
Oracle® Fusion Middleware
Duplicate - Oracle® Fusion Middleware
Configuring and Using the Diagnostics
Framework for Oracle WebLogic Server

14c (14.1.2.0.0)
G31904-01
October 2025

Oracle Fusion Middleware Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics
Framework for Oracle WebLogic Server, 14c (14.1.2.0.0)

G31904-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documentation i

Conventions ii

1 Introduction

What Is the WebLogic Diagnostics Framework? 1

2 Overview of the WLDF Architecture

Overview of the WebLogic Diagnostics Framework 1

Data Creation, Collection, and Instrumentation 2

Archive 3

Policies and Actions 3

Data Accessor 4

Monitoring Dashboard and Request Performance Pages 4

Monitoring Dashboard 5

Diagnostics Request Performance Page 5

Diagnostic Image Capture 5

How It All Fits Together 6

3 Using the Built-in Diagnostic System Modules

Overview 1

Types of Built-in Diagnostic System Modules 1

Data Collected by Built-in Diagnostic System Modules 2

4 Using WLDF with Java Flight Recorder

About Java Flight Recorder 1

Using Java Flight Recorder with Oracle HotSpot 3

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of ix

Key Features of WLDF Integration with Java Flight Recorder 3

Java Flight Recorder Use Cases 4

Diagnosing a Critical Failure — The "Black Box" 4

Profiling During Performance Testing or in Production 5

Real-Time Application Diagnostics and Reporting 5

Obtaining the Flight Recording File 6

5 Understanding WLDF Configuration

Configuration MBeans and XML 1

Tools for Configuring WLDF 1

How WLDF Configuration Is Partitioned 2

Server-Level Configuration 2

Application-Level Configuration 2

Configuring Diagnostic Image Capture and Diagnostic Archives 3

Configuring Diagnostic Image Capture for Java Flight Recorder 3

Configuring Diagnostic System Modules 4

About the Resource Descriptor 5

WLDF Runtime Control 6

Creating a Diagnostic System Module Based on a Configured Resource Descriptor 7

Creating a Diagnostic System Module Based on an External Resource Descriptor 8

Targeting a Diagnostic System Module to a Server or Cluster 9

Dynamically Activating or Deactivating Diagnostic System Modules 9

Using WLST to Activate and Deactivate Diagnostic System Modules 9

More Information About Configuring Diagnostic System Modules 13

Configuring Diagnostic Modules for Applications 13

WLDF Configuration MBeans and Their Mappings to XML Elements 14

6 Configuring and Capturing Diagnostic Images

How Diagnostic Image Capture Is Persisted in the Server's Configuration 1

Content of the Captured Image File 1

Data Included in the Diagnostics Image Capture File 2

WLST Online Commands for Downloading Diagnostics Image Captures 3

7 Configuring Diagnostic Archives

Configuring the Archive 1

Configuring a File-Based Store 1

Configuring a JDBC-Based Store 2

Creating WLDF Tables in the Database 2

Apache Derby 2

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of ix

Oracle Database 3

MySQL 6

Configuring JDBC Resources for WLDF 8

Retiring Data from the Archives 8

Configuring Data Retirement at the Server Level 8

Configuring Age-Based Data Retirement Policies for Diagnostic Archives 9

Sample Configuration 9

8 Configuring the Harvester for Metric Collection

Harvesting, Harvestable Data, and Harvested Data 1

Harvesting Data from the Different Harvestable Entities 1

Configuring the Harvester 2

Configuring the Harvester Sampling Period 3

Configuring the Types of Data to Harvest 3

Specifying Type Names for WebLogic Server MBeans and Custom MBeans 3

Harvesting from the Domain Runtime MBean Server 4

When Configuration Settings Are Validated 4

Sample Configurations for Different Harvestable Types 4

Harvester Performance Considerations 6

9 Configuring Policies and Actions

Policies and Actions 1

Overview of Policies and Actions Configuration 2

Sample Policies and Actions Configuration 4

10

Configuring Policies

How Policies Are Configured 1

Rule Type 2

Expression Language 3

Policy Expression 3

Actions 4

Policy Schedule 4

Alarm Options 6

Severity Option 7

Enablement Option 7

Configuring Scheduled Policies 8

Configuring Calendar Based Policies 8

Configuring Smart Rule Based Policies 9

Types of Diagnostic Data that Smart Rules Evaluate 10

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iii of ix

Smart Rule Example 10

Chaining Policies 11

Configuring Log Policies 11

Configuring Instrumentation Policies 12

Creating Complex Policy Expressions Using WLDF Java EL Extensions 13

Writing Collected Metrics Policy Expressions Using Beans 14

Accessing MBean Data in Collected Metrics 14

Working with Complex MBean Attributes 15

Performing Bulk Queries on Collected Metrics from MBeans 16

Writing Collected Metrics Policy Expressions Using Functions 18

Examining Trends in Metric Values over Time 19

Extracting and Examining Collected Metrics in Policy Expressions 20

Lifecycle of Data Collection 21

11

Configuring Actions

Actions Overview 1

Types of Actions 1

Variables for Customizable Actions 2

Action Timeout 3

Configuring JMX Actions 3

Configuring JMS Actions 4

Configuring SNMP Actions 4

Configuring Log Actions 5

Configuring REST Actions 5

Configuring SMTP Actions 6

Configuring Image Actions 7

Configuring Elastic Actions 8

Elastic Scaling Operations Cannot Be Cancelled After Starting 9

Limiting Server Shutdown Time During Scale Down Operations 9

Configuring Script Actions 10

Configuring Heap Dump Actions 10

Configuring Thread Dump Actions 12

12

Configuring Instrumentation

Concepts and Terminology 1

Instrumentation Scope 1

Configuration and Deployment 1

Joinpoints, Pointcuts, and Diagnostic Locations 2

Diagnostic Monitor Types 2

Diagnostic Actions 3

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iv of ix

Instrumentation Configuration Files 4

XML Elements Used for Instrumentation 5

<Instrumentation> XML Elements 5

<wldf-instrumentation-monitor> XML Elements 6

Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types 9

Configuring Server-Scoped Instrumentation 9

Configuring Application-Scoped Instrumentation 10

Comparing System-Scoped to Application-Scoped Instrumentation 11

Overview of the Steps Required to Instrument an Application 12

Creating a Descriptor File for a Delegating Monitor 13

Creating a Descriptor File for a Custom Monitor 13

Defining Pointcuts for Custom Monitors 14

Annotation-based Pointcuts 16

13

Configuring the DyeInjection Monitor to Manage Diagnostic Contexts

Contents, Life Cycle, and Configuration of a Diagnostic Context 1

Context Life Cycle and the Context ID 1

Dyes, Dye Flags, and Dye Vectors 2

Where Diagnostic Context Is Configured 2

Overview of the Process 3

Configuring the Dye Vector by Using the DyeInjection Monitor 4

Dyes Supported by the DyeInjection Monitor 4

PROTOCOL Dye Flags 5

THROTTLE Dye Flag 6

When Diagnostic Contexts Are Created 6

Using Throttling to Control the Volume of Instrumentation Events 6

Configuring the THROTTLE Dye 6

How Throttling is Handled by Delegating and Custom Monitors 7

Using weblogic.diagnostics.context 8

14

Accessing Diagnostic Data With the Data Accessor

Data Stores Accessed by the Data Accessor 1

Accessing Diagnostic Data Online 2

Accessing Data Using the Remote Console 2

Accessing Data Programmatically Using Runtime MBeans 2

Using WLST to Access Diagnostic Data Online 3

Using the WLDF Query Language with the Data Accessor 3

Accessing Diagnostic Data Offline 3

Accessing Diagnostic Data Programmatically 3

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page v of ix

Resetting the System Clock Can Affect How Data Is Archived and Retrieved 8

15

Deploying WLDF Application Modules

Deploying a Diagnostic Module as an Application-Scoped Resource 1

Using Deployment Plans to Dynamically Control Instrumentation Configuration 2

Using a Deployment Plan: Overview 3

Creating a Deployment Plan Using weblogic.PlanGenerator 4

Sample Deployment Plan for Diagnostics 4

Enabling Java HotSwap 5

Deploying an Application with a Deployment Plan 5

Updating an Application with a Modified Plan 6

16

Configuring and Using WLDF Programmatically

How WLDF Generates and Retrieves Data 1

Mapping WLDF Components to Beans and Packages 1

Programming Tools 3

Configuration and Runtime APIs 4

Configuration APIs 4

Runtime APIs 5

WLDF Packages 5

Programming WLDF: Examples 6

Example: DiagnosticContextExample.java 6

Example: HarvesterMonitor.java 6

Notification Listeners 7

HarvesterMonitor.java 7

Example: JMXAccessorExample.java 12

17

Using Debug Patches

Dynamic Application of Debug Patches 1

Specifying the Debug Patch Directory 1

Configuring the WLDF Debug Patch Agent 1

WLST Commands for Debug Patches 2

Dynamically Activating a Debug Patch 2

Dynamically Deactivating Debug Patches 3

A Smart Rule Reference

About the Parameters You Specify for Smart Rules A-1

Cluster Scope Smart Rules A-3

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page vi of ix

ClusterLowThroughput A-4

ClusterHighProcessCpuLoadAverage A-5

ClusterHighThroughput A-7

ClusterLowPendingUserRequests A-8

ClusterHighStuckThreads A-10

ClusterLowQueueLength A-11

ClusterHighPendingUserRequests A-13

ClusterLowProcessCpuLoadAverage A-14

ClusterHighIdleThreads A-16

ClusterLowSystemLoadAverage A-17

ClusterHighQueueLength A-19

ClusterLowHeapFreePercent A-21

ClusterHighSystemLoadAverage A-22

ClusterHighHeapFreePercent A-24

ClusterLowSystemCpuLoadAverage A-25

ClusterLowIdleThreads A-27

ClusterGenericMetricRule A-28

ClusterHighSystemCpuLoadAverage A-30

Server Scope Smart Rules A-32

ServerLowIdleThreads A-34

ServerHighThroughput A-35

ServerGenericMetricRule A-36

ServerLowPendingUserRequests A-38

ServerLowProcessCpuLoadAverage A-39

ServerHighSystemLoadAverage A-40

ServerLowQueueLength A-42

ServerLowThroughput A-43

ServerHighQueueLength A-44

ServerHighSystemCpuLoadAverage A-45

ServerHighPendingUserRequests A-47

ServerLowSystemCpuLoadAverage A-48

ServerHighHeapFreePercent A-49

ServerHighStuckThreads A-50

ServerHighProcessCpuLoadAverage A-52

ServerLowSystemLoadAverage A-53

ServerLowHeapFreePercent A-54

ServerHighIdleThreads A-55

B WLDF Beans and Functions Reference

WLDF Beans Reference B-1

clusterRuntime B-1

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page vii of ix

domainRuntime B-2

instrumentationEvent B-3

log B-5

platform B-6

resource B-7

runtime B-7

Functions Reference B-8

wls:tableChanges B-8

wls:tableAverages B-9

wls:extract B-9

wls:average B-10

wls:changes B-10

wls:aliveServersCount B-10

C WLDF Query Language

Components of a Query Expression C-1

Supported Operators C-1

Operator Precedence C-2

Numeric Relational Operations Supported on String Column Types C-3

Supported Numeric Constants and String Literals C-3

About Variables in Expressions C-3

Creating Policy Expressions C-4

Creating Log Event Policy Expressions C-4

Creating Instrumentation Event Policy Expressions C-5

Creating Harvester Policy Expressions C-6

Creating Data Accessor Queries C-7

Data Store Logical Names C-7

Data Store Column Names C-8

Creating Log Filter Expressions C-9

Building Complex Expressions C-9

D WLDF Instrumentation Library

Diagnostic Monitor Library D-1

Diagnostic Action Library D-9

TraceAction D-9

DisplayArgumentsAction D-10

TraceElapsedTimeAction D-11

TraceMemoryAllocationAction D-11

StackDumpAction D-12

ThreadDumpAction D-12

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page viii of ix

MethodInvocationStatisticsAction D-13

Instrumenting an Application with MethodInvocationStatisticsAction and Querying
the Results D-14

Configuring the Harvester to Collect MethodInvocationStatisticsAction Data D-17

Configuring Policies Based on MethodInvocationStatistics Metrics D-19

Using JMX to Collect Data D-19

MemoryAllocationStatisticsAction D-19

E Using Wildcards in Expressions

Using Wildcards in Harvester Instance Names E-1

Examples E-1

Specifying Complex and Nested Harvester Attributes E-2

Examples E-3

Using the Accessor with Harvested Complex or Nested Attributes E-4

Using Wildcards in Policy Instance Names E-4

Specifying Complex Attributes in Harvester Policies E-5

F WebLogic Scripting Tool Examples

WLST Commands for Diagnostics F-1

Example: Dynamically Creating DyeInjection Monitors F-2

Example: Configuring a Policy and a JMX Action F-4

Example: Writing a JMXWatchNotificationListener Class F-6

Example: Registering MBeans and Attributes For Harvesting F-9

Example: Setting the WLDF Diagnostic Volume F-12

Example: Capturing a Diagnostic Image F-12

Example: Retrieving a JFR File from a Diagnostic Image Capture F-14

G WLDF Query Language-Based Policies

Types of Policies G-1

Policy Configuration Options G-1

Configuring Harvester Policies Using the WLDF Query Language G-2

Configuring Log Policies Using the WLDF Query Language G-3

Configuring Instrumentation Policies Using the WLDF Query Language G-4

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ix of ix

Preface

This document describes and tells how to configure and use the monitoring and diagnostic
services provided by WebLogic Diagnostics Framework (WLDF).

Audience
WLDF provides features for monitoring and diagnosing problems in running WebLogic Server
instances and clusters and in applications deployed to them. Therefore, the information in this
document is directed both to system administrators and to application developers. It also
contains information for third-party tool developers who want to build tools to support and
extend WLDF.

It is assumed that readers are familiar with Web technologies and the operating system and
platform where WebLogic Server is installed.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
• Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server describes

how to use WLDF logging services to monitor server, subsystem, and application events.

• The WLDF system resource descriptor conforms to the weblogic-diagnostics.xsd
schema, available at http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-
diagnostics.xsd.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd

Samples and Tutorials
Oracle provides a variety of code examples and tutorials that show WebLogic Server
configuration and API use, and provide practical instructions on how to perform key
development tasks. For more information, see Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

WLDF Samples Available for Download

Additional WLDF samples for download can be found at http://www.oracle.com/
technetwork/indexes/samplecode/index.html. These examples are distributed as .zip files
that you can unzip into an existing WebLogic Server samples directory structure. These
samples include Oracle-certified ones, as well as samples submitted by fellow developers.

New and Changed WebLogic Server Features
For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface
elements associated with an action, or terms
defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or
placeholder variables for which user supply
particular values.

monospace Monospace type indicates commands within a
paragraph, URLs, code in examples, text that
appears on the screen, or text that user enter.

Preface

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of ii

http://www.oracle.com/technetwork/indexes/samplecode/index.html
http://www.oracle.com/technetwork/indexes/samplecode/index.html

1
Introduction

The WebLogic Diagnostics Framework (WLDF) is a monitoring and diagnostic framework that
defines and implements a set of services that run within WebLogic Server processes and
participate in the standard server life cycle.

Using WLDF, you can create, collect, analyze, archive, and access diagnostic data generated
by a running server and the applications deployed within its containers. This data provides
insight into the run-time performance of servers and applications and enables you to isolate
and diagnose faults when they occur.

What Is the WebLogic Diagnostics Framework?
The WebLogic Diagnostics Framework (WLDF) is a suite of services and APIs that provide the
ability to collect and surface metrics that provide visibility into server and application
performance.Independent Software Vendors (ISVs) can use these APIs, using standard
interfaces such as WLST, REST, and JMX, to develop custom monitoring and diagnostic tools
for integration with WLDF.
The suite of services, components, and APIs provided by WLDF for collecting and analyzing
data includes the following:

• Integration with Oracle HotSpot—If WebLogic Server is configured with Oracle HotSpot,
WLDF can generate diagnostic information about WebLogic Server that is captured in the
Java Flight Recorder file.

• Built-in diagnostic system modules—A set of diagnostic modules available out-of-the-box
that you can enable dynamically to capture basic performance data about the JVM, the
WebLogic Server run time, and primary WebLogic Server subsystems, including JDBC
data sources, messaging, and Jakarta EE containers, such as servlets, EJBs, and
resource adapters. The built-in diagnostic modules can also be cloned and modified,
providing a simple way to create custom diagnostic system modules.

• Monitoring Dashboard—Graphically presents the current and historical operating state of
WebLogic Server and hosted applications, including information gathered by the built-in
diagnostic system modules. The Monitoring Dashboard, which is accessed from the
WebLogic Remote Console, provides a set of tools for organizing and displaying diagnostic
data into views, which surface some of the more critical run-time WebLogic Server
performance metrics and the change in those metrics over time.

• Diagnostic Image Capture—Creates a diagnostic snapshot from the server that can be
used for post-failure analysis. The diagnostic image capture includes Java Flight Recorder
data, if it is available, that can be viewed in Java Mission Control.

• Archive—Captures and persists data events, log records, and metrics from server
instances and applications.

• Instrumentation—Adds diagnostic code to WebLogic Server instances and the applications
running on them to execute diagnostic actions at specified locations in the code. The
Instrumentation component provides the means for associating a diagnostic context with
requests so they can be tracked as they flow through the system. The WebLogic Remote
Console includes a Performance page, which shows real-time and historical views of
method performance information that has been captured through the WLDF

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 2

instrumentation capabilities, serving as a tool that can help identify performance problems
in applications.

• Harvester—Captures metrics from run-time MBeans, including WebLogic Server MBeans
and custom MBeans, which can be archived and later accessed for viewing historical data.

• Policies and Actions—Provides the means for monitoring server and application states and
sending notifications based on criteria set in the policies.

• Logging services—Manage logs for monitoring server, subsystem, and application events.
The WebLogic Server logging services are documented separately from the rest of the
WebLogic Diagnostics Framework. See Related Documentation.

WLDF provides a set of standardized application programming interfaces (APIs) that enable
dynamic access and control of diagnostic data, as well as improved monitoring that provides
visibility into the server. These APIs can be accessed using the JMX and the WebLogic
Scripting Tool (WLST), as described in Configuring and Using WLDF Programmatically.

WLDF enables dynamic access to server data through standard interfaces, and the volume of
data accessed at any given time can be modified without shutting down and restarting the
server.

Chapter 1
What Is the WebLogic Diagnostics Framework?

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 2

2
Overview of the WLDF Architecture

WebLogic Diagnostics Framework (WLDF) consists of various components that work together
to collect, archive, and access diagnostic information about a WebLogic Server instance and
the application it hosts.This chapter provides an overview of the WLDF architecture, describes
its components, and illustrates how all components work together to collect and access
diagnostic information about a WebLogic Server and the application it hosts.

Note

Concepts are presented in this section in a way to help you understand how WLDF
works. Some of this differs from the way WLDF is surfaced in its configuration and run-
time APIs and in the WebLogic Server Console. If you want to start configuring and
using WLDF right away, you can safely skip this discussion and start with Using the
Built-in Diagnostic System Modules.

The following topics summarize WLDF and its architectural components:

Overview of the WebLogic Diagnostics Framework
The WLDF components interact with each other to process data at the server level.WLDF
consists of the following components:

• Data creators (data publishers and data providers that are distributed across WLDF
components)

• Data collectors (the Logger and the Harvester components)

• Archive component

• Accessor component

• Instrumentation component

• Policies and Actions component

• Image Capture component

• Monitoring Dashboard

Data creators generate diagnostic data that is consumed by the Logger and the Harvester.
Those components coordinate with the Archive to persist the data, and they coordinate with
the Policies and Actions subsystem to provide automated monitoring. The Accessor interacts
with the Logger and the Harvester to expose current diagnostic data and with the Archive to
present historical data. The Image Capture facility provides the means for capturing a
diagnostic snapshot of a key server state. The Major WLDF components are shown in
Figure 2-1.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

Figure 2-1 Major WLDF Components

All of the framework components operate at the server level and are only aware of server
scope. All the components exist entirely within the server process and participate in the
standard server lifecycle. All artifacts of the framework are configured and stored on a per
server basis.

Data Creation, Collection, and Instrumentation
Diagnostic data is collected from a number of logically classified sources.The sources are
logically classified as either data providers, data creators that are sampled at regular intervals
to harvest current values, or data publishers, data creators that synchronously generate
events.
Data providers and data publishers are distributed across components, and the generated data
can be collected by the Logger or the Harvester, as shown in Figure 2-2.

Figure 2-2 Relationship of Data Creation Components to Data Collection Components

Chapter 2
Data Creation, Collection, and Instrumentation

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

Figure 2-2 shows that invocations of the server logging infrastructure serve as inline data
publishers, and that the generated data is collected as events. (The logging infrastructure can
be invoked through the catalog infrastructure, the debugging model, or directly through the
Logger.)

The Instrumentation component creates monitors and inserts them at well-defined points in the
flow of execution. These monitors publish data directly to the Archive.

Components registered with the MBean Server may also make themselves known as data
providers by registering with the Harvester. Collected data is then exposed to both the Policies
and Actions system for automated monitoring and to the Archive for persistence.

Archive
The Archive component of WLDF captures the state of the system and archives it for future
access in diagnosing critical faults in the system. It creates a historical archive using several
persistent components.

The past state is often critical in diagnosing faults in a system. This requires that the state be
captured and archived for future access, creating a historical archive. In WLDF, the Archive
meets this need with several persistence components. Both events and harvested metrics can
be persisted and made available for historical review.

Traditional logging information, which is human readable and intended for inclusion in the
server log, is persisted through the standard logging appenders. New event data that is
intended for system consumption is persisted into an event store using an event archiver.
Metric data is persisted into a data store using a data archiver. The relationship of the Archive
to the Logger and the Harvester is shown in Figure 2-3.

The Archive provides access interfaces so that the Accessor may expose any of the persisted
historical data.

Figure 2-3 Relationship of the Archive to the Logger and the Harvester

Policies and Actions
The Policies and Actions component of WLDF is used to create automated monitors that
observe specific diagnostic states and send notifications based on configured rules.

A policy can monitor log data, event data from the Instrumentation component, or metric data
from a data provider that is harvested by the Harvester. The Policy Manager is capable of
managing policies that are composed of a number of policy expressions. These relationships
are shown in Figure 2-4.

Chapter 2
Archive

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

Figure 2-4 Relationship of the Logger and the Harvester to the Policies and Actions
System

One or more actions can be configured for use by a policy. By default, every policy logs an
event in the server log. SMTP, SNMP, JMX, elastic, REST, script, log, and JMS actions are also
supported.

Data Accessor
The Data Accessor component of WLDF provides access to all the data collected by WLDF,
including log, event, and metric data. It interacts with the Archive component to get historical
data including logged event data and persisted metrics.

When accessing data in a running server, a JMX-based access service is used. The Accessor
provides for data lookup by type, by component, and by attribute. It permits time-based filtering
and, in the case of events, filtering by severity, source and content.

Tools may need to access data that was persisted by a currently inactive server. In this case,
an offline Accessor is also provided. You can use it to export archived data to an XML file for
later access. To use the Accessor in this way, you must use the WebLogic Scripting Tool
(WLST) and must have physical access to the machine.

The relationship of the Accessor to the Harvester and the Archive is shown in Figure 2-5.

Figure 2-5 Relationship of the Online and Offline Accessors to the Archive

Monitoring Dashboard and Request Performance Pages
The WebLogic Remote Console displays the Monitoring Dashboard and Diagnostics Request
Performance pages. The diagnostics data collected is visually represented in these pages. The
Monitoring Dashboard displays the current and historical operating state of WebLogic Server

Chapter 2
Data Accessor

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

and hosted applications. The Diagnostics Request Performance page shows real-time and
historical views of method performance information.

The following sections provide more information about the web pages that visually display the
diagnostic data:

Monitoring Dashboard
The Monitoring Dashboard displays the current and historical operating state of WebLogic
Server and hosted applications by providing visualizations of metric runtime MBean attributes,
which surface some of the more critical runtime performance metrics and the change in those
metrics over time. Historical operating state is represented by collected metrics that have been
persisted into the Archive. To view collected metrics from the Archive, you must configure the
Harvester to capture the data you want to monitor.

The Monitoring Dashboard displays metric information in a series of views. A view is a
collection of one or more charts that display metrics. The Monitoring Dashboard includes a
predefined set of built-in views of available runtime metrics for all running WebLogic Server
instances in the domain. Built-in views surface some of the more critical runtime WebLogic
Server performance metrics and serve as examples of the Monitoring Dashboard's graphic
capabilities.

Custom views are available only to the user who creates them. Custom views are
automatically persisted and can be accessed again when you restart the Monitoring
Dashboard sessions.

Diagnostics Request Performance Page
The Diagnostics Request Performance page of the WebLogic Remote Console shows real-
time and historical views of method performance information that is captured using the
Instrumentation component. To view request performance information, you must first configure
the Instrumentation component to make that data available.

Diagnostic Image Capture
The Diagnostic Image Capture component captures the key server state as a diagnostic
image. The diagnostic image is a diagnostic snapshot of the server state used in diagnosing
problems.

Diagnostic Image Capture support gathers the most common sources of the key server state
used in diagnosing problems. It packages that state into a single artifact which can be made
available to support technicians, as shown in Figure 2-6. The diagnostic image is in essence a
diagnostic snapshot or dump from the server, analogous to a UNIX core dump.

If WebLogic Server is configured with Oracle HotSpot, and Java Flight Recorder is enabled,
the diagnostic image capture includes all available Java Flight Recorder data from all
producers. Furthermore, if WLDF is configured to generate WebLogic Server diagnostic
information captured by Java Flight Recorder, the JFR file includes that information as well.
The JFR file can be extracted from the diagnostic image capture and viewed in Java Mission
Control. See Using WLDF with Java Flight Recorder.

Image Capture support includes:

• On-demand capture, which is the creation of a diagnostic image capture by means of an
operation or command issued from the WebLogic Remote Console, WLST script, or JMX
application.

Chapter 2
Diagnostic Image Capture

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

• Image action, which is automatically creating a diagnostic image capture in response to the
triggering of an associated Harvester policy, Log policy, or Instrumentation policy
expression. For example, a Harvester policy that monitors runtime MBean attributes in a
running server can execute an image action if the metrics harvested from specific runtime
MBean instances indicate a performance issue. Data in the diagnostic image capture can
be analyzed to determine the likely causes of the issue.

For more information about diagnostic image capture, see:

• Configuring and Capturing Diagnostic Images

• Configuring Image Actions

Figure 2-6 Diagnostic Image Capture

How It All Fits Together
The components of the WLDF work together to collect data and diagnose faults in running
server.

Figure 2-7 shows how all the parts of WLDF fit together.

Chapter 2
How It All Fits Together

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

Figure 2-7 Overall View of the WebLogic Diagnostics Framework

Chapter 2
How It All Fits Together

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

3
Using the Built-in Diagnostic System Modules

The built-in diagnostic system modules are provided by the WebLogic Diagnostics Framework
(WLDF) as a simple and easy-to-use mechanism for performing basic health and performance
monitoring of a WebLogic Server instance.

Overview
The WLDF built-in diagnostic modules collect data from key WebLogic Server run-time
MBeans that monitor the main components of a server instance.Those main components are:

• JVM

• WebLogic Server run time

• JDBC, JMS, transaction, and logging services

• Jakarta EE containers hosting servlets, EJBs, and Connector Architecture resource
adapters

When configured in a WebLogic Server instance, the built-in diagnostic modules are
particularly useful for providing a low-overhead, historical record of server performance. As
server workload changes over time, or the performance characteristics change as a result of
updates made to the server's configuration, you can examine the data collected by the built-ins
to obtain details about performance changes. For example, if you notice a slowdown in the
response time of one or more deployed applications, you can use the Monitoring Dashboard or
the Metrics Log table in the WebLogic Remote Console to examine the data collected by the
built-ins for performance bottlenecks associated with one or more WebLogic Server
subsystems. Then using other diagnostic tools, such as custom diagnostic modules, policies
and actions, or Java Flight Recorder, you can drill down further into details about those
bottlenecks to pinpoint specific causes and test the effectiveness of solutions.

In WebLogic domains configured to run in production mode, a built-in diagnostic module is
enabled by default in each server instance. (In domains configured to run in development
mode, built-ins are disabled by default.) However, a built-in diagnostic module can be enabled
or disabled for a server instance easily and dynamically, using either the WebLogic Remote
Console or WLST.

Data collected by the built-in diagnostic modules can be accessed easily, using tools such as
the Metrics Log table in the WebLogic Remote Console or the Monitoring Dashboard. The data
can also be accessed programmatically using JMX, WLST, or REST.

Types of Built-in Diagnostic System Modules
WLDF provides three built-in diagnostic system module types:

• Low — Captures the most important data from key WebLogic Server runtime MBeans
(enabled by default in production mode).

• Medium — Captures additional attributes from the WebLogic Server runtime MBeans
captured by Low, and also includes data from additional runtime MBeans.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 2

• High — Captures the most verbose data from attributes on the WebLogic Server runtime
MBeans captured by Medium, and also includes data from a larger number of runtime
MBeans.

The built-in diagnostic system module type configured for a server instance is specified in the
WLDFServerDiagnosticMBean.WLDFBuiltinSystemResourceType=string MBean attribute,
where string can be set to one of Low, Medium, High, or None.

Data Collected by Built-in Diagnostic System Modules
When you enable a built-in diagnostic module in a WebLogic Server instance, WLDF begins
collecting data from key WebLogic Server run-time MBeans to obtain information, such as the
following:

Data Category Example of Information Collected

JVM statistics Amount of available free memory and JVM processor load on host machine.

Thread statistics Threads being held by a request and the number of pending user requests.

JDBC subsystem
statistics

Examples of information collected may include:

• Number of connections currently in use by applications.
• Average amount of time taken to create a physical connection to the

database.
• Number of leaked connections (that is, connections reserved from the

data source but not returned to the data source).
• Number of available and idle database connections.
• Cumulative, running count of requests for a connection from a data

source.

JMS subsystem
statistics

Examples of information collected may include statistics about:

• WebLogic JMS consumers and producers, such as number of messages
pending by a consumer or producer.

• JMS destinations, such as current number of messages in the
destination, and number of pending messages in the destination.

• The current number of connections to WebLogic Server.

Logging subsystem
statistics

The number of log messages that the WebLogic Server instance has
generated.

JTA subsystem Examples of information collected may include:

• Number of active transactions on the server.
• Total number of seconds that transactions were active for all committed

transactions.

Jakarta EE container
statistics

Examples of information collected may include statistics about:

• EJBs, such as the EJB cache, EJB pool, and EJB transaction statistics.
• Servlets, such as the average amount of time all invocations of a servlet

have executed since the servlet was created.

Note

The specific configuration of each built-in diagnostic module is internal to WebLogic
Server and subject to change in a future release.

Chapter 3
Overview

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 2

4
Using WLDF with Java Flight Recorder

The integration of the WebLogic Diagnostics Framework (WLDF) with Java Flight Recorder
enables WebLogic Server events to be propagated to the Java Flight Recorder for inclusion in
a common data set for runtime or post-incident analysis.The Flight Recording data is also
included in WLDF diagnostic image captures, which enables you to capture flight recording
snapshots based on WLDF policies. You can use this capability to capture and analyze, in a
single view, the runtime system information for both the JVM and the Fusion Middleware
components running on it.
This chapter also explains common usage scenarios that show how this integration can
provide for a comprehensive performance analysis and diagnostic foundation for production
systems based on WebLogic Server.

About Java Flight Recorder
Java Flight Recorder is a performance monitoring and profiling tool that records diagnostic
information on a continuous basis. The Java Flight Recorder is available even when there is a
catastrophic failure such as a system crash.

Java Flight Recorder is available in Oracle HotSpot. When WebLogic Server is configured with
HotSpot, Java Flight Recorder is not enabled by default. See Using Java Flight Recorder with
Oracle HotSpot for information about how to enable Java Flight Recorder with WebLogic
Server.

Note

For the most current information about configurations supported in this release of
WebLogic Server, see Oracle Fusion Middleware Supported System Configurations on
the Oracle Technology Network.

Java Flight Recorder maintains a buffer of diagnostics and profiling data, called a flight
recording or a JFR file, that you can access whenever you need it. The flight recording
functions in a manner similar to an aircraft "black box" in which new data is continuously added
and older data is stripped out, as shown in Figure 4-1.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 6

Figure 4-1 Circular Flight Recording Buffer

The data contained in the JFR file includes events from the JVM and from any other event
producer, such as WebLogic Server and Oracle Dynamic Monitoring System (DMS). The JFR
file can be analyzed at any time, using Java Mission Control, to examine the details of system
execution flow that occurred leading up to an event.

The amount of additional processing overhead that results when Java Flight Recorder is
enabled, and also configure WLDF to generate WebLogic Server diagnostics to be captured by
Java Flight Recorder, is minimal. This makes it ideal to be used on a full time basis, especially
in production environments where it adds the greatest value.

Java Flight Recorder provides the following key benefits:

• Designed to run continuously — When Java Flight Recorder is configured to run full-time,
with both JVM and WLDF events captured in the flight recording, diagnostic data is always
available at the time an event occurs, including a system crash. This ensures that a record
of diagnostic data leading up to the event is available, allowing you to diagnose the event
without having to recreate it.

• Comprehensive data — Java Flight Recorder combines data generated by tools such as
the Runtime Analyzer and the Latency Analysis Tool and presents it in one place.

• Integration with event providers — HotSpot includes a set of APIs that allow Java Flight
Recorder to monitor additional system components, including WebLogic Server, Oracle
Dynamic Monitoring System (DMS), and other Oracle products.

For more information about Java Flight Recorder, see Java Flight Recorder Runtime Guide at
the following location:

http://docs.oracle.com/javacomponents/index.html

Chapter 4
About Java Flight Recorder

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 6

http://docs.oracle.com/javacomponents/index.html

Using Java Flight Recorder with Oracle HotSpot
Java Flight Recorder is available with Oracle Hotspot. If WebLogic Server is configured with
Oracle HotSpot, Java Flight Recorder is disabled by default. Enable the Java Flight Recorder
to capture the WLDF diagnostic data.

To enable Java Flight Recorder, you must specify the following JVM options in the WebLogic
Server instance in which the JVM runs:

-XX:+UnlockCommercialFeatures -XX:+FlightRecorder

Note

The sequence in which you specify JVM options to Hotspot is very important. The
options are processed from left to right, and option values are overwritten if there are
duplicates. Therefore, note the following:

• HotSpot does not recognize the FlightRecorder option unless it is preceded by
the UnlockCommercialFeatures option.

• If you specify only the FlightRecorder option, or you specify FlightRecorder
before specifying UnlockCommercialFeatures, the HotSpot JVM does not start.

Key Features of WLDF Integration with Java Flight Recorder
WLDF integration with Java Flight Recorder provides several useful features, including having
WebLogic Server events captured in the flight recording, the ability to throttle the volume of
data captured, tools for downloading diagnostic image captures, and more.

The key features provided by WLDF to leverage integration with Java Flight Recorder include
the following:

• WLDF diagnostic data captured in a flight recording

WLDF can be configured to generate diagnostic data about WebLogic Server events that
is captured in the flight recording. Captured events include those from components such
as: web applications; EJBs; JDBC, JTA, and JMS resources; resource adapters; and
WebLogic web services.

• WLDF diagnostic volume control

The ability to generate WebLogic Server event data for the Flight Recording is controlled
by the WLDF diagnostic volume configuration. This control also determines the amount of
WebLogic Server event data that is captured by Java Flight Recorder, and can be adjusted
to include more, or less, data for each WebLogic Server event that is generated.

Note

– By default, the WLDF diagnostic volume is set to Low.

– The WLDF diagnostic volume setting does not affect explicitly configured
diagnostic modules or the built-in diagnostic modules.

• Automatic throttling of generated events under load

Chapter 4
Using Java Flight Recorder with Oracle HotSpot

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 6

As processing load rises on a given WebLogic Server instance, WLDF automatically
begins throttling the number of incoming WebLogic Server requests that are selected for
event generation and recording into the JFR file. The degree of throttling is adjusted
continuously as system load rises and falls.

Throttling provides three key benefits:

– The overhead of capturing events generated by WLDF for Java Flight Recorder
remains minimized, which is especially important when systems are under load.

– The time interval encompassed in the flight recording buffer is maximized, giving you a
better historical record of data.

– Throttling has the effect of sampling incoming WebLogic Server requests, maintaining
high performance while still providing an accurate overall view of system activity under
load.

Note

Throttling affects only the Flight Recording data that is captured by WLDF. It does
not affect data captured by other event producers, such as the JVM.

• WLDF diagnostic image capture support for JFR files

WLDF diagnostic image capture automatically includes the JFR file, if one has been
generated by Java Flight Recorder. The JFR file includes data generated by all active
event producers, including WebLogic Server. An image captured using the Policies and
Actions component may contain the JFR file, if available.

• WLST commands for downloading the contents of diagnostic image captures

WLST includes a set of commands for downloading the contents of diagnostic image
captures, described in WLST Online Commands for Downloading Diagnostics Image
Captures. Although these commands are generally useful for listing, copying, and
downloading all entries contained in the diagnostic image capture, they can also be used
for obtaining the JFR file, if available. Once obtained from the diagnostic image capture,
the JFR file can be viewed in Java Mission Control.

Java Flight Recorder Use Cases
Java Flight Recorder helps to resolve important diagnostic issues such as diagnosing critical
failure, and examining and reporting runtime data. When a critical failure occurs, the data
captured by Java Flight Recorder is useful for failure analysis. Likewise, capturing data at
specific time and at runtime help to diagnose data after and before a particular event.

This section summarizes the three common business cases of using the Java Flight Recorder
to resolve diagnostic issues:

For more information about scenarios using Java Flight Recorder, see also About Java Flight
Recorder in Java Flight Recorder Runtime Guide, available at the following URL:

http://docs.oracle.com/javacomponents/index.html

Diagnosing a Critical Failure — The "Black Box"
When a "catastrophic" failure occurs, the content of the Java Flight Recorder buffer can be
made available for post-failure analysis in a manner analogous to the use of an aircraft's black

Chapter 4
Java Flight Recorder Use Cases

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 6

http://docs.oracle.com/javacomponents/index.html

box. Examples of such failures include a JVM crash or an out-of-memory error (OOME)
resulting in an application terminating.

When these situations arise, the flight recording contains the following information, which can
be helpful in determining the cause of the failure:

• JVM core dump, including metadata about the Java Flight Recorder configuration at the
time of the crash. Furthermore, depending on the disk storage parameters that are set, the
Java Flight Recorder data buffer might contain a certain amount of data.

• WebLogic Server events, captured by WLDF, that preceded the failure.

Java Flight Recorder uses a combination of memory and disk to store its buffer. The most
recent data is stored in memory and is flushed out to disk as it "ages". In this way, the on-disk
data can be available even after a power failure or similar catastrophic event; only the most
recent data will be unavailable (for example, the data that had not yet been flushed to disk).
The text dump file will contain metadata about the Java Flight Recorder configuration at the
time of the crash, including the path to the data buffer file when applicable.

Profiling During Performance Testing or in Production
Profiling involves capturing data beginning at a specific point in time so that, later, you can
analyze the events that were generated after that point. In contrast to real-time diagnostics
reporting, described in the following section, profiling involves analyzing the diagnostic data
generated after a particular event occurs, as opposed to the data that precedes it.

Profiling with Java Flight Recorder optimizes the ability to perform deep analysis of lock
contention and causes of latency.

Real-Time Application Diagnostics and Reporting
It is particularly useful to examine diagnostic data generated during run time when a particular
event occurs for the purposes of understanding the system activity that preceded the event; for
example, system activity occurring moments before a serious error message is generated. By
using the diagnostic capabilities available in WLDF in conjunction with Java Flight Recorder,
you can capture a large amount of system-wide diagnostic data the moment a problem occurs.
You can then leverage the capabilities of Java Mission Control to quickly correlate that event
with other system activity and process execution data within the "snapshot in time" that the
JFR file provides, enabling you to quickly isolate likely causes of the problem.

One WLDF feature that is particularly useful in conjunction with Java Flight Recorder is the
image action. An image action generates a diagnostic image capture in response to the
triggering of a policy that is configured in a diagnostic system module. The policy monitors the
server environment for one or more specific conditions, and when those conditions occur, the
policy can automatically executes an image action. When Flight Recorder is enabled, the
diagnostic image capture automatically includes the JFR file. The JFR file can then be
extracted from the diagnostic image capture and examined immediately in Java Mission
Control or stored for later analysis. An image action, used when WLDF data is captured by
Java Flight Recorder, is particularly well suited for real-time diagnosis of intermittent problems.

Image action is part of the Policies and Actions system in WLDF. To set up an image action,
you create one or more individual policies. A policy includes a Java EL expression to specify
the event for the policy to detect. For example, the following log policy expression detects the
server log message with severity level Critical and ID BEA-149618:

log.severityString == 'Critical' && log.messageId == 'BEA-149618'

Policies can monitor any of the following:

Chapter 4
Java Flight Recorder Use Cases

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 6

• Runtime MBean instances in the local runtime MBean server

A scheduled policy can execute an image action if runtime MBean attributes detect a
performance issue, such as high memory utilization rates or problems with open socket
connections to the server.

• Messages published to the server log

A log policy can execute an image action if a specific message, severity level, or string is
issued.

• Event generated by the WLDF Instrumentation component

An event policy can execute an image action if an instrumentation service generates a
particular event.

See the following topics:

• Configuring Policies and Actions

• Configuring Image Actions

The following section explains how to obtain the JFR file from the diagnostic image capture:

• Obtaining the Flight Recording File

Obtaining the Flight Recording File
The diagnostic image capture is a single Java Flight Recorder (JFR) file that contains
individual images produced by different server subsystems. The JFR file is included in the
diagnostic image as FlightRecording.jfr.

A diagnostic image capture can be generated on-demand — for example, from the WebLogic
Remote Console, Fusion Middleware Control, WLST, or a JMX application — or it can be
generated as the result of an image action.

To view the contents of the JFR file, you first need to extract it from the diagnostic image
capture as described in Configuring and Capturing Diagnostic Images. Once you have
extracted the JFR file, you can view its contents in Java Mission Control.

For an example WLST script that retrieves the JFR file from a diagnostic image file and saves
it to a local directory, see Example: Retrieving a JFR File from a Diagnostic Image Capture.

Chapter 4
Obtaining the Flight Recording File

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 6

5
Understanding WLDF Configuration

The WebLogic Diagnostics Framework (WLDF) provides several features for generating,
gathering, analyzing, and persisting diagnostic data from WebLogic Server instances and from
applications deployed to them.For server-scoped diagnostics, some WLDF features are
configured as part of the configuration for a server in a domain. Other features are configured
as system resource descriptors that can be targeted to servers (or clusters). For application-
scoped diagnostics, diagnostic features are configured as resource descriptors for the
application.
For general information about WebLogic Server domain configuration, see Understanding
Oracle WebLogic Server Domains in Understanding Domain Configuration for Oracle
WebLogic Server.

Configuration MBeans and XML
WLDF is configured using configuration MBeans (Managed Beans), and the configuration is
persisted in the XML configuration files. The configuration MBeans are instantiated at startup,
based on the configuration settings in config.xml. When you modify a configuration by
changing the values of MBean attributes, those changes are persisted in the XML files.

Configuration MBean attributes map directly to configuration XML elements. For example, the
Enable attribute of the WLDFInstrumentationBean maps directly to the <enabled> sub-element
of the <instrumentation> element in the resource descriptor file (configuration file) for a
diagnostic module. If you change the value of the MBean attribute, the content of the XML
element is changed when the configuration is saved. Conversely, if you were to edit an XML
element in the configuration file directly (which is not recommended), the change to an MBean
value would take effect after the next session is started.

For more information about WLDF Configuration MBeans, see WLDF Configuration MBeans
and Their Mappings to XML Elements. For general information about how MBeans are
implemented and used in WebLogic Server, see Understanding WebLogic Server MBeans in
Developing Custom Management Utilities Using JMX for Oracle WebLogic Server.

Tools for Configuring WLDF
You can configure the WLDF in several ways such as using the built-in diagnostic modules,
WebLogic Remote Console, WebLogic Scripting Tool (WLST), JMX and WLDF configuration
beans, and editing the XML configuration files.

Refer to the following sections for more information about the tools:

• Use the built-in diagnostic system modules, which provide a simple and easy-to-use
mechanism for performing basic health and performance monitoring of a WebLogic Server
instance. See Using the Built-in Diagnostic System Modules.

• Write scripts to be run in the WebLogic Scripting Tool (WLST). For specific information
about using WLST with WLDF, see WebLogic Scripting Tool Examples. Also see Using the
WebLogic Scripting Tool in Understanding the WebLogic Scripting Tool for general
information about using WLST.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 15

• Configure WLDF programmatically using JMX and the WLDF configuration MBeans. See
Configuring and Using WLDF Programmatically for specific information about programming
WLDF. See MBean Reference for Oracle WebLogic Server and browse or search for
specific MBeans for programming reference.

• Edit the XML configuration files directly. This documentation explains many configuration
tasks by showing and explaining the XML elements in the configuration files. The XML is
easy to understand, and you can edit the configuration files directly, although it is
recommended that you do not. (If you have a good reason to edit the files directly, you
should first generate the XML files by configuring WLDF in the WebLogic Remote Console.
Doing so provides a blueprint for valid XML.)

Note

If you make changes to a configuration by editing configuration files, you must
restart the server for the changes to take effect.

How WLDF Configuration Is Partitioned
You can use WLDF to perform diagnostics tasks for server instances, clusters, and for
applications.

Server-Level Configuration
You configure the following WLDF components as part of a server instance in a domain. The
configuration settings are controlled using MBeans and are persisted in the domain's
config.xml file.

• Diagnostic Image Capture

• Diagnostic Archives

See Configuring Diagnostic Image Capture and Diagnostic Archives.

You configure the following WLDF components as the parts of one or more diagnostic system
modules that can be deployed to one or more server instances or clusters. These configuration
settings are controlled using beans and are persisted in one or more diagnostic resource
descriptor files (configuration files) that can be targeted to one or more server instances or
clusters.

• Harvester (for collecting metrics)

• Policies and Actions

• Instrumentation

See Configuring Diagnostic System Modules.

Application-Level Configuration
You can use the WLDF Instrumentation component with applications, as well as at the server
level. The Instrumentation component is configured in a resource descriptor file deployed with
the application in the application's archive file. See Configuring Diagnostic Modules for
Applications.

Chapter 5
How WLDF Configuration Is Partitioned

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 15

Configuring Diagnostic Image Capture and Diagnostic Archives
Configure the Diagnostic Image Capture and Diagnostic Archive components in the
config.xml file for a domain. The server configuration details are defined in the <server-
diagnostic-config > element of the XML configuration file.

The <server-diagnostic-config> element is a child of the <server> element in a domain, as
shown in Example 5-1.

Example 5-1 Sample WLDF Configuration Information in the config.xml File for a
Domain

<domain>
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <image-dir>logs/diagnostic_images</image-dir>
 <image-timeout>3</image-timeout>
 <diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
 <diagnostic-data-archive-type>FileStoreArchive
 </diagnostic-data-archive-type>
 </server-diagnostic-config>
 </server>
 <!-- Other server elements to configure other servers in this domain -->
 <!-- Other domain-based configuration elements, including references to
 WLDF system resources, or diagnostic system modules. -->
</domain>

Note

If WebLogic Server is configured with Oracle HotSpot, and Java Flight Recorder is
enabled, the diagnostic image capture can optionally include a Java Flight Recorder
file, also called a JFR file, that includes WebLogic Server events. The JFR file can
then be viewed in Java Mission Control. See Using WLDF with Java Flight Recorder.

See the following topics:

• Configuring and Capturing Diagnostic Images

• Configuring Diagnostic Archives

Configuring Diagnostic Image Capture for Java Flight Recorder
The JFR file contains data for all events procedures that are enabled. When WebLogic Server
is configured with a supported version of Oracle HotSpot and Java Flight Recorder is enabled,
the JFR file is automatically included in the diagnostic image capture.

The amount of WebLogic Server event data that is included in the JFR file is determined by the
configuration of the WLDF diagnostic volume.

Chapter 5
Configuring Diagnostic Image Capture and Diagnostic Archives

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 15

Note

Note the following:

• If WebLogic Server is configured with Oracle HotSpot, Java Flight Recorder is
disabled by default unless HotSpot is started using the JVM parameters described
in Using Java Flight Recorder with Oracle HotSpot.

• By default, the WLDF diagnostic volume is set to Low.

• For the most current information about configurations supported in this release of
WebLogic Server, including HotSpot support, see Oracle Fusion Middleware
Supported System Configurations on the Oracle Technology Network.

To include WebLogic Server event data in the JFR file:

1. Ensure that WebLogic Server is configured with Oracle HotSpot, which installed separately
from WebLogic Server.

See Planning the Oracle WebLogic Server Installation in Installing and Configuring Oracle
WebLogic Server and Coherence.

2. Ensure that Java Flight Recorder is enabled.

In a default installation of Oracle HotSpot with WebLogic Server, Java Flight Recorder is
disabled. For information about enabling Java Flight Recorder with HotSpot and WebLogic
Server, see Using Java Flight Recorder with Oracle HotSpot.

3. Set the WLDF diagnostic volume as appropriate. For general use, Oracle recommends the
default setting of Low. However, you can increase the volume of WebLogic Server event
data that is generated, as appropriate, by setting the volume to Medium or High.

Note that the WLDF diagnostic volume setting has no impact on data recorded for other
event producers, such as the JVM.

Note

If the WLDF diagnostic volume is set to Off, and Java Flight Recorder has not been
explicitly disabled, the JFR file continues to include JVM event data and is always
included in the diagnostic image capture.

Configuring Diagnostic System Modules
To configure and use the Instrumentation, Harvester, and Policies and Actions components at
the server level, you must first create a system resource called a diagnostic system module,
which will contain the configurations for all those components. The configuration of diagnostic
system module is defined in a resource descriptor.

The diagnostic system module created at the server level contains the configurations for the
components. When creating a diagnostic system module, note the following:

• Diagnostic system modules are globally available for targeting to servers and clusters
configured in a domain.

• In a given domain, you can create multiple diagnostic system modules with distinct
configurations.

Chapter 5
Configuring Diagnostic System Modules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 15

• You can target multiple diagnostic system modules to any given server or cluster.

• WLDF Runtime Control allows you to dynamically enable or disable a diagnostic system
module without changing the domain configuration.

• Runtime control also allows you to deploy, activate, deactivate, and undeploy a diagnostic
system module on-the-fly that is not defined in the domain configuration.

The following sections described the configuration of diagnostic system modules:

About the Resource Descriptor
A diagnostic system module has a corresponding resource descriptor that defines the
diagnostic module's configuration. A resource descriptor can be either configured or external:

• A configured resource descriptor is one that is defined as part of the domain configuration,
and exists as a file in the DOMAIN_HOME/config/diagnostics directory. A configured
resource descriptor is referenced by the domain config.xml file, and the corresponding
diagnostic system module:

– Is persisted in the domain configuration.

– Is available to all servers and clusters in the domain.

– Can be targeted to a server or cluster through the domain configuration.

– Can be activated or deactivated dynamically using Runtime Control, regardless of
whether it is explicitly targeted to a server or cluster.

Any dynamic changes made to the activation state of the diagnostic system module are not
persisted across server restarts.

• An external resource descriptor is one that is not referenced by the domain config.xml
file; that is, it is defined outside the domain configuration. The diagnostic system module
that is configured by an external resource descriptor may be deployed and activated on a
server using Runtime Control. However, this diagnostic system module:

– Is not persisted in the domain configuration (that is, it is not referenced by the domain
config.xml file.

– Can be deployed, activated, and deactivated only dynamically.

– Cannot have its deployment and activation state persisted in the domain configuration.

– Remains in memory only until the server or cluster on which it is activated is shut
down.

– Cannot be automatically available on server restart.

An external resource descriptor may exist in a file located outside the DOMAIN_HOME/
config/diagnostics directory, or may be passed as a String object using the WLDF
Runtime Control API (see Creating a Diagnostic System Module Based on an External
Resource Descriptor).

Note

The configuration of a diagnostic module conforms to the diagnostics.xsd schema,
available at http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd.

Chapter 5
Configuring Diagnostic System Modules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 15

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd

Except for the name and list of targets for the diagnostic system module, all configuration
information for a diagnostic system module is contained in its resource descriptor file.
Example 5-2 shows portions of the descriptor file for a diagnostic system module named
myDiagnosticModule.

Example 5-2 Sample Structure of a Diagnostic System Module Descriptor File,
MyDiagnosticModule.xml

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <name>MyDiagnosticModule</name>
 <instrumentation>
 <!-- Configuration elements for zero or more diagnostic monitors -->
 </instrumentation>
 <harvester>
 <!-- Configuration elements for harvesting metrics from zero or more
 MBean types, instances, and attributes -->
 </harvester>
 <watch-notification>
 <!-- Configuration elements for one or more policies and one or more
 actions-->
 </watch-notification>
</wldf-resource>

WLDF Runtime Control
WLDF Runtime Control allows you to control the activation or deactivation of diagnostics
system modules dynamically at run time without making a change to the domain configuration.
This allows you to perform specific, targeted diagnostic analysis tasks, and optionally of limited
duration, without interfering with the operation of the server instances themselves.

You can use Runtime Control to do the following:

• Dynamically activate and deactivate diagnostic system modules that are persisted in the
domain configuration without restarting the servers or clusters to which they are targeted.

• Dynamically deploy, activate, deactivate, and undeploy diagnostic system modules that are
configured by an external resource descriptor.

Note

Note the following:

• Changes applied to diagnostic system modules using Runtime Control, whether
defined by configured or external resource descriptors, are not persisted. When a
server instance is restarted, that server returns to its configured state, and any
changes prior to that restart that were made using Runtime Control are lost.

• If you use the Runtime Control to activate a diagnostic system module that is
based on an external resource descriptor (see Creating a Diagnostic System
Module Based on an External Resource Descriptor), the diagnostic resource name
that you specify in the createSystemResourceControl() command to create that
diagnostic system module is used as the WLDF Module name in Harvester
records in the archive.

Chapter 5
Configuring Diagnostic System Modules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 15

Creating a Diagnostic System Module Based on a Configured Resource
Descriptor

You create a diagnostic system module based on a configured resource descriptor using either
the WebLogicRemote Console or the WebLogic Scripting Tool (WLST). It is created as a
WLDFResourceBean, and the configuration is persisted in a resource descriptor file named
DIAG_MODULE.xml, where DIAG_MODULE is the name of the diagnostic system module. You can
specify a name for the descriptor file, but it is not required. If you do not provide a file name, a
file name is generated based on the value in the descriptor file's <name> element. The file is
created by default in the DOMAIN_HOME\config\diagnostics directory, and a reference to the
module is added to the domain's config.xml file.

The config.xml file can contain references to multiple diagnostic system modules, in one or
more <wldf-system-resource> elements. The <wldf-system-resource> element includes the
name of the diagnostic system module file and the list of servers and clusters to which the
module is targeted.

For example, Example 5-3 shows a config.xml file with a module named myDiagnosticModule
targeted to the server myserver and another module named newDiagnosticMod targeted to
servers myserver and ManagedServer2. Note that myDiagnosticModule and newDiagnosticMod
are both targeted to myserver.

Example 5-3 Sample WLDF Configuration Information in the config.xml File for a
Domain

<domain>
 <!-- Other domain-level configuration elements -->
 <wldf-system-resource
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics">
 <name>myDiagnosticModule</name>
 <target>myserver</target>
 <descriptor-file-name>diagnostics/MyDiagnosticModule.xml
 </descriptor-file-name>
 <description>My diagnostic module</description>
 </wldf-system-resource>
 <wldf-system-resource>
 <name>newDiagnosticMod</name>
 <target>myserver,ManagedServer2</target>
 <descriptor-file-name>diagnostics/newDiagnosticMod.xml
 </descriptor-file-name>
 <description>A diagnostic module for my managed servers</description>
 </wldf-system-resource>
<!-- Other WLDF system resource configurations -->
</domain>

The relationship of the config.xml file and the MyDiagnosticModule.xml file is shown in
Figure 5-1.

Chapter 5
Configuring Diagnostic System Modules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 15

Figure 5-1 Relationship of config.xml to System Descriptor File

Creating a Diagnostic System Module Based on an External Resource
Descriptor

WLDF provides the following API that you can use to pass an external resource descriptor and
create a diagnostic system module on-the-fly. You can use this API to dynamically create and
activate a diagnostic system module for a server, but neither its deployment nor activation state
is persisted when the servers or clusters on which it was activated are rebooted. This API is
provided by the following MBeans:

• weblogic.management.runtime.WLDFControlRuntimeMBean

• weblogic.management.runtime.WLDFSystemResourceControlRuntimeMBean

Using this API, you can pass the resource descriptor as a String object on-the-fly. For ease-of-
use, WLDF also provides the following WLST commands, which you can use with a resource
descriptor file that exists externally to the domain configuration:

• createSystemResourceControl() — Creates (deploys) a diagnostics system module on-
the-fly using a specified descriptor file.

• destroySystemResourceControl() — Destroys (undeploys) a diagnostics system module
previously created on-the-fly.

Externally configured diagnostic system modules that are deployed and activated in a server or
cluster are automatically destroyed when that server or cluster is shut down.

If you activate a diagnostic system module that is based on an external resource descriptor,
the diagnostic resource name that you specify in the createSystemResourceControl command
is used as the module name. For example, this is the name that appears in the WLDF Module
column when displaying the contents of the Harvester archive in the WebLogic Remote
Console. For more information about the createSystemResourceControl command, see
Diagnostics Commands in WLST Command Reference for Oracle WebLogic Server.

For an example of using WLST to create, activate, and destroy a diagnostic system module
that is based on an external resource descriptor, see Using WLST to Activate and Deactivate
Diagnostic System Modules.

Chapter 5
Configuring Diagnostic System Modules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 15

Targeting a Diagnostic System Module to a Server or Cluster
A diagnostic system module can be targeted by the domain config.xml file to zero, one, or
more servers or clusters. In addition, a given server can have multiple modules targeted to it
simultaneously. Typically you create multiple modules that monitor different aspects of your
system. You can then choose which modules to target to a server or cluster, based on what
you want to monitor at that time.

Because you can target the same module to multiple servers or clusters, you can write general
purpose modules that you want to use across a domain.

You can change the target of a diagnostic module without restarting the server instances to
which it is targeted or untargeted. This gives you considerable flexibility in writing and using
diagnostic monitors that address a specific diagnostic goal, without interfering with the
operation of the server instances themselves.

Dynamically Activating or Deactivating Diagnostic System Modules
After you configure a diagnostic system module, you can activate or deactivate it without
making a configuration change or rebooting the server instance to which it is targeted. This
capability gives you control over the operative state of diagnostic system modules without
restarting the targeted server or cluster instance or making a change to the domain
configuration.

Because the domain configuration and all resource files are replicated to all servers in the
domain, all configured WLDF resources are available for dynamic activation and deactivation
on all servers in the domain. Note that if you dynamically activate or deactivate a diagnostics
system module, and restart the targeted server, the module's activation state is reverted to
whatever is configured in the domain.

You can also use WLST to dynamically activate or deactivate diagnostic system modules,
including those configured by an external descriptor, as described in Using WLST to Activate
and Deactivate Diagnostic System Modules.

Using WLST to Activate and Deactivate Diagnostic System Modules
You can also use WLST to dynamically activate or deactivate a diagnostic system module. This
capability is provided by the WLST commands listed and described in Table 5-1:

Table 5-1 WLST Commands to Dynamically Activate and Deactivate Diagnostic
Modules

Command Summary

enableSystemResource Enables a diagnostic system module on a WebLogic Server
instance.

disableSystemResource Disables a diagnostic system module on a WebLogic Server
instance.

createSystemResourceControl Creates a diagnostics system module from an external
diagnostic descriptor file. Note that the diagnostics system
module remains in memory only until the server is shut down
and is not deployed the next time the server is restarted.

Chapter 5
Configuring Diagnostic System Modules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 15

Table 5-1 (Cont.) WLST Commands to Dynamically Activate and Deactivate Diagnostic
Modules

Command Summary

destroySystemResourceControl Destroys, or undeploys, a diagnostics system module
configured in an external diagnostic descriptor without
changing the domain configuration.

listSystemResourceControls Lists the diagnostic system modules currently configured on a
WebLogic Server instance.

For complete details about these WLST commands, see Diagnostics Commands in WLST
Command Reference for Oracle WebLogic Server.

Example

This example describes the steps for using WLST to dynamically activate and deactivate the
following diagnostic system modules:

• Module-0, configured in the domain and defined by the resource descriptor file
Module-0-3905.xml located in the DOMAIN_HOME/config/diagnostics directory

• Module-1, configured in the domain and defined by the resource descriptor file
Module-0-3905.xml located in the DOMAIN_HOME/config/diagnostics directory

• External-1, not a part of the domain configuration, but defined by the external resource
descriptor external-wldf. This external resource descriptor is configured in the file
external-wldf.xml, which is external to the domain configuration.

This example assumes the following has been set up:

• The domain config.xml file references two diagnostic system modules that are part of the
domain configuration, as follows:

<wldf-system-resource>
 <name>Module-0</name>
 <descriptor-file-name>diagnostics/Module-0-3905.xml</descriptor-file-name>
 <description></description>
</wldf-system-resource>
<wldf-system-resource>
 <name>Module-1</name>
 <descriptor-file-name>diagnostics/Module-1-3904.xml</descriptor-file-name>
 <description></description>
</wldf-system-resource>

• The server name shown in these examples is myserver.

