
Oracle® Fusion Middleware
Developing JSP Tag Extensions for Oracle
WebLogic Server

15c (15.1.1.0.0)
G31653-01
October 2025

Oracle Fusion Middleware Developing JSP Tag Extensions for Oracle WebLogic Server, 15c (15.1.1.0.0)

G31653-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documentation i

Conventions ii

1 Introduction

2 Understanding and Creating Custom JSP Tags

Tag Handler API and Implementation 1

Custom Tag Library 2

Custom Tag Format 2

What Can You Do with Custom Tags? 3

Creating and Configuring a JSP Tag Library: Example Procedures 4

3 Creating a Tag Library Descriptor

Overview of Tag Library Descriptors 1

Writing the Tag Library Descriptor 1

Sample Tag Library Descriptor 4

The DynamicAttributes Interface 5

Tag Handler Support of Dynamic Attributes 5

Dynamic Attributes Example 6

Dynamic Attributes Syntax 6

4 Implementing the Tag Handler

Simple Tag Handler Life Cycle (SimpleTag Interface) 1

Events in the Simple Tag Handler Life Cycle 1

JSP Fragments 3

Tag Handler Life Cycle (Tag and BodyTag Interfaces) 3

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of ii

Iteration Over a Body Tag (IterationTag Interface) 5

Handling Exceptions within a Tag Body 5

Using Tag Attributes 5

Defining New Scripting Variables 6

Dynamically Named Scripting Variables 7

Defining Variables in the Tag Library Descriptor 7

Writing Cooperative Nested Tags 7

Using a Tag Library Validator 8

5 Administration and Configuration

Configuring JSP Tag Libraries 1

Packaging a JSP Tag Library as JAR File 1

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of ii

Preface

This document is a resource for software developers who want to create and use custom tags
in JavaServer Pages (JSPs) and Web authors who want to use custom tags in JSPs.

Audience
Any issues that deal with production phase administration, monitoring, or performance tuning
topics are not addressed in this documentation. See Related Documentation for links to
WebLogic Server documentation and resources for these topics.

It is assumed that the reader is familiar with Jakarta EE platform and JSP concepts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customer access to and use of Oracle support services will be pursuant to the terms
and conditions specified in their Oracle order for the applicable services.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
This document contains JSP extension-specific design and development information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic Server
applications, see the following documents:

• Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server is a guide to
developing WebLogic Server applications.

• Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic
Server applications.

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

• Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications.

• "JavaServer Pages Tutorial" at http://docs.oracle.com/javaee/7/tutorial

• JavaServer Pages (JSP) product overview at http://www.oracle.com/technetwork/
java/javaee/jsp/index.html

New and Changed WebLogic Server Features

See What's New in Oracle WebLogic Server for a comprehensive listing of the new WebLogic
Server features introduced in this release.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of ii

http://docs.oracle.com/javaee/7/tutorial/
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://www.oracle.com/technetwork/java/javaee/jsp/index.html

1
Introduction

The JSP 3.1 specification enables you to create and use custom tags in Jakarta Server Pages
(JSPs). Custom tags are an excellent way to abstract the complexity of business logic from the
presentation of Web pages in a way that is easy for the Web author to use and control.
You can use custom JSP tag extensions in JSP pages to generate dynamic content, and you
can use a variety of Web development tools to create the presentation. WebLogic Server fully
supports the tag extension mechanism. See the JSP 3.1 Specification at https://jakarta.ee/
specifications/pages/3.1/jakarta-server-pages-spec-3.1.

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 1

https://jakarta.ee/specifications/pages/3.1/jakarta-server-pages-spec-3.1
https://jakarta.ee/specifications/pages/3.1/jakarta-server-pages-spec-3.1

2
Understanding and Creating Custom JSP Tags

The following topics provide an overview of custom JSP tag functionality, format, and
components, as well as procedures for creating and configuring a tag library.

Tag Handler API and Implementation
You write a custom JSP tag by writing a Java class that is called a tag handler.

The JSP 3.1 API defines a set of classes and interfaces that you use to write custom tag
handlers.

See the JSP 3.1 Specification at https://jakarta.ee/specifications/pages/3.1/jakarta-
server-pages-spec-3.1l.

Documentation for the jakarta.servlet.jsp.tagext API is available at https://jakarta.ee/
specifications/platform/9/apidocs/.

Your tag handler must be of one of the following two types:

• Classic Tag Handlers implement one of three interfaces:

Tag—Implement the jakarta.servlet.jsp.tagext.Tag interface if you are creating a
custom tag that does not need access to its interface. The API also provides a
convenience class TagSupport that implements the Tag interface and provides default
empty methods for the methods defined in the interface.

BodyTag—Implement the jakarta.servlet.jsp.tagext.BodyTag interface if your custom
tag needs to use a body. The API also provides a convenience class BodyTagSupport that
implements the BodyTag interface and provides default empty methods for the methods
defined in the interface. Because BodyTag extends Tag it is a super set of the interface
methods.

IterationTag—Implement the jakarta.servlet.jsp.tagext.IterationTag interface to
extend Tag by defining an additional method doAfterBody() that controls the reevaluation
of the body.

• Simple Tag Handlers (SimpleTag interface):

Implement the jakarta.servlet.jsp.tagext.SimpleTag interface if you wish to use a
much simpler invocation protocol. The SimpleTag interface does not extend the
jakarta.servlet.jsp.tagext.Tag interface as does the BodyTag interface. Therefore,
instead of supporting the doStartTag() and doEndTag() methods, the SimpleTag interface
provides a simple doTag() method, which is called once and only once for each tag
invocation.

You write the tag handler class by doing one of the following:

• Implement one of three interfaces, SimpleTag, Tag, or BodyTag, which define methods that
are invoked during the life cycle of the tag.

• Extend an abstract base class that implements the SimpleTag, Tag, or BodyTag interfaces.

Extending an abstract base class relieves the tag handler class from having to implement all
methods in the interfaces and also provides other convenient functionality. The

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 4

https://jakarta.ee/specifications/pages/3.1/jakarta-server-pages-spec-3.1
https://jakarta.ee/specifications/pages/3.1/jakarta-server-pages-spec-3.1
https://jakarta.ee/specifications/platform/9/apidocs/
https://jakarta.ee/specifications/platform/9/apidocs/

SimpleTagSupport, TagSupport, and BodyTagSupport classes implement the SimpleTag, Tag or
BodyTag interfaces and are included in the API.

