
Oracle Fusion Middleware
Developing Custom Management Utilities
Using JMX for Oracle WebLogic Server

15c (15.1.1.0.0)
G31977-01
October 2025

Oracle Fusion Middleware Developing Custom Management Utilities Using JMX for Oracle WebLogic Server, 15c
(15.1.1.0.0)

G31977-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Related Documentation i

Conventions ii

1 Introduction

2 Understanding WebLogic Server MBeans

Basic Organization of a WebLogic Server Domain 1

Separate MBean Types for Monitoring and Configuring 1

The Life Cycle of WebLogic Server MBeans 1

WebLogic Server MBean Data Model 3

Containment and Reference Relationships 3

Containment Relationship 3

Reference Relationship 4

WebLogic Server MBean Object Names 4

MBeanServerInvocationHandler 6

MBean Servers 7

Connecting to MBean Servers 8

Local Connections to MBean Servers 8

Remote Connections to MBean Servers 8

Using the Platform MBean Server 8

Service MBeans 9

Security for WebLogic Server MBeans 10

Additional Security Resources for Some Attributes and Operations 10

3 Overview of WebLogic Server Subsystem MBeans

Domain and Server Logging Configuration 1

JMS Server and JMS System Module Configuration 2

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page i of iii

JDBC Resource Configuration 6

4 Accessing WebLogic Server MBeans with JMX

Set Up the Classpath for Remote Clients 1

Make Remote Connections to an MBean Server 1

Example: Connecting to the Domain Runtime MBean Server 2

Best Practices: Choosing an MBean Server 4

Make Local Connections to the Runtime MBean Server 6

Make Local Connections to the Domain Runtime MBean Server 7

Navigate MBean Hierarchies 8

Example: Printing the Name and State of Servers 8

Example: Monitoring Servlets 10

5 Managing a Domain's Configuration with JMX

Editing MBean Attributes: Main Steps 1

Start an Edit Session 2

Change Attributes or Create New MBeans 2

Save Changes to the Pending Configuration Files 3

Activate Your Saved Changes 3

Exception Types Thrown by Edit Operations 3

Listing and Undoing Changes 4

List Unsaved Changes 4

List Unactivated Changes 5

List Changes in the Current Activation Task 5

Undoing Changes 6

Tracking the Activation of Changes 7

Listing the Status of the Current Activation Task 7

Listing All Activation Tasks Stored in Memory 7

Purging Completed Activation Tasks from Memory 8

Managing Locks 8

Best Practices: Recommended Pattern for Editing and Handling Exceptions 9

Setting and Getting Encrypted Values 12

Set the Value of an Encrypted Attribute (Recommended Technique) 12

Set the Value of an Encrypted Attribute (Compatibility Technique) 13

Back Up an Encrypted Value 14

6 Managing Security Realms with JMX

Understanding the Hierarchy of Security MBeans 1

Base Provider Types and Mix-In Interfaces 1

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page ii of iii

Security MBeans 1

Choosing an MBean Server to Manage Security Realms 7

Working with Existing Security Providers 8

Discovering Available Services 9

Example: Adding Users to a Realm 11

Modifying the Realm Configuration 13

7 Using Notifications and Monitor MBeans

Best Practices: Listening Directly Compared to Monitoring 1

Best Practices: Listening for WebLogic Server Events 1

Best Practices: Listening or Monitoring WebLogic Server Runtime Statistics 5

Listening for Notifications from WebLogic Server MBeans: Main Steps 6

Creating a Notification Listener 7

Listening from a Remote JVM 8

Best Practices: Creating a Notification Listener 8

Configuring a Notification Filter 8

Creating a Custom Filter 9

Registering a Notification Listener and Filter 9

Packaging and Deploying Listeners on WebLogic Server 11

Example: Listening for The Registration of Configuration MBeans 12

Using Monitor MBeans to Observe Changes: Main Steps 15

Monitor MBean Types and Notification Types 15

Errors and the MonitorNotification Type Property 16

Creating a Notification Listener for a Monitor MBean 17

Registering the Monitor and Listener 17

Example: Registering a CounterMonitorMBean and Its Listener 19

8 Configuring WebLogic Server JMX Services

Determining the JMX Services Available in a Domain 1

Example: Using WebLogic Scripting Tool to Make a Domain Read-Only 1

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page iii of iii

Preface

This document describes how to create JMX clients that monitor and modify WebLogic Server
resources.

Audience
This document is a resource for software vendors who develop JMX-compatible management
systems. It also contains information that is useful for business analysts and system architects
who are evaluating WebLogic Server or considering the use of JMX for a particular application.

It is assumed that the reader is familiar with Jakarta EE and general application management
concepts. This document emphasizes a hands-on approach to developing a limited but useful
set of JMX management services.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation
The Oracle Technology Network includes a Web site that provides links to books, white papers,
and additional information on JMX: http://www.oracle.com/technetwork/java/javase/tech/
javamanagement-140525.html.

WebLogic Server supports JMX 1.4 by leveraging the JMX implementation in the JDK on which
it is running. To view the JMX 1.4 specification, download it from https://
docs.oracle.com/en/java/javase/17/jmx/index.html

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
https://docs.oracle.com/en/java/javase/17/jmx/index.html
https://docs.oracle.com/en/java/javase/17/jmx/index.html

To view the JMX Remote API 1.0 specification, download it from http://jcp.org/aboutJava/
communityprocess/final/jsr160/index.html.

You can view the API reference for the javax.management* packages from: https://
docs.oracle.com/en/java/javase/17/docs/api/index.html.

For guidelines on developing other types of management services for WebLogic Server
applications, see the following documents:

• Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
describes WebLogic support for internationalization and localization of log messages, and
shows you how to use the templates and tools provided with WebLogic Server to create or
edit message catalogs that are locale-specific.

• Configuring and Using the Diagnostics Framework for Oracle WebLogic Server describes
how system administrators can collect application monitoring data that has not been
exposed through JMX, logging, or other management facilities.

For guidelines on developing and tuning WebLogic Server applications, see the following
documents:

• Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic
Server applications.

• Developing Manageable Applications Using JMX for Oracle WebLogic Server describes
how to create and register custom MBeans.

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What’s New in Oracle WebLogic Server.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page ii of ii

http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html

1
Introduction

This document describes creating JMX clients that monitor and modify WebLogic Server
resources.
To integrate third-party management systems with the WebLogic Server management system,
WebLogic Server provides standards-based interfaces that are fully compliant with the Java
Management Extensions (JMX) specification. Software vendors can use these interfaces to
monitor WebLogic Server MBeans, to change the configuration of a WebLogic Server domain,
and to monitor the distribution (activation) of those changes to all server instances in the
domain. While JMX clients can perform all WebLogic Server management functions without
using Oracle's proprietary classes, Oracle recommends that remote JMX clients use WebLogic
Server protocols (such as T3) to connect to WebLogic Server instances.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 1

2
Understanding WebLogic Server MBeans

This chapter describes the MBeans that WebLogic Server provides that you can use to
configure, monitor, and manage WebLogic Server resources, and also explains how WebLogic
Server distributes and maintains these MBeans.
This chapter includes the following sections:

The MBean Reference for Oracle WebLogic Server provides a detailed reference for all
WebLogic Server MBeans.

Basic Organization of a WebLogic Server Domain
A WebLogic Server administration domain is a collection of one or more servers and the
applications and resources that are configured to run on the servers. Each domain must
include a special server instance that is designated as the Administration Server. The
simplest domain contains a single server instance that acts as both Administration Server and
host for applications and resources. This domain configuration is commonly used in
development environments. Domains for production environments usually contain multiple
server instances (Managed Servers) running independently or in groups called clusters. In
such environments, the Administration Server does not host production applications. For more
information about domains, refer to Understanding Oracle WebLogic Server Domains in
Understanding Domain Configuration for Oracle WebLogic Server.

Separate MBean Types for Monitoring and Configuring
All WebLogic Server MBeans can be organized into one of the following general types based
on whether the MBean monitors or configures servers and resources:

• Run-time MBeans contain information about the run-time state of a server and its
resources. They generally contain only data about the current state of a server or resource,
and they do not persist this data. When you shut down a server instance, all run-time
statistics and metrics from the run-time MBeans are destroyed.

• Configuration MBeans contain information about the configuration of servers and
resources. They represent the information that is stored in the domain's XML configuration
documents.

• Configuration MBeans for system modules contain information about the configuration of
services such as JDBC data sources and JMS topics that have been targeted at the
system level. Instead of targeting these services at the system level, you can include
services as modules within an application. These application-level resources share the life
cycle and scope of the parent application. However, WebLogic Server does not provide
MBeans for application modules. See Supported Deployment Units in Deploying
Applications to Oracle WebLogic Server.

The Life Cycle of WebLogic Server MBeans
The life cycle of a run-time MBean follows that of the resource for which it exposes run-time
data. For example, when you start a server instance, the server instantiates a
ServerRuntimeMBean and populates it with the current run-time data. Each resource updates

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 11

the data in its run-time MBean as its state changes. The resource destroys its run-time
MBeans when it is stopped.

For a configuration MBean, the life cycle is as follows:

1. Each server in the domain has its own copy of the domain's configuration documents
(which consist of a config.xml file and subsidiary files). During a server's startup cycle, it
contacts the Administration Server to update its configuration files with any changes that
occurred while it was shut down. Then it instantiates configuration MBeans to represent
the data in the configuration documents. (See Figure 2-1.)

Note

By default, a Managed Server will start even if it cannot contact the Administration
Server to update its configuration files. This default setting creates the possibility
that Managed Servers across the domain might run with inconsistent
configurations. For information about changing this default, see Starting a
Managed Server When the Administration Server Is Not Accessible in
Administering Server Startup and Shutdown for Oracle WebLogic Server.

Figure 2-1 Initializing Configuration MBeans on Administration Server

config.xml

<domain>
 <server>
 <name>MedRecServer</name>
 <listen-port>
 7011
 </listen-port>
 </server>
</domain>

WebLogic
Server Instance

ServerMBean

Name=”MedRecServer”
ListenPort=”7011”

The configuration MBeans enable each server instance in the domain to have an identical
in-memory representation of the domain's configuration.

2. To control changes to the domain's configuration, JMX clients have read-only access to
these configuration MBeans.

The Administration Server maintains a separate, editable copy of the domain's
configuration documents in the domain's config/pending directory. It uses the data in
these pending documents to instantiate a set of configuration MBeans that JMX clients can
modify. After a JMX client modifies one of these configuration MBeans, the client directs
the Administration Server to save the modifications in the pending configuration
documents. Then the client starts a transactional process that updates the read-only
configuration documents and configuration MBeans for all server instances in the domain.

See Managing Configuration Changes in Understanding Domain Configuration for Oracle
WebLogic Server.

3. Configuration MBeans are destroyed when you shut down the server instance that hosts
them.

Chapter 2
The Life Cycle of WebLogic Server MBeans

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 11

WebLogic Server MBean Data Model
The JMX specification does not impose a model for organizing MBeans. However, because the
configuration of a WebLogic Server domain is specified in an XML document, WebLogic Server
organizes its MBeans into a hierarchical model that reflects the XML document structure.

For example, the root of a domain's configuration document is <domain> and below the root are
child elements such as <server> and <cluster>. Each domain maintains a single MBean of
type DomainMBean to represent the <domain> root element. Within DomainMBean, JMX attributes
provide access to the MBeans that represent child elements such as <server> and <cluster>.

The following sections describe the patterns that WebLogic Server MBeans use to model the
underlying XML configuration:

Containment and Reference Relationships
MBean attributes that provide access to other MBeans represent one of following types of
relationships:

• Containment, which reflects a parent-child relationship between the corresponding XML
elements in the domain's configuration document.

• Reference, which reflects a sibling or other non-ancestor, non-descendant relationship.

Containment Relationship
The XML excerpt in Example 2-1 illustrates a containment relationship between <domain> and
<server> and <domain> and <cluster>.

Example 2-1 Containment Relationship in XML

<domain>
 <server>
 <name>MyServer</name>
 </server>
 <cluster>
 <name>MyCluster</name>
 </cluster>
</domain>

To reflect this relationship, DomainMBean has two attributes, Servers and Clusters. The value
of the Servers attribute is an array of object names javax.management.ObjectName[]) for all
ServerMBeans that have been created in the domain. The value of the Clusters attribute is an
array of object names for all ClusterMBeans.

Another aspect of the containment relationship is expressed in a set of MBean operations that
follow the design pattern for Java bean factory methods: for each contained (child) MBean, the
parent MBean provides a createChild and destroyChild operation, where Child is the short
name of the MBean's type. (The short name is the MBean's unqualified type name without the
MBean suffix. For example, createServer).

Chapter 2
WebLogic Server MBean Data Model

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 11

Note

JMX clients cannot use javax.management.MBeanServer.create() or register() to
create and register instances of WebLogic Server MBeans because WebLogic Server
does not make its MBean implementation classes publicly available.

If you create and register custom MBeans (MBeans you have created to manage your
applications), you will have access to your own implementation files and you can use
the standard MBeanServer.create() or register() methods. Custom MBeans are not
part of the WebLogic Server data model and do not participate in its factory method
model.

In some cases, an MBean's factory methods are not public because of dependencies within a
server instance. In these cases the parent manages the life cycle of its children. For example,
each ServerMBean must have one and only one child LogMBean to configure the server's local
log file. The factory methods for LogMBean are not public, and ServerMBean maintains the life
cycle of its LogMBean.

With a containment relationship, the parent MBean also contains a lookupChild operation. If
you know the user-supplied name that was used to create a specific server or resource, you
can use the lookup operation in the parent MBean to get the object name. For example,
DomainMBean includes an operation named lookupServers(String name), which takes as a
parameter the name that was used to create a server instance. If you named a server MS1, you
could pass a String object that contains MS1 to the lookupServers method and the method
would return the object name for MS1.

Reference Relationship
The XML excerpt in Example 2-2 illustrates a reference relationship between <server> and
<cluster>.

Example 2-2 Reference Relationship in XML

<domain>
 <server>
 <name>MyServer</name>
 <cluster>MyCluster</cluster>
 </server>
 <cluster>
 <name>MyCluster</name>
 </cluster>
</domain>

While a server logically belongs to a cluster, the <server> and <cluster> elements in the
domain's configuration file are siblings. To reflect this relationship, ServerMBean has a Cluster
attribute whose value is the object name (javax.management.ObjectName) of the ClusterMBean
to which the server belongs.

MBeans in a reference relationship do not provide factory methods.

WebLogic Server MBean Object Names
All MBeans must be registered in an MBean server under an object name of type
javax.management.ObjectName. WebLogic Server follows a convention in which object names
for child MBeans contain part of its parent MBean object name.

Chapter 2
WebLogic Server MBean Data Model

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 11

Note

If you learn the WebLogic Server naming conventions, you can understand where an
MBean instance resides in the data hierarchy by observing its object name. However,
if you use containment attributes or lookup operations to get object names for
WebLogic Server MBeans, your JMX applications do not need to construct or parse
object names.

WebLogic Sever naming conventions encode its MBean object names as follows:

com.bea:Name=name,Type=type[,TypeOfParentMBean=NameOfParentMBean]
[,TypeOfParentMBean1=NameOfParentMBean1]...

In the preceding MBean object name convention:

• com.bea: is the JMX domain name.

For WebLogic Server MBeans, the JMX domain is always com.bea. If you create custom
MBeans for your applications, name them with your own JMX domain.

• Name=name,Type=type[,TypeOfParentMBean=NameOfParentMBean]
[,TypeOfParentMBean1=NameOfParentMBean1]... represents a set of JMX key properties.

The order of the key properties is not significant, but the name must begin with com.bea:.

Table 2-1 describes the key properties that WebLogic Server encodes in its MBean object
names.

Table 2-1 WebLogic Server MBean Object Name Key Properties

This Key Property Specifies

Name=name The string that you provided when you created the resource that the
MBean represents. For example, when you create a server, you must
provide a name for the server, such as MS1. The ServerMBean that
represents MS1 uses Name=MS1 in its JMX object name.

If you create an MBean, you must specify a value for this Name
component that is unique amongst all other MBeans in a domain.

Type=type For configuration MBeans and run-time MBeans, the short name of the
MBean's type. The short name is the unqualified type name without the
MBean suffix. For example, for an MBean that is an instance of the
ServerRuntimeMBean, use ServerRuntime.

For MBeans that manage services targeted at the system level, the fully
qualified name of the MBean's type including any Bean or MBean suffix.
For example, for an MBean that manages a system-level JDBC data
source, use weblogic.j2ee.descriptor.wl.JDBCDataSourceBean.

Chapter 2
WebLogic Server MBean Data Model

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 11

Table 2-1 (Cont.) WebLogic Server MBean Object Name Key Properties

This Key Property Specifies

TypeOfParentMBean=

NameOfParentMBean

To create a hierarchical namespace, WebLogic Server MBeans use one
or more instances of this attribute in their object names. The levels of the
hierarchy are used to indicate scope. For example, a LogMBean at the
domain level of the hierarchy manages the domain-wide message log,
while a LogMBean at a server level manages a server-specific message
log.

