WebLogic Server
instances in the domain. Built-in views surface some of the more critical runtime WebLogic
Server performance metrics and serve as examples of the Monitoring Dashboard's graphic
capabilities.

Custom views are available only to the user who creates them. Custom views are
automatically persisted and can be accessed again when you restart the Monitoring
Dashboard sessions.

Diagnostics Request Performance Page

The Diagnostics Request Performance page of the WebLogic Remote Console shows real-
time and historical views of method performance information that is captured using the
Instrumentation component. To view request performance information, you must first configure
the Instrumentation component to make that data available.

Diagnostic Image Capture

The Diagnostic Image Capture component captures the key server state as a diagnostic
image. The diagnostic image is a diagnostic snapshot of the server state used in diagnosing
problems.

Diagnostic Image Capture support gathers the most common sources of the key server state
used in diagnosing problems. It packages that state into a single artifact which can be made
available to support technicians, as shown in Figure 2-6. The diagnostic image is in essence a
diagnostic snapshot or dump from the server, analogous to a UNIX core dump.

If WebLogic Server is configured with Oracle HotSpot, and Java Flight Recorder is enabled,
the diagnostic image capture includes all available Java Flight Recorder data from all
producers. Furthermore, if WLDF is configured to generate WebLogic Server diagnostic
information captured by Java Flight Recorder, the JFR file includes that information as well.
The JFR file can be extracted from the diagnostic image capture and viewed in Java Mission
Control. See Using WLDF with Java Flight Recorder.

Image Capture support includes:

e On-demand capture, which is the creation of a diagnostic image capture by means of an
operation or command issued from the WebLogic Remote Console, WLST script, or IMX
application.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 7

ORACLE’

Chapter 2
How It All Fits Together

* Image action, which is automatically creating a diagnostic image capture in response to the
triggering of an associated Harvester policy, Log policy, or Instrumentation policy
expression. For example, a Harvester policy that monitors runtime MBean attributes in a
running server can execute an image action if the metrics harvested from specific runtime
MBean instances indicate a performance issue. Data in the diagnostic image capture can
be analyzed to determine the likely causes of the issue.

For more information about diagnostic image capture, see:

e Configuring and Capturing Diagnostic Images

e Configuring Image Actions

Figure 2-6 Diagnostic Image Capture

1254
Ju -
Image Action

h’h Image Capture

—.::_rl
° ° » ﬁlm
Console @ > & @ E g@ v
Y 2 E - b 4 - 3 E
I Image Image Image
> _— Source Manager Artifact
WLST
S, J
IMX

How It All Fits Together

The components of the WLDF work together to collect data and diagnose faults in running
server.

Figure 2-7 shows how all the parts of WLDF fit together.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 7

ORACLE’

Figure 2-7

Oracle HotSpot

WLDF Flight
Recorder Event
Producers

Java
Flight
Recorder

Flight Recorder
Image
Resource

!

Image Artifact
with Flight
Recorder Data

Descriptor

Config

Data Creators

Data
Publishers

Data
Providers

Image Capture

Image
Source

Image
Manager

!

Image Artifact
without Flight
Recorder Data

Smart
Rules

Instrumentation

Chapter 2
How It All Fits Together

Overall View of the WebLogic Diagnostics Framework

Policies and Actions

Policy

Expression _,
Beans

Logger

Y

Log
Appenders

Log
Storage

e

Policy

Expresion

Collectors

Archive

Event
Archiver

l

Event
Storage

Action
Harvester
Accessor
Historical
r
Data
Achiver
Data
Storage

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

Using the Built-in Diagnostic System Modules

The built-in diagnostic system modules are provided by the WebLogic Diagnostics Framework
(WLDF) as a simple and easy-to-use mechanism for performing basic health and performance
monitoring of a WebLogic Server instance.

Overview

The WLDF built-in diagnostic modules collect data from key WebLogic Server run-time
MBeans that monitor the main components of a server instance.Those main components are:

« JVM
e WebLogic Server run time
« JDBC, JMS, transaction, and logging services

« Jakarta EE containers hosting servlets, EJBs, and Connector Architecture resource
adapters

When configured in a WebLogic Server instance, the built-in diagnostic modules are
particularly useful for providing a low-overhead, historical record of server performance. As
server workload changes over time, or the performance characteristics change as a result of
updates made to the server's configuration, you can examine the data collected by the built-ins
to obtain details about performance changes. For example, if you notice a slowdown in the
response time of one or more deployed applications, you can use the Monitoring Dashboard or
the Metrics Log table in the WebLogic Remote Console to examine the data collected by the
built-ins for performance bottlenecks associated with one or more WebLogic Server
subsystems. Then using other diagnostic tools, such as custom diagnostic modules, policies
and actions, or Java Flight Recorder, you can drill down further into details about those
bottlenecks to pinpoint specific causes and test the effectiveness of solutions.

In WebLogic domains configured to run in production mode, a built-in diagnostic module is
enabled by default in each server instance. (In domains configured to run in development
mode, built-ins are disabled by default.) However, a built-in diagnostic module can be enabled
or disabled for a server instance easily and dynamically, using either the WebLogic Remote
Console or WLST.

Data collected by the built-in diagnostic modules can be accessed easily, using tools such as
the Metrics Log table in the WebLogic Remote Console or the Monitoring Dashboard. The data
can also be accessed programmatically using JMX, WLST, or REST.

Types of Built-in Diagnostic System Modules

WLDF provides three built-in diagnostic system module types:

* Low— Captures the most important data from key WebLogic Server runtime MBeans
(enabled by default in production mode).

e Medi um— Captures additional attributes from the WebLogic Server runtime MBeans
captured by Low, and also includes data from additional runtime MBeans.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 2

ORACLE’

Chapter 3
Overview

* H gh — Captures the most verbose data from attributes on the WebLogic Server runtime
MBeans captured by Medi um and also includes data from a larger number of runtime

MBeans.

The built-in diagnostic system module type configured for a server instance is specified in the
WL.DFSer ver Di agnost i cMBean. W.DFBuUI | ti nSyst enResour ceType=stri ng MBean attribute,
where st ring can be set to one of Low, Medi um H gh, or None.

Data Collected by Built-in Diagnostic System Modules

When you enable a built-in diagnostic module in a WebLogic Server instance, WLDF begins
collecting data from key WebLogic Server run-time MBeans to obtain information, such as the

following:

Data Category

Example of Information Collected

JVM statistics

Amount of available free memory and JVM processor load on host machine.

Thread statistics

Threads being held by a request and the number of pending user requests.

JDBC subsystem
statistics

Examples of information collected may include:

* Number of connections currently in use by applications.

e Average amount of time taken to create a physical connection to the
database.

. Number of leaked connections (that is, connections reserved from the
data source but not returned to the data source).

. Number of available and idle database connections.

e Cumulative, running count of requests for a connection from a data
source.

JMS subsystem
statistics

Examples of information collected may include statistics about:
¢ WebLogic JMS consumers and producers, such as number of messages
pending by a consumer or producer.

. JMS destinations, such as current number of messages in the
destination, and number of pending messages in the destination.

e The current number of connections to WebLogic Server.

Logging subsystem
statistics

The number of log messages that the WebLogic Server instance has
generated.

JTA subsystem

Examples of information collected may include:
* Number of active transactions on the server.
« Total number of seconds that transactions were active for all committed

transactions.
Jakarta EE container Examples of information collected may include statistics about:
statistics « EJBs, such as the EJB cache, EJB pool, and EJB transaction statistics.
. Servlets, such as the average amount of time all invocations of a servlet
have executed since the servlet was created.
@® Note

The specific configuration of each built-in diagnostic module is internal to WebLogic
Server and subject to change in a future release.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 2

Using WLDF with Java Flight Recorder

The integration of the WebLogic Diagnostics Framework (WLDF) with Java Flight Recorder
enables WebLogic Server events to be propagated to the Java Flight Recorder for inclusion in
a common data set for runtime or post-incident analysis.The Flight Recording data is also
included in WLDF diagnostic image captures, which enables you to capture flight recording
snapshots based on WLDF policies. You can use this capability to capture and analyze, in a
single view, the runtime system information for both the JVM and the Fusion Middleware
components running on it.

This chapter also explains common usage scenarios that show how this integration can
provide for a comprehensive performance analysis and diagnostic foundation for production
systems based on WebLogic Server.

About Java Flight Recorder

Java Flight Recorder is a performance monitoring and profiling tool that records diagnostic
information on a continuous basis. The Java Flight Recorder is available even when there is a
catastrophic failure such as a system crash.

Java Flight Recorder is available in Oracle HotSpot. When WebLogic Server is configured with
HotSpot, Java Flight Recorder is not enabled by default. See Using Java Flight Recorder with
Oracle HotSpot for information about how to enable Java Flight Recorder with WebLogic
Server.

@® Note

For the most current information about configurations supported in this release of
WebLogic Server, see Oracle Fusion Middleware Supported System Configurations on
the Oracle Technology Network.

Java Flight Recorder maintains a buffer of diagnostics and profiling data, called a flight
recording or a JFR file, that you can access whenever you need it. The flight recording
functions in a manner similar to an aircraft "black box" in which new data is continuously added
and older data is stripped out, as shown in Figure 4-1.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 6

ORACLE Chapter 4
About Java Flight Recorder

Figure 4-1 Circular Flight Recording Buffer

MNew
Data

Flight

Time Recc:rding

Old
Data

The data contained in the JFR file includes events from the JVM and from any other event
producer, such as WebLogic Server and Oracle Dynamic Monitoring System (DMS). The JFR
file can be analyzed at any time, using Java Mission Control, to examine the details of system
execution flow that occurred leading up to an event.

The amount of additional processing overhead that results when Java Flight Recorder is
enabled, and also configure WLDF to generate WeblLogic Server diagnostics to be captured by
Java Flight Recorder, is minimal. This makes it ideal to be used on a full time basis, especially
in production environments where it adds the greatest value.

Java Flight Recorder provides the following key benefits:

¢ Designed to run continuously — When Java Flight Recorder is configured to run full-time,
with both JVM and WLDF events captured in the flight recording, diagnostic data is always
available at the time an event occurs, including a system crash. This ensures that a record
of diagnostic data leading up to the event is available, allowing you to diagnose the event
without having to recreate it.

« Comprehensive data — Java Flight Recorder combines data generated by tools such as
the Runtime Analyzer and the Latency Analysis Tool and presents it in one place.

¢ Integration with event providers — HotSpot includes a set of APIs that allow Java Flight
Recorder to monitor additional system components, including WebLogic Server, Oracle
Dynamic Monitoring System (DMS), and other Oracle products.

For more information about Java Flight Recorder, see Java Flight Recorder Runtime Guide at
the following location:

http://docs.oracle.com/javacomponents/index.html

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 6

http://docs.oracle.com/javacomponents/index.html

ORACLE Chapter 4
Using Java Flight Recorder with Oracle HotSpot

Using Java Flight Recorder with Oracle HotSpot

Java Flight Recorder is available with Oracle Hotspot. If WebLogic Server is configured with
Oracle HotSpot, Java Flight Recorder is disabled by default. Enable the Java Flight Recorder
to capture the WLDF diagnostic data.

To enable Java Flight Recorder, you must specify the following JVM options in the WebLogic
Server instance in which the JVM runs:

- XX: +Unl ockComrer ci al Feat ures - XX: +Fl i ght Recor der

@ Note

The sequence in which you specify JVM options to Hotspot is very important. The
options are processed from left to right, and option values are overwritten if there are
duplicates. Therefore, note the following:

* HotSpot does not recognize the Fl i ght Recor der option unless it is preceded by
the Unl ockConmrer ci al Feat ur es option.

« If you specify only the Fl i ght Recor der option, or you specify Fl i ght Recor der
before specifying Unl ockConmrer ci al Feat ur es, the HotSpot JVM does not start.

Key Features of WLDF Integration with Java Flight Recorder

WLDF integration with Java Flight Recorder provides several useful features, including having
WebLogic Server events captured in the flight recording, the ability to throttle the volume of
data captured, tools for downloading diagnostic image captures, and more.

The key features provided by WLDF to leverage integration with Java Flight Recorder include
the following:

« WLDF diagnostic data captured in a flight recording

WLDF can be configured to generate diagnostic data about WebLogic Server events that
is captured in the flight recording. Captured events include those from components such
as: web applications; EJBs; JDBC, JTA, and JMS resources; resource adapters; and
WebLogic web services.

e WLDF diagnostic volume control

The ability to generate WebLogic Server event data for the Flight Recording is controlled
by the WLDF diagnostic volume configuration. This control also determines the amount of
WebLogic Server event data that is captured by Java Flight Recorder, and can be adjusted
to include more, or less, data for each WebLogic Server event that is generated.

@ Note
— By default, the WLDF diagnostic volume is set to Low.

— The WLDF diagnostic volume setting does not affect explicitly configured
diagnostic modules or the built-in diagnostic modules.

e Automatic throttling of generated events under load

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 6

ORACLE

Chapter 4
Java Flight Recorder Use Cases

As processing load rises on a given WebLogic Server instance, WLDF automatically
begins throttling the number of incoming WebLogic Server requests that are selected for
event generation and recording into the JFR file. The degree of throttling is adjusted
continuously as system load rises and falls.

Throttling provides three key benefits:

— The overhead of capturing events generated by WLDF for Java Flight Recorder
remains minimized, which is especially important when systems are under load.

— The time interval encompassed in the flight recording buffer is maximized, giving you a
better historical record of data.

— Throttling has the effect of sampling incoming WebLogic Server requests, maintaining
high performance while still providing an accurate overall view of system activity under
load.

@® Note

Throttling affects only the Flight Recording data that is captured by WLDF. It does
not affect data captured by other event producers, such as the JVM.

WLDF diagnostic image capture support for JFR files

WLDF diagnostic image capture automatically includes the JFR file, if one has been
generated by Java Flight Recorder. The JFR file includes data generated by all active
event producers, including WebLogic Server. An image captured using the Policies and
Actions component may contain the JFR file, if available.

WLST commands for downloading the contents of diagnostic image captures

WLST includes a set of commands for downloading the contents of diagnostic image
captures, described in WLST Online Commands for Downloading Diagnostics Image
Captures. Although these commands are generally useful for listing, copying, and
downloading all entries contained in the diagnostic image capture, they can also be used
for obtaining the JFR file, if available. Once obtained from the diagnostic image capture,
the JFR file can be viewed in Java Mission Control.

Java Flight Recorder Use Cases

Java Flight Recorder helps to resolve important diagnostic issues such as diagnosing critical
failure, and examining and reporting runtime data. When a critical failure occurs, the data
captured by Java Flight Recorder is useful for failure analysis. Likewise, capturing data at
specific time and at runtime help to diagnose data after and before a particular event.

This section summarizes the three common business cases of using the Java Flight Recorder
to resolve diagnostic issues:

For more information about scenarios using Java Flight Recorder, see also About Java Flight
Recorder in Java Flight Recorder Runtime Guide, available at the following URL.:

htt p://docs. oracl e. conl | avaconponent s/ i ndex. ht n

Diagnosing a Critical Failure — The "Black Box"

When a "catastrophic" failure occurs, the content of the Java Flight Recorder buffer can be
made available for post-failure analysis in a manner analogous to the use of an aircraft's black

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 6

http://docs.oracle.com/javacomponents/index.html

ORACLE

Chapter 4
Java Flight Recorder Use Cases

box. Examples of such failures include a JVM crash or an out-of-memory error (OOME)
resulting in an application terminating.

When these situations arise, the flight recording contains the following information, which can
be helpful in determining the cause of the failure:

* JVM core dump, including metadata about the Java Flight Recorder configuration at the
time of the crash. Furthermore, depending on the disk storage parameters that are set, the
Java Flight Recorder data buffer might contain a certain amount of data.

* WebLogic Server events, captured by WLDF, that preceded the failure.

Java Flight Recorder uses a combination of memory and disk to store its buffer. The most
recent data is stored in memory and is flushed out to disk as it "ages". In this way, the on-disk
data can be available even after a power failure or similar catastrophic event; only the most
recent data will be unavailable (for example, the data that had not yet been flushed to disk).
The text dump file will contain metadata about the Java Flight Recorder configuration at the
time of the crash, including the path to the data buffer file when applicable.

Profiling During Performance Testing or in Production

Profiling involves capturing data beginning at a specific point in time so that, later, you can
analyze the events that were generated after that point. In contrast to real-time diagnostics
reporting, described in the following section, profiling involves analyzing the diagnostic data
generated after a particular event occurs, as opposed to the data that precedes it.

Profiling with Java Flight Recorder optimizes the ability to perform deep analysis of lock
contention and causes of latency.

Real-Time Application Diagnostics and Reporting

It is particularly useful to examine diagnostic data generated during run time when a particular
event occurs for the purposes of understanding the system activity that preceded the event; for
example, system activity occurring moments before a serious error message is generated. By
using the diagnostic capabilities available in WLDF in conjunction with Java Flight Recorder,
you can capture a large amount of system-wide diagnostic data the moment a problem occurs.
You can then leverage the capabilities of Java Mission Control to quickly correlate that event
with other system activity and process execution data within the "snapshot in time" that the
JFR file provides, enabling you to quickly isolate likely causes of the problem.

One WLDF feature that is particularly useful in conjunction with Java Flight Recorder is the
image action. An image action generates a diagnostic image capture in response to the
triggering of a policy that is configured in a diagnostic system module. The policy monitors the
server environment for one or more specific conditions, and when those conditions occur, the
policy can automatically executes an image action. When Flight Recorder is enabled, the
diagnostic image capture automatically includes the JFR file. The JFR file can then be
extracted from the diagnostic image capture and examined immediately in Java Mission
Control or stored for later analysis. An image action, used when WLDF data is captured by
Java Flight Recorder, is particularly well suited for real-time diagnosis of intermittent problems.

Image action is part of the Policies and Actions system in WLDF. To set up an image action,
you create one or more individual policies. A policy includes a Java EL expression to specify
the event for the policy to detect. For example, the following log policy expression detects the
server log message with severity level Critical and ID BEA- 149618:

| og.severityString == "Critical' && |0g.nmessageld == ' BEA-149618'

Policies can monitor any of the following:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 6

ORACLE’

Chapter 4
Obtaining the Flight Recording File

* Runtime MBean instances in the local runtime MBean server

A scheduled policy can execute an image action if runtime MBean attributes detect a
performance issue, such as high memory utilization rates or problems with open socket
connections to the server.

* Messages published to the server log

A log policy can execute an image action if a specific message, severity level, or string is
issued.

* Event generated by the WLDF Instrumentation component

An event policy can execute an image action if an instrumentation service generates a
particular event.

See the following topics:

» Configuring Policies and Actions

e Configuring Image Actions

The following section explains how to obtain the JFR file from the diagnostic image capture:

e Obtaining the Flight Recording File

Obtaining the Flight Recording File

The diagnostic image capture is a single Java Flight Recorder (JFR) file that contains
individual images produced by different server subsystems. The JFR file is included in the
diagnostic image as Fl i ght Recording. jfr.

A diagnostic image capture can be generated on-demand — for example, from the WebLogic
Remote Console, Fusion Middleware Control, WLST, or a JMX application — or it can be
generated as the result of an image action.

To view the contents of the JFR file, you first need to extract it from the diagnostic image
capture as described in Configuring and Capturing Diagnostic Images. Once you have
extracted the JFR file, you can view its contents in Java Mission Control.

For an example WLST script that retrieves the JFR file from a diagnostic image file and saves
it to a local directory, see Example: Retrieving a JFR File from a Diagnostic Image Capture.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 6

Understanding WLDF Configuration

The WebLogic Diagnostics Framework (WLDF) provides several features for generating,
gathering, analyzing, and persisting diagnostic data from WebLogic Server instances and from
applications deployed to them.For server-scoped diagnostics, some WLDF features are
configured as part of the configuration for a server in a domain. Other features are configured
as system resource descriptors that can be targeted to servers (or clusters). For application-
scoped diagnostics, diagnostic features are configured as resource descriptors for the
application.

For general information about WebLogic Server domain configuration, see Understanding
Oracle WebLogic Server Domains in Understanding Domain Configuration for Oracle
WebLogic Server.

Configuration MBeans and XML

WLDF is configured using configuration MBeans (Managed Beans), and the configuration is
persisted in the XML configuration files. The configuration MBeans are instantiated at startup,
based on the configuration settings in confi g. xm . When you modify a configuration by
changing the values of MBean attributes, those changes are persisted in the XML files.

Configuration MBean attributes map directly to configuration XML elements. For example, the
Enable attribute of the WLDFInstrumentationBean maps directly to the <enabled> sub-element
of the <instrumentation> element in the resource descriptor file (configuration file) for a
diagnostic module. If you change the value of the MBean attribute, the content of the XML
element is changed when the configuration is saved. Conversely, if you were to edit an XML
element in the configuration file directly (which is not recommended), the change to an MBean
value would take effect after the next session is started.

For more information about WLDF Configuration MBeans, see WLDF Configuration MBeans
and Their Mappings to XML Elements. For general information about how MBeans are
implemented and used in WebLogic Server, see Understanding WebLogic Server MBeans in
Developing Custom Management Ultilities Using JMX for Oracle WebLogic Server.

Tools for Configuring WLDF

You can configure the WLDF in several ways such as using the built-in diagnostic modules,
WebLogic Remote Console, WebLogic Scripting Tool (WLST), JMX and WLDF configuration
beans, and editing the XML configuration files.

Refer to the following sections for more information about the tools:

« Use the built-in diagnostic system modules, which provide a simple and easy-to-use
mechanism for performing basic health and performance monitoring of a WebLogic Server
instance. See Using the Built-in Diagnostic System Modules.

* Write scripts to be run in the WebLogic Scripting Tool (WLST). For specific information
about using WLST with WLDF, see WebLogic Scripting Tool Examples. Also see Using the
WebLogic Scripting Tool in Understanding the WebLogic Scripting Tool for general
information about using WLST.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 15

ORACLE’

Chapter 5
How WLDF Configuration Is Partitioned

e Configure WLDF programmatically using JMX and the WLDF configuration MBeans. See
Configuring and Using WLDF Programmatically for specific information about programming
WLDF. See MBean Reference for Oracle WebLogic Server and browse or search for
specific MBeans for programming reference.

» Edit the XML configuration files directly. This documentation explains many configuration
tasks by showing and explaining the XML elements in the configuration files. The XML is
easy to understand, and you can edit the configuration files directly, although it is
recommended that you do not. (If you have a good reason to edit the files directly, you
should first generate the XML files by configuring WLDF in the WebLogic Remote Console.
Doing so provides a blueprint for valid XML.)

® Note

If you make changes to a configuration by editing configuration files, you must
restart the server for the changes to take effect.

How WLDF Configuration Is Partitioned

You can use WLDF to perform diagnostics tasks for server instances, clusters, and for
applications.

Server-Level Configuration

You configure the following WLDF components as part of a server instance in a domain. The
configuration settings are controlled using MBeans and are persisted in the domain's
config.xn file.

* Diagnostic Image Capture
* Diagnostic Archives

See Configuring Diagnostic Image Capture and Diagnostic Archives.

You configure the following WLDF components as the parts of one or more diagnostic system
modules that can be deployed to one or more server instances or clusters. These configuration
settings are controlled using beans and are persisted in one or more diagnostic resource
descriptor files (configuration files) that can be targeted to one or more server instances or
clusters.

e Harvester (for collecting metrics)
* Policies and Actions
e Instrumentation

See Configuring Diagnostic System Modules.

Application-Level Configuration

You can use the WLDF Instrumentation component with applications, as well as at the server
level. The Instrumentation component is configured in a resource descriptor file deployed with
the application in the application's archive file. See Configuring Diagnostic Modules for

Applications.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 15

ORACLE Chapter 5
Configuring Diagnostic Image Capture and Diagnostic Archives

Configuring Diagnostic Image Capture and Diagnostic Archives

Configure the Diagnostic Image Capture and Diagnostic Archive components in the
config.xm file for a domain. The server configuration details are defined in the <server -
di agnosti c-confi g > element of the XML configuration file.

The <server - di agnosti c- confi g> element is a child of the <server > element in a domain, as
shown in Example 5-1.

Example 5-1 Sample WLDF Configuration Information in the config.xml File for a
Domain

<domai n>
<server>
<name>nyser ver </ nane>
<server-diagnostic-config>
<image-dir>logs/diagnostic_images</image-dir>
<image-timeout>3</image-timeout>
<diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
<diagnostic-data-archive-type>FileStoreArchive
</diagnostic-data-archive-type>
</server-diagnostic-config>
</ server>
<I-- Qther server elements to configure other servers in this domain -->
<l-- O her domain-based configuration elenents, including references to
W.DF systemresources, or diagnostic systemnodules. -->
</ domai n>

@ Note

If WebLogic Server is configured with Oracle HotSpot, and Java Flight Recorder is
enabled, the diagnostic image capture can optionally include a Java Flight Recorder
file, also called a JFR file, that includes WebLogic Server events. The JFR file can
then be viewed in Java Mission Control. See Using WLDF with Java Flight Recorder.

See the following topics:

e Configuring and Capturing Diagnostic Images

e Configuring Diagnostic Archives

Configuring Diagnostic Image Capture for Java Flight Recorder

The JFR file contains data for all events procedures that are enabled. When WebLogic Server
is configured with a supported version of Oracle HotSpot and Java Flight Recorder is enabled,
the JFR file is automatically included in the diagnostic image capture.

The amount of WebLogic Server event data that is included in the JFR file is determined by the
configuration of the WLDF diagnostic volume.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 15

ORACLE

Chapter 5
Configuring Diagnostic System Modules

® Note
Note the following:

o If WebLogic Server is configured with Oracle HotSpot, Java Flight Recorder is
disabled by default unless HotSpot is started using the JVM parameters described
in Using Java Flight Recorder with Oracle HotSpot.

* By default, the WLDF diagnostic volume is set to Low.

» For the most current information about configurations supported in this release of
WebLogic Server, including HotSpot support, see Oracle Fusion Middleware
Supported System Configurations on the Oracle Technology Network.

To include WebLogic Server event data in the JFR file:

1.

Ensure that WebLogic Server is configured with Oracle HotSpot, which installed separately
from WebLogic Server.

See Planning the Oracle WebLogic Server Installation in Installing and Configuring Oracle
WebLogic Server and Coherence.

Ensure that Java Flight Recorder is enabled.

In a default installation of Oracle HotSpot with WebLogic Server, Java Flight Recorder is
disabled. For information about enabling Java Flight Recorder with HotSpot and WebLogic
Server, see Using Java Flight Recorder with Oracle HotSpot.

Set the WLDF diagnostic volume as appropriate. For general use, Oracle recommends the
default setting of Low. However, you can increase the volume of WebLogic Server event
data that is generated, as appropriate, by setting the volume to Medi umor Hi gh.

Note that the WLDF diagnostic volume setting has no impact on data recorded for other
event producers, such as the JVM.

@® Note

If the WLDF diagnostic volume is set to O f, and Java Flight Recorder has not been
explicitly disabled, the JFR file continues to include JVM event data and is always
included in the diagnostic image capture.

Configuring Diagnostic System Modules

To configure and use the Instrumentation, Harvester, and Policies and Actions components at
the server level, you must first create a system resource called a diagnostic system module,
which will contain the configurations for all those components. The configuration of diagnostic
system module is defined in a resource descriptor.

The diagnostic system module created at the server level contains the configurations for the
components. When creating a diagnostic system module, note the following:

Diagnostic system modules are globally available for targeting to servers and clusters
configured in a domain.

In a given domain, you can create multiple diagnostic system modules with distinct
configurations.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 15

ORACLE

Chapter 5
Configuring Diagnostic System Modules

You can target multiple diagnostic system modules to any given server or cluster.

WLDF Runtime Control allows you to dynamically enable or disable a diagnostic system
module without changing the domain configuration.

Runtime control also allows you to deploy, activate, deactivate, and undeploy a diagnostic
system module on-the-fly that is not defined in the domain configuration.

The following sections described the configuration of diagnostic system modules:

About the Resource Descriptor

A diagnostic system module has a corresponding resource descriptor that defines the
diagnostic module's configuration. A resource descriptor can be either configured or external:

A configured resource descriptor is one that is defined as part of the domain configuration,
and exists as a file in the DOVAI N_HOVE/ confi g/ di agnosti cs directory. A configured
resource descriptor is referenced by the domain confi g. xnl file, and the corresponding
diagnostic system module:

— Is persisted in the domain configuration.
— Is available to all servers and clusters in the domain.
— Can be targeted to a server or cluster through the domain configuration.

— Can be activated or deactivated dynamically using Runtime Control, regardless of
whether it is explicitly targeted to a server or cluster.

Any dynamic changes made to the activation state of the diagnostic system module are not
persisted across server restarts.

An external resource descriptor is one that is not referenced by the domain confi g. xm
file; that is, it is defined outside the domain configuration. The diagnostic system module
that is configured by an external resource descriptor may be deployed and activated on a
server using Runtime Control. However, this diagnostic system module:

— Is not persisted in the domain configuration (that is, it is not referenced by the domain
config.xm file.

— Can be deployed, activated, and deactivated only dynamically.
— Cannot have its deployment and activation state persisted in the domain configuration.

— Remains in memory only until the server or cluster on which it is activated is shut
down.

— Cannot be automatically available on server restart.

An external resource descriptor may exist in a file located outside the DOVAI N_HOVE/
confi g/ di agnosti cs directory, or may be passed as a String object using the WLDF
Runtime Control API (see Creating a Diagnostic System Module Based on an External
Resource Descriptor).

@ Note

The configuration of a diagnostic module conforms to the di agnosti cs. xsd schema,
available at ht t p: // xm ns. oracl e. com webl ogi ¢/ webl ogi c-di agnosti cs/ 2. 0/
webl ogi c- di agnosti cs. xsd.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 15

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd

ORACLE

Chapter 5
Configuring Diagnostic System Modules

Except for the name and list of targets for the diagnostic system module, all configuration
information for a diagnostic system module is contained in its resource descriptor file.
Example 5-2 shows portions of the descriptor file for a diagnostic system module named
myDi agnosti cModul e.

Example 5-2 Sample Structure of a Diaghostic System Module Descriptor File,
MyDiagnosticModule.xml

<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

Xsi:schenmaLocation="http://xnl ns. oracl e. conf webl ogi ¢/ webl ogi c- di agnosti cs/ 2. 0/
webl ogi c- di agnosti cs. xsd" >
<name>MyDiagnosticModule</ nane>
<i nstrument ati on>
<I'-- Configuration elements for zero or nore diagnostic nmonitors -->
</instrunmentation>
<harvest er >
<I'-- Configuration elements for harvesting netrics fromzero or nore
MBean types, instances, and attributes -->
</ harvester>
<wat ch-notification>
<I'-- Configuration elements for one or nore policies and one or nore
actions-->
</wat ch-notification>
</ W df -resour ce>

WLDF Runtime Control

WLDF Runtime Control allows you to control the activation or deactivation of diagnostics
system modules dynamically at run time without making a change to the domain configuration.
This allows you to perform specific, targeted diagnostic analysis tasks, and optionally of limited
duration, without interfering with the operation of the server instances themselves.

You can use Runtime Control to do the following:

» Dynamically activate and deactivate diagnostic system modules that are persisted in the
domain configuration without restarting the servers or clusters to which they are targeted.

* Dynamically deploy, activate, deactivate, and undeploy diagnostic system modules that are
configured by an external resource descriptor.

® Note
Note the following:

e Changes applied to diagnostic system modules using Runtime Control, whether
defined by configured or external resource descriptors, are not persisted. When a
server instance is restarted, that server returns to its configured state, and any
changes prior to that restart that were made using Runtime Control are lost.

e If you use the Runtime Control to activate a diagnostic system module that is
based on an external resource descriptor (see Creating a Diagnostic System
Module Based on an External Resource Descriptor), the diagnostic resource name
that you specify in the cr eat eSyst enResour ceCont rol () command to create that
diagnostic system module is used as the WLDF Module name in Harvester
records in the archive.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 15

ORACLE

Chapter 5
Configuring Diagnostic System Modules

Creating a Diagnostic System Module Based on a Configured Resource

Descriptor

You create a diagnostic system module based on a configured resource descriptor using either
the WebLogicRemote Console or the WebLogic Scripting Tool (WLST). It is created as a
WLDFResourceBean, and the configuration is persisted in a resource descriptor file named

DI AG_MODULE. xm , where DI AG_MODULE is the name of the diagnostic system module. You can
specify a name for the descriptor file, but it is not required. If you do not provide a file name, a
file name is generated based on the value in the descriptor file's <name> element. The file is
created by default in the DOVAI N_HOVE\ confi g\ di agnosti cs directory, and a reference to the
module is added to the domain's confi g. xm file.

The confi g. xn file can contain references to multiple diagnostic system modules, in one or
more <wldf-system-resource> elements. The <wldf-system-resource> element includes the
name of the diagnostic system module file and the list of servers and clusters to which the
module is targeted.

For example, Example 5-3 shows a confi g. xml file with a module named nyDi agnosti cMbdul e
targeted to the server nyserver and another module named newDi agnost i cMd targeted to
servers nmyserver and ManagedSer ver 2. Note that nyDi agnost i cMbdul e and newDi agnost i cMbd
are both targeted to nyser ver.

Example 5-3 Sample WLDF Configuration Information in the config.xml File for a
Domain

<domai n>
<l-- Oher domain-level configuration elenents -->
<wl df - systemresour ce
xm ns="http://xm ns. oracl e. conml webl ogi c/ webl ogi c- di agnostics">
<name>myDiagnosticModule</name>
<target>myserver</target>
<descriptor-file-name>diagnostics/MyDiagnosticModule.xml
</descriptor-file-name>
<descri ption>M diagnostic nodul e</descri ption>
</W df - system resour ce>
<w df - syst em resour ce>
<name>newDiagnosticMod</name>
<target>myserver,ManagedServer2</target>
<descriptor-file-name>diagnostics/newDiagnosticMod.xml
</descriptor-file-name>
<descri ption>A diagnostic nodul e for nmy managed servers</description>
</W df - system resour ce>
<I-- Oher WDF systemresource configurations -->
</ domai n>

The relationship of the confi g. xm file and the MyDi agnosti cModul e. xm file is shown in
Figure 5-1.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 15

ORACLE’

Chapter 5
Configuring Diagnostic System Modules

Figure 5-1 Relationship of config.xml to System Descriptor File

Domain\config Directory Domain\config\diagnostics Directory
config.xml MyDiagnosticModule.xml
<wldf-system-resource> <wldf-resource>

<name>MyDiagnosticModule</name> <name>MyDiagnosticModule</name>
<target> myserver</target> <instrumentation>
<descriptor-file-name> .
diagnostics/MyDiagnosticModule.xml </instrumentation>
</descriptor>-file—-name> ——> <harvester>

</wldf-system-rescurce> e
</harvester>
<watch-notification>

</watch-notification:>
</wldf-rescurce>

Creating a Diagnostic System Module Based on an External Resource

Descriptor

WLDF provides the following API that you can use to pass an external resource descriptor and
create a diagnostic system module on-the-fly. You can use this API to dynamically create and
activate a diagnostic system module for a server, but neither its deployment nor activation state
is persisted when the servers or clusters on which it was activated are rebooted. This API is
provided by the following MBeans:

e webl ogi c. mnagenent. runti ne. W.DFCont r ol Runt i meMBean
e webl ogi c. managenent . runti me. W.DFSyst enResour ceCont r ol Runt i meMBean

Using this API, you can pass the resource descriptor as a String object on-the-fly. For ease-of-
use, WLDF also provides the following WLST commands, which you can use with a resource
descriptor file that exists externally to the domain configuration:

e createSystenmResourceControl () — Creates (deploys) a diagnostics system module on-
the-fly using a specified descriptor file.

e destroySystenResour ceControl () — Destroys (undeploys) a diagnostics system module
previously created on-the-fly.

Externally configured diagnostic system modules that are deployed and activated in a server or
cluster are automatically destroyed when that server or cluster is shut down.

If you activate a diagnostic system module that is based on an external resource descriptor,
the diagnostic resource name that you specify in the cr eat eSyst enResour ceCont rol command
is used as the module name. For example, this is the name that appears in the WLDF Module
column when displaying the contents of the Harvester archive in the WebLogic Remote
Console. For more information about the cr eat eSyst emResour ceCont r ol command, see
Diagnostics Commands in WLST Command Reference for Oracle WebLogic Server.

For an example of using WLST to create, activate, and destroy a diagnostic system module
that is based on an external resource descriptor, see Using WLST to Activate and Deactivate
Diagnostic System Modules.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 15

ORACLE Chapter 5
Configuring Diagnostic System Modules

Targeting a Diagnostic System Module to a Server or Cluster

A diagnostic system module can be targeted by the domain confi g. xnl file to zero, one, or

more servers or clusters. In addition, a given server can have multiple modules targeted to it
simultaneously. Typically you create multiple modules that monitor different aspects of your

system. You can then choose which modules to target to a server or cluster, based on what

you want to monitor at that time.

Because you can target the same module to multiple servers or clusters, you can write general
purpose modules that you want to use across a domain.

You can change the target of a diagnostic module without restarting the server instances to
which it is targeted or untargeted. This gives you considerable flexibility in writing and using
diagnostic monitors that address a specific diagnostic goal, without interfering with the
operation of the server instances themselves.

Dynamically Activating or Deactivating Diagnostic System Modules

After you configure a diagnostic system module, you can activate or deactivate it without
making a configuration change or rebooting the server instance to which it is targeted. This
capability gives you control over the operative state of diagnostic system modules without
restarting the targeted server or cluster instance or making a change to the domain
configuration.

Because the domain configuration and all resource files are replicated to all servers in the
domain, all configured WLDF resources are available for dynamic activation and deactivation
on all servers in the domain. Note that if you dynamically activate or deactivate a diagnostics
system module, and restart the targeted server, the module's activation state is reverted to
whatever is configured in the domain.

You can also use WLST to dynamically activate or deactivate diagnostic system modules,
including those configured by an external descriptor, as described in Using WLST to Activate
and Deactivate Diagnostic System Modules.

Using WLST to Activate and Deactivate Diagnostic System Modules

You can also use WLST to dynamically activate or deactivate a diagnostic system module. This
capability is provided by the WLST commands listed and described in Table 5-1:

Table 5-1 WLST Commands to Dynamically Activate and Deactivate Diagnostic

Modules

]

Command Summary

enabl eSyst enmResour ce Enables a diagnostic system module on a WebLogic Server
instance.

di sabl eSyst enResour ce Disables a diagnostic system module on a WebLogic Server
instance.

creat eSyst emResour ceCont r ol Creates a diagnostics system module from an external

diagnostic descriptor file. Note that the diagnostics system
module remains in memory only until the server is shut down
and is not deployed the next time the server is restarted.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 15

ORACLE Chapter 5
Configuring Diagnostic System Modules

Table 5-1 (Cont.) WLST Commands to Dynamically Activate and Deactivate Diagnostic

Modules
]
Command Summary
dest r oySyst enResour ceCont r ol Destroys, or undeploys, a diagnostics system module
configured in an external diagnostic descriptor without
changing the domain configuration.
I'istSystenResourceControl s Lists the diagnostic system modules currently configured on a

WebLogic Server instance.

For complete details about these WLST commands, see Diagnostics Commands in WLST
Command Reference for Oracle WebLogic Server.

Example

This example describes the steps for using WLST to dynamically activate and deactivate the
following diagnostic system modules:

* Mbdul e- 0, configured in the domain and defined by the resource descriptor file
Modul e- 0- 3905. xnl located in the DOVAI N_HOVE/ conf i g/ di agnosti cs directory

e Mdul e- 1, configured in the domain and defined by the resource descriptor file
Modul e- 0- 3905. xnl located in the DOVAI N_HOVE/ conf i g/ di agnosti cs directory

e External -1, not a part of the domain configuration, but defined by the external resource
descriptor ext er nal - W df . This external resource descriptor is configured in the file
ext ernal -w df . xnl , which is external to the domain configuration.

This example assumes the following has been set up:

e The domain confi g. xnl file references two diagnostic system modules that are part of the
domain configuration, as follows:

<w df - syst em resour ce>
<nane>Modul e- 0</ name>
<descriptor-file-name>di agnosti cs/ Modul e- 0- 3905. xnl </ descri ptor-fil e-nane>
<descri ption></description>

</w df - system resour ce>

<w df - syst em resour ce>
<nane>Modul e- 1</ name>
<descriptor-file-name>di agnosti cs/ Modul e- 1- 3904. xnl </ descri ptor-fil e- nane>
<descri ption></description>

</w df - system resour ce>

e The server name shown in these examples is nyserver.

e The external descriptor file ext ernal -w df . xm is located in the domain's root directory,
w _domai n. It contains the following lines for configuring the diagnostic system module
named Ext er nal - 1:

<?xm version="1.0" encodi ng=' UTF-8' 7>
<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: sec="http://xm ns. oracl e. conf webl ogi ¢/ security"
xm ns:w s="http://xm ns. oracl e. com webl ogi c/ security/w s"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi:schenmaLocation="http://xnl ns. oracl e. conf webl ogi ¢/ webl ogi c- di agnosti cs
http://xm ns. oracl e. conf webl ogi ¢/ webl ogi c- di agnosti cs/ 2. 0/ webl ogi c- di agnosti cs. xsd" >
<nanme>Ext er nal - 1</ nanme>
<harvest er >
<enabl ed>t r ue</ enabl ed>

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 15

ORACLE Chapter 5
Configuring Diagnostic System Modules

<sanpl e- peri 0d>10000</ sanpl e- peri od>

<harvest ed-t ype>
<name>webl ogi c. managenent . runti ne. Ser ver Runt i neMBean</ nanme>
<harvested-attribute>Overal | Heal t hSt at e. ReasonCodeSurmmar y</ harvest ed-attri but e>
<harvest ed-attribute>Overal | Heal t hSt at e. St at e</ har vest ed-attri but e>
<namespace>Ser ver Runt i ne</ nanespace>

</ harvest ed-type>

</ harvester>
</w df -resource>

Step 1: List Diagnhostic System Modules

The following WLST command, shown in bold, lists the diagnostic system modules that are
currently configured:

W s:/w _domai n/ Server 1> listSystemResourceControls()

Ext er nal Enabl ed Name
fal se fal se Modul e- 0
fal se fal se Modul e- 1

The preceding command shows that Mbdul e- 0 and Mbdul e- 1 are configured in the domain
(that is, they are referenced from confi g. xm and are not configured by external resource
descriptors), but that they have not been activated.

Step 2: Activate Module-0
The following WLST command activates Mdul e- 0:

w s: / nydomai n/ server Confi g> enableSystemResource(*Module-0%)

You can also supply a server name to all of the WLDF system resource runtime control
functions. If you do not specify a server name, the enabl eSyst enResour ce() command
defaults to the server instance to which WLST is currently connected. (However, by default, all
configured WLDF system resources are available for runtime control operations on all servers
in the domain.)

W s:/ nydomai n/ server Confi g> enableSystemResource("Module-0", Server="myserver®)
Step 3: Verify that Module-0 is Activated
The following WLST command shows that Mdul e- 0 is now activated:

w s: / nydomai n/ server Confi g> | i st Syst enResour ceCont rol s()

Ext er nal Enabl ed Narme
fal se true Modul e- 0
fal se fal se Modul e- 1

Step 4: Activate Module-1

The following WLST commands activate Mbdul e- 1 and verify the activation state of all
diagnostic system modules:

W s:/ nydomai n/ server Confi g> enableSystemResource("Module-1", Server="myserver"®)
W s:/ nydomai n/ server Confi g> listSystemResourceControls()

Ext er nal Enabl ed Nane
fal se true Modul e- 0
fal se true Modul e- 1

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 15

ORACLE

Chapter 5
Configuring Diagnostic System Modules

Step 5: Deactivate Configured Diagnostic Modules

The following WLST commands deactivate all diagnostic system modules that are configured
in the domain and verify their state:

W s:/ nydomai n/ server Confi g> disableSystemResource(*Module-0%)
W s:/ nydomai n/ server Confi g> disableSystemResource(*"Module-1")
W s:/ nydomai n/ server Confi g> listSystemResourceControls()

Ext er nal Enabl ed Name
fal se fal se Modul e- 0
fal se fal se Modul e- 1

Step 6: Create a Diagnhostic System Module from an External Resource Descriptor File

The external resource descriptor needs to be accessible by the WLST client. The following
WLST command creates and deploys the diagnostic system module Ext er nal - 1 from the
external resource descriptor in the file ext ernal - w df . xnl , and verifies its activation state. ()

w s:/ nydonmai n/ server Confi g> createSystemResourceControl ("external-wldf", "external-

wldf.xml™)

W s: / nydonai n/ server Confi g> listSystemResourceControls()
Ext er nal Enabl ed Nane

fal se fal se Modul e-0

true fal se external -w df

fal se fal se Modul e- 1

Note that the External column identifies Ext er nal - 1 as being configured by an external
resource descriptor.

Step 7: Activate External-1

Because the creat eSyst enResour ceCont rol () command only deploys the diagnostic system
module, the following WLST command activates it. The subsequent command verifies the
diagnostic system module's activation state.

W s:/ nydomai n/ server Confi g> enableSystemResource("'external-wldf'")
W s:/ nydomai n/ server Confi g> listSystemResourceControls()

Ext er nal Enabl ed Nane

fal se fal se Modul e- 0
true true external -w df
fal se fal se Modul e- 1

Step 8: Deactivate External-1
The following WLST commands deactivate Ext er nal - 1 and verify its deactivation status:

W s:/ nydomai n/ server Confi g> disableSystemResource(“'external-wldf")
W s:/ nydomai n/ server Confi g> listSystemResourceControls()

Ext er nal Enabl ed Name

fal se fal se Modul e- 0
true fal se ext ernal -w df
fal se fal se Modul e- 1

Step 9: Destroy External-1

The following WLST command destroys the diagnostic system module that is configured by an
external resource descriptor:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 15

ORACLE’

Chapter 5
Configuring Diagnostic Modules for Applications

w s:/ nydomai n/ server Confi g> destroySystemResourceControl ("external-wldf'")

Step 10: Verify Original State of Configured Diagnostic Modules

The following WLST command verifies that the domain's configuration is reverted to its original
state, showing only the two diagnostic system modules whose configuration is persisted in the
config.xm file:

W s:/ nydonai n/ server Confi g> listSystemResourceControls()

Ext er nal Enabl ed Nane
fal se fal se Modul e- 0
fal se fal se Modul e- 1

More Information About Configuring Diagnostic System Modules

See the following sections for detailed instructions about configuring WLDF system modules:

e Configuring the Harvester for Metric Collection

» Configuring Policies and Actions

e Configuring Instrumentation

e Configuring the Dyelnjection Monitor to Manage Diagnostic Contexts

Configuring Diagnostic Modules for Applications

WLDF supports the ability to configure instrumentation of an application by means of a
diagnostic application module. A diagnostic application module is similar to a diagnostic
system module, with the exception that you configure it in an XML descriptor file that you
package with the application archive file. A diagnostic application module deployed this way is
available only to the application in which that module is enclosed. This ensures that the
application can be reliably deployed into new environments with access to all required
resources in the diagnostic module.

You configure and deploy application-scoped instrumentation as a diagnostic module, which is
similar to a diagnostic system module. However, an application module is configured in an
XML descriptor (configuration) file named webl ogi c- di agnosti cs. xnl , which is packaged with
the application archive in the ARCH VE_PATH META- | NF directory for the deployed application.
For example,

C:\Oracl e\ M ddl ewar e\ Oracl e_Home\ user _proj ect s\ appl i cati ons\ nmedrec\di st\standal on
e\ expl oded\ medr ec\ META- | NF\ webl ogi c- di agnostics. xnl .

@® Note

The Dyelnjection monitor, which is used to configure diagnostic context (a way of
tracking requests as they flow through the system), can be configured only at the
server level. But once a diagnostic context is created, the context attached to incoming
requests remains with the requests as they flow through the application. For
information about the diagnostic context, see Configuring the Dyelnjection Monitor to
Manage Diagnostic Contexts.

For more information about configuring and deploying diagnostic modules for applications, see:

» Configuring Application-Scoped Instrumentation

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 15

ORACLE Chapter 5
WLDF Configuration MBeans and Their Mappings to XML Elements

* Deploying WLDF Application Modules

WLDF Configuration MBeans and Their Mappings to XML
Elements

The set of WLDF configuration MBeans, along with the diagnostic system module beans for
WLDF objects, are organized into a specific hierarchy in a WebLogic domain.

Figure 5-2 shows the hierarchy of the WLDF configuration MBeans and the diagnostic system
module beans for WLDF objects in a WebLogic Server domain.

Figure 5-2 WLDF Configuration Bean Tree

|
DomainMBean

— ServerMBean
L WLDFServerDiagnosticMBean

L WLDFDataRetirementsByAgeMBean

— WLDFSystemResourceMBean

JavaBean representations of WLDF descriptor elements

WLDFResolution
— WLDFHarvesterBean

— WLDFInstrumentationBean

L WLDFWatchNotificationBean

The following WLDF MBeans configure WLDF at the server level. They map to XML elements
in the confi g. xm configuration file for a domain:

WLDFServerDiagnosticMBean controls configuration settings for the Data Archive and
Diagnostic Images components for a server. It also controls whether diagnostic context for
a diagnostic module is globally enabled or disabled. (Diagnostic context is a way to

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 15

ORACLE Chapter 5
WLDF Configuration MBeans and Their Mappings to XML Elements

uniquely identify requests and track them as they flow through the system. See Configuring
the Dyelnjection Monitor to Manage Diagnostic Contexts.)

This MBean is represented by a <server-diagnostic-config> child element of the <server>
element in the confi g. xn file for the server's domain.

* WLDFDataRetirementByAgeMBean specifies how data retirement for a WLDF archive is
performed based on the age of records in that archive.

* WLDFSystemResourceMBean contains the name of a descriptor file for a diagnostic
module in the DOVAI N_HOVE/ confi g/ di agnost i cs directory and the names of one or more
the target servers on which that module is deployed.

This MBean is represented by a <wldf-system-resource> element in the confi g. xn file for
the domain.

@® Note

You can create multiple diagnostic system modules in a domain. The
configurations for the modules are saved in multiple descriptor files in the confi g/
di agnost i cs directory for the domain. The domain's confi g. xni file, therefore,
can contain the multiple <wldf-system-resource> elements that represent those
modules.

* WLDFResourceBean contains the configuration settings for a diagnostic system module.
This bean is represented by a <wldf-resource> element in a DI AG MODULE. xm diagnostics
descriptor file in the domain's confi g/ di agnosti cs directory. (See Figure 5-1 and
Example 5-2.) The WLDFResourceBean contains configuration settings for the following
components:

— Harvester: The WLDFHarvesterBean is represented by the <harvester> element in a
DI AG_MODULE. xm file.

— Instrumentation: The WLDFInstrumentationBean is represented by the
<instrumentation> element in a DI AG_ MODULE. xni file.

— Policies and Actions: The WLDFWatchNotificationBean is represented by the <watch-
notification> element in a DI AG_MODULE. xni file.

If a WLDFResourceBean is linked from a WLDFSystemResourceMBean, the settings for
WLDF components apply to the targeted server. If a WLDFResourceBean is contained
within a webl ogi c- di agnosti cs. xn descriptor file which is deployed as part of an
application archive, you can configure only the Instrumentation component, and the
settings apply only to that application. In the latter case, the WLDFResourceMBean is not
a child of a WLDFSystemResourceMBean.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 15

Configuring and Capturing Diagnostic Images

You can use the Diagnostic Image Capture component of the WebLogic Diagnostics
Framework (WLDF) to create a diagnostic snapshot or dump of a server's internal runtime
state at the time of the capture. The captured information is useful for analyzing the cause of a
server failure.If WebLogic Server is configured with Oracle HotSpot, and Java Flight Recorder
is enabled, the diagnostic image capture includes WebLogic Server diagnostic data that can be
viewed in Java Mission Control.

How Diagnostic Image Capture Is Persisted in the Server's
Configuration

The configuration for Diagnostic Image Capture is persisted in the confi g. xnl file for a
domain.

In the confi g. xm file, the image capture is described under the <server - di agnosti c- confi g>
subelement of the <ser ver > element for the server, as shown in Example 6-1:

Example 6-1 Sample Diagnostic Image Capture Configuration

<donmai n>
<l-- Qher domain configuration elenents -->
<server>
<nane>nyser ver </ name>
<server-di agnosti c-confi g>
<i mage- di r >l ogs\ di agnosti c_i mages</i mage- di r>
<i mage-ti meout >2</ i mage-ti neout >
</ server-di agnostic-confi g>
<l-- Qther configuration details for this server -->
</server>
<I-- Qther server configurations in this donain-->
</ domai n>

® Note

Oracle recommends that you do not edit the confi g. xnl file directly.

Content of the Captured Image File

The Diagnostic Image Capture component captures and combines the images produced by the
different server subsystems into a single . zi p file. In addition to capturing the most common
sources of the server state, this component captures images from all the server subsystems
including, for example, images produced by the JMS, JDBC, EJB, and JNDI subsystems.

The most common sources of a server state are captured in a diagnostic image capture,
including:

e Configuration

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 3

ORACLE

Chapter 6
Content of the Captured Image File

* Log cache state

e Java Virtual Machine (JVM)
* Work Manager state

* JNDI state

* Most recent harvested data

If WebLogic Server is configured with Oracle HotSpot, and Java Flight Recorder is enabled,
the diagnostic image capture includes a Java Flight Recorder image, Fl i ght Recording.jfr,
that can be viewed in Java Mission Control. The contents of the Java Flight Recorder image
contains all available data from the Java Flight Recorder, and the volume of data produced by
WLDF depends on the diagnostics volume setting. When Java Flight Recorder is enabled, data
is always provided by the JVM, and optionally includes data provided by WebLogic Server.
Data from additional Oracle components, such as Oracle Dynamic Monitoring System (DMS),
may be included in the Java Flight Recorder image as well.

@® Note

* A diagnostic image is a heavyweight artifact meant to serve as a server-level state
dump for the purpose of diagnosing significant failures. It enables you to capture a
significant amount of important data in a structured format and then to provide that
data to support personnel for analysis.

» If a non-WebLogic event producer in the WebLogic Server environment, such as
DMS, has configured Java Flight Recorder to record data, the WLDF diagnostic
image capture includes a Java Flight Recorder image file with the recorded data
even if the WLDF diagnostics volume is setto O f .

* When WebLogic Server is configured with HotSpot, Java Flight Recorder is not
enabled by default. For information about how to enable it, see Using Java Flight
Recorder with Oracle HotSpot.

Data Included in the Diagnostics Image Capture File

Each image is captured as a single file for the entire server. The default location is
SERVER _NAME\ | ogs\ di agnosti c_i nages. Each image instance has a unique name, as follows:

di agnosti c_i mage_DOVAI N_SERVER_YYYY_MM DD_HH MM SS. zi p
The contents of the file include at least the following information:

» Creation date and time of the image
e Source of the capture request

* Name of each image source included in the image and the time spent processing each of
those image sources

* JVM and OS information, if available
« Command line arguments, if available
* WebLogic Server version including patch and build number information

If WLDF is configured with Oracle HotSpot, as described in Configuring Diagnostic Image
Capture for Java Flight Recorder, the image also contains the Java Flight Recorder file,

Fli ght Recording.jfr. The JFR file can be extracted as described in WLST Online Commands
for Downloading Diagnostics Image Captures, and viewed in Java Mission Control.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 3

ORACLE Chapter 6
Content of the Captured Image File

Figure 6-1 shows the contents of an image file. You can open most of the files in this . zi p file
with a text editor to examine the contents.

Figure 6-1 Contents of an Image File

File Edit View Favorites Tools Help

b om $ =

Add Extract Test Copy Move

Name

"1 APPLICATION xml

j Cluster.xml

L E|mhfigura‘cion.zip

I CONNECTORxml

j Deployment.xml

& FlightRecording.jfr

j HarvesterimageSource.xml
image.summary

j InstrumentationImageSource.xml
JDBC.txt

LIMSxml

"NDIIMAGE_SOURCExm

LITAXmI

L vMxml
Logging.txt

j ManagementRuntimelmageSource.xml

j PathServicexml

' PERSISTENT_STORExml

7 SAFxmI

jWatchSource.}cml
WORK_MANAGER txt

WLST Online Commands for Downloading Diagnostics Image Captures

WLST online provides the following commands for downloading diagnostic image captures
from the server to which WLST is connected:

Table 6-1 WLST Commands for Downloading Image Captures

Command Summary

capt ureAndSaveDi agnosti cl nage Captures a diagnostic image and downloads it locally.

get Avai | abl eCapt ur edl mages Returns a list of diagnostic images that have been created in the image
destination directory configured on the server.

saveDi agnosti cl mageCaptureFil e Downloads a specified diagnostic image capture file.

saveDi agnosti cl mageCapt ureEntryFil e Downloads a specific entry within a diagnostic image capture. This
command is particularly useful for obtaining the Java Flight Recorder
diagnostics data for viewing in Java Mission Control.

For information about these commands, and examples of using them, see Diagnostics
Commands in WLST Command Reference for Oracle WebLogic Server. For examples of
WLST scripts that return a list of diagnostic images and retrieve JFR files in them, see
WebLogic Scripting Tool Examples.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 3

Configuring Diagnostic Archives

The Archive component captures and persists all data events, log records, and metrics
collected by the WebLogic Diagnostics Framework (WLDF) from server instances and
applications running on them. You can subsequently access archived diagnostic data in online
mode (that is, on a running server), or in off-line mode using the WebLogic Scripting Tool
(WLST).

This chapter explains how to configure the Archive, and also how to configure WLDF to archive
diagnostic data to a file store or a Java Database Connectivity (JDBC) data source:

You can also specify when and under what conditions old data will be removed from the
archive, as described in Retiring Data from the Archives.

Configuring the Archive

You can configure the diagnostic archive on a per-server basis. The configuration is persisted
in the confi g. xn file for a domain, under the <server - di agnosti c- conf i g> element for the
server.

Example configurations for file-based stores and JDBC-based stores are shown in
Example 7-1 and Example 7-7.

@ Note

Resetting the system clock while diagnostic data is being written to the archive can
produce unexpected results. See Resetting the System Clock Can Affect How Data Is
Archived and Retrieved.

Configuring a File-Based Store

WLDF supports the ability to use a file-based store for the Archive. If you choose the use of a
file-based store, the only configuration option you must set is the location of the directory
where the store is to be maintained. The default directory is DOVAI N_HOVE/ ser ver s/
SERVER_NAME/ dat a/ st or e/ di agnost i cs.

When you save to a file-based store, WLDF uses the WebLogic Server persistent store. See
Using the WebLogic Persistent Store in Administering the WebLogic Persistent Store.

An example configuration for a file-based store is shown in Example 7-1.
Example 7-1 Sample Configuration for File-based Diagnostic Archive (in config.xml)

<domai n>
<I-- Qher domain configuration elenents -->
<server>
<name>nyser ver </ nane>
<server-di agnosti c-confi g>
<di agnosti c- st ore-dir>dat a/ st or e/ di agnosti cs</ di agnosti c-store-dir>
<di agnosti c-dat a- ar chi ve-type>Fi | eSt or eAr chive

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 10

ORACLE Chapter 7
Configuring a JDBC-Based Store

</ di agnosti c- dat a- ar chi ve-t ype>
</ server-di agnosti c-confi g>
</ server>
<I-- Qther server configurations in this domain -->
</ domai n>

Configuring a JDBC-Based Store

WLDF supports the ability to create the Archive in a JDBC-based store.To use a JDBC store,
the appropriate tables must exist in a database, and JDBC must be configured to connect to
that database. For information about how to configure JDBC using the WebLogic Remote
Console, see Create a JDBC Store in Oracle WebLogic Remote Console Online Help. For
additional information about JDBC configuration, see Administering JDBC Data Sources for
Oracle WebLogic Server.

® Note

If you install multiple WLDF schemas in the same database, you need to provide a
way to distinguish among them when accessing the diagnostic archives. You can do
this when you configure the diagnostic archive for a server instance by specifying the
schema name to use for accessing JDBC-based archive tables in that database. See
Configuring JDBC Resources for WLDF.

Creating WLDF Tables in the Database

If they do not already exist, you must create the database tables used by WLDF to store data
in a JDBC-based store. Two tables are required:

* The wis_events table stores data generated from WLDF Instrumentation events.
e The wis_hvst table stores data generated from the WLDF Harvester component.

The SQL Data Definition Language (DDL) used to create tables may differ for different
databases, depending on the SQL variation supported by the database.

Apache Derby

Example 7-2 shows the DDL that you can use to create the wis_events and wls_hvst tables in
Apache Derby.

Example 7-2 DDL Definition of the WLDF Tables for Apache Derby

- WLDF Instrumentation and Harvester archive DDLs using Derby
AUTOCOW T OFF;

- DDL for creating ws_events table for instrunentation events
DROP TABLE wl s_events;

CREATE TABLE W s_events (
RECORDI D | NTEGER NOT NULL GENERATED ALWAYS AS | DENTITY (START WTH 1, | NCREMENT BY 1),
TI MESTAMP BI G NT default NULL,
CONTEXTI D var char (128) default NULL,
TXI D varchar (32) default NULL,
USERI D varchar (32) default NULL,

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 10

ORACLE Chapter 7
Configuring a JDBC-Based Store

TYPE var char (64) defaul t NULL,

DOMAI N var char (64) default NULL,
SERVER var char (64) default NULL,
SCOPE var char (64) default NULL,
MODULE var char (64) default NULL,
MONI TOR var char (64) default NULL,

FI LENAME var char (64) default NULL,

LI NENUM | NTEGER def aul t NULL,
CLASSNAME var char (250) defaul t NULL,
METHODNAME var char (64) default NULL,
METHODDSC var char (4000) defaul t NULL,
ARGUMENTS cl ob(100000) defaul t NULL,
RETVAL varchar (4000) default NULL,
PAYLOAD bl ob(100000),

CTXPAYLOAD VARCHAR(4000),

DYES Bl G NT defaul t NULL,

THREADNAME var char (250) default NULL

- DDL for creating Ws_events table for instrunentation events
DROP TABLE W s_hvst;

CREATE TABLE W s_hvst (
RECORDI D | NTEGER NOT NULL GENERATED ALWAYS AS | DENTITY (START WTH 1, | NCREMENT BY 1),
TI MESTAMP Bl G NT defaul t NULL,

DOMAI N var char (64) default NULL,
SERVER varchar (64) default NULL,
TYPE var char (64) defaul t NULL,

NAME var char (250) defaul t NULL,
ATTRNAME var char (64) defaul t NULL,
ATTRTYPE | NTEGER defaul t NULL,
ATTRVALUE VARCHAR(4000),

W.DFMODULE VARCHAR(250) default NULL

)
COW T;

Consult the documentation for your database or your database administrator for specific
instructions for creating these tables for your database.

Oracle Database

Example 7-3 shows the DDL that you can use to create the wis_events table in Oracle
database.

