
Oracle® Fusion Middleware
Administering Security for Oracle WebLogic
Server

15c (15.1.1.0.0)
G31901-01
October 2025

Oracle Fusion Middleware Administering Security for Oracle WebLogic Server, 15c (15.1.1.0.0)

G31901-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility ii

Diversity and Inclusion ii

Related Information ii

Conventions iii

Part I Overview of WebLogic Server Security Administration

1 Security Management Concepts

Security Realms in WebLogic Server 1

Security Providers 1

Security Policies and WebLogic Resources 3

WebLogic Resources 4

Deployment Descriptors and WebLogic Remote Console 4

The Default Security Configuration in WebLogic Server 5

Configuring WebLogic Security: Main Steps 6

Methods of Configuring Security 7

How Passwords Are Protected in WebLogic Server 8

2 WebLogic Server Security Standards

Supported Security Standards 1

Supported FIPS Standards and Cipher Suites 3

3 Configuring Security for a WebLogic Domain

Performing a Secure Installation of WebLogic Server 1

Before Installing WebLogic Server 1

While Running the Installation Program 3

Immediately After Installation is Complete 3

Creating a WebLogic Domain for Production Use 3

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of xiv

Securing the Domain After You Have Created It 4

Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authority Certificates 7

Storing Private Keys, Digital Certificates, and Trusted Certificate Authority Certificates 7

Protecting User Accounts 8

Using Connection Filters 9

Using JEP 290 in Oracle WebLogic Server 9

How WebLogic Server Uses JEP 290 Blocklists and Allowlists 10

Customizing JEP 290 Filters Using Properties 11

Using Dynamic Blocklist Configuration Files 14

Using an Allowlist for JEP 290 Filtering 15

Customizing the Allowlist After Recording 17

Enabling Filter Logging 20

Understanding the Filter Order Preference 21

Setting the Deserialization Timeout Interval 21

JTA TransactionLoggable Allowlist 22

4 Customizing the Default Security Configuration

Why Customize the Default Security Configuration? 1

Before You Create a New Security Realm 2

Creating and Configuring a New Security Realm: Main Steps 3

Using Automatic Realm Restart 4

Part II Configuring Security Providers

5 About Configuring WebLogic Security Providers

When Do You Need to Configure a Security Provider? 1

Reordering Security Providers 2

Enabling Synchronization in Security Policy and Role Modification at Deployment 2

6 Configuring Authorization and Role Mapping Providers

Configuring an Authorization Provider 1

Configuring the WebLogic Adjudication Provider 2

Configuring a Role Mapping Provider 2

7 Configuring the WebLogic Auditing Provider

Auditing Provider Overview 1

Events Logged by the WebLogic Auditing Provider 1

Configuration Options 2

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of xiv

Auditing ContextHandler Elements 3

Configuration Auditing 5

Enabling Configuration Auditing 6

Configuration Auditing Messages 6

Audit Events and Auditing Providers 9

8 Configuring Credential Mapping Providers

Configuring a WebLogic Credential Mapping Provider 1

Configuring a PKI Credential Mapping Provider 2

PKI Credential Mapper Attributes 2

Credential Actions 3

Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0 3

SAML 2.0 Credential Mapping Provider Attributes 4

Service Provider Partners 4

Partner Lookup Strings Required for Web Service Partners 5

Management of Partner Certificates 7

Java Interface for Configuring Service Provider Partner Attributes 7

9 Configuring the Certificate Lookup and Validation Framework

Overview of the Certificate Lookup and Validation Framework 1

CLV Security Providers Provided by WebLogic Server 1

CertPath Provider 2

Certificate Registry 2

Part III Configuring Authentication Providers

10

About Configuring the Authentication Providers in WebLogic Server

Choosing an Authentication Provider 1

Using More Than One Authentication Provider 2

Setting the JAAS Control Flag Option 2

Changing the Order of Authentication Providers 3

11

Configuring the WebLogic Authentication Provider

About the WebLogic Authentication Provider 1

Setting User Attributes 1

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iii of xiv

12

Configuring LDAP Authentication Providers

LDAP Authentication Providers Included in WebLogic Server 1

Requirements for Using an LDAP Authentication Provider 2

Configuring an LDAP Authentication Provider: Main Steps 2

Accessing Other LDAP Servers 5

Enabling an LDAP Authentication Provider for SSL 5

Dynamic Groups and WebLogic Server 6

Use of GUID and LDAP DN Data in WebLogic Principals 6

Configuring Users and Groups in the Oracle Internet Directory Authentication Provider 7

Configuring User and Group Name Types 7

Changing the User Name Attribute Type 8

Changing the Group Name Attribute Type 9

Configuring Static Groups 9

Example of Configuring the Oracle Internet Directory Authentication Provider 10

Configuring Failover for LDAP Authentication Providers 12

LDAP Failover Example 1 13

LDAP Failover Example 2 13

Configuring an Authentication Provider for Oracle Unified Directory 14

Following Referrals in the Active Directory Authentication Provider 14

Improving the Performance of LDAP Authentication Providers 14

Optimizing the Group Membership Caches 15

Optimizing the Connection Pool Size and User Cache 16

Optimizing the Principal Validator Cache 16

Configuring the Active Directory Authentication Provider to Improve Performance 17

Analyzing the Generic LDAP Authenticator Cache Statistics 17

Testing the LDAP Connection During Configuration 18

13

Configuring RDBMS Authentication Providers

About Configuring the RDBMS Authentication Providers 1

Common RDBMS Authentication Provider Attributes 1

Data Source Attribute 2

Group Searching Attributes 2

Group Caching Attributes 2

Configuring the SQL Authentication Provider 2

Password Attributes 2

SQL Statement Attributes 5

Configuring the Read-Only SQL Authenticator 5

Configuring the Custom DBMS Authenticator 6

Plug-In Class Attributes 6

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iv of xiv

14

Configuring the SAML Authentication Provider

15

Configuring the Password Validation Provider

About the Password Validation Provider 1

Password Composition Rules for the Password Validation Provider 1

Using the Password Validation Provider with the WebLogic Authentication Provider 2

Using the Password Validation Provider with an LDAP Authentication Provider 3

Using WLST to Create and Configure the Password Validation Provider 3

Creating an Instance of the Password Validation Provider 3

Specifying the Password Composition Rules 4

16

Configuring Identity Assertion Providers

About the Identity Assertion Providers 1

How an LDAP X509 Identity Assertion Provider Works 3

Configuring an LDAP X509 Identity Assertion Provider: Main Steps 3

Configuring a Negotiate Identity Assertion Provider 4

Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0 5

Identity Provider Partners 5

Partner Lookup Strings Required for Web Service Partners 6

Management of Partner Certificates 8

Java Interface for Configuring Identity Provider Partner Attributes 8

Ordering of Identity Assertion for Servlets 9

Configuring Identity Assertion Performance in the Server Cache 9

Optimizing the Identity Assertion Cache Service 10

Authenticating a User Not Defined in the Identity Store 11

How Virtual User Authentication Works in a WebLogic Domain 11

Configuring Two-Way SSL and Managing Certificates Securely 12

Customizing the WebLogic Identity Assertion Provider (DefaultIdentityAsserter) 12

Configuring the Virtual User Authentication Provider 13

Using WLST to Configure Virtual User Authentication 13

Configuring a User Name Mapper 14

Configuring a Custom User Name Mapper 15

17

Configuring the Virtual User Authentication Provider

About the Virtual User Authentication Provider 1

Adding the Virtual User Authentication Provider to the Security Realm 1

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page v of xiv

18

Configuring the Oracle Identity Cloud Integrator Provider

About the Oracle Identity Cloud Integrator Provider 1

Prerequisites for Configuring the Oracle Identity Cloud Integrator Provider 4

Configuring the Oracle Identity Cloud Integrator Provider: Main Steps and Examples 5

Configuring TLS/SSL for the Oracle Identity Cloud Integrator Provider 9

Using the Oracle Identity Cloud Integrator Provider in FIPS Mode 10

Authorization and Remote User HTTP Header Support 10

Enabling Authorization and REMOTE_USER Header Support: Main Steps 11

Ordering of Identity Assertion Headers 11

Handling Authentication Failures 14

19

Configuring the WebLogic OpenID Connect Provider

About the WebLogic OpenID Connect Provider 1

Configure the WebLogic OpenID Connect Identity Assertion Provider in WebLogic Remote
Console 2

Preparing Web Applications for the WebLogic OpenID Connect Provider 2

Part IV Configuring Single Sign-On

20

Configuring Single Sign-On with Microsoft Clients

Overview of Single Sign-On with Microsoft Clients 1

System Requirements for SSO with Microsoft Clients 2

Host Computer Requirements for Supporting SSO with Microsoft Clients 2

Client Computer Requirements for Supporting Microsoft Clients Using SSO 3

Single Sign-On with Microsoft Clients: Main Steps 3

Configuring Your Network Domain to Use Kerberos 4

Creating a Kerberos Identification for WebLogic Server 5

Step 1: Create a User Account for the Host Computer 6

Step 2: Configure the User Account to Comply with Kerberos 6

Step 3: Define a Service Principal Name and Create a Keytab for the Service 7

Defining an SPN and Creating a Keytab on Windows Systems 7

Defining an SPN and Creating a Keytab on UNIX Systems 8

Step 4: Verify Correct Setup 9

Configuring Microsoft Clients to Use Windows Integrated Authentication 9

Configuring a .NET Web Service 10

Configuring an Internet Explorer Browser 10

Configure Local Intranet Domains 10

Configure Intranet Authentication 10

Verify the Proxy Settings 11

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page vi of xiv

Set Integrated Authentication for Older Internet Explorer Versions 11

Configuring a Mozilla Firefox Browser 11

Configuring a Java SE Client Application 12

Creating a JAAS Login File 13

Configuring the Identity Assertion Provider 14

Using Startup Arguments for Kerberos Authentication with WebLogic Server 14

Verifying Configuration of SSO with Microsoft Clients 15

21

Configuring Single Sign-On with Web Browsers and HTTP Clients Using
SAML

Configuring SAML Services 1

SAML for Web Single Sign-On Scenario API Example 1

22

Configuring SAML 2.0 Services

Configuring SAML 2.0 Services: Main Steps 1

Configuring SAML 2.0 General Services 3

About SAML 2.0 General Services 3

Publishing and Distributing the Metadata File 4

Configuring an Identity Provider Site for SAML 2.0 Single Sign-On 5

Configure the SAML 2.0 Credential Mapping Provider 5

Configure SAML 2.0 Identity Provider Services 6

Enable the SAML 2.0 Identity Provider Site 6

Specify if Authentication Requests Must Be Signed 6

Specify a Custom Login Web Application 6

Enable Binding Types 6

Configure Assertion Encryption 6

Publish Your Site's Metadata File 7

Create and Configure Web Single Sign-On Service Provider Partners 7

Obtain Your Service Provider Partner's Metadata File 7

Create Partner and Enable Interactions 7

Configure How Assertions are Generated 7

Configure How Documents Are Signed 8

Configure Artifact Binding and Transport Settings 8

Configuring a Service Provider Site for SAML 2.0 Single Sign-On 9

Configure the SAML 2.0 Identity Assertion Provider 9

Configure the SAML Authentication Provider 9

Configure SAML 2.0 General Services 10

Configure SAML 2.0 Service Provider Services 10

Enable the SAML 2.0 Service Provider Site 10

Specify How Documents Must Be Signed 10

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page vii of xiv

Specify How Authentication Requests Are Managed 10

Enable Binding Types 10

Set Default URL 10

Configure Assertion Encryption Key 11

Configure SAML Single Logout 11

Create and Configure Web Single Sign-On Identity Provider Partners 11

Obtain Your Identity Provider Partner's Metadata File 11

Create Partner and Enable Interactions 12

Configure Authentication Requests and Assertions 12

Configure Redirect URIs 13

Configure Binding and Transport Settings 13

Configuring SAML Encryption Using WLST 13

Viewing Partner Site, Certificate, and Service Endpoint Information 14

Web Application Deployment Considerations for SAML 2.0 15

Deployment Descriptor Recommendations 15

Use of relogin-enabled with CLIENT-CERT Authentication 15

Use of Non-default Cookie Name 15

Login Application Considerations for Clustered Environments 16

Enabling Force Authentication and Passive Attributes is Invalid 16

Enabling SAML SLO on Web Applications 16

Enabling Synchronized Session Timeout 17

23

Enabling Debugging for SAML 2.0

About SAML Debug Scopes and Attributes 1

Enabling Debugging Using the Command Line 1

Enabling Debugging Using WebLogic Remote Console 2

Enabling Debugging Using the WebLogic Scripting Tool 2

Sending Debug Messages to Standard Out 4

Part V Managing Security Information

24

Migrating Security Data

Overview of Security Data Migration 1

Migration Concepts 2

Formats and Constraints Supported by WebLogic Security Providers 2

Migrating Data with WLST 4

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page viii of xiv

25

Managing the RDBMS Security Store

Security Providers that Use the RDBMS Security Store 1

Configuring the RDBMS Security Store 2

Create a Domain with the RDBMS Security Store 2

Use WLST Offline to Create the RDBMS Security Store 3

Testing the Database Connection 7

Create RDBMS Tables in the Security Datastore 8

Configure a JMS Topic for the RDBMS Security Store 8

Configuring JMS Connection Recovery in the Event of Failure 10

Upgrading a Domain to Use the RDBMS Security Store 10

26

Managing the Embedded LDAP Server

Configuring the Embedded LDAP Server 1

Embedded LDAP Server Replication 2

Viewing the Contents of the Embedded LDAP Server from an LDAP Browser 2

Exporting and Importing Information in the Embedded LDAP Server 3

LDAP Access Control Syntax 3

The Access Control File 4

Access Control Location 4

Access Control Scope 4

Access Rights 5

Attribute Permissions 5

Entry Permissions 6

Attributes Types 6

Subject Types 7

Grant/Deny Evaluation Rules 7

Backup and Recovery 8

Part VI Configuring SSL

27

Overview of Configuring SSL in WebLogic Server

SSL: An Introduction 1

One-Way and Two-Way SSL 1

Java Secure Socket Extension (JSSE) SSL Implementation Support 2

Setting Up SSL/TLS: Main Steps 2

SSL Session Behavior 3

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ix of xiv

28

Configuring Keystores

About Configuring Keystores in WebLogic Server 1

About Private Keys, Digital Certificates, and Trusted Certificate Authorities 1

Using Separate Keystores for Identity and Trust 2

Using PKCS12 Keystores in WebLogic Server 3

Using the Certificate Management Service 4

Certificate Issuers 5

Domain Keystores 7

Using Certificate Management Service with Node Manager 9

Configuring the Certificate Management Service 9

Configuring Keystores: Main Steps 10

How WebLogic Server Locates Trust 10

Creating a Keystore 11

Keystore File Name Requirements 11

Creating a Keystore Using DemoCertGen 12

Regenerating Demo CA and Demo Certificates using DemoCertGen 12

Creating a Keystore Using Keytool 13

Creating a Keystore Using ImportPrivateKey 15

Using Keystores and Certificates in a Development Environment 16

Using the Demonstration Keystores 17

Creating Demonstration Certificates Using CertGen 17

About CertGen 17

Using CertGen to Create a Certificate and Private Key 18

CertGen Usage Notes 18

Limitation on CertGen Usage 19

Using Your Own Certificate Authority 20

Converting a Microsoft p7b Format to PEM Format 20

Configuring Demo Certificates for Clients 21

Obtaining and Storing Certificates for Production Environments 22

Generating a Certificate Signing Request 22

Importing Certificates into the Trust and Identity Keystores 23

Configuring Keystores with WebLogic Server 25

Configuring a Keystore Using WLST 25

Viewing Keystore Contents 26

Setting Certificate Expiry Notifications 28

Replacing Expiring Certificates 28

Creating a Keystore: An Example 29

Supported Formats for Identity and Trust Certificates 31

Obtaining a Digital Certificate for a Web Browser 32

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page x of xiv

29

Using Host Name Verification

Using the BEA Host Name Verifier 1

Configuring the BEA Host Name Verifier 2

Using the Wildcard Host Name Verifier 2

How the Wildcard Host Name Verifier Works 2

Configuring the Wildcard Host Name Verifier 3

Using a Custom Host Name Verifier 3

Using a Host Name Verifier on Mac OS X Platforms 3

30

Specifying a Client Certificate for an Outbound Two-Way SSL Connection

Add a Client Certificate to the Identity Keystore 1

Initiate the Outbound Two-Way SSL Connection 2

Restore the Use of the Server Identity Certificate 3

31

SSL Debugging

About the SSL Debug Trace 1

Command-Line Properties for Enabling SSL Debugging 2

32

SSL Certificate Validation

Controlling the Level of Certificate Validation 1

Accepting Certificate Policies in Certificates 2

Checking Certificate Chains 3

Using Certificate Lookup and Validation Providers 4

How SSL Certificate Validation Works in WebLogic Server 4

Troubleshooting Problems with Certificate Validation 5

33

Using JCE Providers with WebLogic Server

Using the Jipher JCE Provider 1

Using the JDK JCE Provider 1

34

Enabling FIPS Mode

FIPS Overview 1

Enabling FIPS Mode with Jipher JCE and SunJSSE Providers 1

Enabling FIPS Mode From Java Options with Jipher 1

Enabling FIPS 140-2 Mode From java.security 2

Removing Dell JCE and Dell BSAFE JSSE Providers 3

Creating FIPS 140-2 Compliant Keystores 3

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page xi of xiv

Converting a Non-FIPS Compliant Keystore Using the Jipher JCE Provider 4

Converting the Default JKS Keystore for FIPS Compliance 4

Important Considerations When Using Web Services 5

SHA-1 Secure Hash Algorithm Not Supported 5

X509PKIPathv1 token Not Supported 7

35

Specifying the SSL/TLS Protocol Version

About the SSL Version Used in the Handshake 1

Using the weblogic.security.SSL.protocolVersion System Property 1

Using the weblogic.security.SSL.minimumProtocolVersion System Property 3

Protocols Enabled with the JSSE-Based SSL Implementation 3

Using the weblogic.security.ssl.sslcontext.protocol System Property 5

36

Using the JSSE-Based SSL Implementation

Using System Properties with the JSSE-Based SSL Implementation 1

Cipher Suites 3

List of Supported Cipher Suites 3

Deprecated Cipher Suites 3

Backward Compatibility of Supported Cipher Suites 3

Using Anonymous Ciphers 4

Setting Cipher Suites Using WLST: An Example 4

An Important Note Regarding Null Cipher Use in SSL 5

WebLogic Server Control to Prevent Null Cipher Use 6

Using Debugging with JSSE SSL 6

37

X.509 Certificate Revocation Checking

Certificate Revocation Checking Overview 1

Enabling the Default CR Checking Configuration 2

Configuring Default CR Checking 3

Customizing the CR Checking Configuration 3

Choosing the CR Checking Methods to Be Used by WebLogic Server 4

Failing SSL Certificate Path Validation if Revocation Status Cannot Be Determined 5

Using the Online Certificate Status Protocol 5

Using Nonces in OCSP Requests 6

Setting the Response Timeout Interval 6

Enabling and Configuring the OCSP Response Local Cache 7

Using Certificate Revocation Lists 8

Enabling Updates from Distribution Points 8

Configuring the CRL Local Cache 9

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page xii of xiv

Configuring Certificate Authority Overrides 9

General Certificate Authority Overrides 10

Configuring OCSP Properties in a Certificate Authority Override 10

Identifying the OCSP Responder URL 13

Configuring CRL Properties in a Certificate Authority Override 14

38

Configuring an Identity Keystore Specific to a Network Channel

About Network Channels 1

Channel-Specific SSL Configuration Attributes 1

Steps to Configure a Channel-Specific Identity Keystore 6

Using WLST to Configure a Channel-Specific Identity Keystore 7

39

Configuring RMI over IIOP with SSL

40

Using a Certificate Callback Handler to Validate End User Certificates

How End User Certificate Callback Handlers Work 1

Creating a Certificate Callback Implementation 2

Configuring the Certificate Callback with WebLogic Server 2

Part VII Advanced Security Topics

41

Configuring Cross-Domain Security

Enabling Trust Between WebLogic Server Domains 1

Enabling Cross-Domain Security Between WebLogic Server Domains 2

Configuring Cross-Domain Security 2

Excluding Domains From Cross-Domain Security 3

Configuring Cross-Domain Users 3

Configure a Credential Mapping for Cross-Domain Security 4

Enabling Global Trust 5

Using Jakarta Authorization 6

Viewing MBean Attributes 7

Configuring a Domain to Use JAAS Authorization 7

42

Configuring Jakarta Authentication Security

Jakarta Authentication Mechanisms Override WebLogic Server Defaults 1

Prerequisites for Configuring Jakarta Authentication 1

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page xiii of xiv

Server Authentication Module Must Be in Classpath 2

Custom Authentication Configuration Providers Must Be in Classpath 2

Location of Configuration Data 2

Configuring Jakarta Authentication for a Domain 2

Configuring Jakarta Authentication Using WLST 3

Creating a WLS Authentication Configuration Provider 3

Creating a Custom Authentication Configuration Provider 4

Listing All WLS and Custom Authentication Configuration Providers 4

Enabling Jakarta Authentication for a Domain 4

Disabling Jakarta Authentication for a Domain 5

43

Using Jakarta Security in WebLogic Server

Overview of Jakarta Security 1

Prerequisites for Using Jakarta Security 2

44

Using Secured Production Mode

When is Secured Production Mode Enabled? 2

Changing the Domain Mode 3

Overriding the Domain Mode (Single Server Domains Only) 5

Connecting to the Administration Server using WebLogic Remote Console 6

Starting Managed Servers using WebLogic Remote Console 7

Connecting to the Administration Server using WLST 7

Starting Managed Servers using a Start Script 8

Stopping Servers 8

Secured Production Mode in Development Environments 9

Using Secured Production Mode with Demonstration Keystores 10

Using WLST on Domains using Demo Keystores 11

Starting Managed Servers using Demo Keystores using a Start Script 12

Stopping Servers with Demo Keystores 12

Using Secured Production Mode without SSL/TLS 13

Part VIII Appendixes

A Keytool Command Summary

B Interoperating With Keystores From Prior Versions

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page xiv of xiv

Preface

This document explains how to configure WebLogic Server security, including settings for
security realms, providers, identity and trust, SSL, and compatibility security.

Audience
This document is intended for the following audiences:

• Application Architects—Architects who, in addition to setting security goals and designing
the overall security architecture for their organizations, evaluate WebLogic Server security
features and determine how to best implement them. Application Architects have in-depth
knowledge of Java programming, Java security, and network security, as well as
knowledge of security systems and leading-edge, security technologies and tools.

• Security Developers—Developers who define the system architecture and infrastructure for
security products that integrate with WebLogic Server and who develop custom security
providers for use with WebLogic Server. They work with Application Architects to ensure
that the security architecture is implemented according to design and that no security holes
are introduced, and work with Server Administrators to ensure that security is properly
configured. Security Developers have a solid understanding of security concepts, including
authentication, authorization, auditing (AAA), in-depth knowledge of Java (including Java
Management eXtensions (JMX)), and working knowledge of WebLogic Server and security
provider functionality.

• Application Developers—Java programmers who focus on developing client applications,
adding security to Web applications and Jakarta Enterprise Beans (EJBs), and working
with other engineering, quality assurance (QA), and database teams to implement security
features. Application Developers have in-depth/working knowledge of Java (including
Jakarta EE components such as servlets/JSPs and JSEE) and Java security.

• Server Administrators—Administrators work closely with Application Architects to design a
security scheme for the server and the applications running on the server; to identify
potential security risks; and to propose configurations that prevent security problems.
Related responsibilities may include maintaining critical production systems; configuring
and managing security realms, implementing authentication and authorization schemes for
server and application resources; upgrading security features; and maintaining security
provider databases. Server Administrators have in-depth knowledge of the Java security
architecture, including Web services, Web application and EJB security, Public Key
security, SSL, and Security Assertion Markup Language (SAML).

• Application Administrators—Administrators who work with Server Administrators to
implement and maintain security configurations and authentication and authorization
schemes, and to set up and maintain access to deployed application resources in defined
security realms. Application Administrators have general knowledge of security concepts
and the Java Security architecture. They understand Java, XML, deployment descriptors,
and can identify security events in server and audit logs.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page i of iii

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you
are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Information
The following Oracle Fusion Middleware documents contain information that is relevant to the
WebLogic Security Service:

• Understanding Security for Oracle WebLogic Server—Summarizes the features of the
WebLogic Security Service, including an overview of its architecture and capabilities. It is
the starting point for understanding WebLogic security.

• Developing Security Providers for Oracle WebLogic Server—Provides security vendors
and application developers with the information needed to develop custom security
providers that can be used with WebLogic Server.

• Securing a Production Environment for Oracle WebLogic Server—Highlights essential
security hardening and lockdown measures for you to consider before you deploy
WebLogic Server in a production environment.

• Securing Resources Using Roles and Policies for Oracle WebLogic Server—Introduces
the various types of WebLogic resources, and provides information about how to secure
these resources using WebLogic Server. This document focuses primarily on securing
URL (Web) and Jakarta Enterprise Bean (EJB) resources.

• Developing Applications with the WebLogic Security Service —Describes how to develop
secure Web applications. in

• Securing WebLogic Web Services for Oracle WebLogic Server—Describes how to develop
and configure secure Web services.

• Oracle WebLogic Remote Console Online Help—Many security configuration tasks can be
performed using the WebLogic Remote Console. The online help describes configuration
procedures and provides a reference for configurable attributes.

• Upgrading Oracle WebLogic Server—Provides procedures and other information you need
to upgrade from earlier versions of WebLogic Server to this release. It also provides

Preface

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page ii of iii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

information about moving applications from an earlier version of WebLogic Server to this
release.

• Java API Reference for Oracle WebLogic Server—Provides reference documentation for
the WebLogic security packages that are provided with and supported by this release of
WebLogic Server.

Security Examples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in EXAMPLES_HOME/examples/src/
examples/security, where EXAMPLES_HOME represents the directory in which the WebLogic
Server code examples are configured. By default, this location is ORACLE_HOME/wlserver/
samples/server. For more information about the WebLogic Server code examples, see
Sample Applications and Code Examples in Understanding Oracle WebLogic Server.

The following examples illustrate WebLogic security features:

• Java Authentication and Authorization Service

• SAML 2.0 For Web SSO Scenario

• Outbound and Two-way SSL

WebLogic Server also provides an of example that demonstrates the use of the built-in
database identity store functionality provided by the Jakarta Security specification. This
example is located in the EXAMPLES_HOME/examples/src/examples/javaee8/security
directory.

New and Changed WebLogic Server Features
For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page iii of iii

Part I
Overview of WebLogic Server Security
Administration

Before you begin administering Oracle WebLogic Server security, you need to understand
some basic concepts about WebLogic Server security management, the set of security
standards supported by WebLogic Server, and the tasks involved in securing a WebLogic
domain.

This part contains the following chapters:

• Security Management Concepts

• WebLogic Server Security Standards

• Configuring Security for a WebLogic Domain

• Customizing the Default Security Configuration

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 1

1
Security Management Concepts

The task of managing Oracle WebLogic Server security focuses primarily on creating and
configuring one or more security realms. In each security realm, you configure a set of security
providers, create security policies for the WebLogic resources that need to be protected, select
configuration options for protecting user accounts, and configure identity and trust.

This chapter includes the following sections:

• Security Realms in WebLogic Server

• Security Providers

• Security Policies and WebLogic Resources

• The Default Security Configuration in WebLogic Server

• Configuring WebLogic Security: Main Steps

• Methods of Configuring Security

• How Passwords Are Protected in WebLogic Server

For a broader overview of security management concepts, see Understanding Security for
Oracle WebLogic Server.

Security Realms in WebLogic Server
The security service in WebLogic Server simplifies the configuration and management of
security while offering robust capabilities for securing your WebLogic Server deployment.
Security realms act as a scoping mechanism. Each security realm consists of a set of
configured security providers, users, groups, security roles, and security policies. You can
configure and activate multiple security realms in a domain; however, only one can be the
default administrative realm.
WebLogic Server provides a default security realm, myrealm, which has the WebLogic
Adjudication, Authentication, Identity Assertion, Authorization, Role Mapping, and Credential
Mapping providers configured by default.

You can customize authentication and authorization functions by configuring a new security
realm to provide the security services you want and then set the new security realm as the
default security realm.

For information about the default security configuration in WebLogic Server, see The Default
Security Configuration in WebLogic Server.

For information about configuring a security realm and setting it as the default security realm,
see Customizing the Default Security Configuration.

Security Providers
Security providers are modular components that handle specific aspects of security, such as
authentication and authorization. Although applications can leverage the services offered by
the default WebLogic security providers, the WebLogic Security Service's flexible infrastructure
also allows security vendors to write their own custom security providers for use with WebLogic

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 8

Server. WebLogic security providers and custom security providers can be mixed and matched
to create unique security solutions, allowing organizations to take advantage of new
technology advances in some areas while retaining proven methods in others. The WebLogic
Remote Console allows you to administer and manage all your security providers through one
unified management interface.
The WebLogic Security Service supports the following types of security providers:

• Authentication—Authentication is the process whereby the identity of users or system
processes are proved or verified. Authentication also involves remembering, transporting,
and making identity information available to various components of a system when that
information is needed. Authentication providers supported by the WebLogic Security
Service supply the following types of authentication:

– Username and password authentication

– Certificate-based authentication directly with WebLogic Server

– HTTP certificate-based authentication proxied through an external Web server

• Identity Assertion—An Authentication provider that performs perimeter authentication—a
special type of authentication using tokens—is called an Identity Assertion provider.
Identity assertion involves establishing a client's identity through the use of client-supplied
tokens that may exist outside of the request. Thus, the function of an Identity Assertion
provider is to validate and map a token to a username. Once this mapping is complete, an
Authentication provider's LoginModule can be used to convert the username to a principal
(an authenticated user, group, or system process).

• Authorization—Authorization is the process whereby the interactions between users and
WebLogic resources are limited to ensure integrity, confidentiality, and availability. In other
words, once a user's identity has been established by an authentication provider,
authorization is responsible for determining whether access to WebLogic resources should
be permitted for that user. An Authorization provider supplies these services.

• Role Mapping—You can assign one or more roles to multiple users and then specify
access rights for users who hold particular roles. A Role Mapping provider obtains a
computed set of roles granted to a requestor for a given resource. Role Mapping providers
supply Authorization providers with this information so that the Authorization provider can
answer the "is access allowed?" question for WebLogic resources that use role-based
security (for example, Web applications and Jakarta Enterprise Beans (EJBs)).

• Adjudication—When multiple Authorization providers are configured in a security realm,
each may return a different answer to the "is access allowed" question for a given
resource. Determining what to do if multiple Authorization providers do not agree is the
primary function of an Adjudication provider. Adjudication providers resolve authorization
conflicts by weighing each Authorization provider's answer and returning a final access
decision.

• Credential Mapping—A credential map is a mapping of credentials used by WebLogic
Server to credentials used in a legacy or remote system, which tell WebLogic Server how
to connect to a given resource in that system. In other words, credential maps allow
WebLogic Server to log into a remote system on behalf of a subject that has already been
authenticated. Credential Mapping providers map credentials in this way.

• Keystore—A keystore is a mechanism for creating and managing password-protected
stores of private keys and certificates for trusted certificate authorities. The keystore is
available to applications that may need it for authentication or signing purposes. In the
WebLogic Server security architecture, the WebLogic Keystore provider is used to access
keystores.

Chapter 1
Security Providers

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 8

Note

The WebLogic Server Keystore provider is removed and is only supported for
backward compatibility. Use JDK keystore instead. For more information about
configuring keystores, see Creating a Keystore.

• Certificate Lookup and Validation (CLV)—X.509 certificates need to be located and
validated for purposes of identity and trust. CLV providers receive certificates, certificate
chains, or certificate references, complete the certificate path (if necessary), and validate
all the certificates in the path. There are two types of CLV providers:

– A CertPath Builder looks up and optionally completes the certificate path and validates
the certificates.

– A CertPath Validator looks up and optionally completes the certificate path, validates
the certificates, and performs extra validation (for example, revocation checking).

• Certificate Registry—A certificate registry is a mechanism for adding certificate
revocation checking to a security realm. The registry stores a list of valid certificates. Only
registered certificates are valid. A certificate is revoked by removing it from the certificate
registry. The registry is stored in the embedded LDAP server. The Certificate Registry is
both a CertPath Builder and a CertPath Validator.

• Auditing—Auditing is the process whereby information about security requests and the
outcome of those security requests is collected, stored, and distributed for the purpose of
non-repudiation. In other words, auditing provides an electronic trail of computer activity.
An Auditing provider supplies these services.

For information about the functionality provided by the WebLogic security providers, see About
Configuring WebLogic Security Providers and About Configuring the Authentication Providers
in WebLogic Server.

For information about the default security configuration, see The Default Security Configuration
in WebLogic Server.

For information about writing custom security providers, see Developing Security Providers for
Oracle WebLogic Server.

Security Policies and WebLogic Resources
WebLogic Server uses security policies to protect WebLogic resources. Security policies
answer the question "who has access" to a WebLogic resource. A security policy is created
when you define an association between a WebLogic resource and a user, group, or security
role. You can also optionally associate a time constraint with a security policy. A WebLogic
resource has no protection until you assign it a security policy.
Creating security policies is a multi-step process with many options. To fully understand this
process, read Securing Resources Using Roles and Policies for Oracle WebLogic Server. That
document should be used in conjunction with Securing WebLogic Security to ensure security is
completely configured for a WebLogic Server deployment.

This section includes the following topics:

• WebLogic Resources

• Deployment Descriptors and WebLogic Remote Console

Chapter 1
Security Policies and WebLogic Resources

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 8

WebLogic Resources
A WebLogic resource is a structured object used to represent an underlying WebLogic Server
entity, which can be protected from unauthorized access. WebLogic Server defines the
following resources:

• Administrative resources such as the WebLogic Remote Console and WebLogic Scripting
Tool.

• Application resources that represent Enterprise applications. This type of resource includes
individual EAR (Enterprise Application aRchive) files and individual components, such as
EJB JAR files contained within the EAR.

• Component Object Model (COM) resources that are designed as program component
objects according to Microsoft's framework. This type of resource includes COM
components accessed through the Oracle bidirectional COM-Java (jCOM) bridging tool.

• Enterprise Information System (EIS) resources that are designed as resource adapters,
which allow the integration of Java applications with existing enterprise information
systems. These resource adapters are also known as connectors.

• Jakarta Enterprise Bean (EJB) resources including EJB JAR files, individual EJBs within
an EJB JAR, and individual methods on an EJB.

• Java DataBase Connectivity (JDBC) resources including groups of connection pools,
individual connection pools, and multipools.

• Java Naming and Directory Interface (JNDI) resources.

• Java Messaging Service (JMS) resources.

• Server resources related to WebLogic Server instances, or servers. This type of resource
includes operations that start, shut down, lock, or unlock servers.

• URL resources related to Web applications. This type of resource can be a Web
Application aRchive (WAR) file or individual components of a Web application (such as
servlets and JSPs).

Note

Web resources are deprecated. Use the URL resource instead.

• Web services resources related to services that can be shared by and used as
components of distributed, Web-based applications. This type of resource can be an entire
Web service or individual components of a Web service (such as a stateless session EJB,
particular methods in that EJB, the Web application that contains the web-services.xml
file, and so on).

• Remote resources.

Deployment Descriptors and WebLogic Remote Console
The WebLogic Security Service can use information defined in deployment descriptors to grant
security roles and define security policies for Web applications and EJBs.
WebLogic Server offers a choice of models for configuring security roles and policies. Under
the standard Java Enterprise Edition model, you define role mappings and policies in the Web
application or EJB deployment descriptors. The WebLogic Security Service can use
information defined in deployment descriptors to grant security roles and define security

Chapter 1
Security Policies and WebLogic Resources

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 8

policies for Web applications and EJBs. When WebLogic Server is booted for the first time,
security role and security policy information stored in web.xml, weblogic.xml, ejb-jar.xml, or
weblogic-ejb-jar.xml deployment descriptors is loaded into the Authorization and Role
Mapping providers configured in the default security realm. You can then view the role and
policy information from WebLogic Remote Console. (Optionally, you may configure the security
realm to use a different security model that allows you to make changes to that information
using WebLogic Remote Console as well.)

To use information in deployment descriptors, at least one Authorization and Role Mapping
provider in the security realm must implement the DeployableAuthorizationProvider and
DeployableRoleProvider Security Service Provider Interface (SSPI). This SSPI allows the
providers to store (rather than retrieve) information from deployment descriptors. By default,
the WebLogic Authorization and Role Mapping providers implement this SSPI.

If you change security role and security policy in deployment descriptors through WebLogic
Remote Console and want to continue to modify this information through WebLogic Remote
Console, you can set configuration options on the security realm to ensure changes made
through the Console are not overwritten by old information in the deployment descriptors when
WebLogic Server is rebooted.

See Options for Securing Web Application and EJB Resources in Securing Resources Using
Roles and Policies for Oracle WebLogic Server.

The Default Security Configuration in WebLogic Server
To simplify the configuration and management of security, WebLogic Server provides a default
security configuration. In the default security configuration, myrealm is set as the default
security realm, and the WebLogic Adjudication, Authentication, Identity Assertion, XACML
Authorization, Credential Mapping, XACML Role Mapping, and CertPath providers are defined
as the security providers in that realm. WebLogic Server's embedded LDAP server is used as
the data store for these default security providers. To use the default security configuration, you
need to define users, groups, and security roles for the security realm, and create security
policies to protect the WebLogic resources in the domain.

Note

WebLogic Server includes the WebLogic Authorization provider, which is referred to in
the WebLogic Remote Console and elsewhere as the DefaultAuthorizer, and the
WebLogic Role Mapping provider, which is referred to in the WebLogic Remote
Console and elsewhere as the DefaultRoleMapper. Beginning with WebLogic Server
9.1, these providers are no longer the default providers in newly-created security
realms. Instead, the XACML Authorization provider and the XACML Role Mapping
provider are the default providers.

The DefaultAuthorizer and the DefaultRoleMapper providers are deprecated in
WebLogic Server 14.1.1.0.0, and will be removed in a future release.

For a description of the functionality provided by the WebLogic Security providers, see
Understanding Security for Oracle WebLogic Server. If the WebLogic security providers do not
fully meet your security requirements, you can supplement or replace them. See Developing
Security Providers for Oracle WebLogic Server.

If the default security configuration does not meet your requirements, you can create a new
security realm with any combination of WebLogic and custom security providers and then set

Chapter 1
The Default Security Configuration in WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 8

the new security realm as the default security realm. See Customizing the Default Security
Configuration.

Configuring WebLogic Security: Main Steps
Because WebLogic Server's security features are closely related, it is difficult to determine
where to start when configuring security. In fact, configuring security for your WebLogic Server
deployment may be an iterative process. Although more than one sequence of steps may
work, Oracle recommends the following procedure:

1. If you plan to use WebLogic Server in a production environment, make sure you do the
following:

a. Secure the host environment prior to installing WebLogic Server, as explained in
Performing a Secure Installation of WebLogic Server.

b. When creating the WebLogic domain, configure the domain to run in production mode
or secured production mode, as explained in Creating a WebLogic Domain for
Production Use.

c. Immediately after starting the domain for the first time, complete the tasks described in
Securing the Domain After You Have Created It.

2. Determine whether or not to use the default security configuration by reading Why
Customize the Default Security Configuration?

• If you are using the default security configuration, begin at step 4.

• If you are not using the default security configuration, begin at step 3.

3. Configure additional security providers (for example, configure an LDAP Authentication
provider instead of using the WebLogic Authentication provider) or configure custom
security providers in the default security realm. This step is optional. By default, WebLogic
Server configures the WebLogic security providers in the default security realm (myrealm).
For information about the circumstances that require you to customize the default security
configuration, see Why Customize the Default Security Configuration? For information
about creating custom security providers, see Overview of the Development Process in
Developing Security Providers for Oracle WebLogic Server.

Note

You can also create a new security realm, configure security providers (either
WebLogic or custom) in the security realm and set the new security realm as the
default security realm. See Customizing the Default Security Configuration.

4. Optionally, configure the embedded LDAP server. WebLogic Server's embedded LDAP
server is configured with default options. However, you may want to change those options
to optimize the use of the embedded LDAP server in your environment. See Managing the
Embedded LDAP Server.

5. Ensure that user accounts are properly secured. WebLogic Server provides a set of
configuration options for protecting user accounts. By default, they are set for maximum
security. However, during the development and deployment of WebLogic Server, you may
need to weaken the restrictions on user accounts. Before moving to production, check that
the options on user accounts are set for maximum protection. If you are creating a new
security realm, you need to set the user lockout options. See How Passwords Are
Protected in WebLogic Server and Protecting User Accounts.

Chapter 1
Configuring WebLogic Security: Main Steps

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 8

6. Protect WebLogic resources with security policies. Creating security policies is a multi-step
process with many options. To fully understand this process and to ensure security is
completely configured for a WebLogic Server deployment, read Securing Resources Using
Roles and Policies for Oracle WebLogic Server.

7. Configure identity and trust for WebLogic Server. (This step is optional but strongly
recommended, especially for production environments.) See Configuring Keystores.

8. Enable SSL/TLS for WebLogic Server. (This step is also optional, but strongly
recommended for all production environments.) See Setting Up SSL: Main Steps.

9. When you have moved to production, review and implement the additional security options
described in Securing a Production Environment for Oracle WebLogic Server.

In addition, you can:

• Configure a connection filter. See Using Connection Filters.

• Enable interoperability between WebLogic domains. See Configuring Cross-Domain
Security.

Methods of Configuring Security
You can configure security for WebLogic Server using many tools. Typically, this document
describes procedures for configuring securing using WebLogic Remote Console, but they can
generally be accomplished using other configuration tools as well.

Common configuration tools include WebLogic Scripting Tool (WLST), REST APIs, and the
Java Management Extensions (JMX).

For information about
using . . .

See the following topics . . .

WLST Managing Security Data (WLST Online) in Understanding the WebLogic
Scripting Tool

REST Using the WLS RESTful Management Interface in Administering Oracle
WebLogic Server with RESTful Management Services

JMX APIs Choosing an MBean Server to Manage Security Realms in Developing
Custom Management Utilities Using JMX for Oracle WebLogic Server

WebLogic Remote
Console

Securing Domains in Oracle WebLogic Remote Console Online Help

When you manage security realms, you must use two different MBean servers depending on
your task:

• To set the value of a security MBean attribute, you must use the Edit MBean Server.

• To add users, groups, roles, and policies, or to invoke other operations in a security
provider MBean, you must use a Runtime MBean Server or the Domain Runtime MBean
Server.

For example, the value of the MinimumPasswordLength attribute in
DefaultAuthenticatorMBean is stored in the domain's configuration document. Because all
modifications to this document are controlled by WebLogic Server, to change the value of this
attribute you must use the Edit MBean Server and acquire a lock on the domain's
configuration. The createUser operation in DefaultAuthenticatorMBean adds data to an
LDAP server, which is not controlled by WebLogic Server. To prevent incompatible changes
between the DefaultAuthenticatorMBean's configuration and the data that it uses in the LDAP
server, you cannot invoke the createUser operation if you or other users are in the process of

Chapter 1
Methods of Configuring Security

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 8

modifying the MinimumPasswordLength attribute. In addition, because changing this attribute
requires you to restart WebLogic Server, you cannot invoke the createUser operation until you
have restarted the server.

How Passwords Are Protected in WebLogic Server
For WebLogic domain user accounts that are stored in the embedded LDAP, passwords are
encrypted using a one-way hash that cannot be decrypted. Passwords for user accounts that
are stored in an external LDAP system or RDBMS are stored in, and managed by, that LDAP
or RDBMS. For external stores, the algorithm may vary, but most LDAP servers use one-way
hashes; RDBMS systems use either hashes or encryption depending how they are configured.
It is important to protect passwords that are used to access resources in a WebLogic domain.
In the past, user names and passwords were stored in clear text in a WebLogic security realm.

Note

The web services password digest feature in the WebLogic Authentication provider
does not use hashed passwords. Instead, reversible encryption is used so that
password digests can be computed at runtime. (Password digest authentication is not
supported for servlets and web application.) For information about the Enable
Password Digests attribute, see DefaultAuthenticatorMBean.PasswordDigestEnabled
in MBean Reference for Oracle WebLogic Server.

The SerializedSystemIni.dat file contains the primary encryption key for the domain. It is
associated with a specific WebLogic domain so it cannot be moved from domain to domain.

Sensitive configuration data, including such items as JDBC passwords, is encrypted with the
primary encryption key. This encrypted data is kept in config.xml, or in the security metadata/
policy store in the embedded LDAP. (RDBMS is used if configured.)

If the SerializedSystemIni.dat file is destroyed or corrupted, it cannot be recovered. You will
need to delete the existing WebLogic domain and create a new one. Therefore, you should
take the following precautions:

• Make a backup copy of the SerializedSystemIni.dat file and put it in a safe location.

• Set permissions on the SerializedSystemIni.dat file such that the system administrator
of a WebLogic Server deployment has write and read privileges and no other users have
any privileges.

Chapter 1
How Passwords Are Protected in WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 8

2
WebLogic Server Security Standards

The Oracle WebLogic Server WebLogic Security Service is built upon and supports standard
Java security technologies such as the Java Authentication and Authorization Service (JAAS),
Java Secure Sockets Extensions (JSSE), Java Cryptography Extensions (JCE), Jakarta
Authentication, Jakarta Authorization, Jakarta Security, and more.

This chapter includes the following topics:

• Supported Security Standards

• Supported FIPS Standards and Cipher Suites

Supported Security Standards
WebLogic Server supports several Java security standards such as JAAS, JCE, Jakarta
Authentication, Jakarta Authorization, Jakarta Security, and more.

The complete set of supported security standards are provided in Table 2-1.

Table 2-1 WebLogic Server Security Standards Support

Standard Version Additional Considerations

JAAS JAAS version depends on the
Java SE version.

See:

• Java SE 17 - Java
Authentication and
Authorization Service
(JAAS) in the Java
Security Developer’s
Guide

• Java SE 21 - Java
Authentication and
Authorization Service
(JAAS) in the Java
Security Developer’s
Guide

See Configuring a Domain to Use JAAS
Authorization.

Jakarta
Authentication

2.0 See Configuring Jakarta Authentication Security.

Jakarta
Authorization

2.0 See Using Jakarta Authorization.

Jakarta EE
application
packaged
permissions

Jakarta EE 9.1 Platform
Specification

JCE Jipher JCE 10.32

SunJCE

See Using JCE Providers with WebLogic Server.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 3

https://docs.oracle.com/en/java/javase/17/security/java-authentication-and-authorization-service-jaas1.html
https://docs.oracle.com/en/java/javase/17/security/java-authentication-and-authorization-service-jaas1.html
https://docs.oracle.com/en/java/javase/17/security/java-authentication-and-authorization-service-jaas1.html
https://docs.oracle.com/en/java/javase/17/security/java-authentication-and-authorization-service-jaas1.html
https://docs.oracle.com/en/java/javase/21/security/java-authentication-and-authorization-service-jaas1.html
https://docs.oracle.com/en/java/javase/21/security/java-authentication-and-authorization-service-jaas1.html
https://docs.oracle.com/en/java/javase/21/security/java-authentication-and-authorization-service-jaas1.html
https://docs.oracle.com/en/java/javase/21/security/java-authentication-and-authorization-service-jaas1.html

Table 2-1 (Cont.) WebLogic Server Security Standards Support

Standard Version Additional Considerations

JSSE Default SSL implementation
based on Java Secure Socket
Extension (JSSE).

See Using the JSSE-Based SSL Implementation

Note: Although JSSE supports Server Name
Indication (SNI) in its SSL implementation,
WebLogic Server does not support SNI.

Kerberos Version 5 See Configuring Single Sign-On with Microsoft
Clients.

LDAP v3 See:

• Configuring LDAP Authentication Providers
• Managing the Embedded LDAP Server

SAML 2.0 See:

• Configuring SAML 2.0 Services

Jakarta Security 2.0 See Using Jakarta Security in WebLogic Server.

SLO Via SAML Supported by the Service Provider only.
See Configure SAML Single Logout

SPNEGO Specified by https://
datatracker.ietf.org/do
c/html/rfc4178.

See Configuring Single Sign-On with Microsoft
Clients.

SSO Via Microsoft Clients

Via SAML

See:

• Configuring Single Sign-On with Microsoft
Clients

• Configuring Single Sign-On with Web
Browsers and HTTP Clients Using SAML.

TLS v1.2, v1.3 • TLS v1.2 is the default minimum protocol
version configured in WebLogic Server. Oracle
recommends the use of TLS v1.2 or later in a
production environment. WebLogic Server logs
a warning if the TLS version is set below 1.2.

• Oracle strongly recommends that you do not
use TLS v1.0 and v1.1. In addition, these
versions may be disabled by default in certain
JDK updates by the underlying JSSE provider.

See Specifying the SSL/TLS Protocol Version for
version-specific information.

Uncovered HTTP
methods

Servlet 3.1

X.509 v3 • WebLogic Server supports 4096-bit keys.
(4096-bit keys may require substantially more
compute time for some operations.)

• Certificates generated with CertGen have a
default 2048-bit key size. You specify the key
size with the -strength option.

• The WebLogic Server demo CA has a 2048-bit
key length.

• As of JDK 8, the use of X.509 certificates with
RSA keys less than 1024 bits in length are
blocked.

Chapter 2
Supported Security Standards

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 3

https://datatracker.ietf.org/doc/html/rfc4178
https://datatracker.ietf.org/doc/html/rfc4178
https://datatracker.ietf.org/doc/html/rfc4178

Table 2-1 (Cont.) WebLogic Server Security Standards Support

Standard Version Additional Considerations

xTensible Access
Control Markup
Language
(XACML)

2.0 See Configuring Authorization and Role Mapping
Providers.

Partial
implementation of
Core and
Hierarchical Role
Based Access
Control (RBAC)
Profile of XACML

2.0 Specified by http://docs.oasis-open.org/
xacml/2.0/access_control-xacml-2.0-
rbac-profile1-spec-os.pdf.

Supported FIPS Standards and Cipher Suites
WebLogic Server supports Federal Information Processing Standard (FIPS) publication 140-2
and cipher suites for JSSE JDK.

Table 2-2 lists the supported FIPS versions and cipher suites.

Table 2-2 Cipher Suites and FIPS 140-2 Supported Versions

Standard Version Additional Considerations

FIPS 140-2 Jipher JCE 10.35 See Enabling FIPS Mode.

Cipher Suites for
JSSE JDK 17

The preferred negotiated
cipher combination is AES +
SHA2.

To see the set of cipher suites supported by the
JDK SunJSSE, see the SunJSSE Provider section
in Java SE Security Developer's Guide.

Chapter 2
Supported FIPS Standards and Cipher Suites

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 3

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
https://docs.oracle.com/en/java/javase/17/security/index.html

3
Configuring Security for a WebLogic Domain

Configuring security for an Oracle WebLogic Server environment starts with a creating a
secure installation of WebLogic Server. It also includes choosing the security configuration
options that are appropriate for the environment in which the domain runs, such as obtaining
and storing certificates, protecting user accounts, and securing the network on which the
domain runs.

This chapter includes the following sections:

• Performing a Secure Installation of WebLogic Server

• Creating a WebLogic Domain for Production Use

• Securing the Domain After You Have Created It

• Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authority Certificates

• Storing Private Keys, Digital Certificates, and Trusted Certificate Authority Certificates

• Protecting User Accounts

• Using Connection Filters

• Using JEP 290 in Oracle WebLogic Server

• JTA TransactionLoggable Allowlist

For a complete checklist of all components in the WebLogic Server that should be secured in a
production environment, including specific tasks recommended for configuring a secure
domain, securing the network, files and databases used by WebLogic Server, see Lock Down
WebLogic Server in Securing a Production Environment for Oracle WebLogic Server.

Performing a Secure Installation of WebLogic Server
Performing a secure installation includes steps to secure the host machine on which WebLogic
Server is installed, to limit access to that host to only authorized users, and to install Critical
Patch Updates immediately after installation is complete.

If you are installing WebLogic Server in a production environment, Oracle strongly
recommends the guidelines described in the following sections:

• Before Installing WebLogic Server

• While Running the Installation Program

• Immediately After Installation is Complete

Before Installing WebLogic Server
Before you start the WebLogic Server installation program, complete the following tasks:

• Create a My Oracle Support account so that you can register your WebLogic Server
installation with Oracle and receive security updates automatically. Visit http://
www.oracle.com/support/index.html.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 22

http://www.oracle.com/support/index.html
http://www.oracle.com/support/index.html

• Secure the host machine, operating system, and file system to ensure that access is
restricted only to authorized users. For example:

– Keep your hardware in a secured area to prevent unauthorized operating system users
from gaining access to the machine and its network connections.

– Make sure the host machine has the latest operating system patches and security
updates.

Note

As new patches become available, you should download and install them
promptly.

• Secure networking services and the file system that the operating system provides to
prevent unauthorized access. For example, make sure that any file system sharing is
secured.

• Set operating system file access permissions to restrict access to data stored on disk that
will be used or managed by WebLogic Server, such as the security LDAP database and
directories into which keystores are created and managed.

• Limit the number of user accounts on the host machine. Create a group to contain only the
following user accounts:

1. The user who installs WebLogic Server only.

2. The user who creates the WebLogic domain and uses Node Manager to start the
Administration Server and each Managed Server instance in the domain.

Restrict the privileges of these user accounts to only the following directories:

– Oracle home — Root directory created for all Oracle Fusion Middleware products on a
host computer

– WebLogic home — Root directory of the WebLogic Server installation

– Domain home — Root directory of the WebLogic domain

Note

Some processes also need access to temporary directories by default, such
as /tmp on Unix platforms. If the privileges of a user account are restricted to only
the Oracle home, WebLogic home, and WebLogic domain directories, the user
must change environment variables, such as TEMP or TMP, to point to a directory to
which that user does have access.

• Ensure that any Web servers on the host machine run only as an unprivileged user, never
as root.

• Ensure no software development tools or sample software is installed.

• Consider using additional software to secure your operating system, such as a reputable
intrusion detection system (IDS).

See Secure the Host Environment in Securing a Production Environment for Oracle WebLogic
Server.

Chapter 3
Performing a Secure Installation of WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 22

While Running the Installation Program
During installation, make sure that you do not install the sample applications component.

Immediately After Installation is Complete
• Remove the Derby DBMS database, which is bundled with WebLogic Server for use by the

sample applications and code examples as a demonstration database. Derby DBMS is
located in the WL_HOME/common/derby directory.

• Visit the Critical Patch Updates, Security Alerts and Bulletins page at the following location
to review WebLogic Server security advisories:

https://www.oracle.com/security-alerts/

See the following topics in Securing a Production Environment for Oracle WebLogic Server:

• Read Security Publications

• Apply the Latest Patches and Updates

Creating a WebLogic Domain for Production Use
To create a WebLogic domain for production use, consider the environment in which the
domain will run, such as whether it will interoperate with other WebLogic domains, and how
best to secure the accounts of users who have access to the domain.

When you plan to use a WebLogic domain in a production environment, you should configure it
in either production mode or secured production mode. The domain mode determines the
default settings regarding security and logging.

In production mode, the security configuration is relatively stringent, such as requiring a user
name and password to deploy applications and start the Administration Server. If you are using
the unpack command to create a full WebLogic domain, or a subset of a domain that is used
for a Managed Server domain directory on a remote machine, use the -
server_start_mode=prod parameter to configure production mode.

In secured production mode, the default security configuration imposes more secure default
values such as more restrictive authorization and role mapping policies, and logging warnings
for insecure configuration settings in your domain. Note that in order to enable secured
production mode, your domain must be in production mode.

Note

By default, enabling production mode automatically enables secured production mode.
If you want to enable production mode without the stricter settings of secured
production mode, you must explicitly disable secured production mode.

Use one of the following tools to set domain mode:

• WebLogic Remote Console - see Change the Domain Mode in the Oracle WebLogic
Remote Console Online Help

• WLST Offline - see the setOption WLST offline command in WLST Command Reference
for Oracle WebLogic Server

Chapter 3
Creating a WebLogic Domain for Production Use

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 22

https://www.oracle.com/security-alerts/

• WLST Online - see Using WLST Online to Update an Existing WebLogic Domain in
Understanding the WebLogic Scripting Tool

• Configuration Wizard - see Creating a WebLogic Domain in Creating WebLogic Domains
Using the Configuration Wizard

• Pack/Unpack - see the server_start_mode parameter in The Pack Command in Creating
Templates and Domains Using the Pack and Unpack Commands

If the domain will interoperate with other WebLogic domains, or has the potential for that use at
some future point, choose resource names carefully. Many resource names are fixed at the
time a domain is created, and stringent requirements must be observed for resource names
when using cross-domain security, transactions, and messaging.

See Requirements for Transaction Communication in Developing JTA Applications for Oracle
WebLogic Server.

When creating domains using WLST, do not enter unencrypted passwords in commands for
configuring entities that require them, such as passwords for:

• Domain administrator

• Node Manager user

• Database user

• JKS and PKCS12 keystores (both when creating the keystores and again when configuring
them with WebLogic Server)

• Wallet

Specifying unencrypted passwords in WLST commands is a security risk: they can be easily
viewed from the monitor screen by others, and they are displayed in process listings that log
the execution of those commands. Instead, omit the password from the command. When the
command is executed, WLST automatically prompts you for any passwords needed to
complete the domain configuration.

Securing the Domain After You Have Created It
After you have created your WebLogic domain, several key steps remain to ensure its integrity
such as selecting an appropriate domain mode, limiting access to internal applications, and
configuring a Password Validation provider. To secure a domain after you have created it,
Oracle recommends the following steps:

1. Secure your production environment by selecting either production or secured production
mode as the domain mode. When secured production mode is selected, attributes are set
to their most secure value by default. However, regardless of domain mode, you can
override an attribute's default value. It may be more appropriate for your environment to
select production mode, and then specify secure values on applicable attributes only. To
determine the domain mode that is most appropriate for your environment, see Understand
How Domain Mode Affects the Default Security Configuration. WebLogic Server validates
all security settings and logs warnings in case of insecure settings, thereby, providing a
highly secure production environment. See Change the Domain Mode in Oracle WebLogic
Remote Console Online Help to learn how to change your domain mode.

2. Limit access to internal applications by disabling unused internal applications using either
the configuration settings or the system property. Enable the Administration port for your
domain, and configure a firewall to prevent external access to internal applications on the
Administration port. In secured production mode, the Administration port is enabled by
default. For information about how to disable internal applications and block access to

Chapter 3
Securing the Domain After You Have Created It

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 22

them, see Disable Unused Internal Applications and Configure Firewall to Prevent Access
to Internal Applications in Securing a Production Environment for Oracle WebLogic Server.

3. Configure the Password Validation provider to manage and enforce password composition
rules. The Password Validation provider is configured out-of-the-box to work with several
WebLogic authentication providers.

See Configuring the Password Validation Provider.

4. As you create or add users to the security realm, check that the User Lockout options on
user accounts are set for maximum protection. Note that the configuration of User Lockout
is defined on a per realm basis. Therefore, if the default User Lockout settings are not
suitable for your needs, you might need to customize these settings whenever you create a
new security realm. See Protecting User Accounts and How Passwords Are Protected in
WebLogic Server.

If your domain is running in secured production mode, then WebLogic Server logs a
warning if the user lockout is configured to a value less than the default value.

5. If you have configured Node Manager to start, shut down, and restart the Administration
Server and Managed Server instances distributed across multiple machines, make sure
that Node Manager security is properly configured.

If you are using Java Node Manager (recommended for production environments), see
Configuring Java-based Node Manager Security in Administering Node Manager for
Oracle WebLogic Server.

If you are using Script Node Manager, which may be suitable for environments that have
less stringent security requirements, see Step 2: Configure Node Manager Security in
Administering Node Manager for Oracle WebLogic Server.

6. Enable auditing, which provides an automated way of collecting and storing information
about events and other activity occurring in the system. Auditing is available through either
of the following means:

• Configuration auditing — When this is enabled, the Administration Server emits log
messages and generates audit events when a user changes the configuration of any
resource within a domain or invokes management operations on any resource within a
domain.

• WebLogic Auditing provider — Optional security provider that collects, stores, and
distributes information about operating requests and the outcome of those requests for
the purposes of non-repudiation. When configuration auditing is enabled, the
WebLogic Auditing provider also logs configuration auditing events.

Note that auditing may impose a performance overhead that should be taken into
consideration. However, by adjusting how auditing is configured, this additional overhead
can be minimized. When enabling auditing, make sure that sufficient disk space is
available for the audit log. See Configuring the WebLogic Auditing Provider.

Note

If secured production mode is enabled for your domain, then WebLogic Server
logs a warning if an Auditing provider is not configured. You can use the
WarnOnAuditing attribute in the SecureModeMBean to specify whether warnings
should be logged or not if auditing is not enabled.

7. Make sure that the JVM platform MBean server cannot be accessed remotely. See
Monitoring and Management Using JMX Technology in Java Monitoring and Management
Guide.

Chapter 3
Securing the Domain After You Have Created It

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 22

https://docs.oracle.com/en/java/javase/17/management/monitoring-and-management-using-jmx-technology.html#GUID-586BDF8F-A98E-4C16-AAA3-387E96309686

8. If you have a requirement to comply with Federal Information Processing Standards (FIPS)
140-2, complete the appropriate procedures described in Enabling FIPS Mode.

9. Make sure configuration settings for complete message time out are sized appropriately for
your system. See Configuring Network Resources in Administering Server Environments
for Oracle WebLogic Server.

10. Create and configure the keystores used for holding identity and trust; that is, the
keystores containing identity certificates and the keystore containing trusted Certificate
Authority (CA) certificates. See Configuring Keystores.

Configure certificate validation and revocation checking to ensure that:

• Each certificate in a certificate chain was issued by a certificate authority, as explained
in SSL Certificate Validation.

• The revocation status of each certificate WebLogic Server validates is current. See
X.509 Certificate Revocation Checking.

11. Configure a host name verifier. When making an SSL connection, the host name verifier
ensures that the host name in the URL to which the client connects matches the host
name in the digital certificate that the server sends back. See Using Host Name
Verification.

If your domain is running in secured production mode, then WebLogic Server logs a
warning if host name verification is disabled. To enable host name verification, see Enable
Host Name Verification in Oracle WebLogic Remote Console Online Help.

12. Configure TLS/SSL for the administration port, network channels, database connections,
LDAP server connections, and other resources handling communication that must be
secured. In particular, make sure that connections to remote server instances in the
domain are secured with TLS/SSL. The specific components for which either one- or two-
way TLS/SSL needs to be configured depends on the overall topology of the production
environment. See the following topics:

Table 3-1 TLS/SSL Configuration Topics

For information about . . . See the following topic . . .

An overview of using SSL to secure
communications in a basic WebLogic domain

Secure Sockets Layer (SSL) in Understanding
Security for Oracle WebLogic Server

Where to use one-way and two-way SSL in a
basic WebLogic domain

One-way/Two-way SSL Authentication in
Understanding Security for Oracle WebLogic
Server

Steps to configure SSL in a basic WebLogic
domain

Setting Up SSL/TLS: Main Steps

Configuring an administration port for secure
communication with the domain Administration
Server

Administration Port and Administrative Channel
in Administering Server Environments for Oracle
WebLogic Server

Securing database connections Understanding Data Source Security in
Administering JDBC Data Sources for Oracle
WebLogic Server

Best practices for configuring SSL in WebLogic
Server

"Section 2. Security Best Practices" in Document
ID 1074055.1, available from My Oracle Support
at https://support.oracle.com/

Chapter 3
Securing the Domain After You Have Created It

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 22

https://support.oracle.com/

Note

Note the following:

• By default, WebLogic Server is configured for one-way SSL authentication;
however, the SSL port is disabled. Oracle strongly recommends enabling the
SSL port in all server instances in a production domain.

• The demonstration digital certificates, private keys, and trusted CA certificates
provided in WebLogic Server should never be used in a production
environment.

• In secured production mode, WebLogic Server logs warnings if the SSL
configuration is not secure. You can use the WarnOnInsecureSSL attribute
contained in the SecureModeMBean to specify whether warnings should be
logged if the SSL configuration is not secure.

13. Restrict the size and the time limit of requests on external channels to prevent Denial of
Service attacks. See Reducing the Potential for Denial of Service Attacks in Tuning
Performance of Oracle WebLogic Server.

14. If you use multiple Authentication providers, be sure to set the JAAS control flag correctly.
See Using More Than One Authentication Provider.

15. Ensure that you have correctly assigned users and groups to the default WebLogic Server
security roles. See Users, Groups, And Security Roles in Securing Resources Using Roles
and Policies for Oracle WebLogic Server.

16. Review the Security Warnings Report for any outstanding security validation issues in your
domain. See Review Potential Security Issues in Securing a Production Environment for
Oracle WebLogic Server.

Obtaining Private Keys, Digital Certificates, and Trusted
Certificate Authority Certificates

You have multiple choices for obtaining private keys, digital certificates, and trusted CA
certificates for your WebLogic Server environment. Oracle strongly recommends obtaining
private keys and digital certificates from a reputed certificate authority. When choosing these
items, note the following considerations:

• For production environments, Oracle strongly recommends obtaining private keys and
digital certificates only from a reputable certificate authority such as Entrust or Symantec
Corporation. See Obtaining and Storing Certificates for Production Environments.

• For development environments only, you can use the digital certificates, private keys, and
trusted CA certificates provided by WebLogic Server. You can also use keytool or the
CertGen utility to generate self-signed certificates. See Using Keystores and Certificates in
a Development Environment.

Storing Private Keys, Digital Certificates, and Trusted Certificate
Authority Certificates

Once you have obtained private keys, digital certificates, and trusted CA certificates, you need
to store them so that WebLogic Server can use them to find and verify identity. Private keys,

Chapter 3
Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authority Certificates

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 22

their associated digital certificates, and trusted CA certificates are stored in keystores. Then
you need to configure those keystores with WebLogic Server.

For information about . . . See the following topic . . .

Creating a keystore Creating a Keystore

Configuring a keystore to be used with WebLogic
Server

Configuring Keystores with WebLogic Server

A step-by-step example of using the keytool utility
to create a keystore and store keys and certificates
in it

Creating a Keystore: An Example

Displaying the certificates contained in a keystore Viewing Keystore Contents

Updating certificates that are due to expire Replacing Expiring Certificates

Setting reminders about certificate expiration Setting Certificate Expiry Notifications

Protecting User Accounts
WebLogic Server provides a set of configuration options to protect user accounts from
intruders. In the default security configuration, these options are set for maximum protection.
You can use WebLogic Remote Console to modify these options for each security realm.
As a system administrator, you have the option of turning off all the configuration options,
increasing the number of login attempts before a user account is locked, increasing the time
period in which invalid login attempts are made before locking the user account, and changing
the amount of time a user account is locked.

For information about the User Lockout Manager MBean, see UserLockoutManagerMBean in
MBean Reference for Oracle WebLogic Server.

Remember that changing the configuration options lessens security and leaves user accounts
vulnerable to security attacks. See Set User Lockout Attributes in Oracle WebLogic Remote
Console Online Help.

Note

The User Lockout options apply to the default security realm and all its security
providers. User Lockout works in all security realms, is layered on top of all configured
providers, including custom ones, and is enabled by default.

If you are using an Authentication provider that has its own mechanism for protecting
user accounts, consider if disabling User Lockout on the security realm is appropriate
because other Authentication providers might be configured in the security realm.

If a user account becomes locked and you delete the user account and add another
user account with the same name and password, the User Lockout configuration
options will not be reset.

For information about unlocking a locked user account, see Unlock a User in Oracle WebLogic
Remote Console Online Help. Unlocking a locked user account can be done through either
WebLogic Remote Console or the clearLockout attribute on the
UserLockoutManagerRuntimeMBean. See UserLockoutManagerRuntimeMBean in MBean
Reference for Oracle WebLogic Server.

Chapter 3
Protecting User Accounts

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 22

Using Connection Filters
Connection filters allow you to deny access at the network level. They can be used to protect
server resources on individual servers, server clusters, or an entire internal network or intranet.
For example, you can deny any non-SSL connections originating outside of your corporate
network. Network connection filters are a type of firewall in that they can be configured to filter
on protocols, IP addresses, and DNS node names.
Connection filters are particularly useful when using the Administration port. Depending on
your network firewall configuration, you may be able to use a connection filter to further restrict
administration access. A typical use might be to restrict access to the Administration port to
only the servers and machines in the WebLogic domain. An attacker who gets access to a
machine inside the firewall, still cannot perform administration operations unless the attacker is
on one of the permitted machines.

WebLogic Server provides a default connection filter called
weblogic.security.net.ConnectionFilterImpl. This connection filter accepts all incoming
connections and also provides static factory methods that allow the server to obtain the current
connection filter. To configure this connection filter to deny access, simply enter the connection
filters rules in WebLogic Remote Console.

You can also use a custom connection filter by implementing the classes in the
weblogic.security.net package. For information about writing a connection filter, see Using
Network Connection Filters in Developing Applications with the WebLogic Security Service.
Like the default connection filter, custom connection filters are configured in WebLogic Remote
Console.

To configure a connection filter:

1. Enable the logging of accepted messages. This Connection Logger Enabled option logs
successful connections and connection data in the server. This information can be used to
debug problems relating to server connections.

2. Choose which connection filter is to be used in the domain.

• To configure the default connection filter, specify
weblogic.security.net.ConnectionFilterImpl in Connection Filter.

• To configure a custom connection filter, specify the class that implements the network
connection filter in Connection Filter. This class must also be specified in the
CLASSPATH for WebLogic Server.

3. Enter the syntax for the connection filter rules.

For more information, refer to the following topics:

• Configure Connection Filtering in Oracle WebLogic Remote Console Online Help

• Using Network Connection Filters and Developing Custom Connection Filters in
Developing Applications with the WebLogic Security Service.

You can also use the WebLogic Scripting Tool (WLST) or Java Management Extensions (JMX)
APIs to create a new security configuration.

Using JEP 290 in Oracle WebLogic Server
To improve security, WebLogic Server uses the JDK JEP 290 mechanism to filter incoming
serialized Java objects and limit the classes that can be deserialized. The filter helps to protect
against attacks from specially crafted, malicious serialized objects that can cause denial of
service (DOS) or remote code execution (RCE) attacks.

Chapter 3
Using Connection Filters

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 22

There are two models to prevent deserialization exploits: blocklist and allowlist. With the
blocklist model, WebLogic Server defines a set of well-known classes and packages that are
vulnerable and blocks them from being deserialized and all other classes can be deserialized.
In the allowlist model, WebLogic Server and the customer define a list of the acceptable
classes and packages that are allowed to be deserialized, and block all other classes. While
both approaches have benefits, the allowlist model is more secure because it only allows
deserialization of classes and packages known to be required by WebLogic Server and
customer applications.

You have the option of choosing whether to use blocklists or allowlists.

• WebLogic Server uses blocklists by default. At startup, WebLogic Server configures a
default JEP 290 blocklist filter that specifies the maximum depth of a graph and a set of
prohibited classes and packages that cannot be deserialized. You can then use WebLogic
Server JEP 290 properties to customize the blocklist to add additional classes or
packages. You can also use dynamic blocklists, which provide the ability to update your
blocklist filters by creating configuration files that can be updated or replaced while the
server is running. See Using Dynamic Blocklist Configuration Files.

Note

These default blocklist settings, including the set of prohibited classes specified in
the default filter, can change over time. WebLogic Server Patch Set Updates
(PSUs) may include updates to the set of prohibited classes and packages used in
the default filter. To ensure that your system is protected with the most current
default filter, be sure to apply the latest WebLogic Server PSUs and Java Critical
Patch Updates (CPUs) as soon as they are released. The Critical Patch Updates,
Security Alerts and Bulletins page references the latest Java and WebLogic
Server updates that are available on My Oracle Support.

• Alternatively, you can choose to use allowlists. First, you must create an allowlist that
contains the classes and packages that are deserialized in the applications in your domain.
To do so, you enable recording, which records all of the classes and packages used in
both WebLogic Server and customer application deserialization. When deserialization
occurs, each class is recorded in an allowlist configuration file. When you are satisfied with
the allowlist, you then configure WebLogic Server to use the allowlist configuration file for
the JEP 290 filtering. See Using an Allowlist for JEP 290 Filtering.

JEP 290 filter syntax supports both the blocklist and allowlist models. For JEP 290 filter syntax,
see the Process-wide Filter section in http://openjdk.java.net/jeps/290. The configuration
files that WebLogic Server uses to either block or allow classes adhere to the JEP 290 syntax.
For example, a pattern !foo.bar.Mumble blocks the class foo.bar.Mumble. Classes and
packages that are not preceded by the ! are allowed.

How WebLogic Server Uses JEP 290 Blocklists and Allowlists
WebLogic Server uses both JEP 290 blocklist and allowlist models to prevent deserialization
exploits.

If you are using the blocklist model, WebLogic Server uses JEP 290 as follows:

• Implements a WebLogic Server-specific JEP 290 filter to enforce a blocklist of prohibited
classes and packages for deserialization used by WebLogic Server, and allows all other
classes and packages. The filter also enforces a default value for the maximum depth of a
deserialized object tree.

Chapter 3
Using JEP 290 in Oracle WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 22

https://www.oracle.com/technetwork/topics/security/alerts-086861.html#CriticalPatchUpdates
https://www.oracle.com/technetwork/topics/security/alerts-086861.html#CriticalPatchUpdates
http://openjdk.java.net/jeps/290

• Implements a global JEP 290 filter to enforce a blocklist of prohibited classes and
packages for deserialization used by applications or third party libraries.

• Provides WebLogic Server JEP 290 properties that you can use to customize the default
filter such as adding or removing classes and packages from the default filter to block
particular classes.

If you are using the allowlist model, WebLogic Server uses JEP 290 as follows:

• Implements a WebLogic Server-specific JEP 290 filter to enforce an allowlist of allowed
classes and packages for deserialization used by WebLogic Server, and blocks all other
classes and packages.

• Implements a global JEP 290 filter to enforce an allowlist of allowed classes and packages
for deserialization used by applications or third party libraries, and blocks all other classes
and packages.

• Provides WebLogic Server JEP 290 properties that you can use to customize the allowlist,
such as adding or removing classes and packages from the recorded filter to allow or block
particular classes.

You can also use the JEP 290 properties to filter deserialized classes based on the nesting
depth of the deserialized object, the number of internal references in the deserialized object,
the size of arrays, and/or the maximum size in bytes of a deserialized object.

Customizing JEP 290 Filters Using Properties
WebLogic Server includes properties that you can use to customize, replace, or disable the
JEP 290 filters if desired. These properties can be specified on the command line as system
properties or contained as properties in the JEP 290 dynamic configuration and allowlist
configuration files.

For the latest information on the WebLogic Server JEP 290 default blocklist filter, see the My
Oracle Support document Restricting Incoming Serialized Java Objects to Oracle WebLogic
Server (Doc ID 2421487.1).

The following table describes the properties and includes sample usage.

Table 3-2 WebLogic Server JEP 290 Properties

Property Description

weblogic.oif.serialFilter Use this property to set a custom JEP 290 filter for WebLogic
Server, using the standard JEP 290 filter syntax. For JEP 290 filter
syntax, see the Process-wide Filter section in http://
openjdk.java.net/jeps/290.

By default, this custom filter is combined with the default WebLogic
Server filter, with the custom filter taking precedence over the
default filter for any filter elements that conflict. If you are using the
allowlist model, all blocked classes and packages are given the
highest priority in the allowlist filter.

For example, to set a custom filter by adding a class named
foo.bar.Mumble to the default blocklist, use:

-Dweblogic.oif.serialFilter=”!foo.bar.Mumble”

This setting blocks the class foo.bar.Mumble even if it is allowed
by the default filter.

Chapter 3
Using JEP 290 in Oracle WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 22

http://openjdk.java.net/jeps/290
http://openjdk.java.net/jeps/290

Table 3-2 (Cont.) WebLogic Server JEP 290 Properties

Property Description

weblogic.oif.serialFilterMo
de

Use this property to specify the filter mode for the custom filter,
which provides the ability to combine, replace, or disable the default
WebLogic Server filter. Valid values are:

• combine — combines the custom filter with the default
WebLogic Server filter. The custom filter settings take
precedence over the default filter settings for any filter elements
that conflict. This is the default. If you are using the allowlist
model, all blocked classes and packages are given the highest
priority in the allowlist filter.

• replace — replaces the default WebLogic Server filter with
the custom filter. Oracle recommends that you include all of the
blocklist and allowlist classes and packages from the default
WebLogic Server filter in your replacement filter. If you do not
include them, then your system will not be protected from
malicious deserialization attacks.

• disable — disables the default WebLogic Server filter. Oracle
strongly recommends that you do not disable the filter. If you do
so, then your system will not be protected from malicious
deserialization attacks.

For example, to replace the default WebLogic Server filter with the
custom filter, use:

-Dweblogic.oif.serialFilterMode=replace

weblogic.oif.serialFilterSc
ope

Use this property to specify whether the filter should apply globally
to the entire JVM (customer application and third-party library
deserialization) or to only internal WebLogic Server deserialization.
Valid values are global and weblogic. The default is global.

For example, to apply the WebLogic Server default or custom filter
to internal WebLogic Server deserialization only, instead of to the
entire JVM, use:

-Dweblogic.oif.serialFilterScope=weblogic

weblogic.oif.serialGlobalFi
lter

Use this property to set a custom JEP 290 global filter for WebLogic
Server, using the standard JEP 290 filter syntax. For JEP 290 filter
syntax, see the Process-wide Filter section in http://
openjdk.java.net/jeps/290.

By default, this custom global filter is combined with the default
WebLogic Server filter, with the custom global filter taking
precedence over the default filter for any filter elements that conflict.
This global filter applies to object input streams used for application
and third party library deserialization, and does not apply to
WebLogic Server deserialization

For example, to set a custom global filter by adding a class named
foo.bar.Mumble to the default blocklist, use:

-Dweblogic.oif.serialGlobalFilter=”!foo.bar.Mumble”

This setting blocks the class foo.bar.Mumble from deserialization
in customer applications and third party libraries, even if it is
allowed by the default filter.

Chapter 3
Using JEP 290 in Oracle WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 22

http://openjdk.java.net/jeps/290
http://openjdk.java.net/jeps/290

Table 3-2 (Cont.) WebLogic Server JEP 290 Properties

Property Description

weblogic.oif.head.serialFil
ter

Use this property to override a custom JEP 290 filter for WebLogic
Server, using the standard JEP 290 filter syntax. For JEP 290 filter
syntax, see the Process-wide Filter section in http://
openjdk.java.net/jeps/290.

By default, this head filter is combined with the custom and default
WebLogic Server filters, with the head filter taking precedence over
both the custom and default filter for any filter elements that conflict.

For example, to set a head filter by adding a class named
foo.bar.Mumble to the allowlist, use:

-Dweblogic.oif.head.serialFilter=”!foo.bar.Mumble”
This setting blocks the class foo.bar.Mumble from WebLogic
Server deserialization even if it is allowed by the custom and default
filters.

weblogic.oif.head.serialGlo
balFilter

Use this property to override a custom JEP 290 global filter for
WebLogic Server, using the standard JEP 290 filter syntax. For JEP
290 filter syntax, see the Process-wide Filter section in http://
openjdk.java.net/jeps/290.

By default, this custom global filter is combined with the custom and
default WebLogic Server filters, with the head global filter taking
precedence over both the custom and default filter for any filter
elements that conflict. This global filter applies to object input
streams used for application and third party library deserialization,
and does not apply to WebLogic Server deserialization

For example, to set a head global filter by adding a class named
foo.bar.Mumble to the allowlist, use:

-Dweblogic.oif.head.serialGlobalFilter=”!
foo.bar.Mumble”

This setting blocks the class foo.bar.Mumble from deserialization
in customer applications and third party libraries even if it is allowed
by the custom and default filters.

Chapter 3
Using JEP 290 in Oracle WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 22

http://openjdk.java.net/jeps/290
http://openjdk.java.net/jeps/290
http://openjdk.java.net/jeps/290
http://openjdk.java.net/jeps/290

Table 3-2 (Cont.) WebLogic Server JEP 290 Properties

Property Description

weblogic.oif.serialUnauthen
ticatedFilter

Use this property to set a custom JEP 290 filter for the
unauthenticated code path of WebLogic Server, using the standard
JEP 290 filter syntax. For JEP 290 filter syntax, see the Process-
wide Filter section in http://openjdk.java.net/jeps/290.

Note

This filter is used when you have
disabled remote anonymous RMI T3
and IIOP requests. Oracle does not
expect that users will need to
customize the unauthenticated code
path filter. The current set of allowed
classes during the unauthenticated
code path should be sufficient.

By default, this custom filter is combined with the default WebLogic
Server unauthenticated filter, with the custom filter taking
precedence over the default filter for any filter elements that conflict.

For example, to set a custom filter by adding a class named
foo.bar.Mumble to the default unauthenticated allowlist, use:

-
Dweblogic.oif.serialUnauthenticatedFilter="foo.bar.M
umble"
This setting allows the class foo.bar.Mumble to be used in the
unauthenticated code path.

Using Dynamic Blocklist Configuration Files
Dynamic blocklists provide the ability to update your blocklist filters by creating configuration
files that can be updated or replaced while the server is running.

By default, WebLogic Server will detect the presence of a dynamic blocklist configuration file
located in the DOMAIN_HOME/config/security directory, and block deserialization of classes
specified in the configuration file.

WebLogic Server can locate dynamic blocklist configuration files that you place in other
directories, for example the Oracle Home directory, and block deserialization using those files
as appropriate. For WebLogic Server to detect the presence of these files, you must specify
the locations of the files using a new system property, weblogic.oif.serialPropDirectories,
and include the property in the WebLogic Server start-up script.

WebLogic Server can also detect the presence of a dynamic blocklist configuration file in the
ORACLE_HOME/oracle_common/common/jep290 directory, and block deserialization of classes
and packages specified in the file.

When blocklist files are saved in these locations, WebLogic Server reads them at the specified
time interval and immediately begins enforcing the blocks that are specified. You can update or
replace the files without needing to stop the server.

To use dynamic blocklists:

Chapter 3
Using JEP 290 in Oracle WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 22

http://openjdk.java.net/jeps/290

1. Create a configuration file that contains the desired WebLogic, global and unauthenticated
filters and save it using the suffix serial.properties. Ensure that the filter strings do not
contain any white spaces. Also ensure that WebLogic Server has read permission to the
configuration file or server start up will fail. A sample serial.properties file is shown
here:

weblogic.oif.serialFilter=\
!MyCustomer1.Employee;\
!MyCustomer2.Employee2;\
!MyCustomer3.*;\
!MyCustomer4.**;\
!MyCustomer5.Employee5

weblogic.oif.serialGlobalFilter=\
!MyCustomer1.Employee;\
!MyCustomer2.Employee2;\
!MyCustomer3.**;\
!MyCustomer4.**;\
!MyCustomer5.Employee5

In this example:

• The weblogic.oif.serialFilter applies to WebLogic Server deserialization.

• The weblogic.oif.serialGlobalFilter applies to customer application and third
party library deserialization.

For both of these filters, the first one matched takes precedence over the others in the
filter. For a description of these filters, see Table 3-2.

2. To use the default location, save the file to the DOMAIN_HOME/config/security directory. In
this pathname, DOMAIN_HOME represents the WebLogic domain root directory. WebLogic
Server locates the file in this directory by default.

If you are not using the default location, save the file with the suffix serial.properties to
the desired directory and specify the directory location using the
weblogic.oif.serialPropDirectories system property in the startup script. You can
specify multiple files and locations. For example:

-Dweblogic.oif.serialPropDirectories=/u01/oracle/fmw/app1:/u01/oracle/fmw/app2

3. By default, these directories are polled every 60 seconds. To change the default polling
interval, set the weblogic.oif.serialPropPollingFileInterval system property in the
startup script. For example, to set the polling interval to 10 seconds, use:

-Dweblogic.oif.serialPropPollingFileInterval=10000

Using an Allowlist for JEP 290 Filtering
Allowlists are configuration files that define a list of the WebLogic Server and customer
application classes and packages that you wish to allow to be deserialized. Allowlists can be
created and configured to control which packages and classes are deserialized (or blocked) in
running systems.