You can include one or more custom JSP tags in a tag library. You define a tag library by a tag
library descriptor (.tld) file. The TLD describes the syntax for each tag and ties it to the Java
classes that execute its functionality.

Custom Tag Library
JSP tag libraries include one or more custom JSP tags and are defined in a tag library
descriptor (.tld) file. To use a custom tag library from a JSP page, reference its tag library
descriptor with a <%@ taglib %> directive.

For example:

<%@ taglib uri="myTLD" prefix="mytaglib" %>

• uri

The JSP engine attempts to find the tag library descriptor by matching the uri attribute to a
uri that is defined in the web application deployment descriptor (web.xml) with the
<taglib-uri> element.

Note

You do not need to mention the <taglib> tag in the web.xml if the value of uri in
<%@ taglib uri='myTLD' prefix='mytaglib' %> is the same as the uri specified
in the .tld file, provided the .tld file is in the default location (/WEB-INF/ or /
WEB-INF/tags/). See the JSP 2.3 specification.

For example, myTLD in the above the taglib directive would reference its tag library
descriptor (library.tld) in the web application deployment descriptor like this:

<taglib>
 <taglib-uri>myTLD</taglib-uri>
 <taglib-location>library.tld</taglib-location>
</taglib>

• prefix

The prefix attribute assigns a label to the tag library. You use this label to reference its
associated tag library when writing your pages using custom JSP tags.

For example, if the library (called mytaglib) from the example above defines a new tag
called newtag, you would use the tag in your JSP page like this:

<mytaglib:newtag>

See Creating a Tag Library Descriptor.

Custom Tag Format
A custom tag format can be empty, called an empty tag, or can contain a body, called a body
tag. Both types of tags can accept a number of attributes that are passed to the Java class that
implements the tag.

See Handling Exceptions within a Tag Body for more information.

Chapter 2
Custom Tag Library

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 4

An empty tag takes the following form:

<mytaglib:newtag attr1="aaa" attr2="bbb" ... />

A body tag takes the following form:

<mytaglib:newtag attr1="aaa" attr2="bbb" ... >
 body
</mytaglib:newtag>

A tag body can include more JSP syntax, and even other custom JSP tags that also have
nested bodies. Tags can be nested within each other to any level.

For example:

<mytaglib:tagA>
 <h2>This is the body of tagA</h2>
 You have seen this text <mytaglib:counter /> times!
 <p>
 <mytaglib:repeater repeat=4>
 <p>Hello World!
 </mytaglib:repeater>
</mytaglib:tagA>

The preceding example uses three custom tags to illustrate the ability to nest tags within a
body tag. The tags function like this:

• The body tag <mytaglib:tagA> only sees the HTML output from its evaluated body. That
is, the nested JSP tags <mytaglib:counter> and <mytaglib:repeater> are first evaluated
and their output becomes part of the evaluated body of the <mytaglib:tagA> tag.

• The body of a body tag is first evaluated as JSP and all tags that it contains are translated,
including nested body tags, whose bodies are recursively evaluated. The result of an
evaluated body can then be used directly as the output of a body tag, or the body tag can
determine its output based on the content of the evaluated body.

• The output generated from the JSP of a body tag is treated as plain HTML. That is, the
output is not further interpreted as JSP.

What Can You Do with Custom Tags?
Custom tags can perform the following tasks:

• Produce output. The output of the tag is sent to the surrounding scope. The scope can be
one of the following:

– If the tag is included directly in the JSP page, then the surrounding scope is the JSP
page output.

– If the tag is nested within another parent tag, then the output becomes part of the
evaluated body of its parent tag.

• Define new objects that can be referenced and used as scripting variables in the JSP
page. A tag can introduce fixed-named scripting variables, or can define a dynamically
named scripting variable with the id attribute.

• Iterate over body content of the tags until a certain condition is met. Use iteration to create
repetitive output, or to repeatedly invoke a server side action.

• Determine whether the rest of the JSP page should be processed as part of the request, or
skipped.

Chapter 2
What Can You Do with Custom Tags?

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 4

• An empty tag can perform server-side work based on the tag's attributes. The action that
the tag performs can determine whether the rest of the page is interpreted or some other
action is taken, such as a redirect. This function is useful for checking that users are
logged in before accessing a page, and redirecting them to a login page if necessary.

• An empty tag can insert content into a page based on its attributes. You can use such a
tag to implement a simple page-hits counter or another template-based insertion.

• An empty tag can define a server-side object that is available in the rest of the page, based
on its attributes. You can use this tag to create a reference to an EJB, which is queried for
data elsewhere in the JSP page.

• A body tag has the option to process its output before the output becomes part of the
HTML page sent to the browser, evaluate that output, and then determine the resulting
HTML that is sent to the browser. This functionality could be used to produce "quoted
HTML," reformatted content, or used as a parameter that you pass to another function,
such as an SQL query, where the output of the tag is a formatted result set.

• A body tag can repeatedly process its body until a particular condition is met.

Creating and Configuring a JSP Tag Library: Example
Procedures

To create and use custom JSP tags:

1. Write a tag handler class.

When you use a custom tag in your JSP, this class executes the functionality of the tag. A
tag handler class implements one of three interfaces:

jakarta.servlet.jsp.tagext.BodyTag
jakarta.servlet.jsp.tagext.Tag
jakarta.servlet.jsp.tagext.SimpleTag

Your tag handler class is implemented as part of a tag library.

2. Reference the tag library in your JSP source using the JSP <taglib> directive. A tag
library is a collection of JSP tags. Include this directive at the top of your JSP source.

See Configuring JSP Tag Libraries.

3. Write the tag library descriptor (TLD). The TLD defines the tag library and provides
additional information about each tag, such as the name of the tag handler class,
attributes, and other information about the tags.

See Creating a Tag Library Descriptor.

4. Reference the TLD in the Web application deployment descriptor (web.xml).

5. Use your custom tag in your JSP.

See Configuring JSP Tag Libraries.