Example 7-3 DDL Definition of the wis_events Table for Oracle Database

SET SERVEROQUTPUT ON,

DECLARE
vCr Nunber ;
vSQL VARCHAR2(2000) ;
veurr VARCHAR2(256);

BEG N

SELECT sys_context('userenv', 'current_schema') into vcurrSchema from dual;
dbns_out put. put _Iine(' Current Schema: '||vcurrSchems);

SELECT COUNT(*)
INTO vCir
FROM user _t abl es

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 10

ORACLE Chapter 7
Configuring a JDBC-Based Store

WHERE tabl e_nane = 'W.S_EVENTS';

IF vQr =0 THEN
dbns_out put. put _line(' Creating W.S EVENTS table');
vSQL : = ' CREATE TABLE "W.S EVENTS' (
"RECORDI D' NUMBER(20, 0) DEFAULT NULL,
"TI MESTAMP" NUMBER(20, 0) DEFAULT NULL,
" CONTEXTI D' VARCHAR2(250 BYTE) DEFAULT NULL,
"TXI D' VARCHAR2(250 BYTE) DEFAULT NULL,
"USERI D' VARCHAR2(250 BYTE) DEFAULT NULL,
"TYPE" VARCHAR2(250 BYTE) DEFAULT NULL,
"DOVAI N' VARCHAR2(250 BYTE) DEFAULT NULL,
"SERVER" VARCHAR2(250 BYTE) DEFAULT NULL,
"SCOPE" VARCHAR2(250 BYTE) DEFAULT NULL,
"MODULE" VARCHAR2(250 BYTE) DEFAULT NULL,
"MONI TOR' VARCHAR2(250 BYTE) DEFAULT NULL,
"FI LENAVE" VARCHAR2(250 BYTE) DEFAULT NULL,
"LI NENUM'" NUMBER(10, 0) DEFAULT NULL,
" CLASSNAME" VARCHAR2(250 BYTE) DEFAULT NULL,
" METHODNAME" VARCHAR2(250 BYTE) DEFAULT NULL,
" METHODDSC' VARCHAR2(4000 BYTE) DEFAULT NULL,
" ARGUMENTS" CLOB DEFAULT NULL,
"RETVAL" VARCHAR2(4000 BYTE) DEFAULT NULL,
"PAYLOAD' BLOB DEFAULT NULL,
" CTXPAYLOAD' VARCHAR2(4000 BYTE) DEFAULT NULL,
"DYES" NUMBER(20, 0) DEFAULT NULL,
" THREADNAME" VARCHAR2(250 BYTE) DEFAULT NULL
)
EXECUTE | MVEDI ATE vSQL;
vSQL : = ' CREATE UNI QUE I NDEX W.S_EVENTS_RECORD | DX ON W.S_EVENTS(RECORDI D) ' ;
EXECUTE | MVEDI ATE vSQL;
vSQL : = ' CREATE | NDEX W.S_EVENTS TS | DX ON W.S_EVENTS(TI MESTAVP) ' ;
EXECUTE | MVEDI ATE vSQL;
END | F;

SELECT COUNT(*)

INTO vCir

FROM user _tab_col umrms

WHERE tabl e_nane = 'W.S _EVENTS' AND col um_nane = ' THREADNAME' ;

IF vQr =0 THEN
dbns_out put. put _Iine(' Creating THREADNAME col umm in W.S_EVENTS table');
vSQ := "ALTER TABLE W.S_EVENTS ADD(" THREADNAME" VARCHAR2(250 BYTE) DEFAULT NULL)';
EXECUTE | MVEDI ATE vSQL;

END | F;

SELECT COUNT(*) INTO vQtr FROM user_sequences
WHERE sequence_nane = ' SEQ W.S_EVENTS_RECORDI D' ;

IF vGr = 0 THEN
vSQL : = ' CREATE SEQUENCE SEQ WLS_EVENTS_RECORDI D M NVALUE 1 MAXVALUE 99999999999999999999 START W TH
1 INCREMENT BY 1 NOCACHE' ;
EXECUTE | MVEDI ATE vSQL;
END I F;

SELECT COUNT(*) INTO vCtr FROM user _triggers
WHERE t abl e_nane = 'W.S_EVENTS';

IF vCtr = 0 THEN
vSQL : = ' CREATE OR REPLACE TRI GGER TRG W.S_EVENTS_| NSERT
BEFORE | NSERT ON W.S_EVENTS
REFERENCI NG NEW AS newRow

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 10

ORACLE Chapter 7
Configuring a JDBC-Based Store

FOR EACH ROW
BEG N
I F :newRow. RECORDI D | S NULL THEN
SELECT SEQ W.S EVENTS_RECORDI D. nextval | NTO : newRow. RECORDI D FROM DUAL;
END I F;
END; ' ;
EXECUTE | MVEDI ATE vSQL;
END I F;

END,
/

Example 7-4 shows the DDL that you can use to create the wlis_hvst table in Oracle database.
Example 7-4 DDL Definition of the wis_hvst Table for Oracle Database

SET SERVEROQUTPUT ON,

DECLARE
vCr Nunber ;
vSQL VARCHAR2(11000) ;
veurr Schema VARCHAR2(256) ;
BEG N

SELECT sys_context('userenv', 'current_schema') into vcurrSchema from dual;
dbns_out put. put _Iine(' Current Schema: '||vcurrSchems);

SELECT COUNT(*)
INTO vCtr
FROM user _t abl es
WHERE t abl e_name = 'W.S _HVST';

IF vC&r = 0 THEN
dbns_out put. put _line(' Creating WS HVST table');
vSQL : = ' CREATE TABLE "W.S_HVST"
(
"RECORDI D' NUMBER(20, 0) NOT NULL,
"TI MESTAMP" NUMBER(20, 0) DEFAULT NULL,
"DOVAI N' VARCHAR2(250 BYTE) DEFAULT NULL,
"SERVER' VARCHAR2(250 BYTE) DEFAULT NULL,
"TYPE"' VARCHAR2(250 BYTE) DEFAULT NULL,
"NAMVE" VARCHAR2(250 BYTE) DEFAULT NULL,
"ATTRNAME" VARCHAR2(250 BYTE) DEFAULT NULL,
"ATTRTYPE" NUMBER(10, 0) DEFAULT NULL,
"ATTRVALUE" VARCHAR2(4000 BYTE) DEFAULT NULL,
"W.DFMODULE" VARCHAR2(250 BYTE) DEFAULT NULL
)
EXECUTE | MVEDI ATE vSQL;
vSQL : = ' CREATE UNI QUE I NDEX W.S_HVST_RECORD | DX ON W.S_HVST(RECORDI D) ' ;
EXECUTE | MVEDI ATE vSQL;
vSQL : = ' CREATE | NDEX W.S_HVST_TS | DX ON W.S_HVST(TI MESTAMP) ' ;
EXECUTE | MVEDI ATE vSQL;
END I F;

SELECT COUNT(*)
I NTO vCtr FROM user_tab_col umrms
WHERE tabl e_name = 'W.S HVST' AND col um_nanme = ' W.DFMODULE' ;

IF vC&r = 0 THEN
dbns_out put. put _line(' Creating W.DFMODULE col um in W.S_HVST table');
vSQ := "ALTER TABLE W.S_HVST ADD("W.DFMODULE" VARCHAR2(250 BYTE) DEFAULT NULL)';
EXECUTE | MVEDI ATE vSQL;

END I F;

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 10

ORACLE

SELECT COUNT(*) INTO vQtr FROM user_sequences
WHERE sequence_nane = ' SEQ W.S HVST _RECORDI D ;

IF vCr

vSQL
| NCREMVENT

END I F;

0 THEN

BY 1 NOCACHE';
EXECUTE | MVEDI ATE vSQL;

SELECT COUNT(*) INTO vCtr FROM user _triggers
WHERE t abl e_nane = 'W.S HVST';

IF vCr

= 0 THEN

vSQL : = ' CREATE OR REPLACE TRI GGER TRG W.S_HVST | NSERT
BEFORE | NSERT ON W.S_HVST
REFERENCI NG NEW AS newRow
FOR EACH ROW

BEG N

I'F :newRow. RECORDID | S NULL THEN

SELECT SEQ W.S HVST_RECORDI D. next val

END
END; ' ;

I F;

EXECUTE | MVEDI ATE vSQL;

END I F;

END,
/

MySQL

I NTO : newRow. RECORDI D FROM DUAL;

Chapter 7
Configuring a JDBC-Based Store

' CREATE SEQUENCE SEQ W.S HVST_RECCRDI D M NVALUE 1 MAXVALUE 99999999999999999999 START W TH 1

Consult the documentation for your database or your database administrator for specific

instructions for creating these tables for your database.

Example 7-5 shows the DDL that you can use to create the wis_events table in MySQL
database.

Example 7-5 DDL Definition of the wis_events Table in MySql Database

DROP PROCEDURE if exists create_alter_w s_events

/

CREATE PROCEDURE create_alter_w s_events()
| anguage sql
BEG N

CREATE TABLE | F NOT EXI STS W.S_EVENTS

(

RECORDI D BI G NT AUTO_| NCREMENT PRI MARY KEY,
TI MESTAWP BI G NT NOT NULL,
CONTEXTI D VARCHAR(250) default NULL,
TXI D VARCHAR(250) defaul t NULL,
USERI D VARCHAR(250) default NULL,
TYPE VARCHAR(250) defaul t NULL,
DOMAI N VARCHAR(250) default NULL,
SERVER VARCHAR(250) default NULL,
SCOPE VARCHAR(250) defaul t NULL,
MODULE VARCHAR(250) default NULL,
MONI TOR VARCHAR(250) defaul t NULL,

FI LENAVE VARCHAR(250) defaul t NULL,
LI NENUM | NT UNSI GNED def aul t NULL,
CLASSNAVE VARCHAR(250) default NULL,
METHODNAME VARCHAR(250) default NULL,

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 10

ORACLE

Chapter 7
Configuring a JDBC-Based Store

METHODDSC VARCHAR(4000) default NULL,
ARGUVENTS TEXT(100000) default NULL,
RETVAL VARCHAR(4000) default NULL,
PAYLOAD BLOB(100000),

CTXPAYLOAD VARCHAR(4000) ,

DYES Bl G NT UNSI GAED def aul t NULL,
THREADNAME VARCHAR(250) def aul t NULL,
| NDEX(TI MESTAMP)

)

| F NOT EXI STS(
SELECT * FROM "information_schema’ . COLUWS
VHERE COLUWN_NAME=' THREADNAVE' AND TABLE NAME=' W.S EVENTS') THEN
ALTER TABLE "W.S EVENTS' ADD " THREADNAME varchar(250) default NULL;
END | F;

END
/

CALL create_alter_w s_events()
/

DROP PROCEDURE if exists create_alter_ws_events
/

Example 7-6 shows the DDL that you can use to create the wis_hvst table in MySQL database.
Example 7-6 DDL Definition of wils_hvst Table in MySql Database

DROP PROCEDURE if exists create_alter_w s_hvst
/

CREATE PROCEDURE create_alter_w s_hvst ()
| anguage sql
BEG N

CREATE TABLE | F NOT EXI STS W.S_HVST

(
RECORDI D BI G NT AUTO | NCREMENT PRI MARY KEY,
TI MESTAMP Bl G NT NOT NULL,
DOVAI N VARCHAR(250) defaul t NULL,
SERVER VARCHAR(250) default NULL,
TYPE VARCHAR(250) default NULL,
NAVE VARCHAR(250) default NULL,
SOOPE VARCHAR(250) default NULL,
ATTRNAMVE VARCHAR(250) default NULL,
ATTRTYPE | NT default NULL,
ATTRVALUE VARCHAR(4000) default NULL,
W.DFMODULE VARCHAR(250) default NULL,
| NDEX(TI MESTAVP)

)

| F NOT EXI STS(
SELECT * FROM "information_schena’ . COLUWS
VHERE COLUWN_NAME=' W.DFMODULE' AND TABLE NAME='W.S HVST') THEN
ALTER TABLE “W.S HVST" ADD "W.DFMODULE™ varchar (250) defaul t NULL;
END I F;

END
/

CALL create_alter_w s_hvst()
/

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 10

ORACLE Chapter 7
Retiring Data from the Archives

DROP PROCEDURE i f exists create_alter_w s_hvst
/

Consult the documentation for your database or your database administrator for specific
instructions for creating these tables for your database.

Configuring JDBC Resources for WLDF

After you create the tables in your database, you must configure JDBC to access the tables.
(See Administering JDBC Data Sources for Oracle WebLogic Server.) Then, as part of your
server configuration, you specify that JDBC resource as the data store to be used for a server's
archive.

If multiple WLDF JDBC archive schemas exist in the same database, you can specify the
particular schema to use for accessing JDBC-based archive tables in that database. There is
no default value for a schema name: If you do not specify one, no schema name is applied
when WLDF validates the runtime table, and no schema name is used for the SQL statements.
You specify the schema name in the

W.DFSer ver Di agnost i cMBean. Di agnost i cJDBCSchenmaNane attribute, which you can access
from the Diagnostic Archives: Configuration page in the WebLogic Remote Console.

An example configuration for a JDBC-based store is shown in Example 7-7.
Example 7-7 Sample configuration for JDBC-based Diagnostic Archive (in config.xml)

<donmai n>
<l-- Qher domain configuration elenents -->
<server>
<nane>nyser ver </ name>
<server-di agnosti c-confi g>
<di agnosti c- dat a- ar chi ve-t ype>JDBCAr chi ve
</ di agnosti c- dat a- ar chi ve-t ype>
<di agnosti c-j dbc-resour ce>JDBCResour ce</ di agnosti c-j dbc-resour ce>
<server-di agnosti c-confi g>
</server>
<I-- Qther server configurations in this domain -->
</ domai n>

If you specify a JDBC resource but it is configured incorrectly, or if the required tables do not
exist in the database, WLDF uses the default file-based persistent store.

Retiring Data from the Archives

To maintain the archived data, you must delete the old archived data periodically. WLDF
includes a configuration-based data retirement feature for doing this. The data can be deleted
based on the size of the data and time period when it was created.

You can configure size-based data retirement at the server level and age-based retirement at
the individual archive level, as described in the following sections:

Configuring Data Retirement at the Server Level

You can set the following data retirement options for a server instance:

e The preferred maximum size of the server instance's data store (<preferred-store-size-
limit>) and the interval at which it is checked, on the hour, to see if it exceeds that size
(<store-size-check-period>).

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 10

ORACLE

Chapter 7
Retiring Data from the Archives

When the size of the store is found to exceed the preferred maximum, an appropriate
number of the oldest records in the store are deleted to reduce the size below the specified
threshold. This is called "size-based data retirement."”

® Note

Size-based data retirement can be used only for file-based stores. These options
are ignored for database-based stores.

« Enable or disable data retirement for the server instance.

For file-based diagnostic stores, this enables or disables the size-based data retirement
options discussed above. For both file-based stores and database-based stores, this also
enables or disables any age-based data retirement policies defined for individual archives
in the store. See Configuring Age-Based Data Retirement Policies for Diagnostic Archives.

Configuring Age-Based Data Retirement Policies for Diagnostic Archives

The data store for a server instance can contain the following types of diagnostic data archives
whose records can be retired using the data retirement feature:

e Harvested metrics data (logical name: HarvestedDataArchive)
e Instrumentation events data (logical name: EventsDataArchive)

e Custom data (user-defined name)

@® Note

WebLogic Server log files are maintained both at the server level and the domain
level. Data is retired from the current log using the log rotation feature. See
Configuring WebLogic Logging Services in Configuring Log Files and Filtering Log
Messages for Oracle WebLogic Server.

Age-based policies apply to individual archives. The data store for a server instance can have
one age-based policy for the HarvestedDataArchive, one for the EventsDataArchive, and one
each for any custom archives.

When records in an archive exceed the age limit specified for records in that archive, those
records are deleted.

Sample Configuration

Data retirement configuration settings are persisted in the confi g. xm configuration file for the
server's domain, as shown in Example 7-8.

Example 7-8 Data Retirement Configuration Settings in config.xml

<domai n>
<l'-- other domain configuration settings -->
<server>
<name>MedRecSer ver </ nane>
<l'-- other server configuration settings -->
<server-di agnosti c-config>
<di agnosti c- st ore-di r>dat a/ st or e/ di agnosti cs</ di agnosti c-store-dir>
<di agnosti c- dat a- ar chi ve-type>Fi | eSt or eAr chi ve

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 10

ORACLE Chapter 7
Retiring Data from the Archives

</ di agnosti c- dat a- ar chi ve-t ype>

<dat a-retirenent-enabl ed>true</ data-retirenent-enabl ed>

<preferred-store-size-limt>120</preferred-store-size-limt>

<st ore-si ze- check- peri od>1</ st or e- si ze- check- peri od>

<w df -dat a-reti renent - by- age>
<nane>Har vest edDat aRet i r ement Pol i cy</ name>
<enabl ed>t r ue</ enabl ed>
<ar chi ve- name>Har vest edDat aAr chi ve</ ar chi ve- name>
<retirement-tine>l</retirenent-time>
<retirenent-period>24</retirenment-period>
<retirement-age>45</retirenent-age>

</w df -data-retirenent-by-age>

<w df - dat a-reti renent - by- age>
<nanme>Event sDat aRet i r ement Pol i cy</ name>
<enabl ed>t r ue</ enabl ed>
<ar chi ve- name>Event sDat aAr chi ve</ ar chi ve- name>
<retirement-tine>10</retirement-tine>
<retirenent-period>24</retirenment-period>
<retirement-age>72</retirenent-age>

</w df -data-retirenent-by-age>

</ server-di agnostic-confi g>
</ server>
</ domai n>

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 10

Configuring the Harvester for Metric Collection

The Harvester component of the WebLogic Diagnostics Framework (WLDF) gathers metrics
from attributes on qualified MBeans instantiated in a running server. The Harvester can also
collect metrics from WebLogic Server MBeans and from custom MBeans.

This chapter includes the following sections about the Harvester and how to configure it:

Harvesting, Harvestable Data, and Harvested Data

Harvesting metrics is the process of gathering data that is useful for monitoring the system
state and performance.Metrics are exposed to WLDF as attributes on qualified MBeans. The
Harvester gathers values from selected MBean attributes at a specified sampling rate.
Therefore, you can track potentially fluctuating values over time.

Data must meet certain requirements in order to be harvestable, and it must meet further
requirements in order to be harvested:

* Harvestable data is data that can potentially be harvested from harvestable entities,
including MBean types, instances, and attributes. To be harvestable, an MBean must be
registered in the local WebLogic Server Runtime MBean server. Only simple type attributes
of an MBean can be harvestable.

* Harvested data is data that is currently being harvested. To be harvested, the data must
meet all the following criteria:

— The data must be harvestable.

— The data must be configured to be harvested.

— For custom MBeans, the MBean must be currently registered with the JMX server.
— The data must not throw exceptions while being harvested.

The WLDFHarvesterRuntimeMBean provides the set of harvestable data and harvested data.
The information returned by this MBean is a snapshot of a potentially changing state. For a
description of the information about the data provided by this MBean, see the description of the
WLDFHarvesterRuntimeMBean in the Oracle WebLogic Server MBean Reference.

You can use the WebLogic Remote Console, the WebLogic Scripting Tool (WLST), or JIMX to
configure the Harvester to collect and archive the metrics that the server MBeans and the
custom MBeans contain.

Harvesting Data from the Different Harvestable Entities

You can configure the Harvester to harvest data from named MBean types, instances, and
attributes.In all cases, the Harvester collects the values of attributes of MBean instances, as
explained in Table 8-1.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 6

ORACLE Chapter 8
Configuring the Harvester

Table 8-1 Sources of Harvested Data from Different Configurations

When this entity is configured to be Data is collected from...
harvested as...

A type (only) All harvestable attributes in all instances of the specified type

An attribute of a type The specified attribute in all instances of the specified type
(type + attribute(s))

An instance of a type All harvestable attributes in the specified instance of the
(type + instance(s)) specified type

An attribute of an instance of a type The specified attribute in the specified instance of the
(type + instance(s) + attribute(s)) specified type

All WebLogic Server runtime MBean types and attributes are known at startup. Therefore,
when the Harvester configuration is loaded, the set of harvestable WebLogic Server entities is
the same as the set of WebLogic Server runtime MBean types and attributes. As types are
instantiated, those instances also become known and thus harvestable.

The set of harvestable custom MBean types is dynamic. A custom MBean must be instantiated
before its type can be known. (The type does not exist until at least one instance is created.)
Therefore, as custom MBeans are registered with and removed from the MBean server, the set
of custom harvestable types grows and shrinks. This process of detecting a new type based on
the registration of a new MBean is called type discovery.

Configuring the Harvester

The Harvester is configured, and metrics are collected, in the scope of a diagnostic module
targeted to one or more server instances. The Harvester configuration includes the sampling
period, the type of data to harvest, and the type names for WebLogic Server MBeans and
custom MBeans.

Example 8-1 shows Harvester configuration elements in a WLDF system resource descriptor
file, nyWLDF. xnl . This sample configuration harvests from the ServerRuntimeMBean, the
WLDFHarvesterRuntimeMBean, and from a custom (that is, non-WebLogic Server) MBean.
The text following the listing explains each element in the listing.

Example 8-1 Sample Harvester Configuration (in DIAG_MODULE.xml)

<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi ="http:// ww. w3. or g/ 2001/ XM_Schena- i nst ance" >
<name>nyW.DF</ name>
<harvest er >
<enabl ed>t r ue</ enabl ed>
<sanpl e- peri 0d>5000</ sanpl e- peri od>
<harvest ed-t ype>
<name>webl ogi c. managenent . runt i ne. Server Runt i meMBean</ name>
</ harvest ed-type>
<harvest ed-t ype>
<name>webl ogi c. managenent . runt i me. W.DFHar vest er Runt i neMBean</ nane>
<harvested-attri but e>Tot al Sanpl i ngTi ne</ harvested-attribute>
<harvest ed-attri but e>Current Snapshot El apsedTi me
</ harvested-attribute>
</ harvest ed-type>
<harvest ed-t ype>
<name>nyMBeans. MySi npl eSt andar d</ name>
<har vest ed-i nst ance>myCust onDomai n: Nane=nyCust onVBeanl

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 6

ORACLE

Chapter 8
Configuring the Harvester

</ harvest ed-i nst ance>
<har vest ed-i nst ance>myCust onDomai n: Nane=nyCust onVBean2
</ harvest ed-i nst ance>
</ harvest ed-type>
</ harvester>
N G her elements ----- -- >
</w df -resour ce>

Configuring the Harvester Sampling Period

The <sample-period> element sets the sample period for the Harvester, in milliseconds. For
example:

<sanpl e- peri 0d>5000</ sanpl e- peri od>

The sample period specifies the time between each cycle. For example, if the Harvester begins
execution at time T, and the sample period is /, then the next harvest cycle begins at T+/. If a
cycle takes A seconds to complete and if A exceeds /, then the next cycle begins at T+A. If this
occurs, the Harvester tries to start the next cycle sooner, to ensure that the average interval is
.

Configuring the Types of Data to Harvest

One or more <harvested-type> elements determine the types of data to harvest. Each
<harvested-type> element specifies an MBean type from which metrics are to be collected.
Optional sub-elements specify the instances and/or attributes to be collected for that type. Set
these options as follows:

* The optional <harvested-instance> element specifies that metrics are to be collected only
from the listed instances of the specified type. In general, an instance is specified by
providing its JIMX ObjectName in JMX canonical form. However, you can use pattern-
matching to specify instance names in non-canonical form, as described in Using
Wildcards in Harvester Instance Names.

* If no <harvested-instance> is present, all instances that are present at the time of each
harvest cycle are collected.

* The optional <harvested-attribute> element specifies that metrics are to be collected only
for the listed attributes of the specified type. An attribute is specified by providing its name.
The first character should be capitalized. For example, an attribute defined with getter
method get Foo() is named Foo.

The <harvested-attribute> element also supports an expression syntax for "drilling down"
into attributes that are complex or aggregate objects, such as lists, maps, simple POJOs
(Plain Old Java Obijects), and various nestings of these types. See Specifying Complex
and Nested Harvester Attributes, for details on this syntax. However, note that the result of
these expressions must be a simple intrinsic type (i nt, bool ean, Stri ng, and so on) in
order to be harvested.

* If no <harvested-attribute> is present, all harvestable attributes defined for the type are
collected.

e Attribute and instance lists can be combined in a type.

Specifying Type Names for WebLogic Server MBeans and Custom MBeans

The Harvester supports WebLogic Server MBeans and custom MBeans. WebLogic Server
MBeans are those that come packaged as part of the WebLogic Server. Custom MBeans can
be harvested as long as they are registered in the local runtime MBean server.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 6

ORACLE

Chapter 8
Configuring the Harvester

There is a difference in how WebLogic Server and customer types are specified. For WebLogic
Server types, the type name is the name of the Java interface that defines the MBean. For
example, the server runtime MBean's type name is
weblogic.management.runtime.ServerRuntimeMBean.

For custom MBeans, the Harvester follows these rules:

* If the MBean is not a ModelMBean, the type name is the implementing class name. (See
Example 8-1.)

e If the MBean is a ModelMBean, the type name is the value of the MBean Descriptor field
DiagnosticTypeName.

If neither of these conditions is satisfied (if the MBean is a ModelMBean and there is no value
for the MBean Descriptor field DiagnosticTypeName) then the MBean cannot be harvested.

Harvesting from the Domain Runtime MBean Server

The <harvested-type> element supports a <namespace> attribute that lets you harvest metrics
from MBeans registered in the Domain Runtime MBean Server. However, Oracle recommends
that you limit the usage to harvesting only Domain Runtime-specific MBeans, such as the
ServerLifeCycleRuntimeMBean. Harvesting of remote managed server MBeans through the
Domain Runtime MBean Server is possible, but is discouraged for performance reasons. It is a
best practice to use the resident Harvester in each managed server to capture metrics related
to that managed server instance.

The <namespace> attribute can have one of two values:

e ServerRuntime
* DomainRuntime

If the <namespace> attribute is omitted, it defaults to ServerRuntime.

@® Note

Harvesting from the Domain Runtime MBean server is available only on the
Administration Server. Attempts to harvest Domain Runtime MBeans on a Managed
Server are ignored. See Example 8-5.

When Configuration Settings Are Validated

WLDF attempts to validate configuration as soon as possible. Most configuration is validated at
system startup and whenever a dynamic change is committed. However, due to limitations in
JMX, custom MBeans cannot be validated until instances of those MBeans have been
registered in the MBean server.

Sample Configurations for Different Harvestable Types

In Example 8-2, the <harvested-type> element in the DI AG_ MODULE. xml configuration file
specifies that the ServerRuntimeMBean is to be harvested. Because no <harvested-instance>
subelement is present, all instances of the type will be collected. However, because there is
always only one instance of the server runtime MBean, there is no need to provide a specific
list of instances. And because there are no <harvested-attribute> subelements present, all
available attributes of the MBean are harvested for each of the two instances.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 6

ORACLE

Chapter 8
Configuring the Harvester

Example 8-2 Sample Configuration for Collecting All Instances and All Attributes of a
Type (in DIAG_MODULE.xml)

<harvest ed-t ype>
<name>webl ogi c. managenent . runti me. Ser ver Runt i neMBean</ name>
</ harvest ed-type>

In Example 8-3, the <harvested-type> element in the DI AG MODULE. xm configuration file
specifies that the WLDFHarvesterRuntimeMBean is to be harvested. As above, because there
is only one WLDFHarvesterRuntimeMBean, there is no need to provide a specific list of
instances. The subelement <harvested-attribute> specifies that only two of the available
attributes of the WLDFHarvesterRuntimeMBean will be harvested: TotalSamplingTime and
CurrentSnapshotElapsedTime.

Example 8-3 Sample Configuration for Collecting Specified Attributes of All Instances
of a Type (in DIAG_MODULE.xml)

<harvest ed-t ype>
<name>webl ogi c. managenent . runt i me. W.DFHar vest er Runt i neMBean</ nane>
<harvest ed- attri but e>Tot al Sanpl i ngTi ne</ harvested-attribute>
<harvest ed- at t ri but e>Current Snapshot El apsedTi me
</ harvested-attribute>
</ harvest ed-type>

In Example 8-4, the <harvested-type> element in the DI AG MODULE. xm configuration file
specifies that a single instance of a custom MBean type is to be harvested. Because this is a
custom MBean, the type name is the implementation class. In this example, the two
<harvested-instance> elements specify that only two instances of this type will be harvested.
Each instance is specified using the canonical representation of its IMX ObjectName. Because
no instances of <harvested-attribute> are specified, all attributes will be harvested.

Example 8-4 Sample Configuration for Collecting All Attributes of a Specified Instance
of a Type (in DIAG_MODULE.xml)

<harvest ed-t ype>
<name>nyMBeans. MySi npl eSt andar d</ name>
<harvest ed-i nst ance>myCust onDomai n: Nane=nyCust onVBeanl
</ harvest ed- i nst ance>
<harvest ed-i nst ance>myCust onDomai n: Nane=nyCust onBean?2
</ harvest ed- i nst ance>

</ harvest ed-type>

In Example 8-5, the <harvested-type> element in the DI AG_ MODULE. xm configuration file
specifies that the ServerLifeCycleRuntimeMBean is to be harvested. The <namespace>
attribute specifies that this is a DomainRuntime MBean, so this configuration will only be
honored on the administration server (see the note in Harvesting from the DomainRuntime
MBeanServer). The subelement <harvested-attribute> specifies that only the StateVal attribute
will be harvested.

Example 8-5 Sample configuration for Collecting Specified Attributes of the
ServerLifeCycleMBean Type (in DIAG_MODULE.xml)

<harvest ed-t ype>

<name>webl ogi c. managenent . runti me. Server Li f eCycl eRunt i meMBean</ nane>
<namespace>Donai nRunt i ne</ nanespace>

<known-t ype>t r ue</ known-t ype>

<harvest ed-attribute>StateVal </ harvested-attribute>

</ harvest ed-type>

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 6

ORACLE

Chapter 8
Harvester Performance Considerations

Harvester Performance Considerations

Because the Harvester tracks all MBeans that are registered in the local WebLogic Server
Runtime MBean server, applications that create a high volume of transient MBeans can create
performance issues in WLDF.Here, a transient MBean is an MBean with a very short life span
that can be registered and unregistered very quickly, typically within the space of a few
milliseconds. Such MBeans can create a load stress in the Harvester and the Policies and
Actions system, which tracks MBean registrations. This performance problem is particularly a
risk when high-volume JMS applications are not coded according to recommended best
practices.

When JMS connections are not cached properly, a scenario can develop in which hundreds of
connections (and consequently, the corresponding connection, producer, and consumer
runtime MBeans) are created and destroyed every second when the system is operating under
heavy load. This situation can cause load stress on both the Harvester and the Policies and
Actions system.

To avoid this problem, make sure your JMS applications conform to the best coding practices
described in Cache and Re-use Client Resources in Tuning Performance of Oracle WebLogic
Server. As a result, you will not only obtain better WLDF performance, but you will also
improve your JMS and overall server performance.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 6

Configuring Policies and Actions

The Policies and Actions component of the WebLogic Diagnostics Framework (WLDF)
provides the means for monitoring server and application states and then executing actions
based on criteria set in the policies.Policies and actions are configured as part of a diagnostic
module that is targeted to one or more server instances in a domain.

@® Note

As of WebLogic Server 12.2.1, the terms watch and notification are replaced by
policy and action, respectively. However, the definition of these terms has not
changed.

The following sections give an overview of the Policies and Actions component, and also
provide an example of a Policies and Actions configuration:

Policies and Actions

You can configure policies to analyze log records, data events, and harvested metrics.
A policy identifies a situation that you want to trap for monitoring or diagnostic purposes.
A policy includes:

* A policy expression (with the exception of calendar-based policies)

The default language for policy expressions is the WLDF query language; however, the
WLDF query language is deprecated. You can also use Java Expression Language (EL)
for policy expressions.

e An alarm setting
¢ One or more action handlers

You can also configure policies to enable elasticity in dynamic clusters; that is, to automatically
scale a dynamic cluster up or down by a specific number of server instances. You can define
policies to enable two broad categories of elasticity:

e Calendar-based scaling — Scaling operations on a dynamic cluster that are executed on a
particular date and time.

» Policy-based scaling — Scaling operations on a dynamic cluster that are executed in
response to changes in demand.

@ Note

To configure an elastic scaling policy for a dynamic cluster, you must create a domain-
scope diagnostic system module in which you define the scaling policy, and then
target that diagnostic module to the Administration Server.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 5

ORACLE

Chapter 9
Overview of Policies and Actions Configuration

For more information about enabling elasticity in WebLogic Server, including instructions for
downloading and running a demonstration example, see Policy-Based Scaling in Configuring
Elasticity in Dynamic Clusters for Oracle WebLogic Server.

An action is an operation that is executed when a policy expression evaluates to true. WLDF
supports the following types of actions:

e Scaling a dynamic cluster

« Java Management Extensions (JMX)

e Java Message Service (JMS)

* Simple Mail Transfer Protocol (SMTP), for example, e-mail
* Simple Network Management Protocol (SNMP)

* Diagnostic image

* Log

e REST

e Script

* Heap dump

e Thread dump

You must associate a policy with an action for a useful diagnostic activity to occur; for example,
to notify an administrator about specified states or activities in a running server.

Policies and actions are configured separately from each other. An action can be associated
with multiple policies, and a policy can be associated with multiple actions. This provides the
flexibility to recombine and re-use policies and actions, according to current needs.

Overview of Policies and Actions Configuration

A complete policy and action configuration includes settings for one or more policies, one or
more actions, and any underlying configurations required for the action media; for example, the
SNMP configuration required for an SNMP-based action.

The main elements required for configuring policies and actions in a WLDF system resource
descriptor file, DI AG MODULE. xm , are shown in Example 9-1. As the listing shows, the base
element for defining policies and actions is <watch-notification>. Policies are defined in
<watch> elements, and actions are defined in elements named for each of the types of action;
for example, <jms-notification>, <jmx-notification>, <smtp-natification>, and <image-
notification>.

Example 9-1 A Skeleton Policy and Action Configuration (in DIAG_MODULE.xml)

<wl df - resour ce>
N Q her systemresource configuration elements ----- -- >
<wat ch-notification>
<l og- wat ch-severity>
<I-- Threshol d severity for a log watch to be eval uated further
(This can be narrowed further at the watch level.) -->
</l 0g-wat ch-severity>
<wl df - resour ce>
N Q her systemresource configuration elements ----- -- >
<wat ch-notification>
<l og- wat ch-severity>
<I-- Threshol d severity for a log policy to be evaluated further
(This can be narrowed further at the policy level.) -->

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 5

ORACLE Chapter 9
Overview of Policies and Actions Configuration

</l 0g-wat ch-severity>

<l-e ae-- Policy configuration elements: ----- -- >
<wat ch>
<l-- A policy expression -->
</ wat ch>
<wat ch>
<I-- A policy expression -->
</ wat ch>

<I-- Any other policy configurations -->

<l-e ae--- Action configuration elenents: ----- -- >
<I'-- The following action configuration el enents show one of each
type of supported actions. However, not all types are
required in any one systemresource configuration, and nultiples
of any type are permtted. -->
<jms-notification>
<I-- Configuration for a JM5-based action; requires a
correspondi ng JMS configuration via a jns-server element and a
j me-systemresource el enent -->
</jms-notification>

<jmx-notification>
<l-- Configuration for a JW-based action -->
</jm-notification>
<sntp-notification>
<I-- Configuration for an SMIP-based action; requires a
correspondi ng SMIP configuration via a mail-session elenent -->
</smp-notification>
<snnp-notification>
<I-- Configuration for an SNVP-based action; requires a
correspondi ng SNWP agent configuration via an snnp-agent
el enent -->
</ snnp-notification>
<i mage-notification>
<I-- Configuration for an i mge-based action -->
</imge-notification>
<wat ch-notification>
<l-e ae--- O her configuration elements ----- -- >
</w df -resource>

@® Note

While the notification media must be configured so they can be used by the actions
that depend on them, those configurations are not part of the configuration of the
diagnostic module itself. That is, they are not configured in the <wldf-resource>
element in the diagnostic module's configuration file.

Each policy and action can be individually enabled and disabled by setting <enabled>true</
enabled> or <enabled>false</enabled> for the individual policy or action. In addition, the entire
policy and action facility can be enabled and disabled by setting <enabled>true</enabled> or
<enabled>false</enabled> for all policies and actions. The default value is <enabled>true</
enabled>.

The <watch-notification> element contains a <log-watch-severity> sub-element, which affects
how actions are executed by log policies.

If the maximum severity level of the log messages that triggered the policy do not at least
equal the provided severity level, then the resulting actions are not executed. Note that this

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 5

ORACLE Chapter 9
Sample Policies and Actions Configuration

only applies to actions executed by log policies. Do not confuse this element with the
<severity> element defined on policies. The <severity> element assigns a severity to the policy
itself, whereas the <log-watch-severity> element controls which actions are executed by log-
type policies.

Sample Policies and Actions Configuration

A set of policies and actions is configured in a diagnostic module file named DI AG MODULE. xm .

Example 9-2 shows a complete configuration. The details of this example are explained in the
following topics:

e Configuring Policies

e Configuring Actions

Example 9-2 Sample Policies and Actions Configuration (in DIAG_MODULE.xml)

<?xm version="1.0" encodi ng=" UTF-8' 7>
<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance"
xsi:schemaLocation="http://xn ns. oracl e. conf webl ogi ¢/ webl ogi c- di agnosti cs/ 2. 0/
webl ogi c- di agnosti cs. xsd" >
<nane>nyw df 1</ nanme>
<I-- Instrunmentation nmust be configured and enabled for instrumentation
policies -->
<instrumentation>
<enabl ed>t r ue</ enabl ed>
<wl df -i nstrument ati on- moni t or >
<nanme>Dyel nj ect i on</ nane>
<description>Dye |njection monitor</description>
<dye- mask xsi:nil="true"></dye- mask> <properties>ADDR1=127. 0. 0. 1</
properties>
</W df -instrunment ati on- noni t or>
</instrunentation>
<l-- Harvesting does not have to be configured and enabl ed for harvester
policies. However, configuring the Harvester can provi de advantages;
for exanple the data will be archived. -->
<harvest er >
<name>nyw df 1</ nane>
<sanpl e- peri 0d>20000</ sanpl e- peri od>
<harvest ed-t ype>
<name>webl ogi c. management . runt i ne. Server Runt i meMBean</ name>
</ harvest ed-type>
<harvest ed-t ype>
<name>webl ogi c. managenent . runt i me. W.DFHar vest er Runt i neMBean</ nane>
</ harvest ed-type>
</ harvester>
<I-- Al policies and actions are defined under the
wat ch-notification el ement -->
<wat ch-notification>
<enabl ed>t r ue</ enabl ed>
<l 0og- wat ch- severity>l nf o</l og- wat ch- severity>
<I-- A harvester policy configuration -->
<wat ch>
<name>ny\Wat ch</ name>
<enabl ed>t r ue</ enabl ed>
<rul e-type>Harvester</rul e-type>
<rul e- expressi on>${ com bea: Name=nyser ver, Type=Server Runti me/ /
Socket sCpenedTot al Count} > = 1</rul e- expressi on>
<al arm t ype>Aut omat i cReset </ al arm t ype>
<al armreset - peri 0d>60000</ al ar m r eset - peri od>

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 5

ORACLE Chapter 9
Sample Policies and Actions Configuration

<notification>nyMil Notif, myJMXNotif, mySNWPNoti f</notification>
</ wat ch>
<l-- An instrunmentation policy configuration -->
<wat ch>
<nanme>nyWat ch2</ nane>
<enabl ed>t r ue</ enabl ed>
<rul e-type>Event Dat a</ rul e-type>
<rul e- expr essi on>
(MONI TOR LI KE ' JDBC After Execute') AND
(DOVAIN = ' MedRecDonai n') AND
(SERVER = ' medrec-admi nServer') AND
((TYPE = ' ThreadDunpAction') OR (TYPE = TraceEl apsedTi neAction')) AND
(SCOPE = ' MedRecEAR)
</ rul e-expressi on>
<notification>JMKNotiflnstr</notification>
</ wat ch>
<I-- Alog policy configuration -->
<wat ch>
<nanme>nyLogWat ch</ nane>
<rul e-type>Log</rul e-type>
<rul e- expr essi on>M5A D=" BEA- 000360' </ r ul e- expr essi on>
<severity>lnfo</severity>
<notification>nyMail Notif2</notification>
</ wat ch>
<l-- AJMX notification -->
<jmx-notification>
<name>nyJMXNot i f </ nane>
</jm-notification>
<I-- Two SMIP actions -->
<sntp-notification>
<name>nyMai | Not i f </ nane>
<enabl ed>t r ue</ enabl ed>
<mai | - sessi on-j ndi - name>nyMai | Sessi on</ mai | - sessi on-j ndi - nane>
<subj ect>This is a harvester alert</subject>
<reci pi ent >user name@nmai | servi ce. conx/ r eci pi ent >
</smp-notification>
<sntp-notification>
<name>nyMai | Not i f 2</ name>
<enabl ed>t r ue</ enabl ed>
<mai | - sessi on-j ndi - name>nyMai | Sessi on</ mai | - sessi on-j ndi - nane>
<subject>This is a |log al ert</subject>
<reci pi ent >user name@nmai | servi ce. conx/ r eci pi ent >
</smp-notification>
<l-- An SNWP notification -->
<snnp-notification>
<name>ny SNMPNot i f </ nane>
<enabl ed>t r ue</ enabl ed>
</ snnp-notification>
</wat ch-noti fication>
</w df -resource>

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 5

Configuring Policies

The WebLogic Diagnostics Framework (WLDF) provides three main types of policies, which
are differentiated by the sorts of data each can monitor. The policy types are:

* Scheduled policies, which monitor diagnostic data that is generated by runtime MBeans
according to a specific schedule. These policies can also be used to execute an action at a
specific time or on a schedule.

e Log policies, which monitor messages generated into the server or domain logs.

* Instrumentation policies, also known as Event Data policies, which monitor events
generated by the WLDF Instrumentation component.

This chapter explains how to configure each policy type and includes the following sections:

How Policies Are Configured

There are several components of a policy that you configure, such as the type, expression,
corresponding actions to be executed when the policy is evaluated to true, and more.

You can use any of the following tools to configure policies for diagnostic system modules:
* WebLogic Remote Console

e Fusion Middleware Control

e WLST

e REST

e JMX application

This chapter refers primarily to using the WebLogic Remote Console or WLST.

The following table summarizes the attributes, elements, and options that you configure when
creating a policy, and also identifies any requirements each configuration item has for specific
policy types.

Table 10-1 Elements, Properties, and Options Configured in a WLDF Policy

Item Description Policy Requirement
Rule Type Attribute that determines the policy's type. Must be specified for log and
The default is Har vest er . instrumentation policies. Optional for

scheduled policies.

Expression Attribute that establishes the language used Use EL in all policy types. The WLDF

Language in the policy expression. The two supported query language is supported, but
languages are Java Expression Language deprecated.
(EL), and WLDF query language
(deprecated).

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 21

ORACLE Chapter 10
How Policies Are Configured

Table 10-1 (Cont.) Elements, Properties, and Options Configured in a WLDF Policy
]

Item Description Policy Requirement
Policy Expression that identifies a situation or Optional for scheduled policies, but

Expression condition that you want to trap for monitoring required for all others.

or diagnostic purposes. The expression can |t 5 scheduled policy does not include an
anal)_/ze log recqrds, data events, or MB_ean expression, the policy always executes
metrics, depending on the rule type setting. the associated actions according to the

Policy Schedule.

Actions One or more operations that are executed Optional.
when a policy expression is evaluated to
true.
Policy A calendar-based schedule that determines ~ Required for all scheduled policies. Not
Schedule when a scheduled policy is evaluated. available for log or instrumentation
policies.

Alarm Options Options that determine whether, or when, a Optional for all policy types.
policy can be evaluated again after it has
been evaluated to t r ue.

The default is None, which enables the policy
to always be evaluated again.

Severity Log message severity value that, when the Optional for all policy types.
Option policy is evaluated to t r ue, is:

1. Specified for the log message that is
generated in the logging system.

2. Passed to the actions that are configured
with the policy.

The default is Not i ce.

Enablement Flags that either enable or disable a policy Optional for all policy types.
Option from being evaluated.

The default is enabl ed.

Rule Type

When creating a policy, you must define its type in its rule type attribute. Policies with different
rule types differ in two ways:

* The syntax for specifying the conditions being monitored are unique to the rule type.

* Log and instrumentation policies are triggered in real time, whereas scheduled policies are
triggered by settings on the W.DFSchedul eBean interface, described in Policy Schedule.

The way to define the rule type depends on the tool you use to create the policy:

* If you are using the WebLogic Remote Console or Fusion Middleware Control, the rule
type is determined by the policy type you are creating. For each of the policy types you can
choose in either console, the following table identifies the corresponding rule type and
W DFWat chBean. Rul eType attribute value that is defined for that policy:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 21

ORACLE Chapter 10
How Policies Are Configured

Table 10-2 WLDFWatchBean.RuleType Attribute Values for Policy Types Created
Using Remote Console or Fusion Middleware Control

Policy Type Rule Type WLDFWatchBean.RuleType Value
Smart Rule Harvester Har vest er

Calendar Based Harvester Har vest er

Collected Metrics Harvester Har vest er

Server Log Log Log

Domain Log Log Domai nLog

Event Data Instrumentation Event Dat a

e If you are using WLST, REST, or JMX to configure a policy, you set the
W DFWAt chBean. Rul eType attribute as follows:

Table 10-3 WLDFWatchBean.RuleType Attribute Values for Policy Types Created
Using WLST, REST, or JMX

Policy Type Rule Type Attribute
Scheduled policy Har vest er
Log policy Log - for server log monitoring

Domai nLog - for domain log monitoring

Instrumentation Event Dat a - for instrumentation event monitoring

Expression Language

Policy expressions can be created using either of the following languages:

e Java Expression Language (EL) (recommended)
e WLDF query language (deprecated in WebLogic Server 12.2.1)

See Expression Language in The Java EE 8 Tutorial. For more information about Java (EL),
see the JSR-000341 Expression Language 3.0 specification at https://jcp.org/aboutJava/
communityprocess/final/jsr341/index.html.

If you have diagnostic system modules created with a previous release of WebLogic Server,
WLDF supports expressions that use the WLDF query language. If you are creating new
policies for either an existing or a new diagnostic system module, Oracle strongly recommends
using Java EL as the policy expression language.

@ Note

The policies described in this chapter are Java EL based. For information about
configuring policies that use the WLDF query language, see WLDF Query Language-
Based Palicies.

Policy Expression

A policy expression encapsulates all information necessary for specifying a rule that, when
evaluated to t r ue, causes the associated actions to be executed. When you use Java EL as

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 21

https://javaee.github.io/tutorial/jsf-el.html#GJDDD
https://jcp.org/aboutJava/communityprocess/final/jsr341/index.html
https://jcp.org/aboutJava/communityprocess/final/jsr341/index.html

ORACLE

Actions

Chapter 10
How Policies Are Configured

the expression language, you can construct a policy expression that uses the following out-of-
the-box resources to set the conditions that determine whether to fire an associated action:

e Beans

A bean is a Java object that represents the data available for a policy expression to use,
such as metrics from MBeans, log event information, or structured data surfaced by other
beans. Beans are accessed in policy expressions using standard JavaBean conventions.

e Functions

Functions are a set of operations that are provided either by EL itself, or by WLDF, that can
be utilized from policy expressions to transform or evaluate data.

e Smart rules

Smart Rules are special set of functions that encapsulate more complex logic and
monitoring capabilities, and have specialized support in both the WebLogic Remote
Console and Fusion Middleware Control. They can be used by themselves, or with other
expression components as part of a larger, more complex expression.

Each policy can be associated with one or more actions that are executed whenever the policy
evaluates to t r ue. See Configuring Actions.

Policy Schedule

All scheduled policies must be configured with a schedule. Scheduling allows policies to be
evaluated according to a calendar schedule, at a specific time, after a duration of time, or at
timed intervals.

You configure a policy schedule by setting attributes on the W.DFSchedul eBean interface, which
is a property of the W.DF\W\t chBean. You can set these attributes using the WebLogic Remote
Console, WLST, REST, or a JMX application. When you are configuring new policies, the
WebLogic Remote Console and Fusion Middleware Control provide convenient assistants and
workflows for configuring common scheduling scenarios.

@® Note

The W.DFSchedul eBean is used for policy evaluation only when:

e The configured policy rule type is " Harvester".
* The configured expression language for the policy is "EL".

Note also that although scheduled policies that use the W.DFSchedul eBean for
scheduling are configured as Harvester types, the WLDF Harvester component is not
used for scheduling.

Table 10-4 lists the attributes of the W.DFSchedul eBean and their default values, which are the
same as for the j avax. €] b. Schedul eExpr essi on interface. In addition, the syntax for
specifying a value, range, list, or interval for a specific unit of time is also the same as that
described for the Schedul eExpr essi on interface. See https://javaee. github.io/javaee-
spec/j avadocs/ j avax/ ej b/ Schedul eExpressi on. htn .

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 21

https://javaee.github.io/javaee-spec/javadocs/javax/ejb/ScheduleExpression.html
https://javaee.github.io/javaee-spec/javadocs/javax/ejb/ScheduleExpression.html

ORACLE

Chapter 10
How Policies Are Configured

Table 10-4 WLDFScheduleBean Attributes and Default Values
]

Attribute Description Default Allowable Values and Examples
second One or more 0 Allowable values: 0 to 59
seconds within a Can be a value, range, list, or interval. To specify every n seconds of the minute,
minute specify "*/ n" .
For example:
e second = "30" — (value) run policy every 30 seconds within the minute
« second = "10, 20, 30" — (list) run policy on seconds 10, 20 and 30
within the minute
e second = "1-10" — (range) run policy on each of seconds 1 through 10
within the minute
e second = "30/ 10" — (interval) run policy every 10 seconds within the
minute, starting at second 30
« second = "*/5" — (interval) run policy every 5 seconds within the minute
m nut e One or more */5 Allowable values: 0 to 59
minutes within an Can be a value, range, list, or interval. To specify every n minutes of the hour,
hour specify "*/n" .
For example:
e mnute = "30" — (value) run policy every 30 minutes
mnute = "*/2" — (interval) run policy every two minutes of the hour
hour One or more * Allowable values: 0 to 23
hours within a Can be a value, range, list, or interval.
day For example:
¢ hour="16" — (value) run policy at 16:00.
e hour = "*" — (range) run policy at every hour within a day.
dayf Wee One or more * Allowable values:
k \(/jv?;skwnhm a « 0to7,where 0 and 7 represent Sunday. For example, dayOf Week="3"

e Sun, Mon, Tue, \d, Thu, Fri, Sat . For example, dayOf Week="NNbn"
Can be a value, range, or list. For example:

o dayOf\Week = "3" — run policy on Wednesday

e dayCf\Week = "Mn-Fri" — run policy each day from Monday to Friday

o dayOf\Week = "Mon, Wed, Fri" — run policy on Monday, Wednesday,
and Friday

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 21

ORACLE

Chapter 10
How Policies Are Configured

Table 10-4 (Cont.) WLDFScheduleBean Attributes and Default Values
|

Attribute Description Default Allowable Values and Examples
dayOf Mon One or more * Allowable values:
th days within a . 1to031
month . Last
e -7to-1
e {Ist,2nd, 3rd, 4th, 5th, Last}{Sun, Mon, Tue, \d, Thu, Fri, Sat}
Last represents the last day of the month.
- X (where X is in the range 7 to 1) means X days before the last day of the
month.
1st, 2nd, and so on, specified with a day of the week identifies a single
occurrence of that day within the month.
Can be a value, range, or list. For example:
e dayOfMonth = "1" — run policy on first day of the month
o dayOfMonth = "-3" — run policy on the third day before the end of the
month
e dayOfMonth = "2nd Mon" — run policy on the second Monday of the
month
e dayOfMonth = "1st Fri, 3rd Fri" — run policy on the first and third
Friday of the month
« dayOfMonth = "1 to 10" — run policy on each of the first 10 days of
the month
mont h One or more * Allowable values:
months within a . 1to12.
year < Jan, Feb, Mar, Apr, May, Jun, Jul , Aug, Sep, Cct, Nov, Dec
Can be a value, range, or list. For example:
« nmonth = "7" — run policy on the 7th month of the year
« nmonth = "Feb" — run policy in February
e qmonth = "1 - 3" —run policy on the first three months of the year
« nmonth = "Jan, Apr, Jul, Qct" — run policy in January, April, July,
and October
year A specific * Allowable values: a four-digit calendar year.

calendar year

You can specify one value. For example:
e year = "2015" — run policy in 2015

ti mezone Time zone for the null
schedule

Defaults to the local VM time zone. You may use this attribute to specify a non-
default time zone ID in whose context the schedule specification is to be
evaluated.

Alarm Options

A policy that has been evaluated to t r ue is referred to as having been triggered. For policies
that are run repeatedly, an alarm determines when a policy can be evaluated again after it has
been triggered. If a policy is configured with an alarm, a triggered policy is not evaluated again
until the alarm is reset. For policies that are evaluated repeatedly, you can optionally define a
minimum time that must transpire after a policy has been triggered before the policy can be

evaluated again.

An alarm is important to configure for a policy that is run repeatedly to prevent the associated
actions from being executed too frequently, such as generating a flood of emails or IMX
notifications. For example, if you have a scheduled policy that executes a scale up action on a

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 21

ORACLE

Chapter 10
How Policies Are Configured

dynamic cluster, you should set an alarm that delays evaluating the policy again until the
dynamic cluster is fully scaled up and is processing incoming requests. This delay is referred to
as the alarm reset period. Without a proper alarm reset period, the scale up action could be
executed again prematurely and counter-productively.

To configure an alarm for a policy, specify the following:

e The alarm type
e The alarm reset period

The following table lists and describes each of the available alarm types:

Table 10-5 Alarm Types
]

Alarm Type Description
None Allows the policy to be triggered whenever possible. This is the default.
Aut omat i cReset Allows the policy to be triggered whenever possible, except that subsequent

occurrences cannot occur any sooner than the interval specified in the alarm
reset period.

Manual Reset Allows the policy to be triggered only once. After it is triggered, you must
manually reset it to fire again. You can reset an alarm using a run-time MBean
operation, either programmatically or with WLST. For example, you can use
the r eset Wat chAl ar moperation on the
W.DFWat chNot i fi cati onRunt i meMBean.

Note the following alarm state behaviors:

* When the alarm type is Aut omat i cReset , a policy enters the alarm state when triggered
and stays in that state until the time interval specified by the alarm reset period has
expired.

e If a policy is configured with a Manual Reset alarm, the policy enters the alarm state when
triggered, and remains in that state until you manually reset it.

* When a policy is in the alarm state, the policy is not evaluated again until the alarm is
reset.

* If a policy's alarm type is None, the configured action can be executed every time that the
policy is triggered. The alarm state is never set in these cases.

Severity Option

Whenever a policy is triggered, a message is automatically generated in the logging system.
The severity option is an optional value you can configure that:

1. Gets assigned as the severity value of the log message generated in the logging system.
2. Is also passed to the actions that are configured with the policy.

The severity option must be one that is defined for the WebLogic logging service in the
webl ogi c. | 0ggi ng. Severities class. The accepted values are | nf o, Noti ce, War ni ng, Error,
Critical, Alert, and Energency. The default is Noti ce.

Enablement Option

Each policy can be individually enabled and disabled by using the Enabl ed attribute on that
policy. The value you specify for this attribute is t rue or f al se. When disabled, a policy is not
evaluated and its configured actions are not executed.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 21

ORACLE

Chapter 10
Configuring Scheduled Policies

However, note that the W.DFWat chNot i fi cat i onBean, which is the parent of all policy and
action configurations in a diagnostic system module, also has an Enabl ed attribute. If the value
of the W.DFWat chNot i fi cati onBean. Enabl ed attribute is f al se, all individual policies in the
diagnostic system modules are disabled regardless of whether its policies are individually
configured as enabled.

Configuring Scheduled Policies

Scheduled policies monitor diagnostic data that consists of data coming from MBeans within
the WebLogic Server Runtime MBean Server, including the read-only configuration MBeans in
the WebLogic Server Runtime MBean Server.These values, called metrics, originate from
common WebLogic Server JMX data sources such as the following:

* WebLogic Server Runtime MBean Server
e Domain Runtime MBean Server
e JVM platform MBean server

Scheduled policies are useful for monitoring run-time state information in the WebLogic Server
environment. Examples of diagnostic data that is useful to monitor using scheduled policies
are:

e Changes over time in average JVM heap usage

If the average amount of free heap reaches a particular threshold that is defined in the
policy expression, the configured action is executed, such as sending an email to the
system administrator.

- Data from multiple services that are considered together, such as response-time metrics
reported by a load balancer and message-backlog metrics from a message queue

If the combination of data meets a particular set of criteria defined in the policy expression,
the policy can fire a scaling action

See also Chaining Policies for information about how to create a policy expression that can
reference the state of other policies defined within the same WLDF module as the beans.
Policy chaining allows the state of one policy to be part of the expression of another.

The following sections explain how to configure, and show examples of, the three scheduled
policy types:

Configuring Calendar Based Policies

The simplest type of scheduled policy is the calendar based policy. You can use a calendar
based policy to fire any associated actions according to the policy's schedule.

Calendar-based policies are simply scheduled policies with no associated expression. This
enables purely schedule-driven action execution; that is, the ability to unconditionally perform a
set of actions on a specified schedule. If no expression is provided, when the scheduled time
occurs, the policy treats the empty expression as a t r ue result and executes the associated
actions.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 21

ORACLE Chapter 10
Configuring Scheduled Policies

@® Note

Calendar based policies are supported only for policies that: have the following
configuration attributes:

» The rule type specified as ' Harvest er'

* The expression language specified as ' EL'

The following example shows the configuration of a calendar based policy using WLST. This
policy fires a scale up action at 3:00 a.m. on December 26.

cal endar Scal eUp=wn. | ookupWat ch(' Chri st masRet ur nsScal eUpWat ch')

i f cal endar Scal eUp == None:
print "Creating scale-up for the post-Christmas returns rush on Dec 26 at 3anf
cal endar Scal eUp=wn. cr eat eWat ch(' Chri st masRet ur nsScal eUp\Wat ch')

cal endar Scal eUp. set Rul eType("' Harvester"')

cal endar Scal eUp. set Expr essi onLanguage(' EL')

cal endar Scal eUp. get Schedul e(). set Hour (' 3")

cal endar Scal eUp. get Schedul e().setM nute('0")

cal endar Scal eUp. get Schedul e() . set Second(' 0")

cal endar Scal eUp. get Schedul e() . set DayOf Mont h(*' 26")

cal endar Scal eUp. get Schedul e() . set Mont h(' Dec')

cal endar Scal eUp. set Enabl ed(f al se)

cal endar Scal eUp. addNot i fi cati on(scal eUp)

Configuring Smart Rule Based Policies

Smart rules are prepackaged functions that greatly simplify the creation of policy expressions.
The WebLogic Remote Console and Fusion Middleware Control, in particular, each contain a
smart rule editor to greatly simplify the task of configuring a smart rule for the policy you are
creating.

Smart rules perform a number of complex operations, but surface only a small number of
configuration parameters that you set. Details about the specific low level metrics that are
collected, how they are used, and so on, are hidden, thereby making them easy to use. Smart
rules return only a Boolean value, which determines whether the policy is evaluated to t r ue.

You use a smart rule as a predicate in policy expression by simply specifying the parameters
required by that smart rule. For example, to evaluate whether a particular increase exists in the
average thread pool queue length in the local server, you create a policy that specifies the
Server H ghQueuelLengt h smart rule as the policy expression and provide the following
parameters:

* The sampling period for collecting the value of the Thr eadPool Runt i neMBean. QueuelLengt h
attribute

e Duration, or the most recent window of time, in which samples are retained

e Athreshold value that establishes the maximum acceptable nhumber of threads in the
queue

The smart rule takes responsibility for sampling the appropriate metrics over the specified time
interval, computing averages, comparing threshold values, and determining whether the smart
rule evaluates to t r ue.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 21

ORACLE Chapter 10
Configuring Scheduled Policies

@® Note

Smart rules are supported for use only in scheduled policies that are configured with
Java EL as the expression language.

Types of Diagnostic Data that Smart Rules Evaluate

Smart rules can monitor trends in metrics in a server or cluster over time, including:

e Average system throughput

* Process CPU load

* Pending user request count

* Idle or stuck thread count

* Incoming request queue size

e System load average

e JVM free heap size

e Any metric value visible from JMX, such as custom MBean values

You can use smart rules as building blocks in policy expressions. In the simplest case, a single
smart rule can be used by itself in a policy expression. You can also combine a smart rule with
others, as well as with other EL constructs, to form more complex expressions.

For example, you can construct a policy that sends an email notification if all of the following
conditions occur simultaneously in a server instance or cluster:

* Low JVM free heap percentage
e High number of stuck threads
e High incoming requests queue size

For details about all the smart rules provided by WLDF, see Smart Rule Reference.

Smart Rule Example

The ClusterlL owHeapFreePercent smart rule compares the average free heap across all
Managed Servers in a cluster by monitoring the value of the

JVMRunt i meMBean. HeapFr eePer cent attribute. A policy expression that uses this smart rule will
be evaluated to t r ue if a minimum percentage of Managed Servers in the cluster have an
average free heap that is less than a particular threshold value.

The C ust er LowHeapFr eePer cent smart rule takes the following input parameters:

e Cluster name

e Sampling period — The frequency with which the value of the HeapFr eePer cent metric is
collected

e Retention window — A sliding window of time during which samples are retained. For
example, the most recent five minutes.

e percent FreelLi mt — A value that represents the low free heap percentage threshold.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 21

ORACLE

Chapter 10
Configuring Log Policies

e percentServersLinit — A percentage of Managed Servers in the cluster that must have
an average free heap that is less than per cent FreeLi n t to cause the expression to
evaluate to t r ue.

The following is an example configuration of the O ust er LowHeapFr eePer cent smart rule:

W s: C ust er LowHeapFr eePercent ("nmyCl uster", "30 seconds","10 m nutes", 20, 60)

For every Managed Server in nyd ust er, this smart rule collects the value of the

HeapFr eePer cent every 30 seconds, retaining the most recent 10 minutes of data, and
evaluates to t r ue if at least 60 per cent of the Managed Servers in nyC ust er have an average
free heap percentage that is less than 20 per cent.

This smart rule could be configured to fire an action when it evaluates to t r ue, such as sending
an email to the system administrator to report that a low free heap condition exists in the
cluster. The system administrator can then take remedial action as necessary.

You can use smart rules in conjunction with scaling actions, described in Configuring Elastic
Actions, to configure policy based scaling of a dynamic cluster. This capability enables
automated elasticity in that cluster. For more information, including a demo that you can
download and run, see Policy-Based Scaling in Configuring Elasticity in Dynamic Clusters for
Oracle WebLogic Server.

Chaining Policies

Within the same diagnostics system module, the expression in one policy can reference other
policies as beans within that expression. In this way, complex policy expressions can be
reused and "chained" together to allow the state of one policy to be part of the expression of
another. This allows more complex, interrelated policies to be written, while keeping such
policy configurations more readable and maintainable.

To allow access to policy states within an expression, you can use the resource bean within the
global bean name space for each policy. The resour ce bean supports a Map attribute named
wat ches, where each key in the map is the name of a policy defined within the same
diagnostics system module.

Each value in the policy's map is a bean representing the named policy. These policy beans
support a simple Boolean alarm attribute, which has the following semantics:

e If the policy is configured with an alarm type other than None, the alarm attribute returns
t rue if the policy is currently in the alarm state.

e If no alarm type is configured on the policy, the alarm attribute yields the most recently
evaluated result.

e If the alarm attribute on a policy bean is accessed before the named policy has
successfully completed an evaluation cycle, a Not EnoughDat aExcept i on is thrown. This
occurrence also has the effect of invalidating the expression during that evaluation cycle:
the policy isn't disabled, but it is effectively a non-result when it occurs.

Configuring Log Policies

Use log policies to monitor the occurrence of specific messages or strings in the server or
domain log. Policies of this type are triggered as a result of a log message containing the
specified data being issued.

When creating a log policy, you can use the log bean in a policy expression to obtain access to
data to log message fields. See log for details about the available log bean attributes.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 21

ORACLE

Chapter 10
Configuring Instrumentation Policies

The following example looks for a log message indicating that the server is entering the
RUNNING state:

w=cno. cr eat eWat ch(" Server LogRunni ngSt at e")

w. set Expr essi onLanguage(' EL')

w. set Rul eType(' Log')

w. set Rul eExpressi on("l og. nessagel d == ' BEA-000365' and
| 0g. | ogMessage. contai ns(' RUNNING) ")

You can also use java methods and field accessors to access the data in log, since the log
bean is a simple JavaBean object. An equivalent policy expression of the above example is:

w=cno. cr eat eWat ch(" Server LogRunni ngSt at e2")

w. set Expr essi onLanguage("' EL')

w. set Rul eType(' Log")

w. set Rul eExpressi on("| og. get Messagel d() . cont ai ns(' 000365') &&
| 0og. get LogMessage(). contai ns(' RUNNING)")

@® Note

Any log policies that search for the RUNNING state message ID should search for
message ID BEA- 000365, and not BEA- 000360. The message ID BEA- 000360 is issued
immediately before the state change to RUNNING, and BEA- 000365 is issued
immediately afterward. WLDF does not start rule evaluation until the server is in the
RUNNING state. Therefore, such log policies are able to find only message ID

BEA- 000365.

Configuring Instrumentation Policies

You use instrumentation policies to monitor the events from the WLDF Instrumentation
component. Policies of this type are evaluated as a result of an event being posted by the
Instrumentation component, which occurs when code that matches a deployed Instrumentation
monitor is exercised.

Instrumentation policy expressions utilize a single bean named i nst runment ati onEvent . This
bean provides access to the data that is captured in an Instrumentation event. As with Log,
DomainLog, and Collected Metrics policies, you can access data in the Instrumentation event
using JavaBean conventions in the policy expression. See the set of fields that are accessible
on the instrumentationEvent bean.

The following example shows how to access data in an Instrumentation policy using the
i nstrument ati onEvent bean:

i nstrumentationEvent. payl oad > 100000000 && instrunentationEvent. monitor ==
"Servl et _Around_Service'

This policy triggers when the monitor event is of type “Servlet_Around_Service” and the
payload value (in this case, the execution time of the servlet recorded by the
Servlet_Around_Service monitor) is greater than 100000000 nanoseconds (100 milliseconds).
You can also use java methods and field accessors to access data in i nstrunment ati onEvent,
since the i nstrunent ati onEvent bean is a simple JavaBean object . An equivalent policy
expression of the example above can be given as:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 21

ORACLE’

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

i nstrument ati onEvent. get Payl oad() > 100000000 &&
i nstrument ati onEvent . get Monitor().equal s(* Servl et _Around_Service')

Example 10-1 shows an example configuration for an Instrumentation policy.

Example 10-1 Sample Configuration for an Instrumentation Policy (in
DIAG_MODULE.xml)

<wat ch-noti fication>
<wat ch>
<name>nyl nst Wat ch</ nanme>
<enabl ed>t r ue</ enabl ed>
<rul e-type>Event Dat a</rul e-type>
<rul e- expressi on>i nstrunent ati onEvent . payl oad > 100000000 &anp; &anp;

instrunentationEvent.nonitor == 'Servlet_Around_Service' </rul e-expression>

<expr essi on-| anguage>EL</ expr essi on- | anguage>
<al arm t ype>Manual Reset </ al arm t ype>
<noti fication>nySMIPNoti fi cation</notification>

</ wat ch>

<sntp-notification>
<name>nySMIPNot i fi cati on</ nane>
<enabl ed>t r ue</ enabl ed>
<mai | - sessi on-j ndi - name>nyMai | Sessi on</ nai | - sessi on-j ndi - name>
<subj ect xsi:nil="true"></subject>
<body xsi:nil="true"></body>
<reci pi ent >user nane@nui | servi ce. conx/reci pi ent >

</sntp-notification>

</wat ch-notification>

Creating Complex Policy Expressions Using WLDF Java EL
Extensions

Oracle expects that the library of smart rules packaged with WLDF are sufficient for meeting
the needs of creating scheduled policies that evaluate runtime performance data in a server or
cluster. However, if you have a specific scheduled policy need that cannot be satisfied by a
smart rule, WLDF also provides a set of extensions to Java EL. These extensions are intended
for use in policies that evaluate very specific characteristics or trends in metrics collected from
runtime MBean servers in your WebLogic domain.