WebLogic Server child MBeans with implicit creator methods use the
same value for the Name property as the parent MBean. For example,
the LogMBean that is a child of the MedRecServer Server MBean uses
Name=MedRecServer in its object name:

medrec:Name=MedRecServer,Type=Log,Server=MedRecServer
WebLogic Server cannot follow this convention when a parent MBean
has multiple children of the same type.

Some MBeans use multiple instances of this component to provide
unique identification. For example, the following is the object name for an
EJBComponentRuntime MBean in the MedRec sample application:

medrec:ApplicationRuntime=MedRecServer_MedRecEAR,
Name=MedRecServer_MedRecEAR_Session
EJB,ServerRuntime=MedRecServer,Type=EJBComponentRuntime
The ApplicationRuntime=MedRecServer_MedRecEAR key property
indicates that the EJB instance is a module within the MedRec
enterprise application and a child of the MedRecServer_MedRecEAR
ApplicationRuntimeMBean. The ServerRuntime=MedRecServer key
property indicates that the EJB instance is currently deployed on a
server named MedRecServer and a child of the MedRecServer
ServerRuntimeMBean.

Location=servername When you access run-time MBeans or configuration MBeans through
the Domain Runtime MBean Server, the MBean object names include a
Location=servername key property which specifies the name of the
server instance on which that MBean is located. See MBean Servers.

Singleton MBeans, such as DomainRuntimeMBean and
ServerLifeCycleRuntimeMBean exist only on the Administration
Server and do not need to include this key property.

MBeanServerInvocationHandler
If you use the MBeanServerInvocationHandler to create a proxy for the MBean, as shown
here:

Intf proxy = (Intf)
 MBeanServerInvocationHandler.newProxyInstance(mbs,
 name,
 Intf.class,
 false);

you should include the WLS extension MBeanServerInvocationHandler instead of
javax.management.MBeanServerInvocationHandler, as shown here:

import weblogic.management.jmx.MBeanServerInvocationHandler;

This ensures that return exceptions are handled correctly.

Chapter 2
WebLogic Server MBean Data Model

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 11

MBean Servers
At the core of any JMX agent is the MBean server, which acts as a container for MBeans.

The JVM for an Administration Server maintains three MBean servers provided by Oracle and
optionally maintains the platform MBean server, which is provided by the JDK itself. The JVM
for a Managed Server maintains only one Oracle MBean server and the optional platform
MBean server.

Table 2-2 describes each MBean server.

Table 2-2 MBean Servers in a WebLogic Server Domain

This MBean server Creates, registers, and provides access to...

Domain Runtime MBean
Server

MBeans for domain-wide services. This MBean server also acts as a
single point of access for MBeans that reside on Managed Servers. You
can register your own (custom) MBeans in this MBean server (see
Registering Custom MBeans in the Domain Runtime MBean Server in
Developing Manageable Applications Using JMX for Oracle WebLogic
Server).

If your JMX client accesses WebLogic Server MBeans in this MBean
server by constructing object names, the client must add a
Location=servername key property to the MBean object name. See
WebLogic Server MBean Object Names.

Only the Administration Server hosts an instance of this MBean server.

Runtime MBean Server MBeans that expose monitoring, run-time control, and the active
configuration of a specific WebLogic Server instance. You can also
register your own (custom) MBeans in this MBean server (see
Registering Custom MBeans in the Domain Runtime MBean Server in
Developing Manageable Applications Using JMX for Oracle WebLogic
Server).

In this release, the WebLogic Server Runtime MBean Server is
configured by default to be the platform MBean server. However, you can
configure WebLogic Server to create a separate MBean Server and use
it instead of the platform MBean Server. See Using the Platform MBean
Server.

Each server in the domain hosts an instance of this MBean server.

Edit MBean Server Pending configuration MBeans and operations that control the
configuration of a WebLogic Server domain. It exposes a
ConfigurationManagerMBean for locking, saving, and activating
changes.

Only the Administration Server hosts an instance of this MBean server.

The JVM's platform MBean
server

MBeans provided by the JDK that contain monitoring information for the
JVM itself. You can register custom MBeans in this MBean server.

In this release, WebLogic Server uses the JVM's platform MBean server
to contain the WebLogic run-time MBeans by default. As such, the
platform MBean server provides access to platform MXBeans, WebLogic
run-time MBeans, and WebLogic configuration MBeans that are on a
single server instance. See Using the Platform MBean Serverand
Registering MBeans in the JVM Platform MBean Server in Developing
Manageable Applications Using JMX for Oracle WebLogic Server.

Chapter 2
MBean Servers

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 11

Connecting to MBean Servers
JMX enables both local and remote access to MBean servers, but JMX clients use different
APIs for the two types of access and WebLogic Server MBean servers expose different
capabilities to local clients and remote clients.

Local Connections to MBean Servers
JMX clients running within a WebLogic Server JVM can access the server's Runtime MBean
Server or Domain Runtime MBean Server directly through JNDI, and authentication is required
to access any MBeans that require roles. These are the only WebLogic Server MBean servers
that allow local access. When accessed from a local client, the Runtime MBean Server or
Domain Runtime MBean Server returns its javax.management.MBeanServer interface, which
enables clients to access WebLogic Server MBeans and to create, register, and access custom
MBeans. See Make Local Connections to the Runtime MBean Server and Make Local
Connections to the Domain Runtime MBean Server.

JMX clients can also access the local JVM's platform MBean server. Any local client can
access the MBeans in this MBean server. See Registering MBeans in the JVM Platform
MBean Server in Developing Manageable Applications Using JMX for Oracle WebLogic
Server.

Remote Connections to MBean Servers
Remote JMX clients (clients running in a different JVM from the MBean server) can use the
javax.management.remote APIs to access any WebLogic MBean server. Clients must
authenticate through the WebLogic Server security framework to do so (see Security for
WebLogic Server MBeans). When accessed from a remote client, a WebLogic Server MBean
server returns its javax.management.MBeanServerConnection interface, which enables clients
to only access MBeans; remote clients cannot create and register custom MBeans. See Make
Remote Connections to an MBean Server.

You can enable remote access to the platform MBean server. See Registering MBeans in the
JVM Platform MBean Server in Developing Manageable Applications Using JMX for Oracle
WebLogic Server.

Using the Platform MBean Server
In this release of WebLogic Server, the WebLogic Server Runtime MBean Server is configured
by default to contain the platform MXBeans for the corresponding server. The Domain Runtime
MBean Server contains the platform MXBeans for all of the servers in the domain. The MBean
object names for the platform MXBeans will be the same as those provided by the JVM except
they will have the additional Location=servername key property.

The WLST script in Example 2-3 illustrates using platform MXBeans to monitor the resources
of a running domain.

Using the platform MBean server for the Runtime MBean Server is controlled by the
PlatformMBeanServerUsed attribute in the JMX MBean. In previous releases, the default value
for the PlatformMBeanServerUsed attribute was false so the platform MBean server was
not used unless explicitly enabled. In this release of WebLogic Server, the default value for the
PlatformMBeanServerUsed attribute is true for domains that are at version 10.3.3.0 or later.
See PlatformMBeanServerEnabled in the MBean Reference for Oracle WebLogic Server.

Chapter 2
MBean Servers

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 11

If desired, you can configure WebLogic Server to create a separate MBean Server and use it
instead of the platform MBean server by setting the PlatformMBeanServerEnabled attribute
value to false using any of the administration tools listed in Summary of System
Administration Tools and APIs in Understanding Oracle WebLogic Server. In WLST, start an
edit session, navigate to the JMX directory for the domain, use
cmo.setPlatformMBeanServerUsed(false) to change the value, and then activate the
changes.

For more information on the Platform MBean Server and Platform MXBean, see the following
JAVA SDK documentation:

• https://docs.oracle.com/en/java/javase/17/management/using-platform-mbean-
server-and-platform-mxbeans.html

• https://docs.oracle.com/en/java/javase/17/docs/api/java.management/java/lang/
management/package-summary.html

Example 2-3 Using Platform MXBeans

"""
 This WLST script demonstrates how to use the Platform MXBeans to monitor
 the resources of a running WLS domain. It uses the domainCustom command
 to retrieve the memory usage for 2 servers in the domain. For information
 about the available platform MXBeans, refer to the following link:
 https://docs.oracle.com/en/java/javase/17/docs/api/java.management/java/lang/
management/package-summary.html
"""

connect()
domainCustom()
cd ("java.lang")
monitor heap and thread usage once a minute for 5 minutes
x = 0
while x < 5:
 # Admin Server
 cd ("java.lang:Location=AdminServer,type=Memory")
 huAdmin = get("HeapMemoryUsage")
 cd ("..")
 cd ("java.lang:Location=AdminServer,type=Threading")
 numThreadsAdmin = get("ThreadCount")
 print "Admin server memory usage = ", huAdmin.get("max"), " number threads: ",
numThreadsAdmin
 cd ("..")
 # m1 server
 cd ("java.lang:Location=m1,type=Memory")
 huM1 = get("HeapMemoryUsage")
 cd ("..")
 cd ("java.lang:Location=m1,type=Threading")
 numThreadM1 = get("ThreadCount")
 cd ("..")
 print "M1 server memory usage = ", huM1.get("max"), " number threads: ", numThreadM1
 Thread.sleep(60000)
 x = x + 1

Service MBeans
Within each MBean server, WebLogic Server registers a service MBean under a simple object
name. The attributes and operations in this MBean serve as your entry point into the WebLogic
Server MBean hierarchies and enable JMX clients to navigate to all WebLogic Server MBeans
in an MBean server after supplying only a single object name. See Table 2-3.

Chapter 2
MBean Servers

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 11

https://docs.oracle.com/en/java/javase/17/management/using-platform-mbean-server-and-platform-mxbeans.html
https://docs.oracle.com/en/java/javase/17/management/using-platform-mbean-server-and-platform-mxbeans.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/java/lang/management/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/java/lang/management/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/java/lang/management/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/java/lang/management/package-summary.html

JMX clients that do not use the entry point (service) MBean must correctly construct an
MBean's object name to get and set the MBean's attributes or invoke its operations. Because
the object names must be unique, they are usually long and difficult to construct from a client.

Table 2-3 Service MBeans

MBean Server Service MBean JMX object name:

The Domain Runtime
MBean Server

DomainRuntimeServiceMBean

Provides access to MBeans for domain-wide services such
as application deployment, JMS servers, and JDBC data
sources. It also is a single point for accessing the
hierarchies of all run-time MBeans and all active
configuration MBeans for all servers in the domain.

See DomainRuntimeServiceMBean in MBean Reference
for Oracle WebLogic Server.

com.bea:Name=DomainRuntimeS
ervice,Type=weblogic.
management.mbeanservers.
domainruntime.DomainRuntime
ServiceMBean

Runtime MBean Servers RuntimeServiceMBean

Provides access to run-time MBeans and active
configuration MBeans for the current server.

See RuntimeServiceMBean in MBean Reference for
Oracle WebLogic Server.

com.bea:Name=RuntimeService
, Type=weblogic.management.
mbeanservers.runtime.
RuntimeServiceMBean

The Edit MBean Server EditServiceMBean

Provides the entry point for managing the configuration of
the current WebLogic Server domain.

See EditServiceMBean in MBean Reference for Oracle
WebLogic Server.

com.bea:Name=EditService,
Type=weblogic.management.
mbeanservers.edit.
EditServiceMBean

Security for WebLogic Server MBeans
To connect to a WebLogic Server MBean server, a JMX client must supply credentials for a
user who has been defined in the WebLogic Server domain's security realm.

To further secure the MBeans that have been registered in an MBean server, WebLogic Server
uses security roles and policies. A security role, like a security group, grants an identity to a
user. Unlike a group, however, membership in a role can be based on a set of conditions that
are evaluated at run time. A security policy is another set of run-time conditions that specify
which users, groups, or roles can access a resource. Oracle provides a default set of roles and
policies for WebLogic Server MBeans. (See Default Security Policies for MBeans in the MBean
Reference for Oracle WebLogic Server.)

During the startup cycle for a WebLogic Server instance, the server creates a collection of
weblogic.security.service.JMXResource objects, which are the in-memory representations
of the MBean security policies. When a JMX client attempts to get or set an MBean attribute or
invoke an operation, the MBean server asks the security realm if the user has sufficient
permission. The security realm first determines which role the user is in. (Role assignments are
determined at run time.) Then it uses the default policies and any other policies that you have
created to determine if the role is allowed access.

You can use the WebLogic Remote Console to change the default access permissions. See
Security Policies and Roles in the Oracle WebLogic Remote Console Online Help.

Additional Security Resources for Some Attributes and Operations
For MBean attributes and operations that represent particularly sensitive data or actions,
WebLogic Server provides additional security resource objects to limit which users can access

Chapter 2
Security for WebLogic Server MBeans

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 10 of 11

the data or action. For example, the ServerLifeCycleRuntimeMBean's shutdown() operation is
protected by a JMXResource object and a weblogic.security.service.ServerResource
object. For a complete list of attributes and operations that are protected by multiple resources,
see Administrative Resources and Server Resources in Securing Resources Using Roles and
Policies for Oracle WebLogic Server .

The default configuration of roles and security policies for these attributes and operations work
together to create a consistent security scheme. You can, however, make modifications that
limit access in ways that you do not intend. See Maintaining a Consistent Security Scheme in
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Chapter 2
Security for WebLogic Server MBeans

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 11 of 11

3
Overview of WebLogic Server Subsystem
MBeans

This chapter describes the MBeans that can be used to manage various subsystems of
WebLogic Server, including domain and server logging, JMS servers and JMS system module
resources, and JDBC resources.
This chapter includes the following sections:

In addition, for a description of MBeans that can be used to manage WebLogic Security, see
Understanding the Hierarchy of Security MBeans.

Domain and Server Logging Configuration
Within a WebLogic Server domain, several MBeans configure logging services. Table 3-1
introduces the MBeans and Figure 3-1 illustrates where the MBeans are located in the
configuration MBean hierarchy.

Table 3-1 MBeans for Domain and Server Logging

This MBean... Configures...

LogMBean • Threshold severity level and filter settings for logging output.
• Whether the server logging is based on the default Java Logging

APIs.
• Whether to redirect the JVM stdout and stderr output to the

registered log destinations.
The Administration Server maintains an instance of LogMBean for the
domain-wide message log, and each server instance maintains its own
instance for its local server log.

See LogMBean in the MBean Reference for Oracle WebLogic Server.

LogFileMBean Log file names and the location, file-rotation criteria, and number of files
that a WebLogic Server instance uses to store log messages.

See LogFileMBean in the MBean Reference for Oracle WebLogic
Server.

LogFilterMBean A log filter which determines which messages a server instance sends to
the registered log destinations. Each log filter is represented by its own
instance of LogFilterMBean.

A log filter can be defined at the domain or server level.

See LogFilterMBean in the MBean Reference for Oracle WebLogic
Server.

ServerMBean Path prefix for the server's JTA transaction log files.

See ServerMBean in the MBean Reference for Oracle WebLogic Server.

WebServerMBean Logging HTTP requests.

See WebServerMBean in the MBean Reference for Oracle WebLogic
Server.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 8

Table 3-1 (Cont.) MBeans for Domain and Server Logging

This MBean... Configures...

VirtualHostMBean Logging HTTP requests for virtual hosts that you define.

See VirtualHostMBean in the MBean Reference for Oracle WebLogic
Server.

JMSServerMBean Message log file for this JMS Server.

See JMSServerMBean in the MBean Reference for Oracle WebLogic
Server.

Figure 3-1 Logging MBeans

LogMBean

LogFilterMBean

ServerMBean

LogMBean

DomainLogBroadcastFilterMBean

LogFileFilterMBean

MemoryBuffetFilterMBean

StdoutFilterMBean

WebServerLogMBean

WebServerLogMBean

JMSMessageLogFileMBean

WebServerMBean

VirtualHostMBean

JMSServerMBean

DomainMBean

JMS Server and JMS System Module Configuration
Within a WebLogic Server domain, multiple MBeans configure JMS servers and JMS system
module resources. JMS servers are persisted in the domain's config.xml file and multiple JMS
servers can be configured on the various WebLogic Server instances in a cluster, as long as
they are uniquely named. When a JMS system module is created using JMX, WebLogic Server
creates a JMS system module descriptor file in the config\jms subdirectory of the domain

Chapter 3
JMS Server and JMS System Module Configuration

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 8

directory, and adds a reference to the module in the domain's config.xml file as a
JMSSystemResource element. This reference includes the path to the JMS system module file
and a list of target servers and clusters on which the system module is deployed.

Table 3-2 introduces the MBeans and Figure 3-2 illustrates where the MBeans are located in
the configuration MBean hierarchy.

Table 3-2 MBeans for JMS Servers and JMS System Module Resources

This MBean... Configures...

JMSServerMBean A JMS server is configuration entity that acts as a management
container for targeted destination resources (queues and topics) in a
JMS system module. A JMS server's primary responsibility for its
destinations is to maintain information on what persistent store is used
for any persistent messages that arrive on the destinations, and to
maintain the states of durable subscribers created on the destinations.
As a container for targeted destinations, any configuration or run-time
changes to a JMS server can affect all of its destinations.