Chapter 2
Creating and Configuring a JSP Tag Library: Example Procedures

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 4

3
Creating a Tag Library Descriptor

The following topics describe how to create a tag library descriptor (TLD).

Overview of Tag Library Descriptors
A tag library allows a developer to group together tags with related functionality. A tag library
uses a tag library descriptor (TLD) file that describes the tag extensions and relates them to
their Java classes. WebLogic Server and some authoring tools use the TLD to get information
about the extensions. TLD files have the file extension .tld and are written in XML notation.

Writing the Tag Library Descriptor
Order the elements in the tag library descriptor file as they are defined in the XSD. This
ordering is used in the following procedure. The XML parser throws an exception if you
incorrectly order the TLD elements.

The body of the TLD contains additional nested elements inside of the <taglib> ... </
taglib> element. These nested elements are also described in the steps below. For display in
this document, nested elements are indented from their parent elements, but indenting is not
required in the TLD.

The example in Sample Tag Library Descriptor declares a new tag called code. The
functionality of this tag is implemented by the Java class weblogic.taglib.quote.CodeTag.

To create a Tag Library Descriptor:

1. Create a text file with an appropriate name and the extension .tld, and save it in the WEB-
INF directory of the Web application containing your JSP(s). Content beneath the WEB-
INF directory is non-public and is not served over HTTP by WebLogic Server.

2. Include the following header:

<taglib xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://
xmlns.jcp.org/xml/ns/javaee/web-jsptaglibrary_2_2.xsd"
 version="3.1"
 uri="http://www.example.com/mytaglib">

3. Add the contents of the TLD, embedded in a <taglib> element, as indicated in steps 4-7.
The contents include elements containing information about the tag library and elements
that define each tag. For example:

<taglib>
 ... body of taglib descriptor ...
</taglib>

4. Identify the tag library:

<tlib-version>version_number</tlib-version>

(Required) The version number of the tag library.

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

<jsp-version>version_number</jsp-version>

(Required) Describes the JSP specification version (number) this tag library requires in
order to function. The default is 2.0.

<short-name>TagLibraryName</short-name>

(Required) Assigns a short name to this tag library. This element is not used by WebLogic
Server.

<uri>unique_string</uri>

(Required) Defines a public URI that uniquely identifies this version of the tag library.

<display-name>display_name</display-name>

(Optional) Contains a short name that is intended to be displayed by tools.

<icon>
 <small-icon>icon.jpg</small-icon>

(Optional) Contains the name of a file containing a small (16 x 16) icon image. The file
name is a relative path within the tag library. The image must be either in the JPEG or GIF
format, and the file name must end with the suffix ".jpg" or ".gif" respectively. The icon can
be used by tools.

 <large-icon>icon.jpg</large-icon>

(Optional) Contains the name of a file containing a large (32 x 32) icon image. The file
name is a relative path within the tag library. The image must be either in the JPEG or GIF
format, and the file name must end with the suffix ".jpg" or ".gif" respectively. The icon can
be used by tools.

</icon>
<description>...text...</description>

(Required) Defines an arbitrary text string describing the tag library.

<validator>unique_string</validator>

(Optional) Provides information on the scripting variables defined by this tag. A translation-
time error occurs if a tag that has one or more variable subelements has a TagExtraInfo
class that returns a non-null object.

<listener>unique_string</listener>

(Optional) Defines an optional event listener object to be instantiated and registered
automatically.

5. Define a tag library validator (Optional).

<validator>

Top level element for a validator.

 <validator-class>my.validator</validator-class>

(Required) The Java class that performs the validation.

 <init-param>

(Optional) Defines initialization parameters for the validator class.

 <param-name>param</param-name>

Chapter 3
Writing the Tag Library Descriptor

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

Defines the name of this parameter.

 <param-value>value</param-value>

Defines the name of this parameter.

6. Define a tag.

Use a separate <tag> element to define each new tag in the tag library. The <tag> element
takes the following nested tags:

<name>tag_name</name>

(Required) Defines the name of the tag. This is used when referencing the tag in a JSP
file, after the ":" symbol, For example:

<mytaglib:tag_name>

See What's New in Oracle WebLogic Server for a comprehensive listing of the new and
changed JSP features in this release.

<tag-class>package.class.name</tag-class>

(Required) Declares the tag handler class that implements the functionality of this tag.
Specify the fully qualified package name of the class.

Locate the class file under the WEB-INF/classes directory, in a directory structure reflecting
the package name. You can also package the classes in a tag library jar file.

See Packaging a JSP Tag Library as JAR File.

<tei-class>package.class.name</tei-class>

(Optional) Declares the subclass of TagExtraInfo that describes the scripting variables
introduced by this tag. If your tag does not define new scripting variables, it does not use
this element. Specify the fully qualified package name of the class. You can perform
validation of the tag's attributes in this class.

Place the class files under the WEB-INF/classes directory of your Web application, under a
directory structure reflecting the package name. You can also package the classes in a tag
library jar file.

See Packaging a JSP Tag Library as JAR File.

<body-content>empty | JSP | scriptless | tagdependent</body-content>

(Optional) Defines the content of the tag body.

empty means that you use the tag in the empty tag format in the JSP page. For example:

<taglib:tagname/>

JSP means that the contents of the tag can be interpreted as a JSP and that you must use
the tag in the body tag format. For example:

<taglib:tagname>...</taglib:tagname>

scriptless means that the contents of the tag do not contain any scripts or scripting
elements.

tagdependent means that your tag will interpret the contents of the body as a non-JSP (for
example, an SQL statement).

<attribute>

Chapter 3
Writing the Tag Library Descriptor

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

(Optional) Defines the name of the attribute as it appears in the tag element in the JSP
page. For example:

 <taglib:mytag myAttribute="myAttributeValue">

Use a separate <attribute> element to define each attribute that the tag can take. Tag
attributes allow the JSP author to alter the behavior of your tags.

 <name>myAttribute</name>
 <required>true | false</required>

(Optional) Defines whether this attribute has optional use in the JSP page. If not defined
here, the default is false — that is, the attribute is optional by default. If true is specified,
and the attribute is not used in a JSP page, a translation-time error occurs.