The contents of this section are targeted to developers who are knowledgeable of complex
programming techniques. Experience with Java EL is highly recommended.

Using WLDF Beans and Functions

WLDF leverages Java EL as the language for writing policy expressions. Java EL is a
standard, extensible, and robust scripting language. WLDF has adopted and extended Java EL
to provide access to WebLogic diagnostic data and events for writing policy expressions.
WLDF provides a set of functions and JavaBean objects for writing policy expressions that use
the following diagnostic data and events:

* WebLogic Runtime MBean data
* WebLogic Logging events
* WebLogic Instrumentation events

You can utilize all the features available within Java EL in conjunction with these WLDF
extensions to write policy expressions. Collected metrics based policies, which are a type of
scheduled policy, can use WLDF-provided beans and functions within their policy expressions.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 21

ORACLE’

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

These beans are JavaBean objects that can obtain access to common WebLogic Server IMX
data sources, such as the following:

e WebLogic Server Runtime MBean Server
e Domain Runtime MBean Server
e JVM platform MBean server

The following sections explain how to configure collected metrics based policies using beans
and functions:

* Writing Collected Metrics Policy Expressions Using Beans

¢ Writing Collected Metrics Policy Expressions Using Functions

Writing Collected Metrics Policy Expressions Using Beans

Table 10-6 summarizes the beans provided by WebLogic Server. For complete reference
information about each of these beans, see WLDF Beans Reference.

Table 10-6 Beans Provided by WebLogic Server

Name Prefix Scope Summary
runtime w's Only available from partition Provides access to MBeans in the local WebLogic
scope diagnostic system Server Runtime MBean Server. These MBeans
module deployments and include both the read-only configuration MBean
partitions and RuntimeMBean instances.
domainRuntime w's Administration Server Provides access to MBeans on the Domain
Runtime MBean Server (Administration Server
only).
clusterRuntime W s Administration Server Provides domain-wide access to cluster member
data (Administraton Server only).
platform w s Administration Server or Provides access to the JVM's platform MBean
Managed Server server.
Note that in the majority of cases, the pl at f orm
bean is functionally equivalent to the r unt i ne
bean: WebLogic Server uses the JVM's platform
MBean server to contain the WebLogic run-time
MBeans by default.
resource n/a Administration Server and Provides access to beans and state information
Managed Servers within a diagnostic system module deployment.

Access is restricted to policies that are configured
within the same diagnostic system module.

Accessing MBean Data in Collected Metrics

The beans described in Table 10-6 provide access to WebLogic Server Runtime MBean
metrics. In policy expressions that use Java EL, metric data from each of these runtime
MBeans is accessed using a WLDF-provided bean using the following syntax:

w s. bean-nane. attribute-or-operation.attribute-or-operation...

All EL-based policy expressions that use the WLDF beans must begin with the namespace
prefix W s . The prefix wl s is similar to a namespace that contains all the WLDF beans that can
be used in the policy expressions. Beans and their attributes and methods are accessed using

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 21

ORACLE

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

standard JavaBean conventions. The following example shows a simple policy expression that
returns t r ue when the value of HeapFr eePer cent attribute of JVMRunt i meMBean is less than 20:

w s.runtine. serverRuntime. JVMRunt i ne. heapFr eePercent < 20

The preceding policy expression example accesses the value of HeapFr eePer cent in the
following sequence:

1. Theruntime bean is accessed from the W s bean namespace.

The runti ne bean provides an entry point into the metrics collected by the local runtime
MBean and also into the read-only configuration MBean data in the WebLogic Server
Runtime MBean Server.

2. The server Runti ne attribute is accessed from the runt i e bean.

The server Runt i me attribute of the runt i ne bean corresponds directly to the
Server Runt i mreMBean instance in the local running server instance wherever the expression
is being evaluated.

3. The JVMRunt i me attribute, which corresponds to the JVMRunt i meMBean instance under the
local Server Runt i meMBean, is accessed from the server Runti ne bean.

4. The heapFreePer cent attribute is accessed from the returned JVMRunt i e instance.

From the runti me bean, runtime metrics and monitoring data are available through the
server Runti ne attribute, and the domai n attribute provides access to the current configuration
data in the local read-only DomainMBean tree. This access allows policies to examine the
current in-memory configuration within a policy expression.

MBeans that are accessed as bean attributes from the WLDF-provided expression beans have
read-only access to most of the attributes and some operations available to the expression as
defined in the MBean Reference for Oracle WebLogic Server, with some exceptions for
security purposes.

@ Note

There are slight differences in syntax between JMX and JavaBean conventions when
accessing attributes. For example, JavaBean conventions for accessing the JMX
attribute HeapFr eePer cent require using “camel-case” syntax. When using JMX, the
attribute is accessed by the name HeapFr eePer cent . However, in EL expressions, the
same attribute is accessed as heapFr eePer cent .

Working with Complex MBean Attributes

Some MBean attributes return complex objects; for example, the Heal t hSt at e attribute of the
Server Runt i mreMBean. Such attributes can be accessed using JavaBean conventions. In the
following example, the policy expression returns t r ue if the health state of the server is a non-
zero value:

w s.runtine.serverRuntine. healthState.state !'= 0

Working with Array Attributes

Many WLDF bean attributes return arrays of child MBeans. To work with collections, such as
arrays, Java EL provides the st r eamoperator to convert arrays and lists into stream objects
that can be fed into other Java EL and WLDF functions and operators. In the following
example, the policy expression examines the state of all JDBCDat aSour ceRunt i meMBean

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 21

ORACLE

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

instances in the local server instance, and returns t r ue if any of them are in the Over| oaded
state:

w s. runtime. serverRuntime. JDBCServi ceRunt i me. JDBCDat aSour ceRunt i meMBeans. st reamn)
.anyMatch(ds -> ds.state == “Overl oaded”)

The policy expression executes in the following sequence:

1. The JDBCSer vi ceRunt i neMBean child is accessed from the Ser ver Runt i mneMBean.

2. The array attribute JDBCDat aSour ceRunt i neMBeans is accessed from the
JDBCSer vi ceRunt i meMBean.

3. The Java EL st reamoperator is utilized to convert the array to a stream so that it can be
used with WLDF and standard Java EL collection operations.

4. The anyMat ch collection operation is used to look for the Over | oaded state on any of the
returned JDBCDat aSour ceRunt i meMBean instances.

5. If the anyMat ch operation matches the Over | oaded state, returns t r ue.

Performing Bulk Queries on Collected Metrics from MBeans

The MBeans defined in Table 10-6 are used in collected metrics policy expressions. All of
these beans support a query method that allows to perform a query for a set of MBean
attribute values against a homogeneous set of MBeans.

The method takes the following syntax:
query(target-list, object-name-pattern, attribute-expression)
The query method returns an iterable list of values that is obtained using the att ri but e-

expr essi on on each matching MBean instance.

Table 10-7 Method Parameters

. ___|]
Parameter Description

target-list This argument is applicable only for domai nRunt i me
bean which is available only for policies executing on the
Administration Server. The bean supports an overloaded
variant that takes an array of targets.

It is a list of servers or clusters in the domain. The
argument allows the policy expression to examine
MBean values across the domain in the same
expression.

obj ect - name- pattern This argument takes any valid JMX ObjectName pattern
that is specified as a string value enclosed by single
quote (') characters. For example:
' com bea: Type=Servl et Runti me, *'

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 16 of 21

ORACLE Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

Table 10-7 (Cont.) Method Parameters

. ___|
Parameter Description

attribute-expression This argument is a quoted EL subexpression that is
used to access an attribute from each of the MBeans
matching the object-name-pattern argument. The
attribut e- expressi on argument can be either of the
following types:

e A simple attribute available on the MBean.

e An attribute of a complex type that uses a
JavaBean-style expression to access the values
within that complex structure.

Note: It is expected that at t ri but e- expr essi on

ultimately resolves to a single scalar value, and not a

complex structure.

The values returned by the query method can be used as a part of the larger policy expression
that examines those values.

@® Note

The intended use of the query method is to operate against a homogeneous set of
MBean instances, but there is no enforcement mechanism to ensure that the specified
MBeans must all be of the same type. Therefore, if you do specify an obj ect - name-
pat t er n that encompasses MBeans of different types, errors can result when the
policy expression is evaluated.

Example 10-2 Examples of Using the query Method

Table 10-8 lists some examples of using the query method in policy expressions.

@® Note

The examples show how to use the query method and are not complete policy
expressions.

Table 10-8 query Method Examples

]
Example Description

w s. runtime. query(' com bea: Type=Servl et The query method is used for all the instances of

Runtine, *', 'ExecutionTi meAverage') Servl et Runt i meMBean in the local server and
returns the value of Execut i onTi meAver age for
each instance in the returned iterable stream.

w s. donai nRunti me. query(['clusterl'], The donai nRunt i me bean is used to query all
' com bea: Type=Thr eadPool Runti me, *', values of Pendi ngUser Request Count across all
' Pendi ngUser Request Count ') instances of Thr eadPool Runt i neMBean in the

cluster ¢l ust er 1. Any values found are returned in
the | t er abl e set returned by the method call.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 17 of 21

ORACLE’

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

The use of query method in policy expression and the result set are represented in the
following illustration:

Figure 10-1 Result Set of query in Policy Expression

Policy Expression

wls.runtime.qguery(‘com.bea:Type=ServletRuntime,*’,'ExecutionTimelverage’)

Returns cormn.bea:Name=5ervlet3, Type=ServletRuntime,...

Result Set
Servletl Servlet? | | Servlet3

150 150 150

The following is a complete example of a policy expression that uses the query method
to determine whether the St uckThr eadCount attribute on any Wor kManager Runt i meMBean in the
local WebLogic Server instance is greater than zero:

w s.runtime. query(' com bea: Type=Wr kManager Runti ne, *' |
" St uckThreadCount'). strean{).anyMatch(x -> x > 0)

The values of St uckThr eadCount for all instances of Wr kManager Runt i mreMBean are queried,
and each value is examined to see if it is greater than zero, which indicates a stuck thread in
the server. The st reamcollection operation is part of the Java EL standard, and is used for
converting an iterable set into a stream that can be used with Java EL collection operations,
such as anyMat ch in the example.

Writing Collected Metrics Policy Expressions Using Functions

In addition to the bundled functions and collection operations that come with Java EL by
default, there are also a set of WLDF-provided functions for use within policy expressions for
common operations with metric data and for retaining a set of metrics with history.

The set of WLDF-provided functions includes:
* W s:tabl eChanges

e ws:tabl eAverages

° W s:extract

e ws:average

e W s:changes

 ws:aliveServersCount

For complete details about each EL function provided by WLDF, see Functions Reference.

Functions are invoked using the prefix W s:

w s: <function-call>

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 18 of 21

ORACLE

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

For example, W s: al i veServersCount (' cluster1') invokes the al i veServer sCount ()
function provided by WLDF for the cluster cl uster 1.

Collection Operations

WLDF also provides a set of collection operations that can be invoked similar to the collection
operations provided by Java EL. The set of WLDF-provided collection operations includes:

e tabl eAverages
e percenMatch
e collection

e flatten

Examining Trends in Metric Values over Time

You can look for trends in metric data over time instead of assessing the instantaneous values.
Use the wl s: extract function to extract a table of time series from a specified set of input
sources, based on a specified sampling rate schedule and time window.

The ext ract function has the following syntax:
W s: extract (sources, sanpling rate, retention w ndow)

The method returns an iterable set that consists of a two dimensional set of results. The metric
input to the function comes from multiple MBean instances during the course of a specific
interval of time defined by the ret enti on w ndow parameter. The resulting data is similar to a
table where each row is a set of values from a particular MBean instance over the time
window.

Parameters

Table 10-9 Parameters Description for extract() Function

. ___|
Parameters Description

sour ces Set of metric sources, which can be identified as a query
method or as a quoted Java EL expression.

sanpling rate String that identifies the frequency with which data is
collected. You can specify this string as hours, minutes, or
seconds. The syntax is flexible, allowing you to specify 30
seconds, for example, as “30s”, “30sec”, or “30 seconds”.

Note: The frequency only applies to the rate of collection of
the metric, and is independent of the overall policy evaluation
schedule.

retention w ndow String that identifies the retention window over which to
observe values from the sources input with syntax identical to
the sanpl i ng rat e parameter.

It implements the sliding window algorithm in which the oldest
data in the set is aged out when the array is full.

See retention window.

Example 10-3 Examples of Using the extract Function

Table 10-10 lists example usages of the extract function.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 19 of 21

ORACLE’

Chapter 10

Creating Complex Policy Expressions Using WLDF Java EL Extensions

@® Note

The examples show how to invoke the ext ract function and are not complete policy

expressions.

Table 10-10 extract Function Examples

Example

Description

w s:extract("w s.runtine. serverRunt
i me. t hr eadPool Runt i ne. pendi ngUser Re
quest Count", "30s", "2nt)

w s:extract(w s. runtime. query("com
bea: Type=Thr eadPool Runti e, *",

" Pendi ngUser Request Count "), "30s",

"2m')

w s: extract (w s. domai nRunti me. quer

y(['clusterl'],

' com bea: Type=Thr eadPool Runti ne, *',
" Pendi ngUser Request Count '), '30s',

'2m)

The extract function is invoked with an EL expression
as the first argument which observes and collects the
values of the Pendi ngUser Request Count attribute on
the Thr eadPool Runt i meMBean at 30-second intervals
and retains them over a period of 2 minutes. In this
example, Thr eadPool Runt i neMBean is a singleton, and
only the local WebLogic Server instance is monitored.
Therefore, only a single row of values is returned in the
table of values.

The extract function is used with the result of a query
method invocation as input.

The extract function is used with the quer y method of
the domai nRunt i ne bean to collect the value of

Pendi ngUser Request Count attribute on all

Thr eadPool Runt i meMBean instances on every server in
cl ust er 1. The result set for this call consists of a row of
values for each Thr eadPool Runt i neMBean instance in
each active server instance in cl usterl .

Extracting and Examining Collected Metrics in Policy Expressions

The extract function returns a table of scalar values. You can use any collection operation to
examine or manipulate the result set. WLDF provides more collection operations that are
intended for use with the data returned from ext ract function, such as t abl eAver ages,

per cent Mat ch, col I ection, andfl atten.

Operations Description

t abl eAver ages Computes the average value for each row in the table.

per cent Mat ch Examines all the computed averages from t abl eAver ages.
col [ection Returns the two dimensional set of values in tabular form, which

can be then converted to Java EL collection stream using the
st r eamoperator and can be directly manipulated in other Java EL
collection operators.

flatten Converts the two dimensional set of values returned by ext r act
function into a linear collection of values.

The result of ext ract can then be fed into other functions or operations as part of an overall

policy expression.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 20 of 21

ORACLE

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

In the following example of a policy expression, the ext ract function collects the value for the
Pendi ngUser Request Count attribute across the servers in cl ust er 1. The result is combined
with the t abl eAver ages and per cent Mat ch collection operations to produce a boolean value.

w s: extract (w s. domai nRuntinme. query({' clusterl'},

' com bea: Type=Thr eadPool Runtine, *', ' Pendi ngUser Request Count'), '30s',

'2m). tabl eAverages().strean(). percent Mat ch(pendi ngCount -> pendi ngCount > 100) >
0.75

This policy expression returns t r ue when the average value of the attribute
Pendi ngUser Request Count over the 2-minutes window is greater than 100 on 75% of the
servers in cl ust er 1. The policy expression executes in the following sequence:

1. Theextract function creates a table of values for the attribute Pendi ngUser Request Count ,
where each row is one set of values from a server in cl ust er 1 over a 2-minutes window.

2. Thetabl eAver ages operation computes the average value over the 2-minutes window for
each row in the table returned by the ext ract function.

3. streamis a standard Java EL collection operation used to convert the vector result of
t abl eAver ages to a Java EL stream.

4. The percent Mat ch operation examines all the computed averages from t abl eAver ages,
and computes the percentage of values in that set that are greater than 100.

5. The result of per cent Mat ch is a value between 0 and 1 and is compared with 0.75, the
desired threshold.

Lifecycle of Data Collection

The extract function extracts data from a specified input source over a defined period of time.
When the extract function is first encountered in an expression by the WLDF policy engine, it
starts the collection of the desired metrics indicated in the policy expression. Samples are
collected by the policy engine until the policy using the extract function is disabled or
undeployed.

Policy expressions that use the extract function is not evaluated until enough data has been
collected for the desired metrics to satisfy the sliding window interval specified in the
invocation. If the function invocation specifies that a 5-minutes window of data is required, then
5 minutes of data collection must take place from the moment the policy is deployed before the
expression can be successfully evaluated.

In the following example, the expression does not evaluate until 2 minutes of data for the
Pendi ngUser Request Count attribute is collected.

w s: extract (w s. runtinme. query("com bea: Type=Thr eadPool Runti nge, *",
" Pendi ngUser Request Count "), "30s", "2ni)

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 21 of 21

Configuring Actions

The WebLogic Diagnostics Framework (WLDF) provides several types of actions that can be
executed when a policy evaluates to t r ue, such as triggering an elastic scaling action, sending
a JMS notification, executing an external command line script, and more.

Actions Overview

An action is an operation that is executed when a policy expression evaluates to true. WLDF
supports different types of action based on the delivery mechanism of the notification.
Topics

The following sections contain background information pertaining to WLDF actions:

Types of Actions

WLDF supports the following types of diagnostic actions, based on the delivery mechanism:
e Java Management Extensions (JMX)

e Java Message Service (JMS)

e Simple Network Management Protocol (SNMP)
e Simple Mail Transfer Protocol (SMTP)

« Diagnostic image capture

e Elasticity framework

e REST

* WebLogic logging system

e WebLogic Scripting Tool (WLST)

e Heap dump

e Thread dump

In the configuration file for a diagnostic module, the different types of actions are identified by
the following elements in the confi g. xm file for the domain:

e <jmx-notification>

e <jms-notification>

e <snmp-notification>
e <smtp-notification>

e <image-notification>
e <scale-up-action>

e <scale-down-action>

* <rest-notification>

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 13

ORACLE Chapter 11
Actions Overview

e <log-action>

e <script-action>

e <heap-dump-action>

e <thread-dump-action>

These action types all have <name> and <enabled> configuration options. The value of
<name> is used as the value in a <notification> element for a policy, to map the policy to its
corresponding action. The <enabled> element, when set to true, enables that action. In other
words, the action is executed when an associated policy evaluates to true. Other than <name>
and <enabled>, each action type is unique.

Variables for Customizable Actions

The log, SMTP, and REST action types support the generation of customized strings that
contain one or more of the variables listed in this topic.

When a triggered policy invokes one of these action types, each variable used in the
customized string that is generated by the action is replaced with the value shown in the
following table.

Table 11-1 Substitution Variables
]

Variable Name Value

\Wat chNamre Name of policy that corresponds to the action

Wt chRul eType Policy type (for example, Har vest er, Log, or Event Dat a)

VWt chRul e Policy expression

Wt chTi me Timestamp identifying when the corresponding policy was triggered

Wt chSeveritylLevel Policy severity option

Wt chDat a Log message

Wt chAl ar niType Specifies the policy alarm type, which can be None, Aut omat i cReset , or
Manual Reset .

Wt chAl ar mReset Peri Alarm reset period configured on the

od W.DFWat chNot i fi cati onRunti neMBean.

Wat chDormai nNane WebLogic domain name

Wt chSer ver Nane Server instance name

Log, REST, and SMTP actions send different types of messages when executed. Each of
these actions, while different, has one or more properties that support the use of one or more
of the variables defined in . For example, an SMTP message body can be specified as follows
to include the policy name, expression, and timestamp indicating when the policy was
triggered:

"Test ${WatchName} with policy ${WatchRule} fired at ${WatchTine}."

For more information about using these substitution variables, see:

e Configuring Log Actions

e Configuring REST Actions
e Configuring SMTP Actions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 13

ORACLE Chapter 11
Configuring JMX Actions

Action Timeout

All WLDF actions support a timeout, which determines the time, in seconds, for the action to
complete execution. By default, the timeout is 0, which disables the action timeout.

You can specify the action timeout using the W.DFNot i f i cat i onBean. Ti neout attribute.

See the following topics to set the timeout when configuring an action:

e Configure an action in Administering Oracle WebLogic Server with Fusion Middleware
Control

Configuring JMX Actions

WLDF issues JMX events when an associated policy is triggered for each defined JMX action.
You can configure the JMX action to receive all the JMX notification and filter the output as
required.

For each defined JMX action, WLDF issues JMX events (notifications) whenever an associated
policy is triggered. Applications can register an action listener with the server's

W DFWat chNot i fi cati onSour ceRunt i meMBean to receive all IMX notifications and filter the
provided output. You can also specify a JIMX "natification type" string that a JMX client can use
as a filter.

Example 11-1 shows an example of a JMX action configuration.
Example 11-1 Example Configuration for a JMX Action

<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi:schemalLocation="http://xn ns. oracl e. conf webl ogi ¢/ webl ogi c- di agnosti cs/ 2. 0/
webl ogi c- di agnosti cs. xsd" >
<name>nyw df 1</ name>
<wat ch-notification>
<l-- One or nore policy configurations -->
<jmx-notification>
<name>nyJMXNot i f </ nane>
<enabl ed>t r ue</ enabl ed>
</jm-notification>
<l-- Qther action configurations -->
</wat ch-notification>
</ W df -resour ce>

Here is an example of a JMX action:

Notification nane: myj mx cal l ed. Count= 42.

Watch severity: Noti ce

Watch time: Jul 19, 2005 3:40:38 PM EDT

Wt ch Server Nane: myserver

Wt ch Rul eType: Har vest er

Watch Rul e: ${com bea: Name=nyser ver, Type=Ser ver Runti nme/ /
OpenSocket sCurrent Count} > 1

Wt ch Nane: mywat ch

Wt ch Donai nNane: mydonai n

Wt ch Al arniype: None

Wat ch Al ar nReset Peri od: 10000

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 13

ORACLE Chapter 11
Configuring JMS Actions

Configuring JMS Actions

You can configure JMS actions to send JMS notifications through the JMS topics or queues
when the corresponding policy is triggered. You can define how the notification must be
delivered such as defining the destination and the connection factory.

In the system resource configuration file, the elements <dest i nati on-j ndi - nane> and
<connecti on-factory-j ndi - nane> define how the notification is to be delivered.

Example 11-2 shows two JMS actions that cause JMS notifications to be sent through the
provided topics and queues using the specified connection factory. For this to work properly,
JMS must be properly configured in the confi g. xm configuration file for the domain, and the
JMS resource must be targeted to this server.

Example 11-2 Example JMS Actions

<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi: schenaLocation="http://xnl ns. oracl e. cont webl ogi ¢/ webl ogi c- di agnosti cs/ 2. 0/
webl ogi c- di agnosti cs. xsd" >
<name>nyw df 1</ name>
<wat ch-notification>
<I-- One or nore policy configurations -->
<jms-notification>
<name>nyJMSTopi cNot i f </ nane>
<desti nati on-j ndi - name>MyJMSTopi c</ desti nati on-j ndi - name>
<connect i on-f act ory-j ndi - name>webl ogi c. j ms. Connect i onFact ory
</ connection-factory-jndi - nane>
</jms-notification>
<jms-notification>
<name>nyJMSQueueNot i f </ nane>
<desti nati on-j ndi - name>MyJMSQueue</ dest i nati on-j ndi - name>
<connect i on-f act ory-j ndi - name>webl ogi c. j ms. Connect i onFact ory
</ connection-factory-jndi - name>
</jms-notification>
<l-- Qther action configurations -->
</wat ch-noti fication>
</w df -resource>

The content of the action message gives details of the policy and action.

Configuring SNMP Actions

Simple Network Management Protocol (SNMP) actions are used to post SNMP traps when an
associated policy is triggered. Provide the action name to define an SNMP action.To define an
SNMP action, provide the action name as shown in Example 11-3. Generated traps contain the
names of both the policy and action that caused the trap to be generated. For an SNMP trap to
work properly, SNMP must be properly configured in the confi g. xm configuration file for the
domain.

Example 11-3 An Example Configuration for an SNMP Action

<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance"
xsi:schenmaLocation="http://xnl ns. oracl e. cont webl ogi ¢/ webl ogi c- di agnosti cs/ 2. 0/
webl ogi c- di agnosti cs. xsd" >
<nane>nyw df 1</ nane>
<wat ch-notification>
<l-- One or nore policy configurations -->

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 13

ORACLE’

Chapter 11

Configuring Log Actions

<snnp-notification>
<name>ny SNMPNot i f </ nane>
</ snnp-notification>
<l-- Qther action configurations -->
</wat ch-noti fication>
</w df -resource>

The trap resulting from the SNMP action configuration shown in Example 11-3 is of type 85. It

contains the following values (configured values are shown in angle brackets "<>"):

1.3.6.1.4.1.140.625.100.5 tinestanp (e.g. Dec 9, 2004 6:46:37 PM EST
1.3.6.1.4.1.140. 625. 100. 145 donmai nNane (e.g. mydomain")
1.3.6.1.4.1.140.625.100. 10 serverNane (e.g. myserver)
1.3.6.1.4.1.140. 625. 100. 120 <severity> (e.g. Notice)
1.3.6.1.4.1.140. 625. 100. 105 <name> [of watch] (e.g.

si npl eWebLogi cMBeanWat chRepeat i ngAft er Wai t)
.3.6.1.4.1.140. 625.100. 110 <rule-type> (e.g. HarvesterRule)
1.3.6.1.4.1.140. 625. 100. 115 <rul e- expr essi on>
1.3.6.1.4.1.140. 625. 100. 125 val ues which caused rule to

fire (e.g..State =
nul |, webl ogi c. management . runt i me. W.DFHar vest er Runt i neMBean.
Tot al Sanpl i ngTi me = 886, . Enabl ed =
nul |, webl ogi c. management . runt i me. Ser ver Runt i meMBean.
OpenSocket sCurrent Count = 1,)

1. 1.4.1.140.625.100. 130 <alarmtype> (e.g. None)

1. 4.1.140.625.100. 135 <al armreset-period> (e.g. 10000)

1. 4.1.140.625.100. 140 <nane> [of notification]

(e.g. mySNWPNot i f)

n
3. 6.
3.6.1.
3.6.1.

Configuring Log Actions

You can create a log action to send a customized message to the server log.

The customized message can optionally include any of the variables described in Variables for
Customizable Actions. The following WLST example shows the configuration of a log action:

wn=r es. get Wat chNot i fi cati on()

acti onName="nyacti on"
action = wn. | ookupLogAction(actionNare);
if action is None:
action = wn.createScriptAction(actionNane);

action. set Message("Message with substitution on server ${WatchServerName} in domain $

{WatchDomainName}");
action. set Subsyst emNane(" Speci al LogActi on);
action.setSeverity("Info");

When the preceding log action is executed, the custom message, shown in bold, uses

variables to identify:

e The WebLogic Server instance name, represented by the ${ \t chSer ver Nane} variable

e The WebLogic domain name, represented by the variable ${ Wt chDonai nNane}

Configuring REST Actions

You can use a REST action to send a notification to a REST endpoint that includes a
customized message in the notification payload. You can configure the REST endpoint

invocation for no authentication or basic authentication.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates.

Page 5 of 13

ORACLE

Chapter 11
Configuring SMTP Actions

When configuring a REST action, you can create a customized set of notification properties
that can optionally use any of the variables described in Variables for Customizable Actions.
For example, the following WLST example shows the configuration of a REST action that
sends a customized message:

wn = res.get WatchNotification();

#No Auth REST invocation

restl = wn.createRESTNotification('rl")

restl.set Endpoi nt URL("http://1ocal host: 7001/ rest-no-aut h/ resources/wat ch-1istener")
customNotif = java.util.Properties()

customNot i f. put ("message”, "Policy ${WatchName} with rule ${WatchRule} fired.")
restl.set CustomNotificationProperties(customNotif)

restl.set Enabl ed(true)

#Basi ¢ Auth REST invocation

rest2 = wn. createRESTNotification('r2")

rest2.set Endpoi nt URL("http://1 ocal host: 7001/ rest - basi c- aut h/ resour ces/ wat ch-1i stener")
rest2.set Ht t pAut henti cati onMbde("' Basic')

rest2.set Htt pAut henti cati onUser Nanme(' restuser1')

rest2.set Ht pAut henti cati onPassword(' restuserl')

rest2.set Enabl ed(true)

When the preceding REST action is executed, the REST endpoint is invoked with a message,
shown in bold, that identifies:

* The name of the triggered policy that executed the corresponding REST action,
represented by the ${ Wat chNane} variable

e The policy expression, represented by the ${ Wt chRul e} variable

Configuring SMTP Actions

Simple Mail Transfer Protocol (SMTP) actions are used to send messages (e-mail) over the
SMTP protocol in response to the triggering of an associated policy. You provide a list of
recipients to whom the message is distributed through the configured SMTP session.

To define an SMTP action, first configure the SMTP session. That configuration is persisted in
the confi g. xm configuration file for the domain. In DI AG MODULE. xm , you provide the
configured SMTP session using subelement <nmai | - sessi on-j ndi - name>, and provide a list of
at least one recipient using subelement <r eci pi ent s>. An optional subject and/or body can be
provided using subelements <subject> and <body> respectively. If these are not provided, they
will be defaulted.

Example 11-4 shows an SMTP action that causes an SMTP (e-mail) message to be distributed
through the configured SMTP session, to the configured recipients. In this action configuration,
a custom subject and body are provided. If a subject or body are not specified, defaults are
provided, showing details of the policy and action.

Example 11-4 Sample Configuration for SMTP Action (in DIAG_MODULE.xml)

<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi="http://ww:. w3. or g/ 2001/ XM.Schena- i nst ance"
xsi :schenmalLocation="http://xnl ns. oracl e. cont webl ogi ¢/ webl ogi c- di agnosti cs/ 2. 0/
webl ogi c- di agnosti cs. xsd" >
<nane>nyw df 1</ nanme>
<wat ch-notification>
<l-- One or nore policy configurations -->
<sntp-notification>
<name>ny SMIPNot i f </ name>

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 13

ORACLE Chapter 11
Configuring Image Actions

<mai | - sessi on-j ndi - name>MyMai | Sessi on</ mai | - sessi on-j ndi - nane>
<subj ect>Critical Problenl</subject>
<body>A systemissue occurred. Call Wnston ASAP.
Ref erence number 81767366662AG USA23. </ body>

<reci pi ent s>adni ni strat or @ryConpany. conx/ r eci pi ent s>

</smp-notification>

<l-- Qther action configurations -->

</wat ch-noti fication>
</w df -resource>

The content of the action message gives details of the policy and action.

WLDF also supports customizing the subject and body elements in the sent email by using any
of the variables described in Variables for Customizable Actions.

The following WLST example shows the configuration of an SMTP action that contains
customized subject and body text. The subject and body of the message utilize variables to
specify the policy name and the timestamp indicating when the policy was triggered:

smt p=wn. | ookupSMIPNot i fi cation('sntpl')
if sntp is None:
snt p=wn. creat eSMIPNot i fi cation(' sntpl')

st p. set Mai | Sessi onJNDI Name(' t est. Mai | Session')

snt p. set Subj ect ("WatchRule ${WatchName} alert")

snt p. set Body("Test ${WatchName} with rule ${WatchRule} fired at ${WatchTime}.")
smt p. set Reci pi ents(["j ohn. sm t h@xanpl e. cont'])

When the preceding SMTP action is executed, an email is generated with a custom subject
and body, shown in bold, that identifies:

* The name of the policy that executed the SMTP action, represented by the variable $
{Wat chNane} . This variable is used in both the subject and body.

e The policy expression, represented by the ${ Wat chRul e} variable

* The timestamp identifying when the corresponding policy was triggered, represented by
the ${WatchTime} variable

Configuring Image Actions

An image action causes a diagnostic image to be generated in response to the triggering of an
associated policy. You can configure two options for image actions: a directory and a lockout
period.

The directory name indicates where the images will be generated. The lockout period
determines the number of seconds that must elapse before a new image can be generated
after the last one. This is useful for limiting the number of images that will be generated when
there is a sequence of server failures and recoveries.

You can specify the directory name relative to the DOMAI N_HOVE\ ser ver s\ SERVER_NAME. The
default directory is DOVAI N_HOVE\ ser ver s\ SERVER NAME\ | ogs\ di agnosti c-i nages.

Image file names are generated using the current timestamp (for example,
di agnosti c_i mage_nyserver_2005_08 09 13 40_34. zi p), so an action can execute many
times, resulting in a separate image file each time.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 13

ORACLE

Chapter 11
Configuring Elastic Actions

The configuration is persisted in the DI AG_MODULE. xn configuration file. Example 11-5 shows
an image action configuration that specifies that the lockout time will be two minutes and that
the image will be generated to the DOVAI N_HOVE\ ser ver s\ SERVER_NAME\ i mages directory.

Example 11-5 Sample Configuration for Image Action (in DIAG_MODULE.xml)

<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance"
xsi:schemalLocation="http://xnl ns. oracl e. cont webl ogi ¢/ webl ogi c- di agnosti cs/ 2. 0/
webl ogi c- di agnosti cs. xsd" >
<nane>nyw df 1</ nane>
<wat ch-noti fication>
<l-- One or nore policy configurations -->
<i mage-notification>
<nanme>ny| mageNot i f </ nane>
<enabl ed>t r ue</ enabl ed>
<i mage- | ockout >2</ i mage- | ockout >
<i mage- di r ect or y>i nages</ i mage- di r ect or y>
</imge-notification>
<l-- Other action configurations -->
</wat ch-notification>
</w df -resource>

For more information about Diagnostic Images, see Configuring and Capturing Diagnostic
Images.

Configuring Elastic Actions

WLDF provides scale up and scale down elastic actions that can be performed on dynamic
clusters.

e scale up — Configured using the W.DFScal eUpAct i onBean

* scale down — Configured using the W.DFScal eDownAct i onBean

Each action bean has the following configuration attributes:

e clusterName — The name of the dynamic cluster that needs to be scaled

e scalingSi ze — The number of Managed Server instances by which the dynamic cluster
needs to be scaled up or down

The scale up and scale down actions attempt to scale the dynamic cluster specified by the
cl ust er Nanme parameter, by the number of servers specified as the scal i ngSi ze value. WLDF
interacts with the elasticity framework to scale the dynamic cluster accordingly.

® Note
Note the following:

e To configure automated elasticity for a dynamic cluster, you must create a domain-
scope diagnostic system module in which you define the scaling policy, along with
its corresponding elastic action, and then target that diagnostic module to the
Administration Server.

e After a scale up or scale down action has been invoked, the scaling action can't be
subsequently cancelled.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 13

ORACLE

Chapter 11
Configuring Elastic Actions

The following WLST snippet shows the commands for configuring a scale up action. In this
example, the dynamic cluster nyC ust er is scaled up by one Managed Server instance:

wn=r es. get Wat chNot i fi cati on()

scal eUp=wn. | ookupScal eUpAction(' scal eUp')
if scal eUp == None:

print "Creating scale up action”

scal eUp=wn. cr eat eScal eUpAction(' scal eUp')
scal eUp. set Scal i ngSi ze(1)
scal eUp. set Cl ust er Nane(nmyCl uster)

The following example shows the WLST commands for configuring a scale down action on
myCl uster:

wn=r es. get Wat chNot i fi cati on()

scal eDown=wn. | ookupScal eDownAct i on(' scal eDown')
i f scal eDown == None:
print "Creating scale down action”
scal eDown=wn. cr eat eScal eDownAct i on(' scal eDown')
scal eDown. set Scal i ngSi ze(1)
scal eDown. set Cl ust er Nane(nmyC ust er)

For complete details about using these elastic actions, see:

» Elastic Actions in Configuring Elasticity in Dynamic Clusters for Oracle WebLogic Server

* Expanding or Reducing Dynamic Clusters in Administering Clusters for Oracle WebLogic
Server

Elastic Scaling Operations Cannot Be Cancelled After Starting

Note that the moment a scaling operation has begun, regardless of whether it is a scale up or
scale down operation, it cannot be cancelled. If you configure automated elasticity in a
dynamic cluster, such as with calendar-based or policy-based scaling, the elasticity framework
does not provide the means to cancel a scaling operation after it has been initiated.

Consequently, if a postprocessor script (invoked by a script interceptor) fails, the parts of the
scaling operation that were completed can't be reverted. For more information about script
interceptors and postprocessor scripts, see Configuring the Script Interceptor in Configuring
Elasticity in Dynamic Clusters for Oracle WebLogic Server.

Limiting Server Shutdown Time During Scale Down Operations

Shutting down servers during a scale down operation can take a significant amount of time,
especially if there are unreplicated sessions. Until unreplicated sessions time out, which can
potentially be a long time, the server will not be shut down.

To limit the length of time required to complete a scale down operation, you can configure the
following attributes on the Dynani cSer ver sMBean:

Attribute Description

Dynami cd ust er Shut downT Timeout period, in seconds, to use while gracefully shutting down a

i meout Seconds dynamic server instance. If the dynamic server instance does not shut
down before the specified timeout period, then it will be forcibly shut
down.

The default value is 0.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 13

ORACLE’

Chapter 11
Configuring Script Actions

Attribute Description

| gnor eSessi onsDur i ngShu Specifies whether to ignore inflight HTTP requests while shutting down
t down dynamic server instances.

Wi t For Al | Sessi onsDurin Specifies whether to wait for all persisted and nonpersisted inflight HTTP
gShut down sessions to complete before shutting down dynamic server instances.

By specifying a timeout or ignoring inflight HTTP sessions during shutdown, the shutdown time
can be limited. However, note that remaining inflight HTTP sessions may be lost.

Configuring Script Actions

You can use the script action to execute an external command-line script. The script can be
written in any scripting language.

To set the execution environment in which the script is run, you can configure the following
attributes of the W.DFScr i pt Act i onBean:

e PathToScri pt — The full path to the script, which must be located in the
DOVAI N_HOVE/ bi n/ scri pt s directory

e WrkingDirectory — The directory from which the WebLogic Server process was run,
which is typically the domain root directory.

e Environnent — A map of environment variables to set for the child process
e Paranet ers — An array of parameters or command options to pass to the script

e Tineout — The time, in seconds, for the script action to complete execution. By default,
the timeout is 0, which disables the script action timeout.

When the script action is executed by a triggered policy, WLDF invokes the configured script,
which is run with the identity of the configured script. The script process executes as a child
process of the WebLogic Server process that spawned it. Therefore, the script process has the
same operating system identity as the WebLogic Server process; however, it does not inherit
any of the parent process environment.

The following example shows configuring a script action using WLST:

wn=r es. get Wat chNot i fi cati on()

acti onName="nyacti on"
action = wn. | ookupScriptAction(actionNane);
if action is None:

action = wn.createScriptAction(actionNane);

action. set WrkingDirectory("somedir");
action. setPat hToScript("myScript.sh");
action. setParameters(["paraml", "paranR"]);
action. set Ti meout (300);

Configuring Heap Dump Actions

You can use a heap dump action to capture heap dumps when certain runtime conditions,
defined by a policy expression, are met. Each heap dump is produced in HPROF format, which
you can analyze with tools such as the j nap utility, which is available in the JDK.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 13

ORACLE

Chapter 11
Configuring Heap Dump Actions

You create a heap dump action by configuring the W.DFHeapDunpAct i onBean and the

W DFSer ver Di agnost i cMBean in a domain scope diagnostic system module — that is, a
diagnostic system modules that is deployed in the domain partition. When configuring a heap
dump action, you can specify the following:

e Whether or not to include only objects that can be referenced (that is, not garbage-
collected, or awaiting garbage collection), which you specify in the Li veSet Onl y attribute of
the W.DFHeapDunpAct i onBean. The default value is t r ue.

* The location each server's diagnostic dumps directory where the heap dumps are stored.
You can specify this directory in the Di agnost i cDunpsDi r attribute of the
WL.DFSer ver Di agnost i cMBean.

e The number of heap dump files that are retained, which prevents filling up the file system
with generated heap dumps. You can specify the number in the MaxHeapDunpCount
attribute of the W.DFSer ver Di agnost i cMBean. The default value is 8.

The generated heap dump files are named using the following syntax:

HeapDunp_$SERVER $MODULE_$POLI CY_$ACTI ON_$t i mest anp. hpr of

In the preceding syntax:

* $SERVER represents the name of the WebLogic Server instance that generated the heap
dump.

e $MODULE represents the name of the diagnostics system module that contains the action
configuration.

« $POLI CY represents the name of the policy that executed the heap dump action.
e $ACTI ON represents the name of the W.DFHeapDunpAct i onBean.

e $timest anp represents time when the heap dump was generated, which takes the form of
yyyy_nmdd HH MM SS.

@ Note
Note the following:

* Heap dumps may contain sensitive information. Therefore, make sure that you
place appropriate access protections on the directories into which heap dumps are
generated.

* If a heap dump action is in progress, an attempt by another heap dump action to
generate a heap dump is rejected and a message is generated in the server log.

The j map utility is described in the Java SE 8 documentation, available at htt p: //
docs. oracl e. cont j avase/ 8/ .

Example 11-6 An Example Configuration for a Heap Dump Action
The following WLST example shows the configuration of a heap dump action:

Start an edit session in edit tree
edit()

startEdit()

cd("/")

if cno. | ookupW.DFSyst enResour ce("nmywl df ") == None:
print "Creating W.DF resource"

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 13

http://docs.oracle.com/javase/8/
http://docs.oracle.com/javase/8/

ORACLE

Chapter 11
Configuring Thread Dump Actions

cno. cr eat eWLDFSyst enResour ce(" nywl df ")
cd("/W.DFSyst enResour ces/ nyw df / W.DFResour ce/ nywl df / Wat chNot i fi cati on/ myw df ")

Create a heap dunp action

ch. cr eat eHeapDunpAct i on(' myHeapDunp')

cd(" HeapDunpAct i ons/ myHeapDunmp")

Set it to capture a full heap, not just the live setLiveSetOnly - default is "true"
cno. set Li veSet Onl y(f al se)

save()
activate()

Configuring Thread Dump Actions

You can use a thread dump action to capture a specific number of thread dumps, separated by
configured time interval, when the runtime conditions that are specified in a corresponding
policy are met. Each thread dump file is produced in an individual text file.

You create a thread dump action by configuring the W.DFThr eadDunpAct i onBean and the

W DFSer ver Di agnost i cMBean in a domain scope diagnostic system module — that is, a
diagnostic system modules that is deployed in the domain partition. When configuring a thread
dump action, you specify the following:

e The number of thread dumps to be captured, which you specify in the Thr eadDunpCount
attribute of the W.DFThr eadDunpAct i onBean. The default value is 3.

e The interval between successive thread dumps, which you specify in the
Thr eadDunpDel aySeconds attribute of the W.DFThr eadDunpAct i onBean. The default value is
10 seconds.

* The location each server's diagnostic dumps directory where the thread dumps are stored,
which you can specify with the Di agnost i cDunpsDi r attribute of the
WL.DFSer ver Di agnost i cMBean.

* The number of thread dump files that are retained, which prevents filling up the file system
with generated thread dumps. You specify the number using the MaxThr eadDunpCount
attribute of the W.DFSer ver Di agnost i cMBean. The default value is 100.

The generated thread dump files are named using the following syntax:

HeapDunp_$SERVER $MODULE_$POLI CY_$ACTI ON_$t i mest anp. hpr of

In the preceding syntax:

» $SERVER represents the name of the WebLogic Server instance that generated the thread
dump.

e $MODULE represents the name of the diagnostics system module that contains the action
configuration.

« $POLI CY represents the name of the policy that executed the thread dump action.
e $ACTI ON represents the name of the W.DFThr eadDunpAct i onBean.

« $tinestanp represents time when the thread dump was generated, which takes the form of
yyyy_nmdd HH MM SS.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 13

ORACLE Chapter 11
Configuring Thread Dump Actions

@® Note

» Thread dumps may contain sensitive information. Therefore, make sure that you
place appropriate access protections on the directories into which thread dumps
are generated.

» If athread dump action is in progress, an attempt by another thread dump action
to generate a thread dump is rejected and a message is generated in the server

log.

Example 11-7 An Example Configuration for a Thread Dump Action

The following WLST example shows the configuration of a thread dump action:

Start an edit session in edit tree
edit()

startEdit()

cd("/")

if cno.l ookupW.DFSyst enResour ce("nmywl df ") == None:
print "Creating WDF resource"
cno. cr eat eWLDFSyst enmResour ce(" nyw df ")

cd("W.DFSyst enResour ces/ myw df / W.DFResour ce/ myw df / Wat chNot i fi cati on/ nyw df ")

Create a Thread Dunp action
cno. cr eat eThr eadDunpAct i on(' myThr eadDunp')
cd(" Thr eadDunpAct i ons/ myThr eadDunp")

set it to capture 5 dunps at 30 second intervals
cno. set Thr eadDunpCount (5)
cn. set Thr eadDunpDel ay Seconds(30)

save()
activate()

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 13

Configuring Instrumentation

Concepts

The Instrumentation component of the WebLogic Diagnostics Framework (WLDF) provides a
mechanism for adding diagnostic code to WebLogic Server instances and the applications
running on them.The key features provided by WLDF Instrumentation are:

» Diagnostic monitors

A diagnostic monitor is a dynamically manageable unit of diagnostic code that is inserted
into server or application code at specific locations. You define monitors by scope (system
or application) and type (standard, delegating, or custom).

- Diagnostic actions

A diagnostic action is the action a monitor takes when it is triggered during program
execution.

» Diagnostic context

A diagnostic context is contextual information, such as unique request identifier and flags
that indicate the presence of certain request properties such as originating IP address or
user identity. The diagnostic context provides a means for tracking program execution and
for controlling when monitors trigger their diagnostic actions. See Configuring the
Dyelnjection Monitor to Manage Diagnostic Contexts.

WLDF provides a library of predefined diagnostic monitors and actions. You can also create
application-scoped custom monitors in which you control the locations in the application where
diagnostic code is inserted.

The following sections introduce the Instrumentation components and explain how to configure
them and also the different kinds of diagnostic monitors and actions:

and Terminology

Learn a comprehensive list of common terms and some basic concepts that apply to the
Instrumentation component of WLDF.

Instrumentation Scope

You can provide instrumentation services at the system level (servers and clusters) and at the
application level. Many concepts, services, configuration options, and implementation features
are the same for both levels. However, there are differences, which are discussed throughout
this document. The term server-scoped instrumentation refers to instrumentation
configuration and features specific to WebLogic Server instances and clusters. By contrast,
application-scoped instrumentation refers to configuration and features specific to
applications deployed on WebLogic Server instances. The scope is built in to each diagnostic
monitor; you cannot modify a monitor's scope.

Configuration and Deployment

Server-scoped instrumentation for a server or cluster is configured and deployed as part of a
diagnostic module, an XML configuration file located in the DOMAI N_HOWE/ conf i g/ di agnosti cs
directory, and linked from confi g. xnl .

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 17

ORACLE

Chapter 12
Concepts and Terminology

Application-scoped instrumentation is also configured and deployed as a diagnostics module,
in this case an XML configuration file named webl ogi c- di agnosti ¢s. xm , which is packaged
with the application archive in the ARCH VE_PATH META- | NF directory for the deployed
application.

Joinpoints, Pointcuts, and Diagnostic Locations

Instrumentation code is inserted (or woven) into server and application code at precise
locations. The following terms are used to describe these locations:

e Ajoinpoint is a specific location in a class; for example, the entry point, or exit point, or
both, of a method or a call site within a method.

e A pointcut is an expression that specifies a set of joinpoints, for example all methods
related to scheduling, starting, and executing work items. The XML element that specifies
a pointcut is <pointcut>. Pointcuts are described in Defining Pointcuts for Custom Monitors.

» A diagnostic location is the position relative to a joinpoint where the diagnostic activity
will take place. Diagnostic locations are Before, After, and Around. The XML element that
identifies a diagnostic location is <location-type>.

Diagnostic Monitor Types

A diagnostic monitor is categorized by its scope and its type. The scope is either server-
scoped or application-scoped. The type is determined by the monitor's pointcut, diagnostic
location, and actions. For example, Servlet_Around_Service is an application-scoped
delegating monitor that can be used to trigger diagnostic actions at the entry to and exit from
specific servlet and JSP methods.

There are three types of diagnostic monitors:

« A standard monitor performs specific, predefined diagnostic actions at specific,
predefined pointcuts and locations. These actions, pointcuts, and locations are hard-coded
in the monitor. You can enable or disable the monitor, but you cannot modify its behavior.

The only standard server-scoped monitor is the Dyelnjection monitor, which you can use to
create diagnostic context and to configure dye injection at the server level. See Configuring
the Dyelnjection Monitor to Manage Diagnostic Contexts.

The only standard application-scoped monitor is HttpSessionDebug, which you can use to
inspect an HTTP Session object.

* A delegating monitor has its scope, pointcuts, and locations hard-coded in the monitor,
but you select the actions that the monitor performs. That is, the monitor delegates its
actions to the ones you select. Delegating monitors are either server-scoped or
application-scoped.

A delegating monitor by itself is incomplete. To have a delegating monitor perform useful
work, you must assign at least one action to it.

Not all actions are compatible with all monitors.

If you configure a delegating monitor using WLST or by editing a descriptor file manually,
you must make sure that the actions are compatible with that monitor. WLDF validates a
delegating monitor when its XML configuration file is loaded at deployment time.

See WLDF Instrumentation Library, for a list of the delegating monitors and actions
provided by the WLDF Instrumentation Library.

* A custom monitor is a special case of delegating monitor that:

— Is available only for application-scoped instrumentation

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 17

ORACLE Chapter 12
Concepts and Terminology
— Does not have a predefined pointcut or location
To configure a custom monitor, you assign it a name, define the pointcut and the
diagnostics location that the monitor uses, and assign actions from the set of predefined
diagnostic actions. The <pointcut> and <location type> elements are mandatory for a
custom monitor.
Table 12-1 summarizes the differences among the types of monitors.
Table 12-1 Diagnostic Monitor Types
]
Monitor Type Scope Pointcut Location Action
Standard monitor Server Fixed Fixed Fixed
Delegating monitor Server or Application Fixed Fixed Configurable
Custom monitor Application Configurable Configurable Configurable
You can restrict when a diagnostic action is triggered by setting a dye mask on a monitor. This
mask determines the dye flags in the diagnostic context that trigger actions. See <wldf-
instrumentation-monitor> XML Elements, for information about setting a dye mask for a
monitor.
® Note
Diagnostic context, dye injection, and dye filtering are described in Configuring the
Dyelnjection Monitor to Manage Diagnostic Contexts.
Diagnostic Actions

Diagnostic actions execute diagnostic code that is appropriate for the associated delegating or
custom monitor (standard monitors have predefined actions). For a delegating or custom
monitor to perform any useful work, you must configure at least one action for that monitor.

The WLDF diagnostics library provides the following actions, which you can attach to a monitor
by including the action's name in an <action> element of the DI AG MODULE. xm configuration
file:

e DisplayArgumentsAction

* MethodInvocationStatisticsAction
e MemoryAllocationStatisticsAction
e StackDumpAction

e ThreadDumpAction

e TraceAction

e TraceElapsedTimeAction

e TraceMemoryAllocationAction

Actions must be correctly matched with monitors. For example, the TraceElapsedTime action is
compatible with a delegating or custom monitor whose diagnostic location type is Around. See
WLDF Instrumentation Library, for more information.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 17

ORACLE

Chapter 12
Instrumentation Configuration Files

Instrumentation Configuration Files

Instrumentation is configured as part of a diagnostics descriptor, which is an XML configuration
file whose name and location depend on whether you are implementing system-level (server-
scoped) or application-level (application-scoped) instrumentation.

The Instrumentation component is configured as follows:

System-level instrumentation configuration is stored in one or more diagnostics descriptors
in the following directory:

DOMAI N_HOVE/ confi g/ di agnosti cs

This directory can contain multiple system-level diagnostic descriptor files. File names are
arbitrary but must be terminated with . xn ; for example, nyDi ag. xnl . Each file can contain
configuration information for one or more of the following deployable diagnostic
components:

— Harvester
— Instrumentation
— Policies and Actions

The configuration of one or more diagnostic monitors can be defined in an
<instrumentation> section in the descriptor file. Server-scoped instrumentation can be
enabled, disabled, and reconfigured without restarting the server.

Only one WLDF system resource (and hence one system-level diagnostics descriptor file)
can be active for a server or cluster at any given time. The active descriptor is linked to and
targeted from the following configuration file:

DOVAI N_HOMVE/ confi g/ confi g. xm

See Configuring Diagnostic System Modules. For general information about the creation,
content, and parsing of configuration files in WebLogic Server, see Domain Configuration
Files in Understanding Domain Configuration for Oracle WebLogic Server.

Application-level instrumentation configuration is packaged within an application's archive
in the following location:

META- | NF/ webl ogi c- di agnostics. xm

Because instrumentation is the only diagnostics component that is deployable to
applications, this descriptor can contain only instrumentation configuration information.

® Note

For instrumentation to be available for an application, instrumentation must be
enabled on the server to which the application is deployed. (Server-scoped
instrumentation is enabled and disabled in the <instrumentation> element of the
diagnostics descriptor for the server.

You can enable and disable diagnostic monitors without redeploying an application.
However, you may need to redeploy the application after modifying other instrumentation
features; for example, defining pointcuts or adding or removing monitors. Whether you
need to redeploy depends on how you configure the instrumentation and how you deploy
the application. There are three options:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 17

ORACLE Chapter 12
XML Elements Used for Instrumentation

— Define and change the instrumentation configuration for the application directly, without
using a JSR-88 deployment plan

— Configure and deploy the application using a deployment plan that has placeholders
for instrumentation settings

— Enable the HotSwap feature when starting the server, and deploy using a deployment
plan that has placeholders for instrumentation settings

For more information about these choices, see Using Deployment Plans to Dynamically
Control Instrumentation Configuration.

For more information about deploying and modifying diagnostic application modules, see
Deploying WLDF Application Modules.

The diagnostics XML schema is located at:

http://xm ns. oracl e. com webl ogi ¢/ webl ogi c-di agnosti cs/ 2. 0/ webl ogi c-
di agnosti cs. xsd

Each diagnostics descriptor file must begin with the following lines:

<wl df -resource xm ns="http://xnl ns. oracl e. com webl ogi ¢/ webl ogi c- di agnost i cs"
xm ns: xsi="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" >

For an overview of WLDF resource configuration, see Understanding WLDF Configuration .

XML Elements Used for Instrumentation

You can configure instrumentation and diagnostic monitors using the XML elements such as
<Instrunentation>and <w df -i nstrunment ati on- moni t or >.

This section provides descriptor fragments and tables that summarize information about the
XML elements used to configure:

<Instrumentation> XML Elements

Table 12-2 describes the <i nst runent at i on> elements in the DI AG_MODULE. xnl file. The
following configuration fragment illustrates the use of those elements:

<wl df - resour ce>
<name>MyDi agnost i cModul e</ nane>
<i nstrumentation>
<enabl ed>t r ue</ enabl ed>
<I'-- The follow ng <include> el ement would apply only to an
application-scoped Instrunmentation descriptor -->
<i ncl ude>exanpl e. com *</i ncl ude>
<l-- &t;wdf-instrumentation-monitoré> elenents to define diagnostic
monitors for this diagnostic nodule -->
</instrunmentation>
<l-- Qther elements to configure this diagnostic nodule -->
</w df -resource>

Table 12-2 <instrumentation> XML Elements in the DIAG_MODULE.xml Configuration
File

Element Description

<instrumentation> The element that begins an instrumentation configuration.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 17

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd

ORACLE

Chapter 12
XML Elements Used for Instrumentation

Table 12-2 (Cont.) <instrumentation> XML Elements in the DIAG_MODULE.xml

Configuration File

Element

Description

<enabl ed>

If true, instrumentation is enabled. If false, no instrumented code is inserted in
classes in this instrumentation scope, and all diagnostic monitors within this
scope are disabled. The default value is false.

You must enable instrumentation at the server level to enable instrumentation
for the server and for any applications deployed to it. You must further enable
instrumentation at the application level to enable instrumentation for the

application (that is, in addition to enabling the server-scoped instrumentation).

<i ncl ude>

An optional element specifying the list of classes where instrumented code
can be inserted. Wildcards (*) are supported. You can specify multiple

<i ncl ude> elements. If specified, a class must satisfy an <i ncl ude> pattern
for it to be instrumented.

Applies only to application-scoped instrumentation. Any specified <i ncl ude>
or <excl ude> patterns are applied to the application scope as a whole.

Note: You can also specify <i ncl ude> and <excl ude> patterns for specific
diagnostic monitors. See the entries for <i ncl ude> and <excl ude> in
Table 12-1.

As classes are loaded, they must pass an include/exclude pattern check
before any instrumentation code is inserted. Even if a class passes the
include/exclude pattern checks, whether or not it is instrumented depends on
the diagnostic monitors included in the configuration descriptor. An
application-scoped delegating monitor from the library has its own predefined
classes and pointcuts. A custom monitor specifies its own pointcut
expression. Therefore, a class can pass the include/exclude checks and still
not be instrumented.

Note: Instrumentation is inserted in applications at class load time. A large
application that is loaded often may benefit from a judicious use of

<i ncl ude> elements, <excl ude> elements, or both. You can probably ignore
these elements for small applications or for medium-to-large applications that
are loaded infrequently.

<excl ude>

An optional element specifying the list of classes where instrumented code
cannot be inserted. Wildcards (*) are supported. You can specify multiple
<excl ude> elements. If specified, classes satisfying an <excl ude> pattern
are not instrumented.

Applies only to application-scoped instrumentation. See the preceding
description of the <i ncl ude> element.

<wldf-instrumentation-monitor> XML Elements

Diagnostic monitors are defined in <wl df - i nst runent at i on- noni t or > elements, which are
children of the <i nst rument at i on> element in the following descriptor:

e The DI AG_MODULE. xn descriptor for server-scoped instrumentation

e The META- | NF/ webl ogi c- di agnost i cs. xm descriptor for application-scoped

instrumentation

The following fragment shows the configuration for a delegating monitor and a custom monitor
in an application. (You could modify this fragment for server-scoped instrumentation by
replacing the application-scoped monitors with server-scoped monitors.)

<instrumentation>

<enabl ed>t r ue</ enabl ed>

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 17

ORACLE’

Chapter 12
XML Elements Used for Instrumentation

<w df -i nstrument ati on- noni t or >
<nanme>Ser vl et _Bef ore_Servi ce</ name>
<enabl ed>t r ue</ enabl ed>
<dye- mask>USER1</ dye- mask>
<dye-filtering-enabl ed>true</dye-filtering-enabl ed>
<action>TraceActi on</action>
</ W df -i nstrunentation-nonitor>
<w df -i nstrunent at i on- noni t or >
<name>MyCust om\oni t or </ name>
<enabl ed>t r ue</ enabl ed>
<action>TraceActi on</action>
<l ocati on-type>before</|ocation-type>
<poi ntcut>cal | (* comexanple. * get*(...));</pointcut>
</w df -i nstrunentation-nonitor>
</instrunentation>

Note that the Servlet_Before_Service monitor sets a dye mask and enables dye filtering. This
will be useful only if instrumentation is enabled at the server level and the Dyelnjection monitor
is enabled and properly configured. See Configuring the Dyelnjection Monitor to Manage
Diagnostic Contexts, for information about configuring the Dyelnjection monitor.

Table 12-3 describes the <wl df -i nstrunent ati on- moni t or > elements.

Table 12-3 <wldf-instrumentation-monitor> XML Elements in the DIAG_MODULE.xml or
weblogic-diagnostics.xml file

__|
Element Description

<w df -i nstrunentation- The element that begins a diagnostic monitor configuration.
fmoni t or >

<enabl ed> If true, the monitor is enabled. If false, the monitor is disabled. You
enable or disable each monitor separately. The default value is true.

<name> The name of the monitor. For standard and delegating monitors, use the
names of the predefined monitors in WLDF Instrumentation Library, For
custom monitors, an arbitrary string that identifies the monitor. The name
for a custom monitor must be unique; that is, it cannot duplicate the
name of any monitor in the library.

<descri ption> An optional element describing the monitor.

<action> An optional element, which applies to delegating and custom monitors. If
you do not specify at least one action, the monitor will not generate any
information. You can specify multiple <act i on> elements. An action
must be compatible with the monitor type. For the list of predefined
actions for use by delegating and custom monitors, see WLDF
Instrumentation Library.

<dye-filtering-enabl ed> An optional element. If true, dye filtering is enabled for the monitor. If
false, dye-filtering is disabled. The default value is false.

In order to use dye filtering, the Dyelnjection monitor must be configured
appropriately at the server level.

<dye- mask> An optional element. If dye filtering is enabled, the dye mask, when
compared with the values in the diagnostic context, determines whether
actions are taken. See Configuring the Dyelnjection Monitor to Manage
Diagnostic Contexts, for information about dyes and dye filtering.

<properties> An optional element. Sets name=value pairs for dye flags.
Currently applies only to the Dyelnjection monitor.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 17

ORACLE Chapter 12
XML Elements Used for Instrumentation

Table 12-3 (Cont.) <wldf-instrumentation-monitor> XML Elements in the
DIAG_MODULE.xml or weblogic-diagnostics.xml file

__|
Element Description

<l ocation-type> An optional element, whose value is one of before, after, or around. The
location type determines when an action is triggered at a pointcut:
before the pointcut, after the pointcut, or both before and after the
pointcut.

Applies only to custom monitors; standard and delegating monitors have
predefined location types. A custom monitor must define a location type
and a pointcut.

<poi nt cut > An optional element. A pointcut element contains an expression that
defines joinpoints where diagnostic code will be inserted.

Applies only to custom monitors; standard and delegating monitors have

predefined pointcuts. A custom monitor must define a location type and
a pointcut.

Pointcut syntax is documented in Defining Pointcuts for Custom
Monitors.

<incl ude> An optional element specifying the list of classes where instrumented
code can be inserted. Wildcards (*) are supported. You can specify
multiple <i ncl ude> elements. If specified, a class must satisfy an
<i ncl ude> pattern for it to be instrumented.

Applies only to application-scoped instrumentation. Any specified
<i ncl ude> or <excl ude> patterns are applied only to the monitor
defined in the parent <wWl df - i nst runent ati on- noni t or > element.

Note: You can also specify <i ncl ude> and <excl ude> patterns for an
entire instrumented application scope. See the entries for <i ncl ude>
and <excl ude> in Table 12-1.

As classes are loaded, they must pass an include/exclude pattern check
before any instrumentation code is inserted. Even if a class passes the
include/exclude pattern checks, whether or not it is instrumented
depends on the diagnostic monitors included in the configuration
descriptor. An application-scoped delegating monitor from the library has
its own predefined classes and pointcuts. A custom monitor specifies its
own pointcut expression. Therefore a class can pass the include/exclude
checks and still not be instrumented.

Note: Instrumentation is inserted in applications at class load time. A
large application that is loaded often may benefit from a judicious use of
<i ncl ude> and/or <excl ude> elements. You can probably ignore these
elements for small applications or for medium-to-large applications that
are loaded infrequently.

<excl ude> An optional element specifying the list of classes where instrumented
code cannot be inserted. Wildcards (*) are supported. You can specify
multiple <excl ude> elements. If specified, classes satisfying an
<excl ude> pattern are not instrumented.

Applies only to diagnostic monitors in application-scoped
instrumentation. See the <i ncl ude> description, above.

Note the following additional information about the <dye-fil t eri ng- enabl ed> and <dye- mask>
elements:

* When a Dyelnjection monitor is enabled and configured for a server or a cluster, you can
use dye filtering in downstream delegating and custom monitors to inspect the dyes
injected into a request's diagnostic context by that Dyelnjection monitor.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 17

ORACLE’

Chapter 12
Configuring Server-Scoped Instrumentation

* The configuration of the Dyelnjection monitor determines which bits are set in the 64-bit
dye vector associated with a diagnostic context. When the <dye-fil t eri ng- enabl ed>
attribute is enabled for a monitor, its diagnostic activity is suppressed if the dye vector in a
request's diagnostic context does not match the monitor's configured dye mask. If the dye
vector matches the dye mask (a bitwise AND), the application can execute its diagnostic
actions:

(dye_vector & dye mask == dye_mask)

Thus, the dye filtering mechanism allows monitors to take diagnostic actions only for specific
requests, without slowing down other requests. See Configuring the Dyelnjection Monitor to
Manage Diagnostic Contexts, for detailed information about diagnostic contexts and dye
vectors.

Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types

Table 12-4 identifies the <wl df -i nst runent at i on- noni t or > elements that apply to each
monitor type. An X indicates that an element applies to the corresponding monitor; N/A
indicates that it does not.

Table 12-4 Mapping Instrumentation XML Elements to Monitor Types

Element Standard Delegating Custom
<w df -i nstrunment ati on- moni t or > X X X
<nane> X X X
<descri ption> X X X
<enabl ed> X X X
<action> N/A X X
<dye-filtering-enabl ed> N/A X X
<dye- mask> N/A X X
<properties> X1 N/A N/A
<l ocation-type> N/A N/A X
<poi nt cut > N/A N/A X

1 Currently used only by the Dyelnjection monitor to set name=value pairs for dye flags.

Configuring Server-Scoped Instrumentation

You can configure instrumentation as part of diagnostic descriptor file to implement the system-
level instrumentation. You can define the configuration of one or more server-scope diagnostic
monitors in the descriptor file.

To enable instrumentation at the server level, and to configure server-scoped monitors,
perform the following steps:

1. Decide how many WLDF system resources you want to create.

You can have multiple DI AG MODULE. xml diagnostic descriptor files in a domain. In addition,
for each server or cluster in a domain, you can deploy multiple diagnostic descriptor files
simultaneously. However, one reason for creating more than one file is for flexibility. For
example, you could have five diagnostic descriptor files in the DOVAI N_HOVE/ conf i g/

di agnost i cs directory. Each file contains a different instrumentation (and perhaps

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 17

ORACLE

Chapter 12
Configuring Application-Scoped Instrumentation

Harvester and Policies and Actions) configuration. You then deploy the descriptor file that
corresponds to the particular monitors you want active.