To create and configure a customer allowlist:

1. In a staging or test environment, enable recording using either of the following methods:

• Use WebLogic Remote Console:

Chapter 3
Using JEP 290 in Oracle WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 22

a. In the Edit Tree, go to Environment, then Domain.

b. On the Security tab, select the Allow List subtab.

c. Turn on the Recording Enabled option.

d. Click Save and then commit your changes.

• Use WLST online to set the AllowListRecordingEnabled attribute on the
AllowListMBean:

edit()
startEdit()
cd("AllowList/mydomain")
cmo.setAllowListRecordingEnabled(true)
save()
activate()
disconnect()

When recording is enabled, all classes are allowed during deserialization except for the
classes specified in the blocklist.

2. Run a full set of tests to ensure that the recorded allowlist configuration file provides
appropriate coverage of all packages and classes that must be allowed in order for your
application to run successfully. When deserialization occurs, each class is recorded in the
following configuration file:

DOMAIN_HOME/config/security/jep290-recorded.serial.properties

In this pathname, DOMAIN_HOME represents the WebLogic domain root directory.

A sample jep290-recorded.serial.properties is shown here:

Wed May 19 23:55:13 UTC 2021
weblogic.oif.serialFilter=\
 com.company1.common.collections.objs.*;\
 com.company1.common.tools.Calculator;\
 com.company2.shared.tools.Converter
weblogic.oif.serialGlobalFilter=\
 com.company1.common.lists.AList;\
 com.company1.common.tools.Calculator;\
 com.company2.shared.tools.*

3. Turn off recording using either WebLogic Remote Console or WLST online:

• In WebLogic Remote Console, turn off the Recording Enabledoption. Click Save,
then commit your changes.

• Use WLST online to set the AllowListRecordingEnabled attribute to false.

4. Configure the WebLogic Server domain to use either allowlists or blocklists in one of the
following ways:

• In WebLogic Remote Console, in the Edit Tree, go to Environment, then Domain.
Click the Security tab, then the Allow List subtab. From the Violation Action drop-
down list, select the desired setting. Click Save and commit your changes.

• Use WLST online to set the AllowListViolationAction attribute on the
AllowListMBean.

The available settings are as follows:

Chapter 3
Using JEP 290 in Oracle WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 22

• IGNORE - Ignore the allowlist and use the blocklists. If any class found during
deserialization is present in the blocklist, the class is blocked from being deserialized.

• DENY - Block everything except the classes specified in the allowlist, and log a
message when a class is blocked.

• LOG - Log a message if a violation occurs but allow the class unless it is listed in the
blocklist.

Note

You can also set the AllowListViolationAction on a channel using the network
access point. Doing so allows you to use an allowlist on untrusted external
channels and a blocklist on internal trusted channels.

5. By default, the directory containing the allowlist configuration file is polled every 60
seconds. To change the default polling interval, do one of the following:

• In WebLogic Remote Console, in the Edit Tree, go to Environment, then Domain.
Click the Security tab, then the Allow List subtab. In the Serial Profile Polling
Interval field, enter the new desired interval. Click Save and then commit your
changes.

• Set the serialPropPollingFileInterval attribute on the AllowListMBean to the
desired interval.

• Set the weblogic.oif.serialPropPollingFileInterval system property in the
startup script. For example, to set the polling interval to 10 seconds, use:

-Dweblogic.oif.serialPropPollingFileInterval=10000

6. Configure your production domain to use allowlists by copying the recorded allowlist
configuration file that you created in Step 2 to the DOMAIN_HOME/config/security directory
of the production domain.

Note

Oracle recommends that you run your production domain with
AllowListViolationAction set to Log for some period of time to ensure that all
classes and packages were recorded.

7. Maintain the accuracy of the allowlist configuration file. Whenever a new application is
deployed to the domain, or a new version of the application is deployed, you should repeat
this process, beginning at Step 1, to recreate the allowlist or verify the allowlist with the
new application to ensure that all packages and classes required by the new or updated
application are included in the allowlist.

Customizing the Allowlist After Recording

Oracle recommends that you use the recording method to create an allowlist whenever
possible. If customization is required after creating the allowlist configuration file, then:

1. Turn off recording.

2. Make a backup copy of the jep290-recorded.serial.properties file.

Chapter 3
Using JEP 290 in Oracle WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 22

3. Edit the jep290-recorded.serial.properties in the DOMAIN_HOME/config/security/
directory to add or remove classes as required. See Customizing JEP 290 Filters Using
Properties.

This list provides examples for editing the following sample jep290-
recorded.serial.properties file:

Wed May 19 23:55:13 UTC 2021
weblogic.oif.serialFilter=\
 com.company1.common.collections.objs.*;\
 com.company1.common.tools.Calculator;\
 com.company2.shared.tools.Converter
weblogic.oif.serialGlobalFilter=\
 com.company1.common.lists.AList;\
 com.company1.common.tools.Calculator;\
 com.company2.shared.tools.*

• Removing a class from the recorded file

If the recorded allowlist file is allowing a class that you want to block, then edit the
recorded jep290-recorded.serial.properties file to remove the class. For example, to
remove the class com.company1.common.tools.Calculator; from both the WebLogic and
global filters in the sample recorded allowlist file, remove the row from both the
weblogic.oif.serialFilter=\ and weblogic.oif.serialGlobalFilter=\ stanzas.

The resulting sample file is as follows:

Wed May 19 23:55:13 UTC 2021
weblogic.oif.serialFilter=\
 com.company1.common.collections.objs.*;\
 com.company2.shared.tools.Converter
weblogic.oif.serialGlobalFilter=\
 com.company1.common.lists.AList;\
 com.company2.shared.tools.*

• Adding a class to the recorded allowlist file

If you want to add a class to the recorded allowlist file this is being blocked, then edit the
recorded jep290-recorded.serial.properties file to add the class to the desired filter.
For example, to add the class com.company1.MyApplication1 to both the WebLogic and
global filters in the sample recorded file, add the row to both the
weblogic.oif.serialFilter=\ and weblogic.oif.serialGlobalFilter=\ stanzas.

The resulting sample file is as follows (the bold text identifies the added content):

Wed May 19 23:55:13 UTC 2021
weblogic.oif.serialFilter=\
 com.company1.common.collections.objs.*;\
 com.company1.common.tools.Calculator;\
 com.company2.shared.tools.Converter;\
 com.company1.MyApplication1
weblogic.oif.serialGlobalFilter=\
 com.company1.common.lists.AList;\
 com.company1.common.tools.Calculator;\
 com.company2.shared.tools.*;\
 com.company1.MyApplication1

Chapter 3
Using JEP 290 in Oracle WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 18 of 22

• Allowing a class that WebLogic Server is blocking

As described in Understanding the Filter Order Preference, all blocked classes and
packages are given the highest priority in the allowlist filter unless they are specifically
allowed by the weblogic.oif.head.serialGlobalFilter or
weblogic.oif.head.serialFilter properties.

Therefore, if the class org.codehaus.groovy.runtime.ConvertedClosure is blocked by
the WebLogic Server custom or default filter and you want to allow this class for global
object input streams (used for application and 3rd party library deserialization), you can
use the weblogic.oif.head.serialGlobalFilter JEP 290 property to override the setting
in the filter. You can do so using either of the following methods:

– Specify the following property on the command line as a system property:

-
Dweblogic.oif.head.serialGlobalFilter=org.codehaus.groovy.runtime.ConvertedClosur
e

– Add the following lines to the sample recorded DOMAIN_HOME/config/security/
jep290-recorded.serial.properties file:

weblogic.oif.head.serialGlobalFilter=\
 org.codehaus.groovy.runtime.ConvertedClosure

The resulting sample allowlist file is as follows (the bold text identifies the added
content):

Wed May 19 23:55:13 UTC 2021
weblogic.oif.serialFilter=\
 com.company1.common.collections.objs.*;\
 com.company1.common.tools.Calculator;\
 com.company2.shared.tools.Converter
weblogic.oif.serialGlobalFilter=\
 com.company1.common.lists.AList;\
 com.company1.common.tools.Calculator;\
 com.company2.shared.tools.*
weblogic.oif.head.serialGlobalFilter=\
 org.codehaus.groovy.runtime.ConvertedClosure
weblogic.oif.serialUnauthenticatedFilter=\

If the class org.codehaus.groovy.runtime.ConvertedClosure is blocked by the WebLogic
Server custom or default filter and you want to allow this class for WebLogic Server
deserialization, you can do either of the following:

– Specify the following property on the command line as a system property:

-Dweblogic.oif.head.serialFilter=org.codehaus.groovy.runtime.ConvertedClosure

– Add the following lines to the sample recorded DOMAIN_HOME/config/security/
jep290-recorded.serial.properties file:

weblogic.oif.head.serialFilter=\
 org.codehaus.groovy.runtime.ConvertedClosure

Chapter 3
Using JEP 290 in Oracle WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 19 of 22

The resulting sample file is as follows (the bold text identifies the added content):

Wed May 19 23:55:13 UTC 2021
weblogic.oif.serialFilter=\
 com.company1.common.collections.objs.*;\
 com.company1.common.tools.Calculator;\
 com.company2.shared.tools.Converter
weblogic.oif.serialGlobalFilter=\
 com.company1.common.lists.AList;\
 com.company1.common.tools.Calculator;\
 com.company2.shared.tools.*
weblogic.oif.head.serialFilter=\
 org.codehaus.groovy.runtime.ConvertedClosure
weblogic.oif.serialUnauthenticatedFilter=\

After you edit the file as required and save it, the server picks up the edited file after the
specified polling interval.

Enabling Filter Logging
WebLogic Server provides a system property, weblogic.oif.serialFilterLogging, and a
debug flag, DebugAllowList on the ServerDebugMBean, that you can use to log the current
blocklist and allowlist classes and packages.

To enable logging, start WebLogic Server with the weblogic.oif.serialFilterLogging
system property set to true. For example:

./startWebLogic.sh -Dweblogic.oif.serialFilterLogging=true

To get more implementation specific logging details, you can use the DebugAllowList attribute
in ServerDebugMBean. Set this property to true in the WebLogic Remote Console , using
WLST, or on the command line, for example -Dweblogic.debug.DebugAllowList=true.

The following log shows sample output using the system property. The filter settings, as well as
the blocklist and allowlist classes and packages, are displayed in the server log.

<Jul 1, 2021 9:07:33,787 PM UTC> <Info> <WebLogicServer> <BEA-003807> <The
WebLogic Server JEP 290 filter mode is COMBINE>
<Jul 1, 2021 9:07:33,787 PM UTC> <Info> <WebLogicServer> <BEA-003808> <The
WebLogic Server JEP 290 filter scope is GLOBAL>
<Jul 1, 2021 9:07:33,788 PM UTC> <Info> <WebLogicServer> <BEA-003810>
<WebLogic Server JEP 290 filter limit element for scope WEBLOGIC is:
maxdepth=250>
...
<Jul 1, 2021 9:07:33,790 PM UTC> <Info> <WebLogicServer> <BEA-003811>
<WebLogic Server JEP 290 filter blocklist package for scope WEBLOGIC is:
org.apache.commons.collections.functors>
...
<Jul 1, 2021 9:07:33,802 PM UTC> <Info> <WebLogicServer> <BEA-003812>
<WebLogic Server JEP 290 filter blocklist class for scope WEBLOGIC is:
java.rmi.server.RemoteObject>
...
<Jul 1, 2021 9:07:33,806 PM UTC> <Info> <WebLogicServer> <BEA-003813>
<WebLogic Server JEP 290 filter allowlist for scope WEBLOGIC is: weblogic.**>
<Jul 1, 2021 9:07:33,806 PM UTC> <Info> <WebLogicServer> <BEA-003813>

Chapter 3
Using JEP 290 in Oracle WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 20 of 22

<WebLogic Server JEP 290 filter allowlist for scope WEBLOGIC is: oracle.**>
...
<Jul 1, 2021 9:07:33,827 PM UTC> <Info> <WebLogicServer> <BEA-003813>
<WebLogic Server JEP 290 filter allowlist for scope GLOBAL is: java.**>
...

Note

The filter log also displays the filters being used, and any additions or deletions. The
filter string for each type of filter used, such as weblogic.oif.serialFilter,
weblogic.oif.serialGlobalFilter, and
weblogic.oif.serialUnauthenticatedFilter, shows the order of blocklist and
allowlist entries in the filter.

Understanding the Filter Order Preference
WebLogic Server combines the blocked and allowed classes and packages specified using
properties and configuration files to create a filter that is used to determine order preference for
the blocklists and allowlists.

The order preference for the filter created, from highest priority to lowest priority, is determined
as follows:

• Custom filters specified at server startup using the weblogic.oif.head.serialFilter and
weblogic.oif.head.serialGlobalFilter properties (highest).

• Custom filters specified at server startup using the weblogic.oif.serialFilter and
weblogic.oif.serialGlobalFilter properties.

• Custom filters specified in configuration files using the
weblogic.oif.serialPropDirectories property.

• Custom filters specified in a configuration file located in the default directory DOMAIN_HOME/
config/security.

• Custom filters specified in a configuration file located in the Oracle home directory
ORACLE_HOME/oracle_common/common/jep290.

• The WebLogic Server default filter (lowest).

Note

If you are using allowlists, all blocked classes and packages are given the highest
priority in the allowlist filter unless they are specifically allowed by the
weblogic.oif.head.serialFilter or weblogic.oif.head.serialGlobalFilter
properties.

Setting the Deserialization Timeout Interval
You can further strengthen your protection against potential denial of service attacks by setting
a time limit on deserialization. When the time limit elapses, the deserialization process is
automatically terminated.

Chapter 3
Using JEP 290 in Oracle WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 21 of 22

WebLogic Server adds support for the KernelMBean attribute
RMIDeserializationMaxTimeLimit and the
weblogic.rmi.stream.deserialization.timelimitmillis system property to configure the
deserialization time limit.

By default, the time limit is disabled and not enforced when deserializing Java objects. To add
a limit, set your desired time interval, in milliseconds, using either the
RMIDeserializationMaxTimeLimit attribute in the KernelMBean or the
weblogic.rmi.stream.deserialization.timelimitmillis system property. WebLogic Server
does not apply a single interval across multiple Java objects. Instead each top-level object
triggers its own separate time limit.

For example, to set a time limit of 10 seconds, use -
Dweblogic.rmi.stream.deserialization.timelimitseconds=10000.

Enter an interval of 100 ms or longer. Very short intervals may prevent deserialization from
operating smoothly.

Enter 0 to disable the time limit.

Note

The deserialization time limit will not take effect if the JEP 290 system property
weblogic.oif.serialFilterMode is set to disable.

JTA TransactionLoggable Allowlist
The JTA TransactionLoggable allowlist is added to address a potential vulnerability with the
JTA transaction log store implementation.

When a TransactionLoggable object is written to the persistent store, the class name is
persisted and used during recovery to instantiate a new instance of the TransactionLoggable
class. The TransactionLoggable allowlist restricts the writing and reading of
TransactionLoggable classes to and from the persistent store.

The allowlist is disabled by default. When enabled, the allowlist is populated with a set of WLS-
internal TransactionLoggable classes.

• To enable the default allowlist, set the system property to
weblogic.transaction.loggable.allowList.

• To enable and add classes to the default allowlist, set the system property with a comma-
separated list of fully qualified class names. For example,
weblogic.transaction.loggable.allowList=p1.ClassA,p2.ClassB.

Chapter 3
JTA TransactionLoggable Allowlist

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 22 of 22

4
Customizing the Default Security Configuration

Oracle WebLogic Server provides a default security configuration that can be customized if you
want to replace the default security settings in order to simplify the management of security.

This chapter includes the following sections:

• Why Customize the Default Security Configuration?

• Before You Create a New Security Realm

• Creating and Configuring a New Security Realm: Main Steps

• Using Automatic Realm Restart

For information about configuring security providers, see About Configuring WebLogic Security
Providers and About Configuring the Authentication Providers in WebLogic Server.

For information about migrating security data to a new security realm, see Migrating Security
Data.

Why Customize the Default Security Configuration?
In the default security configuration, myrealm is set as the default (active) security realm, and
the WebLogic Adjudication, Authentication, Identity Assertion, Credential Mapping, CertPath,
XACML Authorization and XACML Role Mapping providers are defined as the security
providers in the security realm.

Customize the default security configuration if you want to do any of the following:

• Replace one of the security providers in the default realm with a different security provider.

• Configure additional security providers in the default security realm. (For example, if you
want to use two Authentication providers.)

• Use an Authentication provider that accesses an LDAP server other than WebLogic
Server's embedded LDAP server.

• Use an existing store of users and groups (for example, a DBMS database) instead of
defining users and groups in the WebLogic Authentication provider (also known as the
DefaultAuthenticator).

• When performing authentication, use the GUID or DN attributes of principals, in addition to
user names, specify that principal matching is case-insensitive.

• Add an Auditing provider to the default security realm.

• Use an Identity Assertion provider that handles SAML assertions or Kerberos tokens.

• Use the Certificate Registry to add certificate revocation to the security realm.

• Change the default configuration settings of the security providers.

• Use a custom Authorization or Role Mapping provider that does not support parallel
security policy and role modification, respectively, in the security provider database.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 5

For information about configuring different types of security providers in a security realm, see
About Configuring WebLogic Security Providers and About Configuring the Authentication
Providers in WebLogic Server.

The easiest way to customize the default security configuration is to add the security providers
you want to the default security realm (myrealm). However, Oracle recommends instead that
you customize the default security configuration by creating an entirely new security realm.
This preserves your ability to revert more easily to the default security configuration. You
configure security providers for the new realm; migrate any security data, such as users as
groups, from the existing default realm; and then set the new security realm as the default
realm. See Creating and Configuring a New Security Realm: Main Steps.

Before You Create a New Security Realm
Before you create a security realm, determine the set of the security providers you want to use,
as well as the model for establishing security policies.

Note the following:

• WebLogic Server includes a wide variety of security providers and, in addition, allows you
to create or obtain custom security providers. A valid security realm requires an
Authentication provider, an Authorization provider, an Adjudication provider, a Credential
Mapping provider, a Role Mapping provider, and a CertPathBuilder. In addition, a security
realm can optionally include Identity Assertion, Auditing, and Certificate Registry providers.
If your new security realm includes two or more providers of the same type (for example,
more than one Authentication provider or more than one Authorization provider), you need
to determine how these providers should interact with each other. See Using More Than
One Authentication Provider.

In addition, custom Authorization and Role Mapping providers may or may not support
parallel security policy and role modification, respectively, in the security provider
database. If your custom Authorization and Role Mapping security providers do not support
parallel modification, the WebLogic Security framework can enforce a synchronization
mechanism that results in each application and module being placed in a queue and
deployed sequentially. To do this, set the Deployable Provider Synchronization Enabled
and Deployable Provider Synchronization Timeout controls for the realm.

• The security roles and policies for Web application and EJB resources can be set through
deployment descriptors or through the WebLogic Remote Console. See Options for
Securing Web Application and EJB Resources in Securing Resources Using Roles and
Policies for Oracle WebLogic Server.

• If you are configuring a custom Authorization provider that uses the Web resource (instead
of the URL resource) in the new security realm, enable Use Deprecated Web Resource on
the new security realm. This option changes the runtime behavior of the Servlet container
to use a Web resource rather than a URL resource when performing authorization. Note
that the Web resource is deprecated in this release of WebLogic Server.

Note

When you create a new security realm, you must configure at least one of the
Authentication providers to return asserted LoginModules. Otherwise, run-as tags
defined in deployment descriptors will not work.

See Create a Security Realm in Oracle WebLogic Remote Console Online Help .

Chapter 4
Before You Create a New Security Realm

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 5

Creating and Configuring a New Security Realm: Main Steps
The main steps to configure a new security realm include choosing a realm name, selecting
and configuring the set of required security providers, creating the appropriate security policies
for protecting the WebLogic resources in the realm, and protecting the users accounts that are
defined in the realm.

To create a new security realm:

1. Define a name and set the configuration options for the security realm. See Before You
Create a New Security Realm and Create a Security Realm in Oracle WebLogic Remote
Console Online Help.

2. Configure the required security providers for the security realm. A valid security realm
requires an Authentication provider, an Authorization provider, an Adjudication provider, a
Credential Mapping provider, a Role Mapping provider, and a CertPathBuilder. See About
Configuring WebLogic Security Providers and About Configuring the Authentication
Providers in WebLogic Server.

3. Optionally, define Identity Assertion, Auditing, and Certificate Registry providers. See
About Configuring WebLogic Security Providers and About Configuring the Authentication
Providers in WebLogic Server.

4. If you configured the Default Authentication, Authorization, Credential Mapping or Role
Mapping provider or the Certificate Registry in the new security realm, verify that the
settings of the embedded LDAP server are appropriate. See Managing the Embedded
LDAP Server.

5. Optionally, configure caches to improve the performance of the WebLogic or LDAP
Authentication providers in the security realm. See Improving the Performance of LDAP
Authentication Providers.

6. Protect WebLogic resources in the new security realm with security policies. Creating
security policies is a multi-step process with many options. To fully understand this
process, read Securing Resources Using Roles and Policies for Oracle WebLogic Server
in conjunction with this document to ensure security is completely configured for a
WebLogic Server deployment.

7. If the security data (users and groups, roles and policies, and credential maps) defined in
the existing security realm will also be valid in the new security realm, you can export the
security data from the existing realm and import it into the new security realm. See
Migrating Security Data.

8. Protect user accounts in the new security realm from dictionary attacks by setting lockout
attributes. See Protecting User Accounts.

9. Optionally, set the new realm as the default administrative realm for the WebLogic domain.
See Change Default Security Realm in Oracle WebLogic Remote Console Online Help.

Note

You can also use the WebLogic Scripting Tool or Java Management Extensions
(JMX) APIs to create a new security configuration. See Understanding the
WebLogic Scripting Tool.

Chapter 4
Creating and Configuring a New Security Realm: Main Steps

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 5

Using Automatic Realm Restart
WebLogic Server supports the concept of a user-controlled automatic realm restart. Realm
restart is the process of initializing a new running instance of a security realm after non-
dynamic configuration changes have been made. Realm restart allows non-dynamic
configuration changes to take effect immediately without requiring a server restart. WebLogic
Server determines if any non-dynamic changes are made to the realm, or to security providers
within the realm. When you commit non-dynamic security configuration changes to a realm that
do not require a restart, then the realm restart occurs automatically when changes are
committed in WebLogic Remote Console.

The Impact of Dynamic and Non-Dynamic Configuration Changes on Realm Restart

The type of configuration change you make determines how realm restart impacts that change.
The following three scenarios demonstrate the type of changes you can make to the realm, to
a security provider, or another WebLogic configuration, and how automatic realm restart affects
those changes:

• Dynamic Changes: Some changes that you make in WebLogic Remote Console take
effect immediately when you commit your changes. These changes are called dynamic
changes and do not require a server restart or a realm restart.

• Non-dynamic changes to realm or provider that do not require a server restart: If you make
changes to the non-dynamic attributes of the realm or security provider, and if automatic
realm restart has been enabled for that realm, then realm is restarted when your changes
are committed. Therefore, a server restart is not required. If automatic realm restart is not
enabled for a realm, then a server restart is required for non-dynamic changes to that
realm or provider.

• Non-dynamic changes to realm or provider and to other WebLogic Server configuration:
When non-dynamic configuration changes are made to both the security realm and to
other (that is, non-security related) WebLogic domain attributes that do require a server
restart, the realm is not restarted even if automatic restart is configured and enabled for
that realm. In such cases, a server restart is required.

Configuration Options for Realm Restart

If you want to configure automatic realm restart, see Enable Automatic Realm Restart in
Oracle WebLogic Remote Console Online Help. You can also use the
AutoRestartOnNonDynamicChanges attribute of the RealmMBean to enable or disable automatic
restart of the realm if non-dynamic changes are made to the realm or providers within the
realm.

A realm restart implies that WebLogic Server initializes a new realm instance with the
configuration changes that you made to the previous realm instance. As a result, the old
(previous) realm instance is shut down. When the new instance is initialized, the realm object
references from the previous instance are migrated to the new instance. However, operations
on the old realm instance may still be in progress at the time the new instance is ready. The
retire timeout allows in-progress operations to complete without being interrupted while the old
instance remains running for the specified timeout period. Use the RetireTimeoutSeconds
attribute of the RealmMBean to specify the time (in seconds) that you require before the old
realm instance shuts down or retires. The minimum value for this attribute is 1 second,
whereas the default value is 1 minute (60 seconds).

The default security realm setting provides compatibility with previous WebLogic behavior
because a custom security provider may not be able to support realm restart. Therefore, in the

Chapter 4
Using Automatic Realm Restart

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 5

default security realm, automatic realm restart is disabled by default. However, in the new
security realms that you create, automatic realm restart is enabled by default.

For more information about RealmMBean attributes, see RealmMBean in MBean Reference for
Oracle WebLogic Server.

Chapter 4
Using Automatic Realm Restart

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 5

Part II
Configuring Security Providers

Security providers are modules that "plug into" an Oracle WebLogic Server security realm to
provide security services to applications, such as authentication, authorization, role and
credential mapping, auditing, and many more.

This part explains how to configure the security providers provided by WebLogic Server.

• About Configuring WebLogic Security Providers

• Configuring Authorization and Role Mapping Providers

• Configuring the WebLogic Auditing Provider

• Configuring Credential Mapping Providers

• Configuring the Certificate Lookup and Validation Framework

Note

WebLogic Server includes so many Authentication providers and Identity Assertion
providers that they are presented in a separate section. See Configuring
Authentication Providers.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 1

5
About Configuring WebLogic Security
Providers

Although most WebLogic security providers can run with their default settings as soon as
Oracle WebLogic Server is started, several providers typically require configuration settings
tailored to the environment in which they run. For example, if you are using an identity store
other than the embedded LDAP server, you need to configure an Authentication provider that
is specific to that store. And if you configure multiple providers of a certain type, you need to
specify the order in which they are invoked.
This chapter includes the following sections:

• When Do You Need to Configure a Security Provider?

• Reordering Security Providers

• Enabling Synchronization in Security Policy and Role Modification at Deployment

When Do You Need to Configure a Security Provider?
By default, most WebLogic security providers are generally configured to run after you install
WebLogic Server. However, the following circumstances require you to supply configuration
information:

• Before using the WebLogic Identity Assertion provider, define the active token type. See
Configuring Identity Assertion Providers.

• To map tokens to a user in a security realm, configure the user name mapper in the
WebLogic Identity Assertion provider. See Configuring a WebLogic Credential Mapping
Provider.

• To use auditing in the default (active) security realm, configure either the WebLogic
Auditing provider or a custom Auditing provider. See Configuring the WebLogic Auditing
Provider.

• To use HTTP and Kerberos-based authentication in conjunction with WebLogic Server.
See Configuring Single Sign-On with Microsoft Clients.

• To use identity assertion based on SAML assertions. See Configuring Single Sign-On with
Web Browsers and HTTP Clients Using SAML.

• To use certificate revocation. See Configuring the Certificate Lookup and Validation
Framework.

• To use an LDAP server other than the embedded LDAP server, configure one of the LDAP
Authentication providers. An LDAP authentication provider can be used instead of or in
addition to the WebLogic Authentication provider. See Configuring LDAP Authentication
Providers.

• To access user, password, group, and group membership information stored in databases
for authentication purposes. See Configuring RDBMS Authentication Providers. The
RDBMS Authentication providers can be used to upgrade from the RDBMS security realm.

• When you create a new security realm, configure security providers for that realm. See
Creating and Configuring a New Security Realm: Main Steps.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 3

• When you add a custom security provider to a security realm or replace a WebLogic
security provider with a custom security provider, configure options for the custom security
provider.

You can use either the WebLogic-supplied security providers or a custom security provider in a
security realm. To configure a custom security provider, see Configure Custom Security
Providers in Oracle WebLogic Remote Console Online Help.

Reordering Security Providers
You can configure more than one security provider of a given type in a security realm. For
example, you might use two or more different Role Mapping providers or Authorization
providers. If you have more than one security provider of the same type in a security realm, the
order in which these providers are called can affect the overall outcome of the security
processes. By default, security providers are called in the order that they were added to the
realm. You can use WebLogic Remote Console to change the order of the providers.

Enabling Synchronization in Security Policy and Role
Modification at Deployment

For the best performance, and by default, Weblogic Server supports parallel modification to
security policy and roles during application and module deployment. For this reason,
deployable Authorization and Role Mapping providers configured in the security realm should
support parallel calls. The WebLogic deployable XACML Authorization and Role Mapping
providers meet this requirement.
However, custom deployable Authorization and Role Mapping providers may or may not
support parallel calls. If your custom deployable Authorization or Role Mapping providers do
not support parallel calls, you need to disable the parallel security policy and role modification
and instead enforce a synchronization mechanism that results in each application and module
being placed in a queue and deployed sequentially. Otherwise, if a provider does not support
parallel calls, it generates a java.util.ConcurrentModificationException exception.

You can turn on this synchronization enforcement mechanism on in two ways:

Note

Enabling the synchronization mechanism affects every deployable provider configured
in the realm, including the WebLogic Server XACML providers. Enabling the
synchronization mechanism may negatively impact the performance of these
providers.

• In WebLogic Remote Console, in the Edit Tree, go to Security, then Realms, then
myRealm. Click Show Advanced Fields. Set the Deployable Provider Synchronization
Enabled and Deployable Provider Synchronization Timeout options for the realm.

The Deployable Provider Synchronization Enabled option enforces a synchronization
mechanism that results in each application and module being placed in a queue and
deployed sequentially.

The Deployable Provider Synchronization Timeout option sets or returns the timeout
value, in milliseconds, for the deployable security provider synchronization operation. This
is the maximum time a deployment cycle wants to wait in the queue when the previous
cycle is stuck.

Chapter 5
Reordering Security Providers

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 3

• From WLST, set the DeployableProviderSynchronizationEnabled and
DeployableProviderSynchronizationTimeout attributes of the RealmMBean.

See RealmMBean in MBean Reference for Oracle WebLogic Server.

Chapter 5
Enabling Synchronization in Security Policy and Role Modification at Deployment

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 3

6
Configuring Authorization and Role Mapping
Providers

In Oracle WebLogic Server, Authorization providers use the concepts of security policies,
ContextHandlers, access decisions, and more, to determine who may have access to a
resource. Role Mapping providers compute the set of roles granted to a subject for a given
resource, and Adjudication providers resolve authorization conflicts if multiple Authorization
providers don’t return the same access decision.
This chapter includes the following sections:

• Configuring an Authorization Provider

• Configuring the WebLogic Adjudication Provider

• Configuring a Role Mapping Provider

Configuring an Authorization Provider
Authorization is the process whereby the interactions between users and resources are limited
to ensure integrity, confidentiality, and availability. In other words, authorization is responsible
for controlling access to resources based on user identity or other information. You should only
need to configure an Authorization provider when you create a new security realm.

By default, security realms in newly created domains include the XACML Authorization
provider. The XACML Authorization provider uses XACML, the eXtensible Access Control
Markup Language. For information about using the XACML Authorization provider, see Using
XACML Documents to Secure WebLogic Resources in Securing Resources Using Roles and
Policies for Oracle WebLogic Server. WebLogic Server also includes the WebLogic
Authorization provider, which uses a proprietary policy language. This provider is named
DefaultAuthorizer, but is no longer the default authorization provider.

See Enabling Synchronization in Security Policy and Role Modification at Deployment for
information about how Authorization providers support parallel modification to security policy
during application and module deployment.

Note

The WebLogic Authorization provider, also known as the DefaultAuthorizer, is
deprecated in WebLogic Server 14.1.1.0.0 and will be removed in a future release.

The WebLogic Authorization provider improves performance by caching the roles,
predicates, and resource data that it looks up. For information on configuring these
caches, see Best Practices: Configure Entitlements Caching When Using WebLogic
Providers in Securing Resources Using Roles and Policies for Oracle WebLogic
Server. The XACML Authorization uses its own cache, but this cache is not
configurable.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 3

Configuring the WebLogic Adjudication Provider
When multiple Authorization providers are configured in a security realm, each may return a
different answer to the "is access allowed" question for a given resource. This answer may be
PERMIT, DENY, or ABSTAIN. Determining what to do if multiple Authorization providers do not
agree on the answer is the primary function of the Adjudication provider. Adjudication providers
resolve authorization conflicts by weighting each Authorization provider's answer and returning
a final decision.
Each security realm requires an Adjudication provider, and can have no more than one active
Adjudication provider. By default, a WebLogic security realm is configured with the WebLogic
Adjudication provider. You can use either the WebLogic Adjudication provider or a custom
Adjudication provider in a security realm.

Note

In the WebLogic Remote Console, the WebLogic Adjudication provider is referred to
as the Default Adjudicator.

By default, most configuration options for the WebLogic Adjudication provider are defined.
However, you can set the Require Unanimous Permit option to determine how the WebLogic
Adjudication provider handles a combination of PERMIT and ABSTAIN votes from the configured
Authorization providers.

• If the option is enabled (the default), all Authorization providers must vote PERMIT in order
for the Adjudication provider to vote true.

• If the option is disabled, ABSTAIN votes are counted as PERMIT votes.

Configuring a Role Mapping Provider
Role mapping is the process whereby principals (users or groups) are dynamically mapped to
security roles at runtime. Role Mapping providers supply Authorization providers with this role
information so that the Authorization provider can answer the "is access allowed?" question for
WebLogic resources. By default, a WebLogic security realm is configured with the XACML
Role Mapping provider. The XACML Role Mapping provider uses XACML, the eXtensible
Access Control Markup Language. For information about using the XACML Role Mapping
provider, see Using XACML Documents to Secure WebLogic Resources in Securing
Resources Using Roles and Policies for Oracle WebLogic Server.
WebLogic Server also includes the WebLogic Role Mapping provider, which uses a proprietary
policy language. This provider is named DefaultRoleMapper, but is no longer the default role
mapping provider in newly-created security realms. You can also use a custom Role Mapping
provider in your security realm.

Note

The WebLogic Role Mapping provider, also known as the DefaultRoleMapper, is
deprecated in WebLogic Server 14.1.1.0.0 and will be removed in a future release.

By default, most configuration options for the XACML Role Mapping provider are already
defined. However, you can set Role Mapping Deployment Enabled, which specifies whether or

Chapter 6
Configuring the WebLogic Adjudication Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 3

not this Role Mapping provider imports information from deployment descriptors for Web
applications and EJBs into the security realm. This setting is enabled by default.

In order to support Role Mapping Deployment Enabled, a Role Mapping provider must
implement the DeployableRoleProvider SSPI. Roles are stored by the XACML Role Mapping
provider in the embedded LDAP server.

See Enabling Synchronization in Security Policy and Role Modification at Deployment for
information about how Role Mapping providers support parallel modification to roles during
application and module deployment.

For information about using, developing, and configuring Role Mapping providers, see:

• Users, Groups, And Security Roles in Securing Resources Using Roles and Policies for
Oracle WebLogic Server

• Role Mapping Providers in Developing Security Providers for Oracle WebLogic Server

• Configure a Role Mapping Provider in Oracle WebLogic Remote Console Online Help

Note

The WebLogic Role Mapping provider improves performance by caching the roles,
predicates, and resource data that it looks up. For information on configuring these
caches, see Best Practices: Configure Entitlements Caching When Using
WebLogic Providers in Securing Resources Using Roles and Policies for Oracle
WebLogic Server. The XACML Role Mapping provider uses its own cache, but this
cache is not configurable.

Chapter 6
Configuring a Role Mapping Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 3

7
Configuring the WebLogic Auditing Provider

The Oracle WebLogic Server WebLogic Security Framework invokes an Auditing provider
before and after security operations, such as authentication or authorization, have been
performed, when changes to the domain configuration are made, or when management
operations on any resources in the domain are invoked. The decision to audit a particular
event is made by the Auditing provider itself and can be based on specific audit criteria or
severity levels. The records containing the audit information may be written to output
repositories such as an LDAP server, database, or a simple file.
This chapter contains the following sections:

• Auditing Provider Overview

• Events Logged by the WebLogic Auditing Provider

• Configuration Options

• Auditing ContextHandler Elements

• Configuration Auditing

• Configuration Auditing Messages

• Audit Events and Auditing Providers

Auditing Provider Overview
Auditing is the process whereby information about operating requests and the outcome of
those requests are collected, stored, and distributed for the purposes of non-repudiation. In
other words, Auditing providers produce an electronic trail of computer activity.
Configuring an Auditing provider is optional. The default security realm (myrealm) does not
have an Auditing provider configured. WebLogic Server includes a provider named the
WebLogic Auditing provider (referred to as DefaultAuditor in the WebLogic Remote Console).
You can also develop custom Auditing providers, as described in Auditing Providers in
Developing Security Providers for Oracle WebLogic Server.

Events Logged by the WebLogic Auditing Provider
If the WebLogic Auditing Provider is enabled, then it can log events such as authentication,
authorization, user account status, and more. The WebLogic Auditing provider can log the
events described in Table 7-1.

Table 7-1 WebLogic Auditing Provider Events

The following audit
event . . .

Indicates . . .

AUTHENTICATE A simple authentication (username and password) occurred.

ASSERTIDENTITY A perimeter authentication (based on tokens) occurred.

USERLOCKED A user account is locked because of invalid login attempts.

USERUNLOCKED The lock on a user account is cleared.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 9

Table 7-1 (Cont.) WebLogic Auditing Provider Events

The following audit
event . . .

Indicates . . .

USERLOCKOUTEXPIRED The lock on a user account expired.

ISAUTHORIZED An authorization attempt occurred.

ROLEEVENT A getRoles event occurred.

ROLEDEPLOY A deployRole event occurred.

ROLEUNDEPLOY An undeployRole event occurred.

POLICYDEPLOY A deployPolicy event occurred.

POLICYUNDEPLOY An undeployPolicy event occurred.

START_AUDIT An Auditing provider has been started.

STOP_AUDIT An Auditing provider has been stopped.

Configuration Options
By default, most configuration options for the WebLogic Auditing provider are already defined
and, once it is added to the active security realm, the WebLogic Auditing provider will begin to
record audit events. However, you need to define the following settings, which you can do in
the WebLogic Remote Console under the Default Auditor Parameters tab of the Auditing
provider page. You can also use WebLogic Scripting tool or the Java Management Extensions
(JMX) APIs to configure the Auditing provider:

• Rotation Type - Specifies the criteria for moving old audit records to a new file. Can be
either byTime or bySize.

• Rotation Minutes—Specifies how many minutes to wait before creating a new
DefaultAuditRecorder.log file. At the specified time, the audit file is closed and a new
one is created. A backup file named DefaultAuditRecorder.YYYYMMDDHHMM.log (for
example, DefaultAuditRecorder.200405130110.log) is created in the same directory.
Rotation Size must be set to byTime.

• Rotation Size - Specifies the file size to reach before creating a new audit log file. Rotation
Size must be set to bySize.

• Severity—Severity level appropriate for your WebLogic Server deployment. The WebLogic
Auditing provider audits security events of the specified severity, as well as all events with
a higher numeric severity rank. For example, if you set the severity level to ERROR, the
WebLogic Auditing provider audits security events of severity level ERROR, SUCCESS,
and FAILURE. You can also set the severity level to CUSTOM, and then enable the
specific severity levels you want to audit, such as ERROR and FAILURE events only. Audit
events include both the severity name and numeric rank; therefore, a custom Auditing
provider can filter events by either the name or the numeric rank. Auditing can be initiated
when the following levels of security events occur.

Table 7-2 Event Severity

Event Severity Rank

INFORMATION 1

WARNING 2

Chapter 7
Configuration Options

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 9

Table 7-2 (Cont.) Event Severity

Event Severity Rank

ERROR 3

SUCCESS 4

FAILURE 5

• Number of Files Limit - Specifies the number of audit log files that will be retained.

All auditing information recorded by the WebLogic Auditing provider is saved in
WL_HOME\yourdomain\yourserver\logs\DefaultAuditRecorder.log by default. Although an
Auditing provider is configured per security realm, each server writes auditing data to its own
log file in the server directory. You can specify a new directory location for the
DefaultAuditRecorder.log file on the command line with the following Java startup option:

-Dweblogic.security.audit.auditLogDir=c:\foo

The new file location will be c:\foo\yourserver\logs\DefaultAuditRecorder.log.

See Security in the Command Reference for Oracle WebLogic Server.

Note

Using an Auditing provider affects the performance of WebLogic Server even if only a
few events are logged.

See Configure an Auditing Provider in Oracle WebLogic Remote Console Online Help.

Auditing ContextHandler Elements
The ContextHandler interface is used to manage audit providers that support context handler
entries. Set the ContextHandler Entries attribute to specify which ContextElement entries are
recorded by the Auditing provider.

An Audit Event includes a ContextHandler that can hold a variety of information or objects. Set
the WebLogic Auditing provider's Active ContextHandler Entries attribute to specify which
ContextElement entries in the ContextHandler are recorded by the Auditing provider. By
default, none of the ContextElements are audited. Objects in the ContextHandler are in most
cases logged using the toString method. Table 7-3 lists the available ContextHandler entries.

Note

The WebLogic Auditing provider can audit only the attributes for the specific
functionality that is being implemented. It does not audit all of the context handler
elements by default. For example, if you log into the WebLogic Remote Console using
HTTP, the authentication is performed in the context of an HTTP servlet request, and
the Auditing provider audits HTTP servlet elements. Alternatively, authentication from
WLST uses t3 protocol. For t3 authentication, the auditing provider audits the channel
context elements such as com.bea.contextelement.channel.Protocol and
com.bea.contextelement.channel.RemoteAddress. In both cases, the Auditing
provider only audits the functionality being implemented, either HTTP or t3.

Chapter 7
Auditing ContextHandler Elements

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 9

Table 7-3 Context Handler Entries for Auditing

Context Element Name Description and Type

com.bea.contextelement.servlet.Http
ServletRequest

A servlet access request or SOAP message via HTTP

jakarta.http.servlet.HttpServletRequest

com.bea.contextelement.servlet.Http
ServletResponse

A servlet access response or SOAP message via HTTP

jakarta.http.servlet.HttpServletResponse

com.bea.contextelement.wli.Message An Oracle WebLogic Integration message. The message
is streamed to the audit log.

java.io.InputStream

com.bea.contextelement.channel.Port Internal listen port of the network channel accepting or
processing the request

java.lang.Integer

com.bea.contextelement.channel.Publ
icPort

External listen port of the network channel accepting or
processing the request

java.lang.Integer

com.bea.contextelement.channel.Remo
tePort

Port of the remote end of the TCP/IP connection of the
network channel accepting or processing the request

java.lang.Integer

com.bea.contextelement.channel.Prot
ocol

Protocol used to make the request of the network
channel accepting or processing the request

java.lang.String

com.bea.contextelement.channel.Addr
ess

The internal listen address of the network channel
accepting or processing the request

java.lang.String

com.bea.contextelement.channel.Publ
icAddress

The external listen address of the network channel
accepting or processing the request

java.lang.String

com.bea.contextelement.channel.Remo
teAddress

Remote address of the TCP/IP connection of the
network channel accepting or processing the request

java.lang.String

com.bea.contextelement.channel.Chan
nelName

Name of the network channel accepting or processing
the request

java.lang.String

com.bea.contextelement.channel.Secu
re

Whether the network channel is accepting or processing
the request using SSL

java.lang.Boolean

com.bea.contextelement.ejb20.Parame
ter[1-N]

Object based on parameter

com.bea.contextelement.wsee.SOAPMes
sage

javax.xml.rpc.handler.MessageContext

com.bea.contextelement.entitlement.
EAuxiliaryID

Used by a WebLogic Server internal process.

weblogic.entitlement.expression.EAuxiliary

Chapter 7
Auditing ContextHandler Elements

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 9

Table 7-3 (Cont.) Context Handler Entries for Auditing

Context Element Name Description and Type

com.bea.contextelement.security.Cha
inPrevalidatedBySSL

SSL framework has validated the certificate chain,
meaning that the certificates in the chain have signed
each other properly; the chain terminates in a certificate
that is one of the server's trusted CAs; the chain honors
the basic constraints rules; and the certificates in the
chain have not expired.

java.lang.Boolean

com.bea.contextelement.xml.Security
Token

Not used in this release of WebLogic Server.

weblogic.xml.crypto.wss.provider.SecurityTo
ken

com.bea.contextelement.xml.Security
TokenAssertion

Not used in this release of WebLogic Server.

java.util.Map

com.bea.contextelement.webservice.I
ntegrity{id:XXXXX}

javax.security.auth.Subject

com.bea.contextelement.saml.SSLClie
ntCertificateChain

SSL client certificate chain obtained from the SSL
connection over which a sender-vouches SAML
assertion was received.

java.security.cert.X509Certificate[]

com.bea.contextelement.saml.Message
SignerCertificate

Certificate used to sign a Web services message.

java.security.cert.X509Certificate

com.bea.contextelement.saml.subject
.ConfirmationMethod

Type of SAML assertion: bearer, artifact, sender-
vouches, or holder-of-key.

java.lang.String

com.bea.contextelement.saml.subject
.dom.KeyInfo

<ds:KeyInfo> element to be used for subject
confirmation with holder-of-key SAML assertions.

org.w3c.dom.Element

Configuration Auditing
You can configure the Administration Server to emit log messages and generate audit events
when a user changes the configuration of any resource within a domain or invokes
management operations on any resource within a domain. For example, if a user disables SSL
on a Managed Server in a domain, the Administration Server emits log messages. If you have
enabled the WebLogic Auditing provider, it writes the audit events to an additional security log.
These messages and audit events provide an audit trail of changes within a domain's
configuration (configuration auditing).
The Administration Server writes configuration auditing messages to its local log file. They are
not written to the domain-wide message log by default.

Note that configuration audit information is contained in Authorization Events. As a result,
another approach to configuration auditing is to consume Authorization Events. Note, however,
that the information in an Authorization Event tells you whether access was allowed to perform
a configuration change; it does not tell you whether the configuration change actually
succeeded (for instance, it might have failed because it was invalid).

To enable configuration auditing, see Enabling Configuration Auditing.

Chapter 7
Configuration Auditing

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 9

Enabling Configuration Auditing
Learn the different methods to enable configuration auditing.
Enable configuration auditing by one of these methods:

• Use WebLogic Remote Console. See Enable Configuration Auditing in Oracle WebLogic
Remote Console Online Help.

• When you start the Administration Server, include one of the following Java options in the
weblogic.Server command:

– -Dweblogic.domain.ConfigurationAuditType="audit"

Causes the domain to emit Audit Events only.

– -Dweblogic.domain.ConfigurationAuditType="log"

Causes the domain to write configuration auditing messages to the Administration
Server log file only.

– -Dweblogic.domain.ConfigurationAuditType="logaudit"

Causes the domain to emit Audit Events and write them to the auditor's log file, while
log events are written to the Administration Server log file. If you are using a custom
auditing provider, then the custom auditing provider determines where the Audit
Events are written to.

See weblogic.Server Command-Line Reference in Command Reference for Oracle
WebLogic Server.

• Use the WebLogic Scripting Tool to change the value of the ConfigurationAuditType
attribute of the DomainMBean. See Understanding the WebLogic Scripting Tool.

Configuration Auditing Messages
The configuration auditing severity levels are SUCCESS, FAILURE, and ERROR.

Table 7-4 Configuration Auditing Message Severities

Severity Description

SUCCESS A successful configuration change occurred.

FAILURE An attempt to modify the configuration failed due to insufficient user credentials.

ERROR An attempt to modify the configuration failed due to an internal error.

Configuration auditing messages are identified by message IDs that fall within the range of
159900-159910.

The messages use MBean object names to identify resources. Object names for WebLogic
Server MBeans reflect the location of the MBean within the hierarchical data model. To reflect
the location, object names contain name/value pairs from the parent MBean. For example, the
object name for a server's LogMBean is:
mydomain:Name=myserverlog,Type=Log,Server=myserver. See WebLogic Server MBean Data
Model in Developing Custom Management Utilities Using JMX for Oracle WebLogic Server.

Table 7-5 summarizes the messages.

Chapter 7
Configuration Auditing Messages

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 9

Table 7-5 Summary of Configuration Auditing Messages

When this event
occurs . . .

WebLogic Server
generates a
message with this
ID . . .

And this message text . . .

Authorized user
creates a resource.

159900 USER username CREATED MBean-name

where username identifies the WebLogic Server user who
logged in and created a resource.

Unauthorized user
attempts to create
a resource.

159901 USER username CREATED MBean-name FAILED
weblogic.management. NoAccessRuntimeException:
exception-text stack-trace

where username identifies the unauthorized WebLogic Server
user.

Authorized user
deletes a resource.

159902 USER username REMOVED MBean-name

where username identifies the WebLogic Server user who
logged in and deleted a resource.

Unauthorized user
attempts to delete a
resource.

159903 USER username REMOVE MBean-name FAILED
weblogic.management. NoAccessRuntimeException:
exception-text stack-trace

where username identifies the unauthorized WebLogic Server
user.

Authorized user
changes a
resource's
configuration.

159904 USER username MODIFIED MBean-name ATTRIBUTE
attribute-name FROM old-value TO new-value

where username identifies the WebLogic Server user who
logged in and changed the resource's configuration.

Unauthorized user
attempts to change
a resource's
configuration.

159905 USER username MODIFY MBean-name ATTRIBUTE
attribute-name FROM old-value TO new-value
FAILED weblogic.management.
NoAccessRuntimeException: exception-text stack-
trace

where username identifies the unauthorized WebLogic Server
user.

Authorized user
invokes an
operation on a
resource.

For example, a
user deploys an
application or starts
a server instance.

159907 USER username INVOKED ON MBean-name METHOD
operation-name PARAMS specified-parameters

where username identifies the WebLogic Server user who
logged in and invoked a resource operation.

Unauthorized user
attempts to invoke
an operation on a
resource.

159908 USER username INVOKED ON MBean-name METHOD
operation-name PARAMS specified-parameters
FAILED weblogic.management.
NoAccessRuntimeException: exception-text stack-
trace

where username identifies the unauthorized WebLogic Server
user.

Chapter 7
Configuration Auditing Messages

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 9

Table 7-5 (Cont.) Summary of Configuration Auditing Messages

When this event
occurs . . .

WebLogic Server
generates a
message with this
ID . . .

And this message text . . .

Authorized user
enables
configuration
auditing.

159909 USER username, Configuration Auditing is
enabled

where username identifies the WebLogic Server user who
enabled configuration auditing.

Authorized user
disables
configuration
auditing.

159910 USER username, Configuration Auditing is
disabled

where username identifies the WebLogic Server user who
disabled configuration auditing.

Note

Each time an authorized user adds, modifies, or deletes a resource, the Management
subsystem also generates an Info message with the ID 140009 regardless of whether
configuration auditing is enabled. For example:

<Sep 15, 2005 11:54:47 AM EDT> <Info> <Management> <140009> <Configuration
changes for domain saved to the repository.>
While the message informs you that the domain's configuration has changed, it does
not provide the detailed information that configuration auditing messages provide. Nor
does the Management subsystem generate this message when you invoke operations
on resources.

Table 7-6 lists additional message attributes for configuration auditing messages. All
configuration auditing messages specify the same values for these attributes.

Table 7-6 Common Message Attributes and Values

Message Attribute Attribute Value

Severity Info

Subsystem Configuration Audit

User ID kernel identity

This value is always kernel identity, regardless of which user modified the
resource or invoked the resource operation.

Server Name AdminServerName

Because the Administration Server maintains the configuration data for all
resources in a domain, this value is always the name of the Administration Server.

Machine Name AdminServerHostName

Because the Administration Server maintains the configuration data for all
resources in a domain, this value is always the name of the Administration Server's
host machine.

Chapter 7
Configuration Auditing Messages

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 9

Table 7-6 (Cont.) Common Message Attributes and Values

Message Attribute Attribute Value

Thread ID execute-thread

The value depends on the number of execute threads that are currently running on
the Administration Server.

Timestamp timeStamp at which the message is generated.

Audit Events and Auditing Providers
An audit event is an object that Auditing providers can read and process in specific ways. An
Auditing provider is a pluggable component that the security realm uses to collect, store, and
distribute information about operating requests and the outcome of those requests for the
purposes of non-repudiation.
If you enable a domain to emit Audit Events, the domain emits the events described in
Table 7-7. All Auditing providers that are configured for the domain can handle these events.

All of the events are of severity level SUCCESS and describe the security principal who initiated
the action, whether permission was granted, and the object (MBean or MBean attribute) of the
requested action.

Table 7-7 Summary of Audit Events for Configuration Auditing

When this event occurs . . . WebLogic Server generates this Audit Event object . . .

A request to create a new
configuration artifact has been
allowed or prevented.

weblogic.security.spi.AuditCreateConfigurationEvent

A request to delete an existing
configuration artifact has been
allowed or prevented.

weblogic.security.spi.AuditDeleteConfigurationEvent

A request to modify an
existing configuration artifact
has been allowed or
prevented.

weblogic.security.spi.AuditInvokeConfigurationEvent

A invoke an operation on an
existing configuration artifact
has been allowed or
prevented.

weblogic.security.spi.AuditSetAttributeConfigurationEvent

If you enable the default WebLogic Server Auditing provider, it writes all Audit Events as log
messages in its own log file.

Other Auditing providers that you create or purchase can filter these events and write them to
output repositories such as an LDAP server, database, or a simple file. In addition, other types
of security providers can request audit services from an Auditing provider. See Auditing
Providers in Developing Security Providers for Oracle WebLogic Server.

Chapter 7
Audit Events and Auditing Providers

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 9

8
Configuring Credential Mapping Providers

Credential mapping is the process whereby the authentication and authorization mechanisms
of a remote system (for example, a legacy system or application) obtain an appropriate set of
credentials to authenticate remote users to a target WebLogic resource. The WebLogic
Credential Mapping provider maps Oracle WebLogic Server subjects to the username/
password pairs to be used when accessing such resources.
The following topics are included:

• Configuring a WebLogic Credential Mapping Provider

• Configuring a PKI Credential Mapping Provider

• Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0

Configuring a WebLogic Credential Mapping Provider
By default, most configuration options for the WebLogic Credential Mapping provider are
defined. You do have the option of adjusting the expiration interval of the weblogic-jwt-token
token type, which is used internally to propagate identity for REST invocations of other
applications running in the domain. By default, the expiration interval is set to 3 minutes.
However, you can adjust the interval from the Provider Specific configuration page for this
security provider.

Note

WebLogic Server provides the option of setting Credential Mapping Deployment
Enabled, which specifies whether or not the Credential Mapping provider imports
credential maps from a resource adapter's deployment descriptor (weblogic-ra.xml
file) into the security realm. However, this option is now deprecated. Deploying
credential maps from a weblogic-ra.xml file is no longer supported by WebLogic
Server.

In order to support Credential Mapping Deployment Enabled, a Credential Mapping provider
must implement the DeployableCredentialProvider SSPI. The credential mapping
information is stored in the embedded LDAP server.

Refer to the following topics:

• See Credential Mapping Providers in Developing Security Providers for Oracle WebLogic
Server.

• See Configure a Credential Mapping Provider in Oracle WebLogic Remote Console Online
Help

• For information about using credential maps, see Developing Resource Adapters for
Oracle WebLogic Server.

• You can also use the WebLogic Scripting Tool or Java Management Extensions (JMX)
APIs to create a new security configuration.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

Configuring a PKI Credential Mapping Provider
The Public Key Infrastructure (PKI) Credential Mapping provider included in WebLogic Server
maps a WebLogic Server subject and target resource to a key pair or a public certificate that
can be used by applications when accessing the targeted resource. The PKI Credential
Mapping provider uses the subject and resource name to retrieve the corresponding credential
from the keystore.
To use the PKI Credential Mapping provider, you need to:

1. Configure keystores with appropriate keys and distribute the keystores on all machines in a
WebLogic Server cluster. Setting up keystores is not a WebLogic Server function. For
information about setting up keystores, see the help for the Java keytool utility at the
following locations:

• Java SE 17 - keytool in Java Development Kit Version 17 Tool Specifications

• Java SE 21 - keytool in Java Development Kit Version 21 Tool Specifications

See also Configuring Keystores for information about keystores and keys in WebLogic
Server.

2. Configure a PKI Credential Mapping provider. A PKI Credential Mapping provider is not
already configured in the default security realm (myrealm). See PKI Credential Mapper
Attributes and Configure a Credential Mapping Provider in Oracle WebLogic Remote
Console Online Help .

3. Create credential mappings.

This section contains the following topics:

• PKI Credential Mapper Attributes

• Credential Actions

PKI Credential Mapper Attributes
To configure the PKI Credential Mapping provider, set values for these attributes. See
Configure a Credential Mapping Provider in Oracle WebLogic Remote Console Online Help .

• Keystore Provider—A keystore provider for Jakarta Security. If no value is specified, the
default provider class is used.

• Keystore Type— JKS (the default) or PKCS12.

• Keystore Pass Phrase—Password used to access the keystore

• Keystore File Name—Location of the keystore relative to the directory where the server
was started.

In addition, two optional attributes determine how the PKI Credential Mapping provider locates
credential mappings in cases where the exact resource or subject may not be available:

• Use Resource Hierarchy—A credential is located by traversing up the resource hierarchy
for each type of resource. The search for all possible PKI credentials will start from the
specific resource and will walk up the resource hierarchy to find all possible matches. This
attribute is enabled by default.

• Use Initiator Group Names—When a subject is passed to the PKI Credential Mapper
provider, a credential is located by examining the groups of which the initiator is a member.
This is enabled by default.

Chapter 8
Configuring a PKI Credential Mapping Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

https://docs.oracle.com/en/java/javase/17/docs/specs/man/keytool.html
https://docs.oracle.com/en/java/javase/21/docs/specs/man/keytool.html

Credential Actions
Optionally, you can label a credential mapping with a credential action. You can do this in
WebLogic Remote Console when you create the credential mapping. The credential action is
an arbitrary string that distinguishes credential mappings used in different circumstances. For
example, one credential mapping could decrypt a message from a remote resource and
another credential mapping could sign messages to be sent to the same resource. The subject
initiator and the target resource are not sufficient to distinguish these two credential mappings.
You can use the credential action to label one of these credential mappings something like
decrypt and the other one sign. Then, the container calling the PKI Credential Mapping
provider can provide the desired credential action value in the ContextHandler that is passed
to the provider.

Configuring a SAML 2.0 Credential Mapping Provider for SAML
2.0

The SAML 2.0 Credential Mapping provider in WebLogic Server generates SAML 2.0
assertions that can be used to assert identity in the SAML 2.0 Web SSO Profile and the WS-
Security SAML Token Profile version 1.1 use cases. The SAML 2.0 Credential Mapping
provider generates the assertion types listed and described in Table 8-1.

Table 8-1 Assertion Types Supported by the SAML 2.0 Credential Mapping Provider

Assertion Type Description

bearer The subject of the assertion is the bearer of the assertion, subject to optional
constraints on confirmation using attributes that may be included in the
<SubjectConfirmationData> element of the assertion.

Used for all assertions generated for the SAML 2.0 Web Browser SSO Profile and
with the Web Service Security SAML Token Profile 1.1.

sender-vouches The Identity Provider (different from the subject) vouches for the verification of the
subject. The receiver must have a trust relationship with the Identity Provider.

Used with the Web Service Security SAML Token Profile 1.1 only.

holder-of-key The subject represented in the assertion uses an X.509 certificate that may not be
trusted by the receiver to protect the integrity of the request messages.

Used with the Web Service Security SAML Token Profile 1.1 only.

For general information about WebLogic Server's support for SAML 2.0, see Security Assertion
Markup Language (SAML) and Single Sign-On with the WebLogic Security Framework in
Understanding Security for Oracle WebLogic Server. For information about how to use the
SAML 2.0 Credential Mapping provider in a SAML 2.0 single sign-on configuration, see
Configuring Single Sign-On with Web Browsers and HTTP Clients Using SAML. For
information about specifying the confirmation method for assertions generated for web service
Service provider partners, see Using Security Assertion Markup Language (SAML) Tokens For
Identity in Securing WebLogic Web Services for Oracle WebLogic Server.

This section includes the following topics:

• SAML 2.0 Credential Mapping Provider Attributes

• Service Provider Partners

Chapter 8
Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

SAML 2.0 Credential Mapping Provider Attributes
Configuration of the SAML 2.0 Credential Mapping provider is controlled by setting attributes
on the SAML2CredentialMapperMBean. You can access the SAML2CredentialMapperMBean using
the WebLogic Scripting Tool (WLST), or through WebLogic Remote Console by going to the
Edit Tree, then Security, then Realms, then myRealm and creating a
SAML2CredentialMapper. For details about these attributes, see the description of the
SAML2CredentialMapperMBean in the MBean Reference for Oracle WebLogic Server.

To configure the SAML 2.0 Credential Mapping provider, set the following attributes:

• Issuer URI

Name of this security provider. The value that you specify should match the Entity ID
specified in the SAML 2.0 General page that configures the per-server SAML 2.0
properties.

• Name Qualifier

Used by the Name Mapper class as the security or administrative domain that qualifies the
name of the subject. This provides a means to federate names from disparate user stores
while avoiding the possibility of subject name collision.

• Default Time to Live life time

Values that limit the life time of generated assertions during which they may be used.
Expired assertions cannot be made available for use.

• Signing Key Alias and Signing Key Pass Phrase

Used for signing generated assertions.

• Custom name mapper class

The custom Java class that overrides the default SAML 2.0 Credential Mapping provider
name mapper class, which maps Subjects to identity information contained in the
assertion.

• Generate attributes

Specifies whether group membership information associated with the authenticated
Subject is included in generated assertions.

Service Provider Partners
When you configure WebLogic Server to act as an Identity Provider, you need to create and
configure the Service Provider partners for whom SAML 2.0 assertions are generated. When
an Identity Provider site needs to generate an assertion, the SAML 2.0 Credential Mapping
provider determines the Service Provider partner for whom the assertion must be generated,
and generates it according to the configuration of that Service Provider partner.

The way in which you configure a Service Provider partner, and the specific information you
configure for that partner, depends upon whether the partner is used for web single sign-on or
web services. Configuring a web single sign-on Service Provider partner consists of importing
that partner's metadata file and establishing additional basic information about that partner,
such as the following:

• Determining whether SAML documents, such as authentication responses, SAML artifacts,
and artifact requests, must be signed

• Certificates used for validating signed documents received from this partner

Chapter 8
Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

• The binding to be used for sending SAML artifacts to this partner

• The client user name and password used by this partner when connecting to the local
site's binding

For details about configuring a Service Provider partner for web single sign-on, see:

• Create and Configure Web Single Sign-On Service Provider Partners

• Create a SAML 2.0 Web Single Sign-On Service Provider Partner in Oracle WebLogic
Remote Console Online Help

Configuring a Web service Service Provider partner does not use a metadata file, but does
consist of establishing the following information about that partner:

• Audience URIs, which specify an audience restriction to be included in assertions
generated for this partner

In WebLogic Server, the Audience URI attribute is overloaded to also include the partner
lookup string, which is required by the web service run time to discover the partner. See
Partner Lookup Strings Required for Web Service Partners.

• Custom name mapper class that overrides the default name mapper and that is to be used
specifically with this partner

• Values that specify the life span attributes of assertions generated for this partner

• Confirmation method for assertions received from this partner

For more information about configuring web service Service Provider partners, see Create a
SAML 2.0 Web Service Service Provider Partner in Oracle WebLogic Remote Console Online
Help.

This section includes the following topics:

• Partner Lookup Strings Required for Web Service Partners

• Management of Partner Certificates

Partner Lookup Strings Required for Web Service Partners
For web service Service Provider partners, you also configure Audience URIs. In WebLogic
Server, the Audience URI attribute is overloaded to perform two distinct functions:

• Specify an audience restriction that consists of the target service URL, per the OASIS
SAML 2.0 specification.

• Contain a partner lookup string, which is required at run time by WebLogic Server to
discover the Service Provider partner for which a SAML 2.0 assertion needs to be
generated.

The partner lookup string specifies an endpoint URL, which is used for partner lookup and can
optionally also serve as an Audience URI restriction that is included in the generated assertion.
The ability to specify a partner lookup string that is also an Audience URI eliminates the need
to specify a given target URL twice: once for lookup, and again for audience restriction.

Note

You must configure a partner lookup string for a Service Provider partner so that
partner can be discovered at run time by the web service run time.

Chapter 8
Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

This section includes the following topics:

• Lookup String Syntax

• Specifying Default Partners

Lookup String Syntax
The partner lookup string has the following syntax:

[target:char:]<endpoint-url>

In this syntax, target:char: is a prefix that designates the partner lookup string, where char
represents one of three special characters: a hyphen, plus sign, or asterisk (-, +, or *). This
prefix determines how partner lookup is performed, as described in Table 8-2.

Table 8-2 Service Provider Partner Lookup String Syntax

Lookup String Description

target:-:<endpoint-
url>

Specifies that partner lookup is conducted for an exact match of the URL,
<endpoint-url>. For example, target:-:http://
www.avitek.com:7001/myserver/myservicecontext/myservice-
endpoint specifies the endpoint that can be matched to this Service
Provider, for which an assertion should be generated.

This form of partner lookup string excludes the endpoint URL from being
added as an Audience URI in the generated assertion.

target:+:<endpoint-
url>

Specifies that partner lookup is conducted for an exact match of the URL,
<endpoint-url>.

Using the plus sign (+) in the lookup string results in the endpoint URL being
added as an Audience URI in the assertion generated for this Service
Provider partner.

target:*:<endpoint-
url>

Specifies that partner lookup is conducted for an initial-string pattern match of
the URL, <endpoint-url>. For example, target:*:http://
www.avitek.com:7001/myserver specifies that any endpoint URL
beginning with http://www.avitek.com:7001/myserver can be matched
to this Service Provider, such as: http://www.avitek.com:7001/
myserver/contextA/endpointA and http://www.avitek.com:7001/
myserver/contextB/endpointB.

If more than one Service Provider partner is discovered that is a match for the
initial string, the partner with the longest initial string match is selected.

This form of partner lookup string excludes the endpoint URL from being
added as an Audience URI in the generated assertion.

Note

Configuring one or more partner lookup strings for a Service Provider partner is
required in order for that partner to be discovered at run time. If this partner cannot be
discovered, no assertions for this partner can be generated.

If you configure an endpoint URL without using the target lookup prefix, it will be
handled as a conventional Audience URI that must be contained in assertions
generated for this Service Provider partner. (This also enables backwards-
compatibility with existing Audience URIs that may be configured for this partner.)

Chapter 8
Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

Specifying Default Partners
To support the need for a default Service Provider partner entry, one or more of the default
partner's Audience URI entries may contain a wildcard match that works for all targets. The
actual wildcard URI may depend on the specific format used by the web service run time. For
example:

• target:*:http://

• target:*:https://

Management of Partner Certificates
The SAML 2.0 Credential Mapping provider manages a set of trusted certificates for each
partner configured for web single sign-on. Whenever a signed authentication or artifact request
is received during a message exchange with a partner, the trusted certificate is used to verify
the partner's signature. Partner certificates are used for the following purposes:

• To validate trust when the SAML 2.0 Credential Mapping provider receives a signed
authentication request or artifact request.

• To validate trust in a Service Provider partner that is retrieving a SAML artifact from the
Artifact Resolution Service (ARS) via an SSL connection.

From WebLogic Remote Console, you can view a web single sign-on Service Provider
partner's signing certificate and transport layer client certificate in the partner management
pages of the configured SAML 2.0 Credential Mapping provider.

Java Interface for Configuring Service Provider Partner Attributes
For details about the available operations on web service partners, see the
com.bea.security.saml2.providers.registry.Partner Java interface in the Java API Reference for
Oracle WebLogic Server.

Chapter 8
Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

9
Configuring the Certificate Lookup and
Validation Framework

Oracle WebLogic Server may receive digital certificates as part of Web services requests, two-
way SSL, or other secure interactions. To validate these certificates, WebLogic Server includes
a Certificate Lookup and Validation (CLV) framework.

This chapter includes the following sections:

• Overview of the Certificate Lookup and Validation Framework

• CLV Security Providers Provided by WebLogic Server

Overview of the Certificate Lookup and Validation Framework
The key elements of the CLV framework are the CertPathBuilder and the CertPathValidators.
The CLV framework requires one and only active CertPathBuilder which, given a reference to a
certificate chain, finds the chain and validates it, and zero or more CertPathValidators which,
given a certificate chain, validates it.
When WebLogic Server receives a certificate, the CLV framework uses the security provider
configured as the CertPathBuilder to look up and validate the certificate chain. If the certificate
chain is found and valid, the framework then calls each configured CertPathValidator, in the
order the administrator configured them, to perform extra validation on the chain. The chain is
only valid if the builder and all the validators successfully validate it.

A chain is valid only if all of the following are true:

• The certificates in the chain have signed each other properly.

• The chain terminates in a certificate that is one of the server's trusted CAs.

• The chain honors the basic constraints rules (for example, no certificate in the chain has
been issued by a certificate that is not allowed to issue certificates).

• The certificates in the chain have not expired.

WebLogic Server includes two CLV security providers: the WebLogic CertPath provider (which
acts as both a CertPathBuilder and a CertPathValidator), described in CertPath Provider. and
the Certificate Registry, described in Certificate Registry. Use just the WebLogic CertPath
provider if you want to use trusted CA-based validation of the full certificate chain. Use just the
Certificate Registry if you want only to validate that certificates are registered. Use both,
designating the Certificate Registry as the current builder, if you want to use both types of
validation.

For more information about certificate lookup and validation, see Configuring Keystores.

CLV Security Providers Provided by WebLogic Server
WebLogic Server supports two CLV security providers: the WebLogic CertPath provider and
the Certificate Registry. These providers are described in the following sections:

• CertPath Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 2

• Certificate Registry

CertPath Provider
The default security realm in WebLogic Server is configured with the WebLogic CertPath
provider. The CertPath provider serves two functions: CertPathBuilder and CertPathValidator.
The CertPath provider receives an end certificate or a certificate chain. It uses the server's list
of trusted CAs to complete the certificate chain, if necessary. After building the chain, the
CertPath provider validates the chain, checking the signatures in the chain, ensuring that the
chain has not expired, checking the chain's basic constraints, and verifying that the chain
terminates in a certificate issued by one of the server's trusted CAs.

The WebLogic CertPath provider requires no configuration, other than its Current Builder
attribute, which indicates whether the CertPath provider should be used as the active
certificate chain builder.

Certificate Registry
The Certificate Registry is a security provider that allows you to explicitly register the list of
trusted certificates that are allowed to access WebLogic Server. If you configure a Certificate
Registry as part of your security realm, then only certificates that are registered in the
Certificate Registry will be considered valid. The Certificate Registry provides an inexpensive
mechanism for performing revocation checking. By removing a certificate from the Certificate
Registry, you can invalidate a certificate immediately. The registry is stored in the embedded
LDAP server.

The Certificate Registry is both a CertPath Builder and a CertPath Validator. In either case, the
Certificate Registry ensures that the chain's end certificate is stored in the registry, but does no
other validation. If you use the Certificate Registry as your security realm's CertPath Builder
and you also want to use the WebLogic CertPath provider or another security provider to
perform full chain validation, make sure that you register the intermediate and root CAs in each
server's trust keystore, and the end certificates in the Certificate Registry.

The default security realm in WebLogic Server does not include a Certificate Registry. Once
you configure a Certificate Registry, you can use WebLogic Remote Console to add, remove,
and view certificates in the registry. You can export a certificate from a keystore to a file, using
the Java keytool utility. You can import a certificate that is a PEM or DER file in the file system
into the Certificate Registry using the console. You can also use WebLogic Remote Console to
view the contents of a certificate, including its subject DN, issuer DN, serial number, valid
dates, fingerprints, etc.

See Configure a Certification Path Provider in Oracle WebLogic Remote Console Online Help.

Chapter 9
CLV Security Providers Provided by WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 2

Part III
Configuring Authentication Providers

In Oracle WebLogic Server, Authentication providers are used to prove the identity of users or
system processes. Authentication providers also remember, transport, and make identity
information available to various components of a system, by means of subjects, when needed.

WebLogic Server includes several Authentication providers for accessing common identity
stores, such as LDAP systems, DBMS systems, and more.

This part explains how to configure the Authentication providers included in WebLogic Server.

• About Configuring the Authentication Providers in WebLogic Server

• Configuring the WebLogic Authentication Provider

• Configuring LDAP Authentication Providers

• Configuring RDBMS Authentication Providers

• Configuring the SAML Authentication Provider

• Configuring the Password Validation Provider

• Configuring Identity Assertion Providers

• Configuring the Virtual User Authentication Provider

• Configuring the Oracle Identity Cloud Integrator Provider

• Configuring the WebLogic OpenID Connect Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 1

10
About Configuring the Authentication
Providers in WebLogic Server

Most Authentication providers provided by Oracle WebLogic Server work in similar fashion:
given a username and password credential pair, the provider attempts to find a corresponding
user in the provider's data store. These Authentication providers differ primarily in what they
use as a data store: one of many available LDAP servers, a SQL database, or other data store.
In addition to these username/password based security providers, WebLogic Server includes
identity assertion Authentication providers, which use certificates or security tokens, rather
than username/password pairs, as credentials.
This chapter includes the following topics:

• Choosing an Authentication Provider

• Using More Than One Authentication Provider

Choosing an Authentication Provider
The WebLogic Server security architecture supports password-based and certificate-based
authentication, HTTP certificate-based authentication proxied through an external Web server,
perimeter-based authentication, and authentication based on multiple security token types and
protocols. WebLogic Server includes the following Authentication providers to support these
authentication types:

• The WebLogic Authentication provider, also known as the DefaultAuthenticator, accesses
user and group information in WebLogic Server's embedded LDAP server.

• The Oracle Internet Directory Authentication provider accesses users and groups in Oracle
Internet Directory, an LDAP version 3 directory.

• LDAP Authentication providers access external LDAP stores. You can use an LDAP
Authentication provider to access any LDAP server. WebLogic Server provides LDAP
Authentication providers already configured for Open LDAP and Microsoft Active Directory
servers.

• RDBMS Authentication providers access external relational databases. WebLogic Server
provides three RDBMS Authentication providers: SQL Authenticator, Read-only SQL
Authenticator, and Custom RDBMS Authenticator.

• The WebLogic Identity Assertion provider validates X.509 and IIOP-CSIv2 tokens and
optionally can use a user name mapper to map that token to a user in a WebLogic Server
security realm.

• The SAML Authentication provider, which authenticates users based on Security Assertion
Markup Language 1.1 (SAML) assertions.

• The Negotiate Identity Assertion provider, which uses Simple and Protected Negotiate
(SPNEGO) tokens to obtain Kerberos tokens, validates the Kerberos tokens, and maps
Kerberos tokens to WebLogic users.

• The SAML Identity Assertion provider, which acts as a consumer of SAML security
assertions. This enables WebLogic Server to act as a SAML destination site and supports
using SAML for single sign-on.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 3

• The Oracle Identity Cloud Integrator provider integrates with the Oracle Identity Cloud
Service. The Oracle Identity Cloud Integrator provider combines authentication and identity
assertion in a single provider. You can authenticate using username and passwords or
Oracle Identity Cloud Service identity tokens.

• The WebLogic OpenID Connect provider adds support for using external authorization
servers based on the OAuth and OpenID Connect standards. It combines authentication
and identity assertion services in a single provider.

In addition, you can use:

• Custom (non-WebLogic) Authentication providers, which offer different types of
authentication technologies.

• Custom (non-WebLogic) Identity Assertion providers, which support different types of
tokens.

Using More Than One Authentication Provider
Each security realm must have at least one Authentication provider configured. The WebLogic
Security Framework supports multiple Authentication providers (and thus multiple
LoginModules) for multipart authentication. Therefore, you can use multiple Authentication
providers as well as multiple types of Authentication providers in a security realm. For
example, if you want to use both a retina-scan and a username/password-based form of
authentication to access a system, you configure two Authentication providers.
How you configure multiple Authentication providers can affect the overall outcome of the
authentication process. Configure the JAAS Control Flag for each Authentication provider to
set up login dependencies between Authentication providers and allow single-sign on between
providers. See Setting the JAAS Control Flag Option.

Authentication providers are called in the order in which they were configured in the security
realm. Therefore, use caution when configuring Authentication providers. You can use
WebLogic Remote Console to re-order the configured Authentication providers, thus changing
the order in which they are called. See Changing the Order of Authentication Providers.

Setting the JAAS Control Flag Option
When you configure multiple Authentication providers, use the JAAS Control Flag for each
provider to control how the Authentication providers are used in the login sequence. You can
set the JAAS Control Flag in the WebLogic Remote Console. See Set the JAAS Control Flag in
Oracle WebLogic Remote Console Online Help. You can also use the WebLogic Scripting Tool
or Java Management Extensions (JMX) APIs to set the JAAS Control Flag for an
Authentication provider.

JAAS Control Flag values are:

• REQUIRED—The Authentication provider is always called, and the user must pass its
authentication test. However, regardless of whether authentication succeeds or fails,
authentication still continues down the list of providers.

• REQUISITE—The Authentication provider is always called, and the user is required to
pass its authentication test.

– If authentication succeeds, subsequent providers are executed but can fail (except for
REQUIRED Authentication providers).

– If authentication fails, control is returned to the caller and no subsequent
Authentication provider down the list is executed.

Chapter 10
Using More Than One Authentication Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 3

• SUFFICIENT—The user is not required to pass the authentication test of the
Authentication provider.

– If authentication succeeds, control is returned to the caller and no subsequent
Authentication provider down the list is executed.

– If authentication fails, authentication continues down the list of providers.

Any REQUIRED or REQUISITE Authentication provider in the list must pass its own
authentication test. If no REQUIRED or REQUISITE Authentication provider is in the list,
then the authentication test of at least one OPTIONAL or SUFFICIENT Authentication
provider must pass.

• OPTIONAL—The user is not required to pass the authentication test of the Authentication
provider. Regardless of whether authentication succeeds or fails, authentication continues
down the list of providers.

The overall authentication of the user succeeds only if all REQUIRED and REQUISITE
Authentication providers configured in the realm succeed. Note also:

• If a SUFFICIENT Authentication provider is configured and succeeds, then only the
REQUIRED and REQUISITE Authentication providers prior to that SUFFICIENT
Authentication provider need to have succeeded for the overall authentication to succeed.

• If no REQUIRED or REQUISITE Authentication providers are configured in the security
realm, then at least one SUFFICIENT or OPTIONAL Authentication provider must
succeed.

When additional Authentication providers are added to an existing security realm, by default
the Control Flag is set to OPTIONAL. If necessary, change the setting of the Control Flag and
the order of Authentication providers so that each Authentication provider works properly in the
authentication sequence.

Note

As part of the startup process, WebLogic Server must be able to initialize all security
providers that are configured in the security realm, including any Authentication
providers that have a JAAS Control Flag set to OPTIONAL. If the initialization process
for any security provider cannot be completed, WebLogic Server fails to boot, and an
error message similar to the following is displayed:

<BEA-090870> <The realm "myrealm" failed to be loaded:

Changing the Order of Authentication Providers
The order in which WebLogic Server calls multiple Authentication providers can affect the
overall outcome of the authentication process. The Authentication Providers table lists the
authentication providers in the order in which they will be called. By default, Authentication
providers are called in the order in which they were configured. You can use WebLogic Remote
Console to change the order of Authentication providers.

Chapter 10
Using More Than One Authentication Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 3

11
Configuring the WebLogic Authentication
Provider

The WebLogic Authentication provider (also called the DefaultAuthenticator) uses Oracle
WebLogic Server's embedded LDAP server to store user and group membership information
and, optionally, a set of user attributes such as phone number, email address, and so on. This
provider allows you to create, modify, list, and manage users and group membership in the
WebLogic Remote Console. By default, most configuration options for the WebLogic
Authentication provider are already defined.
This chapter includes the following sections:

• About the WebLogic Authentication Provider

• Setting User Attributes

About the WebLogic Authentication Provider
The WebLogic Authentication provider is configured in the default security realm with the name
DefaultAuthenticator. You need to configure a WebLogic Authentication provider only when
creating a new security realm. However, note the following:

• The WebLogic Authentication provider is configured in the default security realm with the
name DefaultAuthenticator.

• User and group names in the WebLogic Authentication provider are case insensitive. For
information about creating and managing users and groups in the WebLogic Remote
Console, see Users and Groups in Oracle WebLogic Remote Console Online Help.

• Ensure that all user names are unique.

• Specify the minimum length of passwords defined for users that are stored in the
embedded LDAP server, which you can by means of the Minimum Password Length
option that is available on the Configuration > Provider Specific page for the WebLogic
Authentication provider.

• Users in the WebLogic Authentication provider can be modified to include a set of
attributes. See Setting User Attributes.

• If you are using multiple Authentication providers, set the JAAS Control Flag to determine
how the WebLogic Authentication provider is used in the authentication process. See
Using More Than One Authentication Provider.

Setting User Attributes
After you have defined a user in the WebLogic Authentication provider, you can set or modify
one more of the attributes for that user, such as contact details, geographical location, and so
on.These attributes, listed and described in Table 11-1, conform to the user schema for
representing individuals in the inetOrgPerson LDAP object class, which is described in RFC
2798.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 2

Table 11-1 Attributes that Can Be Set for a User

Attribute Description

c Two-letter ISO 3166 country code

departmentnumber Code for department to which the user belongs

displayname Preferred name of the user

employeenumber Numeric or alphanumeric identifier assigned to the user

employeetype Type of employment, which represents the employer to employee relationship

facsimiletelephonen
umber

Facsimile (fax) telephone number

givenname First name; that is, not surname (last name) or middle name

homephone Home telephone number

homepostaladdress Home postal address

l Name of a locality, such as a city, county or other geographic region

mail Electronic address of user (email)

mobile Mobile telephone number

pager Pager telephone number

postaladdress Postal address at location of employment

postofficebox Post office box

preferredlanguage User's preferred written or spoken language

st Full name of state or province

street Physical location of user

telephonenumber User's telephone number in organization

title Title representing user's job function

When you set a value for an attribute, the attribute is added for the user. Likewise, if you
subsequently delete the value of an attribute, the attribute is removed for the user. The set of
available attributes is limited to the preceding list, however. The attribute names cannot be
customized.

These attributes can be managed for a user by operations on the UserAttributeEditorMBean,
or viewed using the operations on the UserAttributeReaderMBean.

Chapter 11
Setting User Attributes

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 2

12
Configuring LDAP Authentication Providers

Oracle WebLogic Server includes LDAP Authentication providers to give access to user
information contained in several common LDAP identity stores.

This chapter includes the following sections:

• LDAP Authentication Providers Included in WebLogic Server

• Requirements for Using an LDAP Authentication Provider

• Configuring an LDAP Authentication Provider: Main Steps

• Accessing Other LDAP Servers

• Enabling an LDAP Authentication Provider for SSL

• Dynamic Groups and WebLogic Server

• Use of GUID and LDAP DN Data in WebLogic Principals

• Configuring Users and Groups in the Oracle Internet Directory Authentication Provider

• Example of Configuring the Oracle Internet Directory Authentication Provider

• Configuring Failover for LDAP Authentication Providers

• Configuring an Authentication Provider for Oracle Unified Directory

• Following Referrals in the Active Directory Authentication Provider

• Improving the Performance of LDAP Authentication Providers

LDAP Authentication Providers Included in WebLogic Server
WebLogic Server includes LDAP Authentication providers for identity stores such as Oracle
Internet Directory, Oracle Unified Directory, and more. The full set of included LDAP
Authentication providers are as follows:

• Oracle Internet Directory Authentication provider

• Oracle Unified Directory Authentication provider

• Active Directory Authentication provider

• Open LDAP Authentication provider

• Generic LDAP Authentication provider

Each LDAP Authentication provider stores user and group information in an external LDAP
server. They differ primarily in how they are configured by default to match typical directory
schemas for their corresponding LDAP server. For information about configuring the Oracle
Internet Directory provider to match the LDAP schema for user and group attributes, see
Configuring Users and Groups in the Oracle Internet Directory Authentication Provider.

WebLogic Server does not support or certify any particular LDAP servers. Any LDAP v2 or v3
compliant LDAP server should work with WebLogic Server. The following LDAP directory
servers have been tested:

• Oracle Internet Directory

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 18

• Oracle Unified Directory

• Active Directory shipped as part of the Microsoft Windows platform

• Open LDAP

An LDAP Authentication provider can also be used to access other LDAP servers. However,
you must either use the LDAP Authentication provider (LDAPAuthenticator) or choose a pre-
defined LDAP provider and customize it. See Accessing Other LDAP Servers.