See JMSServerMBean in the MBean Reference for Oracle WebLogic
Server.

JMSSystemResourceMBean A JMS system resource is a resource whose definition is part of the
system configuration rather than an application. The descriptor for the
resource is linked through the WebLogic configuration file, but resides in
a separate descriptor file.

See JMSSystemResourceMBean in the MBean Reference for Oracle
WebLogic Server.

SubDeploymentMBean Subdeployments enable administrators to deploy some resources in a
JMS module to a JMS server and other JMS resources to a server
instance or cluster. Standalone queues or topics can only be targeted to
a single JMS server. Whereas, connection factories, uniform distributed
destinations (UDDs), and foreign servers can be targeted to one or more
JMS servers, one or more server instances, or to a cluster. Therefore,
standalone queues or topics cannot be associated with a subdeployment
if other members of the subdeployment are targeted to multiple JMS
servers. However, UDDs can be associated with such subdeployments
since the purpose of UDDs is to distribute its members to multiple JMS
servers in a domain.

See SubDeploymentMBean in the MBean Reference for Oracle
WebLogic Server.

JMSBean The top of the JMS module bean tree. JMS modules all have a
JMSBean as their root bean (a bean with no parent).

See JMSBean in the MBean Reference for Oracle WebLogic Server.

DestinationKeyBean Defines a unique sort order that destinations can apply to arriving
messages. By default messages are sorted in FIFO (first-in, first-out)
order, which sorts ascending based on each message's unique
JMSMessageID. However, you can configure destination key to use a
different sorting scheme for a destination, such as LIFO (last-in, first-
out).

See DestinationKeyBean in the MBean Reference for Oracle WebLogic
Server.

DistributedQueueBean Defines a set of queues that are distributed on multiple JMS servers, but
which are accessible as a single, logical topic to JMS clients. Distributed
queues can help with load balancing and distribution, and have many of
the same properties as standalone queues.

See DistributedQueueBean in the MBean Reference for Oracle
WebLogic Server.

Chapter 3
JMS Server and JMS System Module Configuration

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 8

Table 3-2 (Cont.) MBeans for JMS Servers and JMS System Module Resources

This MBean... Configures...

DistributedTopicBean Defines a set of topics that are distributed on multiple JMS servers, but
which are accessible as a single, logical topic to JMS clients. Distributed
topics can help with load balancing and distribution, and have many of
the same properties as standalone topics.

See DistributedTopicBean in the MBean Reference for Oracle WebLogic
Server.

ForeignServerBean Defines foreign messaging providers or remote WebLogic Server
instances that are not part of the current domain. This is useful when
integrating with another vendor's JMS product, or when referencing
remote instances of WebLogic Server in another cluster or domain in the
local WebLogic JNDI tree.

See ForeignServerBean in the MBean Reference for Oracle WebLogic
Server.

JMSConnectionFactoryBea
n

Defines a set of connection configuration parameters that are used to
create connections for JMS clients. Connection factories can configure
properties of the connections returned to the JMS client, and also
provide configurable options for default delivery, transaction, and
message flow control parameters.

See JMSConnectionFactoryBean in the MBean Reference for Oracle
WebLogic Server.

QueueBean Defines a point-to-point destination type, which are used for
asynchronous peer communications. A message delivered to a queue is
distributed to only one consumer. Several aspects of a queue's behavior
can be configured, including thresholds, logging, delivery overrides, and
delivery failure options.

See QueueBean in the MBean Reference for Oracle WebLogic Server.

QuotaBean Controls the allotment of system resources available to destinations. For
example, the number of bytes a destination is allowed to store can be
configured with a Quota resource.

See QuotaBean in the MBean Reference for Oracle WebLogic Server.

SAFRemoteContextBean Defines the URL of the remote server instance or cluster where a JMS
destination is exported from. It also contains the security credentials to
be authenticated and authorized in the remote cluster or server.

See SAFRemoteContextBean in the MBean Reference for Oracle
WebLogic Server.

SAFErrorHandlingBean Defines the action to take when the SAF service fails to forward
messages to remote destinations. Configuration options include an Error
Handling Policy (Redirect, Log, Discard, or Always-Forward), a Log
Format, and sending Retry parameters.

See SAFErrorHandlingBean in the MBean Reference for Oracle
WebLogic Server.

Chapter 3
JMS Server and JMS System Module Configuration

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 8

Table 3-2 (Cont.) MBeans for JMS Servers and JMS System Module Resources

This MBean... Configures...

SAFImportedDestinations
Bean

Defines a collection of imported store-and-forward (SAF) destinations. A
SAF destination is a representation of a queue or topic in a remote
server instance or cluster that is imported into the local cluster or server
instance, so that the local server instance or cluster can send messages
to the remote server instance or cluster. All JMS destinations are
automatically exported by default, unless the Export SAF Destination
parameter on a destination is explicitly disabled. Each collection of SAF
imported destinations is associated with a remote SAF context resource,
and, optionally, a SAF error handling resource.

See SAFImportedDestinationsBean in the MBean Reference for Oracle
WebLogic Server.

TemplateBean Defines a set of default configuration settings for multiple destinations. If
a destination specifies a template and does not explicitly set the value of
a parameter, then that parameter will take its value from the specified
template.

See TemplateBean in the MBean Reference for Oracle WebLogic
Server.

TopicBean Defines a publish/subscribe destination type, which are used for
asynchronous peer communications. A message delivered to a topic is
distributed to all topic consumers. Several aspects of a topic's behavior
can be configured, including thresholds, logging, delivery overrides,
delivery failure, and multicasting parameters.

See TopicBean in the MBean Reference for Oracle WebLogic Server.

UniformDistributedQueue
Bean

Defines a uniformly configured distributed queue, whose members have
a consistent configuration of all distributed queue parameters,
particularly in regards to weighting, security, persistence, paging, and
quotas. These uniform distributed queue members are created on JMS
servers based on the targeting of the uniform distributed queue. Uniform
distributed queues can help with message load balancing and
distribution, and have many of the same properties as standalone
queues, including thresholds, logging, delivery overrides, and delivery
failure parameters.

See UniformDistributedQueueBean in the MBean Reference for Oracle
WebLogic Server.

UniformDistributedTopic
Bean

Defines a uniformly configured distributed topic, whose members have a
consistent configuration of all uniform distributed queue parameters,
particularly in regards to weighting, security, persistence, paging, and
quotas. These uniform distributed topic members are created on JMS
servers based on the targeting of the uniform distributed topic. Uniform
distributed topics can help with message load balancing and distribution,
and have many of the same properties as standalone topics, including
thresholds, logging, delivery overrides, and delivery failure parameters.

See UniformDistributedTopicBean in the MBean Reference for Oracle
WebLogic Server.

Chapter 3
JMS Server and JMS System Module Configuration

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 8

Figure 3-2 JMS Server and JMS System Resource MBeans

ClusterMBean

ServerMBean

JMSServerMBean

DomainMBean

JMSSystemResourceMBean

JMSBean

SubdeploymentMBean

QueueBean

JMSConnectionFactoryBean

TopicBean

DistributedQueueBean

DistributedTopicBean

UniformDistributedQueueBean

UniformDistributedTopicBean

DestinationKeyBean

TemplateBean

QuotaBean

ForeignServerBean

SAF RemoteContextBean

SAF ErrorHandlingBean

SAFImportedDestinationBean

JDBC Resource Configuration
When you create a JDBC resource (data source or multi data source) using the WebLogic
Remote Console or using the WebLogic Scripting Tool (WLST), WebLogic Server creates a
JDBC module in the config/jdbc subdirectory of the domain directory, and adds a reference
to the module in the domain's configuration file (config.xml).

Table 3-3 introduces the MBeans and Figure 3-3 illustrates where the MBeans are located in
the configuration MBean hierarchy.

Table 3-3 MBeans for JDBC Resources

This MBean... Configures...

JDBCSystemResourceMBean A container for the JavaBeans created from a data source module.
However, all JMX access for a JDBC data source is through the
JDBCSystemResourceMBean. You cannot directly access the individual
JavaBeans created from the data source module.

See JDBCSystemResourceMBean in the MBean Reference for Oracle
WebLogic Server.

Chapter 3
JDBC Resource Configuration

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 8

Table 3-3 (Cont.) MBeans for JDBC Resources

This MBean... Configures...

JDBCDataSourceBean The top of the JDBC data source bean tree. JDBC data sources all have
a JDBCDataSourceBean as their root bean (a bean with no parent).

See JDBCDataSourceBean in the MBean Reference for Oracle
WebLogic Server.

JDBCDriverParamsBean Contains the driver parameters of a data source. Configuration
parameters for the JDBC Driver used by a data source are specified
using a driver parameters bean.

See JDBCDriverParamsBean in the MBean Reference for Oracle
WebLogic Server.

JDBCConnectionPoolParam
sBean

Contains the connection pool parameters of a data source. Configuration
parameters for a data source's connection pool are specified using the
connection pool parameters bean.

See JDBCConnectionPoolBean in the MBean Reference for Oracle
WebLogic Server.

JDBCDataSourceParamsBea
n

Contains the basic usage parameters of a data source. Configuration
parameters for the basic usage of a data source are specified using a
data source parameters bean.

See JDBCDataSourceParamsBean in the MBean Reference for Oracle
WebLogic Server.

JDBCXAParamsBean Contains the XA-related parameters of a data source.

See JDBCXAParamsBean in the MBean Reference for Oracle WebLogic
Server.

JDBCOracleParamsBean Contains the Oracle database-related parameters of a data source.

See JDBCOracleParamsBean in the MBean Reference for Oracle
WebLogic Server.

Chapter 3
JDBC Resource Configuration

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 8

Figure 3-3 JDBC Resource MBeans

Chapter 3
JDBC Resource Configuration

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 8

4
Accessing WebLogic Server MBeans with JMX

This chapter describes how to access WebLogic Server MBeans from a JMX client. It explains
how to set up the classpath for remote clients; how to make local and remote connections to
MBean servers; and how to navigate MBean hierarchies.
This chapter includes the following sections:

Set Up the Classpath for Remote Clients
If your JMX client runs in its own JVM (that is, a JVM that is not a WebLogic Server instance),
include the following JAR file in the client's classpath:

WL_HOME\server\lib\weblogic.jar

where, WL_HOME is the directory in which you installed WebLogic Server.

Oracle provides the wlthint3client.jar library for remote access, and this library enables
connectivity over the T3 or T3S protocol to access MBeans for a WebLogic Server instance or
domain. The T3 protocol is an optimized, high-performance protocol for interoperating with
WebLogic Server. Oracle recommends that you use the T3 protocol whenever possible.

To use the wlthint3client.jar, include the wlthint3client.jar in the classpath of your
client. A foreign server hosted application can use the wlthint3client.jar to act as a remote
client to a WebLogic Server instance. To provide access to remote services such as JMS,
servlets, EJBs, and start-up classes, deploy any necessary application code along with the
wlthint3client.jar to your application server. See Understanding the WebLogic Thin T3
Client.

Make Remote Connections to an MBean Server
Each WebLogic Server domain includes three types of MBean servers, each of which provides
access to different MBean hierarchies. See MBean Servers.

To connect to a WebLogic MBean server:

1. Describe the address of the MBean server by constructing a
javax.management.remote.JMXServiceURL object.

Pass the following parameter values to the constructor (see JMXServiceURL in the Java SE
17 API Specification at https://docs.oracle.com/en/java/javase/17/docs/api/
java.management/javax/management/remote/JMXServiceURL.html):

• One of the following values as the protocol for communicating with the MBean server:

t3, t3s, http, https, iiop, iiops

• Listen address of the WebLogic Server instance that hosts the MBean server

• Listen port of the WebLogic Server instance

• Absolute JNDI name of the MBean server. The JNDI name must start with /jndi/ and
be followed by one of the JNDI names described in Table 4-1.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 13

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/remote/JMXServiceURL.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/remote/JMXServiceURL.html

Table 4-1 JNDI Names for WebLogic MBean Servers

MBean Server JNDI Name

Domain Runtime MBean
Server

weblogic.management.mbeanservers.domainruntime

Runtime MBean Server weblogic.management.mbeanservers.runtime

Edit MBean Server weblogic.management.mbeanservers.edit

2. Construct a javax.management.remote.JMXConnector object. This object contains
methods that JMX clients use to connect to MBean servers.

The constructor method for JMXConnector is:

javax.management.remote.JMXConnectorFactory.
connector(JMXServiceURL serviceURL, Map<String,?> environment)

Pass the following parameter values to the constructor (see JMXConnectorFactory in the
Java SE 17 API Specification at https://docs.oracle.com/en/java/javase/17/
docs/api/java.management/javax/management/remote/JMXConnectorFactory.html):

• The JMXServiceURL object you created in the previous step.

• A hash map that contains the following name-value pairs:

javax.naming.Context.SECURITY_PRINCIPAL, admin-user-name

javax.naming.Context.SECURITY_CREDENTIALS, admin-user-password

javax.management.remote.JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
"weblogic.management.remote"

The weblogic.management.remote package defines the protocols that can be used to
connect to the WebLogic MBean servers. Remote JMX clients must include the classes in
this package on their classpath. See Set Up the Classpath for Remote Clients.

Optionally include the following name-value pair in the hash map:

jmx.remote.x.request.waiting.timeout, milliseconds

where milliseconds is a java.lang.Long object that contains the number of milliseconds
that your JMX client waits for the invocation of an MBean-server method to return. If a
method does not return by the end of the time-out period, the client moves to its next set of
instructions. By default, a client waits indefinitely for a method to return; if the MBean
server is unable to complete an invocation, the JMX client will hang indefinitely.

3. Connect to the WebLogic MBean server by invoking the
JMXConnector.getMBeanServerConnection() method.

The method returns an object of type javax.management.MBeanServerConnection.

The MBeanServerConnection object is your connection to the WebLogic MBean server.
You can use it for local and remote connections. See MBeanServerConnection in the Java
SE 17 API Specification at https://docs.oracle.com/en/java/javase/17/docs/api/
java.management/javax/management/MBeanServerConnection.html.

4. Oracle recommends that when your client finishes its work, close the connection to the
MBean server by invoking the JMXConnector.close() method.

Example: Connecting to the Domain Runtime MBean Server
Note the following about the code in Example 4-1:

Chapter 4
Make Remote Connections to an MBean Server

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 13

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/remote/JMXConnectorFactory.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/remote/JMXConnectorFactory.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerConnection.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerConnection.html

• The class uses global variables, connection and connector, to represent the connection
to the MBean server. The initConnection() method, which assigns the value to the
connection and connector variables, should be called only once per class instance to
establish a single connection that can be reused within the class.

• The initConnection() method takes the username and password (along with the server's
listen address and listen port) as arguments that are passed when the class is instantiated.
Oracle recommends this approach because it prevents your code from containing
unencrypted user credentials. The String objects that contain the arguments will be
destroyed and removed from memory by the JVM's garbage collection routine.

• Because the client sets the jmx.remote.x.request.waiting.timeout environment
parameter to 10000, all of its invocations of MBean server methods will time out if the
method does not return within 10000 milliseconds of being invoked.

• When the class finishes its work, it invokes JMXConnector.close() to close the connection
to the MBean server. (See JMXConnector in the in the Java SE 17 API Specification at
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/
management/remote/JMXConnector.html.)

Example 4-1 Connecting to the Domain Runtime MBean Server

public class MyConnection {

 private static MBeanServerConnection connection;
 private static JMXConnector connector;
 private static final ObjectName service;
 /*
 * Initialize connection to the Domain Runtime MBean Server.
 */
 public static void initConnection(String hostname, String portString,
 String username, String password) throws IOException,
 MalformedURLException {

 String protocol = "t3";
 Integer portInteger = Integer.valueOf(portString);
 int port = portInteger.intValue();
 String jndiroot = "/jndi/";
 String mserver = "weblogic.management.mbeanservers.domainruntime";
 JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname, port,
 jndiroot + mserver);

 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, username);
 h.put(Context.SECURITY_CREDENTIALS, password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 h.put("jmx.remote.x.request.waiting.timeout", new Long(10000));
 connector = JMXConnectorFactory.connect(serviceURL, h);
 connection = connector.getMBeanServerConnection();
 }

 public static void main(String[] args) throws Exception {
 String hostname = args[0];
 String portString = args[1];
 String username = args[2];
 String password = args[3];

 MyConnection c= new MyConnection();
 initConnection(hostname, portString, username, password);
...
 connector.close();

Chapter 4
Make Remote Connections to an MBean Server

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 13

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/remote/JMXConnector.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/remote/JMXConnector.html

 }
}

Best Practices: Choosing an MBean Server
A WebLogic Server domain maintains three types of MBean servers, each of which fulfills a
specific function. Access MBeans through the MBean server that supports the task you are
trying to complete:

• To modify the configuration of the domain, use the Edit MBean Server.