2. Decide which server-scoped monitors you want to include in a configuration:

« If you plan to use dye filtering on a server, or on any applications deployed on that
server, configure the Dyelnjection monitor.

« If you plan to use one or more of the server-scoped delegating monitors, decide which
monitors to use and which actions to associate with each monitor.

3. Create and configure the configuration file(s).

« If you create a configuration file with an editor or with the WebLogic Scripting Tool
(WLST), you must correctly match actions to monitors.

* See the Domain Configuration Files in Understanding Domain Configuration for Oracle
WebLogic Server for information about configuring confi g. xnl .

4. Validate and deploy the descriptor file. For server-scoped instrumentation, you can add
and remove monitors and enable or disable monitors while the server is running.

Example 12-1 contains a sample server-scoped instrumentation configuration file that enables
instrumentation and configures the Dyelnjection standard monitor and the
Connector_Before_Work delegating monitor. A single <instrumentation> element contains all
instrumentation configuration for the module. Each diagnostic monitor is defined in a separate
<wldf-instrumentation-monitor> element.

Example 12-1 Sample Server-Scoped Instrumentation (in DIAG_MODULE.xml)

<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
Xsi: schenmaLocation="http://xnl ns. oracl e. conf webl ogi ¢/ webl ogi c- di agnosti cs/ 2. 0/
webl ogi c- di agnosti cs. xsd" >
<i nstrunent ati on>
<enabl ed>t r ue</ enabl ed>
<w df -i nstrunent ati on-nonitor>
<name>Dyel nj ect i on</ nane>
<description>lnject USERL and ADDRl dyes</description>
<enabl ed>t r ue</ enabl ed>
<properties>USERL=webl ogi c
ADDR1=127. 0. 0. 1</ properties>
</w df -instrumentation-nonitor>
<w df -i nstrunent ati on-nonitor>
<nane>Connect or _Bef ore_Wor k</ name>
<enabl ed>t r ue</ enabl ed>
<action>TraceActi on</action>
<dye-filtering-enabl ed>true</dye-filtering-enabl ed>
<dye- mask>USER1</ dye- mask>
</w df -instrumentati on-nmoni t or>
</instrunmentation>
</w df -resour ce>

Configuring Application-Scoped Instrumentation

Instrumentation is the only component that is deployable to applications. It must be enabled on
the server to which the application is deployed. You can enable and disable diagnostic
monitors without redeploying an application.

At the application level, WLDF instrumentation is configured as a deployable module, which is
then deployed as part of the application.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 17

ORACLE

Comparing

Chapter 12
Configuring Application-Scoped Instrumentation

@® Note

Application classes and libraries that are put on the system classpath are not
instrumented. Application class instrumentation works only on classes that are loaded
by application classloaders. If application classes are put on the system classpath,
either deliberately or inadvertently, they will be loaded by the system classloader. As a
result no deployment time weaving is performed on those classes.

The following sections provide information you need to configure application-scoped
instrumentation:

System-Scoped to Application-Scoped Instrumentation

Instrumenting an application is similar to instrumenting at the system level, but with the
following differences:

e Applications can use standard, delegating, and custom monitors.

— The only server-scoped standard monitor is Dyelnjection. The only application-scoped
standard monitor is HttpSessionDebug. See the entry for HttpSessionDebug in
Diagnostic Monitor Library.

— Delegating monitors are either server-scoped or application-scoped. Applications must
use the application-scoped delegating monitors.

— All custom monitors are application-scoped.

e The server's instrumentation settings affect the application. In order to enable
instrumentation for an application, instrumentation must be enabled for the server on which
the application is deployed. If server instrumentation is enabled at the time of deployment,
instrumentation will be available for the application. If instrumentation is not enabled on the
server at the time of deployment, enabling instrumentation in an application will have no
effect.

e Application instrumentation is configured with a webl ogi c- di agnosti cs. xm descriptor file.
You create a META- | NF/ webl ogi c- di agnosti ¢s. xm file, configure the instrumentation, and
put the file in the application's archive. When the archive is deployed, the instrumentation
is automatically inserted when the application is loaded.

* You can use a deployment plan to dynamically update configuration elements without
redeploying the application. See Using Deployment Plans to Dynamically Control
Instrumentation Configuration.

The XML descriptors for application-scoped instrumentation are defined in the same way as for
server-scoped instrumentation. You can configure instrumentation for an application solely by
using the delegating monitors and diagnostic actions available in the WLDF Instrumentation
Library. You can also create your own custom monitors; however, the diagnostic actions that
you attach to these monitors must be taken from the WLDF Instrumentation Library.

Table 12-5 compares the function and scope of system and application diagnostic modules.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 17

ORACLE

Chapter 12
Configuring Application-Scoped Instrumentation

Table 12-5 Comparing System and Application Modules

Module Type Add or Add or Modify with Modify with Modify with Enable/Disable
Remove Remove JMX Remotely JSR-88 (hon- Console Dye Filtering and
Objects Objects with remote) Dye Mask
Dynamically Console Dynamically
System Module Yes Yes Yes No Yes Yes
(via IMX)
Application Yes, when Yes No Yes Yes Yes
Module HotSwap is (via plan)
enabled
No, when
HotSwap is not
enabled:
module must be
redeployed

Overview of the Steps Required to Instrument an Application

@® Note

As of WebLogic Server 10.3, you are not required to create a webl ogi c-

di agnosti cs. xm file in the application's META- | NF directory, as was the case in
previous WebLogic Server releases. However, you can still use this method to initially
configure diagnostic monitors for your application.

To implement a diagnostic monitor for an application, perform the following steps:

1.

Make sure that instrumentation is enabled on the server. See Configuring Server-Scoped
Instrumentation.

Create a well formed META- | NF/ webl ogi c- di agnosti cs. xnl descriptor file for the
application. If you want to add any monitors that will be automatically enabled each time
the application is deployed:

* Enable the <instrumentation> element; <enabled>true</enabled>.

* Add and enable at least one diagnostic monitor, with appropriate actions attached to it.
(A monitor will generate diagnostic events only if the monitor is enabled and actions
that generate events are attached to it.).

See Creating a Descriptor File for a Delegating Monitor, and Creating a Descriptor File for
a Custom Monitor, for samples of well-formed descriptor files.

See Defining Pointcuts for Custom Monitors, for information about creating a pointcut
expression.

Put the descriptor file in the application archive.

Deploy the application. See Deploying WLDF Application Modules.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 17

ORALCLE Chapter 12
Configuring Application-Scoped Instrumentation

Creating a Descriptor File for a Delegating Monitor

The following example shows a well-formed META- | NF/ webl ogi c- di agnosti ¢s. xm descriptor
file for an application-scoped delegating monitor. At a minimum, this file must contain the lines
shown in bold. In this example, there is only one monitor defined (Servlet_Before_Service).
However, you can define multiple monitors in the descriptor file.

<wldf-resource xmlns="http://xmlIns.oracle.com/weblogic/weblogic-diagnostics"
xmlIns:xsi="http://ww.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
<i nstrument ati on>
<enabl ed>t r ue</ enabl ed>
<wl df -i nstrument ati on- noni t or >
<name>Ser vl et _Bef ore_Servi ce</ nane>
<enabl ed>t r ue</ enabl ed>
<dye- mask>USER1</ dye- mask>
<dye-filtering-enabl ed>true</dye-filtering-enabl ed>
<action>TraceActi on</acti on>
</wW df -i nstrument ati on- noni t or >
</instrunentation>
</wldf-resource>

The Servlet_Before_Service monitor is an application-scoped monitor selected from the WLDF
monitor library. It is hard coded with a pointcut that sets joinpoints at method entry for several
servlet or JSP methods. Because the application enables dye filtering and sets the USER1 flag
in its dye mask, the TraceAction action will be invoked only when the dye vector in the
diagnostic context passed to the application also has its USERL1 flag set.

The dye vector is set at the system level via the Dyelnjection monitor as per the Dyelnjection
monitor configuration when the request enters the server. For example, if the Dyelnjection
monitor is configured with property USER1=weblogic and the request was originated by user
weblogic, the USER1 dye flag in the dye vector will be set.

Therefore, the Servlet_Before_Service monitor in this application is essentially quiescent until it
inspects a dye vector and finds the USERL1 flag set. This filtering reduces the amount of
diagnostic data generated, and ensures that the generated data is of interest to the
administrator.

Creating a Descriptor File for a Custom Monitor

The following is an example of a well-formed META- | NF/ webl ogi c- di agnosti cs. xn file for a
custom monitor. At a minimum, the file must contain the lines shown in bold.

Example 12-2 Sample Custom Monitor Configuration (in DIAG_MODULE.xml)

<?xml version="1.0" encoding="UTF-8"?>
<wldf-resource xmIns="http://xmlIns.oracle.com/weblogic/weblogic-diagnostics"
xmIns:xsi="http://ww.w3.0rg/2001/XMLSchema-instance"
xsi :schemaLocation="http://xmIns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
<instrunentation>
<enabl ed>t r ue</ enabl ed>
<w df -i nst runent ati on-noni tor>
<name>MyCust omvoni t or </ name>
<enabl ed>t r ue</ enabl ed>
<action>TraceActi on</action>
<l ocation-type>before</|ocation-type>
<poi ntcut>cal | (* comexanple.* get* (...));</pointcut>

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 17

ORACLE

Chapter 12
Configuring Application-Scoped Instrumentation

</ W df -i nstrunentation-nonitor>
</instrunentation>
</wldf-resource>

The <name> for a custom monitor is an arbitrary string chosen by the developer. Because this
monitor is custom, it has no predefined locations when actions should be invoked; the
descriptor file must define the location type and pointcut expression. In this example, the
TraceAction action will be invoked before (<location-type>before</location-type) any methods
defined by the pointcut expression is invoked. Table 12-6 shows how the pointcut expression
from Example 12-2 is parsed. (Note the use of wildcard characters.)

Table 12-6 Description of a Sample Pointcut Expression

|
Pointcut Expression Description

call(* comexanple.* get* (...)) call(): Trigger any defined actions when the
methods whose joinpoints are defined by the
remainder of this pointcut expression are invoked.

call (* comexanple.* get* (...)) *: Return value. The wildcard indicates that the
methods can have any type of return value.

call (* com.example.* get* (...)) com.example.*: Methods from class
com.example and its sub-packages are eligible.

call(* comexanple.* get* (...)) get*: Any methods whose name starts with the
string get is eligible.

call (* comexanple.* get* (...)) (- -.): The ellipsis indicates that the methods can
have any number of arguments.

This pointcut expression matches all methods in all classes in package com.example and its
sub-packages. The methods can return values of any type, including void, and can have any
number of arguments of any type. Instrumentation code will be inserted before these methods
are called, and, just before those methods are called, the TraceAction action will be invoked.

See Defining Pointcuts for Custom Monitors, for a description of the grammar used to define
pointcuts.

Defining Pointcuts for Custom Monitors

Custom monitors provide more flexibility than delegating monitors because you create pointcut
expressions to control where diagnostics actions are invoked. As with delegating monitors, you
must select actions from the action library.

A joinpoint is a specific, well-defined location in a program. A pointcut is an expression that
specifies a set of joinpoints. This section describes how you define expressions for pointcuts
using the following pointcut syntax.

You can specify two types of pointcuts for custom monitors:

e call: Take an action when a method is invoked.
e execution: Take an action when a method is executed.

The syntax for defining a pointcut expression is as follows:

pointcutExpr := orExpr ('OR orExpr) *
orExpr := andExpr ('AND andExpr) *
andExpr := "NOT' ? ternExpr

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 17

ORACLE

Chapter 12
Configuring Application-Scoped Instrumentation

ternExpr := exec_pointcut | call_pointcut | '(' pointcutExpr ')’
exec_poi ntcut := '"execution' '(' nodifiers?

returnSpec

cl assSpecW t hAnnot at i ons

met hodSpec ' (' paraneterlList ')’

call _pointcut :="'call" "(" returnSpec
cl assSpec
met hodSpec ' (' paraneterList ')’

")

modi fiers := modifier ("OR nodifier) * nodifier :="public' | '"protected | 'private'
| 'static'

returnSpec := '*' | typeSpec

cl assSpecWthAnnotations := '@ IDENTIFIER ('OR IDENTIFIER) * | classSpec
classSpec := '+ ? classOrMethodPattern | '*'

typeSpec := "% ? (primtiveType | classSpec) ("[]")*

met hodSpec : = classO MethodPattern

paraneterList := param(',' param) *

param:= typeSpec | '...'

primtiveType := "byte' | 'char' | 'boolean' | 'short' | "int' | "float' | 'long" |
"double' | 'void'

classOr MethodPattern := '*' 2 [DENTIFIER "*'?2 | '*'

The following rules apply:

e The asterisk wildcard character (*) can be used in class types and method names.

e An ellipsis (...) in the argument list signifies a variable number of arguments of any types
beyond the argument.

e A percent character (% prefix designates the value of a non-static class instantiation,
parameter, or return specification as not containing nor exposing sensitive information. The
use of this operator is particularly useful with the DisplayArgumentsAction action, which
captures method arguments or return values. If this prefix character is not explicitly used,
an asterisk string is substituted for the value that is returned; this behavior ensures that
sensitive data in your application is not inadvertently transmitted when an instrumentation
event captures input arguments to, or return values from, a joinpoint.

® Note

The %operator cannot be applied to an ellipsis or to a wildcarded type within a
pointcut expression.

e Anplus sign (+) prefix to a class type identifies all subclasses, sub-interfaces or concrete
classes implementing the specified class/interface pattern.

e A pointcut expression specifies a pattern to identify matching joinpoints. An attempt to
match a joinpoint against it will return a boolean, indicating a valid match (or not).

e Pointcut expressions can be combined with AND, OR and NOT boolean operators to build
complex pointcut expression trees.

For example, the following pointcut matches method executions of all public initialize methods
in all classes in package com.foo.bar and its sub-packages. The initialize methods may return
values of any type, including void, and may have any number of arguments of any types.

execution(public * comexanple.* initialize(...))

The following pointcut matches the method calls (call sites) on all classes that directly or
indirectly implement the com.example.MylInterface interface (or a subclass, if it happens to be

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 17

ORACLE

Chapter 12
Configuring Application-Scoped Instrumentation

a class). The method names must start with get, be public, and return an int value. The method
must accept exactly one argument of type java.lang.String:

cal |l (int +com exanpl e. MyInterface get*(java.lang. String))

The following example shows how to use boolean operators to build a pointcut expression tree:

call (void comexanple.* set*(java.lang.String)) OR
call (* comexanple.* get*())

The following example illustrates how the previous expression tree would be rendered as a
<pointcut> element in a configuration file:

<poi ntcut>cal | (void com exanple.* set*(java.lang.String)) OR
call(* comexanple.* get*())</pointcut>

Annotation-based Pointcuts

You can use JDK-style annotations in class and method specifiers of execution points. A class
or method specifier starting with @is interpreted as an annotation name.

When used as a class specifier, the annotation matches all classes that are annotated with it.
While performing the match, only annotation names are considered. Annotation attributes are
ignored.

For example, consider the following pointcut:

execution(public void @ervice @nvocation (...)

The preceding pointcut matches methods that:

e Are public method

e Return void

e Are contained in a class that is annotated with @Service
« Have a method annotated with @Invocation

e Contain any number of arguments.

@ Note

Annotation-based specifiers can be used only with execution pointcuts. They
cannot be used with call pointcuts.

Annotation-based class and method specifiers can use the following wildcard characters:

e The asterisk wildcard (*) matches everything.

e The asterisk wildcard (*) at the beginning matches class/interface or method names that
end with the given string. For example, * Bean matches with
webl ogi c. managenent . confi gurati on. Server MBean.

e The asterisk wildcard (*) at the end matches class/interface or method names that end
with the given string. For example, weblogic.* matches all classes and interfaces that are
in weblogic and its sub-packages.

* You can specify a pointcut based on names of inner classes. For example:

public class Foo {
class Bar {

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 16 of 17

ORACLE Chapter 12
Configuring Application-Scoped Instrumentation

public int getValue() {...}

}

You can define a pointcut that covers the get Val ue method of the inner class Bar using the
following specification:

execution (public int Foo$Bar getValue(...));

You can also use wildcard characters as follows. The following pointcut matches only the getter
methods in the inner class Bar of class Foo:

execution (* Foo$Bar get*(...));

You can also use leading and trailing wildcard characters. The following examples also match
the getter methods in class Foo$Bar :

execution (* Foo$Ba* get*(...));
execution (* *oo$Bar get*(...));
execution (* *oo$Ba* get*(...))

1

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 17

Configuring the Dyelnjection Monitor to
Manage Diagnostic Contexts

The Instrumentation component of the WebLogic Diagnostics Framework (WLDF) also
provides a way to uniquely identify requests, such as HTTP or RMI requests, and track them
as they flow through the system.You can configure WLDF to check for certain characteristics of
every request that enters the system, such as the originating user or client address, and attach
a diagnostic context to that request. This feature allows you to take measurements of specific
requests, such as elapsed time, to get an idea of how all requests are being processed as they
flow through the system.

The diagnostic context consists of two pieces: a unique Context ID, and a 64-bit dye vector
that represents the characteristics of the request. The Context ID associated with a given
request is recorded in the Event Archive and can be used to:

e Throttle instrumentation event generation, that is determine how often events are
generated when specified conditions are met

e Associate log records with a request

e Filter searches of log or event records using the WLDF Accessor component (see
Accessing Diagnostic Data With the Data Accessor).

For an example of how to use WLST to create a Dyelnjection monitor dynamically, see
Example: Dynamically Creating Dyelnjection Monitors.

This chapter includes the following sections:

Contents, Life Cycle, and Configuration of a Diagnostic Context

A diagnostic context contains a unique Context ID and a 64-bit dye vector. The dye vector
contains flags which are set to identify the characteristics of the diagnostic context associated
with a request.

Currently, 32 bits of the dye vector are used, one for each available dye flag (see Table 13-1).

Context Life Cycle and the Context ID

The diagnostic context for a request is created and initialized when the request enters the
system (for example, when a client makes an HTTP request). The diagnostic context remains
attached to the request, even as the request crosses thread boundaries and Java Virtual
Machine (JVM) boundaries. The diagnostic context lives for the duration of the life cycle of the
request.

Every diagnostic context is identified by a Context ID that is unique in the domain. Because the
Context ID travels with the request, it is possible to determine the events and log entries
associated with a given request as it flows through the system.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 9

ORACLE

Chapter 13
Contents, Life Cycle, and Configuration of a Diagnostic Context

Dyes, Dye Flags, and Dye Vectors

Contextual information travels with a request as a 64-bit dye vector, where each bit is a flag to
identify the presence of a dye. Each dye represents one attribute of a request; for example, an
originating user, an originating client IP address, access protocol, and so on.

When a dye flag for a given attribute is set, it indicates that the attribute is present. When the
flag is not set, it indicates the attribute is not present.

For example, consider a configuration where:

» the flag ADDRL1 is configured to indicate a request that originated from IP address
127.0.0.1.

» the flag ADDR?2 is configured to indicate a request that originated from IP address
127.0.0.2.

» the flag USERL is configured to indicate a request that originated from user
admin@avitek.com.

If a request from IP address 127.0.0.1 enters the system from a user other than
admin@avitek.com, the ADDRL1 flag in the dye vector for the request is set. The ADDR2 and
USERL1 dye flags remain unset.

If a request from admin@avitek.com enters the system from an IP address other than
127.0.0.1 or 127.0.0.2, the USER1 flag in the dye vector for the request is set. The ADDR1
and ADDR2 dye flags remain unset.

If a request from admin@avitek.com from IP address 127.0.0.2 enters the system, both the
USER1 and ADDR?2 flags in the dye vector for this request are set. The ADDRL1 flag remains
unset.

Diagnostic and monitoring features that take advantage of the diagnostic context can examine
the dye vector to determine if one or more attributes are present (that is, the associated flag is
set). In the example above, you could configure a diagnostic monitor to trace every request
that is dyed with ADDR1,; that is, every request originating from IP address 127.0.0.1. You
could also configure a diagnostic monitor that traces every request that is dyed with both
ADDR1 and USER1,; that is, every request originating from user admin@avitek.com at IP
address 127.0.0.1 (requests from other users at 127.0.0.1 would not be traced).

The dye vector also contains a THROTTLE dye, which is used to set how often incoming
requests are dyed. For more information about this special dye, see THROTTLE Dye Flag.

For a list of the available dyes and the attributes they represent, see Dyes Supported by the
Dyelnjection Monitor. The process of configuring dye vectors and using them is discussed
throughout the rest of this chapter.

Where Diagnostic Context Is Configured

Diagnostic context is configured as part of a diagnostic module. You use the Dyelnjection
monitor at the server level to configure the diagnostic context. The Dyelnjection monitor is a
standard diagnostic monitor, so you cannot modify its behavior. The joinpoints where the
Dyelnjection monitor is woven into the code are those locations where a request can enter the
system.

The diagnostic action is to check every request against the Dyelnjection monitor's
configuration, then create and attach a diagnostic context to the request, setting the dye flags
as appropriate. If the dye flags that are set for a request match the dye flags that are
configured for a downstream diagnostic monitor, an event with the request's associated

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 9

ORACLE

Chapter 13
Overview of the Process

Context ID is added to the Event Archive. So, for example, if a request has only the USER1
and ADDR1 dye flags set, and there is a diagnostic monitor configured to trace requests with
both the USER1 and ADDRL1 flags set (but no other flags set), an event is added to the Event
Archive.

For information about diagnostic monitor types, pointcuts (which define the joinpoints), and
diagnostic actions, see Configuring Instrumentation.

Overview of the Process

The Dyelnjection monitor examines the request to see if any of the configured dye values in
the dye vector match attributes of the request. You can configure the Dyelnjection monitor to
identify the requests and track their flow. The tracking of the requests helps to see how the
requests are processed as they flow through the system.

This overview describes the configuration and use of context in a server-scoped diagnostic
module.

1. Configure a dye vector via the Dyelnjection Module. See Configuring the Dye Vector via
the Dyelnjection Monitor.

2. When any request enters the system, WLDF creates and instantiates a diagnostic context
for the request. The context includes a unique Context ID and a dye vector.

3. The Dyelnjection monitor, if enabled at the server level within a WLDF diagnostic module,
examines the request to see if any of the configured dye values in the dye vector match
attributes of the request. For example, it checks to see if the request originated from the
user associated with USER1 or USER2, and it checks to see if the request came from the
IP address associated with ADDR1 or ADDR2.

4. For each dye value that matches a request attribute, the Dyelnjection monitor sets the
associated dye bits within the diagnostic context. For example, if the Dyelnjection monitor
is configured with USER1=webl ogi ¢, USER2=admi n@vi t ek. com ADDR1=127.0. 0. 1,
ADDR2=127. 0. 0. 2, and the request originated from user weblogic at IP address 127.0.0.2, it
will set the USER1 and ADDR2 dye bits within the dye vector.

5. As the request flows through the system, the diagnostic context (which includes the dye
vector) flows with it as well. This 64-bit dye vector contains only flags, not values. So, in
this example, the dye vector contains only two flags that are explicitly set (USER1 and
ADDR?). It does not contain the actual user name and IP address associated with USER1
and ADDR2.

@® Note

All dye vectors also contain one of the implicit PROTOCOL dyes, as explained in
Configuring the Dye Vector via the Dyelnjection Monitor.

6. The administrator configures a diagnostic monitor (either application-scoped or server-
scoped) to be active within downstream code, setting the monitor's dye mask as USER1
and ADDR2.

7. The diagnostic monitor will perform its associated action(s) if the dye flags that are set in
the diagnostic context's dye vector match the dye mask of the diagnostic monitor.

In this example, the monitor will perform its action(s) if the USER1 and ADDR2 flags are
set in the dye vector. In addition, an event associated with the request will be written to the
Event Archive.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 9

ORACLE Chapter 13
Configuring the Dye Vector by Using the Dyelnjection Monitor

Configuring the Dye Vector by Using the Dyelnjection Monitor

You configure the Dye Vector by using the Dyelnjection monitor to monitor the requests in a
system. Every request is checked against the configuration of the Dyelnjection monitor, and a
diagnostic context is created and attached to the request.

To create diagnostic contexts for all requests coming into the system:

1. Create a diagnostic module for the server (or servers) you want to monitor in the
Summary of Diagnostic Modules page. See Creating a Custom Diagnostic System
Module Based on a Built-in.

2. Click the name of the newly created module to open the Settings for <MODLE_NAME>
page.
3. Inthe Configuration - Instrumentation tab, select the Enabled check box.

4. In the Diagnostic Monitors in this Module tab, add the Dyelnjection monior by using the
Add/Remove button.

5. Click the Dyelnjection monitor to open the Settings for Dyelnjection page.

6. Select the Enable check box. (Only one Dyelnjection monitor can be used with a
diagnostic module at a time.)

You configure the Dyelnjection monitor by assigning values to dyes. The available dye flags
are described in Table 13-1.

For example, you could set the flags as follows: USER1=webl ogi ¢, USER2=admi n@vi t ek. com
ADDR1=127.0.0. 1, ADDR2=127. 0. 0. 2, and so forth. Basically, you want to set the values of one
or more flags to the user(s), IP address(es) whose requests you want to monitor.

For example, to monitor all requests initiated by a user named adni n@vi t ek from a client at IP
address 127.0.0.1, assign the value adni n@vi t ek to USERL and assign the value 127.0.0.1 to
ADDRL.

Dyes Supported by the Dyelnjection Monitor
The dyes available in the dye vector are listed and explained in the following table.

Table 13-1 Request Protocols for Supported Diagnhostic Context Dyes
]

Dye Flags Description
ADDR1 Use the ADDR1, ADDR2, ADDR3 and ADDR4 dyes to specify the IP
ADDR?2 addresses of clients that originate requests. These dye flags are set in the

diagnostic context for a request if the request originated from an IP address

ADDR3 specified by the respective property (ADDR1, ADDR2, ADDR3, ADDR4) of
ADDR4 the Dyelnjection monitor.

These dyes cannot be used to specify DNS names.
CONNECTOR1 Use the CONNECTOR1, CONNECTOR2, CONNECTOR3 and
CONNECTOR?2 CONNECTOR4 dyes to identify characteristics of connector drivers.
CONNECTOR3 These dye flags are set by the connector drivers to identify request properties
CONNECTORA4 specific to their situations. You do not configure these directly in the descriptor

files. The connector drivers can assign values to these dyes (using the
Connector API), so information about the connections can be carried in the
diagnostic context.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 9

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/wldfc/using_builtin_diag_modules.html#GUID-FD238BCF-DBE7-417B-827A-DBCF03B975E1
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/wldfc/using_builtin_diag_modules.html#GUID-FD238BCF-DBE7-417B-827A-DBCF03B975E1

ORACLE Chapter 13
Configuring the Dye Vector by Using the Dyelnjection Monitor

Table 13-1 (Cont.) Request Protocols for Supported Diagnostic Context Dyes

Dye Flags Description
COOKIE1 COOKIE1, COOKIE2, COOKIE3 and COOKIE4 are set in the diagnostic
COOKIE2 context for an HTTP/S request, if the request contains the cookie named

weblogic.diagnostics.dye and its value is equal to the value of the respective

COOKIES property (COOKIE1, COOKIE2, COOKIE3, COOKIE4) of the Dyelnjection
COOKIE4 monitor.

DYE_O DYE_O to DYE_7 are available only for use by application developers. See
DYE 1 Using weblogic.diagnostics.context .

DYE_2

DYE_3

DYE_4

DYE_5

DYE_6

DYE_7

PROTOCOL_HTTP The Dyelnjection monitor implicitly identifies the protocol used for a request
PROTOCOL IIOP and sets the appropriate dye(s) in the dye vector, according to the protocol(s)

PROTOCOL_JRMP used.

PROTOCOL_HTTP is set in the diagnostic context of a request if the request
PROTOCOL_RMI uses HTTP or HTTPS protocol.

PROTOCOL_SOAP PROTOCOL_IIOP is set in the diagnostic context of a request if it uses
PROTOCOL_SSL Internet Inter-ORB Protocol (IIOP).

PROTOCOL_T3 PROTOCOL_JRMP is set in the diagnostic context of a request if it uses the
Java Remote Method Protocol (JRMP).
PROTOCOL_RMI is set in the diagnostic context of a request if it uses the
Java Remote Method Invocation (RMI) protocol.
PROTOCOL_SSL is set in the diagnostic context of a request if it uses the
Secure Sockets Layer (SSL) protocol.

PROTOCOL_T3 is set in the diagnostic context of a request if the request
uses T3 or T3s protocol

THROTTLE The THROTTLE dye is set in the diagnostic context of a request if it satisfies
requirements specified by THROTTLE_INTERVAL and/or THROTTLE_RATE
properties of the Dyelnjection monitor.

USER1 Use the USER1, USER2, USER3 and USER4 dyes to specify the user names
USER2 of clients that originate requests. These dye flags are set in the diagnostic
USER3 context for a request if the request was originated by a user specified by the

respective property (USER1, USER2, USER3, USERA4) of the Dyelnjection
USER4 monitor.

PROTOCOL Dye Flags

You must explicitly set the values for the dye flags USERn, ADDRn, COOKIEn, and
CONNECTORRn. in the Dyelnjection monitor. However, the flags PROTOCOL_HTTP,
PROTOCOL_IIOP, ROTOCOL_JRMP, PROTOCOL_RMI, PROTOCOL_SOAP,
PROTOCOL_SSL, and PROTOCOL_T3 are set implicitly by WLDF. When the Dyelnjection
monitor is enabled, every request is injected with the appropriate protocol dye. For example,
every request that arrives via HTTP is injected with the PROTOCOL_HTTP dye.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 9

ORACLE Chapter 13
Using Throttling to Control the Volume of Instrumentation Events

THROTTLE Dye Flag

The THROTTLE dye flag can be used to control the volume of incoming requests that are
dyed. THROTTLE is configured differently from the other flags, and WLDF uses it differently.
See Using Throttling to Control the Volume of Instrumentation Events, for more information.

When Diagnostic Contexts Are Created

When the Dyelnjection monitor is enabled in a diagnostic module, a diagnostic context is
created for every incoming request. The Dyelnjection monitor is enabled by default when you
enable instrumentation in a diagnostic module. This ensures that a diagnostic Context ID is
available so that events can be correlated. Even if no properties are explicitly set in the
Dyelnjection monitor, the diagnostic context for every request will contain a unique Context ID
and a dye vector with one of the implicit PROTOCOL dyes.

If the Dyelnjection monitor is disabled, no diagnostic contexts will be created for any incoming
requests.

Using Throttling to Control the Volume of Instrumentation Events

You can use throttling to control the number of requests that the monitors process in a
diagnostic module.

Throttling is configured using the THROTTLE dye, which is defined in the Dyelnjection monitor.

@ Note

The USERn and ADDRn dyes allow inspection of requests from specific users or IP
addresses. However, they do not provide a means to look at arbitrary user
transactions. The THROTTLE dye provides that functionality by allowing sampling of
requests.

Configuring the THROTTLE Dye

Unlike other dyes in the dye vector, the THROTTLE dye is configured through two properties.

¢ THROTTLE_INTERVAL sets an interval (in milliseconds) after which a new incoming
request is dyed with the THROTTLE dye.

If the THROTTLE_INTERVAL is greater than 0, the Dyelnjection monitor sets the
THROTTLE dye flag in the dye vector of an incoming request if the last request dyed with
THROTTLE arrived at least THROTTLE_| NTERVAL before the new request. For example, if
THROTTLE_INTERVAL=3000, the Dyelnjection monitor waits at least 3000 milliseconds
before it will dye an incoming request with THROTTLE.

e THROTTLE_RATE sets the rate (in terms of the number of incoming requests) by which
new incoming requests are dyed with the THROTTLE dye.

If THROTTLE_RATE is greater than 0, the Dyelnjection monitor sets the THROTTLE dye
flag in the dye vector of an incoming request when the number of requests since the last
request dyed with THROTTLE equals THROTTLE RATE. For example, if THROTTLE_RATE
= 6, every sixth request is dyed with THROTTLE.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 9

ORACLE

Chapter 13
Using Throttling to Control the Volume of Instrumentation Events

You can use THROTTLE_INTERVAL and THROTTLE_RATE together. If either condition is
satisfied, the request is dyed with the THROTTLE dye.

If you assign a value to either THROTTLE_INTERVAL or THROTTLE_RATE (or both, or
neither), you are configuring the THROTTLE dye.

Example 13-1 shows the resulting configuration in the descriptor file for the diagnostics
module.

Example 13-1 Sample THROTTLE Configuration in the Dyelnjection Monitor, in
DIAG_MODULE.xml

<w df - resour ce>
<name>MyDi agnost i cMbdul e</ nane>
<instrumentation>
<wl df - i nstrument ati on- moni t or >
<name>Dyel nj ect i on</ name>
<properties>
THROTTLE_I NTERVAL=3000
THROTTLE_RATE=6
</ properties>
</W df -instrunent ati on- noni t or >
</instrunentation>
<I-- Qher elenments to configure this diagnostic nonitor -->
</w df -resour ce>

Example 13-2 shows the configuration for a JDBC_Before_Start_Internal delegating monitor
where the THROTTLE dye is set in the dye mask for the monitor.

Example 13-2 Sample Configuration for Setting THROTTLE in a Dye Mask of a
Delegating Monitor, in DIAG_MODULE.xml

<w df - resour ce>
<name>MyDi agnost i cMbdul e</ nane>
<i nstrument ation>
<w df -i nst rument ati on- moni t or >
<name>JDBC Before_Start _I nternal </ nane>
<enabl ed>t r ue</ enabl ed>
<dye- mask>THROTTLE</ dye- mask>
</w df -instrunentation-nonitor>
</instrunentation>
<l-- Oher elenents to configure this diagnostic nonitor -->
</w df -resource>

How Throttling is Handled by Delegating and Custom Monitors

Dye masks and dye filtering provide a mechanism for restricting which requests are passed to
delegating and custom monitors for handling, based on properties of the requests. The
presence of a property in a request is indicated by the presence of a dye, as discussed in
Configuring the Dye Vector via the Dyelnjection Monitor. One of those dyes can be the
THROTTLE dye, so that you can filter on THROTTLE, just like any other dye.

The items in the following list explain how throttling is handled:

e If dye filtering for a delegating or custom monitor is enabled and that monitor has a dye
mask, filtering is performed based on the dye mask. That mask may include the
THROTTLE dye, but it does not have to. If THROTTLE is included in a dye mask, then
THROTTLE must also be included in the request's dye vector for the request to be passed
to the monitor. However, if THROTTLE is not included in the dye mask, all qualifying
requests are passed to the monitor, whether their dye vectors include THROTTLE or not.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 9

ORACLE

Chapter 13
Using weblogic.diagnostics.context

If dye filtering for a delegating or custom monitor is not enabled and neither THROTTLE
property is set in the Dyelnjection monitor, dye filtering will not take place and throttling will
not take place.

If dye filtering for a delegating or custom monitor is not enabled and THROTTLE is
configured in the Dyelnjection monitor, delegating monitors ignore dye masks but do check
for the presence of the THROTTLE dye in all requests. Only those requests dyed with
THROTTLE are passed to the delegating monitors for handling. Therefore, by setting a
THROTTLE_RATE and/or THROTTLE_INTERVAL in the Dyelnjection monitor, you reduce
the number of requests handled by all delegating monitors. You do not have to configure
dye masks for all your delegating monitors to take advantage of throttling.

If dye filtering for a delegating or custom monitor is enabled and the only dye set in a dye
mask is THROTTLE, only those requests that are dyed with THROTTLE are passed to the
delegating monitor. This behavior is the same as when dye filtering is not enabled and
THROTTLE is configured in the Dyelnjection monitor.

Using weblogic.diagnostics.context

The weblogic.diagnostics.context package provides applications with access to a diagnostic
context.

An application can use the weblogic.diagnostics.context.DiagnosticContextHelper APIs to
perform the following functions:

Inspect a diagnostics context's immutable context ID.
Inspect the settings of the dye flags in a context's dye vector.
Retrieve an array of valid dye flag names.

Set, or unset, the DYE_O through DYE_7 flags in a context's dye vector. (Note that there is
no way to set these flag bits via XML. You can configure Dyelnjection monitor <properties>
to set the non-application-specific flag bits via XML, but setDye() is the only method for
setting DYE_0 through DYE_7 in a dye vector.)

Attach a payload (a String) to a diagnostic context, or read an existing payload.

An application cannot:

Set any flags in a dye vector other than the eight flags reserved for applications.

Prevent another application from setting the same application flags in a dye vector. A well-
behaved application can test whether a dye flag is set before setting it.

Prevent another application from replacing a payload. A well-behaved application can test
for the presence of a payload before adding one.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 9

ORACLE Chapter 13
Using weblogic.diagnostics.context

@® Note

The diagnostic context payload can be viewed by other code in the same execution
context; it can flow out of the process along with the Wor k instance; and it can be
overwritten by other code running in the same execution context. Therefore, you
should ensure the following behavior in your applications:

* Avoid including any sensitive data in the payload that, for example, could be
returned by the get Payl oad() method.

« Do not create a dependency on any particular data being available in the context
payload. For example, applications should not rely on a particular context ID being
present. If an application uses the contents of the payload, the application should
first verify that the contents match what is expected.

A monitor, or another application, that is downstream from the point where an application has
set one or more of the DYE_O through DYE_7 flags can set a dye mask to check for those
flags, and take an action when the flag(s) are present in a context's dye vector. If a payload is
attached to the diagnostics context, any action taken by that monitor will result in the payload
being archived, and thus available through the accessor component.

Example 13-3 is a short example which (implicitly) creates a diagnostic context, prints the
context ID, checks the value of the DYE_O flag, and then sets the DYE_O flag.

Example 13-3 Example: DiaghosticContextExample.java

package webl ogi c. di agnosti cs. exanpl es;
i mport webl ogi c. di agnosti cs. cont ext. Di agnost i cCont ext Hel per;
public class DiagnosticContextExanple {
public static void main(String args[]) throws Exception {
Systemout. println("\nContextld=" +
Di agnost i cCont ext Hel per. get Context1d());
Systemout. println("i sDyedWth(DYE_0)=" +
Di agnost i cCont ext Hel per. i sDyedW t h(Di agnost i cCont ext Hel per. DYE_0)) ;
Di agnost i cCont ext Hel per. set Dye(Di agnosti cCont ext Hel per. DYE_O, true);
Systemout. println("i sDyedWth(DYE_0)=" +
Di agnost i cCont ext Hel per. i sDyedW t h(Di agnost i cCont ext Hel per. DYE_0)) ;

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 9

Accessing Diagnostic Data With the Data
Accessor

The Data Accessor component of the WebLogic Diagnostics Framework (WLDF) accesses
diagnostic data from various sources, including log records, data events, and harvested
metrics.Using the Data Accessor, you can:

« Perform data lookups by type, component, and attribute

* Perform time-based filtering and, when accessing events, filtering by severity, source, and
content

e Access diagnostic data in tabular form

You can also use the Data Accessor online (when a server is running) and offline (when a
server is not running).

Data Stores Accessed by the Data Accessor

The Data Accessor retrieves diagnostic information from other WLDF components. Captured
information is segregated into logical data stores, called diagnostic data stores, which are
separated by the types of diagnostic data. For example, server logs, HTTP logs, and harvested
metrics are captured in separate data stores.

WLDF maintains diagnostic data on a per-server basis. Therefore, the Data Accessor provides
access to data stores for individual servers.

Diagnostic data stores can be modeled as tabular data. Each record in the table represents
one item, and the columns describe characteristics of the item. Different data stores may have
different columns. However, most data stores have some of the same columns, such as the
time when the data was collected.

The Data Accessor can retrieve the following information about data stores used by WLDF for
a server:

e Alist of supported data store types, including:
— HarvestedDataArchive
— EventsDataArchive
— ServerLog
— DomainLog
— HTTPAccessLog
— DataSourcelLog
— WebAppLog
— ConnectorLog
— JMSMessagelog
- JMSSAFMessagelog
— CUSTOM

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 8

ORACLE Chapter 14
Accessing Diagnostic Data Online

« Alist of available data store instances
e The layout of each data store (information that describes the columns in the data store)

You can use the WLDFAccessRuntimeMBean to discover such data stores, determine the
nature of the data they contain, and access their data selectively using a query.

For complete documentation about WebLogic logs, see Understanding WebLogic Logging
Services in Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server.

Accessing Diagnostic Data Online

Data Accessor provides access to data stores for individual servers. You can access diagnostic
data from a running server.

You can access the data using one of the following ways:

* WebLogic Remote Console

« JMXAPIs

e WebLogic Scripting Tool (WLST)
* WLDF query language

Accessing Data Using the Remote Console

You do not use the Data Accessor explicitly in the WebLogic Remote Console, but information
collected by the Accessor is displayed, for example, in the Summary of Log Files page. See
View Logs and Configure Logs in the Oracle WebLogic Remote Console Online Help.

Accessing Data Programmatically Using Runtime MBeans

The Data Accessor provides the following runtime MBeans for discovering data stores and
retrieving data from them:

e Use the WLDFAccessRuntimeMBean to do the following:
— Get the logical names of the available data stores on the server.

— Look up a WLDFDataAccessRuntimeMBean to access the data from a specific data
source, based on its logical name. The different data stores are uniquely identified by
their logical names.

See WLDFAccessRuntimeMBean in the MBean Reference for Oracle WebLogic Server.

* Use the WLDFDataAccessRuntimeMBean to retrieve data stores based on a search
condition, or query. You can optionally specify a time interval with the query, to retrieve
data records within a specified time duration. This MBean provides metadata about the
columns of the data set and the earliest and latest timestamp of the records in the data
store.

Data Accessor runtime MBeans are currently created and registered lazily. So, when a
remote client attempts to access them, they may not be present and an
InstanceNotFoundException may be thrown.

The client can retrieve the WLDFDataAccessRuntime's attribute of the
WLDFAccessRuntime to cause all known data access runtimes to be created, for example:

bj ect Nane obj Nane =
new Obj ect Name("com bea: Server Runti me=" + serverNane +
", Name=Accessor," +

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 8

ORACLE Chapter 14
Accessing Diagnostic Data Offline

"Type=WLDFAccessRuntime, " +
"W.DFRunt i me=W.DFRunt i ne");
rnbs. get Attribute(obj Nane, "W.DFDat aAccessRuntines");

See WLDFDataAccessRuntimeMBean in the MBean Reference for Oracle WebLogic
Server.

Using WLST to Access Diagnostic Data Online

Use the WLST export Di agnost i cDat aFr onSer ver () command to access diagnostic data from
a running server. For the syntax and examples of this command, see Diagnostics Commands
in the WLST Command Reference for WebLogic Server.

Using the WLDF Query Language with the Data Accessor

To query data from data stores, use the WLDF query language. For Data Accessor query
language syntax, see WLDF Query Language.

Accessing Diagnostic Data Offline

You can use the WLST export Di agnosti cDat a() command to access historical diagnostic
data from an offline server. For the syntax and examples of this command, see Diagnostics
Commands in the WLST Command Reference for WebLogic Server.

@® Note

You can use exportDiagnosticData to access archived data only from the machine on
which the data is persisted.

You cannot discover data store instances using the offline mode of the Data Accessor.
You must already know what they are.

Accessing Diagnostic Data Programmatically

You can use the JMX API to access diagnostic data stored by WLDF.Example 14-1 shows the
source Java code for a utility that uses the Accessor to query the different archive data stores.

Example 14-1 Sample Code to Use the WLDF Accessor

/
W Accessor. java

Denonstration utility that allows query of the different ARCV data stores
via the W.DF Accessor.

L

/

i nport javax.naning. Cont ext;

i nport webl ogi c. j ndi . Envi ronnent;

inport java.util.Hashtable;

inport java.util.lterator;

inport java.util.Properties;

i nport webl ogi c. management . Managenent Excepti on;

i nport webl ogi c. managenent . runt i me. W.DFAccessRunt i meMBean;

i nport webl ogi c. management . runt i me. W.DFDat aAccessRunt i meMBean;

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 8

ORACLE

Chapter 14
Accessing Diagnostic Data Programmatically

i nport webl ogi c. di agnosti cs. accessor. Col uml nf o;
i nport webl ogi c. di agnosti cs. accessor. Dat aRecor d;
inport java.io.File;

i nport java.io.FilelnputStream

inport java.io.FileNot FoundExcepti on;

i nport java.io.lOException;

i nport j avax. managenent. MBeanSer ver Connecti on;

i nport javax. managenent. renote. JMXConnect or;

i mport j avax. managenent . renot e. JMXConnect or Factory;

i nport javax. managenent.renote. JMXServi ceURL;

i nport j avax. managenent. Qbj ect Nanre;

i nport webl ogi c. managenent . nbeanservers. runti ne. Runti neServi ceMBean;
i nport webl ogi c. management . runti me. Ser ver Runt i meMBean;

i nport webl ogi c. managenent . j mx. MBeanSer ver | nvocat i onHandl er;

i nport webl ogi c. managenent . confi gurati on. Server MBean;

*

/
Denonstration utility that allows query of the different ARCV data stores
via the W.DF Accessor. The class | ooks up the appropriate accessor and
executes the query given the specified query paraneters.

To see infornmation about it's usage, conpile this file and run

L S

java W.Accessor usage
*|

public class WAccessor {

/[** Creates a new instance of W.Accessor */
public W.Accessor(Properties p) {
initialize(p);

/**

* Retrieve the specfied W.DFDat aAccessRunti meMBean instance for querying.
*/

publ i ¢ W.DFDat aAccessRunti mneMBean get Accessor (String accessor Type)

throws Throwabl e

{
/1 Get the runtime MBeanServer Connection

MBeanSer ver Connection runti neMBS = this. get Runti meMBeanSer ver Connection();

/1 Lookup the runtime service for the connected server
(bj ect Nane rtSvcbj Name = new bj ect Name(Runt i meSer vi ceMBean. OBJECT_NAME) ;
Runt i meServi ceMBean rtService = nul l;

rtService = (RuntimeServi ceMBean)
MBeanSer ver | nvocat i onHandl er. newPr oxyl nst ance(
runti meMBS, rt SvcChj Nare

)

/1 Walk the Runtine tree to the desired accessor instance.
Server Runti meMBean srt = rtService. get ServerRuntine();

W.DFDat aAccessRunt i mreMBean ddar =
srt. get W.DFRunti ne(). get W.DFAccessRunti me().
| ookupW.DFDat aAccessRunt i ne(accessor Type) ;

return ddar;

/**

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 8

ORACLE Chapter 14
Accessing Diagnostic Data Programmatically

* Execute the query using the given paraneters, and display the formatted

* records.
*/
public void queryEventData() throws Throwabl e

{
String |ogical Name = "Event sDat aAr chi ve";
W.DFDat aAccessRunt i meMBean accessor = get Accessor (accessor Type) ;

Col umlinfo[] colinfo = accessor. get Col ums();
inform("Query string: " + queryString);

int recordsFound = 0;
Iterator actuallt =
accessor. retrieveDat aRecords(begi nTime, endTine, queryString);
while (actual It.hasNext()) {
Dat aRecord rec = (DataRecord)actual It.next();
inform("Record[" + recordsFound + "]: {");
bj ect[] values = rec. getVal ues();
for (int colno=0; colno < values.length; col no++) {
inform("[" + colno + "] "
+ colinfo[col no]. get Col umName() +
" (" + colinfo[colno].getCol umTypeName() + "): "o+
val ues[col no]);
}
inform("}");
inform("");
recor dsFound++;
1

inform("Found " + recordsFound + " results");

}

/**

* Main method that inplenents the tool.
* @aramargs the conmand |ine argunents
*/
public static void main(String[] args) {
try {
W.Accessor acsr = new W.Accessor (handl eArgs(args));
acsr. queryEventData();
} catch (UsageException uex) {
usage();
} catch (Throwable t) {
i nforn("Caught exception, " + t.getMessage(), t);
inform("");
usage();
}
}

public static class UsageException extends Exception {}

/**

* Process the command |ine argunents, which are provided as nanme/val ue pairs.
*/
public static Properties handl eArgs(String[] args) throws Exception
{

Properties p = checkForDefaults();

for (int i =0; i <args.length; i++) {

if (args[i].equalslgnoreCase("usage"))
t hrow new UsageException();

String[] nvpair = new String[2];
int token = args[i].indexOf('=");

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 8

ORACLE Chapter 14
Accessing Diagnostic Data Programmatically

if (token < 0)

throw new Exception("Invalid argument, " + args[i]);
nvpair[0] = args[i].substring(0,token);
nvpair[1] = args[i].substring(token+l);
p.put(nvpair[0], nvpair[1]);

}
return p;
}
/**
* Look for a default properties file
*/

public static Properties checkForDefaults() throws |OException {
Properties defaults = new Properties();
try {
File defaul tprops = new File("accessor-defaul ts. properties");
Fil el nput Stream defaul tsI'S = new Fil el nput St rean(def aul t props);
/linform("l oading options from accessor-defaul ts.properties");
defaul ts.|oad(defaultslS);
} catch (Fil eNot FoundException fnfex) {
/linform("No accessor-defaults.properties found");
1
return defaul ts;
}
public static void inforn(String s) {
Systemout. println(s);
}
public static void inforn(String s, Throwable t) {
Systemout. println(s);
t.printStackTrace();
}

private MBeanServer Connection get Runti meMBeanSer ver Connection()
throws | OException
{

/1 construct jmx service url

[l "service:jm:[url]/jndi/[nbeanserver-jndi-name]"
JMXServi ceURL serviceURL =
new JMXSer vi ceURL(
"service:jnx:" + getServerUl () +
"/indi/" + RuntineServi ceMBean. MBEANSERVER JNDI _NAME

):

/'l specify the user and pwd. Al so specify webl ogic provide package
inform("user nane [" + usernane + "]");
inform("password [" + password + "]");
Hashtabl e h = new Hashtabl e();
h. put (Cont ext . SECURI TY_PRI NCl PAL, usernane);
h. put (Cont ext . SECURI TY_CREDENTI ALS, password);
h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
"webl ogi c. nenagenent. renote");
/1 get jmx connector
JMXConnect or connector = JMXConnect or Fact ory. connect (servi ceURL, h);

i nfornm("Using JMX Connector to connect to " + serviceURL);
return connector. get MBeanSer ver Connection();

}

private void initialize(Properties p) {
serverUrl = p.getProperty("url™,"t3://1ocal host:7001");
username = p.get Property("user”, "webl ogic");

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 8

ORACLE Chapter 14
Accessing Diagnostic Data Programmatically

password = p. get Property("pass", "password");

queryString = p.getProperty("query","SEVERITY I N
("Error',"Warning','Critical','Emergency')");

accessor Type = p. getProperty("type", "ServerLog");

try {
begi nTi me = Long. parseLong(p. get Property("begin","0"));

String end = p.getProperty("end");
endTime = (end==null) ? Long. MAX_VALUE : Long. parseLong(end);
} catch (Nunber For mat Exception nfex) {
t hrow new RuntimeException("Error formatting time bounds", nfex);

}
}
private static void usage() {
inform("");
inform("");
inform("Usage: ");
inform("");
inform(" java W.Accessor [options]");
inform("");
i nforn("where [options] can be any conbination of the following: ");
inform("");
inform" usage Prints this text and exits");
inform" url =<url > default: 't3://local host:7001'");
inform" user =<user name> default: 'weblogic'");
inform" pass=<passwor d> defaul t: 'password'");
inform" begi n=<begi n-ti mest anp> default: 0");
inform" end=<end-ti mest anp> default: Long. MAX VALUE");
inform" query=<query-string> default: \"SEVERITY IN
("Error',"Warning','Critical',"'Energency')\"");
inform" t ype=<accessor -t ype> default: 'ServerlLog'");
inform("");
inforn("Exanple:");
inform("");
inform" java W.Accessor user=system pass=gunby1234 url=http://nmyhost:8000 \\");
inform" query=\"SEVERITY = "Error'\" begi n=1088011734496 type=ServerLog");
inform("");
inform("");
inform("");

inform("All properties (except \"usage\") can all be specified inafile");
inform("in the current working directory. The file nust be naned: ");

inform("");

inform" \"accessor-defaul ts. properties\"");

inform("");

infornm("Each property specified in the defaults file can still be ");
inform("overridden on the command-|ine as shown above");

inform("");

}

[** Getter for property serverUrl.

* @eturn Value of property serverUrl.
*

*/

public java.lang. String getServerUl () {
return serverUrl;

}

[** Setter for property serverUrl.
* @aram serverUrl New val ue of property serverUrl.

*

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 8

ORACLE’

}

Chapter 14
Resetting the System Clock Can Affect How Data Is Archived and Retrieved

*/

public void setServerUrl (java.lang. String serverUl) {
this.serverUl = serverUrl;

}

protected String serverNane = null;

protected String usernane = null;

protected String password = null;

protected String queryString = "";

private String serverUl = "t3://local host:7001";
private String accessorType = null;

private | ong endTime = Long. MAX_VALUE;
private | ong beginTime = 0;

private W.DFAccessRunti neMBean dar = nul | ;

Resetting the System Clock Can Affect How Data Is Archived
and Retrieved

Resetting the system clock to an earlier time while diagnostic data is being written to the WLDF
Archive or logs can cause unexpected results when you query that data based on a
timestamp.For example, consider the following sequence of events:

1.

5.

At 2:00 p.m., a diagnostic event is archived as RECORD_200, with a timestamp of 2:00:00
PM.

At 2:30 p.m., a diagnostic event is archived as RECORD_230, with a timestamp of 2:30:00
PM.

At 3:00 p.m., the system clock is reset to 2:00 p.m.

At 2:15 p.m. (after the clock was reset), a diagnostic event is archived as RECORD_215,
with a timestamp of 2:15:00 PM.

You issue a query to retrieve records generated between 2:00 and 2:20 p.m.

The query will not retrieve RECORD_215, because the 2:30:00 PM timestamp of
RECORD_230 ends the query.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 8

Deploying WLDF Application Modules

The WebLogic Diagnostics Framework (WLDF) supports the ability to configure and manage
instrumentation for an application by configuring and deploying a diagnostics application
module as resource that is scoped to that application.The configuration of the diagnostics
application module is persisted in a descriptor file that you deploy with the application. A
diagnostic application module deployed in this way is available only to the application in which
it is enclosed. Using application-scoped diagnostic application modules ensures that an
application always has access to the required resources and simplifies the process of
deploying the application in new environments.

@ Note
Note the following:

* Only the Instrumentation component can be used with applications (see
Configuring Application-Scoped Instrumentation).

* For instrumentation to be available for an application, instrumentation must be
enabled on the server to which the application is deployed. (Server-scoped
instrumentation is enabled and disabled in the <i nst r unent at i on> element of the
diagnostics descriptor for the server.)

* You can deploy an application using a deployment plan, which permits dynamic
configuration updates.

The following sections explain how to deploy diagnostic application modules:

Deploying a Diagnostic Module as an Application-Scoped
Resource

To deploy a diagnostic module as an application-scoped resource, you configure the module in
a descriptor file named webl ogi c- di agnosti ¢s. xnl . You then package the descriptor file with
the application archive in the ARCH VE_PATH META- | NF directory for the deployed application.

For example:

C:\Oracl e\ M ddl ewar e\ Oracl e_Hore\ user _proj ect s\ appl i cati ons\ medr ec\ di st\ st andal one\ expl od
ed\ medr ec\ META- | NF\ webl ogi c- di agnosti cs. xn

You can deploy the diagnostic module in both exploded and unexploded archives.

@® Note

If the EAR archive contains WAR, RAR or EJB modules that have the webl ogi c-
di agnosti cs. xm descriptors in their META- | NF directory, those descriptors are
ignored.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 6

ORACLE’

Chapter 15
Using Deployment Plans to Dynamically Control Instrumentation Configuration

You can use any of the standard WebLogic Server tools provided for controlling deployment,
including the WebLogic Administrative Console or the WebLogic Scripting Tool (WLST).

For information about creating modules and deploying applications, see Deploying Applications
to Oracle WebLogic Server.

Because of the different ways that diagnostic application modules and diagnostic system
modules are deployed, there are some differences in how you can reconfigure them and when
those changes take place, as shown in Table 15-1. The details of how to work with diagnostic
application modules is described throughout this section. See Configuring Instrumentation, for
information about working with diagnostic system modules.

Table 15-1 Comparing System and Application Modules

|
Monitor Type Add/Remove Add/Remove Modify with Modify with Modify with

Objects Objects with JMX Remotely JSR-88 (non- Console
Dynamically Console remote)
System Yes Yes Yes No Yes - via JMX
Module
Application Yes, when Yes No Yes Yes - via plan
Module HotSwap? is
enabled
No, when

HotSwap is not
enabled: module
must be
redeployed

1 See Using Deployment Plans to Dynamically Control Instrumentation Configuration, for information about HotSwap.

Using Deployment Plans to Dynamically Control Instrumentation
Configuration

WebLogic Server supports deployment plans, as specified in the Jakarta EE Deployment
Specification API (JSR-88). With deployment plans, you can modify the configuration of an
application after it is built, without having to modify the application archives.

For complete documentation on using deployment plans in WebLogic Server, see Configuring
Applications for Production Deployment in Deploying Applications to Oracle WebLogic Server.

If you want to reconfigure an application that was deployed without a deployment plan, you
must undeploy, unarchive, reconfigure, re-archive, and then redeploy the application. With a
configuration plan, you can dynamically change many configuration options simply by updating
the plan, without modifying the application archive.

If you enable a feature called Java HotSwap (see Enabling Java HotSwap) before deploying
your application with a deployment plan, you can dynamically update all instrumentation
settings without redeploying the application. If you do not enable HotSwap, or if you do not use
a deployment plan, changes to some instrumentation settings require redeployment, as shown
in Table 15-2.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 6

ORACLE Chapter 15
Using a Deployment Plan: Overview

Table 15-2 When Application Instrumentation Configuration Changes Take Effect

Scenario | Settings to Use => Add and remove Attach and detach Enable and
monitors actions disable monitors

Application deployed with a deployment Dynamic Dynamic Dynamic

plan, HotSwap enabled

Application deployed with a deployment Must redeploy Dynamic Dynamic

plan, HotSwap not enabled application?

Application deployed without a Must redeploy Must redeploy Must redeploy

deployment plan application application application

1 If HotSwap is not enabled, you can "remove" a monitor, but that just disables it. The instrumentation code is still
woven into the application code. You cannot re-enable it through a modified plan.

You can use a deployment plan to dynamically update configuration elements without
redeploying the application.

* <enabled>

e <dye-filtering-enabled>

e <dye-mask>

e <action>

Using a Deployment Plan: Overview

You can use a deployment plan to dynamically control the configuration options of an
application-scoped diagnostic module.

The general process for creating and using a deployment plan is as follows:

1. Create a well-formed webl ogi c- di agnosti cs. xm descriptor file for the application.

Oracle recommends that you create an empty descriptor. This provides full flexibility for
dynamically modifying the configuration. It is possible to create monitors in the original
descriptor file and then use a deployment plan to override the settings. However, you will
be unable to completely remove monitors without redeploying. If you add monitors using a
deployment plan to an empty descriptor, all such monitors can be removed. For information
about configuring diagnostic application modules, see Configuring Application-Scoped
Instrumentation.

The schema for webl ogi c- di agnosti cs. xn is available at http: //xnl ns. oracl e. com
webl ogi ¢/ webl ogi c-di agnosti cs/ 2. 0/ webl ogi c- di agnosti cs. xsd.

2. Place the descriptor file webl ogi c- di agnosti cs. xnl , in the top-level META- | NF directory of
the appropriate archive.

3. Create a deployment plan, for example by using weblogic.PlanGenerator. See Creating a
Deployment Plan Using weblogic.PlanGenerator.

4. Start the server, optionally enabling Java HotSwap. See Enabling Java HotSwap.

5. Deploy the application using the deployment plan. See Deploying an Application with a
Deployment Plan).

6. When needed, edit the plan and update the application with the plan. See Updating an
Application with a Modified Plan.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 6

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd

ORACLE’

Chapter 15
Creating a Deployment Plan Using weblogic.PlanGenerator

Creating a Deployment Plan Using weblogic.PlanGenerator

The PlanGenerator tool inspects all Jakarta EE deployment descriptors in the selected
application, and creates a deployment plan with null variables for all relevant WebLogic Server
deployment properties that configure external resources for the application.

You can use the weblogic.PlanGenerator tool to create an initial deployment plan, and
interactively override specific properties of the webl ogi c- di agnosti c¢s. xn descriptor.

To create the plan, use the following syntax:

java webl ogi c. Pl anGenerator -plan output-plan.xm [options]
application-path

For example:

java webl ogi c. Pl anGenerator -plan foo.plan -dynanics /test/apps/ mywar

@ Note

The -dynamics options specifies that the plan should be generated to include only
those options that can be dynamically updated.

For more information about creating and using deployment plans, see Configuring Applications
for Production Deployment in Deploying Applications to Oracle WebLogic Server.

For more information about using PlanGenerator, see weblogic.PlanGenerator Command Line
Reference and Exporting an Application for Deployment to New Environments in Deploying
Applications to Oracle WebLogic Server

Sample Deployment Plan for Diagnostics

You can create a simple deployment plan for diagnostics using PlanGenerator.

Example 15-1 shows a simple deployment plan generated using weblogic.PlanGenerator. (For
readability, some information has been removed.) The plan enables the
Servlet_Before_Service monitor and attaches to it the actions DisplayArgumentsAction and
StackDumpAction.

Example 15-1 Sample Deployment Plan

<?xm version="1.0" encodi ng=' UTF-8' 7>
<depl oynment - pl an xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance"
gl obal -vari abl es="fal se">
<appl i cati on- name>j sp_expr _r oot </ appl i cati on- nane>

<vari abl e-definition>
<I'-- Add two additional actions to Servlet_ Before_Service monitor -->

<vari abl e>

<name>WLDFI nst rument at i onMoni t or _Servl et _Bef ore_Servi ce_Acti ons_113050559713922</ nanme>
<val ue>"Di spl ayAr gument sActi on", " St ackDunpAct i on" </ val ue>

</vari abl e>

<-- Enable the Servlet_Before_Service nonitor -->

<vari abl e>

<name>WLDFI nst rument at i onMoni t or _Servl et _Bef ore_Servi ce_Enabl ed_113050559713927</ nanme>

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 6

ORACLE Chapter 15
Enabling Java HotSwap

<val ue>t rue</ val ue>
</vari abl e>
</variabl e-definition>

<nodul e- overri de>
<nmodul e- name>j spExpr essi onVar </ nodul e- name>
<nmodul e-t ype>war </ modul e-t ype>
<nmodul e-descriptor external ="fal se">
<r oot - el ement >webl ogi c- web- app</r oot - el ement >
<uri >WEB- | NF/ webl ogi c. xm </ uri >
</ modul e- descri pt or >
<nmodul e-descriptor external ="fal se">
<r oot - el enment >web- app</r oot - el enent >
<uri >WEB- | NF/ web. xm </ uri >
</ modul e- descri pt or >
<nmodul e-descriptor external ="fal se">
<root - el enent >wl df - r esour ce</ r oot - el enent >
<uri >META- | NF/ webl ogi c- di agnosti cs. xm </ uri >
<vari abl e- assi gnnent >
<name>WLDFI nst runent ati onMoni t or _Servl et _Before_Servi ce_Actions_113050559713922</ nane>
<xpat h>/ wl df -resour ce/ i nstrunentati on/w df -i nstrunent ati on- noni tor/
[name="Servl et _Before_Service"]/action</xpat h>
</vari abl e-assi gnnent >
<vari abl e- assi gnnent >
<name>WLDFI nst rument at i onMbni t or _Servl et _Before_Servi ce_Enabl ed_113050559713927</ nane>
<xpat h>/ wl df -resour ce/ i nstrument ati on/w df -i nst runent ati on- noni t or/
[name="Ser vl et _Bef ore_Servi ce"]/ enabl ed</ xpat h>
</vari abl e-assi gnnent >
</ modul e- descri pt or >
</ nodul e- overri de>
<config-root xsi:nil="true"></config-root>
</ depl oynent - pl an>

For a list and documentation of diagnostic monitors and actions that you can specify in the
deployment plan, see WLDF Instrumentation Library.

Enabling Java HotSwap

You can enable Java HotSwap to update the configuration of the application with the modified
deployment plan values.

To enable Java HotSwap, start the server with the following command line switch:

-javaagent : $W._HOVE/ server/|i b/ di agnosti cs-agent.jar

Deploying an Application with a Deployment Plan

To take advantage of the dynamic control provided by a deployment plan, you must deploy the
application with the plan.

You can use any of the standard WebLogic Server tools for controlling deployment, including
the WebLogic Remote Console or the WebLogic Scripting Tool (WLST). For example, the
following WLST command deploys an application with a corresponding deployment plan.

W s:/ nydomai n/ server Confi g> depl oy(' nyApp', './myApp.ear', 'nyserver',
"nostage', './plan.xm")

After deployment, the effective diagnostic monitor configuration is a combination of the original
descriptor, combined with the overridden attribute values from the plan. If the original
descriptor did not include a monitor with the given name and the plan overrides an attribute of

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 6

ORACLE’

Chapter 15
Updating an Application with a Modified Plan

such a monitor, the monitor is added to the set of monitors to be used with the application. This
way, if your application is built with an empty webl ogi ¢- di agnosti cs. xm descriptor, you can
add diagnostic monitors to the application during or after the deployment process without
having to modify the application archive.

Updating an Application with a Modified Plan

You can change configuration settings by modifying the deployment plan and then updating or
redeploying the application, depending on whether HotSwap is enabled.