• The external descriptor file external-wldf.xml is located in the domain's root directory,
wl_domain. It contains the following lines for configuring the diagnostic system module
named External-1:

<?xml version='1.0' encoding='UTF-8'?>
<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:sec="http://xmlns.oracle.com/weblogic/security"
xmlns:wls="http://xmlns.oracle.com/weblogic/security/wls"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd">
 <name>External-1</name>
 <harvester>
 <enabled>true</enabled>

Chapter 5
Configuring Diagnostic System Modules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 15

 <sample-period>10000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 <harvested-attribute>OverallHealthState.ReasonCodeSummary</harvested-attribute>
 <harvested-attribute>OverallHealthState.State</harvested-attribute>
 <namespace>ServerRuntime</namespace>
 </harvested-type>
 </harvester>
</wldf-resource>

Step 1: List Diagnostic System Modules

The following WLST command, shown in bold, lists the diagnostic system modules that are
currently configured:

wls:/wl_domain/Server1> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false false Module-0
false false Module-1

The preceding command shows that Module-0 and Module-1 are configured in the domain
(that is, they are referenced from config.xml and are not configured by external resource
descriptors), but that they have not been activated.

Step 2: Activate Module-0

The following WLST command activates Module-0:

wls:/mydomain/serverConfig> enableSystemResource('Module-0')

You can also supply a server name to all of the WLDF system resource runtime control
functions. If you do not specify a server name, the enableSystemResource() command
defaults to the server instance to which WLST is currently connected. (However, by default, all
configured WLDF system resources are available for runtime control operations on all servers
in the domain.)

wls:/mydomain/serverConfig> enableSystemResource('Module-0', Server='myserver')

Step 3: Verify that Module-0 is Activated

The following WLST command shows that Module-0 is now activated:

wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false true Module-0
false false Module-1

Step 4: Activate Module-1

The following WLST commands activate Module-1 and verify the activation state of all
diagnostic system modules:

wls:/mydomain/serverConfig> enableSystemResource('Module-1', Server='myserver')
wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false true Module-0
false true Module-1

Chapter 5
Configuring Diagnostic System Modules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 15

Step 5: Deactivate Configured Diagnostic Modules

The following WLST commands deactivate all diagnostic system modules that are configured
in the domain and verify their state:

wls:/mydomain/serverConfig> disableSystemResource('Module-0')
wls:/mydomain/serverConfig> disableSystemResource("Module-1")
wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false false Module-0
false false Module-1

Step 6: Create a Diagnostic System Module from an External Resource Descriptor File

The external resource descriptor needs to be accessible by the WLST client. The following
WLST command creates and deploys the diagnostic system module External-1 from the
external resource descriptor in the file external-wldf.xml, and verifies its activation state. ()

wls:/mydomain/serverConfig> createSystemResourceControl('external-wldf', 'external-
wldf.xml')
wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false false Module-0
true false external-wldf
false false Module-1

Note that the External column identifies External-1 as being configured by an external
resource descriptor.

Step 7: Activate External-1

Because the createSystemResourceControl() command only deploys the diagnostic system
module, the following WLST command activates it. The subsequent command verifies the
diagnostic system module's activation state.

wls:/mydomain/serverConfig> enableSystemResource("external-wldf")
wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false false Module-0
true true external-wldf
false false Module-1

Step 8: Deactivate External-1

The following WLST commands deactivate External-1 and verify its deactivation status:

wls:/mydomain/serverConfig> disableSystemResource("external-wldf")
wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false false Module-0
true false external-wldf
false false Module-1

Step 9: Destroy External-1

The following WLST command destroys the diagnostic system module that is configured by an
external resource descriptor:

Chapter 5
Configuring Diagnostic System Modules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 15

wls:/mydomain/serverConfig> destroySystemResourceControl("external-wldf")

Step 10: Verify Original State of Configured Diagnostic Modules

The following WLST command verifies that the domain's configuration is reverted to its original
state, showing only the two diagnostic system modules whose configuration is persisted in the
config.xml file:

wls:/mydomain/serverConfig> listSystemResourceControls()
External Enabled Name
-------- ------- ------------------------------
false false Module-0
false false Module-1

More Information About Configuring Diagnostic System Modules
See the following sections for detailed instructions about configuring WLDF system modules:

• Configuring the Harvester for Metric Collection

• Configuring Policies and Actions

• Configuring Instrumentation

• Configuring the DyeInjection Monitor to Manage Diagnostic Contexts

Configuring Diagnostic Modules for Applications
WLDF supports the ability to configure instrumentation of an application by means of a
diagnostic application module. A diagnostic application module is similar to a diagnostic
system module, with the exception that you configure it in an XML descriptor file that you
package with the application archive file. A diagnostic application module deployed this way is
available only to the application in which that module is enclosed. This ensures that the
application can be reliably deployed into new environments with access to all required
resources in the diagnostic module.
You configure and deploy application-scoped instrumentation as a diagnostic module, which is
similar to a diagnostic system module. However, an application module is configured in an
XML descriptor (configuration) file named weblogic-diagnostics.xml, which is packaged with
the application archive in the ARCHIVE_PATH/META-INF directory for the deployed application.
For example,
C:\Oracle\Middleware\Oracle_Home\user_projects\applications\medrec\dist\standalon
e\exploded\medrec\META-INF\weblogic-diagnostics.xml.

Note

The DyeInjection monitor, which is used to configure diagnostic context (a way of
tracking requests as they flow through the system), can be configured only at the
server level. But once a diagnostic context is created, the context attached to incoming
requests remains with the requests as they flow through the application. For
information about the diagnostic context, see Configuring the DyeInjection Monitor to
Manage Diagnostic Contexts.

For more information about configuring and deploying diagnostic modules for applications, see:

• Configuring Application-Scoped Instrumentation

Chapter 5
Configuring Diagnostic Modules for Applications

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 15

• Deploying WLDF Application Modules

WLDF Configuration MBeans and Their Mappings to XML
Elements

The set of WLDF configuration MBeans, along with the diagnostic system module beans for
WLDF objects, are organized into a specific hierarchy in a WebLogic domain.

Figure 5-2 shows the hierarchy of the WLDF configuration MBeans and the diagnostic system
module beans for WLDF objects in a WebLogic Server domain.

Figure 5-2 WLDF Configuration Bean Tree

The following WLDF MBeans configure WLDF at the server level. They map to XML elements
in the config.xml configuration file for a domain:

• WLDFServerDiagnosticMBean controls configuration settings for the Data Archive and
Diagnostic Images components for a server. It also controls whether diagnostic context for
a diagnostic module is globally enabled or disabled. (Diagnostic context is a way to

Chapter 5
WLDF Configuration MBeans and Their Mappings to XML Elements

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 15

uniquely identify requests and track them as they flow through the system. See Configuring
the DyeInjection Monitor to Manage Diagnostic Contexts.)

This MBean is represented by a <server-diagnostic-config> child element of the <server>
element in the config.xml file for the server's domain.

• WLDFDataRetirementByAgeMBean specifies how data retirement for a WLDF archive is
performed based on the age of records in that archive.

• WLDFSystemResourceMBean contains the name of a descriptor file for a diagnostic
module in the DOMAIN_HOME/config/diagnostics directory and the names of one or more
the target servers on which that module is deployed.

This MBean is represented by a <wldf-system-resource> element in the config.xml file for
the domain.

Note

You can create multiple diagnostic system modules in a domain. The
configurations for the modules are saved in multiple descriptor files in the config/
diagnostics directory for the domain. The domain's config.xml file, therefore,
can contain the multiple <wldf-system-resource> elements that represent those
modules.

• WLDFResourceBean contains the configuration settings for a diagnostic system module.
This bean is represented by a <wldf-resource> element in a DIAG_MODULE.xml diagnostics
descriptor file in the domain's config/diagnostics directory. (See Figure 5-1 and
Example 5-2.) The WLDFResourceBean contains configuration settings for the following
components:

– Harvester: The WLDFHarvesterBean is represented by the <harvester> element in a
DIAG_MODULE.xml file.

– Instrumentation: The WLDFInstrumentationBean is represented by the
<instrumentation> element in a DIAG_MODULE.xml file.

– Policies and Actions: The WLDFWatchNotificationBean is represented by the <watch-
notification> element in a DIAG_MODULE.xml file.

If a WLDFResourceBean is linked from a WLDFSystemResourceMBean, the settings for
WLDF components apply to the targeted server. If a WLDFResourceBean is contained
within a weblogic-diagnostics.xml descriptor file which is deployed as part of an
application archive, you can configure only the Instrumentation component, and the
settings apply only to that application. In the latter case, the WLDFResourceMBean is not
a child of a WLDFSystemResourceMBean.

Chapter 5
WLDF Configuration MBeans and Their Mappings to XML Elements

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 15

6
Configuring and Capturing Diagnostic Images

You can use the Diagnostic Image Capture component of the WebLogic Diagnostics
Framework (WLDF) to create a diagnostic snapshot or dump of a server's internal runtime
state at the time of the capture. The captured information is useful for analyzing the cause of a
server failure.If WebLogic Server is configured with Oracle HotSpot, and Java Flight Recorder
is enabled, the diagnostic image capture includes WebLogic Server diagnostic data that can be
viewed in Java Mission Control.

How Diagnostic Image Capture Is Persisted in the Server's
Configuration

The configuration for Diagnostic Image Capture is persisted in the config.xml file for a
domain.

In the config.xml file, the image capture is described under the <server-diagnostic-config>
subelement of the <server> element for the server, as shown in Example 6-1:

Example 6-1 Sample Diagnostic Image Capture Configuration

<domain>
 <!-- Other domain configuration elements -->
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <image-dir>logs\diagnostic_images</image-dir>
 <image-timeout>2</image-timeout>
 </server-diagnostic-config>
 <!-- Other configuration details for this server -->
 </server>
 <!-- Other server configurations in this domain-->
</domain>

Note

Oracle recommends that you do not edit the config.xml file directly.

Content of the Captured Image File
The Diagnostic Image Capture component captures and combines the images produced by the
different server subsystems into a single .zip file. In addition to capturing the most common
sources of the server state, this component captures images from all the server subsystems
including, for example, images produced by the JMS, JDBC, EJB, and JNDI subsystems.

The most common sources of a server state are captured in a diagnostic image capture,
including:

• Configuration

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 3

• Log cache state

• Java Virtual Machine (JVM)

• Work Manager state

• JNDI state

• Most recent harvested data

If WebLogic Server is configured with Oracle HotSpot, and Java Flight Recorder is enabled,
the diagnostic image capture includes a Java Flight Recorder image, FlightRecording.jfr,
that can be viewed in Java Mission Control. The contents of the Java Flight Recorder image
contains all available data from the Java Flight Recorder, and the volume of data produced by
WLDF depends on the diagnostics volume setting. When Java Flight Recorder is enabled, data
is always provided by the JVM, and optionally includes data provided by WebLogic Server.
Data from additional Oracle components, such as Oracle Dynamic Monitoring System (DMS),
may be included in the Java Flight Recorder image as well.

Note

• A diagnostic image is a heavyweight artifact meant to serve as a server-level state
dump for the purpose of diagnosing significant failures. It enables you to capture a
significant amount of important data in a structured format and then to provide that
data to support personnel for analysis.

• If a non-WebLogic event producer in the WebLogic Server environment, such as
DMS, has configured Java Flight Recorder to record data, the WLDF diagnostic
image capture includes a Java Flight Recorder image file with the recorded data
even if the WLDF diagnostics volume is set to Off.

• When WebLogic Server is configured with HotSpot, Java Flight Recorder is not
enabled by default. For information about how to enable it, see Using Java Flight
Recorder with Oracle HotSpot.

Data Included in the Diagnostics Image Capture File
Each image is captured as a single file for the entire server. The default location is
SERVER_NAME\logs\diagnostic_images. Each image instance has a unique name, as follows:

 diagnostic_image_DOMAIN_SERVER_YYYY_MM_DD_HH_MM_SS.zip

The contents of the file include at least the following information:

• Creation date and time of the image

• Source of the capture request

• Name of each image source included in the image and the time spent processing each of
those image sources

• JVM and OS information, if available

• Command line arguments, if available

• WebLogic Server version including patch and build number information

If WLDF is configured with Oracle HotSpot, as described in Configuring Diagnostic Image
Capture for Java Flight Recorder, the image also contains the Java Flight Recorder file,
FlightRecording.jfr. The JFR file can be extracted as described in WLST Online Commands
for Downloading Diagnostics Image Captures, and viewed in Java Mission Control.

Chapter 6
Content of the Captured Image File

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 3

Figure 6-1 shows the contents of an image file. You can open most of the files in this .zip file
with a text editor to examine the contents.

Figure 6-1 Contents of an Image File

WLST Online Commands for Downloading Diagnostics Image Captures
WLST online provides the following commands for downloading diagnostic image captures
from the server to which WLST is connected:

Table 6-1 WLST Commands for Downloading Image Captures

Command Summary

captureAndSaveDiagnosticImage Captures a diagnostic image and downloads it locally.

getAvailableCapturedImages Returns a list of diagnostic images that have been created in the image
destination directory configured on the server.

saveDiagnosticImageCaptureFile Downloads a specified diagnostic image capture file.

saveDiagnosticImageCaptureEntryFile Downloads a specific entry within a diagnostic image capture. This
command is particularly useful for obtaining the Java Flight Recorder
diagnostics data for viewing in Java Mission Control.

For information about these commands, and examples of using them, see Diagnostics
Commands in WLST Command Reference for Oracle WebLogic Server. For examples of
WLST scripts that return a list of diagnostic images and retrieve JFR files in them, see
WebLogic Scripting Tool Examples.

Chapter 6
Content of the Captured Image File

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 3

7
Configuring Diagnostic Archives

The Archive component captures and persists all data events, log records, and metrics
collected by the WebLogic Diagnostics Framework (WLDF) from server instances and
applications running on them. You can subsequently access archived diagnostic data in online
mode (that is, on a running server), or in off-line mode using the WebLogic Scripting Tool
(WLST).

This chapter explains how to configure the Archive, and also how to configure WLDF to archive
diagnostic data to a file store or a Java Database Connectivity (JDBC) data source:

You can also specify when and under what conditions old data will be removed from the
archive, as described in Retiring Data from the Archives.

Configuring the Archive
You can configure the diagnostic archive on a per-server basis. The configuration is persisted
in the config.xml file for a domain, under the <server-diagnostic-config> element for the
server.

Example configurations for file-based stores and JDBC-based stores are shown in
Example 7-1 and Example 7-7.

Note

Resetting the system clock while diagnostic data is being written to the archive can
produce unexpected results. See Resetting the System Clock Can Affect How Data Is
Archived and Retrieved.

Configuring a File-Based Store
WLDF supports the ability to use a file-based store for the Archive. If you choose the use of a
file-based store, the only configuration option you must set is the location of the directory
where the store is to be maintained. The default directory is DOMAIN_HOME/servers/
SERVER_NAME/data/store/diagnostics.

When you save to a file-based store, WLDF uses the WebLogic Server persistent store. See
Using the WebLogic Persistent Store in Administering the WebLogic Persistent Store.

An example configuration for a file-based store is shown in Example 7-1.

Example 7-1 Sample Configuration for File-based Diagnostic Archive (in config.xml)

<domain>
 <!-- Other domain configuration elements -->
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
 <diagnostic-data-archive-type>FileStoreArchive

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 10

 </diagnostic-data-archive-type>
 </server-diagnostic-config>
 </server>
 <!-- Other server configurations in this domain -->
</domain>

Configuring a JDBC-Based Store
WLDF supports the ability to create the Archive in a JDBC-based store.To use a JDBC store,
the appropriate tables must exist in a database, and JDBC must be configured to connect to
that database. For information about how to configure JDBC using the WebLogic Remote
Console, see Create a JDBC Store in Oracle WebLogic Remote Console Online Help. For
additional information about JDBC configuration, see Administering JDBC Data Sources for
Oracle WebLogic Server.

Note

If you install multiple WLDF schemas in the same database, you need to provide a
way to distinguish among them when accessing the diagnostic archives. You can do
this when you configure the diagnostic archive for a server instance by specifying the
schema name to use for accessing JDBC-based archive tables in that database. See
Configuring JDBC Resources for WLDF.

Creating WLDF Tables in the Database
If they do not already exist, you must create the database tables used by WLDF to store data
in a JDBC-based store. Two tables are required:

• The wls_events table stores data generated from WLDF Instrumentation events.

• The wls_hvst table stores data generated from the WLDF Harvester component.

The SQL Data Definition Language (DDL) used to create tables may differ for different
databases, depending on the SQL variation supported by the database.

Apache Derby
Example 7-2 shows the DDL that you can use to create the wls_events and wls_hvst tables in
Apache Derby.

Example 7-2 DDL Definition of the WLDF Tables for Apache Derby

-- WLDF Instrumentation and Harvester archive DDLs using Derby

AUTOCOMMIT OFF;

-- DDL for creating wls_events table for instrumentation events

DROP TABLE wls_events;

CREATE TABLE wls_events (
 RECORDID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1, INCREMENT BY 1),
 TIMESTAMP BIGINT default NULL,
 CONTEXTID varchar(128) default NULL,
 TXID varchar(32) default NULL,
 USERID varchar(32) default NULL,

Chapter 7
Configuring a JDBC-Based Store

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 10

 TYPE varchar(64) default NULL,
 DOMAIN varchar(64) default NULL,
 SERVER varchar(64) default NULL,
 SCOPE varchar(64) default NULL,
 MODULE varchar(64) default NULL,
 MONITOR varchar(64) default NULL,
 FILENAME varchar(64) default NULL,
 LINENUM INTEGER default NULL,
 CLASSNAME varchar(250) default NULL,
 METHODNAME varchar(64) default NULL,
 METHODDSC varchar(4000) default NULL,
 ARGUMENTS clob(100000) default NULL,
 RETVAL varchar(4000) default NULL,
 PAYLOAD blob(100000),
 CTXPAYLOAD VARCHAR(4000),
 DYES BIGINT default NULL,
 THREADNAME varchar(250) default NULL
);

-- DDL for creating wls_events table for instrumentation events

DROP TABLE wls_hvst;

CREATE TABLE wls_hvst (
 RECORDID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY (START WITH 1, INCREMENT BY 1),
 TIMESTAMP BIGINT default NULL,
 DOMAIN varchar(64) default NULL,
 SERVER varchar(64) default NULL,
 TYPE varchar(64) default NULL,
 NAME varchar(250) default NULL,
 ATTRNAME varchar(64) default NULL,
 ATTRTYPE INTEGER default NULL,
 ATTRVALUE VARCHAR(4000),
 WLDFMODULE VARCHAR(250) default NULL
);

COMMIT;

Consult the documentation for your database or your database administrator for specific
instructions for creating these tables for your database.

Oracle Database
Example 7-3 shows the DDL that you can use to create the wls_events table in Oracle
database.

Example 7-3 DDL Definition of the wls_events Table for Oracle Database

SET SERVEROUTPUT ON;

DECLARE
 vCtr Number;
 vSQL VARCHAR2(2000);
 vcurr VARCHAR2(256);
BEGIN

 SELECT sys_context('userenv', 'current_schema') into vcurrSchema from dual;
 dbms_output.put_line('Current Schema: '||vcurrSchema);

 SELECT COUNT(*)
 INTO vCtr
 FROM user_tables

Chapter 7
Configuring a JDBC-Based Store

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 10

 WHERE table_name = 'WLS_EVENTS';

 IF vCtr = 0 THEN
 dbms_output.put_line('Creating WLS_EVENTS table');
 vSQL := 'CREATE TABLE "WLS_EVENTS" (
 "RECORDID" NUMBER(20,0) DEFAULT NULL,
 "TIMESTAMP" NUMBER(20,0) DEFAULT NULL,
 "CONTEXTID" VARCHAR2(250 BYTE) DEFAULT NULL,
 "TXID" VARCHAR2(250 BYTE) DEFAULT NULL,
 "USERID" VARCHAR2(250 BYTE) DEFAULT NULL,
 "TYPE" VARCHAR2(250 BYTE) DEFAULT NULL,
 "DOMAIN" VARCHAR2(250 BYTE) DEFAULT NULL,
 "SERVER" VARCHAR2(250 BYTE) DEFAULT NULL,
 "SCOPE" VARCHAR2(250 BYTE) DEFAULT NULL,
 "MODULE" VARCHAR2(250 BYTE) DEFAULT NULL,
 "MONITOR" VARCHAR2(250 BYTE) DEFAULT NULL,
 "FILENAME" VARCHAR2(250 BYTE) DEFAULT NULL,
 "LINENUM" NUMBER(10,0) DEFAULT NULL,
 "CLASSNAME" VARCHAR2(250 BYTE) DEFAULT NULL,
 "METHODNAME" VARCHAR2(250 BYTE) DEFAULT NULL,
 "METHODDSC" VARCHAR2(4000 BYTE) DEFAULT NULL,
 "ARGUMENTS" CLOB DEFAULT NULL,
 "RETVAL" VARCHAR2(4000 BYTE) DEFAULT NULL,
 "PAYLOAD" BLOB DEFAULT NULL,
 "CTXPAYLOAD" VARCHAR2(4000 BYTE) DEFAULT NULL,
 "DYES" NUMBER(20,0) DEFAULT NULL,
 "THREADNAME" VARCHAR2(250 BYTE) DEFAULT NULL
)';
 EXECUTE IMMEDIATE vSQL;
 vSQL := 'CREATE UNIQUE INDEX WLS_EVENTS_RECORD_IDX ON WLS_EVENTS(RECORDID)';
 EXECUTE IMMEDIATE vSQL;
 vSQL := 'CREATE INDEX WLS_EVENTS_TS_IDX ON WLS_EVENTS(TIMESTAMP)';
 EXECUTE IMMEDIATE vSQL;
 END IF;

 SELECT COUNT(*)
 INTO vCtr
 FROM user_tab_columns
 WHERE table_name = 'WLS_EVENTS' AND column_name = 'THREADNAME';

 IF vCtr = 0 THEN
 dbms_output.put_line('Creating THREADNAME column in WLS_EVENTS table');
 vSQL := 'ALTER TABLE WLS_EVENTS ADD("THREADNAME" VARCHAR2(250 BYTE) DEFAULT NULL)';
 EXECUTE IMMEDIATE vSQL;
 END IF;

 SELECT COUNT(*) INTO vCtr FROM user_sequences
 WHERE sequence_name = 'SEQ_WLS_EVENTS_RECORDID';

 IF vCtr = 0 THEN
 vSQL := 'CREATE SEQUENCE SEQ_WLS_EVENTS_RECORDID MINVALUE 1 MAXVALUE 99999999999999999999 START WITH
1 INCREMENT BY 1 NOCACHE';
 EXECUTE IMMEDIATE vSQL;
 END IF;

 SELECT COUNT(*) INTO vCtr FROM user_triggers
 WHERE table_name = 'WLS_EVENTS';

 IF vCtr = 0 THEN
 vSQL := 'CREATE OR REPLACE TRIGGER TRG_WLS_EVENTS_INSERT
 BEFORE INSERT ON WLS_EVENTS
 REFERENCING NEW AS newRow

Chapter 7
Configuring a JDBC-Based Store

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 10

 FOR EACH ROW
 BEGIN
 IF :newRow.RECORDID IS NULL THEN
 SELECT SEQ_WLS_EVENTS_RECORDID.nextval INTO :newRow.RECORDID FROM DUAL;
 END IF;
 END;';
 EXECUTE IMMEDIATE vSQL;
 END IF;

END;
/

Example 7-4 shows the DDL that you can use to create the wls_hvst table in Oracle database.

Example 7-4 DDL Definition of the wls_hvst Table for Oracle Database

SET SERVEROUTPUT ON;

DECLARE
 vCtr Number;
 vSQL VARCHAR2(1000);
 vcurrSchema VARCHAR2(256);
BEGIN

 SELECT sys_context('userenv', 'current_schema') into vcurrSchema from dual;
 dbms_output.put_line('Current Schema: '||vcurrSchema);

 SELECT COUNT(*)
 INTO vCtr
 FROM user_tables
 WHERE table_name = 'WLS_HVST';

 IF vCtr = 0 THEN
 dbms_output.put_line('Creating WLS_HVST table');
 vSQL := 'CREATE TABLE "WLS_HVST"
 (
 "RECORDID" NUMBER(20,0) NOT NULL,
 "TIMESTAMP" NUMBER(20,0) DEFAULT NULL,
 "DOMAIN" VARCHAR2(250 BYTE) DEFAULT NULL,
 "SERVER" VARCHAR2(250 BYTE) DEFAULT NULL,
 "TYPE" VARCHAR2(250 BYTE) DEFAULT NULL,
 "NAME" VARCHAR2(250 BYTE) DEFAULT NULL,
 "ATTRNAME" VARCHAR2(250 BYTE) DEFAULT NULL,
 "ATTRTYPE" NUMBER(10,0) DEFAULT NULL,
 "ATTRVALUE" VARCHAR2(4000 BYTE) DEFAULT NULL,
 "WLDFMODULE" VARCHAR2(250 BYTE) DEFAULT NULL
)';
 EXECUTE IMMEDIATE vSQL;
 vSQL := 'CREATE UNIQUE INDEX WLS_HVST_RECORD_IDX ON WLS_HVST(RECORDID)';
 EXECUTE IMMEDIATE vSQL;
 vSQL := 'CREATE INDEX WLS_HVST_TS_IDX ON WLS_HVST(TIMESTAMP)';
 EXECUTE IMMEDIATE vSQL;
 END IF;

 SELECT COUNT(*)
 INTO vCtr FROM user_tab_columns
 WHERE table_name = 'WLS_HVST' AND column_name = 'WLDFMODULE';

 IF vCtr = 0 THEN
 dbms_output.put_line('Creating WLDFMODULE column in WLS_HVST table');
 vSQL := 'ALTER TABLE WLS_HVST ADD("WLDFMODULE" VARCHAR2(250 BYTE) DEFAULT NULL)';
 EXECUTE IMMEDIATE vSQL;
 END IF;

Chapter 7
Configuring a JDBC-Based Store

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 10

 SELECT COUNT(*) INTO vCtr FROM user_sequences
 WHERE sequence_name = 'SEQ_WLS_HVST_RECORDID';

 IF vCtr = 0 THEN
 vSQL := 'CREATE SEQUENCE SEQ_WLS_HVST_RECORDID MINVALUE 1 MAXVALUE 99999999999999999999 START WITH 1
INCREMENT BY 1 NOCACHE';
 EXECUTE IMMEDIATE vSQL;
 END IF;

 SELECT COUNT(*) INTO vCtr FROM user_triggers
 WHERE table_name = 'WLS_HVST';

 IF vCtr = 0 THEN
 vSQL := 'CREATE OR REPLACE TRIGGER TRG_WLS_HVST_INSERT
 BEFORE INSERT ON WLS_HVST
 REFERENCING NEW AS newRow
 FOR EACH ROW
 BEGIN
 IF :newRow.RECORDID IS NULL THEN
 SELECT SEQ_WLS_HVST_RECORDID.nextval INTO :newRow.RECORDID FROM DUAL;
 END IF;
 END;';
 EXECUTE IMMEDIATE vSQL;
 END IF;

END;
/

Consult the documentation for your database or your database administrator for specific
instructions for creating these tables for your database.

MySQL
Example 7-5 shows the DDL that you can use to create the wls_events table in MySQL
database.

Example 7-5 DDL Definition of the wls_events Table in MySql Database

DROP PROCEDURE if exists create_alter_wls_events
/

CREATE PROCEDURE create_alter_wls_events()
language sql
BEGIN
 CREATE TABLE IF NOT EXISTS WLS_EVENTS
 (
 RECORDID BIGINT AUTO_INCREMENT PRIMARY KEY,
 TIMESTAMP BIGINT NOT NULL,
 CONTEXTID VARCHAR(250) default NULL,
 TXID VARCHAR(250) default NULL,
 USERID VARCHAR(250) default NULL,
 TYPE VARCHAR(250) default NULL,
 DOMAIN VARCHAR(250) default NULL,
 SERVER VARCHAR(250) default NULL,
 SCOPE VARCHAR(250) default NULL,
 MODULE VARCHAR(250) default NULL,
 MONITOR VARCHAR(250) default NULL,
 FILENAME VARCHAR(250) default NULL,
 LINENUM INT UNSIGNED default NULL,
 CLASSNAME VARCHAR(250) default NULL,
 METHODNAME VARCHAR(250) default NULL,

Chapter 7
Configuring a JDBC-Based Store

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 10

 METHODDSC VARCHAR(4000) default NULL,
 ARGUMENTS TEXT(100000) default NULL,
 RETVAL VARCHAR(4000) default NULL,
 PAYLOAD BLOB(100000),
 CTXPAYLOAD VARCHAR(4000),
 DYES BIGINT UNSIGNED default NULL,
 THREADNAME VARCHAR(250) default NULL,
 INDEX(TIMESTAMP)
);

 IF NOT EXISTS(
 SELECT * FROM `information_schema`.`COLUMNS`
 WHERE COLUMN_NAME='THREADNAME' AND TABLE_NAME='WLS_EVENTS') THEN
 ALTER TABLE `WLS_EVENTS` ADD `THREADNAME` varchar(250) default NULL;
 END IF;

END
/

CALL create_alter_wls_events()
/

DROP PROCEDURE if exists create_alter_wls_events
/

Example 7-6 shows the DDL that you can use to create the wls_hvst table in MySQL database.

Example 7-6 DDL Definition of wls_hvst Table in MySql Database

DROP PROCEDURE if exists create_alter_wls_hvst
/

CREATE PROCEDURE create_alter_wls_hvst()
language sql
BEGIN
 CREATE TABLE IF NOT EXISTS WLS_HVST
 (
 RECORDID BIGINT AUTO_INCREMENT PRIMARY KEY,
 TIMESTAMP BIGINT NOT NULL,
 DOMAIN VARCHAR(250) default NULL,
 SERVER VARCHAR(250) default NULL,
 TYPE VARCHAR(250) default NULL,
 NAME VARCHAR(250) default NULL,
 SCOPE VARCHAR(250) default NULL,
 ATTRNAME VARCHAR(250) default NULL,
 ATTRTYPE INT default NULL,
 ATTRVALUE VARCHAR(4000) default NULL,
 WLDFMODULE VARCHAR(250) default NULL,
 INDEX(TIMESTAMP)
);

 IF NOT EXISTS(
 SELECT * FROM `information_schema`.`COLUMNS`
 WHERE COLUMN_NAME='WLDFMODULE' AND TABLE_NAME='WLS_HVST') THEN
 ALTER TABLE `WLS_HVST` ADD `WLDFMODULE` varchar(250) default NULL;
 END IF;

END
/

CALL create_alter_wls_hvst()
/

Chapter 7
Configuring a JDBC-Based Store

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 10

DROP PROCEDURE if exists create_alter_wls_hvst
/

Consult the documentation for your database or your database administrator for specific
instructions for creating these tables for your database.

Configuring JDBC Resources for WLDF
After you create the tables in your database, you must configure JDBC to access the tables.
(See Administering JDBC Data Sources for Oracle WebLogic Server.) Then, as part of your
server configuration, you specify that JDBC resource as the data store to be used for a server's
archive.

If multiple WLDF JDBC archive schemas exist in the same database, you can specify the
particular schema to use for accessing JDBC-based archive tables in that database. There is
no default value for a schema name: If you do not specify one, no schema name is applied
when WLDF validates the runtime table, and no schema name is used for the SQL statements.
You specify the schema name in the
WLDFServerDiagnosticMBean.DiagnosticJDBCSchemaName attribute, which you can access
from the Diagnostic Archives: Configuration page in the WebLogic Remote Console.

An example configuration for a JDBC-based store is shown in Example 7-7.

Example 7-7 Sample configuration for JDBC-based Diagnostic Archive (in config.xml)

<domain>
 <!-- Other domain configuration elements -->
 <server>
 <name>myserver</name>
 <server-diagnostic-config>
 <diagnostic-data-archive-type>JDBCArchive
 </diagnostic-data-archive-type>
 <diagnostic-jdbc-resource>JDBCResource</diagnostic-jdbc-resource>
 <server-diagnostic-config>
 </server>
 <!-- Other server configurations in this domain -->
</domain>

If you specify a JDBC resource but it is configured incorrectly, or if the required tables do not
exist in the database, WLDF uses the default file-based persistent store.

Retiring Data from the Archives
To maintain the archived data, you must delete the old archived data periodically. WLDF
includes a configuration-based data retirement feature for doing this. The data can be deleted
based on the size of the data and time period when it was created.

You can configure size-based data retirement at the server level and age-based retirement at
the individual archive level, as described in the following sections:

Configuring Data Retirement at the Server Level
You can set the following data retirement options for a server instance:

• The preferred maximum size of the server instance's data store (<preferred-store-size-
limit>) and the interval at which it is checked, on the hour, to see if it exceeds that size
(<store-size-check-period>).

Chapter 7
Retiring Data from the Archives

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 10

When the size of the store is found to exceed the preferred maximum, an appropriate
number of the oldest records in the store are deleted to reduce the size below the specified
threshold. This is called "size-based data retirement."

Note

Size-based data retirement can be used only for file-based stores. These options
are ignored for database-based stores.

• Enable or disable data retirement for the server instance.

For file-based diagnostic stores, this enables or disables the size-based data retirement
options discussed above. For both file-based stores and database-based stores, this also
enables or disables any age-based data retirement policies defined for individual archives
in the store. See Configuring Age-Based Data Retirement Policies for Diagnostic Archives.

Configuring Age-Based Data Retirement Policies for Diagnostic Archives
The data store for a server instance can contain the following types of diagnostic data archives
whose records can be retired using the data retirement feature:

• Harvested metrics data (logical name: HarvestedDataArchive)

• Instrumentation events data (logical name: EventsDataArchive)

• Custom data (user-defined name)

Note

WebLogic Server log files are maintained both at the server level and the domain
level. Data is retired from the current log using the log rotation feature. See
Configuring WebLogic Logging Services in Configuring Log Files and Filtering Log
Messages for Oracle WebLogic Server.

Age-based policies apply to individual archives. The data store for a server instance can have
one age-based policy for the HarvestedDataArchive, one for the EventsDataArchive, and one
each for any custom archives.

When records in an archive exceed the age limit specified for records in that archive, those
records are deleted.

Sample Configuration
Data retirement configuration settings are persisted in the config.xml configuration file for the
server's domain, as shown in Example 7-8.

Example 7-8 Data Retirement Configuration Settings in config.xml

<domain>
<!-- other domain configuration settings -->
 <server>
 <name>MedRecServer</name>
 <!-- other server configuration settings -->
 <server-diagnostic-config>
 <diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
 <diagnostic-data-archive-type>FileStoreArchive

Chapter 7
Retiring Data from the Archives

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 10

 </diagnostic-data-archive-type>
 <data-retirement-enabled>true</data-retirement-enabled>
 <preferred-store-size-limit>120</preferred-store-size-limit>
 <store-size-check-period>1</store-size-check-period>
 <wldf-data-retirement-by-age>
 <name>HarvestedDataRetirementPolicy</name>
 <enabled>true</enabled>
 <archive-name>HarvestedDataArchive</archive-name>
 <retirement-time>1</retirement-time>
 <retirement-period>24</retirement-period>
 <retirement-age>45</retirement-age>
 </wldf-data-retirement-by-age>
 <wldf-data-retirement-by-age>
 <name>EventsDataRetirementPolicy</name>
 <enabled>true</enabled>
 <archive-name>EventsDataArchive</archive-name>
 <retirement-time>10</retirement-time>
 <retirement-period>24</retirement-period>
 <retirement-age>72</retirement-age>
 </wldf-data-retirement-by-age>
 </server-diagnostic-config>
 </server>
</domain>

Chapter 7
Retiring Data from the Archives

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 10

8
Configuring the Harvester for Metric Collection

The Harvester component of the WebLogic Diagnostics Framework (WLDF) gathers metrics
from attributes on qualified MBeans instantiated in a running server. The Harvester can also
collect metrics from WebLogic Server MBeans and from custom MBeans.

This chapter includes the following sections about the Harvester and how to configure it:

Harvesting, Harvestable Data, and Harvested Data
Harvesting metrics is the process of gathering data that is useful for monitoring the system
state and performance.Metrics are exposed to WLDF as attributes on qualified MBeans. The
Harvester gathers values from selected MBean attributes at a specified sampling rate.
Therefore, you can track potentially fluctuating values over time.
Data must meet certain requirements in order to be harvestable, and it must meet further
requirements in order to be harvested:

• Harvestable data is data that can potentially be harvested from harvestable entities,
including MBean types, instances, and attributes. To be harvestable, an MBean must be
registered in the local WebLogic Server Runtime MBean server. Only simple type attributes
of an MBean can be harvestable.

• Harvested data is data that is currently being harvested. To be harvested, the data must
meet all the following criteria:

– The data must be harvestable.

– The data must be configured to be harvested.

– For custom MBeans, the MBean must be currently registered with the JMX server.

– The data must not throw exceptions while being harvested.

The WLDFHarvesterRuntimeMBean provides the set of harvestable data and harvested data.
The information returned by this MBean is a snapshot of a potentially changing state. For a
description of the information about the data provided by this MBean, see the description of the
WLDFHarvesterRuntimeMBean in the Oracle WebLogic Server MBean Reference.

You can use the WebLogic Remote Console, the WebLogic Scripting Tool (WLST), or JMX to
configure the Harvester to collect and archive the metrics that the server MBeans and the
custom MBeans contain.

Harvesting Data from the Different Harvestable Entities
You can configure the Harvester to harvest data from named MBean types, instances, and
attributes.In all cases, the Harvester collects the values of attributes of MBean instances, as
explained in Table 8-1.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 6

Table 8-1 Sources of Harvested Data from Different Configurations

When this entity is configured to be
harvested as...

Data is collected from...

A type (only) All harvestable attributes in all instances of the specified type

An attribute of a type

(type + attribute(s))

The specified attribute in all instances of the specified type

An instance of a type

(type + instance(s))

All harvestable attributes in the specified instance of the
specified type

An attribute of an instance of a type

(type + instance(s) + attribute(s))

The specified attribute in the specified instance of the
specified type

All WebLogic Server runtime MBean types and attributes are known at startup. Therefore,
when the Harvester configuration is loaded, the set of harvestable WebLogic Server entities is
the same as the set of WebLogic Server runtime MBean types and attributes. As types are
instantiated, those instances also become known and thus harvestable.

The set of harvestable custom MBean types is dynamic. A custom MBean must be instantiated
before its type can be known. (The type does not exist until at least one instance is created.)
Therefore, as custom MBeans are registered with and removed from the MBean server, the set
of custom harvestable types grows and shrinks. This process of detecting a new type based on
the registration of a new MBean is called type discovery.

Configuring the Harvester
The Harvester is configured, and metrics are collected, in the scope of a diagnostic module
targeted to one or more server instances. The Harvester configuration includes the sampling
period, the type of data to harvest, and the type names for WebLogic Server MBeans and
custom MBeans.

Example 8-1 shows Harvester configuration elements in a WLDF system resource descriptor
file, myWLDF.xml. This sample configuration harvests from the ServerRuntimeMBean, the
WLDFHarvesterRuntimeMBean, and from a custom (that is, non-WebLogic Server) MBean.
The text following the listing explains each element in the listing.

Example 8-1 Sample Harvester Configuration (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<name>myWLDF</name>
 <harvester>
 <enabled>true</enabled>
 <sample-period>5000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 </harvested-type>
 <harvested-type>
 <name>weblogic.management.runtime.WLDFHarvesterRuntimeMBean</name>
 <harvested-attribute>TotalSamplingTime</harvested-attribute>
 <harvested-attribute>CurrentSnapshotElapsedTime
 </harvested-attribute>
 </harvested-type>
 <harvested-type>
 <name>myMBeans.MySimpleStandard</name>
 <harvested-instance>myCustomDomain:Name=myCustomMBean1

Chapter 8
Configuring the Harvester

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 6

 </harvested-instance>
 <harvested-instance>myCustomDomain:Name=myCustomMBean2
 </harvested-instance>
 </harvested-type>
 </harvester>
<!-- ----- Other elements ----- -->
</wldf-resource>

Configuring the Harvester Sampling Period
The <sample-period> element sets the sample period for the Harvester, in milliseconds. For
example:

 <sample-period>5000</sample-period>

The sample period specifies the time between each cycle. For example, if the Harvester begins
execution at time T, and the sample period is I, then the next harvest cycle begins at T+I. If a
cycle takes A seconds to complete and if A exceeds I, then the next cycle begins at T+A. If this
occurs, the Harvester tries to start the next cycle sooner, to ensure that the average interval is
I.

Configuring the Types of Data to Harvest
One or more <harvested-type> elements determine the types of data to harvest. Each
<harvested-type> element specifies an MBean type from which metrics are to be collected.
Optional sub-elements specify the instances and/or attributes to be collected for that type. Set
these options as follows:

• The optional <harvested-instance> element specifies that metrics are to be collected only
from the listed instances of the specified type. In general, an instance is specified by
providing its JMX ObjectName in JMX canonical form. However, you can use pattern-
matching to specify instance names in non-canonical form, as described in Using
Wildcards in Harvester Instance Names.

• If no <harvested-instance> is present, all instances that are present at the time of each
harvest cycle are collected.

• The optional <harvested-attribute> element specifies that metrics are to be collected only
for the listed attributes of the specified type. An attribute is specified by providing its name.
The first character should be capitalized. For example, an attribute defined with getter
method getFoo() is named Foo.

The <harvested-attribute> element also supports an expression syntax for "drilling down"
into attributes that are complex or aggregate objects, such as lists, maps, simple POJOs
(Plain Old Java Objects), and various nestings of these types. See Specifying Complex
and Nested Harvester Attributes, for details on this syntax. However, note that the result of
these expressions must be a simple intrinsic type (int, boolean, String, and so on) in
order to be harvested.

• If no <harvested-attribute> is present, all harvestable attributes defined for the type are
collected.

• Attribute and instance lists can be combined in a type.

Specifying Type Names for WebLogic Server MBeans and Custom MBeans
The Harvester supports WebLogic Server MBeans and custom MBeans. WebLogic Server
MBeans are those that come packaged as part of the WebLogic Server. Custom MBeans can
be harvested as long as they are registered in the local runtime MBean server.

Chapter 8
Configuring the Harvester

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 6

There is a difference in how WebLogic Server and customer types are specified. For WebLogic
Server types, the type name is the name of the Java interface that defines the MBean. For
example, the server runtime MBean's type name is
weblogic.management.runtime.ServerRuntimeMBean.

For custom MBeans, the Harvester follows these rules:

• If the MBean is not a ModelMBean, the type name is the implementing class name. (See
Example 8-1.)

• If the MBean is a ModelMBean, the type name is the value of the MBean Descriptor field
DiagnosticTypeName.

If neither of these conditions is satisfied (if the MBean is a ModelMBean and there is no value
for the MBean Descriptor field DiagnosticTypeName) then the MBean cannot be harvested.

Harvesting from the Domain Runtime MBean Server
The <harvested-type> element supports a <namespace> attribute that lets you harvest metrics
from MBeans registered in the Domain Runtime MBean Server. However, Oracle recommends
that you limit the usage to harvesting only Domain Runtime-specific MBeans, such as the
ServerLifeCycleRuntimeMBean. Harvesting of remote managed server MBeans through the
Domain Runtime MBean Server is possible, but is discouraged for performance reasons. It is a
best practice to use the resident Harvester in each managed server to capture metrics related
to that managed server instance.

The <namespace> attribute can have one of two values:

• ServerRuntime

• DomainRuntime

If the <namespace> attribute is omitted, it defaults to ServerRuntime.

Note

Harvesting from the Domain Runtime MBean server is available only on the
Administration Server. Attempts to harvest Domain Runtime MBeans on a Managed
Server are ignored. See Example 8-5.

When Configuration Settings Are Validated
WLDF attempts to validate configuration as soon as possible. Most configuration is validated at
system startup and whenever a dynamic change is committed. However, due to limitations in
JMX, custom MBeans cannot be validated until instances of those MBeans have been
registered in the MBean server.

Sample Configurations for Different Harvestable Types
In Example 8-2, the <harvested-type> element in the DIAG_MODULE.xml configuration file
specifies that the ServerRuntimeMBean is to be harvested. Because no <harvested-instance>
subelement is present, all instances of the type will be collected. However, because there is
always only one instance of the server runtime MBean, there is no need to provide a specific
list of instances. And because there are no <harvested-attribute> subelements present, all
available attributes of the MBean are harvested for each of the two instances.

Chapter 8
Configuring the Harvester

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 6

Example 8-2 Sample Configuration for Collecting All Instances and All Attributes of a
Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 </harvested-type>

In Example 8-3, the <harvested-type> element in the DIAG_MODULE.xml configuration file
specifies that the WLDFHarvesterRuntimeMBean is to be harvested. As above, because there
is only one WLDFHarvesterRuntimeMBean, there is no need to provide a specific list of
instances. The subelement <harvested-attribute> specifies that only two of the available
attributes of the WLDFHarvesterRuntimeMBean will be harvested: TotalSamplingTime and
CurrentSnapshotElapsedTime.

Example 8-3 Sample Configuration for Collecting Specified Attributes of All Instances
of a Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>weblogic.management.runtime.WLDFHarvesterRuntimeMBean</name>
 <harvested-attribute>TotalSamplingTime</harvested-attribute>
 <harvested-attribute>CurrentSnapshotElapsedTime
 </harvested-attribute>
 </harvested-type>

In Example 8-4, the <harvested-type> element in the DIAG_MODULE.xml configuration file
specifies that a single instance of a custom MBean type is to be harvested. Because this is a
custom MBean, the type name is the implementation class. In this example, the two
<harvested-instance> elements specify that only two instances of this type will be harvested.
Each instance is specified using the canonical representation of its JMX ObjectName. Because
no instances of <harvested-attribute> are specified, all attributes will be harvested.

Example 8-4 Sample Configuration for Collecting All Attributes of a Specified Instance
of a Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>myMBeans.MySimpleStandard</name>
 <harvested-instance>myCustomDomain:Name=myCustomMBean1
 </harvested-instance>
 <harvested-instance>myCustomDomain:Name=myCustomMBean2
 </harvested-instance>
 </harvested-type>

In Example 8-5, the <harvested-type> element in the DIAG_MODULE.xml configuration file
specifies that the ServerLifeCycleRuntimeMBean is to be harvested. The <namespace>
attribute specifies that this is a DomainRuntime MBean, so this configuration will only be
honored on the administration server (see the note in Harvesting from the DomainRuntime
MBeanServer). The subelement <harvested-attribute> specifies that only the StateVal attribute
will be harvested.

Example 8-5 Sample configuration for Collecting Specified Attributes of the
ServerLifeCycleMBean Type (in DIAG_MODULE.xml)

 <harvested-type>
 <name>weblogic.management.runtime.ServerLifeCycleRuntimeMBean</name>
 <namespace>DomainRuntime</namespace>
 <known-type>true</known-type>
 <harvested-attribute>StateVal</harvested-attribute>
 </harvested-type>

Chapter 8
Configuring the Harvester

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 6

Harvester Performance Considerations
Because the Harvester tracks all MBeans that are registered in the local WebLogic Server
Runtime MBean server, applications that create a high volume of transient MBeans can create
performance issues in WLDF.Here, a transient MBean is an MBean with a very short life span
that can be registered and unregistered very quickly, typically within the space of a few
milliseconds. Such MBeans can create a load stress in the Harvester and the Policies and
Actions system, which tracks MBean registrations. This performance problem is particularly a
risk when high-volume JMS applications are not coded according to recommended best
practices.
When JMS connections are not cached properly, a scenario can develop in which hundreds of
connections (and consequently, the corresponding connection, producer, and consumer
runtime MBeans) are created and destroyed every second when the system is operating under
heavy load. This situation can cause load stress on both the Harvester and the Policies and
Actions system.

To avoid this problem, make sure your JMS applications conform to the best coding practices
described in Cache and Re-use Client Resources in Tuning Performance of Oracle WebLogic
Server. As a result, you will not only obtain better WLDF performance, but you will also
improve your JMS and overall server performance.

Chapter 8
Harvester Performance Considerations

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 6

9
Configuring Policies and Actions

The Policies and Actions component of the WebLogic Diagnostics Framework (WLDF)
provides the means for monitoring server and application states and then executing actions
based on criteria set in the policies.Policies and actions are configured as part of a diagnostic
module that is targeted to one or more server instances in a domain.

Note

As of WebLogic Server 12.2.1, the terms watch and notification are replaced by
policy and action, respectively. However, the definition of these terms has not
changed.

The following sections give an overview of the Policies and Actions component, and also
provide an example of a Policies and Actions configuration:

Policies and Actions
You can configure policies to analyze log records, data events, and harvested metrics.

A policy identifies a situation that you want to trap for monitoring or diagnostic purposes.

A policy includes:

• A policy expression (with the exception of calendar-based policies)

The default language for policy expressions is the WLDF query language; however, the
WLDF query language is deprecated. You can also use Java Expression Language (EL)
for policy expressions.

• An alarm setting

• One or more action handlers

You can also configure policies to enable elasticity in dynamic clusters; that is, to automatically
scale a dynamic cluster up or down by a specific number of server instances. You can define
policies to enable two broad categories of elasticity:

• Calendar-based scaling — Scaling operations on a dynamic cluster that are executed on a
particular date and time.

• Policy-based scaling — Scaling operations on a dynamic cluster that are executed in
response to changes in demand.

Note

To configure an elastic scaling policy for a dynamic cluster, you must create a domain-
scope diagnostic system module in which you define the scaling policy, and then
target that diagnostic module to the Administration Server.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 5

For more information about enabling elasticity in WebLogic Server, including instructions for
downloading and running a demonstration example, see Policy-Based Scaling in Configuring
Elasticity in Dynamic Clusters for Oracle WebLogic Server.

An action is an operation that is executed when a policy expression evaluates to true. WLDF
supports the following types of actions:

• Scaling a dynamic cluster

• Java Management Extensions (JMX)

• Java Message Service (JMS)

• Simple Mail Transfer Protocol (SMTP), for example, e-mail

• Simple Network Management Protocol (SNMP)

• Diagnostic image

• Log

• REST

• Script

• Heap dump

• Thread dump

You must associate a policy with an action for a useful diagnostic activity to occur; for example,
to notify an administrator about specified states or activities in a running server.

Policies and actions are configured separately from each other. An action can be associated
with multiple policies, and a policy can be associated with multiple actions. This provides the
flexibility to recombine and re-use policies and actions, according to current needs.

Overview of Policies and Actions Configuration
A complete policy and action configuration includes settings for one or more policies, one or
more actions, and any underlying configurations required for the action media; for example, the
SNMP configuration required for an SNMP-based action.

The main elements required for configuring policies and actions in a WLDF system resource
descriptor file, DIAG_MODULE.xml, are shown in Example 9-1. As the listing shows, the base
element for defining policies and actions is <watch-notification>. Policies are defined in
<watch> elements, and actions are defined in elements named for each of the types of action;
for example, <jms-notification>, <jmx-notification>, <smtp-notification>, and <image-
notification>.

Example 9-1 A Skeleton Policy and Action Configuration (in DIAG_MODULE.xml)

<wldf-resource>
<!-- ----- Other system resource configuration elements ----- -->
 <watch-notification>
 <log-watch-severity>
 <!-- Threshold severity for a log watch to be evaluated further
 (This can be narrowed further at the watch level.) -->
 </log-watch-severity>
 <wldf-resource>
<!-- ----- Other system resource configuration elements ----- -->
 <watch-notification>
 <log-watch-severity>
 <!-- Threshold severity for a log policy to be evaluated further
 (This can be narrowed further at the policy level.) -->

Chapter 9
Overview of Policies and Actions Configuration

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 5

 </log-watch-severity>
 <!-- ----- Policy configuration elements: ----- -->
 <watch>
 <!-- A policy expression -->
 </watch>
 <watch>
 <!-- A policy expression -->
 </watch>
 <!-- Any other policy configurations -->

 <!-- ----- Action configuration elements: ----- -->
 <!-- The following action configuration elements show one of each
 type of supported actions. However, not all types are
 required in any one system resource configuration, and multiples
 of any type are permitted. -->
 <jms-notification>
 <!-- Configuration for a JMS-based action; requires a
 corresponding JMS configuration via a jms-server element and a
 jms-system-resource element -->
 </jms-notification>

 <jmx-notification>
 <!-- Configuration for a JMX-based action -->
 </jmx-notification>
 <smtp-notification>
 <!-- Configuration for an SMTP-based action; requires a
 corresponding SMTP configuration via a mail-session element -->
 </smtp-notification>
 <snmp-notification>
 <!-- Configuration for an SNMP-based action; requires a
 corresponding SNMP agent configuration via an snmp-agent
 element -->
 </snmp-notification>
 <image-notification>
 <!-- Configuration for an image-based action -->
 </image-notification>
 <watch-notification>
<!-- ----- Other configuration elements ----- -->
</wldf-resource>

Note

While the notification media must be configured so they can be used by the actions
that depend on them, those configurations are not part of the configuration of the
diagnostic module itself. That is, they are not configured in the <wldf-resource>
element in the diagnostic module's configuration file.

Each policy and action can be individually enabled and disabled by setting <enabled>true</
enabled> or <enabled>false</enabled> for the individual policy or action. In addition, the entire
policy and action facility can be enabled and disabled by setting <enabled>true</enabled> or
<enabled>false</enabled> for all policies and actions. The default value is <enabled>true</
enabled>.

The <watch-notification> element contains a <log-watch-severity> sub-element, which affects
how actions are executed by log policies.

If the maximum severity level of the log messages that triggered the policy do not at least
equal the provided severity level, then the resulting actions are not executed. Note that this

Chapter 9
Overview of Policies and Actions Configuration

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 5

only applies to actions executed by log policies. Do not confuse this element with the
<severity> element defined on policies. The <severity> element assigns a severity to the policy
itself, whereas the <log-watch-severity> element controls which actions are executed by log-
type policies.

Sample Policies and Actions Configuration
A set of policies and actions is configured in a diagnostic module file named DIAG_MODULE.xml.

Example 9-2 shows a complete configuration. The details of this example are explained in the
following topics:

• Configuring Policies

• Configuring Actions

Example 9-2 Sample Policies and Actions Configuration (in DIAG_MODULE.xml)

<?xml version='1.0' encoding='UTF-8'?>
<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <!-- Instrumentation must be configured and enabled for instrumentation
 policies -->
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <description>Dye Injection monitor</description>
 <dye-mask xsi:nil="true"></dye-mask> <properties>ADDR1=127.0.0.1</
properties>
 </wldf-instrumentation-monitor>
 </instrumentation>
 <!-- Harvesting does not have to be configured and enabled for harvester
 policies. However, configuring the Harvester can provide advantages;
 for example the data will be archived. -->
 <harvester>
 <name>mywldf1</name>
 <sample-period>20000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 </harvested-type>
 <harvested-type>
 <name>weblogic.management.runtime.WLDFHarvesterRuntimeMBean</name>
 </harvested-type>
 </harvester>
 <!-- All policies and actions are defined under the
 watch-notification element -->
 <watch-notification>
 <enabled>true</enabled>
 <log-watch-severity>Info</log-watch-severity>
 <!-- A harvester policy configuration -->
 <watch>
 <name>myWatch</name>
 <enabled>true</enabled>
 <rule-type>Harvester</rule-type>
 <rule-expression>${com.bea:Name=myserver,Type=ServerRuntime//
SocketsOpenedTotalCount} >= 1</rule-expression>
 <alarm-type>AutomaticReset</alarm-type>
 <alarm-reset-period>60000</alarm-reset-period>

Chapter 9
Sample Policies and Actions Configuration

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 5

 <notification>myMailNotif,myJMXNotif,mySNMPNotif</notification>
 </watch>
 <!-- An instrumentation policy configuration -->
 <watch>
 <name>myWatch2</name>
 <enabled>true</enabled>
 <rule-type>EventData</rule-type>
 <rule-expression>
 (MONITOR LIKE 'JDBC_After_Execute') AND
 (DOMAIN = 'MedRecDomain') AND
 (SERVER = 'medrec-adminServer') AND
 ((TYPE = 'ThreadDumpAction') OR (TYPE = TraceElapsedTimeAction')) AND
 (SCOPE = 'MedRecEAR')
 </rule-expression>
 <notification>JMXNotifInstr</notification>
 </watch>
 <!-- A log policy configuration -->
 <watch>
 <name>myLogWatch</name>
 <rule-type>Log</rule-type>
 <rule-expression>MSGID='BEA-000360'</rule-expression>
 <severity>Info</severity>
 <notification>myMailNotif2</notification>
 </watch>
 <!-- A JMX notification -->
 <jmx-notification>
 <name>myJMXNotif</name>
 </jmx-notification>
 <!-- Two SMTP actions -->
 <smtp-notification>
 <name>myMailNotif</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject>This is a harvester alert</subject>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
 <smtp-notification>
 <name>myMailNotif2</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject>This is a log alert</subject>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
 <!-- An SNMP notification -->
 <snmp-notification>
 <name>mySNMPNotif</name>
 <enabled>true</enabled>
 </snmp-notification>
 </watch-notification>
</wldf-resource>

Chapter 9
Sample Policies and Actions Configuration

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 5

10
Configuring Policies

The WebLogic Diagnostics Framework (WLDF) provides three main types of policies, which
are differentiated by the sorts of data each can monitor. The policy types are:

• Scheduled policies, which monitor diagnostic data that is generated by runtime MBeans
according to a specific schedule. These policies can also be used to execute an action at a
specific time or on a schedule.

• Log policies, which monitor messages generated into the server or domain logs.

• Instrumentation policies, also known as Event Data policies, which monitor events
generated by the WLDF Instrumentation component.

This chapter explains how to configure each policy type and includes the following sections:

How Policies Are Configured
There are several components of a policy that you configure, such as the type, expression,
corresponding actions to be executed when the policy is evaluated to true, and more.

You can use any of the following tools to configure policies for diagnostic system modules:

• WebLogic Remote Console

• Fusion Middleware Control

• WLST

• REST

• JMX application

This chapter refers primarily to using the WebLogic Remote Console or WLST.

The following table summarizes the attributes, elements, and options that you configure when
creating a policy, and also identifies any requirements each configuration item has for specific
policy types.

Table 10-1 Elements, Properties, and Options Configured in a WLDF Policy

Item Description Policy Requirement

Rule Type Attribute that determines the policy's type.

The default is Harvester.

Must be specified for log and
instrumentation policies. Optional for
scheduled policies.

Expression
Language

Attribute that establishes the language used
in the policy expression. The two supported
languages are Java Expression Language
(EL), and WLDF query language
(deprecated).

Use EL in all policy types. The WLDF
query language is supported, but
deprecated.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 21

Table 10-1 (Cont.) Elements, Properties, and Options Configured in a WLDF Policy

Item Description Policy Requirement

Policy
Expression

Expression that identifies a situation or
condition that you want to trap for monitoring
or diagnostic purposes. The expression can
analyze log records, data events, or MBean
metrics, depending on the rule type setting.

Optional for scheduled policies, but
required for all others.

If a scheduled policy does not include an
expression, the policy always executes
the associated actions according to the
Policy Schedule.

Actions One or more operations that are executed
when a policy expression is evaluated to
true.

Optional.

Policy
Schedule

A calendar-based schedule that determines
when a scheduled policy is evaluated.

Required for all scheduled policies. Not
available for log or instrumentation
policies.

Alarm Options Options that determine whether, or when, a
policy can be evaluated again after it has
been evaluated to true.

The default is None, which enables the policy
to always be evaluated again.

Optional for all policy types.

Severity
Option

Log message severity value that, when the
policy is evaluated to true, is:

1. Specified for the log message that is
generated in the logging system.

2. Passed to the actions that are configured
with the policy.

The default is Notice.

Optional for all policy types.

Enablement
Option

Flags that either enable or disable a policy
from being evaluated.

The default is enabled.

Optional for all policy types.

Rule Type
When creating a policy, you must define its type in its rule type attribute. Policies with different
rule types differ in two ways:

• The syntax for specifying the conditions being monitored are unique to the rule type.

• Log and instrumentation policies are triggered in real time, whereas scheduled policies are
triggered by settings on the WLDFScheduleBean interface, described in Policy Schedule.

The way to define the rule type depends on the tool you use to create the policy:

• If you are using the WebLogic Remote Console or Fusion Middleware Control, the rule
type is determined by the policy type you are creating. For each of the policy types you can
choose in either console, the following table identifies the corresponding rule type and
WLDFWatchBean.RuleType attribute value that is defined for that policy:

Chapter 10
How Policies Are Configured

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 21

Table 10-2 WLDFWatchBean.RuleType Attribute Values for Policy Types Created
Using Remote Console or Fusion Middleware Control

Policy Type Rule Type WLDFWatchBean.RuleType Value

Smart Rule Harvester Harvester

Calendar Based Harvester Harvester

Collected Metrics Harvester Harvester

Server Log Log Log

Domain Log Log DomainLog

Event Data Instrumentation EventData

• If you are using WLST, REST, or JMX to configure a policy, you set the
WLDFWatchBean.RuleType attribute as follows:

Table 10-3 WLDFWatchBean.RuleType Attribute Values for Policy Types Created
Using WLST, REST, or JMX

Policy Type Rule Type Attribute

Scheduled policy Harvester

Log policy Log - for server log monitoring

DomainLog - for domain log monitoring

Instrumentation EventData - for instrumentation event monitoring

Expression Language
Policy expressions can be created using either of the following languages:

• Java Expression Language (EL) (recommended)

• WLDF query language (deprecated in WebLogic Server 12.2.1)

See Expression Language in The Java EE 8 Tutorial. For more information about Java (EL),
see the JSR-000341 Expression Language 3.0 specification at https://jcp.org/aboutJava/
communityprocess/final/jsr341/index.html.