 <rtexprvalue>true | false</rtexprvalue>

(Optional) Defines whether this attribute can take a scriptlet expression as a value,
allowing it to be dynamically calculated at request time. If this element is not specified, the
value is presumed to be false.

</attribute>

7. Define scripting variables (optional).

In the <tag> element, you can define scripting variables.

<variable>

Top level element for declaring a variable.

 <name-given>someName</name-given>

Defines the name of the variable, or you can define the name from an attribute using:

 <name-from-attribute>attrName</name-from-attribute>

Names the variable with the value of attrName.

<variable-class>some.java.type</variable-class>

The Java type of this variable.

 <declare>true</declare>

(Optional) If set to true, indicates that the variable is to be defined.

 <scope>AT_BEGIN</scope>

The scope of the scripting variable. Valid options are:

• NESTED (The variable is only available inside the tag body)

• AT_BEGIN (The variable is defined just before executing the body)

• AT_END (The variable is defined just after executing the body.)

 </variable>

Sample Tag Library Descriptor
The following example represents a listing of a tag library descriptor:

<taglib version="2.0" xmlns="http://java.sun.com/xml/j2ee" xmlns:xsi="http://www.w3.org/
2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee/web-

Chapter 3
Sample Tag Library Descriptor

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

jsptaglibrary_2_0.xsd">
<taglib>
 <tlib-version>2.0</tlib-version>
 <jsp-version>2.0</jsp-version>
 <short-name>quote</short-name>
<uri>tag lib version id</uri>
 <description>
 This tag library contains several tag extensions
 useful for formatting content for HTML.
 </description>

 <tag>
 <name>code</name>
 <tag-class>weblogic.taglib.quote.CodeTag</tag-class>
 <body-content>tagdependent</body-content>
 <attribute>
 <name>fontAttributes</name>
 </attribute>
 <attribute>
 <name>commentColor</name>
 </attribute>
 <attribute>
 <name>quoteColor</name>
 </attribute>
 </tag>
</taglib>

The DynamicAttributes Interface
You can use the DynamicAttributes interface, supported by the JSP 2.0 container, as tags
with values that are treated in a consistent manner but with names that are not necessarily
known at development time.

For example, if you want to customize the width portion of the <table> HTML tag by
determining its value at runtime, you could make use of the DynamicAttributes interface to
customize only the portion of the tag you want to change, without needing to specify anything
about the other portions of the <table> tag (border, cellspacing, and so on). Without the
DynamicAttributes interface, you would have needed to write a Tag Handler or other
complicated code to accomplish the task of determining the value of width dynamically at
runtime.

Tag Handler Support of Dynamic Attributes
The TLD is what ultimately determines whether a tag handler accepts dynamic attributes or
not. If a tag handler declares that it supports dynamic attributes in the TLD but it does not
implement the DynamicAttributes interface, the tag handler must be considered invalid by the
container.

If the dynamic-attributes element (a child element to the tag element for the tag library being
authored) for a tag being invoked contains the value true, the following requirements apply:

• For each attribute specified in the tag invocation that does not have a corresponding
attribute element in the TLD for this tag, a call must be made to setDynamicAttribute(),
passing in the namespace of the attribute (or null if the attribute does not have a
namespace or prefix), the name of the attribute without the namespace prefix, and the final
value of the attribute.

• Dynamic attributes must be considered to accept request-time expression values.

Chapter 3
The DynamicAttributes Interface

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

• Dynamic attributes must be treated as though they were of type java.lang.Object.

• The JSP container must recognize dynamic attributes that are passed to the tag handler
using the <jsp:attribute> standard action.

• If the setDynamicAttribute() method throws JspException, the doStartTag() or doTag()
method is not invoked for this tag, and the exception must be treated in the same manner
as if it came from a regular attribute setter method.

• For a JSP document in either standard or XML syntax, if a dynamic attribute has a prefix
that does not map to a namespace, a translation error must occur. In standard syntax, only
namespaces defined using taglib directives are recognized.

Dynamic Attributes Example
In the following example attributes a and b are declared by using the attribute element in the
TLD, attributes d1 and d2 are not declared, and the dynamic-attributes element is set to true.

You set the attributes using the calls:

• setA("1"),

• setDynamicAttribute(null, "d1", "2"),

• setDynamicAttribute("http://www.foo.com/jsp/taglib/mytag.tld", "d2", "3"),

• setB("4"),

• setDynamicAttribute(null, "d3", "5"), and

• setDynamicAttribute("http://www.foo.com/jsp/taglib/mytag.tld", "d4", "6").

Example 3-1 Dynamic Attribute Example

<jsp:root xmlns:mytag="http://www.foo.com/jsp/taglib/mytag.tld" version="2.0">
<mytag:invokeDynamic a="1" d1="2" mytag:d2="3">
<jsp:attribute name="b">4</jsp:attribute>
<jsp:attribute name="d3">5</jsp:attribute>
<jsp:attribute name="mytag:d4">6</jsp:attribute>
</mytag:invokeDynamic>
</jsp:root>

Dynamic Attributes Syntax
For a tag to declare that it accepts dynamic attributes, it must implement the
DynamicAttributes interface. The syntax is as follows:

public interface DynamicAttributes

You must also configure an entry for the tag in the TLD to indicate dynamic attributes are
accepted. For any attribute that is not declared in the TLD for this tag, instead of getting an
error at translation time, the setDynamicAttribute() method is called, with the name and
value of the attribute. You configure the tag to remember the names and values of the dynamic
attributes.

The setDynamicAttribute() method is called when a tag declared to accept dynamic
attributes passes an attribute that is not declared in the TLD. The syntax is as follows:

public void setDynamicAttribute(java.lang.String uri, java.lang.String localName,
java.lang.Object value)

The parameter values are as follows:

Chapter 3
Dynamic Attributes Example

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

• uri - the namespace of the attribute, or null if in the default namespace.

• localName - the name of the attribute being set.

• value - the value of the attribute.

A JspException is thrown if the tag handler signals that it does not accept the given attribute.
The container must not call doStartTag() or doTag() for this tag.

See the DynamicAttributes API at https://jakarta.ee/specifications/platform/9/
apidocs/jakarta/servlet/jsp/tagext/dynamicattributes for more information about these
interfaces.