See Enabling Java HotSwap to see when you can simply update the application and when you
must redeploy it. You can use any of the standard WebLogic Server tools for updating or
redeploying, including the WebLogic Remote Console or the WebLogic Scripting Tool (WLST).

If you enabled HotSwap, you can update the configuration for the application with the modified
plan values by updating the application with the plan. For example, the following WLST
command updates an application with a plan:

w s: / nydomai n/ server Confi g> updat eAppl i cation(' Bi gApp',
'"¢:/nyapps/ Bi gApp/ newPl an/ pl an. xm ', st ageMde=" STAGE' ,
t est Mbde='fal se')

If you did not enable HotSwap, you must redeploy the application for certain changes to take
effect. For example, the following WLST command redeploys an application using a plan:

W s:/ nydonai n/ server Confi g> redepl oy(' myApp' 'c:/myapps/plan.xn")

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 6

Configuring and Using WLDF
Programmatically

As an alternative to using the WebLogic Remote Console or Fusion Middleware Control to
enable, configure, and monitor the WebLogic Diagnostics Framework (WLDF), you can also
use the JIMX API or the WebLogic Scripting Tool (WLST) to perform these tasks
programmatically.

See the following for additional information about how to develop and deploy JMX applications
and to use WLST:

* Developing Applications for Oracle WebLogic Server

* Developing Manageable Applications Using JMX for Oracle WebLogic Server

e Developing Custom Management Ultilities Using JMX for Oracle WebLogic Server
* Deploying Applications to Oracle WebL ogic Server

* Understanding the WebLogic Scripting Tool

How WLDF Generates and Retrieves Data

The process WLDF uses to generate and retrieve diagnostic data largely depends on how its
main components are configured.

In general, diagnostic data is generated and retrieved by WLDF components following this
process:

e The WLDF XML descriptor file settings for the Harvester, Instrumentation, Image Capture,
and Policies and Actions components determine the type and amount of diagnostic data
generated while a server is running.

e The diagnostic context and instrumentation settings filter and monitor this data as it flows
through the system. Data is harvested, actions are executed, events are generated, and
configured notifications are sent.

e The Archive component stores the data.
e The Accessor component retrieves the data.

Configuration is primarily an administrative task, accomplished either through the WebLogic
Remote Console or through WLST scripts. Deployable descriptor modules, XML configuration
files, are the primary method for configuring diagnostic resources at both the system level
(servers and clusters) and at the application level. (For information about configuring WLDF
resources, see Understanding WLDF Configuration.)

Output retrieval via the Accessor component can be either an administrative or a programmatic
task.

Mapping WLDF Components to Beans and Packages

When you create diagnostic system modules using the WebLogic Remote Console or WLST,
WebLogic Server creates MBeans (managed beans) for each module. You can access these

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 14

ORACLE’

Chapter 16
Mapping WLDF Components to Beans and Packages

MBeans using JMX or WLST. Because WLST is a JMX client; any task you can perform using
WLST you can also perform programmatically through JMX.

Table 16-1 lists the beans and packages associated with WLDF and its components.

Figure 16-1 groups the beans by type.

Table 16-1 Mapping WLDF Components to Beans and Packages

Component

Beans | Packages

WLDF

WLDFServerDiagnosticMBean
WLDFSystemResourceMBean
WLDFBean (abstract)
WLDFResourceBean
WLDFRuntimeMBean

Diagnostic Image

WLDFImageNotificationBean
WLDFImageCreationTaskRuntimeMBean
WLDFImageRuntimeMBean

Instrumentation

WLDFInstrumentationBean

WLDFInstrumentationMonitorBean

WLDFInstrumentationRuntimeMBean

Diagnostic Context

Package: weblogic.diagnostics.context
DiagnosticContextHelper
DiagnosticContextConstants

Harvester

WLDFHarvesterBean
WLDFHarvestedTypeBean
WLDFHarvesterRuntimeMBean

Policies and Actions

WLDFNotificationBean
WLDFWatchNotificationBean
WLDFJMSNotificationBean
WLDFJMXNotificationBean
WLDFSMTPNotificationBean
WLDFSNMPNotificationBean
WLDFWatchNotificationRuntimeMBean
Package: weblogic.diagnostics.watch
JMXWatchNotification
WatchNotification

Archive

WLDFArchiveRuntimeMBean
WLDFDbstoreArchiveRuntimeMBean
WLDFFileArchiveRuntimeMBean
WLDFWIstoreArchiveRuntimeMBean

Accessor

WLDFAccessRuntimeMBean
WLDFDataAccessRuntimeMBean

Runtime Control

WLDFControlRuntimeMBean
WLDFSystemResourceControlRuntimeMBean

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 14

ORACLE Chapter 16
Programming Tools

Figure 16-1 WLDF Configuration MBeans, Runtime MBeans, and System Module

Beans
Weblogic Diagnostic Framework
Domain Configuration MBeans
WLDFSystemResourceMBean WLDFServerDiagnosticMBean
System Module MBeans
WLDFBean (abstract) WLDFInstrumentationBean WLDFNotificationBean
WLDFHarvestedTypeBean WLDFInstrumentationMonitorBean WLDFResourceBean
WLDFHarvestedBean WLDFIMSNotificationBean WLDFSMTPNotificationBean
WLDFImageNotificationBean WLDFJMXNotificationBean WLDFSNMPNotificationBean
WLDFWatchBean WLDFWatchMotificationBean
Runtime MBeans
WLDFAccessRuntimeMBean WLDFFileArchiveRuntimeMBean WLDFInstrumentationRuntimeMBean
WLDFArchiveRuntimeMBean WLDFHarvesterRuntimeMBean WLDFRuntimeMBean
WLDFDataAccessRuntime WLDFImageCreationTaskRuntime WLDFControlRuntime
MBean MBean MBean
WLDFDbstoreArchiveRuntime WLDFImageRuntime WLDFWatchNotificationRuntime
MBean MBean MBean
WLDFWIstoreArchiveRuntime WLDFDataRetirementTaskRuntime WLDFEditableArchiveRuntime
MBean MBean MBean
WLDFHarvesterManager WLDFSystemResourceControl WLDFWatchManagerRuntime
RuntimeMBean RuntimeMBean MBean

WLDFWatchNotificationSource
RuntimeMBean

Programming Tools

WLDF supports the use of multiple tools, such as WLST, JMX, and REST, for performing tasks
programmatically.

For example, you can use these tools to do the following:

e Create and modify diagnostic descriptor files to configure the WLDF Harvester,
Instrumentation, and Policies and Actions components at the server level.

e Use JMX to access WLDF operations and attributes.

* Use JMX to create custom MBeans that contain harvestable data. You can then configure
the Harvester to collect that data and configure policies and actions to monitor the values.

e Write Java programs that perform the following tasks:
— Capture notifications using JMX listeners.

— Capture notifications using JMS.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 14

ORACLE Chapter 16
Programming Tools

— Retrieve archived data through the Accessor. (The Accessor, as are the other
components, is surfaced as JMX; you can use WLST or straight JIMX programming to
retrieve diagnostic data.)

Configuration and Runtime APIs

The configuration and runtime APIs configure and monitor WLDF. Both the configuration and
runtime APIs are exposed as MBeans.

e The configuration MBeans and system module Beans create and configure WLDF
resources, and determine their runtime behavior.

e The runtime MBeans monitor the runtime state and the operations defined for the different
components.

You can use the APIs to configure, activate, and deactivate data collection; to configure
policies, actions, alarms, and diagnostic image captures; and to access data.

Configuration APIs

The Configuration APIs define interfaces that are used to configure the following WLDF
components:

» Data Collectors: You can use the configuration APIs to configure and control
Instrumentation, Harvesting, and Image Capture.

— For the Instrumentation component, you can enable, disable, create, and destroy
server-level instrumentation and instrumentation monitors.

@® Note

The configuration APIs do not support configuration of application-level
instrumentation. However, configuration changes for application-level
instrumentation can be effected using Java Specification Request (JSR) 88
APIs.

— For the Harvester component, you can add and remove types to be harvested, specify
which attributes and instances of those types are to be harvested, and set the sample
period for the Harvester.

— For the Diagnostic Image Capture component, you can set the name and path of the
directory in which the image capture is to be stored and the events image capture
interval, that is, the time interval during which recently archived events are captured in
the diagnostic image.

« Policies and Actions: You can use the configuration APIs to enable, disable, create, and
destroy policies and actions. You can also use the configuration APIs to:

— Set the policy type, policy expressions, and severity for policies
— Set alarm type and alarm reset period for actions

— Configure a policy to execute a diagnostic image capture

— Add and remove actions from policies

e Archive: Set the archive type and the archive directory

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 14

ORACLE Chapter 16
WLDF Packages

Runtime APIs

The runtime APIs define interfaces that are used to monitor the runtime state of the WLDF
components. Instances of these APIs are instantiated on instances of individually managed
servers. These APIs are defined as runtime MBeans, so JMX clients can easily access them.

The runtime APIs encapsulate all other runtime interfaces for the individual WLDF
components. These APIs are included in the weblogic.management.runtime package.

You can use the runtime APIs to monitor the following WLDF components:

« Data Collectors—You can use the runtime APIs to monitor the Instrumentation, Harvester,
and the Image Capture components.

— For the Instrumentation component, you can monitor joinpoint count statistics, the
number of classes inspected for instrumentation monitors, the number of classes
modified, and the time it takes to inspect a class for instrumentation monitors.

— For the Harvester component, you can query the set of harvestable types, harvestable
attributes, and harvestable instances (that is, the instances that are currently
harvestable for specific types). And, you can also query which types, attributes, and
instances are currently configured for harvesting. The sampling interval and various
runtime statistics pertaining to the harvesting process are also available.

— For the Image Capture component, you can specify the destination and lockout period
for diagnostic images and initiate image captures.

» Policies and Actions: You can use the runtime APIs to monitor the Policies and Actions and
Archive components.

— For the Policies and Actions component, you can reset policy alarms and monitor
statistics about policy expression evaluations and policies triggered, including
information about the analysis of alarms, events, log records, and harvested metrics.

* Archive: You can monitor information about the archive, such as file name and archive
statistics.

o Data Accessor—You can use the runtime APIs to retrieve the diagnostic data persisted in
the different archives. The runtime APIs also support data filtering by allowing you to
specify a query expression to search the data from the underlying archive. You can monitor
information about column type maps (a map relating column names to the corresponding
type names for the diagnostic data), statistics about data record counts and timestamps,
and cursors (cursors are used by clients to fetch data records).

WLDF Packages

WLDF provides two packages you can use to perform select operations programmatically.

» weblogic.diagnostics.context contains:

— DiagnosticContextConstants, which defines the indices of dye flags supported by the
WebLogic diagnostics system.

— DiagnosticContextHelper, which provides applications limited access to the diagnostic
context.

» weblogic.diagnostics.watch contains:

— JMXWatchNoatification, an extended JMX notification object which includes additional
information about the notification. This information is contained in the referenced
WatchNotification object returned from method getExtendedinfo.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 14

ORACLE Chapter 16
Programming WLDF: Examples

— WatchNotification, which defines an action for a policy.

Programming WLDF: Examples

WLDF provides a number of beans and packages you can use to access and modify
information about a running server. The following examples show how to use these
components:

In addition, see the WLST and JMX examples in WebLogic Scripting Tool Examples.

Example: DiagnosticContextExample.java

The following example uses the DiagnosticContextHelper class from the
weblogic.diagnostics.context package to get and set the value of the DYE_O flag. (For
information about diagnostic contexts, see Configuring the Dyelnjection Monitor to Manage
Diagnostic Contexts.)

To compile and run the program:

1. Copy the DiagnosticContextExample.java example (Example 16-1) to a directory and
compile it with:

javac -d . DiagnosticContextExanple.java

This will create the ./weblogic/diagnostics/examples directory and populate it with
DiagnosticContextExample.class.

2. Run the program. The command syntax is:

java webl ogi c. di agnosti cs. exanpl es. Di agnost i cCont ext Exanpl e

Sample output is similar to:

java webl ogi c. di agnosti cs. exanpl es. Di agnost i cCont ext Exanpl e

Cont ext | d=5b7898f 93bf 010ce: 40305614: 1048582ef d4: - 8000- 0000000000000001
i sDyedWt h(DYE_0) =f al se

i sDyedWt h(DYE_0) =true

Example 16-1 Example: DiaghosticContextExample.java

package webl ogi c. di agnosti cs. exanpl es;
i mport webl ogi c. di agnosti cs. cont ext. Di agnost i cCont ext Hel per;
public class DiagnosticContextExanple {
public static void nmain(String args[]) throws Exception {
Systemout. println("Contextld=" +
Di agnost i cCont ext Hel per. get Context1d());
Systemout. println("i sDyedWth(DYE_0)=" +
Di agnost i cCont ext Hel per. i sDyedW t h(Di agnosti cCont ext Hel per. DYE_0)) ;
Di agnost i cCont ext Hel per. set Dye(Di agnosti cCont ext Hel per. DYE_0, true);
Systemout. println("i sDyedWth(DYE_0)=" +
Di agnost i cCont ext Hel per. i sDyedW t h(Di agnosti cCont ext Hel per. DYE_0));
}

}

Example: HarvesterMonitor.java

The HarvesterMonitor program uses the Harvester JMX notification to identify when a harvest
cycle has occurred. It then retrieves the new values using the Accessor. All access is
performed through JMX.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 14

ORACLE Chapter 16
Programming WLDF: Examples

For information about the Harvester component, see Configuring the Harvester for Metric
Collection.

A description of notification listeners and the HarvesterMonitor.java code are provided in the
following sections:

Notification Listeners

Notification listeners provide an appropriate implementation for a particular transport medium.
For example, SMTP notification listeners provide the mechanism to establish an SMTP
connection with a mail server and send an e-mail with the notification instance that it receives.
JMX, SNMP, JMS and other types of listeners provide their respective implementations as well.

@® Note

You can develop plug-ins that propagate events generated by the WebLogic
Diagnostics Framework using transport mediums other than SMTP, JMX, SNMP, or
JMS. One approach is to use the JMX NotificationListener interface to implement an
object, and then propagate the notification according to the requirements of the
selected transport medium.

Table 16-2 describes each notification listener type that is provided with WebLogic Server and
the relevant configuration settings for each type.

Table 16-2 Notification Listener Types

Notification Medium Description Configuration Parameter
Requirements

JMS Propagated via JMS Message Required: Destination JNDI name.

queues or topics. Optional: Connection factory JNDI
name (use the default IMS
connection factory if not present).

JMX Propagated via standard JMX None required. Uses predefined
notifications. singleton for posting the event.
SMTP Propagated via regular e-mail. Required: MailSession JNDI nhame

and Destination e-mail.

Optional: Subject and body (if not
specified, use default)

SNMP Propagated via SNMP traps and None required, but the
the WebLogic Server SNMP Agent. SNMPTrapDestination MBean must
be defined in the WebLogic SNMP
agent.

By default, all notifications executed from policies are stored in the server log file in addition to
being executed through the configured medium.

HarvesterMonitor.java

To compile and run the HarvesterMonitor program:

1. Copy the HarvesterMonitor.java example (Example 16-2) to a directory and compile it with:

javac -d . HarvesterMonitor.java

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 14

ORACLE

Chapter 16
Programming WLDF: Examples

This creates the . / webl ogi ¢/ di agnost i cs/ exanpl es directory and populates it with
Har vest er Moni t or. cl ass and Har vest er Moni t or $Har vest Cycl eHandl er. cl ass.

Start the monitor. The command syntax is:

java HarvesterMonitor <server> <port> <uname> <pw> [<types>]

You need access to a WebLogic Server instance, and know the server's name, port
number, administrator's login name, and the administrator's password.

You can provide an optional list of harvested type names. If provided, the program displays
only the values for those types. However, for each selected type, the monitor displays the
complete set of collected values; there is no way to constrain the values that are displayed
for a selected type.

Only values that are explicitly configured for harvesting are displayed. Values collected
solely to support policies (implicit values) are not displayed.

The following command requires that '." is in the CLASSPATH variable, and that you run the
command from the directory where you compiled the program. The command connects to
the nyserver server, at port 7001, as user webl ogi ¢ (and also the password, shown as
password):

java webl ogi c. di agnosti cs. exanpl es. Harvest er Moni tor myserver 7001
webl ogi ¢ password

See Example 16-3 for an example of output from the HarvesterMonitor.

Example 16-2 Example: HarvesterMonitor.java

package webl ogi c. di agnosti cs. exanpl es;

i mport webl ogi c. managenment . nbeanservers. runti ne. Runti neServi ceMBean;
i mport j avax. managenent.*;

i mport j avax. managenent.renote. *;

i nport javax.nam ng. Cont ext;

inport java.util.*;

public class HarvesterMnitor {

private static String accessorRunti meMBeanNane;
private static CbjectNane accessorRunti neMBeanCOhj ect Nane;
private static String harvRunti meMBeanNane;
private static OCbjectNane harvRunti neMBeanOhj ect Nane;
private static MBeanServerConnection rnbs;
private static CbjectNane get Cbj ect Nane(String objectNaneStr) {
try { return new Obj ect Name(get Canoni cal Nane(obj ect NaneStr)); }
catch (RuntinmeException x) { throw x; }
catch (Exception x) { x.printStackTrace(); throw new
Runti neException(x); }
}
private static String getCanonical Name(String object NameStr) {
try { return new Cbj ect Nane(obj ect NameStr). get Canoni cal Nane(); }
catch (RuntinmeException x) { throw x; }
catch (Exception x) { x.printStackTrace(); throw new
Runt i neException(x); }
}
private static String serverName;
private static int port;
private static String userNang;
private static String password;
private static ArrayList typesToMonitor = null;
public static void main(String[] args) throws Exception {
if (args.length < 4) {
System out . println(

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 14

ORACLE Chapter 16

Programming WLDF: Examples

"Usage: java webl ogic. di agnostics. harvester. HarvesterMnitor " +
"<server Nane> <port> <user Name> <password> [<types>]" +
webl ogi c. utils. PlatfornConstants. EOL +
" where <types> (optional) is a comma-separated list " +
"of types to monitor.");
Systemexit(1);

}
serverNane = args[0];
port = Integer.parselnt(args[1]);

userNane = args[2];
password = args[3];
accessor Runti meMBeanNane = get Canoni cal Nang(
"com bea: Server Runti me=" + serverName +
", Nane=Har vest edDat aAr chi ve, Type=W.DFDat aAccessRunti ne" +
", W.DFAccessRunt i me=Accessor, W.DFRunt i me=W.DFRunt i me") ;
accessor Runti meMBean(hj ect Nane =
get Qbj ect Name(accessor Runt i mreMBeanNarne) ;
har vRunt i nreMBeanNarme = get Canoni cal Nang(
"com bea: Server Runtime=" + serverNane +
", Nane=W.DFHar vest er Runt i me, Type=W.DFHar vest er Runti me" +
", W.DFRunt i me=WLDFRunti me");
har vRunt i mreMBeanbj ect Name = get Obj ect Name(har vRunt i mneMBeanNane) ;
if (args.length > 4) {
String typesStr = args[4];
typesToMonitor = new ArraylList();
int index;
while ((index = typesStr.indexCF(",")) > 0) {
String typeName = typesStr.substring(0,index).trinm);
typesToMoni t or. add(typeNane) ;
typesStr = typesStr.substring(index+1);
}
typesToMoni tor. add(typesStr.trin());
1
rmbs = get Runti meMBeanSer ver Connection();
new Har vest er Moni tor (). new Harvest Cycl eHandl er () ;
whil e(true) {Thread. sl eep(100000);}
}
static protected String JNDI = "/jndi/";
static public MBeanServer Connection get Runti meMBeanSer ver Connecti on()
throws Exception {
JMXSer vi ceURL servi ceURL;
serviceURL =
new JMXServi ceURL("t 3",
"l ocal host",
port,
JNDI + Runti meServi ceMBean. MBEANSERVER _JNDI _NAME) ;
System out. println("ServerName=" + serverNane);
Systemout. println("URL=" + serviceURL);
Hashtabl e h = new Hashtabl e();
h. put (Cont ext . SECURI TY_PRI NCl PAL, user Nane);
h. put (Cont ext . SECURI TY_CREDENTI ALS, password);
h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
"webl ogi c. nenagenent. renote");
JMXConnect or connector = JMXConnect or Fact ory. connect (servi ceURL, h);
return connector. get MBeanSer ver Connection();
}
cl ass Harvest Cycl eHandl er inplenments NotificationListener {
/'l used to track harvest cycles
private int tinestanplndex;
private int domainl ndex;
private int serverlndex;
private int typelndex;

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01

October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates.

Page 9 of 14

ORACLE Chapter 16
Programming WLDF: Examples

private int instNamelndex;
private int attrNamel ndex;
private int attrTypel ndex;
private int attrVal uel ndex;
I ong | ast Sanpl eTine = SystemcurrentTimeM | 1is();
Har vest Cycl eHandl er () throws Exception{
Systemout. println("Harvester nonitor started...");
try {
set UpRecor dl ndi ces();
rnbs. addNot i fi cati onLi st ener (harvRunti meMBeanChj ect Nane,
this, null, null);
}
catch (javax. managenent. | nst anceNot FoundException x) {
Systemout. println("Cannot find JMX data. " +
"I's the server name correct?");
Systemexit(1);
}
1

private void setUpRecordl ndices() throws Exception {
Map col utml ndexMap = (Map)rnbs. get Attri but e(
accessor Runti meMBean(hj ect Nane, " Col urml ndexMap");
ti mestanpl ndex = ((1nteger)col uml ndexMap. get (" TI MESTAMP")) . i nt Val ue();
domi nl ndex =
((I'nteger)col unml ndexMap. get (" DOMAIN')). i nt Val ue();
serverlndex =
((I'nteger)col umml ndexMap. get (" SERVER")). i nt Val ue();
typel ndex =
((I'nteger)col uml ndexMap. get ("TYPE")).intVal ue();
i nst Nanel ndex =
((I'nteger)col uml ndexMap. get ("NAVE")). i nt Val ue();
attrNanel ndex =
((I'nteger)col uml ndexMap. get ("ATTRNAVE")) . i nt Val ue();
attrTypel ndex =
((I'nteger)col uml ndexMap. get ("ATTRTYPE")) . i nt Val ue();
attrVal uel ndex = ((I'nteger)col unml ndexMap. get ("ATTRVALUE")) . i nt Val ue();

public synchronized void handl eNotification(Notification notification,
bj ect handback) {

Systemout.printin("\n-------mmmmmm o ")
long thisSanpleTine = SystemcurrentTimeM | |is()+1;
try {

String |astTypeName = nul | ;
String lastlnstName = null;
String cursor = (String)rnbs.invoke(accessorRunti neMBeanOhj ect Nane,
"openCursor",
new Obj ect[]{new Long(l ast Sanmpl eTi ne),
new Long(thi sSanpl eTine), null},
new String[]{ "java.lang.Long",
"java.lang.Long", "java.lang.String" });
whil e (((Bool ean)rnbs.invoke(accessor Runti neMBeanObj ect Narre,
"hasMbreDat a",
new Qbject[]{cursor},
new String[]{"java.lang. String"})). bool eanVal ue()) {
bj ect[] os = (Chject[])rnbs.invoke(accessorRunti neMBeanChj ect Nane,
"fetch",
new Qbject[]{cursor},
new String[]{"java.lang.String"});
for (int i =0; i <os.length; i++) {
bject[] values = (Chject[])os[i];
String typeName = (String)val ues[typel ndex];
String instName = (String)val ues[instNanel ndex];
String attrName = (String)val ues[attrNanel ndex];

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 14

ORACLE Chapter 16
Programming WLDF: Examples

if (!typeNane.equal s(IastTypeNane)) {

if (typesToMonitor !'= null &&
I'typesToMbni tor. cont ai ns(typeNarme)) continue;

Systemout.println("\nType " + typeNane);
| ast TypeName = typeNang;

}

if ('instName.equal s(lastlnstNane)) {
Systemout.printIn("\n Instance " + instNane);
| ast I nst Nanme = i nst Nane;

}

bj ect attrValue = val ues[attrVal uel ndex];

Systemout. println(" - "+ attrNane + "=" + attrValue);

}
1
| ast Sampl eTi me = t hi sSanpl eTi ng;
}
catch (Exception e) {e.printStackTrace();}
1
}
}

Example 16-3 contains sample output from the Har vest er Moni t or program:

Example 16-3 Sample Output from HarvesterMonitor

Server Nane=nyser ver
URL=service:jmx:t3://1ocal host: 7001/j ndi / webl ogi c. managenent . mheanservers. runti me
Harvester monitor started...
Type webl ogi c. managenent . runti me. W.DFHar vest er Runt i neMBean
I nstance
com bea: Name=W.DFHar vest er Runt i ne, Ser ver Runt i ne=nyser ver, Type=W.DFHar vest er Runt i me, W.DFRu
nti me=WLDFRunt i me

- Total Sanpl i ngTi me=202048863

- Current Snapshot El apsedTi ne=1839619
Type webl ogi c. nanagenent. runti ne. Server Runt i neMBean

I nstance com bea: Nane=nyserver, Type=Ser ver Runti me

- RestartRequired=fal se

- ListenPort Enabl ed=true

- ActivationTi me=1118319317071

- ServerStartupTi me=40671

- Serverd asspath= [del eted | ong classpath |isting]

- Current Machi ne=

- Socket sOpenedTot al Count =1

- Stat e=RUNNI NG

- RestartsTot al Count =0

- AdninServer=true

- Adni nSer ver Li st enPort =7001

- CusterMaster=fal se

- StateVal =2

- CurrentDirectory=C \testdomain\.

- Adni nServer Host =10. 40. 8. 123

- OpenSocket sCur rent Count =1

- ShuttingDown=f al se

- SSLLi st enPort Enabl ed=f al se

- Adnini strationPort Enabl ed=f al se

- Adni nServerLi st enPort Secur e=f al se

- Registered=true

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 14

ORACLE

Chapter 16
Programming WLDF: Examples

Example: IMXAccessorExample.java

The following example program uses JMX to print log entries to standard out. All access is
performed through JMX. (For information about the Accessor component, see Accessing
Diagnostic Data With the Data Accessor.)

To compile and run the program:

1.

Copy the IMXAccessorExample.java example (Example 16-4) to a directory and compile it
with:

javac -d . JMXAccessor Exanpl e. j ava

This creates the . / webl ogi ¢/ di agnost i cs/ exanpl es directory and populates it with
JMXAccessor Exanpl e. cl ass.

Start the program. The command syntax is:

java webl ogi c. di agnosti cs. exanpl e. JMXAccessor <I ogi cal Name> <query>

You need access to a WebLogic Server instance, and have the server's name, port
number, administrator's login name, and the administrator's password.

The | ogi cal Nane is the name of the log. Valid names are: Harvest edDat aAr chi ve,
Event sDat aAr chi ve, Server Log, Donai nLog, HTTPAccessLog,

Servl et Accessor Hel per. WEBAPP_LOG, RAUt i | . CONNECTOR_LOG, JMSMessageLog, and
cusToMm

Construct the query using the syntax described in WLDF Query Language. For the
JMXAccessor Exanpl e program, an empty query (an empty pair of double quotation marks,
") returns all entries in the log.

The following command requires that '." is in the CLASSPATH variable, and that you run the
command from the directory where you compiled the program. The program uses the [IOP
(Internet Inter-ORB Protocol) protocol to connect to port 7001, as user webl ogi ¢, with a
password shown as password, and prints all entries in the Ser ver Log to standard out:

java webl ogi c. di agnosti cs. exanpl es. JMXAccessor Exanpl e Server Log

You can modify the example to use a username/password combination for your site.

Example 16-4 JMXAccessorExample.java

package webl ogi c. di agnosti cs. exanpl es;

i mport java.io.lCOException;

i mport java.net. Mal f or mredURLExcept i on;

import java.util.Hashtable;

import java.util.lterator;

i mport j avax. managenent. MBeanSer ver Connect i on;

i mport j avax. managenent. Mal f or medChj ect NaneExcepti on;
i nport javax.managenment. Obj ect Name;

i mport j avax. managenent. renot e. JMXConnect or;

i nport javax. managenent.renote. JMXConnect or Factory;
i mport j avax. managenent.renote. JMXServi ceURL;

i mport j avax. nam ng. Cont ext ;

public class JMXAccessor Exanpl e {

private static final String JNDI = "/jndi/";
public static void main(String[] args) {

try {
if (args.length I'=2) {
Systemerr.printin("lIncorrect invocation. Correct usage is:\n" +

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 14

ORACLE Chapter 16
Programming WLDF: Examples

"java webl ogi c. di agnosti cs. exanpl es. JMXAccessor Exanple " +
"<l ogi cal Nane> <query>");
Systemexit(1);
}
String |ogical Nanme = args[0];
String query = args[1];
MBeanSer ver Connect i on mbeanSer ver Connection =
| ookupMBeanSer ver Connection();
(bj ect Nane service = new

bj ect Nane(webl ogi c. management . nbeanservers. runti ne. Runti neServi ceMBean. OBJECT_NAME) ;
bj ect Nane serverRuntine =
(Cbj ect Nane) nbeanSer ver Connection. get Attribute(service,
"ServerRuntine");
bj ect Nanme wi df Runtime =
(Obj ect Nane) nbeanServer Connection. get Attribute(serverRunting,
"W.DFRunti ne");
bj ect Nane w df AccessRuntinme =
(Obj ect Nane) nbeanServer Connection. get Attribute(w df Runti ne,
"W.DFAccessRunti ne");
bj ect Nane w df Dat aAccessRuntime =
(Obj ect Nane) nbeanSer ver Connecti on. i nvoke(w df AccessRunti ne,
"| ookupW.DFDat aAccessRuntime", new Cbject[] {logical Nane},
new String[] {"java.lang.String"});
String cursor =
(String) mbeanServer Connection. i nvoke(w df Dat aAccessRunt i ne,
"openCursor”, new Chject[] {query},
new String[] {"java.lang.String"});
int fetchedCount = O;
do {
bject[] rows =
(Object[]) mbeanServer Connection. i nvoke(w df Dat aAccessRunti ne,
"fetch", new Qhject[] {cursor},
new String[] {"java.lang.String"});
fetchedCount = rows. | ength;
for (int i=0; i<rows.length; i++) {
StringBuffer sb = new StringBuffer();
bject[] cols = (Chject[]) rows[i];
for (int j=0; j<cols.length; j++) {
sh. append("Index " + | + "=" + cols[j].toString() +" ");
}

Systemout.println("Found row = " + sh.toString());

1
} while (fetchedCount > 0);
mbeanSer ver Connect i on. i nvoke(w df Dat aAccessRunt i ne,
"closeCursor", new Qbject[] {cursor},
new String[] {"java.lang.String"});
} catch(Throwabl e th) {
th.printStackTrace();
Systemexit(1);
1
}
private static MBeanServer Connection | ookupMBeanServer Connection ()
throws Exception {
/'l construct JMX service URL
JMXSer vi ceURL servi ceURL;
serviceURL = new JMXServi ceURL("iiop", "localhost", 7001,
JNDI + "webl ogi c. managenent . nbeanservers.runtine");
/1 Specify the user, password, and WebLogi ¢ provider package
Hashtabl e h = new Hashtabl e();
h. put (Cont ext . SECURI TY_PRI NCI PAL, "webl ogi c");
h. put (Cont ext . SECURI TY_CREDENTI ALS, "passwor d") ;

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 14

ORACLE Chapter 16
Programming WLDF: Examples

h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
"webl ogi c. nenagenent. renote");
/1 Get jmx connector
JMXConnect or connector = JMXConnect or Fact ory. connect (servi ceURL, h);
/'l return MBean server connection class
return connector. get MBeanSer ver Connection();
} /1 End - | ookupMBeanServer Connecti on

}

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 14

Using Debug Patches

The WebLogic Diagnostics Framework (WLDF) supports the ability for you to apply debug
patches dynamically, allowing you to capture diagnostic information using a patch that you can
activate and deactivate without the need of a server restart.

Dynamic Application of Debug Patches

Dynamic application of debug patches allows you to avoid the server restarts while applying
instrumented debug patches to gather additional information about an error.

Debug patches, packaged as JAR files, are generated through My Oracle Support (https://
support.oracl e. con’) and used to gather additional information about an error when it occurs
in a production environment. Typically, the debug patch JAR files are added to the classpath
and all server instances must be restarted for the JAR files to take effect. This can present
problems, as it might not be possible to restart the server instances in a production
environment due to scheduling and other constraints. Additionally, after the server instances
are restarted, in-memory states are lost and the problem may disappear or take awhile to
reappear. Also, when these debug patches are no longer needed, they can be deactivated
without server restarts.

When dynamically applying debug patches, WebLogic Server uses Java HotSwap to replace
the loaded classes with the versions provided in the debug patch JAR files. See Enabling Java

HotSwap.

Specifying the Debug Patch Directory

Debug patch JAR files are picked up from a specific directory called the debug patch directory.

This directory is specified domain-wide using the DebugPat chDi r ect or y attribute of the
DebugPat chesMBean. By default, the debug_pat ches directory under the DOVAI N_HOME directory
is used as the debug patch directory.

This feature is available to users with administrative privileges in the domain. Only authorized
users are able to post debug patch JAR files in the debug patch directory. This directory must
be properly protected with file system permissions.

Configuring the WLDF Debug Patch Agent

To apply debug patches dynamically, the target WebLogic Server instances must be started on
the command line with the WLDF debug patch agent.

The WLDF debug patch agent handles the following:

« Replaces the loaded classes with the instrumented classes from the debug patch JAR.

e Makes sure that the replacement classes in the debug patch JAR have the same shape as
the original classes. If any of the classes do not meet this requirement, none of the classes
in the debug patch JAR are swapped in and an error message is logged.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 3

https://support.oracle.com/
https://support.oracle.com/

ORACLE’

Chapter 17
WLST Commands for Debug Patches

* Logs informational messages to indicate the start and completion of debug patch activation
or deactivation.

< Allows only properly authenticated users with administrative privileges to apply a debug
patch.

To specify the WLDF debug patch agent on the command line, update your startup script to
include the following:

-j avaagent : $W._HOVE/ server/ | i b/ debugpat ch-agent . j ar

@® Note

New startup scripts will automatically include the debug- agent . j ar on the command
line unless the di sabl eDebugPat ches option is specified on the startup script
command line.

WLST Commands for Debug Patches

WLDF provides a set of WLST commands you can use to list, activate, and deactivate dynamic
debug patches.

Table 17-1 summarizes the list of WLST commands used with debug patches.

Table 17-1 WLST Commands Used With Debug Patches

Command Summary

activat eDebugPat ch Activates a debug patch on the specified targets.

deactivat eAl | DebugPat ch Deactivates all debug patches on the specified targets.
es

deacti vat eDebugPat ches Deactivates a debug patch on the specified targets.

I'i st DebugPat ches Lists the active and available debug patches on the specified targets.

I i st DebugPat chTasks Lists the debug patch (activated or deactivated) tasks from the specified
targets.

pur geDebugPat chTasks Purges the debug patch (activated or deactivated) tasks on the specified
targets.

showDebugPat chl nf o Displays details about a debug patch on the specified targets.

Dynamically Activating a Debug Patch

Example 17-1, Example 17-2, and Example 17-3 demonstrate how to use the

acti vat eDebugPat ch command to activate a debug patch on the desired targets. Note that if a
specified debug patch is not available in the debug patch directory on a target, a warning is
issued and WebLogic Server will attempt to proceed and activate the debug patch on the
remaining targets. If one of the classes in the debug patch fails to replace the original class on
a target, the entire debug patch JAR file is rejected on that target and WebLogic Server will
attempt to activate the debug patch on the remaining targets. Additionally, several debug
patches may be activated over time and each debug patch will overlay the original classes and
previously activated debug patches. If a class is contained in multiple activated debug patches,
the class in the debug patch that was last activated has precedence. The act i vat eDebugPat ch

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 3

ORALCLE Chapter 17
WLST Commands for Debug Patches

command returns an array of tasks, each element corresponding to the activation activity on an
affected target server instance.

Example 17-1 Activating a Debug Patch on Two Managed Servers

Connected to adnin server: Activate debug-patch-01.jar on nanaged servers
M5l and M2
t asks=act i vat eDebugPat ch(Pat ch=' debug- pat ch-01.jar', Target="Ms1, M52")

Example 17-2 Activating a Debug Patch on a Server Instance and a Cluster

Connected to admin server: Activate debug-patch-01.jar on nyserver and all
nmenbers of cluster Custer-0
tasks=act i vat eDebugPat ch(Pat ch=" debug- patch-01.jar', Target="nyserver,Custer-0")

Example 17-3 Activating a Debug Patch on an Application Targeted to a Cluster

Connected to adnmin server: Activate debug-patch-03.jar on application 'medrec

targeted to cluster Cluster-1

t asks=act i vat eDebugPat ch(Pat ch=" debug- pat ch-03.jar"', Target="Custer-1",
Application="medrec')

Dynamically Deactivating Debug Patches

Example 17-4, Example 17-5, and Example 17-6 demonstrate how to use the

deact i vat eDebugPat ches command to deactivate debug patches. To specify more than one
debug patch, use a comma-separated list. If a specified debug patch is not active on a target, a
warning is issued and the command continues. If no debug patches are specified, all active
patches are deactivated on the specified targets and the original classes are activated. After
successful deactivation, all targets are left in the same state they were in prior to running this
command. The deact i vat eDebugPat ches command returns an array of tasks.

Example 17-4 Deactivating Debug Patches on a Managed Server

Connected to MSl: deactivate debug-patch-01.jar
t asks=deact i vat eDebugPat ches(Pat ches=' debug- patch-01.jar")

Example 17-5 Deactivating Debug Patches on All Members of a Cluster

Connected to adnin server: de-activate debug-patch-01.jar

and debug-patch-02.jar on all menbers of cluster Cluster-0

t asks=deact i vat eDebugPat ches(Pat ches=' debug- pat ch-01. j ar, debug- patch-02.jar"',
Target="C uster-0")

Example 17-6 Deactivating Debug Patches on an Application Targeted to a Cluster

Connected to adnin server: de-activate debug-patch-03.jar on application

'medrec' targeted to cluster Cluster-1

t asks=deact i vat eDebugPat ches(Pat ches=' debug- pat ch-03.jar"', Target="Custer-1',
Application='"nedrec')

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 3

Smart Rule Reference

Smart rules are prepackaged functions provided by the WebLogic Diagnostics Framework
(WLDF) that simplify the creation of policy expressions.When used in scheduled policy
expressions, as described in Configuring Smart Rule Based Policies, smart rules can execute
elastic actions on dynamic clusters, as well as be used in conjunction with any WLDF action.
For example, a smart rule that monitors stuck threads in a cluster can be used to execute an
SMTP action that sends an email to the system administrator.

The smatrt rules are organized into Cluster Scope Smart Rules and Server Scope Smart Rules.

About the Parameters You Specify for Smart Rules

All smart rules involve the collection of metric values, which is the process of gathering data
needed for monitoring system state and performance.Metrics are exposed to WLDF as
attributes on qualified MBeans. Smart rules cause WLDF to gather values from selected
MBean attributes at a specified sampling rate and retain those values for a specified duration
of time. This allows you to track trends in metric changes in a server or cluster over time.
When you configure a smart rule, you always specify the following parameters:

e sampling rate
e retention window

e threshold value

@® Note

Sampling rates and retention windows are completely independent of policy
schedules. A policy schedule determines only when a smart rule is evaluated; the
policy schedule does not determine the sampling rate or retention window.

sampling rate

The sampling rate is the frequency with which a metric value is collected. For example, a
sampling rate of 30 seconds means that the value of an MBean attribute is collected every 30
seconds.

Each smart rule has a default sampling rate. When you are configuring a smatrt rule using
either the WebLogic Remote Console or Fusion Middleware Control, you can accept the
default sampling rate that is provided in the configuration assistant. However, when you
configure a smart rule using WLST, REST, or JMX, you need to explicitly specify the sampling
rate.

The sampling rate is a St ri ng value that can be specified using the following syntax:
amount [uni t]
In the preceding syntax:

e amount represents an integer.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-1 of A-57

ORACLE

Appendix A
About the Parameters You Specify for Smart Rules

e unit] represents seconds, m nut es, or hour s. Each can be abbreviated to the first letter.
For example: seconds can be abbreviated to s.

The default sampling rate time unit is seconds.
* You may include a space character between amount and unit.
For example, any of the following can be used to specify 30 seconds:
o "30"
e« "30 seconds"
e "30snds"
. "30s"

retention window

The retention window is the period of time during which collected samples are retained in an
internal buffer for evaluation. For example, a retention window of 5 minutes causes the
samples collected during the previous 5 minutes to be retained. As each new sample is
collected, the oldest sample is removed.

Smart rules function by calculating the average value of a particular metric that has been
collected over the period of time corresponding to the retention window. Obtaining average
values allows you to obtain a more representative view of changes, and trends in those
changes, that are occurring in a server, cluster, or operational environment of WebLogic
Server.

The retention window you specify is a St ri ng value that uses the same syntax as the sampling
rate:

amount [uni t]

The time unit can be seconds, mi nut es, or hour s, and each can be abbreviated. The default
time unit in smart rule retention windows is m nut es, which can be abbreviated to m For
example, any of the following can be used to specify 10 minutes:

e "10"

e "10 nminutes"
e "10nts"

e "10nt

threshold value

The threshold value is an arbitrary value against which the average value of all metrics
collected during a retention window is compared. If the average value meets the smart rule's
comparison criteria for the threshold value, the smart rule can be evaluated to t r ue, assuming
all other conditions set in the smart rule are met.

For example, if you want a smart rule to be evaluated as tr ue if the average number of idle
threads in a cluster is greater than or equal to a specific number, you can enter that number as
the threshold value in the ClusterHighldleThreads smart rule, which monitors a cluster for a
high idle thread count. In this context, the threshold value you specify for this smart rule is
referred to as the high threshold value because the cluster is monitored to measure whether
the average number of idle threads is greater than or equal to that threshold.

By contrast, if you want a smart rule to be evaluated as t r ue if the average free heap in a
cluster falls below a certain amount, you enter that amount as the threshold value in the

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-2 of A-57

ORACLE’

Appendix A
Cluster Scope Smart Rules

ClusterLowHeapFreePercent smart rule, which monitors a cluster for a low free heap. In this
context, this threshold value yo specify for this smart rule is referred to as the low threshold
value because the cluster is monitored to measure whether the average free heap amount is
less than that threshold.

Note that smart rules vary with regard to how the average collected metric value must compare
to the threshold value. Some smart rules require that the average collected value must be
greater than or equal to the threshold; some require that the average must be greater than the
threshold; some require the average to be less than or equal to the threshold; and so on.

Cluster Scope Smart Rules

A cluster scope smart rule is one that is applied to all active nodes in a cluster, and that must
be executed from a policy on the Administration Server.The set of cluster scope smart rules
provided by WLDF are listed and summarized in Table A-2. For each smart rule, Table A-2
identifies the following:

e The specific metric, typically an MBean attribute, that is sampled

e The condition that causes the smart rule to be evaluated to t r ue if, over the course of the
retention window, the number of servers with an average metric value that meets specific
comparison criteria against the threshold value is greater than or equal to a specified
percentage of all servers in the cluster.

Table A-1 Summary or Administration Server Scope Smart Rules

Smart Rule Metric Condition Required for Evaluation to true
ClusterLowThroughput Thr oughput metric of the The average Thr oughput value is less than the low
Thr eadPool Runt i meMBean threshold value.
ClusterHighProcessCp ProcessCpulLoad value of the The average ProcessCpulLoad value is greater than or
uLoadAverage java.lang: type=CperatingSystem equal to the high threshold value.
MXBean
ClusterHighThroughput Thr oughput metric of the The average Thr oughput value is greater than or
Thr eadPool Runt i meMBean equal to the high threshold value.
ClusterLowPendingUse Pendi ngUser Request Count value of the The average Pendi ngUser Request Count value is
rRequests Thr eadPool Runt i meMBean less than the low threshold value.
ClusterHighStuckThrea St uckThr eadCount value of the The average St uckThr eadCount value is greater than
ds Thr eadPool Runt i meMBean or equal to the high threshold value.
ClusterLowQueueLengt QueuelLengt h value of the The average Queuelengt h value is less than the low
h Thr eadPool Runt i meMBean threshold value.
ClusterHighPendingUs Pendi ngUser Request Count value of the The average Pendi ngUser Request Count value is
erRequests Thr eadPool Runt i meMBean greater than or equal to the high threshold value.
ClusterLowProcessCpu ProcessCpuLoad value of the The average ProcessCpuLoad value is less than the
LoadAverage j ava. | ang: t ype=Qper at i ngSyst em low threshold value.
MXBean
ClusterHighldleThreads Execut eThr eadl dl eCount value of the The average Execut eThr eadl dl eCount value is
Thr eadPool Runt i meMBean greater than or equal to the high threshold value.
ClusterLowSystemLoa Syst enLoadAver age value of the The average Syst enlLoadAver age value is less than
dAverage java.lang: type=CperatingSystem the low threshold value.
MXBean
ClusterHighQueuelLeng Queuelengt h value of the The average QueuelLengt h value is greater than or
th Thr eadPool Runt i meMBean equal to the high threshold value.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-3 of A-57

ORACLE’

Appendix A
Cluster Scope Smart Rules

Table A-1 (Cont.) Summary or Administration Server Scope Smart Rules

Smart Rule

Metric

Condition Required for Evaluation to true

ClusterLowHeapFreeP

HeapFr eePer cent value of the

ercent

JVMRunt i meMBean

The average HeapFr eePer cent value is less than the
low threshold value.

ClusterHighSystemLoa
dAverage

Syst emLoadAver age value of the
j ava. | ang: t ype=Qper ati ngSystem
MXBean

The average Syst emLoadAver age value is greater
than or equal to the high threshold value.

ClusterHighHeapFreeP

HeapFr eePer cent value of the

ercent

JVMRunt i nreMBean

The average HeapFr eePer cent value is greater than
or equal to the high threshold value.

ClusterLowSystemCpu
LoadAverage

Syst enCpuLoad value of the
java. |l ang: t ype=Qper ati ngSystem
MXBean

The average Syst enCpulLoad value is less than the
low threshold value.

ClusterLowldleThreads

Execut eThr eadl dl eCount value of the

Thr eadPool Runt i mneMBean

The average Execut eThr eadl dl eCount value is less
than the low threshold value.

ClusterGenericMetricR
ule

Specified MBean attribute value

Any metric visible through JMX satisfies the specified
comparison criteria with the threshold value. (This
smart rule is a general form of cluster scope rule.)

ClusterHighSystemCpu

LoadAverage

Syst enCpuLoad value of the
java. | ang: t ype=Cper ati ngSystem
MXBean

The average Syst enCpulLoad value is greater than or
equal to the high threshold value.

ClusterLowThroughput

The O ust er LowThr ougput smart rule measures whether the average throughput in a cluster is
decreasing, as indicated by the average value of the Thr eadPool Runt i neMBean. Thr oughput
attribute in each Managed Server.You can use this rule to determine whether cluster capacity
can be safely reduced; for example, by executing a scale down action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
Thr eadPool Runt i meMBean. Thr oughput value that satisfies the low threshold comparison

criteria is greater than or equal to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

The sampling rate and retention window for the Thr eadPool Runt i meMBean. Thr oughput

attribute

* Low Throughput threshold value

e Percentage of servers in the cluster with an average Thr oughput value that must be less
than the low Thr oughput threshold value in order for the rule to evaluate to t r ue

Syntax

W s: C ust er LowThr oughput (" cl ust er Name", "period", "duration", throughputLinit,
percent ServersLimnit)

Parameter Description

cl ust er Narre Name of target dynamic cluster, expressed as a St ri ng.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-4 of A-57

ORACLE’

Appendix A
Cluster Scope Smart Rules

Parameter

Description

period

Sampling rate for Thr oughput values, expressed as a St ri ng. For
example, 30s specifies that this metric is sampled every 30 seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration

Retention window during which collected samples are retained,
expressed as a St ri ng.

e The default time unit is minutes.

e The default value is 10m

See retention window for more information about specifying this
parameter.

t hroughput Li mi t

Value established as the low threshold value of the
Thr eadPool Runt i meMBean. Thr oughput attribute.

per cent Server sLinit

Percentage of servers in the cluster with an average Thr oughput value
that must be less than the value of the t hr oughput Li mi t parameter in
order for the smart rule to be evaluated astr ue.

This parameter is expressed as a f | oat value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Nane myCl uster
period 30
duration 15

t hr oughput Li ni t 5

per cent ServersLimt 75

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er LowThr oughput (“myCl uster", "30 seconds","15 m nutes", 5, 75)

If configured with a scale down action, this example smart rule does the following:

1. Samples the value of the Thr oughput metric from each Managed Server instance in
myCl ust er every 30 seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, fires a scale down action if the following condition

evaluates to t r ue:

The average Throughput value, over the last 15 minutes, is less than 5 on at least 75 per
cent of the Managed Servers in the cluster.

ClusterHighProcessCpuLoadAverage

The O ust er H ghProcessCpuLoadAver age smart rule measures an increase in system load
across the cluster, as indicated by the average value of the ProcessCpulLoad attribute in each
Managed Server. You can use this rule to determine whether cluster capacity needs to be
increased; for example, by executing a scale up action.

Target: Administration Server

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-5 of A-57

ORACLE’

Description

Appendix A
Cluster Scope Smart Rules

This smart rule evaluates to t r ue if the number of Managed Servers with an average
ProcessCpuLoad value that satisfies the threshold comparison criteria is greater than or equal
to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

* The sampling rate and retention window for the operating system's ProcessCpulLoad value

e High ProcessCpulLoad threshold value

» Percentage of servers in the cluster with an average Pr ocessCpulLoad value that must be
greater than or equal to the high ProcessCpuLoad threshold value in order for the rule to

evaluate to true

@® Note

The value of the ProcessCpuLoad metric is platform-specific and is not available on all
platforms. The MXBean attribute from which this metric originates is described at
https://docs. oracle.conljavase/ 8/ docs/jre/api/ managenent/

ext ensi on/ com’ sun/ managenent /

Oper at i ngSyst emVXBean. ht nl #get ProcessCpulLoad- - .

Syntax

W s: C ust er Hi ghProcessCpuLoadAver age("cl ust er Name", "period", "duration",
procCpulLoadLi m t, percentServersLimt)

Parameter

Description

cl ust er Nane

Name of target dynamic cluster, expressed as a St ri ng.

period Sampling rate for Pr ocessCpulLoad values, expressed as a St ri ng. For
example, 30s specifies that this metric is sampled every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this parameter.
duration Retention window during which collected samples are retained,

expressed as a St ri ng.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

procCpuLoadLi m t

Value established as the high threshold value of the Pr ocessCpulLoad
metric.

per cent ServersLimt

Percentage of servers in the cluster with an average Pr ocessCpulLoad
value that must be greater than or equal to the value of the
procCpuLoadLi mt parameter in order for the smart rule to be
evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and 100.0

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-6 of A-57

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--

ORACLE’

Appendix A
Cluster Scope Smart Rules

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Nane myC uster
peri od 30
duration 10
procCpulLoadLi m t 0.8

per cent Server sLinit 60

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er Hi ghProcessCpuLoadAver age("nmyCl uster","30 seconds","10 m nutes", 0. 8, 60)

If configured with a scale up action, this smart rule does the following:

1. Samples the value of the ProcessCpuLoad metric from each Managed Server instance in
myCl ust er every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires a scale up action if the following condition
evaluates totrue:

The average ProcessCpuLoad value, over the last 10 minutes, is greater than or equal to
0.8 on at least 60 per cent of the Managed Servers in the cluster.

ClusterHighThroughput

The d ust er Hi ghThr oughput smart rule measures an increase in system throughput across
the cluster, as indicated by the average value of the Thr eadPool Runt i meMBean. Thr oughput
attribute in each Managed Server.You can use this rule to determine whether cluster capacity
needs to be increased; for example, by executing a scale up action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
Thr eadPool Runt i meMBean. Thr oughput value that satisfies the threshold comparison criteria is
greater than or equal to the specified percentage of all servers in the cluster.

To use this smatrt rule, specify:

e The sampling rate and retention window of the Thr eadPool Runt i meMBean. Thr oughput
metric

e High Thr oughput threshold value

* Percentage of servers in the cluster whose average Thr oughput value during the sampling
period must be greater than or equal to the high Thr oughput threshold value in order for
the rule to evaluate to t r ue

Syntax

W s: C ust er H ghThr oughput (" cl ust er Name", "period", "duration", throughputLimt,
percent ServersLinit)

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-7 of A-57

ORACLE’

Appendix A
Cluster Scope Smart Rules

Parameter

Description

cl ust er Nanme

Name of target dynamic cluster, expressed as a St ri ng.

period

Sampling rate for Thr oughput values, expressed as a Stri ng. For
example, 30s specifies that this metric is sampled every 30 seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration

Period of time for which collected samples are retained, expressed as a
String.

e The default time unit is seconds.

e The default value is 10m

See retention window for more information about specifying this
parameter.

t hr oughput Li ni t

Value established as the high threshold value of the Thr oughput
attribute.

per cent ServersLimt

Percentage of servers in the cluster with an average Thr oughput value
that must be greater than or equal to the value of the t hr oughput Li mi t
parameter in order for the smart rule to be evaluated as tr ue.

This parameter is expressed as a f | oat value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Name myCl ust er
period 30
duration 10

t hroughput Li mi t 100

per cent Server sLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

w s: O ust er H ghThr oughput ("nmyC uster”,"30 seconds","10 mi nutes", 100, 60)

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the Thr oughput metric from each Managed Server instance in
myCl ust er every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires a scale up action if the following condition

evaluates to t r ue:

The average Thr oughput value, over the last 10 minutes, is greater than or equal to 100 on
at least 60 per cent of the Managed Servers in the cluster.

ClusterLowPendingUserRequests

The C ust er LowPendi ngUser Request s smart rule measures a reduction in pending requests
across the cluster as indicated by the average value of the
Thr eadPool Runt i meMBean. Pendi ngUser Request Count attribute in each Managed Server.You

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-8 of A-57

ORACLE’

Appendix A
Cluster Scope Smart Rules

can use this rule to determine whether cluster capacity can be reduced; for example, by
executing a scale down action.
Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average

Thr eadPool Runt i meMBean. Pendi ngUser Request Count value that satisfies the threshold
comparison criteria is greater than or equal to the specified percentage of all servers in the
cluster.

To use this smart rule, specify:

e The sampling rate and retention window for the
Thr eadPool Runt i meMBean. Pendi ngUser Request Count metric

e Low Pendi ngUser Request Count threshold value

* Percentage of servers in the cluster with an average Pendi ngUser Request Count value that
must be less than the low Pendi ngUser Request Count threshold value in order for the rule
to evaluate to t rue

Syntax

W s: C ust er LowPendi ngUser Request s("cl ust er Nane", "period", "duration",
pendi ngRequestsLimt, percentServersLimt)

Parameter Description

cl ust er Narre Name of target dynamic cluster, expressed as a St ri ng.

period Sampling rate for Pendi ngUser Request Count values, expressed as a
St ring. For example, 30s specifies that this metric is sampled every 30
seconds.

e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

pendi ngRequest sLi mi t Value established as the low threshold value of the
Pendi ngUser Request Count attribute.

per cent ServersLimt Percentage of servers in the cluster with an average
Pendi ngUser Request Count value that must be less than the value of
the pendi ngRequest sLi nmi t parameter in order for the smart rule to be
evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Name myCl ust er

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-9 of A-57

ORACLE Appendix A
Cluster Scope Smart Rules

Parameter Value
period 30
duration 10
pendi ngRequest sLi ni t 5

per cent ServersLimt 75

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er LowPendi ngUser Request s("nmyC uster”, "30 seconds","10 m nutes", 5, 75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the Pendi ngUser Request Count metric from each Managed Server
instance in myCl ust er every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires a scale down action if the following condition
evaluates totrue:

The average Pendi ngUser Request Count value, over the last 10 minutes, is less than 5 on
at least 75 per cent of the Managed Servers in the cluster.

ClusterHighStuckThreads

The C ust er H ghSt uckThr eads smart rule measures whether the number of stuck threads is
rising and may soon become deadlocked, as indicated by the average value of the

Thr eadPool Runt i meMBean. St uckThr eadCount attribute in each Managed Server.You can use
this rule to determine whether cluster capacity needs to be increased; for example, by
executing a scale up action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
Thr eadPool Runt i meMBean. St uckThr eadCount value that satisfies the threshold comparison
criteria is greater than or equal to the specified percentage of all servers in the cluster.

To use this smatrt rule, specify:

* The sampling rate and retention window for the
Thr eadPool Runt i meMBean. St uckThr eadCount attribute

e High St uckThr eadCount threshold value

* Percentage of servers in the cluster with an average
Thr eadPool Runt i meMBean. St uckThr eadCount value that must be greater than or equal to
the high St uckThr eadCount threshold value in order for the rule to evaluate to t r ue

Syntax

W s: G ust er H ghSt uckThr eads("cl ust er Nane", "period", "duration", stuckThreadsLimt,
percent ServersLinit)

Parameter Description

cl ust er Name Name of target dynamic cluster, expressed as a St ri ng.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-10 of A-57

ORACLE’

Appendix A
Cluster Scope Smart Rules

Parameter

Description

period

Sampling rate for St uckThr eadCount values, expressed as a Stri ng.
For example, 30s specifies that this metric is sampled every 30 seconds.
e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration

Period of time for which collected samples are retained, expressed as a
String.

e The default time unit is seconds.

e The default value is 10m

See retention window for more information about specifying this
parameter.

stuckThreadsLim t

Value established as the high threshold value of the
St uckThr eadCount attribute.

per cent Server sLinit

Percentage of servers in the cluster with an average

St uckThr eadCount value that must be greater than or equal to the
value of the st uckThr eadsLi ni t parameter in order for the smart rule
to be evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Nane myCl uster
peri od 30
duration 10
stuckThreadsLi mit 5

per cent Server sLinit 60

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er H ghSt uckThreads("myC uster”, 30 seconds","10 m nutes", 5, 60)

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the St uckThr eadCount metric from each Managed Server instance in
myCl ust er every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires a scale up action if the following condition

evaluates to t r ue:

The average St uckThr eadCount value, over the last 10 minutes, is greater than or equal to
5 on at least 60 per cent of the Managed Servers in the cluster.

ClusterLowQueueLength

The C ust er LowQueuelLengt h smart rule measures a decrease in system load across the
cluster, as indicated by the average value of the Thr eadPool Runt i neMBean. QueuelLengt h

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-11 of A-57

ORACLE’

Appendix A
Cluster Scope Smart Rules

attribute in each Managed Server.You can use this rule to determine whether cluster capacity
can be safely reduced; for example, by executing a scale down action.
Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
Thr eadPool Runt i mreMBean. Queuelengt h value that satisfies the threshold comparison criteria is
greater than or equal to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

* The sampling rate and retention window for the Thr eadPool Runt i neMBean. QueueLengt h
metric

e Low Queuelengt h threshold value

« Percentage of servers in the cluster with an average QueuelLengt h value that must be less
than the low QueuelLengt h threshold value in order for the rule to evaluate to t r ue

Syntax

W s: Cl ust er LowQueuelLengt h("cl ust er Nane", "period", "duration", queuelLengthLinmit,
percent ServersLinit)

Parameter Description
cl ust er Name Name of target dynamic cluster, expressed as a St ri ng.
period Sampling rate for QueueLengt h values, expressed as a St ri ng. For

example, 30s specifies that this metric is sampled every 30 seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.
e The default time unit is seconds.
e The default value is 10m
See retention window for more information about specifying this

parameter.

queuelLengt hLi m t Value established as the low threshold value of the QueueLengt h
attribute.

per cent ServersLim t Percentage of servers in the cluster with an average QueuelLengt h

value that must be less than the value of the queueLengt hLi i t
parameter in order for the smart rule to be evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Name myCl ust er
period 30
duration 15
queuelLengt hLi mi t 5

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-12 of A-57

ORACLE’

Appendix A
Cluster Scope Smart Rules

Parameter Value

per cent Server sLinit 75

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er LowQueueLengt h("myCl uster”,"30 seconds","15 mi nutes", 5, 75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the QueuelLengt h metric from each Managed Server instance in
myCl ust er every 30 seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, fires a scale down action if the following condition
evaluates totrue:

The average QueuelLengt h value, over the last 15 minutes, is less than 5 on at least 75 per
cent of the Managed Servers in the cluster.

ClusterHighPendingUserRequests

The d ust er H ghPendi ngUser Request s smart rule measures an increase in system load
across the cluster, as indicated by the average value of the

Thr eadPool Runt i meMBean. Pendi ngUser Request Count attribute in each Managed Server.You
can use this rule to determine whether cluster capacity needs to be increased; for example, by
executing a scale up action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average

Thr eadPool Runt i meMBean. Pendi ngUser Request Count value that satisfies the threshold
comparison criteria is greater than or equal to the specified percentage of all servers in the
cluster.

To use this smart rule, specify:

* The sampling rate and retention window for the
Thr eadPool Runt i meMBean. Pendi ngUser Request Count metric

e High Pendi ngUser Request Count threshold value

* Percentage of servers in the cluster with an average Pendi ngUser Request Count value that
must be greater than or equal to the high Pendi ngUser Request Count threshold value in
order for the rule to evaluate to t r ue

Syntax

W s: C ust er H ghPendi ngUser Request s("cl ust er Name", "period", "duration",
pendi ngRequest sLimt, percentServersLimt)

Parameter Description

cl ust er Name Name of target dynamic cluster, expressed as a St ri ng.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-13 of A-57

ORACLE’

Appendix A
Cluster Scope Smart Rules

Parameter

Description

period

Sampling rate for Pendi ngUser Request Count values, expressed as a
St ring. For example, 30s specifies that this metric is sampled every 30
seconds.

e The default time unit is seconds.

* The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration

Period of time for which collected samples are retained, expressed as a
String.

e The default time unit is seconds.

e The default value is 10m

See retention window for more information about specifying this
parameter.

pendi ngRequest sLi m t

Value established as the high threshold value of the
Pendi ngUser Request Count attribute.

per cent ServersLinit

Percentage of servers in the cluster with an average

Pendi ngUser Request Count value that must be greater than or equal
to the value of the pendi ngRequest sLi ni t parameter in order for the
smart rule to be evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Nane myCl uster
peri od 30
duration 10

pendi ngRequest sLi ni t 100

per cent Server sLinit 60

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er H ghPendi ngUser Request s("nyC uster", "30 seconds","10 ninutes", 100, 60)

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the Pendi ngUser Request Count metric from each Managed Server
instance in myCl ust er every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires a scale up action if the following condition

evaluates to t r ue:

The average Pendi ngUser Request Count value, over the last 10 minutes, is greater than or
equal to 100 on at least 60 per cent of the Managed Servers in the cluster.

ClusterLowProcessCpuLoadAverage

The O ust er LowPr ocessCpuLoadAver age smart rule measures a reduction of system CPU load
across a cluster, as indicated by the average value of the ProcessCpulLoad attribute in each

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-14 of A-57

ORACLE’

Appendix A
Cluster Scope Smart Rules

Managed Server.You can use this rule to determine whether cluster capacity needs to be
decreased; for example, by executing a scale down action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
ProcessCpuLoad value that satisfies the threshold comparison criteria is greater than or equal
to the specified percentage of all servers in the cluster.

Note that the value of ProcessCpulLoad is platform specific and is not available on all platforms.

To use this smart rule, specify:

* The sampling rate and retention window for the j ava. | ang: t ype=Cper at i ngSyst em

ProcessCpulLoad metric

e Low ProcessCpulLoad threshold value

e Percentage of servers in the cluster with an average Pr ocessCpulLoad value that must be
less than the low ProcessCpulLoad threshold value in order for the rule to evaluate to t r ue

@® Note

The value of the ProcessCpulLoad metric is platform-specific and is not available on all
platforms. The MXBean attribute from which this metric originates is described at
https://docs. oracle.con javase/ 8/ docs/jrel api / managenent /

ext ensi on/ com sun/ managenent / Oper at i ngSyst emvXBean. ht nml #get ProcessCpuload.

Syntax

W s: Cl ust er LowPr ocessCpuLoadAver age(" cl ust er Nane", "period", "duration",
procCpulLoadLi m t, percentServersLinit)

Parameter

Description

cl ust er Narme

Name of target dynamic cluster, expressed as a St ri ng.

period

Sampling rate for Pr ocessCpulLoad values, expressed as a St ri ng. For
example, 30s specifies that this metric is sampled every 30 seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration

Period of time for which collected samples are retained, expressed as a
String.

e The default time unit is seconds.

* The default value is 10m

See retention window for more information about specifying this
parameter.

procCpuLoadLi mi t

Value established as the low threshold value of the Pr ocessCpulLoad
attribute.

per cent ServersLim t

Percentage of servers in the cluster with an average Pr ocessCpulLoad
value that must be less than the value of the pr ocCpuLoadLi i t
parameter in order for the smart rule to be evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and 100.0

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-15 of A-57

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad

ORACLE Appendix A
Cluster Scope Smart Rules

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Nane myC uster
period 30
duration 15
procCpulLoadLi m t 0.2

per cent ServersLim t 75

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er LowPr ocessCpuLoadAver age("myCl uster”,"30 seconds","10 m nutes", 0. 2, 75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the ProcessCpuLoad metric from each Managed Server instance in
myCl ust er every 30 seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, fires a scale down action if the following condition
evaluates totrue:

The average ProcessCpuLoad value, over the last 15 minutes, is less than 0.2 on at least
75 per cent of the Managed Servers in the cluster.