If you have diagnostic system modules created with a previous release of WebLogic Server,
WLDF supports expressions that use the WLDF query language. If you are creating new
policies for either an existing or a new diagnostic system module, Oracle strongly recommends
using Java EL as the policy expression language.

Note

The policies described in this chapter are Java EL based. For information about
configuring policies that use the WLDF query language, see WLDF Query Language-
Based Policies.

Policy Expression
A policy expression encapsulates all information necessary for specifying a rule that, when
evaluated to true, causes the associated actions to be executed. When you use Java EL as

Chapter 10
How Policies Are Configured

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 21

https://javaee.github.io/tutorial/jsf-el.html#GJDDD
https://jcp.org/aboutJava/communityprocess/final/jsr341/index.html
https://jcp.org/aboutJava/communityprocess/final/jsr341/index.html

the expression language, you can construct a policy expression that uses the following out-of-
the-box resources to set the conditions that determine whether to fire an associated action:

• Beans

A bean is a Java object that represents the data available for a policy expression to use,
such as metrics from MBeans, log event information, or structured data surfaced by other
beans. Beans are accessed in policy expressions using standard JavaBean conventions.

• Functions

Functions are a set of operations that are provided either by EL itself, or by WLDF, that can
be utilized from policy expressions to transform or evaluate data.

• Smart rules

Smart Rules are special set of functions that encapsulate more complex logic and
monitoring capabilities, and have specialized support in both the WebLogic Remote
Console and Fusion Middleware Control. They can be used by themselves, or with other
expression components as part of a larger, more complex expression.

Actions
Each policy can be associated with one or more actions that are executed whenever the policy
evaluates to true. See Configuring Actions.

Policy Schedule
All scheduled policies must be configured with a schedule. Scheduling allows policies to be
evaluated according to a calendar schedule, at a specific time, after a duration of time, or at
timed intervals.

You configure a policy schedule by setting attributes on the WLDFScheduleBean interface, which
is a property of the WLDFWatchBean. You can set these attributes using the WebLogic Remote
Console, WLST, REST, or a JMX application. When you are configuring new policies, the
WebLogic Remote Console and Fusion Middleware Control provide convenient assistants and
workflows for configuring common scheduling scenarios.

Note

The WLDFScheduleBean is used for policy evaluation only when:

• The configured policy rule type is "Harvester".

• The configured expression language for the policy is "EL".

Note also that although scheduled policies that use the WLDFScheduleBean for
scheduling are configured as Harvester types, the WLDF Harvester component is not
used for scheduling.

Table 10-4 lists the attributes of the WLDFScheduleBean and their default values, which are the
same as for the javax.ejb.ScheduleExpression interface. In addition, the syntax for
specifying a value, range, list, or interval for a specific unit of time is also the same as that
described for the ScheduleExpression interface. See https://javaee.github.io/javaee-
spec/javadocs/javax/ejb/ScheduleExpression.html.

Chapter 10
How Policies Are Configured

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 21

https://javaee.github.io/javaee-spec/javadocs/javax/ejb/ScheduleExpression.html
https://javaee.github.io/javaee-spec/javadocs/javax/ejb/ScheduleExpression.html

Table 10-4 WLDFScheduleBean Attributes and Default Values

Attribute Description Default Allowable Values and Examples

second One or more
seconds within a
minute

0 Allowable values: 0 to 59

Can be a value, range, list, or interval. To specify every n seconds of the minute,
specify "*/n".

For example:

• second = "30" — (value) run policy every 30 seconds within the minute
• second = "10,20,30" — (list) run policy on seconds 10, 20 and 30

within the minute
• second = "1-10" — (range) run policy on each of seconds 1 through 10

within the minute
• second = "30/10" — (interval) run policy every 10 seconds within the

minute, starting at second 30
• second = "*/5" — (interval) run policy every 5 seconds within the minute

minute One or more
minutes within an
hour

*/5 Allowable values: 0 to 59

Can be a value, range, list, or interval. To specify every n minutes of the hour,
specify "*/n".

For example:

• minute = "30" — (value) run policy every 30 minutes

minute = "*/2" — (interval) run policy every two minutes of the hour

hour One or more
hours within a
day

* Allowable values: 0 to 23

Can be a value, range, list, or interval.

For example:

• hour="16" — (value) run policy at 16:00.
• hour = "*" — (range) run policy at every hour within a day.

dayOfWee
k

One or more
days within a
week

* Allowable values:

• 0 to 7, where 0 and 7 represent Sunday. For example, dayOfWeek="3"
• Sun, Mon, Tue, Wed, Thu, Fri, Sat. For example, dayOfWeek="Mon"
Can be a value, range, or list. For example:

• dayOfWeek = "3" — run policy on Wednesday
• dayOfWeek = "Mon-Fri" — run policy each day from Monday to Friday
• dayOfWeek = "Mon, Wed, Fri" — run policy on Monday, Wednesday,

and Friday

Chapter 10
How Policies Are Configured

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 21

Table 10-4 (Cont.) WLDFScheduleBean Attributes and Default Values

Attribute Description Default Allowable Values and Examples

dayOfMon
th

One or more
days within a
month

* Allowable values:

• 1 to 31
• Last
• -7 to -1
• {1st, 2nd, 3rd, 4th, 5th, Last} {Sun, Mon, Tue, Wed, Thu, Fri, Sat}
Last represents the last day of the month.

-x (where x is in the range 7 to 1) means x days before the last day of the
month.

1st, 2nd, and so on, specified with a day of the week identifies a single
occurrence of that day within the month.

Can be a value, range, or list. For example:

• dayOfMonth = "1" — run policy on first day of the month
• dayOfMonth = "-3" — run policy on the third day before the end of the

month
• dayOfMonth = "2nd Mon" — run policy on the second Monday of the

month
• dayOfMonth = "1st Fri, 3rd Fri" — run policy on the first and third

Friday of the month
• dayOfMonth = "1 to 10" — run policy on each of the first 10 days of

the month

month One or more
months within a
year

* Allowable values:

• 1 to 12.
• Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec
Can be a value, range, or list. For example:

• month = "7" — run policy on the 7th month of the year
• month = "Feb" — run policy in February
• month = "1 - 3" — run policy on the first three months of the year
• month = "Jan, Apr, Jul, Oct" — run policy in January, April, July,

and October

year A specific
calendar year

* Allowable values: a four-digit calendar year.

You can specify one value. For example:

• year = "2015" — run policy in 2015

timezone Time zone for the
schedule

null Defaults to the local VM time zone. You may use this attribute to specify a non-
default time zone ID in whose context the schedule specification is to be
evaluated.

Alarm Options
A policy that has been evaluated to true is referred to as having been triggered. For policies
that are run repeatedly, an alarm determines when a policy can be evaluated again after it has
been triggered. If a policy is configured with an alarm, a triggered policy is not evaluated again
until the alarm is reset. For policies that are evaluated repeatedly, you can optionally define a
minimum time that must transpire after a policy has been triggered before the policy can be
evaluated again.

An alarm is important to configure for a policy that is run repeatedly to prevent the associated
actions from being executed too frequently, such as generating a flood of emails or JMX
notifications. For example, if you have a scheduled policy that executes a scale up action on a

Chapter 10
How Policies Are Configured

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 21

dynamic cluster, you should set an alarm that delays evaluating the policy again until the
dynamic cluster is fully scaled up and is processing incoming requests. This delay is referred to
as the alarm reset period. Without a proper alarm reset period, the scale up action could be
executed again prematurely and counter-productively.

To configure an alarm for a policy, specify the following:

• The alarm type

• The alarm reset period

The following table lists and describes each of the available alarm types:

Table 10-5 Alarm Types

Alarm Type Description

None Allows the policy to be triggered whenever possible. This is the default.

AutomaticReset Allows the policy to be triggered whenever possible, except that subsequent
occurrences cannot occur any sooner than the interval specified in the alarm
reset period.

ManualReset Allows the policy to be triggered only once. After it is triggered, you must
manually reset it to fire again. You can reset an alarm using a run-time MBean
operation, either programmatically or with WLST. For example, you can use
the resetWatchAlarm operation on the
WLDFWatchNotificationRuntimeMBean.

Note the following alarm state behaviors:

• When the alarm type is AutomaticReset, a policy enters the alarm state when triggered
and stays in that state until the time interval specified by the alarm reset period has
expired.

• If a policy is configured with a ManualReset alarm, the policy enters the alarm state when
triggered, and remains in that state until you manually reset it.

• When a policy is in the alarm state, the policy is not evaluated again until the alarm is
reset.

• If a policy's alarm type is None, the configured action can be executed every time that the
policy is triggered. The alarm state is never set in these cases.

Severity Option
Whenever a policy is triggered, a message is automatically generated in the logging system.
The severity option is an optional value you can configure that:

1. Gets assigned as the severity value of the log message generated in the logging system.

2. Is also passed to the actions that are configured with the policy.

The severity option must be one that is defined for the WebLogic logging service in the
weblogic.logging.Severities class. The accepted values are Info, Notice, Warning, Error,
Critical, Alert, and Emergency. The default is Notice.

Enablement Option
Each policy can be individually enabled and disabled by using the Enabled attribute on that
policy. The value you specify for this attribute is true or false. When disabled, a policy is not
evaluated and its configured actions are not executed.

Chapter 10
How Policies Are Configured

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 21

However, note that the WLDFWatchNotificationBean, which is the parent of all policy and
action configurations in a diagnostic system module, also has an Enabled attribute. If the value
of the WLDFWatchNotificationBean.Enabled attribute is false, all individual policies in the
diagnostic system modules are disabled regardless of whether its policies are individually
configured as enabled.

Configuring Scheduled Policies
Scheduled policies monitor diagnostic data that consists of data coming from MBeans within
the WebLogic Server Runtime MBean Server, including the read-only configuration MBeans in
the WebLogic Server Runtime MBean Server.These values, called metrics, originate from
common WebLogic Server JMX data sources such as the following:

• WebLogic Server Runtime MBean Server

• Domain Runtime MBean Server

• JVM platform MBean server

Scheduled policies are useful for monitoring run-time state information in the WebLogic Server
environment. Examples of diagnostic data that is useful to monitor using scheduled policies
are:

• Changes over time in average JVM heap usage

If the average amount of free heap reaches a particular threshold that is defined in the
policy expression, the configured action is executed, such as sending an email to the
system administrator.

• Data from multiple services that are considered together, such as response-time metrics
reported by a load balancer and message-backlog metrics from a message queue

If the combination of data meets a particular set of criteria defined in the policy expression,
the policy can fire a scaling action

See also Chaining Policies for information about how to create a policy expression that can
reference the state of other policies defined within the same WLDF module as the beans.
Policy chaining allows the state of one policy to be part of the expression of another.

The following sections explain how to configure, and show examples of, the three scheduled
policy types:

Configuring Calendar Based Policies
The simplest type of scheduled policy is the calendar based policy. You can use a calendar
based policy to fire any associated actions according to the policy's schedule.

Calendar-based policies are simply scheduled policies with no associated expression. This
enables purely schedule-driven action execution; that is, the ability to unconditionally perform a
set of actions on a specified schedule. If no expression is provided, when the scheduled time
occurs, the policy treats the empty expression as a true result and executes the associated
actions.

Chapter 10
Configuring Scheduled Policies

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 21

Note

Calendar based policies are supported only for policies that: have the following
configuration attributes:

• The rule type specified as 'Harvester'

• The expression language specified as 'EL'

The following example shows the configuration of a calendar based policy using WLST. This
policy fires a scale up action at 3:00 a.m. on December 26.

calendarScaleUp=wn.lookupWatch('ChristmasReturnsScaleUpWatch')
if calendarScaleUp == None:
 print "Creating scale-up for the post-Christmas returns rush on Dec 26 at 3am"
 calendarScaleUp=wn.createWatch('ChristmasReturnsScaleUpWatch')
calendarScaleUp.setRuleType('Harvester')
calendarScaleUp.setExpressionLanguage('EL')
calendarScaleUp.getSchedule().setHour('3')
calendarScaleUp.getSchedule().setMinute('0')
calendarScaleUp.getSchedule().setSecond('0')
calendarScaleUp.getSchedule().setDayOfMonth('26')
calendarScaleUp.getSchedule().setMonth('Dec')
calendarScaleUp.setEnabled(false)
calendarScaleUp.addNotification(scaleUp)

Configuring Smart Rule Based Policies
Smart rules are prepackaged functions that greatly simplify the creation of policy expressions.
The WebLogic Remote Console and Fusion Middleware Control, in particular, each contain a
smart rule editor to greatly simplify the task of configuring a smart rule for the policy you are
creating.

Smart rules perform a number of complex operations, but surface only a small number of
configuration parameters that you set. Details about the specific low level metrics that are
collected, how they are used, and so on, are hidden, thereby making them easy to use. Smart
rules return only a Boolean value, which determines whether the policy is evaluated to true.

You use a smart rule as a predicate in policy expression by simply specifying the parameters
required by that smart rule. For example, to evaluate whether a particular increase exists in the
average thread pool queue length in the local server, you create a policy that specifies the
ServerHighQueueLength smart rule as the policy expression and provide the following
parameters:

• The sampling period for collecting the value of the ThreadPoolRuntimeMBean.QueueLength
attribute

• Duration, or the most recent window of time, in which samples are retained

• A threshold value that establishes the maximum acceptable number of threads in the
queue

The smart rule takes responsibility for sampling the appropriate metrics over the specified time
interval, computing averages, comparing threshold values, and determining whether the smart
rule evaluates to true.

Chapter 10
Configuring Scheduled Policies

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 21

Note

Smart rules are supported for use only in scheduled policies that are configured with
Java EL as the expression language.

Types of Diagnostic Data that Smart Rules Evaluate
Smart rules can monitor trends in metrics in a server or cluster over time, including:

• Average system throughput

• Process CPU load

• Pending user request count

• Idle or stuck thread count

• Incoming request queue size

• System load average

• JVM free heap size

• Any metric value visible from JMX, such as custom MBean values

You can use smart rules as building blocks in policy expressions. In the simplest case, a single
smart rule can be used by itself in a policy expression. You can also combine a smart rule with
others, as well as with other EL constructs, to form more complex expressions.

For example, you can construct a policy that sends an email notification if all of the following
conditions occur simultaneously in a server instance or cluster:

• Low JVM free heap percentage

• High number of stuck threads

• High incoming requests queue size

For details about all the smart rules provided by WLDF, see Smart Rule Reference.

Smart Rule Example
The ClusterLowHeapFreePercent smart rule compares the average free heap across all
Managed Servers in a cluster by monitoring the value of the
JVMRuntimeMBean.HeapFreePercent attribute. A policy expression that uses this smart rule will
be evaluated to true if a minimum percentage of Managed Servers in the cluster have an
average free heap that is less than a particular threshold value.

The ClusterLowHeapFreePercent smart rule takes the following input parameters:

• Cluster name

• Sampling period — The frequency with which the value of the HeapFreePercent metric is
collected

• Retention window — A sliding window of time during which samples are retained. For
example, the most recent five minutes.

• percentFreeLimit — A value that represents the low free heap percentage threshold.

Chapter 10
Configuring Scheduled Policies

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 21

• percentServersLimit — A percentage of Managed Servers in the cluster that must have
an average free heap that is less than percentFreeLimit to cause the expression to
evaluate to true.

The following is an example configuration of the ClusterLowHeapFreePercent smart rule:

wls:ClusterLowHeapFreePercent("myCluster","30 seconds","10 minutes",20,60)

For every Managed Server in myCluster, this smart rule collects the value of the
HeapFreePercent every 30 seconds, retaining the most recent 10 minutes of data, and
evaluates to true if at least 60 per cent of the Managed Servers in myCluster have an average
free heap percentage that is less than 20 per cent.

This smart rule could be configured to fire an action when it evaluates to true, such as sending
an email to the system administrator to report that a low free heap condition exists in the
cluster. The system administrator can then take remedial action as necessary.

You can use smart rules in conjunction with scaling actions, described in Configuring Elastic
Actions, to configure policy based scaling of a dynamic cluster. This capability enables
automated elasticity in that cluster. For more information, including a demo that you can
download and run, see Policy-Based Scaling in Configuring Elasticity in Dynamic Clusters for
Oracle WebLogic Server.

Chaining Policies
Within the same diagnostics system module, the expression in one policy can reference other
policies as beans within that expression. In this way, complex policy expressions can be
reused and "chained" together to allow the state of one policy to be part of the expression of
another. This allows more complex, interrelated policies to be written, while keeping such
policy configurations more readable and maintainable.

To allow access to policy states within an expression, you can use the resource bean within the
global bean name space for each policy. The resource bean supports a Map attribute named
watches, where each key in the map is the name of a policy defined within the same
diagnostics system module.

Each value in the policy's map is a bean representing the named policy. These policy beans
support a simple Boolean alarm attribute, which has the following semantics:

• If the policy is configured with an alarm type other than None, the alarm attribute returns
true if the policy is currently in the alarm state.

• If no alarm type is configured on the policy, the alarm attribute yields the most recently
evaluated result.

• If the alarm attribute on a policy bean is accessed before the named policy has
successfully completed an evaluation cycle, a NotEnoughDataException is thrown. This
occurrence also has the effect of invalidating the expression during that evaluation cycle:
the policy isn't disabled, but it is effectively a non-result when it occurs.

Configuring Log Policies
Use log policies to monitor the occurrence of specific messages or strings in the server or
domain log. Policies of this type are triggered as a result of a log message containing the
specified data being issued.

When creating a log policy, you can use the log bean in a policy expression to obtain access to
data to log message fields. See log for details about the available log bean attributes.

Chapter 10
Configuring Log Policies

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 21

The following example looks for a log message indicating that the server is entering the
RUNNING state:

 w=cmo.createWatch("ServerLogRunningState")
 w.setExpressionLanguage('EL')
 w.setRuleType('Log')
 w.setRuleExpression("log.messageId == 'BEA-000365' and
log.logMessage.contains('RUNNING')")

You can also use java methods and field accessors to access the data in log, since the log
bean is a simple JavaBean object. An equivalent policy expression of the above example is:

 w=cmo.createWatch("ServerLogRunningState2")
 w.setExpressionLanguage('EL')
 w.setRuleType('Log')
 w.setRuleExpression("log.getMessageId().contains('000365') &&
log.getLogMessage().contains('RUNNING')")

Note

Any log policies that search for the RUNNING state message ID should search for
message ID BEA-000365, and not BEA-000360. The message ID BEA-000360 is issued
immediately before the state change to RUNNING, and BEA-000365 is issued
immediately afterward. WLDF does not start rule evaluation until the server is in the
RUNNING state. Therefore, such log policies are able to find only message ID
BEA-000365.

Configuring Instrumentation Policies
You use instrumentation policies to monitor the events from the WLDF Instrumentation
component. Policies of this type are evaluated as a result of an event being posted by the
Instrumentation component, which occurs when code that matches a deployed Instrumentation
monitor is exercised.

Instrumentation policy expressions utilize a single bean named instrumentationEvent. This
bean provides access to the data that is captured in an Instrumentation event. As with Log,
DomainLog, and Collected Metrics policies, you can access data in the Instrumentation event
using JavaBean conventions in the policy expression. See the set of fields that are accessible
on the instrumentationEvent bean.

The following example shows how to access data in an Instrumentation policy using the
instrumentationEvent bean:

instrumentationEvent.payload > 100000000 && instrumentationEvent.monitor ==
'Servlet_Around_Service'

This policy triggers when the monitor event is of type “Servlet_Around_Service” and the
payload value (in this case, the execution time of the servlet recorded by the
Servlet_Around_Service monitor) is greater than 100000000 nanoseconds (100 milliseconds).
You can also use java methods and field accessors to access data in instrumentationEvent,
since the instrumentationEvent bean is a simple JavaBean object . An equivalent policy
expression of the example above can be given as:

Chapter 10
Configuring Instrumentation Policies

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 21

instrumentationEvent.getPayload() > 100000000 &&
instrumentationEvent.getMonitor().equals(‘Servlet_Around_Service')

Example 10-1 shows an example configuration for an Instrumentation policy.

Example 10-1 Sample Configuration for an Instrumentation Policy (in
DIAG_MODULE.xml)

 <watch-notification>
 <watch>
 <name>myInstWatch</name>
 <enabled>true</enabled>
 <rule-type>EventData</rule-type>
 <rule-expression>instrumentationEvent.payload > 100000000 &&
instrumentationEvent.monitor == 'Servlet_Around_Service'</rule-expression>
 <expression-language>EL</expression-language>
 <alarm-type>ManualReset</alarm-type>
 <notification>mySMTPNotification</notification>
 </watch>
 <smtp-notification>
 <name>mySMTPNotification</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject xsi:nil="true"></subject>
 <body xsi:nil="true"></body>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
</watch-notification>

Creating Complex Policy Expressions Using WLDF Java EL
Extensions

Oracle expects that the library of smart rules packaged with WLDF are sufficient for meeting
the needs of creating scheduled policies that evaluate runtime performance data in a server or
cluster. However, if you have a specific scheduled policy need that cannot be satisfied by a
smart rule, WLDF also provides a set of extensions to Java EL. These extensions are intended
for use in policies that evaluate very specific characteristics or trends in metrics collected from
runtime MBean servers in your WebLogic domain.

The contents of this section are targeted to developers who are knowledgeable of complex
programming techniques. Experience with Java EL is highly recommended.

Using WLDF Beans and Functions

WLDF leverages Java EL as the language for writing policy expressions. Java EL is a
standard, extensible, and robust scripting language. WLDF has adopted and extended Java EL
to provide access to WebLogic diagnostic data and events for writing policy expressions.
WLDF provides a set of functions and JavaBean objects for writing policy expressions that use
the following diagnostic data and events:

• WebLogic Runtime MBean data

• WebLogic Logging events

• WebLogic Instrumentation events

You can utilize all the features available within Java EL in conjunction with these WLDF
extensions to write policy expressions. Collected metrics based policies, which are a type of
scheduled policy, can use WLDF-provided beans and functions within their policy expressions.

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 21

These beans are JavaBean objects that can obtain access to common WebLogic Server JMX
data sources, such as the following:

• WebLogic Server Runtime MBean Server

• Domain Runtime MBean Server

• JVM platform MBean server

The following sections explain how to configure collected metrics based policies using beans
and functions:

• Writing Collected Metrics Policy Expressions Using Beans

• Writing Collected Metrics Policy Expressions Using Functions

Writing Collected Metrics Policy Expressions Using Beans
Table 10-6 summarizes the beans provided by WebLogic Server. For complete reference
information about each of these beans, see WLDF Beans Reference.

Table 10-6 Beans Provided by WebLogic Server

Name Prefix Scope Summary

runtime wls Only available from partition
scope diagnostic system
module deployments and
partitions

Provides access to MBeans in the local WebLogic
Server Runtime MBean Server. These MBeans
include both the read-only configuration MBean
and RuntimeMBean instances.

domainRuntime wls Administration Server Provides access to MBeans on the Domain
Runtime MBean Server (Administration Server
only).

clusterRuntime wls Administration Server Provides domain-wide access to cluster member
data (Administraton Server only).

platform wls Administration Server or
Managed Server

Provides access to the JVM's platform MBean
server.

Note that in the majority of cases, the platform
bean is functionally equivalent to the runtime
bean: WebLogic Server uses the JVM's platform
MBean server to contain the WebLogic run-time
MBeans by default.

resource n/a Administration Server and
Managed Servers

Provides access to beans and state information
within a diagnostic system module deployment.

Access is restricted to policies that are configured
within the same diagnostic system module.

Accessing MBean Data in Collected Metrics
The beans described in Table 10-6 provide access to WebLogic Server Runtime MBean
metrics. In policy expressions that use Java EL, metric data from each of these runtime
MBeans is accessed using a WLDF-provided bean using the following syntax:

wls.bean-name.attribute-or-operation.attribute-or-operation…

All EL-based policy expressions that use the WLDF beans must begin with the namespace
prefix wls . The prefix wls is similar to a namespace that contains all the WLDF beans that can
be used in the policy expressions. Beans and their attributes and methods are accessed using

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 21

standard JavaBean conventions. The following example shows a simple policy expression that
returns true when the value of HeapFreePercent attribute of JVMRuntimeMBean is less than 20:

wls.runtime.serverRuntime.JVMRuntime.heapFreePercent < 20

The preceding policy expression example accesses the value of HeapFreePercent in the
following sequence:

1. The runtime bean is accessed from the wls bean namespace.

The runtime bean provides an entry point into the metrics collected by the local runtime
MBean and also into the read-only configuration MBean data in the WebLogic Server
Runtime MBean Server.

2. The serverRuntime attribute is accessed from the runtime bean.

The serverRuntime attribute of the runtime bean corresponds directly to the
ServerRuntimeMBean instance in the local running server instance wherever the expression
is being evaluated.

3. The JVMRuntime attribute, which corresponds to the JVMRuntimeMBean instance under the
local ServerRuntimeMBean, is accessed from the serverRuntime bean.

4. The heapFreePercent attribute is accessed from the returned JVMRuntime instance.

From the runtime bean, runtime metrics and monitoring data are available through the
serverRuntime attribute, and the domain attribute provides access to the current configuration
data in the local read-only DomainMBean tree. This access allows policies to examine the
current in-memory configuration within a policy expression.

MBeans that are accessed as bean attributes from the WLDF-provided expression beans have
read-only access to most of the attributes and some operations available to the expression as
defined in the MBean Reference for Oracle WebLogic Server, with some exceptions for
security purposes.

Note

There are slight differences in syntax between JMX and JavaBean conventions when
accessing attributes. For example, JavaBean conventions for accessing the JMX
attribute HeapFreePercent require using “camel-case” syntax. When using JMX, the
attribute is accessed by the name HeapFreePercent. However, in EL expressions, the
same attribute is accessed as heapFreePercent.

Working with Complex MBean Attributes
Some MBean attributes return complex objects; for example, the HealthState attribute of the
ServerRuntimeMBean. Such attributes can be accessed using JavaBean conventions. In the
following example, the policy expression returns true if the health state of the server is a non-
zero value:

wls.runtime.serverRuntime.healthState.state != 0

Working with Array Attributes

Many WLDF bean attributes return arrays of child MBeans. To work with collections, such as
arrays, Java EL provides the stream operator to convert arrays and lists into stream objects
that can be fed into other Java EL and WLDF functions and operators. In the following
example, the policy expression examines the state of all JDBCDataSourceRuntimeMBean

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 21

instances in the local server instance, and returns true if any of them are in the Overloaded
state:

wls.runtime.serverRuntime.JDBCServiceRuntime.JDBCDataSourceRuntimeMBeans.stream()
.anyMatch(ds -> ds.state == “Overloaded”)

The policy expression executes in the following sequence:

1. The JDBCServiceRuntimeMBean child is accessed from the ServerRuntimeMBean.

2. The array attribute JDBCDataSourceRuntimeMBeans is accessed from the
JDBCServiceRuntimeMBean.

3. The Java EL stream operator is utilized to convert the array to a stream so that it can be
used with WLDF and standard Java EL collection operations.

4. The anyMatch collection operation is used to look for the Overloaded state on any of the
returned JDBCDataSourceRuntimeMBean instances.

5. If the anyMatch operation matches the Overloaded state, returns true.

Performing Bulk Queries on Collected Metrics from MBeans
The MBeans defined in Table 10-6 are used in collected metrics policy expressions. All of
these beans support a query method that allows to perform a query for a set of MBean
attribute values against a homogeneous set of MBeans.

The method takes the following syntax:

query(target-list, object-name-pattern, attribute-expression)

The query method returns an iterable list of values that is obtained using the attribute-
expression on each matching MBean instance.

Table 10-7 Method Parameters

Parameter Description

target-list This argument is applicable only for domainRuntime
bean which is available only for policies executing on the
Administration Server. The bean supports an overloaded
variant that takes an array of targets.

It is a list of servers or clusters in the domain. The
argument allows the policy expression to examine
MBean values across the domain in the same
expression.

object-name-pattern This argument takes any valid JMX ObjectName pattern
that is specified as a string value enclosed by single
quote (') characters. For example:
'com.bea:Type=ServletRuntime,*'

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 21

Table 10-7 (Cont.) Method Parameters

Parameter Description

attribute-expression This argument is a quoted EL subexpression that is
used to access an attribute from each of the MBeans
matching the object-name-pattern argument. The
attribute-expression argument can be either of the
following types:
• A simple attribute available on the MBean.
• An attribute of a complex type that uses a

JavaBean-style expression to access the values
within that complex structure.

Note: It is expected that attribute-expression
ultimately resolves to a single scalar value, and not a
complex structure.

The values returned by the query method can be used as a part of the larger policy expression
that examines those values.

Note

The intended use of the query method is to operate against a homogeneous set of
MBean instances, but there is no enforcement mechanism to ensure that the specified
MBeans must all be of the same type. Therefore, if you do specify an object-name-
pattern that encompasses MBeans of different types, errors can result when the
policy expression is evaluated.

Example 10-2 Examples of Using the query Method

Table 10-8 lists some examples of using the query method in policy expressions.

Note

The examples show how to use the query method and are not complete policy
expressions.

Table 10-8 query Method Examples

Example Description

wls.runtime.query('com.bea:Type=Servlet
Runtime,*', 'ExecutionTimeAverage')

The query method is used for all the instances of
ServletRuntimeMBean in the local server and
returns the value of ExecutionTimeAverage for
each instance in the returned iterable stream.

wls.domainRuntime.query(['cluster1'],
'com.bea:Type=ThreadPoolRuntime,*',
'PendingUserRequestCount')

The domainRuntime bean is used to query all
values of PendingUserRequestCount across all
instances of ThreadPoolRuntimeMBean in the
cluster cluster1. Any values found are returned in
the Iterable set returned by the method call.

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 21

The use of query method in policy expression and the result set are represented in the
following illustration:

Figure 10-1 Result Set of query in Policy Expression

The following is a complete example of a policy expression that uses the query method
to determine whether the StuckThreadCount attribute on any WorkManagerRuntimeMBean in the
local WebLogic Server instance is greater than zero:

wls.runtime.query('com.bea:Type=WorkManagerRuntime,*',
'StuckThreadCount').stream().anyMatch(x -> x > 0)

The values of StuckThreadCount for all instances of WorkManagerRuntimeMBean are queried,
and each value is examined to see if it is greater than zero, which indicates a stuck thread in
the server. The stream collection operation is part of the Java EL standard, and is used for
converting an iterable set into a stream that can be used with Java EL collection operations,
such as anyMatch in the example.

Writing Collected Metrics Policy Expressions Using Functions
In addition to the bundled functions and collection operations that come with Java EL by
default, there are also a set of WLDF-provided functions for use within policy expressions for
common operations with metric data and for retaining a set of metrics with history.

The set of WLDF-provided functions includes:

• wls:tableChanges

• wls:tableAverages

• wls:extract

• wls:average

• wls:changes

• wls:aliveServersCount

For complete details about each EL function provided by WLDF, see Functions Reference.

Functions are invoked using the prefix wls:

wls:<function-call>

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 18 of 21

For example, wls:aliveServersCount('cluster1') invokes the aliveServersCount()
function provided by WLDF for the cluster cluster1.

Collection Operations

WLDF also provides a set of collection operations that can be invoked similar to the collection
operations provided by Java EL. The set of WLDF-provided collection operations includes:

• tableAverages

• percenMatch

• collection

• flatten

Examining Trends in Metric Values over Time
You can look for trends in metric data over time instead of assessing the instantaneous values.
Use the wls:extract function to extract a table of time series from a specified set of input
sources, based on a specified sampling rate schedule and time window.

The extract function has the following syntax:

wls:extract(sources, sampling rate, retention window)

The method returns an iterable set that consists of a two dimensional set of results. The metric
input to the function comes from multiple MBean instances during the course of a specific
interval of time defined by the retention window parameter. The resulting data is similar to a
table where each row is a set of values from a particular MBean instance over the time
window.

Parameters

Table 10-9 Parameters Description for extract() Function

Parameters Description

sources Set of metric sources, which can be identified as a query
method or as a quoted Java EL expression.

sampling rate String that identifies the frequency with which data is
collected. You can specify this string as hours, minutes, or
seconds. The syntax is flexible, allowing you to specify 30
seconds, for example, as “30s”, “30sec”, or “30 seconds”.

Note: The frequency only applies to the rate of collection of
the metric, and is independent of the overall policy evaluation
schedule.

retention window String that identifies the retention window over which to
observe values from the sources input with syntax identical to
the sampling rate parameter.

It implements the sliding window algorithm in which the oldest
data in the set is aged out when the array is full.

See retention window.

Example 10-3 Examples of Using the extract Function

Table 10-10 lists example usages of the extract function.

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 19 of 21

Note

The examples show how to invoke the extract function and are not complete policy
expressions.

Table 10-10 extract Function Examples

Example Description

wls:extract("wls.runtime.serverRunt
ime.threadPoolRuntime.pendingUserRe
questCount", "30s", "2m")

The extract function is invoked with an EL expression
as the first argument which observes and collects the
values of the PendingUserRequestCount attribute on
the ThreadPoolRuntimeMBean at 30-second intervals
and retains them over a period of 2 minutes. In this
example, ThreadPoolRuntimeMBean is a singleton, and
only the local WebLogic Server instance is monitored.
Therefore, only a single row of values is returned in the
table of values.

wls:extract(wls.runtime.query("com.
bea:Type=ThreadPoolRuntime,*",
"PendingUserRequestCount"), "30s",
"2m")

The extract function is used with the result of a query
method invocation as input.

wls:extract(wls.domainRuntime.quer
y(['cluster1'],
'com.bea:Type=ThreadPoolRuntime,*',
'PendingUserRequestCount'), '30s',
'2m')

The extract function is used with the query method of
the domainRuntime bean to collect the value of
PendingUserRequestCount attribute on all
ThreadPoolRuntimeMBean instances on every server in
cluster1. The result set for this call consists of a row of
values for each ThreadPoolRuntimeMBean instance in
each active server instance in cluster1 .

Extracting and Examining Collected Metrics in Policy Expressions
The extract function returns a table of scalar values. You can use any collection operation to
examine or manipulate the result set. WLDF provides more collection operations that are
intended for use with the data returned from extract function, such as tableAverages,
percentMatch, collection, and flatten.

Operations Description

tableAverages Computes the average value for each row in the table.

percentMatch Examines all the computed averages from tableAverages.

collection Returns the two dimensional set of values in tabular form, which
can be then converted to Java EL collection stream using the
stream operator and can be directly manipulated in other Java EL
collection operators.

flatten Converts the two dimensional set of values returned by extract
function into a linear collection of values.

The result of extract can then be fed into other functions or operations as part of an overall
policy expression.

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 20 of 21

In the following example of a policy expression, the extract function collects the value for the
PendingUserRequestCount attribute across the servers in cluster1. The result is combined
with the tableAverages and percentMatch collection operations to produce a boolean value.

wls:extract(wls.domainRuntime.query({'cluster1'},
'com.bea:Type=ThreadPoolRuntime,*', 'PendingUserRequestCount'), '30s',
'2m').tableAverages().stream().percentMatch(pendingCount -> pendingCount > 100) >
0.75

This policy expression returns true when the average value of the attribute
PendingUserRequestCount over the 2-minutes window is greater than 100 on 75% of the
servers in cluster1. The policy expression executes in the following sequence:

1. The extract function creates a table of values for the attribute PendingUserRequestCount,
where each row is one set of values from a server in cluster1 over a 2-minutes window.

2. The tableAverages operation computes the average value over the 2-minutes window for
each row in the table returned by the extract function.

3. stream is a standard Java EL collection operation used to convert the vector result of
tableAverages to a Java EL stream.

4. The percentMatch operation examines all the computed averages from tableAverages,
and computes the percentage of values in that set that are greater than 100.

5. The result of percentMatch is a value between 0 and 1 and is compared with 0.75, the
desired threshold.

Lifecycle of Data Collection
The extract function extracts data from a specified input source over a defined period of time.
When the extract function is first encountered in an expression by the WLDF policy engine, it
starts the collection of the desired metrics indicated in the policy expression. Samples are
collected by the policy engine until the policy using the extract function is disabled or
undeployed.

Policy expressions that use the extract function is not evaluated until enough data has been
collected for the desired metrics to satisfy the sliding window interval specified in the
invocation. If the function invocation specifies that a 5-minutes window of data is required, then
5 minutes of data collection must take place from the moment the policy is deployed before the
expression can be successfully evaluated.

In the following example, the expression does not evaluate until 2 minutes of data for the
PendingUserRequestCount attribute is collected.

wls:extract(wls.runtime.query("com.bea:Type=ThreadPoolRuntime,*",
"PendingUserRequestCount"), "30s", "2m")

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 21 of 21

11
Configuring Actions

The WebLogic Diagnostics Framework (WLDF) provides several types of actions that can be
executed when a policy evaluates to true, such as triggering an elastic scaling action, sending
a JMS notification, executing an external command line script, and more.

Actions Overview
An action is an operation that is executed when a policy expression evaluates to true. WLDF
supports different types of action based on the delivery mechanism of the notification.

Topics

The following sections contain background information pertaining to WLDF actions:

Types of Actions
WLDF supports the following types of diagnostic actions, based on the delivery mechanism:

• Java Management Extensions (JMX)

• Java Message Service (JMS)

• Simple Network Management Protocol (SNMP)

• Simple Mail Transfer Protocol (SMTP)

• Diagnostic image capture

• Elasticity framework

• REST

• WebLogic logging system

• WebLogic Scripting Tool (WLST)

• Heap dump

• Thread dump

In the configuration file for a diagnostic module, the different types of actions are identified by
the following elements in the config.xml file for the domain:

• <jmx-notification>

• <jms-notification>

• <snmp-notification>

• <smtp-notification>

• <image-notification>

• <scale-up-action>

• <scale-down-action>

• <rest-notification>

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 13

• <log-action>

• <script-action>

• <heap-dump-action>

• <thread-dump-action>

These action types all have <name> and <enabled> configuration options. The value of
<name> is used as the value in a <notification> element for a policy, to map the policy to its
corresponding action. The <enabled> element, when set to true, enables that action. In other
words, the action is executed when an associated policy evaluates to true. Other than <name>
and <enabled>, each action type is unique.

Variables for Customizable Actions
The log, SMTP, and REST action types support the generation of customized strings that
contain one or more of the variables listed in this topic.

When a triggered policy invokes one of these action types, each variable used in the
customized string that is generated by the action is replaced with the value shown in the
following table.

Table 11-1 Substitution Variables

Variable Name Value

WatchName Name of policy that corresponds to the action

WatchRuleType Policy type (for example, Harvester, Log, or EventData)

WatchRule Policy expression

WatchTime Timestamp identifying when the corresponding policy was triggered

WatchSeverityLevel Policy severity option

WatchData Log message

WatchAlarmType Specifies the policy alarm type, which can be None, AutomaticReset, or
ManualReset.

WatchAlarmResetPeri
od

Alarm reset period configured on the
WLDFWatchNotificationRuntimeMBean.

WatchDomainName WebLogic domain name

WatchServerName Server instance name

Log, REST, and SMTP actions send different types of messages when executed. Each of
these actions, while different, has one or more properties that support the use of one or more
of the variables defined in . For example, an SMTP message body can be specified as follows
to include the policy name, expression, and timestamp indicating when the policy was
triggered:

"Test ${WatchName} with policy ${WatchRule} fired at ${WatchTime}."

For more information about using these substitution variables, see:

• Configuring Log Actions

• Configuring REST Actions

• Configuring SMTP Actions

Chapter 11
Actions Overview

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 13

Action Timeout
All WLDF actions support a timeout, which determines the time, in seconds, for the action to
complete execution. By default, the timeout is 0, which disables the action timeout.

You can specify the action timeout using the WLDFNotificationBean.Timeout attribute.

See the following topics to set the timeout when configuring an action:

• Configure an action in Administering Oracle WebLogic Server with Fusion Middleware
Control

Configuring JMX Actions
WLDF issues JMX events when an associated policy is triggered for each defined JMX action.
You can configure the JMX action to receive all the JMX notification and filter the output as
required.

For each defined JMX action, WLDF issues JMX events (notifications) whenever an associated
policy is triggered. Applications can register an action listener with the server's
WLDFWatchNotificationSourceRuntimeMBean to receive all JMX notifications and filter the
provided output. You can also specify a JMX "notification type" string that a JMX client can use
as a filter.

Example 11-1 shows an example of a JMX action configuration.

Example 11-1 Example Configuration for a JMX Action

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more policy configurations -->
 <jmx-notification>
 <name>myJMXNotif</name>
 <enabled>true</enabled>
 </jmx-notification>
 <!-- Other action configurations -->
 </watch-notification>
</wldf-resource>

Here is an example of a JMX action:

 Notification name: myjmx called. Count= 42.
 Watch severity: Notice
 Watch time: Jul 19, 2005 3:40:38 PM EDT
 Watch ServerName: myserver
 Watch RuleType: Harvester
 Watch Rule: ${com.bea:Name=myserver,Type=ServerRuntime//
OpenSocketsCurrentCount} > 1
 Watch Name: mywatch
 Watch DomainName: mydomain
 Watch AlarmType: None
 Watch AlarmResetPeriod: 10000

Chapter 11
Configuring JMX Actions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 13

Configuring JMS Actions
You can configure JMS actions to send JMS notifications through the JMS topics or queues
when the corresponding policy is triggered. You can define how the notification must be
delivered such as defining the destination and the connection factory.

In the system resource configuration file, the elements <destination-jndi-name> and
<connection-factory-jndi-name> define how the notification is to be delivered.

Example 11-2 shows two JMS actions that cause JMS notifications to be sent through the
provided topics and queues using the specified connection factory. For this to work properly,
JMS must be properly configured in the config.xml configuration file for the domain, and the
JMS resource must be targeted to this server.

Example 11-2 Example JMS Actions

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more policy configurations -->
 <jms-notification>
 <name>myJMSTopicNotif</name>
 <destination-jndi-name>MyJMSTopic</destination-jndi-name>
 <connection-factory-jndi-name>weblogic.jms.ConnectionFactory
 </connection-factory-jndi-name>
 </jms-notification>
 <jms-notification>
 <name>myJMSQueueNotif</name>
 <destination-jndi-name>MyJMSQueue</destination-jndi-name>
 <connection-factory-jndi-name>weblogic.jms.ConnectionFactory
 </connection-factory-jndi-name>
 </jms-notification>
 <!-- Other action configurations -->
 </watch-notification>
</wldf-resource>

The content of the action message gives details of the policy and action.

Configuring SNMP Actions
Simple Network Management Protocol (SNMP) actions are used to post SNMP traps when an
associated policy is triggered. Provide the action name to define an SNMP action.To define an
SNMP action, provide the action name as shown in Example 11-3. Generated traps contain the
names of both the policy and action that caused the trap to be generated. For an SNMP trap to
work properly, SNMP must be properly configured in the config.xml configuration file for the
domain.

Example 11-3 An Example Configuration for an SNMP Action

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more policy configurations -->

Chapter 11
Configuring JMS Actions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 13

 <snmp-notification>
 <name>mySNMPNotif</name>
 </snmp-notification>
 <!-- Other action configurations -->
 </watch-notification>
</wldf-resource>

The trap resulting from the SNMP action configuration shown in Example 11-3 is of type 85. It
contains the following values (configured values are shown in angle brackets "<>"):

 .1.3.6.1.4.1.140.625.100.5 timestamp (e.g. Dec 9, 2004 6:46:37 PM EST
 .1.3.6.1.4.1.140.625.100.145 domainName (e.g. mydomain")
 .1.3.6.1.4.1.140.625.100.10 serverName (e.g. myserver)
 .1.3.6.1.4.1.140.625.100.120 <severity> (e.g. Notice)
 .1.3.6.1.4.1.140.625.100.105 <name> [of watch] (e.g.
 simpleWebLogicMBeanWatchRepeatingAfterWait)
 .1.3.6.1.4.1.140.625.100.110 <rule-type> (e.g. HarvesterRule)
 .1.3.6.1.4.1.140.625.100.115 <rule-expression>
 .1.3.6.1.4.1.140.625.100.125 values which caused rule to
 fire (e.g..State =
 null,weblogic.management.runtime.WLDFHarvesterRuntimeMBean.
 TotalSamplingTime = 886,.Enabled =
 null,weblogic.management.runtime.ServerRuntimeMBean.
 OpenSocketsCurrentCount = 1,)
 .1.3.6.1.4.1.140.625.100.130 <alarm-type> (e.g. None)
 .1.3.6.1.4.1.140.625.100.135 <alarm-reset-period> (e.g. 10000)
 .1.3.6.1.4.1.140.625.100.140 <name> [of notification]
 (e.g.mySNMPNotif)

Configuring Log Actions
You can create a log action to send a customized message to the server log.

The customized message can optionally include any of the variables described in Variables for
Customizable Actions. The following WLST example shows the configuration of a log action:

wn=res.getWatchNotification()

actionName="myaction"
action = wn.lookupLogAction(actionName);
if action is None:
 action = wn.createScriptAction(actionName);
action.setMessage("Message with substitution on server ${WatchServerName} in domain $
{WatchDomainName}");
action.setSubsystemName("SpecialLogAction);
action.setSeverity("Info");

When the preceding log action is executed, the custom message, shown in bold, uses
variables to identify:

• The WebLogic Server instance name, represented by the ${WatchServerName} variable

• The WebLogic domain name, represented by the variable ${WatchDomainName}

Configuring REST Actions
You can use a REST action to send a notification to a REST endpoint that includes a
customized message in the notification payload. You can configure the REST endpoint
invocation for no authentication or basic authentication.

Chapter 11
Configuring Log Actions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 13

When configuring a REST action, you can create a customized set of notification properties
that can optionally use any of the variables described in Variables for Customizable Actions.
For example, the following WLST example shows the configuration of a REST action that
sends a customized message:

wn = res.getWatchNotification();

#No Auth REST invocation
rest1 = wn.createRESTNotification('r1')
rest1.setEndpointURL("http://localhost:7001/rest-no-auth/resources/watch-listener")
customNotif = java.util.Properties()
customNotif.put('message','Policy ${WatchName} with rule ${WatchRule} fired.')
rest1.setCustomNotificationProperties(customNotif)
rest1.setEnabled(true)

#Basic Auth REST invocation
rest2 = wn.createRESTNotification('r2')
rest2.setEndpointURL("http://localhost:7001/rest-basic-auth/resources/watch-listener")
rest2.setHttpAuthenticationMode('Basic')
rest2.setHttpAuthenticationUserName('restuser1')
rest2.setHttpAuthenticationPassword('restuser1')
rest2.setEnabled(true)

When the preceding REST action is executed, the REST endpoint is invoked with a message,
shown in bold, that identifies:

• The name of the triggered policy that executed the corresponding REST action,
represented by the ${WatchName} variable

• The policy expression, represented by the ${WatchRule} variable

Configuring SMTP Actions
Simple Mail Transfer Protocol (SMTP) actions are used to send messages (e-mail) over the
SMTP protocol in response to the triggering of an associated policy. You provide a list of
recipients to whom the message is distributed through the configured SMTP session.

To define an SMTP action, first configure the SMTP session. That configuration is persisted in
the config.xml configuration file for the domain. In DIAG_MODULE.xml, you provide the
configured SMTP session using subelement <mail-session-jndi-name>, and provide a list of
at least one recipient using subelement <recipients>. An optional subject and/or body can be
provided using subelements <subject> and <body> respectively. If these are not provided, they
will be defaulted.

Example 11-4 shows an SMTP action that causes an SMTP (e-mail) message to be distributed
through the configured SMTP session, to the configured recipients. In this action configuration,
a custom subject and body are provided. If a subject or body are not specified, defaults are
provided, showing details of the policy and action.

Example 11-4 Sample Configuration for SMTP Action (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more policy configurations -->
 <smtp-notification>
 <name>mySMTPNotif</name>

Chapter 11
Configuring SMTP Actions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 13

 <mail-session-jndi-name>MyMailSession</mail-session-jndi-name>
 <subject>Critical Problem!</subject>
 <body>A system issue occurred. Call Winston ASAP.
 Reference number 81767366662AG-USA23.</body>
 <recipients>administrator@myCompany.com</recipients>
 </smtp-notification>
 <!-- Other action configurations -->
 </watch-notification>
</wldf-resource>

The content of the action message gives details of the policy and action.

WLDF also supports customizing the subject and body elements in the sent email by using any
of the variables described in Variables for Customizable Actions.

The following WLST example shows the configuration of an SMTP action that contains
customized subject and body text. The subject and body of the message utilize variables to
specify the policy name and the timestamp indicating when the policy was triggered:

smtp=wn.lookupSMTPNotification('smtp1')
if smtp is None:
 smtp=wn.createSMTPNotification('smtp1')

smtp.setMailSessionJNDIName('test.MailSession')
smtp.setSubject("WatchRule ${WatchName} alert")
smtp.setBody("Test ${WatchName} with rule ${WatchRule} fired at ${WatchTime}.")
smtp.setRecipients(["john.smith@example.com"])

When the preceding SMTP action is executed, an email is generated with a custom subject
and body, shown in bold, that identifies:

• The name of the policy that executed the SMTP action, represented by the variable $
{WatchName}. This variable is used in both the subject and body.

• The policy expression, represented by the ${WatchRule} variable

• The timestamp identifying when the corresponding policy was triggered, represented by
the ${WatchTime} variable

Configuring Image Actions
An image action causes a diagnostic image to be generated in response to the triggering of an
associated policy. You can configure two options for image actions: a directory and a lockout
period.

The directory name indicates where the images will be generated. The lockout period
determines the number of seconds that must elapse before a new image can be generated
after the last one. This is useful for limiting the number of images that will be generated when
there is a sequence of server failures and recoveries.

You can specify the directory name relative to the DOMAIN_HOME\servers\SERVER_NAME. The
default directory is DOMAIN_HOME\servers\SERVER_NAME\logs\diagnostic-images.

Image file names are generated using the current timestamp (for example,
diagnostic_image_myserver_2005_08_09_13_40_34.zip), so an action can execute many
times, resulting in a separate image file each time.

Chapter 11
Configuring Image Actions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 13

The configuration is persisted in the DIAG_MODULE.xml configuration file. Example 11-5 shows
an image action configuration that specifies that the lockout time will be two minutes and that
the image will be generated to the DOMAIN_HOME\servers\SERVER_NAME\images directory.

Example 11-5 Sample Configuration for Image Action (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <!-- One or more policy configurations -->
 <image-notification>
 <name>myImageNotif</name>
 <enabled>true</enabled>
 <image-lockout>2</image-lockout>
 <image-directory>images</image-directory>
 </image-notification>
 <!-- Other action configurations -->
 </watch-notification>
</wldf-resource>

For more information about Diagnostic Images, see Configuring and Capturing Diagnostic
Images.

Configuring Elastic Actions
WLDF provides scale up and scale down elastic actions that can be performed on dynamic
clusters.

• scale up — Configured using the WLDFScaleUpActionBean

• scale down — Configured using the WLDFScaleDownActionBean

Each action bean has the following configuration attributes:

• clusterName — The name of the dynamic cluster that needs to be scaled

• scalingSize — The number of Managed Server instances by which the dynamic cluster
needs to be scaled up or down

The scale up and scale down actions attempt to scale the dynamic cluster specified by the
clusterName parameter, by the number of servers specified as the scalingSize value. WLDF
interacts with the elasticity framework to scale the dynamic cluster accordingly.

Note

Note the following:

• To configure automated elasticity for a dynamic cluster, you must create a domain-
scope diagnostic system module in which you define the scaling policy, along with
its corresponding elastic action, and then target that diagnostic module to the
Administration Server.

• After a scale up or scale down action has been invoked, the scaling action can't be
subsequently cancelled.

Chapter 11
Configuring Elastic Actions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 13

The following WLST snippet shows the commands for configuring a scale up action. In this
example, the dynamic cluster myCluster is scaled up by one Managed Server instance:

wn=res.getWatchNotification()

scaleUp=wn.lookupScaleUpAction('scaleUp')
if scaleUp == None:
 print "Creating scale up action”
 scaleUp=wn.createScaleUpAction('scaleUp')
scaleUp.setScalingSize(1)
scaleUp.setClusterName(myCluster)

The following example shows the WLST commands for configuring a scale down action on
myCluster:

wn=res.getWatchNotification()

scaleDown=wn.lookupScaleDownAction('scaleDown')
if scaleDown == None:
 print "Creating scale down action”
 scaleDown=wn.createScaleDownAction('scaleDown')
scaleDown.setScalingSize(1)
scaleDown.setClusterName(myCluster)

For complete details about using these elastic actions, see:

• Elastic Actions in Configuring Elasticity in Dynamic Clusters for Oracle WebLogic Server

• Expanding or Reducing Dynamic Clusters in Administering Clusters for Oracle WebLogic
Server

Elastic Scaling Operations Cannot Be Cancelled After Starting
Note that the moment a scaling operation has begun, regardless of whether it is a scale up or
scale down operation, it cannot be cancelled. If you configure automated elasticity in a
dynamic cluster, such as with calendar-based or policy-based scaling, the elasticity framework
does not provide the means to cancel a scaling operation after it has been initiated.

Consequently, if a postprocessor script (invoked by a script interceptor) fails, the parts of the
scaling operation that were completed can't be reverted. For more information about script
interceptors and postprocessor scripts, see Configuring the Script Interceptor in Configuring
Elasticity in Dynamic Clusters for Oracle WebLogic Server.

Limiting Server Shutdown Time During Scale Down Operations
Shutting down servers during a scale down operation can take a significant amount of time,
especially if there are unreplicated sessions. Until unreplicated sessions time out, which can
potentially be a long time, the server will not be shut down.

To limit the length of time required to complete a scale down operation, you can configure the
following attributes on the DynamicServersMBean:

Attribute Description

DynamicClusterShutdownT
imeoutSeconds

Timeout period, in seconds, to use while gracefully shutting down a
dynamic server instance. If the dynamic server instance does not shut
down before the specified timeout period, then it will be forcibly shut
down.

The default value is 0.

Chapter 11
Configuring Elastic Actions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 13

Attribute Description

IgnoreSessionsDuringShu
tdown

Specifies whether to ignore inflight HTTP requests while shutting down
dynamic server instances.

WaitForAllSessionsDurin
gShutdown

Specifies whether to wait for all persisted and nonpersisted inflight HTTP
sessions to complete before shutting down dynamic server instances.

By specifying a timeout or ignoring inflight HTTP sessions during shutdown, the shutdown time
can be limited. However, note that remaining inflight HTTP sessions may be lost.

Configuring Script Actions
You can use the script action to execute an external command-line script. The script can be
written in any scripting language.

To set the execution environment in which the script is run, you can configure the following
attributes of the WLDFScriptActionBean:

• PathToScript — The full path to the script, which must be located in the
DOMAIN_HOME/bin/scripts directory

• WorkingDirectory — The directory from which the WebLogic Server process was run,
which is typically the domain root directory.

• Environment — A map of environment variables to set for the child process

• Parameters — An array of parameters or command options to pass to the script

• Timeout — The time, in seconds, for the script action to complete execution. By default,
the timeout is 0, which disables the script action timeout.

When the script action is executed by a triggered policy, WLDF invokes the configured script,
which is run with the identity of the configured script. The script process executes as a child
process of the WebLogic Server process that spawned it. Therefore, the script process has the
same operating system identity as the WebLogic Server process; however, it does not inherit
any of the parent process environment.

The following example shows configuring a script action using WLST:

wn=res.getWatchNotification()

actionName="myaction"
action = wn.lookupScriptAction(actionName);
if action is None:
 action = wn.createScriptAction(actionName);

action.setWorkingDirectory("somedir");
action.setPathToScript("myScript.sh");
action.setParameters(["param1", "param2"]);
action.setTimeout(300);

Configuring Heap Dump Actions
You can use a heap dump action to capture heap dumps when certain runtime conditions,
defined by a policy expression, are met. Each heap dump is produced in HPROF format, which
you can analyze with tools such as the jmap utility, which is available in the JDK.

Chapter 11
Configuring Script Actions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 13

You create a heap dump action by configuring the WLDFHeapDumpActionBean and the
WLDFServerDiagnosticMBean in a domain scope diagnostic system module – that is, a
diagnostic system modules that is deployed in the domain partition. When configuring a heap
dump action, you can specify the following:

• Whether or not to include only objects that can be referenced (that is, not garbage-
collected, or awaiting garbage collection), which you specify in the LiveSetOnly attribute of
the WLDFHeapDumpActionBean. The default value is true.

• The location each server's diagnostic dumps directory where the heap dumps are stored.
You can specify this directory in the DiagnosticDumpsDir attribute of the
WLDFServerDiagnosticMBean.

• The number of heap dump files that are retained, which prevents filling up the file system
with generated heap dumps. You can specify the number in the MaxHeapDumpCount
attribute of the WLDFServerDiagnosticMBean. The default value is 8.

The generated heap dump files are named using the following syntax:

HeapDump_$SERVER_$MODULE_$POLICY_$ACTION_$timestamp.hprof

In the preceding syntax:

• $SERVER represents the name of the WebLogic Server instance that generated the heap
dump.

• $MODULE represents the name of the diagnostics system module that contains the action
configuration.

• $POLICY represents the name of the policy that executed the heap dump action.

• $ACTION represents the name of the WLDFHeapDumpActionBean.

• $timestamp represents time when the heap dump was generated, which takes the form of
yyyy_mm_dd_HH_MM_SS.

Note

Note the following:

• Heap dumps may contain sensitive information. Therefore, make sure that you
place appropriate access protections on the directories into which heap dumps are
generated.

• If a heap dump action is in progress, an attempt by another heap dump action to
generate a heap dump is rejected and a message is generated in the server log.

The jmap utility is described in the Java SE 8 documentation, available at http://
docs.oracle.com/javase/8/.

Example 11-6 An Example Configuration for a Heap Dump Action

The following WLST example shows the configuration of a heap dump action:

Start an edit session in edit tree
edit()
startEdit()
cd("/")

if cmo.lookupWLDFSystemResource("mywldf") == None:
 print "Creating WLDF resource"

Chapter 11
Configuring Heap Dump Actions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 13

http://docs.oracle.com/javase/8/
http://docs.oracle.com/javase/8/

 cmo.createWLDFSystemResource("mywldf")

cd("/WLDFSystemResources/mywldf/WLDFResource/mywldf/WatchNotification/mywldf")

Create a heap dump action
cmo.createHeapDumpAction('myHeapDump')
cd("HeapDumpActions/myHeapDump")
Set it to capture a full heap, not just the live setLiveSetOnly - default is "true"
cmo.setLiveSetOnly(false)

save()
activate()

Configuring Thread Dump Actions
You can use a thread dump action to capture a specific number of thread dumps, separated by
configured time interval, when the runtime conditions that are specified in a corresponding
policy are met. Each thread dump file is produced in an individual text file.

You create a thread dump action by configuring the WLDFThreadDumpActionBean and the
WLDFServerDiagnosticMBean in a domain scope diagnostic system module – that is, a
diagnostic system modules that is deployed in the domain partition. When configuring a thread
dump action, you specify the following:

• The number of thread dumps to be captured, which you specify in the ThreadDumpCount
attribute of the WLDFThreadDumpActionBean. The default value is 3.

• The interval between successive thread dumps, which you specify in the
ThreadDumpDelaySeconds attribute of the WLDFThreadDumpActionBean. The default value is
10 seconds.

• The location each server's diagnostic dumps directory where the thread dumps are stored,
which you can specify with the DiagnosticDumpsDir attribute of the
WLDFServerDiagnosticMBean.

• The number of thread dump files that are retained, which prevents filling up the file system
with generated thread dumps. You specify the number using the MaxThreadDumpCount
attribute of the WLDFServerDiagnosticMBean. The default value is 100.

The generated thread dump files are named using the following syntax:

HeapDump_$SERVER_$MODULE_$POLICY_$ACTION_$timestamp.hprof

In the preceding syntax:

• $SERVER represents the name of the WebLogic Server instance that generated the thread
dump.

• $MODULE represents the name of the diagnostics system module that contains the action
configuration.

• $POLICY represents the name of the policy that executed the thread dump action.

• $ACTION represents the name of the WLDFThreadDumpActionBean.

• $timestamp represents time when the thread dump was generated, which takes the form of
yyyy_mm_dd_HH_MM_SS.

Chapter 11
Configuring Thread Dump Actions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 13

Note

• Thread dumps may contain sensitive information. Therefore, make sure that you
place appropriate access protections on the directories into which thread dumps
are generated.

• If a thread dump action is in progress, an attempt by another thread dump action
to generate a thread dump is rejected and a message is generated in the server
log.

Example 11-7 An Example Configuration for a Thread Dump Action

The following WLST example shows the configuration of a thread dump action:

Start an edit session in edit tree
edit()
startEdit()
cd("/")

if cmo.lookupWLDFSystemResource("mywldf") == None:
 print "Creating WLDF resource"
 cmo.createWLDFSystemResource("mywldf")

cd("WLDFSystemResources/mywldf/WLDFResource/mywldf/WatchNotification/mywldf")

Create a Thread Dump action
cmo.createThreadDumpAction('myThreadDump')
cd("ThreadDumpActions/myThreadDump")

set it to capture 5 dumps at 30 second intervals
cmo.setThreadDumpCount(5)
cmo.setThreadDumpDelaySeconds(30)

save()
activate()

Chapter 11
Configuring Thread Dump Actions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 13

12
Configuring Instrumentation

The Instrumentation component of the WebLogic Diagnostics Framework (WLDF) provides a
mechanism for adding diagnostic code to WebLogic Server instances and the applications
running on them.The key features provided by WLDF Instrumentation are:

• Diagnostic monitors

A diagnostic monitor is a dynamically manageable unit of diagnostic code that is inserted
into server or application code at specific locations. You define monitors by scope (system
or application) and type (standard, delegating, or custom).