Note

The Active Directory Authentication provider also supports Microsoft Active Directory
Application Mode (ADAM) as a standalone directory server.

Requirements for Using an LDAP Authentication Provider
If an LDAP Authentication provider is the only configured Authentication provider for a security
realm, you must have the Admin role to boot WebLogic Server and use a user or group in the
LDAP directory. Do one of the following in the LDAP directory:

• By default in WebLogic Server, the Admin role includes the Administrators group. Create
an Administrators group in the LDAP directory, if one does not already exist. Make sure
the LDAP user who will boot WebLogic Server is included in the group.

The Active Directory LDAP directory has a default group called Administrators. Add the
user who will be booting WebLogic Server to the Administrators group and define Group
Base Distinguished Name (DN) so that the Administrators group is found.

• If you do not want to create an Administrators group in the LDAP directory (for example,
because the LDAP directory uses the Administrators group for a different purpose),
create a new group (or use an existing group) in the LDAP directory and include the user
from which you want to boot WebLogic Server in that group. Assign that group the Admin
role.

Note

If the LDAP user who boots WebLogic Server is not properly added to a group that is
assigned to the Admin role, and the LDAP authentication provider is the only
authentication provider with which the security realm is configured, WebLogic Server
cannot be booted.

Configuring an LDAP Authentication Provider: Main Steps
After you choose an LDAP Authentication provider that matches your LDAP server, you need
to enable communication between the provider and the LDAP server, configure the way in
which user and group information can be accessed in the LDAP server, and configure settings
that optimize the performance of the LDAP Authentication provider.
To configure an LDAP Authentication provider, complete the following main steps:

1. Choose an LDAP Authentication provider that matches your LDAP server and create an
instance of the provider in your security realm. See the following topics:

Chapter 12
Requirements for Using an LDAP Authentication Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 18

• If you are using WebLogic Remote Console, see Configure an Authentication or
Identity Assertion Provider in Oracle WebLogic Remote Console Online Help.

• If you are using the WebLogic Scripting Tool (WLST), see Managing Security Data
(WLST Online) in Understanding the WebLogic Scripting Tool. This section also
explains how to use WLST to switch from one LDAP authentication provider to
another.

2. Configure the provider-specific attributes of the LDAP Authentication provider, which you
can do through WebLogic Remote Console. For each LDAP Authentication provider,
attributes are available to:

a. Enable communication between the LDAP server and the LDAP Authentication
provider. For a more secure deployment, Oracle recommends using the SSL protocol
to protect communications between the LDAP server and WebLogic Server. Enable
SSL with the SSLEnabled attribute.

b. Configure options that control how the LDAP Authentication provider searches the
LDAP directory.

Note

The value you enter for principal must be an LDAP administrator who has
the privilege to search users and groups in the corresponding LDAP server. If
the LDAP administrator does not have privileges to search the LDAP server,
an LDAP exception with error code 50 is generated.

c. Specify where in the LDAP directory structure users are located.

d. Specify where in the LDAP directory structure groups are located.

Note

When specifying an LDAP search filter for users or groups using the following
LDAPAuthenticatorMBean attributes, wildcards are accepted but they can
have a negative performance impact on the LDAP server, particularly if you
use a combination of them:

• AllUsersFilter

• UserFromNameFilter

• AllGroupsFilter

• GroupFromNameFilter

For example, the following filter expression combines five wildcarded
conditions, each condition using two asterisk wildcard characters:

(|(cn=*wall*)(givenname=*wall*)(sn=*wall*)(cn=*wall*)(mail=*wall*))

The preceding example filter would likely cause an unacceptable overhead on
the corresponding LDAP server.

Additionally, group names must not contain any trailing space characters.

e. Define how members of a group are located.

Chapter 12
Configuring an LDAP Authentication Provider: Main Steps

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 18

f. Set the name of the global universal identifier (GUID) attribute defined in the LDAP
server.

Note

If you are configuring the Oracle Internet Directory Authentication provider,
see Configuring Users and Groups in the Oracle Internet Directory
Authentication Provider. This section explains how to match the authentication
provider attributes for users and groups to the LDAP directory structure.

g. Set timeout values for the connection to the LDAP server. You can specify two timeout
values: a connection timeout, and a socket timeout.

The connection timeout, specified in the LDAPServerMBean.ConnectTimeout attribute
for all LDAP Authentication providers, has a default value of zero. This default setting
specifies no timeout limit, and can result in a slowdown in WebLogic Server execution
if the LDAP servers configured for an LDAP Authentication provider are unavailable. In
addition, if WebLogic Server has multiple LDAP Authentication providers configured,
the failure to connect to one LDAP server may block the use of the other LDAP
Authentication providers.

Oracle recommends that you set the LDAPServerMBean.ConnectTimeout attribute on
the LDAP Authentication provider to a non-zero value; for example, 60 seconds. You
can set this value using either WebLogic Remote Console or WLST. You can also set
this value in the config.xml file by adding the following configuration parameter for the
LDAP Authentication provider:

<wls:connect-time>60</wls:connect-time>

Note

Oracle recommends that you do not edit the config.xml file directly.

The socket timeout, specified in the -
Dweblogic.security.providers.authentication.ldap.socketTimeout JVM
configuration option, sets the timeout in seconds for connecting to any one LDAP
server specified in the LDAPServerMBean.Host attribute. The default value of the socket
timeout is 0, which sets no socket timeout on the connection.

For information about the appropriate values to set for the connection timeout and
socket timeout values for an LDAP Authentication provider, see Configuring Failover
for LDAP Authentication Providers.

3. Configure performance options that control the cache for the LDAP server. See Improving
the Performance of LDAP Authentication Providers.

Note

If the LDAP Authentication provider fails to connect to the LDAP server, or throws an
exception, check the configuration of the LDAP Authentication provider to make sure it
matches the corresponding settings in the LDAP server.

Chapter 12
Configuring an LDAP Authentication Provider: Main Steps

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 18

See the following topics:

• Accessing Other LDAP Servers

• Enabling an LDAP Authentication Provider for SSL

• Dynamic Groups and WebLogic Server

• Use of GUID and LDAP DN Data in WebLogic Principals

• Configuring Users and Groups in the Oracle Internet Directory Authentication Provider

• Example of Configuring the Oracle Internet Directory Authentication Provider

• Configuring Failover for LDAP Authentication Providers

• Configuring an Authentication Provider for Oracle Unified Directory

• Following Referrals in the Active Directory Authentication Provider

• Improving the Performance of LDAP Authentication Providers

Accessing Other LDAP Servers
The LDAP Authentication providers in this release of WebLogic Server are configured to work
readily with the Oracle Internet Directory, Oracle Unified Directory, Active Directory, and Open
LDAP servers. You can use an LDAP Authentication provider to access other types of LDAP
servers. Choose either the generic LDAP Authentication provider (LDAPAuthenticator) or the
existing LDAP provider that most closely matches the new LDAP server and customize the
existing configuration to match the directory schema and other attributes for your LDAP server.
If you are using Oracle Unified Directory, see Configuring an Authentication Provider for Oracle
Unified Directory.

If you are using Active Directory, see Following Referrals in the Active Directory Authentication
Provider.

Enabling an LDAP Authentication Provider for SSL
To configure SSL for an LDAP Authentication provider, you must create and configure a
custom trust keystore for use with the LDAP server, and specify that the SSL protocol should
be used by the LDAP Authentication provider when connecting to that LDAP server.

To do this, complete the following steps:

1. Configure the LDAP Authentication provider. Make sure you turn on the SSLEnabled
option .

2. Obtain the root certificate authority (CA) certificate for the LDAP server.

3. Create a trust keystore using the preceding certificate. For example, the following example
shows using the keytool command to create a JKS keystore named ldapTrustKS with the
root CA certificate rootca.pem:

keytool -importcert -keystore ./ldapTrustKS -trustcacerts -alias oidtrust -
file rootca.pem -noprompt -storetype jks

Note

When you enter the command as shown above, keytool prompts you to enter a
password for the keystore.

Chapter 12
Accessing Other LDAP Servers

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 18

For more information about creating a trust keystore, see Configuring Keystores.

4. Copy the keystore to a location from which WebLogic Server has access.

5. In WebLogic Remote Console, open the Edit Tree and go to Environment, then Servers,
then myServer. On the Security tab, click the Keystores subtab.

6. If necessary, in the Keystores field, click Change to select the Custom Identity and
Custom Trust configuration rules.

7. If the communication with the LDAP server uses 2-way SSL, configure the custom identity
keystore, keystore type, and passphrase.

8. In Custom Trust Keystore, enter the path and file name of the trust keystore you created.

9. In Custom Trust Keystore Type, enter jks. If you created a PKCS12 keystore (-
storetype pkcs12), enter pkcs12 here.

10. In Custom Trust Keystore Passphrase, enter the password used when creating the
keystore.

11. Reboot the WebLogic Server instance for changes to take effect.

See Configuring SSL. For more information about using WebLogic Remote Console to
configure keystores and enable SSL, see the following topics in Oracle WebLogic Remote
Console Online Help:

• Identity and Trust

• Set Up TLS

Dynamic Groups and WebLogic Server
Many LDAP servers have a concept of dynamic groups or virtual groups. Many LDAP servers
have a concept of dynamic groups or virtual groups. These are groups that, rather than
consisting of a list of users and groups, contain some policy statements, queries, or code that
define the set of users that belong to the group. Even if a group is marked dynamic, users must
log out and log back in before any changes in their group memberships take effect. The term
dynamic describes the means of defining the group and not any runtime semantics of the
group within WebLogic Server.

Use of GUID and LDAP DN Data in WebLogic Principals
When a user is authenticated into WebLogic Server, an authentication provider creates a
Subject with a set of user and group principals, which include the user and group names,
respectively. The LDAP Authentication providers included in WebLogic Server also store the
global universal identifier (GUID) and LDAP distinguished name (DN) data of users and groups
as attributes of those principals. By default, WebLogic Server does not use the GUID or DN
data in WebLogic principals. However, if the WebLogic domain is configured to use JAAS
authorization, the GUID and DN data can be used in principal comparison operations that
occur with Java policy decisions.
When configuring an LDAP Authentication provider, make sure that the name of the GUID
attribute defined in the LDAP server is specified correctly for that provider. The default GUID
attribute name for each LDAP Authentication provider included in WebLogic Server is listed in
Table 12-1.

Chapter 12
Dynamic Groups and WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 18

Table 12-1 Name of GUID Attribute for LDAP Authentication Providers in WebLogic
Server

Provider Default GUID Attribute Name

WebLogic Authentication provider orclguid1

Oracle Internet Directory Authentication provider orclguid

Active Directory Authentication provider objectguid2

Oracle Unified Directory Authentication provider entryuuid

Open LDAP Authentication provider entryuuid

1 Note that the GUID attribute name for the embedded LDAP server cannot be modified, so the WebLogic
Authentication provider does not have a corresponding attribute that is configurable.

2 The Active Directory Authentication provider also supports Microsoft Active Directory Application Mode (ADAM) as a
standalone directory server.

For more information about how GUID and DN data in principal objects may be used, see
Configuring a Domain to Use JAAS Authorization.

Configuring Users and Groups in the Oracle Internet Directory
Authentication Provider

You can modify the default values in the Oracle Internet Directory Authentication provider that
specify how users and groups are located in the LDAP server.

• Configuring User and Group Name Types

• Configuring Static Groups

Configuring User and Group Name Types
By default, the Oracle Internet Directory provider is configured to search users and groups in
the LDAP directory using the class attribute types identified in the following table:

Table 12-2 Class Attribute Types Used for Searches

Class Attribute Type

User object class user name cn

Group object class group name cn

If the user name attribute type, or group name attribute type, defined in the LDAP directory
structure differs from the default settings for the Authentication provider you are using, you
must change those provider settings. The following sections explain how to make those
changes.

Chapter 12
Configuring Users and Groups in the Oracle Internet Directory Authentication Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 18

Note

The Oracle Internet Directory Authentication provider cannot read the name of a user
or group from the LDAP server if the name contains an invalid character. Invalid
characters are:

• Comma (,)

• Plus sign (+)

• Quotes (")

• Backslash (\)

• Angle brackets (< or >)

• Semicolon (;)

If the provider encounters a group or user name containing an invalid character, the
name is ignored. (WebLogic Server in general does not support group names
containing any of these invalid characters. See Create a Group in Oracle WebLogic
Remote Console Online Help.)

This section includes the following topics:

• Changing the User Name Attribute Type

• Changing the Group Name Attribute Type

Changing the User Name Attribute Type
By default, the Oracle Internet Directory Authentication provider is configured with the user
name attribute set to type cn. If the user name attribute type in the LDAP directory structure
uses a different type — for example, uid — you must change the following Authentication
provider attributes:

• AllUsersFilter

• UserFromNameFilter

• UserNameAttribute

For example, if the LDAP directory structure has the user name attribute type uid, the
preceding Authentication provider attributes must be changed as shown in Table 12-3. The
required changes are shown in bold.

Table 12-3 Changing the User Name Attribute Type for the User Object Class

Attribute Name Default Setting Required New Setting

UserNameAttribute cn uid

AllUsersFilter1 (&(cn=*)
(objectclass=person))

(&(uid=*)(objectclass=person))

UserFromNameFilter (&(cn=%u)
(objectclass=person))

(&(uid=%u)(objectclass=person))

1 When specifying an LDAP search filter for users or groups, wildcards are accepted. However, using multiple
asterisk wildcards, particularly for a user or group name attribute, have a negative performance impact on the LDAP
server.

Chapter 12
Configuring Users and Groups in the Oracle Internet Directory Authentication Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 18

To configure the user name attribute type, see Configure an Authentication or Identity
Assertion Provider in Oracle WebLogic Remote Console Online Help.

Changing the Group Name Attribute Type
By default, the Oracle Internet Directory Authentication provider is configured with the group
name attribute type of cn for the static group object class and dynamic group object class. If
the group name attribute type in the LDAP directory structure is different — for example, type
uid is used — you must change the following Authentication provider attributes:

• AllGroupsFilter

• GroupFromNameFilter

• StaticGroupNameAttribute (for static groups)

• DynamicGroupNameAttribute (for dynamic groups)

For example, if the LDAP directory structure of the group object class uses a group name
attribute of type uid, you must change the Authentication provider attributes as shown in
Table 12-4. The required changes are shown in bold.

Table 12-4 Required Changes for the Group Name Attribute Type

Attribute Name Default Setting Required Changes

StaticGroupNameAttr
ibute

cn uid

DynamicGroupNameAtt
ribute

cn uid

AllGroupsFilter1 (&(cn=*)(|
(objectclass=groupofUni
queNames)
(objectclass=orcldynami
cgroup)))

(&(uid=*)(|
(objectclass=groupofUniqueNames)
(objectclass=orcldynamicgroup)))

GroupFromNameFilter
1

(|(&(cn=%g)
(objectclass=groupofUni
queNames))(&(cn=%g)
(objectclass=orcldynami
cgroup)))

(|(&(uid=%g)
(objectclass=groupofUniqueNames))
(&(uid=%g)
(objectclass=orcldynamicgroup)))

1 When specifying an LDAP search filter for users or groups, wildcards are accepted. However, using multiple
asterisk wildcards, particularly for a user or group name attribute, have a negative performance impact on the LDAP
server.

To configure the group name attributes, see Configure an Authentication or Identity Assertion
Provider in Oracle WebLogic Remote Console Online Help.

Configuring Static Groups
The Oracle Internet Directory Authentication provider is configured by default with the following
settings for static groups:

• Static group object class name of groupofuniquenames

• Static member DN attribute of type uniquemember

However, the directory structure of the Oracle Internet Directory LDAP server with which you
are configuring this Authentication provider may instead define the following for static groups:

Chapter 12
Configuring Users and Groups in the Oracle Internet Directory Authentication Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 18

• Static group object class name of groupofnames

• Static member DN attribute of type member

If the LDAP database schema contains the static group object class name of groupofnames,
and the static member DN attribute of type member, you need to change the Oracle Internet
Directory Authentication provider attribute settings as shown in Table 12-5. The required
changes are shown in bold.

Table 12-5 Attribute Settings for Static Groups in the Oracle Internet Directory
Authentication Provider

Attribute Default Setting Required Changes

StaticGroupObjectClass groupofuniquenames groupofnames

StaticMemberDNAttribute uniquemember member

AllGroupsFilter1 (&(cn=*)(|
(objectclass=groupofUni
queNames)
(objectclass=orcldynami
cgroup)))

(&(cn=*)(|
(objectclass=groupofnames)
(objectclass=orcldynamicgroup))
)

GroupFromNameFilter1 (|(&(cn=%g)
(objectclass=groupofUni
queNames))(&(cn=%g)
(objectclass=orcldynami
cgroup)))

(|(&(cn=%g)
(objectclass=groupofnames))
(&(cn=%g)
(objectclass=orcldynamicgroup))
)

1 When specifying an LDAP search filter for users or groups, wildcards are accepted. However, using multiple
asterisk wildcards, particularly for a user or group name attribute, have a negative performance impact on the LDAP
server.

To configure static groups, see Configure an Authentication or Identity Assertion Provider in
Oracle WebLogic Remote Console Online Help.

Example of Configuring the Oracle Internet Directory
Authentication Provider

Learn how to set up a sample Oracle Internet Directory Authentication provider and use a
quick method to verify the configuration.
Perform the following steps to configure this provider:

1. Create a new Oracle Internet Directory Authentication provider. Using WebLogic Remote
Console, follow the process described in Configure an Authentication or Identity Assertion
Provider in Oracle WebLogic Remote Console Online Help. Choose
OracleInternetDirectoryAuthenticator as the type.

2. Configure the new Oracle Internet Directory Authentication provider:

a. Set the Control Flag as needed (REQUIRED, REQUISITE, OPTIONAL or
SUFFICIENT), as described in Setting the JAAS Control Flag Option.

b. Navigate to the Provider Specific tab.

c. Configure the Connection settings with the Oracle Internet Directory server values you
want to use. The port must be the Oracle Internet Directory LDAP port. For the
purpose of this example, assume the following values:

Chapter 12
Example of Configuring the Oracle Internet Directory Authentication Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 18

Host: hostname.com
Port: 3060
Principal: cn=orcladmin
Credential: password
SSLEnabled is unchecked

d. Configure the Users settings as per your Oracle Internet Directory configuration.

As described in Changing the User Name Attribute Type, pay particular attention to the
fields All Users Filter and User From Name Filter. They must reflect the value of the
User Name Attribute field.

The default value for User Name Attribute is cn and therefore the default values for
the filter fields include (&(cn=)...) and (&(*cn=%u)...), respectively. If you change
the User Name Attribute value, you must replace it accordingly in the filter fields as
well.

Note

If there are any leading or trailing white spaces in these filter field values, the
users list may not be properly fetched from Oracle Internet Directory and you
may not be able to authenticate using the Oracle Internet Directory
Authentication provider.

For the purpose of example, assume the following values. Key changes are marked in
bold.

User Base DN: cn=Users,dc=us,dc=oracle,dc=com
All Users Filter: (&(uid=*)(objectclass=person))
User From Name Filter: (&(uid=%u)(objectclass=person))
User Seearch Scope: subtree
User Name Attribute: uid
User Object Class: person

e. Configure the Groups settings as per your Oracle Internet Directory configuration.

As described in Changing the Group Name Attribute Type, by default the Oracle
Internet Directory Authentication provider is configured with the group name attribute
type of cn for the static group object class and dynamic group object class. If the group
name attribute type in the LDAP directory structure is different, you must change other
Authentication provider attributes to match.

In addition, as described in Configuring Static Groups, the Oracle Internet Directory
Authentication provider is configured by default with a Static group object class name
of groupofuniquenames and a Static member DN attribute of type uniquemember.

If the LDAP database schema instead contains the static group object class name of
groupofnames, and the static member DN attribute of type member, you need to change
the attribute settings as shown in Table 12-5.

For the purpose of example, assume the following values. Key values that must match
are marked in bold.

Group Base DN: cn=Groups,dc=us,dc=oracle,dc=com
All Groups Filter: (&(cn=*)(objectclass=groupofUniqueNames))

Static Group Name Attribute: cn
Static Group Object Class: groupofuniquenames
Static Member DN attribute: uniquemember
Static Group DNs from Member DN Filter: (&(uniquemember=%M)

Chapter 12
Example of Configuring the Oracle Internet Directory Authentication Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 18

(objectclass=groupofuniquenames))

Dynamic Group Name Attribute: (empty)
Dynamic Group Object Class: (empty)
Dynamic Member URL Attribute: (empty)
User Dynamic Group DN Attribute: (empty)

f. Configure all other sections as needed, using Configuring an LDAP Authentication
Provider: Main Steps for guidance. In this example, all of the default values are
appropriate.

g. Save your changes.

3. If needed, order the providers to make the Oracle Internet Directory Authentication
provider first in the list.

4. Restart the WebLogic Server to complete the changes.

5. Verify the setup.

Configuring Failover for LDAP Authentication Providers
You can configure an LDAP provider to work with multiple LDAP servers and enable failover if
one LDAP server is not available. Use the LDAPAuthenticatorMBean.Host attribute to specify
the names of the additional LDAP servers. Each host name may include a trailing space
character and a port number. In addition, set the Parallel Connect Delay and Connection
Timeout attributes for the LDAP Authentication provider

• Parallel Connect Delay—Specifies the number of seconds to delay when making
concurrent attempts to connect to multiple servers. An attempt is made to connect to the
first server in the list. The next entry in the list is tried only if the attempt to connect to the
current host fails. This setting might cause your application to block for an unacceptably
long time if a host is down. If the value is greater than 0, another connection setup thread
is started after the specified number of delay seconds has passed. If the value is 0,
connection attempts are serialized.

• Connection Timeout—Specifies the maximum number of seconds to wait for the
connection to the LDAP server(s) to be established. If the value is set to 0, the default,
there is no maximum time limit and WebLogic Server waits until the TCP/IP layer times out
to return a connection failure.

If multiple hosts are set in the Host attribute, the connection timeout controls the total
timeout value for attempts to connect to all the specified hosts.

Oracle recommends setting the connection timeout to a value of at least 60 seconds,
depending upon the configuration of TCP/IP.

• Socket Timeout—Specifies the maximum number of seconds to wait for the connection to
any one host specified in the Host attribute. The socket timeout is specified only using the
-Dweblogic.security.providers.authentication.ldap.socketTimeout=seconds
security parameter for the JVM in which WebLogic Server runs. The default value of the
socket timeout is 0, which sets no socket timeout.

Note that setting the socket timeout is not available in WebLogic Remote Console. For
information about the options for configuring WebLogic Server security parameters, see
Security in Command Reference for Oracle WebLogic Server.

The following examples present scenarios that occur when an LDAP Authentication provider is
configured for LDAP failover:

Chapter 12
Configuring Failover for LDAP Authentication Providers

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 18

LDAP Failover Example 1
In the following scenario, an LDAP Authentication provider is configured with three servers in
its Host attribute: directory.knowledge.com:1050, people.catalog.com, and 199.254.1.2.
The status of the LDAP servers is as follows:

• directory.knowledge.com:1050 is down

• people.catalog.com is up

• 199.254.1.2 is up

WebLogic Server attempts to connect to directory.knowledge.com. After three seconds, or
the socket connection throws an exception, the connect attempt times out and WebLogic
Server attempts to connect to the next specified host (people.catalog.com). WebLogic Server
then uses people.catalog.com as the LDAP Server for this connection. Otherwise, after
another three seconds, WebLogic Server tries to connect to 199.254.1.2. This process
continues, but will fail if the overall LDAP server connection process exceeds 10 seconds.

Table 12-6 LDAP Configuration Example 1

LDAP Option Value

Host directory.knowledge.com:1050 people.catalog.com 199.254.1.2

Parallel Connect Delay 0

Connect Timeout 10

Socket Timeout 3

LDAP Failover Example 2
In the following scenario, WebLogic Server attempts to connect to directory.knowledge.com.
After 1 second (specified by the Parallel Connect Delay attribute), the connect attempt times
out and WebLogic Server tries to connect to the next specified host (people.catalog.com) and
directory.knowledge.com at the same time. If the connection to people.catalog.com
succeeds, WebLogic Server uses people.catalog.com as the LDAP Server for this
connection. WebLogic Server cancels the connection to directory.knowledge.com after the
connection to people.catalog.com succeeds.

Table 12-7 LDAP Configuration Example 2

LDAP Option Value

Host directory.knowledge.com:1050 people.catalog.com 199.254.1.2

Parallel Connect Delay 1

Connect Timeout 10

Socket Timeout 3

Chapter 12
Configuring Failover for LDAP Authentication Providers

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 18

Configuring an Authentication Provider for Oracle Unified
Directory

Use WebLogic Remote Console to configure the Oracle Unified Directory Authentication
provider. Complete the following steps:

1. Follow the process described in Configure an Authentication or Identity Assertion Provider
in Oracle WebLogic Remote Console Online Help. Choose
OracleUnifiedDirectoryAuthenticator as the type.

2. Configure the connection attributes for Oracle Unified Directory, as well as any other
attributes as appropriate.

3. In the GUID Attribute field, make sure entryuuid is displayed.

4. Click Save.

Note

After you configure the Oracle Unified Directory Authentication provider and
subsequently log in to WebCenter as the LDAP user configured for that provider, you
might receive a WCS error stating that the user is not found in the identity store. You
receive this error if the DefaultAuthenticator provider in your security realm is set to
REQUIRED. As a workaround, change the JAAS Control Flag for the
DefaultAuthenticator provider to SUFFICIENT. See Setting the JAAS Control Flag
Option.

Following Referrals in the Active Directory Authentication
Provider

If Active Directory uses LDAP referrals, you must configure the Active Directory Authentication
provider to follow those referrals by making sure that the LDAPServerMBean.FollowReferrals
attribute is enabled. This attribute is enabled by default, but Oracle recommends that you make
sure it is specifically enabled.
You can enable this attribute using WLST or WebLogic Remote Console.

Improving the Performance of LDAP Authentication Providers
WebLogic Server supports the use of several ways to improve the performance of LDAP
Authentication providers, such as optimizing settings for the group membership caches,
connection pool size, and user cache.

To improve the performance of LDAP Authentication providers:

• Optimize the group membership caches used by the LDAP Authentication providers. See
Optimizing the Group Membership Caches.

• Optimize the connection pool size and user cache. See Optimizing the Connection Pool
Size and User Cache.

• Expose the Principal Validator cache for the security realm and increase its thresholds.
See Optimizing the Principal Validator Cache.

Chapter 12
Configuring an Authentication Provider for Oracle Unified Directory

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 18

• If you are using the Active Directory Authentication provider, configure it to perform group
membership lookups using the tokenGroups option. The tokenGroups option holds the
entire flattened group membership for a user as an array of system ID (SID) values. The
SID values are specially indexed in the Active Directory and yield extremely fast lookup
response. See Configuring the Active Directory Authentication Provider to Improve
Performance .

• If you are using the generic LDAP Authentication provider, you can use the
LDAPAuthenticatorMBean API to analyze hit/miss statistics collected from the group
membership and user caches. See Analyzing the Generic LDAP Authenticator Cache
Statistics.

• When you are configuring a new LDAP Authentication provider or making changes to an
existing one, an API is invoked to test the connection between this provider and the
corresponding LDAP server during the configuration. See Testing the LDAP Connection
During Configuration.

Optimizing the Group Membership Caches
To optimize the group membership caches for an LDAP Authentication provider, set the
following attributes:

• Group Membership Searching—Available from the Provider Specific page, this attribute
controls whether group searches are limited or unlimited in depth. This option controls how
deeply to search into nested groups. For configurations that use only the first level of
nested group hierarchy, this option allows improved performance during user searches by
limiting the search to the first level of the group.

– If a limited search is defined, Max Group Membership Search Level must be defined.

– If an unlimited search is defined, Max Group Membership Search Level is ignored.

• Max Group Membership Search Level—Available from the Provider Specific page, this
attribute controls the depth of a group membership search if Group Membership Searching
is defined. Possible values are:

– 0—Indicates only direct groups will be found. That is, when searching for membership
in Group A, only direct members of Group A will be found. If Group B is a member of
Group A, the members will not be found by this search.

– Any positive number—Indicates the number of levels to search. For example, if this
option is set to 1, a search for membership in Group A will return direct members of
Group A. If Group B is a member of Group A, the members of Group B will also be
found by this search. However, if Group C is a member of Group B, the members of
Group C will not be found by this search.

• Enable Group Membership Lookup Hierarchy Caching— Available from the Performance
page, this attribute indicates whether group membership hierarchies found during recursive
membership lookup are cached. Each subtree found will be cached. The cache holds the
groups to which a group is a member. This setting only applies if Group Membership is
enabled. By default, it is disabled.

• Max Group Hierarchies in Cache—Available from the Performance page, this attribute
specifies the maximum size of the Least Recently Used (LRU) cache that holds group
membership hierarchies. A value of 1024 is recommended. This setting only applies if
Enable Group Membership Lookup Hierarchy Caching is enabled.

• Group Hierarchy Cache TTL—Available from the Performance page, this attribute specifies
the number of seconds cached entries stay in the cache. The default is 60 seconds. A
value of 6000 is recommended.

Chapter 12
Improving the Performance of LDAP Authentication Providers

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 18

In planning your cache settings, bear in mind the following considerations:

• Enabling a cache involves a trade-off of performance and accuracy. Using a cache means
that data is retrieved faster, but runs the risk that the data may not be the latest available.

• The time-to-live (TTL) setting how long you are willing to accept potentially stale data. This
depends a lot on your particular business needs. If you frequently changes group
memberships for users, then a long TTL could mean that group related changes won't
show up for a while, and you may want a short TTL. If group memberships almost never
change after a user is added, a longer TTL may be fine.

• The cache size is related to the amount of memory you have available, as well as the
cache TTL. Consider the number of entries that might be loaded in the span of the TTL,
and size the cache in relation to that number. A longer TTL will tend to require a larger
cache size.

Optimizing the Connection Pool Size and User Cache
When configuring any of the LDAP Authentication providers, you can improve the performance
of the connection between WebLogic Server and the LDAP server by optimizing the size of the
LDAP connection pool and user cache. To make these optimizations, complete the following
steps:

1. Set the LDAP connection pool size to 100 by using either of the following methods:

• Define the following system property in the setDomainEnv script, which is located in the
bin directory of the WebLogic domain:

-Dweblogic.security.providers.authentication.LDAPDelegatePoolSize=100

• In WebLogic Remote Console, go to the provider specific page of the LDAP
authentication provider you are configuring and specify 100 in the Connection Pool
Size field.

2. Enable and enlarge the cache used with the LDAP server by completing the following
steps in WebLogic Remote Console:

a. On the provider specific page of the LDAP authentication provider you are configuring,
make sure that the Cache Enabled option is enabled.

b. In the Cache Size field, specify a value of 3200 KB.

c. In the Cache TTL field, specify a time-to-live value that matches the Group Hierarchy
Cache TTL value (see Optimizing the Group Membership Caches). A value of 6000 is
recommended).

d. Set the results timeout value for the LDAP server. On the current Provider Specific
configuration page, specify a value of 1000 ms in the field labeled Results Time Limit.

3. Restart WebLogic Server for the changes to take effect.

Optimizing the Principal Validator Cache
To improve the performance of an LDAP Authentication provider, the settings of the cache
used by the WebLogic Principal Validation provider can be increased as appropriate. The
Principal Validator cache used by the WebLogic Principal Validation provider caches signed
WLSAbstractPrincipals. To optimize the performance of the Principal Validator cache, set these
attributes for your security realm:

• Enable WebLogic Principal Validator Cache—Indicates whether the WebLogic Principal
Validation provider uses a cache. This setting only applies if Authentication providers in the

Chapter 12
Improving the Performance of LDAP Authentication Providers

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 18

security realm use the WebLogic Principal Validation provider and WLSAbstractPrincipals.
By default, it is enabled.

• Max WebLogic Principals In Cache—The maximum size of the Last Recently Used (LRU)
cache used for validated WLSAbstractPrincipals. The default setting is 500. This setting
only applies if Enable WebLogic Principal Validator Cache is enabled.

Configuring the Active Directory Authentication Provider to Improve
Performance

To configure an Active Directory Authentication provider to use the tokenGroups option, set the
following attributes:

• Use Token Groups for Group Membership Lookup—Indicates whether to use the Active
Directory tokenGroups lookup algorithm instead of the standard recursive group
membership lookup algorithm. By default, this option is not enabled.

Note

Access to the tokenGroups option is required (meaning, the user accessing the
LDAP directory must have privileges to read the tokenGroups option and the
tokenGroups option must be in the schema for user objects).

• Enable SID to Group Lookup Caching—Indicates whether or not SID-to-group name
lookup results are cached. This setting only applies if the Use Token Groups for Group
Membership Lookup option is enabled.

• Max SID To Group Lookups In Cache—The maximum size of the Least Recently Used
(LRU) cache for holding SID to group lookups. This setting applies only if both the Use
Token Groups for Group Membership Lookup and Enable SID to Group Lookup Caching
options are enabled.

Analyzing the Generic LDAP Authenticator Cache Statistics

If you are using the generic LDAP Authentication provider, then you can use the
LDAPAuthenticatorMBean API to analyze hit/miss statistics collected from the group
membership and user caches. To analyze cache statistics, you must enable cache collection
and statistics of the cache. You can do this by using either WebLogic Remote Console or the
WebLogic Scripting Tool (WLST).

• Using WebLogic Remote Console — To enable cache collection and statistics, perform
the following steps:

1. In the Edit Tree, go to Security, then Realms, then myRealm, then Authentication
Providers.

2. On the Provider Specific tab for your LDAP Authentication provider, turn on the Cache
Enabled and Cache Statistics Enabled options.

3. Save the changes. If automatic realm restart is enabled, you do not need to restart the
domain after activating your changes.

• Using the WebLogic Scripting Tool (WLST) — Cache statistics can be accessed
through a runtime MBean, LdapAuthenticatorRuntimeMBean, using the WebLogic

Chapter 12
Improving the Performance of LDAP Authentication Providers

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 18

Scripting Tool (WLST). The following example demonstrates the use of WLST to retrieve
cache statistics:

connect('','','t3://host:port')
Please enter your username :
Please enter your password :
...
serverRuntime()
cd("ServerSecurityRuntime/")
cd("$servername")
cd("RealmRuntimes/myrealm/AuthenticatorRuntimes/
OracleInternetDirectoryAuthenticator")
ls()

The cache statistics data:

-r-- GroupCacheHits 47
-r-- GroupCacheQueries 49
-r-- GroupCacheSize 1
-r-- GroupCacheStatStartTimeStamp 2015-07-15 19:24:02.702
-r-- Name
OracleInternetDirectoryAuthenticator
-r-- ProviderName
OracleInternetDirectoryAuthenticator
-r-- Type
LdapAuthenticatorRuntime
-r-- UserCacheHits 296
-r-- UserCacheQueries 300
-r-- UserCacheSize 2
-r-- UserCacheStatStartTimeStamp 2015-07-15 19:24:01.64

Note

Cache statistics is not supported for the DefaultAuthenticator Authentication
provider.

Testing the LDAP Connection During Configuration

Similar to the JDBC connection testing, WebLogic Server tests the connection between the
Authentication provider and the LDAP server.

On the Provider Specific page, after you configure a new LDAP Authentication provider or
make changes to an existing one, when you save your configuration changes, WebLogic
Server tests the connection between this provider and the corresponding LDAP server. If the
test succeeds, the configuration settings are saved and you may activate them. If the test fails,
an error message is displayed indicating a problem. No configuration settings are saved.

Chapter 12
Improving the Performance of LDAP Authentication Providers

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 18 of 18

13
Configuring RDBMS Authentication Providers

In Oracle WebLogic Server, an RDBMS Authentication provider is a username/password-
based Authentication provider that uses a relational database, rather than an LDAP system, as
an identity store for user, password, and group information.

This chapter includes the following sections:

• About Configuring the RDBMS Authentication Providers

• Common RDBMS Authentication Provider Attributes

• Configuring the SQL Authentication Provider

• Configuring the Read-Only SQL Authenticator

• Configuring the Custom DBMS Authenticator

About Configuring the RDBMS Authentication Providers
WebLogic Server includes RDBMS Authentication providers for SQL database and relational
databases. These providers include the following:

• SQL Authenticator—Uses a SQL database and allows both read and write access to the
database. This Authentication provider is configured by default with a typical SQL
database schema, which you can configure to match your database's schema. See
Configuring the SQL Authentication Provider.

• Read-only SQL Authenticator—Uses a SQL database and allows only read access to the
database. For write access, you use the SQL database's own interface, not the WebLogic
security provider. See Configuring the Read-Only SQL Authenticator.

• Custom RDBMS Authenticator—Requires you to write a plug-in class. This may be a better
choice if you want to use a relational database for your authentication data store, but the
SQL Authenticator's schema configuration is not a good match for your existing database
schema. See Configuring the Custom DBMS Authenticator.

For information about adding an RDBMS Authentication provider to your security realm, see
Configure an Authentication or Identity Assertion Provider in Oracle WebLogic Remote
Console Online Help.

Common RDBMS Authentication Provider Attributes
All three RDBMS Authentication providers included with WebLogic Server have configuration
options for setting the data source name, the Group Membership Searching and Max Group
Membership Search Level attributes, and the group caching attributes. These configuration
options are described in the following topics:

• Data Source Attribute

• Group Searching Attributes

• Group Caching Attributes

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 6

Data Source Attribute
The Data Source Name specifies the WebLogic Server data source to use to connect to the
database.

Group Searching Attributes
The Group Membership Searching and Max Group Membership Search Level attributes
specify whether recursive group membership searching is unlimited or limited, and if limited,
how many levels of group membership can be searched. For example, if you specify that
Group Membership Searching is LIMITED, and the Max Group Membership Search Level is 0,
then the RDBMS Authentication providers will find only groups that the user is a direct member
of. Specifying a maximum group membership search level can greatly increase authentication
performance in certain scenarios, since it may reduce the number of DBMS queries executed
during authentication. However, you should only limit group membership search if you can be
certain that the group memberships you require are within the search level limits you specify.

Note

If the RDBMS contains cyclic groups, or groups that are defined to contain
themselves, the RDBMS Authentication provider may be unable to complete the
authentication process. Setting the Group Membership Searching and Max Group
Membership Search Level attributes can help limit recursive group name lookups.
However, the use of RDBMS Authentication providers with cyclic groups is not
supported and must be avoided.

Group Caching Attributes
You can improve the performance of RDBMS Authentication providers by caching the results of
group hierarchy lookups. Use of this cache can reduce the frequency with which the RDBMS
Authentication provider needs to access the database. You can configure the use, size, and
duration of the cache.

Configuring the SQL Authentication Provider
If you are using the SQL Authentication provider, you configure how the provider and its
associated database handle user passwords, and you configure the SQL statement attributes
needed for accessing user information in the database. Configuring these attributes is
described in the following sections:

• Password Attributes

• SQL Statement Attributes

Password Attributes
WebLogic Server uses the following attributes to govern how the SQL Authentication provider
and its underlying database handle user passwords.

Chapter 13
Configuring the SQL Authentication Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 6

Plaintext Passwords Enabled

Use the Plaintext Passwords Enabled attribute to specify whether you can use plain text
passwords.

Password Style Retained

Use the Password Style Retained attribute to control how a password is stored in the database
when updating an existing user's password. If enabled, the default, the password style and
algorithm used for the original password in the database are used for the new password. If
disabled, the provider uses the settings specified for the Password Algorithm and Password
Style attributes for the new password.

Password Style

Use the Password Style attribute to specify the password style to use when storing passwords
for new users, and for updating the password of existing users if the Password Style Retained
attribute is disabled. Valid options are PLAINTEXT, HASHED, or SALTEDHASHED. SALTEDHASHED is
selected by default.

Password Algorithm

Use the Password Algorithm attribute to set the message digest algorithm used to hash
passwords for storage.

Note

The SQL authenticator uses the following formula for the SALTEDHASHED password:
{SCRYPT-BSC} + plain text salt + base64Encode(scrypt{salt + plain text
password})

The formula shown uses the default value of SCRYPT-BSC. If you specify a value other
than SCRYPT-BSC for the password algorithm, then the formula will change to use that
value instead. Because the SQL Authenticator uses a string type to hold the hashed
password value, this formula uses base64 encoding so that the bytes produced by the
password algorithm can be stored as strings in the RDBMS tables.

Table 13-1 describes the password algorithms that WebLogic Server supports. Some of the
algorithms offer two settings: a standard configuration appended with -BSC and a hardened,
more computationally expensive configuration appended with -ADV.

Table 13-1 Supported Password Algorithms

Password Algorithm Description

SCRYPT-BSC (Default) SCRYPT-BSC is the default password algorithm.

• 16,384 iterations
• Block size of 16
• Parallel factor of 1
• 32-byte hash length
• 16-byte salt length
The Password Style attribute must be set to SALTEDHASHED
when this password algorithm is selected.

Chapter 13
Configuring the SQL Authentication Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 6

Table 13-1 (Cont.) Supported Password Algorithms

Password Algorithm Description

SCRYPT-ADV • 32,768 iterations
• Block size of 16
• Parallel factor of 2
• 32-byte hash length
• 16-byte salt length
The Password Style attribute must be set to SALTEDHASHED
when this password algorithm is selected.

ARGON2-BSC Specifically, Argon2ID.

• 10 iterations
• 47,104 KB memory size
• Parallel factor of 1
• 32-byte hash length
• 16-byte salt length
The Password Style attribute must be set to SALTEDHASHED
when this password algorithm is selected.

ARGON2-ADV Specifically, Argon2ID.

• 10 iterations
• 94,208 KB memory size
• Parallel factor of 2
• 32-byte hash length
• 16-byte salt length
The Password Style attribute must be set to SALTEDHASHED
when this password algorithm is selected.

PBKDF2-BSC • 210,000 iterations
• 512-bit key length
• 128-bit salt length
This password algorithm is FIPS-140 compliant.

The Password Style attribute must be set to SALTEDHASHED
when this password algorithm is selected.

PBKDF2-ADV • 400,000 iterations
• 512-bit key length
• 128-bit salt length
This password algorithm is FIPS-140 compliant.

The Password Style attribute must be set to SALTEDHASHED
when this password algorithm is selected.

Chapter 13
Configuring the SQL Authentication Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 6

Table 13-1 (Cont.) Supported Password Algorithms

Password Algorithm Description

Standard Algorithms You can also specify any standard algorithm that is
recognized by a Java Cryptography Extension (JCE) provider
that is available at runtime. The Java Cryptography
Architecture (JCA) defines the standard algorithm
specifications, described at https://docs.oracle.com/en/java/
javase/17/docs/specs/security/standard-
names.html#algorithm-specifications.

Note

While all standard algorithms are
supported, for security purposes,
Oracle recommends that you
choose a password hashing
algorithm with a work factor of at
least 10,000 iterations. SHA-1
and MD based password
algorithms are discouraged and
should be updated where
possible.

SQL Statement Attributes
SQL statement attributes specify the SQL statements used by the provider to access and edit
the username, password, and group information in the database. With the default values in the
SQL statement attributes, it is assumed that the database schema includes the following
tables:

• users (username, password, [description])

• groupmembers (group name, group member)

• groups (group name, group description)

Note

The tables referenced by the SQL statements must exist in the database; the
provider will not create them. You can modify these attributes as needed to match
the schema of your database. However, if your database schema is radically
different from this default schema, you may need to use a Custom DBMS
Authentication provider instead.

Configuring the Read-Only SQL Authenticator
The Read-Only SQL Authentication provider's configurable attributes include those that specify
the SQL statements used by the provider to list the username, password, and group
information in the database. You can modify these attributes as needed to match the schema
of your database.

Chapter 13
Configuring the Read-Only SQL Authenticator

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 6

https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#algorithm-specifications
https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#algorithm-specifications
https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#algorithm-specifications

Configuring the Custom DBMS Authenticator
The Custom DBMS Authentication provider, like the other RDBMS Authentication providers,
uses a relational database as its data store for user, password, and group information. Use this
provider if your database schema does not map well to the SQL schema expected by the SQL
Authenticator. In addition to the attributes described in Common RDBMS Authentication
Provider Attributes, the Custom DBMS Authentication provider's configurable attributes include
those for the plug-in class.

Plug-In Class Attributes
A Custom DBMS Authentication provider requires that you write a plug-in class that
implements the
weblogic.security.providers.authentication.CustomDBMSAuthenticatorPlugin interface.
The class must exist in the system classpath and must be specified in the Plug-in Class Name
attribute for the Custom DBMS Authentication provider. Optionally, you can use the Plugin
Properties attribute to specify values for properties defined by your plug-in class.

Chapter 13
Configuring the Custom DBMS Authenticator

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 6

14
Configuring the SAML Authentication Provider

The Oracle WebLogic Server Security Assertion Markup Language (SAML) Authentication
provider may be used in conjunction with the SAML 2.0 Identity Assertion provider to allow
virtual users to log in using SAML.

If virtual users are allowed, then the SAML Identity Asserter creates user/group principals,
which permit the user to be logged in as a virtual user — a user that does not correspond to
any locally-known user.

If the SAML Authentication provider is configured to run before other authentication providers,
and has a JAAS Control Flag set to SUFFICIENT, this provider creates an authenticated
subject using the user name and groups retrieved from a SAML assertion by the SAML 2.0
Identity Assertion provider.

If the SAML Authentication provider is not configured, or if another authentication provider
(e.g., the default LDAP Authentication provider) is configured before it and its JAAS Control
Flag set is set to SUFFICIENT, then the user name returned by the SAML Identity Assertion
provider is validated by the other authentication provider. In the case of the default LDAP
Authentication provider, authentication fails if the user does not exist in the identity directory.

Note

If you configure the SAML Authentication provider to allow virtual users to log in and
gain access to a resource, make note of the following:

1. The resource must be configured with a security policy to control access. If the
resource is unprotected, the subject created for the virtual user has no principals,
which prevents access from being granted.

2. The protected resource must also use the default cookie JSESSIONID. If the
resource uses a cookie name other than JSESSIONID, the subject's identity is not
propagated to the resource.

For information about configuring security policies, see Securing Resources Using
Roles and Policies for Oracle WebLogic Server.

If you want groups from a SAML assertion, you must configure the SAML Authentication
provider even if you want the LDAP Authentication provider to verify the user's existence.
Otherwise, the groups with which the user is associated is derived from the LDAP directory
and not with the groups in the assertion.

The SAML Authentication provider creates a subject only for users whose identities are
asserted by the SAML 2.0 Identity Assertion provider. The SAML Authentication provider
ignores all other authentication or identity assertion requests.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 1

15
Configuring the Password Validation Provider

Oracle WebLogic Server includes a Password Validation provider, which is configured by
default in each security realm. The Password Validation provider manages and enforces a set
of configurable password composition rules, and is automatically invoked by a supported
authentication provider whenever a password is created or updated for a user in the realm.
When invoked, the Password Validation provider performs a check to determine whether the
password meets the criteria established by the composition rules. The password is then
accepted or rejected as appropriate.
This chapter includes the following sections:

• About the Password Validation Provider

• Password Composition Rules for the Password Validation Provider

• Using the Password Validation Provider with the WebLogic Authentication Provider

• Using the Password Validation Provider with an LDAP Authentication Provider

• Using WLST to Create and Configure the Password Validation Provider

About the Password Validation Provider
Several WebLogic Authentication providers can be used with the Password Validation provider.
This includes the following:

• WebLogic Authentication provider

• SQL Authenticator provider

• LDAP Authentication provider

• Oracle Internet Directory Authentication Provider

• Active Directory Authentication provider

• Open LDAP Authentication provider

For information about configuring the Password Validation provider in the WebLogic Remote
Console, see Configure the Password Validation Provider in Oracle WebLogic Remote
Console Online Help.

Password Composition Rules for the Password Validation
Provider

By default, the Password Validation provider is configured to require passwords that have a
minimum length of eight characters. When used with one of the supported LDAP
authentication providers listed in the preceding section, the Password Validation provider also
requires that passwords meet the additional criteria listed in Table 15-1.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 4

Note

Passwords cannot contain a curly brace ("{") as the first character.

Table 15-1 Additional Password Composition Rules Required by Password Validation
Provider When Used with an LDAP Authentication Provider

LDAP Authentication Provider Additional Password Composition Requirement

• Oracle Internet Directory
Authentication provider

At least one of the characters in the password must be
numeric.

• WebLogic Authentication provider
• LDAP Authentication provider
• Active Directory Authentication

provider
• Open LDAP Authentication provider

At least one of the characters in the password must be non-
alphabetic. For example, a numeric character, an asterisk (*),
or an octothorpe (#).

The password composition rules you optionally can configure for the Password Validation
provider include the following:

• User name policies — Rules that determine whether the password may consist of or
contain the user's name, or the reverse of that name

• Password length policies — Rules for the minimum or maximum number of characters in a
password (composition rules may specify both a minimum and maximum length)

• Character policies — Rules regarding the inclusion of the following characters in the
password:

– Numeric characters

– Lowercase alphabetic characters

– Uppercase alphabetic characters

– Non-alphanumeric characters

Note

Setting password composition rules is only one component of hardening the WebLogic
Server environment against brute-force password attacks. To protect user accounts,
you should also configure user lockout. User lockout specifies the number of incorrect
passwords that may be entered within a given interval of time before the user is locked
out of his or her account. See Protecting User Accounts.

Using the Password Validation Provider with the WebLogic
Authentication Provider

To use the Password Validation provider in conjunction with the WebLogic Authentication
provider, ensure that the minimum password length is the same for both providers. Set the
minimum password length for WebLogic Authentication provider using WebLogic Remote
Console.
By default, the WebLogic Authentication provider requires a minimum password length of 8
characters, of which one is non-alphabetic. However, the minimum password length enforced

Chapter 15
Using the Password Validation Provider with the WebLogic Authentication Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 4

by this provider can be customized. If the WebLogic Authentication provider and Password
Validation provider are both configured in the security realm, and you attempt to create a
password that does not meet the minimum length enforced by the WebLogic Authentication
provider, an error is generated.

If the WebLogic Authentication provider rejects a password because it does not meet the
minimum length requirement, the Password Validation provider is not called. To ensure that the
Password Validator is always used in conjunction with the WebLogic Authentication provider,
make sure that the minimum password length is the same for both providers.

You can set the minimum password length for WebLogic Authentication provider:

• If using WebLogic Remote Console, see Configure the Password Validation Provider in
Oracle WebLogic Remote Console Online Help.

• If using WLST, see Using WLST to Create and Configure the Password Validation
Provider.

Using the Password Validation Provider with an LDAP
Authentication Provider

When the Password Validation provider and an LDAP Authentication provider are configured in
the security realm, passwords are validated through two separate policy checks: one from
Password Validation provider, and the other from the LDAP server, which has its own password
policy check. For example, Oracle Internet Directory has its own password validation
mechanism, which is controlled by the LDAP server administrator. These two password
validation mechanisms are separate, and each has its own set of password composition rules.
If the composition rules are inconsistent, failures may occur in WebLogic Remote Console
when you try to create or reset a password, even if the rules for the Password Validation
provider are enforced. Therefore you should make sure that the password composition rules
for the Password Validation provider do not conflict with those for the LDAP server.

Using WLST to Create and Configure the Password Validation
Provider

The Password Validation provider can be administered in the security realm via a WLST script
that performs operations on the SystemPasswordValidatorMBean, described in MBean
Reference for Oracle WebLogic Server. You may create and configure the Password Validation
provider from a single WLST script, or you may have separate scripts that perform these
functions separately. The following topics explain how, providing sample WLST code snippets:

• Creating an Instance of the Password Validation Provider

• Specifying the Password Composition Rules

Creating an Instance of the Password Validation Provider
The Password Validation provider is created automatically in the security realm when you
create a new domain. However, you can use WLST to create one as well, as shown in
Example 15-1. This code does the following:

1. Gets the current realm and Password Validation provider.

2. Determines whether an instance of the Password Validator provider (named
SystemPasswordValidator) has been created:

Chapter 15
Using the Password Validation Provider with an LDAP Authentication Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 4

• If the provider has been created, the script displays a message confirming its
presence.

• If the provider has not been created, the script creates it in the security realm and
displays a message indicating that it has been created.

Example 15-1 Creating the System Password Validator

edit()
startEdit()

realm = cmo.getSecurityConfiguration().getDefaultRealm()
pwdvalidator = realm.lookupPasswordValidator('SystemPasswordValidator')

if pwdvalidator:
 print 'Password Validator provider is already created'

else:
Create SystemPasswordValidator
 syspwdValidator = realm.createPasswordValidator('SystemPasswordValidator',
 'com.bea.security.providers.authentication.passwordvalidator.SystemPasswordValidator')
 print "--- Creation of System Password Validator succeeded!"

save()
activate()

Specifying the Password Composition Rules
The following example shows the WLST code that sets the composition rules for the Password
Validation provider. For information about the rule attributes that can be set in this script, see
the description of the SystemPasswordValidatorMBean in the MBean Reference for Oracle
WebLogic Server.

edit()
startEdit()

Configure SystemPasswordValidator
try:
 pwdvalidator.setMinPasswordLength(8)
 pwdvalidator.setMaxPasswordLength(12)
 pwdvalidator.setMaxConsecutiveCharacters(3)
 pwdvalidator.setMaxInstancesOfAnyCharacter(4)
 pwdvalidator.setMinAlphabeticCharacters(1)
 pwdvalidator.setMinNumericCharacters(1)
 pwdvalidator.setMinLowercaseCharacters(1)
 pwdvalidator.setMinUppercaseCharacters(1)
 pwdvalidator.setMinNonAlphanumericCharacters(1)
 pwdvalidator.setMinNumericOrSpecialCharacters(1)
 pwdvalidator.setRejectEqualOrContainUsername(true)
 pwdvalidator.setRejectEqualOrContainReverseUsername(true)
 print " --- Configuration of SystemPasswordValidator complete ---"
except Exception,e:
 print e

save()
activate()

Chapter 15
Using WLST to Create and Configure the Password Validation Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 4

16
Configuring Identity Assertion Providers

In perimeter authentication, a system outside of Oracle WebLogic Server establishes trust
through tokens, as opposed to simple authentication, where WebLogic Server establishes trust
through usernames and passwords. An Identity Assertion provider verifies the tokens and
performs whatever actions are necessary to establish validity and trust in the token.
This chapter includes the following sections:

• About the Identity Assertion Providers

• How an LDAP X509 Identity Assertion Provider Works

• Configuring an LDAP X509 Identity Assertion Provider: Main Steps

• Configuring a Negotiate Identity Assertion Provider

• Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0

• Ordering of Identity Assertion for Servlets

• Configuring Identity Assertion Performance in the Server Cache

• Authenticating a User Not Defined in the Identity Store

• Configuring a User Name Mapper

• Configuring a Custom User Name Mapper

About the Identity Assertion Providers
Each Identity Assertion provider is designed to support one or more token formats. WebLogic
Server includes the following Identity Assertion providers:

• WebLogic Identity Asserter

• LDAP X.509 Identity Asserter

• Negotiate Identity Asserter

• SAML 2.0 Identity Asserter

• Oracle Identity Cloud Integrator

• WebLogic OpenID Connect

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 15

Note

The following providers combine authentication and identity assertion into a single
provider:

• The Oracle Identity Cloud Integrator provider establishes identity (the Subject) on
WebLogic Server with the authenticated user, the user's groups, and the user's
application roles when the identity store is the Oracle Identity Cloud Service. See
Configuring the Oracle Identity Cloud Integrator Provider.

• The WebLogic OpenID Connect provider establishes identity (the Subject) on
WebLogic Server with the authenticated user and the user's groups when the
identity store is a supported OpenID provider. See Configuring the WebLogic
OpenID Connect Provider.

Multiple Identity Assertion providers can be configured in a security realm, but none are
required. Identity Assertion providers can support more than one token type, but only one
token type per Identity Assertion provider can be active at a given time. In the Active Type
field on the Common tab in WebLogic Remote Console, define the active token type. The
WebLogic Identity Assertion provider supports identity assertion with:

• X.509 certificates

• CORBA Common Secure Interoperability version 2 (CSI v2)

If you are using CSI v2 identity assertion, define the list of client principals in the Trusted
Client Principals field, available from the Provider Specific tab in WebLogic Remote
Console.

• weblogic-jwt-token tokens

This token type is used internally for propagating identity in REST invocations of other
applications in the domain, and is configured by default.

If multiple Identity Assertion providers are configured in a security realm, they can all support
the same token type. However, the token can be active for only one provider at a time.

With the WebLogic Identity Assertion provider, you can use a user name mapper to map the
tokens authenticated by the Identity Assertion provider to a user in the security realm. For
more information about configuring a user name mapper, see Configuring a WebLogic
Credential Mapping Provider.

If the authentication type in a Web application is set to CLIENT-CERT, the Web Application
container in WebLogic Server performs identity assertion on values from request headers and
cookies. If the header name or cookie name matches the active token type for the configured
Identity Assertion provider, the value is passed to the provider.

The Base64 Decoding Required value on the Provider Specific page determines whether the
request header value or cookie value must be Base64 Decoded before sending it to the
Identity Assertion provider. The setting is enabled by default for purposes of backward
compatibility; however, most Identity Assertion providers will disable this option.

See Configure an Authentication or Identity Assertion Provider in Oracle WebLogic Remote
Console Online Help.

Chapter 16
About the Identity Assertion Providers

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 15

How an LDAP X509 Identity Assertion Provider Works
The LDAP X509 Identity Assertion provider receives an X.509 certificate, looks up the LDAP
object for the user associated with that certificate, ensures that the certificate in the LDAP
object matches the presented certificate, and then retrieves the name of the user from the
LDAP object.

The LDAP X509 Identity Assertion provider works in the following manner:

1. An application is set up to use perimeter authentication (in other words, users or system
process use tokens to assert their identity).

2. As part of the SSL handshake, the application presents it certificate. The Subject DN in the
certificate can be used to locate the object that represents the user in the LDAP server.
The object contains the user's certificate and name.

3. The LDAP X509 Identity Assertion provider uses the certificate in the Subject DN to
construct an LDAP search to find the LDAP object for the user in the LDAP server. It gets
the certificate from that object, ensures it matches the certificate it holds, and retrieves the
name of the user.

4. The user name is passed to the authentication providers configured in the security realm.
The authentication providers ensure the user exists and locates the groups to which the
user belongs.

Configuring an LDAP X509 Identity Assertion Provider: Main
Steps

Typically, if you use the LDAP X509 Identity Assertion provider, you also need to configure an
LDAP Authentication provider that uses an LDAP server. The authentication provider ensures
the user exists and locates the groups to which the user belongs. You should ensure both
providers are properly configured to communicate with the same LDAP server.
To use an LDAP X509 Identity Assertion provider:

1. Obtain certificates for users and put them in an LDAP Server. See Configuring Keystores.

A correlation must exist between the Subject DN in the certificate and the location of the
object for that user in the LDAP server. The LDAP object for the user must also include
configuration information for the certificate and the username that will be used in the
Subject.

2. In your security realm, configure an LDAP X509 Identity Assertion provider. See Configure
an Authentication or Identity Assertion Provider in Oracle WebLogic Remote Console
Online Help.

3. In the WebLogic Remote Console, configure the LDAP X509 Identity Assertion provider to
find the LDAP object for the user in the LDAP directory given the certificate's Subject DN.

4. Configure the LDAP X509 Identity Assertion provider to search the LDAP server to locate
the LDAP object for the user. This requires the following pieces of data.

• A base LDAP DN from which to start searching. The Certificate Mapping option for the
LDAP X509 Identity Assertion provider tells the identity assertion provider how to
construct the base LDAP DN from the certificate's Subject DN. The LDAP object must
contain an attribute that holds the certificate.

Chapter 16
How an LDAP X509 Identity Assertion Provider Works

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 15

• A search filter that only returns LDAP objects that match a defined set of options. The
filter narrows the LDAP search. Configure User Filter Search to construct a search
filter from the certificate's Subject DN.

• Where in the LDAP directory to search for the base LDAP DN. The LDAP X509
Identity Assertion provider searches recursively (one level down). This value must
match the values in the certificate's Subject DN.

5. Configure the Certificate Attribute attribute of the LDAP X509 Identity Assertion provider to
specify how the LDAP object for the user holds the certificate. The LDAP object must
contain an attribute that holds the certificate.

6. Configure the User Name Attribute attribute of the LDAP X509 Identity Assertion provider
to specify which of the LDAP object's attributes holds the username that should appear in
the Subject DN.

7. Configure the LDAP server connection for the LDAP X509 Identity Assertion provider. The
LDAP server information should be the same as the information defined for the LDAP
Authentication provider configured in this security realm.

8. Configure an LDAP Authentication provider for use with the LDAP X509 Identity Assertion
provider. The LDAP server information should be the same the information defined for the
LDAP X509 Identity Assertion provider configured in Step 7. See Configuring LDAP
Authentication Providers.

Configuring a Negotiate Identity Assertion Provider
The Negotiate Identity Assertion provider enables single sign-on (SSO) with Microsoft clients.
The identity assertion provider decodes Simple and Protected Negotiate (SPNEGO) tokens to
obtain Kerberos tokens, validates the Kerberos tokens, and maps Kerberos tokens to
WebLogic users. The Negotiate Identity Assertion provider utilizes the Java Generic Security
Service (GSS) Application Programming Interface (API) to accept the GSS security context via
Kerberos.
The Negotiate Identity Assertion provider is an implementation of the Security Service Provider
Interface (SSPI) as defined by the WebLogic Security Framework and provides the necessary
logic to authenticate a client based on the client's SPNEGO token.

For information about adding a Negotiate Identity Assertion provider to a security realm, see
Configure an Authentication or Identity Assertion Provider in Oracle WebLogic Remote
Console Online Help. For information about using the Negotiate Identity Assertion provider with
Microsoft client SSO, see Configuring Single Sign-On with Microsoft Clients

Table 16-1 Negotiate Identity Asserter Attributes

Attribute Description

Form Based Negotiation
Enabled

Indicates whether the Negotiate Identity Assertion provider and servlet filter
should negotiate when a Web application is configured for FORM
authentication.

Active Types The token type this Negotiate Identity Assertion provider uses for
authentication. Available token types are Authorization.Negotiate and
WWW-Authenticate.Negotiate.

Ensure no other identity assertion provider configured in the same security
realm has this attribute set to X509.

Chapter 16
Configuring a Negotiate Identity Assertion Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 15

Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0
The SAML 2.0 Identity Assertion provider acts as a consumer of SAML 2.0 security assertions,
allowing WebLogic Server to act as a Service Provider for Web single sign-on, and also for
WebLogic Web Services Security: accepting SAML tokens for identity through the use of the
appropriate WS-SecurityPolicy assertions. The SAML 2.0 Identity Assertion provider does the
following:

• Validates SAML 2.0 assertions by checking the signature and validating the certificate for
trust based on data configured for the partner. The SAML 2.0 Identity Assertion provider
then extracts the identity information contained in the assertion, and maps it to a local
subject in the security realm.

• Optionally, extracts attribute information contained in an assertion that the SAML
Authentication provider, if configured in the security realm, can use to determine the local
groups in which the mapped subject belongs. (See Configuring the SAML Authentication
Provider.)

• Optionally, verifies that an assertion's specified lifespan and re-use settings are properly
valid, rejecting the assertion if it is expired or is not available for reuse.

Configuration of the SAML 2.0 Identity Assertion provider is controlled by setting attributes on
the SAML2IdentityAsserterMBean. You can access the SAML2IdentityAsserterMBean using
the WebLogic Scripting Tool (WLST), or using WebLogic Remote Console and selecting
SAML2IdentityAsserter as an identity assertion provider. For details about these attributes,
see SAML2IdentityAsserterMBean in the MBean Reference for Oracle WebLogic Server.

For information about how to use the SAML 2.0 Identity Assertion provider in a SAML single
sign-on configuration, see Configuring Single Sign-On with Web Browsers and HTTP Clients
Using SAML. For general information about SAML support in WebLogic Server, see Security
Assertion Markup Language (SAML) in Understanding Security for Oracle WebLogic Server.
For information about using the SAML 2.0 Identity Assertion provider in Web Service Security,
see Using Security Assertion Markup Language (SAML) Tokens For Identity in Securing
WebLogic Web Services for Oracle WebLogic Server.

For information about how to configure an Identity Provider, see Identity Provider Partners.

Identity Provider Partners
When you configure WebLogic Server to act as a Service Provider, you create and configure
the Identity Provider partners from whom SAML 2.0 assertions are received and validated.
Configuring an Identity Provider partner consists of establishing basic information about that
partner, such as the following:

• Partner name and general description

• Name mapper class to be used with this partner

• Whether to consume attribute statements included in assertions received from this partner

• Whether the identities contained in assertions received from this partner should be
mapped to virtual users

• Certificates used for validating signed assertions received from this partner

The specific information you establish depends upon whether you are configuring the partner
for web single sign-on or web services. Configuring a web single sign-on Identity Provider
partner also involves importing that partner's metadata file and establishing additional basic
information about that partner, such as the following:

Chapter 16
Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 15

• Redirect URIs, which are URLs that, when invoked by an unauthenticated user, cause the
user request to be redirected to that Identity Provider partner for authentication

• Whether SAML artifact requests received from this partner must be signed

• How SAML artifacts should be delivered to this partner

For details about configuring web single sign-on Identity Provider partners, see:

• Create and Configure Web Single Sign-On Identity Provider Partners

• Create a SAML 2.0 Web Single Sign-On Identity Provider Partner in Oracle WebLogic
Remote Console Online Help

Configuring a web service Identity Provider partner does not use a metadata file, but does
consist of establishing the following information about that partner:

• Issuer URI, which is a string that uniquely identifies this Identity Provider partner,
distinguishing it from other partners in your SAML federation

• Audience URIs, which specify an audience restriction to be included in assertions received
from this partner

In WebLogic Server, the Audience URI attribute is overloaded to also include the partner
lookup string, which is required by the web service run time to discover the partner. See
Partner Lookup Strings Required for Web Service Partners.

• Custom name mapper class that overrides the default name mapper and that is to be used
specifically with this partner

For more information about configuring web service Service Provider partners, see Create a
SAML 2.0 Web Service Service Provider Partner in Oracle WebLogic Remote Console Online
Help.

The following topics explain how to configure Identity Provider partner attributes:

• Partner Lookup Strings Required for Web Service Partners

• Management of Partner Certificates

• Java Interface for Configuring Identity Provider Partner Attributes

Partner Lookup Strings Required for Web Service Partners
For web service Identity Provider partners, you also configure Audience URIs. In WebLogic
Server, the Audience URI attribute is overloaded to perform two distinct functions:

• Specify an audience restriction consisting of a target URL, per the OASIS SAML 2.0
specification.

• Contain a partner lookup string, which is required at run time by WebLogic Server to
discover the Identity Provider partner for which a SAML 2.0 assertion needs to be
validated.

The partner lookup string specifies an endpoint URL, which is used for partner lookup and can
optionally also serve as an Audience URI restriction that must be included in the assertion
received from this Identity Provider partner.

Note

You must configure a partner lookup string for an Identity Provider partner so that
partner can be discovered at run time by the web service run time.

Chapter 16
Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 15

Lookup String Syntax

The partner lookup string has the following syntax:

[target:char:]<endpoint-url>

In this syntax, target:char: is a prefix that designates the partner lookup string, where char
represents one of three special characters: a hyphen, plus sign, or asterisk (-, +, or *). This
prefix determines how partner lookup is performed, as described in Table 16-2.

Note

A WebLogic Server instance that is configured in the role of Service Provider always
strips off the transport, host, and port portions of an endpoint URL that is passed in to
the SAML 2.0 Identity Assertion provider. Therefore, the endpoint URLs you configure
in any lookup string for an Identity Provider partner should contain only the portion of
the URL that follows the host and port. For example, target:*:/myserver/xxx.

When you configure a Service Provider site, this behavior enables you to configure a
single Identity Provider partner that can be used to validate all assertions for the same
web service, regardless of the variations in the transport protocol (i.e., HTTP vs.
HTTPS), host name, IP address, and port information across all the machines in a
domain that host that web service.

Table 16-2 Identity Provider Partner Lookup String Syntax

Lookup String Description

target:-:<endpoint-
url>

Specifies that partner lookup is conducted for an exact match of the URL,
<endpoint-url>. For example, target:-:/myserver/
myservicecontext/my-endpoint specifies the endpoint that can be
matched to this Identity Provider partner, for which an assertion should be
validated.

This form of partner lookup string excludes the endpoint URL from being
added as an Audience URI for this Identity Provider partner.

target:+:<endpoint-
url>

Specifies that partner lookup is conducted for an exact match of the URL,
<endpoint-url>.

Note: Using the plus sign (+) in the lookup string results in the endpoint URL
being added as an Audience URI in the assertion received from this Identity
Provider partner. Because this form of lookup string is unlikely to produce a
match for an Identity Provider partner, it should be avoided.

target:*:<endpoint-
url>

Specifies that partner lookup is conducted for an initial-string pattern match of
the URL, <endpoint-url>. For example, target:*:/myserver specifies
that any endpoint URL beginning with /myserver can be matched to this
Identity Provider, such as: /myserver/contextA/endpointA and /
myserver/contextB/endpointB.

If more than one Identity Provider partner is discovered that is a match for the
initial string, the partner with the longest initial string match is selected.

This form of partner lookup string excludes the endpoint URL from being
added as an Audience URI for this Identity Provider partner.

Chapter 16
Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 15

Note

Configuring one or more partner lookup strings for an Identity Provider partner is
required in order for that partner to be discovered at run time. If this partner cannot be
discovered, no assertions for this partner can be validated.

If you configure an endpoint URL without using the target lookup prefix, it will be
handled as a conventional Audience URI that must be contained in assertions
received from this Identity Provider partner. (This also enables backwards-
compatibility with existing Audience URIs that may be configured for this partner.)

Specifying Default Partners

To support the need for a default Identity Provider partner entry, one or more of the default
partner's Audience URI entries may contain a wildcard match that works for all targets. For
example, target:*:/.

Management of Partner Certificates
The SAML 2.0 Identity Assertion provider manages the trusted certificates for configured
partners. Whenever a certificate is received during an exchange of partner messages, the
certificate is checked against the certificates maintained for the partner. Partner certificates are
used for the following purposes:

• To validate trust when the Service Provider site receives a signed assertion or a signed
SAML artifact request.

• To validate trust in an Identity Provider partner that is retrieving a SAML artifact from the
Artifact Resolution Service (ARS) via an SSL connection.

The following certificates, which are obtained from each configured Identity Provider partner,
are required:

• The certificate used to verify signed SAML documents received from the partner, such as
assertions and artifact requests

The certificate used to verify signed SAML documents in web single sign-on is included in
the metadata file received from the Identity Provider partner. When configuring web service
Identity Provider partners, you obtain this certificate from your partner and import it into this
partner's configuration using WebLogic Remote Console.

• The Transport Layer Security (TLS) client certificate that is used to verify the connection
made by the partner to the local site's SSL binding for retrieving SAML artifacts (used in
web single sign-on only)

When configuring a web single sign-on Identity Provider partner, you must obtain the TLS
client certificate directly from the partner. It is not automatically included in the metadata
file. You can import this certificate into the configuration data for this partner using
WebLogic Remote Console.

Java Interface for Configuring Identity Provider Partner Attributes
Operations on web service partners are available in the
com.bea.security.saml2.providers.registry.Partner Java interface.

Chapter 16
Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 15

Ordering of Identity Assertion for Servlets
When an HTTP request is sent, there may be multiple matches that can be used for identity
assertion. However, identity assertion providers can only consume one active token type at a
time. As a result there is no way to provide a set of tokens that can be consumed with one call.
Therefore, the servlet contained in WebLogic Server is forced to choose between multiple
tokens to perform identity assertion. The following ordering is used:

1. An X.509 digital certificate (signifies two-way SSL to client or proxy plug-in with two-way
SSL between the client and the Web server) if X.509 is one of the active token types
configured for the Identity Assertion provider in the default security realm.

2. Headers with a name in the form WL-Proxy-Client-<TOKEN> where <TOKEN> is one of the
active token types configured for the Identity Assertion provider in the default security
realm.

Note

This method is deprecated and should only be used for the purpose of backward
compatibility.

3. Headers with a name in the form <TOKEN> where <TOKEN> is one of the active tokens types
configured for the Identity Assertion provider in the default security realm.

4. Cookies with a name in the form <TOKEN> where <TOKEN> is one of the active tokens types
configured for the Identity Assertion provider in the default security realm.

For example, if an Identity Assertion provider in the default security realm is configured to have
the FOO and BAR tokens as active token types (for the following example, assume the HTTP
request contains nothing relevant to identity assertion except active token types), identity
assertion is performed as follows:

• If a request comes in with a FOO header over a two-way SSL connection, X.509 is used for
identity assertion.

• If a request comes in with a FOO header and a WL-Proxy-Client-BAR header, the BAR token
is used for identity assertion.

• If a request comes in with a FOO header and a BAR cookie, the FOO token will be used for
identity assertion.

The ordering between multiple tokens at the same level is undefined, therefore:

• If a request comes in with a FOO header and a BAR header, then either the FOO or BAR token
is used for identity assertion, however, which one is used is unspecified.

• If a request comes in with a FOO cookie and a BAR cookie, then either the FOO or BAR token
is used for identity assertion, however, which one is used is unspecified.

Configuring Identity Assertion Performance in the Server Cache
When you use an Identity Assertion provider, either for an X.509 certificate or some other type
of token, subjects are cached within the server. A subject is a grouping of related information
for a single entity (such as a person), including an identity and its security-related configuration
options. Caching subjects within the server greatly enhances performance for servlets and EJB

Chapter 16
Ordering of Identity Assertion for Servlets

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 15

methods with <run-as> tags, as well as in other situations where identity assertion is used but
not cached in the HTTPSession, for example, in signing and encrypting XML documents).
To optimize the cache service that the Identity Assertion provider uses, see Optimizing the
Identity Assertion Cache Service.

Note

Caching can violate the desired semantics.

As identity assertion performance improves, the Identity Assertion provider is less
responsive to changes in the configured Authentication provider. For example, a
change in the user's group will not be reflected until the subject is flushed from the
cache and recreated. Setting a lower value for the command-line argument makes
authentication changes more responsive at a cost to performance.

Optimizing the Identity Assertion Cache Service
To improve the performance of the Identity Assertion provider, the settings of the Identity
Assertion cache service can be changed as appropriate.

To optimize the performance of the Identity Assertion cache service, set these RealmMBean
attributes for your security realm using either the WebLogic Scripting Tool (WLST) or WebLogic
Remote Console (on the configuration page for your security realm):

• IdentityAssertionCacheEnabled — Use this attribute to specify whether to enable cache
service for the Identity Assertion provider. By default, this attribute is set to true and the
caching is enabled .

• IdentityAssertionCacheTTL — Specify the lifetime of items in the cache by setting the
maximum number of seconds a subject can live in the Identity Assertion cache. This time-
to-live (TTL) value can be set only if the Identity Assertion cache is enabled. This value
defaults to 300 (seconds).

• IdentityAssertionDoNotCacheContextElements — Specify the names of the
ContextElements that are not stored in the Identity Assertion cache because these
elements are present in the ContextHandler of the requests. This value is used only if
IdentityAssertionCacheEnabled is set to true. This value defaults to an empty string list.

You can override the time-to-live (TTL) value for items in the Identity Assertion cache by using
the -Dweblogic.security.identityAssertionTTL command-line argument. Possible values
for the command-line argument are:

• Less than 0 — Disables the cache.

• 0 — Caching is enabled and the identities in the cache never time out as long as the
server is running. Any changes in the user database of cached entities requires a server
reboot in order for the server to pick them up.

• Greater than 0 — Caching is enabled and the cache is reset at the specified number of
seconds.
To improve the performance of identity assertion, specify a higher value for this command-
line argument.

Chapter 16
Configuring Identity Assertion Performance in the Server Cache

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 15

Note

If the time-to-live (TTL) value is set using both the RealmMBean attribute
IdentityAssertionCacheTTL and the command-line argument -
Dweblogic.security.identityAssertionTTL, then the command-line argument takes
precedence over the MBean attribute.

Authenticating a User Not Defined in the Identity Store
The WebLogic Identity Assertion provider supports the ability to authenticate a user who is not
defined in the security realm's identity store. Instead, the user is created as a virtual user and
is authenticated by means of a Subject that is populated with principals derived from attributes
in the X.509 certificate passed in as part of the two-way SSL connection.
The WebLogic Identity Assertion provider is not configured by default to authenticate virtual
users. However, by customizing this provider's configuration, you can enable this capability in a
WebLogic domain.

Note

Virtual user authentication is supported only on network ports that are configured for 2-
way SSL, with listening servlets using CLIENT-CERT authentication.

Virtual user authentication is not supported in topologies where:

• SSL terminates at a front-end proxy

• Requests are forwarded to a WebLogic Server instance in which SSL has not
been enabled

The following sections explain how virtual user authentication works and give the steps to
configure it in a WebLogic domain:

How Virtual User Authentication Works in a WebLogic Domain
The flow of virtual user authentication follows the standard Weblogic Server security provider
JAAS authentication process. When the WebLogic Identity Assertion provider is configured to
allow virtual users, a user who is not defined in the security realm's identity store can be
authenticated into the domain as described in the following sequence:

1. When a user issues a request on a resource hosted in the WebLogic domain, a two-way
SSL connection is established between that user and WebLogic Server.

2. The WebLogic Identity Assertion provider is invoked to authenticate the user. Because
virtual users are enabled for this provider, the X.509 client certificate is passed to the
provider as an X.509 type token.

3. The WebLogic Identity Assertion provider invokes the configured user name mapper to:

a. Extract data from attributes contained in the X.509 certificate.

b. Map the required certificate attribute data to Subject principals and credentials.

c. Return a virtual user callback handler to the Login Module for the Virtual User
Authentication provider.

Chapter 16
Authenticating a User Not Defined in the Identity Store

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 15

If the WebLogic Identity Assertion provider is configured to allow virtual users, and a
configured user name mapper allows virtual users for the given certificate, the virtual user
would be considered allowed.

4. The Login Module uses the virtual user callback handler to build an authenticated Subject,
which is composed of principals derived from the X.509 certificate attributes. Principals
derived from the certificate include the user name and can also include group name,
private credentials, public credentials, and other principals, depending on the user name
mapper that is used.

5. The WebLogic Security Framework invokes the Virtual User Authentication provider before
any other authentication providers. Because the JAAS control flag is set to SUFFICIENT,
the user is authenticated into the WebLogic domain. No identity store, such as an LDAP
server, is used to validate the user or to obtain additional subject components.

Configuring Two-Way SSL and Managing Certificates Securely
Prior to configuring the WebLogic Security Framework to enable virtual users to be
authenticated into a WebLogic domain, Oracle strongly recommends that you optimize the SSL
configuration in your domain, and leverage the certificate validation features available in
WebLogic Server to ensure that client certificates are properly trusted and validated, by
completing the following steps:

1. Configure two-way SSL (SSL with client authentication), in which the server presents a
certificate to the client and the client presents a certificate to the server.

2. Configure SSL to limit the minimum SSL version that is enabled for SSL connections. See
Specifying the SSL/TLS Protocol Version.

3. Make sure that SSL certificate validation is properly configured for your domain. See SSL
Certificate Validation.

4. Configure X.509 certificate revocation (CR) checking, which checks a certificate's
revocation status as part of the SSL certificate path validation process. CR checking
improves the security of certificate usage by ensuring that received certificates have not
been revoked by the issuing certificate authority. See X.509 Certificate Revocation
Checking.

Customizing the WebLogic Identity Assertion Provider
(DefaultIdentityAsserter)

The WebLogic Identity Assertion provider, also known as the DefaultIdentityAsserter, is
configured by default in WebLogic domains. To enable virtual user authentication, you can
customize the default instance of this provider in your WebLogic domain, or you can create a
separate instance of this provider and customize it instead.

To configure the WebLogic Identity Assertion provider so that virtual user authentication is
enabled, complete the following steps:

1. Configure this provider to process X.509 token types. You can set this in the
DefaultIdentityAsserterMBean.ActiveTypes attribute.

2. Enable virtual users. You can do this by setting the
DefaultIdentityAsserterMBean.VirtualUserAllowed attribute to true.

3. Enable the default user name mapper. You can do this by setting the
DefaultIdentityAsserterMBean.UseDefaultUserNameMapper attribute to true.

Chapter 16
Authenticating a User Not Defined in the Identity Store

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 15

To customize the identity assertion provider using WebLogic Remote Console, in the Edit Tree,
go to Security, then Realms, then myRealm, then Authentication Providers and select the
default identity asserter.

WebLogic Server also supports the use of a custom user name mapper that is an
implementation of the
weblogic.security.providers.authentication.X509SubjectComponentMapper interface. If
you need to map other attributes from the X.509 certificate, such as group principals, private
credentials, or public credentials, a custom user name mapper might be appropriate.

Configuring the Virtual User Authentication Provider
The Virtual User Authentication Provider is not available by default in a WebLogic domain. For
information about how to configure this provider, see Configuring the Virtual User
Authentication Provider. Note that after you add this provider to the security realm:

1. Re-order the authentication providers so that the Virtual User Authentication provider is
first.

2. Set the JAAS control flag for the Virtual User Authentication provider to SUFFICIENT. See
Set the JAAS Control Flag in Oracle WebLogic Remote Console Online Help.

Using WLST to Configure Virtual User Authentication
This section provides an example of configuring virtual user authentication in a WebLogic
domain. Example 16-1 shows the following:

1. Connecting to the WebLogic Server instance.

2. Creating an instance of a Virtual User Authentication provider.

3. Ordering the Virtual User Authentication provider first among the authentication providers
in the security realm.

4. Enabling virtual users in the WebLogic Identity Assertion provider (DefaultIdentityAsserter).

5. Enabling the default user name mapper provided by WebLogic Server.

6. Saving and activating changes to the security realm.

Example 16-1 Configuring the Virtual User Authentication Provider and Enabling
Virtual Users

 connect('','','t3://host:port')
 Please enter your username :
 Please enter your password :
 ...
 edit()
 startEdit()
 print 1
 cd('/SecurityConfiguration/'+domainName+'/Realms/myrealm')
 print 2
 auth=cmo.lookupAuthenticationProvider('VirtualUserAtnProvider')
 print 3
 if auth == None:
 print 4
 auth =
cmo.createAuthenticationProvider('VirtualUserAtnProvider','weblogic.security.providers.au
thentication.VirtualUserAuthenticator')
 print auth

set('AuthenticationProviders',jarray.array([ObjectName('Security:Name=myrealmVirtualUserA

Chapter 16
Authenticating a User Not Defined in the Identity Store

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 15

tnProvider'),ObjectName('Security:Name=myrealmDefaultAuthenticator'),ObjectName('Security
:Name=myrealmDefaultIdentityAsserter')],ObjectName))
 print 5

 cd('AuthenticationProviders/DefaultIdentityAsserter')
 set('VirtualUserAllowed','true')
 print("VirtualUserAllowed set to true")
 set('UseDefaultUserNameMapper','true')
 print("UseDefaultUserNameMapper set to true")
 save()
 activate()

Configuring a User Name Mapper
WebLogic Server verifies the digital certificate of the Web browser or Java client when
establishing a two-way SSL connection. However, the digital certificate does not identify the
Web browser or Java client as a user in the WebLogic Server security realm. If the Web
browser or Java client requests a WebLogic Server resource protected by a security policy,
WebLogic Server requires the Web browser or Java client to have an identity. The WebLogic
Identity Assertion provider allows you to enable a user name mapper that can map either of the
following:

• The digital certificate of a Web browser or Java client to a user in a WebLogic Server
security realm.

• Attributes contained in the X.509 certificate to Subject principals and credentials for a user
that is not defined in the identity store of the security realm (see Authenticating a User Not
Defined in the Identity Store).

The user name mapper must be an implementation of the
weblogic.security.providers.authentication.UserNameMapper interface. This interface
maps a token to a WebLogic Server user name according to whatever scheme is appropriate
for your needs. By default, WebLogic Server provides a default implementation of the
weblogic.security.providers.authentication.UserNameMapper interface. You can also
write your own implementation, as described in Configuring a Custom User Name Mapper.