ClusterHighldleThreads

The C ust er H ghl dl eThr eads smart rule measures an increase in the number of idle threads
in a cluster, as indicated by the average value of the

Thr eadPool Runt i meMBean. Execut eThr eadl dl eCount attribute in each Managed Server.You
can use this rule to determine whether cluster capacity can be safely reduced; for example, by
executing a scale down action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
Thr eadPool Runt i meMBean. Execut eThr eadl dl eCount value that satisfies the threshold
comparison criteria is greater than or equal to the specified percentage of servers in the
cluster.

To use this smatrt rule, specify:

* The sampling rate and retention window for the
Thr eadPool Runt i mreMBean. Execut eThr eadl dl eCount metric

e High Execut eThr eadl dl eCount threshold value

* Percentage of Managed Servers in the cluster with an average Execut eThr eadl! dl eCount
value that must be greater than or equal to the high Execut eThr ead! dl eCount threshold
value in order for the rule to evaluate to t r ue

Syntax

W s: C ust er Hi ghl dl eThreads("cl ust er Name", "period", "duration", idleThreadsLimt,
percent ServersLinit)

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-16 of A-57

ORACLE’

Appendix A
Cluster Scope Smart Rules

Parameter

Description

cl ust er Nanme

Name of target dynamic cluster, expressed as a St ri ng.

period

Sampling rate for Execut eThr eadl dl eCount values, expressed as a
St ring. For example, 30s specifies that this metric is sampled every 30
seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration

Period of time for which collected samples are retained, expressed as a
String.

e The default time unit is seconds.

e The default value is 10m

See retention window for more information about specifying this
parameter.

i dl eThreadsLimt

Value established as the high threshold value of the
Execut eThr eadl dl eCount attribute.

per cent ServersLimt

Percentage of servers in the cluster with an average

Execut eThr eadl dl eCount value that must be greater than or equal to
the value of the i dl eThr eadsLi mi t parameter in order for the smart
rule to be evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Name myCl ust er
period 30
duration 10

i dl eThreadsLim t 20

per cent Server sLimi t 75

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er Hi ghl dl eThreads("nmyC uster","30 seconds","10 m nutes", 20, 75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the Execut eThr eadl dl eCount metric from each Managed Server
instance in nyC ust er every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires a scale down action if the following condition

evaluates to t r ue:

The average Execut eThr eadl dl eCount value, over the last 10 minutes, is greater than or
equal to 20 on at least 75 per cent of the Managed Servers in the cluster.

ClusterLowSystemLoadAverage

The C ust er LowSyst emLoadAver age smart rule measures a decrease in system load across a
cluster, as indicated by the average value of the Syst enLoadAver age attribute in each Managed

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-17 of A-57

ORACLE’

Appendix A
Cluster Scope Smart Rules

Server.You can use this rule to determine whether cluster capacity needs to be decreased; for
example, by executing a scale down action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
Syst emLoadAver age value that satisfies the threshold comparison criteria is equal to or greater
than the specified percentage of all servers in the cluster.

Note that the value of Syst enLoadAver age is system dependent.

To use this smart rule, specify:

* The sampling rate and retention window for the j ava. | ang: t ype=COper at i ngSyst em

Syst emLoadAver age metric

* Low Syst enloadAver age threshold value

e Percentage of Managed Servers in the cluster with an average Syst enLoadAver age value
that must be less than the low Syst enLoadAver age threshold value in order for the rule to

evaluate totrue

@® Note

The value of the Syst emLoadAver age metric is platform-specific and is not available on
all platforms. The MXBean attribute from which this metric originates is described at
http://docs. oracl e. com j avase/ 8/ docs/ api /j aval | ang/ managenent /

Oper ati ngSyst emViXBean. ht nl #get Syst enlLoadAver age- - .

Syntax

W s: Cl ust er LowSyst enLoadAver age("cl ust er Nane", "period", "duration", loadLimt,

percent ServersLimnit)

Parameter Description
cl ust er Narre Name of target dynamic cluster, expressed as a St ri ng.
period Sampling rate for Syst enLoadAver age values, expressed as a St ri ng.
For example, 30s specifies that this metric is sampled every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this parameter.
duration Period of time for which collected samples are retained, expressed as a
String.
e The default time unit is seconds.
e The default value is 10m
See retention window for more information about specifying this
parameter.
| oadLi mi t Value established as the low threshold value of the

Syst em_oadAver age attribute.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-18 of A-57

http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--
http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--

ORACLE Appendix A
Cluster Scope Smart Rules

Parameter Description

per cent ServersLimt Percentage of servers in the cluster with an average
Syst emLoadAver age value that must be less than the value of the
| oadLi m t parameter in order for the smart rule to be evaluated as
true.

This parameter is expressed as a f | oat value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Nane myC ust er
period 30
duration 15

| oadLim t 0.2

per cent ServersLim t 75

The smatrt rule that uses the preceding parameters is expressed as follows:

W s: C ust er LowSyst enLoadAver age("nmyC uster", "30 seconds","15 mi nutes", 0. 2, 75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the Syst enLoadAver age metric from each Managed Server instance
in nyC ust er every 30 seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, fires a scale down action if the following condition
evaluates to t r ue:

The average Syst enLoadAver age value, over the last 15 minutes, is less than 0.2 on at
least 75 per cent of the Managed Servers in the cluster.

ClusterHighQueueLength

The O ust er H ghQueuelLengt h smart rule measures an increase in system load across the
cluster, as indicated by the average value of the Thr eadPool Runt i neMBean. QueuelLengt h
attribute in each Managed Server.You can use this rule to determine whether the cluster
capacity needs to be increased; for example, by executing a scale up action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
Thr eadPool Runt i mreMBean. Queuelengt h value that satisfies the threshold comparison criteria is
greater than or equal to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

e The sampling rate and retention window for the Thr eadPool Runt i neMBean. QueuelLengt h
metric

* High QueuelLengt h threshold value

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-19 of A-57

ORACLE’

Appendix A
Cluster Scope Smart Rules

« Percentage of Managed Servers in the cluster with an average QueuelLengt h value that
must be greater than or equal to the high QueueLengt h threshold value in order for the rule

to evaluate to t rue

Syntax

W s: C ust er H ghQueuelLengt h("cl ust er Name", "period", "duration", queueLengthLimt,

percent ServersLimit)

Parameter

Description

cl ust er Nane

Name of target dynamic cluster, expressed as a St ri ng.

period Sampling rate for QueueLengt h values, expressed as a St ri ng. For
example, 30s specifies that this metric is sampled every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this parameter.
duration Period of time for which collected samples are retained, expressed as a

String.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

queuelLengt hLi mi t

Value established as the high threshold value of the QueueLengt h
attribute.

per cent ServersLinit

Percentage of servers in the cluster with an average QueuelLengt h
value that must be greater than or equal to the value of the
queuelLengt hLi mi t parameter in order for the smart rule to be
evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Nane myC ust er
period 30
duration 10
queuelLengt hLim t 100

per cent ServersLimt 60

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er H ghQueueLengt h("myCl uster", "30 seconds","10 m nutes", 100, 60)

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the QueuelLengt h metric from each Managed Server instance in
myCl ust er every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires a scale up action if the following condition

evaluates to t r ue:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-20 of A-57

ORACLE Appendix A
Cluster Scope Smart Rules

The average Queuelengt h value, over the last 10 minutes, is greater than or equal to 100
on at least 60 per cent of the Managed Servers in the cluster.

ClusterLowHeapFreePercent

The C ust er LowHeapFr eePer cent smart rule measures an increase in heap stress across a
cluster, as indicated by the average value of the JVMRunt i meMBean. HeapFr eePer cent attribute
in each Managed Server.You can use this rule to determine whether the cluster capacity needs
to be increased; for example, by executing a scale up action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
JVMRunt i neMBean. HeapFr eePer cent value that satisfies the threshold comparison criteria is
greater than or equal to a specific percentage of all servers in the cluster.

To use this smart rule, specify:

e The sampling rate and retention window for the JVMRunt i meMBean. HeapFr eePer cent metric

e Low HeapFreePer cent threshold value

» Percentage of Managed Servers in the cluster with an average HeapFr eePer cent value
during the sampling period that must be less than the low HeapFr eePer cent threshold
value in order for the rule to evaluate to t r ue

Syntax

W s: C ust er LowHeapFr eePer cent ("cl ust er Name", "period", "duration", percentFreelLinit,
percent ServersLimnit)

Parameter Description
cl ust er Narre Name of target dynamic cluster, expressed as a St ri ng.
period Sampling rate for HeapFr eePer cent values, expressed as a St ri ng.

For example, 30s specifies that this metric is sampled every 30 seconds.
e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.
e The default time unit is seconds.
e The default value is 10m
See retention window for more information about specifying this

parameter.

per cent FreelLim t Value established as the low threshold value of the HeapFr eePer cent
attribute.

per cent ServersLimt Percentage of servers in the cluster with an average HeapFr eePer cent

value that must be less than the value of the per cent FreeLi ni t
parameter in order for the smart rule to be evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-21 of A-57

ORACLE’

Appendix A
Cluster Scope Smart Rules

Parameter Value

cl ust er Nane myC ust er
peri od 30
duration 10
percent FreelLim t 20

per cent Server sLinit 60

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er LowHeapFr eePercent ("nmyCl uster","30 seconds","10 mi nutes", 20, 60)

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the HeapFr eePer cent metric from each Managed Server instance in
myCl ust er every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires a scale up action if the following condition
evaluates to t r ue:

The average HeapFr eePer cent value, over the last 10 minutes, is less than 20 on at least
60 per cent of the Managed Servers in the cluster.

ClusterHighSystemLoadAverage

The O ust er H ghSyst enlLoadAver age smart rule measures an increase on system load across
a cluster, as indicated by the average value of the Syst enLoadAver age attribute in each
Managed Server.You can use this rule to determine if cluster capacity needs to be increased;
for example, by executing a scale up action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
java. l ang: t ype=Qper at i ngSyst em Syst enlLoadAver age value that satisfies the threshold
comparison criteria is greater than or equal to the specified percentage of all servers in the
cluster.

Note that the value of the Syst enLoadAver age is system dependent.
To use this smart rule, specify:

e The sampling rate and retention window for the j ava. | ang: t ype=Cper at i ngSyst em
Syst emLoadAver age metric

e High Syst enlLoadAver age threshold value

« Percentage of Managed Servers in the cluster with an average Syst enLoadAver age value
that must be greater than or equal to the high Syst en_oadAver age threshold value in order
for the rule to evaluate to t r ue

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-22 of A-57

ORACLE Appendix A
Cluster Scope Smart Rules

@® Note

The value of the Syst em_oadAver age metric is platform-specific and is not available on
all platforms. The MXBean attribute from which this metric originates is described at
http://docs. oracl e. conljavase/ 8/ docs/ api/j aval | ang/ managenent /

Oper at i ngSyst emXBean. ht mi #get Syst enl oadAver age- - .

Syntax

W s: Cl ust er H ghSyst emLoadAver age(" cl ust er Name", "period", "duration", loadLinit,
percent ServersLinit)

Parameter Description
cl ust er Narre Name of target dynamic cluster, expressed as a St ri ng.
period Sampling rate for Syst enlLoadAver age values, expressed as a St ri ng.

For example, 30s specifies that this metric is sampled every 30 seconds.
e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.
e The default time unit is seconds.
* The default value is 10m

See retention window for more information about specifying this
parameter.

| oadLim t Value established as the high threshold value of the
Syst emLoadAver age attribute.

per cent ServersLim t Percentage of servers in the cluster with an average
Syst emLoadAver age value that must be greater than or equal to the
value of the | oadLi nmi t parameter in order for the smart rule to be
evaluated as tr ue.

This parameter is expressed as a f | oat value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Name myd ust er
period 30
duration 5

| oadLi m t 0.8

per cent ServersLimt 60

The smart rule that uses the preceding parameters is expressed as follows:

W s: Cl ust er H ghSyst emLoadAver age("nmyCd uster”,"30 seconds","5 minutes", 0.8, 60)

When configured with a scale up action, this smart rule does the following:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-23 of A-57

http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--
http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--

ORACLE’

Appendix A
Cluster Scope Smart Rules

1. Samples the value of the Syst enLoadAver age metric from each Managed Server instance
in nyC ust er every 30 seconds over a retention window of 5 minutes.

2. Atthe end of the retention window, fires a scale up action if the following condition
evaluates to t r ue:

The average Syst enmLoadAver age value, over the last 5 minutes, is greater than or equal to
0.8 on at least 60 per cent of the Managed Servers in the cluster.

ClusterHighHeapFreePercent

The O ust er H ghHeapFr eePer cent smart rule measures a reduction in heap stress across a
dynamic cluster, as indicated by the average value of the JVMRunt i neMBean. HeapFr eePer cent
attribute in each Managed Server.You can use this rule to determine if cluster capacity can be
reduced; for example, by executing a scale down action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average JVM free
heap percentage value that satisfies the threshold comparison criteria is greater than or equal
to a specified percentage of all servers in the cluster.

To use this smart rule, specify:

e The sampling rate and retention window for the JVM free heap percentage metric
e High JVM free heap threshold value

» Percentage of Managed Servers in the cluster with an average JVM free heap value that
must be greater than or equal to the high JVM free heap threshold value in order for the
rule to evaluate to t r ue

Syntax

W s: C ust er H ghHeapFr eePer cent (" cl ust er Name", "period", "duration", percentFreeLimt,
percent ServersLinit)

Parameter Description

cl ust er Name Name of target dynamic cluster, expressed as a St ri ng.

period Sampling rate for JVM free heap percentage values, expressed as a
St ring. For example, 30s specifies that this metric is sampled every 30
seconds.

e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.
e The default time unit is seconds.
* The default value is 10m

See retention window for more information about specifying this
parameter.

percent FreelLim t Value established as the high threshold value of the JVM free heap
percentage.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-24 of A-57

ORACLE Appendix A
Cluster Scope Smart Rules

Parameter Description

per cent ServersLimt Percentage of servers in the cluster with an average JVM free heap
percentage that must be greater than or equal to the
per cent Freeli mi t parameter in order for the smart rule to be
evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Name myCl ust er
period 30
duration 5

percent FreelLim t 60

per cent ServersLimt 75

The smart rule that uses the preceding parameters is expressed as follows:

W s: Cl ust er H ghHeapFr eePer cent ("nyC uster”,"30 seconds","5 m nutes", 60, 75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the JVM free heap percentage metric from each Managed Server
instance in myCl ust er every 30 seconds over a retention window of 5 minutes.

2. Atthe end of the retention window, fires a scale down action if the following condition
evaluates to t r ue:

The average JVM free heap percentage value, over the last 5 minutes, is greater than or
equal to 60 on at least 75 per cent of the Managed Servers in the cluster.

ClusterLowSystemCpuLoadAverage

The C ust er LowSyst emCpuLoadAver age smart rule measures a reduction of the system CPU
load average across a cluster, as indicated by the average value of the Syst enCpuLoad
attribute in each Managed Server.You can use this rule to determine whether cluster capacity
needs to be decreased; for example, by executing a scale down action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
java. | ang: t ype=Qper at i ngSyst em Syst enCpuLoad value satisfies the threshold comparison
criteria is greater than or equal to a specified percentage of all servers in the cluster.

Note that the value of the Syst enCpuLoad metric is platform-specific and is not available on all
platforms.

To use this smart rule, specify:

e The sampling rate and retention window for the j ava. | ang: t ype=COper at i ngSyst em
Syst enCpulLoad metric

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-25 of A-57

ORACLE’

Appendix A
Cluster Scope Smart Rules

* Low Syst enCpulLoad threshold value

* Percentage of Managed Servers in the cluster with an average Syst enCpulLoad value that
must be below the low Syst enCpuLoad threshold value in order for the rule to evaluate to

true

@® Note

The value of the Syst enCpuLoad metric is platform-specific and is not available on all
platforms. The MXBean attribute from which this metric originates is described at
https://docs. oracle.conl javase/ 8/ docs/jrel api/ managenent/

ext ensi on/ com sun/ managenent /

Oper at i ngSyst emvXBean. ht mi #get Syst enCpuload- - .

Syntax

W s: Cl ust er LowSyst enmCpuLoadAver age(" cl ust er Name", "period", "duration",
syst emCpuLoadLi mit, percentServersLinit)

Parameter

Description

cl ust er Nanme

Name of target dynamic cluster, expressed as a St ri ng.

period

Sampling rate for Syst enCpulLoad values, expressed as a St ri ng. For
example, 30s specifies that this metric is sampled every 30 seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration

Period of time for which collected samples are retained, expressed as a
String.

e The default time unit is seconds.

e The default value is 10m

See retention window for more information about specifying this
parameter.

syst enCpuLoadLi mi t

Value established as the low threshold value of the Syst enCpuLoad
attribute.

per cent ServersLim t

Percentage of servers in the cluster with an average Syst enCpulLoad
value that must be less than the value of the syst enCpulLoadLi i t
parameter in order for the smart rule to be evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Name myCl ust er
period 30
duration 15

syst enCpuLoadLi mi t 0.2

per cent ServersLim t 75

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-26 of A-57

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--

ORACLE Appendix A
Cluster Scope Smart Rules
The smart rule that uses the preceding parameters is expressed as follows:
W s: Cl ust er LowSyst enCpuLoadAver age("nyCd uster”,"30 seconds", "15 ninutes", 0.2, 75)
When configured with a scale down action, this smart rule does the following:
1. Samples the value of the Syst enCpuLoad metric from each Managed Server instance in
myCl ust er every 30 seconds over a retention window of 15 minutes.
2. Atthe end of the retention window, fires a scale down action if the following condition
evaluates to t r ue:
The average Syst enCpulLoad value, over the last 15 minutes, is less than 0.2 on at least 75
per cent of the Managed Servers in the cluster.
ClusterLowldleThreads

The O ust er Lowt dl eThr eads smart rule measures an increase in load stress across the
cluster, as indicated by the average value of the

Thr eadPool Runt i meMBean. Execut eThr eadl dl eCount attribute in each Managed Server.You
can use this rule to determine whether cluster capacity needs to be increased; for example, by
executing a scale up action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average

Thr eadPool Runt i mreMBean. Execut eThr eadl dl eCount value that satisfies the threshold
comparison criteria is greater than or equal to a specified percentage of all servers in the
cluster.

To use this smart rule, specify:

The sampling rate and retention window for the
Thr eadPool Runt i meMBean. Execut eThr eadl dl eCount metric

Low Execut eThr eadl dl eCount threshold value

» Percentage of Managed Servers in the cluster whose average Execut eThr ead! dl eCount
value is less than the low Execut eThr eadl dl eCount threshold value in order for the rule to
evaluate to t rue

Syntax

W s: Gl ust er Lowt dl eThreads("cl ust er Nane", "period", "duration", idleThreadsLimt",
percent ServerLimt")

Parameter Description

cl ust er Narre Name of target dynamic cluster, expressed as a St ri ng.

period Sampling rate for Execut eThr eadl dl eCount values, expressed as a
St ring. For example, 30s specifies that this metric is sampled every 30
seconds.

e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this parameter.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-27 of A-57

ORACLE’

Appendix A
Cluster Scope Smart Rules

Parameter

Description

duration

Period of time for which collected samples are retained, expressed as a
String.

e The default time unit is minutes.

e The default value is 10m

See retention window for more information about specifying this
parameter.

i dl eThreadsLimt

Value established as the low Execut eThr ead! dl eCount threshold
value.

per cent Server sLinit

Percentage of servers in the cluster with an average

Execut eThr eadl dl eCount value that must be less than the value of
the i dl eThreadsLi m t parameter in order for the smart rule to be
evaluated as tr ue.

This parameter is expressed as a f | oat .

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Nanme myC ust er
period 30
duration 10

i dl eThreadsLim t 5

per cent ServersLim t 60

The smart rule that uses the preceding parameters is expressed as follows:

W s: Cl uster Lowt dl eThreads("myC uster","30 seconds","10 mi nutes", 5, 60)

When configured with a scale up action, this example smart rule:

1. Samples the value of the Execut eThr eadl dl eCount metric from each Managed Server
instance in myd ust er every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires a scale up action if the following condition

evaluates to t r ue:

The average Execut eThr eadl dl eCount value, over the last 10 minutes, is less than 5 on at
least 60 per cent of the Managed Servers in the cluster.

ClusterGenericMetricRule

The C ust er Generi cMetri cRul e smart rule is typically used to observe trends in IMX metrics
that are published through the Server Runtime MBean Server and that are not provided
through the other cluster scope smart rules.

Target: Administration Server

Description

This smart rule allows you to view the average value of any metric obtained through JMX
within a specific time interval, and compare that average value to a specified threshold value

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-28 of A-57

ORACLE’

Appendix A
Cluster Scope Smart Rules

by using a specified comparison operator for each Managed Server in the cluster. If the
percentage of servers matching the comparison criteria meets or exceeds the specified limit,
the overall condition of the rule is satisfied and this rule returns t r ue.

To use this smart rule, specify:

Dynamic cluster name
A valid IMX Cbj ect Nane or Qbj ect Nane pattern

An attribute name, or attribute expression (as an EL expression), where the expression is
an attribute expression relative to each MBean.

For example, if the MBean is the Ser ver Runt i meMBean, ' OpenSocket sCur r ent Count '
obtains the value of the Ser ver Runt i meMBean. OpenSocket sCur r ent Count attribute. In
contrast, ' Heal t hSt ate. State' accesses the St at e value of the Heal t hSt at e child object.

A valid boolean comparison operator
A threshold value against which the selected attribute is compared

Percentage of Managed Servers in the cluster whose average attribute value during the
sampling period must meet the threshold value in order for the rule to evaluate to t r ue

The sampling rate and retention window for the metric on each Managed Server instance
in the cluster

Period of time during which samples are collected

Syntax

W s: Cl usterGenericMetricRul e("clusterName", "instancePattern", "attribute", "operation",
t hreshol dVval ue, percent ServersLinit, "period", "duration")

Parameter Description

cl ust er Narre Name of target dynamic cluster, expressed as a St ri ng.

i nstancePattern A valid JMX Cbj ect Nane or (bj ect Nane pattern

attribute A Java EL expression that retrieves a value on each MBean instance

that matches i nst ancePat t er n, where the expression is an attribute
expression relative to each MBean.

For example, if the MBean is the Ser ver Runt i meMBean, the expression
" OpenSocket sCurrent Count' obtains the value of the

OpenSocket sCurrent Count attribute of the Ser ver Runt i neMBean.
By contrast, the expression ' Heal t hSt at e. St at e' obtains the St at e
value of the Heal t hSt at e child object of that MBean.

operation A boolean comparison operator: <, <=, ==, >=, or >,

t hreshol dVval ue Threshold value against which the value of the at t ri but e parameter is
compared.

per cent ServersLimt Percentage of servers in the cluster with an average attribute value that

must satisfy the comparison criteria with the value of the
t hr eshol dVal ue parameter in order for the smart rule to be evaluated
astrue.

This parameter is expressed as a f | oat value between 0.0 and 100.0

period Sampling rate for metric values, expressed as a St ri ng. For example,

30s specifies that this metric is sampled every 30 seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this parameter.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-29 of A-57

ORACLE’

Appendix A
Cluster Scope Smart Rules

Parameter Description
duration Period of time for which collected samples are retained, expressed as a
String.

e The default time unit is seconds.
* The default value is 10m

See retention window for more information about specifying this
parameter.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Name myCl ust er

i nstancePattern java.lang: t ype=Qperati ngSyst em
attribute ProcessCpuLoad

operation >=

t hreshol dVal ue 0.9

per cent ServersLimt 75

period 30

duration 10

The smart rule that uses the preceding parameters is expressed as follows:

W s: Cl usterGenericMetricRul e("myd uster”,"java.l ang: t ype=Operati ngSystent', " ProcessCpuLoad
,">=",0.9,75,"30 seconds","10 m nutes")

This example smart rule:

1. Samples the value of the ProcessCpuLoad metric from each Managed Server instance in
myCl ust er every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, this smart rule evaluates to t r ue in the following
condition:

The average value of ProcessCpuLoad on the Qper at i ngSyst enMXBean, over the last 10
minutes, is greater than or equal to 0.9 on at least 75 per cent of the Managed Servers in
the cluster.

ClusterHighSystemCpulLoadAverage

The O ust er H ghSyst enCpuLoadAver age smart rule measures an increase on system load
across the cluster, as indicated by the average value of the operating system Syst enCpulLoad
attribute in each Managed Server.You use this rule to determine whether cluster capacity
needs to be increased; for example, by executing a scale up action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
java. |l ang: t ype=Cper ati ngSyst em Syst enCpuLoad value that satisfies the threshold
comparison criteria is greater than or equal to a specified percentage of all servers in the
cluster.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-30 of A-57

ORACLE’

Appendix A
Cluster Scope Smart Rules

Note that the value of Syst enCpulLoad is platform-specific and is not available on all platforms.

To use this smart rule, specify:

e The sampling rate and retention window for the j ava. | ang: t ype=Qper at i ngSyst em

Syst enCpuLoad metric

e High Syst enCpulLoad threshold value

« Percentage of Managed Servers in the cluster with an average Syst enCpulLoad value that
is greater than or equal to the high Syst enCpulLoad threshold value in order for the rule to

evaluate to true

@ Note

The value of the Syst enCpuLoad metric is platform-specific and is not available on all
platforms. The MXBean attribute from which this metric originates is described at
https://docs. oracle.conl javase/ 8/ docs/jre/api/ managenent/

ext ensi on/ com sun/ managenent /

Oper ati ngSyst enmViXBean. ht nl #get Syst enCpulLoad- - .

Syntax

W s: C ust er H ghSyst enCpuLoadAver age("cl ust er Nane", "period", "duration",
syst emCpuLoadLi mit, percentServersLinit)

Parameter

Description

cl ust er Nane

Name of target dynamic cluster, expressed as a St ri ng.

period

Sampling rate for Syst enCpulLoad values, expressed as a St ri ng. For
example, 30s specifies that this metric is sampled every 30 seconds.

e The default time unit is seconds.

* The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration

Period of time for which collected samples are retained, expressed as a
String.

e The default time unit is seconds.

e The default value is 10m

See retention window for more information about specifying this
parameter.

syst enCpulLoadLi mi t

Value established as the high threshold value of the Syst enCpuLoad
attribute.

per cent Server sLinit

Percentage of servers in the cluster with an average Syst enCpulLoad
value that must be greater than or equal to the value of the

syst enCpuLoadLi m t parameter in order for the smart rule to be
evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-31 of A-57

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--

ORACLE’

Appendix A
Server Scope Smart Rules

Parameter Value

cl ust er Nane myC ust er
period 30
duration 5

syst enCpuLoadLi mi t 0.8

per cent ServersLimt 60

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er H ghSyst enCpuLoadAver age("myCl uster","30 seconds","5 ninutes", 0.8, 60)

When configured with a scale up action, this example smart rule:

1. Samples the value of the Syst enCpuLoad metric from each Managed Server instance in
myCl ust er every 30 seconds over a retention window of 5 minutes.

2. Atthe end of the retention window, fires a scale up action if the following condition
evaluates to t r ue:

The average Syst enCpulLoad value, over the last 5 minutes, is greater than or equal to 0.8
on at least 60 per cent of the Managed Servers in the cluster.

Server Scope Smart Rules

A server scope smart rule is one that is applied only to the local WebLogic Server instance on
which the policies associated with that smart rule are run. You can execute policies containing
server scope smart rules on the Administration Server or any individual Managed Server in the
domain.The set of server scope smart rules packaged with the WebLogic Diagnostics
Framework (WLDF) are listed and summarized in Table A-2.

Table A-2 Summary of Managed Server Scope Smart Rules

After the retention window, the ...returns trueif...
following smart rule . ..

ServerLowldleThreads The average
Thr eadPool Runt i mneMBean. Execut eThr eadl dl eCount
value on the local server is equal to or less than the low
threshold value.

ServerHighThroughput The average Thr eadPool Runt i mreMBean. Thr oughput
value on the local server is greater than or equal to the
high threshold value.

ServerGenericMetricRule The average value of a metric visible through JMX within
the local JVM satisfies the comparison criteria with the
threshold value.

ServerLowPendingUserRequests The average
Thr eadPool Runt i meMBean. Pendi ngUser Request Coun
t value on the local server is less than the low threshold
value.

ServerLowProcessCpuloadAverage The average value of the ProcessCpuLoad metric of the
j ava. |l ang: t ype=Qper at i ngSyst emMXBean on the
local server is less than the low threshold value.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-32 of A-57

ORACLE’

Appendix A
Server Scope Smart Rules

Table A-2 (Cont.) Summary of Managed Server Scope Smart Rules

After the retention window, the
following smart rule . ..

...returns trueif...

ServerHighSystemLoadAverage

The average value of the Syst enmLoadAver age metric
from the j ava. | ang: t ype=Cper at i ngSyst emMXBean
on the local server is greater than or equal to the high
threshold value.

ServerLowQueueLength The average Thr eadPool Runt i mreMBean. Queuelengt h
value on the local server is less than the low threshold
value.

ServerLowThroughput The average Thr eadPool Runt i mreMBean. Thr oughput

value on the local server is less than the low threshold
value.

ServerHighQueuelength

The average Thr eadPool Runt i mreMBean. Queuelengt h
value on the local server is greater than or equal to the
high threshold value.

ServerHighSystemCpul oadAverage

The average Syst enCpulLoad attribute of the

j ava. |l ang: t ype=Qper at i ngSyst emMXBean on the
local server is greater than or equal to the high threshold
value.

ServerHighPendingUserRequests

The average

Thr eadPool Runt i meMBean. Pendi ngUser Request Coun
t value on the local server is greater than or equal to the
high threshold value.

ServerLowSystemCpul oadAverage

The average Syst enCpulLoad attribute of the
j ava. l ang: t ype=Qper at i ngSyst emMXBean on the
local server is less than the low threshold value.

ServerHighHeapFreePercent

The average percentage of free heap on the local server is
greater than or equal to the high threshold value.

ServerHighStuckThreads

The average

Thr eadPool Runt i mreMBean. St uckThr eadCount value
on the local server is greater than or equal to high
threshold value.

ServerHighProcessCpuloadAverage

The average ProcessCpuload value of the

j ava. |l ang: t ype=Qper at i ngSyst emMXBean on the
local server is greater than or equal to the high threshold
value.

ServerLowSystemlLoadAverage

The average Syst em_oadAver age value of the
j ava. |l ang: t ype=Qper at i ngSyst emMXBean on the
local server is less than the low threshold value.

ServerLowHeapFreePercent

The average percentage of free heap on the local server is
less than the low threshold value.

ServerHighldleThreads

The average

Thr eadPool Runt i meMBean. Execut eThr eadl dl eCount
value on the local server is greater than or equal to the
high threshold value.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-33 of A-57

ORACLE Appendix A
Server Scope Smart Rules

ServerLowldleThreads

The Server Low dl eThr eads smart rule detects if the average number of idle threads is below
the specified threshold within the local server in which the rule is running, as indicated by the
average value of the Thr eadPool Runt i meMBean. Execut eThr eadl dl eCount attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This smart rule returns t r ue if the average value of the
Thr eadPool Runt i neMBean. Execut eThr eadl dl eCount attribute is equal to or less than the
specified threshold value.

To use this smart rule, specify:

« The sampling rate and retention window for the
Thr eadPool Runti meMBean. Execut eThr eadl dl eCount metric

e Low Execut eThr eadl dl eCount threshold value

Syntax

W s: Server Low dl eThreads("period", "duration", idleThreadsLinit)

Parameter Description

period Sampling rate for Execut eThr eadl dl eCount values, expressed as a
St ring. For example, 30s specifies that this metric is sampled every 30
seconds.

e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

i dl eThreadsLimt Value established as the low threshold value of the
Execut eThr ead! dl eCount attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
peri od 30
duration 5

i dl eThreadsLinit 0.8

The smart rule that uses the preceding parameters is expressed as follows:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-34 of A-57

ORACLE’

Appendix A
Server Scope Smart Rules

W s: Server Low dl eThreads("30 seconds","10 m nutes",5)

This example smart rule:

1. Samples the value of the Execut eThr eadl dl eCount metric from the local server instance
every 30 seconds over a retention window of 5 minutes.

2. Atthe end of the retention window, fires the associated action if the following condition
evaluates to t rue:

The average Execut eThr eadl dl eCount value, over the last 5 minutes, is less than or equal
to 0.8 on this server instance.

ServerHighThroughput

The Server Hi ghThr oughput smart rule determines whether an increase in throughput exists
within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This smart rule returns t r ue if the average value of the Thr eadPool Runt i neMBean. Thr oughput
attribute over the specified retention window is greater than or equal to the high threshold
value.

To use this smart rule, specify:

e The sampling rate and retention window of the Thr eadPool Runt i meMBean. Thr oughput
attribute.

e High Throughput threshold value

Syntax

W s: Server H ghThroughput ("peri od", "duration", throughputLimt)

Parameter Description

period Sampling rate for Thr oughput values, expressed as a St ri ng. For
example, 30s specifies that this metric is sampled every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

t hroughput Li m t Value established as the high threshold value of the Thr oughput
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-35 of A-57

ORACLE’

Appendix A
Server Scope Smart Rules

Parameter Value
period 30
duration 10

t hr oughput Li ni t 100

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server H ghThroughput ("30 seconds","10 ninutes", 100)

This example smart rule:

1. Samples the value of the Thr oughput metric from the local server instance every 30
seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires the associated action if the following condition
evaluates to true:

The average Throughput value, over the last 10 minutes, is greater than or equal to 100 on
this server instance.

ServerGenericMetricRule

The Server Generi cMetri cRul e smart rule is a general server scope smart rule that you can
use to observe trends of any JMX metric that is published through the Server Runtime MBean
Server and that is not provided by the other server scope smart rules.This smart rule allows
you to collect the average value of the metric across a recent time interval and compare it to a
threshold value using a specified comparison operator.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This smart rule returns t r ue if the average value of the metric meets or exceeds the specified
threshold value.

To use this smart rule, specify:

e Avalid IMX Obj ect Nane or Qbj ect Nanme pattern

* A Java EL expression that retrieves a value on each matching MBean instance, where the
expression is an attribute expression relative to each MBean.

* A boolean comparison operator using the specified comparison operator
* Athreshold value against which the selected attribute is compared

 The sampling rate and retention window of the metric.

Syntax

W s: Server GenericMetricRul e("instancePattern", "attribute", "operation", threshol dval ue,
“period", "duration")

Parameter Description

i nstancePattern A valid JMX Cbj ect Nane or (bj ect Nane pattern

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-36 of A-57

ORACLE’

Appendix A
Server Scope Smart Rules

Parameter

Description

attribute

A Java EL expression that retrieves a value on each MBean instance
that matches i nst ancePat t er n, where the expression is an attribute
expression relative to each MBean.

For example, if the MBean is the Ser ver Runt i meMBean, the expression
' OpenSocket sCurrent Count' obtains the value of the

OpenSocket sCurrent Count attribute of the Ser ver Runt i neMBean.
By contrast, the expression ' Heal t hSt at e. St at ' obtains the St at e
value of the Heal t hSt at e child object of that MBean.

operation

A boolean comparison operator: <, <=, ==, >=, or >.

t hreshol dVal ue

A threshold value with which to compare the selected attribute using the
specified comparison operator.

period

Sampling rate for metric values, expressed as a St ri ng. For example,
30s specifies that this metric is sampled every 30 seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration

Period of time for which collected samples are retained, expressed as a
String.

e The default time unit is seconds.

e The default value is 10m

See retention window for more information about specifying this
parameter.

Example

The smart rule shown in this example uses the following input parameters:

Parameter

Value

i nst ancePattern

j ava.lang: t ype=Cper ati ngSyst em

attribute ProcessCpuLoad
operation >=
t hreshol dVal ue 0.9
period 30
duration 10

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server GenericMetricRul e("java. |l ang: t ype=Oper ati ngSyst enf', "ProcessCpuLoad",">=",0.9,"3

0 seconds","10 m nutes")

The smart rule:

1. Samples the value of the ProcessCpuLoad metric on the targeted server instance every 30
seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, this smart rule evaluates to t r ue in the following

condition:

The average value of ProcessCpuLoad on the Qper at i ngSyst emvXBean, over the last 10
minutes, is greater than or equal to 0.9 on this server instance.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-37 of A-57

ORACLE’

Appendix A
Server Scope Smart Rules

ServerLowPendingUserRequests

The Server LowPendi ngUser Request s smart rule determines whether the average number of
pending user requests within the local server in which the rule is running, as indicated by the
value of the Thr eadPool Runt i meMBean. Pendi ngUser Request Count attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This smart rule returns t r ue if the average value of the
Thr eadPool Runt i mneMBean. Pendi ngUser Request Count attribute over the specified retention

window is less than the low threshold value.

To use this smart rule, specify:

 The sampling rate and retention window of the

Thr eadPool Runt i meMBean. Pendi ngUser Request Count attribute.

e Low Pendi ngUser Request Count threshold value

Syntax

W s: Server LowPendi ngUser Request s("period", "duration", pendi ngRequestsLinit)

Parameter

Description

period

Sampling rate for Pendi ngUser Request Count values, expressed as a
St ring. For example, 30s specifies that this metric is sampled every 30
seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration

Period of time for which collected samples are retained, expressed as a
String.

e The default time unit is seconds.

e The default value is 10m

See retention window for more information about specifying this
parameter.

pendi ngRequest sLi m t

Value established as the low threshold value of the
Pendi ngUser Request Count attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 15
pendi ngRequest sLi m t 5

The smart rule that uses the preceding parameters is expressed as follows:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-38 of A-57

ORACLE Appendix A
Server Scope Smart Rules

W s: Server LowPendi ngUser Request s("30 seconds”,"15 m nutes", 5)

This example smart rule:

1. Samples the value of the Pendi ngUser Request Count metric from the local server instance
every 30 seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, evaluates to t r ue if the following condition exists:

The average Pendi ngUser Request Count value, over the last 15 minutes, is less than 5 on
this server instance.

ServerLowProcessCpuLoadAverage

The Server LowPr ocessCpuLoadAver age smart rule determines whether a reduction exists in the
average system load within the local server instance in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the average value of the ProcessCpuLoad metric of the
java. | ang: t ype=Qper at i ngSyst emMXBean over the specified time interval is less than a
specified threshold value.

@® Note

The value of the ProcessCpulLoad metric is platform-specific and is not available on all
platforms. The MXBean attribute from which this metric originates is described at
https://docs. oracle. contjavase/ 8/ docs/jre/ api / managenent /

ext ensi on/ cont sun/ managenent /

Oper at i ngSyst enXBean. ht i #get ProcessCpuload- - .

To use this smart rule, specify:

* The sampling rate and retention window of the Pr ocessCpulLoad attribute.

e Low ProcessCpulLoad threshold value

Syntax

W s: Server LowPr ocessCpuLoadAver age(" peri od", "duration", processCpuLoadLimt)

Parameter Description

period Sampling rate for Pr ocessCpulLoad values, expressed as a St ri ng. For
example, 30s specifies that this metric is sampled every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this parameter.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-39 of A-57

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--

ORACLE Appendix A
Server Scope Smart Rules

Parameter Description
duration Period of time for which collected samples are retained, expressed as a
String.

e The default time unit is seconds.
* The default value is 10m

See retention window for more information about specifying this
parameter.

processCpulLoadLi m t Value established as the low threshold value of the Pr ocessCpulLoad
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 15
processCpulLoadLi mi t 0.2

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server LowPr ocessCpuLoadAver age("30 seconds","15 nminutes", 0. 2)

This example smart rule:

1. Samples the value of the ProcessCpuLoad metric from the local server instance every 30
seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, fires the associated action if the following condition
evaluates to t rue:

The average ProcessCpulLoad value, over the last 15 minutes, is less than 0.2 on this
server instance.

ServerHighSystemLoadAverage

The Server H ghSyst emLoadAver age smart rule determines whether a reduction exists on the
average system load within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the average value of the Syst enLoadAver age metric from the
java. | ang: t ype=Qper at i ngSyst emMXBean on the local server instance over specified interval
is greater than or equal to a specific high threshold value.

To use this smart rule, specify:

* The sampling rate and retention window of the Syst em_oadAver age attribute.

e High Syst enmLoadAver age threshold value

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-40 of A-57

ORACLE Appendix A
Server Scope Smart Rules

@® Note

The value of the Syst em_oadAver age metric is platform-specific and is not available on
all platforms. The MXBean attribute from which this metric originates is described at
http://docs. oracl e. conljavase/ 8/ docs/ api/j aval | ang/ managenent /

Oper at i ngSyst emXBean. ht mi #get Syst enl oadAver age- - .

Syntax

W s: Server H ghSyst enLoadAver age("period”, "duration”, |oadLinit)

Parameter Description

period Sampling rate for Syst enLoadAver age values, expressed as a St ri ng.
For example, 30s specifies that this metric is sampled every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

| oadLim t Value established as the high threshold value of the
Syst enmLoadAver age attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 5

| oadLim t 0.8

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server H ghSyst enLoadAver age("30 seconds","5 nminutes”, 0. 8)

This example smatrt rule:

1. Samples the value of the Syst enlL.oadAver age metric on the local server instance every 30
seconds over a retention window of 5 minutes.

2. Atthe end of the retention window, fires the associated action if the following condition
evaluates to true:

The average Syst enlLoadAver age value, over the last 5 minutes, is greater than or equal to
0.8 collected on this server instance.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-41 of A-57

http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--
http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--

ORACLE Appendix A
Server Scope Smart Rules

ServerLowQueuelLength

The Ser ver LowQueuelLengt h smart rule determines whether a reduction exists in the average
thread pool queue length within the local server in which the rule is running, as indicated by the
value of the Thr eadPool Runt i meMBean. QueuelLengt h metric.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the average value of the Thr eadPool Runt i meMBean. Queuelengt h
attribute on the local server instance over specified interval is less than a specific low threshold
value.

To use this smart rule, specify:

e The sampling rate and retention window of the Thr eadPool Runt i meMBean. QueuelLengt h
attribute.

e Low Queuelengt h threshold value

Syntax

W s: Server LowQueueLengt h("period", "duration", queueLengthLinit)

Parameter Description

period Sampling rate for QueueLengt h values, expressed as a St ri ng. For
example, 30s specifies that this metric is sampled every 30 seconds.
e The default time unit is seconds.
* The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

queuelLengt hLi m t Value established as the low threshold value of the QueuelLengt h
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 15
queuelLengt hLi m t 5

The smart rule that uses the preceding parameters is expressed as follows:

w s: Server LowQueuelLengt h("30 seconds","15 ni nutes",5)

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-42 of A-57

ORACLE’

Appendix A
Server Scope Smart Rules

This example smatrt rule:

1. Samples the value of the QueuelLengt h metric from the local server instance every 30
seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, fires the associated action if the following condition
evaluates to true:

The average Queuelengt h value, over the last 15 minutes, is less than 5 on this server
instance.

ServerLowThroughput

The Server LowThr oughput smart rule determines whether a decrease exists in the average
throughput within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the average value of the Thr eadPool Runt i meMBean. Thr oughput
attribute on the local server over the specified interval is less than the specified low threshold
value.

To use this smart rule, specify:

e The sampling rate and retention window of the Thr eadPool Runt i meMBean. Thr oughput
attribute.

e Low Throughput threshold value

Syntax

W s: Server LowThr oughput (" period", "duration", throughputLinit)

Parameter Description

period Sampling rate for Thr oughput values, expressed as a St ri ng. For
example, 30s specifies that this metric is sampled every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

t hroughput Li mi t Value established as the low threshold value of the Thr oughput
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-43 of A-57

ORACLE’

Appendix A
Server Scope Smart Rules

Parameter Value
period 30
duration 15

i dl eThreadsLinit 5

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server LowThr oughput ("30 seconds","15 m nutes", 5)

This example smart rule:

1. Samples the value of the Thr oughput metric from the local server instance every 30
seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, fires the associated action if the following condition
evaluates to true:

The average Throughput value, over the last 15 minutes, is less than 5 on this server
instance.

ServerHighQueuelLength

The Server H ghQueueLengt h smart rule determines whether an increase exists in the average
thread pool queue length within the local server in which the rule is running, as indicated by the
value of the Thr eadPool Runt i meMBean. QueuelLengt h attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the average value of the Thr eadPool Runt i meMBean. Queuelengt h
attribute over a specific time interval is greater than or equal to a specific high threshold value.

To use this smart rule, specify:

e The sampling rate and retention window of the Thr eadPool Runt i meMBean. QueuelLengt h
attribute.

e High QueueLengt h threshold value

Syntax

W s: Server H ghQueueLengt h("peri od", "duration", queueLengthLimit)

Parameter Description

period Sampling rate for QueueLengt h values, expressed as a St ri ng. For
example, 30s specifies that this metric is sampled every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this parameter.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-44 of A-57

ORACLE Appendix A
Server Scope Smart Rules

Parameter Description
duration Period of time for which collected samples are retained, expressed as a
String.

e The default time unit is seconds.
* The default value is 10m

See retention window for more information about specifying this
parameter.

queuelLengt hLim t Value established as the high threshold value of the QueueLengt h
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 10
queuelLengt hLi mi t 100

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server H ghQueueLengt h("30 seconds","10 m nutes", 100)

This example smart rule:

1. Samples the value of the QueueLengt h metric from the local server instance every 30
seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires the associated action if the following condition
evaluates to t rue:

The average Queuelengt h value, over the last 10 minutes, is greater than or equal to 100
on this server instance.

ServerHighSystemCpulLoadAverage

The Server H ghSyst emCpuLoadAver age smart rule determines whether an increase exists in
the average system CPU load within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the average value of the Syst enCpulLoad attribute of the
java. | ang: t ype=Qper at i ngSyst emMXBean over a specific time interval is greater than or
equal to a specific high threshold.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-45 of A-57

ORACLE’

Appendix A
Server Scope Smart Rules

@® Note

The value of the Syst enCpuLoad metric is platform-specific and is not available on all
platforms. The MXBean attribute from which this metric originates is described at
https://docs. oracle.conl javase/ 8/ docs/jrelapi/ managenent/

ext ensi on/ coni sun/ managenent /

Oper at i ngSyst emXBean. ht m #get Syst enCpuload- - .

To use this smart rule, specify:

* The sampling rate and retention window of the Syst enCpuLoad attribute.
e High Syst enCpulLoad threshold value

Syntax

W s: Server H ghSyst enCpuLoadAver age(" peri od", "duration", systenCpulLoadLinit)

Parameter Description

period Sampling rate for Syst enCpulLoad values, expressed as a St ri ng. For
example, 30s specifies that this metric is sampled every 30 seconds.
e The default time unit is seconds.
* The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.
e The default time unit is seconds.
e The default value is 10m
See retention window for more information about specifying this
parameter.

syst enCpuLoadLi mi t Value established as the high threshold value of the Syst enCpuLoad
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 10
syst enCpuLoadLi mi t 0.8

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server H ghSyst enCpuLoadAver age("30 seconds","10 mi nutes", 0. 8)

This example smart rule:

1. Samples the value of the Syst enCpuLoad metric from the local server instance every 30
seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires the associated action if the following condition
evaluates to true:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-46 of A-57

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--

ORACLE’

Appendix A
Server Scope Smart Rules

The average Syst enCpuLoad value, over the last 10 minutes, is greater than or equal to 0.8
on this server instance.

ServerHighPendingUserRequests

The Ser ver H ghPendi ngUser Request s smart rule determines whether an increase exists in the
number of pending user requests within the local server in which the rule is running, as
indicated by the value of the Thr eadPool Runt i meMBean. Pendi ngUser Request Count attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the average value of the
Thr eadPool Runt i meMBean. Pendi ngUser Request Count attribute over a specific interval is
greater than or equal to a specific threshold value.

To use this smart rule, specify:

e The sampling rate and retention window of the
Thr eadPool Runt i meMBean. Pendi ngUser Request Count attribute.

* High Pendi ngUser Request Count threshold value

Syntax

W s: Server H ghPendi ngUser Request s("period", "duration", pendingRequestsLimit)

Parameter Description

period Sampling rate for Pendi ngUser Request Count values, expressed as a
St ring. For example, 30s specifies that this metric is sampled every 30
seconds.

e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.
e The default time unit is seconds.
* The default value is 10m

See retention window for more information about specifying this
parameter.

pendi ngRequest sLi ni t Value established as the high threshold value of the
Pendi ngUser Request Count attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 10

pendi ngRequest sLi m t 100

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-47 of A-57

ORACLE’

Appendix A
Server Scope Smart Rules

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server H ghPendi ngUser Request s("30 seconds”,"10 mi nutes", 100)

This example smart rule:

1. Samples the value of the Pendi ngUser Request Count metric from the local server instance
every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires the associated action if the following condition
evaluates to t r ue:

The average Pendi ngUser Request Count value, over the last 10 minutes, is greater than or
equal to 100 on this server instance.

ServerLowSystemCpuLoadAverage

The Ser ver LowSyst enCpuLoadAver age smart rule determines whether a reduction exists in the
average system CPU load within the local server in which the rule is running.
You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the average value of the Syst enCpuLoad metric of the
java. l ang: t ype=Qper at i ngSyst emMXBean over a specific interval is less than the specified
low threshold value.

@® Note

The value of the Syst enCpuLoad metric is platform-specific and is not available on all
platforms. The MXBean attribute from which this metric originates is described at
https://docs. oracle.conijavase/ 8/ docs/jre/ api/ managenent /

ext ensi on/ cont sun/ managenent /

Oper at i ngSyst emvXBean. ht ml #get Syst enCpulLoad- - .

To use this smart rule, specify:

* The sampling rate and retention window of the Syst enCpuLoad attribute.

* Low Syst enCpulLoad threshold value

Syntax

W s: Server LowSyst enCpuLoadAver age(" period", "duration", systenCpuLoadLimit)

Parameter Description

period Sampling rate for Syst enCpulLoad values, expressed as a St ri ng. For
example, 30s specifies that this metric is sampled every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this parameter.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-48 of A-57

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--

ORACLE’

Appendix A
Server Scope Smart Rules

Parameter Description
duration Period of time for which collected samples are retained, expressed as a
String.

e The default time unit is seconds.
* The default value is 10m

See retention window for more information about specifying this
parameter.

syst enCpuLoadLi mi t Value established as the low threshold value of the Syst enCpuLoad
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 15
syst enCpuLoadLi mi t 0.8

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server LowSyst enCpuLoadAver age("30 seconds","15 mi nutes", 0. 8)

This example smart rule:

1. Samples the value of the Syst enCpuLoad metric from the local server instance every 30
seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, fires the associated action if the following condition
evaluates to t rue:

The average Syst enCpulLoad value, over the last 15 minutes, is less than 0.8 on this server
instance.

ServerHighHeapFreePercent

The Server Hi ghHeapFr eePer cent smart rule determines whether an increase in heap stress
exists within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the average JVMRunt i neMBean. HeapFr eePer cent value over the
specific time interval is greater than or equal to the specified high threshold value.

To use this smart rule, specify:

e The sampling rate and retention window of the JVMRunt i neMBean. HeapFr eePer cent
attribute.

* High JVM free heap percentage threshold value

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-49 of A-57

ORACLE’

Syntax

Appendix A
Server Scope Smart Rules

w s: Server H ghHeapFr eePer cent ("period", "duration", percentFreeLimt)

Parameter

Description

period

Sampling rate for JVM free heap percentage values, expressed as a

St ring. For example, 30s specifies that this metric is sampled every 30
seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this parameter.

duration

Period of time for which collected samples are retained, expressed as a
String.

e The default time unit is seconds.

e The default value is 10m

See retention window for more information about specifying this
parameter.

percent FreelLim t

Value established as the high threshold of the JVM free heap
percentage, specified as a f | oat value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 10
per cent FreelLim t 60

The smatrt rule that uses the preceding parameters is expressed as follows:

W s: Server H ghHeapFr eePer cent ("30 seconds”,"10 m nutes", 60)

This example smart rule:

1. Samples the value of the JVM free heap percentage from the local server instance every
30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires the associated action if the following condition

evaluates to t r ue:

The average JVM free heap value, over the last 10 minutes, is greater than or equal to 60
per cent on this server instance.

ServerHighStuckThreads

The Ser ver H ghSt uckThr eads smart rule determines whether an increase exists on server
stress based on the average number of stuck threads within the local server in which the rule is
running, as indicated by the value of the Thr eadPool Runt i neMBean. St uckThr eadCount

attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-50 of A-57

ORACLE’

Appendix A
Server Scope Smart Rules

Description

This rule returns t r ue if the average value of the Thr eadPool Runt i meMBean. St uckThr eadCount
attribute over a specific time interval is greater than or equal to the specified threshold value.

To use this smart rule, specify:

e The sampling rate and retention window of the
Thr eadPool Runt i meMBean. St uckThr eadCount attribute.

e High St uckThr eadCount threshold value

Syntax

W s: Server H ghSt uckThreads("period", "duration", stuckThreadsLimt)

Parameter Description

period Sampling rate for St uckThr eadCount values, expressed as a Stri ng.
For example, 30s specifies that this metric is sampled every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.
e The default time unit is seconds.
* The default value is 10m

See retention window for more information about specifying this
parameter.

stuckThreadsLi nit Value established as the high threshold value of the
St uckThr eadCount attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 10
stuckThreadsLi ni t 5

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server H ghSt uckThreads("30 seconds","10 m nutes", 5)

This example smart rule:

1. Samples the value of the St uckThr eadCount metric from the local server instance every 30
seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires the associated action if the following condition
evaluates to t r ue:

The average St uckThr eadCount value, over the last 10 minutes, is greater than or equal to
5 on this server instance.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-51 of A-57

ORACLE Appendix A
Server Scope Smart Rules

ServerHighProcessCpuLoadAverage

The Ser ver H ghProcessCpuLoadAver age smart rule determines whether an decrease exists in
the average system load within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the average ProcessCpuLoad value of the
java. | ang: t ype=Qper at i ngSyst emMXBean over the specified interval is greater than or equal
to the specified threshold.

@® Note

The value of the ProcessCpuLoad metric is platform-specific and is not available on all
platforms. The MXBean attribute from which this metric originates is described at
https://docs. oracle.con javase/ 8/ docs/jre/ api / managenent/

ext ensi on/ com sun/ managenent /

Qper at i ngSyst emvXBean. ht ni #get Pr ocessCpuLoad- - .

To use this smart rule, specify:

¢ The sampling rate and retention window of the ProcessCpuLoad attribute.

e High ProcessCpuLoad threshold value

Syntax

W s: Server H ghProcessCpuLoadAver age("period", "duration", processCpuLoadLinit)

Parameter Description

period Sampling rate for Pr ocessCpulLoad values, expressed as a St ri ng. For
example, 30s specifies that this metric is sampled every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.
e The default time unit is seconds.
e The default value is 10m
See retention window for more information about specifying this
parameter.

processCpuLoadLi m t Value established as the high threshold value of the Pr ocessCpulLoad
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-52 of A-57

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--

ORACLE’

Appendix A
Server Scope Smart Rules

Parameter Value
period 30
duration 5
processCpulLoadLi mit 0.8

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server H ghProcessCpuLoadAver age("30 seconds","5 minutes”, 0. 8)

This example smart rule:

1. Samples the value of the ProcessCpuLoad metric from the local server instance every 30
seconds over a retention window of 5 minutes.

2. Atthe end of the retention window, fires the associated action if the following condition
evaluates to t rue:

The average ProcessCpulLoad value, over the last 5 minutes, is greater than or equal to 0.8
on this server instance.

ServerLowSystemLoadAverage

The Server LowSyst enLoadAver age smart rule determines whether a reduction exists in the
average system load within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the value of the Syst enmLoadAver age metric of the
java. | ang: t ype=Qper at i ngSyst emMXBean over a specified interval is less than the specified
low threshold value.

@® Note

The value of the Syst emLoadAver age metric is platform-specific and is not available on
all platforms. The MXBean attribute from which this metric originates is described at
http://docs. oracle.con javase/ 8/ docs/ api/javall ang/ managenent/

Qper at i ngSyst emVXBean. ht m #get Syst em_oadAver age- - .

To use this smart rule, specify:

* The sampling rate and retention window of the Syst em_oadAver age attribute.

e Low Syst enLoadAver age threshold value

Syntax

W s: Server LowSyst enmLoadAver age("period", "duration", |oadLimt)

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-53 of A-57

http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--
http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--

ORACLE Appendix A
Server Scope Smart Rules

Parameter Description

period Sampling rate for Syst enLoadAver age values, expressed as a St ri ng.
For example, 30s specifies that this metric is sampled every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

| oadLi m t Value established as the low threshold value of the
Syst em_oadAver age attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 15
[oadLim t 0.2

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server LowSyst emLoadAver age("30 seconds","15 m nutes", 0. 2)

This example smart rule:

1. Samples the value of the Syst enmLoadAver age metric from the local server instance every
30 seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, fires the associated action if the following condition
evaluates to t rue:

The average Syst enlLoadAver age value, over the last 15 minutes, is less than 0.2 on this
server instance.

ServerLowHeapFreePercent

The Server LowHeapFr eePer cent smart rule determines whether an increase exists in heap
stress within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the average JVMRunt i neMBean. HeapFr eePer cent value over the
specified time interval is less than the specified low threshold value.

To use this smatrt rule, specify:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-54 of A-57

ORACLE Appendix A
Server Scope Smart Rules

e The sampling rate and retention window of the JVMRunt i neMBean. HeapFr eePer cent
attribute.

* Low Java free heap percentage threshold value

Syntax

W s: Server LowHeapFr eePer cent ("period", "duration", percentFreeLinit)

Parameter Description

period Sampling rate for Java free heap percentage values, expressed as a
St ring. For example, 30s specifies that this metric is sampled every 30
seconds.

e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

per cent FreeLim t Value established as the low threshold value of the Java free heap
percentage.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 5

per cent FreeLim t 20

The smatrt rule that uses the preceding parameters is expressed as follows:

w s: Server LowHeapFr eePer cent ("30 seconds","5 ninutes", 20)

This example smart rule:

1. Samples the value of the Java free heap percentage from the local server instance every
30 seconds over a retention window of 5 minutes.

2. Atthe end of the retention window, fires the associated action if the following condition
evaluates to t r ue:

The average Java free heap percentage value, over the last 5 minutes, is less than 20 per
cent on this server instance.

ServerHighldleThreads

The Server H ghl dl eThr eads smart rule determines whether a reduction in average system
load exists within the local server in which the rule is running, by measuring an increase in idle
threads as indicated by the Thr eadPool Runt i meMBean. Execut eThr eadl dl eCount attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-55 of A-57

ORACLE’

Appendix A
Server Scope Smart Rules

Group: Server

Description

This rule returns t r ue if the average value of the
Thr eadPool Runt i mreMBean. Execut eThr eadl dl eCount attribute over the specified retention
window is greater than or equal to the specified threshold value.

To use this smart rule, specify:

 The sampling rate and retention window of the
Thr eadPool Runt i meMBean. Execut eThr eadl dl eCount attribute.

e High Execut eThr eadl dl eCount threshold value

Syntax

w s: Server Hi ghl dl eThr eads("period", "duration", idleThreadsLinit)

Parameter Description

period Sampling rate for Execut eThr eadl dl eCount values, expressed as a
St ri ng. For example, 30s specifies that this metric is sampled every 30
seconds.

e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

i dl eThreadsLimt Value established as the high threshold value of the
Execut eThr eadl dl eCount attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
peri od 30
duration 10
i dl eThreadsLimt 20

The smart rule that uses the preceding parameters is expressed as follows:

w s: Server Hi ghl dl eThreads("30 seconds", " 10 m nutes", 20)

This example smart rule:

1. Samples the value of the Execut eThr eadl dl eCount metric from the local server instance
every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires the associated action if the following condition
evaluates to true:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-56 of A-57

ORACLE Appendix A
Server Scope Smart Rules

The average Execut eThr eadl dl eCount value, over the last 10 minutes, is greater than or
equal to 20 on this server instance.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix A-57 of A-57

WLDF Beans and Functions Reference

The WebLogic Diagnostics Framework (WLDF) provides a set of beans and functions that can
be used in collected metrics policy expressions to obtain access to common WebLogic Server
JMX data sources.

WLDF Beans Reference

WLDF includes several beans that can be used in collected metrics policy expressions to
access statistics that provide information about active cluster objects, MBeans, instrument
event fields, and more.

clusterRuntime
The cl ust er Runt i me bean provides cluster-wide access to statistics for active clusters in the
domain.
Attributes
Name Description
clusters Provides a map of beans that represent active cluster objects within the
domain, keyed by cluster name.
Type:interface java.util.Mp
name The name of the cluster.
Type: class java.lang. String
Methods
Name Description
query Performs a query for a set of MBean attribute values based on an Object Name
pattern and an attribute expression.
Parameters:

e onPattern

A valid JMX Object Name, or Object Name pattern.
e attributePattern

A EL expression that is used to retrieve a value from each matching MBean
instance, where the expression is an attribute expression relative to each
MBean.

For example, if the MBean is the Ser ver Runt i mneMBean, the expression
' OpenSocket sCurrent Count' obtains the value of the
OpenSocket sCurrent Count attribute. By contrast, ' Heal t hSt ate. St at e’
obtains the St at e value of the Heal t hSt at e child object.
Return values:
Returns a set of values matching the specified ObjectName pattern and attribute

expression. These results can be fed to the wis:extract function for maintaining an
in-memory history of values.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-1 of B-10

http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Appendix B
WLDF Beans Reference

Description

Provides a map of beans that represent active cluster objects within the domain.

Obtains a single attribute value from an MBean source.
Parameters:
e obj ectNanePattern

A JMX ObjectName or ObjectName pattern that must resolve to a single
MBean instance.

- attribute
The MBean attribute value to obtain.

Returns Values:

Returns the attribute value matching the specified JIMX ObjectName.

ORACLE
Name
getC usters
getAttribute
domainRuntime

The domai nRunt i me bean provides access to MBeans registered in the Domain Runtime

MBean Server.

Attributes

Name

Description

donmi n

The root Domai nRunt i meMBean in the Domain Runtime MBean Server.

name

The bean name.
Type: class java.lang. String

server Runti nes

Returns the array of active Ser ver Runt i mreMBean instances in the domain.
Type: cl ass webl ogi c. managenent . runti me. Server Runt i meMBean[]

Methods

Name

Description

query

Performs a query for a set of MBean attribute values based on an Object Name pattern
and an attribute expression.

Parameters:

onPattern

A valid JMX Object Name, or Object Name pattern)

attributePattern

A EL expression that is used to retrieve a value from each matching MBean
instance, where the expression is an attribute expression relative to each MBean.
For example, if the MBean is the Ser ver Runt i neMBean, the expression

' OpenSocket sCurrent Count' obtains the value of the

OpenSocket sCurrent Count attribute. By contrast, ' Heal t hSt at e. St at e'
obtains the St at e value of the Heal t hSt at e child object.

Return values:

Returns a set of values matching the specified Object Name pattern and attribute
expression. These results can be fed to the wis:extract function for maintaining an in-
memory history of values.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-2 of B-10

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

ORACLE’

instrumentationEvent

Appendix B
WLDF Beans Reference

Name

Description

query

Executes a JMX query against a set of targets within the Domain Runtime MBean
Server.

Parameters:
e targets
A list of server or cluster targets specified as a comma-delimited St ri ng
e onPattern
A valid JMX Object Name or Object Name pattern
e expression
A EL expression that is used to retrieve a value on each matching MBean instance
Return values:

Returns a set of values matching the specified Object Name pattern and attribute
expression, across the specified target names.

The target names can be a valid WebLogic Server instance or cluster in the domain.

These results can be fed to the wis:extract function for maintaining an in-memory history
of values.

| ookupServe
rRuntime

Returns the Ser ver Runt i neMBean for the named server instance, or nul | if not
specified.
Parameter:
e serverName
The name of the Ser ver Runt i meMBean to look up
Return values:
Returns a value matching the specified Object Name pattern and attribute expression.

get Attri but
e

Obtains a single attribute value from an MBean source.
Parameters:
» objectNanePattern

A JMX ObjectName or ObjectName pattern that must resolve to a single MBean
instance.

- attribute
The MBean attribute value to obtain.

Returns Values:

Returns the attribute value matching the specified JMX ObjectName.

The i nstrunent ati onEvent bean provides access to instrumentation event fields in
instrumentation policy expressions.

Attributes

Name Description

timeStanp The timestamp value associated with the event creation.
Type: cl ass |ava.lang. Long

contextld The diagnostic context ID associated with the instrumentation event.
Type: cl ass java.lang. String

txld The JTA transaction ID associated with the instrumentation event.

Type: cl ass java.lang. String

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-3 of B-10

http://docs.oracle.com/javase/8/docs/api/java/lang/Long.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

ORACLE’

Appendix B
WLDF Beans Reference

Name Description
userld The user name associated with the request for which the instrumentation event is
generated.
Type: class java.lang. String
event Type The instrumentation event type.
Type: cl ass java.lang. String
domai n The name of the current domain.
Type: cl ass java.lang. String
server The name of the server on which the instrumentation event occurred.
Type: cl ass java.lang. String
scope The instrumentation scope for this event.
Type: cl ass java.lang. String
modul e The name of the module in which the instrumentation event rule is defined.
Type: class java.lang. String
noni t or The instrumentation monitor that generated the instrumentation event.
Type: cl ass java.lang. String
fil eNane The source file name containing the code that generated the instrumentation event.
Type: cl ass java.lang. String
I i neNurmber The line number in the source file where the instrumentation event originated.
Type: cl ass java.lang. | nteger
cl assName The class name where the instrumentation event originated.
Type: cl ass java.lang. String
met hodNare The method name where the instrumentation event originated.
Type: class java.lang. String
met hodDesc The description of the method that generated the instrumentation event.
Type: cl ass java.lang. String
argunent s The arguments passed into the method that generated the instrumentation event.