• Diagnostic actions

A diagnostic action is the action a monitor takes when it is triggered during program
execution.

• Diagnostic context

A diagnostic context is contextual information, such as unique request identifier and flags
that indicate the presence of certain request properties such as originating IP address or
user identity. The diagnostic context provides a means for tracking program execution and
for controlling when monitors trigger their diagnostic actions. See Configuring the
DyeInjection Monitor to Manage Diagnostic Contexts.

WLDF provides a library of predefined diagnostic monitors and actions. You can also create
application-scoped custom monitors in which you control the locations in the application where
diagnostic code is inserted.

The following sections introduce the Instrumentation components and explain how to configure
them and also the different kinds of diagnostic monitors and actions:

Concepts and Terminology
Learn a comprehensive list of common terms and some basic concepts that apply to the
Instrumentation component of WLDF.

Instrumentation Scope
You can provide instrumentation services at the system level (servers and clusters) and at the
application level. Many concepts, services, configuration options, and implementation features
are the same for both levels. However, there are differences, which are discussed throughout
this document. The term server-scoped instrumentation refers to instrumentation
configuration and features specific to WebLogic Server instances and clusters. By contrast,
application-scoped instrumentation refers to configuration and features specific to
applications deployed on WebLogic Server instances. The scope is built in to each diagnostic
monitor; you cannot modify a monitor's scope.

Configuration and Deployment
Server-scoped instrumentation for a server or cluster is configured and deployed as part of a
diagnostic module, an XML configuration file located in the DOMAIN_HOME/config/diagnostics
directory, and linked from config.xml.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 17

Application-scoped instrumentation is also configured and deployed as a diagnostics module,
in this case an XML configuration file named weblogic-diagnostics.xml, which is packaged
with the application archive in the ARCHIVE_PATH/META-INF directory for the deployed
application.

Joinpoints, Pointcuts, and Diagnostic Locations
Instrumentation code is inserted (or woven) into server and application code at precise
locations. The following terms are used to describe these locations:

• A joinpoint is a specific location in a class; for example, the entry point, or exit point, or
both, of a method or a call site within a method.

• A pointcut is an expression that specifies a set of joinpoints, for example all methods
related to scheduling, starting, and executing work items. The XML element that specifies
a pointcut is <pointcut>. Pointcuts are described in Defining Pointcuts for Custom Monitors.

• A diagnostic location is the position relative to a joinpoint where the diagnostic activity
will take place. Diagnostic locations are Before, After, and Around. The XML element that
identifies a diagnostic location is <location-type>.

Diagnostic Monitor Types
A diagnostic monitor is categorized by its scope and its type. The scope is either server-
scoped or application-scoped. The type is determined by the monitor's pointcut, diagnostic
location, and actions. For example, Servlet_Around_Service is an application-scoped
delegating monitor that can be used to trigger diagnostic actions at the entry to and exit from
specific servlet and JSP methods.

There are three types of diagnostic monitors:

• A standard monitor performs specific, predefined diagnostic actions at specific,
predefined pointcuts and locations. These actions, pointcuts, and locations are hard-coded
in the monitor. You can enable or disable the monitor, but you cannot modify its behavior.

The only standard server-scoped monitor is the DyeInjection monitor, which you can use to
create diagnostic context and to configure dye injection at the server level. See Configuring
the DyeInjection Monitor to Manage Diagnostic Contexts.

The only standard application-scoped monitor is HttpSessionDebug, which you can use to
inspect an HTTP Session object.

• A delegating monitor has its scope, pointcuts, and locations hard-coded in the monitor,
but you select the actions that the monitor performs. That is, the monitor delegates its
actions to the ones you select. Delegating monitors are either server-scoped or
application-scoped.

A delegating monitor by itself is incomplete. To have a delegating monitor perform useful
work, you must assign at least one action to it.

Not all actions are compatible with all monitors.

If you configure a delegating monitor using WLST or by editing a descriptor file manually,
you must make sure that the actions are compatible with that monitor. WLDF validates a
delegating monitor when its XML configuration file is loaded at deployment time.

See WLDF Instrumentation Library, for a list of the delegating monitors and actions
provided by the WLDF Instrumentation Library.

• A custom monitor is a special case of delegating monitor that:

– Is available only for application-scoped instrumentation

Chapter 12
Concepts and Terminology

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 17

– Does not have a predefined pointcut or location

To configure a custom monitor, you assign it a name, define the pointcut and the
diagnostics location that the monitor uses, and assign actions from the set of predefined
diagnostic actions. The <pointcut> and <location type> elements are mandatory for a
custom monitor.

Table 12-1 summarizes the differences among the types of monitors.

Table 12-1 Diagnostic Monitor Types

Monitor Type Scope Pointcut Location Action

Standard monitor Server Fixed Fixed Fixed

Delegating monitor Server or Application Fixed Fixed Configurable

Custom monitor Application Configurable Configurable Configurable

You can restrict when a diagnostic action is triggered by setting a dye mask on a monitor. This
mask determines the dye flags in the diagnostic context that trigger actions. See <wldf-
instrumentation-monitor> XML Elements, for information about setting a dye mask for a
monitor.

Note

Diagnostic context, dye injection, and dye filtering are described in Configuring the
DyeInjection Monitor to Manage Diagnostic Contexts.

Diagnostic Actions
Diagnostic actions execute diagnostic code that is appropriate for the associated delegating or
custom monitor (standard monitors have predefined actions). For a delegating or custom
monitor to perform any useful work, you must configure at least one action for that monitor.

The WLDF diagnostics library provides the following actions, which you can attach to a monitor
by including the action's name in an <action> element of the DIAG_MODULE.xml configuration
file:

• DisplayArgumentsAction

• MethodInvocationStatisticsAction

• MemoryAllocationStatisticsAction

• StackDumpAction

• ThreadDumpAction

• TraceAction

• TraceElapsedTimeAction

• TraceMemoryAllocationAction

Actions must be correctly matched with monitors. For example, the TraceElapsedTime action is
compatible with a delegating or custom monitor whose diagnostic location type is Around. See
WLDF Instrumentation Library, for more information.

Chapter 12
Concepts and Terminology

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 17

Instrumentation Configuration Files
Instrumentation is configured as part of a diagnostics descriptor, which is an XML configuration
file whose name and location depend on whether you are implementing system-level (server-
scoped) or application-level (application-scoped) instrumentation.

The Instrumentation component is configured as follows:

• System-level instrumentation configuration is stored in one or more diagnostics descriptors
in the following directory:

DOMAIN_HOME/config/diagnostics

This directory can contain multiple system-level diagnostic descriptor files. File names are
arbitrary but must be terminated with .xml; for example, myDiag.xml. Each file can contain
configuration information for one or more of the following deployable diagnostic
components:

– Harvester

– Instrumentation

– Policies and Actions

The configuration of one or more diagnostic monitors can be defined in an
<instrumentation> section in the descriptor file. Server-scoped instrumentation can be
enabled, disabled, and reconfigured without restarting the server.

Only one WLDF system resource (and hence one system-level diagnostics descriptor file)
can be active for a server or cluster at any given time. The active descriptor is linked to and
targeted from the following configuration file:

DOMAIN_HOME/config/config.xml

See Configuring Diagnostic System Modules. For general information about the creation,
content, and parsing of configuration files in WebLogic Server, see Domain Configuration
Files in Understanding Domain Configuration for Oracle WebLogic Server.

• Application-level instrumentation configuration is packaged within an application's archive
in the following location:

META-INF/weblogic-diagnostics.xml

Because instrumentation is the only diagnostics component that is deployable to
applications, this descriptor can contain only instrumentation configuration information.

Note

For instrumentation to be available for an application, instrumentation must be
enabled on the server to which the application is deployed. (Server-scoped
instrumentation is enabled and disabled in the <instrumentation> element of the
diagnostics descriptor for the server.

You can enable and disable diagnostic monitors without redeploying an application.
However, you may need to redeploy the application after modifying other instrumentation
features; for example, defining pointcuts or adding or removing monitors. Whether you
need to redeploy depends on how you configure the instrumentation and how you deploy
the application. There are three options:

Chapter 12
Instrumentation Configuration Files

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 17

– Define and change the instrumentation configuration for the application directly, without
using a JSR-88 deployment plan

– Configure and deploy the application using a deployment plan that has placeholders
for instrumentation settings

– Enable the HotSwap feature when starting the server, and deploy using a deployment
plan that has placeholders for instrumentation settings

For more information about these choices, see Using Deployment Plans to Dynamically
Control Instrumentation Configuration.

For more information about deploying and modifying diagnostic application modules, see
Deploying WLDF Application Modules.

The diagnostics XML schema is located at:

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-
diagnostics.xsd

Each diagnostics descriptor file must begin with the following lines:

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

For an overview of WLDF resource configuration, see Understanding WLDF Configuration .

XML Elements Used for Instrumentation
You can configure instrumentation and diagnostic monitors using the XML elements such as
<Instrumentation> and <wldf-instrumentation-monitor>.

This section provides descriptor fragments and tables that summarize information about the
XML elements used to configure:

<Instrumentation> XML Elements
Table 12-2 describes the <instrumentation> elements in the DIAG_MODULE.xml file. The
following configuration fragment illustrates the use of those elements:

<wldf-resource>
 <name>MyDiagnosticModule</name>
<instrumentation>
 <enabled>true</enabled>
 <!-- The following <include> element would apply only to an
 application-scoped Instrumentation descriptor -->
 <include>example.com.*</include>
 <!-- <wldf-instrumentation-monitor> elements to define diagnostic
 monitors for this diagnostic module -->
</instrumentation>
<!-- Other elements to configure this diagnostic module -->
</wldf-resource>

Table 12-2 <instrumentation> XML Elements in the DIAG_MODULE.xml Configuration
File

Element Description

<instrumentation> The element that begins an instrumentation configuration.

Chapter 12
XML Elements Used for Instrumentation

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 17

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd

Table 12-2 (Cont.) <instrumentation> XML Elements in the DIAG_MODULE.xml
Configuration File

Element Description

<enabled> If true, instrumentation is enabled. If false, no instrumented code is inserted in
classes in this instrumentation scope, and all diagnostic monitors within this
scope are disabled. The default value is false.

You must enable instrumentation at the server level to enable instrumentation
for the server and for any applications deployed to it. You must further enable
instrumentation at the application level to enable instrumentation for the
application (that is, in addition to enabling the server-scoped instrumentation).

<include> An optional element specifying the list of classes where instrumented code
can be inserted. Wildcards (*) are supported. You can specify multiple
<include> elements. If specified, a class must satisfy an <include> pattern
for it to be instrumented.

Applies only to application-scoped instrumentation. Any specified <include>
or <exclude> patterns are applied to the application scope as a whole.

Note: You can also specify <include> and <exclude> patterns for specific
diagnostic monitors. See the entries for <include> and <exclude> in
Table 12-1.

As classes are loaded, they must pass an include/exclude pattern check
before any instrumentation code is inserted. Even if a class passes the
include/exclude pattern checks, whether or not it is instrumented depends on
the diagnostic monitors included in the configuration descriptor. An
application-scoped delegating monitor from the library has its own predefined
classes and pointcuts. A custom monitor specifies its own pointcut
expression. Therefore, a class can pass the include/exclude checks and still
not be instrumented.

Note: Instrumentation is inserted in applications at class load time. A large
application that is loaded often may benefit from a judicious use of
<include> elements, <exclude> elements, or both. You can probably ignore
these elements for small applications or for medium-to-large applications that
are loaded infrequently.

<exclude> An optional element specifying the list of classes where instrumented code
cannot be inserted. Wildcards (*) are supported. You can specify multiple
<exclude> elements. If specified, classes satisfying an <exclude> pattern
are not instrumented.

Applies only to application-scoped instrumentation. See the preceding
description of the <include> element.

<wldf-instrumentation-monitor> XML Elements
Diagnostic monitors are defined in <wldf-instrumentation-monitor> elements, which are
children of the <instrumentation> element in the following descriptor:

• The DIAG_MODULE.xml descriptor for server-scoped instrumentation

• The META-INF/weblogic-diagnostics.xml descriptor for application-scoped
instrumentation

The following fragment shows the configuration for a delegating monitor and a custom monitor
in an application. (You could modify this fragment for server-scoped instrumentation by
replacing the application-scoped monitors with server-scoped monitors.)

<instrumentation>
 <enabled>true</enabled>

Chapter 12
XML Elements Used for Instrumentation

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 17

 <wldf-instrumentation-monitor>
 <name>Servlet_Before_Service</name>
 <enabled>true</enabled>
 <dye-mask>USER1</dye-mask>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <action>TraceAction</action>
 </wldf-instrumentation-monitor>
 <wldf-instrumentation-monitor>
 <name>MyCustomMonitor</name>
 <enabled>true</enabled>
 <action>TraceAction</action>
 <location-type>before</location-type>
 <pointcut>call(* com.example. * get*(...));</pointcut>
 </wldf-instrumentation-monitor>
</instrumentation>

Note that the Servlet_Before_Service monitor sets a dye mask and enables dye filtering. This
will be useful only if instrumentation is enabled at the server level and the DyeInjection monitor
is enabled and properly configured. See Configuring the DyeInjection Monitor to Manage
Diagnostic Contexts, for information about configuring the DyeInjection monitor.

Table 12-3 describes the <wldf-instrumentation-monitor> elements.

Table 12-3 <wldf-instrumentation-monitor> XML Elements in the DIAG_MODULE.xml or
weblogic-diagnostics.xml file

Element Description

<wldf-instrumentation-
monitor>

The element that begins a diagnostic monitor configuration.

<enabled> If true, the monitor is enabled. If false, the monitor is disabled. You
enable or disable each monitor separately. The default value is true.

<name> The name of the monitor. For standard and delegating monitors, use the
names of the predefined monitors in WLDF Instrumentation Library, For
custom monitors, an arbitrary string that identifies the monitor. The name
for a custom monitor must be unique; that is, it cannot duplicate the
name of any monitor in the library.

<description> An optional element describing the monitor.

<action> An optional element, which applies to delegating and custom monitors. If
you do not specify at least one action, the monitor will not generate any
information. You can specify multiple <action> elements. An action
must be compatible with the monitor type. For the list of predefined
actions for use by delegating and custom monitors, see WLDF
Instrumentation Library.

<dye-filtering-enabled> An optional element. If true, dye filtering is enabled for the monitor. If
false, dye-filtering is disabled. The default value is false.

In order to use dye filtering, the DyeInjection monitor must be configured
appropriately at the server level.

<dye-mask> An optional element. If dye filtering is enabled, the dye mask, when
compared with the values in the diagnostic context, determines whether
actions are taken. See Configuring the DyeInjection Monitor to Manage
Diagnostic Contexts, for information about dyes and dye filtering.

<properties> An optional element. Sets name=value pairs for dye flags.

Currently applies only to the DyeInjection monitor.

Chapter 12
XML Elements Used for Instrumentation

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 17

Table 12-3 (Cont.) <wldf-instrumentation-monitor> XML Elements in the
DIAG_MODULE.xml or weblogic-diagnostics.xml file

Element Description

<location-type> An optional element, whose value is one of before, after, or around. The
location type determines when an action is triggered at a pointcut:
before the pointcut, after the pointcut, or both before and after the
pointcut.

Applies only to custom monitors; standard and delegating monitors have
predefined location types. A custom monitor must define a location type
and a pointcut.

<pointcut> An optional element. A pointcut element contains an expression that
defines joinpoints where diagnostic code will be inserted.

Applies only to custom monitors; standard and delegating monitors have
predefined pointcuts. A custom monitor must define a location type and
a pointcut.

Pointcut syntax is documented in Defining Pointcuts for Custom
Monitors.

<include> An optional element specifying the list of classes where instrumented
code can be inserted. Wildcards (*) are supported. You can specify
multiple <include> elements. If specified, a class must satisfy an
<include> pattern for it to be instrumented.

Applies only to application-scoped instrumentation. Any specified
<include> or <exclude> patterns are applied only to the monitor
defined in the parent <wldf-instrumentation-monitor> element.

Note: You can also specify <include> and <exclude> patterns for an
entire instrumented application scope. See the entries for <include>
and <exclude> in Table 12-1.

As classes are loaded, they must pass an include/exclude pattern check
before any instrumentation code is inserted. Even if a class passes the
include/exclude pattern checks, whether or not it is instrumented
depends on the diagnostic monitors included in the configuration
descriptor. An application-scoped delegating monitor from the library has
its own predefined classes and pointcuts. A custom monitor specifies its
own pointcut expression. Therefore a class can pass the include/exclude
checks and still not be instrumented.

Note: Instrumentation is inserted in applications at class load time. A
large application that is loaded often may benefit from a judicious use of
<include> and/or <exclude> elements. You can probably ignore these
elements for small applications or for medium-to-large applications that
are loaded infrequently.

<exclude> An optional element specifying the list of classes where instrumented
code cannot be inserted. Wildcards (*) are supported. You can specify
multiple <exclude> elements. If specified, classes satisfying an
<exclude> pattern are not instrumented.

Applies only to diagnostic monitors in application-scoped
instrumentation. See the <include> description, above.

Note the following additional information about the <dye-filtering-enabled> and <dye-mask>
elements:

• When a DyeInjection monitor is enabled and configured for a server or a cluster, you can
use dye filtering in downstream delegating and custom monitors to inspect the dyes
injected into a request's diagnostic context by that DyeInjection monitor.

Chapter 12
XML Elements Used for Instrumentation

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 17

• The configuration of the DyeInjection monitor determines which bits are set in the 64-bit
dye vector associated with a diagnostic context. When the <dye-filtering-enabled>
attribute is enabled for a monitor, its diagnostic activity is suppressed if the dye vector in a
request's diagnostic context does not match the monitor's configured dye mask. If the dye
vector matches the dye mask (a bitwise AND), the application can execute its diagnostic
actions:

(dye_vector & dye_mask == dye_mask)

Thus, the dye filtering mechanism allows monitors to take diagnostic actions only for specific
requests, without slowing down other requests. See Configuring the DyeInjection Monitor to
Manage Diagnostic Contexts, for detailed information about diagnostic contexts and dye
vectors.

Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types
Table 12-4 identifies the <wldf-instrumentation-monitor> elements that apply to each
monitor type. An X indicates that an element applies to the corresponding monitor; N/A
indicates that it does not.

Table 12-4 Mapping Instrumentation XML Elements to Monitor Types

Element Standard Delegating Custom

<wldf-instrumentation-monitor> X X X

<name> X X X

<description> X X X

<enabled> X X X

<action> N/A X X

<dye-filtering-enabled> N/A X X

<dye-mask> N/A X X

<properties> X1 N/A N/A

<location-type> N/A N/A X

<pointcut> N/A N/A X

1 Currently used only by the DyeInjection monitor to set name=value pairs for dye flags.

Configuring Server-Scoped Instrumentation
You can configure instrumentation as part of diagnostic descriptor file to implement the system-
level instrumentation. You can define the configuration of one or more server-scope diagnostic
monitors in the descriptor file.

To enable instrumentation at the server level, and to configure server-scoped monitors,
perform the following steps:

1. Decide how many WLDF system resources you want to create.

You can have multiple DIAG_MODULE.xml diagnostic descriptor files in a domain. In addition,
for each server or cluster in a domain, you can deploy multiple diagnostic descriptor files
simultaneously. However, one reason for creating more than one file is for flexibility. For
example, you could have five diagnostic descriptor files in the DOMAIN_HOME/config/
diagnostics directory. Each file contains a different instrumentation (and perhaps

Chapter 12
Configuring Server-Scoped Instrumentation

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 17

Harvester and Policies and Actions) configuration. You then deploy the descriptor file that
corresponds to the particular monitors you want active.

2. Decide which server-scoped monitors you want to include in a configuration:

• If you plan to use dye filtering on a server, or on any applications deployed on that
server, configure the DyeInjection monitor.

• If you plan to use one or more of the server-scoped delegating monitors, decide which
monitors to use and which actions to associate with each monitor.

3. Create and configure the configuration file(s).

• If you create a configuration file with an editor or with the WebLogic Scripting Tool
(WLST), you must correctly match actions to monitors.

• See the Domain Configuration Files in Understanding Domain Configuration for Oracle
WebLogic Server for information about configuring config.xml.

4. Validate and deploy the descriptor file. For server-scoped instrumentation, you can add
and remove monitors and enable or disable monitors while the server is running.

Example 12-1 contains a sample server-scoped instrumentation configuration file that enables
instrumentation and configures the DyeInjection standard monitor and the
Connector_Before_Work delegating monitor. A single <instrumentation> element contains all
instrumentation configuration for the module. Each diagnostic monitor is defined in a separate
<wldf-instrumentation-monitor> element.

Example 12-1 Sample Server-Scoped Instrumentation (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <description>Inject USER1 and ADDR1 dyes</description>
 <enabled>true</enabled>
 <properties>USER1=weblogic
 ADDR1=127.0.0.1</properties>
 </wldf-instrumentation-monitor>
 <wldf-instrumentation-monitor>
 <name>Connector_Before_Work</name>
 <enabled>true</enabled>
 <action>TraceAction</action>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <dye-mask>USER1</dye-mask>
 </wldf-instrumentation-monitor>
 </instrumentation>
</wldf-resource>

Configuring Application-Scoped Instrumentation
Instrumentation is the only component that is deployable to applications. It must be enabled on
the server to which the application is deployed. You can enable and disable diagnostic
monitors without redeploying an application.

At the application level, WLDF instrumentation is configured as a deployable module, which is
then deployed as part of the application.

Chapter 12
Configuring Application-Scoped Instrumentation

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 17

Note

Application classes and libraries that are put on the system classpath are not
instrumented. Application class instrumentation works only on classes that are loaded
by application classloaders. If application classes are put on the system classpath,
either deliberately or inadvertently, they will be loaded by the system classloader. As a
result no deployment time weaving is performed on those classes.

The following sections provide information you need to configure application-scoped
instrumentation:

Comparing System-Scoped to Application-Scoped Instrumentation
Instrumenting an application is similar to instrumenting at the system level, but with the
following differences:

• Applications can use standard, delegating, and custom monitors.

– The only server-scoped standard monitor is DyeInjection. The only application-scoped
standard monitor is HttpSessionDebug. See the entry for HttpSessionDebug in
Diagnostic Monitor Library.

– Delegating monitors are either server-scoped or application-scoped. Applications must
use the application-scoped delegating monitors.

– All custom monitors are application-scoped.

• The server's instrumentation settings affect the application. In order to enable
instrumentation for an application, instrumentation must be enabled for the server on which
the application is deployed. If server instrumentation is enabled at the time of deployment,
instrumentation will be available for the application. If instrumentation is not enabled on the
server at the time of deployment, enabling instrumentation in an application will have no
effect.

• Application instrumentation is configured with a weblogic-diagnostics.xml descriptor file.
You create a META-INF/weblogic-diagnostics.xml file, configure the instrumentation, and
put the file in the application's archive. When the archive is deployed, the instrumentation
is automatically inserted when the application is loaded.

• You can use a deployment plan to dynamically update configuration elements without
redeploying the application. See Using Deployment Plans to Dynamically Control
Instrumentation Configuration.

The XML descriptors for application-scoped instrumentation are defined in the same way as for
server-scoped instrumentation. You can configure instrumentation for an application solely by
using the delegating monitors and diagnostic actions available in the WLDF Instrumentation
Library. You can also create your own custom monitors; however, the diagnostic actions that
you attach to these monitors must be taken from the WLDF Instrumentation Library.

Table 12-5 compares the function and scope of system and application diagnostic modules.

Chapter 12
Configuring Application-Scoped Instrumentation

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 17

Table 12-5 Comparing System and Application Modules

Module Type Add or
Remove
Objects
Dynamically

Add or
Remove
Objects with
Console

Modify with
JMX Remotely

Modify with
JSR-88 (non-
remote)

Modify with
Console

Enable/Disable
Dye Filtering and
Dye Mask
Dynamically

System Module Yes Yes Yes No Yes

(via JMX)

Yes

Application
Module

Yes, when
HotSwap is
enabled

No, when
HotSwap is not
enabled:
module must be
redeployed

Yes No Yes Yes

(via plan)

Yes

Overview of the Steps Required to Instrument an Application

Note

As of WebLogic Server 10.3, you are not required to create a weblogic-
diagnostics.xml file in the application's META-INF directory, as was the case in
previous WebLogic Server releases. However, you can still use this method to initially
configure diagnostic monitors for your application.

To implement a diagnostic monitor for an application, perform the following steps:

1. Make sure that instrumentation is enabled on the server. See Configuring Server-Scoped
Instrumentation.

2. Create a well formed META-INF/weblogic-diagnostics.xml descriptor file for the
application. If you want to add any monitors that will be automatically enabled each time
the application is deployed:

• Enable the <instrumentation> element: <enabled>true</enabled>.

• Add and enable at least one diagnostic monitor, with appropriate actions attached to it.
(A monitor will generate diagnostic events only if the monitor is enabled and actions
that generate events are attached to it.).

See Creating a Descriptor File for a Delegating Monitor, and Creating a Descriptor File for
a Custom Monitor, for samples of well-formed descriptor files.

See Defining Pointcuts for Custom Monitors, for information about creating a pointcut
expression.

3. Put the descriptor file in the application archive.

4. Deploy the application. See Deploying WLDF Application Modules.

Chapter 12
Configuring Application-Scoped Instrumentation

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 17

Creating a Descriptor File for a Delegating Monitor
The following example shows a well-formed META-INF/weblogic-diagnostics.xml descriptor
file for an application-scoped delegating monitor. At a minimum, this file must contain the lines
shown in bold. In this example, there is only one monitor defined (Servlet_Before_Service).
However, you can define multiple monitors in the descriptor file.

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>Servlet_Before_Service</name>
 <enabled>true</enabled>
 <dye-mask>USER1</dye-mask>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <action>TraceAction</action>
 </wldf-instrumentation-monitor>
 </instrumentation>
</wldf-resource>

The Servlet_Before_Service monitor is an application-scoped monitor selected from the WLDF
monitor library. It is hard coded with a pointcut that sets joinpoints at method entry for several
servlet or JSP methods. Because the application enables dye filtering and sets the USER1 flag
in its dye mask, the TraceAction action will be invoked only when the dye vector in the
diagnostic context passed to the application also has its USER1 flag set.

The dye vector is set at the system level via the DyeInjection monitor as per the DyeInjection
monitor configuration when the request enters the server. For example, if the DyeInjection
monitor is configured with property USER1=weblogic and the request was originated by user
weblogic, the USER1 dye flag in the dye vector will be set.

Therefore, the Servlet_Before_Service monitor in this application is essentially quiescent until it
inspects a dye vector and finds the USER1 flag set. This filtering reduces the amount of
diagnostic data generated, and ensures that the generated data is of interest to the
administrator.

Creating a Descriptor File for a Custom Monitor
The following is an example of a well-formed META-INF/weblogic-diagnostics.xml file for a
custom monitor. At a minimum, the file must contain the lines shown in bold.

Example 12-2 Sample Custom Monitor Configuration (in DIAG_MODULE.xml)

<?xml version="1.0" encoding="UTF-8"?>
<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <instrumentation>
 <enabled>true</enabled>
 <wldf-instrumentation-monitor>
 <name>MyCustomMonitor</name>
 <enabled>true</enabled>
 <action>TraceAction</action>
 <location-type>before</location-type>
 <pointcut>call(* com.example.* get* (...));</pointcut>

Chapter 12
Configuring Application-Scoped Instrumentation

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 17

 </wldf-instrumentation-monitor>
 </instrumentation>
</wldf-resource>

The <name> for a custom monitor is an arbitrary string chosen by the developer. Because this
monitor is custom, it has no predefined locations when actions should be invoked; the
descriptor file must define the location type and pointcut expression. In this example, the
TraceAction action will be invoked before (<location-type>before</location-type) any methods
defined by the pointcut expression is invoked. Table 12-6 shows how the pointcut expression
from Example 12-2 is parsed. (Note the use of wildcard characters.)

Table 12-6 Description of a Sample Pointcut Expression

Pointcut Expression Description

call(* com.example.* get* (...)) call(): Trigger any defined actions when the
methods whose joinpoints are defined by the
remainder of this pointcut expression are invoked.

call(* com.example.* get* (...)) *: Return value. The wildcard indicates that the
methods can have any type of return value.

call(* com.example.* get* (...)) com.example.*: Methods from class
com.example and its sub-packages are eligible.

call(* com.example.* get* (...)) get*: Any methods whose name starts with the
string get is eligible.

call(* com.example.* get* (...)) (...): The ellipsis indicates that the methods can
have any number of arguments.

This pointcut expression matches all methods in all classes in package com.example and its
sub-packages. The methods can return values of any type, including void, and can have any
number of arguments of any type. Instrumentation code will be inserted before these methods
are called, and, just before those methods are called, the TraceAction action will be invoked.

See Defining Pointcuts for Custom Monitors, for a description of the grammar used to define
pointcuts.

Defining Pointcuts for Custom Monitors
Custom monitors provide more flexibility than delegating monitors because you create pointcut
expressions to control where diagnostics actions are invoked. As with delegating monitors, you
must select actions from the action library.

A joinpoint is a specific, well-defined location in a program. A pointcut is an expression that
specifies a set of joinpoints. This section describes how you define expressions for pointcuts
using the following pointcut syntax.

You can specify two types of pointcuts for custom monitors:

• call: Take an action when a method is invoked.

• execution: Take an action when a method is executed.

The syntax for defining a pointcut expression is as follows:

pointcutExpr := orExpr ('OR' orExpr) *
orExpr := andExpr ('AND' andExpr) *
andExpr := 'NOT' ? termExpr

Chapter 12
Configuring Application-Scoped Instrumentation

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 17

termExpr := exec_pointcut | call_pointcut | '(' pointcutExpr ')'
exec_pointcut := 'execution' '(' modifiers?
 returnSpec
 classSpecWithAnnotations
 methodSpec '(' parameterList ')'
 ')'
call_pointcut := 'call' '(' returnSpec
 classSpec
 methodSpec '(' parameterList ')'
 ')'
modifiers := modifier ('OR' modifier) * modifier := 'public' | 'protected' | 'private'
| 'static'
returnSpec := '*' | typeSpec
classSpecWithAnnotations := '@' IDENTIFIER ('OR' IDENTIFIER) * | classSpec
classSpec := '+' ? classOrMethodPattern | '*'
typeSpec := '%' ? (primitiveType | classSpec) ('[]')*
methodSpec := classOrMethodPattern
parameterList := param (',' param) *
param := typeSpec | '...'
primitiveType := 'byte' | 'char' | 'boolean' | 'short' | 'int' | 'float' | 'long' |
'double' | 'void'
classOrMethodPattern := '*' ? IDENTIFIER '*'? | '*'

The following rules apply:

• The asterisk wildcard character (*) can be used in class types and method names.

• An ellipsis (...) in the argument list signifies a variable number of arguments of any types
beyond the argument.

• A percent character (%) prefix designates the value of a non-static class instantiation,
parameter, or return specification as not containing nor exposing sensitive information. The
use of this operator is particularly useful with the DisplayArgumentsAction action, which
captures method arguments or return values. If this prefix character is not explicitly used,
an asterisk string is substituted for the value that is returned; this behavior ensures that
sensitive data in your application is not inadvertently transmitted when an instrumentation
event captures input arguments to, or return values from, a joinpoint.

Note

The % operator cannot be applied to an ellipsis or to a wildcarded type within a
pointcut expression.

• A plus sign (+) prefix to a class type identifies all subclasses, sub-interfaces or concrete
classes implementing the specified class/interface pattern.

• A pointcut expression specifies a pattern to identify matching joinpoints. An attempt to
match a joinpoint against it will return a boolean, indicating a valid match (or not).

• Pointcut expressions can be combined with AND, OR and NOT boolean operators to build
complex pointcut expression trees.

For example, the following pointcut matches method executions of all public initialize methods
in all classes in package com.foo.bar and its sub-packages. The initialize methods may return
values of any type, including void, and may have any number of arguments of any types.

 execution(public * com.example.* initialize(...))

The following pointcut matches the method calls (call sites) on all classes that directly or
indirectly implement the com.example.MyInterface interface (or a subclass, if it happens to be

Chapter 12
Configuring Application-Scoped Instrumentation

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 17

a class). The method names must start with get, be public, and return an int value. The method
must accept exactly one argument of type java.lang.String:

call(int +com.example.MyInterface get*(java.lang.String))

The following example shows how to use boolean operators to build a pointcut expression tree:

 call(void com.example.* set*(java.lang.String)) OR
 call(* com.example.* get*())

The following example illustrates how the previous expression tree would be rendered as a
<pointcut> element in a configuration file:

 <pointcut>call(void com.example.* set*(java.lang.String)) OR
 call(* com.example.* get*())</pointcut>

Annotation-based Pointcuts
You can use JDK-style annotations in class and method specifiers of execution points. A class
or method specifier starting with @ is interpreted as an annotation name.

When used as a class specifier, the annotation matches all classes that are annotated with it.
While performing the match, only annotation names are considered. Annotation attributes are
ignored.

For example, consider the following pointcut:

execution(public void @Service @Invocation (...)

The preceding pointcut matches methods that:

• Are public method

• Return void

• Are contained in a class that is annotated with @Service

• Have a method annotated with @Invocation

• Contain any number of arguments.

Note

Annotation-based specifiers can be used only with execution pointcuts. They
cannot be used with call pointcuts.

Annotation-based class and method specifiers can use the following wildcard characters:

• The asterisk wildcard (*) matches everything.

• The asterisk wildcard (*) at the beginning matches class/interface or method names that
end with the given string. For example, *Bean matches with
weblogic.management.configuration.ServerMBean.

• The asterisk wildcard (*) at the end matches class/interface or method names that end
with the given string. For example, weblogic.* matches all classes and interfaces that are
in weblogic and its sub-packages.

• You can specify a pointcut based on names of inner classes. For example:

public class Foo {
 class Bar {

Chapter 12
Configuring Application-Scoped Instrumentation

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 17

 public int getValue() {...}
 }
 }

You can define a pointcut that covers the getValue method of the inner class Bar using the
following specification:

execution (public int Foo$Bar getValue(...));

You can also use wildcard characters as follows. The following pointcut matches only the getter
methods in the inner class Bar of class Foo:

execution (* Foo$Bar get*(...));

You can also use leading and trailing wildcard characters. The following examples also match
the getter methods in class Foo$Bar:

execution (* Foo$Ba* get*(...));
 execution (* *oo$Bar get*(...));
 execution (* *oo$Ba* get*(...));

Chapter 12
Configuring Application-Scoped Instrumentation

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 17

13
Configuring the DyeInjection Monitor to
Manage Diagnostic Contexts

The Instrumentation component of the WebLogic Diagnostics Framework (WLDF) also
provides a way to uniquely identify requests, such as HTTP or RMI requests, and track them
as they flow through the system.You can configure WLDF to check for certain characteristics of
every request that enters the system, such as the originating user or client address, and attach
a diagnostic context to that request. This feature allows you to take measurements of specific
requests, such as elapsed time, to get an idea of how all requests are being processed as they
flow through the system.
The diagnostic context consists of two pieces: a unique Context ID, and a 64-bit dye vector
that represents the characteristics of the request. The Context ID associated with a given
request is recorded in the Event Archive and can be used to:

• Throttle instrumentation event generation, that is determine how often events are
generated when specified conditions are met

• Associate log records with a request

• Filter searches of log or event records using the WLDF Accessor component (see
Accessing Diagnostic Data With the Data Accessor).

For an example of how to use WLST to create a DyeInjection monitor dynamically, see
Example: Dynamically Creating DyeInjection Monitors.

This chapter includes the following sections:

Contents, Life Cycle, and Configuration of a Diagnostic Context
A diagnostic context contains a unique Context ID and a 64-bit dye vector. The dye vector
contains flags which are set to identify the characteristics of the diagnostic context associated
with a request.

Currently, 32 bits of the dye vector are used, one for each available dye flag (see Table 13-1).

Context Life Cycle and the Context ID
The diagnostic context for a request is created and initialized when the request enters the
system (for example, when a client makes an HTTP request). The diagnostic context remains
attached to the request, even as the request crosses thread boundaries and Java Virtual
Machine (JVM) boundaries. The diagnostic context lives for the duration of the life cycle of the
request.

Every diagnostic context is identified by a Context ID that is unique in the domain. Because the
Context ID travels with the request, it is possible to determine the events and log entries
associated with a given request as it flows through the system.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 9

Dyes, Dye Flags, and Dye Vectors
Contextual information travels with a request as a 64-bit dye vector, where each bit is a flag to
identify the presence of a dye. Each dye represents one attribute of a request; for example, an
originating user, an originating client IP address, access protocol, and so on.

When a dye flag for a given attribute is set, it indicates that the attribute is present. When the
flag is not set, it indicates the attribute is not present.

For example, consider a configuration where:

• the flag ADDR1 is configured to indicate a request that originated from IP address
127.0.0.1.

• the flag ADDR2 is configured to indicate a request that originated from IP address
127.0.0.2.

• the flag USER1 is configured to indicate a request that originated from user
admin@avitek.com.

If a request from IP address 127.0.0.1 enters the system from a user other than
admin@avitek.com, the ADDR1 flag in the dye vector for the request is set. The ADDR2 and
USER1 dye flags remain unset.

If a request from admin@avitek.com enters the system from an IP address other than
127.0.0.1 or 127.0.0.2, the USER1 flag in the dye vector for the request is set. The ADDR1
and ADDR2 dye flags remain unset.

If a request from admin@avitek.com from IP address 127.0.0.2 enters the system, both the
USER1 and ADDR2 flags in the dye vector for this request are set. The ADDR1 flag remains
unset.

Diagnostic and monitoring features that take advantage of the diagnostic context can examine
the dye vector to determine if one or more attributes are present (that is, the associated flag is
set). In the example above, you could configure a diagnostic monitor to trace every request
that is dyed with ADDR1; that is, every request originating from IP address 127.0.0.1. You
could also configure a diagnostic monitor that traces every request that is dyed with both
ADDR1 and USER1; that is, every request originating from user admin@avitek.com at IP
address 127.0.0.1 (requests from other users at 127.0.0.1 would not be traced).

The dye vector also contains a THROTTLE dye, which is used to set how often incoming
requests are dyed. For more information about this special dye, see THROTTLE Dye Flag.

For a list of the available dyes and the attributes they represent, see Dyes Supported by the
DyeInjection Monitor. The process of configuring dye vectors and using them is discussed
throughout the rest of this chapter.

Where Diagnostic Context Is Configured
Diagnostic context is configured as part of a diagnostic module. You use the DyeInjection
monitor at the server level to configure the diagnostic context. The DyeInjection monitor is a
standard diagnostic monitor, so you cannot modify its behavior. The joinpoints where the
DyeInjection monitor is woven into the code are those locations where a request can enter the
system.

The diagnostic action is to check every request against the DyeInjection monitor's
configuration, then create and attach a diagnostic context to the request, setting the dye flags
as appropriate. If the dye flags that are set for a request match the dye flags that are
configured for a downstream diagnostic monitor, an event with the request's associated

Chapter 13
Contents, Life Cycle, and Configuration of a Diagnostic Context

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 9

Context ID is added to the Event Archive. So, for example, if a request has only the USER1
and ADDR1 dye flags set, and there is a diagnostic monitor configured to trace requests with
both the USER1 and ADDR1 flags set (but no other flags set), an event is added to the Event
Archive.

For information about diagnostic monitor types, pointcuts (which define the joinpoints), and
diagnostic actions, see Configuring Instrumentation.

Overview of the Process
The DyeInjection monitor examines the request to see if any of the configured dye values in
the dye vector match attributes of the request. You can configure the DyeInjection monitor to
identify the requests and track their flow. The tracking of the requests helps to see how the
requests are processed as they flow through the system.

This overview describes the configuration and use of context in a server-scoped diagnostic
module.

1. Configure a dye vector via the DyeInjection Module. See Configuring the Dye Vector via
the DyeInjection Monitor.

2. When any request enters the system, WLDF creates and instantiates a diagnostic context
for the request. The context includes a unique Context ID and a dye vector.

3. The DyeInjection monitor, if enabled at the server level within a WLDF diagnostic module,
examines the request to see if any of the configured dye values in the dye vector match
attributes of the request. For example, it checks to see if the request originated from the
user associated with USER1 or USER2, and it checks to see if the request came from the
IP address associated with ADDR1 or ADDR2.

4. For each dye value that matches a request attribute, the DyeInjection monitor sets the
associated dye bits within the diagnostic context. For example, if the DyeInjection monitor
is configured with USER1=weblogic, USER2=admin@avitek.com, ADDR1=127.0.0.1,
ADDR2=127.0.0.2, and the request originated from user weblogic at IP address 127.0.0.2, it
will set the USER1 and ADDR2 dye bits within the dye vector.

5. As the request flows through the system, the diagnostic context (which includes the dye
vector) flows with it as well. This 64-bit dye vector contains only flags, not values. So, in
this example, the dye vector contains only two flags that are explicitly set (USER1 and
ADDR2). It does not contain the actual user name and IP address associated with USER1
and ADDR2.

Note

All dye vectors also contain one of the implicit PROTOCOL dyes, as explained in
Configuring the Dye Vector via the DyeInjection Monitor.

6. The administrator configures a diagnostic monitor (either application-scoped or server-
scoped) to be active within downstream code, setting the monitor's dye mask as USER1
and ADDR2.

7. The diagnostic monitor will perform its associated action(s) if the dye flags that are set in
the diagnostic context's dye vector match the dye mask of the diagnostic monitor.

In this example, the monitor will perform its action(s) if the USER1 and ADDR2 flags are
set in the dye vector. In addition, an event associated with the request will be written to the
Event Archive.

Chapter 13
Overview of the Process

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 9

Configuring the Dye Vector by Using the DyeInjection Monitor
You configure the Dye Vector by using the DyeInjection monitor to monitor the requests in a
system. Every request is checked against the configuration of the DyeInjection monitor, and a
diagnostic context is created and attached to the request.

To create diagnostic contexts for all requests coming into the system:

1. Create a diagnostic module for the server (or servers) you want to monitor in the
Summary of Diagnostic Modules page. See Creating a Custom Diagnostic System
Module Based on a Built-in.

2. Click the name of the newly created module to open the Settings for <MODLE_NAME>
page.

3. In the Configuration - Instrumentation tab, select the Enabled check box.

4. In the Diagnostic Monitors in this Module tab, add the DyeInjection monior by using the
Add/Remove button.

5. Click the DyeInjection monitor to open the Settings for DyeInjection page.

6. Select the Enable check box. (Only one DyeInjection monitor can be used with a
diagnostic module at a time.)

You configure the DyeInjection monitor by assigning values to dyes. The available dye flags
are described in Table 13-1.

For example, you could set the flags as follows: USER1=weblogic, USER2=admin@avitek.com,
ADDR1=127.0.0.1, ADDR2=127.0.0.2, and so forth. Basically, you want to set the values of one
or more flags to the user(s), IP address(es) whose requests you want to monitor.

For example, to monitor all requests initiated by a user named admin@avitek from a client at IP
address 127.0.0.1, assign the value admin@avitek to USER1 and assign the value 127.0.0.1 to
ADDR1.

Dyes Supported by the DyeInjection Monitor
The dyes available in the dye vector are listed and explained in the following table.

Table 13-1 Request Protocols for Supported Diagnostic Context Dyes

Dye Flags Description

ADDR1

ADDR2

ADDR3

ADDR4

Use the ADDR1, ADDR2, ADDR3 and ADDR4 dyes to specify the IP
addresses of clients that originate requests. These dye flags are set in the
diagnostic context for a request if the request originated from an IP address
specified by the respective property (ADDR1, ADDR2, ADDR3, ADDR4) of
the DyeInjection monitor.

These dyes cannot be used to specify DNS names.

CONNECTOR1

CONNECTOR2

CONNECTOR3

CONNECTOR4

Use the CONNECTOR1, CONNECTOR2, CONNECTOR3 and
CONNECTOR4 dyes to identify characteristics of connector drivers.

These dye flags are set by the connector drivers to identify request properties
specific to their situations. You do not configure these directly in the descriptor
files. The connector drivers can assign values to these dyes (using the
Connector API), so information about the connections can be carried in the
diagnostic context.

Chapter 13
Configuring the Dye Vector by Using the DyeInjection Monitor

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 9

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/wldfc/using_builtin_diag_modules.html#GUID-FD238BCF-DBE7-417B-827A-DBCF03B975E1
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/12.2.1.4/wldfc/using_builtin_diag_modules.html#GUID-FD238BCF-DBE7-417B-827A-DBCF03B975E1

Table 13-1 (Cont.) Request Protocols for Supported Diagnostic Context Dyes

Dye Flags Description

COOKIE1

COOKIE2

COOKIE3

COOKIE4

COOKIE1, COOKIE2, COOKIE3 and COOKIE4 are set in the diagnostic
context for an HTTP/S request, if the request contains the cookie named
weblogic.diagnostics.dye and its value is equal to the value of the respective
property (COOKIE1, COOKIE2, COOKIE3, COOKIE4) of the DyeInjection
monitor.

DYE_0

DYE_1

DYE_2

DYE_3

DYE_4

DYE_5

DYE_6

DYE_7

DYE_0 to DYE_7 are available only for use by application developers. See
Using weblogic.diagnostics.context .

PROTOCOL_HTTP

PROTOCOL_IIOP

PROTOCOL_JRMP

PROTOCOL_RMI

PROTOCOL_SOAP

PROTOCOL_SSL

PROTOCOL_T3

The DyeInjection monitor implicitly identifies the protocol used for a request
and sets the appropriate dye(s) in the dye vector, according to the protocol(s)
used.

PROTOCOL_HTTP is set in the diagnostic context of a request if the request
uses HTTP or HTTPS protocol.

PROTOCOL_IIOP is set in the diagnostic context of a request if it uses
Internet Inter-ORB Protocol (IIOP).

PROTOCOL_JRMP is set in the diagnostic context of a request if it uses the
Java Remote Method Protocol (JRMP).

PROTOCOL_RMI is set in the diagnostic context of a request if it uses the
Java Remote Method Invocation (RMI) protocol.

PROTOCOL_SSL is set in the diagnostic context of a request if it uses the
Secure Sockets Layer (SSL) protocol.

PROTOCOL_T3 is set in the diagnostic context of a request if the request
uses T3 or T3s protocol

THROTTLE The THROTTLE dye is set in the diagnostic context of a request if it satisfies
requirements specified by THROTTLE_INTERVAL and/or THROTTLE_RATE
properties of the DyeInjection monitor.

USER1

USER2

USER3

USER4

Use the USER1, USER2, USER3 and USER4 dyes to specify the user names
of clients that originate requests. These dye flags are set in the diagnostic
context for a request if the request was originated by a user specified by the
respective property (USER1, USER2, USER3, USER4) of the DyeInjection
monitor.

PROTOCOL Dye Flags
You must explicitly set the values for the dye flags USERn, ADDRn, COOKIEn, and
CONNECTORn. in the DyeInjection monitor. However, the flags PROTOCOL_HTTP,
PROTOCOL_IIOP, ROTOCOL_JRMP, PROTOCOL_RMI, PROTOCOL_SOAP,
PROTOCOL_SSL, and PROTOCOL_T3 are set implicitly by WLDF. When the DyeInjection
monitor is enabled, every request is injected with the appropriate protocol dye. For example,
every request that arrives via HTTP is injected with the PROTOCOL_HTTP dye.

Chapter 13
Configuring the Dye Vector by Using the DyeInjection Monitor

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 9

THROTTLE Dye Flag
The THROTTLE dye flag can be used to control the volume of incoming requests that are
dyed. THROTTLE is configured differently from the other flags, and WLDF uses it differently.
See Using Throttling to Control the Volume of Instrumentation Events, for more information.

When Diagnostic Contexts Are Created
When the DyeInjection monitor is enabled in a diagnostic module, a diagnostic context is
created for every incoming request. The DyeInjection monitor is enabled by default when you
enable instrumentation in a diagnostic module. This ensures that a diagnostic Context ID is
available so that events can be correlated. Even if no properties are explicitly set in the
DyeInjection monitor, the diagnostic context for every request will contain a unique Context ID
and a dye vector with one of the implicit PROTOCOL dyes.

If the DyeInjection monitor is disabled, no diagnostic contexts will be created for any incoming
requests.

Using Throttling to Control the Volume of Instrumentation Events
You can use throttling to control the number of requests that the monitors process in a
diagnostic module.

Throttling is configured using the THROTTLE dye, which is defined in the DyeInjection monitor.

Note

The USERn and ADDRn dyes allow inspection of requests from specific users or IP
addresses. However, they do not provide a means to look at arbitrary user
transactions. The THROTTLE dye provides that functionality by allowing sampling of
requests.

Configuring the THROTTLE Dye
Unlike other dyes in the dye vector, the THROTTLE dye is configured through two properties.

• THROTTLE_INTERVAL sets an interval (in milliseconds) after which a new incoming
request is dyed with the THROTTLE dye.

If the THROTTLE_INTERVAL is greater than 0, the DyeInjection monitor sets the
THROTTLE dye flag in the dye vector of an incoming request if the last request dyed with
THROTTLE arrived at least THROTTLE_INTERVAL before the new request. For example, if
THROTTLE_INTERVAL=3000, the DyeInjection monitor waits at least 3000 milliseconds
before it will dye an incoming request with THROTTLE.

• THROTTLE_RATE sets the rate (in terms of the number of incoming requests) by which
new incoming requests are dyed with the THROTTLE dye.

If THROTTLE_RATE is greater than 0, the DyeInjection monitor sets the THROTTLE dye
flag in the dye vector of an incoming request when the number of requests since the last
request dyed with THROTTLE equals THROTTLE_RATE. For example, if THROTTLE_RATE
= 6, every sixth request is dyed with THROTTLE.

Chapter 13
Using Throttling to Control the Volume of Instrumentation Events

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 9

You can use THROTTLE_INTERVAL and THROTTLE_RATE together. If either condition is
satisfied, the request is dyed with the THROTTLE dye.

If you assign a value to either THROTTLE_INTERVAL or THROTTLE_RATE (or both, or
neither), you are configuring the THROTTLE dye.

Example 13-1 shows the resulting configuration in the descriptor file for the diagnostics
module.

Example 13-1 Sample THROTTLE Configuration in the DyeInjection Monitor, in
DIAG_MODULE.xml

<wldf-resource>
 <name>MyDiagnosticModule</name>
 <instrumentation>
 <wldf-instrumentation-monitor>
 <name>DyeInjection</name>
 <properties>
 THROTTLE_INTERVAL=3000
 THROTTLE_RATE=6
 </properties>
 </wldf-instrumentation-monitor>
 </instrumentation>
<!-- Other elements to configure this diagnostic monitor -->
</wldf-resource>

Example 13-2 shows the configuration for a JDBC_Before_Start_Internal delegating monitor
where the THROTTLE dye is set in the dye mask for the monitor.

Example 13-2 Sample Configuration for Setting THROTTLE in a Dye Mask of a
Delegating Monitor, in DIAG_MODULE.xml

<wldf-resource>
 <name>MyDiagnosticModule</name>
 <instrumentation>
 <wldf-instrumentation-monitor>
 <name>JDBC_Before_Start_Internal</name>
 <enabled>true</enabled>
 <dye-mask>THROTTLE</dye-mask>
 </wldf-instrumentation-monitor>
 </instrumentation>
<!-- Other elements to configure this diagnostic monitor -->
</wldf-resource>

How Throttling is Handled by Delegating and Custom Monitors
Dye masks and dye filtering provide a mechanism for restricting which requests are passed to
delegating and custom monitors for handling, based on properties of the requests. The
presence of a property in a request is indicated by the presence of a dye, as discussed in
Configuring the Dye Vector via the DyeInjection Monitor. One of those dyes can be the
THROTTLE dye, so that you can filter on THROTTLE, just like any other dye.

The items in the following list explain how throttling is handled:

• If dye filtering for a delegating or custom monitor is enabled and that monitor has a dye
mask, filtering is performed based on the dye mask. That mask may include the
THROTTLE dye, but it does not have to. If THROTTLE is included in a dye mask, then
THROTTLE must also be included in the request's dye vector for the request to be passed
to the monitor. However, if THROTTLE is not included in the dye mask, all qualifying
requests are passed to the monitor, whether their dye vectors include THROTTLE or not.

Chapter 13
Using Throttling to Control the Volume of Instrumentation Events

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 9

• If dye filtering for a delegating or custom monitor is not enabled and neither THROTTLE
property is set in the DyeInjection monitor, dye filtering will not take place and throttling will
not take place.

• If dye filtering for a delegating or custom monitor is not enabled and THROTTLE is
configured in the DyeInjection monitor, delegating monitors ignore dye masks but do check
for the presence of the THROTTLE dye in all requests. Only those requests dyed with
THROTTLE are passed to the delegating monitors for handling. Therefore, by setting a
THROTTLE_RATE and/or THROTTLE_INTERVAL in the DyeInjection monitor, you reduce
the number of requests handled by all delegating monitors. You do not have to configure
dye masks for all your delegating monitors to take advantage of throttling.

• If dye filtering for a delegating or custom monitor is enabled and the only dye set in a dye
mask is THROTTLE, only those requests that are dyed with THROTTLE are passed to the
delegating monitor. This behavior is the same as when dye filtering is not enabled and
THROTTLE is configured in the DyeInjection monitor.

Using weblogic.diagnostics.context
The weblogic.diagnostics.context package provides applications with access to a diagnostic
context.

An application can use the weblogic.diagnostics.context.DiagnosticContextHelper APIs to
perform the following functions:

• Inspect a diagnostics context's immutable context ID.

• Inspect the settings of the dye flags in a context's dye vector.

• Retrieve an array of valid dye flag names.

• Set, or unset, the DYE_0 through DYE_7 flags in a context's dye vector. (Note that there is
no way to set these flag bits via XML. You can configure DyeInjection monitor <properties>
to set the non-application-specific flag bits via XML, but setDye() is the only method for
setting DYE_0 through DYE_7 in a dye vector.)

• Attach a payload (a String) to a diagnostic context, or read an existing payload.

An application cannot:

• Set any flags in a dye vector other than the eight flags reserved for applications.

• Prevent another application from setting the same application flags in a dye vector. A well-
behaved application can test whether a dye flag is set before setting it.

• Prevent another application from replacing a payload. A well-behaved application can test
for the presence of a payload before adding one.

Chapter 13
Using weblogic.diagnostics.context

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 9

Note

The diagnostic context payload can be viewed by other code in the same execution
context; it can flow out of the process along with the Work instance; and it can be
overwritten by other code running in the same execution context. Therefore, you
should ensure the following behavior in your applications:

• Avoid including any sensitive data in the payload that, for example, could be
returned by the getPayload() method.

• Do not create a dependency on any particular data being available in the context
payload. For example, applications should not rely on a particular context ID being
present. If an application uses the contents of the payload, the application should
first verify that the contents match what is expected.

A monitor, or another application, that is downstream from the point where an application has
set one or more of the DYE_0 through DYE_7 flags can set a dye mask to check for those
flags, and take an action when the flag(s) are present in a context's dye vector. If a payload is
attached to the diagnostics context, any action taken by that monitor will result in the payload
being archived, and thus available through the accessor component.

Example 13-3 is a short example which (implicitly) creates a diagnostic context, prints the
context ID, checks the value of the DYE_0 flag, and then sets the DYE_0 flag.

Example 13-3 Example: DiagnosticContextExample.java

package weblogic.diagnostics.examples;
import weblogic.diagnostics.context.DiagnosticContextHelper;
public class DiagnosticContextExample {
 public static void main(String args[]) throws Exception {
 System.out.println("\nContextId=" +
 DiagnosticContextHelper.getContextId());
 System.out.println("isDyedWith(DYE_0)=" +
 DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));
 DiagnosticContextHelper.setDye(DiagnosticContextHelper.DYE_0, true);
 System.out.println("isDyedWith(DYE_0)=" +
 DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));
 }
}

Chapter 13
Using weblogic.diagnostics.context

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 9

14
Accessing Diagnostic Data With the Data
Accessor

The Data Accessor component of the WebLogic Diagnostics Framework (WLDF) accesses
diagnostic data from various sources, including log records, data events, and harvested
metrics.Using the Data Accessor, you can:

• Perform data lookups by type, component, and attribute

• Perform time-based filtering and, when accessing events, filtering by severity, source, and
content

• Access diagnostic data in tabular form

You can also use the Data Accessor online (when a server is running) and offline (when a
server is not running).

Data Stores Accessed by the Data Accessor
The Data Accessor retrieves diagnostic information from other WLDF components. Captured
information is segregated into logical data stores, called diagnostic data stores, which are
separated by the types of diagnostic data. For example, server logs, HTTP logs, and harvested
metrics are captured in separate data stores.

WLDF maintains diagnostic data on a per-server basis. Therefore, the Data Accessor provides
access to data stores for individual servers.

Diagnostic data stores can be modeled as tabular data. Each record in the table represents
one item, and the columns describe characteristics of the item. Different data stores may have
different columns. However, most data stores have some of the same columns, such as the
time when the data was collected.

The Data Accessor can retrieve the following information about data stores used by WLDF for
a server:

• A list of supported data store types, including:

– HarvestedDataArchive

– EventsDataArchive

– ServerLog

– DomainLog

– HTTPAccessLog

– DataSourceLog

– WebAppLog

– ConnectorLog

– JMSMessageLog

– JMSSAFMessageLog

– CUSTOM

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 8

• A list of available data store instances

• The layout of each data store (information that describes the columns in the data store)

You can use the WLDFAccessRuntimeMBean to discover such data stores, determine the
nature of the data they contain, and access their data selectively using a query.

For complete documentation about WebLogic logs, see Understanding WebLogic Logging
Services in Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server.

Accessing Diagnostic Data Online
Data Accessor provides access to data stores for individual servers. You can access diagnostic
data from a running server.

You can access the data using one of the following ways:

• WebLogic Remote Console

• JMX APIs

• WebLogic Scripting Tool (WLST)

• WLDF query language

Accessing Data Using the Remote Console
You do not use the Data Accessor explicitly in the WebLogic Remote Console, but information
collected by the Accessor is displayed, for example, in the Summary of Log Files page. See
View Logs and Configure Logs in the Oracle WebLogic Remote Console Online Help.

Accessing Data Programmatically Using Runtime MBeans
The Data Accessor provides the following runtime MBeans for discovering data stores and
retrieving data from them:

• Use the WLDFAccessRuntimeMBean to do the following:

– Get the logical names of the available data stores on the server.

– Look up a WLDFDataAccessRuntimeMBean to access the data from a specific data
source, based on its logical name. The different data stores are uniquely identified by
their logical names.

See WLDFAccessRuntimeMBean in the MBean Reference for Oracle WebLogic Server.

• Use the WLDFDataAccessRuntimeMBean to retrieve data stores based on a search
condition, or query. You can optionally specify a time interval with the query, to retrieve
data records within a specified time duration. This MBean provides metadata about the
columns of the data set and the earliest and latest timestamp of the records in the data
store.

Data Accessor runtime MBeans are currently created and registered lazily. So, when a
remote client attempts to access them, they may not be present and an
InstanceNotFoundException may be thrown.

The client can retrieve the WLDFDataAccessRuntime's attribute of the
WLDFAccessRuntime to cause all known data access runtimes to be created, for example:

 ObjectName objName =
 new ObjectName("com.bea:ServerRuntime=" + serverName +
 ",Name=Accessor," +

Chapter 14
Accessing Diagnostic Data Online

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 8

 "Type=WLDFAccessRuntime," +
 "WLDFRuntime=WLDFRuntime");
 rmbs.getAttribute(objName, "WLDFDataAccessRuntimes");

See WLDFDataAccessRuntimeMBean in the MBean Reference for Oracle WebLogic
Server.

Using WLST to Access Diagnostic Data Online
Use the WLST exportDiagnosticDataFromServer() command to access diagnostic data from
a running server. For the syntax and examples of this command, see Diagnostics Commands
in the WLST Command Reference for WebLogic Server.

Using the WLDF Query Language with the Data Accessor
To query data from data stores, use the WLDF query language. For Data Accessor query
language syntax, see WLDF Query Language.

Accessing Diagnostic Data Offline
You can use the WLST exportDiagnosticData() command to access historical diagnostic
data from an offline server. For the syntax and examples of this command, see Diagnostics
Commands in the WLST Command Reference for WebLogic Server.

Note

You can use exportDiagnosticData to access archived data only from the machine on
which the data is persisted.

You cannot discover data store instances using the offline mode of the Data Accessor.
You must already know what they are.

Accessing Diagnostic Data Programmatically
You can use the JMX API to access diagnostic data stored by WLDF.Example 14-1 shows the
source Java code for a utility that uses the Accessor to query the different archive data stores.