The WebLogic Identity Assertion provider calls the user name mapper for the following types of
identity assertion token types:

• X.509 digital certificates passed via the SSL handshake

• X.509 digital certificates passed via CSIv2

• X.501 distinguished names passed via CSIv2

The default user name mapper uses the subject DN of the digital certificate or the
distinguished name to map to the appropriate user in the WebLogic Server security realm. For
example, the user name mapper can be configured to map a user from the Email attribute of
the subject DN (smith@example.com) to a user in the WebLogic Server security realm (smith).
Use Default User Name Mapper Attribute Type and Default Username Mapper Attribute
Delimiter attributes of the WebLogic Identity Assertion provider to define this information:

• Default User Name Mapper Attribute Type—The subject distinguished name (DN) in a
digital certificate used to calculate a username. Valid values are: C, CN, E, L, O, OU, S and
STREET. The default attribute type is E.

• Default User Name Mapper Attribute Delimiter—Ends the username. The user name
mapper uses everything to the left of the value to calculate a username. The default
delimiter is @.

Chapter 16
Configuring a User Name Mapper

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 15

For example, when extracting a user name from an email address, the user name mapper
uses all characters in the email address up to the @ character. Therefore, if you want the
user name mapper to map a different attribute in the Subject DN — for example, the
Common Name, or CN — it might be appropriate to specify a different delimiter.

To configure a user name mapper using WebLogic Remote Console, in the Edit Tree, go to
Security, then Realms, then myRealm, then Authentication Providers and select the default
identity asserter. On the provider specific tab, modify the relevant attributes.

Configuring a Custom User Name Mapper
You can also write a custom user name mapper to map a token to a WebLogic user name, or
to a virtual user, according to whatever scheme is appropriate for your needs. Note the
following:

• A custom user name mapper that maps a token to a WebLogic user must be an
implementation of the weblogic.security.providers.authentication.UserNameMapper
interface.

• A custom user name mapper that maps an X.509 token to Subject principals that are used
to authenticate a virtual user — that is, a user that is not defined in the security realm
identity store — must be an implementation of the
weblogic.security.providers.authentication.X509SubjectComponentMapper interface.

If you need to map other attributes from the X.509 certificate, such as group principals,
private credentials, or public credentials, a custom user name mapper might be
appropriate.

To configure a custom user name mapper using WebLogic Remote Console, in the Edit Tree,
go to Security, then Realms, then myRealm, then Authentication Providers and select the
default identity asserter. On the provider specific tab, modify the relevant attributes.

Chapter 16
Configuring a Custom User Name Mapper

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 15

17
Configuring the Virtual User Authentication
Provider

Use the Virtual User Authentication provider to authenticate users who are not defined in the
identity store that is configured in the Oracle WebLogic Server security realm.

This chapter includes the following sections:

• About the Virtual User Authentication Provider

• Adding the Virtual User Authentication Provider to the Security Realm

About the Virtual User Authentication Provider
You use the Virtual User Authentication provider as part of the overall capability supported in
WebLogic Server to authenticate users who are not defined in the identity store with which the
security realm is configured. Instead, you create a virtual user whose identity is based on
select attributes contained in an X.509 certificate, such as in the Subject DN.
For complete details about configuring and using virtual user authentication in a WebLogic
domain, see Authenticating a User Not Defined in the Identity Store.

Note

Virtual user authentication is supported only on network ports that are configured for 2-
way SSL, with listening servlets using CLIENT-CERT authentication.

Virtual user authentication is not supported in topologies where:

• SSL terminates at a front-end proxy

• Requests are forwarded to a WebLogic Server instance in which SSL has not
been enabled

Adding the Virtual User Authentication Provider to the Security
Realm

You can use WebLogic Remote Console to add the Virtual User Authentication provider to a
security realm.

1. To add and configure the Virtual User Authentication provider, follow the steps described in
Configure an Authentication or Identity Assertion Provider in Oracle WebLogic Remote
Console Online Help, making sure to select VirtualUserAuthenticator as the
authentication provider type.

2. Re-order the authentication providers so that the Virtual User Authentication provider is
listed first.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 2

3. Set the JAAS control flag to SUFFICIENT. See Set the JAAS Control Flag in Oracle
WebLogic Remote Console Online Help.

4. Save your changes.

5. Restart WebLogic Server.

Chapter 17
Adding the Virtual User Authentication Provider to the Security Realm

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 2

18
Configuring the Oracle Identity Cloud
Integrator Provider

The Oracle Identity Cloud Integrator provider is an authentication and identity assertion
provider that accesses users, groups, and Oracle Identity Cloud Service scopes and
application roles stored in the Oracle Identity Cloud Service. You can configure the provider
using the WebLogic Remote Console, WLST online and WLST offline. The Oracle Identity
Cloud Integrator provider supports basic authentication with the Oracle Identity Cloud Service
using usernames and passwords, and perimeter authentication (identity assertion) using
Oracle Identity Cloud Service tokens.
Topics in this chapter include:

• About the Oracle Identity Cloud Integrator Provider

• Prerequisites for Configuring the Oracle Identity Cloud Integrator Provider

• Configuring the Oracle Identity Cloud Integrator Provider: Main Steps and Examples

• Configuring TLS/SSL for the Oracle Identity Cloud Integrator Provider

• Using the Oracle Identity Cloud Integrator Provider in FIPS Mode

• Authorization and Remote User HTTP Header Support

• Handling Authentication Failures

About the Oracle Identity Cloud Integrator Provider
The Oracle Identity Cloud Integrator provider combines authentication and identity assertion
into a single provider. The provider establishes identity (the Subject) on WebLogic Server with
the authenticated user, the user's groups, and the user's application roles when the identity
store is the Oracle Identity Cloud Service.

The Oracle Identity Cloud Service provides identity management, single sign-on, and identity
governance for applications on-premise, in the cloud, or on mobile devices. It leverages OAuth
2.0 for authorization of custom applications and OpenID Connect to externalize authentication
using federated single-sign-on. For details about the Oracle Identity Cloud Service, see
http://docs.oracle.com/en/cloud/paas/identity-cloud/index.html.

You can use the Oracle Identity Cloud Integrator provider with the Oracle Identity Cloud
Service as described in the following sections.

Basic Authentication

With basic authentication, the server requests a user name and password from the client and
verifies that the user name and password are valid by comparing them against the authorized
users in the Oracle Identity Cloud Service. Using basic authentication, users in an Oracle
Identity Cloud Service tenant can log into WebLogic Remote Console, use the WebLogic
Scripting Tool (WLST), or log into an application running on WebLogic Server.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 14

http://docs.oracle.com/en/cloud/paas/identity-cloud/index.html

Perimeter Authentication

The concept of perimeter authentication is the process of authenticating the identity of a
remote user outside of the application server domain. Perimeter authentication is typically
accomplished by the remote user specifying an asserted identity and some form of
corresponding proof material, which extends the single sign-on concept all the way to the
perimeter. The Oracle Identity Cloud Integrator provider supports perimeter authentication from
users authenticated in the Oracle Identity Cloud Service using the following perimeter
authentication mechanisms:

• OpenID Connect Identity (ID) tokens created by the Oracle Identity Cloud Service. The
identity asserter handles the idcs_user_assertion HTTP header for Oracle Identity Cloud
Service identity tokens by default. The user assertion (ID token) represents a user
authenticated by the Oracle Identity Cloud Service and is used to map to a WebLogic
Server subject containing principals with the user, group, and Oracle Identity Cloud Service
application roles information.

This functionality includes a new IDCSAppRole principal. See
weblogic.security.principal in Java API Reference for Oracle WebLogic Server.

Also, a new weblogic.entitlement.rules.IDCSAppRoleName () predicate was added that
can be used in role mapping and authorization policies.

• The REMOTE_USER HTTP header for Oracle Identity Cloud Service protected resources. The
REMOTE_USER header handles users that were validated by Oracle Identity Cloud Service
policy protection using the HTTP Basic header and then sent to the server using the
REMOTE_USER HTTP header.

In addition to setting the REMOTE_USER using an HTTP header, the Oracle Identity Cloud
Service also specifies the user tenancy using an HTTP header.

When Oracle Identity Cloud Service indicates that the anonymous user is accessing the
service, WebLogic Server denies access to protected Jakarta EE resources.

• Oracle Identity Cloud Service access tokens for protected resources. The access token is
a credential that allows an OAuth client to access a protected resource and is used to map
to a WebLogic Server Subject containing principals using the user, group, Identity Cloud
Service application roles, scopes, and audience information based on the token. The
provider supports access tokens using the Authorization token type and retrieves the
access token from the Authorization HTTP header.

This functionality includes two new principals, IDCSScope and IDCSClient, to support
storing client and scope information in the subject. The Oracle Identity Cloud Service
audience (IDCSAudience) is optionally stored in the public credentials of the subject. See
weblogic.security.principal and Class IDCSAudience in Java API Reference for
Oracle WebLogic Server.

A new weblogic.entitlement.rules.Scope () predicate was added that can be used in
role mapping and authorization policies.

The REMOTE_USER and Authorization HTTP headers are not enabled by default. The
REMOTE_USER header is not enabled by default because this header should only be sent by a
trusted client. You cannot have any publicly accessible endpoints if REMOTE_USER is enabled on
the Oracle Identity Cloud Integrator provider. When exposing both public and protected
endpoints, then use of REMOTE_USER may leave applications and WebLogic Server open to
security vulnerabilities. The Authorization HTTP header is not enabled by default because the
services must be protected by the Oracle Identity Cloud Service to safely accept user
information from access tokens.

Chapter 18
About the Oracle Identity Cloud Integrator Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 14

If required, you must enable the Authorization and REMOTE_USER HTTP headers in WebLogic
Remote Console using the Active Types attribute on the Common page for the provider or
using WLST. See Enabling Authorization and REMOTE_USER Header Support: Main Steps.

To control access token processing, you can set additional configuration attributes such as
AudienceEnabled and ClientAsUserPrincipalEnabled, and access token claim attributes on
the Provider Specific page, or directly on the OracleIdentityCloudIntegratorMBean

Programmatic Identity Assertion

The Oracle Identity Cloud Integrator provider can be used for programmatic assertion from an
OpenID Connect ID token obtained from the Oracle Identity Cloud Service. In this scenario, the
application logic implements the OAuth protocol (for example, the authorization code grant
flow) to obtain an ID token from Oracle Identity Cloud Service. After obtaining the ID token, the
application logic uses the WebLogic Server Authentication API to assert the Oracle Identity
Cloud Service user identity from the ID token. See the following specifications and API
reference documents:

• The OAuth 2.0 Authorization Framework

• OpenID Connect Core 1.0 incorporating errata set 1

• weblogic.security.services.Authentication in Java API Reference for Oracle
WebLogic Server

In addition, the provider can be used to validate an Oracle Identity Cloud Service user when
using Oracle Platform Security Services (OPSS), Oracle Web Services Manager (OWSM), or
SSO mechanisms such as SAML2.0.

Multiple Identity Store Environment

You can use the Oracle Identity Cloud Integrator provider to access the Oracle Identity Cloud
Service as a single source of users, or in a hybrid environment in combination with other
identity stores. As part of the WebLogic Security Framework, the Oracle Identity Cloud
Integrator provider can be configured with other authentication providers in the security realm
so that each provider can authenticate users in its respective identity store. For example, you
can configure the Default Authenticator provider to authenticate users in the embedded LDAP
server, and the Oracle Identity Cloud Integrator to authenticate users in the Oracle Identity
Cloud Service. When you configure multiple Authentication providers, use the JAAS Control
Flag for each provider to control how the Authentication providers are used in the login
sequence. See Using More Than One Authentication Provider.

If the Oracle Identity Cloud Integrator provider is the only authentication provider configured in
the security realm, an Oracle Identity Cloud Service user can boot WebLogic Server. To do so,
the Oracle Identity Cloud Service user must be added to a group or granted a role that is
assigned to the WebLogic Server Admin role. Otherwise, WebLogic Server cannot be booted. If
the Oracle Identity Cloud Integrator provider fails to connect to the Oracle Identity Cloud
Service, or throws an exception, make sure the configuration settings are set correctly for this
provider.

Additionally, if you are setting up a single sign-on configuration, for example using SAML 2.0,
you can configure the Oracle Identity Cloud Integrator provider as the authentication provider
to validate the user. See Configuring Single Sign-On with Web Browsers and HTTP Clients
Using SAML.

Oracle Identity Cloud Service Single Sign-On (SSO) and Logout Synchronization

When you have established your identity using the basic, perimeter, or programmatic
authentication mechanisms, the provider includes an SSO synchronization filter to synchronize
the Oracle Identity Cloud Service SSO session with the local container session. The SSO

Chapter 18
About the Oracle Identity Cloud Integrator Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 14

https://tools.ietf.org/html/rfc6749
http://openid.net/specs/openid-connect-core-1_0.html

synchronization filter is an implementation of the Servlet Filter. The filter intercepts each
request to the container and determines whether to act on the request based on certain HTTP
headers that are part of the request. The job of the filter is to ensure that the user identity in the
container (tenant and user name) matches the identity of the SSO session. If the identities
match, the session continues. If there is a mismatch in identities (for example a user has
logged out or a session timed out), the filter invalidates the container's user session and
performs a redirect to continue.

The synchronization filter is enabled by default. You can adjust the settings, if desired, in the
Synchronization Filter section on the Provider Specific page in WebLogic Remote Console or
by setting them on the MBeans.

Prerequisites for Configuring the Oracle Identity Cloud Integrator
Provider

For WebLogic Server to authenticate users with the Oracle Identity Cloud Service, the Oracle
Identity Cloud Integrator provider must be associated with an OAuth client that is registered
with the Oracle Identity Cloud Service. The OAuth client allows the provider access to the
Oracle Identity Cloud Service.

Before you can configure the provider you must obtain the required OAuth client information
from the Oracle Identity Cloud Service. To do so, you create a trusted application in the Oracle
Identity Cloud Service Console. A trusted application in the Oracle Identity Cloud Service is a
type of custom application that can be accessed by multiple users and hosted in a secure and
protected place (server) where the trusted application uses OAuth 2.0. Because you know
where the application is hosted, you can treat that application as trusted. Creating the
application in Oracle Identity Cloud Service results in the provisioning of an OAuth client.

Creating the OAuth Client: Main Steps

To create the OAuth client in the Identity Cloud Service Console:

1. Log into the Identity Cloud Service console as the Tenant Administrator.

2. Create a trusted (confidential) application. See Add a Confidential Application in
Administering Oracle Identity Cloud Service.

Note that the OAuth client can be used only within the specific tenant in which it was
provisioned.

In the application wizard:

a. Enter a client name and, optionally, a description.

b. Select Configure this application as a client now to configure authorization settings:

• Select only Client Credentials as the allowed grant type. This setting is used when
the authorization scope is limited to the protected resources under the control of
the client or to the protected resources registered with the authorization server.
The client presents its own credentials to obtain an access token.

• Assign the client to the Identity Domain Administrator application role. To do so,
select Grant the client access to Identity Cloud Service Admin APIs and then,
in the box that is displayed, select Identity Domain Administrator. This enables
your application to access all of the REST API endpoints and the allowed
operations for those endpoints that the Identity Domain Administrator application
role can access.

Alternatively, select Authenticator Client to assign this role instead. Note,
however, that the Authenticator Client application role supports fewer REST API

Chapter 18
Prerequisites for Configuring the Oracle Identity Cloud Integrator Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 14

endpoints than the Identity Domain Administrator role. For a complete list of the
endpoints and allowed operations that each application role can access, see
Apps/App Roles endpoint in REST API for Oracle Identity Cloud Service.

Note

Although the Identity Domain Administrator role has write access to the
Oracle Identity Cloud Service user store, the WebLogic Server Oracle
Identity Cloud Integrator provider does not support any update operations.
Therefore, you must use the Identity Cloud Service Administration
Console to modify the content of the user store.
The Authenticator Client application role will work with the Oracle Identity
Cloud Integrator Provider, but because there are fewer available Oracle
Identity Cloud Service endpoints, this role may not be sufficient for other
Fusion Middleware components.

3. Step through the remaining pages in the wizard and click Finish. Record the Client ID and
Client Secret that are displayed when you create the application. You need these values
when you configure the Oracle Identity Cloud Integrator provider. The attributes that you
must provide when configuring the provider are described in Required Configuration
Attributes.

4. Activate the application.

Required Configuration Attributes

To configure the Oracle Identity Cloud Integrator provider in WebLogic Server, you must
provide the following attributes from the OAuth client:

• Tenant — Name of the primary tenant in the Oracle Identity Cloud Service where you
provisioned the OAuth client.

• ClientId — The OAuth client ID used to access the Oracle Identity Cloud Service identity
store.

• ClientSecret — The OAuth Client Secret (password) used to generate access tokens.

• Client tenant (Optional) — Name of the OAuth client tenant in which the Client Id resides.
This attribute is not required if the Client tenant is the same as the primary tenant.

Configuring the Oracle Identity Cloud Integrator Provider: Main
Steps and Examples

To configure the Oracle Identity Cloud Integrator provider, you must add the provider to the
security realm and specify the configuration attributes required to enable communication
between the provider and the Oracle Identity Cloud Service. You can configure the provider
using WebLogic Remote Console, WLST online, or WLST offline.
The attributes required to configure the connection are described in Prerequisites for
Configuring the Oracle Identity Cloud Integrator Provider. You also need to provide the Oracle
Identity Cloud Service Host and Port where the Oracle Identity Cloud Service is accessible.
This value for the host is the base name for the Identity Cloud Service Tenant URLs (for
example identity.example.com) and does not include the tenant name. If TLS/SSL is
enabled, be sure to use the secure port.

The main steps for configuring the provider using WebLogic Remote Console are as follows:

Chapter 18
Configuring the Oracle Identity Cloud Integrator Provider: Main Steps and Examples

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 14

1. In the Edit Tree, go to Security, then Realms, then myRealm, then Authentication
Providers.

2. Click New.

3. In the Name field, enter a name for the new provider.

4. From the Type drop-down list, select Oracle Identity Cloud Integrator as the
authentication provider.

5. Click Create.

6. On the Configuration page for the new authentication provider, set the required values on
the Common and Oracle Identity Cloud Integrator Parameters tabs to enable
connection to the Oracle Identity Cloud Service.

7. If TLS/SSL is required, turn on the SSL Enabled option on the Oracle Identity Cloud
Integrator Parameters tab.

8. Click Save.

Configuring the Oracle Identity Cloud Integrator Provider: WLST Online Example

You can configure the Oracle Identity Cloud Integrator Provider using WLST online in script
mode by creating and executing a script that adds the provider to the security realm and
configures the connection to the Oracle Identity Cloud Service.

To do so, create a WLST script, similar to the sample IdentityCloudIntegrator.py script shown
in Example 18-1.

In the script, replace the required variables idcsHost, idcsPort, clientTenant,
clientID, and clientSecret with the appropriate values for your environment. In the
connect command in the script, replace the username, password, and host:port with the
values for the server in the domain to which you are adding the provider. Execute the script as
described in Using the WebLogic Scripting Tool in Understanding the WebLogic Scripting Tool

This script starts WLST online, adds the provider to the security realm, sets the provider
configuration, sets the JAAS control Flag, and activates the changes.

You need to restart the server after updating the domain.

Example 18-1 Sample IdentityCloudIntegrator.py WLST Script

Note

For clarity, this WLST example script shows the username and password in clear text.
However, you should avoid entering clear-text passwords in WLST commands in
general, and you should especially avoid saving on disk WLST scripts that include
clear-text passwords. In these instances you should use a mechanism for passing
encrypted passwords instead. See Security for WLST in Understanding the WebLogic
Scripting Tool.

#
Use appropriate Oracle Identity Cloud Service host, port, client tenant,
client Id, and client secret.
#
idcsHost="identity.example.com"
idcsPort=443
clientTenant="myTenant"

Chapter 18
Configuring the Oracle Identity Cloud Integrator Provider: Main Steps and Examples

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 14

clientId="123456789"
clientSecret="987654321"
#
Start WLST edit session
#
connect("","","t3://host:port")
edit()
startEdit()
#
Add the Oracle Identity Cloud Integrator provider to the security realm
configuration where the Default
Authenticator is the only existing authentication provider.
#
realm = cmo.getSecurityConfiguration().getDefaultRealm()
atn = realm.lookupAuthenticationProvider('IdentityCloudServiceIntegrator')
if atn == None:
 atn =
realm.createAuthenticationProvider('IdentityCloudServiceIntegrator','weblogic.
security.providers.authentication.OracleIdentityCloudIntegrator')
#
Setup the Oracle Identity Cloud Integrator provider configuration
#
atn.setHost(idcsHost)
Example host requires SSL. Comment out next line if using an Oracle
Identity Cloud Service instance that does not require SSL.
atn.setSSLEnabled(true)
atn.setPort(idcsPort)
atn.setTenant(clientTenant)
If the Client Tenant == Tenant then no need to set the Client Tenant value
atn.setClientTenant(clientTenant)
atn.setClientId(clientId)
atn.setClientSecret(clientSecret)
atn.setControlFlag('SUFFICIENT')
#
Adjust the JAAS control flag for the DefaultAuthenticator such that users
from the embedded LDAP server or the
Oracle Identity Cloud Service are allowed to log into WebLogic Server.
#
atnDefault = realm.lookupAuthenticationProvider('DefaultAuthenticator')
if atnDefault != None:
 atnDefault.setControlFlag('SUFFICIENT')
#
Activate changes
#
activate()
exit()
#
Restart WebLogic Server
#

Configuring the Oracle Identity Cloud Integrator Provider: WLST Offline Example

You can configure the Oracle Identity Cloud Integrator provider using WLST offline by
executing a series of commands that add the provider to the security realm and configure the
connection to the Oracle Identity Cloud Service.

Chapter 18
Configuring the Oracle Identity Cloud Integrator Provider: Main Steps and Examples

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 14

For details about using WLST offline, see Using WLST Offline to Update an Existing WebLogic
Domain in Understanding the WebLogic Scripting Tool.

Executing these commands edits the domain as follows:

• Opens the domain configuration for editing. Be sure to replace the variables
domainDirName and DOMAIN_NAME with the appropriate values for your environment. For
example, if you accepted the default values when you created the domain, domainDirName
is ORACLE_HOME/user_projects/domains/base_domain and DOMAIN_NAME is
base_domain. Also be sure to provide the actual name of the security realm. In this
example we used myrealm .

• Adds the Oracle Identity Cloud Integrator provider to the security realm configuration
where the Default Authenticator is the only existing authentication provider

• Configures the connection to the Oracle Identity Cloud Service using the values you
provide for idcsHost, idcsPort, clientTenant, clientID, and clientSecret.

• Adjusts the JAAS control flag for the DefaultAuthenticator such that users from the
embedded LDAP server or the Oracle Identity Cloud Service are allowed to log into
WebLogic Server.

• Updates and closes the domain, and exits WLST offline.

Example 18-2 WLST Offline Commands to Configure Oracle Identity Cloud Integrator
Provider

readDomain('domainDirName')
cd('SecurityConfiguration/DOMAIN_NAME/Realm/myrealm')
create('IdentityCloudServiceIntegrator','weblogic.security.providers.authentic
ation.OracleIdentityCloudIntegrator','AuthenticationProvider')
cd('AuthenticationProviders/IdentityCloudServiceIntegrator')
Execute the set commands needed to configure the Oracle Identity Cloud
Integrator provider host, port, tenant,
client tenant, client id, client secret and JAAS control flag.

idcsHost="identity.example.com"
idcsPort=443
clientTenant="myTenant"
clientId="123456789"
clientSecret="987654321"

Set attributes
set("Host",idcsHost)
set("SSLEnabled", true)
set("Port", idcsPort)
set("Tenant", clientTenant)
set("ClientTenant", clientTenant)
set("ClientId", clientId)
set("ClientSecretEncrypted", clientSecret)
set("ControlFlag", "SUFFICIENT")
Set any other authenticators to SUFFICIENT. In this example, set the JAAS
control flag for the DefaultAuthenticator
such that users from the embedded LDAP server or the Oracle Identity Cloud
Service are allowed to log into WebLogic Server.
cd("..")
cd("DefaultAuthenticator")
set("ControlFlag", "SUFFICIENT")
updateDomain()

Chapter 18
Configuring the Oracle Identity Cloud Integrator Provider: Main Steps and Examples

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 14

closeDomain()
exit()

Configuring TLS/SSL for the Oracle Identity Cloud Integrator
Provider

The Oracle Identity Cloud Integrator provider supports one-way SSL. To secure the connection
using TLS/SSL, you need to establish trust between WebLogic Server and the Oracle Identity
Cloud Service. To do so, you may need to obtain the Oracle Identity Cloud Service SSL
certificate and import it into the WebLogic Server trust store.

Note

If the Oracle Identity Cloud Service uses a well-known certificate authority (CA) such
as Symantec, and your WebLogic domain is using Java Standard Trust, WebLogic
Server trusts it by default and importing the certificate is not required. If, however, your
domain is configured for custom trust, you may need to import the certificate into your
trust store, regardless of whether the Oracle Identity Cloud Service is using a well-
known CA.

To configure TLS/SSL:

1. On the Oracle Identity Cloud Integrator provider, set the following attributes:

• SSLEnabled — true

• idcsPort — the appropriate SSL port for the Oracle Identity Cloud Service , for
example 443.

2. Optionally, obtain the root CA certificate from the Oracle Identity Cloud Service’s server
and import it into the appropriate trust store in your WebLogic Server domain.

This step is not required if the Oracle Identity Cloud Service uses a well-known CA.

• If your domain uses a JKS or PKCS12 trust store, see Importing Certificates into the
Trust and Identity Keystores.

3. Configure host name verification in WebLogic Server using the wildcard host name verifier
to allow WebLogic Server to accept certificates containing wildcards. The wildcard host
name verifier is the default host name verifier as of WebLogic Server 14c (14.1.1.0.0). See
Using the Wildcard Host Name Verifier. You can set this property in any of the following
ways:

• Configuring the property in the WebLogic Remote Console as described in Enable
Host Name Verification in Oracle WebLogic Remote Console Online Help.

• Passing the property as a system property when starting the server. For example, ./
startWebLogic.sh -
Dweblogic.security.SSL.hostnameVerifier=weblogic.security.utils.
SSLWLSWildcardHostnameVerifier

• Adding the property in the EXTRA_JAVA_PROPERTIES section of the
DOMAIN_HOME/bin/setDomainEnv.sh script as:
—
Dweblogic.security.SSL.hostnameVerifier=weblogic.security.utils.SSLWLSWild
cardHostnameVerifier

Chapter 18
Configuring TLS/SSL for the Oracle Identity Cloud Integrator Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 14

Consult your Oracle Identity Cloud Service administrator for any additional
configuration requirements.

For detailed information about configuring TLS/SSL in WebLogic Server, see Configuring SSL.
For information about using the WebLogic Remote Console to configure keystores and enable
SSL, see the following topics in the Oracle WebLogic Remote Console Online Help:

• Identity and Trust

• Set Up TLS

Using the Oracle Identity Cloud Integrator Provider in FIPS Mode
In WebLogic Server 12.2.1.3 and earlier, when you enable FIPS mode for WebLogic Server
and have configured the Oracle Identity Cloud Integrator provider, Java SSL Context
initialization exceptions may occur, or users from Oracle Identity Cloud Service may fail to
authenticate. These issues may be the result of your system using the default Java system
truststore where the CA certificates store, cacerts, is not FIPS compliant.

When you enable JDK debug (-Djavax.net.debug=ssl), error messages for the exception are
similar to the following:

Default SSLContext initialization
Key Store:
Key Store type: jks
Initializing key managers
Exception while initializing default context JKS keystores cannot be loaded
in FIPS-140 mode.
Only PKCS12 PBES2 key stores are supported

If you are using a PKCS12 keystore that is not FIPS compliant (created with the keytool
command using the Sun JSSE provider for example), you may also receive an error similar to
the following when using the keytool command:

keytool error: java.lang.SecurityException: Algorithm not allowable in
FIPS140 mode: PBE/PKCS12/SHA1/RC2/CBC/40

To address these errors and allow WebLogic Server to operate successfully, you need to first
convert the JDK keystore to a FIPS compliant PKCS12 keystore, and then set the Java system
properties to update the Java default settings for the truststore used with the default SSL
Context. For details, see Converting the Default JKS Keystore for FIPS Compliance.

Authorization and Remote User HTTP Header Support
The Oracle Identity Cloud Integrator provider supports Oracle Identity Cloud Service access
tokens via the Authorization HTTP header, and users validated by the Oracle Identity Cloud
Service via the REMOTE_USER HTTP header.

Topics in this section include:

• Enabling Authorization and REMOTE_USER Header Support: Main Steps

• Ordering of Identity Assertion Headers

Chapter 18
Using the Oracle Identity Cloud Integrator Provider in FIPS Mode

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 14

Enabling Authorization and REMOTE_USER Header Support: Main Steps
The Authorization and REMOTE_USER HTTP headers are not enabled by default. The services
must be protected by Oracle Identity Cloud Service to safely accept user information from
access tokens and from HTTP headers that contain no proof or signing materials. Therefore,
you must enable the support for these headers before they can be accepted.

Note

Use caution before enabling the REMOTE_USER HTTP header. This header should
only be sent by a trusted client. You cannot have any publicly accessible endpoints
if REMOTE_USER is enabled on the Oracle Identity Cloud Integrator provider. When
exposing both public and protected endpoints, then use of REMOTE_USER may leave
applications and WebLogic Server open to security vulnerabilities.

Only Oracle Identity Cloud Service identity tokens, idcs_user_assertion and
Idcs_user_assertion, active types are accepted by default. To enable Authorization and
REMOTE_USER HTTP header support:

1. In WebLogic Remote Console, in the Edit Tree, go to Security, then Realms, then
myRealm, then Authentication Providers, then myOracleIdentityCloudIntegratorProvider.
On the Common tab, in the Active Types field, add the Authorization header or the
REMOTE_USER header or both.

You can also use WLST, as shown in the script example. Note that you can enable these
headers individually as required by your environment.

connect('','','t3://host:port')
Please enter your username :
Please enter your password :
...
edit()
startEdit()
realm = cmo.getSecurityConfiguration().getDefaultRealm()
atn = realm.lookupAuthenticationProvider('IdentityCloudServiceIntegrator')
atn.setActiveTypes(["idcs_user_assertion","REMOTE_USER","Authorization"])
activate()
disconnect()
exit()
#
Restart WebLogic Server
#

2. To ensure that the process ordering for the multiple token types is defined, set the
precedence order on the RealmMBean to specify the ordering for the different HTTP
headers. See Ordering of Identity Assertion Headers.

Ordering of Identity Assertion Headers
When an HTTP request is processed by the WebLogic Server container, there may be multiple
matches that can be used for identity assertion. Headers passed to the Oracle Identity Cloud
Integrator provider may contain an Oracle Identity Cloud Service identity token, Oracle Identity
Cloud Service access token, or REMOTE_USER. However, the provider can only consume one

Chapter 18
Authorization and Remote User HTTP Header Support

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 14

active token type at a time. As a result there is no way to provide a set of tokens that can be
consumed with one call. Therefore, the WebLogic Server container must choose between
multiple tokens to perform identity assertion.

If you have enabled the REMOTE_USER or Authorization active types, you also need to update
the IdentityAssertionHeaderNamePrecedence property on the RealmMBean to set the
precedence order for the different HTTP headers, otherwise it is undefined.

Table 18-1 highlights some basic use cases and examples for precedence ordering in each
case.

Table 18-1 HTTP Header Precedence Ordering for Different Use Cases

Use Case Precedence Ordering Comments

HTTP request may contain all supported
tokens/headers

Authorization: Bearer (access
token)

idcs_user_assertion (identity
token)

REMOTE_USER

Settting this ordering gives precedence
to claims from Identity Cloud Service
tokens first. If no Identity Cloud Service
tokens are supplied, then authentication
falls back to using only remote user
information.

Oracle Identity Cloud Service tokens are
not provided when the Oracle Identity
Cloud Service handles basic
authentication and then sends the
REMOTE_USER HTTP request to the
server.

HTTP requests contain primarily access
tokens and HTTP Basic authentication
with some Web single sign-on (SSO)
tokens

Authorization: Bearer (access
token)

REMOTE_USER

In some cases additional security
context may be required, such as the
scopes from the access token. When
additional information is required, then
access and identity tokens should take
precedence over remote user
information.

Setting this ordering gives precedence
to access tokens and establishes a
security context that includes user,
client, application roles, scopes and
audience data from the access token.
For Web SSO and HTTP basic
credentials that have been verified by
the Oracle Identity Cloud Service, the
deployed application uses the remote
user information established in the
security context, including the user's
Identity Cloud Service application roles.

Note: When Oracle Identity Cloud
Service identity tokens are included, the
remote user information is still preferred
and the user's Identity Cloud Service
application roles are still obtained.

Chapter 18
Authorization and Remote User HTTP Header Support

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 14

Table 18-1 (Cont.) HTTP Header Precedence Ordering for Different Use Cases

Use Case Precedence Ordering Comments

HTTP requests may contain multiple
tokens but remote user should take
precedence

REMOTE_USER If the service wants to use just the
remote user information, setting remote
user as the highest precedence ensures
that HTTP requests that contain
REMOTE_USER are given precedence.
User information in the other tokens is
ignored. If remote user information is
omitted, then authentication falls back to
Identity Cloud Service tokens.

Note: When using the <auth-
method>CLIENT-CERT, BASIC</
auth-method> to define an
authentication mechanism for the
application, the remote user information
is still preferred over the Authorization:
Basic credential because CLIENT-CERT
is the first method used for
authentication by the Web Container.
Therefore, the HTTP BASIC credential
is only processed if the assertion from
the remote user information (tokens)
fails or the token related HTTP headers
are omitted from the HTTP request. See
Providing a Fallback Mechanism for
Authentication Methods in Developing
Applications with the WebLogic Security
Service.

Setting HTTP Header Precedence: WLST Example

You can use WLST online to set the HTTP Token precedence order as shown here. This
example sets the ordering to authorization (access token), identity token, and then remote user
as shown in the first use case.

connect('','','t3://host:port')
Please enter your username :
Please enter your password :
...
edit()
startEdit()
realm = cmo.getSecurityConfiguration().getDefaultRealm()
realm.setIdentityAssertionHeaderNamePrecedence(["Authorization:
Bearer","idcs_user_assertion","REMOTE_USER"])
activate()
disconnect()
exit()
#
It is not necessary to restart the server.
#

Chapter 18
Authorization and Remote User HTTP Header Support

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 14

Handling Authentication Failures
Authentication failures occur if the Oracle Identity Cloud Service is unavailable, or not
responding to authentication requests. When these failures occur, you can modify the settings
on the Oracle Identity Cloud Integrator provider to control how the authenticator handles the
failures.

When the Oracle Identity Cloud Service is unavailable, the authentication failures are logged to
the server log at periodic intervals. You can specify the interval at which the count of the
authentication failures is logged to the server log using the
ServerNotAvailableCounterInterval configuration attribute. By default, the failures are
logged every five minutes. If you set the value of the attribute to zero or a negative value, the
count of failures is not logged.

When the Oracle Identity Cloud Service is not responding to authentication requests and
returns a Too Many Requests error, you can use the ServerBackoffEnabled configuration
attribute to specify whether the server should back off and retry the request. By default, this
attribute is set to true.

You can set these properties on the Provider Specific page in WebLogic Remote Console,
using WLST, or directly on the MBean.

Chapter 18
Handling Authentication Failures

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 14

19
Configuring the WebLogic OpenID Connect
Provider

The WebLogic OpenID Connect provider is an authentication and identity assertion provider
that facilitates access to web applications from users and groups stored in external
authorization servers that adhere to the OpenID Connect and OAuth 2.0 standards.

Topics in this section include:

• About the WebLogic OpenID Connect Provider

• Configure the WebLogic OpenID Connect Identity Assertion Provider in WebLogic Remote
Console

• Preparing Web Applications for the WebLogic OpenID Connect Provider

About the WebLogic OpenID Connect Provider
The WebLogic OpenID Connect provider combines authentication and identity assertion into a
single provider. The provider establishes identity (the Subject) on WebLogic Server with the
authenticated user and the user's groups when the identity store is a supported OpenID
provider.

The WebLogic OpenID Connect provider consumes ID tokens for authenticating to applications
and uses them to establish authenticated subjects.

Note

It is important to distinguish OpenID providers from the WebLogic OpenID Connect
provider. OpenID providers are external authorization servers that adhere to OAuth 2.0
and OpenID Connect standards and provide authentication as a service. The
WebLogic OpenID Connect provider is a WebLogic security provider, a module that
integrates with the security realm to add support for authentication and identity
assertion services.

The WebLogic OpenID Connect provider is controlled by OIDCIdentityAsserterMBean and
includes the following configuration attributes:

• ClockScrew

• KeyCacheSize

• KeyCacheTTL

• RequestCacheSize

• RequestCacheTTL

• UserIDTokenClaim

• UserNameTokenClaim

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 3

• VirtualUserAllowed

For information on these attributes, see OIDCIdentityAsserterMBean in MBean Reference for
Oracle WebLogic Server.

The WebLogic OpenID Connect provider currently supports the following OpenID providers:

• Keycloak

• Microsoft Azure

Configure the WebLogic OpenID Connect Identity Assertion
Provider in WebLogic Remote Console

The WebLogic OpenID Connect provider is an authentication and identity assertion provider
that delegates authentication services for web applications to OpenID providers.

1. In WebLogic Remote Console, expand the Edit Tree and go to Security, then Realms,
then myRealm, then Authentication Providers.

2. Click New.

3. Enter a name for the new provider in the Name field.

4. From the Type drop-down list, select the WebLogic OpenID Connect Identity Asserter
provider.

5. Click Create.

6. On the Common tab, update any attributes applicable to your environment and click Save.

7. On the OIDC Identity Asserter Parameters tab, update any attributes applicable to your
environment.

8. Click Save.

9. If you are using the Default Authenticator provider (WebLogic Authentication provider),
then you must set the JAAS Control Flag option on the Default Authenticator to
SUFFICIENT. See Set the JAAS Control Flag in Oracle WebLogic Remote Console Online
Help.

For a description of the JAAS control flag and how multiple authentication providers
interact in a domain, see Setting the JAAS Control Flag Option and Using More Than One
Authentication Provider.

You must perform some additional configuration in web applications before they can use
OpenID providers for authentication. See Preparing Web Applications for the WebLogic
OpenID Connect Provider.

Preparing Web Applications for the WebLogic OpenID Connect
Provider

Before you can use the WebLogic OpenID Connect provider to delegate authentication of web
applications to an OpenID provider, you must create an OAuth client in the OpenID provider
and then include certain client attributes in the web application.

You must create an oidcAuth.properties file that contains the configuration information that
WebLogic Server uses to determine which OpenID provider is responsible for providing
authenticating services for the application.

Chapter 19
Configure the WebLogic OpenID Connect Identity Assertion Provider in WebLogic Remote Console

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 3

1. In the WEB-INF/ directory of the web application, create a new file and save it as
oidcAuth.properties.

2. Retrieve the following configuration attributes from the OAuth client in the OpenID provider
and add them to oidcAuth.properties in the following format:

issuer=issuer identifier
clientId=client ID
clientSecret=client secret
redirectUrl=redirect URL

For example:

issuer=https://example.com:8443:/realms/dev
clientId=devclient
clientSecret=57gw6LVlkWUTWDmbksiwH96ihFgpbF6d8
redirectUrl=https://organization.com:7002/devapp/go

3. Save your changes.

4. Continue with your application development and deployment process.

Note

Whenever you make any changes to oidcAuth.properties, you must repackage your
application and re-deploy it to implement those changes.

Chapter 19
Preparing Web Applications for the WebLogic OpenID Connect Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 3

Part IV
Configuring Single Sign-On

Learn how to configure the various single sign-on solutions available for Oracle WebLogic
Server.

This part contains the following chapters:

• Configuring Single Sign-On with Microsoft Clients

• Configuring Single Sign-On with Web Browsers and HTTP Clients Using SAML

• Configuring SAML 2.0 Services

• Enabling Debugging for SAML 2.0

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 1

20
Configuring Single Sign-On with Microsoft
Clients

Learn how to set up single sign-on (SSO) between Oracle WebLogic Server and Microsoft
clients, using Windows Integrated Authentication based on the Simple and Protected Negotiate
(SPNEGO) mechanism and the Kerberos protocol, together with the WebLogic Negotiate
Identity Assertion provider.

• Overview of Single Sign-On with Microsoft Clients

• System Requirements for SSO with Microsoft Clients

• Single Sign-On with Microsoft Clients: Main Steps

• Configuring Your Network Domain to Use Kerberos

• Creating a Kerberos Identification for WebLogic Server

• Configuring Microsoft Clients to Use Windows Integrated Authentication

• Creating a JAAS Login File

• Configuring the Identity Assertion Provider

• Using Startup Arguments for Kerberos Authentication with WebLogic Server

• Verifying Configuration of SSO with Microsoft Clients

Overview of Single Sign-On with Microsoft Clients
Single sign-on (SSO) with Microsoft clients allows cross-platform authentication between Web
applications or Web services running in a WebLogic domain and .NET Web service clients or
browser clients (for example, Internet Explorer) in a Microsoft domain.

The Microsoft clients must use Windows Integrated Authentication based on the Simple and
Protected Negotiate (SPNEGO) mechanism. Cross-platform authentication is achieved by
emulating the negotiate behavior of native Windows-to-Windows authentication services that
use the Kerberos protocol. In order for cross-platform authentication to work, non-Windows
servers (in this case, WebLogic Server) need to parse SPNEGO tokens in order to extract
Kerberos tokens which are then used for authentication.

Refer to the Microsoft documentation for details about Kerberos authentication support on
Windows.

Note

WebLogic Server's Single sign-on (SSO) support for Microsoft clients is available only
for Web applications and not for other application types, such as EJBs.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 15

System Requirements for SSO with Microsoft Clients
To use SSO with Microsoft clients, you must meet both host computer requirements and client
computer requirements.

• Host Computer Requirements for Supporting SSO with Microsoft Clients

• Client Computer Requirements for Supporting Microsoft Clients Using SSO

Host Computer Requirements for Supporting SSO with Microsoft Clients
The host computer that supports SSO for Microsoft clients must meet the following system
requirements:

• A version of Microsoft Windows that is supported by WebLogic Server for SSO with
Microsoft clients

For information about these supported versions, see Oracle Fusion Middleware Supported
System Configurations.

• Fully-configured Active Directory authentication service. Specific Active Directory
requirements include:

– User accounts for mapping Kerberos services

– Service Principal Names (SPNs) for those accounts

– Keytab files created and copied to the start-up directory in the WebLogic domain

• WebLogic Server installed and configured properly to authenticate through Kerberos, as
described in this chapter

Oracle recommends encrypting the user accounts that are mapped to Kerberos services on
the WebLogic Server host. However, the ability to encrypt these accounts imposes additional
requirements. The specific requirements depend on the encryption algorithm used, as shown
in Table 20-1. For each encryption algorithm listed in Table 20-1, see the Oracle Fusion
Middleware Supported System Configurations page for information about:

• The corresponding version of Microsoft Windows that is supported as the Active Directory
platform.

• The specific versions of the Internet Explorer and Mozilla FireFox client types that are
supported.

Table 20-1 Client Type Requirements for Using Encrypted User Accounts

Encryption Algorithm Supported Client Type

DES • Internet Explorer
• Mozilla FireFox
• .NET Web service
• Java SE client

AES-128, AES-256, and RC4 • Internet Explorer
• Mozilla FireFox
• Java SE client1

1 User accounts accessed with a Java SE client can also be encrypted with DES, AES-128, AES-256, and RC4 and
defined in Active Directory running on a Microsoft Windows platform supported by WebLogic Server for this
purpose.

Chapter 20
System Requirements for SSO with Microsoft Clients

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 15

Client Computer Requirements for Supporting Microsoft Clients Using SSO
The computer hosting a Microsoft client that uses SSO must meet the following requirements:

• An installation of Microsoft Windows

• Include one of the client types listed in the following table, which also includes links to the
instructions for configuring those clients:

Table 20-2 Configuration of Supported Hosted Clients

For the following client
type . . .

See the following topic . . .

Internet Explorer1 Configuring an Internet Explorer Browser

Mozilla FireFox 1 Configuring a Mozilla Firefox Browser

.NET Framework with
properly configured web
service client

Configuring a .NET Web Service

Standalone Java SE client
application

Configuring a Java SE Client Application

1 For information about the specific version supported for accessing user accounts that are defined in Active
Directory and encrypted with AES-128, AES-256, or RC4, see Oracle Fusion Middleware Supported System
Configurations.

Clients must be logged on to a Microsoft Windows domain and have Kerberos credentials
acquired from the Active Directory server in the domain. Local logins are not supported.

Note

For information about the versions of Microsoft Windows that are supported for
hosting clients using SSO, and the encryption algorithms with which user accounts
accessed by those clients can be defined in Active Directory, see Oracle Fusion
Middleware Supported System Configurations.

Single Sign-On with Microsoft Clients: Main Steps
Configuring SSO with Microsoft clients requires set-up procedures in the Microsoft Active
Directory, the client, and the WebLogic domain.

The procedure for configuring SSO with Microsoft client are detailed in the sections that follow.

• Define a principal in Active Directory to represent the WebLogic Server. The Kerberos
protocol uses the Active Directory server in the Microsoft domain to store the necessary
security information.

• Any Microsoft client you want to access in the Microsoft domain must be set up to use
Windows Integrated Authentication, sending a Kerberos ticket when available.

• In the security realm of the WebLogic domain, configure a Negotiate Identity Assertion
provider. The Web application or Web service used in SSO needs to have authentication
set in a specific manner. A JAAS login file that defines the location of the Kerberos
identification for WebLogic Server must be created.

Chapter 20
Single Sign-On with Microsoft Clients: Main Steps

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 15

To configure SSO with Microsoft clients:

1. Configure your network domain to use Kerberos. See Configuring Your Network Domain to
Use Kerberos.

2. Create a Kerberos identification for WebLogic Server.

a. Create a user account in the Active Directory for the host on which WebLogic Server is
running.

b. Create a service principal name (SPN) for this account.

c. Create a user mapping and keytab file for this account.

See Creating a Kerberos Identification for WebLogic Server.

3. Choose a Microsoft client (either a Web service or browser) or a Java SE client and
configure it to use Windows Integrated Authentication. See Configuring Microsoft Clients to
Use Windows Integrated Authentication.

4. Set up the WebLogic domain to use Kerberos authentication.

a. Create a JAAS login file that points to the Active Directory server in the Microsoft
domain and the keytab file created in Step 1. See Creating a JAAS Login File.

b. Configure a Negotiate Identity Assertion provider in the WebLogic Server security
realm. See Configuring a Negotiate Identity Assertion Provider.

5. Start WebLogic Server using specific start-up arguments. See Using Startup Arguments for
Kerberos Authentication with WebLogic Server.

The following sections describe these steps in detail.

Configuring Your Network Domain to Use Kerberos
To configure Kerberos in your Windows domain controller, you need to configure each machine
that will access the Key Distribution Center (KDC) to locate the Kerberos realm and available
KDC servers.

A Windows domain controller can serve as the Kerberos Key Distribution Center (KDC) server
for Kerberos-based client and host systems. On any domain controller, the Active Directory
and the Kerberos services are running automatically.

Java GSS requires a Kerberos configuration file. The default name and location of the
Kerberos configuration file depends on the operating system being used. Java GSS uses the
following order to search for the default configuration file:

1. The file referenced by the Java property java.security.krb5.conf.

2. ${java.home}/lib/security/krb5.conf.

3. %windir%\krb5.ini on Microsoft Windows platforms.

4. /etc/krb5/krb5.conf on Solaris platforms.

5. /etc/krb5.conf on other UNIX platforms.

For example:

Example 20-1 Sample krb5.ini File

[libdefaults]
default_realm = EXAMPLE.COM (Identifies the default realm. Set its value to your
Kerberos realm)
default_tkt_enctypes = des-cbc-crc
default_tgs_enctypes = des-cbc-crc

Chapter 20
Configuring Your Network Domain to Use Kerberos

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 15

ticket_lifetime = 600

[realms]
EXAMPLE.COM = {
kdc = <IP address for MachineA> (host running the KDC)
(For UNIX systems, you need to specify port 88, as in <IP-address>:88)
admin_server = MachineA
default_domain = EXAMPLE.COM
}

[domain_realm]
.example.com = EXAMPLE.COM

[appdefaults]
autologin = true
forward = true
forwardable = true
encrypt = true

Creating a Kerberos Identification for WebLogic Server
Active Directory provides support for service principal names (SPN), which are a key
component in Kerberos authentication. You must define an SPN to represent your WebLogic
Server in the Kerberos realm. Learn how to create an SPN, user mapping, and keytab file for
WebLogic Server.

SPNs are unique identifiers for services running on servers. Every service that uses Kerberos
authentication needs to have an SPN set for it so that clients can identify the service on the
network. An SPN usually looks something like name@YOUR.REALM. If an SPN is not set for a
service, clients have no way of locating that service. Without correctly set SPNs, Kerberos
authentication is not possible. Keytab files are the mechanism for storing the SPNs. Keytab
files are copied to the WebLogic domain and are used in the login process. This configuration
step describes how to create an SPN, user mapping, and keytab file for WebLogic Server.

This configuration process requires the use of the following Active Directory utilities:

• setspn—Microsoft Windows Resource Kit

• ktpass—Microsoft Windows distribution CD in Program Files\Support Tools

Note

The setspn and ktpass Active Directory utilities are products of Microsoft.
Therefore, Oracle does not provide complete documentation for this utilities. See
the appropriate Microsoft documentation for more information.

The process for creating a Kerberos identification consists of the following steps:

• Step 1: Create a User Account for the Host Computer

• Step 2: Configure the User Account to Comply with Kerberos

• Step 3: Define a Service Principal Name and Create a Keytab for the Service

• Step 4: Verify Correct Setup

Chapter 20
Creating a Kerberos Identification for WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 15

Step 1: Create a User Account for the Host Computer
In the Active Directory server, create a user account for the host computer on which WebLogic
Server runs. (Select New > User, not New > Machine.)

When creating the user account, use a unique name to represent the host computer on which
WebLogic Server runs. If your WebLogic Server instance runs on a host that is part of the
Active Directory domain, then you must use a name other than the host name. For
example, if the host is named myhost.example.com, create a user in Active Directory called
myweblogichost. If your WebLogic Server instance runs on a machine that is not a part of the
Active Directory domain, then you may use any unique name (including the host name) for
creating the user account.

Note the password you defined when creating the user account. You will need it for the
instructions described in Step 3: Define a Service Principal Name and Create a Keytab for the
Service. Do not select the User must change password at next logon option or any other
password options.

Step 2: Configure the User Account to Comply with Kerberos
Configure the new user account to comply with the Kerberos protocol as follows. The user
account's encryption type must be DES, at a minimum, and the account must require Kerberos
pre-authentication. Stronger encryption types are supported, including AES-128, AES-256, and
RC4.

Note

The use of a particular encryption type has a dependency on the version of the
Microsoft Windows platform on which Active Directory runs. For more information,
including a list of supported encryption types, see Oracle Fusion Middleware
Supported System Configurations.

1. Right-click the name of the user account in the Users tree in the left pane and select
Properties.

2. Select the Account tab and check the following:

• If you plan to use DES encryption, check the box Use DES encryption types for this
account.

• If you plan to use AES encryption, check the boxes This account supports Kerberos
AES 128 and This account supports Kerberos AES 256, and make sure that Use
Kerberos DES Encryption is unchecked.

Make sure no other boxes are checked, particularly the box "Do not require Kerberos pre-
authentication."

3. Click OK.

Chapter 20
Creating a Kerberos Identification for WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 15

Note

Setting the encryption type may corrupt the password. Therefore, reset the user
password by right-clicking the name of the user account, selecting Reset Password,
and re-entering the password created in Step 1: Create a User Account for the Host
Computer.

Step 3: Define a Service Principal Name and Create a Keytab for the
Service

As mentioned in Creating a Kerberos Identification for WebLogic Server, an SPN is a unique
name that identifies an instance of a service and is associated with the logon account under
which the service instance runs. The SPN is used in the process of mutual authentication
between the client and the server hosting a particular service. The client finds a computer
account based on the SPN of the service to which it is trying to connect. So, in a specific
project, you need to link the service that will be invoked by your WebLogic clients to the
account you just defined for your WebLogic Server. For example, the service invoked by the
WebLogic browser clients is HTTP/myhost.example.com, which needs to be linked to the
myhost account.

Windows account names are not multipart as Kerberos principal names. Because of this, it is
not possible to directly create an account using the name HTTP/hostname.dns.com. Such a
principal instance is created through SPN mappings. In this case, an account is created with a
meaningful name hostname, and an SPN mapping is added for HTTP/hostname.dns.com.

The specific steps for defining an SPN and creating a keytab for the service depend on the
underlying platform on which WebLogic Server is running. They are provided in the following
sections:

Defining an SPN and Creating a Keytab on Windows Systems
If WebLogic Server runs on a Windows system, complete the following steps:

1. Use the setspn utility to create the SPN for the HTTP service for the WebLogic Server
account created in Step 1. For example:

setspn -A HTTP/myhost.example.com myhost

2. Identify the SPNs that are associated with your user account by entering the setspn -L
command. For example:

setspn -L myhost

Note

The preceding is an important step. If the same service is linked to a different
account in the Active Directory server, the client will not send a Kerberos ticket to
the server.

3. Use the ktab utility to create a keytab to be exported to the WebLogic Server machine.
The command to run the ktab utility has the following syntax (note that the Kerberos realm
name must be entered in all uppercase):

ktab -k keytab-file-name -a account-name@REALM.NAME

Chapter 20
Creating a Kerberos Identification for WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 15

For example:

ktab -k mykeytab -a myhost@EXAMPLE.COM

When prompted for a password, enter the password created in Step 1: Create a User
Account for the Host Computer.

4. Save the keytab file in a secure location and export it to the domain directory of your
WebLogic Server instance (for example, to myhost).

Defining an SPN and Creating a Keytab on UNIX Systems
If WebLogic Server runs on a UNIX system, create a service principal name (SPN) and a
keytab file for the HTTP service for the WebLogic Server account by using the ktpass
command-line tool. This tool enables an administrator to configure a non-Windows Server
Kerberos service as a security principal in the Windows Server Active Directory.

The ktpass command configures the SPN for the service in Active Directory and generates a
Kerberos keytab file containing the shared secret key of the service. The tool allows UNIX-
based services that support Kerberos authentication to use the interoperability features
provided by the Windows Server Kerberos KDC service.

The ktpass command has the following syntax:

ktpass -princ HTTP/hostname@REALM-NAME -mapuser account-name -pass password -out keytab-
file-name -crypto algorithm -ptype KRB5_NT_PRINCIPAL

In the preceding syntax, algorithm identifies the encryption algorithm to use. If you are using
AES, specify AES128-SHA1 or AES256-SHA1. For example:

ktpass -princ HTTP/myhost.example.com@EXAMPLE.COM -mapuser myhost -pass password -out
mykeytab -crypto AES256-SHA1 -ptype KRB5_NT_PRINCIPAL

Note

On UNIX systems, creating an SPN that uses a DES or an AES encryption algorithm
is supported as of JDK 1.6.0_24 or later.

To verify that the SPN and the keytab file are set up correctly, you can do the following:

• Use the setspn -l command to verify that the SPN is mapped successfully.

• Use the klist command to show Key type: 17 for AES-128, and Key type: 18 for
AES-256. For example:

-klist -e -k keytab-file-name

• Use the kinit command to verify that the Kerberos setup and keytab are valid.

Chapter 20
Creating a Kerberos Identification for WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 15

Note

The ktpass command changes the principal name in the Active Directory server from
account-name to HTTP/account-name. Consequently, the keytab file is generated for a
principal named HTTP/account-name. However, sometimes the name change does not
happen. If not, you should change it manually in the Active Directory server; otherwise
the keytab you generate will not work properly.

To modify the user logon name manually:

1. Right-click on the user node, select Properties, and click on the Account tab.

2. Export the generated keytab file to your UNIX machine hosting the WebLogic
Server in the WebLogic domain directory.

Step 4: Verify Correct Setup
You can use the following utilities to verify that your SPN and keytab files are set up correctly.

• Use the setspn -l command to verify that the SPN is mapped successfully.

• Use the klist command to verify the key type. For example:

-klist -e -k keytab-file-name

For AES 128, this command displays Key type: 17. For AES 256, Key type: 18 is
displayed.

• Use the kinit utility to verify that Kerberos is set up properly and that your principal and
keytab are valid.

The kinit utility is provided by the JRE and may be used to obtain and cache Kerberos
ticket-granting tickets. You can run the kinit utility by entering the following command:

kinit -k -t keytab-file account-name

The output should appear similar to the following:

New ticket is stored in cache file C:\Documents and Settings\Username\krb5cc_myhost

Configuring Microsoft Clients to Use Windows Integrated
Authentication

You must ensure that the Microsoft client you want to use for single sign-on is configured to
use Windows Integrated Authentication. You can configure a .NET Web server, an Internet
Explorer browser client, a Mozilla Firefox client, or a Java SE client to use Windows Integrated
Authentication.

This section contains the following topics:

• Configuring a .NET Web Service

• Configuring an Internet Explorer Browser

• Configuring a Mozilla Firefox Browser

• Configuring a Java SE Client Application

Chapter 20
Configuring Microsoft Clients to Use Windows Integrated Authentication

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 15

Note

If the SPN for the user account on the WebLogic Server host to which the Kerberos
ticket is mapped is configured to use DES or AES-256 encryption (see Step 2:
Configure the User Account to Comply with Kerberos), the client must be running with
a supported JDK. See Oracle Fusion Middleware Supported System Configurations.

Configuring a .NET Web Service
To configure a .NET Web service to use Windows Integrated Authentication:

1. In the web.config file for the Web service, set the authentication mode to Windows for IIS
and ASP.NET as follows:

<authentication mode="Windows" />

This setting is usually the default.

2. Add the statement needed for the Web services client to pass to the proxy Web service
object so that the credentials are sent through SOAP.

For example, if you have a Web service client for a Web service that is represented by the
proxy object conv, the syntax is as follows:

/*
* Explicitly pass credentials to the Web Service
*/
conv.Credentials =
System.Net.CredentialCache.DefaultCredentials;

Configuring an Internet Explorer Browser
To configure an Internet Explorer browser to use Windows Integrated Authentication, complete
the procedures described in the following sections:

Configure Local Intranet Domains
In Internet Explorer:

1. Select Tools > Internet Options.

2. Select the Security tab.

3. Select Local intranet and click Sites.

4. In the Local intranet popup, ensure that the "Include all sites that bypass the proxy server"
and "Include all local (intranet) sites not listed in other zones" options are checked.

5. Click Advanced.

6. In the Local intranet (Advanced) dialog box, add all relative domain names that will be
used for WebLogic Server instances participating in the SSO configuration (for example,
myhost.example.com) and click OK.

Configure Intranet Authentication
In Internet Explorer:

Chapter 20
Configuring Microsoft Clients to Use Windows Integrated Authentication

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 15

1. Select Tools > Internet Options.

2. Select the Security tab.

3. Select Local intranet and click Custom Level... .

4. In the Security Settings dialog box, scroll to the User Authentication section.

5. Select Automatic logon only in Intranet zone. This option prevents users from having to
re-enter logon credentials, which is a key piece to this solution.

6. Click OK.

Verify the Proxy Settings
If you have a proxy server enabled:

1. In Internet Explorer, select Tools > Internet Options.

2. Select the Connections tab and click LAN Settings.

3. Verify that the proxy server address and port number are correct.

4. Click Advanced.

5. In the Proxy Settings dialog box, ensure that all desired domain names are entered in the
Exceptions field.

6. Click OK to close the Proxy Settings dialog box.

Set Integrated Authentication for Older Internet Explorer Versions
If you are configuring an older version of Internet Explorer, you might also need to complete
the following steps:

1. In Internet Explorer, select Tools > Internet Options.

2. Select the Advanced tab.

3. Scroll to the Security section.

4. Verify that the Enable Integrated Windows Integrated Authentication option is checked and
click OK.

If this option was not checked, check it, click OK, and restart the computer.

Configuring a Mozilla Firefox Browser
To configure a Firefox browser to use Windows Integrated Authentication, complete the
following steps:

1. Start Firefox.

2. In the Location Bar, enter about:config.

3. Enter the filter string network.negotiate.

4. Set the preferences as shown in Table 20-3.

Chapter 20
Configuring Microsoft Clients to Use Windows Integrated Authentication

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 15

Table 20-3 Preferences Required in Firefox for Windows Integrated Authentication

Preference Name Status Type Value

network.negotiate-auth.allow-
proxies

default boolean true

network.negotiate-
auth.delegation-uris

user set string http://,https:
//

network.negotiate-auth.gsslib default string <blank>1

network.negotiate-
auth.trusted-uris

user set string http://,https:
//

network.negotiate-auth.using-
native-gsslib

default boolean true

1 The value for the network.negotiate-auth.gsslib preference should be kept blank.

Configuring a Java SE Client Application
To configure a Java SE client application to use Windows Integrated Authentication, complete
the following steps:

1. Ensure that your Java SE client is running with a supported JDK. See Oracle Fusion
Middleware Supported System Configurations.

2. Create a JAAS configuration file that identifies the Kerberos login module,
com.sun.security.auth.module.Krb5LoginModule. This configuration file defines two
login entries:

• com.sun.security.jgss.krb5.initiate — Invoked for the Java client.

• com.sun.security.jgss.krb5.accept — Invoked for the WebLogic Server instance
that is represented by a Kerberos identity and that hosts the Web application to which
the client wants access.

For each login entry, options are included that:

• Require that authentication of the principal must succeed (that is, the user of the client
application who is defined in the Microsoft domain).

• Set useKeyTab to true, which causes the principal's key to be obtained from the
keytab.

• Identify the name of the keytab.

• Set storeKey to true, which causes the principal's key to be stored in the Subject.

• Optionally, set the debug option to true.

The following example shows JAAS configuration file for the Kerberos login module used
for the principal negotiatetester, who is defined in the Microsoft domain,
SECURITYQA.COM, in which the Active Directory server runs:

com.sun.security.jgss.krb5.initiate {
 com.sun.security.auth.module.Krb5LoginModule
 required principal="negotiatetester@SECURITYQA.COM"
 useKeyTab=true
 keyTab=negotiatetester_keytab storeKey=true debug=true; };

com.sun.security.jgss.krb5.accept {
 com.sun.security.auth.module.Krb5LoginModule

Chapter 20
Configuring Microsoft Clients to Use Windows Integrated Authentication

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 15

 required principal="negotiatetester@SECURITYQA.COM"
 useKeyTab=true keyTab=negotiatetester_keytab storeKey=true debug=true; };

3. In the Java command that starts the client application, pass the following values as
arguments:

• The Microsoft domain in which the Active Directory server runs

• The host name of the computer running the Kerberos Key Distribution Center (KDC)
server

• The JAAS configuration file that identifies the Kerberos login module

• The javax.security.auth.useSubjectCredsOnly=false property, which specifies that
it is permissible to use an authentication mechanism other than Subject credentials

• The name of the Java SE client class

• The Web application resource to which access is requested

For example:

java -Djava.security.krb5.realm = SECURITYQA.COM\
-Djava.security.krb5.kdc = rno05089.example.com\
-Djava.security.auth.login.config = negotiatetester_krb5Login.conf\
-Djavax.security.auth.useSubjectCredsOnly = false\
RunHttpSpnego http://myhost.example.com:7001/AuthenticatedServlet.jsp

Creating a JAAS Login File
If you are running WebLogic Server on either the Windows or UNIX platforms, you must create
a JAAS login file. You must correctly specify the values of the userPrincipalName attribute and
the keytab option in the JAAS login file.

The JAAS login file tells the WebLogic Security Framework to use Kerberos authentication and
defines the location of the keytab file which contains Kerberos identification information for
WebLogic Server. You specify the location of the JAAS login file in the
java.security.auth.login.config startup argument for WebLogic Server, as described in
Using Startup Arguments for Kerberos Authentication with WebLogic Server.

Note

The JAAS Login Entry names are com.sun.security.jgss.krb5.initiate and
com.sun.security.jgss.krb5.accept.

The following example shows a sample JAAS login file for Kerberos authentication. Significant
sections are shown in bold.

Example 20-2 Sample JAAS Login File for Kerberos Authentication

com.sun.security.jgss.krb5.initiate {

 com.sun.security.auth.module.Krb5LoginModule required
 principal="myhost@Example.CORP" useKeyTab="true"
 keyTab="mykeytab" storeKey="true";
};

com.sun.security.jgss.krb5.accept {

 com.sun.security.auth.module.Krb5LoginModule required

Chapter 20
Creating a JAAS Login File

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 15

 principal="myhost@Example.CORP" useKeyTab="true"
 keyTab="mykeytab" storeKey="true";

};

For the principal option, specify the value of the userPrincipalName attribute of the account
under which the service is running. (Incorrectly specifying the user principal name results in an
error such as "Unable to obtain password from user.")

The keytab file specified in the keytab option must be accessible by the WebLogic Server
process. Ensure that the appropriate permissions are set. If you are unsure of the search path
WebLogic Server is using, provide the absolute path to the file. Make sure that you enclose the
path in double quotes, and replace any backslash (\) in the path with a double backslash (\\)
or a forward slash (/).

Configuring the Identity Assertion Provider
The Negotiate Identity Assertion provider decodes Simple and Protected Negotiate (SPNEGO)
tokens to obtain Kerberos tokens, validates the Kerberos tokens, and maps Kerberos tokens to
WebLogic users.

You need to configure a Negotiate Identity Assertion provider in your WebLogic security realm
in order to enable SSO with Microsoft clients. See Configuring a Negotiate Identity Assertion
Provider in this document, and also see Configure an Authentication or Identity Assertion
Provider in Oracle WebLogic Remote Console Online Help.

Using Startup Arguments for Kerberos Authentication with
WebLogic Server

Startup arguments are used for authenticating Kerberos with WebLogic Server.
To use Kerberos authentication with WebLogic Server, use the following arguments in the Java
command to start WebLogic Server:

-Djavax.security.auth.useSubjectCredsOnly=false
-Djava.security.auth.login.config=krb5Login.conf
-Djava.security.krb5.realm=Example.CORP
-Djava.security.krb5.kdc=ADhostname

In the preceding list of arguments:

• javax.security.auth.useSubjectCredsOnly specifies that it is permissible to use an
authentication mechanism other than Subject credentials.

• java.security.auth.login.config specifies the JAAS login file, krb5Login.conf,
described in Creating a JAAS Login File.

• java.security.krb5.realm defines the Microsoft domain in which the Active Directory
server runs.

• java.security.krb5.kdc defines the host name on which the Active Directory server runs.

Java GSS messages are often very useful during troubleshooting, so you might want to add -
Dsun.security.krb5.debug=true as part of the initial setup.

Chapter 20
Configuring the Identity Assertion Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 15

Verifying Configuration of SSO with Microsoft Clients
To verify that SSO with Microsoft clients is configured properly, point a browser to the Microsoft
Web application or Web service you want to use.

For the verification to work properly, the browser must be configured as described in
Configuring an Internet Explorer Browser. If you are logged on to a Windows domain and have
Kerberos credentials acquired from the Active Directory server in the domain, you should be
able to access the Web application or Web service without providing a username or password.

Chapter 20
Verifying Configuration of SSO with Microsoft Clients

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 15

21
Configuring Single Sign-On with Web
Browsers and HTTP Clients Using SAML

WebLogic Server supports single sign-on (SSO) based on SAML. You configure single sign-on
with Web browsers or other HTTP clients by using authentication based on the Security
Assertion Markup Language (SAML) 2.0.
SAML enables cross-platform authentication between Web applications or Web services
running in an Oracle WebLogic Server domain and Web browsers or other HTTP clients. When
users are authenticated at one site that participates in a single sign-on (SSO) configuration,
they are automatically authenticated at other sites in the SSO configuration and do not need to
log in separately.

Note

• A WebLogic Server instance that is configured for SAML 2.0 SSO cannot send a
request to a server instance configured for SAML 1.1, and vice-versa.

• WebLogic Server supports encrypted SAML assertions for SAML 2.0.

• WebLogic Server supports SAML Single Logout for the WebLogic SAML Service
Provider.

For an overview of SAML-based single sign on, see the following topics in Understanding
Security for Oracle WebLogic Server:

• Security Assertion Markup Language (SAML)

• Web Browsers and HTTP Clients via SAML

• Single Sign-On with the WebLogic Security Framework

This chapter includes the following sections:

• Configuring SAML Services

• SAML for Web Single Sign-On Scenario API Example

Configuring SAML Services
To configure SAML services for single sign-on with Web browsers and HTTP clients, see
Configuring SAML 2.0 Services.

SAML for Web Single Sign-On Scenario API Example
WebLogic Server provides a set of code examples for learning about and working with
WebLogic Server. These code examples include a security API example for a SAML for Web
single sign-on (SSO) scenario.

The Web SSO example, which you build, run, and deploy, shows a variety of SSO
configurations for your applications using WebLogic Server and SAML. The server examples

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 2

provide access to code examples and sample applications that offer several approaches to
learning about and working with WebLogic Server.

The following scenarios are included:

• SAML 2.0 POST binding

• SAML 2.0 Artifact binding with custom attributes

All files needed to build, deploy, and run the example are included, as are the scripts that
configure the WebLogic domains that are used. For more information about the examples,
including the directories in which they are installed, see Sample Application and Code
Examples in Understanding Oracle WebLogic Server.

Chapter 21
SAML for Web Single Sign-On Scenario API Example

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 2

22
Configuring SAML 2.0 Services

Learn how to configure single sign-on in Oracle WebLogic Server with Web browsers and
HTTP clients using SAML 2.0.

• Configuring SAML 2.0 Services: Main Steps

• Configuring SAML 2.0 General Services

• Configuring an Identity Provider Site for SAML 2.0 Single Sign-On

• Configuring a Service Provider Site for SAML 2.0 Single Sign-On

• Configuring SAML Encryption Using WLST

• Viewing Partner Site, Certificate, and Service Endpoint Information

• Web Application Deployment Considerations for SAML 2.0

Configuring SAML 2.0 Services: Main Steps
Before you configure SAML 2.0 services, you must perform certain steps if you want to run this
service in more than one WebLogic Server instance. You can then configure your WebLogic
Server instance as either a Service Provider or Identity Provider.

A summary of the main steps you take to configure SAML 2.0 services is as follows:

1. Determine whether you plan to have SAML 2.0 services running in more than one
WebLogic Server instance in the domain. If so, do the following:

a. Create a domain in which the RDBMS security store is configured.

The RDBMS security store is required by the SAML 2.0 security providers in
production environments so that the data they manage can be synchronized across all
the WebLogic Server instances that share that data.

Note that Oracle does not recommend upgrading an existing domain in place to use
the RDBMS security store. If you want to use the RDBMS security store, you should
configure the RDBMS security store at the time of domain creation. If you have an
existing domain with which you want to use the RDBMS security store, create the new
domain and migrate your existing security realm to it.

See Managing the RDBMS Security Store.

b. Ensure that all SAML 2.0 services are configured identically in each WebLogic Server
instance. If you are configuring SAML 2.0 services in a cluster, each Managed Server
in that cluster must be configured individually.

c. Note the considerations described in Web Application Deployment Considerations for
SAML 2.0.

2. If you are configuring a SAML 2.0 Identity Provider site:

a. Create and configure an instance of the SAML 2.0 Credential Mapping provider in the
security realm.

b. Configure the SAML 2.0 general services identically and individually in each WebLogic
Server instance in the domain that will run SAML 2.0 services.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 17

c. Configure the SAML 2.0 Identity Provider services identically and individually in each
WebLogic Server instance in the domain that will run SAML 2.0 services.

d. Publish the metadata file describing your site, and manually distribute it to your Service
Provider partners.

e. Create and configure your Service Provider partners.

3. If you are configuring a SAML 2.0 Service Provider site:

a. Create and configure an instance of the SAML 2.0 Identity Assertion provider in the
security realm.

If you are allowing virtual users to log in via SAML, you need to create and configure
an instance of the SAML Authentication provider. See Configuring the SAML
Authentication Provider.

b. Configure the SAML 2.0 general services identically and individually in each WebLogic
Server instance in the domain that will run SAML 2.0 services.

c. Configure the SAML 2.0 Service Provider services identically and individually in each
WebLogic Server instance in the domain that will run SAML 2.0 services.

d. Publish the metadata file describing your site, and manually distribute it to your Identity
Provider partners.

e. Create and configure your Identity Provider partners.

The sections that follow provide details about each set of main steps.

Note

• In this release of WebLogic Server, the SAML 2.0 implementation uses the SHA2
signature algorithm as the default for signing requests and responses. If required
for backward compatibility, you can use the SHA1 signature algorithm by setting
the Java system property
com.bea.common.security.saml2.useSHA1SigAlgorithm to true. To do so,
specify the following option in the Java command that starts WebLogic Server:

-Dcom.bea.common.security.saml2.useSHA1SigAlgorithm=true

• In this release of WebLogic Server, the SAML 2.0 implementation no longer uses
certificates that are expired or not yet valid in SAML signing. To allow use of these
certificates, set the Java system property
com.bea.common.security.saml2.allowExpiredCerts to true. For example,
specify the following option in the Java command that starts WebLogic Server:

-Dcom.bea.common.security.saml2.allowExpiredCerts=true

• The SAML 2.0 implementation does not use HttpServletResponse URL rewriting
in SAML responses. Consequently, the JSESSIONID is not appended to SAML
responses and, as a result, SAML 2.0 cannot be used with browsers that do not
support cookies.

To enable HttpServletResponse URL rewriting, set the Java system property
com.bea.common.security.saml2.enableURLRewriting to true. For example,
specify the following option in the Java command that starts WebLogic Server:

-Dcom.bea.common.security.saml2.enableURLRewriting=true

Chapter 22
Configuring SAML 2.0 Services: Main Steps

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 17

Configuring SAML 2.0 General Services
Whether you configure a WebLogic Server instance as a SAML 2.0 Service Provider or as a
SAML 2.0 Identity Provider, you must configure the server's general SAML 2.0 services using
either the WebLogic Scripting Tool or WebLogic Remote Console. Configuration of the SAML
2.0 general services for a WebLogic Server instance is controlled by the
SingleSignOnServicesMBean.

You can access the SingleSignOnServicesMBean with the WebLogic Scripting Tool or through
WebLogic Remote Console (SAML 2.0 General attributes are located on the Edit Tree >
Environment > Servers > ServerName page, under the Security tab.).

Note

You cannot configure SAML 2.0 general services in a WebLogic Server instance until
you have first configured either the SAML 2.0 Identity Assertion or SAML 2.0
Credential Mapping provider and restarted the server instance.

The following sections describe SAML 2.0 general services:

• About SAML 2.0 General Services

• Publishing and Distributing the Metadata File

About SAML 2.0 General Services
The general SAML 2.0 services you configure include the following:

• Whether you wish to enable the replicated cache

Enabling the replicated cache is required if you are configuring SAML 2.0 services on two
or more WebLogic Server instances in a domain, such as in a cluster. The replicated cache
enables server instances to share and be synchronized with the data that is managed by
the SAML 2.0 security providers; that is, either or both the SAML 2.0 Identity Assertion
provider and the SAML 2.0 Credential Mapping provider.

The RDBMS security store is required by the SAML 2.0 security providers in production
environments so that the data they manage can be synchronized across all the WebLogic
Server instances that share that data. (Use LDAP as the security store with the SAML 2.0
security providers only in development environments.)

Therefore, prior to configuring SAML 2.0 services, the preferred approach is first to create
a domain that is configured to use the RDBMS security store. See Managing the RDBMS
Security Store.

• Information about the local site

The site information you enter is primarily for the benefit of the business partners in the
SAML federation with whom you share it. Site information includes details about the local
contact person who is your partners' point of contact, your organization name, and your
organization's URL.

• Published site URL

This URL specifies the base URL that is used to construct endpoint URLs for the various
SAML 2.0 services. The published site URL should specify the host name and port at

Chapter 22
Configuring SAML 2.0 General Services

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 17

which the server is visible externally, which might not be the same at which the server is
accessed locally. For example, if SAML 2.0 services are configured in a cluster, the host
name and port may correspond to the load balancer or proxy server that distributes client
requests to the Managed Servers in that cluster.

The published site URL should be appended with /saml2. For example:

https://www.avitek.com:7001/avitek-domain/aviserver/saml2

• Entity ID

The entity ID is a human-readable string that uniquely distinguishes your site from the
other partner sites in your federation. When your partners need to generate or consume an
assertion, the SAML 2.0 services use the entity ID as part of the process of identifying the
partner that corresponds with that assertion.

• Whether recipient check is enabled

If enabled, the recipient of the authentication request or response must match the URL in
the HTTP Request.

• Whether TLS/SSL client authentication is required for invocations on the Artifact
Resolution Service. If enabled, SAML artifacts are encrypted when transmitted to partners.

• Transport Layer Security keystore alias and passphrase, the values used for securing
outgoing communications with partners.

• Whether Basic authentication client authentication is required when your partners invoke
the HTTPS bindings of the local site.

If you enable this setting, you also specify the client username and password to be used.
These credentials are then included in the published metadata file that you share with your
federated partners.

• Whether requests for SAML artifacts received from your partners must be signed.

• Configuration settings for the SAML artifact cache.

• Keystore alias and passphrase for the key to be used when signing documents sent to
your federated partners, such as authentication requests or responses.

For information about the steps for configuring SAML 2.0 general services, see Configure
SAML 2.0 General Services in Oracle WebLogic Remote Console Online Help.

Publishing and Distributing the Metadata File
The local site information that is needed by your federated partners such as the local site
contact information, entity ID, published site URL, whether TLS/SSL client authentication is
required, and so on is published to a metadata file. See Publish SAML Metadata in Oracle
WebLogic Remote Console Online Help.

When you publish the metadata file, you specify an existing directory on the local machine in
which the file can be created. The process of distributing the metadata file to your federated
partners is a detail that is not implemented by WebLogic Server. However, you may send this
file via a number of commonly used mechanisms suitable for securely transferring electronic
documents, such as encrypted email or secure FTP.

Keep the following in mind regarding the metadata file:

• Before you publish the metadata file, you should configure the Identity Provider and/or
Service Provider services for the SAML 2.0 roles in which the WebLogic Server instances
in your domain are enabled to function.

Chapter 22
Configuring SAML 2.0 General Services

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 17

The configuration data for the SAML 2.0 services your site offers that is needed by your
federated partners is included in this metadata file, greatly simplifying the tasks your
partners perform to import your signing certificates, identify your site's SAML 2.0 service
endpoints, including Single Logout, and use the correct binding types for connecting to
your site's services, and so on.

• You should have only a single version of the metadata file that you share with your
federated partners, even if your site functions in the role of Service Provider with some
partners and Identity Provider with others. By having only a single version of the metadata
file, you reduce the likelihood that your configuration settings might become incompatible
with those of a partner.

• If you change the local site's SAML 2.0 configuration, you should update your metadata
file. Because the metadata file is shared with your partners, it will be convenient to
minimize the frequency with which you update your SAML 2.0 configuration so that your
partners can minimize the need to make concomitant updates to their own partner
registries.

• When you receive a metadata file from a federated partner, place it in a location that can
be accessed by all the nodes in your domain in which SAML 2.0 services are configured.
At the time you create a partner, you bring the contents the partner's metadata file into the
partner registry.

Operations on the metadata file are available via the
com.bea.security.saml2.providers.registry.Partner Java interface.

Configuring an Identity Provider Site for SAML 2.0 Single Sign-
On

Before you configure SAML 2.0 Identity Provider services for your WebLogic Server instance,
you must first configure a SAML 2.0 Credential Mapping provider instance in the security
realm, and then configure SAML 2.0 general services. After performing these prerequisites,
configure SAML 2.0 Identity Provider Services using the WebLogic Scripting Tool (WLST), or
through WebLogic Remote Console.

Note

When WebLogic Server is configured as an Identity Provider, it does not support
SAML Single Logout.

This section presents the following topics:

• Configure the SAML 2.0 Credential Mapping Provider

• Configure SAML 2.0 Identity Provider Services

• Create and Configure Web Single Sign-On Service Provider Partners

Configure the SAML 2.0 Credential Mapping Provider
In your security realm, create a SAML 2.0 Credential Mapping provider instance. The SAML
2.0 Credential Mapping provider is not part of the default security realm. See Configuring a
SAML 2.0 Credential Mapping Provider for SAML 2.0.

Chapter 22
Configuring an Identity Provider Site for SAML 2.0 Single Sign-On

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 17

Configure the SAML 2.0 Credential Mapping provider as a SAML authority. Attributes you
specify include the following:

• Issuer URI

• Name Qualifier

• Life span attributes for generated SAML 2.0 assertions

• Name mapper class name

• Whether generated assertions should include attribute information, which specify the
groups to which the identity contained in the assertion belongs

After you configure the SAML 2.0 Credential Mapping provider, configure SAML 2.0 general
services, as described in Configuring SAML 2.0 General Services.

Configure SAML 2.0 Identity Provider Services
Configuration of a WebLogic Server instance as a SAML 2.0 Identity Provider site is controlled
by the SingleSignOnServicesMBean. You can access the SingleSignOnServicesMBean using
the WebLogic Scripting Tool (WLST), or WebLogic Remote Console.

The sections that follow summarize the configuration tasks. For more information about
performing these tasks, see Configure SAML 2.0 Identity Provider Services in Oracle
WebLogic Remote Console Online Help.

Enable the SAML 2.0 Identity Provider Site
In WebLogic Remote Console, open the Edit Tree and go to Environment, then Servers and
select the server you want to configure. On its Security tab, select the SAML 2.0 Identity
Provider subtab. Turn on the Enabled option.

Specify if Authentication Requests Must Be Signed
Enable or disable the Only Accept Signed Authentication Requests attribute that
determines whether incoming authentication requests must be signed. If enabled, then the
authentication requests that are not signed are not accepted.

Specify a Custom Login Web Application
Optionally, you may use a custom login web application to authenticate users into the Identity
Provider site. To configure a custom login web application, use the Login Customized attribute
to specify the URL of the web application.

Enable Binding Types
Oracle recommends enabling all the available binding types for the endpoints of the Identity
Provider services; namely, POST, Redirect, and Artifact. Optionally you may select a preferred
binding type.

Configure Assertion Encryption
Set the following attributes to enable and configure encryption for SAML 2.0 assertions:

• Select Assertion Encryption to enable encryption for SAML 2.0 assertions.

• Optionally, update the default values of encryption algorithms in the Key Encryption
Algorithm and the Data Encryption Algorithm fields.

Chapter 22
Configuring an Identity Provider Site for SAML 2.0 Single Sign-On

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 17

Publish Your Site's Metadata File
After you have configured the SAML 2.0 general services and Identity Provider services,
publish your site's metadata file and distribute it to your federated partners, as described in
Publishing and Distributing the Metadata File.

Create and Configure Web Single Sign-On Service Provider Partners
A SAML 2.0 Service Provider partner is an entity that consumes the SAML 2.0 assertions
generated by the Identity Provider site. You can configure Service Provider partners using
WebLogic Remote Console.

The attributes that can be set on this console page can also be accessed programmatically via
a set of Java interfaces, which are identified in the sections that follow.

See Create a SAML 2.0 Web Single Sign-On Service Provider Partner in Oracle WebLogic
Remote Console Online Help for complete details about the specific steps for configuring a
Service Provider partner. For a summary of the site information, signing certificates, and
service endpoint information available when you configure a web single sign-on partner, see
Viewing Partner Site, Certificate, and Service Endpoint Information.

This section includes the following topics:

Obtain Your Service Provider Partner's Metadata File
Before you configure a Service Provider partner for web single sign-on, you need to obtain the
partner's SAML 2.0 metadata file via a trusted and secure mechanism, such as encrypted
email or an SSL-enabled FTP site. Your partner's metadata file describes the partner site and
binding support, includes the partner's certificates and keys, contains your partner's SAML 2.0
service endpoints, and more. Copy the partner's metadata file into a location that can be
accessed by each node in your domain configured for SAML 2.0.

The SAML 2.0 metadata file is described in Publishing and Distributing the Metadata File.

Create Partner and Enable Interactions
To create and enable a Service Provider partner for web single sign-on, see Create a SAML
2.0 Web Single Sign-On Service Provider Partner in Oracle WebLogic Remote Console Online
Help.

WebLogic Server provides the com.bea.security.saml2.providers.registry.Partner Java
interface for configuring these attributes.

Configure How Assertions are Generated
Optionally, you can configure the following attributes of the SAML 2.0 assertions generated
specifically for this Service Provider partner.