Chapter 3
Dynamic Attributes Example

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

https://jakarta.ee/specifications/platform/9/apidocs/jakarta/servlet/jsp/tagext/dynamicattributes
https://jakarta.ee/specifications/platform/9/apidocs/jakarta/servlet/jsp/tagext/dynamicattributes

4
Implementing the Tag Handler

The following topics describe how to write Java classes that implement the functionality of an
extended tag.

Simple Tag Handler Life Cycle (SimpleTag Interface)
Simple tag handlers present a much simpler invocation protocol than do classic tag handlers.
The tag library descriptor maps tag library declarations to their physical underlying
implementations. A simple tag handler is represented in Java by a class that implements the
SimpleTag interface.

The life cycle of a simple tag handler is straightforward and is not complicated by caching
semantics. Once a simple tag handler is instantiated by the container, it is executed and then
discarded. The same instance must not be cached and reused. Initial performance metrics
show that caching a tag handler instance does not necessarily lead to greater performance. To
accommodate such caching makes writing portable tag handlers difficult and makes the tag
handler prone to error.

In addition to being simpler to work with, simple tag extensions do not rely directly on any
servlet APIs, which allows for potential future integration with other technologies. This
capability is facilitated by the JspContext class, which Page-Context extends. JspContext
provides generic services such as storing the JspWriter and keeping track of scoped
attributes, whereas PageContext has functionality specific to serving JSPs in the context of
servlets. Whereas the Tag interface relies on PageContext, SimpleTag only relies on
JspContext. The body of SimpleTag, if present, is translated into a JSP fragment and passed
to the setJspBody method. The tag can then execute the fragment as many times as needed.

See JSP Fragments.

Unlike classic tag handlers, the SimpleTag interface does not extend Tag. Instead of supporting
doStartTag() and doEndTag(), the SimpleTag interface provides a simple doTag() method,
which is called once and only once for any given tag invocation. All tag logic, iteration, body
evaluations, and so on are performed in this single method. Thus, simple tag handlers have
the equivalent power of BodyTag, but with a much simpler life cycle and interface.

To support body content, the setJspBody() method is provided. The container invokes the
setJspBody() method with a JspFragment object encapsulating the body of the tag. The tag
handler implementation can call invoke() on that fragment to evaluate the body. The
SimpleTagSupport convenience class provides getJsp-Body() and other useful methods to
make this even easier.

Events in the Simple Tag Handler Life Cycle
The following describes the life cycle of simple tag handlers, from creation to invocation. When
a simple tag handler is invoked, the following events occur in order:

1. Simple tag handlers are created initially using a zero argument constructor on the
corresponding implementation class. Unlike classic tag handlers, a simple tag handler
instance must never be pooled by the container. A new instance must be created for each
tag invocation.

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 8

2. The setJspContext() and setParent() methods are invoked on the tag handler. The
setParent() method need not be called if the value being passed in is null. In the case of
tag files, a JspContext wrapper is created so that the tag file can appear to have its own
page scope. Calling getJspContext() must return the wrapped Jsp-Context.

3. The attributes specified as XML element attributes (if any) are evaluated next, in the order
in which they are declared, according to the following rules (referred to as "evaluating an
XML element attribute"). The appropriate bean property setter is invoked for each. If no
setter is defined for the specified attribute but the tag accepts dynamic attributes, the
setDynamicAttribute() method is invoked as the setter.

If the attribute is a scripting expression (for example, "<%= 1+1 %>" in JSP syntax, or "%=
1+1 %" in XML syntax), the expression is evaluated, and the result is converted and
passed to the setter.

Otherwise, if the attribute contains any expression language expressions (for example,
"Hello ${name}"), the expression is evaluated, and the result is converted and passed to
the setter.

Otherwise, the attribute value is taken verbatim, converted, and passed to the setter.

4. The value for each <jsp:attribute> element is evaluated, and the corresponding bean
property setter methods are invoked for each, in the order in which they appear in the body
of the tag. If no setter is defined for the specified attribute but the tag accepts dynamic
attributes, the setDynamicAttribute() method is invoked as the setter.

Otherwise, if the attribute is not of type JspFragment, the container evaluates the body of
the <jsp:attribute> element. This evaluation can be done in a container-specific manner.
Container implementors should note that in the process of evaluating this body, other
custom actions may be invoked.

Otherwise, if the attribute is of type JspFragment, an instance of a Jsp-Fragment object is
created and passed in.

5. The value for the body of the tag is determined, and if a body exists the setJsp-Body()
method is called on the tag handler.

If the tag is declared to have a body-content of empty or no body or an empty body is
passed for this invocation, then setJspBody() is not called.

Otherwise, the body of the tag is either the body of the <jsp:body> element, or the body of
the custom action invocation if no <jsp:body> or <jsp:attribute> elements are present.
In this case, an instance of a Jsp-Fragment object is created and it is passed to the setter.
If the tag is declared to have a body-content of tagdependent, the JspFragment must echo
the body's contents verbatim.

Otherwise, if the tag is declared to have a body-content of type scriptless, the
JspFragment must evaluate the body's contents as a JSP scriptless body.

6. The doTag() method is invoked.

7. The implementation of doTag() performs its function, potentially calling other tag handlers
(if the tag handler is implemented as a tag file) and invoking fragments.

8. The doTag() method returns, and the tag handler instance is discarded. If Skip-
PageException is thrown, the rest of the page is not evaluated and the request is
completed. If this request was forwarded or included from another page (or servlet), only
the current page evaluation stops.

9. For each tag scripting variable declared with scopes AT_BEGIN or AT_END, the appropriate
scripting variables and scoped attributes are declared, as with classic tag handlers.

Chapter 4
Simple Tag Handler Life Cycle (SimpleTag Interface)

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 8

JSP Fragments
A JSP fragment is a portion of JSP code passed to a tag handler that can be invoked as many
times as needed. You can think of a fragment as a template that is used by a tag handler to
produce customized content. Thus, unlike simple attributes which are evaluated by the
container, fragment attributes are evaluated by tag handlers during tag invocation.