Example 14-1 Sample Code to Use the WLDF Accessor

/*
 * WLAccessor.java
 *
 * Demonstration utility that allows query of the different ARCV data stores
 * via the WLDF Accessor.
 *
 */

 import javax.naming.Context;
 import weblogic.jndi.Environment;
 import java.util.Hashtable;
 import java.util.Iterator;
 import java.util.Properties;
 import weblogic.management.ManagementException;
 import weblogic.management.runtime.WLDFAccessRuntimeMBean;
 import weblogic.management.runtime.WLDFDataAccessRuntimeMBean;

Chapter 14
Accessing Diagnostic Data Offline

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 8

 import weblogic.diagnostics.accessor.ColumnInfo;
 import weblogic.diagnostics.accessor.DataRecord;
 import java.io.File;
 import java.io.FileInputStream;
 import java.io.FileNotFoundException;
 import java.io.IOException;

 import javax.management.MBeanServerConnection;
 import javax.management.remote.JMXConnector;
 import javax.management.remote.JMXConnectorFactory;
 import javax.management.remote.JMXServiceURL;
 import javax.management.ObjectName;
 import weblogic.management.mbeanservers.runtime.RuntimeServiceMBean;
 import weblogic.management.runtime.ServerRuntimeMBean;
 import weblogic.management.jmx.MBeanServerInvocationHandler;
 import weblogic.management.configuration.ServerMBean;

 /**
 * Demonstration utility that allows query of the different ARCV data stores
 * via the WLDF Accessor. The class looks up the appropriate accessor and
 * executes the query given the specified query parameters.
 *
 * To see information about it's usage, compile this file and run
 *
 * java WLAccessor usage
 */
public class WLAccessor {

 /** Creates a new instance of WLAccessor */
 public WLAccessor(Properties p) {
 initialize(p);
 }

 /**
 * Retrieve the specfied WLDFDataAccessRuntimeMBean instance for querying.
 */
 public WLDFDataAccessRuntimeMBean getAccessor(String accessorType)
 throws Throwable
 {
 // Get the runtime MBeanServerConnection
 MBeanServerConnection runtimeMBS = this.getRuntimeMBeanServerConnection();

 // Lookup the runtime service for the connected server
 ObjectName rtSvcObjName = new ObjectName(RuntimeServiceMBean.OBJECT_NAME);
 RuntimeServiceMBean rtService = null;

 rtService = (RuntimeServiceMBean)
 MBeanServerInvocationHandler.newProxyInstance(
 runtimeMBS, rtSvcObjName
);

 // Walk the Runtime tree to the desired accessor instance.
 ServerRuntimeMBean srt = rtService.getServerRuntime();

 WLDFDataAccessRuntimeMBean ddar =
 srt.getWLDFRuntime().getWLDFAccessRuntime().
 lookupWLDFDataAccessRuntime(accessorType);

 return ddar;
 }

 /**

Chapter 14
Accessing Diagnostic Data Programmatically

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 8

 * Execute the query using the given parameters, and display the formatted
 * records.
 */
 public void queryEventData() throws Throwable
 {
 String logicalName = "EventsDataArchive";
 WLDFDataAccessRuntimeMBean accessor = getAccessor(accessorType);

 ColumnInfo[] colinfo = accessor.getColumns();
 inform("Query string: " + queryString);

 int recordsFound = 0;
 Iterator actualIt =
 accessor.retrieveDataRecords(beginTime, endTime, queryString);
 while (actualIt.hasNext()) {
 DataRecord rec = (DataRecord)actualIt.next();
 inform("Record[" + recordsFound + "]: {");
 Object[] values = rec.getValues();
 for (int colno=0; colno < values.length; colno++) {
 inform("[" + colno + "] "
 + colinfo[colno].getColumnName() +
 " (" + colinfo[colno].getColumnTypeName() + "): " +
 values[colno]);
 }
 inform("}");
 inform("");
 recordsFound++;
 }
 inform("Found " + recordsFound + " results");
 }

 /**
 * Main method that implements the tool.
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 try {
 WLAccessor acsr = new WLAccessor(handleArgs(args));
 acsr.queryEventData();
 } catch (UsageException uex) {
 usage();
 } catch (Throwable t) {
 inform("Caught exception, " + t.getMessage(), t);
 inform("");
 usage();
 }
 }

 public static class UsageException extends Exception {}

 /**
 * Process the command line arguments, which are provided as name/value pairs.
 */
 public static Properties handleArgs(String[] args) throws Exception
 {
 Properties p = checkForDefaults();
 for (int i = 0; i < args.length; i++) {
 if (args[i].equalsIgnoreCase("usage"))
 throw new UsageException();

 String[] nvpair = new String[2];
 int token = args[i].indexOf('=');

Chapter 14
Accessing Diagnostic Data Programmatically

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 8

 if (token < 0)
 throw new Exception("Invalid argument, " + args[i]);
 nvpair[0] = args[i].substring(0,token);
 nvpair[1] = args[i].substring(token+1);
 p.put(nvpair[0], nvpair[1]);
 }
 return p;
 }

 /**
 * Look for a default properties file
 */
 public static Properties checkForDefaults() throws IOException {
 Properties defaults = new Properties();
 try {
 File defaultprops = new File("accessor-defaults.properties");
 FileInputStream defaultsIS = new FileInputStream(defaultprops);
 //inform("loading options from accessor-defaults.properties");
 defaults.load(defaultsIS);
 } catch (FileNotFoundException fnfex) {
 //inform("No accessor-defaults.properties found");
 }
 return defaults;
 }
 public static void inform(String s) {
 System.out.println(s);
 }
 public static void inform(String s, Throwable t) {
 System.out.println(s);
 t.printStackTrace();
 }

 private MBeanServerConnection getRuntimeMBeanServerConnection()
 throws IOException
 {
 // construct jmx service url

 // "service:jmx:[url]/jndi/[mbeanserver-jndi-name]"
 JMXServiceURL serviceURL =
 new JMXServiceURL(
 "service:jmx:" + getServerUrl() +
 "/jndi/" + RuntimeServiceMBean.MBEANSERVER_JNDI_NAME
);

 // specify the user and pwd. Also specify weblogic provide package
 inform("user name [" + username + "]");
 inform("password [" + password + "]");
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, username);
 h.put(Context.SECURITY_CREDENTIALS, password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 // get jmx connector
 JMXConnector connector = JMXConnectorFactory.connect(serviceURL, h);

 inform("Using JMX Connector to connect to " + serviceURL);
 return connector.getMBeanServerConnection();
 }

 private void initialize(Properties p) {
 serverUrl = p.getProperty("url","t3://localhost:7001");
 username = p.getProperty("user","weblogic");

Chapter 14
Accessing Diagnostic Data Programmatically

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 8

 password = p.getProperty("pass","password");
 queryString = p.getProperty("query","SEVERITY IN
('Error','Warning','Critical','Emergency')");
 accessorType = p.getProperty("type","ServerLog");

 try {
 beginTime = Long.parseLong(p.getProperty("begin","0"));

 String end = p.getProperty("end");
 endTime = (end==null) ? Long.MAX_VALUE : Long.parseLong(end);
 } catch (NumberFormatException nfex) {
 throw new RuntimeException("Error formatting time bounds", nfex);
 }
 }

 private static void usage() {
 inform("");
 inform("");
 inform("Usage: ");
 inform("");
 inform(" java WLAccessor [options]");
 inform("");
 inform("where [options] can be any combination of the following: ");
 inform("");
 inform(" usage Prints this text and exits");
 inform(" url=<url> default: 't3://localhost:7001'");
 inform(" user=<username> default: 'weblogic'");
 inform(" pass=<password> default: 'password'");
 inform(" begin=<begin-timestamp> default: 0");
 inform(" end=<end-timestamp> default: Long.MAX_VALUE");
 inform(" query=<query-string> default: \"SEVERITY IN
('Error','Warning','Critical','Emergency')\"");
 inform(" type=<accessor-type> default: 'ServerLog'");
 inform("");
 inform("Example:");
 inform("");
 inform(" java WLAccessor user=system pass=gumby1234 url=http://myhost:8000 \\");
 inform(" query=\"SEVERITY = 'Error'\" begin=1088011734496 type=ServerLog");
 inform("");
 inform("");
 inform("");
 inform("All properties (except \"usage\") can all be specified in a file ");
 inform("in the current working directory. The file must be named: ");
 inform("");
 inform(" \"accessor-defaults.properties\"");
 inform("");
 inform("Each property specified in the defaults file can still be ");
 inform("overridden on the command-line as shown above");
 inform("");
 }

 /** Getter for property serverUrl.
 * @return Value of property serverUrl.
 *
 */
 public java.lang.String getServerUrl() {
 return serverUrl;
 }

 /** Setter for property serverUrl.
 * @param serverUrl New value of property serverUrl.
 *

Chapter 14
Accessing Diagnostic Data Programmatically

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 8

 */
 public void setServerUrl(java.lang.String serverUrl) {
 this.serverUrl = serverUrl;
 }

 protected String serverName = null;
 protected String username = null;
 protected String password = null;
 protected String queryString = "";
 private String serverUrl = "t3://localhost:7001";
 private String accessorType = null;

 private long endTime = Long.MAX_VALUE;
 private long beginTime = 0;

 private WLDFAccessRuntimeMBean dar = null;

}

Resetting the System Clock Can Affect How Data Is Archived
and Retrieved

Resetting the system clock to an earlier time while diagnostic data is being written to the WLDF
Archive or logs can cause unexpected results when you query that data based on a
timestamp.For example, consider the following sequence of events:

1. At 2:00 p.m., a diagnostic event is archived as RECORD_200, with a timestamp of 2:00:00
PM.

2. At 2:30 p.m., a diagnostic event is archived as RECORD_230, with a timestamp of 2:30:00
PM.

3. At 3:00 p.m., the system clock is reset to 2:00 p.m.

4. At 2:15 p.m. (after the clock was reset), a diagnostic event is archived as RECORD_215,
with a timestamp of 2:15:00 PM.

5. You issue a query to retrieve records generated between 2:00 and 2:20 p.m.

The query will not retrieve RECORD_215, because the 2:30:00 PM timestamp of
RECORD_230 ends the query.

Chapter 14
Resetting the System Clock Can Affect How Data Is Archived and Retrieved

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 8

15
Deploying WLDF Application Modules

The WebLogic Diagnostics Framework (WLDF) supports the ability to configure and manage
instrumentation for an application by configuring and deploying a diagnostics application
module as resource that is scoped to that application.The configuration of the diagnostics
application module is persisted in a descriptor file that you deploy with the application. A
diagnostic application module deployed in this way is available only to the application in which
it is enclosed. Using application-scoped diagnostic application modules ensures that an
application always has access to the required resources and simplifies the process of
deploying the application in new environments.

Note

Note the following:

• Only the Instrumentation component can be used with applications (see
Configuring Application-Scoped Instrumentation).

• For instrumentation to be available for an application, instrumentation must be
enabled on the server to which the application is deployed. (Server-scoped
instrumentation is enabled and disabled in the <instrumentation> element of the
diagnostics descriptor for the server.)

• You can deploy an application using a deployment plan, which permits dynamic
configuration updates.

The following sections explain how to deploy diagnostic application modules:

Deploying a Diagnostic Module as an Application-Scoped
Resource

To deploy a diagnostic module as an application-scoped resource, you configure the module in
a descriptor file named weblogic-diagnostics.xml. You then package the descriptor file with
the application archive in the ARCHIVE_PATH/META-INF directory for the deployed application.

For example:

C:\Oracle\Middleware\Oracle_Home\user_projects\applications\medrec\dist\standalone\explod
ed\medrec\META-INF\weblogic-diagnostics.xml

You can deploy the diagnostic module in both exploded and unexploded archives.

Note

If the EAR archive contains WAR, RAR or EJB modules that have the weblogic-
diagnostics.xml descriptors in their META-INF directory, those descriptors are
ignored.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 6

You can use any of the standard WebLogic Server tools provided for controlling deployment,
including the WebLogic Administrative Console or the WebLogic Scripting Tool (WLST).

For information about creating modules and deploying applications, see Deploying Applications
to Oracle WebLogic Server.

Because of the different ways that diagnostic application modules and diagnostic system
modules are deployed, there are some differences in how you can reconfigure them and when
those changes take place, as shown in Table 15-1. The details of how to work with diagnostic
application modules is described throughout this section. See Configuring Instrumentation, for
information about working with diagnostic system modules.

Table 15-1 Comparing System and Application Modules

Monitor Type Add/Remove
Objects
Dynamically

Add/Remove
Objects with
Console

Modify with
JMX Remotely

Modify with
JSR-88 (non-
remote)

Modify with
Console

System
Module

Yes Yes Yes No Yes - via JMX

Application
Module

Yes, when
HotSwap1 is
enabled

No, when
HotSwap is not
enabled: module
must be
redeployed

Yes No Yes Yes - via plan

1 See Using Deployment Plans to Dynamically Control Instrumentation Configuration, for information about HotSwap.

Using Deployment Plans to Dynamically Control Instrumentation
Configuration

WebLogic Server supports deployment plans, as specified in the Jakarta EE Deployment
Specification API (JSR-88). With deployment plans, you can modify the configuration of an
application after it is built, without having to modify the application archives.

For complete documentation on using deployment plans in WebLogic Server, see Configuring
Applications for Production Deployment in Deploying Applications to Oracle WebLogic Server.

If you want to reconfigure an application that was deployed without a deployment plan, you
must undeploy, unarchive, reconfigure, re-archive, and then redeploy the application. With a
configuration plan, you can dynamically change many configuration options simply by updating
the plan, without modifying the application archive.

If you enable a feature called Java HotSwap (see Enabling Java HotSwap) before deploying
your application with a deployment plan, you can dynamically update all instrumentation
settings without redeploying the application. If you do not enable HotSwap, or if you do not use
a deployment plan, changes to some instrumentation settings require redeployment, as shown
in Table 15-2.

Chapter 15
Using Deployment Plans to Dynamically Control Instrumentation Configuration

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 6

Table 15-2 When Application Instrumentation Configuration Changes Take Effect

Scenario / Settings to Use => Add and remove
monitors

Attach and detach
actions

Enable and
disable monitors

Application deployed with a deployment
plan, HotSwap enabled

Dynamic Dynamic Dynamic

Application deployed with a deployment
plan, HotSwap not enabled

Must redeploy
application1

Dynamic Dynamic

Application deployed without a
deployment plan

Must redeploy
application

Must redeploy
application

Must redeploy
application

1 If HotSwap is not enabled, you can "remove" a monitor, but that just disables it. The instrumentation code is still
woven into the application code. You cannot re-enable it through a modified plan.

You can use a deployment plan to dynamically update configuration elements without
redeploying the application.

• <enabled>

• <dye-filtering-enabled>

• <dye-mask>

• <action>

Using a Deployment Plan: Overview
You can use a deployment plan to dynamically control the configuration options of an
application-scoped diagnostic module.

The general process for creating and using a deployment plan is as follows:

1. Create a well-formed weblogic-diagnostics.xml descriptor file for the application.

Oracle recommends that you create an empty descriptor. This provides full flexibility for
dynamically modifying the configuration. It is possible to create monitors in the original
descriptor file and then use a deployment plan to override the settings. However, you will
be unable to completely remove monitors without redeploying. If you add monitors using a
deployment plan to an empty descriptor, all such monitors can be removed. For information
about configuring diagnostic application modules, see Configuring Application-Scoped
Instrumentation.

The schema for weblogic-diagnostics.xml is available at http://xmlns.oracle.com/
weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd.

2. Place the descriptor file weblogic-diagnostics.xml, in the top-level META-INF directory of
the appropriate archive.

3. Create a deployment plan, for example by using weblogic.PlanGenerator. See Creating a
Deployment Plan Using weblogic.PlanGenerator.

4. Start the server, optionally enabling Java HotSwap. See Enabling Java HotSwap.

5. Deploy the application using the deployment plan. See Deploying an Application with a
Deployment Plan).

6. When needed, edit the plan and update the application with the plan. See Updating an
Application with a Modified Plan.

Chapter 15
Using a Deployment Plan: Overview

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 6

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/weblogic-diagnostics.xsd

Creating a Deployment Plan Using weblogic.PlanGenerator
The PlanGenerator tool inspects all Jakarta EE deployment descriptors in the selected
application, and creates a deployment plan with null variables for all relevant WebLogic Server
deployment properties that configure external resources for the application.

You can use the weblogic.PlanGenerator tool to create an initial deployment plan, and
interactively override specific properties of the weblogic-diagnostics.xml descriptor.

To create the plan, use the following syntax:

 java weblogic.PlanGenerator -plan output-plan.xml [options]
 application-path

For example:

 java weblogic.PlanGenerator -plan foo.plan -dynamics /test/apps/mywar

Note

The -dynamics options specifies that the plan should be generated to include only
those options that can be dynamically updated.

For more information about creating and using deployment plans, see Configuring Applications
for Production Deployment in Deploying Applications to Oracle WebLogic Server.

For more information about using PlanGenerator, see weblogic.PlanGenerator Command Line
Reference and Exporting an Application for Deployment to New Environments in Deploying
Applications to Oracle WebLogic Server

Sample Deployment Plan for Diagnostics
You can create a simple deployment plan for diagnostics using PlanGenerator.

Example 15-1 shows a simple deployment plan generated using weblogic.PlanGenerator. (For
readability, some information has been removed.) The plan enables the
Servlet_Before_Service monitor and attaches to it the actions DisplayArgumentsAction and
StackDumpAction.

Example 15-1 Sample Deployment Plan

<?xml version='1.0' encoding='UTF-8'?>
<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
global-variables="false">
 <application-name>jsp_expr_root</application-name>

 <variable-definition>
 <!-- Add two additional actions to Servlet_Before_Service monitor -->
 <variable>
 <name>WLDFInstrumentationMonitor_Servlet_Before_Service_Actions_113050559713922</name>
 <value>"DisplayArgumentsAction","StackDumpAction"</value>
 </variable>
 <-- Enable the Servlet_Before_Service monitor -->
 <variable>
 <name>WLDFInstrumentationMonitor_Servlet_Before_Service_Enabled_113050559713927</name>

Chapter 15
Creating a Deployment Plan Using weblogic.PlanGenerator

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 6

 <value>true</value>
 </variable>
 </variable-definition>

 <module-override>
 <module-name>jspExpressionWar</module-name>
 <module-type>war</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-web-app</root-element>
 <uri>WEB-INF/weblogic.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>web-app</root-element>
 <uri>WEB-INF/web.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>wldf-resource</root-element>
 <uri>META-INF/weblogic-diagnostics.xml</uri>
 <variable-assignment>
 <name>WLDFInstrumentationMonitor_Servlet_Before_Service_Actions_113050559713922</name>
 <xpath>/wldf-resource/instrumentation/wldf-instrumentation-monitor/
[name="Servlet_Before_Service"]/action</xpath>
 </variable-assignment>
 <variable-assignment>
 <name>WLDFInstrumentationMonitor_Servlet_Before_Service_Enabled_113050559713927</name>
 <xpath>/wldf-resource/instrumentation/wldf-instrumentation-monitor/
[name="Servlet_Before_Service"]/enabled</xpath>
 </variable-assignment>
 </module-descriptor>
 </module-override>
 <config-root xsi:nil="true"></config-root>
</deployment-plan>

For a list and documentation of diagnostic monitors and actions that you can specify in the
deployment plan, see WLDF Instrumentation Library.

Enabling Java HotSwap
You can enable Java HotSwap to update the configuration of the application with the modified
deployment plan values.

To enable Java HotSwap, start the server with the following command line switch:

 -javaagent:$WL_HOME/server/lib/diagnostics-agent.jar

Deploying an Application with a Deployment Plan
To take advantage of the dynamic control provided by a deployment plan, you must deploy the
application with the plan.

You can use any of the standard WebLogic Server tools for controlling deployment, including
the WebLogic Remote Console or the WebLogic Scripting Tool (WLST). For example, the
following WLST command deploys an application with a corresponding deployment plan.

 wls:/mydomain/serverConfig> deploy('myApp', './myApp.ear', 'myserver',
 'nostage', './plan.xml')

After deployment, the effective diagnostic monitor configuration is a combination of the original
descriptor, combined with the overridden attribute values from the plan. If the original
descriptor did not include a monitor with the given name and the plan overrides an attribute of

Chapter 15
Enabling Java HotSwap

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 6

such a monitor, the monitor is added to the set of monitors to be used with the application. This
way, if your application is built with an empty weblogic-diagnostics.xml descriptor, you can
add diagnostic monitors to the application during or after the deployment process without
having to modify the application archive.

Updating an Application with a Modified Plan
You can change configuration settings by modifying the deployment plan and then updating or
redeploying the application, depending on whether HotSwap is enabled.

See Enabling Java HotSwap to see when you can simply update the application and when you
must redeploy it. You can use any of the standard WebLogic Server tools for updating or
redeploying, including the WebLogic Remote Console or the WebLogic Scripting Tool (WLST).

If you enabled HotSwap, you can update the configuration for the application with the modified
plan values by updating the application with the plan. For example, the following WLST
command updates an application with a plan:

 wls:/mydomain/serverConfig> updateApplication('BigApp',
 'c:/myapps/BigApp/newPlan/plan.xml', stageMode='STAGE',
 testMode='false')

If you did not enable HotSwap, you must redeploy the application for certain changes to take
effect. For example, the following WLST command redeploys an application using a plan:

 wls:/mydomain/serverConfig> redeploy('myApp' 'c:/myapps/plan.xml')

Chapter 15
Updating an Application with a Modified Plan

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 6

16
Configuring and Using WLDF
Programmatically

As an alternative to using the WebLogic Remote Console or Fusion Middleware Control to
enable, configure, and monitor the WebLogic Diagnostics Framework (WLDF), you can also
use the JMX API or the WebLogic Scripting Tool (WLST) to perform these tasks
programmatically.

See the following for additional information about how to develop and deploy JMX applications
and to use WLST:

• Developing Applications for Oracle WebLogic Server

• Developing Manageable Applications Using JMX for Oracle WebLogic Server

• Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

• Deploying Applications to Oracle WebLogic Server

• Understanding the WebLogic Scripting Tool

How WLDF Generates and Retrieves Data
The process WLDF uses to generate and retrieve diagnostic data largely depends on how its
main components are configured.

In general, diagnostic data is generated and retrieved by WLDF components following this
process:

• The WLDF XML descriptor file settings for the Harvester, Instrumentation, Image Capture,
and Policies and Actions components determine the type and amount of diagnostic data
generated while a server is running.

• The diagnostic context and instrumentation settings filter and monitor this data as it flows
through the system. Data is harvested, actions are executed, events are generated, and
configured notifications are sent.

• The Archive component stores the data.

• The Accessor component retrieves the data.

Configuration is primarily an administrative task, accomplished either through the WebLogic
Remote Console or through WLST scripts. Deployable descriptor modules, XML configuration
files, are the primary method for configuring diagnostic resources at both the system level
(servers and clusters) and at the application level. (For information about configuring WLDF
resources, see Understanding WLDF Configuration.)

Output retrieval via the Accessor component can be either an administrative or a programmatic
task.

Mapping WLDF Components to Beans and Packages
When you create diagnostic system modules using the WebLogic Remote Console or WLST,
WebLogic Server creates MBeans (managed beans) for each module. You can access these

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 14

MBeans using JMX or WLST. Because WLST is a JMX client; any task you can perform using
WLST you can also perform programmatically through JMX.
Table 16-1 lists the beans and packages associated with WLDF and its components.
Figure 16-1 groups the beans by type.

Table 16-1 Mapping WLDF Components to Beans and Packages

Component Beans / Packages

WLDF WLDFServerDiagnosticMBean

WLDFSystemResourceMBean

WLDFBean (abstract)

WLDFResourceBean

WLDFRuntimeMBean

Diagnostic Image WLDFImageNotificationBean

WLDFImageCreationTaskRuntimeMBean

WLDFImageRuntimeMBean

Instrumentation WLDFInstrumentationBean

WLDFInstrumentationMonitorBean

WLDFInstrumentationRuntimeMBean

Diagnostic Context Package: weblogic.diagnostics.context

DiagnosticContextHelper

DiagnosticContextConstants

Harvester WLDFHarvesterBean

WLDFHarvestedTypeBean

WLDFHarvesterRuntimeMBean

Policies and Actions WLDFNotificationBean

WLDFWatchNotificationBean

WLDFJMSNotificationBean

WLDFJMXNotificationBean

WLDFSMTPNotificationBean

WLDFSNMPNotificationBean

WLDFWatchNotificationRuntimeMBean

Package: weblogic.diagnostics.watch

JMXWatchNotification

WatchNotification

Archive WLDFArchiveRuntimeMBean

WLDFDbstoreArchiveRuntimeMBean

WLDFFileArchiveRuntimeMBean

WLDFWlstoreArchiveRuntimeMBean

Accessor WLDFAccessRuntimeMBean

WLDFDataAccessRuntimeMBean

Runtime Control WLDFControlRuntimeMBean

WLDFSystemResourceControlRuntimeMBean

Chapter 16
Mapping WLDF Components to Beans and Packages

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 14

Figure 16-1 WLDF Configuration MBeans, Runtime MBeans, and System Module
Beans

Programming Tools
WLDF supports the use of multiple tools, such as WLST, JMX, and REST, for performing tasks
programmatically.

For example, you can use these tools to do the following:

• Create and modify diagnostic descriptor files to configure the WLDF Harvester,
Instrumentation, and Policies and Actions components at the server level.

• Use JMX to access WLDF operations and attributes.

• Use JMX to create custom MBeans that contain harvestable data. You can then configure
the Harvester to collect that data and configure policies and actions to monitor the values.

• Write Java programs that perform the following tasks:

– Capture notifications using JMX listeners.

– Capture notifications using JMS.

Chapter 16
Programming Tools

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 14

– Retrieve archived data through the Accessor. (The Accessor, as are the other
components, is surfaced as JMX; you can use WLST or straight JMX programming to
retrieve diagnostic data.)

Configuration and Runtime APIs
The configuration and runtime APIs configure and monitor WLDF. Both the configuration and
runtime APIs are exposed as MBeans.

• The configuration MBeans and system module Beans create and configure WLDF
resources, and determine their runtime behavior.

• The runtime MBeans monitor the runtime state and the operations defined for the different
components.

You can use the APIs to configure, activate, and deactivate data collection; to configure
policies, actions, alarms, and diagnostic image captures; and to access data.

Configuration APIs
The Configuration APIs define interfaces that are used to configure the following WLDF
components:

• Data Collectors: You can use the configuration APIs to configure and control
Instrumentation, Harvesting, and Image Capture.

– For the Instrumentation component, you can enable, disable, create, and destroy
server-level instrumentation and instrumentation monitors.

Note

The configuration APIs do not support configuration of application-level
instrumentation. However, configuration changes for application-level
instrumentation can be effected using Java Specification Request (JSR) 88
APIs.

– For the Harvester component, you can add and remove types to be harvested, specify
which attributes and instances of those types are to be harvested, and set the sample
period for the Harvester.

– For the Diagnostic Image Capture component, you can set the name and path of the
directory in which the image capture is to be stored and the events image capture
interval, that is, the time interval during which recently archived events are captured in
the diagnostic image.

• Policies and Actions: You can use the configuration APIs to enable, disable, create, and
destroy policies and actions. You can also use the configuration APIs to:

– Set the policy type, policy expressions, and severity for policies

– Set alarm type and alarm reset period for actions

– Configure a policy to execute a diagnostic image capture

– Add and remove actions from policies

• Archive: Set the archive type and the archive directory

Chapter 16
Programming Tools

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 14

Runtime APIs
The runtime APIs define interfaces that are used to monitor the runtime state of the WLDF
components. Instances of these APIs are instantiated on instances of individually managed
servers. These APIs are defined as runtime MBeans, so JMX clients can easily access them.

The runtime APIs encapsulate all other runtime interfaces for the individual WLDF
components. These APIs are included in the weblogic.management.runtime package.

You can use the runtime APIs to monitor the following WLDF components:

• Data Collectors—You can use the runtime APIs to monitor the Instrumentation, Harvester,
and the Image Capture components.

– For the Instrumentation component, you can monitor joinpoint count statistics, the
number of classes inspected for instrumentation monitors, the number of classes
modified, and the time it takes to inspect a class for instrumentation monitors.

– For the Harvester component, you can query the set of harvestable types, harvestable
attributes, and harvestable instances (that is, the instances that are currently
harvestable for specific types). And, you can also query which types, attributes, and
instances are currently configured for harvesting. The sampling interval and various
runtime statistics pertaining to the harvesting process are also available.

– For the Image Capture component, you can specify the destination and lockout period
for diagnostic images and initiate image captures.

• Policies and Actions: You can use the runtime APIs to monitor the Policies and Actions and
Archive components.

– For the Policies and Actions component, you can reset policy alarms and monitor
statistics about policy expression evaluations and policies triggered, including
information about the analysis of alarms, events, log records, and harvested metrics.

• Archive: You can monitor information about the archive, such as file name and archive
statistics.

• Data Accessor—You can use the runtime APIs to retrieve the diagnostic data persisted in
the different archives. The runtime APIs also support data filtering by allowing you to
specify a query expression to search the data from the underlying archive. You can monitor
information about column type maps (a map relating column names to the corresponding
type names for the diagnostic data), statistics about data record counts and timestamps,
and cursors (cursors are used by clients to fetch data records).

WLDF Packages
WLDF provides two packages you can use to perform select operations programmatically.

• weblogic.diagnostics.context contains:

– DiagnosticContextConstants, which defines the indices of dye flags supported by the
WebLogic diagnostics system.

– DiagnosticContextHelper, which provides applications limited access to the diagnostic
context.

• weblogic.diagnostics.watch contains:

– JMXWatchNotification, an extended JMX notification object which includes additional
information about the notification. This information is contained in the referenced
WatchNotification object returned from method getExtendedInfo.

Chapter 16
WLDF Packages

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 14

– WatchNotification, which defines an action for a policy.

Programming WLDF: Examples
WLDF provides a number of beans and packages you can use to access and modify
information about a running server. The following examples show how to use these
components:
In addition, see the WLST and JMX examples in WebLogic Scripting Tool Examples.

Example: DiagnosticContextExample.java
The following example uses the DiagnosticContextHelper class from the
weblogic.diagnostics.context package to get and set the value of the DYE_0 flag. (For
information about diagnostic contexts, see Configuring the DyeInjection Monitor to Manage
Diagnostic Contexts.)

To compile and run the program:

1. Copy the DiagnosticContextExample.java example (Example 16-1) to a directory and
compile it with:

javac -d . DiagnosticContextExample.java

This will create the ./weblogic/diagnostics/examples directory and populate it with
DiagnosticContextExample.class.

2. Run the program. The command syntax is:

java weblogic.diagnostics.examples.DiagnosticContextExample

Sample output is similar to:

java weblogic.diagnostics.examples.DiagnosticContextExample
ContextId=5b7898f93bf010ce:40305614:1048582efd4:-8000-0000000000000001
isDyedWith(DYE_0)=false
isDyedWith(DYE_0)=true

Example 16-1 Example: DiagnosticContextExample.java

package weblogic.diagnostics.examples;
import weblogic.diagnostics.context.DiagnosticContextHelper;
public class DiagnosticContextExample {
 public static void main(String args[]) throws Exception {
 System.out.println("ContextId=" +
 DiagnosticContextHelper.getContextId());
 System.out.println("isDyedWith(DYE_0)=" +
 DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));
 DiagnosticContextHelper.setDye(DiagnosticContextHelper.DYE_0, true);
 System.out.println("isDyedWith(DYE_0)=" +
 DiagnosticContextHelper.isDyedWith(DiagnosticContextHelper.DYE_0));
 }
}

Example: HarvesterMonitor.java
The HarvesterMonitor program uses the Harvester JMX notification to identify when a harvest
cycle has occurred. It then retrieves the new values using the Accessor. All access is
performed through JMX.

Chapter 16
Programming WLDF: Examples

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 14

For information about the Harvester component, see Configuring the Harvester for Metric
Collection.

A description of notification listeners and the HarvesterMonitor.java code are provided in the
following sections:

Notification Listeners
Notification listeners provide an appropriate implementation for a particular transport medium.
For example, SMTP notification listeners provide the mechanism to establish an SMTP
connection with a mail server and send an e-mail with the notification instance that it receives.
JMX, SNMP, JMS and other types of listeners provide their respective implementations as well.

Note

You can develop plug-ins that propagate events generated by the WebLogic
Diagnostics Framework using transport mediums other than SMTP, JMX, SNMP, or
JMS. One approach is to use the JMX NotificationListener interface to implement an
object, and then propagate the notification according to the requirements of the
selected transport medium.

Table 16-2 describes each notification listener type that is provided with WebLogic Server and
the relevant configuration settings for each type.

Table 16-2 Notification Listener Types

Notification Medium Description Configuration Parameter
Requirements

JMS Propagated via JMS Message
queues or topics.

Required: Destination JNDI name.

Optional: Connection factory JNDI
name (use the default JMS
connection factory if not present).

JMX Propagated via standard JMX
notifications.

None required. Uses predefined
singleton for posting the event.

SMTP Propagated via regular e-mail. Required: MailSession JNDI name
and Destination e-mail.

Optional: Subject and body (if not
specified, use default)

SNMP Propagated via SNMP traps and
the WebLogic Server SNMP Agent.

None required, but the
SNMPTrapDestination MBean must
be defined in the WebLogic SNMP
agent.

By default, all notifications executed from policies are stored in the server log file in addition to
being executed through the configured medium.

HarvesterMonitor.java
To compile and run the HarvesterMonitor program:

1. Copy the HarvesterMonitor.java example (Example 16-2) to a directory and compile it with:

javac -d . HarvesterMonitor.java

Chapter 16
Programming WLDF: Examples

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 14

This creates the ./weblogic/diagnostics/examples directory and populates it with
HarvesterMonitor.class and HarvesterMonitor$HarvestCycleHandler.class.

2. Start the monitor. The command syntax is:

java HarvesterMonitor <server> <port> <uname> <pw> [<types>]

You need access to a WebLogic Server instance, and know the server's name, port
number, administrator's login name, and the administrator's password.

You can provide an optional list of harvested type names. If provided, the program displays
only the values for those types. However, for each selected type, the monitor displays the
complete set of collected values; there is no way to constrain the values that are displayed
for a selected type.

Only values that are explicitly configured for harvesting are displayed. Values collected
solely to support policies (implicit values) are not displayed.

The following command requires that '.' is in the CLASSPATH variable, and that you run the
command from the directory where you compiled the program. The command connects to
the myserver server, at port 7001, as user weblogic (and also the password, shown as
password):

java weblogic.diagnostics.examples.HarvesterMonitor myserver 7001
 weblogic password

See Example 16-3 for an example of output from the HarvesterMonitor.

Example 16-2 Example: HarvesterMonitor.java

package weblogic.diagnostics.examples;
import weblogic.management.mbeanservers.runtime.RuntimeServiceMBean;
import javax.management.*;
import javax.management.remote.*;
import javax.naming.Context;
import java.util.*;
public class HarvesterMonitor {

 private static String accessorRuntimeMBeanName;
 private static ObjectName accessorRuntimeMBeanObjectName;
 private static String harvRuntimeMBeanName;
 private static ObjectName harvRuntimeMBeanObjectName;
 private static MBeanServerConnection rmbs;
 private static ObjectName getObjectName(String objectNameStr) {
 try { return new ObjectName(getCanonicalName(objectNameStr)); }
 catch (RuntimeException x) { throw x; }
 catch (Exception x) { x.printStackTrace(); throw new
 RuntimeException(x); }
 }
 private static String getCanonicalName(String objectNameStr) {
 try { return new ObjectName(objectNameStr).getCanonicalName(); }
 catch (RuntimeException x) { throw x; }
 catch (Exception x) { x.printStackTrace(); throw new
 RuntimeException(x); }
 }
 private static String serverName;
 private static int port;
 private static String userName;
 private static String password;
 private static ArrayList typesToMonitor = null;
 public static void main(String[] args) throws Exception {
 if (args.length < 4) {
 System.out.println(

Chapter 16
Programming WLDF: Examples

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 14

 "Usage: java weblogic.diagnostics.harvester.HarvesterMonitor " +
 "<serverName> <port> <userName> <password> [<types>]" +
 weblogic.utils.PlatformConstants.EOL +
 " where <types> (optional) is a comma-separated list " +
 "of types to monitor.");
 System.exit(1);
 }
 serverName = args[0];
 port = Integer.parseInt(args[1]);
 userName = args[2];
 password = args[3];
 accessorRuntimeMBeanName = getCanonicalName(
 "com.bea:ServerRuntime=" + serverName +
 ",Name=HarvestedDataArchive,Type=WLDFDataAccessRuntime" +
 ",WLDFAccessRuntime=Accessor,WLDFRuntime=WLDFRuntime");
 accessorRuntimeMBeanObjectName =
 getObjectName(accessorRuntimeMBeanName);
 harvRuntimeMBeanName = getCanonicalName(
 "com.bea:ServerRuntime=" + serverName +
 ",Name=WLDFHarvesterRuntime,Type=WLDFHarvesterRuntime" +
 ",WLDFRuntime=WLDFRuntime");
 harvRuntimeMBeanObjectName = getObjectName(harvRuntimeMBeanName);
 if (args.length > 4) {
 String typesStr = args[4];
 typesToMonitor = new ArrayList();
 int index;
 while ((index = typesStr.indexOf(",")) > 0) {
 String typeName = typesStr.substring(0,index).trim();
 typesToMonitor.add(typeName);
 typesStr = typesStr.substring(index+1);
 }
 typesToMonitor.add(typesStr.trim());
 }
 rmbs = getRuntimeMBeanServerConnection();
 new HarvesterMonitor().new HarvestCycleHandler();
 while(true) {Thread.sleep(100000);}
 }
 static protected String JNDI = "/jndi/";
 static public MBeanServerConnection getRuntimeMBeanServerConnection()
 throws Exception {
 JMXServiceURL serviceURL;
 serviceURL =
 new JMXServiceURL("t3",
 "localhost",
 port,
 JNDI + RuntimeServiceMBean.MBEANSERVER_JNDI_NAME);
 System.out.println("ServerName=" + serverName);
 System.out.println("URL=" + serviceURL);
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, userName);
 h.put(Context.SECURITY_CREDENTIALS, password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 JMXConnector connector = JMXConnectorFactory.connect(serviceURL,h);
 return connector.getMBeanServerConnection();
 }
 class HarvestCycleHandler implements NotificationListener {
 // used to track harvest cycles
 private int timestampIndex;
 private int domainIndex;
 private int serverIndex;
 private int typeIndex;

Chapter 16
Programming WLDF: Examples

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 14

 private int instNameIndex;
 private int attrNameIndex;
 private int attrTypeIndex;
 private int attrValueIndex;
 long lastSampleTime = System.currentTimeMillis();
 HarvestCycleHandler() throws Exception{
 System.out.println("Harvester monitor started...");
 try {
 setUpRecordIndices();
 rmbs.addNotificationListener(harvRuntimeMBeanObjectName,
 this, null, null);
 }
 catch (javax.management.InstanceNotFoundException x) {
 System.out.println("Cannot find JMX data. " +
 "Is the server name correct?");
 System.exit(1);
 }
 }
 private void setUpRecordIndices() throws Exception {
 Map columnIndexMap = (Map)rmbs.getAttribute(
 accessorRuntimeMBeanObjectName, "ColumnIndexMap");
 timestampIndex = ((Integer)columnIndexMap.get("TIMESTAMP")).intValue();
 domainIndex =
 ((Integer)columnIndexMap.get("DOMAIN")).intValue();
 serverIndex =
 ((Integer)columnIndexMap.get("SERVER")).intValue();
 typeIndex =
 ((Integer)columnIndexMap.get("TYPE")).intValue();
 instNameIndex =
 ((Integer)columnIndexMap.get("NAME")).intValue();
 attrNameIndex =
 ((Integer)columnIndexMap.get("ATTRNAME")).intValue();
 attrTypeIndex =
 ((Integer)columnIndexMap.get("ATTRTYPE")).intValue();
 attrValueIndex = ((Integer)columnIndexMap.get("ATTRVALUE")).intValue();
 }
 public synchronized void handleNotification(Notification notification,
 Object handback) {
 System.out.println("\n--");
 long thisSampleTime = System.currentTimeMillis()+1;
 try {
 String lastTypeName = null;
 String lastInstName = null;
 String cursor = (String)rmbs.invoke(accessorRuntimeMBeanObjectName,
 "openCursor",
 new Object[]{new Long(lastSampleTime),
 new Long(thisSampleTime), null},
 new String[]{ "java.lang.Long",
 "java.lang.Long", "java.lang.String" });
 while (((Boolean)rmbs.invoke(accessorRuntimeMBeanObjectName,
 "hasMoreData",
 new Object[]{cursor},
 new String[]{"java.lang.String"})).booleanValue()) {
 Object[] os = (Object[])rmbs.invoke(accessorRuntimeMBeanObjectName,
 "fetch",
 new Object[]{cursor},
 new String[]{"java.lang.String"});
 for (int i = 0; i < os.length; i++) {
 Object[] values = (Object[])os[i];
 String typeName = (String)values[typeIndex];
 String instName = (String)values[instNameIndex];
 String attrName = (String)values[attrNameIndex];

Chapter 16
Programming WLDF: Examples

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 14

 if (!typeName.equals(lastTypeName)) {
 if (typesToMonitor != null &&
 !typesToMonitor.contains(typeName)) continue;
 System.out.println("\nType " + typeName);
 lastTypeName = typeName;
 }
 if (!instName.equals(lastInstName)) {
 System.out.println("\n Instance " + instName);
 lastInstName = instName;
 }
 Object attrValue = values[attrValueIndex];
 System.out.println(" - " + attrName + "=" + attrValue);
 }
 }
 lastSampleTime = thisSampleTime;
 }
 catch (Exception e) {e.printStackTrace();}
 }
 }
}

Example 16-3 contains sample output from the HarvesterMonitor program:

Example 16-3 Sample Output from HarvesterMonitor

ServerName=myserver
URL=service:jmx:t3://localhost:7001/jndi/weblogic.management.mbeanservers.runtime
Harvester monitor started...
--
Type weblogic.management.runtime.WLDFHarvesterRuntimeMBean
Instance
com.bea:Name=WLDFHarvesterRuntime,ServerRuntime=myserver,Type=WLDFHarvesterRuntime,WLDFRu
ntime=WLDFRuntime
 - TotalSamplingTime=202048863
 - CurrentSnapshotElapsedTime=1839619
Type weblogic.management.runtime.ServerRuntimeMBean
 Instance com.bea:Name=myserver,Type=ServerRuntime
 - RestartRequired=false
 - ListenPortEnabled=true
 - ActivationTime=1118319317071
 - ServerStartupTime=40671
 - ServerClasspath= [deleted long classpath listing]
 - CurrentMachine=
 - SocketsOpenedTotalCount=1
 - State=RUNNING
 - RestartsTotalCount=0
 - AdminServer=true
 - AdminServerListenPort=7001
 - ClusterMaster=false
 - StateVal=2
 - CurrentDirectory=C:\testdomain\.
 - AdminServerHost=10.40.8.123
 - OpenSocketsCurrentCount=1
 - ShuttingDown=false
 - SSLListenPortEnabled=false
 - AdministrationPortEnabled=false
 - AdminServerListenPortSecure=false
 - Registered=true

Chapter 16
Programming WLDF: Examples

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 14

Example: JMXAccessorExample.java
The following example program uses JMX to print log entries to standard out. All access is
performed through JMX. (For information about the Accessor component, see Accessing
Diagnostic Data With the Data Accessor.)

To compile and run the program:

1. Copy the JMXAccessorExample.java example (Example 16-4) to a directory and compile it
with:

javac -d . JMXAccessorExample.java

This creates the ./weblogic/diagnostics/examples directory and populates it with
JMXAccessorExample.class.

2. Start the program. The command syntax is:

java weblogic.diagnostics.example.JMXAccessor <logicalName> <query>

You need access to a WebLogic Server instance, and have the server's name, port
number, administrator's login name, and the administrator's password.

The logicalName is the name of the log. Valid names are: HarvestedDataArchive,
EventsDataArchive, ServerLog, DomainLog, HTTPAccessLog,
ServletAccessorHelper.WEBAPP_LOG, RAUtil.CONNECTOR_LOG, JMSMessageLog, and
CUSTOM.

Construct the query using the syntax described in WLDF Query Language. For the
JMXAccessorExample program, an empty query (an empty pair of double quotation marks,
"") returns all entries in the log.

The following command requires that '.' is in the CLASSPATH variable, and that you run the
command from the directory where you compiled the program. The program uses the IIOP
(Internet Inter-ORB Protocol) protocol to connect to port 7001, as user weblogic, with a
password shown as password, and prints all entries in the ServerLog to standard out:

java weblogic.diagnostics.examples.JMXAccessorExample ServerLog ""

You can modify the example to use a username/password combination for your site.

Example 16-4 JMXAccessorExample.java

package weblogic.diagnostics.examples;
import java.io.IOException;
import java.net.MalformedURLException;
import java.util.Hashtable;
import java.util.Iterator;
import javax.management.MBeanServerConnection;
import javax.management.MalformedObjectNameException;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;
public class JMXAccessorExample {
 private static final String JNDI = "/jndi/";
 public static void main(String[] args) {
 try {
 if (args.length != 2) {
 System.err.println("Incorrect invocation. Correct usage is:\n" +

Chapter 16
Programming WLDF: Examples

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 14

 "java weblogic.diagnostics.examples.JMXAccessorExample " +
 "<logicalName> <query>");
 System.exit(1);
 }
 String logicalName = args[0];
 String query = args[1];
 MBeanServerConnection mbeanServerConnection =
 lookupMBeanServerConnection();
 ObjectName service = new

ObjectName(weblogic.management.mbeanservers.runtime.RuntimeServiceMBean.OBJECT_NAME);
 ObjectName serverRuntime =
 (ObjectName) mbeanServerConnection.getAttribute(service,
 "ServerRuntime");
 ObjectName wldfRuntime =
 (ObjectName) mbeanServerConnection.getAttribute(serverRuntime,
 "WLDFRuntime");
 ObjectName wldfAccessRuntime =
 (ObjectName) mbeanServerConnection.getAttribute(wldfRuntime,
 "WLDFAccessRuntime");
 ObjectName wldfDataAccessRuntime =
 (ObjectName) mbeanServerConnection.invoke(wldfAccessRuntime,
 "lookupWLDFDataAccessRuntime", new Object[] {logicalName},
 new String[] {"java.lang.String"});
 String cursor =
 (String) mbeanServerConnection.invoke(wldfDataAccessRuntime,
 "openCursor", new Object[] {query},
 new String[] {"java.lang.String"});
 int fetchedCount = 0;
 do {
 Object[] rows =
 (Object[]) mbeanServerConnection.invoke(wldfDataAccessRuntime,
 "fetch", new Object[] {cursor},
 new String[] {"java.lang.String"});
 fetchedCount = rows.length;
 for (int i=0; i<rows.length; i++) {
 StringBuffer sb = new StringBuffer();
 Object[] cols = (Object[]) rows[i];
 for (int j=0; j<cols.length; j++) {
 sb.append("Index " + j + "=" + cols[j].toString() + " ");
 }
 System.out.println("Found row = " + sb.toString());
 }
 } while (fetchedCount > 0);
 mbeanServerConnection.invoke(wldfDataAccessRuntime,
 "closeCursor", new Object[] {cursor},
 new String[] {"java.lang.String"});
 } catch(Throwable th) {
 th.printStackTrace();
 System.exit(1);
 }
 }
 private static MBeanServerConnection lookupMBeanServerConnection ()
 throws Exception {
 // construct JMX service URL
 JMXServiceURL serviceURL;
 serviceURL = new JMXServiceURL("iiop", "localhost", 7001,
 JNDI + "weblogic.management.mbeanservers.runtime");
 // Specify the user, password, and WebLogic provider package
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL,"weblogic");
 h.put(Context.SECURITY_CREDENTIALS,"password");

Chapter 16
Programming WLDF: Examples

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 14

 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 // Get jmx connector
 JMXConnector connector = JMXConnectorFactory.connect(serviceURL,h);
 // return MBean server connection class
 return connector.getMBeanServerConnection();
 } // End - lookupMBeanServerConnection
}

Chapter 16
Programming WLDF: Examples

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 14

17
Using Debug Patches

The WebLogic Diagnostics Framework (WLDF) supports the ability for you to apply debug
patches dynamically, allowing you to capture diagnostic information using a patch that you can
activate and deactivate without the need of a server restart.

Dynamic Application of Debug Patches
Dynamic application of debug patches allows you to avoid the server restarts while applying
instrumented debug patches to gather additional information about an error.

Debug patches, packaged as JAR files, are generated through My Oracle Support (https://
support.oracle.com/) and used to gather additional information about an error when it occurs
in a production environment. Typically, the debug patch JAR files are added to the classpath
and all server instances must be restarted for the JAR files to take effect. This can present
problems, as it might not be possible to restart the server instances in a production
environment due to scheduling and other constraints. Additionally, after the server instances
are restarted, in-memory states are lost and the problem may disappear or take awhile to
reappear. Also, when these debug patches are no longer needed, they can be deactivated
without server restarts.

When dynamically applying debug patches, WebLogic Server uses Java HotSwap to replace
the loaded classes with the versions provided in the debug patch JAR files. See Enabling Java
HotSwap.

Specifying the Debug Patch Directory
Debug patch JAR files are picked up from a specific directory called the debug patch directory.

This directory is specified domain-wide using the DebugPatchDirectory attribute of the
DebugPatchesMBean. By default, the debug_patches directory under the DOMAIN_HOME directory
is used as the debug patch directory.

This feature is available to users with administrative privileges in the domain. Only authorized
users are able to post debug patch JAR files in the debug patch directory. This directory must
be properly protected with file system permissions.

Configuring the WLDF Debug Patch Agent
To apply debug patches dynamically, the target WebLogic Server instances must be started on
the command line with the WLDF debug patch agent.

The WLDF debug patch agent handles the following:

• Replaces the loaded classes with the instrumented classes from the debug patch JAR.

• Makes sure that the replacement classes in the debug patch JAR have the same shape as
the original classes. If any of the classes do not meet this requirement, none of the classes
in the debug patch JAR are swapped in and an error message is logged.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 3

https://support.oracle.com/
https://support.oracle.com/

• Logs informational messages to indicate the start and completion of debug patch activation
or deactivation.

• Allows only properly authenticated users with administrative privileges to apply a debug
patch.

To specify the WLDF debug patch agent on the command line, update your startup script to
include the following:

-javaagent:$WL_HOME/server/lib/debugpatch-agent.jar

Note

New startup scripts will automatically include the debug-agent.jar on the command
line unless the disableDebugPatches option is specified on the startup script
command line.

WLST Commands for Debug Patches
WLDF provides a set of WLST commands you can use to list, activate, and deactivate dynamic
debug patches.

Table 17-1 summarizes the list of WLST commands used with debug patches.

Table 17-1 WLST Commands Used With Debug Patches

Command Summary

activateDebugPatch Activates a debug patch on the specified targets.

deactivateAllDebugPatch
es

Deactivates all debug patches on the specified targets.

deactivateDebugPatches Deactivates a debug patch on the specified targets.

listDebugPatches Lists the active and available debug patches on the specified targets.

listDebugPatchTasks Lists the debug patch (activated or deactivated) tasks from the specified
targets.

purgeDebugPatchTasks Purges the debug patch (activated or deactivated) tasks on the specified
targets.

showDebugPatchInfo Displays details about a debug patch on the specified targets.

Dynamically Activating a Debug Patch
Example 17-1, Example 17-2, and Example 17-3 demonstrate how to use the
activateDebugPatch command to activate a debug patch on the desired targets. Note that if a
specified debug patch is not available in the debug patch directory on a target, a warning is
issued and WebLogic Server will attempt to proceed and activate the debug patch on the
remaining targets. If one of the classes in the debug patch fails to replace the original class on
a target, the entire debug patch JAR file is rejected on that target and WebLogic Server will
attempt to activate the debug patch on the remaining targets. Additionally, several debug
patches may be activated over time and each debug patch will overlay the original classes and
previously activated debug patches. If a class is contained in multiple activated debug patches,
the class in the debug patch that was last activated has precedence. The activateDebugPatch

Chapter 17
WLST Commands for Debug Patches

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 3

command returns an array of tasks, each element corresponding to the activation activity on an
affected target server instance.

Example 17-1 Activating a Debug Patch on Two Managed Servers

Connected to admin server: Activate debug-patch-01.jar on managed servers
MS1 and MS2
tasks=activateDebugPatch(Patch='debug-patch-01.jar', Target='MS1,MS2')

Example 17-2 Activating a Debug Patch on a Server Instance and a Cluster

Connected to admin server: Activate debug-patch-01.jar on myserver and all
members of cluster Cluster-0
tasks=activateDebugPatch(Patch='debug-patch-01.jar', Target='myserver,Cluster-0')

Example 17-3 Activating a Debug Patch on an Application Targeted to a Cluster

Connected to admin server: Activate debug-patch-03.jar on application 'medrec'
targeted to cluster Cluster-1
tasks=activateDebugPatch(Patch='debug-patch-03.jar', Target='Cluster-1',
 Application='medrec')

Dynamically Deactivating Debug Patches
Example 17-4, Example 17-5, and Example 17-6 demonstrate how to use the
deactivateDebugPatches command to deactivate debug patches. To specify more than one
debug patch, use a comma-separated list. If a specified debug patch is not active on a target, a
warning is issued and the command continues. If no debug patches are specified, all active
patches are deactivated on the specified targets and the original classes are activated. After
successful deactivation, all targets are left in the same state they were in prior to running this
command. The deactivateDebugPatches command returns an array of tasks.

Example 17-4 Deactivating Debug Patches on a Managed Server

Connected to MS1: deactivate debug-patch-01.jar
tasks=deactivateDebugPatches(Patches='debug-patch-01.jar')

Example 17-5 Deactivating Debug Patches on All Members of a Cluster

Connected to admin server: de-activate debug-patch-01.jar
and debug-patch-02.jar on all members of cluster Cluster-0
tasks=deactivateDebugPatches(Patches='debug-patch-01.jar,debug-patch-02.jar',
 Target='Cluster-0')

Example 17-6 Deactivating Debug Patches on an Application Targeted to a Cluster

Connected to admin server: de-activate debug-patch-03.jar on application
'medrec' targeted to cluster Cluster-1
tasks=deactivateDebugPatches(Patches='debug-patch-03.jar', Target='Cluster-1',
 Application='medrec')

Chapter 17
WLST Commands for Debug Patches

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 3

A
Smart Rule Reference

Smart rules are prepackaged functions provided by the WebLogic Diagnostics Framework
(WLDF) that simplify the creation of policy expressions.When used in scheduled policy
expressions, as described in Configuring Smart Rule Based Policies, smart rules can execute
elastic actions on dynamic clusters, as well as be used in conjunction with any WLDF action.
For example, a smart rule that monitors stuck threads in a cluster can be used to execute an
SMTP action that sends an email to the system administrator.
The smart rules are organized into Cluster Scope Smart Rules and Server Scope Smart Rules.

About the Parameters You Specify for Smart Rules
All smart rules involve the collection of metric values, which is the process of gathering data
needed for monitoring system state and performance.Metrics are exposed to WLDF as
attributes on qualified MBeans. Smart rules cause WLDF to gather values from selected
MBean attributes at a specified sampling rate and retain those values for a specified duration
of time. This allows you to track trends in metric changes in a server or cluster over time.
When you configure a smart rule, you always specify the following parameters:

• sampling rate

• retention window

• threshold value

Note

Sampling rates and retention windows are completely independent of policy
schedules. A policy schedule determines only when a smart rule is evaluated; the
policy schedule does not determine the sampling rate or retention window.

sampling rate

The sampling rate is the frequency with which a metric value is collected. For example, a
sampling rate of 30 seconds means that the value of an MBean attribute is collected every 30
seconds.

Each smart rule has a default sampling rate. When you are configuring a smart rule using
either the WebLogic Remote Console or Fusion Middleware Control, you can accept the
default sampling rate that is provided in the configuration assistant. However, when you
configure a smart rule using WLST, REST, or JMX, you need to explicitly specify the sampling
rate.

The sampling rate is a String value that can be specified using the following syntax:

amount[unit]

In the preceding syntax:

• amount represents an integer.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-1 of A-57

• unit] represents seconds, minutes, or hours. Each can be abbreviated to the first letter.
For example: seconds can be abbreviated to s.

The default sampling rate time unit is seconds.

• You may include a space character between amount and unit.

For example, any of the following can be used to specify 30 seconds:

• "30"

• "30 seconds"

• "30snds"

• "30s"

retention window

The retention window is the period of time during which collected samples are retained in an
internal buffer for evaluation. For example, a retention window of 5 minutes causes the
samples collected during the previous 5 minutes to be retained. As each new sample is
collected, the oldest sample is removed.

Smart rules function by calculating the average value of a particular metric that has been
collected over the period of time corresponding to the retention window. Obtaining average
values allows you to obtain a more representative view of changes, and trends in those
changes, that are occurring in a server, cluster, or operational environment of WebLogic
Server.

The retention window you specify is a String value that uses the same syntax as the sampling
rate:

amount[unit]

The time unit can be seconds, minutes, or hours, and each can be abbreviated. The default
time unit in smart rule retention windows is minutes, which can be abbreviated to m. For
example, any of the following can be used to specify 10 minutes:

• "10"

• "10 minutes"

• "10mts"

• "10m"

threshold value

The threshold value is an arbitrary value against which the average value of all metrics
collected during a retention window is compared. If the average value meets the smart rule's
comparison criteria for the threshold value, the smart rule can be evaluated to true, assuming
all other conditions set in the smart rule are met.

For example, if you want a smart rule to be evaluated as true if the average number of idle
threads in a cluster is greater than or equal to a specific number, you can enter that number as
the threshold value in the ClusterHighIdleThreads smart rule, which monitors a cluster for a
high idle thread count. In this context, the threshold value you specify for this smart rule is
referred to as the high threshold value because the cluster is monitored to measure whether
the average number of idle threads is greater than or equal to that threshold.

By contrast, if you want a smart rule to be evaluated as true if the average free heap in a
cluster falls below a certain amount, you enter that amount as the threshold value in the

Appendix A
About the Parameters You Specify for Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-2 of A-57

ClusterLowHeapFreePercent smart rule, which monitors a cluster for a low free heap. In this
context, this threshold value yo specify for this smart rule is referred to as the low threshold
value because the cluster is monitored to measure whether the average free heap amount is
less than that threshold.

Note that smart rules vary with regard to how the average collected metric value must compare
to the threshold value. Some smart rules require that the average collected value must be
greater than or equal to the threshold; some require that the average must be greater than the
threshold; some require the average to be less than or equal to the threshold; and so on.

Cluster Scope Smart Rules
A cluster scope smart rule is one that is applied to all active nodes in a cluster, and that must
be executed from a policy on the Administration Server.The set of cluster scope smart rules
provided by WLDF are listed and summarized in Table A-2. For each smart rule, Table A-2
identifies the following:

• The specific metric, typically an MBean attribute, that is sampled

• The condition that causes the smart rule to be evaluated to true if, over the course of the
retention window, the number of servers with an average metric value that meets specific
comparison criteria against the threshold value is greater than or equal to a specified
percentage of all servers in the cluster.

Table A-1 Summary or Administration Server Scope Smart Rules

Smart Rule Metric Condition Required for Evaluation to true

ClusterLowThroughput Throughput metric of the
ThreadPoolRuntimeMBean

The average Throughput value is less than the low
threshold value.

ClusterHighProcessCp
uLoadAverage

ProcessCpuLoad value of the
java.lang:type=OperatingSystem
MXBean

The average ProcessCpuLoad value is greater than or
equal to the high threshold value.

ClusterHighThroughput Throughput metric of the
ThreadPoolRuntimeMBean

The average Throughput value is greater than or
equal to the high threshold value.

ClusterLowPendingUse
rRequests

PendingUserRequestCount value of the
ThreadPoolRuntimeMBean

The average PendingUserRequestCount value is
less than the low threshold value.

ClusterHighStuckThrea
ds

StuckThreadCount value of the
ThreadPoolRuntimeMBean

The average StuckThreadCount value is greater than
or equal to the high threshold value.

ClusterLowQueueLengt
h

QueueLength value of the
ThreadPoolRuntimeMBean

The average QueueLength value is less than the low
threshold value.

ClusterHighPendingUs
erRequests

PendingUserRequestCount value of the
ThreadPoolRuntimeMBean

The average PendingUserRequestCount value is
greater than or equal to the high threshold value.

ClusterLowProcessCpu
LoadAverage

ProcessCpuLoad value of the
java.lang:type=OperatingSystem
MXBean

The average ProcessCpuLoad value is less than the
low threshold value.

ClusterHighIdleThreads ExecuteThreadIdleCount value of the
ThreadPoolRuntimeMBean

The average ExecuteThreadIdleCount value is
greater than or equal to the high threshold value.

ClusterLowSystemLoa
dAverage

SystemLoadAverage value of the
java.lang:type=OperatingSystem
MXBean

The average SystemLoadAverage value is less than
the low threshold value.

ClusterHighQueueLeng
th

QueueLength value of the
ThreadPoolRuntimeMBean

The average QueueLength value is greater than or
equal to the high threshold value.

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-3 of A-57

Table A-1 (Cont.) Summary or Administration Server Scope Smart Rules

Smart Rule Metric Condition Required for Evaluation to true

ClusterLowHeapFreeP
ercent

HeapFreePercent value of the
JVMRuntimeMBean

The average HeapFreePercent value is less than the
low threshold value.

ClusterHighSystemLoa
dAverage

SystemLoadAverage value of the
java.lang:type=OperatingSystem
MXBean

The average SystemLoadAverage value is greater
than or equal to the high threshold value.

ClusterHighHeapFreeP
ercent

HeapFreePercent value of the
JVMRuntimeMBean

The average HeapFreePercent value is greater than
or equal to the high threshold value.

ClusterLowSystemCpu
LoadAverage

SystemCpuLoad value of the
java.lang:type=OperatingSystem
MXBean

The average SystemCpuLoad value is less than the
low threshold value.