See Create a SAML 2.0 Web Single Sign-On Service Provider Partner in Oracle WebLogic
Remote Console Online Help.

• The Service Provider Name Mapper Class name

This is the Java class that overrides the default username mapper class with which the
SAML 2.0 Credential Mapping provider is configured in this security realm.

• Time to Live attributes

Chapter 22
Configuring an Identity Provider Site for SAML 2.0 Single Sign-On

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 17

The Time to Live attributes specify the interval of time during which the assertions
generated for this partner are valid. These attributes prevent expired assertions from being
used.

• Whether to generate attribute information that is included in assertions

If enabled, the SAML 2.0 Credential Mapping provider adds, as attributes in the assertion,
the groups to which the corresponding user belongs.

• Whether the assertions sent to this partner must be disposed of immediately after use

• Whether this server's signing certificate is included in assertions generated for this partner

WebLogic Server provides the com.bea.security.saml2.providers.registry.SPPartner
Java interface for configuring these attributes.

Configure How Documents Are Signed
You can determine how the following documents exchanged with this partner must be signed.

See Create a SAML 2.0 Web Single Sign-On Service Provider Partner in Oracle WebLogic
Remote Console Online Help.

• Assertions

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.SPPartner interface.

• Authentication requests

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.WebSSOSPPartner interface.

• Artifact requests

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.WebSSOPartner interface.

The attributes for specifying whether this partner accepts only signed assertions, or whether
authentication requests must be signed, are read-only: they are derived from the partner's
metadata file.

Configure Artifact Binding and Transport Settings
Optionally, you configure artifact binding and transport settings on the Service Provider partner
page.

See Create a SAML 2.0 Web Single Sign-On Service Provider Partner in Oracle WebLogic
Remote Console Online Help.

• Whether SAML artifacts are delivered to this partner via the HTTP POST binding. If so, you
may also specify the URI of a custom web application that generates the HTTP POST form
for sending the SAML artifact.

• The URI of a custom web application that generate the HTTP POST form for sending
request or response messages via the POST binding.

Operations on these attributes are available via the
com.bea.security.saml2.providers.registry.WebSSOPartner Java interface.

For added security in the exchange of documents with this partner, you can also specify a
client user name and password to be used by the Service Provider partner when connecting to
the local site's binding using Basic authentication. This attribute is available via the
com.bea.security.saml2.providers.registry.BindingClientPartner Java interface.

Chapter 22
Configuring an Identity Provider Site for SAML 2.0 Single Sign-On

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 17

Configuring a Service Provider Site for SAML 2.0 Single Sign-On
As a prerequisite to configuring a SAML 2.0 Service Provider site, you must configure a SAML
2.0 Identity Assertion provider instance in your security realm, and then configure SAML 2.0
general services. If you plan to enable virtual users, you can optionally configure the SAML
Authentication provider. After fulfilling the prerequisites, configure SAML 2.0 Service Provider
Services using the WebLogic Scripting Tool (WLST) or WebLogic Remote Console.

Note

As described in session-descriptor in Developing Web Applications, Servlets, and
JSPs for Oracle WebLogic Server, the cookie-path element defines the session
tracking cookie path. If not set, this element defaults to / (slash), where the browser
sends cookies to all URLs served by WebLogic Server.

The WebLogic Server SAML 2.0 Service Providers require that the cookie-path be /
(slash). If you set any other value for cookie-path, SSO fails for the SAML 2.0 Service
Providers.

This section presents the following topics:

• Configure the SAML 2.0 Identity Assertion Provider

• Configure the SAML Authentication Provider

• Configure SAML 2.0 General Services

• Configure SAML 2.0 Service Provider Services

• Create and Configure Web Single Sign-On Identity Provider Partners

Configure the SAML 2.0 Identity Assertion Provider
In your security realm, create an instance of the SAML 2.0 Identity Assertion provider. The
SAML 2.0 Identity Assertion provider is not part of the default security realm. The attributes you
specify for the SAML 2.0 Identity Assertion provider include the following:

• Whether the replicated cache is enabled

If you are configuring SAML 2.0 Identity Provider services in two or more server instances
in the domain, this attribute must be enabled.

• A custom name mapper class that overrides the default SAML 2.0 assertion name mapper
class

For more information about this security provider, see Configuring a SAML 2.0 Identity
Assertion Provider for SAML 2.0.

Configure the SAML Authentication Provider
If you plan to enable virtual users, or consume attribute statements contained in assertions that
you receive from your Identity Provider partners, you need to create and configure an instance
of the SAML Authentication provider. See Configuring the SAML Authentication Provider.

Chapter 22
Configuring a Service Provider Site for SAML 2.0 Single Sign-On

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 17

Configure SAML 2.0 General Services
After configuring the SAML 2.0 Identity Assertion provider, and optionally the SAML
Authentication provider, configure the SAML 2.0 general services, as described in Configuring
SAML 2.0 General Services.

Configure SAML 2.0 Service Provider Services
Configuration of a WebLogic Server instance as a SAML 2.0 Service Provider site is controlled
by the SingleSignOnServicesMBean. You can access the SingleSignOnServicesMBean using
the WebLogic Scripting Tool (WLST) or WebLogic Remote Console.

You configure the SAML 2.0 Service Provider site attributes as summarized in the sections that
follow. For more information about these configuration tasks, see Configure SAML 2.0 Service
Provider Services in Oracle WebLogic Remote Console Online Help.

Enable the SAML 2.0 Service Provider Site
In WebLogic Remote Console, open the Edit Tree and go to Environment, then Servers and
select the server you want to configure. On its Security tab, select the SAML 2.0 Service
Provider subtab. Turn on the Enabled option.

Specify How Documents Must Be Signed
Optionally, you may enable or disable the following attributes that set the document signing
requirements:

• Always Sign Authentication Requests that determines whether authentication requests
sent to Identity Provider partners are signed.

• Only Accept Signed Assertions that determines whether assertions received from
Identity Provider partners are signed. Note that this option is enabled by default to ensure
that all incoming SAML 2.0 assertions must be signed.

Specify How Authentication Requests Are Managed
Optionally you may enable the following attributes of the authentication request cache:

• Maximum cache size

• Time-out value for authentication requests, which establishes the time interval beyond
which stored authentication requests are expired

Enable Binding Types
Oracle recommends enabling all the available binding types for the endpoints of the Service
Provider services; namely, POST, and Artifact. Optionally you may specify a preferred binding
type.

Set Default URL
Optionally, you may specify the URL to which unsolicited authentication responses are sent if
they do not contain an accompanying target URL.

Chapter 22
Configuring a Service Provider Site for SAML 2.0 Single Sign-On

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 17

Configure Assertion Encryption Key
Specify values for the following attributes to configure assertion encryption key:

• Assertion Key Pass Phrase that is required to retrieve the local site assertion key from
the keystore

• Assertion Key Alias that is an alias for the keystore that contains the certificate and
private key used to encrypt and decrypt the SAML assertions

Optionally, update the default list of encryption algorithms in the Meta Data Encryption
Algorithms field.

Configure SAML Single Logout
SAML Single Logout (SLO) complements SAML Single Sign On by logging users out of all of
the applications in their current SSO session at once. SAML SLO decreases the number of
connections that remain active but unused, therefore reducing the opportunity for unauthorized
access.

You can configure the behavior of the SAML SLO. Use the SLO Redirect URI option to
determine where users are sent after they log out of an application. If no SLO Redirect URI is
set, users are directed to the Default URL. You can also change the binding of the SAML SLO
requests, which is set to HTTP Redirect by default, but can also be set to HTTP POST.

SAML SLO is enabled by default on WebLogic Server instances that act as Service Providers
but you can choose to disable it if you want users to log out of each application separately.

Create and Configure Web Single Sign-On Identity Provider Partners
A SAML 2.0 Identity Provider partner is an entity that generates SAML 2.0 assertions
consumed by the Service Provider site. You can configure Identity Provider partners using
WebLogic Remote Console.

The attributes that can be set on this console page can also be accessed programmatically via
a set of Java interfaces, which are identified in the sections that follow.

See Create a SAML 2.0 Web Single Sign-On Identity Provider Partner in Oracle WebLogic
Remote Console Online Help for complete details about the specific steps for configuring a
Service Provider partner.

For a summary of the site information, signing certificates, and service endpoint information
available when you configure a web single sign-on partner, see Viewing Partner Site,
Certificate, and Service Endpoint Information.

The following sections summarize tasks for configuring an Identity Provider partner:

Obtain Your Identity Provider Partner's Metadata File
Before you configure an Identity Provider partner for web single sign-on, you need to obtain the
partner's SAML 2.0 metadata file via a trusted and secure mechanism, such as encrypted
email or an SSL-enabled FTP site. Your partner's metadata file describes that partner site and
binding support, includes the partner's certificates and keys, and so on. Copy the partner's
metadata file into a location that can be accessed by each node in your domain configured for
SAML 2.0.

The SAML 2.0 metadata file is described in Publishing and Distributing the Metadata File.

Chapter 22
Configuring a Service Provider Site for SAML 2.0 Single Sign-On

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 17

Create Partner and Enable Interactions
To create an Identity Provider partner and enable interactions for web single sign-on:

To create and enable an Identity Provider partner for web single sign-on, see Create a SAML
2.0 Web Single Sign-On Identity Provider Partner in Oracle WebLogic Remote Console Online
Help.

WebLogic Server provides the com.bea.security.saml2.providers.registry.Partner Java
interface for configuring these attributes.

Configure Authentication Requests and Assertions
Optionally, you can configure the following attributes of the authentication requests generated
for, and assertions received from, this Identity Provider partner:

• The Identity Provider Name Mapper Class name

This is the custom Java class that overrides the default username mapper class with which
the SAML 2.0 Identity Assertion provider is configured in this security realm. The custom
class you specify is used only for identities contained in assertions received from this
particular partner.

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.IdPPartner Java interface.

• Whether the identities contained in assertions received from this partner are mapped to
virtual users in the security realm

Note

To use this attribute, you must have a SAML Authentication provider configured in
the realm.

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.IdPPartner Java interface.

• Whether to consume attribute information contained in assertions received from this
partner

If enabled, the SAML 2.0 Identity Assertion provider extracts attribute information from the
assertion, which it uses in conjunction with the SAML Authentication provider (which must
be configured in the security realm) to determine the groups in the security realm to which
the corresponding user belongs.

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.IdPPartner Java interface.

• Whether authentication requests sent to this Identity Provider partner must be signed. This
is a read-only attribute that is derived from the partner's metadata file.

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.WebSSOIdPPartner Java interface.

• Whether SAML artifact requests received from this Identity Provider partner must be
signed.

Chapter 22
Configuring a Service Provider Site for SAML 2.0 Single Sign-On

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 17

Operations on this attribute are available in the
com.bea.security.saml2.providers.registry.WebSSOIdPPartner Java interface.

Configure Redirect URIs
You can configure a set of URIs that, if invoked by an unauthenticated user, cause the user
request to be redirected to the Identity Provider partner where the user can be authenticated.

Note

If you configure one or more redirect URIs, remember to set a security policies on
them as well; otherwise the web container will not attempt to authenticate the user
and, consequently, not redirect the user's request to the Identity Provider partner.

WebLogic Server provides the
com.bea.security.saml2.providers.registry.WebSSOIdPPartner Java interface for
configuring this attribute.

Configure Binding and Transport Settings
Optionally, you configure artifact binding and transport settings on the Identity Provider partner
page.

See Create a SAML 2.0 Web Single Sign-On Identity Provider Partner in Oracle WebLogic
Remote Console Online Help.

• Whether SAML artifacts are delivered to this partner via the HTTP POST method. If so,
you may also specify the URI of a custom web application that generates the HTTP POST
form for sending the SAML artifact.

• The URL of the custom web application that generates the POST form for carrying the
SAML response for POST bindings to this Identity Provider partner.

• The URL of the custom web application that generates the POST form for carrying the
SAML response for Artifact bindings to this Identity Provider partner.

Operations on these attributes are available via the
com.bea.security.saml2.providers.registry.WebSSOPartner Java interface.

For added security in the exchange of documents with this partner, you can also specify a
client user name and password to be used by this Identity Provider partner when connecting to
the local site's binding using Basic authentication. This attribute is available via the
com.bea.security.saml2.providers.registry.BindingClientPartner Java interface.

Configuring SAML Encryption Using WLST
You can configure encryption for SAML 2.0 assertions using WLST scripts that perform
operations on the SingleSignOnServicesMBean. Example 22-1 shows the use of WLST to
enable encryption of SAML 2.0 assertions, and set the preferred key encryption and data
encryption algorithms.

Example 22-1 Configure SAML Encryption Settings

edit()
startEdit()

Chapter 22
Configuring SAML Encryption Using WLST

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 17

srvr = cmo.lookupServer('myadmin')
realm = cmo.getSecurityConfiguration().getDefaultRealm()

##
##
SAML2 SSO Service Settings
##
##
ssoSvc = srvr.getSingleSignOnServices()
ssoSvc.setAssertionEncryptionEnabled(true)
ssoSvc.setDataEncryptionAlgorithm('aes192-cbc')
ssoSvc.setKeyEncryptionAlgorithm('rsa-oaep')

Viewing Partner Site, Certificate, and Service Endpoint
Information

When you configure SAML 2.0 partners, the partner configuration pages displayed by
WebLogic Remote Console include sections for viewing and configuring additional information
about the partner.

• The Site tab displays information about the Service Provider partner, which is derived from
the partner's metadata file. The data in this tab is read-only.

WebLogic Server provides the
com.bea.security.saml2.providers.registry.MetadataPartner Java interface for
partner site information.

• The Single Sign-On Signing Certificate tab displays details about the partner's signing
certificate, which are also derived from the partner's metadata file. The data in this tab is
read-only.

Operations on these attributes are available from the
com.bea.security.saml2.providers.registry.WebSSOPartner Java interface.

• The Transport Layer Client Certificate tab displays partner's transport layer client
certificate. You can optionally import this certificate by clicking Import Certificate from
File.

Operations on this attribute are available from the
com.bea.security.saml2.providers.registry.BindingClientPartner Java interface.

• When configuring Service Provider partners, the Assertion Consumer Service Endpoints
tab is available, which displays the Service Provider partner's ACS endpoints. This data is
also available from the com.bea.security.saml2.providers.registry.WebSSOSPPartner
Java interface.

• When configuring Identity Provider partners, the Single Sign-On Service Endpoints tab is
available, which displays the Identity Provider partner's single sign-on service endpoints. If
the IdP partner supports SAML Single Logout, the Single Logout Endpoints tab is also
available, which displays the Identity Provider partner's single logout service endpoints.
This data is also available from the
com.bea.security.saml2.providers.registry.WebSSOIdPPartner Java interface.

• The Artifact Resolution Service Endpoints tab displays the partner's ARS endpoints. This
data is also available from the
com.bea.security.saml2.providers.registry.WebSSOPartner Java interface.

Chapter 22
Viewing Partner Site, Certificate, and Service Endpoint Information

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 17

Web Application Deployment Considerations for SAML 2.0
When deploying web applications for SAML-based SSO in a clustered environment, you must
keep in mind certain considerations for preventing SAML-based single sign-on from failing.

• Deployment Descriptor Recommendations

• Login Application Considerations for Clustered Environments

• Enabling Force Authentication and Passive Attributes is Invalid

• Enabling SAML SLO on Web Applications

• Enabling Synchronized Session Timeout

Deployment Descriptor Recommendations
Note the following recommendations regarding the use of the following elements in deployment
descriptor files:

• relogin-enabled

• cookie-name

This section includes the following topics:

Use of relogin-enabled with CLIENT-CERT Authentication
If a user logs in to a web application and tries to access a resource for which that user is not
authorized, an HTTP FORBIDDEN (403) response is generated. This is standard web
application behavior. However, for backwards compatibility with earlier releases, WebLogic
Server permits web applications to use the relogin-enabled element in the weblogic.xml
deployment descriptor file, so that the response to an access failure results in a request to
authenticate. In certain circumstances, it can cause SAML 2.0 based web single sign-on to fail.

Normally, the SAML 2.0 Assertion Consumer Service (ACS) logs the user into the application
and redirects the user request to the target web application. However, if that web application is
enabled for SAML 2.0 single sign-on, is protected by CLIENT-CERT authentication, and has the
relogin-enabled deployment descriptor element set to true, an infinite loop can occur in which
a request to authenticate a user is issued repeatedly. This loop can occur when a user is
logged in to the web application and attempts to access a resource for which the user is not
permitted: instead of generating a FORBIDDEN message, a new authentication request is
generated that triggers another SAML 2.0 based web single sign-on attempt.

To prevent this situation from occurring in a web application that is protected by CLIENT-CERT
authentication, either remove the relogin-enabled deployment descriptor element for the web
application, or set the element to false. This enables standard web application authentication
behavior.

Use of Non-default Cookie Name
When the Assertion Consumer Service logs in the Subject contained in an assertion, an HTTP
servlet session is created using the default cookie name JSESSIONID. After successfully
processing the assertion, the ACS redirects the user's request to the target web application. If
the target web application uses a cookie name other than JSESSIONID, the Subject's identity is
not propagated to the target web application. As a result, the servlet container treats the user
as if unauthenticated, and consequently issues an authentication request.

Chapter 22
Web Application Deployment Considerations for SAML 2.0

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 17

To avoid this situation, do not change the default cookie name when deploying web
applications in a domain that are intended to be accessed by SAML 2.0 based single sign-on.

Login Application Considerations for Clustered Environments
Note the following two login limitations that are rare in clustered environments, but if they
occur, they may prevent a single sign-on session from succeeding.

• When an Identity Provider's single sign-on service receives an authentication request, it
redirects that request to the login application to authenticate the user. The login application
must execute on the same cluster node as that single sign-on service. If not, the Identity
Provider is unable to produce a SAML 2.0 assertion even if the authentication succeeds.

Under normal circumstances, the login application executes on the same node as the
single sign-on service, so likelihood of the authentication request being redirected to a
login application executing on a different node in the domain is very small. However, it may
happen if an authentication request is redirected by a cluster node different than the one
hosting the login application. You can almost always prevent this situation from occurring if
you configure the Identity Provider to use the default login URI with Basic authentication.

• When the SAML 2.0 Assertion Consumer Service (ACS) successfully consumes an
assertion, it logs in the Subject represented by the assertion. The ACS then redirects the
user request to the target application. Normally, the target application executes on the
same node as the ACS. However, in rare circumstances, the target application to which is
the user request is redirected executes on a cluster node other than the one hosting the
ACS on which the login occurred. When this circumstance occurs, the identity represented
by the assertion is not propagated to the target application node. The result is either
another attempt at the single sign-on process, or denied access.

Because the target application executes on the same node as the ACS, this situation is
expected to occur very rarely.

Enabling Force Authentication and Passive Attributes is Invalid
When configuring SAML 2.0 Service Provider services, enabling both the Force Authentication
and Passive attributes is an invalid configuration that WebLogic Server is unable to detect. If
both these attributes are enabled, and an unauthenticated user attempts to access a resource
that is hosted at the Service Provider site, an exception is generated and the single sign-on
session fails.

Even if the user is already authenticated at the Identity Provider site and Force Authentication
is enabled, the user is forced to authenticate again at the Identity Provider site.

Enabling SAML SLO on Web Applications
You can enable SAML SLO on a target web application deployed in a WebLogic Server
instance acting as a Service Provider.

There are two ways to configure SAML SLO on a web application:

• Expose the SP SAML SLO init endpoint URL to authenticated SSO users. When
authenticated SSO users access the URL, it triggers the SAML SLO process. You can also
include the optional slo_redirect_uri parameter to specify where users are sent after
logging out. For example, /saml2/sp/slo/init[?slo_redirect_uri=<URI>].

• Configure the application's logout page to redirect to the SAML SLO init endpoint.
Do not invoke the logout() method of the jakarta.servlet.http.HttpServletRequest
object on the logout page to sign out users. The SLO init service will perform that step.

Chapter 22
Web Application Deployment Considerations for SAML 2.0

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 17

You can find the SAML SLO endpoint URL in the WebLogic Server published metadata file.
For example:

<md:SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-
Redirect" Location="https://<hostname>:<port>/saml2/sp/slo"/>
or
<md:SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-
POST" Location="https://<hostname>:<port>/saml2/sp/slo"/>

If the third-party SAML IdP does not support importing an SP partner's metadata, you must
enter the WebLogic Server SLO endpoint URL manually and select one of the two supported
bindings.

Enabling Synchronized Session Timeout
You can synchronize the expiration of all sessions that share the same session ID by enabling
the SynchronizedSessionTimeoutEnabled attribute in either WebAppContainerMBean or
ServerTemplateMBean.

For more information on configuring session timeout behavior, see Session Timeout in
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

Chapter 22
Web Application Deployment Considerations for SAML 2.0

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 17

23
Enabling Debugging for SAML 2.0

Oracle Weblogic Server provides a variety of ways to enable debugging for a web application
that uses SAML for SSO. Debugging is configured by setting attributes on the ServerDebug
MBean.

This chapter includes the following topics:

• About SAML Debug Scopes and Attributes

• Enabling Debugging Using the Command Line

• Enabling Debugging Using WebLogic Remote Console

• Enabling Debugging Using the WebLogic Scripting Tool

• Sending Debug Messages to Standard Out

About SAML Debug Scopes and Attributes
Learn about the registered debug scopes and attributes provided in WebLogic Server for
SAML 2.0.

Table 23-1 SAML 2.0 Debug Scopes and Attributes

Scope Attribute Description

weblogic.security.saml2
.atn

DebugSecuritySAML2Atn Prints information about SAML 2.0
authentication provider processing.

weblogic.security.saml2
.credmap

DebugSecuritySAML2CredM
ap

Prints information about SAML 2.0
credential mapping provider processing.

weblogic.security.saml2
.lib

DebugSecuritySAML2Lib Prints information about SAML 2.0
library processing.

weblogic.security.saml2
.service

DebugSecuritySAML2Servi
ce

Prints information about SAML 2.0 SSO
profile services.

Enabling Debugging Using the Command Line
You can enable debug scopes or attributes by passing them as options in the command that
starts WebLogic Server. This method for enabling SAML debugging is static and can only be
used at server startup.

The command line options you can use for enabling SAML debugging by attribute are listed in
Table 23-2.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 4

Table 23-2 Command Line Options for SAML Debugging

SAML Version Available Command Line Options for Debugging

SAML 2.0
-Dweblogic.debug.DebugSecuritySAML2Atn=true

-Dweblogic.debug.DebugSecuritySAML2CredMap=true

-Dweblogic.debug.DebugSecuritySAML2Lib=true

-Dweblogic.debug.DebugSecuritySAML2Service=true

Enabling Debugging Using WebLogic Remote Console
You can enable SAML debugging using WebLogic Remote Console. Using WebLogic Remote
Console to enable or disable SAML debugging is dynamic and can be used while the server is
running.

To configure SAML debugging using WebLogic Remote Console, complete the following steps:

1. In the Edit Tree, go to Environment, then Servers.

2. Click the server where you want to enable or disable debugging.

3. On the Debug tab, select the Security subtab.

4. Turn on all of the SAML 2.0 debug attributes that you want to enable.

For a description of each registered SAML debug attribute, see About SAML Debug
Scopes and Attributes.

5. Click Save.

6. Repeat for the rest of the servers as desired.

7. Commit your changes.

Changes to SAML debug scopes and attributes take effect immediately, you do not need to
restart the server. See Define Debug Settings in Oracle WebLogic Remote Console Online
Help.

Enabling Debugging Using the WebLogic Scripting Tool
You can use the WebLogic Scripting Tool (WLST) to configure SAML debugging attributes.
Using WLST is a dynamic method and can be used to enable debugging while the server is
running.

For example, the following command runs a program for setting debugging attributes called
debug.py:

java weblogic.WLST debug.py

The debug.py program contains the following code, which enables debugging for the attribute
DebugSecuritySAMLAtn.

user='user1'
password='password'
url='t3://localhost:7001'
connect(user, password, url)

Chapter 23
Enabling Debugging Using WebLogic Remote Console

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 4

edit()
cd('Servers/myserver/ServerDebug/myserver')
startEdit()
set('DebugSecuritySAMLAtn','true')
save()
activate()

Note

For clarity, this WLST example script shows the username and password in clear text.
However, you should avoid entering clear-text passwords in WLST commands in
general, and you should especially avoid saving on disk WLST scripts that include
clear-text passwords. In these instances you should use a mechanism for passing
encrypted passwords instead. See Security for WLST in Understanding the WebLogic
Scripting Tool.

Note that you can also use WLST from Java. The following example shows the source file of a
Java program that sets the DebugSecuritySAMLAtn debugging attribute:

import weblogic.management.scripting.utils.WLSTInterpreter;
import java.io.*;
import weblogic.jndi.Environment;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

public class test {
 public static void main(String args[]) {
 try {
 WLSTInterpreter interpreter = null;
 String user="user1";
 String pass="pw12ab";
 String url ="t3://localhost:7001";
 Environment env = new Environment();
 env.setProviderUrl(url);
 env.setSecurityPrincipal(user);
 env.setSecurityCredentials(pass);
 Context ctx = env.getInitialContext();

 interpreter = new WLSTInterpreter();
 interpreter.exec
 ("connect('"+user+"','"+pass+"','"+url+"')");
 interpreter.exec("edit()");
 interpreter.exec("startEdit()");
 interpreter.exec
 ("cd('Servers/myserver/ServerDebug/myserver')");
 interpreter.exec("set('DebugSecuritySAMLAtn','true')");
 interpreter.exec("save()");
 interpreter.exec("activate()");

 } catch (Exception e) {
 System.out.println("Exception "+e);
 }
 }
}

Chapter 23
Enabling Debugging Using the WebLogic Scripting Tool

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 4

Sending Debug Messages to Standard Out
Messages corresponding to enabled debug attributes are sent to the server log file. Optionally,
you can also send debug messages to standard out by passing the StdoutSeverity=Debug
attribute on the LogMBean in the command to start WebLogic Server.
For example, -Dweblogic.log.StdoutSeverity=Debug. See Message Output and Logging in
Command Reference for Oracle WebLogic Server.

Chapter 23
Sending Debug Messages to Standard Out

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 4

Part V
Managing Security Information

Learn how to manage security information contained in the security store with which the Oracle
WebLogic Server security realm is configured.

This part contains the following chapters:

• Migrating Security Data

• Managing the RDBMS Security Store

• Managing the Embedded LDAP Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 1

24
Migrating Security Data

Learn how to export security data in Oracle WebLogic Server from one security realm or
security provider and import the data into another realm or provider.

• Overview of Security Data Migration

• Migration Concepts

• Formats and Constraints Supported by WebLogic Security Providers

• Migrating Data with WLST

Overview of Security Data Migration
Security data (authentication, authorization, credential map, and role data) from one security
realm can be exported into a file and then imported into another security realm. This data
migration allows you to develop and test new security realms without recreating all the security
data.

WebLogic security realms persist different kinds of security data — for example, users and
groups (for the WebLogic Authentication provider), security policies (for the XACML
Authorization provider), security roles (for the XACML Role Mapping provider), and credential
maps (for the WebLogic Credential Mapping provider). When you configure a new security
realm or a new security provider, you may prefer to use the security data from your existing
realm or provider, rather than recreate all the users, groups, policies, roles, and credential
maps. Several WebLogic security providers support security data migration. This means you
can export security data from one security realm, and import it into a new security realm. You
can migrate security data for each security provider individually, or, using WLST, migrate
security data for all the WebLogic security providers at once (that is, security data for an entire
security realm). Note that you can only migrate security data from one provider to another if the
providers use the same data format. See Formats and Constraints Supported by WebLogic
Security Providers. You migrate security data using WebLogic Remote Consoleor the
WebLogic Scripting Tool (WLST).

Migrating security data may be helpful when you:

• Transition from development to production mode.

• Copy production mode security configurations to security realms in new WebLogic
domains.

• Move data from one security realm to a new security realm in the same WebLogic domain,
where one or more of the default WebLogic security providers will be replaced with new
security providers.

The remainder of this section describes security migration concepts, the formats and
constraints supported by the WebLogic security providers. It also provides steps for migrating
security data with WLST. If you want to use WebLogic Remote Console instead, see Migrate
Security Data from a Security Provider in Oracle WebLogic Remote Console Online Help.
WebLogic Remote Console only supports migrating security data for each security provider
individually.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 5

Migration Concepts
Data migration concepts include format, constraints, and export files.

A format is a data format that specifies how security data should be exported or imported.
Supported formats are the list of data formats that a given security provider understands how
to process.

Constraints are key/value pairs that specify options to the export or import process. Use
constraints to control which security data is exported to or imported from the security provider's
database (in the case of the WebLogic Server security providers, the embedded LDAP server).
For example, you may want to export only users (not groups) from an Authentication provider's
database. Supported constraints are the list of constraints you can specify during the migration
process for a particular security provider. For example, you can specify that an Authentication
provider's database be used to import users and groups, but not security policies.

Export files are the files to which security data is written (in the specified format) during the
export portion of the migration process. Import files are files from which security data is read
(also in the specified format) during the import portion of the migration process. Both export
and import files are simply temporary storage locations for security data as it is migrated from
one security provider's data store to another security provider's data store.

Formats and Constraints Supported by WebLogic Security
Providers

For security data to be exported and imported between security providers, both security
providers must process the same format. Some data formats used for the WebLogic Server
security providers are unpublished; therefore, you cannot currently migrate security data from a
WebLogic security provider to a custom security provider, or vice versa, using the unpublished
formats.

The following table identifies the import and export data formats that are supported by each of
the WebLogic security providers

Table 24-1 Import and Export Formats Supported by the WebLogic Security Providers

WebLogic Provider Supported Format

WebLogic Authentication provider DefaultAtn—unpublished format

XACML Authorization Provider XACML—standard XACML 2.0 format

DefaultAtz—unpublished format

WebLogic Authorization Provider DefaultAtz—unpublished format

XACML Role Mapping Provider XACML—standard XACML 2.0 format

DefaultRoles—unpublished format

WebLogic Role Mapping Provider DefaultRoles—unpublished format

WebLogic Credential Mapping Provider DefaultCreds—unpublished format

SAML Identity Asserter V2

SAML Credential Mapping Provider V2

XML Partner Registry—An XML format defined by
the SAML partner registry schema

JKS Key Store—A key store file format for
importing and exporting partner certificates only

LDIF Template—LDIF format

Chapter 24
Migration Concepts

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 5

Note

The WebLogic Authorization Provider and the WebLogic Role Mapping Provider are
deprecated in WebLogic Server 14.1.1.0.0 and will be removed in a future release.
Instead, the XACML Authorization provider and the XACML Role Mapping provider
are the default providers.

WebLogic security providers support the import and export constraints provided in Table 24-2.

Table 24-2 Constraints Supported by the WebLogic Security Providers

WebLogic
Security Provider

Supported
Constraints

Description

Default
Authentication

users

groups

passwords

Export all users or all groups

• XACML
Authorization

• WebLogic
Authorization

• XACML Role
Mapping

• WebLogic Role
Mapping

none N/A

WebLogic
Credential Mapping

passwords With the constraint passwords=cleartext, passwords will be
exported in clear text. Otherwise, they will be exported in encrypted
form.

• SAML Identity
Asserter V2

• SAML
Credential
Mapping V2

partners Which partners to import or export. The constraint value can be
one of:

• all—all partners
• none—no partners
• list—only listed partners
• enabled—only enabled partners
• disabled—only disabled partners

• SAML Identity
Asserter V2

• SAML
Credential
Mapping V2

certificates Which certificates to import or export. The constraint value can be
one of the following:

• all—all certificates
• none—no certificates
• list—only listed certificates
• referenced—only certificates referenced by a partner

• SAML Identity
Asserter V2

• SAML
Credential
Mapping V2

passwords With the constraint passwords=cleartext, passwords will be
exported in clear text. Otherwise, they will be exported in encrypted
form.

Chapter 24
Formats and Constraints Supported by WebLogic Security Providers

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 5

Table 24-2 (Cont.) Constraints Supported by the WebLogic Security Providers

WebLogic
Security Provider

Supported
Constraints

Description

• SAML Identity
Asserter V2

• SAML
Credential
Mapping V2

importMode Specifies how to resolve name conflicts between the imported data
and existing data in the SAML registry. The constraint value can be
one of the following:

• fail—the import operation will fail if conflicts are detected
(default)

• rename—rename the imported entry that conflicts
• replace—replace the existing entry with the conflicting

imported entry

When exporting from the WebLogic Credential Mapping provider, SAML Credential Mapping
provider, or SAML Identity Asserter, you need to specify whether or not the passwords for the
credentials are exported in clear text. The constraint passwords=cleartext specifies that
passwords will be exported in clear text. Otherwise, they will be exported in encrypted form.
The mechanism used to encrypt passwords in each WebLogic domain is different; therefore,
you want to export passwords in clear text if you plan to use them in a different WebLogic
domain. After the credential maps are imported into the new WebLogic domain, the passwords
are encrypted. Carefully protect the directory and file in which you export credential maps in
clear text as secure data is available on your system during the migration process.

Note

By default, the WebLogic Authentication provider stores passwords using a one-way
hash. Passwords that have been encrypted by this provider cannot be unencrypted
when you export data even if you use the passwords=cleartext constraint. If you want
to be able to export passwords in clear text from this provider, you must set the
PasswordDigestEnabled attribute on the DefaultAuthenticatorMBean to true prior to
creating or updating those passwords.

Migrating Data with WLST
You can use the WebLogic Scripting Tool (WLST) to export and import data from a security
provider. Access the Runtime MBean for the security provider and use its importData or
exportData operation.

For example, you might use WLST to import data using commands like these:

serverConfig()
cd('SecurityConfiguration/mydomain/DefaultRealm/myrealm/path-to-MBean/mbeanname')
cmo.importData(format,filename,constraints)

where:

• mbeanname—Name of the security provider MBean.

• format—A format that is valid for the particular security provider. See Table 24-1.

• filename—The directory location and filename in which to export or import the security
data. Remember that, regardless of whether you are using a UNIX or Windows operating

Chapter 24
Migrating Data with WLST

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 5

system, you need to use a forward slash, not a back slash, as a path separator for
pathname arguments in WLST commands.

• constraints—The constraints that limit the data to be exported or imported

See Understanding the WebLogic Scripting Tool.

Chapter 24
Migrating Data with WLST

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 5

25
Managing the RDBMS Security Store

Oracle WebLogic Server provides an option of using an external RDBMS as a datastore for the
authorization, role mapping, credential mapping, and certificate registry providers. This
datastore, called the RDBMS security store, is strongly recommended for using SAML 2.0
services in two or more WebLogic Server instances in that domain, such as in a cluster.
The RDBMS security store is required by the SAML 2.0 security providers in production
environments so that the data they manage can be synchronized across all the WebLogic
Server instances that share that data. (Use LDAP as the security store with the SAML 2.0
security providers only in development environments.)

Note

In order to use the RDBMS security store, the preferred approach is first to create a
domain in which the external RDBMS server is configured. Prior to booting the
domain, you create the tables in the datastore that are required by the RDBMS
security store. The WebLogic Server installation directory contains a set of SQL scripts
that create these tables for each supported database.

This chapter presents the following topics:

• Security Providers that Use the RDBMS Security Store

• Configuring the RDBMS Security Store

• Upgrading a Domain to Use the RDBMS Security Store

For the most up-to-date details about the specific database systems that are supported for use
as the RDBMS security store for WebLogic Server, see Oracle Fusion Middleware Supported
System Configurations.

Security Providers that Use the RDBMS Security Store
Some WebLogic security providers use the RDBMS security store, if that store is configured in
a domain.

The following is a list of such security providers:

• XACML Authorization provider

• XACML Role Mapping provider

• The following providers for SAML 2.0:

– SAML 2.0 Identity Assertion provider

– SAML 2.0 Credential Mapping provider

• WebLogic Credential Mapping provider

• PKI Credential Mapping provider

• Certificate Registry

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 11

When the RDBMS security store is configured in a domain, an instance of any of the preceding
security providers that has been created in the security realm automatically uses only the
RDBMS security store as a datastore, and not the embedded LDAP server. WebLogic security
providers configured in the domain that are not among those in the preceding list continue to
use their respective default stores; for example, the Default Authentication provider continues
to use the embedded LDAP server.

Oracle recommends that you configure the RDBMS security store at the time of domain
creation, and before booting the domain. WebLogic Server includes the
RDBMSSecurityStoreMBean, which is the interface for configuring the RDBMS security store via
the WebLogic Scripting Tool (WLST). (The Configuration Wizard does not provide the ability to
configure the RDBMS security store.)

Configuring the RDBMS Security Store
To create and configure the RDBMS security store, you must perform several tasks including,
creating a domain with the RDBMS security store, creating RDBMS tables in the security
datastore, configuring a JMS topic for the RDBMS security store and, so on.

The following topics describe the tasks you need to perform in order to configure the RDBMS
security store:

• Create a Domain with the RDBMS Security Store

• Create RDBMS Tables in the Security Datastore

• Configure a JMS Topic for the RDBMS Security Store

Create a Domain with the RDBMS Security Store
To use the RDBMS security store in a domain, Oracle recommends that you configure the
RDBMS security store at the time you create that domain. Oracle does not recommend
modifying an existing domain in place to use the RDBMS as the security store. If the database
connection is not configured correctly, the policies necessary for granting access to the domain
could become unavailable, resulting in a domain that cannot be used.

The high-level process for creating a domain to use an RDBMS security store is as follows:

1. Create a new domain to use an RDBMS security store in either of the following ways:

• Use WLST offline to create the domain and configure the RDBMS security store using
a single script.

• Create a new WebLogic domain using the Configuration Wizard or WLST. Then,
before starting the domain, use WLST offline to configure the RDBMS security store.
The Configuration Wizard does not provide the ability to configure the RDBMS security
store. See Creating and Configuring the WebLogic Domain in Installing and
Configuring Oracle WebLogic Server and Coherence.

Sample scripts for configuring the RDBMS security store using WLST offline are provided
in Use WLST Offline to Create the RDBMS Security Store.

2. Prior to starting the domain, create the RDBMS tables in your datastore. The WebLogic
Server installation directory includes a set of scripts for each supported RDBMS system.
Typically this step is performed by the database administrator. See Create RDBMS Tables
in the Security Datastore.

3. Test the database connection using the Java utility dbping. See Testing the Database
Connection.

Chapter 25
Configuring the RDBMS Security Store

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 11

4. Start the domain.

Note

The domain will not start if the RDBMS tables are not created or the database
connection is not available.

5. After you start the domain, you can manage the RDBMS configuration using WebLogic
Remote Console. See Configure the RDBMS Security Store in Oracle WebLogic Remote
Console Online Help.

6. If the RDBMS security store is configured in a domain that includes two or more WebLogic
Server instances, or a cluster, Oracle strongly recommends that you enable JMS
notifications for that domain and configure a JMS topic that can be used by the RDBMS
security store. See Configure a JMS Topic for the RDBMS Security Store.

7. If you are configuring single sign-on using SAML, see Configuring SAML 2.0 Services. The
RDBMS security store is required by the SAML 2.0 security providers in production
environments so that the data they manage can be synchronized across all the WebLogic
Server instances that share that data.

Use WLST Offline to Create the RDBMS Security Store
You can use WLST offline to create the RDBMS security store in either of the following ways:

• Use a single WLST offline script to create the domain and configure the RDBMS security
store.

• Create the domain using the Configuration Wizard, then use WLST offline to configure the
RDBMS security store.

To configure the RDBMS security store, you need to specify the following database connection
properties in the WLST scripts:

• RDBMS type

For information about the databases that are supported for containing the RDBMS security
store, see Oracle Fusion Middleware Supported System Configurations.

• JDBC driver and class name for connecting to the RDBMS, for example
oracle.jdbc.OracleDriver

• RDBMS name, host, port, and URL

• User name and password of the domain user who can access the RDBMS system

Note

For clarity, the WLST examples provided in this section show passing the user
name and password credentials of the RDBMS system user in clear text.
However, you should avoid entering clear-text passwords in WLST commands in
general, and you should especially avoid saving on disk WLST scripts that include
clear-text passwords. In these instances you should use a mechanism for passing
encrypted passwords instead.

• Optionally, any connection properties that need to be passed to the RDBMS system. The
parameters that you specify in the JDBC driver connection properties attribute must be a
comma-separated list.

Chapter 25
Configuring the RDBMS Security Store

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 11

Note

Operations for creating and configuring the RDBMS security store are available using
the RDBMSSecurityStoreMBean. Internally, the RDBMS security store connects to and
interoperates with the database using the JDBC driver supported by the database.
The attributes set on the RDBMSSecurityStoreMBean are converted into attributes set
on the javax.sql.DataSource implementation. For more information about the
attributes that you can set on the RDBMSSecurityStoreMBean, see
RDBMSSecurityStoreMBean in the MBean Reference for Oracle WebLogic Server.

The following WLST offline scripts provide examples that demonstrate how to create a domain
and configure the RDBMS security store in a single script, as well as how to configure the
RDBMS security store for Oracle, MS-SQL, and DB2 after you have created a new domain
using the Configuration Wizard or WLST:

• Create Domain with RDBMS Security Store Example provides an example of a WLST
offline script that combines domain creation and RDBMS security store configuration into a
single script. This script configures an MS/SQL database as the RDBMS security store.

• Oracle Database Example includes an example WLST offline script for configuring an
Oracle Database as the RDBMS security store. Execute this script after creating a new
domain using the Configuration Wizard or WLST, and before starting the domain.

• MS-SQL Example includes an example WLST offline script for configuring a MS-SQL
database as the RDBMS security store. Execute this script after creating a new domain
using the Configuration Wizard or WLST, and before starting the domain.

• DB2 Example includes an example WLST offline script for configuring DB2 as the RDBMS
security store. Execute this script after creating a new domain using the Configuration
Wizard or WLST, and before starting the domain.

You should save your WLST scripts using a .py file extension, for example filename.py. To
run these scripts, include the name of the script when starting WLST offline. For example, to
start WLST offline on Linux:

cd ORACLE_HOME/oracle_common/common/bin
./wlst.sh filename.py

In this example, ORACLE_HOME represents the Oracle Home directory you specified during
installation.

See Running Scripts in Understanding the WebLogic Scripting Tool.

Create Domain with RDBMS Security Store Example
Example 25-1 provides an example WLST script to create a domain named base_domain, and
to configure an MS/SQL database as the RDBMS security store.

Example 25-1 Creating a Domain and Configuring MS-SQL as the RDBMS Security
Store

Select and load the template to use for creating the domain
selectTemplate('Basic WebLogic Server Domain')
loadTemplates()
cd('/')

Set the name of the domain as base_domain

Chapter 25
Configuring the RDBMS Security Store

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 11

set('Name', 'base_domain')

Set the listen port for the Administration Server
cd('Servers/AdminServer')
set('Name', 'admin')
set('ListenPort',7001)

Set the user name and password for the WebLogic Server administration user
cd('/')
cd('Security')
cd('base_domain')
cd('User/adminusername')
cmo.setName('adminusername')
cmo.setPassword('adminpassword')

Create the RDBMS security store
print("configure RDBMS store")
create('base_domain','SecurityConfiguration')
cd('/SecurityConfiguration/base_domain')
cd('Realm/myrealm')

Specify the database attributes on the RDBMSSecurityStoreMBean
rdbms.setUsername('DBuser')
rdbms.setPasswordEncrypted('DBpassword')
rdbms.setConnectionURL('jdbc:weblogic:sqlserver://host.example.com:port)
rdbms.setDriverName('weblogic.jdbc.sqlserver.SQLServerDriver')
rdbms.setConnectionProperties('user=DBuser,portNumber=port,databaseName=DbName,serverName
=host.example.com')

Write the domain
writeDomain('/home/domains/base_domain')

Exit WLST offline
exit()

Oracle Database Example
Example 25-2 shows an example WLST script for configuring an Oracle Database as the
RDBMS security store. Execute this script after creating a new domain using the Configuration
Wizard or WLST, and before starting the domain.

Example 25-2 Configuring Oracle Database for the RDBMS Security Store

Read the domain using the complete path to the domain directory
readDomain(domainDirName)

Create the RDBMS security store
create('DomainName','SecurityConfiguration')
cd('/SecurityConfiguration/DomainName')
cd('Realm/myrealm')
rdbms = create('myRDBMSSecurityStore','RDBMSSecurityStore')

Specify the database attributes on the RDBMSSecurityStoreMBean
rdbms.setUsername('DBuser')
rdbms.setPasswordEncrypted('DBpassword')
rdbms.setConnectionURL('jdbc:oracle:thin:@hostname.domain:port:sid')
rdbms.setDriverName('oracle.jdbc.OracleDriver')
rdbms.setConnectionProperties('user=DBuser,portNumber=port,SID=sid,serverName=hostname.do
main')

Update the domain

Chapter 25
Configuring the RDBMS Security Store

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 11

updateDomain()

Exit WLST offline
exit()

MS-SQL Example
Example 25-3 shows an example WLST script for configuring an MS-SQL database as the
RDBMS security store. Execute this script after creating a new domain using the Configuration
Wizard or WLST, and before starting the domain.

Example 25-3 Configuring MS-SQL for the RDBMS Security Store

Read the domain using the complete path to the domain directory
readDomain(DomainDirName)

Create the RDBMS security store
create('DomainName','SecurityConfiguration')
cd('/SecurityConfiguration/DomainName')
cd('Realm/myrealm')
rdbms = create('myRDBMSSecurityStore','RDBMSSecurityStore')

Specify the database attributes on the RDBMSSecurityStoreMBean
rdbms.setUsername('DBuser')
rdbms.setPasswordEncrypted('DBpassword')
rdbms.setConnectionURL('jdbc:weblogic:sqlserver://ServerName:port')
rdbms.setDriverName('weblogic.jdbc.sqlserver.SQLServerDriver')
rdbms.setConnectionProperties('user=DBuser,portNumber=port,databaseName=DBname,serverName
=ServerName')

Update the domain
updateDomain()

Exit WLST offline
exit()

DB2 Example
Example 25-4 shows an example WLST script for configuring DB2 as the RDBMS security
store. Execute this script after creating a new domain using the Configuration Wizard or WLST,
and before starting the domain.

Note

If you choose DB2, you have the option of selecting the WebLogic Type 4 JDBC driver
for DB2 that is provided in WebLogic Server. However, if you use this JDBC driver, you
must also specify the additional property BatchPerformanceWorkaround and set it to
true. If you do not set the BatchPerformanceWorkaround to true in this configuration,
WebLogic Server may fail to boot, generating a SecurityServiceException message.

Example 25-4 Configuring DB2 for the RDBMS Security Store

Read the domain using the complete path to the domain directory
readDomain(domainDirName)

Create the RDBMS security store

Chapter 25
Configuring the RDBMS Security Store

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 11

create('DomainName','SecurityConfiguration')
cd('/SecurityConfiguration/DomainName')
cd('Realm/myrealm')
rdbms = create('myRDBMSSecurityStore','RDBMSSecurityStore')

Specify the database attributes on the RDBMSSecurityStoreMBean
rdbms.setUsername('DBuser')
rdbms.setPasswordEncrypted('DBpassword')
rdbms.setConnectionURL('jdbc:weblogic:db2://ServerName:port')
rdbms.setDriverName('weblogic.jdbc.db2.DB2Driver')
rdbms.setConnectionProperties('user=DBuser,portNumber=port,databaseName=DBname,AlternateI
D=DBname-alt,serverName=ServerName,batchPerformanceWorkaround=true')

Update the domain
updateDomain()

Exit WLST offline
exit()

For more information about specifying connection properties for the WebLogic Type 4 JDBC
driver for DB2, see Using DataDirect Documentation in Developing JDBC Applications for
Oracle WebLogic Server.

Testing the Database Connection
When you configure an RDBMS security store, Oracle strongly recommends testing the
database connection to verify that the connection is set up properly. If there were a problem
with the database connection, you might not be able to boot the domain if the security
providers that control access to that domain are unable to obtain the necessary security
policies.

You can test the database connection using the WebLogic Server Java utility dbping. The
dbping command-line utility tests the connection between the RDBMS and your client machine
using a JDBC driver. See dbping in Command Reference for Oracle WebLogic Server.

Note

Before running the dbping utility, be sure to include the JDK in your PATH environment
variable, then run the setDomainEnv script to set up your environment.

The following example shows how to execute the dbping utility using an Oracle Thin Driver
connected to an Oracle Database. The example includes steps for setting up your environment
on a Linux host before executing the dbping utility.

$ bash
$ export PATH=$JAVA_HOME/bin:$PATH
$ cd myDomain/bin
$. ./setDomainEnv.sh
$ java utils.dbping ORACLE_THIN DBuser DBpassword
myhost.example.com:port:DemoDB

**** Success!!! ****

You can connect to the database in your app using:

Chapter 25
Configuring the RDBMS Security Store

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 11

 java.util.Properties props = new java.util.Properties();
 props.put("user", "DBuser");
 props.put("password", "DBpassword");
 java.sql.Driver d =
 Class.forName("oracle.jdbc.OracleDriver").newInstance();
 java.sql.Connection conn =
 Driver.connect("DBuser", props);

Create RDBMS Tables in the Security Datastore
Prior to booting the domain, the database administrator needs to run the SQL script that
creates the RDBMS tables in the datastore used by the RDBMS security store. A set of SQL
scripts for creating these tables for each supported RDBMS system is available in the following
WebLogic Server installation directory. SQL scripts for removing the tables are also provided.

WL_HOME/server/lib

When running the appropriate SQL script for the database serving as the RDBMS security
store, be sure to specify the same connection properties, including the credentials of the user
who has access, the database URL, and so on, as specified for that RDBMS during domain
creation.

Table 25-1 identifies the name of each of these SQL scripts. For specific database versions
supported, see Oracle Fusion Middleware Supported System Configurations.

Table 25-1 SQL Scripts for Creating and Removing RDBMS Datastore Tables

RDBMS Script for Creating Datastore Tables Script for Removing Datastore Tables

Oracle rdbms_security_store_oracle.sql rdbms_security_store_oracle_rem
ove.sql

MS-SQL rdbms_security_store_sqlserver.
sql

rdbms_security_store_sqlserver_
remove.sql

DB2 rdbms_security_store_db2.sql rdbms_security_store_db2_remove
.sql

Derby rdbms_security_store_derby.sql rdbms_security_store_derby_remo
ve.sql

Configure a JMS Topic for the RDBMS Security Store
If the RDBMS security store is configured in a domain that includes two or more WebLogic
Server instances, or a cluster, Oracle strongly recommends that you also perform the following
tasks:

1. Enable JMS notifications for that domain.

2. Configure a JMS topic that can be used by the RDBMS security store.

JMS notifications enable the security data that is contained in the RDBMS security store, and
that is managed by security providers in the realm, to be synchronized among all server
instances in the domain.

Chapter 25
Configuring the RDBMS Security Store

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 11

Note

If you do not configure a JMS topic that can be used by the RDBMS security store
when configured in a multi-server or clustered domain, care should be taken when
making security policy or security configuration updates. If no JMS topic is configured,
it may be necessary to reboot the domain to ensure that all server instances function
consistently with regards to those security updates.

You can enable JMS notifications by booting the domain in which the RDBMS security store
has been configured, and configuring attributes on the RDBMSSecurityStoreMBean using either
of the following mechanisms:

• WebLogic Scripting Tool

• In WebLogic Remote Console, open the Edit Tree and go to Security, then Realms, then
myRealm, then RDBMS Security Store.

The attributes of the RDBMSSecurityStoreMBean that must be set to enable JMS notifications
are listed and described in Table 25-2.

Table 25-2 RDBMSSecurityStoreMBean Attributes for Configuring a JMS Topic

Attribute Name Description

JMSTopic The JMS topic to which notifications are published to and to which
notifications sent from other JVMs are subscribed. The target JMS topic
needs to be pre-deployed.

JMSTopicConnectionFacto
ry

The JNDI name of a jakarta.jms.TopicConnectionFactory
instance to use for finding JMS topics.

The topic Connection Factory Configuration in Administering JMS
Resources for Oracle WebLogic Server describes the WebLogic JMS
connection factory, weblogic.jms.ConnectionFactory, which is a
jakarta.jms.TopicConnectionFactory instance. Refer to this topic
for information about configuring a connection factory.

NotificationProperties A comma-delimited list of key-value properties to pass to the JNDI
InitialContext on construction, in the form of xxKey=xxValue,
xxKey=xxValue. The following properties must be specified:

• java.naming.provider.url — Property for specifying
configuration information for the service provider to use. The value
of the property should contain a URL string. For example:

iiops://localhost:7002
• java.naming.factory.initial — Property for specifying the

initial context factory to use. The value of the property should be the
fully-qualified class name of the factory class that will create an
initial context. For example:

weblogic.jndi.WLInitialContextFactory

JNDIUserName The identity of any valid user in the security realm who has access to
JNDI.

JNDIPassword The password of the user specified in the JNDIUserName attribute.

JMSExceptionReconnectAt
tempts

The number of reconnect attempts to be made if the JMS system
detects a serious connection error. The default is 0, which causes an
error to be logged, but does not result in a reconnect attempt.

See the following topics:

Chapter 25
Configuring the RDBMS Security Store

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 11

• Configure Resources for JMS System Modules in Oracle WebLogic Remote Console
Online Help

• Configuring Basic JMS System Resources in Administering JMS Resources for Oracle
WebLogic Server

• Configure the RDBMS Security Store in Oracle WebLogic Remote Console Online Help

• RDBMSSecurityStoreMBean in the MBean Reference for Oracle WebLogic Server

Configuring JMS Connection Recovery in the Event of Failure
Normally, the WebLogic Security Service contained in each WebLogic Server instance in a
multi-node domain connects at startup to the JMS server. If a security provider that uses the
RDBMS security store makes a change to its security data, all WebLogic Server instances are
notified via JMS, and the local caches used by the WebLogic Security Service in each server
instance are synchronized to that change.

If the JMS connection fails in a WebLogic Server instance that has been successfully started,
the WebLogic Security Service associated with that server instance starts the JMS connection
recovery process. The recovery process sleeps one second between reconnect attempts. The
recovery process is stopped if the JMS connection failure persists after the number of
reconnect attempts with which the JMSExceptionReconnectAttempts property has been
configured is reached. No further reconnect attempts are made: If a change is made to the
security data in one WebLogic Server instance, the local caches managed by the WebLogic
Security Service in other WebLogic Server instances are not synchronized to that change.
However, if the JMS connection is successfully recovered by other means (such as a server
reboot), those caches become synchronized.

If the JMS connection is not successfully started at the time a WebLogic Server instance is
booted, a timer task that makes reconnect attempts is automatically started. The timer task is
cancelled once the connection is successfully made. Two system properties may be configured
for this timer task:

• com.bea.common.security.jms.initialConnectionRecoverInterval

Specifies the delay, in milliseconds, before the connection recovery task is executed. The
default value is 1000, which causes the connection recovery process to be executed after
a delay of one second.

• com.bea.common.security.jms.initialConnectionRecoverAttempts

Specifies the maximum number of reconnect attempts that can be made prior to cancelling
the timer task. The default value is 3600, which causes the timer task to be cancelled once
3600 reconnect attempts have been made. No further reconnect attempts are made.

You can calculate the maximum connection polling duration by multiplying the values specified
by each of the preceding system properties. For example, multiplying the default values of
these two properties yields a maximum polling duration of one hour (1000 millisecond delay
multiplied by 3600 reconnect attempts).

Upgrading a Domain to Use the RDBMS Security Store
To upgrade a domain to use the RDBMS security store, Oracle recommends creating a new
domain in which the RDBMS security store is configured. After you create the new domain, you
should export the security data from the security realm of the old domain, and import it into a
security realm of the new domain.

Chapter 25
Upgrading a Domain to Use the RDBMS Security Store

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 11

Note

For details about creating a new domain and configuring the RDBMS security store,
see Create a Domain with the RDBMS Security Store.

When you import security data into a security realm in a domain that uses the RDBMS security
store, the data for the security providers that use the RDBMS security store is automatically
loaded into that datastore. Data for security providers that do not use the RDBMS security
store is automatically imported into the stores that those providers normally use by default.

It is possible to selectively migrate security providers individually from one security realm to
another. However, when migrating security data to a domain that uses the RDBMS security
store, Oracle recommends migrating the security realm's data in a single operation.

For information about migrating security realms, see Migrating Security Data.

Chapter 25
Upgrading a Domain to Use the RDBMS Security Store

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 11

26
Managing the Embedded LDAP Server

Learn how to configure and manage the embedded LDAP server which is the data store for the
default Authentication, Authorization, Credential Mapping, and Role Mapping providers
included in Oracle WebLogic Server.

• Configuring the Embedded LDAP Server

• Embedded LDAP Server Replication

• Viewing the Contents of the Embedded LDAP Server from an LDAP Browser

• Exporting and Importing Information in the Embedded LDAP Server

• LDAP Access Control Syntax

• Backup and Recovery

Configuring the Embedded LDAP Server
The embedded LDAP server contains user, group, group membership, security role, security
policy, and credential map information. By default, each WebLogic domain has an embedded
LDAP server configured with the default values set for each type of information.

The Default Authentication, Authorization, Credential Mapping, and Role Mapping providers
use the embedded LDAP server as their data store. If you use any of these providers in a new
security realm, you may want to change the default values for the embedded LDAP server to
optimize its use in your environment.

Note

The performance of the embedded LDAP server is best with fewer than 10,000 users.
If you have more users, consider using a different LDAP server and Authentication
provider.

See Configure the Embedded LDAP Server in Oracle WebLogic Remote Console Online Help.

The data file and change log file used by the embedded LDAP server can potentially grow
quite large. You can configure maximum sizes for these files with the following
weblogic.Server command line arguments:

• -Dweblogic.security.ldap.maxSize=<max bytes>, which limits the size of the data file
used by the embedded LDAP server. When the data file exceeds the specified size,
WebLogic Server eliminates from the data file space occupied by deleted entries.

• -Dweblogic.security.ldap.changeLogThreshold=<number of entries>, which limits the
size of the change log file used by the embedded LDAP server. When the change log file
exceeds the specified number of entries, WebLogic Server truncates the change log by
removing all entries that have been sent to all Managed Servers.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 8

Embedded LDAP Server Replication
The embedded LDAP server for a domain consists of a primary LDAP server, maintained in the
domain's Administration Server, and a replicated LDAP server maintained in each Managed
Server in the domain. You can manage the behavior of the embedded LDAP server on the
Administration Server and Managed Servers using WebLogic Remote Console.

When changes are made using a Managed Server, updates are sent to the embedded LDAP
server on the Administration Server. The embedded LDAP server on the Administration Server
maintains a log of all changes. The embedded LDAP server on the Administration Server also
maintains a list of Managed Servers and the current change status for each one. The
embedded LDAP server on the Administration Server sends appropriate changes to each
Managed Server and updates the change status for each server. This process occurs when an
update is made to the embedded LDAP server on the Administration Server. However,
depending on the number of updates, it may take several seconds or more for the change to
be replicated to the Managed Server.

You can configure the behavior of the embedded LDAP server on the Administration Server
and the Managed Servers in a domain. In the WebLogic Remote Console Edit Tree, go to go
to Environment, then Domain. Then select the Security tab and the Embedded LDAP
subtab. You can set these attributes:

• Refresh Replica At Startup — Specifies whether the embedded LDAP server in a
Managed Server should refresh all replicated data at boot time. This setting is useful if you
have made many changes when the Managed Server was not active, and you want to
download the entire replica instead of having the Administration Server push each change
to the Managed Server.

• Master First — Specifies whether a Managed Server should always connect to the
primary embedded LDAP server on the Administration Server, instead of connecting to the
local replicated LDAP server.

See Configure the Embedded LDAP Server in Oracle WebLogic Remote Console Online Help.

Note

Deleting and modifying the configured security providers through WebLogic Remote
Console may require manual clean up of the embedded LDAP server. Use an external
LDAP browser to delete unnecessary information.

Viewing the Contents of the Embedded LDAP Server from an
LDAP Browser

To view the contents of the embedded LDAP server through an LDAP browser, you must have
access to an external LDAP browser, change the credential for the embedded LDAP server,
and configure a new connection in the LDAP browser.

The steps for viewing the contents of the embedded LDAP server through an LDAP browser
are described here:

1. If you don't already have one, you can download and install any external LDAP browser of
your choice.

Chapter 26
Embedded LDAP Server Replication

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 8

2. In WebLogic Remote Console, change the credential for the embedded LDAP server:

a. In the Edit Tree, go to Environment, then Domain.

b. On the Security tab, select the Embedded LDAP subtab.

c. In the Credential field, enter the new credential.

d. Click Save.

e. Restart WebLogic Server.

Note

Changing the credential can affect the operation of the domain. Do not
perform this step on a production server.

3. Configure a new connection to your LDAP browser using the appropriate host, port, and
DN for your server instance. For example:

• Host: localhost

• Port: 7001 (7002 if SSL is being used).

• Base DN: dc=mydomain where mydomain is the name of the WebLogic domain you are
using.

4. Connect to the LDAP server using the credentials that you specified in step 2.c. You
cannot use anonymous bind to connect to the LDAP server.

5. Use the LDAP browser to navigate the hierarchy of the embedded LDAP server.

Note

You can also view the contents of the embedded LDAP server by exporting its data
and reviewing the exported file. See Exporting and Importing Information in the
Embedded LDAP Server.

Exporting and Importing Information in the Embedded LDAP
Server

You can export and import data from the embedded LDAP server using WLST or WebLogic
Remote Console.

See Migrating Security Data.

LDAP Access Control Syntax
The embedded LDAP server supports the IETF LDAP Access Control Model for LDAPv3.
Learn how that access control is implemented within the embedded LDAP server. Apply these
rules directly to entries within the directory as intended by the standard or configure and
maintain them by editing the access control file (acls.prop).

Chapter 26
Exporting and Importing Information in the Embedded LDAP Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 8

Note

The default behavior of the embedded LDAP server is to allow access only from the
Administrator account in WebLogic Server. The WebLogic security providers use only
the Administrator account to access the embedded LDAP server. If you are not
planning to access the embedded LDAP server from an external LDAP browser or if
you are planning only to use the Administrator account, you do not need to edit the
acls.prop file and can ignore the information in this section.

The Access Control File
The access control file (acls.prop) maintained by the embedded LDAP server contains the
complete list of access control lists (ACLs) for an entire LDAP directory. Each line in the access
control file contains a single access control rule. An access control rule is made up of the
following components:

• Location in the LDAP directory where the rule applies. See Access Control Location.

• Scope within that location to which the rule applies. See Access Control Scope.

• Access rights (either grant or deny). See Access Rights.

• Permissions (either grant or deny). See Attribute Permissions and Entry Permissions.

• Attributes to which the rule applies. See Attributes Types.

• Subject being granted or denied access. See Subject Types.

Example 26-1 shows a sample access control file.

Example 26-1 Sample acl.props File

[root]|entry#grant:r,b,t#[all]#public

ou=Employees,dc=octetstring,dc=com|subtree#grant:r,c#[all]#public:
ou=Employees,dc=octetstring,dc=com|subtree#grant:b,t#[entry]#public:
ou=Employees,dc=octetstring,dc=com|subtree#deny:r,c#userpassword#public:
ou=Employees,dc=octetstring,dc=com|subtree#grant:r#userpassword#this:
ou=Employees,dc=octetstring,dc=com|subtree#grant:w,o#userpassword,title,
description,
postaladdress,telephonenumber#this:
cn=schema|entry#grant:r#[all]#public:

Access Control Location
Each access control rule is applied to a given location in the LDAP directory. The location is
normally a distinguished name (DN) but the special location [root] can be specified in the
acls.prop file if the access control rule applies to the entire directory.

If an entry being accessed or modified on the LDAP server does not equal or reside below the
location of the access control rule, the given access control rule is not evaluated further.

Access Control Scope
The following access control scopes are defined:

Chapter 26
LDAP Access Control Syntax

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 8

• Entry—An ACL with a scope of Entry is only evaluated if the entry in the LDAP directory
shares the same DN as the location of the access control rule. Such rules are useful when
a single entry contains more sensitive information than parallel or subentries entries.

• Subtree—A scope of Subtree is evaluated if the entry in the LDAP directory equals or ends
with the location of this access control. This scope protects means the location entry and
all subentries.

If an entry in the directory is covered by conflicting access control rules (for example, where
one rule is an Entry rule and the other is a Subtree rule), the Entry rule takes precedence over
rules that apply because of the Subtree rule.

Access Rights
Access rights apply to an entire object or to attributes of the object. Access can be granted or
denied. Either of the actions grant or deny may be used when you create or update the access
control rule.

Each LDAP access right is discrete. One right does not imply another right. The rights specify
the type of LDAP operations that can be performed.

This section includes the following topics:

Attribute Permissions
The permissions shown in Table 26-1 apply to actions involving attributes.

Table 26-1 Attribute Permissions

Permission Description

r Read Read attributes. If granted, permits attributes and values to be returned in a Read or
Search operation.

w Write Modify or add attributes. If granted, permits attributes and values to be added in a
Modify operation.

o Obliterate Modify and delete attributes. If granted, permits attributes and values to be deleted in a
Modify operation.

s Search Search entries with specified attributes. If granted, permits attributes and values to be
included in a Search operation.

c Compare Compare attribute values. If granted, permits attributes and values to be included in a
Compare operation.

m Make Make attributes on a new LDAP entry below this entry.

The m permission is required for all attributes placed on an object when it is created. Just as
the w and o permissions are used in the Modify operation, the m permission is used in the Add
operation. The w and o permissions have no bearing on the Add operation and m has no
bearing on the Modify operation. Since a new object does not yet exist, the a and m
permissions needed to create it must be granted to the parent of the new object. This
requirement differs from w and o permissions which must be granted on the object being
modified. The m permission is distinct and separate from the w and o permissions so that there
is no conflict between the permissions needed to add new children to an entry and the
permissions needed to modify existing children of the same entry. In order to replace values
with the Modify operation, a user must have both the w and o permissions.

Chapter 26
LDAP Access Control Syntax

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 8

Entry Permissions
The permissions shown in Table 26-2 apply to entire LDAP entries.

Table 26-2 Entry Permissions

Permission Description

a Add Add an entry below this LDAP entry. If granted, permits creation of an entry in the DIT
subject to control on all attributes and values placed on the new entry at the time of
creation. In order to add an entry, permission must also be granted to add at least the
mandatory attributes.

d Delete Delete this entry. If granted, permits the entry to be removed from the DIT regardless of
controls on attributes within the entry.

e Export Export entry and all subentries to new location.

If granted, permits an entry and its subentries (if any) to be exported; that is, removed
from the current location and placed in a new location subject to the granting of suitable
permission at the destination.

If the last RDN is changed, Rename permission is also required at the current location.

In order to export an entry or its subentries, there are no prerequisite permissions to the
contained attributes, including the RDN attribute. This is true even when the operation
causes new attribute values to be added or removed as the result of the changes to the
RDN.

i Import Import entry and subentries from specified location.

If granted, permits an entry and its subentries (if any) to be imported; that is, removed
from one location and placed at the specified location (if suitable permissions for the
new location are granted).

When you import an entry or its subentries, the contained attributes, including the RDN
attributes, have no prerequisite permissions. This is true even when the operation
causes new attribute values to be added or removed as the result of the changes to
RDN.

n RenameDN Change the DN of an LDAP entry. Granting the Rename permission is necessary for an
entry to be renamed with a new RDN, taking into account consequential changes to the
DN of subentries. If the name of the superior entry is unchanged, the grant is sufficient.

When you rename an entry, there are no prerequisite permissions for the contained
attributes, including the RDN attributes. This is true even when the operation causes
new attribute values to be added or removed as the result of the changes of RDN.

b BrowseDN Browse the DN of an entry. If granted, this permission permits entries to be accessed
using directory operations that do not explicitly provide the name of the entry.

t ReturnDN Allows DN of entry to be disclosed in an operation result. If granted, this permission
allows the distinguished name of the entry to be disclosed in the operation result.

Attributes Types
The attribute types to which an access control rule applies should be listed in the ACL where
necessary. The following keywords are available:

• [entry] indicates the permissions apply to the entire object. This could mean actions such
as delete the object, or add a child object.

• [all] indicates the permissions apply to all attributes of the entry.

Chapter 26
LDAP Access Control Syntax

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 8

If the keyword [all] and another attribute are both specified within an ACL, the more specific
permission for the attribute overrides the less specific permission specified by the [all]
keyword.

Subject Types
Access control rules can be associated with a number of subject types. The subject of an
access control rule determines whether the access control rule applies to the currently
connected session.

The following subject types are defined:

• authzID—Applies to a single user that can be specified as part of the subject definition.
The identity of that user in the LDAP directory is typically defined as a DN.

• Group—Applies to a group of users specified by one of the following object classes:

– groupOfUniqueNames

– groupOfNames

– groupOfUniqueURLs

The first two types of groups contain lists of users, and the third type allows users to be
included in the group automatically based on defined criteria.

• Subtree—Applies to the DN specified as part of the subject and all subentries in the LDAP
directory tree.

• IP Address—Applies to a particular Internet address. This subject type is useful when all
access must come through a proxy or other server. Applies only to a particular host, not to
a range or subnet.

• Public—Applies to anyone connected to the directory, whether they are authenticated or
not.

• This—Applies to the user whose DN matches that of the entry being accessed.

Grant/Deny Evaluation Rules
The decision whether to grant or deny a client access to the information in an entry is based on
many factors related to the access control rules and the entry being protected. Throughout the
decision making process, these guiding principles apply:

• More specific rules override less specific ones (for example, individual user entries in an
ACL take precedence over a group entry).

• If a conflict still exists in spite of the specificity of the rule, the subject of the rule determines
which rule will be applied. Rules based on an IP Address subject are given the highest
precedence, followed by rules that are applied to a specific AuthzID or This subject. Next
in priority are rules that apply to Group subjects. Last priority is given to rules that apply to
Subtree and Public subjects.

• When there are conflicting ACL values, Deny takes precedence over Grant.

• Deny is the default when there is no access control information. Additionally, an entry
scope takes precedence over a subtree scope.

Chapter 26
LDAP Access Control Syntax

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 8

Backup and Recovery
Weblogic Server provides support to recover from a corrupt embedded LDAP server file.

If any of your security realms use the Default Authentication, Authorization, Credential
Mapping, or Role Mapping providers, you should maintain an up-to-date backup of the
following directory tree:

domain_name/servers/adminServer/data/ldap

In the preceding directory, domain_name is the domain root directory and adminServer is the
directory in which the Administration Server stores run-time and security data.

Note

In WebLogic Server 12.2.1.3.0 and later, users are removed from the Default
Authenticator LDIF templates after the users are loaded during realm initialization.
Therefore, you should not delete the contents of the domain_name/servers directory
because the data cannot be recovered. If desired, you can disable this feature by
setting the system property weblogic.security.doNotRemoveUsersFromLDIFT to true.
The default is false.

For more information about backing up the embedded LDAP server data, see the following
topics:

• Back Up LDAP Repository in Administering Server Startup and Shutdown for Oracle
WebLogic Server

• Configure the Embedded LDAP Server in Oracle WebLogic Remote Console Online Help.

If the embedded LDAP server file becomes corrupt or unusable, the Administration Server will
generate a NumberFormatException and fail to start. This situation is rare but can occur if the
disk becomes full and causes the embedded LDAP file to enter into an invalid state.

To recover from an unusable embedded LDAP server file, complete the following steps:

1. Change to the following directory:

domain_name/servers/adminServer/data

2. Rename the embedded LDAP server file, as in the following example:

mv ldap ldap.old

By renaming the file, and not deleting it completely, it remains available to you for analysis
and potential data recovery.

3. Start the Administration Server.

When the Administration Server starts, a new embedded LDAP server file is created.

4. Restore any data to the new embedded LDAP server that was added since the time the
WebLogic domain was created.

If you have configured a backup of the embedded LDAP server, you can restore the
backed up data by importing it. See Exporting and Importing Information in the Embedded
LDAP Server.

Chapter 26
Backup and Recovery

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 8

Part VI
Configuring SSL

Learn how to configure SSL in the Oracle WebLogic Server environment.

Note

Although the terms TLS, SSL, and SSL/TLS are used interchangeably throughout
WebLogic Server documentation, it is expected and encouraged that you use a
currently supported version of TLS, not SSL, to secure communication in WebLogic
Server.

This part contains the following chapters:

• Overview of Configuring SSL in WebLogic Server

• Configuring Keystores

• Using Host Name Verification

• Specifying a Client Certificate for an Outbound Two-Way SSL Connection

• SSL Debugging

• SSL Certificate Validation

• Using JCE Providers with WebLogic Server

• Enabling FIPS Mode

• Specifying the SSL/TLS Protocol Version

• Using the JSSE-Based SSL Implementation

• X.509 Certificate Revocation Checking

• Configuring an Identity Keystore Specific to a Network Channel

• Configuring RMI over IIOP with SSL

• Using a Certificate Callback Handler to Validate End User Certificates

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 1

27
Overview of Configuring SSL in WebLogic
Server

Learn how to configure Oracle WebLogic Server to use Secure Sockets Layer (SSL).

• SSL: An Introduction

• Setting Up SSL/TLS: Main Steps

• SSL Session Behavior

SSL: An Introduction
SSL provides secure connections by allowing two applications connecting over a network to
authenticate each other's identity and by encrypting the data exchanged between the
applications.

Authentication allows a server and optionally a client to verify the identity of the application on
the other end of a network connection. Encryption makes data transmitted over the network
intelligible only to the intended recipient.

SSL in WebLogic Server is an implementation of the SSL and Transport Layer Security (TLS)
specifications.

Note

See Table 2-1 for the supported TLS and SSL versions.

WebLogic Server supports SSL on a dedicated listen port which defaults to 7002. To establish
an SSL connection over HTTP, a Web browser connects to WebLogic Server by supplying the
SSL listen port and the HTTPs protocol in the connection URL, for example, https://
myserver:7002.

Using SSL is compute intensive and adds overhead to a connection. Avoid using SSL in
development environments when it is not necessary. However, always use SSL in a production
environment.

This section includes the following topics:

• One-Way and Two-Way SSL

• Java Secure Socket Extension (JSSE) SSL Implementation Support

One-Way and Two-Way SSL
SSL can be configured one-way or two-way:

• With one-way SSL, the server must present a certificate to the client, but the client is not
required to present a certificate to the server. The client must authenticate the server, but
the server accepts a connection from any client. One-way SSL is common on the Internet

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 4

where customers want to create secure connections before they share personal data.
Often, clients will also use SSL to log on in order that the server can authenticate them.

• With two-way SSL (SSL with client authentication), the server presents a certificate to the
client and the client presents a certificate to the server. WebLogic Server can be
configured to require clients to submit valid and trusted certificates before completing the
SSL connection.

Java Secure Socket Extension (JSSE) SSL Implementation Support
WebLogic Server uses an SSL implementation based on Java Secure Socket Extension
(JSSE). JSSE is the Java standard framework for SSL and TLS and includes both blocking-IO
and non-blocking-IO APIs, and a reference implementation including several commonly-trusted
CAs.

See Using the JSSE-Based SSL Implementation for information about using JSSE.

For complete information on JSSE, see the Java Secure Socket Extension (JSSE) Reference
Guide in Security Developer’s Guide.

Setting Up SSL/TLS: Main Steps
To set up SSL/TLS, you must first obtain an identity and trust for Weblogic Server and then
store them using keystores. You can then configure the identity and trust keystores followed by
setting SSL/TLS configuration options for the private key alias and password using the
WebLogic Remote Console.

Perform the following steps to set up SSL/TLS:

1. Obtain an identity (private key and digital certificates) and trust (certificates of trusted
certificate authorities) for WebLogic Server. Use the digital certificates, private keys, and
trusted CA certificates provided by WebLogic Server, the CertGen utility, the keytool utility,
or a reputable certificate authority (CA) to perform this step.

Note

If you use the CertGen utility to generate certificates, see Limitation on CertGen
Usage for information about limitations on its use. Certificates generated by
CertGen are for demo purposes only and should not be used in a production
environment.

2. Store the identity and trust. Private keys and trusted CA certificates which specify identity
and trust are stored in keystores.

Note

This release of WebLogic Server supports private keys and trusted CA certificates
stored in files, or in the WebLogic Keystore provider for the purpose of backward
compatibility only.

3. Configure the identity and trust keystores for WebLogic Server in the WebLogic Remote
Console. See Configure Keystores in Oracle WebLogic Remote Console Online Help.

Chapter 27
Setting Up SSL/TLS: Main Steps

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 4

https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-0EF5DA4E-856C-4AD2-A9FD-0837C5881DDA
https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-0EF5DA4E-856C-4AD2-A9FD-0837C5881DDA

4. Set SSL/TLS configuration options for the private key alias and password in the WebLogic
Remote Console. Optionally, set configuration options that require the presentation of
client certificates (for two-way SSL/TLS). See Set Up TLS in Oracle WebLogic Remote
Console Online Help.

Note

You can enable FIPS mode as described in Enabling FIPS Mode.

For information about configuring identity and trust for WebLogic Server, see the following
sections:

• Obtaining and Storing Certificates for Production Environments

• Configuring Keystores with WebLogic Server

Note

If your domain has two-way TLS enabled and you plan to use WLST to administer it,
then you must add identity and trust properties (for the WLST client) to the user
configuration file that WLST uses to connect to the server. See Connecting to Servers
with Two-Way TLS Enabled in Understanding the WebLogic Scripting Tool.

SSL Session Behavior
WebLogic Server allows SSL sessions to be cached. Those sessions live for the life of the
server. Clients that use SSL sockets directly can control the SSL session cache behavior. The
SSL session cache is specific to each SSL context. All SSL sockets created by SSL socket
factory instances returned by a particular SSL context can share the SSL sessions.

Clients default to resuming sessions at the same IP address and port. Multiple SSL sockets
that use the same host and port share SSL sessions by default, assuming the SSL sockets are
using the same underlying SSL context.

Clients that are not configured to use SSL sessions must call
setEnableSessionCreation(false) on the SSL socket to ensure that no SSL sessions are
cached. This setting only controls whether an SSL session is added to the cache; it does not
stop an SSL socket from finding an SSL session that was already cached. For example, SSL
socket 1 caches the session, SSL socket 2 sets setEnableSessionCreation to false but it can
still reuse the SSL session from SSL socket 1 because that session was put in the cache.

SSL sessions exist for the lifetime of the SSL context; they are not controlled by the lifetime of
the SSL socket. Therefore, creating a new SSL socket and connecting to the same host and
port used by a previous session can resume a previous session as long as you create the SSL
socket using an SSL socket factory from the SSL context that has the SSL session in its
cache.

By default, clients that use HTTPS URLs get a new SSL session for each URL because each
URL uses a different SSL context and therefore SSL sessions can not be shared or reused.
You can retrieve the SSL session by using the weblogic.net.http.HttpsClient class or the
weblogic.net.http.HttpsURLConnection class. Clients can also resume URLs by sharing a
SSLSocket Factory between them.

Chapter 27
SSL Session Behavior

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 4

Session caching is maintained by the SSL context, which can be shared by threads. A single
thread has access to the entire session cache, not just one SSL session, so multiple SSL
sessions can be used and shared in a single (or multiple) thread.

You can use the weblogic.security.SSL.sessionCache.ttl command-line argument to
modify the default server-session time-to-live for SSL session caching. See SSL in Command
Reference for Oracle WebLogic Server. Note that the
weblogic.security.SSL.sessionCache.size command-line argument is ignored.

Chapter 27
SSL Session Behavior

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 4

28
Configuring Keystores

Learn how to configure Oracle WebLogic Server to use Java keystores for identity and trust.

• About Configuring Keystores in WebLogic Server

• Creating a Keystore

• Using Keystores and Certificates in a Development Environment

• Obtaining and Storing Certificates for Production Environments

• Configuring Keystores with WebLogic Server

• Viewing Keystore Contents

• Setting Certificate Expiry Notifications

• Replacing Expiring Certificates

• Creating a Keystore: An Example

• Supported Formats for Identity and Trust Certificates

• Obtaining a Digital Certificate for a Web Browser

For background information about identity and trust keystores, see Identity and Trust in
Understanding Security for Oracle WebLogic Server.

About Configuring Keystores in WebLogic Server
Learn about the concepts related to the configuration and use of keystores with WebLogic
Server.

• About Private Keys, Digital Certificates, and Trusted Certificate Authorities

• Using Separate Keystores for Identity and Trust

• Using PKCS12 Keystores in WebLogic Server

• Using the Certificate Management Service

• Configuring Keystores: Main Steps

• How WebLogic Server Locates Trust

About Private Keys, Digital Certificates, and Trusted Certificate Authorities
Private keys, digital certificates, and trusted certificate authorities establish and verify server
identity and trust.

SSL uses public key encryption technology for authentication. With public key encryption, a
public key and a private key are generated for a server. Data encrypted with the public key can
only be decrypted using the corresponding private key and data encrypted with the private key
can only be decrypted using the corresponding public key. The private key is carefully
protected so that only the owner can decrypt messages that were encrypted using the public
key. Furthermore, anyone with the public key can verify that a message was encrypted by the
owner of the private key.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 33

The public key is embedded in a digital certificate and is cryptographically bound to the
accompanying information about the owner of the public key, such as name, street address,
and e-mail address. The CA signs the entire certificate, including the key, thereby vouching
that the key belongs to the named entity. A private key and digital certificate provide identity for
the server.

The data embedded in a digital certificate is verified by a certificate authority (CA) and digitally
signed with the CA's digital certificate. The trusted CA certificate establishes trust for a
certificate.

An application participating in an SSL connection is authenticated when the other party
evaluates and accepts the application's digital certificate. Web browsers, servers, and other
SSL-enabled applications generally accept as genuine any digital certificate that is signed by a
trusted CA and is otherwise valid. For example, a digital certificate can be invalidated because
it has expired or the digital certificate of the CA used to sign it expired. A client will not trust a
server certificate if the host name in the digital certificate of the server does not match the URL
specified by the client.

Servers need a private key, a digital certificate containing the matching public key, and a
certificate of at least one trusted certificate authority (CA). WebLogic Server supports the
following options for configuring private keys, digital certificates, and trusted CA certificates:

• Custom Keystores: You can provide your own keystores containing your own private keys
and digital certificates.

• Demo Keystores: You can use the demonstration digital certificates, private keys, and
trusted CA certificates that are automatically generated by WebLogic Server for
development and testing. They are located in the DOMAIN_HOME\security, and
JAVA_HOME\lib\security directories.

Note

The demonstration digital certificates, private keys, and trusted CA certificates
should be used in development environments only.

• Domain Keystores: Use certificates generated, obtained and managed by the Certificate
Management Service.

Using Separate Keystores for Identity and Trust
When you configure SSL, you must decide how identity and trust will be stored. Although one
keystore can be used for both identity and trust, Oracle recommends using separate keystores
for both identity and trust because the identity keystore (holding the private key and associated
digital certificate) and the trust keystore (trusted CA certificates) may have different security
requirements. For example:

• For trust, you only need the certificates (non-sensitive data) in the keystore. However, for
identity, you add the certificate and the private key (sensitive data) in the keystore.

• The identity keystore may be prohibited by company policy from ever being put on the
corporate network, while the trust keystore can be distributed over the network.

• The identity keystore may be protected by the operating system for both reading and
writing by non-authorized users, while the trust keystore only needs to be write protected.

• The identity keystore password is generally known to fewer people than the password for
the trust keystore.

Chapter 28
About Configuring Keystores in WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 33

In general, systems within a domain have the same trust rules — they use the same set of
trusted CAs — but they tend to have per-server identity. Identity requires a private key, and
private keys should not be copied from one system to another. Therefore, you should maintain
separate identity keystores for each system, each keystore containing only the server identity
needed for that system. However, trust keystores can be copied from system to system, thus
making it easier to standardize trust conventions.

Identity is more likely to be stored in hardware keystores. Trust can be stored in a file-based
JDK keystore without having security issues because a trust store contains only certificates,
not private keys.

Using PKCS12 Keystores in WebLogic Server
PKCS12 is an extensible, standard, and widely-supported format for storing cryptographic
keys. In JDK 9, the JDK default keystore type changed from JKS to PKCS12.

The JDK default keystore type is determined by the default defined in the keystore.type
property in the java.security file of your JDK installation. In JDK 8, the default was JKS. As of
JDK 9, the default is PKCS12. However, you can explicitly specify the type of keystore you
require. Existing keystores will not change.

Note the following as of JDK 9:

• PKCS12 keystores require a passphrase to access public certificates.