JSP fragments can be parameterized using the JSP expression language (JSP EL) variables
in the JSP code that composes the fragment. The JSP EL variables are set by the tag handler,
thus allowing the handler to customize the fragment each time it is invoked.

See WebLogic JSP Reference in Developing Web Applications, Servlets, and JSPs for Oracle
WebLogic Server.

During the simple tag handler life cycle, the body of a SimpleTag, if present, is translated into a
JSP fragment and passed to the setJspBody method. During the translation phase, various
sections of the page are translated into implementations of the
jakarta.servlet.jsp.tagext.JspFragment abstract class, before being passed to a tag
handler. This is done automatically for any JSP code in the body of a named attribute (one that
is defined by <jsp:attribute>) that is declared to be a fragment, or of type JspFragment, in
the tag library descriptor (TLD). This is also automatically done for the body of any tag handled
by a simple tag handler. Once passed in, the tag handler can then evaluate and re-evaluate
the fragment as many times as needed, or even pass it along to other tag handlers, in the case
of tag files.

A JSP fragment can be parameterized by a tag handler by setting page-scoped attributes in
the JspContext associated with the fragment. These attributes can then be accessed by way
of the expression language.

A translation error must occur if a piece of JSP code that is to be translated into a JSP
fragment contains scriptlets or scriptlet expressions.

Tag Handler Life Cycle (Tag and BodyTag Interfaces)
The methods inherited from the Tag or BodyTag interfaces and implemented by the tag handler
class are invoked by the JSP engine at specific points during the processing of the JSP page.
These methods signify points in the life cycle of a tag and are executed in the following
sequence:

1. When the JSP engine encounters a tag in a JSP page, a new tag handler is initialized. The
setPageContext() and setParent() methods of the jakarta.servlet.jsp.tagext.Tag
interface are invoked to set up the environment context for the tag handler. As a tag
developer, you need not implement these methods if you extend the TagSupport or
BodyTagSupport base classes.

2. The setXXXX() JavaBean-like methods for each tag attribute are invoked.

3. The doStartTag() method is invoked. You can define this method in your tag handler class
to initialize your tag handler or open connections to any resources it needs, such as a
database.

At the end of the doStartTag() method, you can determine whether the tag body should
be evaluated by returning one of the following value constants from your tag handler class:

SKIP_BODY—Directs the JSP engine to skip the body of the tag. Return this value if the tag
is an empty-body tag. The body-related parts of the tag's life cycle are skipped, and the
next method invoked is doEndTag().

Chapter 4
Tag Handler Life Cycle (Tag and BodyTag Interfaces)

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 8

EVAL_BODY_INCLUDE—Directs the JSP engine to evaluate and include the content of the tag
body. The body-related parts of the tag's life cycle are skipped, and the next method
invoked is doEndTag().

You can only return this value for tags that implement the Tag interface. This allows you to
write a tag that can determine whether its body is included, but is not concerned with the
contents of the body. You cannot return this value if your tag implements the BodyTag
interface (or extends the BodyTagSuport class).

EVAL_BODY_TAG—Instructs the JSP engine to evaluate the tag body, then invokes the
doInitBody() method. You can only return this value if your tag implements the BodyTag
interface (or extends the BodyTagSupport class).

4. The setBodyContent() method is invoked. At this point, any output from the tag is diverted
into a special JspWriter called BodyContent, and is not sent to the client. All content from
evaluating the body is appended to the BodyContent buffer. This method allows the tag
handler to store a reference to the BodyContent buffer so it is available to the
doAfterBody() method for post-evaluation processing.

If the tag is passing output to the JSP page (or the surrounding tag scope if it is nested),
the tag must explicitly write its output to the parent-scoped JspWriter between this point in
the tag life cycle and the end of the doEndTag() method. The tag handler can gain access
to the enclosing output using the getEnclosingWriter() method.

You do not need to implement this method if you are using the BodyTagSupport
convenience class, because the tag keeps a reference to the BodyContent and makes the
reference available through the getBodyContent() method.

5. The doInitBody() method is invoked. This method allows you to perform some work
immediately before the tag body is evaluated for the first time. You might use this
opportunity to set up some scripting variables, or to push some content into the
BodyContent before the tag body. The content you prepend is not being evaluated as JSP
—unlike the tag body content from the JSP page.

The significant difference between performing work in this method and performing work at
the end of the doStartTag() method (once you know you are going to return
EVAL_BODY_TAG) is that with this method, the scope of the tag's output is nested and does
not go directly to the JSP page (or parent tag). All output is now buffered in a special type
of JspWriter called BodyContent.

6. The doAfterBody() method is invoked. This method is called after the body of the tag is
evaluated and appended to the BodyContent buffer. Your tag handler should implement
this method to perform some work based on the evaluated tag body. If your handler
extends the convenience class BodyTagSupport, you can use the getBodyContent()
method to access the evaluated body. If you are simply implementing the BodyTag
interface, you should have defined the setBodyContent() method where you stored a
reference to the BodyContent instance.

At the end of the doAfterBody() method, you can determine the life cycle of the tag again
by returning one of the following value constants:

SKIP_BODY—Directs the JSP engine to continue, not evaluating the body again. The life
cycle of the tag skips to the doEndTag() method.

EVAL_BODY_TAG—Directs the JSP engine to evaluate the body again. The evaluated body is
appended to the BodyContent and the doAfterBody() method is invoked again.

At this point, you may want your tag handler to write output to the surrounding scope.
Obtain a writer to the enclosing scope using the BodyTagSupport.getPreviousOut()
method or the BodyContent.getEnclosingWriter() method. Either method obtains the
same enclosing writer.

Chapter 4
Tag Handler Life Cycle (Tag and BodyTag Interfaces)

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 8

Your tag handler can write the contents of the evaluated body to the surrounding scope, or
can further process the evaluated body and write some other output. Because the
BodyContent is appended to the existing BodyContent upon each iteration through the
body, you should only write out the entire iterated body content once you decide you are
going to return SKIP_BODY. Otherwise, you will see the content of each subsequent iteration
repeated in the output.

7. The out writer in the pageContext is restored to the parent JspWriter. This object is
actually a stack that is manipulated by the JSP engine on the pageContext using the
pushBody() and popBody() methods. Do not, however, attempt to manipulate the stack
using these methods in your tag handler.