ClusterLowIdleThreads ExecuteThreadIdleCount value of the
ThreadPoolRuntimeMBean

The average ExecuteThreadIdleCount value is less
than the low threshold value.

ClusterGenericMetricR
ule

Specified MBean attribute value Any metric visible through JMX satisfies the specified
comparison criteria with the threshold value. (This
smart rule is a general form of cluster scope rule.)

ClusterHighSystemCpu
LoadAverage

SystemCpuLoad value of the
java.lang:type=OperatingSystem
MXBean

The average SystemCpuLoad value is greater than or
equal to the high threshold value.

ClusterLowThroughput
The ClusterLowThrougput smart rule measures whether the average throughput in a cluster is
decreasing, as indicated by the average value of the ThreadPoolRuntimeMBean.Throughput
attribute in each Managed Server.You can use this rule to determine whether cluster capacity
can be safely reduced; for example, by executing a scale down action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ThreadPoolRuntimeMBean.Throughput value that satisfies the low threshold comparison
criteria is greater than or equal to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the ThreadPoolRuntimeMBean.Throughput
attribute

• Low Throughput threshold value

• Percentage of servers in the cluster with an average Throughput value that must be less
than the low Throughput threshold value in order for the rule to evaluate to true

Syntax

wls:ClusterLowThroughput("clusterName", "period", "duration", throughputLimit,
percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-4 of A-57

Parameter Description

period Sampling rate for Throughput values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Retention window during which collected samples are retained,
expressed as a String.

• The default time unit is minutes.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

throughputLimit Value established as the low threshold value of the
ThreadPoolRuntimeMBean.Throughput attribute.

percentServersLimit Percentage of servers in the cluster with an average Throughput value
that must be less than the value of the throughputLimit parameter in
order for the smart rule to be evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster

period 30

duration 15

throughputLimit 5

percentServersLimit 75

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterLowThroughput("myCluster","30 seconds","15 minutes",5,75)

If configured with a scale down action, this example smart rule does the following:

1. Samples the value of the Throughput metric from each Managed Server instance in
myCluster every 30 seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires a scale down action if the following condition
evaluates to true:

The average Throughput value, over the last 15 minutes, is less than 5 on at least 75 per
cent of the Managed Servers in the cluster.

ClusterHighProcessCpuLoadAverage
The ClusterHighProcessCpuLoadAverage smart rule measures an increase in system load
across the cluster, as indicated by the average value of the ProcessCpuLoad attribute in each
Managed Server. You can use this rule to determine whether cluster capacity needs to be
increased; for example, by executing a scale up action.
Target: Administration Server

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-5 of A-57

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ProcessCpuLoad value that satisfies the threshold comparison criteria is greater than or equal
to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the operating system's ProcessCpuLoad value

• High ProcessCpuLoad threshold value

• Percentage of servers in the cluster with an average ProcessCpuLoad value that must be
greater than or equal to the high ProcessCpuLoad threshold value in order for the rule to
evaluate to true

Note

The value of the ProcessCpuLoad metric is platform-specific and is not available on all
platforms. The MXBean attribute from which this metric originates is described at
https://docs.oracle.com/javase/8/docs/jre/api/management/
extension/com/sun/management/
OperatingSystemMXBean.html#getProcessCpuLoad--.

Syntax

wls:ClusterHighProcessCpuLoadAverage("clusterName", "period", "duration",
procCpuLoadLimit, percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for ProcessCpuLoad values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Retention window during which collected samples are retained,
expressed as a String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

procCpuLoadLimit Value established as the high threshold value of the ProcessCpuLoad
metric.

percentServersLimit Percentage of servers in the cluster with an average ProcessCpuLoad
value that must be greater than or equal to the value of the
procCpuLoadLimit parameter in order for the smart rule to be
evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-6 of A-57

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster

period 30

duration 10

procCpuLoadLimit 0.8

percentServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterHighProcessCpuLoadAverage("myCluster","30 seconds","10 minutes",0.8,60)

If configured with a scale up action, this smart rule does the following:

1. Samples the value of the ProcessCpuLoad metric from each Managed Server instance in
myCluster every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires a scale up action if the following condition
evaluates to true:

The average ProcessCpuLoad value, over the last 10 minutes, is greater than or equal to
0.8 on at least 60 per cent of the Managed Servers in the cluster.

ClusterHighThroughput
The ClusterHighThroughput smart rule measures an increase in system throughput across
the cluster, as indicated by the average value of the ThreadPoolRuntimeMBean.Throughput
attribute in each Managed Server.You can use this rule to determine whether cluster capacity
needs to be increased; for example, by executing a scale up action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ThreadPoolRuntimeMBean.Throughput value that satisfies the threshold comparison criteria is
greater than or equal to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

• The sampling rate and retention window of the ThreadPoolRuntimeMBean.Throughput
metric

• High Throughput threshold value

• Percentage of servers in the cluster whose average Throughput value during the sampling
period must be greater than or equal to the high Throughput threshold value in order for
the rule to evaluate to true

Syntax

wls:ClusterHighThroughput("clusterName", "period", "duration", throughputLimit,
percentServersLimit)

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-7 of A-57

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for Throughput values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

throughputLimit Value established as the high threshold value of the Throughput
attribute.

percentServersLimit Percentage of servers in the cluster with an average Throughput value
that must be greater than or equal to the value of the throughputLimit
parameter in order for the smart rule to be evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster

period 30

duration 10

throughputLimit 100

percentServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterHighThroughput("myCluster","30 seconds","10 minutes",100,60)

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the Throughput metric from each Managed Server instance in
myCluster every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires a scale up action if the following condition
evaluates to true:

The average Throughput value, over the last 10 minutes, is greater than or equal to 100 on
at least 60 per cent of the Managed Servers in the cluster.

ClusterLowPendingUserRequests
The ClusterLowPendingUserRequests smart rule measures a reduction in pending requests
across the cluster as indicated by the average value of the
ThreadPoolRuntimeMBean.PendingUserRequestCount attribute in each Managed Server.You

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-8 of A-57

can use this rule to determine whether cluster capacity can be reduced; for example, by
executing a scale down action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ThreadPoolRuntimeMBean.PendingUserRequestCount value that satisfies the threshold
comparison criteria is greater than or equal to the specified percentage of all servers in the
cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the
ThreadPoolRuntimeMBean.PendingUserRequestCount metric

• Low PendingUserRequestCount threshold value

• Percentage of servers in the cluster with an average PendingUserRequestCount value that
must be less than the low PendingUserRequestCount threshold value in order for the rule
to evaluate to true

Syntax

wls:ClusterLowPendingUserRequests("clusterName", "period", "duration",
pendingRequestsLimit, percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for PendingUserRequestCount values, expressed as a
String. For example, 30s specifies that this metric is sampled every 30
seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

pendingRequestsLimit Value established as the low threshold value of the
PendingUserRequestCount attribute.

percentServersLimit Percentage of servers in the cluster with an average
PendingUserRequestCount value that must be less than the value of
the pendingRequestsLimit parameter in order for the smart rule to be
evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-9 of A-57

Parameter Value

period 30

duration 10

pendingRequestsLimit 5

percentServersLimit 75

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterLowPendingUserRequests("myCluster","30 seconds","10 minutes",5,75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the PendingUserRequestCount metric from each Managed Server
instance in myCluster every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires a scale down action if the following condition
evaluates to true:

The average PendingUserRequestCount value, over the last 10 minutes, is less than 5 on
at least 75 per cent of the Managed Servers in the cluster.

ClusterHighStuckThreads
The ClusterHighStuckThreads smart rule measures whether the number of stuck threads is
rising and may soon become deadlocked, as indicated by the average value of the
ThreadPoolRuntimeMBean.StuckThreadCount attribute in each Managed Server.You can use
this rule to determine whether cluster capacity needs to be increased; for example, by
executing a scale up action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ThreadPoolRuntimeMBean.StuckThreadCount value that satisfies the threshold comparison
criteria is greater than or equal to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the
ThreadPoolRuntimeMBean.StuckThreadCount attribute

• High StuckThreadCount threshold value

• Percentage of servers in the cluster with an average
ThreadPoolRuntimeMBean.StuckThreadCount value that must be greater than or equal to
the high StuckThreadCount threshold value in order for the rule to evaluate to true

Syntax

wls:ClusterHighStuckThreads("clusterName", "period", "duration", stuckThreadsLimit,
percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-10 of A-57

Parameter Description

period Sampling rate for StuckThreadCount values, expressed as a String.
For example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

stuckThreadsLimit Value established as the high threshold value of the
StuckThreadCount attribute.

percentServersLimit Percentage of servers in the cluster with an average
StuckThreadCount value that must be greater than or equal to the
value of the stuckThreadsLimit parameter in order for the smart rule
to be evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster

period 30

duration 10

stuckThreadsLimit 5

percentServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterHighStuckThreads("myCluster","30 seconds","10 minutes",5,60)

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the StuckThreadCount metric from each Managed Server instance in
myCluster every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires a scale up action if the following condition
evaluates to true:

The average StuckThreadCount value, over the last 10 minutes, is greater than or equal to
5 on at least 60 per cent of the Managed Servers in the cluster.

ClusterLowQueueLength
The ClusterLowQueueLength smart rule measures a decrease in system load across the
cluster, as indicated by the average value of the ThreadPoolRuntimeMBean.QueueLength

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-11 of A-57

attribute in each Managed Server.You can use this rule to determine whether cluster capacity
can be safely reduced; for example, by executing a scale down action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ThreadPoolRuntimeMBean.QueueLength value that satisfies the threshold comparison criteria is
greater than or equal to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the ThreadPoolRuntimeMBean.QueueLength
metric

• Low QueueLength threshold value

• Percentage of servers in the cluster with an average QueueLength value that must be less
than the low QueueLength threshold value in order for the rule to evaluate to true

Syntax

wls:ClusterLowQueueLength("clusterName", "period", "duration", queueLengthLimit,
percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for QueueLength values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

queueLengthLimit Value established as the low threshold value of the QueueLength
attribute.

percentServersLimit Percentage of servers in the cluster with an average QueueLength
value that must be less than the value of the queueLengthLimit
parameter in order for the smart rule to be evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster

period 30

duration 15

queueLengthLimit 5

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-12 of A-57

Parameter Value

percentServersLimit 75

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterLowQueueLength("myCluster","30 seconds","15 minutes",5,75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the QueueLength metric from each Managed Server instance in
myCluster every 30 seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires a scale down action if the following condition
evaluates to true:

The average QueueLength value, over the last 15 minutes, is less than 5 on at least 75 per
cent of the Managed Servers in the cluster.

ClusterHighPendingUserRequests
The ClusterHighPendingUserRequests smart rule measures an increase in system load
across the cluster, as indicated by the average value of the
ThreadPoolRuntimeMBean.PendingUserRequestCount attribute in each Managed Server.You
can use this rule to determine whether cluster capacity needs to be increased; for example, by
executing a scale up action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ThreadPoolRuntimeMBean.PendingUserRequestCount value that satisfies the threshold
comparison criteria is greater than or equal to the specified percentage of all servers in the
cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the
ThreadPoolRuntimeMBean.PendingUserRequestCount metric

• High PendingUserRequestCount threshold value

• Percentage of servers in the cluster with an average PendingUserRequestCount value that
must be greater than or equal to the high PendingUserRequestCount threshold value in
order for the rule to evaluate to true

Syntax

wls:ClusterHighPendingUserRequests("clusterName", "period", "duration",
pendingRequestsLimit, percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-13 of A-57

Parameter Description

period Sampling rate for PendingUserRequestCount values, expressed as a
String. For example, 30s specifies that this metric is sampled every 30
seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

pendingRequestsLimit Value established as the high threshold value of the
PendingUserRequestCount attribute.

percentServersLimit Percentage of servers in the cluster with an average
PendingUserRequestCount value that must be greater than or equal
to the value of the pendingRequestsLimit parameter in order for the
smart rule to be evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster

period 30

duration 10

pendingRequestsLimit 100

percentServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterHighPendingUserRequests("myCluster","30 seconds","10 minutes",100,60)

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the PendingUserRequestCount metric from each Managed Server
instance in myCluster every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires a scale up action if the following condition
evaluates to true:

The average PendingUserRequestCount value, over the last 10 minutes, is greater than or
equal to 100 on at least 60 per cent of the Managed Servers in the cluster.

ClusterLowProcessCpuLoadAverage
The ClusterLowProcessCpuLoadAverage smart rule measures a reduction of system CPU load
across a cluster, as indicated by the average value of the ProcessCpuLoad attribute in each

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-14 of A-57

Managed Server.You can use this rule to determine whether cluster capacity needs to be
decreased; for example, by executing a scale down action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ProcessCpuLoad value that satisfies the threshold comparison criteria is greater than or equal
to the specified percentage of all servers in the cluster.

Note that the value of ProcessCpuLoad is platform specific and is not available on all platforms.

To use this smart rule, specify:

• The sampling rate and retention window for the java.lang:type=OperatingSystem
ProcessCpuLoad metric

• Low ProcessCpuLoad threshold value

• Percentage of servers in the cluster with an average ProcessCpuLoad value that must be
less than the low ProcessCpuLoad threshold value in order for the rule to evaluate to true

Note

The value of the ProcessCpuLoad metric is platform-specific and is not available on all
platforms. The MXBean attribute from which this metric originates is described at
https://docs.oracle.com/javase/8/docs/jre/api/management/
extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad.

Syntax

wls:ClusterLowProcessCpuLoadAverage("clusterName", "period", "duration",
procCpuLoadLimit, percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for ProcessCpuLoad values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

procCpuLoadLimit Value established as the low threshold value of the ProcessCpuLoad
attribute.

percentServersLimit Percentage of servers in the cluster with an average ProcessCpuLoad
value that must be less than the value of the procCpuLoadLimit
parameter in order for the smart rule to be evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-15 of A-57

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster

period 30

duration 15

procCpuLoadLimit 0.2

percentServersLimit 75

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterLowProcessCpuLoadAverage("myCluster","30 seconds","10 minutes",0.2,75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the ProcessCpuLoad metric from each Managed Server instance in
myCluster every 30 seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires a scale down action if the following condition
evaluates to true:

The average ProcessCpuLoad value, over the last 15 minutes, is less than 0.2 on at least
75 per cent of the Managed Servers in the cluster.

ClusterHighIdleThreads
The ClusterHighIdleThreads smart rule measures an increase in the number of idle threads
in a cluster, as indicated by the average value of the
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount attribute in each Managed Server.You
can use this rule to determine whether cluster capacity can be safely reduced; for example, by
executing a scale down action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount value that satisfies the threshold
comparison criteria is greater than or equal to the specified percentage of servers in the
cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount metric

• High ExecuteThreadIdleCount threshold value

• Percentage of Managed Servers in the cluster with an average ExecuteThreadIdleCount
value that must be greater than or equal to the high ExecuteThreadIdleCount threshold
value in order for the rule to evaluate to true

Syntax

wls:ClusterHighIdleThreads("clusterName", "period", "duration", idleThreadsLimit,
percentServersLimit)

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-16 of A-57

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for ExecuteThreadIdleCount values, expressed as a
String. For example, 30s specifies that this metric is sampled every 30
seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

idleThreadsLimit Value established as the high threshold value of the
ExecuteThreadIdleCount attribute.

percentServersLimit Percentage of servers in the cluster with an average
ExecuteThreadIdleCount value that must be greater than or equal to
the value of the idleThreadsLimit parameter in order for the smart
rule to be evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster

period 30

duration 10

idleThreadsLimit 20

percentServersLimit 75

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterHighIdleThreads("myCluster","30 seconds","10 minutes",20,75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the ExecuteThreadIdleCount metric from each Managed Server
instance in myCluster every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires a scale down action if the following condition
evaluates to true:

The average ExecuteThreadIdleCount value, over the last 10 minutes, is greater than or
equal to 20 on at least 75 per cent of the Managed Servers in the cluster.

ClusterLowSystemLoadAverage
The ClusterLowSystemLoadAverage smart rule measures a decrease in system load across a
cluster, as indicated by the average value of the SystemLoadAverage attribute in each Managed

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-17 of A-57

Server.You can use this rule to determine whether cluster capacity needs to be decreased; for
example, by executing a scale down action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
SystemLoadAverage value that satisfies the threshold comparison criteria is equal to or greater
than the specified percentage of all servers in the cluster.

Note that the value of SystemLoadAverage is system dependent.

To use this smart rule, specify:

• The sampling rate and retention window for the java.lang:type=OperatingSystem
SystemLoadAverage metric

• Low SystemLoadAverage threshold value

• Percentage of Managed Servers in the cluster with an average SystemLoadAverage value
that must be less than the low SystemLoadAverage threshold value in order for the rule to
evaluate to true

Note

The value of the SystemLoadAverage metric is platform-specific and is not available on
all platforms. The MXBean attribute from which this metric originates is described at
http://docs.oracle.com/javase/8/docs/api/java/lang/management/
OperatingSystemMXBean.html#getSystemLoadAverage--.

Syntax

wls:ClusterLowSystemLoadAverage("clusterName", "period", "duration", loadLimit,
percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for SystemLoadAverage values, expressed as a String.
For example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

loadLimit Value established as the low threshold value of the
SystemLoadAverage attribute.

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-18 of A-57

http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--
http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--

Parameter Description

percentServersLimit Percentage of servers in the cluster with an average
SystemLoadAverage value that must be less than the value of the
loadLimit parameter in order for the smart rule to be evaluated as
true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster

period 30

duration 15

loadLimit 0.2

percentServersLimit 75

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterLowSystemLoadAverage("myCluster","30 seconds","15 minutes",0.2,75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the SystemLoadAverage metric from each Managed Server instance
in myCluster every 30 seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires a scale down action if the following condition
evaluates to true:

The average SystemLoadAverage value, over the last 15 minutes, is less than 0.2 on at
least 75 per cent of the Managed Servers in the cluster.

ClusterHighQueueLength
The ClusterHighQueueLength smart rule measures an increase in system load across the
cluster, as indicated by the average value of the ThreadPoolRuntimeMBean.QueueLength
attribute in each Managed Server.You can use this rule to determine whether the cluster
capacity needs to be increased; for example, by executing a scale up action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ThreadPoolRuntimeMBean.QueueLength value that satisfies the threshold comparison criteria is
greater than or equal to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the ThreadPoolRuntimeMBean.QueueLength
metric

• High QueueLength threshold value

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-19 of A-57

• Percentage of Managed Servers in the cluster with an average QueueLength value that
must be greater than or equal to the high QueueLength threshold value in order for the rule
to evaluate to true

Syntax

wls:ClusterHighQueueLength("clusterName", "period", "duration", queueLengthLimit,
percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for QueueLength values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

queueLengthLimit Value established as the high threshold value of the QueueLength
attribute.

percentServersLimit Percentage of servers in the cluster with an average QueueLength
value that must be greater than or equal to the value of the
queueLengthLimit parameter in order for the smart rule to be
evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster

period 30

duration 10

queueLengthLimit 100

percentServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterHighQueueLength("myCluster","30 seconds","10 minutes",100,60)

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the QueueLength metric from each Managed Server instance in
myCluster every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires a scale up action if the following condition
evaluates to true:

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-20 of A-57

The average QueueLength value, over the last 10 minutes, is greater than or equal to 100
on at least 60 per cent of the Managed Servers in the cluster.

ClusterLowHeapFreePercent
The ClusterLowHeapFreePercent smart rule measures an increase in heap stress across a
cluster, as indicated by the average value of the JVMRuntimeMBean.HeapFreePercent attribute
in each Managed Server.You can use this rule to determine whether the cluster capacity needs
to be increased; for example, by executing a scale up action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
JVMRuntimeMBean.HeapFreePercent value that satisfies the threshold comparison criteria is
greater than or equal to a specific percentage of all servers in the cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the JVMRuntimeMBean.HeapFreePercent metric

• Low HeapFreePercent threshold value

• Percentage of Managed Servers in the cluster with an average HeapFreePercent value
during the sampling period that must be less than the low HeapFreePercent threshold
value in order for the rule to evaluate to true

Syntax

wls:ClusterLowHeapFreePercent("clusterName", "period", "duration", percentFreeLimit,
percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for HeapFreePercent values, expressed as a String.
For example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

percentFreeLimit Value established as the low threshold value of the HeapFreePercent
attribute.

percentServersLimit Percentage of servers in the cluster with an average HeapFreePercent
value that must be less than the value of the percentFreeLimit
parameter in order for the smart rule to be evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-21 of A-57

Parameter Value

clusterName myCluster

period 30

duration 10

percentFreeLimit 20

percentServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterLowHeapFreePercent("myCluster","30 seconds","10 minutes",20,60)

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the HeapFreePercent metric from each Managed Server instance in
myCluster every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires a scale up action if the following condition
evaluates to true:

The average HeapFreePercent value, over the last 10 minutes, is less than 20 on at least
60 per cent of the Managed Servers in the cluster.

ClusterHighSystemLoadAverage
The ClusterHighSystemLoadAverage smart rule measures an increase on system load across
a cluster, as indicated by the average value of the SystemLoadAverage attribute in each
Managed Server.You can use this rule to determine if cluster capacity needs to be increased;
for example, by executing a scale up action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
java.lang:type=OperatingSystem SystemLoadAverage value that satisfies the threshold
comparison criteria is greater than or equal to the specified percentage of all servers in the
cluster.

Note that the value of the SystemLoadAverage is system dependent.

To use this smart rule, specify:

• The sampling rate and retention window for the java.lang:type=OperatingSystem
SystemLoadAverage metric

• High SystemLoadAverage threshold value

• Percentage of Managed Servers in the cluster with an average SystemLoadAverage value
that must be greater than or equal to the high SystemLoadAverage threshold value in order
for the rule to evaluate to true

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-22 of A-57

Note

The value of the SystemLoadAverage metric is platform-specific and is not available on
all platforms. The MXBean attribute from which this metric originates is described at
http://docs.oracle.com/javase/8/docs/api/java/lang/management/
OperatingSystemMXBean.html#getSystemLoadAverage--.

Syntax

wls:ClusterHighSystemLoadAverage("clusterName", "period", "duration", loadLimit,
percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for SystemLoadAverage values, expressed as a String.
For example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

loadLimit Value established as the high threshold value of the
SystemLoadAverage attribute.

percentServersLimit Percentage of servers in the cluster with an average
SystemLoadAverage value that must be greater than or equal to the
value of the loadLimit parameter in order for the smart rule to be
evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster

period 30

duration 5

loadLimit 0.8

percentServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterHighSystemLoadAverage("myCluster","30 seconds","5 minutes",0.8,60)

When configured with a scale up action, this smart rule does the following:

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-23 of A-57

http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--
http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--

1. Samples the value of the SystemLoadAverage metric from each Managed Server instance
in myCluster every 30 seconds over a retention window of 5 minutes.

2. At the end of the retention window, fires a scale up action if the following condition
evaluates to true:

The average SystemLoadAverage value, over the last 5 minutes, is greater than or equal to
0.8 on at least 60 per cent of the Managed Servers in the cluster.

ClusterHighHeapFreePercent
The ClusterHighHeapFreePercent smart rule measures a reduction in heap stress across a
dynamic cluster, as indicated by the average value of the JVMRuntimeMBean.HeapFreePercent
attribute in each Managed Server.You can use this rule to determine if cluster capacity can be
reduced; for example, by executing a scale down action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average JVM free
heap percentage value that satisfies the threshold comparison criteria is greater than or equal
to a specified percentage of all servers in the cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the JVM free heap percentage metric

• High JVM free heap threshold value

• Percentage of Managed Servers in the cluster with an average JVM free heap value that
must be greater than or equal to the high JVM free heap threshold value in order for the
rule to evaluate to true

Syntax

wls:ClusterHighHeapFreePercent("clusterName", "period", "duration", percentFreeLimit,
percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for JVM free heap percentage values, expressed as a
String. For example, 30s specifies that this metric is sampled every 30
seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

percentFreeLimit Value established as the high threshold value of the JVM free heap
percentage.

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-24 of A-57

Parameter Description

percentServersLimit Percentage of servers in the cluster with an average JVM free heap
percentage that must be greater than or equal to the
percentFreeLimit parameter in order for the smart rule to be
evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster

period 30

duration 5

percentFreeLimit 60

percentServersLimit 75

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterHighHeapFreePercent("myCluster","30 seconds","5 minutes",60,75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the JVM free heap percentage metric from each Managed Server
instance in myCluster every 30 seconds over a retention window of 5 minutes.

2. At the end of the retention window, fires a scale down action if the following condition
evaluates to true:

The average JVM free heap percentage value, over the last 5 minutes, is greater than or
equal to 60 on at least 75 per cent of the Managed Servers in the cluster.

ClusterLowSystemCpuLoadAverage
The ClusterLowSystemCpuLoadAverage smart rule measures a reduction of the system CPU
load average across a cluster, as indicated by the average value of the SystemCpuLoad
attribute in each Managed Server.You can use this rule to determine whether cluster capacity
needs to be decreased; for example, by executing a scale down action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
java.lang:type=OperatingSystem SystemCpuLoad value satisfies the threshold comparison
criteria is greater than or equal to a specified percentage of all servers in the cluster.

Note that the value of the SystemCpuLoad metric is platform-specific and is not available on all
platforms.

To use this smart rule, specify:

• The sampling rate and retention window for the java.lang:type=OperatingSystem
SystemCpuLoad metric

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-25 of A-57

• Low SystemCpuLoad threshold value

• Percentage of Managed Servers in the cluster with an average SystemCpuLoad value that
must be below the low SystemCpuLoad threshold value in order for the rule to evaluate to
true

Note

The value of the SystemCpuLoad metric is platform-specific and is not available on all
platforms. The MXBean attribute from which this metric originates is described at
https://docs.oracle.com/javase/8/docs/jre/api/management/
extension/com/sun/management/
OperatingSystemMXBean.html#getSystemCpuLoad--.

Syntax

wls:ClusterLowSystemCpuLoadAverage("clusterName", "period", "duration",
systemCpuLoadLimit, percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for SystemCpuLoad values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

systemCpuLoadLimit Value established as the low threshold value of the SystemCpuLoad
attribute.

percentServersLimit Percentage of servers in the cluster with an average SystemCpuLoad
value that must be less than the value of the systemCpuLoadLimit
parameter in order for the smart rule to be evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster

period 30

duration 15

systemCpuLoadLimit 0.2

percentServersLimit 75

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-26 of A-57

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterLowSystemCpuLoadAverage("myCluster","30 seconds","15 minutes",0.2,75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the SystemCpuLoad metric from each Managed Server instance in
myCluster every 30 seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires a scale down action if the following condition
evaluates to true:

The average SystemCpuLoad value, over the last 15 minutes, is less than 0.2 on at least 75
per cent of the Managed Servers in the cluster.

ClusterLowIdleThreads
The ClusterLowIdleThreads smart rule measures an increase in load stress across the
cluster, as indicated by the average value of the
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount attribute in each Managed Server.You
can use this rule to determine whether cluster capacity needs to be increased; for example, by
executing a scale up action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount value that satisfies the threshold
comparison criteria is greater than or equal to a specified percentage of all servers in the
cluster.

To use this smart rule, specify:

• The sampling rate and retention window for the
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount metric

• Low ExecuteThreadIdleCount threshold value

• Percentage of Managed Servers in the cluster whose average ExecuteThreadIdleCount
value is less than the low ExecuteThreadIdleCount threshold value in order for the rule to
evaluate to true

Syntax

wls:ClusterLowIdleThreads("clusterName", "period", "duration", idleThreadsLimit",
percentServerLimit")

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for ExecuteThreadIdleCount values, expressed as a
String. For example, 30s specifies that this metric is sampled every 30
seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-27 of A-57

Parameter Description

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is minutes.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

idleThreadsLimit Value established as the low ExecuteThreadIdleCount threshold
value.

percentServersLimit Percentage of servers in the cluster with an average
ExecuteThreadIdleCount value that must be less than the value of
the idleThreadsLimit parameter in order for the smart rule to be
evaluated as true.

This parameter is expressed as a float.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster

period 30

duration 10

idleThreadsLimit 5

percentServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterLowIdleThreads("myCluster","30 seconds","10 minutes",5,60)

When configured with a scale up action, this example smart rule:

1. Samples the value of the ExecuteThreadIdleCount metric from each Managed Server
instance in myCluster every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires a scale up action if the following condition
evaluates to true:

The average ExecuteThreadIdleCount value, over the last 10 minutes, is less than 5 on at
least 60 per cent of the Managed Servers in the cluster.

ClusterGenericMetricRule
The ClusterGenericMetricRule smart rule is typically used to observe trends in JMX metrics
that are published through the Server Runtime MBean Server and that are not provided
through the other cluster scope smart rules.

Target: Administration Server

Description

This smart rule allows you to view the average value of any metric obtained through JMX
within a specific time interval, and compare that average value to a specified threshold value

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-28 of A-57

by using a specified comparison operator for each Managed Server in the cluster. If the
percentage of servers matching the comparison criteria meets or exceeds the specified limit,
the overall condition of the rule is satisfied and this rule returns true.

To use this smart rule, specify:

• Dynamic cluster name

• A valid JMX ObjectName or ObjectName pattern

• An attribute name, or attribute expression (as an EL expression), where the expression is
an attribute expression relative to each MBean.

For example, if the MBean is the ServerRuntimeMBean, 'OpenSocketsCurrentCount'
obtains the value of the ServerRuntimeMBean.OpenSocketsCurrentCount attribute. In
contrast, 'HealthState.State' accesses the State value of the HealthState child object.

• A valid boolean comparison operator

• A threshold value against which the selected attribute is compared

• Percentage of Managed Servers in the cluster whose average attribute value during the
sampling period must meet the threshold value in order for the rule to evaluate to true

• The sampling rate and retention window for the metric on each Managed Server instance
in the cluster

• Period of time during which samples are collected

Syntax

wls:ClusterGenericMetricRule("clusterName", "instancePattern", "attribute", "operation",
thresholdValue, percentServersLimit, "period", "duration")

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

instancePattern A valid JMX ObjectName or ObjectName pattern

attribute A Java EL expression that retrieves a value on each MBean instance
that matches instancePattern, where the expression is an attribute
expression relative to each MBean.

For example, if the MBean is the ServerRuntimeMBean, the expression
'OpenSocketsCurrentCount' obtains the value of the
OpenSocketsCurrentCount attribute of the ServerRuntimeMBean.
By contrast, the expression 'HealthState.State' obtains the State
value of the HealthState child object of that MBean.

operation A boolean comparison operator: <, <=, ==, >=, or >.

thresholdValue Threshold value against which the value of the attribute parameter is
compared.

percentServersLimit Percentage of servers in the cluster with an average attribute value that
must satisfy the comparison criteria with the value of the
thresholdValue parameter in order for the smart rule to be evaluated
as true.

This parameter is expressed as a float value between 0.0 and 100.0

period Sampling rate for metric values, expressed as a String. For example,
30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-29 of A-57

Parameter Description

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

clusterName myCluster

instancePattern java.lang:type=OperatingSystem

attribute ProcessCpuLoad

operation >=

thresholdValue 0.9

percentServersLimit 75

period 30

duration 10

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterGenericMetricRule("myCluster","java.lang:type=OperatingSystem","ProcessCpuLoad
",">=",0.9,75,"30 seconds","10 minutes")

This example smart rule:

1. Samples the value of the ProcessCpuLoad metric from each Managed Server instance in
myCluster every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, this smart rule evaluates to true in the following
condition:

The average value of ProcessCpuLoad on the OperatingSystemMXBean, over the last 10
minutes, is greater than or equal to 0.9 on at least 75 per cent of the Managed Servers in
the cluster.

ClusterHighSystemCpuLoadAverage
The ClusterHighSystemCpuLoadAverage smart rule measures an increase on system load
across the cluster, as indicated by the average value of the operating system SystemCpuLoad
attribute in each Managed Server.You use this rule to determine whether cluster capacity
needs to be increased; for example, by executing a scale up action.
Target: Administration Server

Description

This smart rule evaluates to true if the number of Managed Servers with an average
java.lang:type=OperatingSystem SystemCpuLoad value that satisfies the threshold
comparison criteria is greater than or equal to a specified percentage of all servers in the
cluster.

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-30 of A-57

Note that the value of SystemCpuLoad is platform-specific and is not available on all platforms.

To use this smart rule, specify:

• The sampling rate and retention window for the java.lang:type=OperatingSystem
SystemCpuLoad metric

• High SystemCpuLoad threshold value

• Percentage of Managed Servers in the cluster with an average SystemCpuLoad value that
is greater than or equal to the high SystemCpuLoad threshold value in order for the rule to
evaluate to true

Note

The value of the SystemCpuLoad metric is platform-specific and is not available on all
platforms. The MXBean attribute from which this metric originates is described at
https://docs.oracle.com/javase/8/docs/jre/api/management/
extension/com/sun/management/
OperatingSystemMXBean.html#getSystemCpuLoad--.

Syntax

wls:ClusterHighSystemCpuLoadAverage("clusterName", "period", "duration",
systemCpuLoadLimit, percentServersLimit)

Parameter Description

clusterName Name of target dynamic cluster, expressed as a String.

period Sampling rate for SystemCpuLoad values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

systemCpuLoadLimit Value established as the high threshold value of the SystemCpuLoad
attribute.

percentServersLimit Percentage of servers in the cluster with an average SystemCpuLoad
value that must be greater than or equal to the value of the
systemCpuLoadLimit parameter in order for the smart rule to be
evaluated as true.

This parameter is expressed as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Appendix A
Cluster Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-31 of A-57

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--

Parameter Value

clusterName myCluster

period 30

duration 5

systemCpuLoadLimit 0.8

percentServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ClusterHighSystemCpuLoadAverage("myCluster","30 seconds","5 minutes",0.8,60)

When configured with a scale up action, this example smart rule:

1. Samples the value of the SystemCpuLoad metric from each Managed Server instance in
myCluster every 30 seconds over a retention window of 5 minutes.

2. At the end of the retention window, fires a scale up action if the following condition
evaluates to true:

The average SystemCpuLoad value, over the last 5 minutes, is greater than or equal to 0.8
on at least 60 per cent of the Managed Servers in the cluster.

Server Scope Smart Rules
A server scope smart rule is one that is applied only to the local WebLogic Server instance on
which the policies associated with that smart rule are run. You can execute policies containing
server scope smart rules on the Administration Server or any individual Managed Server in the
domain.The set of server scope smart rules packaged with the WebLogic Diagnostics
Framework (WLDF) are listed and summarized in Table A-2.

Table A-2 Summary of Managed Server Scope Smart Rules

After the retention window, the
following smart rule . . .

. . . returns true if . . .

ServerLowIdleThreads The average
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount
value on the local server is equal to or less than the low
threshold value.

ServerHighThroughput The average ThreadPoolRuntimeMBean.Throughput
value on the local server is greater than or equal to the
high threshold value.

ServerGenericMetricRule The average value of a metric visible through JMX within
the local JVM satisfies the comparison criteria with the
threshold value.

ServerLowPendingUserRequests The average
ThreadPoolRuntimeMBean.PendingUserRequestCoun
t value on the local server is less than the low threshold
value.

ServerLowProcessCpuLoadAverage The average value of the ProcessCpuLoad metric of the
java.lang:type=OperatingSystem MXBean on the
local server is less than the low threshold value.

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-32 of A-57

Table A-2 (Cont.) Summary of Managed Server Scope Smart Rules

After the retention window, the
following smart rule . . .

. . . returns true if . . .

ServerHighSystemLoadAverage The average value of the SystemLoadAverage metric
from the java.lang:type=OperatingSystem MXBean
on the local server is greater than or equal to the high
threshold value.

ServerLowQueueLength The average ThreadPoolRuntimeMBean.QueueLength
value on the local server is less than the low threshold
value.

ServerLowThroughput The average ThreadPoolRuntimeMBean.Throughput
value on the local server is less than the low threshold
value.

ServerHighQueueLength The average ThreadPoolRuntimeMBean.QueueLength
value on the local server is greater than or equal to the
high threshold value.

ServerHighSystemCpuLoadAverage The average SystemCpuLoad attribute of the
java.lang:type=OperatingSystem MXBean on the
local server is greater than or equal to the high threshold
value.

ServerHighPendingUserRequests The average
ThreadPoolRuntimeMBean.PendingUserRequestCoun
t value on the local server is greater than or equal to the
high threshold value.

ServerLowSystemCpuLoadAverage The average SystemCpuLoad attribute of the
java.lang:type=OperatingSystem MXBean on the
local server is less than the low threshold value.

ServerHighHeapFreePercent The average percentage of free heap on the local server is
greater than or equal to the high threshold value.

ServerHighStuckThreads The average
ThreadPoolRuntimeMBean.StuckThreadCount value
on the local server is greater than or equal to high
threshold value.

ServerHighProcessCpuLoadAverage The average ProcessCpuLoad value of the
java.lang:type=OperatingSystem MXBean on the
local server is greater than or equal to the high threshold
value.

ServerLowSystemLoadAverage The average SystemLoadAverage value of the
java.lang:type=OperatingSystem MXBean on the
local server is less than the low threshold value.

ServerLowHeapFreePercent The average percentage of free heap on the local server is
less than the low threshold value.

ServerHighIdleThreads The average
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount
value on the local server is greater than or equal to the
high threshold value.

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-33 of A-57

ServerLowIdleThreads
The ServerLowIdleThreads smart rule detects if the average number of idle threads is below
the specified threshold within the local server in which the rule is running, as indicated by the
average value of the ThreadPoolRuntimeMBean.ExecuteThreadIdleCount attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This smart rule returns true if the average value of the
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount attribute is equal to or less than the
specified threshold value.

To use this smart rule, specify:

• The sampling rate and retention window for the
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount metric

• Low ExecuteThreadIdleCount threshold value

Syntax

wls:ServerLowIdleThreads("period", "duration", idleThreadsLimit)

Parameter Description

period Sampling rate for ExecuteThreadIdleCount values, expressed as a
String. For example, 30s specifies that this metric is sampled every 30
seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

idleThreadsLimit Value established as the low threshold value of the
ExecuteThreadIdleCount attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30

duration 5

idleThreadsLimit 0.8

The smart rule that uses the preceding parameters is expressed as follows:

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-34 of A-57

wls:ServerLowIdleThreads("30 seconds","10 minutes",5)

This example smart rule:

1. Samples the value of the ExecuteThreadIdleCount metric from the local server instance
every 30 seconds over a retention window of 5 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

The average ExecuteThreadIdleCount value, over the last 5 minutes, is less than or equal
to 0.8 on this server instance.

ServerHighThroughput
The ServerHighThroughput smart rule determines whether an increase in throughput exists
within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This smart rule returns true if the average value of the ThreadPoolRuntimeMBean.Throughput
attribute over the specified retention window is greater than or equal to the high threshold
value.

To use this smart rule, specify:

• The sampling rate and retention window of the ThreadPoolRuntimeMBean.Throughput
attribute.

• High Throughput threshold value

Syntax

wls:ServerHighThroughput("period", "duration", throughputLimit)

Parameter Description

period Sampling rate for Throughput values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

throughputLimit Value established as the high threshold value of the Throughput
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-35 of A-57

Parameter Value

period 30

duration 10

throughputLimit 100

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerHighThroughput("30 seconds","10 minutes",100)

This example smart rule:

1. Samples the value of the Throughput metric from the local server instance every 30
seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

The average Throughput value, over the last 10 minutes, is greater than or equal to 100 on
this server instance.

ServerGenericMetricRule
The ServerGenericMetricRule smart rule is a general server scope smart rule that you can
use to observe trends of any JMX metric that is published through the Server Runtime MBean
Server and that is not provided by the other server scope smart rules.This smart rule allows
you to collect the average value of the metric across a recent time interval and compare it to a
threshold value using a specified comparison operator.
You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This smart rule returns true if the average value of the metric meets or exceeds the specified
threshold value.

To use this smart rule, specify:

• A valid JMX ObjectName or ObjectName pattern

• A Java EL expression that retrieves a value on each matching MBean instance, where the
expression is an attribute expression relative to each MBean.

• A boolean comparison operator using the specified comparison operator

• A threshold value against which the selected attribute is compared

• The sampling rate and retention window of the metric.

Syntax

wls:ServerGenericMetricRule("instancePattern", "attribute", "operation", thresholdValue,
"period", "duration")

Parameter Description

instancePattern A valid JMX ObjectName or ObjectName pattern

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-36 of A-57

Parameter Description

attribute A Java EL expression that retrieves a value on each MBean instance
that matches instancePattern, where the expression is an attribute
expression relative to each MBean.

For example, if the MBean is the ServerRuntimeMBean, the expression
'OpenSocketsCurrentCount' obtains the value of the
OpenSocketsCurrentCount attribute of the ServerRuntimeMBean.
By contrast, the expression 'HealthState.State' obtains the State
value of the HealthState child object of that MBean.

operation A boolean comparison operator: <, <=, ==, >=, or >.

thresholdValue A threshold value with which to compare the selected attribute using the
specified comparison operator.

period Sampling rate for metric values, expressed as a String. For example,
30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

instancePattern java.lang:type=OperatingSystem

attribute ProcessCpuLoad

operation >=

thresholdValue 0.9

period 30

duration 10

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerGenericMetricRule("java.lang:type=OperatingSystem","ProcessCpuLoad",">=",0.9,"3
0 seconds","10 minutes")

The smart rule:

1. Samples the value of the ProcessCpuLoad metric on the targeted server instance every 30
seconds over a retention window of 10 minutes.

2. At the end of the retention window, this smart rule evaluates to true in the following
condition:

The average value of ProcessCpuLoad on the OperatingSystemMXBean, over the last 10
minutes, is greater than or equal to 0.9 on this server instance.

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-37 of A-57

ServerLowPendingUserRequests
The ServerLowPendingUserRequests smart rule determines whether the average number of
pending user requests within the local server in which the rule is running, as indicated by the
value of the ThreadPoolRuntimeMBean.PendingUserRequestCount attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This smart rule returns true if the average value of the
ThreadPoolRuntimeMBean.PendingUserRequestCount attribute over the specified retention
window is less than the low threshold value.

To use this smart rule, specify:

• The sampling rate and retention window of the
ThreadPoolRuntimeMBean.PendingUserRequestCount attribute.

• Low PendingUserRequestCount threshold value

Syntax

wls:ServerLowPendingUserRequests("period", "duration", pendingRequestsLimit)

Parameter Description

period Sampling rate for PendingUserRequestCount values, expressed as a
String. For example, 30s specifies that this metric is sampled every 30
seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

pendingRequestsLimit Value established as the low threshold value of the
PendingUserRequestCount attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30

duration 15

pendingRequestsLimit 5

The smart rule that uses the preceding parameters is expressed as follows:

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-38 of A-57

wls:ServerLowPendingUserRequests("30 seconds","15 minutes",5)

This example smart rule:

1. Samples the value of the PendingUserRequestCount metric from the local server instance
every 30 seconds over a retention window of 15 minutes.

2. At the end of the retention window, evaluates to true if the following condition exists:

The average PendingUserRequestCount value, over the last 15 minutes, is less than 5 on
this server instance.

ServerLowProcessCpuLoadAverage
The ServerLowProcessCpuLoadAverage smart rule determines whether a reduction exists in the
average system load within the local server instance in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average value of the ProcessCpuLoad metric of the
java.lang:type=OperatingSystem MXBean over the specified time interval is less than a
specified threshold value.

Note

The value of the ProcessCpuLoad metric is platform-specific and is not available on all
platforms. The MXBean attribute from which this metric originates is described at
https://docs.oracle.com/javase/8/docs/jre/api/management/
extension/com/sun/management/
OperatingSystemMXBean.html#getProcessCpuLoad--.

To use this smart rule, specify:

• The sampling rate and retention window of the ProcessCpuLoad attribute.

• Low ProcessCpuLoad threshold value

Syntax

wls:ServerLowProcessCpuLoadAverage("period", "duration", processCpuLoadLimit)

Parameter Description

period Sampling rate for ProcessCpuLoad values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-39 of A-57

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--

Parameter Description

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

processCpuLoadLimit Value established as the low threshold value of the ProcessCpuLoad
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30

duration 15

processCpuLoadLimit 0.2

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerLowProcessCpuLoadAverage("30 seconds","15 minutes",0.2)

This example smart rule:

1. Samples the value of the ProcessCpuLoad metric from the local server instance every 30
seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

The average ProcessCpuLoad value, over the last 15 minutes, is less than 0.2 on this
server instance.

ServerHighSystemLoadAverage
The ServerHighSystemLoadAverage smart rule determines whether a reduction exists on the
average system load within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average value of the SystemLoadAverage metric from the
java.lang:type=OperatingSystem MXBean on the local server instance over specified interval
is greater than or equal to a specific high threshold value.

To use this smart rule, specify:

• The sampling rate and retention window of the SystemLoadAverage attribute.

• High SystemLoadAverage threshold value

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-40 of A-57

Note

The value of the SystemLoadAverage metric is platform-specific and is not available on
all platforms. The MXBean attribute from which this metric originates is described at
http://docs.oracle.com/javase/8/docs/api/java/lang/management/
OperatingSystemMXBean.html#getSystemLoadAverage--.

Syntax

wls:ServerHighSystemLoadAverage("period", "duration", loadLimit)

Parameter Description

period Sampling rate for SystemLoadAverage values, expressed as a String.
For example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

loadLimit Value established as the high threshold value of the
SystemLoadAverage attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30

duration 5

loadLimit 0.8

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerHighSystemLoadAverage("30 seconds","5 minutes",0.8)

This example smart rule:

1. Samples the value of the SystemLoadAverage metric on the local server instance every 30
seconds over a retention window of 5 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

The average SystemLoadAverage value, over the last 5 minutes, is greater than or equal to
0.8 collected on this server instance.

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-41 of A-57

http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--
http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--

ServerLowQueueLength
The ServerLowQueueLength smart rule determines whether a reduction exists in the average
thread pool queue length within the local server in which the rule is running, as indicated by the
value of the ThreadPoolRuntimeMBean.QueueLength metric.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average value of the ThreadPoolRuntimeMBean.QueueLength
attribute on the local server instance over specified interval is less than a specific low threshold
value.

To use this smart rule, specify:

• The sampling rate and retention window of the ThreadPoolRuntimeMBean.QueueLength
attribute.

• Low QueueLength threshold value

Syntax

wls:ServerLowQueueLength("period", "duration", queueLengthLimit)

Parameter Description

period Sampling rate for QueueLength values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

queueLengthLimit Value established as the low threshold value of the QueueLength
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30

duration 15

queueLengthLimit 5

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerLowQueueLength("30 seconds","15 minutes",5)

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-42 of A-57

This example smart rule:

1. Samples the value of the QueueLength metric from the local server instance every 30
seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

The average QueueLength value, over the last 15 minutes, is less than 5 on this server
instance.

ServerLowThroughput
The ServerLowThroughput smart rule determines whether a decrease exists in the average
throughput within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average value of the ThreadPoolRuntimeMBean.Throughput
attribute on the local server over the specified interval is less than the specified low threshold
value.

To use this smart rule, specify:

• The sampling rate and retention window of the ThreadPoolRuntimeMBean.Throughput
attribute.

• Low Throughput threshold value

Syntax

wls:ServerLowThroughput("period", "duration", throughputLimit)

Parameter Description

period Sampling rate for Throughput values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

throughputLimit Value established as the low threshold value of the Throughput
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-43 of A-57

Parameter Value

period 30

duration 15

idleThreadsLimit 5

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerLowThroughput("30 seconds","15 minutes",5)

This example smart rule:

1. Samples the value of the Throughput metric from the local server instance every 30
seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

The average Throughput value, over the last 15 minutes, is less than 5 on this server
instance.

ServerHighQueueLength
The ServerHighQueueLength smart rule determines whether an increase exists in the average
thread pool queue length within the local server in which the rule is running, as indicated by the
value of the ThreadPoolRuntimeMBean.QueueLength attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average value of the ThreadPoolRuntimeMBean.QueueLength
attribute over a specific time interval is greater than or equal to a specific high threshold value.

To use this smart rule, specify:

• The sampling rate and retention window of the ThreadPoolRuntimeMBean.QueueLength
attribute.

• High QueueLength threshold value

Syntax

wls:ServerHighQueueLength("period", "duration", queueLengthLimit)

Parameter Description

period Sampling rate for QueueLength values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-44 of A-57

Parameter Description

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

queueLengthLimit Value established as the high threshold value of the QueueLength
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30

duration 10

queueLengthLimit 100

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerHighQueueLength("30 seconds","10 minutes",100)

This example smart rule:

1. Samples the value of the QueueLength metric from the local server instance every 30
seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

The average QueueLength value, over the last 10 minutes, is greater than or equal to 100
on this server instance.

ServerHighSystemCpuLoadAverage
The ServerHighSystemCpuLoadAverage smart rule determines whether an increase exists in
the average system CPU load within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average value of the SystemCpuLoad attribute of the
java.lang:type=OperatingSystem MXBean over a specific time interval is greater than or
equal to a specific high threshold.

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-45 of A-57

Note

The value of the SystemCpuLoad metric is platform-specific and is not available on all
platforms. The MXBean attribute from which this metric originates is described at
https://docs.oracle.com/javase/8/docs/jre/api/management/
extension/com/sun/management/
OperatingSystemMXBean.html#getSystemCpuLoad--.

To use this smart rule, specify:

• The sampling rate and retention window of the SystemCpuLoad attribute.

• High SystemCpuLoad threshold value

Syntax

wls:ServerHighSystemCpuLoadAverage("period", "duration", systemCpuLoadLimit)

Parameter Description

period Sampling rate for SystemCpuLoad values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

systemCpuLoadLimit Value established as the high threshold value of the SystemCpuLoad
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30

duration 10

systemCpuLoadLimit 0.8

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerHighSystemCpuLoadAverage("30 seconds","10 minutes",0.8)

This example smart rule:

1. Samples the value of the SystemCpuLoad metric from the local server instance every 30
seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-46 of A-57

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--

The average SystemCpuLoad value, over the last 10 minutes, is greater than or equal to 0.8
on this server instance.

ServerHighPendingUserRequests
The ServerHighPendingUserRequests smart rule determines whether an increase exists in the
number of pending user requests within the local server in which the rule is running, as
indicated by the value of the ThreadPoolRuntimeMBean.PendingUserRequestCount attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average value of the
ThreadPoolRuntimeMBean.PendingUserRequestCount attribute over a specific interval is
greater than or equal to a specific threshold value.

To use this smart rule, specify:

• The sampling rate and retention window of the
ThreadPoolRuntimeMBean.PendingUserRequestCount attribute.

• High PendingUserRequestCount threshold value

Syntax

wls:ServerHighPendingUserRequests("period", "duration", pendingRequestsLimit)

Parameter Description

period Sampling rate for PendingUserRequestCount values, expressed as a
String. For example, 30s specifies that this metric is sampled every 30
seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

pendingRequestsLimit Value established as the high threshold value of the
PendingUserRequestCount attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30

duration 10

pendingRequestsLimit 100

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-47 of A-57

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerHighPendingUserRequests("30 seconds","10 minutes",100)

This example smart rule:

1. Samples the value of the PendingUserRequestCount metric from the local server instance
every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

The average PendingUserRequestCount value, over the last 10 minutes, is greater than or
equal to 100 on this server instance.

ServerLowSystemCpuLoadAverage
The ServerLowSystemCpuLoadAverage smart rule determines whether a reduction exists in the
average system CPU load within the local server in which the rule is running.
You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average value of the SystemCpuLoad metric of the
java.lang:type=OperatingSystem MXBean over a specific interval is less than the specified
low threshold value.

Note

The value of the SystemCpuLoad metric is platform-specific and is not available on all
platforms. The MXBean attribute from which this metric originates is described at
https://docs.oracle.com/javase/8/docs/jre/api/management/
extension/com/sun/management/
OperatingSystemMXBean.html#getSystemCpuLoad--.

To use this smart rule, specify:

• The sampling rate and retention window of the SystemCpuLoad attribute.

• Low SystemCpuLoad threshold value

Syntax

wls:ServerLowSystemCpuLoadAverage("period", "duration", systemCpuLoadLimit)

Parameter Description

period Sampling rate for SystemCpuLoad values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-48 of A-57

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--

Parameter Description

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

systemCpuLoadLimit Value established as the low threshold value of the SystemCpuLoad
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30

duration 15

systemCpuLoadLimit 0.8

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerLowSystemCpuLoadAverage("30 seconds","15 minutes",0.8)

This example smart rule:

1. Samples the value of the SystemCpuLoad metric from the local server instance every 30
seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

The average SystemCpuLoad value, over the last 15 minutes, is less than 0.8 on this server
instance.

ServerHighHeapFreePercent
The ServerHighHeapFreePercent smart rule determines whether an increase in heap stress
exists within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average JVMRuntimeMBean.HeapFreePercent value over the
specific time interval is greater than or equal to the specified high threshold value.

To use this smart rule, specify:

• The sampling rate and retention window of the JVMRuntimeMBean.HeapFreePercent
attribute.

• High JVM free heap percentage threshold value

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-49 of A-57

Syntax

wls:ServerHighHeapFreePercent("period", "duration", percentFreeLimit)

Parameter Description

period Sampling rate for JVM free heap percentage values, expressed as a
String. For example, 30s specifies that this metric is sampled every 30
seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

percentFreeLimit Value established as the high threshold of the JVM free heap
percentage, specified as a float value between 0.0 and 100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30

duration 10

percentFreeLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerHighHeapFreePercent("30 seconds","10 minutes",60)

This example smart rule:

1. Samples the value of the JVM free heap percentage from the local server instance every
30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

The average JVM free heap value, over the last 10 minutes, is greater than or equal to 60
per cent on this server instance.

ServerHighStuckThreads
The ServerHighStuckThreads smart rule determines whether an increase exists on server
stress based on the average number of stuck threads within the local server in which the rule is
running, as indicated by the value of the ThreadPoolRuntimeMBean.StuckThreadCount
attribute.
You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-50 of A-57

Description

This rule returns true if the average value of the ThreadPoolRuntimeMBean.StuckThreadCount
attribute over a specific time interval is greater than or equal to the specified threshold value.

To use this smart rule, specify:

• The sampling rate and retention window of the
ThreadPoolRuntimeMBean.StuckThreadCount attribute.

• High StuckThreadCount threshold value

Syntax

wls:ServerHighStuckThreads("period", "duration", stuckThreadsLimit)

Parameter Description

period Sampling rate for StuckThreadCount values, expressed as a String.
For example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

stuckThreadsLimit Value established as the high threshold value of the
StuckThreadCount attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30

duration 10

stuckThreadsLimit 5

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerHighStuckThreads("30 seconds","10 minutes",5)

This example smart rule:

1. Samples the value of the StuckThreadCount metric from the local server instance every 30
seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

The average StuckThreadCount value, over the last 10 minutes, is greater than or equal to
5 on this server instance.

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-51 of A-57

ServerHighProcessCpuLoadAverage
The ServerHighProcessCpuLoadAverage smart rule determines whether an decrease exists in
the average system load within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average ProcessCpuLoad value of the
java.lang:type=OperatingSystem MXBean over the specified interval is greater than or equal
to the specified threshold.

Note

The value of the ProcessCpuLoad metric is platform-specific and is not available on all
platforms. The MXBean attribute from which this metric originates is described at
https://docs.oracle.com/javase/8/docs/jre/api/management/
extension/com/sun/management/
OperatingSystemMXBean.html#getProcessCpuLoad--.

To use this smart rule, specify:

• The sampling rate and retention window of the ProcessCpuLoad attribute.

• High ProcessCpuLoad threshold value

Syntax

wls:ServerHighProcessCpuLoadAverage("period", "duration", processCpuLoadLimit)

Parameter Description

period Sampling rate for ProcessCpuLoad values, expressed as a String. For
example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

processCpuLoadLimit Value established as the high threshold value of the ProcessCpuLoad
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-52 of A-57

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--

Parameter Value

period 30

duration 5

processCpuLoadLimit 0.8

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerHighProcessCpuLoadAverage("30 seconds","5 minutes",0.8)

This example smart rule:

1. Samples the value of the ProcessCpuLoad metric from the local server instance every 30
seconds over a retention window of 5 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

The average ProcessCpuLoad value, over the last 5 minutes, is greater than or equal to 0.8
on this server instance.

ServerLowSystemLoadAverage
The ServerLowSystemLoadAverage smart rule determines whether a reduction exists in the
average system load within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the value of the SystemLoadAverage metric of the
java.lang:type=OperatingSystem MXBean over a specified interval is less than the specified
low threshold value.

Note

The value of the SystemLoadAverage metric is platform-specific and is not available on
all platforms. The MXBean attribute from which this metric originates is described at
http://docs.oracle.com/javase/8/docs/api/java/lang/management/
OperatingSystemMXBean.html#getSystemLoadAverage--.

To use this smart rule, specify:

• The sampling rate and retention window of the SystemLoadAverage attribute.

• Low SystemLoadAverage threshold value

Syntax

wls:ServerLowSystemLoadAverage("period", "duration", loadLimit)

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-53 of A-57

http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--
http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--

Parameter Description

period Sampling rate for SystemLoadAverage values, expressed as a String.
For example, 30s specifies that this metric is sampled every 30 seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

loadLimit Value established as the low threshold value of the
SystemLoadAverage attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30

duration 15

loadLimit 0.2

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerLowSystemLoadAverage("30 seconds","15 minutes",0.2)

This example smart rule:

1. Samples the value of the SystemLoadAverage metric from the local server instance every
30 seconds over a retention window of 15 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

The average SystemLoadAverage value, over the last 15 minutes, is less than 0.2 on this
server instance.

ServerLowHeapFreePercent
The ServerLowHeapFreePercent smart rule determines whether an increase exists in heap
stress within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns true if the average JVMRuntimeMBean.HeapFreePercent value over the
specified time interval is less than the specified low threshold value.

To use this smart rule, specify:

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-54 of A-57

• The sampling rate and retention window of the JVMRuntimeMBean.HeapFreePercent
attribute.

• Low Java free heap percentage threshold value

Syntax

wls:ServerLowHeapFreePercent("period", "duration", percentFreeLimit)

Parameter Description

period Sampling rate for Java free heap percentage values, expressed as a
String. For example, 30s specifies that this metric is sampled every 30
seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

percentFreeLimit Value established as the low threshold value of the Java free heap
percentage.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30

duration 5

percentFreeLimit 20

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerLowHeapFreePercent("30 seconds","5 minutes",20)

This example smart rule:

1. Samples the value of the Java free heap percentage from the local server instance every
30 seconds over a retention window of 5 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

The average Java free heap percentage value, over the last 5 minutes, is less than 20 per
cent on this server instance.

ServerHighIdleThreads
The ServerHighIdleThreads smart rule determines whether a reduction in average system
load exists within the local server in which the rule is running, by measuring an increase in idle
threads as indicated by the ThreadPoolRuntimeMBean.ExecuteThreadIdleCount attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-55 of A-57

Group: Server

Description

This rule returns true if the average value of the
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount attribute over the specified retention
window is greater than or equal to the specified threshold value.

To use this smart rule, specify:

• The sampling rate and retention window of the
ThreadPoolRuntimeMBean.ExecuteThreadIdleCount attribute.

• High ExecuteThreadIdleCount threshold value

Syntax

wls:ServerHighIdleThreads("period", "duration", idleThreadsLimit)

Parameter Description

period Sampling rate for ExecuteThreadIdleCount values, expressed as a
String. For example, 30s specifies that this metric is sampled every 30
seconds.

• The default time unit is seconds.
• The default value is 30s.
See sampling rate for more information about specifying this parameter.

duration Period of time for which collected samples are retained, expressed as a
String.

• The default time unit is seconds.
• The default value is 10m.
See retention window for more information about specifying this
parameter.

idleThreadsLimit Value established as the high threshold value of the
ExecuteThreadIdleCount attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30

duration 10

idleThreadsLimit 20

The smart rule that uses the preceding parameters is expressed as follows:

wls:ServerHighIdleThreads("30 seconds","10 minutes",20)

This example smart rule:

1. Samples the value of the ExecuteThreadIdleCount metric from the local server instance
every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, fires the associated action if the following condition
evaluates to true:

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-56 of A-57

The average ExecuteThreadIdleCount value, over the last 10 minutes, is greater than or
equal to 20 on this server instance.

Appendix A
Server Scope Smart Rules

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-57 of A-57

B
WLDF Beans and Functions Reference

The WebLogic Diagnostics Framework (WLDF) provides a set of beans and functions that can
be used in collected metrics policy expressions to obtain access to common WebLogic Server
JMX data sources.

WLDF Beans Reference
WLDF includes several beans that can be used in collected metrics policy expressions to
access statistics that provide information about active cluster objects, MBeans, instrument
event fields, and more.

clusterRuntime
The clusterRuntime bean provides cluster-wide access to statistics for active clusters in the
domain.

Attributes

Name Description

clusters Provides a map of beans that represent active cluster objects within the
domain, keyed by cluster name.

Type: interface java.util.Map

name The name of the cluster.

Type: class java.lang.String

Methods

Name Description

query Performs a query for a set of MBean attribute values based on an Object Name
pattern and an attribute expression.

Parameters:
• onPattern

A valid JMX Object Name, or Object Name pattern.
• attributePattern

A EL expression that is used to retrieve a value from each matching MBean
instance, where the expression is an attribute expression relative to each
MBean.

For example, if the MBean is the ServerRuntimeMBean, the expression
'OpenSocketsCurrentCount' obtains the value of the
OpenSocketsCurrentCount attribute. By contrast, 'HealthState.State'
obtains the State value of the HealthState child object.