• The JDK installation provides the cacerts truststore. By default, WebLogic Server will use
the JKS format for SSL/TLS Java Standard Trust but it also supports PKCS12.

• If you did not explicitly set the keystore type in your WebLogic Server configuration and
you rely on the JDK default, when you upgrade to JDK 9 or later, the JDK default keystore
type may need to be updated. In this case, if you want to continue to use JKS as the
keystore type, you can set the storetype property in the java.security file to JKS. If you
prefer to use PKCS12, you can convert your JKS keystores using the -importkeystore
option of the keytool utility. See Converting the Default JKS Keystore for FIPS
Compliance or the keytool utility documentation in the JDK Tool Specifications.

• For PKCS12 keystores, keytool does not support different keystore and key passwords. It
uses the keystore password to persist the key. If you specify a password using the -
keypass option and it differs from the password specified for the -storepass option,
keytool displays a warning and ignores the keypass value.

The following table summarizes the supported keystores and defaults for WebLogic Server
features and components.

Table 28-1 Keystore Type Defaults in WebLogic Server

Feature/Component Keystore Type Comments

SSL/TLS configuration settings for
custom trust and custom identity
keystores

PKCS12 or JKS You can specify the keystore type using
the configuration setting. If not specified,
the JDK default keystore type in the
java.security file is used. See
Configuring Keystores.

Network Channel Identity Keystore PKCS12 or JKS You can specify the keystore type using
the configuration setting. If not specified,
the JDK default keystore type in the
java.security file is used. See
Configuring an Identity Keystore
Specific to a Network Channel.

Chapter 28
About Configuring Keystores in WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 33

https://docs.oracle.com/en/java/javase/17/docs/specs/man/index.html

Table 28-1 (Cont.) Keystore Type Defaults in WebLogic Server

Feature/Component Keystore Type Comments

PKI Credential Mapping Provider
Keystore

JKS (the default), or PKCS12 You can specify PKCS12 as the
Keystore Type to change from the JKS
default. See Configuring a PKI
Credential Mapping Provider.

LDAP Authentication Provider SSL
configuration

JKS or PKCS12 You can specify the keystore type to use
for custom trust using the configuration
setting. See Enabling an LDAP
Authentication Provider for SSL.

Node Manager SSL Configuration JKS or PKCS12 You can specify the keystore type using
the configuration setting. If not specified,
the JDK default keystore type in the
java.security file is used. See Using
SSL With Java-based Node Manager in
Administering Node Manager for Oracle
WebLogic Server.

Demonstration Identity and Trust
Keystores

PKCS12 only These demonstration keystores are for
development use only. See Using the
Demonstration Keystores

Java Standard Trust JKS or PKCS12 • JDK 17 supplies the JDK cacerts
in JKS format.

• JDK 21 supplies the JDK cacerts
in PKCS12 format.

JDK Keytool Utility JKS or PKCS12 You can specify the keystore type using
the command line property. If not
specified, the JDK default keystore type
in the java.security file is used. See
Creating a Keystore Using Keytool

DemoCertGen Utility PKCS12 only The DemoCertGen utility only supports
creating keystores in PKCS12 format.
See Creating a Keystore Using
DemoCertGen.

ImportPrivateKey Utility JKS or PKCS12 You can specify the keystore type using
the command line property. If not
specified, the JDK default keystore type
in the java.security file is used. See
Creating a Keystore Using
ImportPrivateKey

Domain Keystores (with Certificate
Management Service)

PKCS12 only The Domain Keystores are only
available when the Certificate
Management Service is enabled. See
Domain Keystores.

Using the Certificate Management Service
Use the Certificate Management Service to simplify and streamline the management of
SSL/TLS certificates in a WebLogic Server domain.

Chapter 28
About Configuring Keystores in WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 33

Note

The Certificate Management Service is available as a Technical Preview in this
release of WebLogic Server for testing purposes only. Do not use it in production
environments.

The following components work together to ensure that certificates are made available and
distributed to servers as necessary:

• The Certificate Management Service makes requests of supported Certificate Issuers to
obtain certificates. It stores these certificates in the Domain Keystores and distributes them
to servers as necessary.

• Certificate Issuers obtain and refresh the certificates for servers in the domain. WebLogic
Server supports several Certificate Issuers. See Certificate Issuers.

• Domain Keystores stores all of the keystores managed by the Certificate Management
Service. See Domain Keystores.

This arrangement allows WebLogic Server to seamlessly distribute certificates to the correct
servers and to regularly check with Certificate Issuers to obtain new certificates so certificates
remain valid with minimal intervention.

The Certificate Management Service runs on the Administration Server and on individual
Managed Servers. Communication between these instances is facilitated by the Remote
Certificate Service, a REST application also running on the Administration Server. The Remote
Certificate Service REST application also responds to certificate requests from Managed
Servers. The Remote Certificate Service application is deployed as an internal application, with
the context root wls-certificate-service.

Note

REST API calls to the Remote Certificate Service require SSL/TLS so you must either
expose an SSL/TLS port for the Administration Server or you must configure an
Administration Channel. If a Managed Server has not yet initialized its own trust store,
it can temporarily rely on the local machine-trust keystore until it initializes its own
trust store.

When a domain is created, the Certificate Management Service initializes the WebLogic
Domain CA (the Domain Certificates Issuer), and its related keystores, as well as the machine-
trust keystore for the machine where the Administration Server is running. When new
Managed Servers are configured to use Domain Keystores, they will temporarily use these
keystores until their own server and machine keystores finish initializing. See Domain
Certificates Issuer (WebLogic Domain CA).

For instructions on enabling and configuring the Certificate Management Service, see
Configuring the Certificate Management Service.

Certificate Issuers
The Certificate Management Services uses Certificate Issuers to obtain and maintain
certificates required for secure communication between servers.

The Certificate Management Service supports the following Certificate Issuers:

Chapter 28
About Configuring Keystores in WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 33

• Domain Certificates Issuer (WebLogic Domain CA)

• Provisioned Certificates Issuer

• OCI Certificates Plug-in Certificate Issuer

Domain Certificates Issuer (WebLogic Domain CA)

The Domain Certificates Issuer issues certificates on behalf of the WebLogic domain CA, a
self-signed root CA for the domain. It is automatically enabled as soon as the Certificate
Management Service is enabled. All servers in a domain will request a certificate from the
domain CA.

The current and historical Domain CA certificates are automatically trusted by servers using
Domain Keystores.

Typically, the Domain Certificates Issuer issues certificates that combine server authentication,
client authentication, and signing and encryption into a single certificate. You can choose to
configure the issuer to issue certificates that are intended for a single purpose instead. In
secured production mode, single purpose certificates are enabled by default.

Single purpose certificates are not currently supported for machine certificates.

Table 28-2 WebLogic CA Certificate Attributes

Attribute Value

Subject DN CN=Domain Root Certificate Authority
R1,OU=domain:<domain-name>,O=WebLogic
Domain PKI

Issuer DN Subject DN (for self-signed)

Validity Period The default validity period is 365 days but you can
specify any value, in days, between 45 to 1825
days.

Public Key Info 2048-bit RSA key

Serial Number A 16-byte random BigInteger()

Signature Algorithm SHA-256 with RSA Encryption

Fingerprints SHA-256, SHA-1

Basic Constraints Critical, CA == yes

PathLen = 1

Key Usages Critical, Digital Signature, Certificate Signing, CRL
Signing

Subject Key ID RFC 3280 type 1 subject key identifier

Table 28-3 Server Certificate Attributes

Attribute Value

Subject DN CN=<hostname>, OU=server:<server-name>,
OU=domain:<domain-name>, O=WebLogic
Domain PKI

Issuer DN Issuing CA's Subject DN

Validity Period The default validity period is 90 days but you can
specify any value, in days, between 15 to 365 days.

Subject Alternate Names (SANs) Additional DNS or IP address added to the
certificate per configuration

Chapter 28
About Configuring Keystores in WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 33

Table 28-3 (Cont.) Server Certificate Attributes

Attribute Value

Public Key Info 2048-bit RSA key

Serial Number A 16-byte random BigInteger()

Signature Algorithm SHA-256 with RSA Encryption

Fingerprints SHA-256, SHA-1

Basic Constraints Critical, CA == no

Key Usages Critical, Digital Signature, Key Encipherment, Data
Encipherment
Note: Single purpose certificates may not support
all of these usages.

Extended Key Usages Server Authentication, Client Authentication, Code
Signing
Note: Single purpose certificates will each support
only one of these usages.

Subject Key ID RFC 3280 type 1 subject key identifier

Authority Key ID The Issuing CA's RFC 3280 type 1 subject key
identifier

Provisioned Certificates Issuer

The Provisioned Certificates Issuer distributes private keys and certificates that were manually
added to the domain by an administrator. They are stored in the identity keystore on the
Administration Server and available to any Managed Server that is configured to use them.

You must enable the Provisioned Certificates Issuer. See Configure the Certificate
Management Service.

If you plan to use provisioned certificates, it is your responsibility to ensure that these
certificates meet the security standards required for your environment.

OCI Certificates Plug-in Certificate Issuer

The OCI Certificates Plug-in Certificate Issuer is a plug-in issuer that obtains certificates
directly from the OCI Certificates service. The OCI Certificates service uses one or more self-
signed CAs configured for the OCI tenancy to issue certificates.

For general information on the OCI Certificates service, see OCI Certificates in OCI
Documentation.

Domain Keystores
Domain Keystores are a set of identity and trust keystores managed by the Certificate
Management Service. These Java keystores can contain identity certificates, trust certificates,
certificate authority certificates, and associated private keys.

These keystores are PKCS12 keystores that use the .p12 extension. Private key entries are
password protected.

Each keystore has an associated properties file that contains the name, type, and purpose of
the keystore, along with the passphrases needed to access the keystore and its entries.
Sensitive values are encrypted. The properties file is co-located with the keystore file and
shares its name barring the file extension. For example:

Chapter 28
About Configuring Keystores in WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 33

https://docs.oracle.com/en-us/iaas/Content/certificates/overview.htm

• DOMAIN_HOME/security/pki/domain/domain-trust.p12

• DOMAIN_HOME/security/pki/domain/domain-trust.props

For more information on working with the Certificate Management Service and Domain
Keystores, see Configuring the Certificate Management Service.

Table 28-4 describes the keystores within Domain Keystores.

Table 28-4 Domain Keystore

Keystore Name Location Description

server-servername-trust DOMAIN_HOME/security/pki Stores the local server's copy of
the domain-trust certificates. This
trust store also includes any
certificates stored in the
provisioned-trust keystore.

server-servername-identity DOMAIN_HOME/security/pki Stores the identity certificates for
a server.

machine-trust DOMAIN_HOME/security/pki/
machine

Stores a copy of the domain's
trust certificates, domain-trust
and provisioned-trust.
These certificates are used to
boostrap Managed Servers, and
by the Node Manager.

machine-identity DOMAIN_HOME/security/pki/
machine

Stores the identity certificates for
a machine.

domain-trust DOMAIN_HOME/security/pki/
domain

Stores the trust anchors for the
domain. By default, this is the
self-signed CA certificate for the
domain.

Note: This keystore is only
available on the Administration
Server.

domain-ca DOMAIN_HOME/security/pki/
domain

The signing key and certificate(s)
for the Domain Certificate
Authority.

Note: This keystore is only
available on the Administration
Server.

Chapter 28
About Configuring Keystores in WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 33

Table 28-4 (Cont.) Domain Keystore

Keystore Name Location Description

provisioned-trust DOMAIN_HOME/security/pki/
provisiond

Stores trust anchors that the
domain should trust in addition to
the domain CA. Note that this is
only to provision specific CAs that
may be needed for a particular
environment. This file is only
updated by admins, and read by
the Certificate Service.

Note
• Trust in the global trust

anchors provided by the
JRE's cacerts file is
configured differently and
they should not be added to
this keystore.

• This keystore is only
available on the
Administration Server.

provisioned-identity DOMAIN_HOME/security/pki/
provisioned

Stores keys and certificates that
an administrator can make
available to other servers. The
Certificate Management Service
fetches certificates from the
Provisioned Certificates Issuer on
request and distributes them to
servers.

Note: This keystore is only
available on the Administration
Server.

Using Certificate Management Service with Node Manager
If you plan to use the Certificate Management Service and Node Manager in the same domain,
you must perform some additional configuration.

The Certificate Management Service provisions machine certificates to every machine in the
domain. Node Manager uses the domainpki-machine-identity certificate from the machine-
identity keystore as its identity certificate, and obtains trust anchors from the machine-trust
keystore.

The machine-trust keystore is created when the domain is created, and then copied to new
machines when they are configured. If the domain trust certificates change, the machine-trust
keystore is updated by the servers running on the host.

You can use Certificate Management Service with either per domain and per host Node
Manager configurations. See Using SSL With Java-Based Node Manager in Administering
Node Manager for Oracle WebLogic Server.

Configuring the Certificate Management Service
You can configure the Certificate Management Service as needed for your environment.

Chapter 28
About Configuring Keystores in WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 33

Table 28-5 Configuring the Certificate Management Service

If you want to do this... Follow this...

Enable the Certificate Management Service Configure the Certificate Management Service in
Oracle WebLogic Remote Console Online Help.

Enable Domain Keystores Configure Keystores in Oracle WebLogic Remote
Console Online Help.

Import Certificates into the Provisioned Keystores Import Certificates into the Provisioned Trust or
Identity Keystores in Oracle WebLogic Remote
Console Online Help.

Configure Single Purpose Certificates Configure Single Purpose Certificates in Oracle
WebLogic Remote Console Online Help.

Configure the OCI Certificates Plug-in Certificate
Issuer

Configure the OCI Certificates Plug-in Certificate
Issuer in Oracle WebLogic Remote Console Online
Help

Review Certificates in Domain Keystores Review Certificates Managed by Certificate
Management Service in Oracle WebLogic Remote
Console Online Help.

Refresh Certificates and Trust Refresh Certificates and Trust in Oracle WebLogic
Remote Console Online Help.

Export Trusted Certificates Export Trusted Certificates in Oracle WebLogic
Remote Console Online Help.

Roll the Domain CA Certificate Roll Domain CA Certificate in Oracle WebLogic
Remote Console Online Help.

Configuring Keystores: Main Steps
To configure identity and trust keystores for a WebLogic Server instance being used in a
production environment, complete the following steps:

1. Create the keystore to hold the server identity certificate. See Creating a Keystore.

2. Create a Certificate Signing Request (CSR), and submit it to a reputable Certificate
Authority. See Generating a Certificate Signing Request. Oracle strongly recommends this
step for production environments.

3. Import the identity and trust certificates returned by the CA. See Importing Certificates into
the Trust and Identity Keystores.

4. Configure the trust and identity keystores with WebLogic Server. See Configuring
Keystores with WebLogic Server

If you are working in a development environment where security requirements typically are less
stringent, you can use the demonstration certificates included with WebLogic Server and
create self-signed certificates. However, do not use these certificates in a production
environment. See Using Keystores and Certificates in a Development Environment.

How WebLogic Server Locates Trust
WebLogic Server uses the following algorithm when it loads its trusted CA certificates:

1. If the trust keystore is specified by the -Dweblogic.security.SSL.trustedCAkeystore
command-line argument in either of the following use cases, then WebLogic Server loads
the trusted CA certificates from that keystore:

Chapter 28
About Configuring Keystores in WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 33

• Starting a Managed Server that downloads the initial configuration from the
Administration Server over SSL

• Running a WebLogic client, such as WLST, that connects to a WebLogic Server server
instance over SSL

Note

If, however, the Managed Server instance is started using DOMAIN_DIR/bin/
startManagedWebLogic.sh managed_instance_name admin_SSL_url, then step 2
is not applicable to the outbound SSL connection established with the
Administration Server for downloading the configuration.

2. Else if the keystore is specified in the configuration file (config.xml), WebLogic Server
loads trusted CA certificates from the specified keystore. If the server is configured with
DemoTrust, trusted CA certificates will be loaded from
DOMAIN_HOME\security\DemoTrust.p12,
ORACLE_HOME\wlserver\server\lib\DemoTrust.jks, and the JDK cacerts keystores.

Creating a Keystore
You can create a PKCS12 keystore using the DemoCertGen utility, or a JKS or PKCS12
keystore using the keytool, or the ImportPrivateKey utilities. Oracle recommends that you
keep server certificates and trusted CA certificates in separate keystores.

The following sections explain how to create a keystore. However, in practice, creating a
keystore is typically done in conjunction with obtaining a server certificate for the identity
keystore or importing a trusted CA certificate into the trust keystore, as explained in Obtaining
and Storing Certificates for Production Environments.

• Keystore File Name Requirements

• Creating a Keystore Using DemoCertGen

• Creating a Keystore Using Keytool

• Creating a Keystore Using ImportPrivateKey

Note

The preferred keystore format is JKS or PKCS12. WebLogic Server supports private
keys and trusted CA certificates stored in files or in the WebLogic Keystore provider
for the purpose of backward compatibility only.

Keystore File Name Requirements
When choosing a name for the keystore file:

• Do not choose a file name longer than 256 characters.

• Do not use special characters, except for an underscore (_) or hyphen (-).

• Do not use non-ASCII characters.

• Follow the operating system-specific rules for directory and file names.

Chapter 28
Creating a Keystore

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 33

Creating a Keystore Using DemoCertGen
DemoCertGen is a key and certificate management utility included in WebLogic Server. It
combines functionality from the CertGen, keytool, and ImportPrivateKey utilities to configure
demonstration keystores for a domain.

DemoCertGen creates PKCS12 keystores that are suitable for development and testing
purposes only. Do not use them in production environments.

1. Change to the DOMAIN_HOME/bin directory of your WebLogic domain root directory.

2. Run the setDomainEnv script, which sets the domain-wide environment for starting and
running WebLogic Server instances.

3. Run the DemoCertGen utility. Include the -domain argument and set its value to the
domain home directory.

java utils.DemoCertGen -domain <DOMAIN_HOME>

DemoCertGen will generate a self-signed demo CA and then import the demonstration
certificates, signed with the demo CA, into the identity and trust keystores, in the DOMAIN_HOME/
security directory.

Note

DemoCertGen also creates a DemoCerts.props file to store the passphrases for the
identity and trust keystores, among other properties. This file also located in the
DOMAIN_HOME/security directory. Do not manually edit DemoCerts.props.

For more information on DemoCertGen, see DemoCertGen in Command Reference for Oracle
WebLogic Server.

Regenerating Demo CA and Demo Certificates using DemoCertGen
To ensure there is no lapse in service, you should regenerate your demo CA certificate and
demo certificates before they expire. The demo CA certificate expires after 5 years. The demo
certificates expire after 6 months.

Note

You can use the pack and unpack commands to create a Managed Server template
that includes the newly generated demo CA and certificates.

Perform steps 1 through 4 to generate the new demo CA and certificates, then run the
pack command with your preferred parameters. Make sure you include -
managed=true. Then, on the remote machine, run the unpack command with your
preferred parameters. Do not perform step 5.

See Pack and Unpack Command Reference in Creating Templates and Domains
Using the Pack and Unpack Commands.

Chapter 28
Creating a Keystore

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 33

1. On every machine with a WebLogic Server instance, make sure you back up the following
files, located under DOMAIN_HOME/security:

• democacert.der

• democakey.der

• democert.der

• demokey.der

• DemoCerts.props

• DemoIdentity.p12

• DemoTrust.p12

2. On the machine where the Administration Server is located, go to the DOMAIN_HOME/bin
directory of your WebLogic domain root directory.

3. Run the setDomainEnv script, which sets the domain-wide environment for starting and
running WebLogic Server instances.

4. Run the DemoCertGen utility. Include the -domain argument and set its value to the
domain home directory. Typically, you will also want to include -genIDOnly so that only the
demo certificates are regenerated and not the demo CA certificate.

For example:

java utils.DemoCertGen -domain DOMAIN_HOME -genIDOnly

• Optional: If you want to regenerate both the demo certificates and the demo CA
certificate, omit the -genIDOnly argument.

For example:

java utils.DemoCertGen -domain DOMAIN_HOME

5. Optional: If you have Managed Servers on other machines, then perform the following
steps on each of the machines:

a. On the Administration Server machine, copy the demo certificate files, democacert.der
and democakey.der, over to DOMAIN_HOME/security on the Managed Server machine,
replacing the existing files.

b. Run the DemoCertGen utility with the -genIDOnly option.

For example:

java utils.DemoCertGen -domain DOMAIN_HOME -genIDOnly

Creating a Keystore Using Keytool
Keytool is a key and certificate management utility that is included in the JDK. It allows you to
administer your own public/private key pairs and associated certificates for use in self-
authentication (in which you authenticate yourself to other users or services) or data integrity
and authentication services, using digital signatures. Keytool also allows you to cache the
public keys, in the form of certificates, of your communicating peers.

When you use keytool to create a public and private key pair, keytool also creates a keystore if
one does not already exist in the current directory.

Chapter 28
Creating a Keystore

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 33

Note

• The default keystore type is determined by the JDK default as defined by the
keystore.type property in the java.security file. As of JDK 9, the default is
pkcs12. You can change the default by specifying the storetype property.

• For PKCS12 keystores, keytool does not support different keystore and key
passwords and uses the keystore password to persist the key. If you specify a
password using the -keypass option and it differs from the password specified for
the -storepass option, keytool displays a warning and ignores the keypass value.

To use keytool to create a JKS or PKCS12 keystore, complete the following steps:

1. Create a directory to hold the keystore. For example: ORACLE_HOME/keystores.

2. Change to the bin subdirectory of your WebLogic domain root directory. For example:

prompt> cd DOMAIN_HOME/bin

3. Run the setDomainEnv script, which sets the domain-wide environment for starting and
running WebLogic Server instances.

4. Change to the directory you created for the keystore and enter the following command:

prompt> keytool -genkeypair -alias alias -keyalg RSA -keysize 2048 -dname dn -
keystore keystore
 -storetype keystoretype

In the command, enter the following values:

• A private key alias, represented by alias.

• The X.500 Distinguished Name associated with the private key alias, represented by
dn.

• The name of the keystore being created, represented by keystore.

• The key pair generation algorithm RSA.

• The type of keystore being created, either jks or pkcs12, represented by storetype.

When you enter the keytool command as described in the preceding steps, keytool
automatically prompts you for the following:

1. The keystore password

2. The password for the private key, which is represented by its alias. Note that for PKCS12
keystores, you are not prompted for the key password.

For example:

prompt> keytool -genkeypair -alias server_cert -keyalg RSA -keysize 2048
 -dname "CN=server.avitek.com,OU=Support,O=Avitek,L=Reading,ST=Berkshire,C=GB" -keystore
keystore.jks -storetype jks
Enter keystore password:
Re-enter new password:
Enter key password for <server_cert>
 (RETURN if same as keystore password):
Re-enter new password:

Note the following from the preceding example:

• The keystore file is named keystore.jks.

Chapter 28
Creating a Keystore

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 33

• The private key alias is server_cert.

• The X.500 Distinguished Name, which consists of the WebLogic Server host and DNS
domain name, is server.avitek.com.

• The keystore type is jks.

Note

Make note of the private key alias and passwords you specify, and be sure to record
passwords only in a safe location.

For a summary of keytool commands commonly used with WebLogic Server, see Keytool
Command Summary. For details, see help for the keytool utility in JDK Tool Specifications.

Creating a Keystore Using ImportPrivateKey
If you have a certificate and private key, you use the ImportPrivateKey utility to create a
keystore in which you can store that certificate and key.

If you used CertGen to create a private key file that is protected by a password, that password
is the one required by ImportPrivateKey to extract the key from the key file and insert the key in
the keystore being created.

To create a keystore using ImportPrivateKey, complete the following steps:

1. Change to the bin subdirectory of your WebLogic domain root directory.

2. Run the setDomainEnv script, which sets the domain-wide environment for starting and
running WebLogic Server instances.

3. Change to the directory in which you want to create the keystore.

4. Generate the certificate and private key.

For example, using CertGen:

a. Enter the following command to generate the certificate file named testcert and the
private key file named testkey:

prompt> java utils.CertGen -keyfilepass mykeyfilepass -certfile testcert -
keyfile testkey
Generating a certificate with common name machine-name and key strength 2048
issued by CA with certificate from CertGenCA.der file and key from
CertGenCAKey.der file

b. Convert the certificate from DER format to PEM format. For example:

prompt> java utils.der2pem CertGenCA.der

Chapter 28
Creating a Keystore

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 15 of 33

https://docs.oracle.com/en/java/javase/17/docs/specs/man/index.html

Note

By default, the CertGen utility looks for the CertGenCA.der and
CertGenCAKey.der files in the current directory, or in the WL_HOME/server/lib
directory, as specified in the weblogic.home system property or the
CLASSPATH.

Alternatively, you can specify CA files on the command line. If you want to use
the default settings, there is no need to specify CA files on the command line.

5. Concatenate the certificate and the Certificate Authority (CA) certificate. For example:

prompt> cat testcert.pem CertGenCA.pem >> newcerts.pem

6. Create a new keystore and load the private key.

For example, to create a keystore named mykeystore and load the private key located in
the file testkey.pem, enter the following command:

prompt> java utils.ImportPrivateKey -keystore mykeystore -storepass mystorepasswd -
keyfile mykey
 -keyfilepass mykeyfilepass -certfile newcerts.pem -keyfiletestkey.pem -alias
passalias -storetype jks
No password was specified for the key entry
Key file password will be used

Imported private key testkey.pem and certificate newcerts.pem
into a new keystore mykeystore of type jks under alias passalias

Note

The default storetype is determined by the default for the JDK as defined by the
keystore.type property in the java.security file. As of JDK 9, the default is
PKCS12. You can change the default by specifying the storetype property.

For more information about using the ImportPrivateKey utility, see ImportPrivateKey in
Command Reference for Oracle WebLogic Server.

Using Keystores and Certificates in a Development Environment
Learn about the tools and procedures to generate digital certificates and private keys for
demonstration or testing purposes in a development environment. This information does not
apply to a WebLogic Server production environment.

This section includes the following topics:

• Using the Demonstration Keystores

• Creating Demonstration Certificates Using CertGen

• Using Your Own Certificate Authority

• Converting a Microsoft p7b Format to PEM Format

• Configuring Demo Certificates for Clients

Chapter 28
Using Keystores and Certificates in a Development Environment

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 16 of 33

Using the Demonstration Keystores
By default, WebLogic Server is configured with two keystores, which are located in the
DOMAIN_HOME\security directory:

• DemoIdentity.p12—Contains an identity certificate and demonstration private key (paired
to the public key within the certificate) for WebLogic Server. This keystore contains the
identity for WebLogic Server.

• DemoTrust.p12—Contains the CA certificate for the domain. This keystore establishes trust
for WebLogic Server.

Note

As of WebLogic Server 14.1.2.0.0, the demonstration keystores that are generated at
domain creation, are created in PKCS12 format.

For testing and development purposes, the keystore configuration is complete. The digital
certificates and trusted CA certificates in the demonstration keystores are signed by a
WebLogic Server demonstration certificate authority. A unique demo CA certificate is created
for each new domain. Do not use these demonstration keystores in a production
environment. For information about how to configure keystores for use in a production
environment, see Obtaining and Storing Certificates for Production Environments.

Creating Demonstration Certificates Using CertGen
The following sections explain the use of CertGen for creating demonstration certificates and
private keys for use in a development environment:

About CertGen
The CertGen utility provides command line options to specify a CA certificate and key to be
used for issuing generated certificates. The digital certificates generated by the CertGen utility
by default have the host name of the machine on which they were generated, as the value for
its common name field (cn). Beginning with WebLogic Server 14.1.1.0.0, the digital certificates
by default also contain the Subject Alternative Name (SAN) extension that lists the fully-
qualified DNS name as the value for the SAN extension.

Command line options let you specify values for the cn and other Subject domain name (DN)
fields, such as orgunit, organization, locality, state, and countrycode.

Use the CertGen utility if you want to set an expiration date in the digital certificate or specify a
correct host name in the digital certificate so that you can use host name verification. You can
specify additional host names, or IP addresses, or both, in the SAN extension of your digital
certificates by using the -a DNS:<hostname>,IP:<ip address> option. Optionally, you can
create your certificates without the SAN extension, by using the -nosandnshost option at the
command line. This option disables the fully-qualified DNS name and creates your certificates
without the SAN extension.

The CertGen utility generates public certificate and private key files in PEM and DER formats.
To view the details of the generated digital certificate on Windows platforms, double-click .der
files in Windows Explorer

Chapter 28
Using Keystores and Certificates in a Development Environment

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 17 of 33

By default, the CertGen utility uses the following demonstration digital certificate and private-
key files: CertGenCA.der and CertGenCAKey.der. CertGen looks for these files in the current
directory, or in the WL_HOME/server/lib directory, as specified in the weblogic.home system
property or the CLASSPATH. If you want to use these files, you do not need to specify CA files in
the CertGen command; however, you can specify those CA files in the command if desired.

For complete details about the CertGen utility's syntax and arguments, see CertGen in the
Command Reference for Oracle WebLogic Server.

Using CertGen to Create a Certificate and Private Key
To create a certificate and private key using CertGen, complete the following steps:

1. Open a command window and change to the bin subdirectory of your WebLogic domain
root directory.

2. Run the setDomainEnv script. This script sets the domain-wide environment for starting and
running WebLogic Server instances.

3. Optionally, change to the directory in which you want to create the certificate and private
key.

4. Generate the certificate and private key using the following command:

java utils.CertGen -keyfilepass keyfilepass -certfile cert-name -keyfile keyfile-name

In the preceding command:

• keyfilepass represents the password for the private key file.

• cert-name represents the name of the certificate.

• keyfile-name represents the name of the private key file.

For example, the following command generates the certificate file named testcert and the
private key file named testkey:

prompt> java utils.CertGen -keyfilepass mykeyfilepass -certfile testcert -keyfile
testkey
Generating a certificate with common name return and key strength 2048
issued by CA with certificate from CertGenCA.der file and key from CertGenCAKey.der
file

CertGen Usage Notes
Note the following about using CertGen:

• By default, the CertGen utility looks for the CertGenCA.der and CertGenCAKey.der files in
the current directory, or in the WL_HOME/server/lib directory, as specified in the
weblogic.home system property or the CLASSPATH.

Alternatively, you can specify CA files on the command line. If you want to use the default
settings, there is no need to specify CA files on the command line.

• By default, the CertGen utility generates demo certificates with the SAN extension
containing the fully-qualified DNS name.
Optionally, you can create demo certificates without the SAN extension and disable the
fully-qualified DNS name, by using the -nosandnshost command-line option.

• If you do not explicitly specify a host name with the -cn option, CertGen uses the JDK
InetAddress.getHostname() method to get the host name, which CertGen inserts in the
Subject common name.

Chapter 28
Using Keystores and Certificates in a Development Environment

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 18 of 33

However, note that the results of the getHostName() method depends on the platform on
which it is used. For example:

– On some platforms, such as Solaris, this method returns a fully qualified domain name
(FQDN).

– On other platforms, such as Windows NT, this method returns a short host name.

– On Solaris platforms, the result of InetAddress.getHostname() depends on how the
hosts entry is configured in the /etc/nsswitch.conf file.

If WebLogic Server is acting as a client and host name verification is enabled (which it is
by default), you need to ensure that the host name specified in the URL matches the
Subject common name in the server certificate. Otherwise, connections fail because the
host names do not match.

Limitation on CertGen Usage
By default, a WebLogic Server domain is configured with the DemoIdentity.jks keystore,
which contains a demonstration public certificate and private key for WebLogic Server. This
certificate and key are created by CertGen with the default options of containing the host name
in the common name field (cn), and the fully-qualified DNS name in the SAN (Subject
Alternative Name) extension value. As a result, attempts to establish SSL connections may fail
in some situations due to a host name verification exception. This section describes this
limitation and provides some workarounds.

If you are using the demo certificates in a multi-server domain, Managed Server instances fail
to boot if they cannot establish an SSL connection with the Administration Server. An error
message similar to the following may be generated:

BAD_CERTIFICATE alert was
received from node-name.avitek.com - xxx.yy.zzz.yyy. Check the peer to
determine why it rejected the certificate chain (trusted CA configuration,
hostname verification). SSL debug tracing may be required to determine the
exact reason the certificate was rejected.

This error occurs because the host name verifier, which is enabled by default in all WebLogic
domains and which is used during the SSL handshake, compares the value of the SAN
extension in the certificate or the value of the cn field (if the certificate is created without the
SAN extension) with the host name of the SSL server that accepts the SSL connection. If
these names do not match, the SSL connection is dropped.

If you use the demo identity certificates in a WebLogic domain, you can use the following
workarounds:

• Specify the SSL listen address of each WebLogic Server instance in a domain as the host
name that appears in the certificate's cn field. Avoid using the fully-qualified DNS name or
IP address. This workaround consists of two steps:

1. When using the Configuration Wizard to create the WebLogic domain, specify the
listen address of each WebLogic Server instance as a simple host name as it appears
in the certificate's cn field, not as a fully-qualified DNS name or IP address. For
example, if the host name in the certificate is avitek01, the listen address for the
server instance should be specified simply as avitek01.

2. At run time, when specifying the SSL listen address of a server instance, make sure
the URL also matches the host name for that server as specified as the certificate's cn
field. For example:

https://avitek01:7002

Chapter 28
Using Keystores and Certificates in a Development Environment

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 19 of 33

• When starting a Managed Server instance, pass the URL of the Administration Server's
SSL listening address as a parameter to the startManagedWebLogic script. The URL
should be specified in a form that excludes the domain suffix. For example:

C:\mydomain\bin> startManagedWebLogic.cmd https://admin01:7002

• Disable host name verification. This causes WebLogic Server to skip the verification check
of ensuring that the host name in the URL to which a connection is made matches the host
name in the digital certificate that the server sends back as part of the SSL connection.

You can disable host name verification by including a command similar to the following in
the setDomainEnv script:

set JAVA_OPTIONS=%JAVA_OPTIONS% -
Dweblogic.security.SSL.ignoreHostnameVerification=true

For information about configuring host name verification, see Using Host Name
Verification.

Note

Oracle does not recommend using the demo certificates, or turning off host name
verification, in production environments.

Using Your Own Certificate Authority
Many companies act as their own certificate authority. To use those trusted CA certificates with
WebLogic Server:

1. Ensure the trusted CA certificates are in PEM format.

• If the trusted CA certificate is in DER format, use the der2pem utility to convert them.

• If the trusted CA certificate was issued by Microsoft, see Converting a Microsoft p7b
Format to PEM Format.

• If the trusted CA certificate has a custom file type, use the steps in Converting a
Microsoft p7b Format to PEM Format to convert the trusted CA certificate to PEM
format.

2. Create the trust keystore to hold the trusted CA certificate, as explained in Creating a
Keystore.

3. Store the trusted CA certificate in the trust keystore. See Importing Certificates into the
Trust and Identity Keystores.

4. Configure WebLogic Server to use the trust keystore. See Configuring Keystores with
WebLogic Server.

Converting a Microsoft p7b Format to PEM Format
Digital certificates issued by Microsoft are in a format (p7b) that cannot be used by WebLogic
Server. The following example converts a digital certificate in p7b (PKCS#7) format to PEM
format on Windows XP:

1. In Windows Explorer, select the file (filename.p7b) you want to convert. Double-click on
the file to display a Certificates window.

Chapter 28
Using Keystores and Certificates in a Development Environment

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 20 of 33

2. In the left pane of the Certificates window, expand the file.

3. Expand the Certificates folder to display a list of certificates.

4. Select a certificate to convert to PEM format. Right-click on the certificate, then choose All
Tasks > Export to display the Certificate Export Wizard.

5. In the wizard, click Next.

6. Select the Base-64 encoded X.509 (.CER) option. Then click Next. (Base-64 encoded is
the PEM format.)

7. In the File name field, enter a name for the converted digital certificate; then click Next.

Note

The wizard appends a .cer extension to the output file. The .cer extension is a
generic extension which is appended to both base-64 encoded certificates and
DER certificates. You can change the extension to .pem after you exit the wizard.

8. Verify that the settings are correct. If the settings are correct, click Finish; if they are not
correct, click Back and make any necessary modifications.

Note

For p7b certificate files that contain certificate chains, you need to concatenate the
issuer PEM digital certificates to the certificate file. The resulting certificate file can
be used by WebLogic Server.

Configuring Demo Certificates for Clients
To use SSL/TLS in development mode between a client and WebLogic Server, configure the
demo certificates in the JVM for both the client and the server as follows:

1. Import DOMAIN_HOME/security/democacert.der into the cacerts keystore in the jre/lib/
security directory of the client's JVM.

For instructions on using the importcert command in keytool, see the keytool utility
section in JDK Tool Specifications.

2. Import DOMAIN_HOME/security/democacert.der into the cacerts keystore in the jre/lib/
security directory of the WebLogic Server's JVM.

3. Restart both the client and WebLogic Server.

Note

The passphrase for the Demo Trust keystore is DemoTrustKeyStorePassPhrase. The
passphrase for the Demo Identity keystore is stored in the DOMAIN_HOME/security/
DemoCerts.props file.

Chapter 28
Using Keystores and Certificates in a Development Environment

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 21 of 33

https://docs.oracle.com/en/java/javase/17/docs/specs/man/index.html

Obtaining and Storing Certificates for Production Environments
To obtain a digital certificate for use in a production environment, you must generate a
Certificate Signing Request (CSR) and issue it to a reputable CA. The CA returns a digital
certificate that is signed with the CA's private key and that is used for establishing identity. The
CA also returns the CA's signed public certificate, which is used for trust. You then import the
digital certificate for identity into your identity keystore, and the CA's public certificate into the
trust keystore.

The following sections explain these steps in detail:

• Generating a Certificate Signing Request

• Importing Certificates into the Trust and Identity Keystores

Generating a Certificate Signing Request
Oracle strongly recommends that all certificates used in a production environment are signed
by a reputable Certificate Authority (CA). To obtain a CA-signed certificate, you must issue an
individual Certificate Signing Request (CSR) for each certificate that you plan to use in that
production environment.

To generate a CSR, complete the following steps:

1. Create a keystore to hold the identity of the WebLogic Server instance, if you have not
already done so, as explained in Creating a Keystore.

2. Open a command window, change to the bin subdirectory of your WebLogic domain, and
run the setDomainEnv script. For example, on Windows systems:

prompt> cd DOMAIN_HOME/bin
prompt> setDomainEnv

In the preceding path, DOMAIN_HOME represents the WebLogic domain root directory.

3. Change to the directory that contains your keystore and create a CSR using the keytool
command with the following syntax:

keytool -certreq -v -alias alias -file certreq_file -keystore keystore

In the preceding command syntax:

• alias represents the private key alias specified when you created the keystore

• certreq_file represents the name of the file that contains the CSR.

• keystore represents the keystore.

Note that when you enter the preceding command, you are prompted for the passwords for
the keystore and the private key, which you specified when you created the keystore.

4. Submit the CSR file to a certificate authority (CA) of your choice.

The CSR file is encoded in PKCS#10 format and may look similar to the following:

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIBtzCCASACAQAwdzELMAkGA1UEBhMCR0IxEjAQBgNVBAgTCUJlcmtzaGlyZTEQMA
4GA1UEBxMHUmVhZGluZzEPMA0GA1UEChMGT3JhY2xlMRAwDgYDVQQLEwdTdXBwb3J0
MR8wHQYDVQQDExZtYXJzaGFsbC51ay5vcmFjbGUuY29tMIGfMA0GCSqGSIb3DQEBA
QUAA4GNADCBiQKBgQCEopgMZp1lI6jWXxb1rM1kWIc1l8bhiV/0UTcsdKzeaSHxbO
SLO3Ed9kxNWAZgXaR9f5FBlwkaRJ+IR163e64v3SplHenxHfVRaHYWPZx4KlJz/6p

Chapter 28
Obtaining and Storing Certificates for Production Environments

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 22 of 33

Yd1fAlF0PdQm1DNoFtKmCHVk/cRuvGRpsp38l7K2mYlyQ+GxH38llS7g3owIDAQAB
oAAwDQYJKoZIhvcNAQEFBQADgYEAD/sG1+rSI76OjihHg3WezT+VIbSRJxyly9nbx
4uwXbDHh8DGgQLAXV51C9ioaMrm+dM0eygVDDMESXFxvJiYipS/pphgYt1xDBgnEH
GcNiX3BnTaLNtzYlc5eAMsmbDlpk/qOxvQiH3bKN+UKYQlBXJZWPL6FusXu2LMTrk
zsY=
-----END NEW CERTIFICATE REQUEST-----

Note

The Certificate Request Generator servlet is deprecated. Use the keytool utility
instead.

Importing Certificates into the Trust and Identity Keystores
After you submit a CSR to a CA, the CA returns the following:

• The CA's signed public certificate. (This certificate may be an intermediate certificate that
is signed by a high-level CA, or it may be a self-signed (root) certificate.)

You place this certificate into the keystore designated as the trust keystore.

• A CA-signed digital certificate for WebLogic Server. This is often referred to simply as the
server certificate.

You place the server certificate into the keystore designated as the identity keystore.

• Optionally, one or more intermediate certificates that establish the chain of trust to the root
CA certificate.

To import the CA-signed certificates into the trust and identity keystores, complete the following
steps:

1. Open a command window, change to the bin subdirectory of your WebLogic domain, and
run the setDomainEnv script. For example, on Windows systems:

prompt> cd DOMAIN_HOME/bin
prompt> setDomainEnv

In the preceding path, DOMAIN_HOME represents the WebLogic domain root directory.

2. Change to the directory to hold the trust keystore and enter the following keytool
command. This command creates the trust keystore, if it does not already exist, and
imports the CA-signed certificate:

keytool -importcert -file CAcert -alias CAcert-alias -keystore keystore

In the preceding command:

• CAcert represents the name of the CA's signed public certificate.

• CAcert-alias represents the alias of the CA's signed public certificate.

• keystore represents the keystore file name.

If you currently have additional trusted CA-signed public certificates or intermediate
certificates, or receive them in the future, you can add them to the preceding trust keystore
using the same keytool command. For example:

keytool -importcert -file CAcert2 -alias CAcert2-alias -keystore keystore

Chapter 28
Obtaining and Storing Certificates for Production Environments

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 23 of 33

If you are importing certificates that are part of a sequentially-ordered certificate path, you
must import those certificates into the trust keystore in the order in which they exist in that
path. If you import them in the wrong sequence, the SSL handshake when making a
connection may fail. For example, consider the following certificate path:

• Root CA certificate, rootCA

• Intermediate certificate ICA1, which is signed by rootCA

• Intermediate certificate ICA2, which is signed by ICA1

In the preceding certificate path, you would import rootCA into the trust keystore first,
followed by ICA1, then finally by ICA2. If these certificates are imported into the keystore in
the wrong sequence,

Note

Note the following:

• A root CA may impose a limit on the number of intermediate certificates that
may exist in a certificate path based on a root certificate issued by that CA.
See Certificate Authorities in Understanding Security for Oracle WebLogic
Server.

• If your trust keystore does not contain the certificate of the intermediate CA
that signed your server certificate, but that intermediate CA is trusted by the
target of an SSL connection that you are making, the SSL connection may
succeed by means of transitive trust.

3. Make a backup copy of the trust keystore.

4. Change to the directory that contains the identity keystore for WebLogic Server.

5. Import the CA-signed server certificate into your keystore using the following keytool
command:

keytool -importcert -v -alias alias -file servercert_file -keystore keystore

In the preceding syntax:

• alias represents the alias of the server certificate, which must be the same as the
private key alias assigned in Step 4.)

• servercert_file represents the name of the file that contains the CA-signed server
certificate.

• keystore represents the name of your keystore.

• Using the -v option increases the amount of information displayed in the command
output.

For example, the following command imports the server certificate server.pem into the
keystore, using the alias (server_cert) assigned in Step 4:

prompt> keytool -importcert -v -alias server_cert -file server.pem -keystore
keystore.jks
Enter keystore password:
Certificate reply was installed in keystore[Storing keystore.jks
]

6. Make a backup copy of the identity keystore.

Chapter 28
Obtaining and Storing Certificates for Production Environments

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 24 of 33

Configuring Keystores with WebLogic Server
All private key entries in a keystore are accessed by WebLogic Server through the use of
aliases, which you specify when loading private keys into the keystore. Although WebLogic
Server does not use the alias to access trusted CA certificates, the keystore does require an
alias when loading a trusted CA certificate into the keystore. After you have created the identity
and trust keystores, you need to configure WebLogic Server to use them.

Aliases are case-insensitive: the aliases Hugo and hugo would refer to the same keystore
entry. When you configure SSL, aliases for private keys are specified in the Server Private
Key Alias field on the Environment: Servers: server page, under the Security: SSL tab in
the WebLogic Remote Console.

See:

• Configure Keystores Using the WebLogic Remote Console in Oracle WebLogic Remote
Console Online Help

• Configuring a Keystore Using WLST

Configuring a Keystore Using WLST
This section provides an example of using WLST to configure the identity and trust keystores
for WebLogic Server. Example 28-1 does the following:

1. Connects to the Managed Server instance for which the identity and trust keystores are
being configured.

2. Navigates to the MBean that corresponds to the specific server instance for which the
identity and trust keystores are to be configured, myserver.

3. Sets the configuration rule that WebLogic Server uses to locate the identity and trust
keystores, CustomIdentityAndCustomTrust.

4. Sets the name and location of the identity keystore file, Identity.jks.

5. Sets the passphrase for the identity keystore.

6. Sets the identity keystore type to JKS.

7. Sets the name and location of the trust keystore file, Trust.jks.

8. Sets the passphrase for the trust keystore.

9. Sets the trust keystore type to JKS.

10. Saves and activates the new keystore configuration, then disconnects from the Managed
Server instance.

Note

This example sets the keystore and truststore type to JKS. You can also configure
PKCS12 keystores. To do so, be sure to set the setCustomIdentityKeyStoreType()
and setCustomTrustKeyStoreType() properties to PKCS12.

Example 28-1 Configuring Custom Identity and Trust Keystores

connect('','','t3://host:port')
Please enter your username :

Chapter 28
Configuring Keystores with WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 25 of 33

Please enter your password :
...
edit()
startEdit()
cd ('Servers/myserver')

cmo.setKeyStores('CustomIdentityAndCustomTrust')
cmo.setCustomIdentityKeyStoreFileName('/path/keystores/Identity.jks')
cmo.setCustomIdentityKeyStorePassPhrase('passphrase')
cmo.setCustomIdentityKeyStoreType('JKS')
cmo.setCustomTrustKeyStoreFileName('/path/keystores/Trust.jks')
cmo.setCustomTrustKeyStorePassPhrase('passphrase')
cmo.setCustomTrustKeyStoreType('JKS')

save()
activate()
disconnect()

Viewing Keystore Contents
Use the keytool command to view the contents of a keystore.

Use the following keytool command syntax, where keystore represents the name of the
keystore you created:

keytool -list -v -keystore keystore

When you enter the preceding command, you are prompted for the keystore password. For
example, the following command lists the contents of keystore.jks:

prompt> keytool -list -v -keystore keystore.jks
Enter keystore password:

Alias name: rootcacert
Creation date: Sep 13, 2010
Entry type: trustedCertEntry

Owner: CN=SSL Training CA, OU=Support, O=Avitek, L=Reading, ST=Berkshire, C=GB
Issuer: CN=SSL Training CA, OU=Support, O=Avitek, L=Reading, ST=Berkshire, C=GB
Serial number: c47f4774c2ef014c
Valid from: Fri Jan 09 10:27:18 GMT 2009 until: Mon May 26 11:27:18 BST 2036
Certificate fingerprints:
MD5: E9:24:39:56:DE:34:44:DB:46:93:45:93:8E:82:66:AC
SHA1: 17:39:92:C0:43:9B:28:F3:C2:54:55:9B:5E:97:CA:EE:71:5D:9C:26
Signature algorithm name: SHA1withRSA
Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 67 57 BA 54 BB 9B C0 38 9A 71 AA 28 82 23 4B 08 gW.T...8.q.(.#K.
0010: 72 B9 FC C1 r...
]
]

#2: ObjectId: 2.5.29.19 Criticality=false
BasicConstraints:[
CA:true

Chapter 28
Viewing Keystore Contents

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 26 of 33

PathLen:2147483647
]

#3: ObjectId: 2.5.29.35 Criticality=false

[CN=SSL Training CA, OU=Support, O=Avitek, L=Reading, ST=Berkshire, C=GB]
SerialNumber: [c47f4774 c2ef014c]
]

Alias name: server_cert
Creation date: Sep 13, 2010
Entry type: PrivateKeyEntry
Certificate chain length: 2
Certificate[1]:
Owner: CN=server.avitek.com, OU=Support, O=Avitek, L=Reading, ST=Berkshire,
C=GB
Issuer: CN=SSL Training CA, OU=Support, O=Avitek, L=Reading, ST=Berkshire, C=GB
Serial number: e
Valid from: Mon Sep 13 14:02:00 BST 2010 until: Sat Sep 22 14:02:00 BST 2012
Certificate fingerprints:
MD5: CB:B8:07:32:22:B5:76:78:44:BB:94:D2:CE:EF:A3:CA
SHA1: 1E:3E:C6:BC:17:EB:43:50:19:01:0B:11:50:D8:23:60:21:B2:57:3E
Signature algorithm name: MD5withRSA
Version: 1
Certificate[2]:
Owner: CN=SSL Training CA, OU=Support, O=Avitek, L=Reading, ST=Berkshire, C=GB
Issuer: CN=SSL Training CA, OU=Support, O=Avitek, L=Readin g, ST=Berkshire, C=GB
Serial number: c47f4774c2ef014c
Valid from: Fri Jan 09 10:27:18 GMT 2009 until: Mon May 26 11:27:18 BST 2036
Certificate fingerprints:
MD5: E9:24:39:56:DE:34:44:DB:46:93:45:93:8E:82:66:AC
SHA1: 17:39:92:C0:43:9B:28:F3:C2:54:55:9B:5E:97:CA:EE:71:5D:9C:26
Signature algorithm name: SHA1withRSA
Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 67 57 BA 54 BB 9B C0 38 9A 71 AA 28 82 23 4B 08 gW.T...8.q.(.#K.
0010: 72 B9 FC C1 r...
]
]

#2: ObjectId: 2.5.29.19 Criticality=false
BasicConstraints:[
CA:true
PathLen:2147483647
]

#3: ObjectId: 2.5.29.35 Criticality=false
AuthorityKeyIdentifier [
KeyIdentifier [
0000: 67 57 BA 54 BB 9B C0 38 9A 71 AA 28 82 23 4B 08 gW.T...8.q.(.#K.
0010: 72 B9 FC C1 r...
]

[CN=SSL Training CA, OU=Support, O=Avitek, L=Reading, ST=Berkshire, C=GB]

Chapter 28
Viewing Keystore Contents

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 27 of 33

SerialNumber: [c47f4774 c2ef014c]
]

Setting Certificate Expiry Notifications
You can set reminders to notify you when your SSL certificates are about to expire. Reminders
appear in the Security Warnings Report in WebLogic Remote Console.

To set a certificate expiry notification:

1. In the WebLogic Remote Console Edit Tree, go to Environment, then Domain.

2. On the Security tab, select the Warnings subtab.

3. Turn on at least one of the following options: Check Identity Certificates or Check Trust
Certificates.

4. In the Check Certificates Expiration Days field, enter a number (in days) to specify how
far in advance of the certificate's expiration should the warnings begin to appear.

By default, WebLogic Server checks that no certificates are expiring within the next 30
days.

5. In the Check Certificates Interval Days field, enter a number (in days) to specify how
often WebLogic Server should check if the certificates are set to expire.

By default, WebLogic Server checks daily if certificates are about to expire.

6. Click Save.

Replacing Expiring Certificates
You must replace an expiring certificate before it actually expires to avoid or reduce application
downtime.

You can set a notification to remind you prior to its expiration. See Setting Certificate Expiry
Notifications.

To replace a certificate, complete the following steps:

1. Open a command window, change to the DOMAIN_HOME/bin directory, and run the
setDomainEnv script.

2. Change to the directory that contains the identity keystore that stores the certificate
needing to be replaced.

3. Generate a CSR, as explained in Generating a Certificate Signing Request, using the
same private key alias specified when you created the keystore for which the current
expiring certificate was issued.

4. Submit the CSR to the CA that issued the original certificate. The validity date of the new
certificate should be earlier than the expiration date of the current certificate. This overlap
is recommended to reduce downtime.

Chapter 28
Setting Certificate Expiry Notifications

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 28 of 33

Note

Steps 3 and 4 are not required if the CA already maintains the certificate request
in a repository. In that case, simply ask the CA to issue a new certificate.

5. Import the newly issued certificate into the identity keystore using the alias of the private
key.

6. If the new certificate is issued by a CA other than the one that issued the original
certificate, you may also need to import the new CA's trusted certificate before importing
the newly issued identity certificate.

Creating a Keystore: An Example
Learn how to use the keytool utility for creating a keystore and storing keys and certificates in
it.

Note that this section shows only how to create one keystore. In a production environment,
Oracle recommends that you have two keystores: one for trust, and another for identity, as
explained in Using Separate Keystores for Identity and Trust. For complete details about each
of the keytool command options shown in this section, see the help for the keytool utility at the
following locations:

• Java SE 17 - keytool in Java Development Kit Version 17 Tool Specifications

• Java SE 21 - keytool in Java Development Kit Version 21 Tool Specifications

To create a keystore and populate it with private keys and certificates, complete the following
steps:

1. Create a directory to hold the keystore; for example: ORACLE_HOME/keystores.

2. Run the following script, which sets the domain-wide environment for starting and running
WebLogic Server instances:

DOMAIN_HOME/bin/setDomainEnv

In the preceding path, DOMAIN_HOME represents the WebLogic domain root directory.

3. Change to the directory to hold the keystore, which you created in Step 1.

4. Create the keystore using the following keytool command syntax. This command also
creates a key pair (a public key and associated private key) and an alias for the private
key.

keytool -genkeypair -alias alias -keyalg RSA -keysize 2048 -dname dn -keystore
keystore
-storetype storetype

In the preceding command syntax:

• alias represents the private key alias.

• dn represents the X.500 Distinguished Name associated with the private key alias.

• keystore represents the name of the keystore being created.

• storetype represents the keystore type, jks or pkcs12.

For example:

Chapter 28
Creating a Keystore: An Example

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 29 of 33

https://docs.oracle.com/en/java/javase/17/docs/specs/man/keytool.html
https://docs.oracle.com/en/java/javase/21/docs/specs/man/keytool.html

prompt> keytool -genkeypair -alias server_cert -keyalg RSA -keysize 2048
-dname "CN=server.avitek.com,OU=Support,O=Avitek,L=Reading,ST=Berkshire,C=GB"
-keystore keystore.jks
-storetype jks

Note the following in the preceding example:

• server.avitek.com represents the WebLogic Server host and DNS domain name.

• Although the keytool command includes the -storepass and -keypass options for
specifying the keystore and private key passwords, respectively, Oracle recommends
that you avoid using these command-line options. When you enter a keytool
command that requires one or more passwords, but you omit the command-line
options for passing them, you are subsequently prompted to enter them. However,
unlike passwords passed in command-line options, passwords entered in response to
a prompt are not displayed in the command window and are not captured in any log.

• Make note of the private key alias and passwords you specify, and be sure to record
passwords only in a safe location.

5. Make a backup copy of the keystore created in Step 4.

6. Create a Certificate Signing Request (CSR) using the following keytool command syntax:

keytool -certreq -v -alias alias -file certreq_file -keystore keystore

In the preceding command syntax:

• alias represents the private key alias specified in Step 4.

• certreq_file represents the name of the file that contains the CSR.

• keystore represents the keystore created in Step 4.

Note that when you create a CSR using the preceding command, you are prompted to
enter the passwords for the keystore and the private key.

For example, the following command creates a CSR in the file server.csr:

prompt> keytool -certreq -v -alias server_cert -file server.csr -keystore
keystore.jks

7. Submit the CSR file to a certificate authority (CA) of your choice. The CA returns:

• A digital certificate for WebLogic Server. This certificate is signed by the CA and is
often referred to simply as the server certificate.

• The public certificate of the CA that signed your server certificate.

• Optionally, one or more intermediate CA certificates. For example, if the CA that
signed your certificate is an intermediate CA, you might also receive the public
certificate of the intermediate CA that signed your CA's certificate. (If your CA's
certificate was signed by a root CA, you might also receive the root certificate.)

8. In the directory you created for your keystore, save the server certificate, and also the CA
certificates, in individual files. For example, the server certificate can be saved as
server.pem, and the CA certificate as rootCA.pem.

If you have an intermediate CA who also returns other intermediate certificates, save them
also in your keystore directory using names such as intermediateCA2.pem,
intermediateCA3.pem, and so on, to properly establish the certificate path in a way that
indicates the correct sequence of that path.

9. Import the CA certificate, including any additional intermediate certificates and the root
certificate if available, into your keystore using the following keytool command syntax:

Chapter 28
Creating a Keystore: An Example

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 30 of 33

keytool -importcert -v -noprompt -trustcacerts -alias alias -file rootca_file -
keystore keystore

In the preceding syntax:

• alias represents the alias of the root CA certificate.

• rootca_file represents the name of the file that contains the root CA certificate.

• keystore represents the name of your keystore.

For example, the following command imports the root CA certificate in file rootCA.pem into
the keystore, assigning it the alias rootcacert:

prompt> keytool -importcert -v -noprompt -trustcacerts -alias rootcacert -file
rootCA.pem -keystore keystore.jks
Enter keystore password:
Certificate was added to keystore
Storing keystore.jks

Note

If your CA returns a certificate chain, make sure you import the certificates in the
proper sequence, as explained in Importing Certificates into the Trust and Identity
Keystores.

10. Import the server certificate into your keystore using the following keytool command
syntax:

keytool -importcert -v -alias alias -file servercert_file -keystore keystore

In the preceding syntax:

• alias represents the alias of the server certificate, which must be the same as the
private key alias assigned in Step 4.)

• servercert_file represents the name of the file that contains the server certificate.

• keystore represents the name of your keystore.

For example, the following command imports the server certificate server.pem into the
keystore, using the alias (server_cert) assigned in Step 4:

prompt> keytool -importcert -v -alias server_cert -file server.pem -keystore
keystore.jks
Enter keystore password:
Certificate reply was installed in keystore[Storing keystore.jks
]

11. To view the contents of the keystore, use the following keytool command syntax, where
keystore represents the name of your keystore:

keytool -list -v -keystore keystore

Supported Formats for Identity and Trust Certificates
The PEM (Privacy Enhanced Mail) format is the preferred format for private keys, digital
certificates, and trusted certificate authority (CA) certificates.

A .pem format file begins with this line:

----BEGIN CERTIFICATE----

Chapter 28
Supported Formats for Identity and Trust Certificates

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 31 of 33

and ends with this line:

----END CERTIFICATE----

A .pem format file supports multiple digital certificates (for example, a certificate chain can be
included). The order of certificates within the file is important. The server's digital certificate
should be the first digital certificate in the file, followed by the issuer certificate, and so on.
Each certificate in the chain is followed by its issuer certificate. If the last certificate in the chain
is the self-signed (self-issued) root certificate of the chain, the chain is considered complete.
Note that the chain does not have to be complete.

When using the deprecated file-based private keys, digital certificates, and trusted CA
certificates, WebLogic Server can use digital certificates in either PEM or distinguished
encoding rules (DER) format.

A .der format file contains binary data for a single certificate. Thus, a .der file can be used
only for a single certificate, while a .pem file can be used for multiple certificates.

Microsoft is often used as a CA. Microsoft issues trusted CA certificates in p7b format, which
must be converted to PEM before they can be used with WebLogic Server. See Converting a
Microsoft p7b Format to PEM Format.

Private key files (meaning private keys not stored in a keystore) must be in PKCS#5/PKCS#8
PEM format.

You can still use private keys and digital certificates used with other versions of WebLogic
Server with this version of WebLogic Server. Convert the private key and digital certificate from
distinguished encoding rules (DER) format to privacy-enhanced mail (PEM) format. See the
description of the der2pem utility in "Using the WebLogic Server Java Utilities" in Command
Reference for Oracle WebLogic Server.

After converting the files, ensure the digital certificate file has the -----BEGIN
CERTIFICATE----- header and the -----END CERTIFICATE----- footer. Otherwise, the digital
certificate will not work.

Note

OpenSSL can add a header to the PEM certificate it generates. In order to use such
certificates with WebLogic Server, everything in front of "-----BEGIN
CERTIFICATE-----" should be removed from the certificate, which you can do with a
text editor.

Obtaining a Digital Certificate for a Web Browser
The digital certification you receive for a web browser contains public information, including
your name and public key, and additional information you would like authenticated by a third
party, such as your E-mail address. You are required to present the digital certificate when
authentication is requested.

Low-security browser certificates are easy to acquire and can be done from within the Web
browser, usually by selecting the Security menu item in Options or Preferences. Go to the
Personal Certificates item and ask to obtain a new digital certificate. You will be asked for
some information about yourself.

As part of the process of acquiring a digital certificate, the Web browser generates a public-
private key pair. The private key should remain secret. It is stored on the local file system and

Chapter 28
Obtaining a Digital Certificate for a Web Browser

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 32 of 33

should never leave the Web browser's machine, to ensure that the process of acquiring a
digital certificate is itself safe. With some browsers, the private key can be encrypted using a
password, which is not stored. When you encrypt your private key, you will be asked by the
Web browser for your password at least once per session.

Note

Digital certificates obtained from Web browsers do not work with other types of Web
browsers or on different versions of the same Web browser.

Chapter 28
Obtaining a Digital Certificate for a Web Browser

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 33 of 33

29
Using Host Name Verification

Learn how to configure host name verification in Oracle WebLogic Server. A host name verifier
ensures the host name in the URL to which the client connects matches the host name in the
digital certificate that the server sends back as part of the SSL connection. A host name verifier
is useful when an SSL client (for example, WebLogic Server acting as an SSL client) connects
to an application server on a remote host. It helps to prevent man-in-the-middle attacks.
WebLogic Server includes two host name verifiers, and also provides the ability to create and
use a custom host name verifier.

Note

In releases prior to WebLogic Server 14c (14.1.1.0.0), the BEA host name verifier was
also known as the default host name verifier. However, as of WebLogic Server release
14c (14.1.1.0.0), the default host name verifier is changed to the wildcard host name
verifier.

This chapter includes the following sections:

• Using the BEA Host Name Verifier

• Using the Wildcard Host Name Verifier

• Using a Custom Host Name Verifier

• Using a Host Name Verifier on Mac OS X Platforms

Using the BEA Host Name Verifier
WebLogic Server provides two host name verifiers, the wildcard host name verfier and the BEA
host name verifier. As of WebLogic Server 14c (14.1.1.0.0), the wildcard host name verifier is
the default host name verifier and is configured by default.

If you are using any WebLogic Server host name verifier, host name verification passes if the
host name in the certificate matches the local machine’s host name, and if the URL specifies
localhost, 127.0.01, or the default IP address of the local machine.

As a function of the SSL handshake, WebLogic Server compares the common name in the
SubjectDN in the SSL server's digital certificate with the host name of the SSL server used to
accept the SSL connection. If these names do not match exactly, the SSL connection is
dropped. The SSL client is the actual party that drops the SSL connection if the names do not
match.

You can turn off host name verification or configure a custom host name verifier. Turning off
host name verification leaves WebLogic Server vulnerable to man-in-the-middle attacks.
Oracle recommends leaving host name verification on in production environments.

BEA host name verifier was the default host name verifier in the previous releases of
WebLogic Server. To configure the BEA host name verifier, see Configuring the BEA Host
Name Verifier.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 3

Note

If you are using the demo identity certificates in a multi-server domain, Managed
Server instances will fail to boot if they are started using the fully-qualified DNS name
of the Administration Server. For information about this limitation and suggested
workarounds, see Limitation on CertGen Usage .

See Enable Host Name Verification in Oracle WebLogic Remote Console Online Help.

Configuring the BEA Host Name Verifier
The BEA host name verifier class name is
weblogic.security.utils.SSLWLSHostnameVerifier.DefaultHostnameVerifier. To
configure the BEA host name verifier, specify this class as a custom host name verifier in the
Environment: Servers: Security: SSL page of the WebLogic Remote Console. See Enable Host
Name Verification in Oracle WebLogic Remote Console Online Help.

Using the Wildcard Host Name Verifier
As of Oracle WebLogic Server 14c (14.1.1.0.0), the default WebLogic Server host name
verifier is the wildcard host name verifier. The wildcard host name verifier is configured by
default. No action is needed to use it.

In the previous releases of WebLogic Server, the BEA host name verifier was the default host
name verifier. For more information about using and configuring the BEA host name verifier,
see Using the BEA Host Name Verifier.

The wildcard host name verifier works the same as the BEA host name verifier; however, the
wildcard host name verifier also accepts additional SSL session certificates. The wildcard host
name verifier accepts the following additional SSL session certificates:

• Certificates that contain the asterisk wildcard character (*) in the host name that is
obtained from the certificate's Subject CommonName attribute (that is, the CN domain)

• SubjectAlternativeName dnsName (SAN) certificates

This section contains the following topics:

• How the Wildcard Host Name Verifier Works

• Configuring the Wildcard Host Name Verifier

How the Wildcard Host Name Verifier Works
If the host name in the SSL session certificate contains a wildcard character that meets the
following criteria, the certificate is accepted by the wildcard host name verifier:

• The host name contains at least two dot (.) characters.

• The host name begins with an asterisk (*) and does not contain any additional asterisks.

• When the asterisk (*) is stripped from the CN string, the remaining string must:

– Represent the domain.

– Include a leading dot (.) character.

– Be identical to the ending string of the incoming request domain.

Chapter 29
Using the Wildcard Host Name Verifier

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 3

– Not include an additional dot (.) character. (This prevents the wildcard from
representing subdomains.

If the host name in the SSL session certificate does not exactly match the expected server
name attribute, and the host name also cannot successfully be validated in accordance with
the wildcard acceptance criteria, the wildcard host name verifier attempts to validate the SAN
extensions.

The SAN extensions are obtained from the SSL session certificate. The SAN extension values
are iterated using a case-insensitive match. For any iterated value, if the dnsName attribute in
the certificate matches the request URL exactly or by wildcard comparison, host name
verification succeeds.

Configuring the Wildcard Host Name Verifier
The wildcard host name verifier is configured by default, and is specified by the class name
weblogic.security.utils.SSLWLSWildcardHostnameVerifier. If WebLogic Server uses a
different host name verifier and if you want to restore to the default wildcard host name verifier,
then specify this class as a custom host name verifier in the Environment: Servers: Security:
SSL page of the WebLogic Remote Console. The wildcard host name verifier has no
parameters with which it must be configured.

Using a Custom Host Name Verifier
When using a custom host name verifier, the class that implements the custom host name
verifier must be specified in the CLASSPATH of WebLogic Server (when acting as an SSL
client) or a standalone SSL client.

For more information about using a custom host name verifier, See Enable Host Name
Verification in Oracle WebLogic Remote Console Online Help.

Using a Host Name Verifier on Mac OS X Platforms
If WebLogic Server is installed on a Mac OS X platform that is running in a network in which
the DHCP server assigns host names, by default Mac OS X dynamically overrides the host
name set on your machine, using the one assigned by DHCP. Consequently, if you have
generated demo identity certificates, host name verification may fail if the host name in your
certificate does not match the one that has been dynamically reassigned to your machine.

This host name reassignment can occur frequently, such as whenever the network is restarted.
To use demo identity certificates with WebLogic Server on Mac OS X platforms, do one of the
following:

• Disable host name verification (not recommended if operating in a production
environment).

• Prior to installing WebLogic Server, set a fixed host name on your machine. Depending on
your environment, you may be able to do this by changing the value of the HOSTNAME
property in /etc/hostconfig from -AUTOMATIC- to the name you wish to assign. For
example:

HOSTNAME=mymachine.example.com

In addition, you may also verify that your desired host name is set in the file /Library/
Preferences/SystemConfiguration/preferences.plist. Consult the Mac OS X
documentation for your platform.

Chapter 29
Using a Custom Host Name Verifier

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 3

30
Specifying a Client Certificate for an Outbound
Two-Way SSL Connection

When making an outbound two-way SSL connection, Oracle WebLogic Server, by default,
uses its server certificate to establish its identity as a client. However, you can alternatively
specify a separate client certificate to establish identity instead. This capability is particularly
useful when WebLogic Server is acting as a client making two-way SSL connection. Learn how
to specify a client certificate when making an outbound two-way SSL connection.
To use a client certificate for specifying an outbound two-way SSL connection, complete the
steps described in the following sections:

• Add a Client Certificate to the Identity Keystore

• Initiate the Outbound Two-Way SSL Connection

• Restore the Use of the Server Identity Certificate

Note

Switching WebLogic Server's identity to a client certificate is supported only when
making an outbound two-way SSL connection. For inbound SSL connections, where
Weblogic Server is acting as an SSL server, the server certificate is always used for
identity.

Add a Client Certificate to the Identity Keystore
Add a client certificate to WebLogic Server's identity keystore and define the name of the alias
under which the private key and public certificate are stored. This task only needs to be done
once. After completing the configuration steps, the ability to use a client identity for making an
outbound two-way SSL connection is always available for the current WebLogic Server
instance.

To add a client certificate to the identity keystore, complete the following steps:

1. Create a client key pair (a public key and associated private key) and an alias for the
private key and store it the WebLogic Server identity keystore. You can do this using the
keytool utility.

2. Generate a Certificate Signing Request (CSR) and submit it to a certificate authority (CA),
who returns the CA-signed client certificate. Oracle recommends using the same CA as for
the server certificate so that both certificates have the same trusted root CA.

3. Store the CA-signed client certificate in the identity keystore. (If the client certificate is
signed by the same CA as the server certificate, you can skip the step of storing the root
CA certificate in the trust keystore because it is already there.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 3

Initiate the Outbound Two-Way SSL Connection
Learn how to write a WLST script to initiate an outbound two-way SSL connection using the
client certificate.

To initiate an outbound two-way SSL connection using the client certificate, create a WLST
script that does the following:

1. Connects to the WebLogic Server instance.

2. Sets the SSLMBean.UseServerCerts attribute to true, which establishes the server identity
for the outbound connection.

3. Switches to the identity of the client certificate by setting the
SSLMBean.UseClientCertForOutbound attribute to true.

4. Specifies the client certificate private key passphrase, using the
SSLMBean.ClientCertPrivateKeyPassPhrase attribute, and the client certificate keystore
alias, using the SSLMBean.ClientCertAlias attribute.

Example 30-1 Sample WLST Script that Initiates an Outbound Two-Way SSL
Connection Using a Client Identity

url="t3://localhost:7001"
adminUsername="weblogic"
adminPassword="password"
connect(adminUsername, adminPassword, url)
edit()
server=cmo.lookupServer('myserver')
cd('Servers')
cd('myserver')
startEdit()
cd('SSL')
cd('myserver')
ssl = server.getSSL()
ssl.setUseServerCerts(true)
ssl.setUseClientCertForOutbound(true)
ssl.setClientCertAlias("myClientCert")
ssl.setClientCertPrivateKeyPassPhrase("myClientCertPrivateKeyPassPhrase")
save()
activate()
disconnect()
exit()

Example 30-1 shows a WLST script that initiates an outbound two-way SSL connection using a
client certificate from the identity keystore configured with WebLogic Server.

Note

For clarity, this WLST example script shows the username and password in clear text.
However, you should avoid entering clear-text passwords in WLST commands in
general, and you should especially avoid saving on disk WLST scripts that include
clear-text passwords. In these instances you should use a mechanism for passing
encrypted passwords instead. See Security for WLST in Understanding the WebLogic
Scripting Tool.

Chapter 30
Initiate the Outbound Two-Way SSL Connection

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 3

Restore the Use of the Server Identity Certificate
To restore use of the server identity certificate for outbound SSL connections, use WebLogic
Remote Console or WLST to set the SSLMBean.UseClientCertForOutbound attribute to false.

In WebLogic Remote Console, go to the Edit Tree: Environment: Servers: myServer. On the
Security tab, select the SSL subtab and enable Show Advanced Fields to display the Use
Client Cert for Outbound option.

Note

The values of the SSLMBean.ClientCertPrivateKeyPassPhrase and
SSLMBean.ClientCertAlias attributes are persisted and are used the next time an
outbound two-way SSL connection using a client identity is made (that is, the next time
the SSLMBean.UseClientCertForOutbound attribute is set to true).

Chapter 30
Restore the Use of the Server Identity Certificate

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 3

31
SSL Debugging

Learn how to enable SSL debugging in Oracle WebLogic Server. SSL debugging provides
detailed information about the SSL events that occur during an SSL handshake.
This chapter includes the following sections:

• About the SSL Debug Trace

• Command-Line Properties for Enabling SSL Debugging

About the SSL Debug Trace
The SSL debug trace provides information about the trusted certificate authorities, SSL server
configuration, server identity, SSL records that were passed during the SSL handshake, and
more. The SSL debugging stack trace dumps such information into a log file.

The SSL debug trace displays information about the following:

• Trusted certificate authorities

• SSL server configuration information

• Server identity (private key and digital certificate)

• The encryption strength that is allowed

• Enabled ciphers

• SSL records that were passed during the SSL handshake

• SSL failures detected by WebLogic Server (for example, trust and validity checks and the
default host name verifier)

• I/O related information

SSL debugging dumps a stack trace whenever an ALERT is created in the SSL process. The
types and severity of the ALERTS are defined by the Transport Layer Security (TLS)
specification.

The stack trace dumps information into the log file where the ALERT originated. Therefore,
when tracking an SSL problem, you may need to enable debugging on both sides of the SSL
connection (on both the SSL client or the SSL server). The log file contains detailed
information about where the failure occurred. To determine where the ALERT occurred, confirm
whether there is a trace message after the ALERT. An ALERT received after the trace
message indicates the failure occurred on the peer. To determine the problem, you need to
enable SSL debugging on the peer in the SSL connection.

When tracking an SSL problem, review the information in the log file to ensure:

• The correct config.xml file was loaded

• The setting for domestic, or export, is correct

• The trusted certificate authority was valid and correct for this server.

• The host name check was successful

• The certificate validation was successful

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 2

Note

Sev 1 type 0 is a normal close ALERT, not a problem.

Command-Line Properties for Enabling SSL Debugging
Use the command-line properties to enable debug logging within the JSSE-based SSL
implementation as well as logging of the SSL calling code within WebLogic Server.

Use the following command-line properties to enable SSL debugging:

-Djavax.net.debug=all

-Dssl.debug=true -Dweblogic.StdoutDebugEnabled=true

Note the following:

• The -Djavax.net.debug=all property enables debug logging within the JSSE-based SSL
implementation.

• The -Dssl.debug=true and -Dweblogic.StdoutDebugEnabled=true command-line
properties enable debug logging of the SSL calling code within WebLogic Server.

You can include SSL debugging properties in the start script of the SSL server, the SSL client,
and the Node Manager. For a Managed Server started by the Node Manager, specify this
command-line argument on the Remote Start page for the Managed Server.

For information about using WebLogic logging properties with the JSSE SSL logging system,
see Using Debugging with JSSE SSL.

For information about debugging utilities available for JSSE, see Debugging Utilities - Java
Secure Socket Extension (JSSE) Reference Guide in Security Developer’s Guide.

Chapter 31
Command-Line Properties for Enabling SSL Debugging

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 2

https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-31B7E142-B874-46E9-8DD0-4E18EC0EB2CF
https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-31B7E142-B874-46E9-8DD0-4E18EC0EB2CF

32
SSL Certificate Validation

Oracle WebLogic Server ensures that each certificate in a certificate chain was issued by a
certificate authority. All X.509 V3 CA certificates used with WebLogic Server must have the
Basic Constraint extension defined as CA, thus ensuring that all certificates in a certificate
chain were issued by a certificate authority. By default, any certificates for certificate authorities
not meeting this criteria are rejected.
This chapter describes the command-line argument that controls the level of certificate
validation.

Note

If WebLogic Server is booted with a certificate chain that will not pass the certificate
validation, an information message is logged noting that clients could reject it.

This chapter includes the following sections:

• Controlling the Level of Certificate Validation

• Accepting Certificate Policies in Certificates

• Checking Certificate Chains

• Using Certificate Lookup and Validation Providers

• How SSL Certificate Validation Works in WebLogic Server

• Troubleshooting Problems with Certificate Validation

Controlling the Level of Certificate Validation
By default, WebLogic Server rejects any certificates in a certificate chain that do not have the
Basic Constraint extension defined as CA. However, you may be using certificates that do not
meet this requirement or you may want to increase the level of security to conform to the IETF
RFC 2459 standard. You can use a command-line argument to control this level of certificate
validation.

Use the following command-line argument to control the level of certificate validation
performed by WebLogic Server:

-Dweblogic.security.SSL.enforceConstraints=option

Table 32-1 describes the options for the command-line argument.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 5

Table 32-1 Options for -Dweblogic.security.SSL.enforceConstraints

Option Description

strong or true Use this option to ensure that the Basic Constraints extension on the CA certificate
is defined as CA.

For example:

-Dweblogic.security.SSL.enforceConstraints=strong

or

-Dweblogic.security.SSL.enforceConstraints=true

By default, WebLogic Server performs this level of certificate validation.

strong_nov1cas Functions the same as the strong option, described in the preceding row, with the
additional constraint that X.509 version 1 CA certificates are rejected.

For example:

-Dweblogic.security.SSL.enforceConstraints=strong_nov1cas

strict Use this option to ensure the Basic Constraints extension on the CA certificate is
defined as CA and set to critical. This option enforces the IETF RFC 2459
standard.

For example:

-Dweblogic.security.SSL.enforceConstraints=strict

This option is not the default because a number of commercially available CA
certificates do not conform to the IETF RFC 2459 standard.

strict_nov1cas Functions the same as the strict option, described in the preceding row, with the
additional constraint that X.509 version 1 CA certificates are rejected.

For example:

-Dweblogic.security.SSL.enforceConstraints=strict_nov1cas

off Use this option to turn off checking for the Basic Constraints extension. The rest of
the certificate is still validated.

For example:

-Dweblogic.security.SSL.enforceConstraints=off

Oracle does not recommend using this option in a production environment. Instead,
purchase new CA certificates that comply with the IETF RFC 2459 standard. CA
certificates from most commercial certificate authorities should work with the
default strong option.

Accepting Certificate Policies in Certificates
WebLogic Server offers limited support for Certificate Policy Extensions in X.509 certificates.
Use the weblogic.security.SSL.allowedcertificatepolicyids argument to provide a
comma separated list of Certificate Policy IDs.

When WebLogic Server receives a certificate with a critical Certificate Policies Extension, it
verifies whether any Certificate Policy is on the list of allowed certificate policies and whether
there are any unsupported policy qualifiers. This release of WebLogic Server supports
Certification Practice Statement (CPS) Policy qualifiers and does not support User Notice
qualifiers. A certificate is also accepted if it contains a special policy anyPolicy with the ID
2.5.29.32.0, which indicates that the CA does not wish to limit the set of policies for this
certificate.

Chapter 32
Accepting Certificate Policies in Certificates

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 5

Note

The weblogic.security.SSL.allowedcertificatepolicyids argument is currently
not supported in WebLogic Server when the JSSE-based SSL implementation is
enabled.

To enable acceptance of Certificate Policies, start WebLogic Server with the following
argument:

-Dweblogic.security.SSL.allowedcertificatepolicyids <identifier1>,<identifier2>,...

This argument should contain a comma-separated list of Certificate Policy identifiers for all the
certificates with critical extensions that might be present in the certificate chain, back to the
root certificate, in order for WebLogic Server to accept such a certificate chain.

Checking Certificate Chains
Use the WebLogic Server ValidateCertChain command-line utility to confirm whether an
existing certificate chain will be rejected by WebLogic Server. The utility validates certificate
chains from PEM files, PKCS-12 files, PKCS-12 keystores, and JKS keystores.

A complete certificate chain must be used with the utility. The following is the syntax for the
ValidateCertChain command-line utility:

java utils.ValidateCertChain -file pemcertificatefilename
java utils.ValidateCertChain -pem pemcertificatefilename
java utils.ValidateCertChain -pkcs12store pkcs12storefilename
java utils.ValidateCertChain -pkcs12file pkcs12filename password
java utils.ValidateCertChain -jks alias storefilename [storePass]

Example of valid certificate chain:

java utils.ValidateCertChain -pem zippychain.pem

Cert[0]: CN=zippy,OU=FOR TESTING
ONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US

Cert[1]: CN=CertGenCAB,OU=FOR TESTING
ONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US

Certificate chain appears valid

Example of invalid certificate chain:

java utils.ValidateCertChain -jks mykey mykeystore

Cert[0]: CN=corba1,OU=FOR TESTING ONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US

CA cert not marked with critical BasicConstraint indicating it is a CA
Cert[1]: CN=CACERT,OU=FOR TESTING ONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US

Certificate chain is invalid

Chapter 32
Checking Certificate Chains

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 5

Using Certificate Lookup and Validation Providers
WebLogic Server SSL has built-in certificate validation which performs validation on the
certificate chain. WebLogic Server includes two certificate lookup and validation (CLV)
providers to perform additional validation on the certificate chain.

Given a set of trusted CAs, this validation:

• Verifies that the last certificate in the chain is either a trusted CA or is issued by a trusted
CA.

• Completes the certificate chain with trusted CAs.

• Verifies the signatures in the chain.

• Ensures that the chain has not expired.

WebLogic Server includes two CLV providers:

• WebLogic CertPath Provider—Completes certificate paths and validates certificates using
the trusted CA configured for a particular server instance, providing the same functionality
as the built-in SSL certificate validation. This is configured by default.

• Certificate Registry—The system administrator makes a list of trusted CA certificates that
are allowed access to the server; a certificate is valid if the end certificate is in the registry.
The administrator revokes a certificate by removing it from the certificate registry, which is
an inexpensive mechanism for performing revocation checking. This is not configured by
default.

Alternatively, you can write a custom CertPathValidator to provide additional validation on the
certificate chain. See CertPath Providers in Developing Security Providers for Oracle
WebLogic Server.

How SSL Certificate Validation Works in WebLogic Server
Outbound SSL and two-way inbound SSL in a WebLogic Server instance receive certificate
chains during the SSL handshake that must be validated. An example of two-way inbound SSL
is a browser connecting to a Web application over HTTPS where the browser sends the client's
certificate chain to the Web application. The inbound certificate validation setting is used for all
two-way client certificate validation in the server.

Examples of WebLogic Server using outbound SSL (that is, acting as an SSL client) include:

• Connecting to the Node Manager

• Connecting to another WebLogic Server instance over the Administration port

• Connecting to an external LDAP server, such as the LDAPAuthenticator

Using any of the administration tools listed in Summary of System Administration Tools and
APIs in Understanding Oracle WebLogic Server, you can independently configure inbound and
outbound SSL certificate validation using these SSLMBean attributes:
InboundCertificateValidation and OutboundCertificateValidation.

Legal values for both attributes are:

• BUILTIN_SSL_VALIDATION: Use the built-in SSL certificate validation code to complete and
validate the certificate chain. That is, configure SSL to work as it has in previous releases.
This is the default behavior.

Chapter 32
Using Certificate Lookup and Validation Providers

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 5

• BUILTIN_SSL_VALIDATION_AND_CERT_PATH_VALIDATORS: Use the built-in trusted CA-based
validation and the configured CertPathValidator providers to perform additional validation.
That is, configure SSL to work as it has in previous releases and to do extra validation.

See:

• SSLMBean in the MBean Reference for Oracle WebLogic Server

• Set Up TLS in Oracle WebLogic Remote Console Online Help

Troubleshooting Problems with Certificate Validation
If SSL communications that worked properly in a previous release of WebLogic Server start
failing unexpectedly, the likely problem is that the certificate chain is failing the validation.
Determine where the certificate chain is being rejected, and decide whether to update to a
certificate chain that will be accepted, or change the setting of the -
Dweblogic.security.SSL.enforceConstraints command-line argument.

To troubleshoot problems with certificates, use one of the following methods:

• If you know where the certificate chains for the processes using SSL communication are
located, use the ValidateCertChain command-line utility to check whether the certificate
chains will be accepted.

• Turn on SSL debug tracing on the processes using SSL communication. The syntax for
SSL debug tracing is:

-Dssl.debug=true -Dweblogic.StdoutDebugEnabled=true

Note

Additional detailed debug logging may be enabled using the following command-
line property:

-Djavax.net.debug=all

See Command-Line Properties for Enabling SSL Debugging.