• To monitor changes to the pending hierarchy of configuration MBeans, use the Edit MBean
Server.

• To monitor only active configuration MBeans (and not run-time MBeans), use a Runtime
MBean Server.

Monitoring through a Runtime MBean Server requires less memory and network traffic
than monitoring through the Domain Runtime MBean Server. (WebLogic Server does not
initialize the Domain Runtime MBean Server until a client requests a connection to it.)

In most cases, all server instances in the domain have the same set of configuration data
and it therefore does not matter whether you monitor the Runtime MBean Server on the
Administration Server or on a Managed Server. However, if you make a change that a
server cannot consume until it is restarted, the server will no longer accept any changes
and its configuration data could become outdated. In this case, monitoring this server's
Runtime MBean Server indicates only the configuration for the specific server instance. To
understand the process of changing a WebLogic Server domain and activating the
changes, see Managing Configuration Changes in Understanding Domain Configuration
for Oracle WebLogic Server.

• If your client monitors run-time MBeans for multiple servers, or if your client runs in a
separate JVM, Oracle recommends that you connect to the Domain Runtime MBean
Server on the Administration Server instead of connecting separately to each Runtime
MBean Server on each server instance in the domain.

If you register a JMX listener and filter with an MBean in the Domain Runtime MBean
Server, the JMX filter runs in the same JVM as the MBean it monitors. For example, if you
register a filter with an MBean on a Managed Server, the filter runs on the Managed Server
and forwards only messages that satisfy the filter criteria to the listener.

In general, code that uses the Domain Runtime MBean Server is easier to maintain and is
more secure for the following reasons:

– Your code only needs to construct a single URL for connecting to the Domain Runtime
MBean Server on the Administration Server. Thereafter, the code can look up values
for all server instances and optionally filter the results.

– If your code uses the Runtime MBean Server to read MBean values on multiple server
instances, it must construct a URL for each server instance, each of which has a
unique listen address/listen port combination.

– You can route all administrative traffic in a WebLogic Server domain through the
Administration Server's secured administration port, and you can use a firewall to
prevent connections to Managed Server administration ports from outside the firewall.

The trade off for directing all JMX requests through the Domain Runtime MBean Server is
a slight degradation in performance due to network latency and increased memory usage.
Connecting directly to each Managed Servers's Runtime MBean Server to read MBean
values eliminates the network hop that the Domain Runtime MBean Server makes to
retrieve a value from a Managed Server. However, for most network topologies and

Chapter 4
Make Remote Connections to an MBean Server

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 13

performance requirements, the simplified code maintenance and enhanced security that
the Domain Runtime MBean Server enables is preferable.

Note

When JMX notifications are added to MBeans, the Domain Runtime MBean
Server can consume large amounts of memory. When JMX notifications are used,
two cases exist that cause the Administration Server to keep copies of all JMX
object names registered in all Runtime MBean Servers running in all Managed
Servers in the domain:

– At the WebLogic Server level, to simulate the unregister MBean notifications
when a Managed Server shuts down.

– At the JDK JMX client notification layer.

The likelihood of encountering this issue grows when both of the following
conditions exist:

– EM Fusion Middleware Control is being used to manage large domains, as it
adds notification listeners to the Domain Runtime MBean Server.

– Fusion Middleware products that significantly increase the number of JMX
runtime MBeans are included in the domain. This would include any product
with MBeans that are registered in WebLogic Server Runtime MBean Server
instances running in the domain; that is, in the Administration Server as well
as all Managed Servers. (These products include Coherence, SOA Suite,
OSB, and so on.)

To eliminate this particular scaling issue, disable the managed-server-
notifications-enabled attribute. This configuration attribute disables the ability
to define notifications on MBeans that are contained in the Managed Servers
Runtime MBean Servers (these MBeans contain a Location=key in the
ObjectName).

If Managed Server notifications are disabled, then the two sets of ObjectNames for
MBeans contained in the WebLogic Server and JDK components will not be kept.
Notifications listeners can still be defined on the MBeanServerDelegate and on
MBeans contained in the local Domain Runtime MBean Server. However,
notifications listeners cannot be added to the non-local MBeans.

The managed-server-notifications-enabled attribute can be set using WLST as
follows:

edit()
startEdit()
cd("JMX/domain-name")
cmo.setManagedServerNotificationsEnabled(false)
activate()

Chapter 4
Make Remote Connections to an MBean Server

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 13

Figure 4-1 Domain Runtime MBean Server versus Runtime MBean Server

JMX Client

Administration Server

Domain Runtime

MBean Server

Managed Server

Runtime

MBean Server

Managed Server

Runtime

MBean Server

MBeanServerConnection MBeanServerConnection MBeanServerConnection

Not

Recommended

Not

Recommended

Make Local Connections to the Runtime MBean Server
Local clients can access a WebLogic Server instance's Runtime MBean Server through the
JNDI tree instead of constructing a JMXServiceURL object.

Note

Local clients can also access a WebLogic Server's Domain Runtime MBean Server
through the JNDI tree, as described in Make Local Connections to the Domain
Runtime MBean Server.

When accessed from JNDI, the Runtime MBean Server returns its
javax.management.MBeanServer interface. This interface contains all the methods in the
MBeanServerConnection interface plus additional methods such as registerMBean(), which a
local process can use to register custom MBeans. (See MBeanServer in the Java SE 17 API
Specification at https://docs.oracle.com/en/java/javase/17/docs/api/java.management/
javax/management/MBeanServerConnection.html.)

If the classes for the JMX client are located in a Jakarta EE module, such as an EJB or Web
application, then the JNDI name for the Runtime MBeanServer is:

weblogic/jmx/runtime

For example:

InitialContext ctx = new InitialContext();
server = (MBeanServer)ctx.lookup("weblogic/jmx/runtime");

If the classes for the JMX client are not part of a Jakarta EE module, then the JNDI name for
the Runtime MBean Server is:

Chapter 4
Make Local Connections to the Runtime MBean Server

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 13

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerConnection.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerConnection.html

java:comp/jmx/runtime

Note

The Jakarta EE specification does not allow application severs to create JNDI bindings
automatically in java:comp/env namespace. Thus, starting WebLogic Server 12.2.1,
the following new bindings replaces the existing java:comp/env/jmx bindings:

• weblogic/jmx/runtime replaces java:comp/env/jmx/runtime

• weblogic/jmx/domainRuntime replaces java:comp/env/jmx/domainRuntime

• weblogic/jmx/edit replaces java:comp/env/jmx/edit

The java:comp/env/jmx/runtime, java:comp/env/jmx/domainRuntime, and
java:comp/env/jmx/edit binds still exists. However, if you try to list them using JNDI
interfaces, you cannot see them. Applications that access these deprecated bindings
can find the bindings by performing a lookup of the object bound there.

Make Local Connections to the Domain Runtime MBean Server
Local clients can also access a WebLogic Server instance's Domain Runtime MBean Server
through the JNDI tree instead of constructing a JMXServiceURL object.

When accessed from JNDI, the Domain Runtime MBean Server returns its
javax.management.MBeanServer interface. This interface contains all the methods in the
MBeanServerConnection interface plus additional methods such as registerMBean(), which a
local process can use to register custom MBeans, and other methods such as
getMBeanCount(), instatiate(), and getClassLoader(). (See MBeanServer in the Java SE 17
API Specification at https://docs.oracle.com/en/java/javase/17/docs/api/
java.management/javax/management/MBeanServer.html.)

Note

As a best practice, Oracle recommends that you use the Domain Runtime MBean
Server only for MBeans that perform domain-wide operations. You should ensure that
any MBean processing and network activity do not slow down the Administration
Server and prevent it from processing administration operations.

If the classes for the JMX client are located in a Jakarta EE module, such as an EJB or Web
application, then the JNDI name for the Domain Runtime MBeanServer is:

weblogic/jmx/domainRuntime

For example:

InitialContext ctx = new InitialContext();
server = (MBeanServer)ctx.lookup("weblogic/jmx/domainRuntime");

If the classes for the JMX client are not part of a Jakarta EE module, then the JNDI name for
the Domain Runtime MBean Server is:

java:comp/jmx/domainRuntime

Chapter 4
Make Local Connections to the Domain Runtime MBean Server

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 13

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServer.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServer.html

The Domain Runtime MBean Server is present only on the Administration Server. Because the
ctx.lookup() call returns a reference to the local MBeanServer, the lookup method can only
be called when running on the Administration Server. If called when running on a Managed
Server, a NameNotFound exception is thrown.

Navigate MBean Hierarchies
WebLogic Server organizes its MBeans in a hierarchical data model. (See WebLogic Server
MBean Data Model.) In this model, all parent MBeans include attributes that contain the object
names of their children. You use the child's object name in standard JMX APIs to get or set
values of the child MBean's attributes or invoke its methods.

To navigate the WebLogic Server MBean hierarchy:

1. Initiate a connection to an MBean server.

See the previous section, Make Remote Connections to an MBean Server.

Initiating the connection returns an object of type

javax.management.MBeanServerConnection

2. Obtain the object name for an MBean at the root of an MBean hierarchy by invoking the
MBeanServerConnection.getAttribute(ObjectName object-name, String attribute)
method where:

• object-name represents the object name of the service MBean that is registered in the
MBean server. (See Service MBeans.)

Table 2-3 describes the type of service MBeans that are available in each type of
MBean server.

• attribute represents the name of a service MBean attribute that contains the root
MBean.

3. Successively invoke code similar to the following:

ObjectName on =
MBeanServerConnection.getAttribute(object-name, attribute)

In the preceding syntax:

• object-name represents the object name of the current node (MBean) in the MBean
hierarchy.

• attribute represents the name of an attribute in the current MBean that contains one
or more instances of a child MBean. If the attribute contains multiple children, assign
the output to an object name array, ObjectName[].

To determine an MBean's location in an MBean hierarchy, refer to the MBean's description in
MBean Reference for Oracle WebLogic Server. For each MBean, the MBean Reference for
Oracle WebLogic Server lists the parent MBean that contains the current MBean's factory
methods. For an MBean whose factory methods are not public, the MBean Reference for
Oracle WebLogic Server lists other MBeans from which you can access the current MBean.

Example: Printing the Name and State of Servers
The code example in Example 4-2 connects to the Domain Runtime MBean Server and uses
the DomainRuntimeServiceMBean to get the object name for each ServerRuntimeMBean in the
domain. Then it retrieves and prints the value of each server's ServerRuntimeMBean Name and
State attributes.

Chapter 4
Navigate MBean Hierarchies

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 13

Note the following about the code in Example 4-2:

• In addition to the connection and connector global variables, the class assigns the object
name for the WebLogic Server service MBean to a global variable. Methods within the
class will use this object name frequently, and once it is defined it does not need to
change.

• The printServerRuntimes() method gets the value of the DomainRuntimeServiceMBean
ServerRuntimes attribute, which contains an array of all ServerRuntimeMBean instances in
the domain. (See DomainRuntimeServiceMBean in MBean Reference for Oracle
WebLogic Server.)

Example 4-2 Example: Print the Name and State of Servers

import java.io.IOException;
import java.net.MalformedURLException;
import java.util.Hashtable;
import javax.management.MBeanServerConnection;
import javax.management.MalformedObjectNameException;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;

public class PrintServerState {

 private static MBeanServerConnection connection;
 private static JMXConnector connector;
 private static final ObjectName service;

 // Initializing the object name for DomainRuntimeServiceMBean
 // so it can be used throughout the class.
 static {
 try {
 service = new ObjectName(

"com.bea:Name=DomainRuntimeService,Type=weblogic.management.mbeanservers.domainruntime.Do
mainRuntimeServiceMBean");
 }catch (MalformedObjectNameException e) {
 throw new AssertionError(e.getMessage());
 }
 }

 /*
 * Initialize connection to the Domain Runtime MBean Server
 */
 public static void initConnection(String hostname, String portString,
 String username, String password) throws IOException,
 MalformedURLException {
 String protocol = "t3";
 Integer portInteger = Integer.valueOf(portString);
 int port = portInteger.intValue();
 String jndiroot = "/jndi/";
 String mserver = "weblogic.management.mbeanservers.domainruntime";
 JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname,
 port, jndiroot + mserver);
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, username);
 h.put(Context.SECURITY_CREDENTIALS, password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 connector = JMXConnectorFactory.connect(serviceURL, h);

Chapter 4
Example: Printing the Name and State of Servers

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 13

 connection = connector.getMBeanServerConnection();
 }

 /*
 * Print an array of ServerRuntimeMBeans.
 * This MBean is the root of the runtime MBean hierarchy, and
 * each server in the domain hosts its own instance.
 */
 public static ObjectName[] getServerRuntimes() throws Exception {
 return (ObjectName[]) connection.getAttribute(service,
 "ServerRuntimes");
 }

 /*
 * Iterate through ServerRuntimeMBeans and get the name and state
 */
 public void printNameAndState() throws Exception {
 ObjectName[] serverRT = getServerRuntimes();
 System.out.println("got server runtimes");
 int length = (int) serverRT.length;
 for (int i = 0; i < length; i++) {
 String name = (String) connection.getAttribute(serverRT[i],
 "Name");
 String state = (String) connection.getAttribute(serverRT[i],
 "State");
 System.out.println("Server name: " + name + ". Server state: "
 + state);
 }
 }

 public static void main(String[] args) throws Exception {
 String hostname = args[0];
 String portString = args[1];
 String username = args[2];
 String password = args[3];

 PrintServerState s = new PrintServerState();
 initConnection(hostname, portString, username, password);
 s.printNameAndState();
 connector.close();
 }
}

Example: Monitoring Servlets
Each servlet in a Web application provides instance of ServletRuntimeMBean which contains
information about the servlet's run-time state. (See ServletRuntimeMBean in MBean Reference
for Oracle WebLogic Server.)

In the WebLogic Server data model, the path to a ServletRuntimeMBean is as follows:

1. The Domain Runtime MBean Server (for all servlets on all servers in the domain), or the
Runtime MBean Server on a specific server instance.

2. DomainRuntimeServiceMBean or RuntimeServiceMBean, ServerRuntimes attribute.

3. ServerRuntimeMBean, ApplicationRuntimes attribute.

4. ApplicationRuntimeMBean, ComponentRuntimes attribute.

The ComponentRuntimes attribute contains many types of component run-time MBeans,
one of which is WebAppComponentRuntimeMBean. When you get the value of this attribute,

Chapter 4
Example: Monitoring Servlets

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 10 of 13

you use the child MBean's Type attribute to get a specific type of component run-time
MBean.

5. WebAppComponentRuntimeMBean, ServletRuntimes attribute.

Example 4-3 Monitoring Servlets

import java.io.IOException;
import java.net.MalformedURLException;
import java.util.Hashtable;

import javax.management.MBeanServerConnection;
import javax.management.MalformedObjectNameException;
import javax.management.ObjectName;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;

public class MonitorServlets {
 private static MBeanServerConnection connection;
 private static JMXConnector connector;
 private static final ObjectName service;

 // Initializing the object name for DomainRuntimeServiceMBean
 // so it can be used throughout the class.
 static {
 try {
 service = new ObjectName(

"com.bea:Name=DomainRuntimeService,Type=weblogic.management.mbeanservers.domainruntime.Do
mainRuntimeServiceMBean");
 }catch (MalformedObjectNameException e) {
 throw new AssertionError(e.getMessage());
 }
 }

 /*
 * Initialize connection to the Domain Runtime MBean Server
 */
 public static void initConnection(String hostname, String portString,
 String username, String password) throws IOException,
 MalformedURLException {
 String protocol = "t3";
 Integer portInteger = Integer.valueOf(portString);
 int port = portInteger.intValue();
 String jndiroot = "/jndi/";
 String mserver = "weblogic.management.mbeanservers.domainruntime";

 JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname,
 port, jndiroot + mserver);
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, username);
 h.put(Context.SECURITY_CREDENTIALS, password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 connector = JMXConnectorFactory.connect(serviceURL, h);
 connection = connector.getMBeanServerConnection();
 }

 /*
 * Get an array of ServerRuntimeMBeans
 */

Chapter 4
Example: Monitoring Servlets

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 11 of 13

 public static ObjectName[] getServerRuntimes() throws Exception {
 return (ObjectName[]) connection.getAttribute(service,
 "ServerRuntimes");
 }

 /*
 * Get an array of WebAppComponentRuntimeMBeans
 */
 public void getServletData() throws Exception {
 ObjectName[] serverRT = getServerRuntimes();
 int length = (int) serverRT.length;
 for (int i = 0; i < length; i++) {
 ObjectName[] appRT =
 (ObjectName[]) connection.getAttribute(serverRT[i],
 "ApplicationRuntimes");
 int appLength = (int) appRT.length;
 for (int x = 0; x < appLength; x++) {
 System.out.println("Application name: " +
 (String)connection.getAttribute(appRT[x], "Name"));
 ObjectName[] compRT =
 (ObjectName[]) connection.getAttribute(appRT[x],
 "ComponentRuntimes");
 int compLength = (int) compRT.length;
 for (int y = 0; y < compLength; y++) {
 System.out.println(" Component name: " +
 (String)connection.getAttribute(compRT[y], "Name"));
 String componentType =
 (String) connection.getAttribute(compRT[y], "Type");
 System.out.println(componentType.toString());
 if (componentType.toString().equals("WebAppComponentRuntime")){
 ObjectName[] servletRTs = (ObjectName[])
 connection.getAttribute(compRT[y], "Servlets");
 int servletLength = (int) servletRTs.length;
 for (int z = 0; z < servletLength; z++) {
 System.out.println(" Servlet name: " +
 (String)connection.getAttribute(servletRTs[z],
 "Name"));
 System.out.println(" Servlet context path: " +
 (String)connection.getAttribute(servletRTs[z],
 "ContextPath"));
 System.out.println(" Invocation Total Count : " +
 (Object)connection.getAttribute(servletRTs[z],
 "InvocationTotalCount"));
 }
 }
 }
 }
 }
 }

 public static void main(String[] args) throws Exception {
 String hostname = args[0];
 String portString = args[1];
 String username = args[2];
 String password = args[3];

 MonitorServlets s = new MonitorServlets();
 initConnection(hostname, portString, username, password);
 s.getServletData();
 connector.close();
 }
}

Chapter 4
Example: Monitoring Servlets

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 12 of 13

The code in Example 4-3 navigates the hierarchy described in the previous paragraphs and
gets values of ServletRuntimeMBean attributes.