Return values:
Returns a set of values matching the specified ObjectName pattern and attribute
expression. These results can be fed to the wls:extract function for maintaining an
in-memory history of values.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-1 of B-10

http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Name Description

getClusters Provides a map of beans that represent active cluster objects within the domain.

getAttribute Obtains a single attribute value from an MBean source.

Parameters:
• objectNamePattern

A JMX ObjectName or ObjectName pattern that must resolve to a single
MBean instance.

• attribute

The MBean attribute value to obtain.
Returns Values:
Returns the attribute value matching the specified JMX ObjectName.

domainRuntime
The domainRuntime bean provides access to MBeans registered in the Domain Runtime
MBean Server.

Attributes

Name Description

domain The root DomainRuntimeMBean in the Domain Runtime MBean Server.

name The bean name.

Type: class java.lang.String

serverRuntimes Returns the array of active ServerRuntimeMBean instances in the domain.

Type: class weblogic.management.runtime.ServerRuntimeMBean[]

Methods

Name Description

query Performs a query for a set of MBean attribute values based on an Object Name pattern
and an attribute expression.

Parameters:
• onPattern

A valid JMX Object Name, or Object Name pattern)
• attributePattern

A EL expression that is used to retrieve a value from each matching MBean
instance, where the expression is an attribute expression relative to each MBean.

For example, if the MBean is the ServerRuntimeMBean, the expression
'OpenSocketsCurrentCount' obtains the value of the
OpenSocketsCurrentCount attribute. By contrast, 'HealthState.State'
obtains the State value of the HealthState child object.

Return values:
Returns a set of values matching the specified Object Name pattern and attribute
expression. These results can be fed to the wls:extract function for maintaining an in-
memory history of values.

Appendix B
WLDF Beans Reference

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-2 of B-10

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Name Description

query Executes a JMX query against a set of targets within the Domain Runtime MBean
Server.

Parameters:
• targets

A list of server or cluster targets specified as a comma-delimited String
• onPattern

A valid JMX Object Name or Object Name pattern
• expression

A EL expression that is used to retrieve a value on each matching MBean instance
Return values:
Returns a set of values matching the specified Object Name pattern and attribute
expression, across the specified target names.

The target names can be a valid WebLogic Server instance or cluster in the domain.

These results can be fed to the wls:extract function for maintaining an in-memory history
of values.

lookupServe
rRuntime

Returns the ServerRuntimeMBean for the named server instance, or null if not
specified.

Parameter:
• serverName

The name of the ServerRuntimeMBean to look up
Return values:
Returns a value matching the specified Object Name pattern and attribute expression.

getAttribut
e

Obtains a single attribute value from an MBean source.

Parameters:
• objectNamePattern

A JMX ObjectName or ObjectName pattern that must resolve to a single MBean
instance.

• attribute

The MBean attribute value to obtain.
Returns Values:
Returns the attribute value matching the specified JMX ObjectName.

instrumentationEvent
The instrumentationEvent bean provides access to instrumentation event fields in
instrumentation policy expressions.

Attributes

Name Description

timeStamp The timestamp value associated with the event creation.

Type: class java.lang.Long

contextId The diagnostic context ID associated with the instrumentation event.

Type: class java.lang.String

txId The JTA transaction ID associated with the instrumentation event.

Type: class java.lang.String

Appendix B
WLDF Beans Reference

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-3 of B-10

http://docs.oracle.com/javase/8/docs/api/java/lang/Long.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Name Description

userId The user name associated with the request for which the instrumentation event is
generated.

Type: class java.lang.String

eventType The instrumentation event type.

Type: class java.lang.String

domain The name of the current domain.

Type: class java.lang.String

server The name of the server on which the instrumentation event occurred.

Type: class java.lang.String

scope The instrumentation scope for this event.

Type: class java.lang.String

module The name of the module in which the instrumentation event rule is defined.

Type: class java.lang.String

monitor The instrumentation monitor that generated the instrumentation event.

Type: class java.lang.String

fileName The source file name containing the code that generated the instrumentation event.

Type: class java.lang.String

lineNumber The line number in the source file where the instrumentation event originated.

Type: class java.lang.Integer

className The class name where the instrumentation event originated.

Type: class java.lang.String

methodName The method name where the instrumentation event originated.

Type: class java.lang.String

methodDesc The description of the method that generated the instrumentation event.

Type: class java.lang.String

arguments The arguments passed into the method that generated the instrumentation event.

Type: class java.lang.String

returnValue The return value for the method that generated the instrumentation event.

Type: class java.lang.String

payload The payload associated with the instrumentation event.

Type class java.lang.Object

contextPayload The context payload associated with the instrumentation event.

Type: class java.lang.String

dyeVector The dye vector associated with the instrumentation event.

Type: class java.lang.Long

threadName The name of the thread that generated the instrumentation event.

Type: class java.lang.String

Example

The following are examples of using the instrumentationEvent bean in an EL policy
expression to access instrumentation event fields:

Appendix B
WLDF Beans Reference

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-4 of B-10

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Long.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

instrumentationEvent.monitor == 'Servlet_Around_Service'

instrumentationEvent.getMonitor() == 'Servlet_Around_Service'

instrumentationEvent.monitor.contains('Servlet_')

log
Used in log policy expressions, the log bean provides access to log message fields.

Attributes

Name Description

timestamp The timestamp indicating when the log message was created.

Type: class java.lang.Long

formattedDate The formatted date string.

Type: class java.lang.String

messageId The message ID of the log entry.

Type: class java.lang.String

machineName The machine name on which the log entry was created.

Type: class java.lang.String

serverName The server name on which the log entry was created.

Type: class java.lang.String

threadName The thread name in which the logged event was created.

Type: class java.lang.String

userId The ID of the user who generated the logged event.

Type: class java.lang.String

transactionId The JTA transaction ID associated with the logged event.

Type: class java.lang.String

severity The severity level for the log message.

Type: class java.lang.Integer

severityString The severity string for the log message.

Type: class java.lang.String

subsystem The name of the subsystem that generated the log message.

Type: class java.lang.String

logMessage The message content of the log entry.

Type: class java.lang.String

diagnosticContextId The diagnostic context ID associated with the logged event.

Type: class java.lang.String

supplementalAttribu
tes

The name-value pairs of supplemental attributes that are included in the log
entries.

Type: class java.util.Properties

Example

The following are examples of using the log bean in an EL policy expression to access log
message fields:

Appendix B
WLDF Beans Reference

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-5 of B-10

http://docs.oracle.com/javase/8/docs/api/java/lang/Long.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html

log.logMessage.contains("Part of a message")

log.getLogMessage().contains("Part of a message")

log.messageId == "BEA-000365"

log.messageId.endsWith('000365')

platform
The platform bean obtain values from MBeans that are exposed through the JVM's platform
MBean server. (Note that WebLogic Server uses the JVM's platform MBean server to contain
the WebLogic run-time MBeans by default. As such, the platform MBean server provides
access to platform MXBeans, WebLogic run-time MBeans, and WebLogic configuration
MBeans that are on a single server instance.)

Attributes

Name Description

name The name of the platform bean ("platform")

Methods

Name Description

query Performs a query for a set of MBean attribute values based on an Object Name
pattern and an attribute expression.

Parameters:
• onPattern

A valid JMX Object Name, or Object Name pattern)
• attributePattern

A EL expression that is used to retrieve a value from each matching MBean
instance, where the expression is an attribute expression relative to each
MBean.

For example, if the MBean is the ServerRuntimeMBean, the expression
'OpenSocketsCurrentCount' obtains the value of the
OpenSocketsCurrentCount attribute. By contrast, 'HealthState.State'
obtains the State value of the HealthState child object.

Return values:
A set of values matching the specified Object Name pattern and attribute
expression. These results can be fed to the wls:extract function for maintaining an
in-memory history of values.

getAttribute Obtains a single attribute value from an MBean source.

Parameters:
• objectNamePattern

A JMX ObjectName or ObjectName pattern that must resolve to a single
MBean instance.

• attribute

The MBean attribute value to obtain.
Returns Values:
Returns the attribute value matching the specified JMX ObjectName.

Appendix B
WLDF Beans Reference

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-6 of B-10

resource
The resource bean provides access to beans and state information within a diagnostic system
module deployment.Access is restricted to policies that are configured within the same
diagnostic system module. That is, this bean cannot obtain access to beans and state
information from policies that are configured in other diagnostic system modules. This bean is
used for policy-chaining.

Attributes

Name Description

watches A map of currently configured policies within the same diagnostic system module
deployment.

Type: interface java.util.Map

runtime
The runtime bean provides access to MBeans registered in the WebLogic Server Runtime
MBean Server.

Attributes

Name Description

domain The root DomainMBean in the local WebLogic Server Runtime MBean Server.

Type: interface weblogic.management.configuration.DomainMBean

name The bean name.

Type: class java.lang.String

serverRuntime The root ServerRuntimeMBean in the local WebLogic Server Runtime MBean
Server.

Type: interface weblogic.management.runtime.ServerRuntimeMBean

Appendix B
WLDF Beans Reference

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-7 of B-10

http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Methods

Name Description

query Performs a query for a set of MBean attribute values based on an Object Name
pattern and an attribute expression.

Parameters:
• onPattern

A valid JMX Object Name, or Object Name pattern)
• attributePattern

A EL expression that is used to retrieve a value from each matching MBean
instance, where the expression is an attribute expression relative to each
MBean.

For example, if the MBean is the ServerRuntimeMBean, the expression
'OpenSocketsCurrentCount' obtains the value of the
OpenSocketsCurrentCount attribute. By contrast, 'HealthState.State'
obtains the State value of the HealthState child object.

Return values:
A set of values matching the specified Object Name pattern and attribute
expression. These results can be fed to the wls:extract function for maintaining an
in-memory history of values.

getAttribute Obtains a single attribute value from an MBean source.

Parameters:
• objectNamePattern

A JMX ObjectName or ObjectName pattern that must resolve to a single
MBean instance.

• attribute

The MBean attribute value to obtain.
Returns Values:
Returns the attribute value matching the specified JMX ObjectName.

Functions Reference
WLDF includes a set of functions that can be used in policy expressions to simplify the
extraction or querying of data.

wls:tableChanges
The wls:tableChanges function takes a table of input values and generates an output table of
difference vectors, one for each input vector.

This function throws an IllegalArgumentException if the input either:

• Is not a two-dimensional table

• Contains non-numeric values

Parameters

Name Description

inputTable The input table of numeric values, where each row is typically a time series of
values from the same metric instance.

Appendix B
Functions Reference

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-8 of B-10

wls:tableAverages
The wls:tableAverages function performs a matrix reduction on an input table of values,
computing the average of each row in the table and producing a vector of averages, one for
each row in the table. Typically each row in the table represents a time series of values from a
particular metric instance.
This function throws an IllegalArgumentException if the input either:

• Is not a two-dimensional table

• Contains non-numeric values

Parameters

Name Description

valuesTable The input table of numeric values, where each row is typically a time series of
values from the same metric instance.

wls:extract
The wls:extract function extracts a table of time series from a specified set of input sources,
based on a specified sampling rate schedule and time window. The input source can be one of
the following:

• The output from a query() operation from a JMX bean. For example:

wls.runtime.query('com.bea:Type=ServletRuntime,*', 'ExecutionTimeAverage')

• An EL expression, as a String. For example:

wls.runtime.JVMRuntime.heapFreePercent

Parameters

Name Decription

inputExpression The bean metric to be sampled.

schedule The sampling rate of the metric, specified as a string, in hours, minutes, or seconds
(the default).

duration The required sampling window of the metric, specified as a string, in hours,
minutes, or seconds (the default)

The schedule and duration parameters can be specified in seconds, minutes, or hours, and
are specified as strings using the following syntax:

amount[unit]

In the preceding syntax:

• amount represents an integer.

• [unit] represents seconds, minutes, or hours. Each can be abbreviated to the first letter.
For example: seconds can be abbreviated to s.

• You may include a space character between amount and unit.

For example, any of the following can be used to specify five seconds:

Appendix B
Functions Reference

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-9 of B-10

• 5seconds

• 5 sec

• 5s

• 5snds

wls:average
The wls:average function computes an average value based on set of numeric input values.
This function returns the scalar average of the input vector, or Double.NaN if the input is empty.
If the input contains any non-numeric values, an IllegalArgumentException is thrown.

Note

The wls:average function is different from the EL-provided average() operation.

Parameters

Name Description

inputValues A vector of numeric input values

wls:changes
The wls:changes method takes a vector of input values of size n and produces a vector of (at
most) n-1 differences between successive values. For example, if the input vector is { 3, 2,
5, 3, 7 }, the resulting vector is { 1, -1, 3, -2, 4 }.
Note the following:

• It is possible for a sequence to contain Double.NaN, which are skipped in subsequent
computations.

• If an input value is non-numeric, an IllegalArgumentException is thrown.

Parameters

Name Description

inputValues A input vector of numeric values

wls:aliveServersCount
The wls:aliveServersCount function is a helper function that counts the number of Managed
Server instances that are in the RUNNING state in a given cluster.

Parameters

Name Description

clusterName The name of the cluster containing the running server instances to be counted.

Appendix B
Functions Reference

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-10 of B-10

C
WLDF Query Language

The WebLogic Diagnostics Framework (WLDF) includes a query language for constructing
watch rule expressions, Data Accessor query expressions, and log filter expressions.The
syntax is a small and simplified subset of SQL syntax.

Components of a Query Expression
A query expression may include operators, literals, and variables.The supported variables
differ for each type of expression.

• Supported Operators

• Supported Numeric Constants and String Literals

• About Variables in Expressions

The query language is case-sensitive.

Supported Operators
The WLDF query language supports a set of operators and, for each operator, corresponding
operator and operand types.These operators, and corresponding types and operands, are
listed and described in Table C-1.

Table C-1 WLDF Query Language Operators

Operator Operator Type Supported Operand
Types

Definition

AND Logical binary Boolean Evaluates to true when both
expressions are true.

OR Logical binary Boolean Evaluates to true when either
expression is true.

NOT Logical unary Boolean Evaluates to true when the
expression is not true.

& Bitwise binary Numeric,

Dye flag

Performs the bitwise AND function
on each parallel pair of bits in each
operand. If both operand bits are 1,
the & function sets the resulting bit
to 1. Otherwise, the resulting bit is
set to 0.

Examples of both the & and the |
operators are:

1010 & 0010 = 0010

1010 | 0001 = 1011

(1010 & (1100 | 1101)) = 1000

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-1 of C-10

Table C-1 (Cont.) WLDF Query Language Operators

Operator Operator Type Supported Operand
Types

Definition

| Bitwise binary Numeric,

Dye flag

Performs the bitwise OR function
on each parallel pair of bits in each
operand. If either operand bit is 1,
the | function sets the resulting bit
to 1. Otherwise, the resulting bit is
set to 0.

For examples, see the entry for the
bitwise & operator, above.

= Relational Numeric, String Equals

!= Relational Numeric Not equals

< Relational Numeric Less than

> Relational Numeric Greater than

<= Relational Numeric Less than or equals

>= Relational Numeric Greater than or equals

LIKE Match String Evaluates to true when a character
string matches a specified pattern
that can include wildcards.

LIKE supports two wildcard
characters:

A percent sign (%) matches any
string of zero or more characters

A period (.) matches any single
character

MATCHES Match String Evaluates to true when a target
string matches the regular
expression pattern in the operand
String.

IN Search String Evaluates to true when the value of
a variable exists in a predefined
set, for example:

SUBSYSTEM IN ('A','B')

Operator Precedence
The WLDF query language has six levels of precedence among its operators.

The following list shows the levels of precedence among operators, from the highest
precedence to the lowest. Operators listed on the same line have equivalent precedence:

1. ()

2. NOT

3. &, |

4. =, !=, <, >, <=, >=, LIKE, MATCHES,IN

5. AND

6. OR

Appendix C
Operator Precedence

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-2 of C-10

Numeric Relational Operations Supported on String Column
Types

Numeric relational operations can be performed on String column types when they hold
numeric values.For example, if STATUS is a String type, while performing relational operations
with a numeric operand, the column value is treated as a numeric value.
For instance, in the following comparisons, the query evaluator attempts to convert the string
value to appropriate numeric value before comparison:

STATUS = 100

STATUS != 100

STATUS < 100

STATUS <= 100

STATUS > 100

STATUS >= 100

When the string value cannot be converted to a numeric value, the query fails.

Supported Numeric Constants and String Literals
The WLDF query language has two sets of rules: one set for numeric constants, and another
for string literals.

The rules for numeric constants are as follows:

• Numeric literals can be integers or floating point numbers.

• Numeric literals are specified the same as in Java. Some examples of numeric literals are
2, 2.0, 12.856f, 2.1934E-4, 123456L and 2.0D.

The rules for string literals are as follows:

• String literals must be enclosed in single quotes.

• A percent character (%) can be used as a wildcard inside string literals.

• An underscore character (_) can be used as a wildcard to stand for any single character.

• A backslash character (\) can be used to escape special characters, such as a quote (') or
a percent character (%).

• For watch rule expressions, you can use comparison operators to specify threshold values
for String, Integer, Long, Double, Boolean literals.

• The relational operators do a lexical comparison for Strings. See the documentation for the
java.lang.String.compareTo(String str) method.

About Variables in Expressions
Variables represent the dynamic portion of a query expression that is evaluated at run time.You
must use variables that are appropriate for the type of expression you are constructing, as
explained in the following sections:

• Creating Policy Expressions

Appendix C
Numeric Relational Operations Supported on String Column Types

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-3 of C-10

• Creating Data Accessor Queries

• Creating Log Filter Expressions

Note

When specifying a wildcard pattern in a variable for a policy expression that matches
custom MBean ObjectName instances, make sure the pattern is sufficiently explicit. If
you exclude an MBean type name and use an ambiguous instance pattern, the
following may result:

• Only WebLogic Server runtime MBean instances are matched to the pattern.

• The desired custom MBean instances are ignored.

For example, the following ObjectName pattern does not explicitly declare a type and
uses an ambiguous ObjectName pattern that can match a WebLogic Server runtime
MBean instance:

${ServerRuntime//com.b*:Type=Server*,*}

The preceding pattern matches the WebLogic Server runtime MBean instances, and
causes any custom MBeans matching the same pattern to be ignored.

Creating Policy Expressions
You can create policies based on log events, instrumentation events, and harvested attributes.
For complete documentation about configuring and using WLDF policies, see:

• Configuring Policies and Actions

• Configuring Policies

The variables supported for creating the expressions are different for each type of policy, as
described in the following sections:

Creating Log Event Policy Expressions
A log event policy expression is based upon the attributes of a log message from the server
log.

Variable names for log message attributes are listed and explained in Table C-2:

Table C-2 Variable Names for Log Event Policy Expressions

Variable Description Data Type

CONTEXTID The request ID propagated with the request. String

DATE Date when the message was created. String

MACHINE Name of machine that generated the log message. String

MESSAGE Message content of the log message. String

MSGID ID of the log message (usually starts with "BEA="). String

RECORDID The number of the record in the log. Long

SERVER Name of server that generated the log message. String

Appendix C
Creating Policy Expressions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-4 of C-10

Table C-2 (Cont.) Variable Names for Log Event Policy Expressions

Variable Description Data Type

SEVERITY Severity of log message. Values are Info, Notice,
Warning, Error, Critical, Alert, and
Emergency.

String

SUBSYTEM Name of subsystem emitting the log message. String

THREAD Name of thread that generated the log message. String

TIMESTAMP Timestamp when the log message was created. Long

TXID JTA transaction ID of thread that generated the log
message.

String

USERID ID of the user that generated the log message. String

An example log event policy expression is:

 (SEVERITY = 'Warning') AND (MSGID = 'BEA-320012')

Creating Instrumentation Event Policy Expressions
An instrumentation event policy expression is based upon attributes of a data record created
by a diagnostic monitor action.

Variable names for instrumentation data record attributes are listed and explained in Table C-3:

Table C-3 Variable Names for Instrumentation Event Policy Expressions

Variable Description Data Type

ARGUMENTS Arguments passed to the method that was invoked. String

CLASSNAME Class name of joinpoint. String

CONTEXTID Diagnostic context ID of instrumentation event. String

CTXPAYLOAD The context payload associated with this request. String

DOMAIN Name of domain. String

DYES Dyes associated with this request. Long

FILENAME Source file name. String

LINENUM Line number in source file. Integer

METHODNAME Method name of joinpoint. String

METHODDSC Method arguments of joinpoint. String

MODULE Name of the diagnostic module. String

MONITOR Name of the monitor. String

PAYLOAD Payload of instrumentation event. String

RECORDID The number of the record in the log. Long

RETVAL Return value of joinpoint. String

SCOPE Name of instrumentation scope. String

SERVER Name of server that created the instrumentation
event.

String

Appendix C
Creating Policy Expressions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-5 of C-10

Table C-3 (Cont.) Variable Names for Instrumentation Event Policy Expressions

Variable Description Data Type

TIMESTAMP Timestamp when the instrumentation event was
created.

Long

TXID JTA transaction ID of thread that created the
instrumentation event.

String

TYPE Type of monitor. String

USERID ID of the user that created the instrumentation
event.

String

An example instrumentation event data policy expression is:

(USERID = 'weblogic')

Creating Harvester Policy Expressions
A Harvester policy expression is based upon one or more harvestable MBean attributes. The
expression can specify an MBean type, an instance, an attribute, or an instance and an
attribute.

Instance-based and type-based expressions can contain an optional namespace component,
which is the namespace of the metric being monitored by the policy. It can be set to either
Server Runtime or DomainRuntime. If omitted, it defaults to ServerRuntime.

If the namespace component is included and set to DomainRuntime, you should limit the
usage to monitoring only DomainRuntime-specific MBeans, such as the
ServerLifeCycleRuntimeMBean. Monitoring remote Managed Server MBeans through the
DomainRuntime MBeanServer is possible, but is discouraged for performance reasons. It is a
best practice to use the resident policy in each Managed Server to monitor metrics related to
that Managed Server instance.

You can also use wildcards in instance names in Harvester policy expressions, as well as
specify complex attributes in Harvester policy expressions. See Using Wildcards in
Expressions.

The syntax for constructing a Harvester policy expression is as follows:

• To specify an attribute of all instances of a type, use the following syntax:

${namespace//[type_name]//attribute_name}

• To specify an attribute of an instance of a WebLogic type, use the following syntax:

${com.bea:namespace//instance_name//attribute_name}

• To specify an attribute of an instance of a custom MBean type, use the following syntax:

${domain_name:instance_name//attribute_name}

Note

The domain_name is not required for a WebLogic Server domain name.

Appendix C
Creating Policy Expressions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-6 of C-10

The expression must include the complete MBean object name, as shown in the following
example:

${com.bea:Name=HarvesterRuntime,Location=myserver,Type=HarvesterRuntime,
 ServerRuntime=myserver//TotalSamplingCycles} > 10

Creating Data Accessor Queries
Use the WLDF query language with the Data Accessor component to retrieve data from data
stores, including server logs, HTTP logs, and harvested metrics.The variables used to build a
Data Accessor query are based on the column names in the data store from which you want to
extract data.
A Data Accessor query contains the following:

• The logical name of a data store, as described in Data Store Logical Names.

• Optionally, the name(s) of one or more columns from which to retrieve data, as described
in Data Store Column Names.

When there is a match, all columns of matching rows are returned.

Data Store Logical Names
The logical name for a data store must be unique. It denotes a specific data store available on
the server. The logical name consists of a log type keyword followed by zero or more identifiers
separated by the forward-slash (/) delimiter. For example, the logical name of the server log
data store is simply ServerLog. However, other log types may require additional identifiers, as
shown in Table C-4.

Table C-4 Naming Conventions for Log Types

Log Type Optional
Identifiers

Example

ConnectorLog The JNDI name of
the connection
factory

ConnectorLog/eis/
900eisaBlackBoxXATxConnectorJNDINAME
In this example, eis/
900eisaBlackBoxXATxConnectorJNDINAME is
the JNDI name of the connection factory specified in
the weblogic-ra.xml deployment descriptor.

DataSourceLog None DataSourceLog

DomainLog None DomainLog

EventsDataArchive None EventsDataArchive

HarvestedDataArchive None HarvestedDataArchive

HTTPAccessLog Virtual host name HTTPAccessLog — For the default web server's
access log.

HTTPAccessLog/MyVirtualHost — For the
Virtual host named MyVirtualHost deployed to the
current server.

Note: In the case of HTTPAccessLog logs with
extended format, the number of columns are user-
defined.

JMSMessageLog The name of the
JMS Server.

JMSMessageLog/MyJMSServer

Appendix C
Creating Data Accessor Queries

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-7 of C-10

Table C-4 (Cont.) Naming Conventions for Log Types

Log Type Optional
Identifiers

Example

JMSSAFMessageLog The name of the
SAF agent.

JMSSAFMessageLog/MySAFAgent

ServerLog None ServerLog

WebAppLog Web server name
+ Root servlet
context name

WebAppLog/MyWebServer/
MyRootServletContext

Data Store Column Names
The column names included in a query are resolved for each row of data. A row is added to the
result set only if it satisfies the query conditions for all specified columns. A query that omits
column names returns all the entries in the log.

All column names from all WebLogic Server log types are listed in Table C-5.

Table C-5 Column Names for Log Types

Log Type Column Names

ConnectorLog LINE, RECORDID

DataSourceLog RECORDID, DATASOURCE, PROFILETYPE, TIMESTAMP, USER,
PROFILEINFORMATION, SUPP_ATTRS

DomainLog CONTEXTID, DATE, MACHINE, MESSAGE, MSGID, RECORDID,
SERVER, SEVERITY, SUBSYSTEM, THREAD, TIMESTAMP, TXID,
USERID, SUPP_ATTRS, SEVERITY_VALUE

EventsDataArchive ARGUMENTS, CLASSNAME, CONTEXTID, CTXPAYLOAD, DOMAIN,
DYES, FILENAME, LINENUM, METHODNAME, METHODDSC,
MODULE, MONITOR, PAYLOAD, RECORDID, RETVAL, SCOPE,
SERVER, THREADNAME, TIMESTAMP, TXID, TYPE, USERID

HarvestedDataArchive ATTRNAME, ATTRTYPE, ATTRVALUE, DOMAIN, NAME, RECORDID,
SERVER, TIMESTAMP, TYPE, WLDFMODULE

HTTPAccessLog AUTHUSER, BYTECOUNT, HOST, RECORDID, REMOTEUSER,
REQUEST, STATUS, TIMESTAMP

JDBCLog Same as DomainLog

JMSMessageLog CONTEXTID, DATE, DESTINATION, EVENT, JMSCORRELATIONID,
JMSMESSAGEID, MESSAGE, MESSAGECONSUMER,
NANOTIMESTAMP, RECORDID, SELECTOR, TIMESTAMP, TXID,
USERID

JMSSAFMessageLog CONTEXTID, DATE, DESTINATION, EVENT, JMSCORRELATIONID,
JMSMESSAGEID, MESSAGE, MESSAGECONSUMER,
NANOTIMESTAMP, RECORDID, SELECTOR, TIMESTAMP, TXID,
USERID

ServerLog Same as DomainLog

WebAppLog Same as DomainLog

An example of a Data Accessor query is:

Appendix C
Creating Data Accessor Queries

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-8 of C-10

(SUBSYSTEM = 'Deployer') AND (MESSAGE LIKE '%Failed%')

In this example, the Accessor retrieves all messages that include the string "Failed" from the
Deployer subsystem.

The following example shows an API method invocation. It includes a query for harvested
attributes of the JDBC connection pool named MyPool, within an interval between a
timeStampFrom (inclusive) and a timeStampTo (exclusive):

 WLDFDataAccessRuntimeMBean.retrieveDataRecords(timeStampFrom,
 timeStampTo, "TYPE='JDBCConnectionPoolRuntime' AND NAME='MyPool'")

For complete documentation about the WLDF Data Accessor, see Accessing Diagnostic Data
With the Data Accessor.

Creating Log Filter Expressions
The query language can be used to filter what is written to the server log.The variables used to
construct a log filter expression represent the columns in the log are:

• CONTEXTID

• DATE

• MACHINE

• MESSAGE

• MSGID

• RECORDID

• SEVERITY

• SUBSYSTEM

• SERVER

• THREAD

• TIMESTAMP

• TXID

• USERID

Note

These are the same variables that you use to build a Data Accessor query for
retrieving historical diagnostic data from existing server logs.

For complete documentation about the WebLogic Server logging services, see Filtering
WebLogic Server Log Messages in Configuring Log Files and Filtering Log Messages for
Oracle WebLogic Server.

Building Complex Expressions
You can build complex query expressions using subexpressions containing variables, binary
comparisons, and other complex subexpressions.There is no limit on levels of nesting. The
following rules apply:

Appendix C
Creating Log Filter Expressions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-9 of C-10

• Nest queries by surrounding subexpressions within parentheses, for example:

 (SEVERITY = 'Warning') AND (MSGID = 'BEA-320012')

• Enclose a variable name within ${} if it includes special characters, as in an MBean object
name. For example:

${mydomain:Name=myserver,
 Type=ServerRuntime//SocketsOpenedTotalCount} >= 1

Notice that the object name and the attribute name are separated by consecutive forward
slashes (//) in the policy variable name.

Appendix C
Building Complex Expressions

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix C-10 of C-10

D
WLDF Instrumentation Library

The WebLogic Diagnostics Framework (WLDF) instrumentation library contains diagnostic
monitors and diagnostic actions.

For information about using items from the instrumentation library, see Configuring
Instrumentation.

Diagnostic Monitor Library
Diagnostic monitors are broadly classified as server-scoped and application-scoped
monitors.The former can be used to instrument WebLogic Server classes. You use the latter to
instrument application classes. Except for the DyeInjection monitor, all monitors are delegating
monitors; that is, they do not have a built-in diagnostic action. Instead, they delegate to actions
attached to them to perform diagnostic activity.
All monitors are preconfigured with their respective pointcuts. However, the actual locations
affected by them may vary depending on the classes they instrument. For example, the
Servlet_Before_Service monitor adds diagnostic code at the entry of servlet or java server
page (JSP) service methods at different locations in different servlet implementations.

For any delegating monitor, only compatible actions may be attached. The compatibility is
determined by the nature of the monitor.

The following table lists and describes the diagnostic monitors that can be used within server
scope; that is, in WebLogic Server classes. For the diagnostic actions that are compatible with
each monitor, see the Compatible Action Type column in Table D-1.

Table D-1 Diagnostic Monitors for Use Within Server Scope

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

Connector_Before_Inbound Before Stateless At entry of methods handling inbound
connections.

Connector_After_Inbound Server Stateless At exit of methods handling inbound
connections.

Connector_Around_Inbound Around Around At entry and exit of methods handling
inbound connections.

Connector_Before_Outbound Before Stateless At entry of methods handling outbound
connections.

Connector_After_Outbound After Stateless At exit of methods handling outbound
connections.

Connector_Around_Outbound Around Around At entry and exit of methods handling
outbound connections.

Connector_Before_Tx Before Stateless Entry of transaction register, unregister,
start, rollback and commit methods.

Connector_After_Tx After Stateless At exit of transaction register, unregister,
start, rollback and commit methods.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-1 of D-19

Table D-1 (Cont.) Diagnostic Monitors for Use Within Server Scope

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

Connector_Around_Tx Around Around At entry and exit of transaction register,
unregister, start, rollback and commit
methods.

Connector_Before_Work Before Stateless At entry of methods related to scheduling,
starting and executing connector work
items.

Connector_After_Work After Stateless At exit of methods related to scheduling,
starting and executing connector work
items.

Connector_Around_Work Around Around At entry and exit of methods related to
scheduling, starting and executing
connector work items.

DyeInjection Before Built-in At points where requests enter the server.

JDBC_Before_Commit_Internal Before Stateless JDBC subsystem internal code

JDBC_After_Commit_Internal After Stateless JDBC subsystem internal code

JDBC_Before_Connection_

Internal

Before Stateless Before calls to methods:

Driver.connect

DataSource.getConnection

JDBC_After_Connection_ Internal Before Stateless JDBC subsystem internal code

JDBC_Before_Rollback_ Internal Before Stateless JDBC subsystem internal code

JDBC_After_Rollback_Internal After Stateless JDBC subsystem internal code

JDBC_Before_Start_Internal Before Stateless JDBC subsystem internal code

JDBC_After_Start_Internal After Stateless JDBC subsystem internal code

JDBC_Before_Statement_

Internal

Before Stateless JDBC subsystem internal code

JDBC_After_Statement_

Internal

After Stateless JDBC subsystem internal code

JDBC_After_Reserve_Connection_Internal After Stateless After a JDBC connection is reserved from
the connection pool.

JDBC_After_Release_Connection_Internal After Stateless After a JDBC connection is released back
to the connection pool.

Table D-2 lists the diagnostic monitors that can be used within application scopes; that is, in
deployed applications. The Compatible Action Type column identifies the diagnostic action
type that is compatible with each monitor.

Table D-2 Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

EJB_After_EntityEjbBusiness Methods After Stateless At exits of all EntityBean methods, which
are not standard ejb methods.

Appendix D
Diagnostic Monitor Library

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-2 of D-19

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

EJB_Around_EntityEjbBusinessMethods Around Around At entry and exits of all EntityBean
methods that are not standard ejb
methods.

EJB_After_EntityEjbMethods After Stateless At exits of methods:

EnitityBean.setEntityContext

EnitityBean.unsetEntityContext

EnitityBean.ejbRemove

EnitityBean.ejbActivate

EnitityBean.ejbPassivate

EnitityBean.ejbLoad

EnitityBean.ejbStore

EJB_Around_EntityEjbMethods Around Around At exits of methods:

EnitityBean.setEntityContext

EnitityBean.unsetEntityContext

EnitityBean.ejbRemove

EnitityBean.ejbActivate

EnitityBean.ejbPassivate

EnitityBean.ejbLoad

EnitityBean.ejbStore

EJB_After_EntityEjbSemantic Methods After Stateless At exits of methods:

EnitityBean.set*

EnitityBean.get*

EnitityBean.ejbFind*

EnitityBean.ejbHome*

EnitityBean.ejbSelect*

EnitityBean.ejbCreate*

EnitityBean.ejbPostCreate*

EJB_Around_EntityEjbSemanticMethods Around Around At entry and exits of methods:

EnitityBean.set*

EnitityBean.get*

EnitityBean.ejbFind*

EnitityBean.ejbHome*

EnitityBean.ejbSelect*

EnitityBean.ejbCreate*

EnitityBean.ejbPostCreate*

EJB_After_SessionEjbMethods After Stateless At exits of methods:

SessionBean.setSessionContext

SessionBean.ejbRemove

SessionBean.ejbActivate

SessionBean.ejbPassivate

Appendix D
Diagnostic Monitor Library

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-3 of D-19

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

EJB_Around_SessionEjbMethods Around Around At entry and exits of methods:

SessionBean.setSessionContext

SessionBean.ejbRemove

SessionBean.ejbActivate

SessionBean.ejbPassivate

EJB_After_SessionEjbBusinessMethods After Stateless At exits of all SessionBean methods,
which are not standard ejb methods.

EJB_Around_SessionEjb

BusinessMethods

Around Around At entry and exits of all SessionBean
methods, which are not standard ejb
methods.

EJB_After_SessionEjbSemanticMethods After Stateless At exits of methods:

SessionBean.ejbCreateSessionBean.ejbP
ostCreate

EJB_Around_SessionEjb

SemanticMethods

Around Around At entry and exits of methods:

SessionBean.ejbCreate

SessionBean.ejbPostCreate

EJB_Before_EntityEjbBusinessMethods Before Stateless At entry of all EntityBean methods, which
are not standard ejb methods.

EJB_Before_EntityEjbMethods Before Stateless At entry of methods:

EnitityBean.setEntityContext

EnitityBean.unsetEntityContext

EnitityBean.ejbRemove

EnitityBean.ejbActivate

EnitityBean.ejbPassivate

EnitityBean.ejbLoad

EnitityBean.ejbStore

EJB_Before_EntityEjbSemanticMethods Before Stateless At entry of methods:

EnitityBean.set*

EnitityBean.get*

EnitityBean.ejbFind*

EnitityBean.ejbHome*

EnitityBean.ejbSelect*

EnitityBean.ejbCreate*

EnitityBean.ejbPostCreate*

EJB_Before_SessionEjb

BusinessMethods

Before Stateless At entry of all SessionBean methods,
which are not standard ejb methods.

EJB_Before_SessionEjbMethods Before Stateless At entry of methods:

SessionBean.setSessionContext

SessionBean.ejbRemove

SessionBean.ejbActivate

SessionBean.ejbPassivate

Appendix D
Diagnostic Monitor Library

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-4 of D-19

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

EJB_Before_SessionEjb

SemanticMethods

Before Stateless At entry of methods:

SessionBean.ejbCreate

SessionBean.ejbPostCreate

HttpSessionDebug Around Built-in getSession - Inspects returned HTTP
session

Before and after calls to methods:

getAttribute

setAttribute

removeAttribute

At inspection points, the approximate
session size is computed and stored as
the payload of a generated event. The
size is computed by flattening the session
to a byte-array. If an error is encountered
while flattening the session, a negative
size is reported.

JDBC_Before_CloseConnection Before Stateless Before calls to methods:

Connection.close

JDBC_After_CloseConnection After Stateless After calls to methods:

Connection.close

JDBC_Around_CloseConnection Around Around Before and after calls to methods:

Connection.close

JDBC_Before_CommitRollback Before Stateless Before calls to methods:

Connection.commit

Connection.rollback

JDBC_After_CommitRollback After Stateless After calls to methods:

Connection.commit

Connection.rollback

JDBC_Around_CommitRollback Around Around Before and after calls to methods:

Connection.commit

Connection.rollback

JDBC_Before_Execute Before Stateless Before calls to methods:

Statement.execute*

PreparedStatement.execute*

JDBC_After_Execute After Stateless After calls to methods:

Statement.execute*

PreparedStatement.execute*

JDBC_Around_Execute Around Around Before and after calls to methods:

Statement.execute*

PreparedStatement.execute*

JDBC_Before_GetConnection Before Stateless Before calls to methods:

Driver.connect

DataSource.getConnection

Appendix D
Diagnostic Monitor Library

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-5 of D-19

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

JDBC_After_GetConnection After Stateless After calls to methods:

Driver.connect

DataSource.getConnection

JDBC_Around_GetConnection Around Around Before and after calls to methods:

Driver.connect

DataSource.getConnection

JDBC_Before_Statement Before Stateless Before calls to methods:

Connection.prepareStatement

Connection.prepareCall

Statement.addBatch

RowSet.setCommand

JDBC_After_Statement After Stateless After calls to methods:

Connection.prepareStatement

Connection.prepareCall

Statement.addBatch

RowSet.setCommand

JDBC_Around_Statement Around Around Before and after calls to methods:

Connection.prepareStatement

Connection.prepareCall

Statement.addBatch

RowSet.setCommand

JMS_Before_AsyncMessage

Received

Before Stateless At entry of methods:

MessageListener.onMessage

JMS_After_AsyncMessage

Received

After Stateless At exits of methods:

MessageListener.onMessage

JMS_Around_AsyncMessage

Received

Around Around At entry and exits of methods:

MessageListener.onMessage

JMS_Before_MessageSent Before Stateless Before call to methods:

QueSender send

JMS_After_MessageSent After Stateless After call to methods:

QueSender send

JMS_Around_MessageSent Around Around Before and after call to methods:

QueSender send

JMS_Before_SyncMessage

Received

Before Stateless Before calls to methods:

MessageConsumer.receive*

JMS_After_SyncMessage

Received

After Stateless After calls to methods:

MessageConsumer.receive*

JMS_Around_SyncMessage

Received

Around Around Before and after calls to methods:

MessageConsumer.receive*

JMS_Before_TopicPublished Before Stateless Before call to methods:

TopicPublisher.publish

Appendix D
Diagnostic Monitor Library

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-6 of D-19

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

JMS_After_TopicPublished After Stateless After call to methods:

TopicPublisher.publish

JMS_Around_TopicPublished Around Around Before and after call to methods:

TopicPublisher.publish

JNDI_Before_Lookup Before Stateless Before calls to javax.naming.Context
lookup methods

Context.lookup*

JNDI_After_Lookup After Stateless After calls to javax.naming.Context lookup
methods:

Context.lookup*

JNDI_Around_Lookup Around Around Before and after calls to
javax.naming.Context lookup methods

Context.lookup*

JTA_Before_Commit Before Stateless At entry of methods:

UserTransaction.commit

JTA_After_Commit After Stateless
advice

At exits of methods:

UserTransaction.commit

JTA_Around_Commit Around Around At entry and exits of methods:

UserTransaction.commit

JTA_Before_Rollback Before Stateless At entry of methods:

UserTransaction.rollback

JTA_After_Rollback After Stateless
advice

At exits of methods:

UserTransaction.rollback

JTA_Around_Rollback Around Around At entry and exits of methods:

UserTransaction.rollback

JTA_Before_Start Before Stateless At entry of methods:

UserTransaction.begin

JTA_After_Start After Stateless
advice

At exits of methods:

UserTransaction.begin

JTA_Around_Start Around Around At entry and exits of methods:

UserTransaction.begin

MDB_Before_MessageReceived Before Stateless At entry of methods:

MessageDrivenBean.onMessage

MDB_After_MessageReceived After Stateless At exits of methods:

MessageDrivenBean.onMessage

MDB_Around_MessageReceived Around Around At entry and exits of methods:

MessageDrivenBean.onMessage

MDB_Before_Remove Before Stateless At entry of methods:

MessageDrivenBean.ejbRemove

MDB_After_Remove After Stateless At exits of methods:

MessageDrivenBean.ejbRemove

Appendix D
Diagnostic Monitor Library

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-7 of D-19

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

MDB_Around_Remove Around Around At entry and exits of methods:

MessageDrivenBean.ejbRemove

MDB_Before_SetMessageDriven

Context

Before Stateless At entry of methods:

MessageDrivenBean.setMessage

DrivenContext

MDB_After_SetMessageDriven

Context

After Stateless At exits of methods:

MessageDrivenBean.setMessageDrivenC
ontext

MDB_Around_SetMessageDriven

Context

Around Around At entry and exits of methods:

MessageDrivenBean.setMessageDrivenC
ontext

Servlet_Before_Service Before Stateless At method entries of servlet/jsp methods:

HttpJspPage._jspService

Servlet.service

HttpServlet.doGet

HttpServlet.doPost

Filter.doFilter

Servlet_After_Service After Stateless At method exits of servlet/jsp methods:

HttpJspPage._jspService

Servlet.service

HttpServlet.doGet

HttpServlet.doPost

Filter.doFilter

Servlet_Around_Service Around Around At method entry and exits of servlet/jsp
methods:

HttpJspPage._jspService

Servlet.service

HttpServlet.doGet

HttpServlet.doPost

Filter.doFilter

Servlet_Before_Session Before Stateless Before calls to servlet methods:

HttpServletRequest.getSession

HttpSession.setAttribute/

putValue

HttpSession.getAttribute/

getValue

HttpSession.removeAttribute/

removeValue

HttpSession.invalidate

Appendix D
Diagnostic Monitor Library

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-8 of D-19

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor
Type

Compatible
Action Type

Pointcuts

Servlet_Around_Session Around Around Before and after calls to servlet methods:

HttpServletRequest.getSession

HttpSession.setAttribute/

putValue

HttpSession.getAttribute/

getValue

HttpSession.removeAttribute/

removeValue

HttpSession.invalidate

Servlet_After_Session After Stateless After calls to servlet methods:

HttpServletRequest.getSession

HttpSession.setAttribute/

putValue

HttpSession.getAttribute/

getValue

HttpSession.removeAttribute/

removeValue

HttpSession.invalidate

Servlet_Before_Tags Before Stateless Before calls to jsp methods:

Tag.doStartTag

Tag.doEndTag

Servlet_After_Tags After Stateless After calls to jsp methods:

Tag.doStartTag

Tag.doEndTag

Servlet_Around_Tags Around Around Before and after calls to jsp methods:

Tag.doStartTag

Tag.doEndTag

Diagnostic Action Library
WLDF includes a library of diagnostic actions that you can use with delegating monitors.You
can also use these diagnostic actions with custom monitors that you can define and use within
applications. Each diagnostic action can be used only with monitors with which they are
compatible, as indicated by the Compatible Monitor Type column. Some actions (for example,
TraceElapsedTimeAction) generate an event payload.
The diagnostic action library includes the following actions:

TraceAction
TraceAction is a stateless action that is compatible with Before and After monitor types.

TraceAction generates a trace event at the affected location in the program execution. The
following information is generated:

• Timestamp

Appendix D
Diagnostic Action Library

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-9 of D-19

• Context identifier from the diagnostic context which uniquely identifies the request

• Transaction identifier, if available

• User identity

• Action type (that is, TraceAction)

• Domain

• Server name

• Instrumentation scope name (for example, application name)

• Diagnostic monitor name

• Module name

• Location in code from where the action was called. The location information includes:

– Class name

– Method name

– Method signature

– Line number

– Thread name

• Payload carried by the diagnostic context, if any

DisplayArgumentsAction
DisplayArgumentsAction is a stateless action that is compatible with Before and After monitor
types.

DisplayArgumentsAction generates an instrumentation event at the affected location in the
program execution to capture method arguments or a return value.

When executed, this action causes an instrumentation event that is dispatched to the events
archive. When attached to Before monitors, the instrumentation event captures input
arguments to the joinpoint (for example, method arguments). When attached to After monitors,
the instrumentation event captures the return value from the joinpoint. The event carries the
following information:

• Timestamp

• Context identifier from the diagnostic context that uniquely identifies the request

• Transaction identifier, if available

• User identity

• Action type (that is, DisplayArgumentsAction)

• Domain

• Server name

• Instrumentation scope name (for example, application name)

• Diagnostic monitor name

• Module name

• Location in code from where the action was called. The location information includes:

– Class name

Appendix D
Diagnostic Action Library

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-10 of D-19

– Method name

– Method signature

– Line number

– Thread name

• Payload carried by the diagnostic context, if any

• Input arguments, if any, when attached to Before monitors

• Return value, if any, when attached to After monitors

TraceElapsedTimeAction
TraceElapsedTimeAction is an Around action that is compatible with Around monitor types.

TraceElapsedTimeAction generates two events: one before and one after the location in the
program execution.

When executed, this action captures the timestamps before and after the execution of an
associated joinpoint. It then computes the elapsed time by computing the difference. It
generates an instrumentation event which is dispatched to the events archive. The elapsed
time is stored as event payload. The event carries the following information:

• Timestamp

• Context identifier from the diagnostic context that uniquely identifies the request

• Transaction identifier, if available

• User identity

• Action type (that is TraceElapsedTimeAction)

• Domain

• Server name

• Instrumentation scope name (for example, application name)

• Diagnostic monitor name

• Module name

• Location in code from where the action was called. This location information consists of:

– Class name

– Method name

– Method signature

– Line number

– Thread name

• Payload carried by the diagnostic context, if any

• Elapsed time processing the joinpoint, as event payload, in nanoseconds

TraceMemoryAllocationAction
TraceMemoryAllocationAction uses the HotSpot ThreadMXBean API to trace the number of
bytes allocated by a thread during a method call. This action is very similar to
TraceElapsedTimeAction, with the exception that the memory allocated within a method call is
traced.

Appendix D
Diagnostic Action Library

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-11 of D-19

The TraceMemoryAllocationAction action:

• Creates an instrumentation event that is persisted.

• Can be used from delegating and custom monitors.

StackDumpAction
StackDumpAction is a stateless action that is compatible with Before and After monitor types.

StackDumpAction generates an instrumentation event at the affected location in the program
execution to capture a stack dump.

When executed, this action generates an instrumentation event that is dispatched to the events
archive. It captures the stack trace as an event payload. The event carries following
information:

• Timestamp

• Context identifier from the diagnostic context that uniquely identifies the request

• Transaction identifier, if available

• User identity

• Action type (that is, StackDumpAction)

• Domain

• Server name

• Instrumentation scope name (for example, application name)

• Diagnostic monitor name

• Module name

• Location in code from where the action was called. This location information consists of:

– Class name

– Method name

– Method signature

– Line number

– Thread name

• Payload carried by the diagnostic context, if any

• Stack trace as an event payload

ThreadDumpAction
ThreadDumpAction is a stateless action that is compatible with Before and After monitor types.

ThreadDumpAction generates an instrumentation event at the affected location in the program
execution to capture a thread dump, if the underlying VM supports it. JDK 8 and later (Oracle
HotSpot) supports this action.

This action generates an instrumentation event that is dispatched to the events archive. This
action may be used only with HotSpot. It is ignored when used with other JVMs. It captures the
thread dump as event payload. The event carries the following information:

• Timestamp

Appendix D
Diagnostic Action Library

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-12 of D-19

• Context identifier from the diagnostic context that uniquely identifies the request

• Transaction identifier, if available

• User identity

• Action type (that is, ThreadDumpAction)

• Domain

• Server name

• Instrumentation scope name (for example, application name)

• Diagnostic monitor name

• Module name

• Location in code from where the action was called. This location information consists of:

– Class name

– Method name

– Method signature

– Line number

– Thread name

• Payload carried by the diagnostic context, if any

• Thread dump as an event payload

MethodInvocationStatisticsAction
MethodInvocationStatisticsAction is an Around action that is compatible with Around monitor
types.

MethodInvocationStatisticsAction captures performance metrics around a joinpoint in memory
without persisting an event in the Archive for each invocation. The statistics are collected and
made available through the WLDFInstrumentationRuntimeMBean. The collected statistics are
also consumable by the Harvester and the Policies and Actions components. This makes it
possible to create watch rules that can combine request information from the instrumentation
system and metric information from other run-time MBeans.

Some of the statistics that can be captured include the following:

• Number of invocations

• Average execution time (in nanoseconds)

• Standard deviation in observed execution time

• Minimum execution time

• Maximum execution time

The WLDFInstrumentationRuntimeMBean instance for a given scope exposes the data
collected from MethodInvocationStatisticsAction instances, which are attached to configured
Diagnostic Around monitors, using the MethodInvocationStatistics attribute. The
MethodInvocationStatistics attribute contains a hierarchy of Map objects, keyed as shown in
Figure D-1.

Appendix D
Diagnostic Action Library

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-13 of D-19

Figure D-1 Structure of MethodInvocationStatistics Attribute

The following semantics are used in the MethodInvocationStatistics attribute:

 MethodInvocationStatistics::= Map<className, MethodMap>
 MethodMap::= Map<methodName, MethodParamsSignatureMap>
 MethodParamsSignatureMap::= Map<MethodParamsSignature, MethodDataMap>
 MethodDataMap::= <MetricName, Statistic>
 MetricName:= min | max | avg | count | sum | sum_of_squares | std_deviation

Because the MethodInvocationStatisticsAction only captures information in memory, and does
not persist that information in the Archive, this action does not incur the I/O overhead of other
instrumentation actions. This makes this action a lightweight mechanism for capturing
performance statistics and helping identify bottlenecks in your application. You can navigate
through the map structures and identify the low performing parts of your application.

Instrumenting an Application with MethodInvocationStatisticsAction and Querying the
Results

This section shows an example of instrumenting the Avitek Medical Records (MedRec) sample
application with a custom monitor that uses MethodInvocationStatisticsAction. This example
then shows using WLST online to query the performance statistics that have been collected,
which can be done by navigating the WLDFInstrumentationRuntimeMBean instance
associated with the instrumented application.

WLST online provides simplified access to MBeans. While JMX APIs require you to use JMX
object names to interrogate MBeans, WLST enables you to navigate a hierarchy of MBeans in
a similar fashion to navigating a hierarchy of files in a file system. See Navigating and
Interrogating MBeans in Understanding the WebLogic Scripting Tool.

The following subsections are included in this example:

Appendix D
Diagnostic Action Library

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-14 of D-19

Note

Code examples demonstrating Jakarta EE APIs and other WebLogic Server features
are provided with your WebLogic Server installation. To work with these examples,
select the custom installation option when installing WebLogic Server, and select to
install the Server Examples. See Code Examples and Sample Applications in
Understanding Oracle WebLogic Server.

Using WLST to Query Method Performance Statistics
Once MedRec is redeployed, the MethodInvocationStatisticsAction begins capturing method
performance statistics as the instrumented code is executed. This section shows how to
generate statistics quickly and simply by navigating the MedRec patient application with the
custom monitor enabled. This section then shows how to examine those statistics using WLST
online.

To capture method performance statistics using the custom monitor configured for MedRec
and query the results using WLST, complete the following steps:

1. Start the MedRec application, as described in Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

Log in as a patient, administrator, or physician, and perform a small number of operations.

2. Invoke WLST online and navigate to the WLDFInstrumentationRuntimeMBean instance, as
shown in the following example steps:

a. Connect to the MedRec server:

wls:/offline> connect('weblogic','password','localhost:7011')
Connecting to t3://localhost:7011 with userid weblogic ...
Successfully connected to Admin Server 'MedRecServer' that belongs to domain 'medrec'.

b. Use the cd command to navigate to the WLDFInstrumentationRuntimeMBean instance
associated with the MedRec application:

cd('serverRuntime:/WLDFRuntime/WLDFRuntime/WLDFInstrumentationRuntimes/medrec')
Location changed to serverRuntime tree. This is a read-only tree with
ServerRuntimeMBean as the root.
For more help, use help(serverRuntime)

3. Access specific values collected by MethodInvocationStatisticsAction by invoking the
following method on the WLDFInstrumentationRuntimeMBean:

public Object getMethodInvocationStatisticsData(String expr) throws
ManagementException;

Using WLST interactively, you can pass a lookup expression to this method. The lookup
expression specifies the particular subset of values that you are interested in viewing.
These values are obtained from the map structure created by
MethodInvocationStatisticsAction. For example, the following WLST command returns the
average execution time (in nanoseconds) of all methods instrumented by
MethodInvocationStatisticsAction:

cmo.getMethodInvocationStatisticsData("(com.bea%)(*)(?)(avg)")
array(java.lang.Object,[3352.0, 3632.0, 145270.0, 4050.5, 8450.916666666666,
1798645.75,
583538.0, 3610515.0, 1.9541031E7, 1.2796319E7, 3.07897E8, 4470.0, 3073.0, 3073.0,
2.4644752E7, 3492.5, 1051530.0, 2794.0, 390552.3333333333, 3632.0, 2095.5,
189409.33333333334,
2607.6666666666665, 2793.6666666666665, 4749.333333333333, 5308.0, 65930.0,

Appendix D
Diagnostic Action Library

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-15 of D-19

3.3950405E7,
3353.0, 3911.5])

Note that if you display the entire set of data values that have been collected, a large amount
of information could be displayed in the WLST console, as shown in Figure D-2:

Figure D-2 Displaying All Data Values Collected by MethodInvocationStatisticsAction

As an alternative, you can create a WLST script to invoke MethodInvocationStatistics and to
format the collected data so that it is more easily read, as in Example D-1:

Example D-1 Using WLST to Invoke MethodInvocationStatistics and Display Results

import sys

def getPositionalArgument(pos, default):
 value=None
 try:
 value=sys.argv[pos]
 except:
 value=default
 return value

url = getPositionalArgument(1, "t3://localhost:7001")
user = getPositionalArgument(2, "weblogic")
password = getPositionalArgument(3, "password")
appName = getPositionalArgument(4, "myapp")

connect(user,password,url)
serverRuntime()
cd('/WLDFRuntime/WLDFRuntime/WLDFInstrumentationRuntimes/' + appName)

print "# Class Method | Count | Min | Max | Average | Std-dev |"
stats=cmo.getMethodInvocationStatistics()

Appendix D
Diagnostic Action Library

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-16 of D-19

for className in stats.keySet():
 classMap=stats.get(className)
 for methodName in classMap.keySet():
 methodMap=classMap.get(methodName)
 for sig in methodMap.keySet():
 str= className + " " + methodName + "(" + sig + ")"
 sigMap=methodMap.get(sig)
 count=sigMap.get('count')
 min=sigMap.get('min')
 max=sigMap.get('max')
 avg=sigMap.get('avg')
 std_deviation=sigMap.get('std_deviation')
 print str, "|", count, "|", min, "|", max, "|", avg, "|", std_deviation, "|"

The following shows the output produced by the WLST script shown in Example D-1:

Class Method | Count | Min | Max | Average | Std-dev |
jsp_servlet.__index _isStale() | 1 | 1378000 | 1378000 | 1378000.0 | 0.0 |
jsp_servlet.__index _getBytes(java.lang.String) | 3 | 1000 | 754000 | 252666.66666666666 | 354497.1399351795 |
jsp_servlet.__index _staticIsStale(weblogic.servlet.jsp.StaleChecker) | 1 | 861000 | 861000 | 861000.0 | 0.0 |
jsp_servlet.__index _jspService(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse) | 2 |
70000 | 2113000 | 1091500.0 | 1021500.0 |
jsp_servlet.__index$MyMap containsKey(java.lang.Object) | 2 | 2000 | 101000 | 51500.0 | 49500.0 |
jsp_servlet.__index$MyMap containsValue(java.lang.Object) | 2 | 1000 | 2000 | 1500.0 | 500.0 |

Configuring the Harvester to Collect MethodInvocationStatisticsAction Data
To configure the Harvester to collect data gathered by MethodInvocationStatisticsAction
instances, you must configure an instance of WLDFHarvesterBean using the following
attribute:

Name=weblogic.management.runtime.WLDFInstrumentationRuntimeMBean

The scope is selected by the instance configuration.

The attribute specification defines the data that is collected by the Harvester. You can access
the successive elements of the map by using the following notation:

MethodInvocationStatistics(className)(methodName)(methodParamSignature)
(metricName)

In the preceding notation:

• className represents the fully qualified Java class name. You can use the asterisk (*)
wildcard character in a class name.

• methodName selects a specific method from the given class. You can use the asterisk (*)
wildcard character in a method name.

• methodParamSignature represents a string that is a comma-separated list of a method's
input argument types. Only the Java type names, without the argument names, are
included in the signature specification. As in the Java language, the order of the
parameters in the signature is significant.

This element also supports the asterisk (*) wildcard character, which can be used to
specify the entire list of input argument types for a given method. The asterisk (*) wildcard
character matches zero or more argument types at the position following its occurrence in
the methodParamSignature expression.

You can also use the question mark (?) wildcard character to match a single argument type
at any given position in the ordered list of parameter types.

Appendix D
Diagnostic Action Library

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-17 of D-19

Both of these wildcard characters can appear anywhere in the expression. See
MethodInvocationStatisticsAction Examples.

• metricName represents the statistics to be harvested. You can use the asterisk (*) wildcard
character in this key to harvest all of the supported metrics.

MethodInvocationStatistics Examples

Consider a class with the following overloaded methods:

package.com.foo;
public interface Bar {
 public void doIt();
 public void doIt(int a);
 public void doit(int a, String s)
 public void doIt(Stringa, int b);
 public void doIt(String a, String b);
 public void doIt(String[] a);
 public void doNothing();
 public void doNothing(com.foo.Baz);
}

Table D-3 provides examples that show to use MethodInvocationStatisticsAction to harvest
various statistics.

Table D-3 MethodInvocationStatisticsAction Examples

The following MethodInvocationStatisticsAction
instance configuration . . .

. . . causes the following to be harvested

MethodInvocationStatistics(com.foo.Bar)(*)(*)
(*)

All statistics for all methods on com.Foo.Bar.

MethodInvocationStatistics(com.foo.Bar)(doIt)()
(*)

All statistics for the doIt() method that has no input
arguments.

MethodInvocationStatistics(com.foo.Bar)(doIt)
(*)(*)

All statistics for all doIt() methods.

MethodInvocationStatistics(com.foo.Bar)(doIt)
(int, *)(*)

All statistics for the doIt(int) and doIt(int, String)
methods.

MethodInvocationStatistics(com.foo.Bar)(doIt)
(String[])(*)

All statistics for the doIt(String[]) method.

Note that array parameters are specified by the use of a pair
of square brackets ([]) following the type name. Space
characters are insignificant for the Harvester.

MethodInvocationStatistics(com.foo.Bar)(doIt)
(String, ?)(*)

All statistics for doIt() methods that have two input
parameters and String as the first argument type. In this
example class, this instance configuration matches the
following methods:

• doIt(String, int)
• doIt(String, String)

MethodInvocationStatistics(com.foo.Bar)
(doNothing)(com.foo.Baz)(min,max)

The min and max execution time for the doNothing()
method that has the single input parameter of type
com.foo.Baz.

Appendix D
Diagnostic Action Library

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-18 of D-19

Note

Using a wildcard character in the className specification can have a negative impact
on performance.

Configuring Policies Based on MethodInvocationStatistics Metrics
You can use the same syntax described in the previous sections to use
MethodInvocationStatistics metrics in a policy expression. You can create meaningful watch
rules that do not use a wildcard character in the MetricName element by specifying whether
you want the min, max, avg, count, sum, sum_of_squares, or std_deviation variable for a given
method.

Using JMX to Collect Data
When using straight JMX to collect data, you can potentially impact server performance
negatively if you invoke the getAttribute("MethodInvocationStatistics") method on the
WLDFInstrumentationRuntimeMBean. This occurs because, depending on the instrumented
classes, the nested map structure can contain a lot of data that involves expensive
serialization.

When you use JMX to collect data, Oracle recommends using the
getMethodInvocationStatisticsData(String) method.

MemoryAllocationStatisticsAction
The MemoryAllocationStatisticsAction uses the HotSpot ThreadMXBean API API to track the
number of bytes allocated by a thread during a method call. Statistics are kept in-memory on
the memory allocations, and no instrumentation events are created by this action.