The following message indicates the SSL failure results from problems in the certificate
chain:

<CA certificate rejected. The basic constraints for a CA certificate were not marked
for being a CA, or were not marked as critical>

When you use one-way SSL, look for this error in the client log. With two-way SSL, look for
this error in the client and server logs.

Chapter 32
Troubleshooting Problems with Certificate Validation

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 5

33
Using JCE Providers with WebLogic Server

Learn how Oracle WebLogic Server supports the use of the Jipher and JDK Java Cryptography
Extension (JCE) providers.

• Using the Jipher JCE Provider

• Using the JDK JCE Provider

Using the Jipher JCE Provider
The Jipher JCE provider is an Oracle developed JCE provider that is included with WebLogic
Server. It is located in jipher-jce.jar, which is in the WebLogic Server classpath by default. It
is built on top of OpenSSL and uses the OpenSSL FIPS module.

You can configure a FIPS compliant implementation of WebLogic Server by registering the
Jipher JCE provider and the SunJSSE provider in the first and second positions respectively in
the JDK java.security file as described in Enabling FIPS Mode with Jipher JCE and
SunJSSE Providers.

You can register the Jipher JCE provider by customizing the java.security properties file in
the deployment environment to modify the registered provider list or specify a system property
on the command line.

• Override the default java.security file - note the double equal signs.

java -Djava.security.properties==/etc/sysconfig/jvm1.java.security

• Append or override parts of the java.security file - note the single equal sign.

java -Djava.security.properties=/etc/sysconfig/jvm.java.security

If you require support for non-FIPS compliant algorithms, you can register another JCE
provider in a position below Jipher JCE, and the non-FIPS compliant algorithms will fall through
to use that provider instead.

Using the JDK JCE Provider
WebLogic Server supports the use of the JDK JCE provider (SunJCE). The JCA framework
includes an ability to enforce restrictions regarding the cryptographic algorithms and maximum
cryptographic strengths available to applets/applications in different jurisdiction contexts
(locations).

For more information about the features in SunJCE, see Java Cryptography Architecture (JCA)
Reference Guide in Security Developer’s Guide. Restrictions regarding cryptographic
algorithms and cryptographic strengths are specified in the Jurisdiction Policy File Format
section.

WebLogic Server will continue to control the strength of the cryptography used by the
WebLogic Server Application Programming Interfaces (APIs). Client code without the
appropriate domestic strength cryptography setting will only be able to use the Java SE export

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 2

https://docs.oracle.com/en/java/javase/17/security/java-cryptography-architecture-jca-reference-guide.html
https://docs.oracle.com/en/java/javase/17/security/java-cryptography-architecture-jca-reference-guide.html

strength default cryptography. On the server, WebLogic Server will enable either export or
domestic strength cryptography.

Chapter 33
Using the JDK JCE Provider

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 2

34
Enabling FIPS Mode

Learn how to enable FIPS 140-2 mode in Oracle WebLogic Server.

• FIPS Overview

• Enabling FIPS Mode with Jipher JCE and SunJSSE Providers

• Removing Dell JCE and Dell BSAFE JSSE Providers

• Creating FIPS 140-2 Compliant Keystores

• Important Considerations When Using Web Services

FIPS Overview
The Federal Information Processing Standards (FIPS) 140-2 is a standard that describes U.S.
Federal government requirements for sensitive but unclassified use.

You can enable a FIPS compliant (FIPS 140-2) implementation of WebLogic Server using the
Jipher JCE and SunJSSE providers.

For supported versions of FIPS, see Supported FIPS Standards and Cipher Suites.

Using Jipher JCE and SunJSSE Providers

The combination of the Jipher JCE provider and the SunJSSE provider creates a FIPS-
compliant implementation of WebLogic Server. Ensure Jipher JCE and SunJSSE are
registered in first and second position, respectively, in the list of security providers.

Enabling FIPS Mode with Jipher JCE and SunJSSE Providers
Create a FIPS-compliant implementation of WebLogic Server with a combination of the Jipher
JCE provider and the SunJSSE provider.

You can enable FIPS 140-2 mode by either creating your own java.security file and
specifying Java options from the command line or by editing the installed JDK java.security
file.

Enabling FIPS Mode From Java Options with Jipher
You can enable FIPS 140-2 mode with the Jipher JCE and SunJSSE providers using Java
security files and specifying Java options on the command line.

1. Create your own java.security file. You can use the one that comes with the installed
JDK as a guide.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 7

2. Add the Jipher JCE provider as the first Java security provider listed in your
java.security properties file. Move the rest of the providers down one position:

security.provider.1=com.oracle.jipher.provider.JipherJCE
security.provider.2=SunJSSE
security.provider.3=SUN

3. Add keystore.type=pkcs12 in your java.security properties file to block non-PKCS12
type keystores. If the keystore.type=jks system property already exists in the file, delete
it.

4. Set -Djava.security.properties and -
Dweblogic.security.fips140strictkeystores=true on the WebLogic Server start
command line to override the default configuration in the java.security file and prevent
WebLogic Server from using any non-PKCS12 type keystores, respectively. For -
Djava.security.properties, specify a full file path to your custom java.security file.

set JAVA_OPTIONS="-Djava.security.properties=C:\Users\user\java.security -
Dweblogic.security.fips140strictkeystores=true"

Note

Use a single equal sign (=) to specify a filename if you want the java.security
properties to be appended to the installed JRE security properties. Use two equal
signs (==) if you want to override all the Java security properties, for instance, -
Djava.security.properties==C:\Users\user\java.security.

5. Start WebLogic Server.

If you are upgrading from a WebLogic Server environment that uses JKS keystores and
blocking JKS keystores will cause issues, you can set
weblogic.security.fips140strictkeystores=false and keystore.type=jks. However,
for strict FIPS compliance, you should convert any JKS keystores instead. See Converting
a Non-FIPS Compliant Keystore Using the Jipher JCE Provider for more information and
conversion instructions.

Enabling FIPS 140-2 Mode From java.security
You can enable FIPS 140-2 mode from the installed JDK java.security file.

1. Edit the java.security file to add the Jipher JCE provider as the first Java security
provider listed in the java.security properties file. Move the rest of the providers down a
position:

security.provider.1=com.oracle.jipher.provider.JipherJCE
security.provider.2=SunJSSE
security.provider.3=SUN

2. Add keystore.type=pkcs12 to block non-PKCS12 type keystores. If the
keystore.type=jks property already exists in the file, delete it.

Chapter 34
Enabling FIPS Mode with Jipher JCE and SunJSSE Providers

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 7

3. Set weblogic.security.fips140strictkeystores=true on the WebLogic Server start
command line to prevent WebLogic Server from using any non-PKCS12 type keystores.

set JAVA_OPTIONS=-Dweblogic.security.fips140strictkeystores=true

4. Start WebLogic Server.

If you are upgrading from a WebLogic Server environment that uses JKS keystores and
blocking JKS keystores will cause issues, you can set keystore.type=jks in the
java.security file and weblogic.security.fips140strictkeystores=false as a system
property. However, for strict FIPS compliance, you should convert any JKS keystores
instead. See Converting a Non-FIPS Compliant Keystore Using the Jipher JCE Provider
for more information and conversion instructions.

Removing Dell JCE and Dell BSAFE JSSE Providers
Prior to WebLogic Server 14.1.2.0.0, FIPS compliance was implemented using the Dell JCE
and Dell BSAFE JSSE providers. FIPS mode is now provided by the Jipher JCE and SunJSSE
providers. You should remove references to the Dell providers from your WebLogic Server
environment.

The Dell JCE and Dell BSAFE JSSE providers were previously known as RSA JCE and RSA
BSAFE JSSE.

Note

You only need to perform these steps if you are upgrading from WebLogic Server
14.1.1.0.0 or earlier and had previously modified your environment to be FIPS
compliant.

1. Remove the following JAR files from the class path:

• MW_HOME/jlib/jcmFIPS.jar

• MW_HOME/jlib/cryptoj.jar

• WL_HOME/server/lib/sslj.jar

Confirm they are removed from the PRE_CLASSPATH environment variable as well.

2. Update the java.security file to remove the Dell JCE provider and the Dell BSAFE JSSE
provider from the list of security providers and re-order the remaining providers.

To enable FIPS mode, see Enabling FIPS Mode with Jipher JCE and SunJSSE Providers.

Creating FIPS 140-2 Compliant Keystores
JKS or PKCS12 keystores created with the keytool utility and using the SunJSSE provider
(the default) may not be fully FIPS compliant. To ensure that your keystores are FIPS 140-2
compliant, you can convert the keystores that you created with the SunJSSE provider by using
the keytool command with the Jipher JCE provider supplied with the WebLogic Server
distribution.

Although you can create a keystore with SunJSSE using FIPS-approved algorithms, if a FIPS-
validated crypto implementation is not used, then it is not officially FIPS-compliant.

Chapter 34
Removing Dell JCE and Dell BSAFE JSSE Providers

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 7

Also, some environments, such as Java Cloud Service configured with the Oracle Identity
Cloud Integrator provider, use the default JKS keystore with CA certificates, cacerts. In these
environments, you must convert the JKS keystore to a FIPS compliant PKCS12 keystore using
the Jipher JCE provider.

To ensure that only PKCS12 type keystores are allowed, you can set the following system
property when starting WebLogic Server: weblogic.security.fips140strictkeystores=true
and add keystore.type=pkcs12 to the java.security file. If you are upgrading from a
WebLogic Server environment that uses JKS, ensure that you have converted those legacy
keystores to PKCS12 before, making these changes.

The following sections provide procedures for completing these steps to ensure your keystores
are FIPS compliant:

• Converting a Non-FIPS Compliant Keystore Using the Jipher JCE Provider

• Converting the Default JKS Keystore for FIPS Compliance

Converting a Non-FIPS Compliant Keystore Using the Jipher JCE Provider
Using the WebLogic Server distribution classpath, you can convert a non-compliant keystore
using the keytool –importkeystore command with the Jipher JCE provider.

To convert a non-compliant keystore using the Jipher JCE provider:

keytool -importkeystore -srckeystore srckeystore
–srcstoretype srcstoretype
-srcprovidername providername –destkeystore destkeystore
-deststoretype PKCS12 -destprovidername JipherJCE
-providerclass com.oracle.jipher.provider.JipherJCE
-providerpath $CLASSPATH

In this command, provide values for the following parameters:

• -srckeystore – Name of the source keystore

• -srcstoretype – Type of source keystore, for example PKCS12

• -srcprovidername – Name of the source keystore provider. Set to JipherJCE if
srcstoretype is PKCS12

• -destkeystore - Name of the destination keystore

• -deststoretype – Type of destination keystore. Set to PKCS12 for the Jipher JCE provider

• -destprovidername – Name of the destination keystore provider. Set to JipherJCE for the
Jipher JCE provider

• -providerclass – Name of the provider class. Set to
com.oracle.jipher.provider.JipherJCE

• -providerpath - Classpath for the provider

Converting the Default JKS Keystore for FIPS Compliance
FIPS 140-2 requires keystores to be in PKCS12 format using PBES2 protection; JKS
keystores and PKCS12 keystores created with keytool using the Sun JSSE provider (the
default) are not supported. If you are using the default JDK cacerts keystore, such as in a
Java Cloud Service environment using the Oracle Identity Cloud Integrator provider, you need
to complete the following steps to ensure FIPS compliance:

Chapter 34
Creating FIPS 140-2 Compliant Keystores

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 7

This example illustrates the steps required to convert the keystore and update the Java system
properties.

1. Load the JKS keystore with the default provider and save it as a PKCS12 keystore with the
Jipher JCE provider.

keytool -importkeystore -v
 -srckeystore $JAVA_HOME/jre/lib/security/cacerts
 -srcstoretype JKS
 -destkeystore cacerts.p12
 -deststoretype PKCS12
 -destprovidername JipherJCE
 -providerclass com.oracle.jipher.provider.JipherJCE
 -providerpath $CLASSPATH

2. Set the Java system properties used by the default SSL context when booting WebLogic
Server. You can do this by setting the following Java options in the WebLogic Server start
script as described in Specifying Java Options for a WebLogic Server Instance in
Administering Server Startup and Shutdown for Oracle WebLogic Server.

For example:

Set JAVA_OPTIONS=”-Djavax.net.ssl.trustStore=/u01/jdk/jre/lib/security/
cacerts.p12 -Djavax.net.ssl.trustStoreType=PKCS12”

Important Considerations When Using Web Services
When using web services in FIPS 140-2 mode, there are important considerations to keep in
mind.

For example:

• All certificates must have a key size length of 2048 bits.

• SHA-1 Secure Hash Algorithm Not Supported

• X509PKIPathv1 token Not Supported

SHA-1 Secure Hash Algorithm Not Supported
SHA-1 Secure Hash Algorithm is not supported in FIPS 140-2 mode. Therefore the following
WS-SP <sp:AlgorithmSuite> values are not supported in FIPS 140-2 mode:

• Basic256

• Basic192

• Basic128

• TripleDes

• Basic256Rsa15

• Basic192Rsa15

• Basic128Rsa15

• TripleDesRsa15

Chapter 34
Important Considerations When Using Web Services

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 7

As described in Using the SHA-256 Secure Hash Algorithm in Securing WebLogic Web
Services for Oracle WebLogic Server, the WebLogic Server web service security policies
support both the SHA-1 and much stronger SHA-2 (SHA-256) secure hash algorithms for
hashing digital signatures. Specifically, Using the SHA-256 Policies describes which policies
use the SHA-1 secure hash algorithm and their SHA-2 equivalents.

FIPS 140-2 mode requires an Extended Algorithm Suite when digital signatures are used. See
Using the Extended Algorithm Suite (EAS) in Securing WebLogic Web Services for Oracle
WebLogic Server.

If you enable FIPS 140-2 mode, change the <sp:AlgorithmSuite> element in the Security
policy to one of the following supported <sp:AlgorithmSuite> values as described in Using the
SHA-256 Secure Hash Algorithm:

• Basic256Sha256

• Basic192Sha256

• Basic128Sha256

• Basic256Exn256

• Basic192Exn256

• Basic128Exn256

• TripleDesSha256

• TripleDesExn256

• Basic256Sha256Rsa15

• Basic192Sha256Rsa15

• Basic128Sha256Rsa15

• Basic256Exn256Rsa15

• Basic192Exn256Rsa15

• Basic128Exn256Rsa15

• TripleDesSha256Rsa15

• TripleDesExn256Rsa15

For example, to edit an existing Basic256 Algorithm Suite to an EAS Algorithm Suite, then
change the policy from

<sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic256/>
 </wsp:Policy>
</sp:AlgorithmSuite>

to

<sp:AlgorithmSuite>
 <wsp:Policy>
 <orasp:Basic256Exn256 xmlns:orasp="http://schemas.oracle.com/ws/2006/01/
securitypolicy"/>
 </wsp:Policy>
</sp:AlgorithmSuite>

Chapter 34
Important Considerations When Using Web Services

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 7

X509PKIPathv1 token Not Supported
The X509PKIPathv1 token is not supported for FIPS 140-2 mode in this release of WebLogic
Server. If you use the X509PKIPathv1 token in a custom policy, change the policy to use the
PKCS7 token instead.

Specifically, the following two policy assertions are not supported in FIPS 140-2 mode in this
release of WebLogic Server:

• <sp:WssX509PkiPathV1Token10/>

• <sp:WssX509PkiPathV1Token11/>

If you use these two policy assertions, change them to the following two assertions instead:

• <sp:WssX509Pkcs7Token10/>

• <sp:WssX509Pkcs7Token11/>

For example, if the policy has the following assertion in the custom policy:

<wsp:Policy>
 <sp:X509Token sp:IncludeToken=". . .">
 <wsp:Policy>
 <sp:WssX509PkiPathV1Token10/>
 </wsp:Policy>
 </sp:X509Token>
</wsp:Policy>

replace it with the following policy assertion:

<wsp:Policy>
 <sp:X509Token sp:IncludeToken=". . .">
 <wsp:Policy>
 <sp:WssX509Pkcs7Token10/>
 </wsp:Policy>
 </sp:X509Token>
</wsp:Policy>

Or, if the policy has the following assertion in the custom policy:

<wsp:Policy>
 <sp:X509Token sp:IncludeToken=". . .">
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509PkiPathV1Token11/>
 </wsp:Policy>
 </sp:X509Token>
</wsp:Policy>

replace it with the following assertion:

<wsp:Policy>
 <sp:X509Token sp:IncludeToken=". . .">
 <wsp:Policy>
 <sp:RequireThumbprintReference/>
 <sp:WssX509Pkcs7Token11/>
 </wsp:Policy>
 </sp:X509Token>
</wsp:Policy>

Chapter 34
Important Considerations When Using Web Services

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 7

35
Specifying the SSL/TLS Protocol Version

Learn how to configure Oracle WebLogic Server to limit the lowest supported versions of SSL
and TLS that are enabled for SSL connections.

• About the SSL Version Used in the Handshake

• Using the weblogic.security.SSL.protocolVersion System Property

• Using the weblogic.security.SSL.minimumProtocolVersion System Property

• Using the weblogic.security.ssl.sslcontext.protocol System Property

About the SSL Version Used in the Handshake
At the start of the SSL handshake, the SSL peers determine the highest protocol version both
peers support. However, you can configure Weblogic Server to limit the lowest supported
versions of SSL and TLS that are enabled for SSL connections by using the command-line
utility.

To specify the SSL and TLS versions enabled for the SSL handshake, you can set either of the
following system properties in the command-line argument that starts WebLogic Server:

• weblogic.security.SSL.protocolVersion

• weblogic.security.SSL.minimumProtocolVersion

Note that WebLogic Server supports the JSSE-based SSL implementation only. See Using the
JSSE-Based SSL Implementation.

Using the weblogic.security.SSL.protocolVersion System
Property

You can specify which protocol, SSL or TLS, is used when making SSL connections. Some
circumstances such as compatibility, SSL performance, and security requirements make TLS
the better choice.

Use the weblogic.security.SSL.protocolVersion system property as a command-line
argument when starting WebLogic Server to specify which protocol is used for SSL
connections. The following command-line arguments can be specified so that WebLogic Server
supports only SSL v3.0 or TLS connection.

• -Dweblogic.security.SSL.protocolVersion=SSL3—Only SSL v3.0 messages are sent
and accepted. Attempts by clients to establish connections with a prior SSL version will be
denied by WebLogic Server, with a denial message returned to the client.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 6

Note

SSLv3 may be disabled by default in certain JDK updates by the underlying JSSE
provider. If so, then enabling SSLv3 in WebLogic Server may not take effect and
you will see runtime errors for SSL connections.

Oracle strongly recommends that you do not use SSLv3. If you want to use
SSLv3, then you must remove SSLv3 from the jdk.tls.disabledAlgorithms JDK
setting specified in the java.security file, and then enable SSLv3 in WebLogic
Server.

• -Dweblogic.security.SSL.protocolVersion=TLS1— This property value enables any
protocol starting with "TLS" for messages that are sent and accepted; for example, TLS
v1.0, TLS v1.1, TLS v1.2, and TLS v1.3.

Note

Support for TLS v1.0 and v1.1 is deprecated. Oracle strongly recommends that
you do not use TLS v1.0 and v1.1. In addition, these versions may be disabled by
default in certain JDK updates by the underlying JSSE provider.

• -Dweblogic.security.SSL.protocolVersion=ALL—This is the default behavior. If ALL is
selected, the default depends on the JSSE provider and JDK version. For the supported
protocol version table for Sun JSSE, see the SunJSSE Provider section in Java SE
Security Developer's Guide. .

Note the following:

• The SSL v3.0 and TLS v1 protocols can not be interchanged. Use only the TLS v1 protocol
if you are certain all desired SSL clients are capable of using the protocol.

• Not setting the weblogic.security.SSL.protocolVersion system property enables the
SSLv3Hello, SSLv3, and TLS v1 protocols. In addition, for JSSE, all versions starting with
"TLS" are also enabled.

• If you set valid, supported protocols for the
weblogic.security.SSL.minimumProtocolVersion system property, the protocol value
you set for weblogic.security.SSL.protocolVersion is ignored.

Note

• If you specify the TLS1 or ALL value in this system property, all versions of TLS v1
supported by the SSL provider are enabled for use in SSL connections. The
JSSE-based implementation supports TLS v1.0, TLS v1.1, TLS v1.2, and TLS
v1.3.

• TLS v1.2 is the default minimum protocol version configured in WebLogic Server.
WebLogic Server logs a warning if the TLS version is set below 1.2.

Chapter 35
Using the weblogic.security.SSL.protocolVersion System Property

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 6

https://docs.oracle.com/en/java/javase/17/security/index.html
https://docs.oracle.com/en/java/javase/17/security/index.html

Using the weblogic.security.SSL.minimumProtocolVersion
System Property

In a production environment, Oracle recommends TLS v1.2, or later (if supported by the
underlying JSSE provider), for sending and receiving messages in an SSL connection. To
control the minimum versions of SSL v3.0 and TLS v1 that are enabled for SSL connections,
set the weblogic.security.SSL.minimumProtocolVersion=protocol as a command line
option when starting WebLogic Server.

Note

TLS v1.2 is the default minimum protocol version configured in WebLogic Server.
WebLogic Server logs a warning if the TLS version is set below 1.2.

This system property accepts one of the following values for protocol:

Value Description

SSLv3
Specifies SSL v3.0 as the minimum protocol version enabled in SSL connections.

TLSv1
Specifies TLS v1.0 as the minimum protocol version enabled in SSL connections.

Note: By default, WebLogic Server uses TLS v1.2 as the minimum protocol version and
logs a warning if the TLS version is set below 1.2.

TLSvx.y Specifies TLS vx.y as the minimum protocol version enabled in SSL connections,
where:

• x is an integer between 1 and 9, inclusive
• y is an integer between 0 and 9, inclusive
For example, TLSv1.2. WebLogic Server logs a warning if the TLS version is set below
1.2.

The specific protocols that are enabled by each of the values you can specify for the
weblogic.security.SSL.minimumProtocolVersion system property depend upon the SSL
implementation with which WebLogic Server is configured.

Protocols Enabled with the JSSE-Based SSL Implementation identifies these protocols for the
JSSE-based SSL implementation available in WebLogic Server:

Note

The weblogic.security.SSL.minimumProtocolVersion system property cannot take
effect if the jdk.tls.client.protocols JDK system property is specified.

Protocols Enabled with the JSSE-Based SSL Implementation
When WebLogic Server is configured to use the JSSE-based SSL implementation and you
specify a minimum protocol version using the
weblogic.security.SSL.minimumProtocolVersion system property, the specific SSL and TLS

Chapter 35
Using the weblogic.security.SSL.minimumProtocolVersion System Property

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 6

protocols that are enabled depend on the protocols that are supported in the SSL
implementation, as follows:

• If the particular minimum protocol version you specify is supported, WebLogic Server
enables that protocol version and all later protocol versions that are supported.

For example:

If you specify . . . and the JSSE-based SSL
implementation supports . . .

the following protocols are enabled

TLSv1 SSLv3

TLSv1

TLSv1.1

TLSv1.2

TLSv1.3

TLSv1

TLSv1.1

TLSv1.2

TLSv1.3

• If the particular minimum protocol version you specify is not supported, Weblogic Server
enables the next lower protocol and all later protocols that are supported. Note that the
lowest protocol will be limited to SSLv3.

For example:

If you specify . . . and the JSSE-based SSL
implementation supports . . .

the following protocols are enabled

TLSv1 SSLv3

TLSv1.1

TLSv1.2

TLSv1.3

SSLv3

TLSv1.1

TLSv1.2

TLSv1.3

• If the exact minimum protocol you specify is not supported, and no older (lower) protocol is
supported that is SSLv3 or higher, WebLogic Server enables all newer (higher) supported
versions. This case usually applies when SSLv3 is set as the minimum.

For example:

If you specify . . . and the JSSE-based SSL
implementation supports . . .

the following protocols are enabled

SSLv3 TLSv1

TLSv1.1

TLSv1.2

TLSv1.3

TLSv1

TLSv1.1

TLSv1.2

TLSv1.3

• If the particular minimum protocol you specify is invalid, WebLogic Server enables SSLv3
and all later protocol versions that are supported.

For example:

Chapter 35
Using the weblogic.security.SSL.minimumProtocolVersion System Property

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 6

If you specify . . . and the JSSE-based SSL
implementation supports . . .

the following protocols are enabled

TSLv0 SSLv3

TLSv1

TLSv1.1

TLSv1.2

TLSv1.3

SSLv3

TLSv1

TLSv1.1

TLSv1.2

TLSv1.3

Note

• Support for TLS v1.0 and v1.1 is deprecated. Oracle strongly recommends that
you do not use TLS v1.0 and v1.1. In addition, these versions may be disabled by
default in certain JDK updates by the underlying JSSE provider.

• Due to its vulnerability to security attacks, SSLv3 may be disabled by default in
certain JDK updates by the underlying JSSE provider. If so, then setting SSLv3
using the weblogic.security.SSL.minimumProtocolVersion system property
may not take effect. Oracle strongly recommends that you do not use SSLv3. If
you want to use SSLv3, then you must remove SSLv3 from the
jdk.tls.disabledAlgorithms JDK setting specified in the java.security file, and
then enable SSLv3 in WebLogic Server.

Using the weblogic.security.ssl.sslcontext.protocol System
Property

For some JSSE providers, there is a correlation between the javax.net.ssl.SSLContext
algorithm and the initially enabled SSL/TLS protocols. WebLogic Server includes a
weblogic.security.ssl.sslcontext.protocol system property that provides the ability to
specify a custom javax.net.ssl.SSLContext algorithm for your JSSE provider.
The default protocol setting used with the Oracle JDK JSSE provider is TLS. Some vendors
interpret the protocol parameter differently and you may need to change the setting. Refer to
the vendor-specific documentation for the correlations between the
javax.net.ssl.SSLContext setting and the enabled SSL/TLS protocols.

Note

When using the IBM JSSE provider, WebLogic Server attempts to select a
javax.net.ssl.SSLContext algorithm equivalent to the default TLS.

If a custom javax.net.ssl.SSLContext algorithm is required for use by WebLogic Server, you
can set the system property at the command line as follows:

-Dweblogic.security.ssl.sslcontext.protocol=protocol

Chapter 35
Using the weblogic.security.ssl.sslcontext.protocol System Property

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 6

The protocol parameter is a key for selecting a specific javax.net.ssl.SSLContext
algorithm. When set, it overrides the default value. Standard supported values are SSL, SSLv3,
TLS, TLSv1, TLSv1.1, TLSv1.2, and TLSv1.3. WebLogic Server does not support SSLv2.
Alternatively, you can set the property to a custom value supported by the underlying JSSE
provider, however it may affect which SSL/TLS protocol versions are enabled in the TLS
connections. See:

• SSLContext Algorithms in Java Security Standard Algorithm Names for JDK 17

• SSLContext Algorithms in Java Security Standard Algorithm Names for JDK 21

Note

• Support for TLS v1.0 and v1.1 is deprecated. Oracle strongly recommends that
you do not use TLS v1.0 and v1.1. In addition, these versions may be disabled by
default in certain JDK updates by the underlying JSSE provider.

• SSLv3 may be disabled by default in certain JDK updates by the underlying JSSE
provider. Oracle strongly recommends that you do not use SSLv3.

Chapter 35
Using the weblogic.security.ssl.sslcontext.protocol System Property

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 6

https://docs.oracle.com/en/java/javase/17/docs/specs/security/standard-names.html#sslcontext-algorithms
https://docs.oracle.com/en/java/javase/21/docs/specs/security/standard-names.html#sslcontext-algorithms

36
Using the JSSE-Based SSL Implementation

Learn how to use the JSSE-based SSL implementation and understand the supported cipher
suites.

Note

Note the following:

• SHA-2 signed certificates are supported in the JSSE SSL implementation provided
in WebLogic Server.

• Although JSSE supports Server Name Indication (SNI) in its SSL implementation,
WebLogic Server does not support SNI.

This chapter includes the following sections:

• Using System Properties with the JSSE-Based SSL Implementation

• Cipher Suites

• Using Debugging with JSSE SSL

Using System Properties with the JSSE-Based SSL
Implementation

Learn how the JSSE-based SSL implementation handles the WebLogic security system
properties.

Table 36-1 System Properties Usage

System Property Description

weblogic.security.SSL.ignoreHostnameVeri
fication

Does not verify the hostname in the URL to the
hostname in the certificate.

weblogic.ReverseDNSAllowed If set to true, then use reverse DNS lookup to
figure out if urlhostname is a loopback address
("localhost" or "127.0.0.1", or the IPV6 equivalent.

weblogic.security.SSL.trustedCAKeyStore Loads the trusted CA certificates from that
keystore.

weblogic.security.SSL.verbose For additional SSL debugging when -
Dssl.debug=true is used.

Use this property in combination with
javax.net.debug=all to get verbose debug
output from the SSL calling code and the JSSE-
based implementation.1

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 6

Table 36-1 (Cont.) System Properties Usage

System Property Description

ssl.debug=true Displays SSL debug information to the console or
logs. This property is for the calling WebLogic
code. The JSSE-based SSL implementation has
its own logging system, which is activated by the
javax.net.debug property.

Note: You can set JSSE logging
(javax.net.debug) independently of WebLogic
SSL logging (ssl.debug).

Use this property in combination with
javax.net.debug=ssl to get debug output from
the SSL calling code and the JSSE-based
implementation.1

weblogic.security.SSL.ignoreHostnameVeri
fy

See
weblogic.security.SSL.ignoreHostnameVe
rification

weblogic.security.SSL.HostnameVerifier=c
lassname

Specifies the class name of a custom hostname
verification class.

weblogic.security.SSL.protocolVersion=pr
otocol

See Specifying the SSL/TLS Protocol Version.

One of the following:

• weblogic.security.SSL.allowUnencrypte
dNullCipher

• SSLMBean.
SetAllowUnencryptedNullCipher(boolean
)

• weblogic.security.disableNullCipher

By default, this control is not set and the use of a
null cipher is not allowed on the server. In such a
configuration, if the SSL clients want to use the
null cipher suite (by indicating
SSL_RSA_WITH_NULL_MD5 as the only supported
cipher suite), the SSL handshake will fail.

If you set this control, the null cipher suite (for
example, SSL_RSA_WITH_NULL_MD5) is added to
the list of supported cipher suites by the server.
The SSL connection has a chance to use the null
cipher suite if the client wants to do so. If the null
cipher suite is used, the message will be
unencrypted.

The supported protocol values are mapped to the
corresponding protocols supported by JSSE.

• SSL_RSA_WITH_NULL_MD5
• SSL_RSA_WITH_NULL_SHA
If this setting is enabled, these two null ciphers
are added to the cipher list.

Caution: Do not set this control in a production
environment unless you are aware of the
implications and consequences of doing so.

weblogic.security.SSL.enforceConstraints
=option

Ensures that the Basic Constraints extension on
the CA certificate is defined as CA. See
Controlling the Level of Certificate Validation.

weblogic.security.SSL.enforceConstrain
ts=Off is not supported, but the other options
are supported.

1 This property affects only the SSL calling code, not the JSSE-based implementation. For more information about
the javax.net.debug system property and debugging the JSSE-based SSL implementation, see Debugging
Utilities - Java Secure Socket Extension (JSSE) Reference Guide in Security Developer’s Guide.

Chapter 36
Using System Properties with the JSSE-Based SSL Implementation

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 6

https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-31B7E142-B874-46E9-8DD0-4E18EC0EB2CF
https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-31B7E142-B874-46E9-8DD0-4E18EC0EB2CF

Cipher Suites
Learn about the cipher suites supported by WebLogic Server, using anonymous ciphers, and
setting cipher suites.

To set cipher suites, use WebLogic Remote Console or WLST. See Set Cipher Suites in Oracle
WebLogic Remote Console Online Help or Setting Cipher Suites Using WLST: An Example.

This topic includes the following sections:

• List of Supported Cipher Suites

• Deprecated Cipher Suites

• Backward Compatibility of Supported Cipher Suites

• Using Anonymous Ciphers

• Setting Cipher Suites Using WLST: An Example

• An Important Note Regarding Null Cipher Use in SSL

List of Supported Cipher Suites
For a list of the set of cipher suites supported by the JDK default JSSE provider, SunJSSE, see:

• JDK 17: The SunJSSE Provider in Security Developer’s Guide

• JDK 21: The SunJSSE Provider in Security Developer’s Guide

Deprecated Cipher Suites

Per Oracle security guidelines, the TLS cipher suites that are prefixed with TLS_RSA_ or contain
CBC are deprecated and are disabled by default. These disabled cipher suites are weak and
do not provide sufficient security for your system. However, if necessary for your environment,
you can enable these TLS cipher suites using any of the following methods:

• Set the ExcludedCiphersuites attribute on the
weblogic.management.configuration.SSLMBean MBean to an array that contains just one
empty string. For example new String[]{""}.

• Set the MinimumTLSProtocolVersion attribute on the
weblogic.management.configuration.SSLMBean MBean to TLSv1.1 or earlier.

• Set the system property -Dweblogic.security.SSL.minimumProtocolVersion to TLSv1.1
or earlier in the Java command that starts WebLogic Server.

• Set the system property -Dweblogic.security.SSL.protocolVersion in the Java
command that starts WebLogic Server. See Using the
weblogic.security.SSL.protocolVersion System Property.

Backward Compatibility of Supported Cipher Suites
Keep the following in mind as you consider backward compatibility of supported cipher suites:

• The _DSS_ cipher suites requires certificates signed with DSS, the Digital Signature
Standard defined by NIST FIPS Pub 186. DSA is the key generation scheme as described
in FIPS 186.

Chapter 36
Cipher Suites

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 6

https://docs.oracle.com/en/java/javase/17/security/oracle-providers.html#GUID-7093246A-31A3-4304-AC5F-5FB6400405E2
https://docs.oracle.com/en/java/javase/21/security/oracle-providers.html#GUID-7093246A-31A3-4304-AC5F-5FB6400405E2

• The _anon_ cipher suites are disabled by default. To enable them, you can use WebLogic
Remote Console or WLST. See Set Cipher Suites in Oracle WebLogic Remote Console
Online Help or Setting Cipher Suites Using WLST: An Example.

• The TLS DES cipher suites have been disabled at the JSSE provider level by default. See
the Oracle JRE and JDK Cryptographic Roadmap at https://java.com/en/jre-jdk-
cryptoroadmap.html.

Using Anonymous Ciphers
The following anonymous ciphers are not supported out-of-the-box in the JSSE-based
WebLogic SSL implementation in WebLogic Server:

• SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

• SSL_DH_anon_WITH_RC4_128_MD5

• SSL_DH_anon_WITH_DES_CBC_SHA

• SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

• SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

However, if you want to enable any of the preceding anonymous ciphers, include the following
argument in the Java command that starts WebLogic Server:

-Dweblogic.security.SSL.AllowAnonymousCipher=true

In most cases, enabling anonymous ciphers is required when WebLogic Server, or its deployed
application, acts as a SSL client that is making an outbound connection to an SSL server (for
example, an LDAP server or RDBMS system) that is configured to use anonymous ciphers
only. A typical use case is connecting to an Oracle Internet Directory instance that is configured
in no-auth mode.

Note

Oracle does not recommend the use of anonymous ciphers in production
environments.

Setting Cipher Suites Using WLST: An Example
The following example shows a WLST script that sets the cipher suites
SSL_RSA_WITH_RC4_128_MD5, SSL_RSA_WITH_RC4_128_SHA, and
SSL_RSA_WITH_3DES_EDE_CBC_SHA. After this script is run, the cipher suites are set in the
domain configuration (that is, the config.xml file) and the SSL listeners are restarted with the
new cipher suite settings.

Note

For clarity, this WLST example script shows the username and password in clear text.
However, you should avoid entering clear-text passwords in WLST commands in
general, and you should especially avoid saving on disk WLST scripts that include
clear-text passwords. In these instances you should use a mechanism for passing
encrypted passwords instead. See Security for WLST in Understanding the WebLogic
Scripting Tool.

Chapter 36
Cipher Suites

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 6

https://java.com/en/jre-jdk-cryptoroadmap.html
https://java.com/en/jre-jdk-cryptoroadmap.html

url="t3://localhost:7001"
adminUsername="weblogic"
adminPassword="password"
connect(adminUsername, adminPassword, url)
edit()
server=cmo.lookupServer('myserver')
cd('Servers')
cd('myserver')
startEdit()
cd('SSL')
cd('myserver')
ssl = server.getSSL()
ciphers = ['SSL_RSA_WITH_RC4_128_MD5', 'SSL_RSA_WITH_RC4_128_SHA',
'SSL_RSA_WITH_3DES_EDE_CBC_SHA']
ssl.setCiphersuites(ciphers)
save()
activate()
disconnect()
exit()

An Important Note Regarding Null Cipher Use in SSL
A cipher suite is an SSL encryption method that includes the key exchange algorithm, the
symmetric encryption algorithm, and the secure hash algorithm. A cipher suite is used to
protect the integrity of a communication. For example, the cipher suite called
RSA_WITH_RC4_128_MD5 uses RSA for key exchange, RC4 with a 128-bit key for bulk
encryption, and MD5 for message digest.
SSL clients start the SSL handshake by connecting to the server. As part of the connection, the
client sends the server a list of the cipher suites it supports. The server then selects a mutually-
supported cipher suite from the list supplied by the client for the client and server to use for this
session.

However, an incorrectly configured client might specify a set of cipher suites that contain only
null ciphers. A null cipher passes data on the wire in clear-text. (An example of a cipher suite
with a null cipher is SSL_RSA_WITH_NULL_MD5.) Using a null cipher makes it possible to
see the SSL messages by using a network packet sniffer. In essence, SSL is used but does
not provide any security.

The server selects the null cipher only when it is the only cipher suite they have in common. If
the server selects a null cipher from the client's cipher suite list, the log contains the following
message: SSL has established a session that uses a Null cipher.

This message is output only when the server has selected a null cipher from the client's list.

Note

If there is any potential whatsoever that an SSL client might use a null cipher to
inappropriately connect to the server, you should check the log file for this message. It
is recommended that new client configurations be given extra attention with respect to
the use of a null cipher to ensure that they are properly configured.

It is unlikely that an existing client configuration would suddenly start using null ciphers
if it had not been doing so previously. However, an existing client configuration that is
unknowingly configured incorrectly could be using null ciphers.

Other SSL errors unrelated to null ciphers are possible as well, and each will display an
appropriate error message in the log.

Chapter 36
Cipher Suites

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 6

See Configuring SSL. For information on viewing log files, see View Logs in Oracle WebLogic
Remote Console Online Help.

WebLogic Server Control to Prevent Null Cipher Use
WebLogic Remote Console includes a control to prevent the server from using a null cipher.

In the Edit Tree, go to Environment, then Servers, then myServer. On the Security tab,
select the SSL subtab and enable Show Advanced Fields.

The Allow Unencrypted Null Cipher control determines whether null ciphers are allowed. By
default, this control is disabled and the use of a null cipher is not allowed on the server. In such
a configuration, if the SSL/TLS clients want to use the null cipher suite (by indicating
SSL_RSA_WITH_NULL_MD5 as the only supported cipher suite), the SSL/TLS handshake will
fail.

If you enable this control, the null cipher suite (for example, SSL_RSA_WITH_NULL_MD5) is
added to the list of supported cipher suites by the server. The SSL/TLS connection has a
chance to use the null cipher suite if the client wants to do so. If the null cipher suite is used,
the message will be unencrypted.

Caution

Do not set this control in a production environment unless you are aware of the
implications and consequences of doing so.

This control is also exposed as a system runtime parameter,
weblogic.security.SSL.allowUnencryptedNullCipher, and as an
AllowUnencryptedNullCipher attribute on the SSLMBean.

Note

TLS anon and NULL cipher suites are disabled by default in the JDK.

Using Debugging with JSSE SSL
JSSE SSL debugging provides detailed information about the SSL events that occurred during
an SSL handshake and other operations.See SSL Debugging.
If you debug SSL when the JSSE-based SSL implementation is enabled, you can use the
logging properties listed and described in Table 36-1. However, some properties affect only the
SSL calling code and not the JSSE implementation. The JSSE-based SSL implementation has
its own logging system, which is activated by the javax.net.debug property. The
javax.net.debug property provides multiple levels of control over the amount of output and
can be used independently of WebLogic SSL logging (ssl.debug).

For more information about the javax.net.debug property, see Debugging Utilities - Java
Secure Socket Extension (JSSE) Reference Guide in Security Developer’s Guide.

Chapter 36
Using Debugging with JSSE SSL

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 6

https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-31B7E142-B874-46E9-8DD0-4E18EC0EB2CF
https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-31B7E142-B874-46E9-8DD0-4E18EC0EB2CF

37
X.509 Certificate Revocation Checking

Learn about the X.509 certificate revocation (CR) checking feature, which is supported in
Oracle WebLogic Server's JSSE implementation. This feature checks a certificate's revocation
status as part of the SSL certificate path validation process. CR checking improves the security
of certificate usage by ensuring that received certificates have not been revoked by the issuing
certificate authority.

• Certificate Revocation Checking Overview

• Enabling the Default CR Checking Configuration

• Choosing the CR Checking Methods to Be Used by WebLogic Server

• Failing SSL Certificate Path Validation if Revocation Status Cannot Be Determined

• Using the Online Certificate Status Protocol

• Using Certificate Revocation Lists

• Configuring Certificate Authority Overrides

Certificate Revocation Checking Overview
In WebLogic Server, Certificate Revocation (CR) checking can be used for several purposes
including, validating client certificates (inbound SSL) and server certificates (outbound SSL).

WebLogic Server's CR checking mechanism includes the following features:

• Support for the following certificate revocation methods:

– Online Certificate Status Protocol (OCSP)

– Certificate revocation lists (CRLs)

• You can configure CR checking on a domain-wide basis for all certificate authorities (CAs).
And optionally, you can also configure certificate authority overrides for specific CAs.

A certificate authority override contains changes to the domain-wide CR checking
configuration that you want to have in effect for certificates that have been issued by a
specific CA. For example, you can configure a particular OCSP responder URL to be used,
or require SSL certificate path validation to fail if certificate revocation status cannot be
determined. Each certificate authority override you create applies to only one specific CA.

CR checking is disabled by default in WebLogic Server. But using either WebLogic Remote
Console or WLST, you can enable CR checking and configure the properties described in the
sections that follow.

Note

CR checking is available for a WebLogic Server instance only when JSSE is enabled.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 14

Enabling the Default CR Checking Configuration
In WebLogic Server, CR checking is disabled by default. When you enable CR checking,
WebLogic Server provides, on a domain-wide basis, a comprehensive set of mechanisms to
obtain current revocation status of each certificates it validates.

This topic describes the default behavior WebLogic Server provides when you enable CR
checking. The subsequent sections explain customizations you can make that can be applied
domain-wide or, selectively, to specific certificate authorities.

When the default CR checking configuration is enabled, WebLogic Server automatically does
the following when performing SSL certificate path validation:

1. Checks the OCSP response local cache to obtain certificate revocation status. The
OCSP response local cache is an in-memory cache that holds the latest certificate status
that is provided by OCSP responders.

Certificate status in OCSP has a specific validity period. If the certificate status has
expired, WebLogic Server does the following:

a. Obtains the OCSP responder URI from the certificate. This URI is included in the
Authority Information Access (AIA) value in the certificate, which indicates how to
access information and services from the issuer of the certificate.

b. Submits an OCSP request to the OCSP responder.

The OCSP responder returns an OCSP response, which includes a certificate status
of good, revoked, or unknown.

c. Updates the OCSP response local cache with the OCSP response.

For certificates that have a valid, non-expired entry in the OCSP response local cache,
WebLogic Server can obtain its revocation status from the cache instead of requesting a
fresh OCSP response. This provides improved performance and reduced use of network
bandwidth.

Note

Note the following:

• Cached entries expire based on the OCSP validity period, but the cache
behavior can be customized.

• The local OCSP response cache is never used when OCSP nonce is enabled.
This ensures the freshest response.

2. If the certificate has an OCSP status of unknown, WebLogic Server checks the CRL local
cache for valid CRLs to determine whether the certificate has been revoked. (If either a
revoked or not revoked status is determined by OCSP, CRL is not used for the certificate.)

By default, the CRL local cache is a file-based store that is maintained on each server
instance in a WebLogic domain and that is updated on demand from CRL distribution
points. A CRL distribution point is a network-accessible server that provides CRLs for
download.

If no valid CRLs are available in the CRL local cache, WebLogic Server does the following:

a. Obtains the CRL distribution point URL, which is included in the
CRLDistributionPoints extension in the certificate.

Chapter 37
Enabling the Default CR Checking Configuration

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 14

b. Using the CRL distribution point URL, downloads a fresh CRL and adds it to the
cache.

c. Searches the CRL for an entry that corresponds to the certificate.

If the certificate serial number is not found in the CRL from the issuer, the certificate status
is set to not revoked.

Note the following:

• If the certificate has an OCSP status of revoked, or is included in a valid CRL, WebLogic
Server automatically fails SSL certificate path validation.

• If the revocation status is unknown or cannot be determined after using OCSP and
checking the available CRLs, certificate path validation by default is not failed.

The following topics explain how to configure and customize default CR checking:

• Configuring Default CR Checking

• Customizing the CR Checking Configuration

Configuring Default CR Checking
Enabling the default CR checking capability in a WebLogic domain is available through the
following MBean attribute:

Table 37-1 MBean Attributes

MBean Attribute Description Default Value

CertRevocMBean.CheckingEnabled Specifies whether CR checking is
enabled domain-wide.

False

For information about how to use WebLogic Remote Console to enable CR checking in a
WebLogic domain, see Enable Certificate Revocation Checking in Oracle WebLogic Remote
Console Online Help.

You can configure a CA override for this MBean attribute, as explained in Configuring
Certificate Authority Overrides.

Customizing the CR Checking Configuration
The default CR checking behavior in WebLogic Server is appropriate for deployment
environments in which CR checking is desired, but not required. Depending on your
environment, you might require CR checking, or need to enforce behaviors that are specific to
particular certificate authorities. Table 37-2 lists and summarizes the types of customizations
you can make to CR checking in WebLogic Server and provides links to the sections in which
they are explained.

Table 37-2 Customizations You Can Make to the CR Checking Configuration

Customization Description

CR checking method order Specifies the order in which the supported CR checking methods are
used; that is, OCSP and CRLs. Optionally, you can choose to use only
OCSP, or only CRLs. See Choosing the CR Checking Methods to Be
Used by WebLogic Server.

Chapter 37
Enabling the Default CR Checking Configuration

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 14

Table 37-2 (Cont.) Customizations You Can Make to the CR Checking Configuration

Customization Description

Require certificate revocation
status

Specifies that SSL certificate path validation must fail if a certificate's
revocation status is unknown or cannot be determined. See Failing SSL
Certificate Path Validation if Revocation Status Cannot Be Determined .

Domain-wide OCSP settings Customize, domain-wide, one or more of the following OCSP features or
behaviors:

• Use of nonces in OCSP requests and responses
• OCSP response cache. For example, capacity or refresh period
• OCSP response timeout interval settings
See Using the Online Certificate Status Protocol.

Domain-wide CRL protocol
settings

Customize, domain-wide, one or more of the following CRL features or
behaviors:

• Use of CRL distribution points
• CRL cache refresh frequency
• CRL distribution point download timeout interval settings
See Using Certificate Revocation Lists.

Certificate authority overrides Customize the CR checking behavior for certificates issued by a
particular CA. For example:

• Disable revocation checking for those certificates
• Change the CR checking method order
• Automatically fail certificate path validation if revocation status is

unknown or unavailable
• Customize OCSP or CRL settings (except for the CRL local cache

settings)
• Designate the OCSP responder URL to use
• Designate the CRL distribution point URL to use
A certificate authority override always takes precedence over domain-
wide settings that are in place. See Configuring Certificate Authority
Overrides.

Choosing the CR Checking Methods to Be Used by WebLogic
Server

By default, when checking a certificate's revocation status, WebLogic Server first uses Online
Certificate Status Protocol (OCSP). If OCSP returns the certificate's status as "unknown,"
WebLogic Server then uses CRLs. However, you can change the CR checking method and
order in a WebLogic domain by using the CertRevocMBean.MethodOrder MBean attribute.

You can change the CR checking method used, or the sequence in which the methods are
used, to one of the following:

• OCSP only

• CRLs only

• OCSP then CRLs — If the OCSP status for a certificate is returned as unknown, CRLs are
checked for certificate status.

• CRLs then OCSP — If a certificate's revocation status cannot be determined by checking
available CRLs, its OCSP status is checked.

Chapter 37
Choosing the CR Checking Methods to Be Used by WebLogic Server

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 14

Configuring the CR checking method and order in a WebLogic domain is available through the
following MBean attribute:

Table 37-3 MBean Attributes

MBean Attribute Description Default Value

CertRevocMBean.MethodOr
der

Specifies the domain-wide CR checking
method.

OCSP_THEN_CRL

You can configure a CA override for this MBean attribute, as explained in Configuring
Certificate Authority Overrides.

For information about how to use WebLogic Remote Console to configure the CR checking
method and order for a WebLogic domain, see Enable Certificate Revocation Checking in
Oracle WebLogic Remote Console Online Help.

Failing SSL Certificate Path Validation if Revocation Status
Cannot Be Determined

By default, if an X.509 certificate's revocation status cannot be determined by any of the
selected checking methods, the certificate can still be accepted if the SSL certificate path
validation is otherwise successful. However, for certificates whose revocation status cannot be
determined, you can optionally configure WebLogic Server to fail certificate path validation.

Configuring a WebLogic domain to fail SSL certificate path validation when the revocation
status cannot be determined is available through the following MBean attribute:

Table 37-4 MBean Attributes

MBean Attribute Description Default Value

CertRevocMBean.FailOnUn
knownRevocStatus

Specifies on a domain-wide basis
whether a certificate's path validation
should fail if its revocation status cannot
be determined.

False

You can configure a CA override for this MBean attribute, as explained in Configuring
Certificate Authority Overrides.

For information about how to configure this MBean attribute using WebLogic Remote Console,
see Enable Certificate Revocation Checking in Oracle WebLogic Remote Console Online Help.

Using the Online Certificate Status Protocol
The Online Certificate Status Protocol (OCSP) is an automated certificate checking network
protocol that is defined in RFC 2560.

As part of certificate validation, WebLogic Server queries the revocation status of a certificate
by issuing an OCSP request to an OCSP responder. Certificate status is maintained by the
OCSP responder. Acceptance of the certificate is suspended until the responder returns an
OCSP response, indicating whether the certificate is still trusted by the CA that issued it.

OCSP may be used to satisfy some of the operational requirements of providing more timely
revocation information than is possible with CRLs and may also be used to obtain additional

Chapter 37
Failing SSL Certificate Path Validation if Revocation Status Cannot Be Determined

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 14

status information. For more information about OCSP, see the description of RFC 2560 at
http://www.ietf.org/rfc/rfc2560.txt.

The following sections describe how to configure OCSP in WebLogic Server:

• Using Nonces in OCSP Requests

• Setting the Response Timeout Interval

• Enabling and Configuring the OCSP Response Local Cache

Using Nonces in OCSP Requests
A nonce is a random number that, when included in an OCSP request, forces a fresh
response; pre-signed responses are rejected. The use of nonces can prevent replay attacks.
By default, WebLogic Server does not include nonces in OCSP requests.

However, when WebLogic Server is configured to use nonces in OCSP:

1. WebLogic Server generates a nonce for each OCSP request, and includes it in an
extension in the request.

2. The signed OCSP response must include the same nonce, which is included in an
extension in the response.

You can configure the use of OCSP nonces in a WebLogic domain using the following MBean
attribute:

Table 37-5 MBean Attributes

MBean Attribute Description Default Value

CertRevocMBean.OcspNonc
eEnabled

Specifies whether nonces are generated for OCSP
requests. This setting is domain-wide.

false

You can also configure CA overrides for this MBean attribute. See Configuring OCSP
Properties in a Certificate Authority Override.

For information about how to use WebLogic Remote Console to configure OCSP nonces, see
Enable Certificate Revocation Checking in Oracle WebLogic Remote Console Online Help.

Setting the Response Timeout Interval
The response timeout interval limits the wait time for OCSP responses. Setting a timeout
interval helps minimize blocked threads and also reduces the system's vulnerability to denial of
service attacks. In addition to setting a response timeout interval, you can configure a time
tolerance value for handling clock-skew differences between WebLogic Server and OCSP
responders.

The default response timeout interval is 10 seconds, with a zero time tolerance. The response
timeout interval and time tolerance value can be set domain-wide and, optionally, set specific to
one or more CAs.

You can configure the OCSP response timeout interval and time tolerance value for a
WebLogic domain using the following MBean attributes:

Chapter 37
Using the Online Certificate Status Protocol

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 14

http://www.ietf.org/rfc/rfc2560.txt

Table 37-6 MBean Attributes

MBean Attribute Description Default Value

CertRevocMBean.OcspResponseTimeou
t

Specifies the domain-wide timeout
interval, in seconds, for OCSP
responses. The valid range is between 1
and 300, inclusive.

10

CertRevocMBean.OcspTimeTolerance Specifies the domain-wide OCSP time
tolerance value, in seconds, for OCSP
responses.

0

You can also configure CA overrides for these MBean attributes. See Configuring OCSP
Properties in a Certificate Authority Override.

For information about how to use WebLogic Remote Console to configure OCSP response
timeout interval and time tolerance values, see Enable Certificate Revocation Checking in
Oracle WebLogic Remote Console Online Help.

Enabling and Configuring the OCSP Response Local Cache
To optimize performance and reduce network bandwidth, WebLogic Server's OCSP
implementation is configured by default to use a local in-memory cache for holding OCSP
responses, called the OCSP response local cache. Cached entries automatically expire
based on the OCSP validity period and other criteria, such as entries least accessed. If nonces
are enabled, OCSP responses obtained using a nonce are not cached. This ensures the
freshest response is always used with nonces.

You can configure the OCSP response local cache in a WebLogic domain using the following
MBean attributes:

Table 37-7 MBean Attributes

MBean Attribute Description Default Value

CertRevocMBean.OcspResponseCach
eEnabled

Specifies whether the OCSP response
local cache is enabled domain-wide.

true

CertRevocMBean.OcspResponseCach
eCapacity

Specifies the maximum number of
entries supported by the OCSP
response local cache.

1024

CertRevocMBean.OcspResponseCach
eRefreshPeriodPercent

Specifies the refresh period for the
OCSP response local cache, expressed
as a percentage of the validity period of
the response. For example, for a validity
period of 10 hours, a value of 10%
specifies that after one hour, the cached
response expires and a fresh response
is required.

100

You can also configure CA overrides for this MBean attribute.See Configuring OCSP
Properties in a Certificate Authority Override.

For information about how to use WebLogic Remote Console to configure the OCSP response
local cache, see Enable Certificate Revocation Checking in Oracle WebLogic Remote Console
Online Help.

Chapter 37
Using the Online Certificate Status Protocol

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 14

Using Certificate Revocation Lists
A certificate revocation list (CRL) is a time-stamped list of digital certificates that have been
revoked by the certificate authority (CA) that issued them. Each CRL is signed by a CA and is
made available in a public repository. The WebLogic Server CRL implementation provides a
CRL local cache for more efficient CR checking, automatic import of user CRL files, and
distribution points from which the cache can be populated and refreshed.

The CRL implementation in WebLogic Server includes support for the following:

• CRL local cache, which enables efficient access for CR checking.

• Automatic import of user supplied CRL files into the CRL cache.

• Use of distribution points from which the CRL cache can optionally be populated and
refreshed.

The following sections explain how to configure CRL usage in WebLogic Server:

• Enabling Updates from Distribution Points

• Configuring the CRL Local Cache

Enabling Updates from Distribution Points
Updating CRLs from distribution points is enabled by default. If the appropriate CRL for a
certificate being validated does not already exist in the local cache, the CRL is downloaded
from an available distribution point.

WebLogic Server also allows you to configure a timeout interval for the CRL download from a
distribution point. This timeout interval limits the wait time for CRL downloads, and also
minimizes the risk of blocked threads and vulnerability to denial of service attacks. Note that if
the CRL download times out, the CRL method reports that the revocation status is unknown;
however, the CRL download continues in a separate thread until complete and the CRL
becomes available for future CRL checking.

You can configure CRL distribution points for a WebLogic domain using the following MBean
attributes:

Table 37-8 MBean Attributes

MBean Attribute Description Default Value

CertRevocMBean.CrlDpEnabled Specifies whether CRL distribution
points are enabled domain-wide.

true

CertRevocMBean.CrlDpDownloadTimeout Specifies the overall timeout interval,
domain-wide, for the distribution point
CRL download, expressed in seconds.
The valid range is between 1 and 300,
inclusive.

10

You can also configure CA overrides for these MBean attributes. See Configuring CRL
Properties in a Certificate Authority Override.

For information about how to use WebLogic Remote Console to configure CRL distribution
points for a WebLogic domain, see Enable Certificate Revocation Checking in Oracle
WebLogic Remote Console Online Help.

Chapter 37
Using Certificate Revocation Lists

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 14

Configuring the CRL Local Cache
The CRL local cache is automatically enabled in WebLogic Server. Because obtaining CRLs is
a time-consuming process, CRLs can be stored, while valid, in local files. In addition,
WebLogic Server allows you to configure the refresh interval for the local cache, expressed as
a percentage of the validity period of the CRL.

You may supply CRL files to be used by copying them into the following CRL import directory,
where server-name represents the name of the WebLogic Server instance:

WL_HOME/servers/server-name/security/certrevocation/crlcache/import

The CRL files are automatically imported and internally cached. This directory is automatically
created, if it does not already exist, when CR checking is enabled and an SSL connection is
attempted.

Note

Note the following:

• After WebLogic Server is started, the import of the CRL file starts automatically
when CR checking is enabled and at least one attempt to check a certificate's
revocation status has occurred. This minimizes resource usage until necessary.

• After you import CRL files, they are automatically deleted from the import
directory.

• The CRL local cache configuration settings are domain-wide. You cannot
configure a certificate authority override for the CRL local cache.

You can configure the CRL local cache for a WebLogic domain using the following MBean
attributes:

Table 37-9 MBean Attributes

MBean Attribute Description Default Value

CertRevocMBean.CrlCacheRefreshP
eriodPercent

Specifies the refresh period for the CRL
local cache, expressed as a percentage
of the validity period of the CRL.

100

For information about how to use WebLogic Remote Console to configure the CRL local cache
for a WebLogic domain, see Enable Certificate Revocation Checking in Oracle WebLogic
Remote Console Online Help.

Configuring Certificate Authority Overrides
Configuring certificate authority overrides allows you to specify CR checking behavior that is
enforced for certificates issued by a particular CA. A certificate authority override always
supersedes the domain-wide CR checking configuration that is enabled.

The following sections explain how to configure CR checking CA overrides:

• General Certificate Authority Overrides

Chapter 37
Configuring Certificate Authority Overrides

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 14

• Configuring OCSP Properties in a Certificate Authority Override

• Configuring CRL Properties in a Certificate Authority Override

General Certificate Authority Overrides
To create a certificate authority override for a specific CA, complete the following steps:

1. Identify the CA by its distinguished name. This must be the complete issuer distinguished
name (defined in RFC 2253) of the certificates for which this override applies.

For example, the distinguished name of the WebLogic Server DemoTrust CA is
CN=CertGenCA_domain_name, OU=FOR TESTING ONLY, O=MyOrganization, L=MyTown,
ST=MyState, C=US.

2. Specify whether CR checking is enabled for certificates issued by this CA, if necessary.

3. Specify the CR checking methods and order performed for certificates issued by this CA.

4. Specify whether SSL certificate path validation should fail if the revocation status of
certificates issued by this CA cannot be determined.

5. Optionally, specify additional OCSP or CRL customizations, as explained in the following
sections:

• Configuring OCSP Properties in a Certificate Authority Override

• Configuring CRL Properties in a Certificate Authority Override

You can configure general certificate authority overrides for a CA by using the following MBean
attributes:

Table 37-10 MBean Attributes

MBean Attribute Description Default Value

CertRevocCaMBean.Distinguis
hedName

Specifies the distinguished
name (DN) of the CA subject.

None (required field)

CertRevocCaMBean.CheckingDi
sabled

For this CA, specifies whether
CR checking is disabled.

false

CertRevocCaMBean.FailOnUnkn
ownRevocStatus

For this CA, specifies whether
SSL certificate path checking
should fail if the certificate
revocation status cannot be
determined from any of the
available methods.

Same as current setting of
CertRevocMBean.FailOnUnknow
nRevocStatus.

CertRevocCaMBean.MethodOrde
r

Specifies the certificate
revocation checking method
order when checking
certificates issued by this CA.

Same as current setting of
CertRevocMBean.MethodOrder.

For information about how to use WebLogic Remote Console to configure certificate authority
overrides, see Configure Certificate Authority Overrides in Oracle WebLogic Remote Console
Online Help.

Configuring OCSP Properties in a Certificate Authority Override
WebLogic Server tries the following trust models in its OCSP implementation:

Chapter 37
Configuring Certificate Authority Overrides

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 14

• Delegated Trust Model (DTM) — The OCSP response is signed by an OCSP responder
that has been delegated by the CA to sign responses on its behalf.

• Explicit Trust Model (ETM) — If neither the CA nor an authority to which OCSP
responsibilities have been delegated has signed the OCSP response, an explicitly trusted
signer may be specified. ETM is used when you can supply an additional trusted certificate
that may be used to verify the OCSP response signature. This can be any certificate,
including one unrelated to the CA corresponding to the override. ETM may be used for
OCSP responders which are trusted, but are not authorized to sign OCSP responses on
behalf of issuers. Explicitly trusted public certificates for OCSP responders may be suitable
if the OCSP server is internally maintained within your enterprise.

• CA-signed Trust Model — The OCSP response is presumed to be signed by the same CA
that issued the certificate for which the revocation status is being requested.

When you create a certificate authority override, WebLogic Server allows you to configure the
OCSP properties that are described in Table 37-11. This table also identifies the MBean
attributes you can use to configure these override properties.

Table 37-11 OCSP Properties That Can Be Specified in a Certificate Authority Override

Override Description MBean Attribute

OCSP responder URL Specifies the URL to be used for either:

• Failover, if the OCSP responder URI
from the certificate AIA value is not
available or not acceptable

• Override, to be always used as the
responder URL instead of the
responder URI from the certificate
AIA.

See Identifying the OCSP Responder
URL.

CertRevocCaMBean.OcspRe
sponderUrl

The default value is none.

How the OCSP responder
URL is used

Specifies how the OCSP responder URL
is to be used: for failover or override.

CertRevocCaMBean.OcspRe
sponderUrlUsage

The default value is
FAILOVER.

OCSP responder certificate
subject name

For this CA, specifies the explicitly
trusted OCSP responder certificate
subject name. For example, CN=OCSP
Responder, O=XYZ Corp. This must
correspond to the subject distinguished
name of a certificate in the configured
WebLogic Server trust keystore.

In cases where the subject name alone
is not sufficient to uniquely identify the
certificate, both the
CertRevocCaMBean.OcspResponderC
ertIssuerName and
CertRevocCaMBean.OcspResponderC
ertSerialNumber are used instead.

CertRevocCaMBean.OcspRe
sponderCertSubjectName

The default value is NONE.

Chapter 37
Configuring Certificate Authority Overrides

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 14

Table 37-11 (Cont.) OCSP Properties That Can Be Specified in a Certificate Authority
Override

Override Description MBean Attribute

OCSP responder certificate
issuer name

For this CA, specifies the explicitly
trusted OCSP responder certificate
issuer name. For example,
CN=Enterprise CA, O=XYZ Corp.
This must correspond to the issuer
distinguished name of a certificate in the
configured WebLogic Server trust
keystore.

When this attribute is set, the
CertRevocCaMBean.OcspResponderC
ertSerialNumber must also be set.

CertRevocCaMBean.OcspRe
sponderCertIssuerName

The default value is NONE.

OCSP responder certificate
serial number

For this CA, specifies the explicitly
trusted OCSP responder certificate
serial number. For example, 2A:FF:00.
This must correspond to the serial
number of a certificate in the configured
WebLogic Server trust keystore.

When this attribute is set, the
CertRevocCaMBean.OcspResponderC
ertIssuerName attribute must also be
set.

CertRevocCaMBean.OcspRe
sponderCertSerialNumber

The default value is NONE.

OCSP responder Explicit
Trust Method

For this CA, specifies whether the OCSP
Explicit Trust model is enabled and how
a trusted certificate in the Weblogic
Server trust keystore is specified.

The following values can be specified:

• NONE specifies that Explicit Trust is
disabled.

• USE_SUBJECT specifies that the
trusted certificate is identified using
the subject DN that is specified in
the
CertRevocCaMBean.OcspRespond
erCertSubjectName attribute.

• USE_ISSUER_SERIAL_NUMBER
specifies that the trusted certificate
is identified using the issuer DN and
certificate serial number that are
specified in the
CertRevocCaMBean.OcspRespond
erCertIssuerName and
CertRevocCaMBean.OcspRespond
erCertSerialNumber attributes,
respectively.

CertRevocCaMBean.OcspRe
sponderExplicitTrustMet
hod

The default value is NONE.

Nonce enabled For this CA, specifies whether nonces
are sent with OCSP requests, which
forces a fresh (not pre-signed) response.

CertRevocCaMBean.OcspNo
nceEnabled

The default value is the same
as the current setting for
CertRevocMBean.OcspNonc
eEnabled.

Chapter 37
Configuring Certificate Authority Overrides

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 14

Table 37-11 (Cont.) OCSP Properties That Can Be Specified in a Certificate Authority
Override

Override Description MBean Attribute

OCSP response local cache For this CA, specifies whether the OCSP
response local cache is enabled.

CertRevocCaMBean.OcspRe
sponseCacheEnabled

The default value is the same
as the current setting for
CertRevocMBean.OcspResp
onseCacheEnabled.

OCSP response timeout For this CA, specifies the timeout
interval for the OCSP response,
expressed in seconds. The valid range is
between 1 and 300, inclusive.

See Setting the Response Timeout
Interval.

CertRevocCaMBean.OcspRe
sponseTimeout

The default value is the same
as the current setting for
CertRevocMBean.OcspResp
onseTimeout.

OCSP time tolerance For this CA, specifies the time tolerance
value for handling clock-skew differences
between WebLogic Server and
responders, expressed in seconds. The
valid range is between 0 and 900,
inclusive.

The validity period of the response is
extended both into the future and into
the past by the specified amount of time,
effectively widening the validity interval.

CertRevocCaMBean.OcspTi
meTolerance

The default value is the same
as the current setting for
CertRevocMBean.OcspTime
Tolerance.

For information about how to use WebLogic Remote Console to configure OCSP settings in a
certificate authority override, see Configure Certificate Authority Overrides in Oracle WebLogic
Remote Console Online Help.

The following topic explains how to identify the OCSP Responder URL:

Identifying the OCSP Responder URL
To validate a certificate using an OCSP responder lookup, WebLogic Server uses the following
methods to determine the OCSP responder URL:

• Authority Information Access (AIA) value in the certificate, which indicates how to access
information and services for the issuer of the certificate. For example, the AIA contains the
URI for the OCSP responder.

• Default OCSP responder failover or override — If the OCSP responder URI is not available
from the certificate AIA value, or is not acceptable, a default OCSP responder URL can be
configured on a per-CA basis.

Additionally, the default OCSP responder URL per CA can be specified selectively for
either failover, or for override. When specified for override, this URL always overrides the
value obtained from the certificate AIA extension.

For information about how to use WebLogic Remote Console to set the OCSP responder URL
in a certificate authority override, see Configure Certificate Authority Overrides in Oracle
WebLogic Remote Console Online Help.

Chapter 37
Configuring Certificate Authority Overrides

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 14

Configuring CRL Properties in a Certificate Authority Override
When you configure a certificate authority override, WebLogic Server allows you to configure
the CRL properties listed and described in Table 37-12. This table also identifies the MBean
attributes you can use to configure these properties.

Table 37-12 CRL Properties That Can Be Specified in a Certificate Authority Override

Override Description MBean Attribute

Use of distribution point to
update local CRL cache

For this CA, specifies whether CRL
distribution point processing to
update the local CRL cache is
enabled.

CertRevocCaMBean.CrlDpEnabl
ed

The default value is the same as
the current setting for
CertRevocMBean.CrlDpEnabled.

Distribution point URL For this CA, specifies the CRL
distribution point URL to be used
for either:

• Failover, if the URL from the
CRLDistributionPoints
extension in the certificate is
unavailable

• Override, to be always used as
the CRL distribution point URL
instead of the
CRLDistributionPoints
extension in the certificate

CertRevocCaMBean.CrlDpUrl

The default value is null.

How the distribution point
URL is used

Specifies how the distribution point
URL is to be used: for failover or
override.

CertRevocCaMBean.CrlDpUrlUs
age

The default value is FAILOVER.

Distribution point CRL
download timeout

For this CA, specifies the overall
timeout interval for the distribution
point CRL download, expressed in
seconds. The valid range is
between 1 and 300, inclusive.

CertRevocCaMBean.CrlDpDownl
oadTimeout

The default value is the same as
the current setting for
CertRevocMBean.CrlDpDownloa
dTimeout.

For information about how to use WebLogic Remote Console to customize the CRL settings in
a certificate authority override, see Configure Certificate Authority Overrides in Oracle
WebLogic Remote Console Online Help.

Chapter 37
Configuring Certificate Authority Overrides

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 14 of 14

38
Configuring an Identity Keystore Specific to a
Network Channel

Learn how to configure a network channel to have its own custom identity keystore, and other
SSL attributes, that are separate from and that override the default keystore and SSL
configuration settings for the Managed Server instance or the domain. This feature enables
you to configure an Oracle WebLogic Server instance to use one identity and SSL
configuration on one network channel, and another identity and SSL configuration on other
channels.

• About Network Channels

• Channel-Specific SSL Configuration Attributes

• Steps to Configure a Channel-Specific Identity Keystore

• Using WLST to Configure a Channel-Specific Identity Keystore

About Network Channels
A network channel in a WebLogic Server instance is a combination of the four attributes —
communication protocol (which can be t3, t3s, http, or https), listen address, listen port, and
channel name.

See Understanding Network Channels in Administering Server Environments for Oracle
WebLogic Server,

By default, when you configure a network channel, the channel uses the SSL configuration that
is set for the server instance. This means that the channel uses the same identity and trust that
is established for the server. The server might use a custom identity that is specific to that
server, or it might be a single domain-wide identity, depending on how the server instance and
domain are configured.

However, rather than using one identity for all network communication in which a Managed
Server instance participates, you might have a need for the server to switch to a different
identity when communicating with a particular client. For example, you might need to use one
identity for the server when communicating with one particular business group, and a different
identity for the server when communicating with other Managed Server instances in the
domain. By customizing a network channel to use a custom identity keystore that is separate
from either the identity keystore configured for the server instance or the one configured for the
domain, you can assert one identity on one network channel, and another identity on a
different channel.

Channel-Specific SSL Configuration Attributes
The NetworkAccessPointMBean contains the attributes that you can set to create a channel-
specific SSL configuration. In addition to enabling a network channel to use a custom identity
keystore, these attributes also allow you to customize other SSL settings, such as the use of a
custom host name verifier, the cipher suites to be used in SSL communications, and certificate
validation rules.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 8

Table 38-1 lists and describes the SSL attributes that can be configured on the
NetworkAccessPointMBean for a specific network channel.

Note

For ease of reference in Table 38-1, the following attributes on the
NetworkAccessPointMBean are referred to collectively as the
CustomIdentityKeyStore* attributes:

• CustomIdentityKeyStoreFileName

• CustomIdentityKeyStorePassPhrase

• CustomIdentityKeyStorePassPhraseEncrypted

• CustomIdentityKeyStoreType

Table 38-1 NetworkAccessPointMBean Attributes for Customizing a Channel's SSL
Configuration

Attribute Description

ChannelIdentityCustomized Specifies whether the channel's custom identity should be used. This
setting has an effect only if the network channel uses a custom keystore.
By default the channel's identity is inherited from the server's identity.

The CustomIdentityKeyStore* attributes have the following
validation rules related to the ChannelIdentityCustomized attribute
to ensure that the network channel alias relates to the channel keystore
and does not default to an alias in the server keystore:

1. If any CustomIdentityKeyStore* attributes are set, then all
CustomIdentityKeyStore* attributes must be set.

2. The ChannelIdentityCustomized attribute must be set to true.

3. The CustomPrivateKeyAlias attribute must be set.

Note that if the CustomIdentityKeyStore* attributes are not set, the
CustomPrivateKeyAlias attribute may be set to refer to the server
keystore.

CustomIdentityKeyStoreFileNa
me

Specifies the custom identity keystore to assign to the channel. If a value
for this attribute is not set, the value of the
ServerMBean.CustomIdentityKeyStoreFileName attribute is used
by default.

This attribute is used only if the ServerMBean.KeyStores attribute is
set to one of the following values:

• CUSTOM_IDENTITY_AND_JAVA_STANDARD_TRUST
• CUSTOM_IDENTITY_AND_CUSTOM_TRUST
• CUSTOM_IDENTITY_AND_COMMAND_LINE_TRUST
If you are using a JKS or PKCS12 keystore, specify this value as an
absolute path, or as a relative path to the directory from which the server
is booted. See Configuring Keystores.

Chapter 38
Channel-Specific SSL Configuration Attributes

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 8

Table 38-1 (Cont.) NetworkAccessPointMBean Attributes for Customizing a Channel's
SSL Configuration

Attribute Description

CustomIdentityKeyStorePassP
hrase

Encrypts and decrypts the plain text form of the passphrase for the
channel's custom identity keystore. When you set the keystore password
using this attribute, WebLogic Server automatically encrypts the value
and stores it in the CustomIdentityKeyStorePassPhraseEncrypted
attribute. If the value is empty or null, keystores not requiring a
passphrase may be opened.

If a value for this attribute is not set, the value of the
ServerMBean.CustomIdentityKeyStorePassPhrase attribute is
used by default.

This attribute is used only if the ServerMBean.KeyStores attribute is
set to one of the following values:

• CUSTOM_IDENTITY_AND_JAVA_STANDARD_TRUST
• CUSTOM_IDENTITY_AND_CUSTOM_TRUST
• CUSTOM_IDENTITY_AND_COMMAND_LINE_TRUST
Note: Using the CustomIdentityKeyStorePassPhrase attribute is a
potential security risk because the String object that contains the
unencrypted password remains in the JVM memory until garbage
collection removes it and the memory is reallocated, which potentially
can be an indefinite duration. Therefore, Oracle recommends using the
CustomIdentityKeyStorePassPhraseEncrypted attribute instead.

CustomIdentityKeyStorePassP
hraseEncrypted

Specifies the encrypted passphrase that is set when the custom identity
keystore is created. If a value for this attribute is not set, the value of the
ServerMBean.CustomIdentityKeyStorePassPhraseEncrypted
attribute is used by default.

This attribute is only used if the ServerMBean.KeyStores attribute is
set to one of the following values:

• CUSTOM_IDENTITY_AND_JAVA_STANDARD_TRUST
• CUSTOM_IDENTITY_AND_CUSTOM_TRUST
• CUSTOM_IDENTITY_AND_COMMAND_LINE_TRUST

CustomIdentityKeyStoreType Specifies the keystore type of the custom identity keystore. If you are
using a JKS keystore, specify the value as JKS. If you are using a
PKCS12 keystore, specify the value as PKCS12.

If a value for this attribute is not set, the value of the
ServerMBean.CustomIdentityKeyStoreType attribute is used by
default.

The value of this attribute is used only if the ServerMBean.KeyStores
attribute is set to one of the following values:

• CUSTOM_IDENTITY_AND_JAVA_STANDARD_TRUST
• CUSTOM_IDENTITY_AND_CUSTOM_TRUST
• CUSTOM_IDENTITY_AND_COMMAND_LINE_TRUST

ClientCertificateEnforced Specifies whether clients must present digital certificates from a trusted
certificate authority to WebLogic Server on this channel.

CustomPrivateKeyAlias Specifies the string alias used to store and retrieve the channel's private
key in the custom identity keystore. This private key is associated with
the server's digital certificate. A value of null indicates that the network
channel uses the alias specified in the server's SSL configuration.

Note that if the CustomIdentityKeyStore* attributes are not set, the
CustomPrivateKeyAlias attribute may be set to refer to the server
keystore.

Chapter 38
Channel-Specific SSL Configuration Attributes

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 8

Table 38-1 (Cont.) NetworkAccessPointMBean Attributes for Customizing a Channel's
SSL Configuration

Attribute Description

CustomPrivateKeyPassPhrase Encrypts and decrypts the plain text form of the passphrase used to
retrieve the channel's private key from the custom identity keystore.
When you set the private key passphrase using this attribute, WebLogic
Server automatically encrypts the value and stores it in the
CustomPrivateKeyPassPhraseEncrypted attribute. This passphrase
is assigned to the private key when it is generated. A value of null
indicates that the network channel uses the passphrase specified in the
server's SSL configuration.

CustomPrivateKeyPassPhrase
Encrypted

Specifies the encrypted passphrase used to retrieve the channel's
private key from the custom identity keystore.

OutboundPrivateKeyEnabled Specifies whether the identity specified by the
NetworkAccessPointMBean.CustomPrivateKeyAlias attribute
should be used for outbound SSL connections on this channel. Typically
the outbound identity is determined by the caller's environment.

TwoWaySSLEnabled Specifies whether this network channel uses two way SSL.

HostnameVerificationIgnored Specifies whether to ignore the configured implementation of the host
name verifier (weblogic.security.SSL.HostnameVerifier).

This attribute is used only when the server is acting as a client to
another application server on a remote host.

If a value for this attribute is not set, the value of the
SSLMBean.HostnameVerificationIgnored attribute is used by
default.

HostnameVerifier Specifies the name of the class that implements the
weblogic.security.SSL.HostnameVerifier interface.

A host name verifier is useful when an SSL client (for example,
WebLogic Server acting as an SSL client) connects to an application
server on a remote host. The host name verifier helps to prevent man-in-
the-middle attacks: It ensures that the host name in the URL to which
the client connects matches the host name in the digital certificate that
the server sends back as part of the SSL connection.

If a value for this attribute is not set, the value of the
SSLMBean.HostnameVerifier attribute is used by default.

Ciphersuites Specifies the cipher suites that are to be used with the SSL listener for
the network channel. During the SSL handshake, the strongest
negotiated cipher suite is chosen.

The cipher suites that are enabled by default depends on the specific
JDK version with which WebLogic Server is configured. See Cipher
Suites.

If a value for this attribute is not set, the value of the
SSLMBean.Ciphersuites attribute is used by default.

Chapter 38
Channel-Specific SSL Configuration Attributes

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 8

Table 38-1 (Cont.) NetworkAccessPointMBean Attributes for Customizing a Channel's
SSL Configuration

Attribute Description

AllowUnencryptedNullCipher Specifies whether unencrypted null ciphers are allowed on the network
channel. If a value for this attribute is not set, the value of the
SSLMBean.AllowUnencryptedNullCipher attribute is used by
default.

During the SSL handshake, when the server and client negotiate the set
of cipher suites that are to be used, the client might specify a set of
cipher suites that contain only null ciphers. A null cipher passes data on
the wire in clear-text, making it possible for a network packet sniffer to
see the SSL messages. When null ciphers are used, SSL may be used
for authentication, but messages may not be encrypted.

By default, WebLogic Server does not allow null ciphers. See An
Important Note Regarding Null Cipher Use in SSL.

InboundCertificateValidation Specifies the client certificate validation rules for inbound SSL. This
attribute applies only to a network channel that is configured to use two-
way SSL.

Either of the following values may be set:

• BuiltinSSLValidationOnly—Uses the built-in trusted Certificate
Authority-based validation. This is the default.

• BuiltinSSLValidationAndCertPathValidators—Uses the
built-in trusted CA-based validation and also the configured
CertPathValidator providers to perform extra validation.

For more information about these rules, see How SSL Certificate
Validation Works in WebLogic Server.

If a value for this attribute is not set, the value of the
SSLMBean.InboundCertificateValidation attribute is used by
default.

OutboundCertificateValidation Specifies the server certificate validation rules for outbound SSL.

Either of the following values may be set:

• BuiltinSSLValidationOnly—Uses the built-in trusted Certificate
Authority-based validation. This is the default.

• BuiltinSSLValidationAndCertPathValidators—Uses the
built-in trusted CA-based validation and also the configured
CertPathValidator providers to perform extra validation.

For more information about these rules, see How SSL Certificate
Validation Works in WebLogic Server.

If a value for this attribute is not set, the value of the
SSLMBean.OutboundCertificateValidation attribute is used by
default.

DomainKeystoresClientCertAlia
s

Specifies the alias of the client (outbound) SSL/TLS certificates for the
channel. Use when Domain Keystores is selected as the keystore type
for the server.

The default value is domainpki-client-identity.

DomainKeystoresServerCertAli
as

Specifies the alias of the server (inbound) SSL/TLS certificates for the
channel. Use when Domain Keystores is selected as the keystore type
for the server.

The default value is domainpki-server-identity.

Chapter 38
Channel-Specific SSL Configuration Attributes

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 8

Steps to Configure a Channel-Specific Identity Keystore
You can configure a network channel to use an identity keystore that is different from the one
used by the Managed Server.

To configure a channel-specific identity keystore, complete the following steps:

1. Configure an identity keystore, add the private key and the public identity certificate to be
used by the network channel, and assign a private key alias.

• For information about configuring a keystore, see Configuring Keystores.

2. Create a custom network channel and assign the following attributes, ensuring that the
combination of them is unique in the domain:

• Channel name

• Listen address

• Listen port

• Secure communication protocol (that is, either HTTPS or t3s)

See Configure Custom Network Channels in Oracle WebLogic Remote Console Online
Help.

3. Configure the channel to use the identity keystore created in step 1.

If you are using a custom identity keystore, set the the following attributes on the
NetworkAccessPointMBean:

• CustomIdentityKeyStoreFileName — If you are using a JKS or PKCS12 keystore,
specify the path to the keystore.

• CustomIdentityKeyStoreType — Specify the key store type. For example, JKS or
PKCS12.

• Either the CustomIdentityKeyStorePassPhraseEncrypted attribute, or the
CustomIdentityKeyStorePassPhrase attribute using the custom identity keystore
passphrase.

• ChannelIdentityCustomized — Set to true.

• CustomPrivateKeyAlias — Specifies the string alias used to store and retrieve the
channel's private key in the custom identity keystore. This private key is associated
with the channel's identity certificate. Setting this attribute ensures that the channel
alias corresponds to the channel's custom identity keystore and not to an alias in the
server's identity keystore.

• CustomPrivateKeyPassPhrase — Specify the value of the passphrase of the private
key referenced by the CustomPrivateKeyAlias attribute.

Chapter 38
Steps to Configure a Channel-Specific Identity Keystore

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 8

Note

If any of the CustomIdentityKeyStoreFileName, CustomIdentityKeyStoreType,
CustomIdentityKeyStorePassPhraseEncrypted, or
CustomIdentityKeyStorePassPhrase attributes are set, then all the following
conditions must be met to ensure that the channel alias relates to the channel's
custom identity keystore and does not default to an alias in the server keystore:

a. All the preceding attributes must be set (that is,
CustomIdentityKeyStoreFileName, CustomIdentityKeyStoreType,
CustomIdentityKeyStorePassPhraseEncrypted, and
CustomIdentityKeyStorePassPhrase must all be set).

b. The NetworkAccessPointMBean.ChannelIdentityCustomized attribute must
be set to true.

c. The NetworkAccessPointMBean.CustomPrivateKeyAlias attribute must be
set.

Note that if none of the CustomIdentityKeyStoreFileName,
CustomIdentityKeyStoreType, CustomIdentityKeyStorePassPhraseEncrypted,
and CustomIdentityKeyStorePassPhrase attributes are set, the network channel's
private key alias may be set to refer to the server keystore.

If you are using Domain Keystores, set the following attributes on the
NetworkAccessPointMBean:

• DomainKeystoresClientCertAlias

• DomainKeystoresServerCertAlias

4. Set TwoWaySSLEnabled and ClientCertificateEnforced to true if appropriate for your
environment.

5. Configure any additional attributes for the network channel, as appropriate. See
Configuring a Channel in Administering Server Environments for Oracle WebLogic Server
and Configure Custom Network Channels in Oracle WebLogic Remote Console Online
Help.