8. The doEndTag() method is invoked. Your tag handler can implement this method to
perform post-tag, server side work, write output to the parent scope JspWriter, or close
resources such as database connections.

Your tag handler writes output directly to the surrounding scope using the JspWriter
obtained from pageContext.getOut() in the doEndTag() method. The previous step
restored pageContext.out to the enclosing writer when popBody() was invoked on the
pageContext.

You can control the flow for evaluation of the rest of the JSP page by returning one of the
following values from the doEngTag() method:

EVAL_PAGE—Directs the JSP engine to continue processing the rest of the JSP page.

SKIP_PAGE—Directs the JSP engine to skip the rest of the JSP page.

9. The release() method is invoked. This occurs just before the tag handler instance is de-
referenced and made available for garbage collection.

Iteration Over a Body Tag (IterationTag Interface)
A tag that implements the jakarta.servlet.jsp.tagext.IterationTag interface has a
method available called doAfterBody() that allows you to conditionally re-evaluate the body of
the tag. If doAFterBody() returns IterationTag.EVAL_BODY_AGAIN the body is re-evaluated, if
doAFterBody() returns Tag.SKIP_BODY, the body is skipped and the doEndTag() method is
called. See the Jakarta EE Javadocs for this interface.

You can download the Javadocs at https://jakarta.ee/specifications/pages/3.1/
apidocs/jakarta.servlet.jsp/module-summary.html.

Handling Exceptions within a Tag Body
You can catch exceptions thrown from within a tag by implementing the doCatch() and
doFinally() methods of the jakarta.servlet.jsp.tagext.TryCatchFinally interface. See
the Jakarta EE Javadocs for this interface.

You can download the Javadocs at https://jakarta.ee/specifications/pages/3.1/
apidocs/jakarta.servlet.jsp/module-summary.html.

Using Tag Attributes
Your custom tags can define any number of attributes that can be specified from the JSP page.
You can use these attributes to pass information to the tag handler and customize its behavior.

You declare each attribute name in the TLD in the <attribute> element. This declares the
name of the attribute and other attribute properties.

Chapter 4
Iteration Over a Body Tag (IterationTag Interface)

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 8

https://jakarta.ee/specifications/pages/3.1/apidocs/jakarta.servlet.jsp/module-summary.html
https://jakarta.ee/specifications/pages/3.1/apidocs/jakarta.servlet.jsp/module-summary.html
https://jakarta.ee/specifications/pages/3.1/apidocs/jakarta.servlet.jsp/module-summary.html
https://jakarta.ee/specifications/pages/3.1/apidocs/jakarta.servlet.jsp/module-summary.html

Your tag handler must implement setter and getter methods based on the attribute name,
similar to the JavaBean convention. For example, if you declare an attribute named foo, your
tag handler must define the following public methods:

public void setFoo(String f);
public String getFoo();

The first letter of the attribute name is capitalized after the set/get prefix.

The JSP engine invokes the setter methods for each attribute appropriately after the tag
handler is initialized and before the doStartTag() method is called. Generally, you should
implement the setter methods to store the attribute value in a member variable that is
accessible to the other methods of the tag handler.

Defining New Scripting Variables
Your tag handler can introduce new scripting variables that can be referenced by the JSP page
at various scopes. Scripting variables can be used like implicit objects within their defined
scope.

Define a new scripting variable by using the <tei-class> element to identify a Java class that
extends jakarta.servlet.jsp.tagext.TagExtraInfo. For example:

<tei-class>weblogic.taglib.session.ListTagExtraInfo</tei-class>

Then write the TagExtraInfo class.

For example:

package weblogic.taglib.session;
import jakarta.servlet.jsp.tagext.*;
public class ListTagExtraInfo extends TagExtraInfo {

public VariableInfo[] getVariableInfo(TagData data) {
 return new VariableInfo[] {
 new VariableInfo("username","String",true,VariableInfo.NESTED)
 new VariableInfo("dob","java.util.Date",true,VariableInfo.NESTED)
 };
 }
 }

The example above defines a single method, getVariableInfo(), which returns an array of
VariableInfo elements. Each element defines a new scripting variable. The example shown
above defines two scripting variables called username and dob, which are of type
java.lang.String and java.util.Date, respectively.

The constructor for VariableInfo() takes four arguments.

• A String that defines the name of the new variable.

• A String that defines the Java type of the variable. Give the full package name for types in
packages other than the java.lang package.

• A boolean that declares whether the variable must be instantiated before use. Set this
argument to "true" unless your tag handler is written in a language other than Java.

• An int declaring the scope of the variable. Use a static field from VariableInfo shown
here:

VariableInfo.NESTED—Available only within the start and end tags of the tag.

VariableInfo.AT_BEGIN—Available from the start tag until the end of the page.

Chapter 4
Defining New Scripting Variables

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 8

VariableInfo.AT_END—Available from the end tag until the end of the page.

Configure your tag handler to initialize the value of the scripting variables via the page context.
For example, the following Java source could be used in the doStartTag() method to initialize
the values of the scripting variables defined above:

pageContext.setAttribute("name", nameStr);
pageContext.setAttribute("dob", bday);

Where the first parameter names the scripting variable, and the second parameter is the value
assigned. Here, the Java variable nameStr is of type String and bday is of type
java.util.Date.

You can also access variables created with the TagExtraInfo class by referencing it the same
way you access a JavaBean that was created with useBean.

Dynamically Named Scripting Variables
You can define the name of a new scripting variable from a tag attribute. This definition enables
you to use multiple instances of a tag that define a scripting variable at the same scope,
without the scripting variables of the tag clashing. If you want to achieve this from your class
that extends TagExtraInfo, you must get the name of the scripting variable from the TagData
that is passed into the getVariableInfo() method.

From TagData, you can retrieve the value of the attribute that names the scripting variable
using the getAttributeString() method. There is also the getId() method that returns the
value of the id attribute, which is often used to name a new implicit object from JSP tag.

Defining Variables in the Tag Library Descriptor
You can define variables in the TLD.

For more information, see Define scripting variables.