Chapter 4
Example: Monitoring Servlets

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 13 of 13

5
Managing a Domain's Configuration with JMX

This chapter describes how to use JMX to manage a WebLogic Server domain's configuration.
It explains how to edit MBean attributes; how to list and undo changes; how to track the
activation of changes; and how to set and get encrypted MBean attribute values. It also
includes best practices for editing and handling exceptions.
This chapter includes the following sections:

To understand the process of changing a WebLogic Server domain and activating the changes,
see Managing Configuration Changes in Understanding Domain Configuration for Oracle
WebLogic Server.

Editing MBean Attributes: Main Steps
To edit MBean attributes:

1. Start an Edit Session.

All edits to MBean attributes occur within the context of an edit session, and within each
WebLogic Server domain only one edit session can be active at a time. Once a user has
started an edit session, WebLogic Server locks other users from accessing the pending
configuration MBean hierarchy. See Managing Locks.

2. Change Attributes or Create New MBeans.

Changing an MBean attribute or creating a new MBean updates the in-memory hierarchy
of pending configuration MBeans. If you end your edit session before saving these
changes, the unsaved changes will be discarded.

3. Save Changes to the Pending Configuration Files.

When you are satisfied with your changes to the in-memory hierarchy, save them to the
domain's pending configuration files. Any changes that you save remain in the pending
configuration files until they have been activated or explicitly reverted. If you end your edit
session before activating the saved changes, you or someone else can activate them in a
subsequent edit session.

You can iteratively make changes and save changes before activating them. For example,
you can create and save a server. Then you can configure the new server's listen port and
listen address and save those changes. Organizing your code in this way can facilitate
correcting any validation errors.

4. Activate Your Saved Changes.

When you activate your changes, WebLogic Server copies the saved, pending
configuration files to all servers in the domain. Each server evaluates the changes and
indicates whether it can consume them. If it can, then it updates its active configuration
files and in-memory hierarchy of configuration MBeans.

5. Restart any server instances that have been updated with changes that require a server
restart.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 14

Start an Edit Session
To start an edit session:

1. Initiate a connection to the Edit MBean Server.

The connection returns an object of type java.management.MBeanServerConnection.

See Make Remote Connections to an MBean Server.

2. Get the object name for ConfigurationManagerMBean.

ConfigurationManagerMBean provides methods to start and stop edit sessions, and save,
undo, and activate configuration changes. (See ConfigurationManagerMBean in MBean
Reference for Oracle WebLogic Server.)

Each domain has only one instance of ConfigurationManagerMBean and it is contained in
the EditServiceMBean ConfigurationManager attribute. EditServiceMBean is your entry
point for all edit operations. It has a simple, fixed object name and contains attributes and
operations for accessing all other MBeans in the Edit MBean Server.

To get the ConfigurationManagerMBean object name, use the following method:

MBeanServerConnection.getAttribute(
 ObjectName object-name, String attribute)

In the preceding method syntax:

• object-name represents the literal
"com.bea:Name=EditService,Type=weblogic.management.mbeanservers.edit.EditS
erviceMBean", which is the object name of EditServiceMBean.

• attribute represents the literal ConfigurationManager, which is the name of the
attribute in EditServiceMBean that contains ConfigurationManagerMBean.

3. Start an edit session.

To start an edit session, invoke the ConfigurationManagerMBean startEdit(int
waitTime, int timeout) operation, where:

• waitTime represents the number of milliseconds ConfigurationManagerMBean waits to
establish a lock on the edit MBean hierarchy. You cannot establish a lock if other edits
are in progress unless you have administrator privileges (see Managing Locks).

• timeout represents the number of milliseconds you have to complete your edit
session. If the time expires before you save or activate your edits, all of your unsaved
changes are discarded.

The startEdit operation returns either of the following:

• If it cannot establish a lock on the edit tree within the amount of time that you specified,
it throws weblogic.management.mbeanservers.edit.EditTimedOutException.

• If it successfully locks the edit tree, it returns an object name for DomainMBean, which is
the root of the edit MBean hierarchy.

Change Attributes or Create New MBeans
To change the attribute values of existing MBeans, create new MBeans, or delete MBeans:

Chapter 5
Editing MBean Attributes: Main Steps

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 14

1. Navigate the hierarchy of the edit tree and retrieve an object name for the MBean that you
want to edit. To create or delete MBeans, retrieve an object name for the MBean that
contains the appropriate factory methods.

See Make Remote Connections to an MBean Server.

2. To change the value of an MBean attribute, invoke the
MBeanServerConnection.setAttribute(object-name, attribute) method, where:

• object-name represents the object name of the MBean that you want to edit.

• attribute represents a javax.management.Attribute object, which contains the
name of the MBean attribute that you want to change and its new value.

To create an MBean, invoke the MBean's create method. For example, the factory method
to create an instance of ServerMBean is createServer(String name) in DomainMBean. In
MBean Reference for Oracle WebLogic Server, each MBean describes the location of its
factory methods (see ServerMBean).

3. (Optional) If you organize your edits into multiple steps, consider validating your changes
after each step by invoking the ConfigurationManagerMBean validate() operation.

The validate method verifies that all unsaved changes satisfy dependencies between
MBean attributes and makes other checks that cannot be made at the time that you set the
value of a single attribute.

If it finds validation errors, the validate() operation throws an exception of type
weblogic.management.mbeanservers.edit.ValidationException. See Exception Types
Thrown by Edit Operations.

Validating is optional because the save() operation also validates changes before saving.

Save Changes to the Pending Configuration Files
Save your changes by invoking the ConfigurationManagerMBean save() operation.

Activate Your Saved Changes
To activate your saved changes throughout the domain:

1. Invoke the ConfigurationManagerMBean activate(long timeout) operation where
timeout specifies how many milliseconds the operation has to complete.

The activate operation returns an object name for an instance of ActivationTaskMBean,
which contains information about the activation request. See Listing and Undoing
Changes.

When the activate operation succeeds or times out, it releases your lock on the editable
MBean hierarchy.

2. Close your connection to the MBean server by invoking JMXConnector.close().

Exception Types Thrown by Edit Operations
Table 5-1 describes all of the exception types that WebLogic Server can throw during edit
operations. When WebLogic Server throws such an exception, the MBean server wraps the
exception in javax.management.MBeanException. (See MBeanException in the Java SE 17 API
Specification at https://docs.oracle.com/en/java/javase/17/docs/api/java.management/
javax/management/MBeanException.html.)

Chapter 5
Editing MBean Attributes: Main Steps

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 14

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanException.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanException.html

Table 5-1 Exception Types Thrown by Edit Operations

Exception Type Thrown When

EditTimedOutException The request to start an edit session times out.

NotEditorException You attempt to edit MBeans without having a lock or when an
administrative user cancels your lock and starts an edit session.

ValidationException You set an MBean attribute's value to the wrong data type, outside an
allowed range, not one of a specified set of values, or incompatible
with dependencies in other attributes.

Listing and Undoing Changes
The following sections describe working with changes that you have made during an edit
session:

WebLogic Server describes changes in a Change object, which is of type
javax.management.openmbean.CompositeType. See CompositeType in the Java SE 17 API
Specification at https://docs.oracle.com/en/java/javase/17/docs/api/java.management/
javax/management/openmbean/CompositeType.html.

Through JMX, you can access information about the changes to a domain's configuration that
have occurred during the current server session only. WebLogic Server maintains an archive of
configuration files, but the archived data and comparisons of archive versions is not available
through JMX.

List Unsaved Changes
For each change that you make to an MBean attribute, WebLogic Server creates a Change
object which contains information about the change. You can access these objects from the
ConfigurationManagerMBean Changes attribute until you save the changes. See
ConfigurationManagerMBean in MBean Reference for Oracle WebLogic Server.

Any unsaved changes are discarded when your edit session ends.

To list unsaved changes:

1. Start an edit session and change at least one MBean attribute.

2. Get the value of the ConfigurationManagerMBean Changes attribute and assign the output
to a variable of type Object[].

3. For each object in the array, invoke Object.toString() to output a description of the
change.

Because Change is a javax.management.openmbean.CompositeType, you can also cast
each item in the array as a CompositeType and invoke CompositeType methods on the
change. See CompositeType in the Java SE 17 API Specification at https://
docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/
openmbean/CompositeType.html.

Example 5-1 Example Method that Lists Unsaved Changes

public void listUnsaved() throws Exception {
 ObjectName cfgMgr = (ObjectName) connection.getAttribute(service,
 "ConfigurationManager");
 Object[] list = (Object[])connection.getAttribute(cfgMgr, "Changes");

Chapter 5
Listing and Undoing Changes

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 14

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html

 int length = (int) list.length;
 for (int i = 0; i < length; i++) {
 System.out.println("Unsaved change: " + list[i].toString());
 }
}

The code in Example 5-1 creates a method that lists unsaved changes. It assumes that the
calling method has already established a connection to the Edit MBean Server.

List Unactivated Changes
When anyone saves changes, WebLogic Server persists the changes in the pending
configuration files. The changes remain in these files, even across multiple editing sessions,
unless a user who has started an edit session invokes the ConfigurationManagerMBean
undoUnactivatedChanges() operation, which reverts all unactivated changes from the pending
files.

The ConfigurationManagerMBean UnactivatedChanges attribute contains Change objects for
both unsaved changes and changes that have been saved but not activated. (There is no
attribute that contains only saved but unactivated changes.) See ConfigurationManagerMBean
Unactivated Changes in MBean Reference for Oracle WebLogic Server.

To list changes that you have saved in the current editing session but not activated, or changes
that your or others have saved in previous editing sessions but not activated:

1. Start an edit session and change at least one MBean attribute.

2. Get the value of the ConfigurationManagerMBean UnactivatedChanges attribute and
assign the output to a variable of type Object[].

3. For each object in the array, invoke Object.toString() to output a description of the
change.

Because Change is a javax.management.openmbean.CompositeType, you can also cast
each item in the array as a CompositeType and invoke CompositeType methods on the
change. See CompositeType in the Java SE 17 API Specification at https://
docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/
openmbean/CompositeType.html.

Example 5-2 Example Method that Lists Unactivated Changes

public void listUnactivated() throws Exception {
 ObjectName cfgMgr = (ObjectName) connection.getAttribute(service,
 "ConfigurationManager");
 Object[] list = (Object[])connection.getAttribute(cfgMgr,
 "UnactivatedChanges");
 int length = (int) list.length;
 for (int i = 0; i < length; i++) {
 System.out.println("Unactivated changes: " + list[i].toString());
 }
}

The code in Example 5-2 creates a method that lists unactivated changes. It assumes that the
calling method has already established a connection to the Edit MBean Server.

List Changes in the Current Activation Task
When you activate changes, WebLogic Server creates an instance of ActivationTaskMBean,
which contains one Change object for each change that is being activated. You can access
these ActivationTaskMBeans from either of the following:

Chapter 5
Listing and Undoing Changes

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 14

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html

• The ConfigurationManagerMBean activate() method returns an object name for the
ActivationTaskMBean that describes the current activation task.

• The ConfigurationManagerMBean CompletedActivationTasks attribute can potentially
contain a list of all ActivationTaskMBean instances that have been created during the
current Administration Server instantiation. See Listing All Activation Tasks Stored in
Memory.

To list changes in the current activation task only:

1. Start an edit session.

2. Assign the output of the activate operation to an instance variable of type
javax.management.ObjectName.

3. Get the value of the ActivationTaskMBean Changes attribute. and assign the output to a
variable of type Object[].

4. For each object in the array, invoke Object.toString() to output a description of the
change.

Because Change is a javax.management.openmbean.CompositeType, you can also cast
each item in the array as a CompositeType and invoke CompositeType methods on the
change. See CompositeType in the Java SE 17 API Specification at https://
docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/
openmbean/CompositeType.html.

Example 5-3 Example Method that Lists Changes in the Current Activation Task

public void activateAndList()
 throws Exception {
 ObjectName cfgMgr = (ObjectName) connection.getAttribute(service,
 "ConfigurationManager");
 ObjectName task = (ObjectName) connection.invoke(cfgMgr, "activate",
 new Object[] { new Long(120000) }, new String[] { "java.lang.Long" });
 Object[] changes = (Object[])connection.getAttribute(task, "Changes");
 int i = (int) changes.length;
 for (int i = 0; i< i; i++) {
 System.out.println("Changes activated: " + changes[i].toString());
 }
}

The code in Example 5-3 creates a method that lists all changes activated in the current editing
session. It assumes that the calling method has already established a connection to the Edit
MBean Server.

Undoing Changes
ConfigurationManagerMBean provides two operations for undoing changes made during an
editing session:

• undo

Reverts unsaved changes.

• undoUnactivatedChanges

Reverts all changes, saved or unsaved, that have not yet been activated. If other users
have saved changes in a previous editing session but not activated those changes,
invoking the ConfigurationManagerMBean undoUnactivatedChanges() operation reverts
those changes as well.

Chapter 5
Listing and Undoing Changes

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 14

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html

After you invoke this method, the pending configuration files are identical to the working
configuration files that the active servers use.

To undo changes, start an edit session and invoke the ConfigurationManagerMBean undo or
undoUnactivatedChanges operation.

For example:

connection.invoke(cfgMgr, "undo", null, null);

Tracking the Activation of Changes
In addition to maintaining a list of changes, each ActivationTaskMBean that WebLogic Server
creates when you invoke the activate operation describes which user activated the changes,
the status of the activation task, and the time at which the changes were activated.

The Administration Server maintains instances of ActivationTaskMBean in memory only; they
are not persisted and are destroyed when you shut down the Administration Server. Because
the ActivationTaskMBean instances contain a list of Change objects (each of which describes a
single change to an MBean attribute), they use a significant amount of memory. To save
memory, by default the Administration Server maintains only a few of the most recent
ActivationTaskMBean instances in memory. To change the default, increase the value of the
ConfigurationManagerMBean CompletedActivationTasksCount attribute.

The following sections describe working with instances of ActivationTaskMBean:

Listing the Status of the Current Activation Task
When you invoke the activate operation, WebLogic Server returns an ActivationTaskMBean
instance to represent the activation task.

The ActivationTaskMBean State attribute describes the status of the activation task. This
attribute stores an int value and ActivationTaskMBean defines constants for each of the int
values. See ActivationTaskMBean in MBean Reference for Oracle WebLogic Server.

To list the status of the current activation task:

1. Start an edit session and change at least one MBean attribute.

2. Invoke the ConfigurationManagerMBean activate(long timeout) operation and assign
the output to a variable of type ActivationTaskMBean.

3. Get the value of the ActivationTaskMBean State attribute.

Listing All Activation Tasks Stored in Memory
The ActivationTaskMBean that the activate operation returns describes only a single
activation task. The Administration Server keeps this ActivationTaskMBean in memory until
you purge it (see Purging Completed Activation Tasks from Memory) or the number of
activation tasks exceeds the value of the ConfigurationManagerMBean
CompletedActivationTasksCount attribute.

To access all ActivationTaskMBean instances that are currently stored in memory (see
Example 5-4):

1. Connect to the Edit MBean Server. (You do not need to start an edit session.)

2. Get the value of the ConfigurationManagerMBean CompletedActivationTasks attribute
and assign the output to a variable of type Object[].

Chapter 5
Tracking the Activation of Changes

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 14

3. (Optional) For each object in the array, get and print the value of ActivationTaskMBean
attributes such as User and State.

See ActivationTaskMBean in MBean Reference for Oracle WebLogic Server.

4. (Optional) For each object in the array, get the value of the Changes attribute. Invoke
Object.toString() to output the value of the Change object.