Type: cl ass java.lang. String

returnVal ue

The return value for the method that generated the instrumentation event.
Type: cl ass java.lang. String

payl oad

The payload associated with the instrumentation event.
Type cl ass java.l ang. Qbj ect

cont ext Payl oad

The context payload associated with the instrumentation event.
Type: cl ass java.lang. String

dyeVect or The dye vector associated with the instrumentation event.
Type: cl ass java.lang. Long

t hr eadNane The name of the thread that generated the instrumentation event.
Type: cl ass java.lang. String

Example

The following are examples of using the i nstrunent ati onEvent bean in an EL policy
expression to access instrumentation event fields:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-4 of B-10

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Long.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

ORACLE’

Appendix B
WLDF Beans Reference

i nstrunmentati onEvent. monitor == ' Servl et _Around_Service'

i nstrunentationEvent. getMnitor() == 'Servlet_Around_Service'

i nstrunentati onEvent. monitor.contains('Servliet ')

Used in log policy expressions, the | og bean provides access to log message fields.

Attributes
Name Description
timestanp The timestamp indicating when the log message was created.

Type: cl ass java.lang.Long

formattedDat e

The formatted date string.
Type: class java.lang. String

messagel d

The message ID of the log entry.
Type: class java.lang. String

machi neNane

The machine name on which the log entry was created.
Type: class java.lang. String

server Nane The server name on which the log entry was created.
Type: class java.lang. String

t hr eadNane The thread name in which the logged event was created.
Type:class java.lang. String

userld The ID of the user who generated the logged event.

Type: class java.lang. String

transactionld

The JTA transaction ID associated with the logged event.
Type: class java.lang. String

severity

The severity level for the log message.
Type: cl ass java.lang. | nt eger

severityString

The severity string for the log message.
Type: class java.lang. String

subsystem The name of the subsystem that generated the log message.
Type: class java.lang. String
| ogMessage The message content of the log entry.

Type: class java.lang. String

di agnosti cContext | d

The diagnostic context ID associated with the logged event.
Type: class java.lang. String

suppl enental Attribu
tes

The name-value pairs of supplemental attributes that are included in the log
entries.

Type: class java. util.Properties

Example

The following are examples of using the | og bean in an EL policy expression to access log

message fields:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-5 of B-10

http://docs.oracle.com/javase/8/docs/api/java/lang/Long.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html

ORACLE’

platform

Appendix B
WLDF Beans Reference

| 0og. | ogMessage. contai ns("Part of a nmessage")

| 0og. get LogMessage().contains("Part of a message")

| 0og. nessagel d == " BEA-000365"

| 0og. nessagel d. endsWt h(' 000365')

The pl at f or mbean obtain values from MBeans that are exposed through the JVM's platform
MBean server. (Note that WebLogic Server uses the JVM's platform MBean server to contain
the WebLogic run-time MBeans by default. As such, the platform MBean server provides
access to platform MXBeans, WebLogic run-time MBeans, and WebLogic configuration
MBeans that are on a single server instance.)

Attributes

Name Description

nane The name of the platform bean (" pl at f or i)

Methods

Name Description

query Performs a query for a set of MBean attribute values based on an Object Name

pattern and an attribute expression.
Parameters:
« onPattern

A valid JIMX Object Name, or Object Name pattern)
o attributePattern

A EL expression that is used to retrieve a value from each matching MBean
instance, where the expression is an attribute expression relative to each
MBean.

For example, if the MBean is the Ser ver Runt i meMBean, the expression
' OpenSocket sCurrent Count' obtains the value of the
OpenSocket sCur r ent Count attribute. By contrast, ' Heal t hSt at e. St at e’
obtains the St at e value of the Heal t hSt at e child object.
Return values:
A set of values matching the specified Object Name pattern and attribute

expression. These results can be fed to the wis:extract function for maintaining an
in-memory history of values.

getAttribute

Obtains a single attribute value from an MBean source.
Parameters:
« objectNanePattern

A JMX ObjectName or ObjectName pattern that must resolve to a single
MBean instance.

- attribute
The MBean attribute value to obtain.

Returns Values:

Returns the attribute value matching the specified JIMX ObjectName.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-6 of B-10

ORACLE’

Appendix B
WLDF Beans Reference

The resour ce bean provides access to beans and state information within a diagnostic system
module deployment.Access is restricted to policies that are configured within the same
diagnostic system module. That is, this bean cannot obtain access to beans and state
information from policies that are configured in other diagnostic system modules. This bean is

Description

A map of currently configured policies within the same diagnostic system module
deployment.

Type:interface java.util.Nap

resource
used for policy-chaining.
Attributes
Name
wat ches
runtime

The runti ne bean provides access to MBeans registered in the WebLogic Server Runtime

MBean Server.

Attributes

Name

Description

domai n

The root Donai nMBean in the local WebLogic Server Runtime MBean Server.
Type: i nterface webl ogi c. managenent . confi gurati on. Donai nMBean

name

The bean name.
Type: cl ass java.lang. String

server Runti ne

The root Ser ver Runt i meMBean in the local WebLogic Server Runtime MBean
Server.

Type: interface webl ogi c. managenent . runti me. Server Runt i meMBean

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-7 of B-10

http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

ORACLE’

Functions Reference

Appendix B
Functions Reference

Methods
Name Description
query Performs a query for a set of MBean attribute values based on an Object Name

pattern and an attribute expression.
Parameters:
< onPattern

A valid JMX Object Name, or Object Name pattern)
e attributePattern

A EL expression that is used to retrieve a value from each matching MBean
instance, where the expression is an attribute expression relative to each
MBean.

For example, if the MBean is the Ser ver Runt i neMBean, the expression
" OpenSocket sCurrent Count' obtains the value of the
OpenSocket sCur rent Count attribute. By contrast, ' Heal t hSt at e. St at e
obtains the St at e value of the Heal t hSt at e child object.
Return values:
A set of values matching the specified Object Name pattern and attribute

expression. These results can be fed to the wis:extract function for maintaining an
in-memory history of values.

getAttribute

Obtains a single attribute value from an MBean source.
Parameters:
e objectNanePattern

A JMX ObjectName or ObjectName pattern that must resolve to a single
MBean instance.

e attribute
The MBean attribute value to obtain.

Returns Values:

Returns the attribute value matching the specified JIMX ObjectName.

WLDF includes a set of functions that can be used in policy expressions to simplify the
extraction or querying of data.

wis:tableChanges

The w s: t abl eChanges function takes a table of input values and generates an output table of
difference vectors, one for each input vector.

This function throws an | | | egal Ar gunent Except i on if the input either:

e |s not a two-dimensional table

e Contains non-numeric values

Parameters
Name Description
i nput Tabl e The input table of numeric values, where each row is typically a time series of

values from the same metric instance.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-8 of B-10

ORACLE’

Appendix B
Functions Reference

wls:tableAverages

wls:extract

The w s: t abl eAver ages function performs a matrix reduction on an input table of values,
computing the average of each row in the table and producing a vector of averages, one for
each row in the table. Typically each row in the table represents a time series of values from a
particular metric instance.

This function throws an | | | egal Ar gunent Except i on if the input either:

e |s not a two-dimensional table

» Contains non-numeric values

Parameters
Name Description
val uesTabl e The input table of numeric values, where each row is typically a time series of

values from the same metric instance.

The w s: extract function extracts a table of time series from a specified set of input sources,
based on a specified sampling rate schedule and time window. The input source can be one of
the following:

e The output from a quer y() operation from a JMX bean. For example:
W s.runtine. query(' com bea: Type=Servl et Runtine, *', 'ExecutionTi meAverage')
e An EL expression, as a Stri ng. For example:

w s. runtine. JVMRunt i me. heapFr eePer cent

Parameters

Name Decription

i nput Expr essi on The bean metric to be sampled.

schedul e The sampling rate of the metric, specified as a string, in hours, minutes, or seconds
(the default).

duration The required sampling window of the metric, specified as a string, in hours,
minutes, or seconds (the default)

The schedul e and dur ati on parameters can be specified in seconds, minutes, or hours, and
are specified as strings using the following syntax:

anount [uni t]
In the preceding syntax:

e amount represents an integer.

* [unit] represents seconds, m nut es, or hour s. Each can be abbreviated to the first letter.
For example: seconds can be abbreviated to s.

* You may include a space character between anount and uni t.

For example, any of the following can be used to specify five seconds:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-9 of B-10

ORACLE Appendix B
Functions Reference

e b5seconds

e b5 sec

e b5s

e b5snds
wls:average

The w s: aver age function computes an average value based on set of numeric input values.
This function returns the scalar average of the input vector, or Doubl e. NaN if the input is empty.
If the input contains any non-numeric values, an | | | egal Ar gurrent Except i on is thrown.

@® Note

The w s: aver age function is different from the EL-provided aver age() operation.

Parameters

Name Description

i nput Val ues A vector of numeric input values
wls:changes

The w s: changes method takes a vector of input values of size n and produces a vector of (at
most) n-1 differences between successive values. For example, if the input vector is { 3, 2,
5, 3, 7 },theresulting vectoris{ 1, -1, 3, -2, 4 }.

Note the following:

e ltis possible for a sequence to contain Doubl e. NaN, which are skipped in subsequent
computations.

e If an input value is non-numeric, an | | | egal Ar gument Except i on is thrown.

Parameters
Name Description
i nput Val ues A input vector of numeric values

wis:aliveServersCount

The w s: al i veServer sCount function is a helper function that counts the number of Managed
Server instances that are in the RUNNI NG state in a given cluster.

Parameters
Name Description
cl ust er Narre The name of the cluster containing the running server instances to be counted.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix B-10 of B-10

WLDF Query Language

The WebLogic Diagnostics Framework (WLDF) includes a query language for constructing
watch rule expressions, Data Accessor query expressions, and log filter expressions.The

syntax is a small and simplified subset of SQL syntax.

Components of a Query Expression

A query expression may include operators, literals, and variables.The supported variables

differ for each type of expression.

e Supported Operators

e Supported Numeric Constants and String Literals

e About Variables in Expressions

The query language is case-sensitive.

Supported Operators

The WLDF query language supports a set of operators and, for each operator, corresponding
operator and operand types.These operators, and corresponding types and operands, are

listed and described in Table C-1.

Table C-1 WLDF Query Language Operators

Operator Operator Type Supported Operand Definition
Types
AND Logical binary Boolean Evaluates to true when both
expressions are true.
OR Logical binary Boolean Evaluates to true when either
expression is true.
NOT Logical unary Boolean Evaluates to true when the
expression is not true.
& Bitwise binary Numeric, Performs the bitwise AND function
Dye flag on each parallel pair of bits in each

operand. If both operand bits are 1,
the & function sets the resulting bit
to 1. Otherwise, the resulting bit is

set to 0.

Examples of both the & and the |
operators are:

1010 & 0010 = 0010
1010 | 0001 = 1011
(1010 & (1100 | 1101)) = 1000

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-1 of C-10

ORACLE Appendix C
Operator Precedence

Table C-1 (Cont.) WLDF Query Language Operators

Operator Operator Type Supported Operand Definition
Types

| Bitwise binary Numeric, Performs the bitwise OR function
Dye flag on each parallel pair of bits in each

operand. If either operand bit is 1,
the | function sets the resulting bit
to 1. Otherwise, the resulting bit is
set to 0.

For examples, see the entry for the
bitwise & operator, above.

= Relational Numeric, String Equals

1= Relational Numeric Not equals

< Relational Numeric Less than

> Relational Numeric Greater than

<= Relational Numeric Less than or equals

>= Relational Numeric Greater than or equals

LIKE Match String Evaluates to true when a character

string matches a specified pattern
that can include wildcards.

LIKE supports two wildcard
characters:

A percent sign (%) matches any
string of zero or more characters
A period (.) matches any single
character

MATCHES Match String Evaluates to true when a target
string matches the regular
expression pattern in the operand
String.

IN Search String Evaluates to true when the value of
a variable exists in a predefined
set, for example:

SUBSYSTEM IN (‘A','B")

Operator Precedence

The WLDF query language has six levels of precedence among its operators.

The following list shows the levels of precedence among operators, from the highest
precedence to the lowest. Operators listed on the same line have equivalent precedence:

L ()

2. NOT

3. &

4. ==, <, >, <=, >=, LIKE, MATCHES,IN
5. AND

6. OR

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix C-2 of C-10

ORACLE Appendix C
Numeric Relational Operations Supported on String Column Types

Numeric Relational Operations Supported on String Column
Types

Numeric relational operations can be performed on String column types when they hold
numeric values.For example, if STATUS is a String type, while performing relational operations
with a numeric operand, the column value is treated as a numeric value.

For instance, in the following comparisons, the query evaluator attempts to convert the string
value to appropriate numeric value before comparison:

STATUS =100
STATUS =100
STATUS < 100
STATUS <= 100
STATUS > 100
STATUS >= 100

When the string value cannot be converted to a numeric value, the query fails.

Supported Numeric Constants and String Literals

The WLDF query language has two sets of rules: one set for numeric constants, and another
for string literals.

The rules for numeric constants are as follows:

* Numeric literals can be integers or floating point numbers.

* Numeric literals are specified the same as in Java. Some examples of numeric literals are
2, 2.0, 12.856f, 2.1934E-4, 123456L and 2.0D.

The rules for string literals are as follows:

e String literals must be enclosed in single quotes.
* A percent character (%) can be used as a wildcard inside string literals.
e Anunderscore character () can be used as a wildcard to stand for any single character.

A backslash character (\) can be used to escape special characters, such as a quote (') or
a percent character (%).

» For watch rule expressions, you can use comparison operators to specify threshold values
for String, Integer, Long, Double, Boolean literals.

e The relational operators do a lexical comparison for Strings. See the documentation for the
java.lang.String.compareTo(String str) method.

About Variables in Expressions

Variables represent the dynamic portion of a query expression that is evaluated at run time.You
must use variables that are appropriate for the type of expression you are constructing, as
explained in the following sections:

e Creating Policy Expressions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix C-3 of C-10

ORACLE Appendix C
Creating Policy Expressions

* Creating Data Accessor Queries

» Creating Log Filter Expressions

® Note

When specifying a wildcard pattern in a variable for a policy expression that matches
custom MBean ObjectName instances, make sure the pattern is sufficiently explicit. If
you exclude an MBean type name and use an ambiguous instance pattern, the
following may result:

e Only WebLogic Server runtime MBean instances are matched to the pattern.
e The desired custom MBean instances are ignored.

For example, the following ObjectName pattern does not explicitly declare a type and
uses an ambiguous ObjectName pattern that can match a WebLogic Server runtime
MBean instance:

${ ServerRunti me//com b*: Type=Server*, *}

The preceding pattern matches the WebLogic Server runtime MBean instances, and
causes any custom MBeans matching the same pattern to be ignored.

Creating Policy Expressions

You can create policies based on log events, instrumentation events, and harvested attributes.
For complete documentation about configuring and using WLDF policies, see:

* Configuring Policies and Actions

e Configuring Policies

The variables supported for creating the expressions are different for each type of policy, as
described in the following sections:

Creating Log Event Policy Expressions

A log event policy expression is based upon the attributes of a log message from the server
log.

Variable names for log message attributes are listed and explained in Table C-2:

Table C-2 Variable Names for Log Event Policy Expressions

Variable Description Data Type
CONTEXTI D The request ID propagated with the request. String
DATE Date when the message was created. String
MACH NE Name of machine that generated the log message. String
MESSAGE Message content of the log message. String
M5E D ID of the log message (usually starts with "BEA="). String
RECORDI D The number of the record in the log. Long
SERVER Name of server that generated the log message. String

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix C-4 of C-10

ORACLE’

Creating Instrumentation Event Policy Expressions

Appendix C
Creating Policy Expressions

Table C-2 (Cont.) Variable Names for Log Event Policy Expressions

Variable Description Data Type

SEVERI TY Severity of log message. Values are | nf o, Not i ce, String
Warning, Error,Critical,Alert,and
Ener gency.

SUBSYTEM Name of subsystem emitting the log message. String

THREAD Name of thread that generated the log message. String

TI MESTAMP Timestamp when the log message was created. Long

TXI D JTA transaction ID of thread that generated the log String
message.

USERI D ID of the user that generated the log message. String

An example log event policy expression is:

(SEVERITY = 'Warning') AND (MSG D = ' BEA-320012')

An instrumentation event policy expression is based upon attributes of a data record created
by a diagnostic monitor action.

Variable names for instrumentation data record attributes are listed and explained in Table C-3:

Table C-3 Variable Names for Instrumentation Event Policy Expressions

Variable Description Data Type
ARGUMENTS Arguments passed to the method that was invoked. String
CLASSNAME Class name of joinpoint. String
CONTEXTI D Diagnostic context ID of instrumentation event. String
CTXPAYLOAD The context payload associated with this request. String
DOVAI N Name of domain. String
DYES Dyes associated with this request. Long
FI LENAMVE Source file name. String
LI NENUM Line number in source file. Integer
VETHODNAVE Method name of joinpoint. String
METHODDSC Method arguments of joinpoint. String
MODULE Name of the diagnostic module. String
MONI TOR Name of the monitor. String
PAYLOAD Payload of instrumentation event. String
RECORDI D The number of the record in the log. Long
RETVAL Return value of joinpoint. String
SCOPE Name of instrumentation scope. String
SERVER Name of server that created the instrumentation String

event.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-5 of C-10

ORACLE

Appendix C
Creating Policy Expressions

Table C-3 (Cont.) Variable Names for Instrumentation Event Policy Expressions
]

Variable Description Data Type

TI MESTAMP Timestamp when the instrumentation event was Long
created.

TXI D JTA transaction ID of thread that created the String
instrumentation event.

TYPE Type of monitor. String

USERI D ID of the user that created the instrumentation String
event.

An example instrumentation event data policy expression is:

(USERID = 'webl ogic')

Creating Harvester Policy Expressions

A Harvester policy expression is based upon one or more harvestable MBean attributes. The
expression can specify an MBean type, an instance, an attribute, or an instance and an
attribute.

Instance-based and type-based expressions can contain an optional namespace component,
which is the namespace of the metric being monitored by the policy. It can be set to either
Server Runtime or DomainRuntime. If omitted, it defaults to ServerRuntime.

If the namespace component is included and set to DomainRuntime, you should limit the
usage to monitoring only DomainRuntime-specific MBeans, such as the
ServerLifeCycleRuntimeMBean. Monitoring remote Managed Server MBeans through the
DomainRuntime MBeanServer is possible, but is discouraged for performance reasons. It is a
best practice to use the resident policy in each Managed Server to monitor metrics related to
that Managed Server instance.

You can also use wildcards in instance names in Harvester policy expressions, as well as
specify complex attributes in Harvester policy expressions. See Using Wildcards in

Expressions.

The syntax for constructing a Harvester policy expression is as follows:
» To specify an attribute of all instances of a type, use the following syntax:

${namespace//[type_nane]//attri bute_nane}

e To specify an attribute of an instance of a WebLogic type, use the following syntax:

${com bea: nanespace/ /i nstance_nane//attri but e_nane}

e To specify an attribute of an instance of a custom MBean type, use the following syntax:

${domai n_nane: i nst ance_nane//attri but e_nane}

@® Note

The domain_name is not required for a WebLogic Server domain hame.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix C-6 of C-10

ORACLE Appendix C
Creating Data Accessor Queries

The expression must include the complete MBean object name, as shown in the following
example:

${com bea: Name=Har vest er Runt i me, Locat i on=nyser ver, Type=Har vest er Runt i ne,
Server Runti me=nyserver// Tot al Sanpl i ngCycl es} > 10

Creating Data Accessor Queries

Use the WLDF query language with the Data Accessor component to retrieve data from data
stores, including server logs, HTTP logs, and harvested metrics.The variables used to build a
Data Accessor query are based on the column names in the data store from which you want to
extract data.

A Data Accessor query contains the following:

* The logical name of a data store, as described in Data Store Logical Names.

e Optionally, the name(s) of one or more columns from which to retrieve data, as described
in Data Store Column Names.

When there is a match, all columns of matching rows are returned.

Data Store Logical Names

The logical name for a data store must be unique. It denotes a specific data store available on
the server. The logical name consists of a log type keyword followed by zero or more identifiers
separated by the forward-slash (/) delimiter. For example, the logical name of the server log
data store is simply ServerLog. However, other log types may require additional identifiers, as
shown in Table C-4.

Table C-4 Naming Conventions for Log Types
]

Log Type Optional Example
Identifiers

ConnectorLog The JNDI name of Connect or Log/ ei s/
the connection 900ei saBl ackBoxXATxConnect or JNDI NAMVE
factory In this example, ei s/

900ei saBl ackBoxXATxConnect or JINDI NAME is
the JNDI name of the connection factory specified in
the webl ogi c-ra. xm deployment descriptor.

DataSourcelLog None Dat aSour celLog

DomainLog None Domai nLog

EventsDataArchive None Event sDat aAr chi ve

HarvestedDataArchive None Har vest edDat aAr chi ve

HTTPAccessLog Virtual host name HTTPAccessLog — For the default web server's
access log.

HTTPAccessLog/ MyVi rt ual Host — For the
Virtual host named MyVirtualHost deployed to the
current server.

Note: In the case of HTTPAccessLog logs with
extended format, the number of columns are user-
defined.

JMSMessagel.og The name of the ~ JMSMessagelog/ MyJMSSer ver
JMS Server.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix C-7 of C-10

ORACLE’

Data Store Column Names

Appendix C
Creating Data Accessor Queries

Table C-4 (Cont.) Naming Conventions for Log Types

Log Type Optional Example
Identifiers

JMSSAFMessagelLog The name of the ~ JMSSAFMessagelLog/ MySAFAgent
SAF agent.

ServerLog None Server Log

WebAppLog Web server name \ebAppLog/ M/WebSer ver/

+ Root servlet
context name

M/Root Ser vl et Cont ext

The column names included in a query are resolved for each row of data. A row is added to the
result set only if it satisfies the query conditions for all specified columns. A query that omits
column names returns all the entries in the log.

All column names from all WebLogic Server log types are listed in Table C-5.

Table C-5 Column Names for Log Types

Log Type Column Names

ConnectorLog LINE, RECORDID

DataSourcelog RECORDID, DATASOURCE, PROFILETYPE, TIMESTAMP, USER,
PROFILEINFORMATION, SUPP_ATTRS

DomainLog CONTEXTID, DATE, MACHINE, MESSAGE, MSGID, RECORDID,
SERVER, SEVERITY, SUBSYSTEM, THREAD, TIMESTAMP, TXID,
USERID, SUPP_ATTRS, SEVERITY_VALUE

EventsDataArchive ARGUMENTS, CLASSNAME, CONTEXTID, CTXPAYLOAD, DOMAIN,
DYES, FILENAME, LINENUM, METHODNAME, METHODDSC,
MODULE, MONITOR, PAYLOAD, RECORDID, RETVAL, SCOPE,
SERVER, THREADNAME, TIMESTAMP, TXID, TYPE, USERID

HarvestedDataArchive ATTRNAME, ATTRTYPE, ATTRVALUE, DOMAIN, NAME, RECORDID,
SERVER, TIMESTAMP, TYPE, WLDFMODULE

HTTPAccessLog AUTHUSER, BYTECOUNT, HOST, RECORDID, REMOTEUSER,
REQUEST, STATUS, TIMESTAMP

JDBCLog Same as DomainLog

JMSMessagelog CONTEXTID, DATE, DESTINATION, EVENT, JIMSCORRELATIONID,
JMSMESSAGEID, MESSAGE, MESSAGECONSUMER,
NANOTIMESTAMP, RECORDID, SELECTOR, TIMESTAMP, TXID,
USERID

JMSSAFMessagelLog CONTEXTID, DATE, DESTINATION, EVENT, JIMSCORRELATIONID,
JMSMESSAGEID, MESSAGE, MESSAGECONSUMER,
NANOTIMESTAMP, RECORDID, SELECTOR, TIMESTAMP, TXID,
USERID

ServerLog Same as DomainLog

WebAppLog Same as DomainLog

An example of a Data Accessor query is:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-8 of C-10

ORACLE’

Appendix C
Creating Log Filter Expressions

(SUBSYSTEM = ' Depl oyer') AND (MESSAGE LI KE ' %Fai | ed%)

In this example, the Accessor retrieves all messages that include the string "Failed" from the
Deployer subsystem.

The following example shows an APl method invocation. It includes a query for harvested
attributes of the JDBC connection pool named MyPool , within an interval between a
ti meSt anpFrom(inclusive) and ati meSt anpTo (exclusive):

W.DFDat aAccessRunt i neMBean. retri eveDat aRecor ds(ti meSt anpFrom
ti meStanpTo, "TYPE='JDBCConnecti onPool Runtine' AND NAME=' MyPool ' ")

For complete documentation about the WLDF Data Accessor, see Accessing Diagnostic Data
With the Data Accessor.

Creating Log Filter Expressions

The query language can be used to filter what is written to the server log.The variables used to
construct a log filter expression represent the columns in the log are:

e CONTEXTID
« DATE
e MACH NE
e MESSAGE
« MGD
e« RECORDI D
e SEVERITY
e SUBSYSTEM
e SERVER
+ THREAD
e TI MESTAMP
e TXID
e USERID

® Note

These are the same variables that you use to build a Data Accessor query for
retrieving historical diagnostic data from existing server logs.

For complete documentation about the WebLogic Server logging services, see Filtering
WebLogic Server Log Messages in Configuring Log Files and Filtering Log Messages for
Oracle WebLogic Server.

Building Complex Expressions

You can build complex query expressions using subexpressions containing variables, binary
comparisons, and other complex subexpressions.There is no limit on levels of nesting. The
following rules apply:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix C-9 of C-10

ORACLE Appendix C
Building Complex Expressions

* Nest queries by surrounding subexpressions within parentheses, for example:
(SEVERITY = 'Warning') AND (MSG D = ' BEA- 320012")
« Enclose a variable name within ${} if it includes special characters, as in an MBean object
name. For example:

${ nydomai n: Name=nyser ver,
Type=Server Runti ne/ / Socket sOpenedTot al Count} >= 1

Notice that the object name and the attribute name are separated by consecutive forward
slashes (/ /') in the policy variable name.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-10 of C-10

WLDF Instrumentation Library

The WebLogic Diagnostics Framework (WLDF) instrumentation library contains diagnostic
monitors and diagnostic actions.

For information about using items from the instrumentation library, see Configuring
Instrumentation.

Diagnostic Monitor Library

Diagnostic monitors are broadly classified as server-scoped and application-scoped
monitors.The former can be used to instrument WebLogic Server classes. You use the latter to
instrument application classes. Except for the Dyelnjection monitor, all monitors are delegating
monitors; that is, they do not have a built-in diagnostic action. Instead, they delegate to actions
attached to them to perform diagnostic activity.

All monitors are preconfigured with their respective pointcuts. However, the actual locations
affected by them may vary depending on the classes they instrument. For example, the
Servlet_Before_Service monitor adds diagnostic code at the entry of servlet or java server
page (JSP) service methods at different locations in different servlet implementations.

For any delegating monitor, only compatible actions may be attached. The compatibility is
determined by the nature of the monitor.

The following table lists and describes the diagnostic monitors that can be used within server
scope; that is, in WebLogic Server classes. For the diagnostic actions that are compatible with
each monitor, see the Compatible Action Type column in Table D-1.

Table D-1 Diagnostic Monitors for Use Within Server Scope

Monitor Name Monitor Compatible Pointcuts
Type Action Type

Connector_Before_Inbound Before Stateless At entry of methods handling inbound
connections.
Connector_After_Inbound Server Stateless At exit of methods handling inbound
connections.
Connector_Around_Inbound Around Around At entry and exit of methods handling
inbound connections.
Connector_Before_Outbound Before Stateless At entry of methods handling outbound
connections.
Connector_After_Outbound After Stateless At exit of methods handling outbound
connections.
Connector_Around_Outbound Around Around At entry and exit of methods handling

outbound connections.

Connector_Before_Tx Before Stateless Entry of transaction register, unregister,
start, rollback and commit methods.

Connector_After_Tx After Stateless At exit of transaction register, unregister,
start, rollback and commit methods.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix D-1 of D-19

ORACLE Appendix D
Diagnostic Monitor Library

Table D-1 (Cont.) Diagnostic Monitors for Use Within Server Scope

Monitor Name Monitor Compatible Pointcuts
Type Action Type

Connector_Around_Tx Around Around At entry and exit of transaction register,
unregister, start, rollback and commit
methods.

Connector_Before_Work Before Stateless At entry of methods related to scheduling,
starting and executing connector work
items.

Connector_After_ Work After Stateless At exit of methods related to scheduling,
starting and executing connector work
items.

Connector_Around_Work Around Around At entry and exit of methods related to
scheduling, starting and executing
connector work items.

Dyelnjection Before Built-in At points where requests enter the server.
JDBC_Before_Commit_Internal Before Stateless JDBC subsystem internal code
JDBC_After_Commit_Internal After Stateless JDBC subsystem internal code
JDBC_Before_Connection_ Before Stateless Before calls to methods:

Internal Driver.connect

DataSource.getConnection

JDBC_After_Connection_ Internal Before Stateless JDBC subsystem internal code
JDBC_Before_Rollback_ Internal Before Stateless JDBC subsystem internal code
JDBC_After_Rollback_Internal After Stateless JDBC subsystem internal code
JDBC_Before_Start_Internal Before Stateless JDBC subsystem internal code
JDBC_After_Start_Internal After Stateless JDBC subsystem internal code
JDBC_Before_Statement_ Before Stateless JDBC subsystem internal code

Internal

JDBC_After_Statement_ After Stateless JDBC subsystem internal code

Internal

JDBC_After_Reserve_Connection_Internal After Stateless After a JDBC connection is reserved from

the connection pool.

JDBC_After_Release_Connection_Internal After Stateless After a JDBC connection is released back
to the connection pool.

Table D-2 lists the diagnostic monitors that can be used within application scopes; that is, in
deployed applications. The Compatible Action Type column identifies the diagnostic action
type that is compatible with each monitor.

Table D-2 Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor Compatible Pointcuts
Type Action Type

EJB_After_EntityEjbBusiness Methods After Stateless At exits of all EntityBean methods, which
are not standard ejb methods.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix D-2 of D-19

ORACLE’

Appendix D
Diagnostic Monitor Library

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name

Monitor
Type

Compatible
Action Type

Pointcuts

EJB_Around_EntityEjbBusinessMethods

Around

Around

At entry and exits of all EntityBean
methods that are not standard ejb
methods.

EJB_After_EntityEjbMethods

After

Stateless

At exits of methods:
EnitityBean.setEntityContext
EnitityBean.unsetEntityContext
EnitityBean.ejpRemove
EnitityBean.ejbActivate
EnitityBean.ejbPassivate
EnitityBean.ejbLoad
EnitityBean.ejbStore

EJB_Around_EntityEjbMethods

Around

Around

At exits of methods:
EnitityBean.setEntityContext
EnitityBean.unsetEntityContext
EnitityBean.ejpRemove
EnitityBean.ejbActivate
EnitityBean.ejbPassivate
EnitityBean.ejbLoad
EnitityBean.ejbStore

EJB_After_EntityEjbSemantic Methods

After

Stateless

At exits of methods:
EnitityBean.set*
EnitityBean.get*
EnitityBean.ejbFind*
EnitityBean.ejoHome*
EnitityBean.ejbSelect*
EnitityBean.ejbCreate*
EnitityBean.ejbPostCreate*

EJB_Around_EntityEjbSemanticMethods

Around

Around

At entry and exits of methods:
EnitityBean.set*
EnitityBean.get*
EnitityBean.ejbFind*
EnitityBean.ejoHome*
EnitityBean.ejbSelect*
EnitityBean.ejbCreate*
EnitityBean.ejbPostCreate*

EJB_After_SessionEjbMethods

After

Stateless

At exits of methods:
SessionBean.setSessionContext
SessionBean.ejbRemove
SessionBean.ejbActivate
SessionBean.ejbPassivate

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-3 of D-19

ORACLE’

Appendix D
Diagnostic Monitor Library

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name

Monitor
Type

Compatible
Action Type

Pointcuts

EJB_Around_SessionEjbMethods

Around

Around

At entry and exits of methods:
SessionBean.setSessionContext
SessionBean.ejpRemove
SessionBean.ejbActivate
SessionBean.ejbPassivate

EJB_After_SessionEjbBusinessMethods

After

Stateless

At exits of all SessionBean methods,
which are not standard ejb methods.

EJB_Around_SessionEjb
BusinessMethods

Around

Around

At entry and exits of all SessionBean
methods, which are not standard ejb
methods.

EJB_After_SessionEjbSemanticMethods

After

Stateless

At exits of methods:

SessionBean.ejbCreateSessionBean.ejbP
ostCreate

EJB_Around_SessionEjb
SemanticMethods

Around

Around

At entry and exits of methods:
SessionBean.ejbCreate
SessionBean.ejbPostCreate

EJB_Before_EntityEjbBusinessMethods

Before

Stateless

At entry of all EntityBean methods, which
are not standard ejb methods.

EJB_Before_EntityEjbMethods

Before

Stateless

At entry of methods:
EnitityBean.setEntityContext
EnitityBean.unsetEntityContext
EnitityBean.ejoRemove
EnitityBean.ejbActivate
EnitityBean.ejbPassivate
EnitityBean.ejbLoad
EnitityBean.ejbStore

EJB_Before_EntityEjbSemanticMethods

Before

Stateless

At entry of methods:
EnitityBean.set*
EnitityBean.get*
EnitityBean.ejbFind*
EnitityBean.ejoHome*
EnitityBean.ejbSelect*
EnitityBean.ejbCreate*
EnitityBean.ejbPostCreate*

EJB_Before_SessionEjb
BusinessMethods

Before

Stateless

At entry of all SessionBean methods,
which are not standard ejb methods.

EJB_Before_SessionEjbMethods

Before

Stateless

At entry of methods:
SessionBean.setSessionContext
SessionBean.ejpbRemove
SessionBean.ejbActivate
SessionBean.ejbPassivate

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-4 of D-19

ORACLE’

Appendix D
Diagnostic Monitor Library

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name

Monitor

Type

Compatible
Action Type

Pointcuts

EJB_Before_SessionEjb
SemanticMethods

Before

Stateless

At entry of methods:
SessionBean.ejbCreate
SessionBean.ejbPostCreate

HttpSessionDebug

Around

Built-in

getSession - Inspects returned HTTP
session

Before and after calls to methods:
getAttribute

setAttribute

removeAttribute

At inspection points, the approximate
session size is computed and stored as
the payload of a generated event. The
size is computed by flattening the session
to a byte-array. If an error is encountered
while flattening the session, a negative
size is reported.

JDBC_Before_CloseConnection

Before

Stateless

Before calls to methods:
Connection.close

JDBC_After_CloseConnection

After

Stateless

After calls to methods:
Connection.close

JDBC_Around_CloseConnection

Around

Around

Before and after calls to methods:
Connection.close

JDBC_Before_CommitRollback

Before

Stateless

Before calls to methods:
Connection.commit
Connection.rollback

JDBC_After_CommitRollback

After

Stateless

After calls to methods:
Connection.commit
Connection.rollback

JDBC_Around_CommitRollback

Around

Around

Before and after calls to methods:
Connection.commit
Connection.rollback

JDBC_Before_Execute

Before

Stateless

Before calls to methods:
Statement.execute*
PreparedStatement.execute*

JDBC_After_Execute

After

Stateless

After calls to methods:
Statement.execute*
PreparedStatement.execute*

JDBC_Around_Execute

Around

Around

Before and after calls to methods:
Statement.execute*
PreparedStatement.execute*

JDBC_Before_GetConnection

Before

Stateless

Before calls to methods:
Driver.connect
DataSource.getConnection

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-5 of D-19

ORACLE’

Appendix D
Diagnostic Monitor Library

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor Compatible Pointcuts
Type Action Type
JDBC_After_GetConnection After Stateless After calls to methods:
Driver.connect
DataSource.getConnection
JDBC_Around_GetConnection Around Around Before and after calls to methods:
Driver.connect
DataSource.getConnection
JDBC_Before_Statement Before Stateless Before calls to methods:
Connection.prepareStatement
Connection.prepareCall
Statement.addBatch
RowSet.setCommand
JDBC_After_Statement After Stateless After calls to methods:
Connection.prepareStatement
Connection.prepareCall
Statement.addBatch
RowSet.setCommand
JDBC_Around_Statement Around Around Before and after calls to methods:
Connection.prepareStatement
Connection.prepareCall
Statement.addBatch
RowSet.setCommand
JMS_Before_AsyncMessage Before Stateless At entry of methods:
Received MessageListener.onMessage
JMS_After_AsyncMessage After Stateless At exits of methods:
Received Messagel.istener.onMessage
JMS_Around_AsyncMessage Around Around At entry and exits of methods:
Received MessageListener.onMessage
JMS_Before_MessageSent Before Stateless Before call to methods:
QueSender send
JMS_After_MessageSent After Stateless After call to methods:
QueSender send
JMS_Around_MessageSent Around Around Before and after call to methods:
QueSender send
JMS_Before_SyncMessage Before Stateless Before calls to methods:
Received MessageConsumer.receive*
JMS_After_SyncMessage After Stateless After calls to methods:
Received MessageConsumer.receive*
JMS_Around_SyncMessage Around Around Before and after calls to methods:
Received MessageConsumer.receive*
JMS_Before_TopicPublished Before Stateless Before call to methods:

TopicPublisher.publish

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-6 of D-19

ORACLE’

Appendix D
Diagnostic Monitor Library

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor Compatible Pointcuts
Type Action Type
JMS_After_TopicPublished After Stateless After call to methods:
TopicPublisher.publish
JMS_Around_TopicPublished Around Around Before and after call to methods:
TopicPublisher.publish
JNDI_Before_Lookup Before Stateless Before calls to javax.naming.Context
lookup methods
Context.lookup*
JNDI_After_Lookup After Stateless After calls to javax.naming.Context lookup
methods:
Context.lookup*
JNDI_Around_Lookup Around Around Before and after calls to
javax.naming.Context lookup methods
Context.lookup*
JTA_Before_Commit Before Stateless At entry of methods:
UserTransaction.commit
JTA_After_Commit After Stateless At exits of methods:
advice UserTransaction.commit
JTA_Around_Commit Around Around At entry and exits of methods:
UserTransaction.commit
JTA_Before_Rollback Before Stateless At entry of methods:
UserTransaction.rollback
JTA_After_Rollback After Stateless At exits of methods:
advice UserTransaction.rollback
JTA_Around_Rollback Around Around At entry and exits of methods:
UserTransaction.rollback
JTA_Before_Start Before Stateless At entry of methods:
UserTransaction.begin
JTA After_Start After Stateless At exits of methods:
advice UserTransaction.begin
JTA_Around_Start Around Around At entry and exits of methods:
UserTransaction.begin
MDB_Before_MessageReceived Before Stateless At entry of methods:
MessageDrivenBean.onMessage
MDB_After_MessageReceived After Stateless At exits of methods:
MessageDrivenBean.onMessage
MDB_Around_MessageReceived Around Around At entry and exits of methods:
MessageDrivenBean.onMessage
MDB_Before_Remove Before Stateless At entry of methods:
MessageDrivenBean.ejpbRemove
MDB_After_Remove After Stateless At exits of methods:

MessageDrivenBean.ejpRemove

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-7 of D-19

ORACLE’

Appendix D
Diagnostic Monitor Library

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name

Monitor
Type

Compatible
Action Type

Pointcuts

MDB_Around_Remove

Around

Around

At entry and exits of methods:
MessageDrivenBean.ejoRemove

MDB_Before_SetMessageDriven
Context

Before

Stateless

At entry of methods:
MessageDrivenBean.setMessage
DrivenContext

MDB_After_SetMessageDriven
Context

After

Stateless

At exits of methods:

MessageDrivenBean.setMessageDrivenC
ontext

MDB_Around_SetMessageDriven
Context

Around

Around

At entry and exits of methods:

MessageDrivenBean.setMessageDrivenC
ontext

Servlet_Before_Service

Before

Stateless

At method entries of servlet/jsp methods:
HttpJspPage._jspService

Servlet.service

HttpServlet.doGet

HttpServlet.doPost

Filter.doFilter

Servlet_After_Service

After

Stateless

At method exits of servlet/jsp methods:
HttpJspPage._jspService
Servlet.service

HttpServlet.doGet

HttpServlet.doPost

Filter.doFilter

Servlet_Around_Service

Around

Around

At method entry and exits of servlet/jsp
methods:

HttpJspPage._jspService
Servlet.service
HttpServlet.doGet
HttpServlet.doPost
Filter.doFilter

Servlet_Before_Session

Before

Stateless

Before calls to servlet methods:
HttpServletRequest.getSession
HttpSession.setAttribute/
putValue
HttpSession.getAttribute/
getValue
HttpSession.removeAttribute/
removeValue
HttpSession.invalidate

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-8 of D-19

ORACLE’

Appendix D
Diagnostic Action Library

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes
|

Monitor Name Monitor

Type

Compatible
Action Type

Pointcuts

Servlet_Around_Session Around

Around

Before and after calls to servlet methods:
HttpServletRequest.getSession
HttpSession.setAttribute/

putValue

HttpSession.getAttribute/

getValue

HttpSession.removeAttribute/
removeValue

HttpSession.invalidate

Servlet_After_Session After

Stateless

After calls to servlet methods:
HttpServletRequest.getSession
HttpSession.setAttribute/
putValue
HttpSession.getAttribute/
getValue
HttpSession.removeAttribute/
removeValue
HttpSession.invalidate

Servlet_Before_Tags Before

Stateless

Before calls to jsp methods:
Tag.doStartTag
Tag.doEndTag

Servlet_After_Tags After

Stateless

After calls to jsp methods:
Tag.doStartTag
Tag.doEndTag

Servlet_Around_Tags Around

Around

Before and after calls to jsp methods:
Tag.doStartTag
Tag.doEndTag

Diagnostic Action Library

WLDF includes a library of diagnostic actions that you can use with delegating monitors.You
can also use these diagnostic actions with custom monitors that you can define and use within
applications. Each diagnostic action can be used only with monitors with which they are
compatible, as indicated by the Compatible Monitor Type column. Some actions (for example,

TraceElapsedTimeAction) generate an event payload.

The diagnostic action library includes the following actions:

TraceAction

TraceAction is a stateless action that is compatible with Before and After monitor types.

TraceAction generates a trace event at the affected location in the program execution. The

following information is generated:

e Timestamp

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-9 of D-19

ORACLE

Appendix D
Diagnostic Action Library

Context identifier from the diagnostic context which uniquely identifies the request
Transaction identifier, if available

User identity

Action type (that is, TraceAction)

Domain

Server name

Instrumentation scope name (for example, application name)

Diagnostic monitor name

Module name

Location in code from where the action was called. The location information includes:
— Class name

— Method name

— Method signature

— Line number

— Thread name

Payload carried by the diagnostic context, if any

DisplayArgumentsAction

DisplayArgumentsAction is a stateless action that is compatible with Before and After monitor
types.

DisplayArgumentsAction generates an instrumentation event at the affected location in the
program execution to capture method arguments or a return value.

When executed, this action causes an instrumentation event that is dispatched to the events
archive. When attached to Before monitors, the instrumentation event captures input
arguments to the joinpoint (for example, method arguments). When attached to After monitors,
the instrumentation event captures the return value from the joinpoint. The event carries the
following information:

Timestamp

Context identifier from the diagnostic context that uniquely identifies the request
Transaction identifier, if available

User identity

Action type (that is, DisplayArgumentsAction)

Domain

Server name

Instrumentation scope name (for example, application name)

Diagnostic monitor name

Module name

Location in code from where the action was called. The location information includes:

— Class name

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix D-10 of D-19

ORACLE

Appendix D
Diagnostic Action Library

— Method name
— Method signature
— Line number
— Thread name
» Payload carried by the diagnostic context, if any
* Input arguments, if any, when attached to Before monitors

e Return value, if any, when attached to After monitors

TraceElapsedTimeAction

TraceElapsedTimeAction is an Around action that is compatible with Around monitor types.

TraceElapsedTimeAction generates two events: one before and one after the location in the
program execution.

When executed, this action captures the timestamps before and after the execution of an
associated joinpoint. It then computes the elapsed time by computing the difference. It
generates an instrumentation event which is dispatched to the events archive. The elapsed
time is stored as event payload. The event carries the following information:

e Timestamp
« Context identifier from the diagnostic context that uniquely identifies the request
e Transaction identifier, if available
* User identity
e Action type (that is TraceElapsedTimeAction)
e Domain
e Server name
e Instrumentation scope name (for example, application name)
o Diagnostic monitor name
e Module name
* Location in code from where the action was called. This location information consists of:
— Class name
— Method name
— Method signature
— Line number
— Thread name
» Payload carried by the diagnostic context, if any

» Elapsed time processing the joinpoint, as event payload, in nanoseconds

TraceMemoryAllocationAction

TraceMemoryAllocationAction uses the HotSpot ThreadMXBean API to trace the number of
bytes allocated by a thread during a method call. This action is very similar to
TraceElapsedTimeAction, with the exception that the memory allocated within a method call is
traced.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix D-11 of D-19

ORACLE Appendix D
Diagnostic Action Library

The TraceMemoryAllocationAction action:

e Creates an instrumentation event that is persisted.

e Can be used from delegating and custom monitors.

StackDumpAction

StackDumpAction is a stateless action that is compatible with Before and After monitor types.

StackDumpAction generates an instrumentation event at the affected location in the program
execution to capture a stack dump.

When executed, this action generates an instrumentation event that is dispatched to the events
archive. It captures the stack trace as an event payload. The event carries following
information:

e Timestamp
e Context identifier from the diagnostic context that uniquely identifies the request
e Transaction identifier, if available
e User identity
e Action type (that is, StackDumpAction)
e Domain
* Server name
e Instrumentation scope name (for example, application name)
e Diagnostic monitor name
* Module name
* Location in code from where the action was called. This location information consists of:
— Class name
— Method name
— Method signature
— Line number
— Thread name
e Payload carried by the diagnostic context, if any

e Stack trace as an event payload

ThreadDumpAction

ThreadDumpAction is a stateless action that is compatible with Before and After monitor types.

ThreadDumpAction generates an instrumentation event at the affected location in the program
execution to capture a thread dump, if the underlying VM supports it. JDK 8 and later (Oracle
HotSpot) supports this action.

This action generates an instrumentation event that is dispatched to the events archive. This
action may be used only with HotSpot. It is ignored when used with other JVMs. It captures the
thread dump as event payload. The event carries the following information:

e Timestamp

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix D-12 of D-19

ORACLE

Appendix D
Diagnostic Action Library

« Context identifier from the diagnostic context that uniquely identifies the request
e Transaction identifier, if available
« User identity
e Action type (that is, ThreadDumpAction)
e Domain
e Server name
* Instrumentation scope name (for example, application name)
» Diagnostic monitor name
e Module name
* Location in code from where the action was called. This location information consists of:
— Class name
— Method name
— Method signature
— Line number
— Thread name
» Payload carried by the diagnostic context, if any

e Thread dump as an event payload

MethodInvocationStatisticsAction

MethodInvocationStatisticsAction is an Around action that is compatible with Around monitor
types.

MethodInvocationStatisticsAction captures performance metrics around a joinpoint in memory
without persisting an event in the Archive for each invocation. The statistics are collected and
made available through the WLDFInstrumentationRuntimeMBean. The collected statistics are
also consumable by the Harvester and the Policies and Actions components. This makes it
possible to create watch rules that can combine request information from the instrumentation
system and metric information from other run-time MBeans.

Some of the statistics that can be captured include the following:

* Number of invocations

e Average execution time (in nanoseconds)

e Standard deviation in observed execution time
e Minimum execution time

e Maximum execution time

The WLDFInstrumentationRuntimeMBean instance for a given scope exposes the data
collected from MethodInvocationStatisticsAction instances, which are attached to configured
Diagnostic Around monitors, using the MethodInvocationStatistics attribute. The
MethodInvocationStatistics attribute contains a hierarchy of Map objects, keyed as shown in

Figure D-1.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix D-13 of D-19

ORACLE Appendix D
Diagnostic Action Library

Figure D-1 Structure of MethodinvocationStatistics Attribute

Top-level map.
Class Keyed by full class name.

Method-level map.
Method Keyed by method name.
Overloaded methods have a single entry.

Signature-level map.
Signature | Organises overloaded method instances.
Keyed by signature.

Statistics-level map.

Statistics Keyed by statistics name (‘avg’, ‘'min’, ‘max’, ...).

The following semantics are used in the MethodInvocationStatistics attribute:

Met hodl nvocat i onStati stics:: = Map<cl assNane, Met hodvap>

Met hodMap: : = Map<net hodNane, Met hodPar ansSi gnat ur eMap>

Met hodPar ansSi gnat ur eMap: : = Map<Met hodPar ansSi gnat ure, Met hodDat aMap>

Met hodDat aMap: : = <MetricNane, Statistic>

MetricName:= mn | max | avg | count | sum| sumof_squares | std_deviation

Because the MethodInvocationStatisticsAction only captures information in memory, and does
not persist that information in the Archive, this action does not incur the 1/0O overhead of other
instrumentation actions. This makes this action a lightweight mechanism for capturing
performance statistics and helping identify bottlenecks in your application. You can navigate
through the map structures and identify the low performing parts of your application.

Instrumenting an Application with MethodInvocationStatisticsAction and Querying the
Results

This section shows an example of instrumenting the Avitek Medical Records (MedRec) sample
application with a custom monitor that uses MethodInvocationStatisticsAction. This example
then shows using WLST online to query the performance statistics that have been collected,
which can be done by navigating the WLDFInstrumentationRuntimeMBean instance
associated with the instrumented application.

WLST online provides simplified access to MBeans. While JMX APIs require you to use JMX
object names to interrogate MBeans, WLST enables you to navigate a hierarchy of MBeans in
a similar fashion to navigating a hierarchy of files in a file system. See Navigating and
Interrogating MBeans in Understanding the WebLogic Scripting Tool.

The following subsections are included in this example:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix D-14 of D-19

ORACLE

Appendix D
Diagnostic Action Library

@® Note

Code examples demonstrating Jakarta EE APIs and other WebLogic Server features
are provided with your WebLogic Server installation. To work with these examples,
select the custom installation option when installing WebLogic Server, and select to
install the Server Examples. See Code Examples and Sample Applications in
Understanding Oracle WebLogic Server.

Using WLST to Query Method Performance Statistics

Once MedRec is redeployed, the MethodInvocationStatisticsAction begins capturing method
performance statistics as the instrumented code is executed. This section shows how to
generate statistics quickly and simply by navigating the MedRec patient application with the
custom monitor enabled. This section then shows how to examine those statistics using WLST
online.

To capture method performance statistics using the custom monitor configured for MedRec
and query the results using WLST, complete the following steps:

1.

Start the MedRec application, as described in Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

Log in as a patient, administrator, or physician, and perform a small number of operations.

Invoke WLST online and navigate to the WLDFInstrumentationRuntimeMBean instance, as
shown in the following example steps:

a. Connect to the MedRec server:

w s:/of fline> connect (' weblogic',' password','local host:7011")
Connecting to t3://local host: 7011 with userid weblogic ...
Successful ly connected to Admin Server 'MedRecServer' that belongs to domain 'nedrec'.

b. Use the cd command to navigate to the WLDFInstrumentationRuntimeMBean instance
associated with the MedRec application:

cd(' serverRunti me: / W.DFRunt i me/ W.DFRunt i me/ W.DFI nst r unent at i onRunt i nes/ nedrec')
Location changed to serverRuntine tree. This is a read-only tree with
ServerRunti meMBean as the root.

For more hel p, use hel p(serverRuntine)

Access specific values collected by MethodlInvocationStatisticsAction by invoking the
following method on the WLDFInstrumentationRuntimeMBean:

public Cbject getMethodl nvocationStatisticsData(String expr) throws
Managenent Excepti on;

Using WLST interactively, you can pass a lookup expression to this method. The lookup
expression specifies the particular subset of values that you are interested in viewing.
These values are obtained from the map structure created by
MethodInvocationStatisticsAction. For example, the following WLST command returns the
average execution time (in nanoseconds) of all methods instrumented by
MethodInvocationStatisticsAction:

cno. get Met hodl nvocati onStati sticsData("”(combea% (*)(?)(avg)")

array(java. | ang. Obj ect, [3352.0, 3632.0, 145270.0, 4050.5, 8450.916666666666,
1798645. 75,

583538.0, 3610515.0, 1.9541031E7, 1.2796319E7, 3.07897E8, 4470.0, 3073.0, 3073.0,
2. 4644752E7, 3492.5, 1051530.0, 2794.0, 390552.3333333333, 3632.0, 2095.5,
189409. 33333333334,

2607. 6666666666665, 2793. 6666666666665, 4749. 333333333333, 5308.0, 65930.0,

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix D-15 of D-19

ORACLE Appendix D
Diagnostic Action Library

3. 3950405E7,
3353.0, 3911.5])

Note that if you display the entire set of data values that have been collected, a large amount
of information could be displayed in the WLST console, as shown in Figure D-2:

Figure D-2 Displaying All Data Values Collected by MethodInvocationStatisticsAction

mmand Prompt - wist - HEB

medrec/serverRBuntime ~HLDFRunt ime /WLDFRunt ime ~HLDFInstrumentat ionRun 1mes/medrec>l’
print cmo.getMethodInvocationStatistics{)
{com.bea.medrec.model.Patient$Status={values={={count=1. sum=4749 .08, std_deviation=0.
B, avg=4749.8, sum_of_squares=2_2553801E7. max=474%, nin=474%9>>>}. com.bea.nedrec.mode
1.Record={_persistence_new={org.eclipse.persistence.internal.descriptors.Persistence
bhject={count=1, sum=3353_8, std_deviation=8.8_, avg=335%3.8. sum_of_ squares=1.1242689E7
» max=3353, min=3353333,. com.hea.medrec.repository.impl.RecordRepositorylmpl={findRec
ordsByPatientId={java.lang.Long={count=1. sum=5%.7981772EY. std_deviation=0.8, avg=5.7
PA1772E?,. sum_of_squares=3.352615200739984E15, max=579017Y72, min=57981772>>>. com.hea
.medrec.webh.LocalizationDispatchingFilter={init={javax.servlet.FilterConfig={count=1.
sum=4191 .08, std_deviation=0.8, avg=4191.8, sum_of_squares=1.7564481E7,. max=4191, min
=41913>%. com.bea.medrec.model.Administrator={_persistence_new={org.eclipse.persisten
ce.internal.descriptors.PersistenceObject={count=1, sum=2794.8. std_deviation=0.8,. av
g=2724_8, sum_of_squares=7806436.8, max=27%4, min=279433}. com.bhea.medrec.common.weh.
CacheControlPhaselListener={afterPhase={javax.faces.event._PhaseEvent={count=%,. sum=6808
62 8, std_deviation=20837._.9947176417818, avg=6673_555555555556,. sum_of _squares=4.38207
BI6EB,. max=9778. min=39113}. heforePhase={javax.faces.event.PhaseEvent={count=?, sum=
2802461 2E7,. std _deviation=45%430%1_5%64348776,. avg=2224956_BH8EB88EY?,. szum_of squares=2
.38311827874586E14, max=150264%1, min=207847}>},. com.bea.medrec.common.webh.PageContex|
tImpl={addGlobalOnlyMessage={java.lang.String={count=3, sum=4986207 .8. std _deviation=
2293450.68553232, avg=1635403 .0, sum_of _squares=2.3803377YA58133E13,. max=4878832,. min=
13138>>,. invalidatefession={={count=1. sum=719365.8, std_deviation=8.8,. avg=719365.8,
sum_of _squares=5.17486003225E11,. max=719365. min=7193653>>, com.bea.medrec.repositor
y.impl.PatientRepositorylmpl={findBylsernameAndPasswordAndStatus={java.lang.8trinyg. ja
va.lang.8tring.com.bea.medrec.mnodel. Patient$8tatus={count=4, sum=1.22686542E8, =td_de
viation=2.7804933871654555E7, avg=3.86716355E7, sum_of_sguares=6.855454287487772E15.,
max=66129633,. min=2495%289>}>,. com.bea.medrec.webh.controller.UViewingRecordSummaryContyr
oller={viewRecordSummary={={count=1, sum=1.5786214E8, std_deviation=0.8, avg=1.570621
4E8, sum_of_squares=2.46685158213796E16,. max=157@62148, min=157062148%3>}. com.hea.med
rec.model. Patient5Gender={values={={count=1. sum=6146.8. std_deviation=0.08, avg=H146.
B, sum_of_squares=3.7773316E7,. max=6146, min=61463}3},. com.bhea.medrec.web.controller.B
asefAuthenticationController={logout={={count=1, sum=30624080_.0. std_deviation=0.8, avg
=3062400.8, sum_of _squares=2.37829376E12, nax=3062408, nin=3062480>3, login={={count=|
4, sum=2.12179201E8,. std_deviation=4.489884341763221E7,. avg=5.3844880825E7. sum_of_sqgu
arez=1_903383529734122F16, nax=110257838, mnin=989846433}, com.bea.medrec.model.Addres

As an alternative, you can create a WLST script to invoke MethodInvocationStatistics and to
format the collected data so that it is more easily read, as in Example D-1:

Example D-1 Using WLST to Invoke MethodInvocationStatistics and Display Results

inport sys
def get Positional Argunment (pos, default):
val ue=None
try:
val ue=sys. ar gv[pos]
except :

val ue=def aul t
return val ue

url = getPositional Argunent (1, "t3://local host:7001")
user = getPositional Argument (2, "webl ogic")

password = get Positional Argument (3, "password")
appName = get Posi tional Argunent (4, "myapp")

connect (user, password, url)
serverRuntine()
cd(' / W.DFRunt i me/ W.DFRunt i me/ WL.DFI nst runent ati onRuntimes/' + appNane)

print "# Cass Method | Count | Mn | Max | Average | Std-dev |"
st at s=cno. get Met hodl nvocati onStati stics()

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix D-16 of D-19

ORACLE Appendix D
Diagnostic Action Library

for className in stats. keySet():
cl assMap=st at s. get (cl assNane)
for nethodNane in classMap. keySet():
met hodMap=cl assMap. get (net hodNane)
for sig in methodMap. keySet ():
str= classNane + " " + nmethodName + "(" + sig + ")"
si gMap=net hodMap. get (si g)
count =si gMap. get (' count")
m n=si gMap. get (' mn')
max=si gMap. get (' max')
avg=si gMap. get (' avg')
st d_devi ati on=si gMap. get (' std_devi ation')
print str, "|", count, "|", min, "|", max, "|", avg, "|", std_deviation, "|"

The following shows the output produced by the WLST script shown in Example D-1:

Cass Method | Count | Mn | Max | Average | Std-dev |
jsp_servlet. index _isStale() | 1| 1378000 | 1378000 | 1378000.0 | 0.0 |

jsp_servlet. _index _getBytes(java.lang.String) | 3 | 1000 | 754000 | 252666. 66666666666 | 354497.1399351795 |
jsp_servlet. _index _staticlsStale(weblogic.servlet.jsp.StaleChecker) | 1| 861000 | 861000 | 861000.0 | 0.0 |
jsp_servlet. _index _jspService(javax.servlet.http.HtpServletRequest,javax.servlet.http.HtpServletResponse) | 2 |
70000 | 2113000 | 1091500.0 | 1021500.0 |

jsp_servlet. _index$M/Map contai nsKey(j ava. | ang. Obj ect)

| 2] 2000 | 101000 | 51500.0 | 49500.0 |
jsp_servlet. _index$M/Map contai nsVal ue(j ava. | ang. Obj ect) | |

|
2 | 1000 | 2000 | 1500.0 | 500.0 |

Configuring the Harvester to Collect MethodInvocationStatisticsAction Data

To configure the Harvester to collect data gathered by MethodInvocationStatisticsAction
instances, you must configure an instance of WLDFHarvesterBean using the following
attribute:

Name=webl ogi c. managenent . runt i me. W.DFI nst r unent at i onRunt i neMBean

The scope is selected by the instance configuration.

The attribute specification defines the data that is collected by the Harvester. You can access
the successive elements of the map by using the following notation:

Met hodl nvocati onStati stics(cl assName) (met hodNane) (et hodPar anfSi gnat ur e)
(metricNane)

In the preceding notation:

« cl assNane represents the fully qualified Java class name. You can use the asterisk (*)
wildcard character in a class name.

* met hodNane selects a specific method from the given class. You can use the asterisk (*)
wildcard character in a method name.

« et hodPar anSSi gnat ur e represents a string that is a comma-separated list of a method's
input argument types. Only the Java type names, without the argument names, are
included in the signature specification. As in the Java language, the order of the
parameters in the signature is significant.

This element also supports the asterisk (*) wildcard character, which can be used to
specify the entire list of input argument types for a given method. The asterisk (*) wildcard
character matches zero or more argument types at the position following its occurrence in
the net hodPar an6i gnat ur e expression.

You can also use the question mark (?) wildcard character to match a single argument type
at any given position in the ordered list of parameter types.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix D-17 of D-19

ORACLE Appendix D
Diagnostic Action Library

Both of these wildcard characters can appear anywhere in the expression. See
MethodInvocationStatisticsAction Examples.

e metricName represents the statistics to be harvested. You can use the asterisk (*) wildcard
character in this key to harvest all of the supported metrics.

MethodInvocationStatistics Examples

Consider a class with the following overloaded methods:

package. com f 00;

public interface Bar {
public void dolt();
public void dolt(int a);
public void doit(int a, String s)
public void dolt(Stringa, int b);
public void dolt(String a, String b);
public void dolt(String[] a);
public void doNot hing();
public void doNot hi ng(com f 0o. Baz) ;

}

Table D-3 provides examples that show to use MethodInvocationStatisticsAction to harvest
various statistics.

Table D-3 MethodlnvocationStatisticsAction Examples

The following MethodInvocationStatisticsAction ... causes the following to be harvested
instance configuration . . .

Met hodl nvocati onStatistics(comfoo.Bar)(*)(*) Al statistics for all methods on com Foo. Bar .

()

Met hodl nvocati onStatistics(comfoo.Bar)(dolt)() Allstatistics for the dol t () method that has no input
(*) arguments.

Met hodl nvocati onStatistics(com foo. Bar)(dolt) Al statistics for all dol t () methods.
(7))
Met hodl nvocati onStatistics(com foo. Bar)(dolt) Al statistics for the dol t (i nt) and dol t (i nt, String)

(int, *)(*) methods.
Met hodl nvocati onStatistics(com foo. Bar)(dolt) Al statistics for the dol t (String[]) method.
(String[])(*) Note that array parameters are specified by the use of a pair

of square brackets ([]) following the type name. Space
characters are insignificant for the Harvester.

Met hodl nvocati onStatistics(com foo. Bar)(dolt) Al statistics for dol t () methods that have two input
(String, ?)(*) parameters and St ri ng as the first argument type. In this
example class, this instance configuration matches the
following methods:
o dolt(String, int)
e dolt(String, String)

Met hodl nvocati onStati stics(com foo. Bar) The m n and max execution time for the doNot hi ng()
(doNot hi ng) (com f 00. Baz) (ni n, max) method that has the single input parameter of type
com f 00. Baz.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix D-18 of D-19

ORACLE Appendix D
Diagnostic Action Library

@® Note

Using a wildcard character in the cl assNane specification can have a negative impact
on performance.

Configuring Policies Based on MethodInvocationStatistics Metrics

You can use the same syntax described in the previous sections to use
MethodInvocationStatistics metrics in a policy expression. You can create meaningful watch
rules that do not use a wildcard character in the Met ri cNane element by specifying whether
you want the mi n, max, avg, count, sum sum of _squares, or std_devi ati on variable for a given
method.

Using JMX to Collect Data

When using straight JMX to collect data, you can potentially impact server performance
negatively if you invoke the get At tri but e(" Met hodl nvocationStatistics") method on the
WLDFInstrumentationRuntimeMBean. This occurs because, depending on the instrumented
classes, the nested map structure can contain a lot of data that involves expensive
serialization.

When you use JMX to collect data, Oracle recommends using the
get Met hodl nvocati onStati sticsData(String) method.

MemoryAllocationStatisticsAction

The MemoryAllocationStatisticsAction uses the HotSpot ThreadMXBean API API to track the
number of bytes allocated by a thread during a method call. Statistics are kept in-memory on
the memory allocations, and no instrumentation events are created by this action.

The MemoryAllocationStatisticsAction is very similar to the existing
MethodInvocationStatisticsAction. However, statistics tracked by
MemoryAllocationStatisticsAction are related to the memory allocated within a method call.

The MemoryAllocationStatisticsAction does not create an instrumentation event. When
HotSpot is available, the statistics are available through the
WLDFInstrumentationRuntimeMBean.

The following statistics for each method are kept:

e count
e mn
° max
e avg
e sum

e sumof_squares

e std_deviation

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix D-19 of D-19

Using Wildcards in Expressions

The WebLogic Diagnostics Framework (WLDF) supports the ability to use wildcards in
expressions.WLDF allows for the use of wildcards in instance names within the <harvested-
instance> element, and also provides drill-down and wildcard capabilities in the attribute
specification of the <harvested-attribute> element.

WLDF also allows the same wildcard capabilities for instance names in Harvester policies, as
well as specifying complex attributes in Harvester policies.

This appendix includes the following sections:

Using Wildcards in Harvester Instance Names

Examples

When specifying instance names within the <harvested-instance> element, you have some
flexibility with regards to the property list order.Specifically, you can:

e Express the instance name in non-canonical form, allowing you to specify the property list
of the ObjectName out of order.

e Express the ObjectName as a JMX ObjectName query pattern without concern as to the
order of the property list.

e Use zero or more asterisk (*) wildcard characters in any of the values in the property list of
an ObjectName, such as Nane=*.

* Use zero or more asterisk (*) wildcard characters to replace any character sequence in a
canonical ObjectName string. In this case, you must ensure that any properties of the
ObjectName not substituted by a wildcard character are in canonical form.