Writing Cooperative Nested Tags
You can design your tags to implicitly use properties from tags they are nested within. For
example, in the code example called SQL Query (see the samples/examples/jsp/tagext/sql
directory of your WebLogic Server installation) a <sql:query> tag is nested within a
<sql:connection> tag. The query tag searches for a parent scope connection tag and uses
the JDBC connection established by the parent scope.

To locate a parent scope tag, your nested tag uses the static findAncestorWithClass()
method of the TagSupport class. The following is an example taken from the QueryTag
example.

try {
 ConnectionTag connTag = (ConnectionTag)
 findAncestorWithClass(this,
 Class.forName("weblogic.taglib.sql.ConnectionTag"));
 } catch(ClassNotFoundException cnfe) {
 throw new JspException("Query tag connection "+
 "attribute not nested "+
 "within connection tag");
}

Chapter 4
Writing Cooperative Nested Tags

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 8

This example returns the closest parent tag class whose tag handler class matched the class
given. If the direct parent tag is not of this type, then it is parent is checked and so on until a
matching tag is found, or a ClassNotFoundException is thrown.

Using this feature in your custom tags can simplify the syntax and usage of tags in the JSP
page.

Using a Tag Library Validator
A Tag Library Validator is a user-written Java class that you can use to perform validation of the
XML view of a JSP page. validate(String, String, PageData) on the validator class is
invoked by the JSP compiler at translation time (when the JSP is converted to a servlet) and
returns a null string if the page is validated or a string containing error information it the
validation fails.

To implement a Tag Library Validator:

1. Write the validator class.

A validator class extends the jakarta.servlet.jsp.tagext.TagLibraryValidator class.

2. Reference the validator in the tag library descriptor.

For example:

<validator>
 <validator-class>
 myapp.tools.MyValidator
 </validator-class>
</validator>

3. (Optional) Define initialization parameters.

Your validator class can get and use initialization parameters.

For example:

<validator>
 <validator-class>
 myapp.tools.MyValidator
 </validator-class>
 <init-param>
 <param-name>myInitParam</param-name>
 <param-value>foo</param-value>
 </init-param>
</validator>

4. Package the validator class in the WEB-INF/classes directory of a Web application.

You can also package the classes in a tag library jar file.

See Packaging a JSP Tag Library as JAR File.

Chapter 4
Using a Tag Library Validator

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 8

5
Administration and Configuration

The following topics provide an overview of administration and configuration tasks for using
JSP tag extensions.

Configuring JSP Tag Libraries
You can configure a JSP tag library as well as package a tag library as a JAR file.

To configure JSP tag libraries:

1. Create a tag library descriptor (TLD).

See Creating a Tag Library Descriptor.

2. Reference this TLD in the web application deployment descriptor, web.xml. For example:

<taglib>
 <taglib-uri>myTLD</taglib-uri>
 <taglib-location>WEB-INF/library.tld</taglib-location>
</taglib>

In this example the tag library descriptor is a file called library.tld. Always specify the
location of the tld relative to the root of the Web application.

3. Place the tag library descriptor file in the WEB-INF directory of the Web application.

4. Reference the tag library in the JSP page.

In your JSP, reference the tag library with a JSP directive. For example:

<%@ taglib uri="myTLD" prefix="mytaglib" %>

5. Place the tag handler Java class files for your tags in the WEB-INF/classes directory of
your Web application.

6. Deploy the Web application on WebLogic Server. See Deploying and Packaging from a
Split Development Directory in Developing Applications for Oracle WebLogic Server.

Packaging a JSP Tag Library as JAR File
You can also package a JSP tag library as a JAR file.

To package a JSP tag library as a JAR file:

1. Create a TLD (tag library descriptor) file named taglib.tld.

See Creating a Tag Library Descriptor.

2. Create a directory containing the compiled Java tag handler class files used in your tag
library.

3. Create a subdirectory of the directory you created in step;2 and call it META-INF.

4. Copy the taglib.tld file you created in step;1 into the META-INF directory you created in
step;3.

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 2

5. Archive your compiled Java class files into a jar file by executing the following command
from the directory you created in step;2.

jar cv0f myTagLibrary.jar

(where myTagLibrary.jar is a name you provide)

6. Copy the jar file into the WEB-INF/lib directory of the Web application that uses your tag
library.

7. Reference the tag library in your JSP.

For example:

<%@ taglib uri="taglib.tld" prefix="wl" %>

A more flexible alternative would be to perform steps 1 through 6 and then reference the
tag library descriptor in the Web application deployment descriptor, web.xml.

For example:

<taglib>
 <taglib-uri>myjar.tld</taglib-uri>
 <taglib-location>/WEB-INF/lib/myTagLibrary.jar</taglib-location>
</taglib>

You can then reference the tag library in your JSP.

For example:

<%@ taglib uri="myjar.tld" prefix="wl" %>

Chapter 5
Packaging a JSP Tag Library as JAR File

Developing JSP Tag Extensions for Oracle WebLogic Server
G31653-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Introduction
	2 Understanding and Creating Custom JSP Tags
	Tag Handler API and Implementation
	Custom Tag Library
	Custom Tag Format
	What Can You Do with Custom Tags?
	Creating and Configuring a JSP Tag Library: Example Procedures

	3 Creating a Tag Library Descriptor
	Overview of Tag Library Descriptors
	Writing the Tag Library Descriptor
	Sample Tag Library Descriptor
	The DynamicAttributes Interface
	Tag Handler Support of Dynamic Attributes
	Dynamic Attributes Example
	Dynamic Attributes Syntax

	4 Implementing the Tag Handler
	Simple Tag Handler Life Cycle (SimpleTag Interface)
	Events in the Simple Tag Handler Life Cycle
	JSP Fragments

	Tag Handler Life Cycle (Tag and BodyTag Interfaces)
	Iteration Over a Body Tag (IterationTag Interface)
	Handling Exceptions within a Tag Body
	Using Tag Attributes
	Defining New Scripting Variables
	Dynamically Named Scripting Variables
	Defining Variables in the Tag Library Descriptor

	Writing Cooperative Nested Tags
	Using a Tag Library Validator

	5 Administration and Configuration
	Configuring JSP Tag Libraries
	Packaging a JSP Tag Library as JAR File