Example 5-4 Example Method that Lists All Activation Tasks in Memory

public void listActivated() throws Exception {
 ObjectName cfgMgr = (ObjectName) connection.getAttribute(service,
 "ConfigurationManager");
 ObjectName[] list = (ObjectName[])connection.getAttribute(cfgMgr,
 "CompletedActivationTasks");
 System.out.println("Listing completed activation tasks.");
 int length = (int) list.length;
 for (int i = 0; i < length; i++) {
 System.out.println("Activation task " + i);
 System.out.println("User who started activation: " +
 connection.getAttribute(list[i], "User"));
 System.out.println("Task state: " + connection.getAttribute(list[i],
 "State"));
 System.out.println("Start time: " + connection.getAttribute(list[i],
 "StartTime"));

 Object[] changes = (Object[])connection.getAttribute(list[i], "Changes");
 int l = (int) changes.length;
 for (int y = 0; y < l; y++) {
 System.out.println("Changes activated: " + changes[y].toString());
 }
 }
}

Purging Completed Activation Tasks from Memory
Because the ActivationTaskMBean instances contain a list of Change objects (each of which
describes a single change to an MBean attribute), they use a significant amount of memory.

If the Administration Server is running out of memory, you can purge completed activation
tasks from memory. Then decrease the value of the ConfigurationManagerMBean
CompletedActivationTasksCount attribute.

To purge completed activation tasks from memory, connect to the Edit MBean Server and
invoke the ConfigurationManagerMBean purgeCompletedActivationTasks operation.

For example:

connection.invoke(cfgMgr, "purgeCompletedActivationTasks", null, null);

Managing Locks
To prevent changes that could leave the pending configuration MBean hierarchy in an
inconsistent state, only one user at a time can edit MBeans. When a user invokes the
ConfigurationManagerMBean startEdit operation, the ConfigurationManagerMBean prevents
other users (locks) from starting edit sessions.

The following actions remove the lock:

• The ConfigurationManagerMBean activate operation succeeds or times out.

Chapter 5
Managing Locks

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 14

You can use the ActivationTaskMBean waitForTaskCompletion operation to block until
the activation process is complete.

• The ConfigurationManagerMBean stopEdit operation succeeds.

• A user with administrator privileges invokes the ConfigurationManagerMBean cancelEdit
operation while another user has the lock.

For example, connection.invoke(cfgMgr, "cancelEdit", null, null);

• An edit session has been started under a user identity and another process starts an edit
session under the same user identity.

For example, if you use the WebLogic Remote Console to start an edit session and shortly
afterward, use the WebLogic Scripting Tool (WLST) to start an edit session under the same
user identity, the WLST session will remove the lock from your WebLogic Remote Console
session.

To prevent another process from starting an edit session under your user identity, get an
exclusive lock by passing a boolean of value true to the startEdit operation. See
startEdit(waitTimeInMillis, timeOutInMillis, exclusive) in the MBean Reference
for Oracle WebLogic Server.

All unsaved changes are lost when the lock is removed.

Best Practices: Recommended Pattern for Editing and Handling
Exceptions

Oracle recommends that you organize your editing code into several try-catch blocks. Such an
organization will enable you to catch specific types of errors and respond appropriately. For
example, instead of abandoning the entire edit session if a change is invalid, your code can
save the changes, throw an exception and exit without attempting to activate invalid changes.

JMX agents wrap all exceptions in a generic exception of type
javax.management.MBeanException. A JMX client can use the
MBeanException.getTargetException() to unwrap the wrapped exception.

Consider using the following structure (see the pseudo-code in Example 5-5):

• A try block that connects to the Edit MBean Server, starts an edit session, and makes and
saves changes.

After this try block, one catch block for each of the following types of exception wrapped
within MBeanException:

– EditTimedOutException

This exception is thrown if the ConfigurationManagerMBean startEdit() operation
cannot get a lock within the amount of time that you specify.

– NotEditorException

This exception is thrown if the edit session times out or an administrator cancels your
edit session. (See Managing Locks.)

– ValidationException

This exception is thrown if you set a value in an MBean that is the wrong data type,
outside an allowed range, not one of a specified set of values, or incompatible with
dependencies in other attributes.

Chapter 5
Best Practices: Recommended Pattern for Editing and Handling Exceptions

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 14

Within the code that handles ValidationException, include a try block that either
attempts to correct the validation error or stops the edit session by invoking the
ConfigurationManagerMBean stopEdit() operation. If the try block stops the edit
session, its catch block should ignore the NotEditorException. This exception
indicates that you no longer have a lock on the pending configuration MBean
hierarchy; however, because you want to abandon changes and release your lock
anyway, it is not an error condition for this exception to be thrown.

• A try block that activates the changes that have been saved.

The ConfigurationManager activate(long timeout) operation returns an instance of
ActivationTaskMBean, which contains information about the activation task. Oracle
recommends that you set the timeout period for activate() to a minute and then check
the value of the ActivationTaskMBean State attribute.

If State contains the constant STATE_COMMITTED, then your changes have been
successfully activated in the domain. You can use a return statement at this point to end
your editing work. The lock that you created with startEdit() releases after the activation
task succeeds.

If State contains a different value, the activation has not succeeded in the timeout period
that you specified in activate(long timeout). You can get the value of the
ActivationTaskMBean Error attribute to find out why.

After this try block, one catch block to catch the following type of wrapped exception:

NotEditorException

If this exception is thrown while trying to activate changes, your changes were not
activated because your edit session timed out or was cancelled by an administrator.

• (Optional) A try block that undoes the saved changes.

If your class does not return in the activation try block, then your activation task was not
successful. If you do not want these saved changes to be activated by a future attempt to
activate changes, then invoke the ConfigurationManagerMBean
undoUnactivatedChanges() operation.

Otherwise, the pending configuration files retain your saved changes. The next time any
user attempts to activate saved changes, WebLogic Server will attempt to activate your
saved changes along with any other saved changes.

After this try block, one catch block to ignore the following type of wrapped exception:

NotEditorException

• A try block to stop the edit session.

If your activation attempt fails and you are ready to abandon changes, there is no need to
wait until your original timeout period to expire. You can stop editing immediately.

After this try block, one catch block to ignore the following type of exception:

NotEditorException

• Throw the exception that is stored in the ActivationTaskMBean Error attribute.

Example 5-5 Code Outline for Editing and Exception Handling

try {
 //Initialize the connection and start the edit session
...
 ObjectName domainConfigRoot = (ObjectName) connection.invoke(cfgMgr,
 "startEdit",
 new Object[] { new Integer(30000), new Integer(300000) },

Chapter 5
Best Practices: Recommended Pattern for Editing and Handling Exceptions

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 10 of 14

 new String[] { "java.lang.Integer", "java.lang.Integer" });

 // Modify the domain
 ...
 // Save your changes
 connection.invoke(cfgMgr, "save", null, null);

} catch (MBeanException e) {
 Exception targetException = e.getTargetException();
 if (targetException instanceof EditTimedOutException) {
 // Could not get the lock. Notify user
 ...
 throw new MyAppCouldNotStartEditException(e);
 }
 if (targetException instanceof NotEditorException) {
 ...
 throw new MyAppEditSessionFailed(e);
 }
 if (targetException instanceof ValidationException) {
 ...
 try {
 connection.invoke(cfgMgr, "stopEdit", null, null);
 // A wrapped NotEditorException here indicates that you no longer have a
 // lock on the pending configuration MBean hierarchy; however,
 // because you want to abandon changes and release your lock anyway,
 // it is not an error condition for this exception to be thrown
 // and you can safely ignore it.
 } catch (MBeanException e) {
 Exception targetException = e.getTargetException();
 if (targetException instanceof NotEditorException) {
 //ignore
 }
 }
 throw new MyAppEditChangesInvalid(e);
 }
 else {
 throw MBeanException (e);
 }
}

// Changes have been saved, now activate them
try {
 // Activate the changes
 ActivationTaskMBean task = (ObjectName) connection.invoke(cfgMgr,
 "activate",
 new Object[] { new Long(60000) },
 new String[] { "java.lang.Long" });
 // Everything worked, just return.
 String status = (String) connection.getAttribute(task, "State");
 if (status.equals("4"))
 return;
 // If there is an activation error, use ActivationTaskMBean.getError
 // to get information about the error
 failure = connection.getAttribute(task, "Error");
// If you catch a wrapped NotEditorException, your changes were not activated
// because your edit session ended or was cancelled by an administrator.
// Throw the wrapped exception.
} catch (MBeanException e) {
 Exception targetException = e.getTargetException();
 if (targetException instanceof NotEditorException) {
 ...
 throw new MyAppEditSessionFailed(e);

Chapter 5
Best Practices: Recommended Pattern for Editing and Handling Exceptions

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 11 of 14

 }
}

// If your class executes the remaining lines, it is because activating your
// saved changes failed.
// Optional: You can undo the saved changes that failed to activate. If you
// do not undo your saved changes, they will be activated the next time
// someone attempts to activate changes.
// try {
// {
// connection.invoke(cfgMgr, "undoUnactivatedChanges", null, null);
// catch(MBeanException e) {
// Exception targetException = e.getTargetException();
// if (targetException instanceof NotEditorException) {
// ...
// throw new MyAppEditSessionFailed(e);
// }
// }

// Stop the edit session
try {
 connection.invoke(cfgMgr, "stopEdit", null, null);
 // If your activation attempt fails and you are ready to abandon
 // changes, there is no need to wait until your original timeout
 // period to expire. You can stop editing immediately
 // and you can safely ignore any wrapped NotEditorException.
} catch (MBeanException e) {
 Exception targetException = e.getTargetException();
 if (targetException instanceof NotEditorException) {
 //ignore
 }
}
...
// Output the information about the error that caused the activation to
// fail.
throw new MyAppEditSessionFailed(connection.getAttribute(task, "Error"));

Setting and Getting Encrypted Values
To prevent unauthorized access to sensitive data such as passwords, some attributes in
WebLogic Server configuration MBeans are encrypted. The attributes persist their values in the
domain's config.xml file as an encrypted string and represent the in-memory value in the form
of an encrypted byte array. The names of encrypted attributes end with Encrypted. For
example, the ServerMBean exposes the password that is used to secure access through the
IIOP protocol in an attribute named DefaultIIOPPasswordEncrypted. To support backwards
compatibility, and to enable remote JMX clients to set passwords for WebLogic Server
MBeans, each encrypted attribute provides a less secure means to encrypt and set its value.

The following sections describe how to work with encrypted attributes:

Set the Value of an Encrypted Attribute (Recommended Technique)
To use this technique (see Example 5-6):

1. In the same WebLogic Server JVM that hosts the MBean attribute, write a value to a byte
array.

2. Pass the byte array to the weblogic.management.EncryptionHelper.encrypt(byte[])
method and pass its return value to the MBeanServerConnection.setAttribute method.

Chapter 5
Setting and Getting Encrypted Values

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 12 of 14

Avoid assigning the encrypted byte array to a variable because this causes the
unencrypted byte array to remain in memory until it is garbage collected and the memory is
reallocated.

3. Clear the original byte array using the weblogic.management.EncryptionHelper.clear()
method.

Example 5-6 Example: Set the Value of an Encrypted Attribute (Recommended
Technique)

public void editDefaultIIOPPassword(ObjectName cfgRoot) throws Exception {
 // Get the ServerMBean from the DomainMBean
 ObjectName server = (ObjectName) connection.invoke(cfgRoot,
 "lookupServer", new Object[] { "myserver" },
 new String[] { "java.lang.String" });
 // Get new password from standard in. Assign it to a byte array.
 System.out.println("Enter new password and press enter: ");
 byte userinput[] = new byte[10];
 System.in.read(userinput);
 // Encrypt the byte array and set it as the encrypted
 // attribute value.
 Attribute newpassword = new Attribute("DefaultIIOPPasswordEncrypted",
 weblogic.management.EncryptionHelper.encrypt(userinput));
 connection.setAttribute(server, newpassword);
 System.out.println("New password is set to: " +
 connection.getAttribute(server, "DefaultIIOPPasswordEncrypted"));
 // Clear the byte array.
 weblogic.management.EncryptionHelper.clear(userinput);
 }

Set the Value of an Encrypted Attribute (Compatibility Technique)
Prior to 9.0, JMX clients used a different technique for setting encrypted values. JMX clients
can continue to use this compatibility technique, and if you want to set encrypted values from a
remote JMX client, this is the only technique available. The compatibility technique is less
secure because it creates a String that contains your unencrypted password. Even though
WebLogic Server converts the String to an encrypted byte array, the String will remain in
memory until it is garbage collected and the memory is reallocated.

To use the compatibility technique:

1. Write a value to a String.

2. Pass the String as a parameter to the MBeanServerConnection.setAttribute method,
but instead of setting the value of the encrypted attribute, set the value for the
corresponding non-encrypted attribute.

WebLogic Server converts the String to an encrypted byte array and sets it as
CustomIdentityKeyStorePassPhraseEncrypted. (It does not set a value for
CustomIdentityKeyStorePassPhrase).

For example, to set the CustomIdentityKeyStorePassPhraseEncrypted from a remote
JMX client, invoke the MBeanServerConnection.setAttribute for an attribute named
CustomIdentityKeyStorePassPhrase.

For example:

public void editDefaultIIOPPassword(ObjectName cfgRoot, String password)
 throws Exception {
 // Get the ServerMBean from the DomainMBean
 ObjectName server = (ObjectName) connection.invoke(cfgRoot, "lookupServer",
 new Object[]{"myserver"},new String[]{"java.lang.String"});

Chapter 5
Setting and Getting Encrypted Values

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 13 of 14

 Attribute newpassword = new Attribute("DefaultIIOPPassword",
 "password");
 connection.setAttribute(server, newpassword);
}

Back Up an Encrypted Value
To make a backup copy of a password, use the getter method of the MBean's encrypted value
to retrieve the encrypted byte array. Then write the value of the byte array to a file. WebLogic
Server does not provide APIs or other utilities for decrypting values that it has encrypted.

If you need to restore the password value, you can load the saved value into a byte array and
pass it as a parameter to the MBeanServerConnection.setAttribute method (see Set the
Value of an Encrypted Attribute (Recommended Technique)).

Note

Because each WebLogic Sever domain uses its own encryption algorithm, you must
back up and restore passwords separately for each domain even if the unencrypted
value for the password is the same for all domains.

Instead of backing up the same encrypted password for each domain, you can use the
getter method of an MBean's corresponding unencrypted value. This getter
unencrypts the password and copies into a String. The String will not be erased from
memory until it is garbage collected and the memory is reallocated.

Chapter 5
Setting and Getting Encrypted Values

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 14 of 14

6
Managing Security Realms with JMX

This chapter describes how to use JMX to manage security realms, which comprise the
mechanisms for protecting WebLogic resources. Each security realm consists of a set of
configured security providers, which are modular components that handle specific aspects of
security. You can create a JMX client that uses the providers in a realm to add or remove
security data such as users and groups. You can also create a client that adds or removes
providers and makes other changes to the realm configuration.
This chapter includes the following sections:

For more information about WebLogic Security, see Understanding Security for Oracle
WebLogic Server.

Understanding the Hierarchy of Security MBeans
Like other subsystems, the WebLogic Server security framework organizes its MBeans in a
hierarchy that JMX clients can navigate without constructing JMX object names. However, the
set of MBean types that are available in a security realm depends on which security providers
you have installed in the realm, and the set of services that each security provider enables
depends on how the provider was created.

The root of the security realm hierarchy is the RealmMBean. It contains all of the providers that
have been configured for the realm. For example, its Authorizers attribute contains all
authorization providers that have been configured for the realm. WebLogic Server installs a
default set of security providers; therefore, by default the RealmMBean Authorizers attribute
contains a DefaultAuthorizerMBean. However, you can uninstall these default providers and
replace them with any number of your own providers or third-party providers. For information
about the default security providers, see Configuring WebLogic Security Providers and
Configuring Authorization Providers in Administering Security for Oracle WebLogic Server.

Base Provider Types and Mix-In Interfaces
Each security provider must extend a base provider type. For example,
DefaultAuthorizerMBean extends AuthorizerMBean, and any custom or third-party
authorization provider also extends AuthorizerMBean. If a JMX client gets the value of the
RealmMBean Authorizers attribute, the MBean server returns all MBeans in the realm that
extend AuthorizerMBean. The JMX client can iterate through the list of providers and select
one based on the value of its Name attribute or other criteria.

Base provider types can be enhanced by extending a set of optional mix-in interfaces. For
example, if an authentication provider extends the UserEditorMBean, then the provider can add
users to the realm.

Security MBeans
WebLogic Server's Security MBeans configure security providers in a security realm. The
following tables describe the MBeans that configure different types of security providers.

• Table 6-1 describes the MBeans that configure Authentication security providers, as well
as the abstract MBean classes that Authentication providers must extend. In addition to the

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 13

MBeans in this table, WebLogic Server includes configuration MBeans for each out-of-the-
box Authentication provider.

• Table 6-2 describes the MBeans that configure security providers, other than
Authentication security providers.

• Table 6-3 describes optional MBean mixin interfaces that security providers can support for
management and utility purposes.