The instance specification in Example E-1 indicates that all instances of the
WorkManagerRuntimeMBean are to be harvested. This is equivalent to not providing any
instance-name qualification in the <harvested-type> declaration.

Example E-1 Harvesting All Instances of an MBean

<harvest ed-type>
<name>webl ogi c. managenent . runti me. Wor kManager Runt i meMBean</ nane>
<harvested-instance>*<harvested-instance>
<known-t ype>t r ue</ known- t ype>
<harvest ed- at t ri but e>Pendi ngRequest s</ har vest ed- at t ri but e>

</ harvest ed-type>

Example E-2 shows a JMX ObjectName pattern as the <harvested-instance> value:
Example E-2 Using a JMX ObjectName Pattern

<harvest ed-type>
<nanme>com acne. Cust omvBean</ nane>
<harvested-instance>adomain:Type=MyType,*</harvested-instance>
<known- t ype>f al se</ known-t ype>

</ harvest ed-type>

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix E-1 of E-6

ORACLE

Appendix E
Specifying Complex and Nested Harvester Attributes

In Example E-3, some of the values in the ObjectName property list contain wildcard
characters:

Example E-3 Using Wildcards in the Property List

<harvest ed-type>
<name>com acne. Cust onMVBean</ nane>
<harvested-instance>adomain:Type=My*,Name=*,*</harvested-instance>
<known- t ype>f al se</ known-t ype>

</ harvest ed-type>

In Example E-4, all harvestable attributes of all instances of com.acme.CustomMBean are to
be harvested, but only those in which the instance name contains the string Name=nybean.

Example E-4 Harvesting All Attributes of Multiple Instances

<harvest ed-type>
<nanme>coma. acme. Cust onvBean</ nane>
<harvest ed-i nst ance>* Name=nybean* </ har vest ed- i nst ance>
<known- t ype>t r ue</ known- t ype>

</ harvest ed-type>

Specifying Complex and Nested Harvester Attributes

The Harvester provides the ability to access metric values nested within complex attributes of
an MBean.A complex attribute can be a map or list object, a simple POJO, or different nestings
of these types of objects. For example:

* anCbject.anAttribute
e arrayAttribute[1]

e mapAttribute(akey)

e aList[1] (akKey)

In addition, wildcard characters can be used for list indexes and map keys to specify multiple
elements within a collection of those types. The following wildcard characters are available:

e You can use the asterisk (*) wildcard character to specify all key values for Map attributes.

* You can use the percent (% wildcard character to replace parts of a Map key string and
identify a group of keys that match a particular pattern.

You can also specify a discrete set of key values by using a comma-separated list.
For example:

e aList[1](partial %ey%

o aList[*](keyl, key3, keyN)

e aList*

In the last example, where the asterisk (*) wildcard character is used for the index to a list and
as the key value to a nested map object, nested arrays of values are returned.

Embedding the asterisk (*) wildcard character in a comma-separated list of map keys is
equivalent to specifying all map keys. For example, the following two specifications are
equivalent;

o aList[*](keyl, *, keyN)
e aList*

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix E-2 of E-6

ORACLE

Appendix E
Specifying Complex and Nested Harvester Attributes

@® Note

Leading or trailing spaces will be stripped from a map key unless the map key is
enclosed within quotation marks.

Using a map key pattern can result in a large number of elements being scanned,
returned, or both. The larger the number of elements in a map, the bigger the impact is
on performance.

The more complex the matching pattern is, the more processing time is required.

Examples
To use drill-down syntax to harvest the nested State property of the HealthState attribute on
the ServerRuntime MBean, use the diagnostic descriptor shown in Example E-5.
Example E-5 Using Drill-Down Syntax
<harvest er >
<sanpl e- peri 0d>10000</ sanpl e- peri od>
<harvest ed-type>
<name>webl ogi c. managenent . runt i ne. Server Runt i nreMBean</ nanme>
<harvested-attribute>Heal thState. State</harvested-attribute>
</ harvest ed-type>
</ harvester>
To harvest the elements of an array or list, the Harvester supports a subscript notation in which
a value is referred to by its index position in the array or list. For example, to refer to the first
element in the array attribute URLPat t er ns in the ServletRuntimeMBean, specify
URLPat t er ns[0] . Example E-6 shows referencing all elements of URLPat t er ns using a wildcard
character.
Example E-6 Using a Wildcard Character to Reference All Elements of an Array
<harvest er >
<sanpl e- peri 0d>10000</ sanpl e- peri od>
<harvest ed-t ype>
<nanme>webl ogi c. managenent . runti ne. Ser vl et Runt i meMBean</ nane>
<harvested-attribute>URLPatterns[*] </ harvested-attribute>
</ harvest ed-type>
</ harvester>
To harvest the elements of a map, each individual value is referenced by the key enclosed in
parentheses. Multiple keys can be specified as a comma-delimited list, in which case the
values corresponding to specified keys in the map are harvested, as shown in the following
examples.
The following example shows the following
<harvest ed- att ri but e>MyMap(Foo) </ har vest ed- attri but e> Harvesting the value from the map with key Foo.

<harvest ed-attribut e>M/Map(Foo, Bar) </ harvest ed- attri but e> Harvesting the value from the map with keys

Foo and Bar .

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix E-3 of E-6

ORACLE Appendix E
Using the Accessor with Harvested Complex or Nested Attributes

The following example shows the following

<harvest ed-attri but e>M/Map(Foo%Bar) </ harvest ed- attri but e> Using the percent (% wildcard character with a
key specification to harvest all values from the
map if their keys start with Foo and end with

Bar .
<harvested-attribute>M/Mp(*)</ harvested-attribute> Harvesting all values from a map by using the
asterisk (*) wildcard character.
<harvest ed- at t ri but e>MyBeanMyMap(Foo) </ har vest ed- The MBean has a JavaBean attribute MyBean,
attribute> which has a nested map type attribute MyMap.

This example harvests this value from the map
that has the key Foo.

Using the Accessor with Harvested Complex or Nested Attributes

While a large number of complex or nested attributes can be specified as a single expression
in terms of the Harvester and Policy and Actions configuration, the actual metrics are persisted
in terms of each individually gathered metric.

For example, the attribute specification nymap(*). (a, b, ¢) maps to the following actual nested
attributes:

mymap(keyl
mymap(keyl
mymap(keyl
nmymap(key2
mymap(key2
nmymap(key2

O T O O T W

).
).
).
).
).
).

Each of the preceding six metrics are stored in a separate record in the HarvestedDataArchive,
with the shown attribute names stored in the ATTRNAME column in each corresponding
record. The values in the ATTRNAME column are the values you must use in Accessor queries
when retrieving them from the archive.

The following are examples of query strings:

NANME="f 00: Name=MyMBean" ATTRNAMVE="nynap(keyl).a"
NAME="f 00" Name=MyBean" ATTRNAME LIKE "mynmap(%.a"
NANME="f ooName=MyMBean" ATTRNAVE MATCHES "nymap\ ((.*?)\).a"

Using Wildcards in Policy Instance Names

Within Harvester policy expressions, you can use the asterisk (*) wildcard character to specify
portions of an ObjectName. This gives you the ability to watch for multiple instances of a type.

For example, to specify the OpenSocketsCurrentCount attribute for all instances of the
ServerRuntimeMBean that begin with the name managed:

e The instance-name pattern can be a valid JMX ObjectName pattern, in which case the
property list order is not important. For example:

${com bea: Nane=managed*, Type=Ser ver Runti ne, */ / OpenSocket Cur r ent Count }

This example is a valid JMX ObjectName pattern that can match:

— Any ObjectName that contains a Nane key with a value that starts with nanaged

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix E-4 of E-6

ORACLE

Appendix E
Specifying Complex Attributes in Harvester Policies

— A Type key that exactly matches the value Server Runt i me
— Any other property pairs

For more examples of valid JMX ObjectName patterns, see the ObjectName API
documentation at htt p: // docs. oracl e. con | avase/ 8/ docs/ api / | avax/ nanagenent /
bj ect Name. htni .

« If the name is a pattern but is not a IMX ObjectName pattern, WebLogic Server does
pattern-matching using the pattern as-is. For example:

${ com bea: *Name=nmnaged*, Type=Ser ver Runti me, *// OpenSocket Cur r ent Count }

This example is not a valid JIMX ObjectName pattern. This pattern is matched using
straight string substitution, where the pattern is matched as-is against the canonical form of
the ObjectName for any target MBean instance.

@ Note

The ObjectName query pattern syntax supported by the Harvester is determined by
whatever is supported by the underlying JMX implementation. The preceding example
demonstrates the syntax supported by JDK 5 and later. For information about the full
syntax that is supported, see the description of the j avax. managenent . Cbj ect Nane
class corresponding to the version of the JDK with which your installation of WebLogic
Server is configured.

Specifying Complex Attributes in Harvester Policies

You can specify complex attributes (a collection, an array type or an Object with nested
intrinsic attribute types) within Harvester policy expressions.There are several ways to do this.
The following example shows a drill-down into a nested attribute in a complex type, which is
then checked to see if it is greater than O:

${ somedonmai n: name=MyMoean/ / conpl exAttribute. nestedAttribute} > 0

You can also use wildcard characters to specify multiple Map keys. The following wildcard
characters are available for specifying complex attributes:

* You can use an asterisk character (*) to specify all key values for Map attributes.

* You can use a percent character (% to replace parts of a Map key string and to identify a
group of keys that match a particular pattern.

In addition, you can use a comma-separated list to specify a discrete set of key values.
For example:

${[com bea. foo. Bar 0 ass]//aList[*].(sone%artial Key% . (aVal ue, bValue)} > 0

The rule in the preceding example examines all elements of the aLi st attribute on all instances
of com bea. f 00. Bar 0 ass, drilling down into a nested map for all keys starting with the text
sone and containing the text parti al Key afterwards. The returned values are assumed to be
Map instances, from which values for the keys aVal ue and bVal ue are compared to determine
if they are greater than 0.

When using the MethodInvocationStatistics attribute on the WLDFInstrumentationRuntime
type, the system needs to determine the type from the variable. If the system cannot determine

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix E-5 of E-6

http://docs.oracle.com/javase/8/docs/api/javax/management/ObjectName.html
http://docs.oracle.com/javase/8/docs/api/javax/management/ObjectName.html

ORACLE Appendix E
Specifying Complex Attributes in Harvester Policies

the type when validating the attribute expression, the expression is not valid. For example, the
following expression is not valid:

${ com bea: Nane=nyScope, * //Methodl nvocationStatistics.(...).(...)

You must explicitly declare the type in this situation, as shown in the following example that
shows drilling down into the nested map structure:

$(com bea: Nane=hel | o, Type=W.DFI nst runent at i onRunti me, *// Met hodl nvocati onStati stics(*)(*)
(*)(count)) >=1

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix E-6 of E-6

WebLogic Scripting Tool Examples

The WebLogic Diagnostics Framework (WLDF) includes examples that show using WLST and
JMX to interact with WLDF components.

@® Note

The following examples are also included with the WebLogic Server code examples:

 Example: Configuring a Policy and a IMX Action

Example: Writing a IMXWatchNotificationListener Class

 Example: Reqistering MBeans and Attributes For Harvesting

These examples are bundled under the title "Configuring the Policies and Actions
System and Harvesting Data Using WLST". For information about installing and
configuring the WebLogic Server code examples, see Sample Applications and Code
Examples in Understanding Oracle WebLogic Server.

For information about running WebLogic Scripting Tool (WLST) scripts, see Running WLST
from Ant in Understanding the WebLogic Scripting Tool. For information about developing JMX
applications, see Understanding JMX in Developing Manageable Applications Using JMX for
Oracle WebLogic Server.

This appendix includes the following sections:

WLST Commands for Diagnostics

WLST includes a set of commands that you can use to retrieve diagnostic data and manage
diagnostic system resources.These commands are summarized in Table F-1.

Table F-1 WLST Commands Used with WLDF

Command Summary

capt ureAndSaveDi agnosti cl nage Captures a diagnostics image and downloads it locally.

creat eSyst emResour ceCont r ol Creates a diagnostics system resource control using specified descriptor
file that is not persisted in the domain configuration. See Using WLST to
Activate and Deactivate Diagnostic System Modules.

dest r oySyst enResour ceCont r ol Destroys an external diagnostics system resource control; that is, one
that is created in a server or cluster instance but that is not persisted in
the domain configuration. See Using WLST to Activate and Deactivate
Diagnostic System Modules.

di sabl eSyst enResour ce Deactivates a diagnostic system resource control that is persisted in the

domain configuration. See Using WLST to Activate and Deactivate
Diagnostic System Modules.

dunpDi agnosti cDat a

Dumps the diagnostics data from a Harvester to a local file.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix F-1 of F-15

ORACLE’

Appendix F
Example: Dynamically Creating Dyelnjection Monitors

Table F-1 (Cont.) WLST Commands Used with WLDF
|

Command Summary

enabl eSyst enmResour ce Activates a diagnostic resource control. See Using WLST to Activate and
Deactivate Diagnostic System Modules.

export Di agnosti cDat a Execute a query against the specified log file.

export Di agnost i cDat aFr onfSer ver Executes a query on the server side and retrieves the exported WLDF
data.

get Avai | abl eCapt ur edl mages Returns a list of the previously captured diagnostic images.

l'istSystenResourceControl s Lists the diagnostic system modules that are currently configured in the
domain. See Using WLST to Activate and Deactivate Diagnostic System
Modules.

mer geDi agnost i cDat a Merges a set of data files that were previously generated by the
dunpDi agnosti cDat a() command.

saveDi agnosti cl mageCaptureFil e Downloads the specified diagnostic image capture.

saveDi agnosti cl mageCapt ureEntryFil e Downloads a specific entry from the diagnostic image capture.

Example:

For complete details about each of these commands, including additional examples, see
Diagnostics Commands in WLST Command Reference for WebLogic Server.

Dynamically Creating Dyelnjection Monitors

You can create a Dyelnjection monitor dynamically using WLST.This demonstration script
shown in Example F-1does the following:

e Connects to a server (boots the server first if necessary).

e Looks up or creates a WLDF System Resource.

e Creates the Dyelnjection monitor.

e Sets the dye criteria.

e Enables the monitor.

e Saves and activates the configuration.

e Enables the Diagnostic Context feature via the ServerDiagnosticConfigMBean.

The demonstration script in Example F-1 only configures the dye monitor, which injects dye
values into the diagnostic context. To fire events, you must implement downstream diagnostic
monitors that use dye filtering to fire on the specified dye criteria. An example downstream
monitor artifact is shown in Example F-2. This must be placed in a file named webl ogi c-

di agnosti cs. xm and placed into the META- | NF directory of a application archive. It is also
possible to create a monitor using a JSR-88 deployment plan. See Deploying Applications to
Oracle WebLogic Server.

Example F-1 Example: Using WLST to Dynamically Create Dyelnjection Monitors
(demoDyeMonitorCreate.py)

Script nanme: denoDyelbnitor Create. py

HUHH R R R
Demp script showing how to create a Dyel njectionMnitor dynanmically

via WST. This script will:

- Connect to a server, booting it first if necessary

- Look up or create a W.DF System Resource

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix F-2 of F-15

ORACLE

Appendix F
Example: Dynamically Creating Dyelnjection Monitors

- Create the Dyelnjection Mnitor (DM
- Set the dye criteria
- Enabl e the nonitor
- Save and activate
- Enable the Diagnostic Context functionality via the
Server Di agnosti cConfi g MBean
Note: This will only configure the dye nonitor, which will inject dye
values into the Diagnostic Context. To fire events requires the
exi stence of "downstreant nonitors set to fire on the specified
dye criteria.
HHHHHH AR R R R R R R R R R
nmyDomai nDi r ect or y="domai n"
url="t3://1ocal host: 7001"
user ="webl ogi c"
passwor d="passwor d"
nySer ver Name="nyser ver"
nmyDonmai n="nydonai n"
props="webl ogi c. Gener at eDef aul t Confi g=t rue, webl ogi c. Root Di rect ory="\
+nmyDonai nDi rectory

FHoHH HH HH R

try:
connect (user, password, url)
except:
start Server (adnmi nServer Name=nySer ver Nane, domai nName=nyDomai n,
user name=user, passwor d=passwor d, syst enPr operti es=props,
donmai nDi r =nyDonmai nDi rectory, bl ock="true")
connect (user, password, url)
Start an edit session
edit()
startEdit()
cd ("/")
Look up or create the W.DF System resource.
w df Resour ceName = "nmyw df "
nyW df Var = cno. | ookupSyst enResour ce(w df Resour ceNang)
i f myW df Var ==None:
print "Unable to find named resource,\
creating W.DF System Resource: " + w df Resour ceNane
myW df Var =cno. cr eat eW.DFSyst enResour ce(w df Resour ceNane)
Target the System Resource to the deno server.
w df Server=cno. | ookupSer ver (server Nange)
nyW df Var . addTar get (W df Server)
create and set properties of the Dyelnjection Mnitor (DIM.
mywl df Resour ce=nyW df Var . get W.DFResour ce()
myw df | nst =mywl df Resour ce. get | nstrunent ati on()
nmywl df I nst . set Enabl ed(1)
moni t or =nyw df I nst. cr eat e\LDFI nst runent ati onhbni t or (" Dyel nj ecti on")
noni t or. set Enabl ed(1)
Need to include new ines when setting properties
on the Dyelnjection nonitor.
nmonitor. set Properties("\nUSERL=l arry@el tics. com
\ nUSER2=br ady@at ri ots. com n")
noni tor. set DyeFi | t eri ngEnabl ed(1)
Enabl e the diagnostic context functionality via the
ServerDi agnosticConfi g.
cd("/ Servers/"+server Name+"/ Server Di agnost i cConfi g/ " +server Nange)
cno. set Di agnost i cCont ext Enabl ed(1)
save and di sconnect
save()
activate()
di sconnect ()
exit()

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix F-3 of F-15

ORACLE’

Appendix F
Example: Configuring a Policy and a JMX Action

Example F-2 Example: Downstream Monitor Artifact

<?xm version="1.0" encodi ng="UTF-8"?>
<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi="http://ww. w3. org/ 2001/ XM_Schema- i nst ance" >

<instrumentation>

<enabl ed>t r ue</ enabl ed>

<I'-- Servlet Session Mnitors -->

<w df -i nstrunent ati on- noni t or >
<nanme>Ser vl et _Bef or e_Sessi on</ name>
<enabl ed>t r ue</ enabl ed>
<dye- mask>USER1</ dye- mask>
<dye-filtering-enabl ed>true</dye-filtering-enabl ed>
<action>TraceActi on</action>
<acti on>St ackDunpActi on</ acti on>
<acti on>Di spl ayAr gunent sActi on</acti on>
<acti on>Thr eadDunpAct i on</ acti on>

</w df -instrument ati on- noni t or >

<w df -i nstrunent ati on- noni t or >
<name>Servl et After_Sessi on</ name>
<enabl ed>t r ue</ enabl ed>
<dye- mask>USER2</ dye- mask>
<dye-filtering-enabl ed>true</dye-filtering-enabl ed>
<action>TraceAction</action>
<acti on>St ackDunpActi on</ acti on>
<acti on>Di spl ayAr gunent sActi on</acti on>
<acti on>Thr eadDunpAct i on</ acti on>

</w df -instrument ati on- noni t or >

</instrunentation>

</ W df - resour ce>

Example: Configuring a Policy and a JMX Action

You can use WLST to configure a policy and a JMX action using the WLDF Policies and
Actions component.The demonstration script shown in Example F-3 does the following:

Connects to a server and boots the server first if necessary.
Looks up/creates a diagnostic system module.

Creates a policy expression on the ServerRuntimeMBean for the
OpenSocketsCurrentCount attribute.

Configures the actuion to use a JMXNatification medium.

@® Note

This example is also included with the WebLogic Server code examples. For
information about installing and configuring these examples, see Sample Applications
and Code Examples in Understanding Oracle WebLogic Server.

This script can be used in conjunction with the following files and scripts:

The JMXWat chNot i fi cati onLi stener. java class (see Example: Writing a
JMXWatchNotificationListener Class).

The denmpHar vest er . py script, which registers the OpenSocketsCurrentCount attribute with
the Harvester for collection (see Example: Registering MBeans and Attributes For

Harvesting).

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix F-4 of F-15

ORACLE

Appendix F
Example: Configuring a Policy and a JMX Action

To see these files work together, perform the following steps:

1. To run the policy configuration script (denoWat ch. py), type:
java webl ogi c. W.ST denmpVat ch. py

2. To compile the JMXWat chNot i fi cati onLi st ener.java source, type:
javac JMXWat chNoti fi cati onLi stener.java

3. To runthe JMXWat chNot i fi cati onLi stener. cl ass file, type:
java JMX\Wat chNoti ficationLi stener

@ Note

Be sure the current directory is in your class path, so it will find the class file you
just created.

4. To run the denmoHar vest er. py script, type:
java webl ogi c. W.ST denpHar vest er. py

When the denoHar vest er. py script runs, it executes the JMXNotification action for the policy
configured in step 1.

Example F-3 Example: Policy and JMXNotification (demoWatch.py)

Script nane: denpWatch. py

HHHHHHA R R R R R R R

Dermo script showing how to configure a policy and a JMXNotification

using the W.DF Policies and Action framework.

The script will:

- Connect to a server, booting it first if necessary

- Look up or create a WDF System Resource

- Create a policy expression on the ServerRunti meMBean for the
"QOpenSocket sCurrent Count" attribute

- Configure the policy to use a JMXNotification medi um

This script can be used in conjunction with
- the JMX\WatchNotificationListener.java class
- the denpHarvester.py script, which registers the
"OpenSocket sCurrent Count" attribute with the harvester for collection.
To see these work together:
1. Run the policy configuration script
java webl ogi c. W.ST denpWat ch. py
2. Conpile and run the JMXWat chNotificationListener.java source code
javac JMXWatchNoti ficationLi stener.java
java JMXWat chNot i fi cati onLi st ener
3. Run the denoHarvester.py script
java webl ogi c. W.ST denoHar vester. py
V\hen the dempHarvester.py script runs, it fires the
JMXNot i fication for the policy configured in step 1.
HHHH AR R R R A R R R
nmyDomai nDi r ect or y="domai n"
url="t3://1ocal host: 7001"
user ="webl ogi c"
nySer ver Name="nyser ver"
nmyDonmai n="nydonai n"
props="webl ogi c. Gener at eDef aul t Confi g=t r ue\
webl ogi c. Root Di rect or y="+nyDomai nDi r ect ory

HHHFHHHFHHHF T H R

try:

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix F-5 of F-15

ORACLE Appendix F
Example: Writing a JMXWatchNotificationListener Class

connect (user, user, url)
except:
start Server (adni nServer Name=nySer ver Nane, domai nName=nyDomai n,
user name=user, passwor d=passwor d, syst enPr operti es=props,
donai nDi r =nyDonmai nDi rectory, bl ock="true")
connect (user, user, url)
edit()
startEdit()
Look up or create the W.DF Systemresource
w df Resour ceName = "nmyw df "
nyW df Var = cno. | ookupSyst enResour ce(w df Resour ceNang)
i f myW df Var ==None:
print "Unable to find named resource"
print "creating W.DF System Resource: " + w df Resour ceName
myW df Var =cno. cr eat eW.DFSyst enResour ce(w df Resour ceNane)
Target the System Resource to the demp server
w df Server =cno. | ookupSer ver (mySer ver Nane)
nyW df Var . addTar get (W df Server)
cd("/W.DFSyst enResour ces/ myw df / W.DFResour ce/ nywl df / Wat chNot i fi cati on/ myw df ")
wat ch=cno. cr eat eWat ch(" nywat ch")
wat ch. set Enabl ed(1)
j mxnot =cro. cr eat eJMXNot i fi cation("nyj nx")
wat ch. addNot i fi cati on(j nxnot)
serverRuntime()
cd("/")
on=cno. get (bj ect Narme() . get Canoni cal Nane()
wat ch. set Rul eExpr essi on("${"+on+"} > 1")
wat ch. get Rul eExpressi on()
wat ch. set Rul eExpr essi on("${" +on+"// OpenSocket sCurrent Count} > 1")
wat ch. set Al ar nReset Peri od(10000)
edit()
save()
activate()
di sconnect ()
exit()

Example: Writing a JMXWatchNotificationListener Class

You can use the JMX API to write a JMXWatchNotificationListener.Example F-4 shows an
example.

@® Note

This example is also included with the WebLogic Server code examples. For
information about installing and configuring these examples, see Sample Applications
and Code Examples in Understanding Oracle WebLogic Server.

Example F-4 Example: IMXWatchNotificationListener Class
(IMXWatchNotificationListener.java)

i mport j avax. managenent.*;

i mport webl ogi c. di agnosti cs.watch. *;

i mport webl ogi c. di agnosti cs. wat ch. JMK\\Wat chNoti ficati on;
i mport javax.managenent. Notification;

i mport j avax. managenent.renote. JIMXServi ceURL;

i nport javax. managenent.renot e. JMXConnect or Fact ory;

i mport j avax. managenent. renot e. JMXConnect or;

i mport j avax. nam ng. Cont ext ;

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix F-6 of F-15

ORACLE Appendix F
Example: Writing a JMXWatchNotificationListener Class

import java.util.Hashtable;
i mport webl ogi c. managenent . nheanservers. runti ne. Runti neServi ceMBean;
public class JMXWat chNoti ficationListener inplenents NotificationListener, Runnable {
private MBeanServer Connection rnbs = null;
private String notifName = "nyjnx";
private int notifCount = 0;
private String serverNane = "nyserver";
public JMXWat chNoti ficationListener(String serverNane) {
}
public void register() throws Exception {
rmbs = get Runti meMBeanSer ver Connection();
addNoti fi cationHandl er();

public void handl eNotification(Notification notif, Cbject handback) {
synchroni zed (this) {
try {
if (notif instanceof JMXWatchNotification) {
Wat chNoti fication wNotif =
((IJMXWat chNoti fication)notif).get Extendedl nfo();
noti f Count ++;

Systemout. println(" ");
Systemout. println("Notification nane: "+
notifName + " called. Count=" + notifCount + ".");
Systemout. println("Watch severity: "o+
wiNot i f. get Wat chSeverityLevel ());
Systemout. println("Watch tine: "o+
wiNot i f. get Wt chTime());
Systemout. println("Watch Server Nane: "o+
wiNot i f. get \Wat chServer Narme()) ;
Systemout. println("Watch Rul eType: "o+
wiNot i f. get Wt chRul eType());
Systemout. println("Watch Rule: "o+
wiNot i f. get Wt chRul e());
System out. println("Watch Nane: "o+
wiNot i f. get Wt chName()) ;
System out. println("Watch Domai nNane: "o+
wiNot i f. get Wat chDomai nNarre()) ;
Systemout. println("Watch A arnilype: "o+

wiNot i f. get Wt chAl ar milype());
Systemout. println("Watch A arnResetPeriod: " +
wiNot i f. get Wat chAl ar nReset Period());
Systemout. println(" ");

} catch (Throwable x) {
System out. println("Exception occurred processing JMX policy
action: " + notifName +"\n" + Xx);
X.printStackTrace();
}
1
}
private void addNotificationHandl er() throws Exception {
/*
* The JMX policy action listener registers with a Runti me MBean
* that matches the name of the corresponding policy bean.
* Each policy has its own Runtime MBean instance.
*/
Cbj ect Nane onane =
new Ohj ect Name(
"com bea: ServerRuntime=" + serverNane + ", Nane=" +
JMXWat chNot i fi cati on. GLOBAL_JMX_NOTI FI CATI ON_PRODUCER NAME +
", Type=W.DFWat chJMXNot i fi cati onRuntinge," +
"W.DFWat chNot i fi cati onRunti ne=\\t chNotification," +

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix F-7 of F-15

ORACLE Appendix F
Example: Writing a JMXWatchNotificationListener Class

"W.DFRunt i me=WL.DFRunt i ne"
)
Systemout. println("Adding notification handler for: " +
onare. get Canoni cal Nane());
rmbs. addNot i fi cati onLi stener(oname, this, null, null);
}
private void renoveNotificationHandl er(String nane,
NotificationListener list) throws Exception {
Cbj ect Nane onane =
new Obj ect Name(
"com bea: ServerRuntime=" + serverNane + ", Nane=" +
JMXWat chNot i fi cati on. GLOBAL_JMX_NOTI FI CATI ON_PRODUCER NAME +
", Type=W.DFWat chJMXNot i fi cati onRuntinge," +
"W.DFWat chNot i fi cationRunti ne=\\t chNotification," +
"W.DFRunt i me=W.DFRunt i ne"
)
Systemout. println("Removing notification handler for: " +
onane. get Canoni cal Nane());
rbs. removeNoti ficationLi stener(onang, list);

public void run() {
try {
System out. println("VM shutdown, unregistering notification
|istener");
renmoveNoti ficationHandl er (notifNane, this);
} catch (Throwable t) {
Systemout. println("Caught exception in shutdown hook");
t.printStackTrace();

}
}
private String user = "weblogic";
private String password = "password";
publ i ¢ MBeanServer Connection get Runti neMBeanSer ver Connecti on()
throws Exception {
String JNDI = "/jndi/";
JMXSer vi ceURL servi ceURL;
serviceURL =
new JMXServiceURL("t3", "local host", 7001,
JNDI + Runti meServi ceMBean. MBEANSERVER _JNDI _NAME) ;
Systemout. println("URL=" + serviceURL);
Hashtabl e h = new Hashtabl e();
h. put (Cont ext . SECURI TY_PRI NCI PAL, user);
h. put (Cont ext . SECURI TY_CREDENTI ALS, passwor d) ;
h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKACES,
"webl ogi c. nenagenent. renote");
JMXConnect or connector = JMXConnect or Fact ory. connect (servi ceURL, h);
return connector. get MBeanSer ver Connection();

}

public static void min(String[] args) {

try {
String serverName = "nyserver";
if (args.length > 0)

serverNane = args[0];
JMXWat chNoti fi cationLi stener |istener =
new JMXWat chNoti fi cationLi stener(serverNang);

System out. println("Addi ng shutdown hook");
Runti ne. get Runti me() . addShut downHook(new Thread(li stener));
listener.register();
/1 Sleep waiting for notifications
Thr ead. sl eep(Long. MAX_VALUE) ;

} catch (Throwable e) {
e.printStackTrace();

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix F-8 of F-15

ORACLE’

Appendix F
Example: Registering MBeans and Attributes For Harvesting

} /1 end of try-catch
} /1 end of main()

}

Example: Registering MBeans and Attributes For Harvesting

You can use WLST to register MBeans and attributes for collection by the WLDF
Harvester.The script shown in Example F-5 does the following:

* Connects to a server and boots the server first if necessary.
* Looks up or creates a WLDF system resource.

e Sets the sampling frequency.

e Adds a type for collection.

e Adds an attribute of a specific instance for collection.

e Saves and activates the configuration.

» Displays a few cycles of the harvested data.

@® Note

This example is also included with the WebLogic Server code examples. For
information about installing and configuring these examples, see Sample Applications
and Code Examples in Understanding Oracle WebLogic Server.

Example F-5 Example: MBean Registration and Data Collection (demoHarvester.py)

Script name: denoHarvester. py
HHHH AR R R A

Demp script showi ng how register MBeans and attributes for collection
by the WDF Harvester Service. This script will:

- Connect to a server, booting it first if necessary

- Look up or create a W.DF System Resource

- Set the sanpling frequency

- Add a type for collection

- Add an attribute of a specific instance for collection

- Save and activate

BHAHH R R S R R R R R R R R
fromjava.util inport Date
fromjava.text inport SinpleDateFormat
fromjava.lang inport Long
import jarray
BHHHH R R R R R R R R R
Hel per functions for adding types/attributes to the harvester
configuration
BHHHH R S R R R R R R R
def findHarvestedType(harvester, typeNane):

ht ypes=har vest er. get Har vest edTypes()

for ht in (htypes):

if ht.getNane() == typeNane:
return ht

return None
def addType(harvester, nbeanl nstance):

typeName = "webl ogi c. managenent . runtime. "\

+ nbeanl nst ance. get Type() + "MBean"
ht =f i ndHar vest edType(harvester, typeNane)

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix F-9 of F-15

ORACLE Appendix F
Example: Registering MBeans and Attributes For Harvesting

if ht == None:
print "Adding " + typeName + " to harvestables collection for "\
+ harvester. get Nane()
ht =har vest er. cr eat eHar vest edType(t ypeNane)
return ht;
def addAttribut eToHarvest edType(harvestedType, targetAttribute):
currentAttributes = PyList()
current Attribut es. ext end(harvest edType. get Harvest edAttri butes());
print "Current attributes: " + str(currentAttributes)
try:
currentAttributes.index(targetAttribute)
print "Attribute is already in set"
return
except Val ueError:
print targetAttribute + " not in list, adding"
currentAttributes. append(target Attribute)

newSet = jarray.array(currentAttributes, java.lang.String)
print "New attributes for type "\

+ harvestedType. getName() + ": " + str(newSet)
har vest edType. set Har vest edAt t ri but es(newSet)
return

def addTypeFor|nstance(harvester, nbeanlnstance)
typeName = "webl ogi c. management . runtime. "\
+ nbeanl nst ance. get Type() + "MBean"
return addTypeByName(harvester, typeNane, 1)
def addl nstanceToHar vest edType(harvester, nbeanl nstance)
harvest edType = addTypeFor | nstance(harvester, nbeanlnstance)
currentlnstances = PyList()
currentlnstances. ext end(harvest edType. get Harvest edAttri butes())
on = nbeanl nst ance. get Obj ect Nane() . get Canoni cal Nane()
print "Adding " + str(on) + " to set of harvested instances for type "\
+ harvest edType. get Name()

print "Current instances : " + str(currentlnstances)
for inst in currentlnstances:
if inst == on:

print "Found " + on + " in existing set"

return harvestedType
only get here if the target attribute is not in the set
current|nstances. append(on)
convert the new list back to a Java String array

newSet = jarray.array(currentlnstances, java.lang.String)
print "New instance set for type " + harvestedType. get Name()\
+ " " + str(newSet)

har vest edType. set Har vest edl nst ances(newSet)
return harvestedType
def addTypeByNane(harvester, _typeName, knownType=0):
ht =f i ndHar vest edType(harvester, _typeNane)
if ht == None:
print "Adding " + _typeNane + " to harvestables collection for "\
+ harvester. get Name()
ht =har vest er. cr eat eHar vest edType(_t ypeNane)
if knownType ==
print "Setting known type attribute to true for " + _typeNane
ht . set KnownType(knownType)
return ht;
def addAttributeForlnstance(harvester, nbeanlnstance, attributeNane):
typeNane = nbeanl nst ance. get Type() + "MBean"
ht = addl nstanceToHar vest edType(harvester, nbeanl nstance)
return addAttributeToHarvest edType(ht, attribut eNane)
HHHHHHH R R R R R R R A R R
Display the currently registered types for the specified harvester
HHHHHH AR R R R R A R

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix F-10 of F-15

ORACLE

Appendix F

Example: Registering MBeans and Attributes For Harvesting

def displ ayHarvest edTypes(harvester):

harvest edTypes = harvester. get Har vest edTypes()

print ""

print "Harvested types:"

print ""

for ht in (harvestedTypes):
print "Type: " + ht.get Nane()
attributes = ht.getHarvestedAttributes()
if attributes !'= None:

print " Attributes: " + str(attributes)

i nstances = ht. get Harvest edl nst ances()
print " Instances: " + str(instances)
print ""

return

HHHHH AR R R R A R R R R
Main script flow-- create a W.DF Systemresource and add harvestabl es
HHH AR R R R R R R R R

nmyDomai nDi rect or y="domai n"
url="t3://1ocal host:7001"
user ="webl ogi c"
nySer ver Name="nyserver"
nmyDomai n="nydonai n"
props="webl ogi c. Gener at eDef aul t Confi g=t r ue, webl ogi c. Root Di rect ory="\
+myDonai nDi rectory
try:
connect (user, user, url)
except:
start Server (adnm nServer Name=nySer ver Nane, domai nName=nyDomai n,
user name=user , passwor d=passwor d, syst enPr operti es=props,
donai nDi r =nyDomai nDi rectory, bl ock="true")
connect (user, user, url)
start an edit session
edit()
startEdit()
cd("/")
Look up or create the W.DF Systemresource
w df Resour ceName = "nmyw df "
syst enResource = cno. | ookupSyst enResour ce(w df Resour ceNanre)
i f systenResour ce==None:
print "Unable to find named resource,\
creating W.DF System Resource: " + w df Resour ceNane
syst enResour ce=cno. cr eat eW.DFSyst enResour ce(w df Resour ceNane)
Cbtain the harvester bean instance for configuration
print "Getting W.DF Resource Bean from" + str(w df Resour ceNang)
w df Resource = syst enResour ce. get W.DFResour ce()
print "Getting Harvester Configuration Bean from" + w df ResourceNane
harvester = w df Resource. get Harvester ()
print "Harvester: " + harvester.getNane()
Target the WLDF System Resource to the denmp server
w df Server=cno. | ookupSer ver (mySer ver Nane)
syst enResour ce. addTar get (W df Server)
The harvester Jython wapper maintains refs to
the SystenResource objects
harvest er. set Sanpl ePeri od(5000)
harvest er. set Enabl ed(1)
add an instance-based RT MBean attribute for collection
serverRunti me()
cd("/")
addAt tri but eFor I nstance(harvester, crmo, "OpenSocketsCurrentCount")
have to return to the edit tree to activate
edit()
add a RT MBean type, all instances and attributes,

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix F-11 of F-15

ORACLE’

Appendix F
Example: Setting the WLDF Diagnostic Volume

with KnownType = "true"
addTypeByNane(harvester,

"webl ogi c. managenent . runti me. W.DFI nst runent ati onRunt i neMBean", 1)
addTypeByNane(har vester,

"webl ogi c. managenent. runti me. W.DFWat chNot i fi cati onRunti neMBean", 1)
addTypeByNane(harvester,

"webl ogi c. managenent . runti me. W.DFHar vest er Runt i neMBean", 1)

try:
save()
activate(bl ock="true")
except :
print "Error while trying to save and/or activate."
dunpSt ack()

display the data

di spl ayHar vest edTypes(harvester)
di sconnect ()

exit()

Example: Setting the WLDF Diagnostic Volume

You can use WLST to configure the volume of Java Flight Recorder data that is captured in a
diagnostic image.By default, WLDF gathers data and record most events in a WebLogic Server
instance, unless specifically configured otherwise. Note that even when WLDF diagnostic
volume is set to O f , WLDF, and potentially the JVM if flight recording is enabled, generate
global events that have information about the recording settings; for example, JVM metadata
events that list active recordings, and WLDF GloballnformationEvents that list the volume level
for the domain, server, and machine.

Example F-6 shows changing the WLDF diagnostic volume to Medi um

Example F-6 Setting WLDF Diagnostic Volume

connect ()

edit()

startEdit()

cd(" Servers/ nyserver")

cd(" Server Di agnosti cConfig")
cd("nyserver")

cno. set W.DFDi agnost i cVol une(" Medi unt')
save()

activate()

Example: Capturing a Diagnostic Image

You can use WLST to create a diagnostic image capture for a WebLogic Server instance.

@ Note

If WebLogic Server is running in production mode, the server's SSL port must be used
when executing the commands included in this script.

Example F-7 show a sample WLST script that captures a diagnostic image. This example does
the following:

« Captures an diagnostic image after connecting, and then waits for the image task to
complete.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix F-12 of F-15

ORACLE

Appendix F
Example: Capturing a Diagnostic Image

* Uses the get Avai | abl eCapt ur edl mages() command to obtain a list of available diagnostic
image files in the server's image directory.

* Loops through the list of available images in the diagnostic image capture and saves each
image file locally using the saveDi agnost i cl nageCapt ur eFi | e() command.

Example F-7 Creating a Diaghostic Image Capture

#

WLST script to capture a W.DF Diagnostic |mge and
retrieve the image files to a local dir.

#

Usage:

#

java webl ogi c. W.ST capt urel mage. py [username] [passwd] [url] [output-dir]
#

where

#

username Username to use to connect

passwd Password for connecting to server
url URL to connect to the server

output-dir Path to place saved entries

#

f

romjava.io inport File

Retrieve a positional argument if it exists; if not,
the provided default is returned.
#
Parans:
pos The integer location in sys.argv of the paraneter
default The default value to return if the paranmeter does not exist
#
returns the value at sys.argv[pos], or the provided default if necesssary
def get Positional Argunent (pos, default):

val ue=None

try:

val ue=sys. ar gv[pos]
except:

val ue=def aul t
return val ue

Credential argunents

unanme=get Posi ti onal Argunent (1, "webl ogic")
passwd=get Posi ti onal Argument (2, "password")

ur | =get Posi tional Argument (3, "t3://1ocal host: 7001")
out put Di r=get Posi ti onal Argunent (4, ".")

connect (unanme, passwd, url)
serverRuntime()
current Drive=current Tree()

Capture a new di agnostic imge
try:
cd("serverRuntime: / W.DFRunt i me/ W.DFRunt i me/ W.DFI mageRunt i me/ | mage")
t ask=cno. capt ur el mage()
Thr ead. sl eep(1000)
whil e task.isRunning():
Thr ead. sl eep(5000)
cno. reset | mgeLockout () ;
finally:
currentDrive()

List the available diagnostic image files in the server's image capture dir

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix F-13 of F-15

ORACLE’

Example:

Appendix F
Example: Retrieving a JFR File from a Diagnostic Image Capture

i mges=get Avai | abl eCapt ur edl mages()
if len(images) > 0:
For each diagnostic image found, retrieve image file, renaning it as
the user sees fit
for image in imges:
saveNane=out put Di r +Fi | e. separ at or +ser ver Name+' -' +i mage
saveDi agnost i cl mageCapt ur eFi | e(i mage, saveNane)

Retrieving a JFR File from a Diagnostic Image Capture

You can use WLST to retrieve the Java Flight Recorder (JFR) file from each diagnostic image
capture that is located in the image destination directory on the server and copy it to a local
directory.The script shown in Example F-8 does the following:

« Connects to WebLogic Server, passing the required credentials.
* Creates a diagnostic image capture.

« Obtains a list of the available diagnostic image files in the server's configured image
directory.

* For each diagnostic image file, attempts to retrieve the JFR file and save it to a local
directory, ensuring that each file is renamed as necessary to avoid any from being
overwritten.

@® Note

If WebLogic Server is running in production mode, the server's SSL port must be used
when executing the commands included in this script.

Example F-8 Retrieving a Diagnostic Image Capture File

#

WLST script to capture a W.DF Di agnostic | mge and

save the FlightRecording.jfr entry locally

#

Usage:

#

java webl ogi c. W.ST capturel mageEntry. py [username] [passwd] [url] [output-dir] [image-
suf fix]

#

where

#

usernane Usernane to use to connect

passwd Password for connecting to server

url URL to connect to the server

output-dir Path to place saved entries

image-suffix Suffix to use to renane JFR inmge entries locally

++

i mport os.path
fromjava.io inport File

Retrieve a positional argunment if it exists; if not,
the provided default is returned.

Par ans:
pos The integer location in sys.argv of the paraneter
default The default value to return if the paraneter does not exist

HoHH H R

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix F-14 of F-15

ORACLE’

Appendix F
Example: Retrieving a JFR File from a Diagnostic Image Capture

returns the value at sys.argv[pos], or the provided default if necesssary
def get Positional Argunent (pos, default):
val ue=None
try:
val ue=sys. ar gv[pos]
except:
val ue=def aul t
return val ue

Credential argunents

uname=get Posi ti onal Argunent (1, "webl ogic")
passwd=get Posi ti onal Argunment (2, "password")

url =get Posi ti onal Argunent (3, "t3://local host:7001")
out put Di r=get Posi ti onal Argunent (4, ".")

i mgeSuf fi x=get Posi ti onal Argunent (5, " _WS")

connect (unanme, passwd, url)
serverRunti me()
current Drive=current Tree()

Capture a new di agnostic i mge capture file
try:
cd("serverRunti me: / W.DFRunt i me/ W.DFRunt i me/ W.DFI mageRunt i ne/ | nage")
t ask=cno. capt ur el mage()
Thr ead. sl eep(1000)
whi | e task.isRunning():
Thr ead. sl eep(5000)
cno. reset | mageLockout () ;
finally:
currentDrive()

List the available diagnostic image captures in the server's inmge capture dir
i mges=get Avai | abl eCapt ur edl mages()
if len(images) > 0:
For each imge capture found, retrieve the JFR entry and save it to a | ocal
file, renaming it to avoid collisions in the event there are multiple
diagnostic imge capture files with JFR entries.
i =0
for image in imges:
saveNane=out put Di r +Fi | e. separat or +" Fl i ght Recor di ng_" +i mageSuf fi x+"-"+str(i)+".jfr"
whi | e o0s. pat h. exi st s(saveNane) :
i+=1
saveNane=out put Di r +Fi | e. separ at or +"Fl i ght Recor di ng_" +i mageSuf fi x+"-"+str(i)+".jfr"
saveDi agnosti cl mageCapt ureEntryFi | e(i mage,' Fli ght Recording.jfr', saveNane)
i+=1

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server

G31904-01

October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix F-15 of F-15

WLDF Query Language-Based Policies

The WebLogic Diagnostics Framework (WLDF) provides the WLDF query language for
creating policy expressions.

@® Note

The WLDF query language is deprecated in WebLogic Server as of version 12.2.1.
Oracle recommends using Java Expression Language (EL) instead. Diagnostic
system modules containing policy expressions that use the WLDF query language are
supported for backward compatibility. For information about using Java EL in policy
expressions, see Configuring Policies.

Types of Policies

WLDF supports policies that you can configure within the context of using the WLDF query
language.

WLDF provides three main types of policies, based on what the policy can monitor:

e Harvester policies monitor the set of harvestable MBeans in the local runtime MBean
server.

* Log policies monitor the set of messages generated into the server or domain logs.

* Instrumentation (or Event Data) policies monitor the set of events generated by the
WLDF Instrumentation component.

In the WLDF system resource configuration file for a diagnostic module, each type of policy is
defined in a <rule-type> element, which is a child of <watch>. For example:

<wat ch>

<rul e-type>Harvester</rul e-type>

<l-- Oher configuration elenents -->
</ wat ch>

Policies with different rule types differ in two ways:

* The rule syntax for specifying the conditions being monitored are unique to the type.

* Log and instrumentation policies are triggered in real time, whereas Harvester policies are
triggered only after the current harvest cycle completes.

Policy Configuration Options

WLDF provides several tool options for configuring policies.

For information about policy configuration options, see How Policies Are Configured.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix G-1 of G-4

ORACLE Appendix G
Configuring Harvester Policies Using the WLDF Query Language

Configuring Harvester Policies Using the WLDF Query Language

WLDF provides three main types of Harvester policies that can be configured with WLDF query
language-based expressions. Each policy type is based on what the policy can monitor.

@® Note

If you define a policy to monitor an MBean (or MBean attributes) that the Harvester is
not configured to harvest, the policy will work. The Harvester will implicitly harvest
values to satisfy the requirements set in the defined policy expressions. However, data
harvested in this way (that is, implicitly for a policy) is not archived. See Configuring
the Harvester for Metric Collection.

Harvester policies are triggered in response to a harvest cycle. So, for Harvester policies, the
Harvester sample period defines a time interval between when a situation is identified and
when it can be reported though an action. On average, the delay is SamplePeriod/2.

Example G-1 shows a configuration example of a Harvester policy that monitors several
runtime MBeans. When the policy expression (defined in the <rule-expression> element)
evaluates to true, six different actions are executed to generate the following: a IMX
notification, an SMTP notification, an SNMP notification, an image action, and JMS
notifications for both a topic and a queue.

The policy is a logical expression composed of four Harvester variables. The expression has
the form:

((A>=100) AND (B> 0)) OR C OR D.equal s("active")

Each variable is of the form:
{entityName}//{attributeNane}

In the preceding syntax, { entit yNare} is the JMX ObjectName as registered in the runtime
MBean server or the type name as defined by the Harvester, and { at t ri but eNane} is the
name of an attribute defined on that MBean type.

@® Note

The comparison operators are qualified in order to be valid in XML.

Example G-1 Sample Harvester Policy Configuration (in DIAG_MODULE.xml)

<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi:schenmalLocation="http://xnl ns. oracl e. cont webl ogi ¢/ webl ogi c- di agnosti cs/ 2. 0/
webl ogi c- di agnosti cs. xsd" >
<name>nyw df 1</ name>
<harvest er >
<I'-- Harvesting does not have to be configured and enabled for harvester
policies. However, configuring the Harvester can provi de advantages;
for exanple the data will be archived. -->
<harvest ed-t ype>
<name>nyMBeans. MySi npl eSt andar d</ name>
<har vest ed-i nst ance>myCust onDomai n: Nane=nyCust onVBeanl

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix G-2 of G-4

ORACLE Appendix G
Configuring Log Policies Using the WLDF Query Language

</ harvest ed-i nst ance>
<har vest ed-i nst ance>myCust onDomai n: Nane=nyCust onVBean2
</ harvest ed-i nst ance>
</ harvest ed-type>
<l-- Qther Harvester configuration elements -->
</ harvester>
<wat ch-notification>
<wat ch>
<nanme>si npl eWebLogi cMBean\Wt chRepeat i ngAf t er Wi t </ name>
<enabl ed>t r ue</ enabl ed>
<rul e-type>Harvester</rul e-type>
<rul e- expr essi on>
(${ mydomai n: Nane=W.DFHar vest er Runt i me, Server Runt i me=nyserver, Type=
W.DFHar vest er Runt i me, W.DFRunt i mre=WL.DFRunt i ne// Tot al Sanpl i ngTi me}
> ; = 100
AND
${ mydomai n: Nane=nyser ver, Type=
Server Runti me// OpenSocket sCurrent Count} > 0)
(03
${ mydomai n: Nanme=WL.DFWat chNot i f i cati onRunt i me, Server Runti ne=
nyserver, Type=WL.DFWat chNot i fi cati onRunti ne,
W.DFRunt i me=W.DFRunt i me/ / Enabl ed} = true
R
${ myCust onDonai n: Name=nyCust om\VBean3// St ate} =
"active')
</ rul e-expressi on>
<severity>Warni ng</ severity>
<al arm t ype>Aut omat i cReset </ al arm t ype>
<al arm reset - peri 0d>10000</ al ar m r eset - peri od>
<notification>myJMKNotif, nyl mageNoti f,
myJMSTopi cNot i f, myJMSQueueNot i f, mySNVPNot i f,
mySMIPNot i f </ noti fication>
</ wat ch>
<l-- Qther policy-action configuration elenments -->
</wat ch-noti fication>
</w df -resource>

This policy uses an alarm type of AutomaticReset, which means that it may be triggered
repeatedly, provided that the last time it was triggered was longer than the interval set as the
alarm reset period (in this case 10000 milliseconds).

The severity level provided, Warning, has no effect on the triggering of the policy, but will be
passed on through the actions.

Configuring Log Policies Using the WLDF Query Language

Use log policies to monitor the occurrence of specific messages or strings in the server or
domain log. Policies of this type are triggered as a result of a log message containing the
specified data being issued.

The following example shows the configuration, in DI AG_ MODULE. xni , for a server log policy:

<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi="http://ww:. w3. or g/ 2001/ XM.Schena- i nst ance"
xsi:schemaLocation="http://xn ns. oracl e. conf webl ogi ¢/ webl ogi c- di agnosti cs/ 2. 0/
webl ogi c- di agnosti cs. xsd" >
<nane>nyw df 1</ nanme>
<wat ch-notification>
<enabl ed>t r ue</ enabl ed>
<l 0og- wat ch-severity>l nf o</l og- wat ch- severity>
<wat ch>

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix G-3 of G-4

ORACLE Appendix G
Configuring Instrumentation Policies Using the WLDF Query Language

<nane>nyLogWat ch</ nane>
<rul e-type>Log</rul e-type>
<rul e- expr essi on>M5A D=" BEA- 000360 </ r ul e- expressi on>
<severity>lnfo</severity>
<notification>nyMail Notif2</notification>

</ wat ch>

<sntp-notification>
<name>nyMai | Not i f 2</ name>
<enabl ed>t r ue</ enabl ed>
<mai | - sessi on-j ndi - name>nyMai | Sessi on</ mai | - sessi on-j ndi - nane>
<subject>This is a |log al ert</subject>
<reci pi ent >user name@nmai | servi ce. conx/ r eci pi ent >

</smp-notification>

</wat ch-noti fication>
</w df -resource>

In the preceding example, note how the <rule-type> of Log causes messages or strings
entered in the server log to be monitored. A <rule-type> of Donmai nLog monitors messages or
strings in the domain log.

Configuring Instrumentation Policies Using the WLDF Query
Language

You use instrumentation policies to monitor the events from the WLDF Instrumentation
component. Policies of this type are triggered as a result of the event being posted.

The following example shows the configuration, in DI AG_ MODULE. xn , for an instrumentation
policy:

<wat ch-notification>
<wat ch>
<nanme>nyl nst Wt ch</ name>
<enabl ed>t r ue</ enabl ed>
<rul e-type>Event Dat a</rul e-type>
<rul e- expressi on>
(PAYLOAD > 100000000) AND (MONI TOR = ' Servl et Around_Service')

</ rul e-expressi on>
<al armtype xsi:nil="true"></al armtype>
<notification>nySMIPNoti fication</notification>

</ wat ch>

<sntp-notification>
<nanme>nmy SMIPNot i fi cat i on</ name>
<enabl ed>t r ue</ enabl ed>
<mai | - sessi on-j ndi - name>nyMai | Sessi on</ nmai | - sessi on-j ndi - nane>
<subj ect xsi:nil="true"></subject>
<body xsi:nil="true"></body>
<reci pi ent >user nanme@nuai | servi ce. conx/reci pi ent >

</sntp-notification>

</wat ch-notification>

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01 October 8, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Appendix G-4 of G-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Samples and Tutorials
	New and Changed WebLogic Server Features

	Conventions

	1 Introduction
	What Is the WebLogic Diagnostics Framework?

	2 Overview of the WLDF Architecture
	Overview of the WebLogic Diagnostics Framework
	Data Creation, Collection, and Instrumentation
	Archive
	Policies and Actions
	Data Accessor
	Monitoring Dashboard and Request Performance Pages
	Monitoring Dashboard
	Diagnostics Request Performance Page

	Diagnostic Image Capture
	How It All Fits Together

	3 Using the Built-in Diagnostic System Modules
	Overview
	Types of Built-in Diagnostic System Modules
	Data Collected by Built-in Diagnostic System Modules

	4 Using WLDF with Java Flight Recorder
	About Java Flight Recorder
	Using Java Flight Recorder with Oracle HotSpot
	Key Features of WLDF Integration with Java Flight Recorder
	Java Flight Recorder Use Cases
	Diagnosing a Critical Failure — The "Black Box"
	Profiling During Performance Testing or in Production
	Real-Time Application Diagnostics and Reporting

	Obtaining the Flight Recording File

	5 Understanding WLDF Configuration
	Configuration MBeans and XML
	Tools for Configuring WLDF
	How WLDF Configuration Is Partitioned
	Server-Level Configuration
	Application-Level Configuration

	Configuring Diagnostic Image Capture and Diagnostic Archives
	Configuring Diagnostic Image Capture for Java Flight Recorder
	Configuring Diagnostic System Modules
	About the Resource Descriptor
	WLDF Runtime Control
	Creating a Diagnostic System Module Based on a Configured Resource Descriptor
	Creating a Diagnostic System Module Based on an External Resource Descriptor
	Targeting a Diagnostic System Module to a Server or Cluster
	Dynamically Activating or Deactivating Diagnostic System Modules
	Using WLST to Activate and Deactivate Diagnostic System Modules
	More Information About Configuring Diagnostic System Modules

	Configuring Diagnostic Modules for Applications
	WLDF Configuration MBeans and Their Mappings to XML Elements

	6 Configuring and Capturing Diagnostic Images
	How Diagnostic Image Capture Is Persisted in the Server's Configuration
	Content of the Captured Image File
	Data Included in the Diagnostics Image Capture File
	WLST Online Commands for Downloading Diagnostics Image Captures

	7 Configuring Diagnostic Archives
	Configuring the Archive
	Configuring a File-Based Store
	Configuring a JDBC-Based Store
	Creating WLDF Tables in the Database
	Apache Derby
	Oracle Database
	MySQL

	Configuring JDBC Resources for WLDF

	Retiring Data from the Archives
	Configuring Data Retirement at the Server Level
	Configuring Age-Based Data Retirement Policies for Diagnostic Archives
	Sample Configuration

	8 Configuring the Harvester for Metric Collection
	Harvesting, Harvestable Data, and Harvested Data
	Harvesting Data from the Different Harvestable Entities
	Configuring the Harvester
	Configuring the Harvester Sampling Period
	Configuring the Types of Data to Harvest
	Specifying Type Names for WebLogic Server MBeans and Custom MBeans
	Harvesting from the Domain Runtime MBean Server
	When Configuration Settings Are Validated
	Sample Configurations for Different Harvestable Types

	Harvester Performance Considerations

	9 Configuring Policies and Actions
	Policies and Actions
	Overview of Policies and Actions Configuration
	Sample Policies and Actions Configuration

	10 Configuring Policies
	How Policies Are Configured
	Rule Type
	Expression Language
	Policy Expression
	Actions
	Policy Schedule
	Alarm Options
	Severity Option
	Enablement Option

	Configuring Scheduled Policies
	Configuring Calendar Based Policies
	Configuring Smart Rule Based Policies
	Types of Diagnostic Data that Smart Rules Evaluate
	Smart Rule Example

	Chaining Policies

	Configuring Log Policies
	Configuring Instrumentation Policies
	Creating Complex Policy Expressions Using WLDF Java EL Extensions
	Writing Collected Metrics Policy Expressions Using Beans
	Accessing MBean Data in Collected Metrics
	Working with Complex MBean Attributes
	Performing Bulk Queries on Collected Metrics from MBeans

	Writing Collected Metrics Policy Expressions Using Functions
	Examining Trends in Metric Values over Time
	Extracting and Examining Collected Metrics in Policy Expressions
	Lifecycle of Data Collection

	11 Configuring Actions
	Actions Overview
	Types of Actions
	Variables for Customizable Actions
	Action Timeout

	Configuring JMX Actions
	Configuring JMS Actions
	Configuring SNMP Actions
	Configuring Log Actions
	Configuring REST Actions
	Configuring SMTP Actions
	Configuring Image Actions
	Configuring Elastic Actions
	Elastic Scaling Operations Cannot Be Cancelled After Starting
	Limiting Server Shutdown Time During Scale Down Operations

	Configuring Script Actions
	Configuring Heap Dump Actions
	Configuring Thread Dump Actions

	12 Configuring Instrumentation
	Concepts and Terminology
	Instrumentation Scope
	Configuration and Deployment
	Joinpoints, Pointcuts, and Diagnostic Locations
	Diagnostic Monitor Types
	Diagnostic Actions

	Instrumentation Configuration Files
	XML Elements Used for Instrumentation
	<Instrumentation> XML Elements
	<wldf-instrumentation-monitor> XML Elements
	Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types

	Configuring Server-Scoped Instrumentation
	Configuring Application-Scoped Instrumentation
	Comparing System-Scoped to Application-Scoped Instrumentation
	Overview of the Steps Required to Instrument an Application
	Creating a Descriptor File for a Delegating Monitor
	Creating a Descriptor File for a Custom Monitor
	Defining Pointcuts for Custom Monitors
	Annotation-based Pointcuts

	13 Configuring the DyeInjection Monitor to Manage Diagnostic Contexts
	Contents, Life Cycle, and Configuration of a Diagnostic Context
	Context Life Cycle and the Context ID
	Dyes, Dye Flags, and Dye Vectors
	Where Diagnostic Context Is Configured

	Overview of the Process
	Configuring the Dye Vector by Using the DyeInjection Monitor
	Dyes Supported by the DyeInjection Monitor
	PROTOCOL Dye Flags
	THROTTLE Dye Flag
	When Diagnostic Contexts Are Created

	Using Throttling to Control the Volume of Instrumentation Events
	Configuring the THROTTLE Dye
	How Throttling is Handled by Delegating and Custom Monitors

	Using weblogic.diagnostics.context

	14 Accessing Diagnostic Data With the Data Accessor
	Data Stores Accessed by the Data Accessor
	Accessing Diagnostic Data Online
	Accessing Data Using the Remote Console
	Accessing Data Programmatically Using Runtime MBeans
	Using WLST to Access Diagnostic Data Online
	Using the WLDF Query Language with the Data Accessor

	Accessing Diagnostic Data Offline
	Accessing Diagnostic Data Programmatically
	Resetting the System Clock Can Affect How Data Is Archived and Retrieved

	15 Deploying WLDF Application Modules
	Deploying a Diagnostic Module as an Application-Scoped Resource
	Using Deployment Plans to Dynamically Control Instrumentation Configuration
	Using a Deployment Plan: Overview
	Creating a Deployment Plan Using weblogic.PlanGenerator
	Sample Deployment Plan for Diagnostics
	Enabling Java HotSwap
	Deploying an Application with a Deployment Plan
	Updating an Application with a Modified Plan

	16 Configuring and Using WLDF Programmatically
	How WLDF Generates and Retrieves Data
	Mapping WLDF Components to Beans and Packages
	Programming Tools
	Configuration and Runtime APIs
	Configuration APIs
	Runtime APIs

	WLDF Packages
	Programming WLDF: Examples
	Example: DiagnosticContextExample.java
	Example: HarvesterMonitor.java
	Notification Listeners
	HarvesterMonitor.java

	Example: JMXAccessorExample.java

	17 Using Debug Patches
	Dynamic Application of Debug Patches
	Specifying the Debug Patch Directory
	Configuring the WLDF Debug Patch Agent
	WLST Commands for Debug Patches
	Dynamically Activating a Debug Patch
	Dynamically Deactivating Debug Patches

	A Smart Rule Reference
	About the Parameters You Specify for Smart Rules
	Cluster Scope Smart Rules
	ClusterLowThroughput
	ClusterHighProcessCpuLoadAverage
	ClusterHighThroughput
	ClusterLowPendingUserRequests
	ClusterHighStuckThreads
	ClusterLowQueueLength
	ClusterHighPendingUserRequests
	ClusterLowProcessCpuLoadAverage
	ClusterHighIdleThreads
	ClusterLowSystemLoadAverage
	ClusterHighQueueLength
	ClusterLowHeapFreePercent
	ClusterHighSystemLoadAverage
	ClusterHighHeapFreePercent
	ClusterLowSystemCpuLoadAverage
	ClusterLowIdleThreads
	ClusterGenericMetricRule
	ClusterHighSystemCpuLoadAverage

	Server Scope Smart Rules
	ServerLowIdleThreads
	ServerHighThroughput
	ServerGenericMetricRule
	ServerLowPendingUserRequests
	ServerLowProcessCpuLoadAverage
	ServerHighSystemLoadAverage
	ServerLowQueueLength
	ServerLowThroughput
	ServerHighQueueLength
	ServerHighSystemCpuLoadAverage
	ServerHighPendingUserRequests
	ServerLowSystemCpuLoadAverage
	ServerHighHeapFreePercent
	ServerHighStuckThreads
	ServerHighProcessCpuLoadAverage
	ServerLowSystemLoadAverage
	ServerLowHeapFreePercent
	ServerHighIdleThreads

	B WLDF Beans and Functions Reference
	WLDF Beans Reference
	clusterRuntime
	domainRuntime
	instrumentationEvent
	log
	platform
	resource
	runtime

	Functions Reference
	wls:tableChanges
	wls:tableAverages
	wls:extract
	wls:average
	wls:changes
	wls:aliveServersCount

	C WLDF Query Language
	Components of a Query Expression
	Supported Operators
	Operator Precedence
	Numeric Relational Operations Supported on String Column Types
	Supported Numeric Constants and String Literals
	About Variables in Expressions
	Creating Policy Expressions
	Creating Log Event Policy Expressions
	Creating Instrumentation Event Policy Expressions
	Creating Harvester Policy Expressions

	Creating Data Accessor Queries
	Data Store Logical Names
	Data Store Column Names

	Creating Log Filter Expressions
	Building Complex Expressions

	D WLDF Instrumentation Library
	Diagnostic Monitor Library
	Diagnostic Action Library
	TraceAction
	DisplayArgumentsAction
	TraceElapsedTimeAction
	TraceMemoryAllocationAction
	StackDumpAction
	ThreadDumpAction
	MethodInvocationStatisticsAction
	Instrumenting an Application with MethodInvocationStatisticsAction and Querying the Results
	Using WLST to Query Method Performance Statistics

	Configuring the Harvester to Collect MethodInvocationStatisticsAction Data
	Configuring Policies Based on MethodInvocationStatistics Metrics
	Using JMX to Collect Data

	MemoryAllocationStatisticsAction

	E Using Wildcards in Expressions
	Using Wildcards in Harvester Instance Names
	Examples

	Specifying Complex and Nested Harvester Attributes
	Examples

	Using the Accessor with Harvested Complex or Nested Attributes
	Using Wildcards in Policy Instance Names
	Specifying Complex Attributes in Harvester Policies

	F WebLogic Scripting Tool Examples
	WLST Commands for Diagnostics
	Example: Dynamically Creating DyeInjection Monitors
	Example: Configuring a Policy and a JMX Action
	Example: Writing a JMXWatchNotificationListener Class
	Example: Registering MBeans and Attributes For Harvesting
	Example: Setting the WLDF Diagnostic Volume
	Example: Capturing a Diagnostic Image
	Example: Retrieving a JFR File from a Diagnostic Image Capture

	G WLDF Query Language-Based Policies
	Types of Policies
	Policy Configuration Options
	Configuring Harvester Policies Using the WLDF Query Language
	Configuring Log Policies Using the WLDF Query Language
	Configuring Instrumentation Policies Using the WLDF Query Language