The MemoryAllocationStatisticsAction is very similar to the existing
MethodInvocationStatisticsAction. However, statistics tracked by
MemoryAllocationStatisticsAction are related to the memory allocated within a method call.

The MemoryAllocationStatisticsAction does not create an instrumentation event. When
HotSpot is available, the statistics are available through the
WLDFInstrumentationRuntimeMBean.

The following statistics for each method are kept:

• count

• min

• max

• avg

• sum

• sum_of_squares

• std_deviation

Appendix D
Diagnostic Action Library

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix D-19 of D-19

E
Using Wildcards in Expressions

The WebLogic Diagnostics Framework (WLDF) supports the ability to use wildcards in
expressions.WLDF allows for the use of wildcards in instance names within the <harvested-
instance> element, and also provides drill-down and wildcard capabilities in the attribute
specification of the <harvested-attribute> element.
WLDF also allows the same wildcard capabilities for instance names in Harvester policies, as
well as specifying complex attributes in Harvester policies.

This appendix includes the following sections:

Using Wildcards in Harvester Instance Names
When specifying instance names within the <harvested-instance> element, you have some
flexibility with regards to the property list order.Specifically, you can:

• Express the instance name in non-canonical form, allowing you to specify the property list
of the ObjectName out of order.

• Express the ObjectName as a JMX ObjectName query pattern without concern as to the
order of the property list.

• Use zero or more asterisk (*) wildcard characters in any of the values in the property list of
an ObjectName, such as Name=*.

• Use zero or more asterisk (*) wildcard characters to replace any character sequence in a
canonical ObjectName string. In this case, you must ensure that any properties of the
ObjectName not substituted by a wildcard character are in canonical form.

Examples
The instance specification in Example E-1 indicates that all instances of the
WorkManagerRuntimeMBean are to be harvested. This is equivalent to not providing any
instance-name qualification in the <harvested-type> declaration.

Example E-1 Harvesting All Instances of an MBean

<harvested-type>
 <name>weblogic.management.runtime.WorkManagerRuntimeMBean</name>
 <harvested-instance>*<harvested-instance>
 <known-type>true</known-type>
 <harvested-attribute>PendingRequests</harvested-attribute>
</harvested-type>

Example E-2 shows a JMX ObjectName pattern as the <harvested-instance> value:

Example E-2 Using a JMX ObjectName Pattern

<harvested-type>
 <name>com.acme.CustomMBean</name>
 <harvested-instance>adomain:Type=MyType,*</harvested-instance>
 <known-type>false</known-type>
</harvested-type>

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix E-1 of E-6

In Example E-3, some of the values in the ObjectName property list contain wildcard
characters:

Example E-3 Using Wildcards in the Property List

<harvested-type>
 <name>com.acme.CustomMBean</name>
 <harvested-instance>adomain:Type=My*,Name=*,*</harvested-instance>
 <known-type>false</known-type>
</harvested-type>

In Example E-4, all harvestable attributes of all instances of com.acme.CustomMBean are to
be harvested, but only those in which the instance name contains the string Name=mybean.

Example E-4 Harvesting All Attributes of Multiple Instances

<harvested-type>
 <name>coma.acme.CustomMBean</name>
 <harvested-instance>*Name=mybean*</harvested-instance>
 <known-type>true</known-type>
</harvested-type>

Specifying Complex and Nested Harvester Attributes
The Harvester provides the ability to access metric values nested within complex attributes of
an MBean.A complex attribute can be a map or list object, a simple POJO, or different nestings
of these types of objects. For example:

• anObject.anAttribute

• arrayAttribute[1]

• mapAttribute(akey)

• aList[1](aKey)

In addition, wildcard characters can be used for list indexes and map keys to specify multiple
elements within a collection of those types. The following wildcard characters are available:

• You can use the asterisk (*) wildcard character to specify all key values for Map attributes.

• You can use the percent (%) wildcard character to replace parts of a Map key string and
identify a group of keys that match a particular pattern.

You can also specify a discrete set of key values by using a comma-separated list.

For example:

• aList[1](partial%Key%)

• aList[*](key1,key3,keyN)

• aList*

In the last example, where the asterisk (*) wildcard character is used for the index to a list and
as the key value to a nested map object, nested arrays of values are returned.

Embedding the asterisk (*) wildcard character in a comma-separated list of map keys is
equivalent to specifying all map keys. For example, the following two specifications are
equivalent:

• aList[*](key1,*,keyN)

• aList*

Appendix E
Specifying Complex and Nested Harvester Attributes

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix E-2 of E-6

Note

Leading or trailing spaces will be stripped from a map key unless the map key is
enclosed within quotation marks.

Using a map key pattern can result in a large number of elements being scanned,
returned, or both. The larger the number of elements in a map, the bigger the impact is
on performance.

The more complex the matching pattern is, the more processing time is required.

Examples
To use drill-down syntax to harvest the nested State property of the HealthState attribute on
the ServerRuntime MBean, use the diagnostic descriptor shown in Example E-5.

Example E-5 Using Drill-Down Syntax

<harvester>
 <sample-period>10000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServerRuntimeMBean</name>
 <harvested-attribute>HealthState.State</harvested-attribute>
 </harvested-type>
</harvester>

To harvest the elements of an array or list, the Harvester supports a subscript notation in which
a value is referred to by its index position in the array or list. For example, to refer to the first
element in the array attribute URLPatterns in the ServletRuntimeMBean, specify
URLPatterns[0]. Example E-6 shows referencing all elements of URLPatterns using a wildcard
character.

Example E-6 Using a Wildcard Character to Reference All Elements of an Array

<harvester>
 <sample-period>10000</sample-period>
 <harvested-type>
 <name>weblogic.management.runtime.ServletRuntimeMBean</name>
 <harvested-attribute>URLPatterns[*]</harvested-attribute>
 </harvested-type>
</harvester>

To harvest the elements of a map, each individual value is referenced by the key enclosed in
parentheses. Multiple keys can be specified as a comma-delimited list, in which case the
values corresponding to specified keys in the map are harvested, as shown in the following
examples.

The following example shows the following

<harvested-attribute>MyMap(Foo)</harvested-attribute> Harvesting the value from the map with key Foo.

<harvested-attribute>MyMap(Foo,Bar)</harvested-attribute> Harvesting the value from the map with keys
Foo and Bar.

Appendix E
Specifying Complex and Nested Harvester Attributes

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix E-3 of E-6

The following example shows the following

<harvested-attribute>MyMap(Foo%Bar)</harvested-attribute> Using the percent (%) wildcard character with a
key specification to harvest all values from the
map if their keys start with Foo and end with
Bar.

<harvested-attribute>MyMap(*)</harvested-attribute> Harvesting all values from a map by using the
asterisk (*) wildcard character.

<harvested-attribute>MyBeanMyMap(Foo)</harvested-
attribute>

The MBean has a JavaBean attribute MyBean,
which has a nested map type attribute MyMap.
This example harvests this value from the map
that has the key Foo.

Using the Accessor with Harvested Complex or Nested Attributes
While a large number of complex or nested attributes can be specified as a single expression
in terms of the Harvester and Policy and Actions configuration, the actual metrics are persisted
in terms of each individually gathered metric.

For example, the attribute specification mymap(*).(a,b,c) maps to the following actual nested
attributes:

 mymap(key1).a
 mymap(key1).b
 mymap(key1).c
 mymap(key2).a
 mymap(key2).b
 mymap(key2).c

Each of the preceding six metrics are stored in a separate record in the HarvestedDataArchive,
with the shown attribute names stored in the ATTRNAME column in each corresponding
record. The values in the ATTRNAME column are the values you must use in Accessor queries
when retrieving them from the archive.

The following are examples of query strings:

 NAME="foo:Name=MyMBean" ATTRNAME="mymap(key1).a"
 NAME="foo"Name=MyBean" ATTRNAME LIKE "mymap(%).a"
 NAME="fooName=MyMBean" ATTRNAME MATCHES "mymap\((.*?)\).a"

Using Wildcards in Policy Instance Names
Within Harvester policy expressions, you can use the asterisk (*) wildcard character to specify
portions of an ObjectName. This gives you the ability to watch for multiple instances of a type.

For example, to specify the OpenSocketsCurrentCount attribute for all instances of the
ServerRuntimeMBean that begin with the name managed:

• The instance-name pattern can be a valid JMX ObjectName pattern, in which case the
property list order is not important. For example:

${com.bea:Name=managed*,Type=ServerRuntime,*//OpenSocketCurrentCount}

This example is a valid JMX ObjectName pattern that can match:

– Any ObjectName that contains a Name key with a value that starts with managed

Appendix E
Using the Accessor with Harvested Complex or Nested Attributes

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix E-4 of E-6

– A Type key that exactly matches the value ServerRuntime

– Any other property pairs

For more examples of valid JMX ObjectName patterns, see the ObjectName API
documentation at http://docs.oracle.com/javase/8/docs/api/javax/management/
ObjectName.html.

• If the name is a pattern but is not a JMX ObjectName pattern, WebLogic Server does
pattern-matching using the pattern as-is. For example:

${com.bea:*Name=managed*,Type=ServerRuntime,*//OpenSocketCurrentCount}

This example is not a valid JMX ObjectName pattern. This pattern is matched using
straight string substitution, where the pattern is matched as-is against the canonical form of
the ObjectName for any target MBean instance.

Note

The ObjectName query pattern syntax supported by the Harvester is determined by
whatever is supported by the underlying JMX implementation. The preceding example
demonstrates the syntax supported by JDK 5 and later. For information about the full
syntax that is supported, see the description of the javax.management.ObjectName
class corresponding to the version of the JDK with which your installation of WebLogic
Server is configured.

Specifying Complex Attributes in Harvester Policies
You can specify complex attributes (a collection, an array type or an Object with nested
intrinsic attribute types) within Harvester policy expressions.There are several ways to do this.
The following example shows a drill-down into a nested attribute in a complex type, which is
then checked to see if it is greater than 0:

${somedomain:name=MyMbean//complexAttribute.nestedAttribute} > 0

You can also use wildcard characters to specify multiple Map keys. The following wildcard
characters are available for specifying complex attributes:

• You can use an asterisk character (*) to specify all key values for Map attributes.

• You can use a percent character (%) to replace parts of a Map key string and to identify a
group of keys that match a particular pattern.

In addition, you can use a comma-separated list to specify a discrete set of key values.

For example:

${[com.bea.foo.BarClass]//aList[*].(some%partialKey%).(aValue,bValue)} > 0

The rule in the preceding example examines all elements of the aList attribute on all instances
of com.bea.foo.BarClass, drilling down into a nested map for all keys starting with the text
some and containing the text partialKey afterwards. The returned values are assumed to be
Map instances, from which values for the keys aValue and bValue are compared to determine
if they are greater than 0.

When using the MethodInvocationStatistics attribute on the WLDFInstrumentationRuntime
type, the system needs to determine the type from the variable. If the system cannot determine

Appendix E
Specifying Complex Attributes in Harvester Policies

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix E-5 of E-6

http://docs.oracle.com/javase/8/docs/api/javax/management/ObjectName.html
http://docs.oracle.com/javase/8/docs/api/javax/management/ObjectName.html

the type when validating the attribute expression, the expression is not valid. For example, the
following expression is not valid:

${ com.bea:Name=myScope, * //MethodInvocationStatistics.(...).(...)

You must explicitly declare the type in this situation, as shown in the following example that
shows drilling down into the nested map structure:

$(com.bea:Name=hello,Type=WLDFInstrumentationRuntime,*//MethodInvocationStatistics(*)(*)
(*)(count)) >= 1

Appendix E
Specifying Complex Attributes in Harvester Policies

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix E-6 of E-6

F
WebLogic Scripting Tool Examples

The WebLogic Diagnostics Framework (WLDF) includes examples that show using WLST and
JMX to interact with WLDF components.

Note

The following examples are also included with the WebLogic Server code examples:

• Example: Configuring a Policy and a JMX Action

• Example: Writing a JMXWatchNotificationListener Class

• Example: Registering MBeans and Attributes For Harvesting

These examples are bundled under the title "Configuring the Policies and Actions
System and Harvesting Data Using WLST". For information about installing and
configuring the WebLogic Server code examples, see Sample Applications and Code
Examples in Understanding Oracle WebLogic Server.

For information about running WebLogic Scripting Tool (WLST) scripts, see Running WLST
from Ant in Understanding the WebLogic Scripting Tool. For information about developing JMX
applications, see Understanding JMX in Developing Manageable Applications Using JMX for
Oracle WebLogic Server.

This appendix includes the following sections:

WLST Commands for Diagnostics
WLST includes a set of commands that you can use to retrieve diagnostic data and manage
diagnostic system resources.These commands are summarized in Table F-1.

Table F-1 WLST Commands Used with WLDF

Command Summary

captureAndSaveDiagnosticImage Captures a diagnostics image and downloads it locally.

createSystemResourceControl Creates a diagnostics system resource control using specified descriptor
file that is not persisted in the domain configuration. See Using WLST to
Activate and Deactivate Diagnostic System Modules.

destroySystemResourceControl Destroys an external diagnostics system resource control; that is, one
that is created in a server or cluster instance but that is not persisted in
the domain configuration. See Using WLST to Activate and Deactivate
Diagnostic System Modules.

disableSystemResource Deactivates a diagnostic system resource control that is persisted in the
domain configuration. See Using WLST to Activate and Deactivate
Diagnostic System Modules.

dumpDiagnosticData Dumps the diagnostics data from a Harvester to a local file.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix F-1 of F-15

Table F-1 (Cont.) WLST Commands Used with WLDF

Command Summary

enableSystemResource Activates a diagnostic resource control. See Using WLST to Activate and
Deactivate Diagnostic System Modules.

exportDiagnosticData Execute a query against the specified log file.

exportDiagnosticDataFromServer Executes a query on the server side and retrieves the exported WLDF
data.

getAvailableCapturedImages Returns a list of the previously captured diagnostic images.

listSystemResourceControls Lists the diagnostic system modules that are currently configured in the
domain. See Using WLST to Activate and Deactivate Diagnostic System
Modules.

mergeDiagnosticData Merges a set of data files that were previously generated by the
dumpDiagnosticData() command.

saveDiagnosticImageCaptureFile Downloads the specified diagnostic image capture.

saveDiagnosticImageCaptureEntryFile Downloads a specific entry from the diagnostic image capture.

For complete details about each of these commands, including additional examples, see
Diagnostics Commands in WLST Command Reference for WebLogic Server.

Example: Dynamically Creating DyeInjection Monitors
You can create a DyeInjection monitor dynamically using WLST.This demonstration script
shown in Example F-1does the following:

• Connects to a server (boots the server first if necessary).

• Looks up or creates a WLDF System Resource.

• Creates the DyeInjection monitor.

• Sets the dye criteria.

• Enables the monitor.

• Saves and activates the configuration.

• Enables the Diagnostic Context feature via the ServerDiagnosticConfigMBean.

The demonstration script in Example F-1 only configures the dye monitor, which injects dye
values into the diagnostic context. To fire events, you must implement downstream diagnostic
monitors that use dye filtering to fire on the specified dye criteria. An example downstream
monitor artifact is shown in Example F-2. This must be placed in a file named weblogic-
diagnostics.xml and placed into the META-INF directory of a application archive. It is also
possible to create a monitor using a JSR-88 deployment plan. See Deploying Applications to
Oracle WebLogic Server.

Example F-1 Example: Using WLST to Dynamically Create DyeInjection Monitors
(demoDyeMonitorCreate.py)

Script name: demoDyeMonitorCreate.py
###
Demo script showing how to create a DyeInjectionMonitor dynamically
via WLST. This script will:
- Connect to a server, booting it first if necessary
- Look up or create a WLDF System Resource

Appendix F
Example: Dynamically Creating DyeInjection Monitors

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix F-2 of F-15

- Create the DyeInjection Monitor (DIM)
- Set the dye criteria
- Enable the monitor
- Save and activate
- Enable the Diagnostic Context functionality via the
ServerDiagnosticConfig MBean
Note: This will only configure the dye monitor, which will inject dye
values into the Diagnostic Context. To fire events requires the
existence of "downstream" monitors set to fire on the specified
dye criteria.
##
myDomainDirectory="domain"
url="t3://localhost:7001"
user="weblogic"
password="password"
myServerName="myserver"
myDomain="mydomain"
props="weblogic.GenerateDefaultConfig=true,weblogic.RootDirectory="\
 +myDomainDirectory
try:
 connect(user,password,url)
except:
 startServer(adminServerName=myServerName,domainName=myDomain,
 username=user,password=password,systemProperties=props,
 domainDir=myDomainDirectory,block="true")
 connect(user,password,url)
Start an edit session
edit()
startEdit()
cd ("/")
Look up or create the WLDF System resource.
wldfResourceName = "mywldf"
myWldfVar = cmo.lookupSystemResource(wldfResourceName)
if myWldfVar==None:
 print "Unable to find named resource,\
 creating WLDF System Resource: " + wldfResourceName
 myWldfVar=cmo.createWLDFSystemResource(wldfResourceName)
Target the System Resource to the demo server.
wldfServer=cmo.lookupServer(serverName)
myWldfVar.addTarget(wldfServer)
create and set properties of the DyeInjection Monitor (DIM).
mywldfResource=myWldfVar.getWLDFResource()
mywldfInst=mywldfResource.getInstrumentation()
mywldfInst.setEnabled(1)
monitor=mywldfInst.createWLDFInstrumentationMonitor("DyeInjection")
monitor.setEnabled(1)
Need to include newlines when setting properties
on the DyeInjection monitor.
monitor.setProperties("\nUSER1=larry@celtics.com\
 \nUSER2=brady@patriots.com\n")
monitor.setDyeFilteringEnabled(1)
Enable the diagnostic context functionality via the
ServerDiagnosticConfig.
cd("/Servers/"+serverName+"/ServerDiagnosticConfig/"+serverName)
cmo.setDiagnosticContextEnabled(1)
save and disconnect
save()
activate()
disconnect()
exit()

Appendix F
Example: Dynamically Creating DyeInjection Monitors

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix F-3 of F-15

Example F-2 Example: Downstream Monitor Artifact

<?xml version="1.0" encoding="UTF-8"?>
<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <instrumentation>
 <enabled>true</enabled>
 <!-- Servlet Session Monitors -->
 <wldf-instrumentation-monitor>
 <name>Servlet_Before_Session</name>
 <enabled>true</enabled>
 <dye-mask>USER1</dye-mask>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <action>TraceAction</action>
 <action>StackDumpAction</action>
 <action>DisplayArgumentsAction</action>
 <action>ThreadDumpAction</action>
 </wldf-instrumentation-monitor>
 <wldf-instrumentation-monitor>
 <name>Servlet_After_Session</name>
 <enabled>true</enabled>
 <dye-mask>USER2</dye-mask>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <action>TraceAction</action>
 <action>StackDumpAction</action>
 <action>DisplayArgumentsAction</action>
 <action>ThreadDumpAction</action>
 </wldf-instrumentation-monitor>
 </instrumentation>
</wldf-resource>

Example: Configuring a Policy and a JMX Action
You can use WLST to configure a policy and a JMX action using the WLDF Policies and
Actions component.The demonstration script shown in Example F-3 does the following:

• Connects to a server and boots the server first if necessary.

• Looks up/creates a diagnostic system module.

• Creates a policy expression on the ServerRuntimeMBean for the
OpenSocketsCurrentCount attribute.

• Configures the actuion to use a JMXNotification medium.

Note

This example is also included with the WebLogic Server code examples. For
information about installing and configuring these examples, see Sample Applications
and Code Examples in Understanding Oracle WebLogic Server.

This script can be used in conjunction with the following files and scripts:

• The JMXWatchNotificationListener.java class (see Example: Writing a
JMXWatchNotificationListener Class).

• The demoHarvester.py script, which registers the OpenSocketsCurrentCount attribute with
the Harvester for collection (see Example: Registering MBeans and Attributes For
Harvesting).

Appendix F
Example: Configuring a Policy and a JMX Action

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix F-4 of F-15

To see these files work together, perform the following steps:

1. To run the policy configuration script (demoWatch.py), type:

java weblogic.WLST demoWatch.py

2. To compile the JMXWatchNotificationListener.java source, type:

javac JMXWatchNotificationListener.java

3. To run the JMXWatchNotificationListener.class file, type:

java JMXWatchNotificationListener

Note

Be sure the current directory is in your class path, so it will find the class file you
just created.

4. To run the demoHarvester.py script, type:

java weblogic.WLST demoHarvester.py

When the demoHarvester.py script runs, it executes the JMXNotification action for the policy
configured in step 1.

Example F-3 Example: Policy and JMXNotification (demoWatch.py)

Script name: demoWatch.py
##
Demo script showing how to configure a policy and a JMXNotification
using the WLDF Policies and Action framework.
The script will:
- Connect to a server, booting it first if necessary
- Look up or create a WLDF System Resource
- Create a policy expression on the ServerRuntimeMBean for the
"OpenSocketsCurrentCount" attribute
- Configure the policy to use a JMXNotification medium
#
This script can be used in conjunction with
- the JMXWatchNotificationListener.java class
- the demoHarvester.py script, which registers the
"OpenSocketsCurrentCount" attribute with the harvester for collection.
To see these work together:
1. Run the policy configuration script
java weblogic.WLST demoWatch.py
2. Compile and run the JMXWatchNotificationListener.java source code
javac JMXWatchNotificationListener.java
java JMXWatchNotificationListener
3. Run the demoHarvester.py script
java weblogic.WLST demoHarvester.py
When the demoHarvester.py script runs, it fires the
JMXNotification for the policy configured in step 1.
###
myDomainDirectory="domain"
url="t3://localhost:7001"
user="weblogic"
myServerName="myserver"
myDomain="mydomain"
props="weblogic.GenerateDefaultConfig=true\
 weblogic.RootDirectory="+myDomainDirectory
try:

Appendix F
Example: Configuring a Policy and a JMX Action

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix F-5 of F-15

 connect(user,user,url)
except:
 startServer(adminServerName=myServerName,domainName=myDomain,
 username=user,password=password,systemProperties=props,
 domainDir=myDomainDirectory,block="true")
 connect(user,user,url)
edit()
startEdit()
Look up or create the WLDF System resource
wldfResourceName = "mywldf"
myWldfVar = cmo.lookupSystemResource(wldfResourceName)
if myWldfVar==None:
 print "Unable to find named resource"
 print "creating WLDF System Resource: " + wldfResourceName
 myWldfVar=cmo.createWLDFSystemResource(wldfResourceName)
Target the System Resource to the demo server
wldfServer=cmo.lookupServer(myServerName)
myWldfVar.addTarget(wldfServer)
cd("/WLDFSystemResources/mywldf/WLDFResource/mywldf/WatchNotification/mywldf")
watch=cmo.createWatch("mywatch")
watch.setEnabled(1)
jmxnot=cmo.createJMXNotification("myjmx")
watch.addNotification(jmxnot)
serverRuntime()
cd("/")
on=cmo.getObjectName().getCanonicalName()
watch.setRuleExpression("${"+on+"} > 1")
watch.getRuleExpression()
watch.setRuleExpression("${"+on+"//OpenSocketsCurrentCount} > 1")
watch.setAlarmResetPeriod(10000)
edit()
save()
activate()
disconnect()
exit()

Example: Writing a JMXWatchNotificationListener Class
You can use the JMX API to write a JMXWatchNotificationListener.Example F-4 shows an
example.

Note

This example is also included with the WebLogic Server code examples. For
information about installing and configuring these examples, see Sample Applications
and Code Examples in Understanding Oracle WebLogic Server.

Example F-4 Example: JMXWatchNotificationListener Class
(JMXWatchNotificationListener.java)

import javax.management.*;
import weblogic.diagnostics.watch.*;
import weblogic.diagnostics.watch.JMXWatchNotification;
import javax.management.Notification;
import javax.management.remote.JMXServiceURL;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXConnector;
import javax.naming.Context;

Appendix F
Example: Writing a JMXWatchNotificationListener Class

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix F-6 of F-15

import java.util.Hashtable;
import weblogic.management.mbeanservers.runtime.RuntimeServiceMBean;
public class JMXWatchNotificationListener implements NotificationListener, Runnable {
 private MBeanServerConnection rmbs = null;
 private String notifName = "myjmx";
 private int notifCount = 0;
 private String serverName = "myserver";
 public JMXWatchNotificationListener(String serverName) {
 }
 public void register() throws Exception {
 rmbs = getRuntimeMBeanServerConnection();
 addNotificationHandler();
 }
 public void handleNotification(Notification notif, Object handback) {
 synchronized (this) {
 try {
 if (notif instanceof JMXWatchNotification) {
 WatchNotification wNotif =
 ((JMXWatchNotification)notif).getExtendedInfo();
 notifCount++;
 System.out.println("===");
 System.out.println("Notification name: " +
 notifName + " called. Count= " + notifCount + ".");
 System.out.println("Watch severity: " +
 wNotif.getWatchSeverityLevel());
 System.out.println("Watch time: " +
 wNotif.getWatchTime());
 System.out.println("Watch ServerName: " +
 wNotif.getWatchServerName());
 System.out.println("Watch RuleType: " +
 wNotif.getWatchRuleType());
 System.out.println("Watch Rule: " +
 wNotif.getWatchRule());
 System.out.println("Watch Name: " +
 wNotif.getWatchName());
 System.out.println("Watch DomainName: " +
 wNotif.getWatchDomainName());
 System.out.println("Watch AlarmType: " +
 wNotif.getWatchAlarmType());
 System.out.println("Watch AlarmResetPeriod: " +
 wNotif.getWatchAlarmResetPeriod());
 System.out.println("===");
 }
 } catch (Throwable x) {
 System.out.println("Exception occurred processing JMX policy
 action: " + notifName +"\n" + x);
 x.printStackTrace();
 }
 }
 }
 private void addNotificationHandler() throws Exception {
 /*
 * The JMX policy action listener registers with a Runtime MBean
 * that matches the name of the corresponding policy bean.
 * Each policy has its own Runtime MBean instance.
 */
 ObjectName oname =
 new ObjectName(
 "com.bea:ServerRuntime=" + serverName + ",Name=" +
 JMXWatchNotification.GLOBAL_JMX_NOTIFICATION_PRODUCER_NAME +
 ",Type=WLDFWatchJMXNotificationRuntime," +
 "WLDFWatchNotificationRuntime=WatchNotification," +

Appendix F
Example: Writing a JMXWatchNotificationListener Class

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix F-7 of F-15

 "WLDFRuntime=WLDFRuntime"
);
 System.out.println("Adding notification handler for: " +
 oname.getCanonicalName());
 rmbs.addNotificationListener(oname, this, null, null);
 }
 private void removeNotificationHandler(String name,
 NotificationListener list) throws Exception {
 ObjectName oname =
 new ObjectName(
 "com.bea:ServerRuntime=" + serverName + ",Name=" +
 JMXWatchNotification.GLOBAL_JMX_NOTIFICATION_PRODUCER_NAME +
 ",Type=WLDFWatchJMXNotificationRuntime," +
 "WLDFWatchNotificationRuntime=WatchNotification," +
 "WLDFRuntime=WLDFRuntime"
);
 System.out.println("Removing notification handler for: " +
 oname.getCanonicalName());
 rmbs.removeNotificationListener(oname, list);
 }
 public void run() {
 try {
 System.out.println("VM shutdown, unregistering notification
 listener");
 removeNotificationHandler(notifName, this);
 } catch (Throwable t) {
 System.out.println("Caught exception in shutdown hook");
 t.printStackTrace();
 }
 }
 private String user = "weblogic";
 private String password = "password";
 public MBeanServerConnection getRuntimeMBeanServerConnection()
 throws Exception {
 String JNDI = "/jndi/";
 JMXServiceURL serviceURL;
 serviceURL =
 new JMXServiceURL("t3", "localhost", 7001,
 JNDI + RuntimeServiceMBean.MBEANSERVER_JNDI_NAME);
 System.out.println("URL=" + serviceURL);
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL,user);
 h.put(Context.SECURITY_CREDENTIALS,password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 JMXConnector connector = JMXConnectorFactory.connect(serviceURL,h);
 return connector.getMBeanServerConnection();
 }
 public static void main(String[] args) {
 try {
 String serverName = "myserver";
 if (args.length > 0)
 serverName = args[0];
 JMXWatchNotificationListener listener =
 new JMXWatchNotificationListener(serverName);
 System.out.println("Adding shutdown hook");
 Runtime.getRuntime().addShutdownHook(new Thread(listener));
 listener.register();
 // Sleep waiting for notifications
 Thread.sleep(Long.MAX_VALUE);
 } catch (Throwable e) {
 e.printStackTrace();

Appendix F
Example: Writing a JMXWatchNotificationListener Class

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix F-8 of F-15

 } // end of try-catch
 } // end of main()
}

Example: Registering MBeans and Attributes For Harvesting
You can use WLST to register MBeans and attributes for collection by the WLDF
Harvester.The script shown in Example F-5 does the following:

• Connects to a server and boots the server first if necessary.

• Looks up or creates a WLDF system resource.

• Sets the sampling frequency.

• Adds a type for collection.

• Adds an attribute of a specific instance for collection.

• Saves and activates the configuration.

• Displays a few cycles of the harvested data.

Note

This example is also included with the WebLogic Server code examples. For
information about installing and configuring these examples, see Sample Applications
and Code Examples in Understanding Oracle WebLogic Server.

Example F-5 Example: MBean Registration and Data Collection (demoHarvester.py)

Script name: demoHarvester.py
##
Demo script showing how register MBeans and attributes for collection
by the WLDF Harvester Service. This script will:
- Connect to a server, booting it first if necessary
- Look up or create a WLDF System Resource
- Set the sampling frequency
- Add a type for collection
- Add an attribute of a specific instance for collection
- Save and activate
###
from java.util import Date
from java.text import SimpleDateFormat
from java.lang import Long
import jarray
###
Helper functions for adding types/attributes to the harvester
configuration
###
def findHarvestedType(harvester, typeName):
 htypes=harvester.getHarvestedTypes()
 for ht in (htypes):
 if ht.getName() == typeName:
 return ht
 return None
def addType(harvester, mbeanInstance):
 typeName = "weblogic.management.runtime."\
 + mbeanInstance.getType() + "MBean"
 ht=findHarvestedType(harvester, typeName)

Appendix F
Example: Registering MBeans and Attributes For Harvesting

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix F-9 of F-15

 if ht == None:
 print "Adding " + typeName + " to harvestables collection for "\
 + harvester.getName()
 ht=harvester.createHarvestedType(typeName)
 return ht;
def addAttributeToHarvestedType(harvestedType, targetAttribute):
 currentAttributes = PyList()
 currentAttributes.extend(harvestedType.getHarvestedAttributes());
 print "Current attributes: " + str(currentAttributes)
 try:
 currentAttributes.index(targetAttribute)
 print "Attribute is already in set"
 return
 except ValueError:
 print targetAttribute + " not in list, adding"
 currentAttributes.append(targetAttribute)
 newSet = jarray.array(currentAttributes, java.lang.String)
 print "New attributes for type "\
 + harvestedType.getName() + ": " + str(newSet)
 harvestedType.setHarvestedAttributes(newSet)
 return
def addTypeForInstance(harvester, mbeanInstance):
 typeName = "weblogic.management.runtime."\
 + mbeanInstance.getType() + "MBean"
 return addTypeByName(harvester, typeName, 1)
def addInstanceToHarvestedType(harvester, mbeanInstance):
 harvestedType = addTypeForInstance(harvester, mbeanInstance)
 currentInstances = PyList()
 currentInstances.extend(harvestedType.getHarvestedAttributes());
 on = mbeanInstance.getObjectName().getCanonicalName()
 print "Adding " + str(on) + " to set of harvested instances for type "\
 + harvestedType.getName()
 print "Current instances : " + str(currentInstances)
 for inst in currentInstances:
 if inst == on:
 print "Found " + on + " in existing set"
 return harvestedType
 # only get here if the target attribute is not in the set
 currentInstances.append(on)
 # convert the new list back to a Java String array
 newSet = jarray.array(currentInstances, java.lang.String)
 print "New instance set for type " + harvestedType.getName()\
 + ": " + str(newSet)
 harvestedType.setHarvestedInstances(newSet)
 return harvestedType
def addTypeByName(harvester, _typeName, knownType=0):
 ht=findHarvestedType(harvester, _typeName)
 if ht == None:
 print "Adding " + _typeName + " to harvestables collection for "\
 + harvester.getName()
 ht=harvester.createHarvestedType(_typeName)
 if knownType == 1:
 print "Setting known type attribute to true for " + _typeName
 ht.setKnownType(knownType)
 return ht;
def addAttributeForInstance(harvester, mbeanInstance, attributeName):
 typeName = mbeanInstance.getType() + "MBean"
 ht = addInstanceToHarvestedType(harvester, mbeanInstance)
 return addAttributeToHarvestedType(ht,attributeName)
###
Display the currently registered types for the specified harvester
###

Appendix F
Example: Registering MBeans and Attributes For Harvesting

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix F-10 of F-15

def displayHarvestedTypes(harvester):
 harvestedTypes = harvester.getHarvestedTypes()
 print ""
 print "Harvested types:"
 print ""
 for ht in (harvestedTypes):
 print "Type: " + ht.getName()
 attributes = ht.getHarvestedAttributes()
 if attributes != None:
 print " Attributes: " + str(attributes)
 instances = ht.getHarvestedInstances()
 print " Instances: " + str(instances)
 print ""
 return
##
Main script flow -- create a WLDF System resource and add harvestables
##
myDomainDirectory="domain"
url="t3://localhost:7001"
user="weblogic"
myServerName="myserver"
myDomain="mydomain"
props="weblogic.GenerateDefaultConfig=true,weblogic.RootDirectory="\
 +myDomainDirectory
try:
 connect(user,user,url)
except:
 startServer(adminServerName=myServerName,domainName=myDomain,
 username=user,password=password,systemProperties=props,
 domainDir=myDomainDirectory,block="true")
 connect(user,user,url)
start an edit session
edit()
startEdit()
cd("/")
Look up or create the WLDF System resource
wldfResourceName = "mywldf"
systemResource = cmo.lookupSystemResource(wldfResourceName)
if systemResource==None:
 print "Unable to find named resource,\
 creating WLDF System Resource: " + wldfResourceName
 systemResource=cmo.createWLDFSystemResource(wldfResourceName)
Obtain the harvester bean instance for configuration
print "Getting WLDF Resource Bean from " + str(wldfResourceName)
wldfResource = systemResource.getWLDFResource()
print "Getting Harvester Configuration Bean from " + wldfResourceName
harvester = wldfResource.getHarvester()
print "Harvester: " + harvester.getName()
Target the WLDF System Resource to the demo server
wldfServer=cmo.lookupServer(myServerName)
systemResource.addTarget(wldfServer)
The harvester Jython wrapper maintains refs to
the SystemResource objects
harvester.setSamplePeriod(5000)
harvester.setEnabled(1)
add an instance-based RT MBean attribute for collection
serverRuntime()
cd("/")
addAttributeForInstance(harvester, cmo, "OpenSocketsCurrentCount")
have to return to the edit tree to activate
edit()
add a RT MBean type, all instances and attributes,

Appendix F
Example: Registering MBeans and Attributes For Harvesting

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix F-11 of F-15

with KnownType = "true"
addTypeByName(harvester,
 "weblogic.management.runtime.WLDFInstrumentationRuntimeMBean", 1)
addTypeByName(harvester,
 "weblogic.management.runtime.WLDFWatchNotificationRuntimeMBean", 1)
addTypeByName(harvester,
 "weblogic.management.runtime.WLDFHarvesterRuntimeMBean", 1)
try:
 save()
 activate(block="true")
except:
 print "Error while trying to save and/or activate."
 dumpStack()
display the data
displayHarvestedTypes(harvester)
disconnect()
exit()

Example: Setting the WLDF Diagnostic Volume
You can use WLST to configure the volume of Java Flight Recorder data that is captured in a
diagnostic image.By default, WLDF gathers data and record most events in a WebLogic Server
instance, unless specifically configured otherwise. Note that even when WLDF diagnostic
volume is set to Off, WLDF, and potentially the JVM if flight recording is enabled, generate
global events that have information about the recording settings; for example, JVM metadata
events that list active recordings, and WLDF GlobalInformationEvents that list the volume level
for the domain, server, and machine.
Example F-6 shows changing the WLDF diagnostic volume to Medium:

Example F-6 Setting WLDF Diagnostic Volume

connect()
edit()
startEdit()
cd("Servers/myserver")
cd("ServerDiagnosticConfig")
cd("myserver")
cmo.setWLDFDiagnosticVolume("Medium")
save()
activate()

Example: Capturing a Diagnostic Image
You can use WLST to create a diagnostic image capture for a WebLogic Server instance.

Note

If WebLogic Server is running in production mode, the server's SSL port must be used
when executing the commands included in this script.

Example F-7 show a sample WLST script that captures a diagnostic image. This example does
the following:

• Captures an diagnostic image after connecting, and then waits for the image task to
complete.

Appendix F
Example: Setting the WLDF Diagnostic Volume

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix F-12 of F-15

• Uses the getAvailableCapturedImages() command to obtain a list of available diagnostic
image files in the server's image directory.

• Loops through the list of available images in the diagnostic image capture and saves each
image file locally using the saveDiagnosticImageCaptureFile() command.

Example F-7 Creating a Diagnostic Image Capture

#
WLST script to capture a WLDF Diagnostic Image and
retrieve the image files to a local dir.
#
Usage:
#
java weblogic.WLST captureImage.py [username] [passwd] [url] [output-dir]
#
where

username Username to use to connect
passwd Password for connecting to server
url URL to connect to the server
output-dir Path to place saved entries
#
from java.io import File

Retrieve a positional argument if it exists; if not,
the provided default is returned.
#
Params:
pos The integer location in sys.argv of the parameter
default The default value to return if the parameter does not exist
#
returns the value at sys.argv[pos], or the provided default if necesssary
def getPositionalArgument(pos, default):
 value=None
 try:
 value=sys.argv[pos]
 except:
 value=default
 return value

Credential arguments
uname=getPositionalArgument(1, "weblogic")
passwd=getPositionalArgument(2, "password")
url=getPositionalArgument(3, "t3://localhost:7001")
outputDir=getPositionalArgument(4, ".")

connect(uname, passwd, url)
serverRuntime()
currentDrive=currentTree()

Capture a new diagnostic image
try:
 cd("serverRuntime:/WLDFRuntime/WLDFRuntime/WLDFImageRuntime/Image")
 task=cmo.captureImage()
 Thread.sleep(1000)
 while task.isRunning():
 Thread.sleep(5000)
 cmo.resetImageLockout();
finally:
 currentDrive()

List the available diagnostic image files in the server's image capture dir

Appendix F
Example: Capturing a Diagnostic Image

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix F-13 of F-15

images=getAvailableCapturedImages()
if len(images) > 0:
 # For each diagnostic image found, retrieve image file, renaming it as
 # the user sees fit
 for image in images:
 saveName=outputDir+File.separator+serverName+'-'+image
 saveDiagnosticImageCaptureFile(image,saveName)

Example: Retrieving a JFR File from a Diagnostic Image Capture
You can use WLST to retrieve the Java Flight Recorder (JFR) file from each diagnostic image
capture that is located in the image destination directory on the server and copy it to a local
directory.The script shown in Example F-8 does the following:

• Connects to WebLogic Server, passing the required credentials.

• Creates a diagnostic image capture.

• Obtains a list of the available diagnostic image files in the server's configured image
directory.

• For each diagnostic image file, attempts to retrieve the JFR file and save it to a local
directory, ensuring that each file is renamed as necessary to avoid any from being
overwritten.

Note

If WebLogic Server is running in production mode, the server's SSL port must be used
when executing the commands included in this script.

Example F-8 Retrieving a Diagnostic Image Capture File

#
WLST script to capture a WLDF Diagnostic Image and
save the FlightRecording.jfr entry locally
#
Usage:
#
java weblogic.WLST captureImageEntry.py [username] [passwd] [url] [output-dir] [image-
suffix]
#
where

username Username to use to connect
passwd Password for connecting to server
url URL to connect to the server
output-dir Path to place saved entries
image-suffix Suffix to use to rename JFR image entries locally
#
import os.path
from java.io import File

Retrieve a positional argument if it exists; if not,
the provided default is returned.
#
Params:
pos The integer location in sys.argv of the parameter
default The default value to return if the parameter does not exist
#

Appendix F
Example: Retrieving a JFR File from a Diagnostic Image Capture

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix F-14 of F-15

returns the value at sys.argv[pos], or the provided default if necesssary
def getPositionalArgument(pos, default):
 value=None
 try:
 value=sys.argv[pos]
 except:
 value=default
 return value

Credential arguments
uname=getPositionalArgument(1, "weblogic")
passwd=getPositionalArgument(2, "password")
url=getPositionalArgument(3, "t3://localhost:7001")
outputDir=getPositionalArgument(4, ".")
imageSuffix=getPositionalArgument(5, "_WLS")

connect(uname, passwd, url)
serverRuntime()
currentDrive=currentTree()

Capture a new diagnostic image capture file
try:
 cd("serverRuntime:/WLDFRuntime/WLDFRuntime/WLDFImageRuntime/Image")
 task=cmo.captureImage()
 Thread.sleep(1000)
 while task.isRunning():
 Thread.sleep(5000)
 cmo.resetImageLockout();
finally:
 currentDrive()

List the available diagnostic image captures in the server's image capture dir
images=getAvailableCapturedImages()
if len(images) > 0:
 # For each image capture found, retrieve the JFR entry and save it to a local
 # file, renaming it to avoid collisions in the event there are multiple
 # diagnostic image capture files with JFR entries.
 i=0
 for image in images:
 saveName=outputDir+File.separator+"FlightRecording_"+imageSuffix+"-"+str(i)+".jfr"
 while os.path.exists(saveName):
 i+=1
 saveName=outputDir+File.separator+"FlightRecording_"+imageSuffix+"-"+str(i)+".jfr"
 saveDiagnosticImageCaptureEntryFile(image,'FlightRecording.jfr',saveName)
 i+=1

Appendix F
Example: Retrieving a JFR File from a Diagnostic Image Capture

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix F-15 of F-15

G
WLDF Query Language-Based Policies

The WebLogic Diagnostics Framework (WLDF) provides the WLDF query language for
creating policy expressions.

Note

The WLDF query language is deprecated in WebLogic Server as of version 12.2.1.
Oracle recommends using Java Expression Language (EL) instead. Diagnostic
system modules containing policy expressions that use the WLDF query language are
supported for backward compatibility. For information about using Java EL in policy
expressions, see Configuring Policies.

Types of Policies
WLDF supports policies that you can configure within the context of using the WLDF query
language.

WLDF provides three main types of policies, based on what the policy can monitor:

• Harvester policies monitor the set of harvestable MBeans in the local runtime MBean
server.

• Log policies monitor the set of messages generated into the server or domain logs.

• Instrumentation (or Event Data) policies monitor the set of events generated by the
WLDF Instrumentation component.

In the WLDF system resource configuration file for a diagnostic module, each type of policy is
defined in a <rule-type> element, which is a child of <watch>. For example:

<watch>
 <rule-type>Harvester</rule-type>
 <!-- Other configuration elements -->
</watch>

Policies with different rule types differ in two ways:

• The rule syntax for specifying the conditions being monitored are unique to the type.

• Log and instrumentation policies are triggered in real time, whereas Harvester policies are
triggered only after the current harvest cycle completes.

Policy Configuration Options
WLDF provides several tool options for configuring policies.

For information about policy configuration options, see How Policies Are Configured.

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix G-1 of G-4

Configuring Harvester Policies Using the WLDF Query Language
WLDF provides three main types of Harvester policies that can be configured with WLDF query
language-based expressions. Each policy type is based on what the policy can monitor.

Note

If you define a policy to monitor an MBean (or MBean attributes) that the Harvester is
not configured to harvest, the policy will work. The Harvester will implicitly harvest
values to satisfy the requirements set in the defined policy expressions. However, data
harvested in this way (that is, implicitly for a policy) is not archived. See Configuring
the Harvester for Metric Collection.

Harvester policies are triggered in response to a harvest cycle. So, for Harvester policies, the
Harvester sample period defines a time interval between when a situation is identified and
when it can be reported though an action. On average, the delay is SamplePeriod/2.

Example G-1 shows a configuration example of a Harvester policy that monitors several
runtime MBeans. When the policy expression (defined in the <rule-expression> element)
evaluates to true, six different actions are executed to generate the following: a JMX
notification, an SMTP notification, an SNMP notification, an image action, and JMS
notifications for both a topic and a queue.

The policy is a logical expression composed of four Harvester variables. The expression has
the form:

((A >= 100) AND (B > 0)) OR C OR D.equals("active")

Each variable is of the form:

{entityName}//{attributeName}

In the preceding syntax, {entityName} is the JMX ObjectName as registered in the runtime
MBean server or the type name as defined by the Harvester, and {attributeName} is the
name of an attribute defined on that MBean type.

Note

The comparison operators are qualified in order to be valid in XML.

Example G-1 Sample Harvester Policy Configuration (in DIAG_MODULE.xml)

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <harvester>
 <!-- Harvesting does not have to be configured and enabled for harvester
 policies. However, configuring the Harvester can provide advantages;
 for example the data will be archived. -->
 <harvested-type>
 <name>myMBeans.MySimpleStandard</name>
 <harvested-instance>myCustomDomain:Name=myCustomMBean1

Appendix G
Configuring Harvester Policies Using the WLDF Query Language

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix G-2 of G-4

 </harvested-instance>
 <harvested-instance>myCustomDomain:Name=myCustomMBean2
 </harvested-instance>
 </harvested-type>
 <!-- Other Harvester configuration elements -->
 </harvester>
 <watch-notification>
 <watch>
 <name>simpleWebLogicMBeanWatchRepeatingAfterWait</name>
 <enabled>true</enabled>
 <rule-type>Harvester</rule-type>
 <rule-expression>
 (${mydomain:Name=WLDFHarvesterRuntime,ServerRuntime=myserver,Type=
 WLDFHarvesterRuntime,WLDFRuntime=WLDFRuntime//TotalSamplingTime}
 >= 100
 AND
 ${mydomain:Name=myserver,Type=
 ServerRuntime//OpenSocketsCurrentCount} > 0)
 OR
 ${mydomain:Name=WLDFWatchNotificationRuntime,ServerRuntime=
 myserver,Type=WLDFWatchNotificationRuntime,
 WLDFRuntime=WLDFRuntime//Enabled} = true
 OR
 ${myCustomDomain:Name=myCustomMBean3//State} =
 'active')
 </rule-expression>
 <severity>Warning</severity>
 <alarm-type>AutomaticReset</alarm-type>
 <alarm-reset-period>10000</alarm-reset-period>
 <notification>myJMXNotif,myImageNotif,
 myJMSTopicNotif,myJMSQueueNotif,mySNMPNotif,
 mySMTPNotif</notification>
 </watch>
 <!-- Other policy-action configuration elements -->
 </watch-notification>
</wldf-resource>

This policy uses an alarm type of AutomaticReset, which means that it may be triggered
repeatedly, provided that the last time it was triggered was longer than the interval set as the
alarm reset period (in this case 10000 milliseconds).

The severity level provided, Warning, has no effect on the triggering of the policy, but will be
passed on through the actions.

Configuring Log Policies Using the WLDF Query Language
Use log policies to monitor the occurrence of specific messages or strings in the server or
domain log. Policies of this type are triggered as a result of a log message containing the
specified data being issued.

The following example shows the configuration, in DIAG_MODULE.xml, for a server log policy:

<wldf-resource xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-diagnostics/2.0/
weblogic-diagnostics.xsd">
 <name>mywldf1</name>
 <watch-notification>
 <enabled>true</enabled>
 <log-watch-severity>Info</log-watch-severity>
 <watch>

Appendix G
Configuring Log Policies Using the WLDF Query Language

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix G-3 of G-4

 <name>myLogWatch</name>
 <rule-type>Log</rule-type>
 <rule-expression>MSGID='BEA-000360'</rule-expression>
 <severity>Info</severity>
 <notification>myMailNotif2</notification>
 </watch>
 <smtp-notification>
 <name>myMailNotif2</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject>This is a log alert</subject>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
 </watch-notification>
</wldf-resource>

In the preceding example, note how the <rule-type> of Log causes messages or strings
entered in the server log to be monitored. A <rule-type> of DomainLog monitors messages or
strings in the domain log.

Configuring Instrumentation Policies Using the WLDF Query
Language

You use instrumentation policies to monitor the events from the WLDF Instrumentation
component. Policies of this type are triggered as a result of the event being posted.

The following example shows the configuration, in DIAG_MODULE.xml, for an instrumentation
policy:

<watch-notification>
 <watch>
 <name>myInstWatch</name>
 <enabled>true</enabled>
 <rule-type>EventData</rule-type>
 <rule-expression>
 (PAYLOAD > 100000000) AND (MONITOR = 'Servlet_Around_Service')
 </rule-expression>
 <alarm-type xsi:nil="true"></alarm-type>
 <notification>mySMTPNotification</notification>
 </watch>
 <smtp-notification>
 <name>mySMTPNotification</name>
 <enabled>true</enabled>
 <mail-session-jndi-name>myMailSession</mail-session-jndi-name>
 <subject xsi:nil="true"></subject>
 <body xsi:nil="true"></body>
 <recipient>username@emailservice.com</recipient>
 </smtp-notification>
</watch-notification>

Appendix G
Configuring Instrumentation Policies Using the WLDF Query Language

Duplicate - Oracle® Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
G31904-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix G-4 of G-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Samples and Tutorials
	New and Changed WebLogic Server Features

	Conventions

	1 Introduction
	What Is the WebLogic Diagnostics Framework?

	2 Overview of the WLDF Architecture
	Overview of the WebLogic Diagnostics Framework
	Data Creation, Collection, and Instrumentation
	Archive
	Policies and Actions
	Data Accessor
	Monitoring Dashboard and Request Performance Pages
	Monitoring Dashboard
	Diagnostics Request Performance Page

	Diagnostic Image Capture
	How It All Fits Together

	3 Using the Built-in Diagnostic System Modules
	Overview
	Types of Built-in Diagnostic System Modules
	Data Collected by Built-in Diagnostic System Modules

	4 Using WLDF with Java Flight Recorder
	About Java Flight Recorder
	Using Java Flight Recorder with Oracle HotSpot
	Key Features of WLDF Integration with Java Flight Recorder
	Java Flight Recorder Use Cases
	Diagnosing a Critical Failure — The "Black Box"
	Profiling During Performance Testing or in Production
	Real-Time Application Diagnostics and Reporting

	Obtaining the Flight Recording File

	5 Understanding WLDF Configuration
	Configuration MBeans and XML
	Tools for Configuring WLDF
	How WLDF Configuration Is Partitioned
	Server-Level Configuration
	Application-Level Configuration

	Configuring Diagnostic Image Capture and Diagnostic Archives
	Configuring Diagnostic Image Capture for Java Flight Recorder
	Configuring Diagnostic System Modules
	About the Resource Descriptor
	WLDF Runtime Control
	Creating a Diagnostic System Module Based on a Configured Resource Descriptor
	Creating a Diagnostic System Module Based on an External Resource Descriptor
	Targeting a Diagnostic System Module to a Server or Cluster
	Dynamically Activating or Deactivating Diagnostic System Modules
	Using WLST to Activate and Deactivate Diagnostic System Modules
	More Information About Configuring Diagnostic System Modules

	Configuring Diagnostic Modules for Applications
	WLDF Configuration MBeans and Their Mappings to XML Elements

	6 Configuring and Capturing Diagnostic Images
	How Diagnostic Image Capture Is Persisted in the Server's Configuration
	Content of the Captured Image File
	Data Included in the Diagnostics Image Capture File
	WLST Online Commands for Downloading Diagnostics Image Captures

	7 Configuring Diagnostic Archives
	Configuring the Archive
	Configuring a File-Based Store
	Configuring a JDBC-Based Store
	Creating WLDF Tables in the Database
	Apache Derby
	Oracle Database
	MySQL

	Configuring JDBC Resources for WLDF

	Retiring Data from the Archives
	Configuring Data Retirement at the Server Level
	Configuring Age-Based Data Retirement Policies for Diagnostic Archives
	Sample Configuration

	8 Configuring the Harvester for Metric Collection
	Harvesting, Harvestable Data, and Harvested Data
	Harvesting Data from the Different Harvestable Entities
	Configuring the Harvester
	Configuring the Harvester Sampling Period
	Configuring the Types of Data to Harvest
	Specifying Type Names for WebLogic Server MBeans and Custom MBeans
	Harvesting from the Domain Runtime MBean Server
	When Configuration Settings Are Validated
	Sample Configurations for Different Harvestable Types

	Harvester Performance Considerations

	9 Configuring Policies and Actions
	Policies and Actions
	Overview of Policies and Actions Configuration
	Sample Policies and Actions Configuration

	10 Configuring Policies
	How Policies Are Configured
	Rule Type
	Expression Language
	Policy Expression
	Actions
	Policy Schedule
	Alarm Options
	Severity Option
	Enablement Option

	Configuring Scheduled Policies
	Configuring Calendar Based Policies
	Configuring Smart Rule Based Policies
	Types of Diagnostic Data that Smart Rules Evaluate
	Smart Rule Example

	Chaining Policies

	Configuring Log Policies
	Configuring Instrumentation Policies
	Creating Complex Policy Expressions Using WLDF Java EL Extensions
	Writing Collected Metrics Policy Expressions Using Beans
	Accessing MBean Data in Collected Metrics
	Working with Complex MBean Attributes
	Performing Bulk Queries on Collected Metrics from MBeans

	Writing Collected Metrics Policy Expressions Using Functions
	Examining Trends in Metric Values over Time
	Extracting and Examining Collected Metrics in Policy Expressions
	Lifecycle of Data Collection

	11 Configuring Actions
	Actions Overview
	Types of Actions
	Variables for Customizable Actions
	Action Timeout

	Configuring JMX Actions
	Configuring JMS Actions
	Configuring SNMP Actions
	Configuring Log Actions
	Configuring REST Actions
	Configuring SMTP Actions
	Configuring Image Actions
	Configuring Elastic Actions
	Elastic Scaling Operations Cannot Be Cancelled After Starting
	Limiting Server Shutdown Time During Scale Down Operations

	Configuring Script Actions
	Configuring Heap Dump Actions
	Configuring Thread Dump Actions

	12 Configuring Instrumentation
	Concepts and Terminology
	Instrumentation Scope
	Configuration and Deployment
	Joinpoints, Pointcuts, and Diagnostic Locations
	Diagnostic Monitor Types
	Diagnostic Actions

	Instrumentation Configuration Files
	XML Elements Used for Instrumentation
	<Instrumentation> XML Elements
	<wldf-instrumentation-monitor> XML Elements
	Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types

	Configuring Server-Scoped Instrumentation
	Configuring Application-Scoped Instrumentation
	Comparing System-Scoped to Application-Scoped Instrumentation
	Overview of the Steps Required to Instrument an Application
	Creating a Descriptor File for a Delegating Monitor
	Creating a Descriptor File for a Custom Monitor
	Defining Pointcuts for Custom Monitors
	Annotation-based Pointcuts

	13 Configuring the DyeInjection Monitor to Manage Diagnostic Contexts
	Contents, Life Cycle, and Configuration of a Diagnostic Context
	Context Life Cycle and the Context ID
	Dyes, Dye Flags, and Dye Vectors
	Where Diagnostic Context Is Configured

	Overview of the Process
	Configuring the Dye Vector by Using the DyeInjection Monitor
	Dyes Supported by the DyeInjection Monitor
	PROTOCOL Dye Flags
	THROTTLE Dye Flag
	When Diagnostic Contexts Are Created

	Using Throttling to Control the Volume of Instrumentation Events
	Configuring the THROTTLE Dye
	How Throttling is Handled by Delegating and Custom Monitors

	Using weblogic.diagnostics.context

	14 Accessing Diagnostic Data With the Data Accessor
	Data Stores Accessed by the Data Accessor
	Accessing Diagnostic Data Online
	Accessing Data Using the Remote Console
	Accessing Data Programmatically Using Runtime MBeans
	Using WLST to Access Diagnostic Data Online
	Using the WLDF Query Language with the Data Accessor

	Accessing Diagnostic Data Offline
	Accessing Diagnostic Data Programmatically
	Resetting the System Clock Can Affect How Data Is Archived and Retrieved

	15 Deploying WLDF Application Modules
	Deploying a Diagnostic Module as an Application-Scoped Resource
	Using Deployment Plans to Dynamically Control Instrumentation Configuration
	Using a Deployment Plan: Overview
	Creating a Deployment Plan Using weblogic.PlanGenerator
	Sample Deployment Plan for Diagnostics
	Enabling Java HotSwap
	Deploying an Application with a Deployment Plan
	Updating an Application with a Modified Plan

	16 Configuring and Using WLDF Programmatically
	How WLDF Generates and Retrieves Data
	Mapping WLDF Components to Beans and Packages
	Programming Tools
	Configuration and Runtime APIs
	Configuration APIs
	Runtime APIs

	WLDF Packages
	Programming WLDF: Examples
	Example: DiagnosticContextExample.java
	Example: HarvesterMonitor.java
	Notification Listeners
	HarvesterMonitor.java

	Example: JMXAccessorExample.java

	17 Using Debug Patches
	Dynamic Application of Debug Patches
	Specifying the Debug Patch Directory
	Configuring the WLDF Debug Patch Agent
	WLST Commands for Debug Patches
	Dynamically Activating a Debug Patch
	Dynamically Deactivating Debug Patches

	A Smart Rule Reference
	About the Parameters You Specify for Smart Rules
	Cluster Scope Smart Rules
	ClusterLowThroughput
	ClusterHighProcessCpuLoadAverage
	ClusterHighThroughput
	ClusterLowPendingUserRequests
	ClusterHighStuckThreads
	ClusterLowQueueLength
	ClusterHighPendingUserRequests
	ClusterLowProcessCpuLoadAverage
	ClusterHighIdleThreads
	ClusterLowSystemLoadAverage
	ClusterHighQueueLength
	ClusterLowHeapFreePercent
	ClusterHighSystemLoadAverage
	ClusterHighHeapFreePercent
	ClusterLowSystemCpuLoadAverage
	ClusterLowIdleThreads
	ClusterGenericMetricRule
	ClusterHighSystemCpuLoadAverage

	Server Scope Smart Rules
	ServerLowIdleThreads
	ServerHighThroughput
	ServerGenericMetricRule
	ServerLowPendingUserRequests
	ServerLowProcessCpuLoadAverage
	ServerHighSystemLoadAverage
	ServerLowQueueLength
	ServerLowThroughput
	ServerHighQueueLength
	ServerHighSystemCpuLoadAverage
	ServerHighPendingUserRequests
	ServerLowSystemCpuLoadAverage
	ServerHighHeapFreePercent
	ServerHighStuckThreads
	ServerHighProcessCpuLoadAverage
	ServerLowSystemLoadAverage
	ServerLowHeapFreePercent
	ServerHighIdleThreads

	B WLDF Beans and Functions Reference
	WLDF Beans Reference
	clusterRuntime
	domainRuntime
	instrumentationEvent
	log
	platform
	resource
	runtime

	Functions Reference
	wls:tableChanges
	wls:tableAverages
	wls:extract
	wls:average
	wls:changes
	wls:aliveServersCount

	C WLDF Query Language
	Components of a Query Expression
	Supported Operators
	Operator Precedence
	Numeric Relational Operations Supported on String Column Types
	Supported Numeric Constants and String Literals
	About Variables in Expressions
	Creating Policy Expressions
	Creating Log Event Policy Expressions
	Creating Instrumentation Event Policy Expressions
	Creating Harvester Policy Expressions

	Creating Data Accessor Queries
	Data Store Logical Names
	Data Store Column Names

	Creating Log Filter Expressions
	Building Complex Expressions

	D WLDF Instrumentation Library
	Diagnostic Monitor Library
	Diagnostic Action Library
	TraceAction
	DisplayArgumentsAction
	TraceElapsedTimeAction
	TraceMemoryAllocationAction
	StackDumpAction
	ThreadDumpAction
	MethodInvocationStatisticsAction
	Instrumenting an Application with MethodInvocationStatisticsAction and Querying the Results
	Using WLST to Query Method Performance Statistics

	Configuring the Harvester to Collect MethodInvocationStatisticsAction Data
	Configuring Policies Based on MethodInvocationStatistics Metrics
	Using JMX to Collect Data

	MemoryAllocationStatisticsAction

	E Using Wildcards in Expressions
	Using Wildcards in Harvester Instance Names
	Examples

	Specifying Complex and Nested Harvester Attributes
	Examples

	Using the Accessor with Harvested Complex or Nested Attributes
	Using Wildcards in Policy Instance Names
	Specifying Complex Attributes in Harvester Policies

	F WebLogic Scripting Tool Examples
	WLST Commands for Diagnostics
	Example: Dynamically Creating DyeInjection Monitors
	Example: Configuring a Policy and a JMX Action
	Example: Writing a JMXWatchNotificationListener Class
	Example: Registering MBeans and Attributes For Harvesting
	Example: Setting the WLDF Diagnostic Volume
	Example: Capturing a Diagnostic Image
	Example: Retrieving a JFR File from a Diagnostic Image Capture

	G WLDF Query Language-Based Policies
	Types of Policies
	Policy Configuration Options
	Configuring Harvester Policies Using the WLDF Query Language
	Configuring Log Policies Using the WLDF Query Language
	Configuring Instrumentation Policies Using the WLDF Query Language