For more information about configuring WebLogic security providers, see Configuring
WebLogic Security Providers and Configuring Authorization Providers in Administering Security
for Oracle WebLogic Server. Figure 6-1 illustrates where the MBeans are located in the
configuration MBean hierarchy.

Table 6-1 MBeans for Authentication Security Providers

This MBean... Configures...

AuthenticationProviderM
Bean

The base MBean for all MBean implementations that manage
Authentication providers. If your Authentication provider uses the
WebLogic Security SSPI to provide login services, then your MBean
must extend
weblogic.management.security.authentication.Authenticato
r. If your Authentication provider uses the WebLogic Security SPI to
provide identity-assertion services, then your MBean must extend
weblogic.management.security.authentication.IdentityAsse
rter.

See AuthenticationProviderMBean in the MBean Reference for Oracle
WebLogic Server.

AuthenticatorMBean The SSPI MBean that all Authentication providers with login services
must extend. This MBean provides a ControlFlag to determine
whether the Authentication provider is a REQUIRED, REQUISITE,
SUFFICENT, or OPTIONAL part of the login sequence.

See AuthenticatorMBean in the MBean Reference for Oracle WebLogic
Server.

IdentityAsserterMBean The SSPI MBean that all Identity Assertion providers must extend. This
MBean enables an Identity Assertion provider to specify the token types
for which it is capable of asserting identity.

See IdentityAsserterMBean in the MBean Reference for Oracle
WebLogic Server.

ServletAuthenticationFi
lterMBean

The SSPI MBean that all Servlet Authentication Filter providers must
extend. This MBean is just a marker interface. It has no methods on it.

See ServletAuthenticationFilterMBean in the MBean Reference for
Oracle WebLogic Server.

Table 6-2 MBeans for Other Security Providers

This MBean... Configures...

AdjudicatorMBean The SSPI MBean that all Adjudication providers must extend.

See AdjudicatorMBean in the MBean Reference for Oracle WebLogic
Server.

DefaultAdjudicatorMBean Configuration attributes for the WebLogic Adjudication provider.

See DefaultAdjudicatorMBean in the MBean Reference for Oracle
WebLogic Server.

Chapter 6
Understanding the Hierarchy of Security MBeans

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 13

Table 6-2 (Cont.) MBeans for Other Security Providers

This MBean... Configures...

AuditorMBean The SSPI MBean that all Auditing providers must extend.

See AuditorMBean in the MBean Reference for Oracle WebLogic
Server.

DefaultAuditorMBean Configuration attributes for the WebLogic Auditing provider.

See DefaultAuditorMBean in the MBean Reference for Oracle WebLogic
Server.

AuthorizerMBean The SSPI MBean that all Authorization providers must extend.

See AuthorizerMBean in the MBean Reference for Oracle WebLogic
Server.

DeployableAuthorizerMBe
an

The SSPI MBean that must be extended by all Authorization providers
that can store policies created while deploying a Web application or EJB.

See DeployableAuthorizerMBean in the MBean Reference for Oracle
WebLogic Server.

DefaultAuthorizerMBean Configuration attributes for the WebLogic Authorization provider.

See DefaultAuthorizerMBean in the MBean Reference for Oracle
WebLogic Server.

CredentialMapperMBean The SSPI MBean that all Credential Mapping providers must extend.

See CredentialMapperMBean in the MBean Reference for Oracle
WebLogic Server.

DeployableCredentialMap
perMBean

The SSPI MBean that must be extended by all Credential Mapper
providers that can store credential maps created while deploying a
component.

See DeployableCredentialMapperMBean in the MBean Reference for
Oracle WebLogic Server.

DefaultCredentialMapper
MBean

Configuration attributes for the WebLogic Credential Mapping provider, a
username/password Credential Mapping provider.

See DefaultCredentialMapperMBean in the MBean Reference for Oracle
WebLogic Server.

PKICredentialMapperMBea
n

Configuration attributes for the PKI Credential Mapping provider, a key
pair Credential Mapping provider.

See PKICredentialMapperMBean in the MBean Reference for Oracle
WebLogic Server.

SAMLCredentialMapperMBe
an

Configuration attributes for the SAML Credential Mapping provider, a
Security Assertion Markup Language Credential Mapping provider.

See SAMLCredentialMapperMBean in the MBean Reference for Oracle
WebLogic Server.

CertPathProviderMBean The base MBean for all certification path providers.

See CertPathProviderMBean in the MBean Reference for Oracle
WebLogic Server.

CertPathBuilderMBean The SSPI MBean that all certification path providers with
CertPathBuilder services must extend.

See CertPathBuilderMBean in the MBean Reference for Oracle
WebLogic Server.

CertPathValidatorMBean The SSPI MBean that all certification path providers with
CertPathValidator services must extend.

See CertPathValidatorMBean in the MBean Reference for Oracle
WebLogic Server.

Chapter 6
Understanding the Hierarchy of Security MBeans

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 13

Table 6-2 (Cont.) MBeans for Other Security Providers

This MBean... Configures...

CertificateRegistryMBea
n

Configures and manages the certificate registry. It is both a builder and a
validator. It supports building from the end certificate, the end
certificate's subject DN, the end certificate's issuer DN and serial
number, and the end certificate's subject key identifier.

See CertificateRegistryMBean in the MBean Reference for Oracle
WebLogic Server.

WebLogicCertPathProvide
rMBean

The SSPI MBean that all certification path providers with
CertPathBuilder services must extend.

See WebLogicCertPathProviderMBean in the MBean Reference for
Oracle WebLogic Server.

RoleMapperMBean The base MBean for Role Mapping providers. A Role Mapping provider
for a non-deployable module must extend this MBean directly. A Role
Mapping provider for a deployable module must extend the
DeployableRoleMapperMBean.

See RoleMapperMBean in the MBean Reference for Oracle WebLogic
Server.

DeployableRoleMapperMBe
an

The SSPI MBean that must be extended by Role Mapping providers that
can store roles created while deploying a Web application or EJB.

See DeployableRoleMapperMBean in the MBean Reference for Oracle
WebLogic Server.

DefaultRoleMapperMBean Configuration attributes for the WebLogic Role Mapping provider.

See DefaultRoleMapperMBean in the MBean Reference for Oracle
WebLogic Server.

Table 6-3 MBean Mixin Interfaces for Security Providers

This MBean... Configures...

ContextHandlerMBean Provides a set of attributes for ContextHandler support. An Auditor
provider MBean can optionally implement this MBean.

See ContextHandlerMBean in the MBean Reference for Oracle
WebLogic Server.

GroupEditorMBean Provides a set of methods for creating, editing, and removing groups. An
Authentication provider MBean can optionally implement this MBean.

See GroupEditorMBean in the MBean Reference for Oracle WebLogic
Server.

GroupMemberListerMBean Provides a method for listing a group's members. An Authentication
provider MBean can optionally implement this MBean.

See GroupMemberListerMBean in the MBean Reference for Oracle
WebLogic Server.

GroupMembershipHierarch
yCacheMBean

Provides configuration attributes that are required to support the Group
Membership Hierarchy Cache. An Authentication provider MBean can
optionally implement this MBean.

See GroupMembershipHierarchyCacheMBean in the MBean Reference
for Oracle WebLogic Server.

Chapter 6
Understanding the Hierarchy of Security MBeans

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 13

Table 6-3 (Cont.) MBean Mixin Interfaces for Security Providers

This MBean... Configures...

GroupReaderMBean Provides a set of methods for reading data about groups. An
Authentication provider MBean can optionally implement this MBean.

See GroupReaderMBean in the MBean Reference for Oracle WebLogic
Server.

MemberGroupListerMBean Provides a method for listing the groups that contain a member. An
Authentication provider MBean can optionally implement this MBean.

See MemberGroupListerMBean in the MBean Reference for Oracle
WebLogic Server.

UserEditorMBean Provides a set of methods for creating, editing, and removing users. An
Authentication provider MBean can optionally implement this MBean.

See UserEditorMBean in the MBean Reference for Oracle WebLogic
Server.

UserLockoutManagerMBean Lists and manages lockouts on user accounts. An Authentication
provider MBean can optionally implement this MBean.

See UserLockoutManagerMBean in the MBean Reference for Oracle
WebLogic Server.

UserPasswordEditorMBean Provides two methods for changing a user's password. An
Authentication provider MBean can optionally implement this MBean.

See UserPasswordEditorMBean in the MBean Reference for Oracle
WebLogic Server.

UserReaderMBean Provides a set of methods for reading data about users. An
Authentication provider MBean can optionally implement this MBean.

See UserReaderMBean in the MBean Reference for Oracle WebLogic
Server.

UserRemoverMBean Provides a method for removing users. An Authentication provider
MBean can optionally implement this MBean.

See UserRemoverMBean in the MBean Reference for Oracle WebLogic
Server.

RoleEditorMBean Provides a set of methods for creating, editing, and removing roles. A
Role Mapping provider MBean can optionally implement this MBean.

See RoleEditorMBean in the MBean Reference for Oracle WebLogic
Server.

RoleListerMBean Provides a set of methods for listing data about roles. A Role Mapping
provider MBean can optionally implement this MBean.

See RoleListerMBean in the MBean Reference for Oracle WebLogic
Server.

RoleReaderMBean Provides a set of methods for reading roles. A Role Mapping provider
MBean can optionally implement this MBean.

See RoleReaderMBean in the MBean Reference for Oracle WebLogic
Server.

PolicyEditorMBean Provides a set of methods for creating, editing, and removing policies.
An Authorization provider MBean can optionally implement this MBean.

See PolicyEditorMBean in the MBean Reference for Oracle WebLogic
Server.

Chapter 6
Understanding the Hierarchy of Security MBeans

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 13

Table 6-3 (Cont.) MBean Mixin Interfaces for Security Providers

This MBean... Configures...

PolicyListerMBean Provides a set of methods for listing data about policies. An
Authorization provider MBean can optionally implement this MBean.

See PolicyListerMBean in the MBean Reference for Oracle WebLogic
Server.

PolicyReaderMBean Provides a set of methods for reading policies. An Authorization provider
MBean can optionally implement this MBean.

See PolicyReaderMBean in the MBean Reference for Oracle WebLogic
Server.

PKICredentialMapEditorM
Bean

Provides a set of methods for creating, editing, and removing a
credential map that matches users, resources and credential action to
keystore aliases and the corresponding passwords. A
PKICredentialMapping provider MBean can optionally implement this
MBean.

See PKICredentialMapEditorMBean in the MBean Reference for Oracle
WebLogic Server.

PKICredentialMapReaderM
Bean

Provides a set of methods for reading a credential map that matches
users and resources to keystore aliases and their corresponding
passwords that can then be used to retrieve key information or public
certificate information from the configured keystores. A
PKICredentialMapping provider MBean can optionally implement this
MBean.

See PKICredentialMapReaderMBean in the MBean Reference for
Oracle WebLogic Server.

UserPasswordCredentialM
apEditorMBean

Provides a set of methods for creating, editing, and removing a
credential map that matches WebLogic users to remote user names and
their corresponding passwords. A Credential Mapping provider MBean
can optionally extend this MBean.

See UserPasswordCredentialMapEditorMBean in the MBean Reference
for Oracle WebLogic Server.

UserPasswordCredentialM
apExtendedReaderMBean

Provides a set of methods for reading credentials and credential
mappings. Credential mappings match WebLogic users to remote
usernames and passwords. A Credential Mapping provider MBean can
optionally extend this MBean.

See UserPasswordCredentialMapExtendedReaderMBean in the MBean
Reference for Oracle WebLogic Server.

UserPasswordCredentialM
apReaderMBean

Provides a set of methods for reading credentials and credential
mappings. Credential mappings match WebLogic users to remote
usernames and passwords. A Credential Mapping provider MBean can
optionally extend this MBean.

See UserPasswordCredentialMapReaderMBean in the MBean
Reference for Oracle WebLogic Server.

ImportMBean Provides a set of methods for importing provider specific data. An
optional mixin interface that any security provider may extend.

See ImportMBean in the MBean Reference for Oracle WebLogic Server

ExportMBean Provides a set of methods for exporting provider specific data. An
optional mixin interface that any security provider may extend.

See ExportMBean in the MBean Reference for Oracle WebLogic Server

Chapter 6
Understanding the Hierarchy of Security MBeans

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 13

Table 6-3 (Cont.) MBean Mixin Interfaces for Security Providers

This MBean... Configures...

ListerMBean Provides a general mechanism for returning lists. Derived MBeans
extend this interface to add methods that access the data of the current
object in the list. An optional mixin interface that any security provider
may extend.

See ListerMBean in the MBean Reference for Oracle WebLogic Server

NameListerMBean Defines a method used to return lists of names. An optional mixin
interface that any security provider may extend.

See NameListerMBean in the MBean Reference for Oracle WebLogic
Server

LDAPServerMBean Provides methods to get configuration parameters needed for
connecting to an external LDAP server. An optional mixin interface that
any security provider may extend.

See LDAPServerMBean in the MBean Reference for Oracle WebLogic
Server

ApplicationVersionerMBe
an

The SSPI MBean that security providers extend to indicate that the
provider supports versionable applications. An optional mixin interface
that a RoleMapper, Authorizer, or CredentialMapper provider MBean
may extend.

See ApplicationerVersionMBean in the MBean Reference for Oracle
WebLogic Server

Figure 6-1 Security MBeans

SecurityConfigurationMBean

RealmMBean

AdjudicatorMBean

KeyStoreMBean

UserLockoutManagerMBean

AuthorizerMBean

AuditorMBean

CertPathProviderMBean

CredentialMapperMBean

RoleMapperMBean

DomainMBean

AuthenticationProviderMBean

AuthenticationMBean

IdentityAsserterMBean

Choosing an MBean Server to Manage Security Realms
When using JMX to manage security realms, you must use two different MBean servers
depending on your task:

Chapter 6
Choosing an MBean Server to Manage Security Realms

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 13

• To set the value of a security MBean attribute, you must use the Edit MBean Server.

• To add users, groups, roles, and policies, or to invoke other operations in a security
provider MBean, you must use a Runtime MBean Server or the Domain Runtime MBean
Server.

In addition, to prevent the possibility of incompatible changes, you cannot invoke
operations in security provider MBeans if your client or another JMX client has an edit
session currently active.

For example, the value of the MinimumPasswordLength attribute in
DefaultAuthenticatorMBean is stored in the domain's configuration document. Because all
modifications to this document are controlled by WebLogic Server, to change the value of this
attribute you must use the Edit MBean Server and acquire a lock on the domain's
configuration. The createUser operation in DefaultAuthenticatorMBean adds data to an
LDAP server, which is not controlled by WebLogic Server. To prevent incompatible changes
between the DefaultAuthenticatorMBean's configuration and the data that it uses in the LDAP
server, you cannot invoke the createUser operation if you or other users are in the process of
modifying the MinimumPasswordLength attribute. In addition, because changing this attribute
requires you to restart WebLogic Server, you cannot invoke the createUser operation until you
have restarted the server.

Working with Existing Security Providers
Because security providers can extend optional mix-in interfaces, not all security providers can
perform all tasks. This flexibility enables your organization's security architect to design a realm
for your security needs. The flexibility also makes the design of your JMX clients dependent
upon the design and configuration of each realm.

For example, some realms might contain three types of Authentication providers:

• One that extends UserEditorMBean to save administrative users to an LDAP server

• One that extends UserEditorMBean to save customers to a database management system

• One that does not extend UserEditorMBean and is used only to authenticate existing users

To work with the Authentication providers in this realm, your JMX client must be able to
determine which one can add users to the appropriate repository.

Table 6-4 discusses techniques for finding a security provider that is appropriate for your task.

Table 6-4 Finding a Provider in the Realm

Technique Description

Find by name Each security provider instance is assigned a short name when an
administrator configures it for the realm. Your JMX client can look up
all providers of a specific type (such as all Authentication providers)
and choose the one that matches a name.

If you use this technique, consider saving the name of the security
provider in a configuration file instead of hard-coding it in your JMX
client. The configuration file enables system administrators to change
the providers in the realm and update the properties file instead of
requiring you to update and recompile the JMX client.

Chapter 6
Working with Existing Security Providers

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 13

Table 6-4 (Cont.) Finding a Provider in the Realm

Technique Description

Find by MBean type If the system administrator always wants to use the same type of
provider for a task, then your JMX client can find the provider MBean
that is of the specified type.

For example, if the system administrator always wants to use a
SQLAuthenticatorMBean to add customers to a realm, your JMX
client can find an instance of SQLAuthenticatorMBean.

While this technique requires no user input, it assumes:

• There will always be an instance of SQLAuthenticatorMBean in
the realm and this one instance extends UserEditorMBean.

• If there are multiple instances of SQLAuthenticatorMBean, all
of them extend UserEditorMBean and it does not matter which
instance is used.

See Discovering Available Services.

Use any provider that extends
the mix-in interface you need

You can create a JMX client that learns about the class hierarchy for
each provider MBean instance and chooses an instance that extends
the mix-in interface you need for your task. For example, your client
can discover which Authentication provider extends
UserEditorMBean. See Discovering Available Services.