For information about specifying a host name verifier class, see Using Host Name
Verification.

For information about inbound and outbound certificate validation, see SSL Certificate
Validation.

Using WLST to Configure a Channel-Specific Identity Keystore
You can WLST to configure a network channel to use a custom identity keystore different from
the one used by the Managed Server.

This section provides an example of using WLST to configure a channel-specific JKS identity
keystore. Example 38-1 shows the following:

1. Connecting to a Managed Server instance.

2. Navigating to the MBean that corresponds to the specific network channel for which a
custom identity keystore is to be configured, https-override.

3. Setting the name and location of the custom identity keystore file, channelIdentity.jks.

Chapter 38
Using WLST to Configure a Channel-Specific Identity Keystore

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 8

4. Setting the passphrase for the custom identity keystore.

5. Setting the custom identity keystore type to JKS.

6. Establishing that the channel's custom identity should be used.

7. Setting the custom private key alias to myID.

8. Setting the custom private key passphrase.

9. Saving and activating the new channel configuration, then disconnecting from the
Managed Server instance.

Note

You can also use a PKCS12 keystore. If you do so, be sure to use the
setCustomIdentityKeystoreType property to set the keystore type to PKCS12.

Example 38-1 Configuring a Custom Identity Keystore

connect('','','t3://host:port')
Please enter your username :
Please enter your password :
...
edit()
startEdit()
cd ('Servers/myserver/NetworkAccessPoints/https-override')

cmo.setCustomIdentityKeyStoreFileName('/path/keystores/channelIdentity.jks')
cmo.setCustomIdentityKeyStorePassPhrase('passphrase')
cmo.setCustomIdentityKeyStoreType('JKS')
cmo.setChannelIdentityCustomized(true)
cmo.setCustomPrivateKeyAlias('myID')
cmo.setCustomPrivateKeyPassPhrase('keypassphrase')

save()
activate()
disconnect()

Chapter 38
Using WLST to Configure a Channel-Specific Identity Keystore

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 8

39
Configuring RMI over IIOP with SSL

Use SSL to protect Internet Interop-Orb-Protocol (IIOP) connections to Remote Method
Invocation (RMI) remote objects in Oracle WebLogic Server. SSL secures connections through
authentication and encrypts the data exchanged between objects.
To use SSL to protect RMI over IIOP connections:

1. Configure WebLogic Server to use SSL.

2. Configure the client Object Request Broker (ORB) to use SSL. Refer to the product
documentation for your client ORB for information about configuring SSL.

3. Use the host2ior utility to print the WebLogic Server IOR to the console. The host2ior utility
prints two versions of the interoperable object reference (IOR), one for SSL connections
and one for non-SSL connections. The header of the IOR specifies whether or not the IOR
can be used for SSL connections.

4. Use the SSL IOR when obtaining the initial reference to the CosNaming service that
accesses the WebLogic Server JNDI tree.

For more information about using RMI over IIOP, see Developing RMI Applications for Oracle
WebLogic Server.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 1

40
Using a Certificate Callback Handler to
Validate End User Certificates

Oracle WebLogic Server provides a means to examine details about information (such as the
end user's certificate, Subject, and IP address) passed by an end user issuing a request to
determine whether authentication should succeed or fail. This capability is provided by the
weblogic.security.SSL.CertificateCallback interface, which you can implement to create a
certificate callback handler.
When configured with WebLogic Server, this callback handler is invoked automatically
whenever a client request is received over a secure RMI connection; for example, one that
uses the T3s or IIOPS protocols. To configure a certificate callback handler so that it is in effect
for all secure inbound RMI connections, you define it as a WebLogic Server system property
that is passed in the server startup command.

This chapter includes the following topics:

• How End User Certificate Callback Handlers Work

• Creating a Certificate Callback Implementation

• Configuring the Certificate Callback with WebLogic Server

How End User Certificate Callback Handlers Work
When a client makes a secure RMI connection to a WebLogic Server instance that is
configured with a certificate callback handler, WebLogic Server invokes the callback handler.
The callback evaluates details about the end user that are contained in the connection request,
then returns a boolean value indicating whether authentication is successful.

The CertificateCallback interface calls the validate method on an CertificateCallbackInfo
instance, which contains methods to obtain the following information from the end user that is
contained in the RMI connection request:

• Client host name, IP address, and port

• Client domain name

• Destination host name, IP address, and port

• Authenticated Subject

• Client certificate

The callback implementation includes the logic that evaluates the client data that is obtained
and returns true or false as follows:

• If the callback returns true, authentication succeeds and the client connection to
WebLogic Server is made.

• If the callback returns false, a RemoteException is thrown containing the "Authentication
denied" message.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 2

Note

If you use a certificate callback implementation in WebLogic Server, a callback is
generated whenever a request is received over a secure port. As a result, using
certificate callbacks may impose a performance overhead that should be taken into
consideration.

Creating a Certificate Callback Implementation
The weblogic.security.SSL.CertificateCallback interface contains a single invocation on
the validate method on a weblogic.security.SSL.CertificateCallbackInfo instance. The
CertificateCallbackInfo instance contains methods to obtain details about the end user that are
passed over the secure RMI connection.

You implement logic that evaluates the data that is returned and returns a true or false. The
logic does not need to evaluate all data that is returned. Typically, only the certificate is
evaluated; for example, obtaining the common name (cn) or distinguished name (dn).

See the following Javadoc in Java API Reference for Oracle WebLogic Server:

• weblogic.security.SSL.CertificateCallback interface

• weblogic.security.SSL.CertificateCallbackInfo class

Configuring the Certificate Callback with WebLogic Server
To configure the callback with WebLogic Server, specify the callback implementation as a
system property in the WebLogic Server start command. The property should point to the
callback implementation class that is on the server's classpath.

For example, if the callback implementation class is MyCertificateCallback.java in the
package com.mycompany.security, and MyCertificateCallback.class is in the server's
classpath, the following command sets the callback implementation property in WebLogic
Server:

java weblogic.Server -
Dweblogic.security.SSL.CertificateCallback=com.mycompany.security.MyCertificateCa
llback
Note that if WebLogic Server is configured for one-way SSL, a client certificate is never sent to
the server. Oracle recommends using certificate callbacks handlers only when WebLogic
Server is configured for two-way SSL. See Set Up TLS in Oracle WebLogic Remote Console
Online Help.

Chapter 40
Creating a Certificate Callback Implementation

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 2

Part VII
Advanced Security Topics

Learn about the advanced security configuration options available in Oracle WebLogic Server,
such as cross-domain security and Jakarta Authentication security.

This part contains the following chapters:

• Configuring Cross-Domain Security

• Configuring Jakarta Authentication Security

• Using Jakarta Security in WebLogic Server

• Using Secured Production Mode

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 1

41
Configuring Cross-Domain Security

Cross-domain security establishes trust between two WebLogic domain pairs by using a
credential mapper to configure communication between these WebLogic domains. Learn how
to set security configuration options that enables cross-domain security in Oracle WebLogic
Server.
These sections apply to WebLogic Server deployments using the security features in this
release of WebLogic Server.

• Enabling Trust Between WebLogic Server Domains

• Using Jakarta Authorization

• Viewing MBean Attributes

• Configuring a Domain to Use JAAS Authorization

Note

In this release of WebLogic Server, subsystems such as JMS, JTA, MDB, and WAN
replication implement cross-domain security. These subsystems can authenticate and
send the required credentials across domains. However, the EJB container does not
implement the solution for cross-domain security.

Enabling Trust Between WebLogic Server Domains
WebLogic Server supports cross-domain security that establishes trust between two domains
such that principals in a subject from one WebLogic domain can make calls in another domain.
WebLogic Server establishes a security role for cross-domain users, and uses the WebLogic
Credential Mapping security provider in each domain to store the credentials to be used by the
cross-domain users.

Previous releases of WebLogic Server supported domain trust, which is now referred to as
global trust. Global trust is established between two or more domains by using the same
domain credential in each domain. If you enable global trust between two or more domains, the
trust relationship is transitive and symmetric. In other words, if Domain A trusts Domain B, and
Domain B trusts Domain C, then:

• Domain A will also trust Domain C.

• Domain B and Domain C will both trust Domain A.

The principal distinction between the two approaches is that cross-domain security enables
trust between two domains using specific credentials. By comparison, in global trust, the same
credentials are used to communicate among all domains.

In most cases, the cross-domain security approach is preferable to the global trust approach,
because its use of a specific user group and role for cross-domain actions allows for finer-
grained security.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 8

Note

If you enable cross-domain security to communicate between two domains, you
should not enable global trust for those domains.

Cross-domain security provides more secure communication between two domains.

The following sections explain how to configure each domain trust type:

• Enabling Cross-Domain Security Between WebLogic Server Domains

• Enabling Global Trust

Enabling Cross-Domain Security Between WebLogic Server Domains

Note

In this release of WebLogic Server, subsystems such as JMS, JTA, MDB, and WAN
replication implement cross-domain security. These subsystems can authenticate and
send the required credentials across domains. However, the EJB container does not
implement the solution for cross-domain security.

Configuration and use of cross-domain security is described in the following sections:

• Configuring Cross-Domain Security

• Excluding Domains From Cross-Domain Security

• Configuring Cross-Domain Users

• Configure a Credential Mapping for Cross-Domain Security

Configuring Cross-Domain Security
You configure cross-domain security between two domains — a domain pair — such that
principals in a subject from one WebLogic domain can make calls in another domain. You can
enable cross-domain security for multiple domain pairs.

For example, assume you have four domains, Domain1 through Domain4. You can enable
cross-domain security on all four domains, and then add users and credential maps (as
described in subsequent sections) for the following domain pairs:

• Domain1 - Domain2

• Domain1 - Domain3

• Domain1 - Domain4

• Domain2 - Domain3

• Domain2 - Domain4

• Domain3 - Domain4

To configure cross-domain security in a WebLogic domain, set the
SecurityConfigurationMBean.CrossDomainSecurityEnabled attribute to true. To do this in

Chapter 41
Enabling Trust Between WebLogic Server Domains

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 8

WebLogic Remote Console, see Enable Cross Domain Security in Oracle WebLogic Remote
Console Online Help.

Excluding Domains From Cross-Domain Security
If you enable cross-domain security for some, but not all, of the domains you administer, you
need to add the names of the domains for which cross-domain security is not enabled to the
list of excluded domains in the SecurityConfigurationMBean.ExcludedDomainNames
attributes.

You must do this in each of the WebLogic domains in which you did enable cross-domain
security.

For example, if you have four domains, Domain1 through Domain4 and for some reason you do
not enable cross-domain security on Domain4, you need to specify Domain4 for the
SecurityConfigurationMBean.ExcludedDomainNames attribute in Domain1, Domain2, and
Domain3.

To do this using WebLogic Remote Console:

1. In the Edit Tree, go to Environment, then Domain.

2. On the Security tab, in the Excluded Domain Names field, enter the names of any
domains that do not have cross-domain security enabled. Enter the names of these
domains separated either by semicolons or line breaks.

3. Repeat steps one through three, as appropriate, for each domain.

4. Click Save.

Configuring Cross-Domain Users
Cross-domain security in WebLogic Server uses a global security role named
CrossDomainConnector with resource type remote and a group named
CrossDomainConnectors. Invocation requests from remote domains are expected to be from
users who are mapped to the CrossDomainConnector role.

By default, the CrossDomainConnectors group has no users as members.

For each domain in which you enable cross-domain security, you need to create a user and
add that user to the CrossDomainConnectors group. Typically, such a user is a virtual system
user and preferably should have no privileges other than those granted by the
CrossDomainConnector security role.

For example, assume that you enabled cross-domain security on Domain1, Domain2, Domain3,
and Domain4. In each case, create the user account with a password and assign it to the
CrossDomainConnectors group.

• In Domain1, create a user User1.

• In Domain2, create User2.

• In Domain3, create User3.

• In Domain4, create User4.

To add a user in WebLogic Remote Console, see Create a User and Create a Group in Oracle
WebLogic Remote Console Online Help.

Make sure that you add the users to the CrossDomainConnectors group.

Chapter 41
Enabling Trust Between WebLogic Server Domains

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 8

Configure a Credential Mapping for Cross-Domain Security

Note

The Credential Mapper identifies domains by their names. Therefore, it is important
that the domains involved have unique names.

In the domain pairs for which you enabled cross-domain security, you need to specify a
credential to be used by each user on the remote domain to be trusted. Do this by configuring
credential mappings for each domain pair in the connection. Each credential mapping needs to
specify:

• The resource protocol, which is named cross-domain-protocol

• The name of the remote domain that needs to interact with the local domain

• The name of the user in the remote domain that will be authorized to interact with the local
domain

• The password of the user in the remote domain that will be authorized to interact with the
local domain

For example, to extend the user example from Configuring Cross-Domain Users, you would
configure the following domain pairs:

Note

If you have a several domains to configure, you may find it easier to configure one pair
of domains, then configure the next pair, and so forth.

• Populate the credential map in Domain1 with the remote-domain: Domain2, the remote-user:
User2, and the remote_user_pass: password-for-User2.

Populate the credential map in Domain2 with the remote-domain: Domain1, the remote-user:
User1, and the remote_user_pass: password-for-User1.

• Populate the credential map in Domain1 with the remote-domain: Domain3, the remote-user:
User3, and the remote_user_pass: password-for-User3.

Populate the credential map in Domain3 with the remote-domain: Domain1, the remote-user:
User1, and the remote_user_pass: password-for-User1.

• Populate the credential map in Domain1 with the remote-domain: Domain4, the remote-user:
User4, and the remote_user_pass: password-for-User4.

Populate the credential map in Domain4 with the remote-domain: Domain1, the remote-user:
User1, and the remote_user_pass: password-for-User1.

• Populate the credential map in Domain2 with the remote-domain: Domain3, the remote-user:
User3, and the remote_user_pass: password-for-User3.

Populate the credential map in Domain3 with the remote-domain: Domain2, the remote-user:
User2, and the remote_user_pass: password-for-User2.

• Populate the credential map in Domain2 with the remote-domain: Domain4, the remote-user:
User4, and the remote_user_pass: password-for-User4.

Chapter 41
Enabling Trust Between WebLogic Server Domains

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 8

Populate the credential map in Domain4 with the remote-domain: Domain2, the remote-user:
User2, and the remote_user_pass: password-for-User2.

• Populate the credential map in Domain3 with the remote-domain: Domain4, the remote-user:
User4, and the remote_user_pass: password-for-User4.

Populate the credential map in Domain4 with the remote-domain: Domain3, the remote-user:
User3, and the remote_user_pass: password-for-User3.

To configure a cross-domain security credential mapping in WebLogic Remote Console, see
the credential mapping step in Enable Cross Domain Security in Oracle WebLogic Remote
Console Online Help.

Enabling Global Trust

Note

Enabling global trust between WebLogic domains has the potential to open the
servers up to man-in-the-middle attacks. Great care should be taken when enabling
trust in a production environment. Oracle recommends having strong network security
such as a dedicated communication channel or protection by a strong firewall.

In most cases, the credential mapper approach, described in Enabling Cross-Domain
Security Between WebLogic Server Domains, is preferable to the global trust
approach, because it is provides closer control over access.

WebLogic Server enables you to establish global trust between two or more domains. You do
this by specifying the same domain credential for each of the domains. By default, the domain
credential is randomly generated and therefore, no two domains will have the same domain
credential.

If you want two WebLogic domains to interoperate, you need to replace the generated
credential with a credential you select, and set the same credential in each of the domains. For
configuration information, see Enable Global Trust Between Domains in Oracle WebLogic
Remote Console Online Help.

If you enable global trust between two domains, the trust relationship is transitive and
symmetric. In other words, if Domain A trusts Domain B and Domain B trusts Domain C, then
Domain A will also trust Domain C, and Domain B and Domain C will both trust Domain A.

Global trust between domains is established so that principals in a Subject from one WebLogic
domain are accepted as principals in another domain. When this feature is enabled, identity is
passed between WebLogic domains over an RMI connection without requiring authentication
in the second domain. (For example, log in to Domain 1 as Joe. Make an RMI call to Domain 2
and Joe is still authenticated). WebLogic Server signs principals with the domain credential as
principals are created. When a Subject is received from a remote source, its principals are
validated. (The signature is recreated and, if it matches, the remote domain has the same
domain credential). If validation fails, an error is generated. If validation succeeds, the
Principals are trusted as if they were created locally.

Chapter 41
Enabling Trust Between WebLogic Server Domains

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 8

Note

Any credentials in clear text are encrypted the next time the config.xml file is
persisted to disk.

If you are enabling global trust between domains in a Managed Server environment, you must
stop the Administration Server and all the Managed Servers in both domains and then restart
them. If this step is not performed, servers that were not rebooted will not trust the servers that
were rebooted.

Keep the following points in mind when enabling global trust between WebLogic domains:

• Because a domain will trust remote principals without requiring authentication, it is possible
to have authenticated users in a domain that are not defined in the domain's authentication
database. This situation can cause authorization problems.

• Any authenticated user in a domain can access any other domain that has trust enabled
with the original domain without re-authenticating. There is no auditing of this login and
group membership is not validated. Therefore, if Joe is a member of the Administrators
group in the original domain where he authenticated, he is automatically a member of the
Administrators group for all trusted domains to which he makes RMI calls.

• If Domain 1 trusts both Domain 1 and Domain 3, Domain 1 and Domain 3 now implicitly trust
each other. Therefore, members of the Administrators Group in Domain 1 are members of
the Administrators group in Domain 3. This may not be a desired trust relationship.

• If you extended the WLSUser and WLSGroup principal classes, the custom principal classes
must be installed in the server's classpath in all domains that share trust.

To avoid these issues, Oracle recommends that rather than enabling global trust between two
domains, you should instead use the approach described in Enabling Cross-Domain Security
Between WebLogic Server Domains.

Using Jakarta Authorization
WebLogic Server supports the Jakarta Authorization specification (formerly JACC). Jakarta
Authorization can replace the EJB and servlet container deployment and authorization
provided by WebLogic Server. Configure WebLogic Server to use Jakarta Authorization by
using the command-line utility.

When you configure a WebLogic domain to use Jakarta Authorization, EJB and servlet
authorization decisions are made by the classes in the Jakarta Authorization framework. All
other authorization decisions within WebLogic Server are still determined by the WebLogic
Security Framework. For information about the WebLogic JACC provider, see Using the Java
Authorization Contract for Containers in Developing Applications with the WebLogic Security
Service.

You configure WebLogic Server to use Jakarta Authorization by specifying the following
properties in the command that starts WebLogic Server:

-Djakarta.security.jacc.PolicyConfigurationFactory.provider
-Djakarta.security.jacc.policy.provider
-Dweblogic.security.jacc.RoleMapperFactory.provider

For more information about these specifying these properties, see Enabling the WebLogic
JACC Provider in Developing Applications with the WebLogic Security Service.

Chapter 41
Using Jakarta Authorization

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 8

Note that an Administration Server and all Managed Servers in a domain need to have the
same Jakarta Authorization configuration. If you change the Jakarta Authorization setting on
the Administration Server, you should shut down the Managed Server and reboot them with the
same settings as the Administration Server to avoid creating a security vulnerability. Otherwise,
it may appear that EJBs and servlets in your domain are protected by WebLogic Security
Framework roles and policies, when in fact the Managed Servers are still operating under
Jakarta Authorization.

Viewing MBean Attributes
Use the SecurityConfigurationMBean.AnonymousAdminLookupEnabled attribute to control
whether anonymous, read-only access should be allowed to WebLogic Server MBeans from
the MBean API.

The Anonymous Admin Lookup Enabled option in the specifies whether anonymous, read-
only access to WebLogic Server MBeans should be allowed from the MBean API. With this
anonymous access, you can see the value of any MBean attribute that is not explicitly marked
as protected by the WebLogic Server MBean authorization process. This option is enabled by
default to assure backward compatibility. For greater security, you should disable this
anonymous access.

Configuring a Domain to Use JAAS Authorization
The security configuration in a WebLogic domain can be modified to use JAAS authorization,
which interprets Subjects differently from the way in which the WebLogic Security Service
does.

Principal comparison is not used by the WebLogic Security Service to determine access
decisions to protected resources. However, when principal comparison is performed in a
default WebLogic domain, the comparison of principal names is case sensitive, and only the
names of the principals are compared. To use JAAS authorization, the security configuration of
a WebLogic domain can be modified to accommodate the following principal comparison
behavior:

• The comparison of principal names is case insensitive

• The GUID and DN data in WebLogic principal objects are included in the comparison

To modify the security configuration of a WebLogic domain so that principal objects can be
used with JAAS authorization, the following MBean attributes settings are available:

SecurityConfigurationMBean.PrincipalEqualsCaseInsensitive="true"
SecurityConfigurationMBean.PrincipalEqualsCompareDnAndGuid="true"

To set these attributes in WebLogic Remote Console:

1. In the Edit Tree, go to Environment, then Domain.

2. On the Security tab, click Show Advanced Fields.

3. Turn on the Use Case-insensitive Principal Name Matching option.

4. Turn on the Use LDAP DN & GUID in Principal Matching option.

5. Click Save.

Chapter 41
Viewing MBean Attributes

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 8

Note

If a domain is configured to use the GUID and DN data in principals, there may be an
impact when interoperating with other WebLogic domains, particularly older domains,
resulting from changes made to the way identity is passed.

For information about passing identity to a WebLogic domain, see Developing Standalone
Clients for Oracle WebLogic Server.

Chapter 41
Configuring a Domain to Use JAAS Authorization

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 8

42
Configuring Jakarta Authentication Security

The Jakarta Authentication specification (formerly JASPIC) defines a service provider interface
(SPI). The Jakarta Authentication SPI is used by authentication providers that implement
message authentication mechanisms that can be integrated in server Web application
message processing. Learn how to configure Jakarta Authentication security in Oracle
WebLogic Server.
Read the Jakarta Authentication specification at https://jakarta.ee/specifications/authentication/.

This chapter includes the following sections:

• Jakarta Authentication Mechanisms Override WebLogic Server Defaults

• Prerequisites for Configuring Jakarta Authentication

• Location of Configuration Data

• Configuring Jakarta Authentication for a Domain

• Configuring Jakarta Authentication Using WLST

This section assumes that you are familiar with a basic overview of Jakarta Authentication, as
described in Jakarta Authentication Security in Understanding Security for Oracle WebLogic
Server.

Jakarta Authentication Mechanisms Override WebLogic Server
Defaults

If you configure an Authentication Configuration Provider for a Web application, it is used
instead of the WebLogic Server authentication mechanism for that Web Application. The
authentication provider from Jakarta Authentication assumes responsibility for authenticating
the user credentials and returning a Subject.

You should therefore exercise care when you specify an Authentication Configuration Provider
to make sure that it satisfies your security authentication needs.

Prerequisites for Configuring Jakarta Authentication
There are certain prerequisites for configuring Jakarta Authentication in your environment
including, how to make your own or third party server authentication module (SAM) or
Authentication Configuration Providers available to WebLogic Server.

The Jakarta Authentication programming model is described in the Jakarta Authentication
specification (https://jakarta.ee/specifications/authentication/).

A sample SAM implementation is described in Adding Authentication Mechanisms to the
Servlet Container in the GlassFish Server Open Source Edition Application Development
Guide. Although written from the GlassFish Server perspective, the tips for writing a SAM, and
the sample SAM itself, are instructive.

This section includes the following topics:

• Server Authentication Module Must Be in Classpath

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 5

https://jakarta.ee/specifications/authentication/
https://jakarta.ee/specifications/authentication/
https://javaee.github.io/glassfish/doc/5.0/application-development-guide.pdf
https://javaee.github.io/glassfish/doc/5.0/application-development-guide.pdf

• Custom Authentication Configuration Providers Must Be in Classpath

Server Authentication Module Must Be in Classpath
If you plan to configure a WebLogic Server Authentication Configuration Provider, you must
add the jar for your SAM to the system classpath via the startup scripts or the command line
used to start the WebLogic Server instance. If you do not do this, WebLogic Server is not able
to find the appropriate classes.

Custom Authentication Configuration Providers Must Be in Classpath
If you plan to configure a custom Authentication Configuration Provider, you must add the jar
for your custom Authentication Configuration Provider to the system classpath via the startup
scripts or the command line used to start the WebLogic Server instance. If you do not do this,
WebLogic Server is not able to find the appropriate classes.

Location of Configuration Data
You can use the WebLogic Scripting Tool (WLST) to configure Jakarta Authentication and the
Authentication Configuration Providers. After you configure Jakarta Authentication and the
Authentication Configuration Providers, the domain-wide Authentication Configuration Provider
configuration data is kept in the domain config.xml file in the <jaspic> element.

For example:

<jaspic>
 <auth-config-provider xsi:type="wls-auth-config-providerType">
 <name>WLSAuthConfigProvider-0</name>
 </auth-config-provider>
 </jaspic>

When you configure an Authentication Configuration Provider for a deployed Web application,
WLST updates the deployment plan (plan.xml) for the Web application with the application-
specific Authentication Configuration Provider configuration. For example:

<variable>
 <name>JASPICProvider_AuthConfigProviderName_13210476440805</name>
 <value>WLSAuthConfigProvider-0</value>
</variable>
:
<variable-assignment>
 <name>JASPICProvider_AuthConfigProviderName_13210476440805</name>
 <xpath>/weblogic-web-app/jaspic-provider/auth-config-provider-name</xpath>
</variable-assignment>

If you do not use a deployment plan for your application, you can instead add the jaspic-
provider deployment descriptor element to weblogic.xml.

jaspic-provider specifies the authConfigProvider to be registered for use during
authentication. For example, <wls:jaspic-provider>my-acp</wls:jlaspic-provider>.

Configuring Jakarta Authentication for a Domain
You can configure Jakarta Authentication (formerly JASPIC) for a domain using WebLogic
Remote Console and WLST.

By default, Jakarta Authentication is enabled for a domain.

Chapter 42
Location of Configuration Data

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 5

If you disable Jakarta Authentication for a domain, then Jakarta Authentication is disabled for
all Web applications in that domain, regardless of their configuration.

To configure Jakarta Authentication for a domain:

1. In WebLogic Remote Console, open the Edit Tree and go to Environment, then Domain.

2. On the Security tab, click Show Advanced Fields.

3. Turn on the JASPIC Enabled option.

4. Click Save and commit your changes.

5. Using WLST, configure Authentication Configuration providers. See Configuring Jakarta
Authentication Using WLST.

After you configure Jakarta Authentication properties for the domain, you can specify which
Authentication Configuration provider applies to a specific Web application. See Configure
Web Applications for JASPIC in Oracle WebLogic Remote Console Online Help.

Configuring Jakarta Authentication Using WLST
You can use WLST to configure Jakarta Authentication for a domain, and perform tasks such
as creating a WebLogic Server Authentication Configuration Provider or a custom
Authentication Configuration Provider, listing all WebLogic Server and custom Authentication
Configuration Providers, enabling and disabling Jakarta Authentication for a domain.

For information about using WLST, see Understanding the WebLogic Scripting Tool.

This section requires you to configure the following MBeans using WLST:

• JASPICMBean

• CustomAuthConfigProviderMBean

• WLSAuthConfigProviderMBean

See MBean Reference for Oracle WebLogic Server for additional MBean information.

Creating a WLS Authentication Configuration Provider
Example 42-1 creates a WLS Authentication Configuration Provider, sets the class name of the
SAM, and sets a configuration property.

After you run this example, restart WebLogic Server.

Example 42-1 Create a WLS Authentication Configuration Provider

connect('','','t3://host:port')
Please enter your username :
Please enter your password :
...
edit()
startEdit()
cd('SecurityConfiguration')
cd('mydomain')
jaspic = cmo.getJASPIC()
wacp = jaspic.createWLSAuthConfigProvider('wacp')
am = wacp.getAuthModule()
am.setClassName('com.my.auth.module.Classname')
props = Properties()
props.setProperty('property', 'value')
am.setProperties(props)

Chapter 42
Configuring Jakarta Authentication Using WLST

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 5

save()
activate()

Creating a Custom Authentication Configuration Provider
Example 42-2 creates a custom Authentication Configuration Provider, sets the class name of
this Authentication Configuration Provider, and sets a configuration property.

After you run this example, restart WebLogic Server.

Example 42-2 Create a Custom Authentication Configuration Provider

connect('','','t3://host:port')
Please enter your username :
Please enter your password :
...
edit()
startEdit()
cd('SecurityConfiguration')
cd('mydomain')
jaspic = cmo.getJASPIC()
acp = jaspic.createCustomAuthConfigProvider('cacp')
acp.setClassName('com.my.acp.Classname')
props = Properties()
props.setProperty('property', 'value')
acp.setProperties(props)
save()
activate()

Listing All WLS and Custom Authentication Configuration Providers
Example 42-3 shows how to list all Authentication Configuration Providers for a domain.

Example 42-3 List All Authentication Configuration Providers

connect('','','t3://host:port')
Please enter your username :
Please enter your password :
...
edit()
startEdit()
cd('SecurityConfiguration')
cd('mydomain')
jaspic = cmo.getJASPIC()
jaspic.getAuthConfigProviders()

Enabling Jakarta Authentication for a Domain
Example 42-4 shows how to enable Jakarta Authentication for a domain.

After you run this example, restart WebLogic Server.

Example 42-4 Enable Jakarta Authentication for a Domain

connect('','','t3://host:port')
Please enter your username :
Please enter your password :
...
edit()
startEdit()
cd('SecurityConfiguration')

Chapter 42
Configuring Jakarta Authentication Using WLST

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 5

cd('mydomain')
jaspic = cmo.getJASPIC()
jaspic.setEnabled(false)
save()
activate()

Disabling Jakarta Authentication for a Domain
Example 42-5 shows how to disable Jakarta Authentication for a domain.

After you run this example, restart WebLogic Server.

Example 42-5 Disable Jakarta Authentication for a Domain

connect('','','t3://host:port')
Please enter your username :
Please enter your password :
...
edit()
startEdit()
cd('SecurityConfiguration')
cd('mydomain')
jaspic = cmo.getJASPIC()
jaspic.setEnabled(false)
save()
activate()

Chapter 42
Configuring Jakarta Authentication Using WLST

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 5

43
Using Jakarta Security in WebLogic Server

Using the Jakarta Security specification, you can define all of the security information directly
within the application. Bundling the security configuration in the application instead of
configuring it externally improves the management of the application’s lifecycle, especially in a
world of microservices that are distributed in containers.

• Overview of Jakarta Security

• Prerequisites for Using Jakarta Security

Overview of Jakarta Security
The Jakarta Security specification defines portable authentication mechanisms, and an access
point for programmatic security using the SecurityContext interface. In WebLogic Server,
these authentication mechanisms are supported in the web container, and the
SecurityContext interfaces are supported in the Servlet and EJB containers.

WebLogic Server supports the plug-in interface for authentication,
HttpAuthenticationMechanism, and includes built-in support for the BASIC, FORM, and
Custom FORM authentication mechanisms defined in the specification. WebLogic Server also
supports the RememberMeIdentityStore interface, and built-in implementations of the
IdentityStore interface (LDAP identity store and Database identity store) as well as the
custom identity store.

The HttpAuthenticationMechanism interface is designed to capitalize on the strengths of
existing Jakarta Authentication and Servlet authentication mechanisms. The IdentityStore
interface is intended primarily for use by HttpAuthenticationMechanism implementations, but
could in theory be used by other types of authentication mechanisms (such as a Jakarta
Authentication ServerAuthModule). HttpAuthenticationMechanism implementations are not
required to use IdentityStore — they can authenticate users in any manner they choose —
but the IdentityStore interface is a useful and convenient mechanism.

The HttpAuthenticationMechanism and IdentityStore interfaces are implemented as CDI
beans, therefore they are visible to the container through CDI. For information on CDI support
in WebLogic Server, see Using Contexts and Dependency Injection for the Jakarta EE Platform
in Developing Applications for Oracle WebLogic Server.

The SecurityContext interface defines methods that allow an application to access security
information about a caller, authenticate a caller, and authorize a caller.

The programming model for Jakarta Security is defined in the specification at https://
jakarta.ee/specifications/security/.

For details about using Jakarta Security in WebLogic Server, see Using Jakarta Security in
Developing Applications with the WebLogic Security Service.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 2

https://jakarta.ee/specifications/security/
https://jakarta.ee/specifications/security/

Prerequisites for Using Jakarta Security
Using the Jakarta Security specification mechanisms does not require any specific
configuration, but you must ensure that other functionality, such as Jakarta Authentication and
Jakarta Contexts and Dependency Injection (CDI), is enabled.

To use Jakarta Security features in WebLogic Server:

• Jakarta Authentication must be enabled at the domain level to enable Jakarta Security
functionality. By default, Jakarta Authentication is enabled for a domain in WebLogic
Server. If you disable Jakarta Authentication at the domain level, Jakarta Security
functionality is also disabled.

• Web applications must include the beans.xml deployment descriptor file in the application's
WAR or EAR file, as specified by the CDI specification (https://jakarta.ee/
specifications/cdi/.

• The metadata-complete attribute in the web.xml file for the web applications must NOT be
set to true. The default in WebLogic Server is false.

• There are no special logging requirements. Audit events triggered by implementations of
the Jakarta Security specification are logged by the WebLogic Auditing Provider, if
configured.

• The Jakarta Security specification requires that group principal names are mapped to roles
of the same name by default. If the security-role-assignment element in the
weblogic.xml deployment descriptor does not declare a mapping between a security role
and one or more principals in the WebLogic Server security realm, then the role name is
used as the default principal.

Chapter 43
Prerequisites for Using Jakarta Security

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 2

https://jakarta.ee/specifications/cdi/
https://jakarta.ee/specifications/cdi/

44
Using Secured Production Mode

In a WebLogic Server domain, the domain mode determines the default values to apply to the
security configuration of the domain. Secured production mode applies the strictest default
values to the security configuration of your domain.

The domain modes, in order from least to most secure default values, are:

• Development mode

• Production mode

• Secured production mode

When you enable secured production mode, WebLogic Server automatically sets some
security configurations to more secure values. However, there are certain security
configurations that require additional configuration.

The domain mode only specifies the default values of a domain's security configuration. You
can still modify individual configurations to override the default values. Overriding default
values can help you fine tune your configuration to meet functional and security requirements,
but overriding secured production mode default values should be done with caution, as it may
result in a less secure environment.

If your domain does not meet the security criteria of a domain mode, WebLogic Server will flag
any insecure values and report them as security warnings. For more information on security
validation warnings, see Review Potential Security Issues in Securing a Production
Environment for Oracle WebLogic Server. You may also experience behavioral issues when
trying to manage your domain.

For information on the default values in each domain mode, see Understand How Domain
Mode Affects the Default Security Configuration in Securing a Production Environment for
Oracle WebLogic Server.

Although secured production mode can be a powerful tool for securing your domain, it is
limited by the complexity and sheer variety of WebLogic Server environments. To ensure your
domain is well protected, you should also review the recommendations outlined in Configuring
Security for a WebLogic Domain and in Securing a Production Environment for Oracle
WebLogic Server and then apply them as appropriate to your environment.

Changes to the Domain Mode

The domain mode is specified as part of the initial domain configuration process. Although it is
possible to change the domain mode after a domain is created, interactions between an
existing domain configuration and the configurations that are applied by the new domain mode
can lead to unexpected outcomes.

The domain mode only controls default values, therefore any configurations that you have set
explicitly will persist after a change in domain mode and supersede the values that would
otherwise be used. Additionally, if the default value of a configuration in the new domain mode
matches the existing, explicit value, it will remove the explicit configuration (and its value) from
the domain configuration. Then, if you decide to revert to your previous domain mode, the
explicit configuration will remain absent.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 13

Before you change the domain mode to secured production mode, make sure that you
carefully review your domain configuration file, config.xml, and compare its existing values to
the MBean attributes that are determined by domain mode. See Secure Values for MBean
Attributes in MBean Reference for Oracle WebLogic Server. To change the domain mode after
domain creation, see Changing the Domain Mode.

When is Secured Production Mode Enabled?
As of WebLogic 14.1.2.0.0, when you set the domain mode to production mode, it enables
secured production mode by default. In previous releases, when you enabled production
mode, secured production mode was disabled by default and you had to enable it explicitly.

If you upgrade from WebLogic Server 14.1.1.0.0 and earlier, the behavior of your domain mode
will not change. For example, when a domain in production mode is upgraded from 14.1.1.0.0
to 14.1.2.0.0 or later, it will remain in production mode with secured production mode disabled.
However, if you upgrade your non-production mode domain to 14.1.2.0.0 or later, and then
change the domain mode to production mode, it will enable secured production mode by
default.

Note

You can still use production mode with secured production mode disabled, but you
must explicitly disable secured production mode. See Change the Domain Mode in
Oracle WebLogic Remote Console Online Help.

The domain configuration file, config.xml, does not explicitly state that secured production
mode is enabled because secured production mode enabled is now the default state of
production mode.

Table 44-1 Domain Mode in the Domain Configuration File (config.xml)

WebLogic Server
Release

Secured Production Mode is Enabled Secured Production Mode is Disabled

14.1.2.0.0 and later
<production-mode-
enabled>true</production-
mode-enabled>

<production-mode-
enabled>true</production-
mode-enabled>
<secure-mode>
 <secure-mode-
enabled>false</secure-
mode-enabled>
</secure-mode>

Chapter 44
When is Secured Production Mode Enabled?

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 2 of 13

Table 44-1 (Cont.) Domain Mode in the Domain Configuration File (config.xml)

WebLogic Server
Release

Secured Production Mode is Enabled Secured Production Mode is Disabled

14.1.1.0.0 and
earlier <production-mode-

enabled>true</production-
mode-enabled>
<secure-mode>
 <secure-mode-enabled>true</
secure-
mode-enabled>
</secure-mode>

<production-mode-
enabled>true</production-
mode-enabled>

Changing the Domain Mode
You can change the domain mode on an existing domain.

Changes to the domain mode require a full domain restart - a rolling restart is not sufficient.
Oracle recommends that you use offline tools (such as WLST Offline) to modify the domain
mode. If you modify the domain mode on running domains, using tools such as WebLogic
Remote Console, you must still shut down all of the servers in the domain and then restart
them, one server at a time.

When changing the domain mode of an existing domain, consider saving the existing
config.xml file so you can compare it with the new config.xml file after the domain mode
change and assess which settings were changed. See Changes to the Domain Mode for an
explanation of the potential effects of making domain mode changes on an existing domain.

• If using WLST Offline:

1. Shut down the domain.

2. Invoke WLST Offline. See Invoking WLST in Understanding the WebLogic Scripting
Tool.

3. Run the WLST Offline script that changes your current domain mode to your target
domain mode.

Current
Domain
Mode

Target
Domain
Mode

WLST Offline Script

Development Production

Note:
Secured
Production
Mode is
enabled by
default.

readDomain('DOMAIN_NAME')
cmo.setProductionModeEnabled(true)
updateDomain()

Chapter 44
Changing the Domain Mode

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 3 of 13

Current
Domain
Mode

Target
Domain
Mode

WLST Offline Script

Development Production
(with
Secured
Production
Mode
explicitly
disabled)

readDomain('DOMAIN_NAME')
cmo.setProductionModeEnabled(true)
cd('/SecurityConfiguration/%s' %(cmo.getName()))
create('NO_NAME','SecureMode')
cd('SecureMode/NO_NAME')
set('SecureModeEnabled','false')
updateDomain()

Production
(with
Secured
Production
Mode
disabled)

Secured
Production

readDomain('DOMAIN_NAME')
cd('/SecurityConfiguration/%s/SecureMode/
NO_NAME_0' %(cmo.getName()))
set('SecureModeEnabled',true)
updateDomain()

Production Development readDomain('DOMAIN_NAME')
cmo.setProductionModeEnabled(false)
cmo.getSecurityConfiguration().getSecureMode().se
tSecureModeEnabled(false)
updateDomain()

Secured
Production

Production
(with
Secured
Production
Mode
explicitly
disabled)

readDomain('DOMAIN_NAME')
cd('/SecurityConfiguration/%s' %(cmo.getName()))
create('NO_NAME','SecureMode')
cd('SecureMode/NO_NAME')
set('SecureModeEnabled','false')
updateDomain()

Secured
Production

Development readDomain('DOMAIN_NAME')
cmo.setProductionModeEnabled(false)
updateDomain()

4. Start your domain.

• If using WebLogic Remote Console, see Change the Domain Mode in Oracle WebLogic
Remote Console Online Help.

Changes to the domain mode can affect the default URL of the Administration Server. When
SSL/TLS and the administration port are enabled (by default, both are enabled in secured
production mode), the default URL is https://hostname:9002 or t3s://hostname:9002. Take
note of the protocol and the port number. When SSL/TLS and the administration port are
disabled (by default, both are disabled in development mode), the default URL is http://
hostname:7001 or t3://hostname:7001.

When you enable secured production mode, WebLogic Server expects certain security
configurations to be configured. If they are not configured properly, it will flag settings it deems

Chapter 44
Changing the Domain Mode

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 4 of 13

insecure and possibly block traffic on ports or addresses that were previously available in less
secure domain modes.

Overriding the Domain Mode (Single Server Domains Only)
It is possible to override the current domain mode of your domain for the duration of its server
life cycle. After you restart the server, it will return to its normal domain mode.

You should only perform this task on single server domains in development or test
environments.

Note

When you override the domain mode at the command line, you will not see the
effective domain mode in the config.xml file or the WebLogic Remote Console Edit
Tree perspective. Instead, you can use WLST or the Configuration View Tree
perspective in WebLogic Remote Console to see the effective state of the domain.
See Verifying Attribute Values That Are Set on the Command Line in Command
Reference for Oracle WebLogic Server.

If you want to override the current domain mode of your domain, then run the Administration
Server start script and include a system property that determines the effective domain mode.
See Table 44-2 for the system properties and their usage.

For example, to try out production mode, run:

startWebLogic.sh -Dweblogic.ProductionModeEnabled=true

You can also set environment variables to achieve the same outcome. For example:

export DOMAIN_PRODUCTION_MODE="true"
startWebLogic.sh

Table 44-2 Overriding the domain mode at the command line

Current
Domain
Mode

Target
Domain
Mode

System Property Environment Variable

Development Production

Note:
Secured
Production
Mode is
enabled by
default.

weblogic.ProductionModeEnab
led=true

DOMAIN_PRODUCTION_MODE="tru
e"

Development Production
(with Secured
Production
Mode
disabled)

Include both system properties:
• weblogic.ProductionModeE

nabled=true
• weblogic.securemode.Secu

reModeEnabled=false

Set both environment variables:
• DOMAIN_PRODUCTION_MODE="

true"
• SECURE_PRODUCTION_MODE="

false"

Chapter 44
Changing the Domain Mode

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 5 of 13

Table 44-2 (Cont.) Overriding the domain mode at the command line

Current
Domain
Mode

Target
Domain
Mode

System Property Environment Variable

Production
(with Secured
Production
Mode
disabled)

Secured
Production

weblogic.securemode.SecureM
odeEnabled=true

SECURE_PRODUCTION_MODE="tru
e"

Production Development weblogic.ProductionModeEnab
led=false

DOMAIN_PRODUCTION_MODE="fal
se"

Secured
Production

Production
(with Secured
Production
Mode
disabled)

weblogic.securemode.SecureM
odeEnabled=false

SECURE_PRODUCTION_MODE="fal
se"

Secured
Production

Development weblogic.ProductionModeEnab
led=false

DOMAIN_PRODUCTION_MODE="fal
se"

Connecting to the Administration Server using WebLogic Remote
Console

Depending on your existing security settings, you may need to perform additional configuration
before you can manage a domain with secured production mode enabled.

1. Choose one of the options for starting an Administration Server as described in Starting
and Stopping Servers in Administering Server Startup and Shutdown for Oracle WebLogic
Server.

You may want to create a boot identity file to store user credentials for starting and
stopping an instance of WebLogic Server. See Creating a Boot Identity File for an
Administration Server in Administering Server Startup and Shutdown for Oracle WebLogic
Server. If you choose to create a boot identity file, then make sure to set appropriate
permissions on the boot.properties file and its containing folder, DOMAIN_HOME/servers/
AdminServer/security/. We recommend setting chmod 600 on boot.properties and
chmod 740 for DOMAIN_HOME/servers/AdminServer/security.

2. Connect to the domain using WebLogic Remote Console as described in Connect to an
Administration Server in Oracle WebLogic Remote Console Online Help.

The default address of your Administration Server is now https://hostname:9002 . Note
the s in https and the port number.

In secured production mode, the non-SSL/TLS listen port (typically 7001) is disabled by
default and traffic is routed over the SSL/TLS ports. If you want to configure listen ports,
see Specify Listen Ports in Oracle WebLogic Remote Console Online Help.

3. Configure custom keystores as described in Configure Keystores in Oracle WebLogic
Remote Console Online Help.

In production environments, you should configure custom keystores for identity and trust.
See Obtaining and Storing Certificates for Production Environments. If you want to use the
demo certificates provided by WebLogic Server instead, review the topics under Secured
Production Mode in Development Environments.

Chapter 44
Connecting to the Administration Server using WebLogic Remote Console

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 6 of 13

4. Make sure that SSL/TLS is configured properly, as described in Set Up TLS in Oracle
WebLogic Remote Console Online Help.

5. Enable host name verification, as described in Enable Host Name Verification in Oracle
WebLogic Remote Console Online Help.

6. Save and commit your changes.

7. Restart the Administration Server.

Starting Managed Servers using WebLogic Remote Console
If you use WebLogic Remote Console to start Managed Servers, you must configure Node
Manager to register the properties for your custom keystore.

1. Ensure Node Manager is configured properly to work with WebLogic Remote Console, as
described in Start Managed Servers in Oracle WebLogic Remote Console Online Help.

2. Update the nodemanager.properties file with the following attributes and their values:

• CustomIdentityAlias

• CustomIdentityKeyStoreFileName

• CustomIdentityPrivateKeyPassPhrase

• CustomIdentityKeyStorePassPhrase

• KeyStores

See Node Manager Properties in Administering Node Manager for Oracle WebLogic
Server.

3. Optional: If multiple server instances run on the same computer in the domain and the
domain-wide administration port is enabled, then you must perform one of the following:

• Host the server instances on a multi-homed machine and assign each server instance
a unique listen address

• Override the domain-wide port on all but one of the servers instances on the machine.
On the Environment: Servers: myServer page for each Managed Server, enter a
unique port value in the Local Administration Port Override field.

4. Save and commit your changes.

5. Start the Managed Server.

Connecting to the Administration Server using WLST
You must perform additional configuration before you can use the WebLogic Scripting Tool to
connect to a domain with secured production mode enabled.

1. Start the Administration Server.

You may want to create a boot identity file to store user credentials for starting and
stopping an instance of WebLogic Server. See Creating a Boot Identity File for an
Administration Server in Administering Server Startup and Shutdown for Oracle WebLogic
Server. If you choose to create a boot identity file, then make sure to set appropriate
permissions on the boot.properties file and its containing folder, DOMAIN_HOME/servers/
AdminServer/security/. We recommend setting chmod 600 on boot.properties and
chmod 740 for DOMAIN_HOME/servers/AdminServer/security.

Chapter 44
Starting Managed Servers using WebLogic Remote Console

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 7 of 13

2. Update the WLST_PROPERTIES environment variable to configure keystores:

export WLST_PROPERTIES="-Dweblogic.security.TrustKeyStore=CustomTrust -
Dweblogic.security.CustomTrustKeyStoreFileName=trustKeystoreFile -
Dweblogic.security.CustomTrustKeyStorePassPhrase=trustKeyStorePassword"

3. Connect to the domain using the WLST as described in Invoking WLST in Understanding
the WebLogic Scripting Tool.

Note

The default address of an Administration Server in secured production mode is
t3s://hostname:9002. Note the s in t3s and the port number.

Starting Managed Servers using a Start Script
You can start Managed Servers using a start script.

1. Create a boot identity file for each Managed Server. See Creating Boot Identity Files for
Managed Servers in Administering Server Startup and Shutdown for Oracle WebLogic
Server.

Make sure to set appropriate permissions on the file and its containing folder. We
recommend setting chmod 600 on the boot.properties file and chmod 740 for the folder,
DOMAIN_HOME/servers/managedServerName/security/. If a boot.properties file is not
available, then you must include a username and password when starting servers from the
command line.

2. Specify the keystore values for the Managed Server by adding the following arguments to
the JAVA_OPTIONS environment variable.

• -Dweblogic.security.SSL.trustedCAKeyStore

• -Dweblogic.security.SSL.trustedCAKeyStorePassPhrase

For example:

export JAVA_OPTIONS="-
Dweblogic.security.SSL.trustedCAKeyStore=trustKeystoreFile -
Dweblogic.security.SSL.trustedCAKeyStorePassPhrase=trustKeyStorePassword"

3. Run the startManagedWebLogic script as described in Starting Managed Servers with a
Startup Script in Administering Server Startup and Shutdown for Oracle WebLogic Server.

For example:

startManagedWebLogic.sh managedServerName https://adminHostname:adminPort

Stopping Servers
• To shut down a server instance from WebLogic Remote Console, see Stop a Server in

Oracle WebLogic Remote Console Online Help.

• To shut down a server instance with a script, see Shutting Down Servers with a Stop Script
in Administering Server Startup and Shutdown for Oracle WebLogic Server.

Chapter 44
Starting Managed Servers using a Start Script

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 8 of 13

Note

– If you have not added arguments for your keystores to the JAVA_OPTIONS
environment variable, then you must include them when stopping the server.

– If you do not have a boot.properties file configured, then you will need to
include the username and password at the command line.

– If you want to use HTTPS instead of T3s as the protocol in the domain URL ,
you must enable tunnelling and default internal servlets. Set
ServerMBean.TunnelingEnabled to true and
ServerMBean.DefaultInternalServletsDisabled to false.

For example:

export JAVA_OPTIONS="-
Dweblogic.security.SSL.trustedCAKeyStore=trustKeystoreFile -
Dweblogic.security.SSL.trustedCAKeyStorePassPhrase=trustKeyStorePassword"
To stop a Managed Server
stopManagedWebLogic.sh managedServerName t3s://adminHostname:adminPort
[wlsUsername wlsPassword]
To stop the Administration Server
export ADMIN_URL="t3s://adminHostname:adminPort"
stopWebLogic.sh [wlsUsername wlsPassword]

Secured Production Mode in Development Environments
If you want to assess the features of secured production mode but do not want to expend the
effort to set up custom keystores, it is possible to configure WebLogic Server to use secured
production mode with the demonstration keystores included with WebLogic Server.

For information on the demonstration keystores, see Using Keystores and Certificates in a
Development Environment.

Note

The following procedures are suitable for testing and development purposes only. Do
not use demo keystores in a true production environment.

For production environments, refer to Connecting to the Administration Server using
WebLogic Remote Console or Connecting to the Administration Server using WLST
instead.

• Using Secured Production Mode with Demonstration Keystores

Chapter 44
Secured Production Mode in Development Environments

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 9 of 13

Using Secured Production Mode with Demonstration Keystores
If you plan to use the demo keystores in a domain that has secured production mode enabled,
then you may need to perform additional configuration before you can start your domain.

Note

The following procedures are suitable for testing and development purposes only. Do
not use demo keystores in a true production environment.

For production environments, refer to Connecting to the Administration Server using
WebLogic Remote Console or Connecting to the Administration Server using WLST
instead.

1. Set the domain mode to secured production mode using one of the following methods:

• Create a new domain and select secured production mode as the domain mode when
prompted.

Creating a new domain allows you to configure many of the settings that are
necessary for secured production mode in a single procedure and reduces the
likelihood of conflicting configurations.

See Creating a WebLogic Domain in Creating WebLogic Domains Using the
Configuration Wizard.

• Modify an existing domain to use secured production mode.

See Changing the Domain Mode.

2. Choose one of the options for starting an Administration Server as described in Starting
and Stopping Servers in Administering Server Startup and Shutdown for Oracle WebLogic
Server.

You may want to create a boot identity file to store user credentials for starting and
stopping an instance of WebLogic Server. See Creating a Boot Identity File for an
Administration Server in Administering Server Startup and Shutdown for Oracle WebLogic
Server. If you choose to create a boot identity file, then make sure to set appropriate
permissions on the boot.properties file and its containing folder, DOMAIN_HOME/servers/
AdminServer/security/. We recommend setting chmod 600 on boot.properties and
chmod 740 for DOMAIN_HOME/servers/AdminServer/security.

3. Connect to the domain using WebLogic Remote Console as described in Connect to an
Administration Server in Oracle WebLogic Remote Console Online Help.

The default address of your Administration Server is now https://hostname:9002. Note
the s in https and the port number.

In secured production mode, the non-SSL/TLS listen port (typically 7001) is disabled by
default and traffic is routed over the SSL/TLS ports. If you want to configure listen ports,
see Specify Listen Ports in Oracle WebLogic Remote Console Online Help.

4. Make sure that WebLogic Server is not using the demo keystores provided by the Oracle
Platform Security Services (OPSS) Keystore Service (KSS).

a. In WebLogic Remote Console, in the Edit Tree, go to Environment, then Domain.

b. On the Security tab, click Show Advanced Fields.

Chapter 44
Secured Production Mode in Development Environments

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 10 of 13

c. Turn off the Use KSS for Demo option.

d. Click Save.

5. Make sure that SSL/TLS is configured properly, as described in Set Up TLS in Oracle
WebLogic Remote Console Online Help.

6. Save and commit your changes and then restart the Administration Server.

7. If your domain includes Managed Servers, and you plan to use WebLogic Remote Console
to start them, perform these steps too:

a. Ensure Node Manager is configured properly to work with WebLogic Remote Console,
as described in Start Managed Servers in Oracle WebLogic Remote Console Online
Help.

b. Add UseKSSForDemo=False to the nodemanager.properties file.

See Node Manager Properties in Administering Node Manager for Oracle WebLogic
Server.

c. Optional: If multiple server instances run on the same computer in the domain and the
domain-wide administration port is enabled, then you must perform one of the
following:

• Host the server instances on a multi-homed machine and assign each server
instance a unique listen address

• Override the domain-wide port on all but one of the servers instances on the
machine. On the Environment: Servers: myServer page for each managed
server, enter a unique port value in the Local Administration Port Override field.

d. Save and commit your changes.

e. Start the Managed Server.

Using WLST on Domains using Demo Keystores
When using WLST, you must perform additional configuration to support the use of the
insecure demo keystores in domains with secured production mode enabled.

1. Start the Administration Server.

You may want to create a boot identity file to store user credentials for starting and
stopping an instance of WebLogic Server. See Creating a Boot Identity File for an
Administration Server in Administering Server Startup and Shutdown for Oracle WebLogic
Server. If you choose to create a boot identity file, then make sure to set appropriate
permissions on the boot.properties file and its containing folder, DOMAIN_HOME/servers/
AdminServer/security/. We recommend setting chmod 600 on boot.properties and
chmod 740 for DOMAIN_HOME/servers/AdminServer/security.

2. Update the WLST_PROPERTIES environment variable to configure keystores:

export WLST_PROPERTIES="-Dweblogic.RootDirectory=DOMAIN_HOME -
Dweblogic.security.TrustKeyStore=DemoTrust"

If you receive a host name verification error, and you cannot specify the host name in the
URL to match the certificate, then you can add -
Dweblogic.security.SSL.ignoreHostnameVerification=true to the WLST_PROPERTIES
environment variable. This will bypass the host name verification.

3. Connect to the domain using the WLST as described in Invoking WLST in Understanding
the WebLogic Scripting Tool.

Chapter 44
Secured Production Mode in Development Environments

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 11 of 13

Note

The default address of an Administration Server in secured production mode is
t3s://hostname:9002. Note the s in t3s and the port number.

Starting Managed Servers using Demo Keystores using a Start Script
If your domain is using demo keystores, you can start Managed Servers using a start script.

1. Create a boot identity file for each Managed Server. See Creating Boot Identity Files for
Managed Servers in Administering Server Startup and Shutdown for Oracle WebLogic
Server.

Make sure to set appropriate permissions on the file and its containing folder. We
recommend setting chmod 600 on the boot.properties file and chmod 740 for the folder,
DOMAIN_HOME/servers/managedServerName/security/. If a boot.properties file is not
available, then you must include a username and password when starting servers from the
command line.

2. Run the startManagedWebLogic script as described in Starting Managed Servers with a
Startup Script in Administering Server Startup and Shutdown for Oracle WebLogic Server.

For example:

startManagedWebLogic.sh managedServerName https://adminHostname:adminPort

Stopping Servers with Demo Keystores
• To shut down a server instance from WebLogic Remote Console, see Stop a Server in

Oracle WebLogic Remote Console Online Help.

• To shut down a server instance with a script, see Shutting Down Servers with a Stop Script
in Administering Server Startup and Shutdown for Oracle WebLogic Server.

Note

– If you have not added arguments for your keystores to the JAVA_OPTIONS
environment variable, then you must include them when stopping the server.

– If you do not have a boot.properties file configured, then you will need to
include the username and password at the command line.

– If you want to use HTTPS instead of T3s as the protocol in the domain URL ,
you must enable tunnelling and default internal servlets. Set
ServerMBean.TunnelingEnabled to true and
ServerMBean.DefaultInternalServletsDisabled to false.

For example:

export JAVA_OPTIONS="-Dweblogic.security.TrustKeyStore=DemoTrust"
stopManagedWebLogic.sh managedServerName t3s://adminHostname:adminPort
[wlsUsername wlsPassword]
To stop the Administration Server

Chapter 44
Secured Production Mode in Development Environments

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 12 of 13

export ADMIN_URL="t3s://adminHostname:adminPort"
stopWebLogic.sh [wlsUsername wlsPassword]

Using Secured Production Mode without SSL/TLS
By default, when domains in secured production mode start, they use the default SSL/TLS and
Administration Channel. If your domain or its start mechanism is not configured properly, you
will not be able to connect. However, you can modify the domain to disregard the SSL/TLS
requirements.

1. In WebLogic Remote Console, in the Edit Tree, go to Environment, then Domain.

2. Turn on the Listen Port Enabled option.

3. Turn off the Enable Administration Port option.

4. Turn off the SSL Enabled option.

5. Click Save.

6. If your domain contains clusters, then go to Environment, then Clusters. On each cluster,
make the following change:

a. On the Replication tab, turn off Secure Replication Enabled.

b. Click Save.

7. Commit your changes.

8. Restart your Administration Server and all of your Managed Servers.

You can also use WLST Offline to disable the SSL/TLS requirements. See Example: Disabling
TLS/SSL on a Domain in Secured Production Mode in Understanding the WebLogic Scripting
Tool.

Chapter 44
Using Secured Production Mode without SSL/TLS

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 13 of 13

Part VIII
Appendixes

Supplemental and reference information for Oracle WebLogic Server security.

• Keytool Command Summary

• Interoperating With Keystores From Prior Versions

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Page 1 of 1

A
Keytool Command Summary

The keytool commands are commonly used for creating and using JKS and PKCS12 keystores
with Oracle WebLogic Server.
In Table A-1, an option surrounded by brackets ([]) indicates that if you omit the option from
the command, you are subsequently prompted to enter that option's value. For example, if you
follow Oracle's strong recommendation to omit command options for specifying passwords,
you are prompted for those passwords after you enter the command, as in the following
example. (User input is shown in bold.)

C:\DOMAIN_NAME>keytool -genkeypair -keystore MyKeyStore
Enter keystore password:
Re-enter new password:

Unlike passwords that are specified in command-line options, a password entered in response
to a prompt is not echoed in the command window and is not captured in logs. This practice
helps keep your passwords secure.

For detailed documentation for the Java keytool utility, see the keytool utility section in JDK
Tool Specifications.

Table A-1 Commonly Used keytool Commands

Command Description

keytool -genkeypair -keystore keystorename
-storepass keystorepassword -storetype
keystoretype

Generates a key pair (a public key and associated
private key) and self-signed digital certificate in a
keystore. If the keystore does not exist, it is
created.

keytool -importcert -alias
aliasforprivatekey
-file privatekeyfilename.pem
-keyfilepass privatekeypassword
-keystore keystorename -storepass
keystorepassword -storetype keystoretype

Updates the self-signed digital certificate with one
signed by a trusted CA.

keytool -importcert -alias rootCA
-trustcacerts -file RootCA.pem
-keystore trust.jks -storepass
keystorepassword -storetype keystoretype

keytool -importcert -alias intermediate
-trustcacerts -file Intermediate.pem
-keystore keystorename -storepass
keystorepassword -storetype keystoretype

Creates a custom keystore to be used for holding
an intermediate CA certificate.

• The first keytool command creates the
keystore, trust.jks, which holds the root CA
certificate.

• The second keytool command imports the
intermediate CA certificate into trust.jks.

This enables WebLogic Server's SSL
implementation to transmit the intermediate
certificate with the server's public certificate to the
client during the SSL handshake.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-1 of A-2

https://docs.oracle.com/en/java/javase/17/docs/specs/man/index.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/index.html

Table A-1 (Cont.) Commonly Used keytool Commands

Command Description

keytool -importcert -alias
aliasfortrustedca
-trustcacerts -file trustedcafilename.pem
-keystore keystorename -storepass
keystorepassword -storetype keystoretype

Loads a trusted CA certificate into a keystore. If the
keystore does not exist, it is created.

keytool -certreq -alias alias
-sigalg sigalg
-file certreq_file
-keyfilepass privatekeypassword
-storetype keystoretype
-keystore keystorename
-storepass keystorepassword

Generates a Certificate Signing Request (CSR),
using the PKCS#10 format, and a self-signed
certificate with a private key.

Stores the CSR in the specified certreq_file,
and the certificate/private key pair as a key entry in
the specified keystore under the specified alias.

keytool -list -keystore keystorename
Displays the contents of the keystore.

keytool -delete -keystore keystorename

-storepass keystorepassword

-alias privatekeyalias

Deletes the entry identified by the specified alias
from the keystore.

keytool -help
Provides online help for keytool.

Appendix A

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix A-2 of A-2

B
Interoperating With Keystores From Prior
Versions

Learn how to use keystores in WebLogic Server version 14.1.2.0.0 or later with keystores in a
previous release of Oracle WebLogic Server.
If you are using WebLogic Server 14.1.2.0.0 or later together with an earlier version of
WebLogic Server, be aware that the behavior of the demo CA certificate and demo certificates
changed in 14.1.2.0.0.

From WebLogic Server 12.1.2 to 14.1.1.0.0, all installations of WebLogic Server shared the
same demo CA and its paired private key. As of WebLogic Server 14.1.2.0.0, a unique demo
CA is generated for each domain.

WebLogic Server 12.2.1.4.0 through 14.1.1.0.0

If you upgrade to WebLogic Server 14.1.2.0.0 or later from a previous release, then your
upgraded domain will continue to use the demo CA certificate and demo certificates from its
previous release.

If you plan to use WebLogic Server 14.1.2.0.0 or later together with a previous release, then be
aware of the following changes:

• Whenever a new domain is created, it generates a unique demo CA certificate.

• The demo identity keystore is now in PKCS12 format and located at DOMAIN_HOME/
security/DemoIdentity.p12

• The demo trust keystore is now in PKCS12 format and located at DOMAIN_HOME/security/
DemoTrust.p12

• The expiration period for the new demo CA certificate and demo certificates is significantly
shortened compared to previous releases. The demo certificates expire after 6 months and
the demo CA certificate expires after 5 years. For continuity of service, renew them prior to
expiration.

Administering Security for Oracle WebLogic Server
G31901-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 8, 2025
Appendix B-1 of B-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Information
	Security Examples in the WebLogic Server Distribution
	New and Changed WebLogic Server Features

	Conventions

	Part I Overview of WebLogic Server Security Administration
	1 Security Management Concepts
	Security Realms in WebLogic Server
	Security Providers
	Security Policies and WebLogic Resources
	WebLogic Resources
	Deployment Descriptors and WebLogic Remote Console

	The Default Security Configuration in WebLogic Server
	Configuring WebLogic Security: Main Steps
	Methods of Configuring Security
	How Passwords Are Protected in WebLogic Server

	2 WebLogic Server Security Standards
	Supported Security Standards
	Supported FIPS Standards and Cipher Suites

	3 Configuring Security for a WebLogic Domain
	Performing a Secure Installation of WebLogic Server
	Before Installing WebLogic Server
	While Running the Installation Program
	Immediately After Installation is Complete

	Creating a WebLogic Domain for Production Use
	Securing the Domain After You Have Created It
	Obtaining Private Keys, Digital Certificates, and Trusted Certificate Authority Certificates
	Storing Private Keys, Digital Certificates, and Trusted Certificate Authority Certificates
	Protecting User Accounts
	Using Connection Filters
	Using JEP 290 in Oracle WebLogic Server
	How WebLogic Server Uses JEP 290 Blocklists and Allowlists
	Customizing JEP 290 Filters Using Properties
	Using Dynamic Blocklist Configuration Files
	Using an Allowlist for JEP 290 Filtering
	Customizing the Allowlist After Recording

	Enabling Filter Logging
	Understanding the Filter Order Preference
	Setting the Deserialization Timeout Interval

	JTA TransactionLoggable Allowlist

	4 Customizing the Default Security Configuration
	Why Customize the Default Security Configuration?
	Before You Create a New Security Realm
	Creating and Configuring a New Security Realm: Main Steps
	Using Automatic Realm Restart

	Part II Configuring Security Providers
	5 About Configuring WebLogic Security Providers
	When Do You Need to Configure a Security Provider?
	Reordering Security Providers
	Enabling Synchronization in Security Policy and Role Modification at Deployment

	6 Configuring Authorization and Role Mapping Providers
	Configuring an Authorization Provider
	Configuring the WebLogic Adjudication Provider
	Configuring a Role Mapping Provider

	7 Configuring the WebLogic Auditing Provider
	Auditing Provider Overview
	Events Logged by the WebLogic Auditing Provider
	Configuration Options
	Auditing ContextHandler Elements
	Configuration Auditing
	Enabling Configuration Auditing

	Configuration Auditing Messages
	Audit Events and Auditing Providers

	8 Configuring Credential Mapping Providers
	Configuring a WebLogic Credential Mapping Provider
	Configuring a PKI Credential Mapping Provider
	PKI Credential Mapper Attributes
	Credential Actions

	Configuring a SAML 2.0 Credential Mapping Provider for SAML 2.0
	SAML 2.0 Credential Mapping Provider Attributes
	Service Provider Partners
	Partner Lookup Strings Required for Web Service Partners
	Lookup String Syntax
	Specifying Default Partners

	Management of Partner Certificates
	Java Interface for Configuring Service Provider Partner Attributes

	9 Configuring the Certificate Lookup and Validation Framework
	Overview of the Certificate Lookup and Validation Framework
	CLV Security Providers Provided by WebLogic Server
	CertPath Provider
	Certificate Registry

	Part III Configuring Authentication Providers
	10 About Configuring the Authentication Providers in WebLogic Server
	Choosing an Authentication Provider
	Using More Than One Authentication Provider
	Setting the JAAS Control Flag Option
	Changing the Order of Authentication Providers

	11 Configuring the WebLogic Authentication Provider
	About the WebLogic Authentication Provider
	Setting User Attributes

	12 Configuring LDAP Authentication Providers
	LDAP Authentication Providers Included in WebLogic Server
	Requirements for Using an LDAP Authentication Provider
	Configuring an LDAP Authentication Provider: Main Steps
	Accessing Other LDAP Servers
	Enabling an LDAP Authentication Provider for SSL
	Dynamic Groups and WebLogic Server
	Use of GUID and LDAP DN Data in WebLogic Principals
	Configuring Users and Groups in the Oracle Internet Directory Authentication Provider
	Configuring User and Group Name Types
	Changing the User Name Attribute Type
	Changing the Group Name Attribute Type

	Configuring Static Groups

	Example of Configuring the Oracle Internet Directory Authentication Provider
	Configuring Failover for LDAP Authentication Providers
	LDAP Failover Example 1
	LDAP Failover Example 2

	Configuring an Authentication Provider for Oracle Unified Directory
	Following Referrals in the Active Directory Authentication Provider
	Improving the Performance of LDAP Authentication Providers
	Optimizing the Group Membership Caches
	Optimizing the Connection Pool Size and User Cache
	Optimizing the Principal Validator Cache
	Configuring the Active Directory Authentication Provider to Improve Performance
	Analyzing the Generic LDAP Authenticator Cache Statistics
	Testing the LDAP Connection During Configuration

	13 Configuring RDBMS Authentication Providers
	About Configuring the RDBMS Authentication Providers
	Common RDBMS Authentication Provider Attributes
	Data Source Attribute
	Group Searching Attributes
	Group Caching Attributes

	Configuring the SQL Authentication Provider
	Password Attributes
	SQL Statement Attributes

	Configuring the Read-Only SQL Authenticator
	Configuring the Custom DBMS Authenticator
	Plug-In Class Attributes

	14 Configuring the SAML Authentication Provider
	15 Configuring the Password Validation Provider
	About the Password Validation Provider
	Password Composition Rules for the Password Validation Provider
	Using the Password Validation Provider with the WebLogic Authentication Provider
	Using the Password Validation Provider with an LDAP Authentication Provider
	Using WLST to Create and Configure the Password Validation Provider
	Creating an Instance of the Password Validation Provider
	Specifying the Password Composition Rules

	16 Configuring Identity Assertion Providers
	About the Identity Assertion Providers
	How an LDAP X509 Identity Assertion Provider Works
	Configuring an LDAP X509 Identity Assertion Provider: Main Steps
	Configuring a Negotiate Identity Assertion Provider
	Configuring a SAML 2.0 Identity Assertion Provider for SAML 2.0
	Identity Provider Partners
	Partner Lookup Strings Required for Web Service Partners
	Management of Partner Certificates
	Java Interface for Configuring Identity Provider Partner Attributes

	Ordering of Identity Assertion for Servlets
	Configuring Identity Assertion Performance in the Server Cache
	Optimizing the Identity Assertion Cache Service

	Authenticating a User Not Defined in the Identity Store
	How Virtual User Authentication Works in a WebLogic Domain
	Configuring Two-Way SSL and Managing Certificates Securely
	Customizing the WebLogic Identity Assertion Provider (DefaultIdentityAsserter)
	Configuring the Virtual User Authentication Provider
	Using WLST to Configure Virtual User Authentication

	Configuring a User Name Mapper
	Configuring a Custom User Name Mapper

	17 Configuring the Virtual User Authentication Provider
	About the Virtual User Authentication Provider
	Adding the Virtual User Authentication Provider to the Security Realm

	18 Configuring the Oracle Identity Cloud Integrator Provider
	About the Oracle Identity Cloud Integrator Provider
	Prerequisites for Configuring the Oracle Identity Cloud Integrator Provider
	Configuring the Oracle Identity Cloud Integrator Provider: Main Steps and Examples
	Configuring TLS/SSL for the Oracle Identity Cloud Integrator Provider
	Using the Oracle Identity Cloud Integrator Provider in FIPS Mode
	Authorization and Remote User HTTP Header Support
	Enabling Authorization and REMOTE_USER Header Support: Main Steps
	Ordering of Identity Assertion Headers

	Handling Authentication Failures

	19 Configuring the WebLogic OpenID Connect Provider
	About the WebLogic OpenID Connect Provider
	Configure the WebLogic OpenID Connect Identity Assertion Provider in WebLogic Remote Console
	Preparing Web Applications for the WebLogic OpenID Connect Provider

	Part IV Configuring Single Sign-On
	20 Configuring Single Sign-On with Microsoft Clients
	Overview of Single Sign-On with Microsoft Clients
	System Requirements for SSO with Microsoft Clients
	Host Computer Requirements for Supporting SSO with Microsoft Clients
	Client Computer Requirements for Supporting Microsoft Clients Using SSO

	Single Sign-On with Microsoft Clients: Main Steps
	Configuring Your Network Domain to Use Kerberos
	Creating a Kerberos Identification for WebLogic Server
	Step 1: Create a User Account for the Host Computer
	Step 2: Configure the User Account to Comply with Kerberos
	Step 3: Define a Service Principal Name and Create a Keytab for the Service
	Defining an SPN and Creating a Keytab on Windows Systems
	Defining an SPN and Creating a Keytab on UNIX Systems

	Step 4: Verify Correct Setup

	Configuring Microsoft Clients to Use Windows Integrated Authentication
	Configuring a .NET Web Service
	Configuring an Internet Explorer Browser
	Configure Local Intranet Domains
	Configure Intranet Authentication
	Verify the Proxy Settings
	Set Integrated Authentication for Older Internet Explorer Versions

	Configuring a Mozilla Firefox Browser
	Configuring a Java SE Client Application

	Creating a JAAS Login File
	Configuring the Identity Assertion Provider
	Using Startup Arguments for Kerberos Authentication with WebLogic Server
	Verifying Configuration of SSO with Microsoft Clients

	21 Configuring Single Sign-On with Web Browsers and HTTP Clients Using SAML
	Configuring SAML Services
	SAML for Web Single Sign-On Scenario API Example

	22 Configuring SAML 2.0 Services
	Configuring SAML 2.0 Services: Main Steps
	Configuring SAML 2.0 General Services
	About SAML 2.0 General Services
	Publishing and Distributing the Metadata File

	Configuring an Identity Provider Site for SAML 2.0 Single Sign-On
	Configure the SAML 2.0 Credential Mapping Provider
	Configure SAML 2.0 Identity Provider Services
	Enable the SAML 2.0 Identity Provider Site
	Specify if Authentication Requests Must Be Signed
	Specify a Custom Login Web Application
	Enable Binding Types
	Configure Assertion Encryption
	Publish Your Site's Metadata File

	Create and Configure Web Single Sign-On Service Provider Partners
	Obtain Your Service Provider Partner's Metadata File
	Create Partner and Enable Interactions
	Configure How Assertions are Generated
	Configure How Documents Are Signed
	Configure Artifact Binding and Transport Settings

	Configuring a Service Provider Site for SAML 2.0 Single Sign-On
	Configure the SAML 2.0 Identity Assertion Provider
	Configure the SAML Authentication Provider
	Configure SAML 2.0 General Services
	Configure SAML 2.0 Service Provider Services
	Enable the SAML 2.0 Service Provider Site
	Specify How Documents Must Be Signed
	Specify How Authentication Requests Are Managed
	Enable Binding Types
	Set Default URL
	Configure Assertion Encryption Key
	Configure SAML Single Logout

	Create and Configure Web Single Sign-On Identity Provider Partners
	Obtain Your Identity Provider Partner's Metadata File
	Create Partner and Enable Interactions
	Configure Authentication Requests and Assertions
	Configure Redirect URIs
	Configure Binding and Transport Settings

	Configuring SAML Encryption Using WLST
	Viewing Partner Site, Certificate, and Service Endpoint Information
	Web Application Deployment Considerations for SAML 2.0
	Deployment Descriptor Recommendations
	Use of relogin-enabled with CLIENT-CERT Authentication
	Use of Non-default Cookie Name

	Login Application Considerations for Clustered Environments
	Enabling Force Authentication and Passive Attributes is Invalid
	Enabling SAML SLO on Web Applications
	Enabling Synchronized Session Timeout

	23 Enabling Debugging for SAML 2.0
	About SAML Debug Scopes and Attributes
	Enabling Debugging Using the Command Line
	Enabling Debugging Using WebLogic Remote Console
	Enabling Debugging Using the WebLogic Scripting Tool
	Sending Debug Messages to Standard Out

	Part V Managing Security Information
	24 Migrating Security Data
	Overview of Security Data Migration
	Migration Concepts
	Formats and Constraints Supported by WebLogic Security Providers
	Migrating Data with WLST

	25 Managing the RDBMS Security Store
	Security Providers that Use the RDBMS Security Store
	Configuring the RDBMS Security Store
	Create a Domain with the RDBMS Security Store
	Use WLST Offline to Create the RDBMS Security Store
	Create Domain with RDBMS Security Store Example
	Oracle Database Example
	MS-SQL Example
	DB2 Example

	Testing the Database Connection

	Create RDBMS Tables in the Security Datastore
	Configure a JMS Topic for the RDBMS Security Store
	Configuring JMS Connection Recovery in the Event of Failure

	Upgrading a Domain to Use the RDBMS Security Store

	26 Managing the Embedded LDAP Server
	Configuring the Embedded LDAP Server
	Embedded LDAP Server Replication
	Viewing the Contents of the Embedded LDAP Server from an LDAP Browser
	Exporting and Importing Information in the Embedded LDAP Server
	LDAP Access Control Syntax
	The Access Control File
	Access Control Location
	Access Control Scope
	Access Rights
	Attribute Permissions
	Entry Permissions

	Attributes Types
	Subject Types
	Grant/Deny Evaluation Rules

	Backup and Recovery

	Part VI Configuring SSL
	27 Overview of Configuring SSL in WebLogic Server
	SSL: An Introduction
	One-Way and Two-Way SSL
	Java Secure Socket Extension (JSSE) SSL Implementation Support

	Setting Up SSL/TLS: Main Steps
	SSL Session Behavior

	28 Configuring Keystores
	About Configuring Keystores in WebLogic Server
	About Private Keys, Digital Certificates, and Trusted Certificate Authorities
	Using Separate Keystores for Identity and Trust
	Using PKCS12 Keystores in WebLogic Server
	Using the Certificate Management Service
	Certificate Issuers
	Domain Keystores
	Using Certificate Management Service with Node Manager
	Configuring the Certificate Management Service

	Configuring Keystores: Main Steps
	How WebLogic Server Locates Trust

	Creating a Keystore
	Keystore File Name Requirements
	Creating a Keystore Using DemoCertGen
	Regenerating Demo CA and Demo Certificates using DemoCertGen

	Creating a Keystore Using Keytool
	Creating a Keystore Using ImportPrivateKey

	Using Keystores and Certificates in a Development Environment
	Using the Demonstration Keystores
	Creating Demonstration Certificates Using CertGen
	About CertGen
	Using CertGen to Create a Certificate and Private Key
	CertGen Usage Notes
	Limitation on CertGen Usage

	Using Your Own Certificate Authority
	Converting a Microsoft p7b Format to PEM Format
	Configuring Demo Certificates for Clients

	Obtaining and Storing Certificates for Production Environments
	Generating a Certificate Signing Request
	Importing Certificates into the Trust and Identity Keystores

	Configuring Keystores with WebLogic Server
	Configuring a Keystore Using WLST

	Viewing Keystore Contents
	Setting Certificate Expiry Notifications
	Replacing Expiring Certificates
	Creating a Keystore: An Example
	Supported Formats for Identity and Trust Certificates
	Obtaining a Digital Certificate for a Web Browser

	29 Using Host Name Verification
	Using the BEA Host Name Verifier
	Configuring the BEA Host Name Verifier

	Using the Wildcard Host Name Verifier
	How the Wildcard Host Name Verifier Works
	Configuring the Wildcard Host Name Verifier

	Using a Custom Host Name Verifier
	Using a Host Name Verifier on Mac OS X Platforms

	30 Specifying a Client Certificate for an Outbound Two-Way SSL Connection
	Add a Client Certificate to the Identity Keystore
	Initiate the Outbound Two-Way SSL Connection
	Restore the Use of the Server Identity Certificate

	31 SSL Debugging
	About the SSL Debug Trace
	Command-Line Properties for Enabling SSL Debugging

	32 SSL Certificate Validation
	Controlling the Level of Certificate Validation
	Accepting Certificate Policies in Certificates
	Checking Certificate Chains
	Using Certificate Lookup and Validation Providers
	How SSL Certificate Validation Works in WebLogic Server
	Troubleshooting Problems with Certificate Validation

	33 Using JCE Providers with WebLogic Server
	Using the Jipher JCE Provider
	Using the JDK JCE Provider

	34 Enabling FIPS Mode
	FIPS Overview
	Enabling FIPS Mode with Jipher JCE and SunJSSE Providers
	Enabling FIPS Mode From Java Options with Jipher
	Enabling FIPS 140-2 Mode From java.security

	Removing Dell JCE and Dell BSAFE JSSE Providers
	Creating FIPS 140-2 Compliant Keystores
	Converting a Non-FIPS Compliant Keystore Using the Jipher JCE Provider
	Converting the Default JKS Keystore for FIPS Compliance

	Important Considerations When Using Web Services
	SHA-1 Secure Hash Algorithm Not Supported
	X509PKIPathv1 token Not Supported

	35 Specifying the SSL/TLS Protocol Version
	About the SSL Version Used in the Handshake
	Using the weblogic.security.SSL.protocolVersion System Property
	Using the weblogic.security.SSL.minimumProtocolVersion System Property
	Protocols Enabled with the JSSE-Based SSL Implementation

	Using the weblogic.security.ssl.sslcontext.protocol System Property

	36 Using the JSSE-Based SSL Implementation
	Using System Properties with the JSSE-Based SSL Implementation
	Cipher Suites
	List of Supported Cipher Suites
	Deprecated Cipher Suites
	Backward Compatibility of Supported Cipher Suites
	Using Anonymous Ciphers
	Setting Cipher Suites Using WLST: An Example
	An Important Note Regarding Null Cipher Use in SSL
	WebLogic Server Control to Prevent Null Cipher Use

	Using Debugging with JSSE SSL

	37 X.509 Certificate Revocation Checking
	Certificate Revocation Checking Overview
	Enabling the Default CR Checking Configuration
	Configuring Default CR Checking
	Customizing the CR Checking Configuration

	Choosing the CR Checking Methods to Be Used by WebLogic Server
	Failing SSL Certificate Path Validation if Revocation Status Cannot Be Determined
	Using the Online Certificate Status Protocol
	Using Nonces in OCSP Requests
	Setting the Response Timeout Interval
	Enabling and Configuring the OCSP Response Local Cache

	Using Certificate Revocation Lists
	Enabling Updates from Distribution Points
	Configuring the CRL Local Cache

	Configuring Certificate Authority Overrides
	General Certificate Authority Overrides
	Configuring OCSP Properties in a Certificate Authority Override
	Identifying the OCSP Responder URL

	Configuring CRL Properties in a Certificate Authority Override

	38 Configuring an Identity Keystore Specific to a Network Channel
	About Network Channels
	Channel-Specific SSL Configuration Attributes
	Steps to Configure a Channel-Specific Identity Keystore
	Using WLST to Configure a Channel-Specific Identity Keystore

	39 Configuring RMI over IIOP with SSL
	40 Using a Certificate Callback Handler to Validate End User Certificates
	How End User Certificate Callback Handlers Work
	Creating a Certificate Callback Implementation
	Configuring the Certificate Callback with WebLogic Server

	Part VII Advanced Security Topics
	41 Configuring Cross-Domain Security
	Enabling Trust Between WebLogic Server Domains
	Enabling Cross-Domain Security Between WebLogic Server Domains
	Configuring Cross-Domain Security
	Excluding Domains From Cross-Domain Security
	Configuring Cross-Domain Users
	Configure a Credential Mapping for Cross-Domain Security

	Enabling Global Trust

	Using Jakarta Authorization
	Viewing MBean Attributes
	Configuring a Domain to Use JAAS Authorization

	42 Configuring Jakarta Authentication Security
	Jakarta Authentication Mechanisms Override WebLogic Server Defaults
	Prerequisites for Configuring Jakarta Authentication
	Server Authentication Module Must Be in Classpath
	Custom Authentication Configuration Providers Must Be in Classpath

	Location of Configuration Data
	Configuring Jakarta Authentication for a Domain
	Configuring Jakarta Authentication Using WLST
	Creating a WLS Authentication Configuration Provider
	Creating a Custom Authentication Configuration Provider
	Listing All WLS and Custom Authentication Configuration Providers
	Enabling Jakarta Authentication for a Domain
	Disabling Jakarta Authentication for a Domain

	43 Using Jakarta Security in WebLogic Server
	Overview of Jakarta Security
	Prerequisites for Using Jakarta Security

	44 Using Secured Production Mode
	When is Secured Production Mode Enabled?
	Changing the Domain Mode
	Overriding the Domain Mode (Single Server Domains Only)

	Connecting to the Administration Server using WebLogic Remote Console
	Starting Managed Servers using WebLogic Remote Console
	Connecting to the Administration Server using WLST
	Starting Managed Servers using a Start Script
	Stopping Servers
	Secured Production Mode in Development Environments
	Using Secured Production Mode with Demonstration Keystores
	Using WLST on Domains using Demo Keystores
	Starting Managed Servers using Demo Keystores using a Start Script
	Stopping Servers with Demo Keystores

	Using Secured Production Mode without SSL/TLS

	Part VIII Appendixes
	A Keytool Command Summary
	B Interoperating With Keystores From Prior Versions