Use this technique if you know that your security realm will contain
only one MBean that extends the needed mix-in interface, or if it does
not matter which one you use.

Discovering Available Services
To create a JMX client that finds MBeans by type or mix-in interface:

1. Connect to a WebLogic Server Runtime MBean Server.

See Make Remote Connections to an MBean Server.

All WebLogic Server instances maintain their own Runtime MBean Server, and you can
connect to any server's Runtime MBean Server.

2. Get all security provider MBeans of a specific type in the realm (for example, get all
Authentication provider MBeans):

a. Use either the RuntimeServiceMBean or DomainRuntimeServiceMBean to navigate the
following path through the WebLogic Server MBean hierarchy:

DomainMBean to SecurityConfigurationMBean to RealmMBean

See Make Remote Connections to an MBean Server.

b. Get the value of the RealmMBean attribute that contains instances of the security
provider type.

For example, to get all authentication providers, get the value of the RealmMBean
AuthenticationProviders attribute.

3. For each security provider MBean in the RealmMBean attribute, get the name of the
MBean's class.

See Example 6-1.

a. Get the provider MBean's javax.management.ModelMBeanInfo object.

Use MBeanServerConnection.getMBeanInfo(Provider-MBean)

Chapter 6
Working with Existing Security Providers

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 13

where Provider-MBean is a provider MBean that you retrieved from RealmMBean.

b. Get the MBean info's javax.management.Descriptor object, and then get the value of
the Descriptor's interfaceClassName field.

4. Use the WebLogic Server MBean type service to find all security provider MBean classes
that extend a particular base type or mix-in interface.

See Example 6-1.

a. Determine the fully-qualified interface name of the base type or mix-in interface.

Each entry in the MBean Reference for Oracle WebLogic Server lists the fully-qualified
interface name of WebLogic Server provider MBeans. If you use a third-party provider,
refer to the third-party documentation for this information.

For example, the fully-qualified interface name of the UserEditorMBean mix-in interface
is weblogic.management.security.authentication.UserEditorMBean. (See
UserEditorMBean in MBean Reference for Oracle WebLogic Server.)

b. Construct the MBeanTypeService MBean's object name.

The MBeanTypeService MBean is always registered under the following
javax.management.ObjectName:

com.bea:Name=MBeanTypeService,Type=weblogic.management.mbeanservers.MBeanTypeServ
ice

c. Invoke the MBeanTypeService MBean's getSubtypes(java.lang.String
beanInterface) operation, where beanInterface represents the fully-qualified
interface name that you determined in Step 1.

The operation returns an array of java.lang.String objects.

5. Compare the output of the MBean type service with the class name of each provider
MBean instance.

See Example 6-1.

6. If the provider MBean's class implements or extends the interface from step 4a, invoke
operations on the provider MBean.

Example 6-1 Example: Determine If a Provider MBean Instance Extends
UserEditorMBean Mix-In Interface

ObjectName MBTservice = new ObjectName(
 "com.bea:Name=MBeanTypeService,Type=weblogic.management.mbeanservers.
 MBeanTypeService");

for (int p = 0; atnProviders != null && p < atnProviders.length; p++) {
 ModelMBeanInfo info = (ModelMBeanInfo)
 mBeanServerConnection.getMBeanInfo(atnProviders[p]);
 Descriptor desc = info.getMBeanDescriptor();
 String className = (String)desc.getFieldValue("interfaceClassName");
 String[] mba = (String[]) mBeanServerConnection.invoke(MBTservice,
 "getSubtypes", new Object[] {
 "weblogic.management.security.authentication.UserEditorMBean" },
 new String[] { "java.lang.String" });
 boolean isEditor = false;
 for (int i = 0; i < mba.length; i++) {
 if (mba[i].equals(className)){
 userEditor = atnProviders[p];
 isEditor = true;
 break;
 }
 if (isEditor = true) break;

Chapter 6
Working with Existing Security Providers

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 10 of 13

 }
}

Example: Adding Users to a Realm
The code example in Example 6-2 adds a user to a security realm and adds the user to the
Administrators group by searching through all of the authentication providers in the realm
and using the first one that extends UserEditorMBean.

Note the following about the code example:

• The user name and password come from a JavaBean that was created from an Apache
Struts action.

• The code does not need to lock the domain's configuration because it is not modifying the
configuration of the security MBean itself. Instead, it is invoking an operation in the default
Authorization provider which saves security data in an LDAP server.

Example 6-2 Example: Adding Users to a Realm

public ActionForward createNewAdmin(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws ClientException, Exception {
 logger.info("Create New Admin");
 CreateAdminBean user = (CreateAdminBean) form;
 logger.debug(user.toString());

 MBeanServerConnection mBeanServerConnection =
 this.getDomainMBeanServerConnection(request);
 ObjectName service = new
 ObjectName("com.bea:Name=DomainRuntimeService,"+
 "Type=weblogic.management.mbeanservers.domainruntime.
 DomainRuntimeServiceMBean");
 ObjectName domainMBean =
 (ObjectName) mBeanServerConnection.getAttribute(service,
 "DomainConfiguration");
 ObjectName securityConfiguration =
 (ObjectName) mBeanServerConnection.getAttribute(domainMBean,
 "SecurityConfiguration");
 ObjectName defaultRealm =
 (ObjectName) mBeanServerConnection.
 getAttribute(securityConfiguration, "DefaultRealm");
 ObjectName[] atnProviders =
 (ObjectName[]) mBeanServerConnection.getAttribute(defaultRealm,
 "AuthenticationProviders");

 ObjectName userEditor = null;
 ObjectName MBTservice = new ObjectName(
 "com.bea:Name=MBeanTypeService,Type=weblogic.management.mbeanservers.
 MBeanTypeService");

 for (int p = 0; atnProviders != null && p < atnProviders.length; p++) {
 ModelMBeanInfo info = (ModelMBeanInfo)
 mBeanServerConnection.getMBeanInfo(atnProviders[p]);
 Descriptor desc = info.getMBeanDescriptor();
 String className = (String)desc.getFieldValue("interfaceClassName");
 String[] mba = (String[]) mBeanServerConnection.invoke(MBTservice,
 "getSubtypes", new Object[] {
 "weblogic.management.security.authentication.UserEditorMBean" },
 new String[] { "java.lang.String" });

Chapter 6
Working with Existing Security Providers

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 11 of 13

 boolean isEditor = false;
 for (int i = 0; i < mba.length; i++) {
 if (mba[i].equals(className)){
 userEditor = atnProviders[p];
 isEditor = true;
 break;
 }
 if (isEditor = true) break;
 }
 }

 try {
 mBeanServerConnection.invoke(
 userEditor, "createUser",
 new Object[] {user.getUsername(), user.getPassword(),
 "MedRec Admininistator"},
 new String[] {"java.lang.String", "java.lang.String",
 "java.lang.String"}
);
 } catch (MBeanException ex) {
 Exception e = ex.getTargetException();
 if (e instanceof AlreadyExistsException) {
 logger.info("User, " + user.getUsername() + ", already exists.");
 ActionErrors errors = new ActionErrors();
 errors.add("invalidUserName",
 new ActionError("invalid.username.already.exists"));
 saveErrors(request, errors);
 return mapping.findForward("create.new.admin");
 } else {
 logger.debug(e);
 return mapping.findForward("create.new.admin");
 }
 }

 try {
 mBeanServerConnection.invoke(
 userEditor, "addMemberToGroup",
 new Object[] {"Administrators", user.getUsername()},
 new String [] {"java.lang.String", "java.lang.String"}
);

 mBeanServerConnection.invoke(
 userEditor, "addMemberToGroup",
 new Object[] {"MedRecAdmins", user.getUsername()},
 new String [] {"java.lang.String", "java.lang.String"}
);
 } catch (MBeanException ex) {
 Exception e = ex.getTargetException();
 if (e instanceof NameNotFoundException) {
 logger.info("Invalid Group Name.");
 ex.printStackTrace();
 return mapping.findForward("create.new.admin");
 } else {
 logger.debug(e);
 return mapping.findForward("create.new.admin");
 }
 }
 logger.info("MedRec Administrator successfully created.");
 return mapping.findForward("create.new.admin.successful");
}

Chapter 6
Working with Existing Security Providers

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 12 of 13

Modifying the Realm Configuration
While security provider MBeans handle specific aspects of security, such as authentication and
authorization, two other MBeans handle general, realm-wide and domain-wide aspects of
security:

• RealmMBean represents a security realm. JMX clients can use it to add or remove security
providers and to specify such behaviors as whether Web and EJB containers call the
security framework on every access or only when security is set in the deployment
descriptors.

• SecurityConfigurationMBean specifies domain-wide security settings such as connection
filters and URL-pattern matching behavior for security constraints, servlets, filters, and
virtual-hosts in the WebApp container and external security policies.

These two MBeans persist their data in WebLogic Server configuration files. Therefore, to
modify attribute values in RealmMBean or SecurityConfigurationMBean, you must use the Edit
MBean Server and ConfigurationManagerMBean as described in Managing a Domain's
Configuration with JMX.

Chapter 6
Modifying the Realm Configuration

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 13 of 13

7
Using Notifications and Monitor MBeans

This chapter describes how to use JMX to monitor MBeans. JMX provides two ways to monitor
MBeans: MBeans can emit notifications when specific events occur (such as a change in an
attribute value), or a special type of MBean called a monitor MBean can poll another MBean
and periodically emit notifications to describe an attribute value. You create Java classes called
listeners that listen for these notifications and respond appropriately. For example, your
management utility can include a listener that receives notifications when applications are
deployed, undeployed, or redeployed. All WebLogic Server configuration MBeans emit
notifications when attribute values change, and some run-time MBeans do.
This chapter includes the following sections:

Best Practices: Listening Directly Compared to Monitoring
If the MBean that you want to monitor emits notifications, you can choose whether to create a
listener object that listens for changes in the MBean or a monitor MBean that periodically polls
the MBean and emits notifications only when its attributes change in specific ways. The
technique that you choose depends mostly on the complexity of the situations in which you
want to receive notifications.

If your requirements are simple, registering a listener directly with an MBean is the preferred
technique because the MBean pushes its notifications to your listener and you are notified of a
change almost immediately. However, the base classes that you implement for a listener and
optional filter (javax.management.NotificationListener and NotificationFilter) provide
few facilities for comparing values with thresholds and other values. (See the
javax.management package in the Java SE 17 API Specification at https://
docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/
package-summary.html.)

If your notification requirements are sufficiently complex, or if you want to monitor a group of
changes that are not directly associated with a single change in the value of an MBean
attribute, use a monitor MBean. (See the javax.management.monitor package in the Java SE
17 API Specification at https://docs.oracle.com/en/java/javase/17/docs/api/
java.management/javax/management/monitor/package-summary.html.) The monitor MBeans
provide a rich set of tools for comparing data and sending notifications only under specific
circumstances. However, the monitor periodically polls the observed MBean for changes in
attribute value and you are notified of a change only as frequently as the polling interval that
you specify.

Best Practices: Listening for WebLogic Server Events
The WebLogic Server JMX agent and WebLogic Server MBeans emit different types of
notification objects for different types of events. Many event types trigger multiple MBeans to
emit notifications at different points within the event process. Table 7-1 describes common
event types and recommends the MBean with which a JMX monitoring application should
register to listen for notifications.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 20

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/package-summary.html

Note

Each JMX notification object contains an attribute named Type, which contains a dot-
delimited string. Do not confuse discussions of this Type attribute with a notification's
object type.

The Type attribute offers a way to categorize and filter notifications. For example, if
your custom MBeans emit notifications, JMX conventions suggest that you set your
notification object's Type attribute to a string that starts with your company name:
mycompany.myapp.valueIncreased.

All JMX notification objects extend the javax.management.Notification object type.
JMX and WebLogic Server define additional notification object types, such as
javax.management.AttributeChangeNotification. The additional object types
contain specialized sets of information that are appropriate for different types of
events. (See the list of Notification subclasses for javax.management.Notification
in the Java SE 17 API Specification at https://docs.oracle.com/en/java/
javase/17/docs/api/java.management/javax/management/Notification.html. Also
see weblogic.management.logging.WebLogicLogNotification in the Java API
Reference for Oracle WebLogic Server.)

Chapter 7
Best Practices: Listening for WebLogic Server Events

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 20

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/Notification.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/Notification.html

Table 7-1 Events and Notification Objects

Event Listening Recommendation

A WebLogic Server instance
starts or stops

To receive a notification when a server starts or stops, register a listener
with each server's ServerLifeCycleRuntimeMBean in the Domain
Runtime MBean Server and configure an
AttributeChangeNotificationFilter.

Each server in a domain provides its own
ServerLifeCycleRuntimeMBean, which is available through the Domain
Runtime MBean Server even if the server itself is not active. When you
start a server instance, the server's ServerLifeCycleRuntimeMBean
updates the value of its State attribute and emits an
AttributeChangeNotification.

For an example of such a listener and filter, see Listening for Notifications
from WebLogic Server MBeans: Main Steps.

Note: This recommendation assumes that you start a domain's
Administration Server before starting Managed Servers. If a Managed
Server starts before the Administration Server, a listener in the Domain
Runtime MBean Server (which runs only on the Administration Server) will
not be initialized at the time the Managed Server's
ServerLifeCycleRuntimeMBean changes its state to RUNNING. If you
cannot guarantee that the Administration Server starts first, use the JMX
timer service to periodically query the Domain Runtime MBean Server for
MBeans whose object name contains the Type=ServerRuntime key
property. An MBean that matches this query is a ServerRuntimeMBean,
which each server instance creates as part of its startup process. If the
query finds a newly created ServerRuntimeMBean, you know that a new
server instance has been started. See MBeanServerConnection
queryNames (see https://docs.oracle.com/en/java/javase/17/
docs/api/java.management/javax/management/
MBeanServerConnection.html#queryNames(javax.management.Ob
jectName,%20javax.management.QueryExp).

Prior to WebLogic Server 15.1.1.0.0, the Managed Server JMX
notifications are enabled by default. Starting with WebLogic Server
15.1.1.0.0, the Managed Server JMX notifications are changed to be
disabled by default. This helps to reduce JMX notifications which occur
between the Administration Server and Managed Servers whenever any
new servers are added, any states change, and so on. This saves CPU
and memory resources if there are large numbers of runtime MBeans and
large numbers of servers in the domain. To access the configuration or
runtime MBeans from the Managed Servers and the Administration Server
in a domain, Oracle recommends the user JMX applications to connect
directly to the Runtime MBean Server on the Managed Servers and the
Administration Server, and not to rely on the Domain Runtime MBean
Server on the Administration Server. To enable the Managed Server JMX
notifications, set a flag -
Dweblogic.management.disableManagedServerNotifications=fa
lse during the Administration Server startup, and not during the Managed
Server's startup.

Chapter 7
Best Practices: Listening for WebLogic Server Events

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 20

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerConnection.html#queryNames(javax.management.ObjectName,%20javax.management.QueryExp)
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerConnection.html#queryNames(javax.management.ObjectName,%20javax.management.QueryExp)
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerConnection.html#queryNames(javax.management.ObjectName,%20javax.management.QueryExp)
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerConnection.html#queryNames(javax.management.ObjectName,%20javax.management.QueryExp)

Table 7-1 (Cont.) Events and Notification Objects

Event Listening Recommendation

A WebLogic Server
resource is created or
destroyed

When you create a resource such as a server or a JDBC data source,
WebLogic Server registers the resource's configuration MBean in the
MBean server. When you delete a resource, WebLogic Server unregisters
the configuration MBean.

To listen for the registration and unregistration of MBeans, register a
listener with javax.management.MBeanServerDelegate, which emits
notifications of type javax.management.MBeanServerNotification

when MBeans are registered or unregistered.

If you register a listener with MBeanServerDelegate in the Edit MBean
Server, you receive notifications when someone modifies the pending
MBean hierarchy.

If you register a listener in the Runtime MBean Server or the Domain
Runtime MBean Server, you receive notifications only when pending
changes have been successfully activated in the domain. If you are
interested solely in monitoring configuration data (and are not interested in
monitoring run-time statistics), register your listener in only one Runtime
MBean Server. See Best Practices: Choosing an MBean Server.

See Example: Listening for The Registration of Configuration MBeans.

The configuration of a
WebLogic Server resource
is modified

All configuration MBeans emit notifications of type
AttributeChangeNotification when their attribute values change.

To receive this notification, register a listener with the MBean that is in the
Domain Runtime MBean Server or Runtime MBean Server (see Best
Practices: Choosing an MBean Server).

If you register an MBean in the Edit MBean Server, you receive
notifications when someone modifies the pending MBean hierarchy.

If you register a listener in the Runtime MBean Server or the Domain
Runtime MBean Server, you receive notifications only when pending
changes have been successfully activated in the domain. If you are
interested solely in monitoring configuration data (and are not interested in
monitoring run-time statistics), register your listener in only one Runtime
MBean Server. See Best Practices: Choosing an MBean Server.

The run-time state of a
WebLogic Server resource
changes

Some run-time MBeans emit notifications of type
AttributeChangeNotification when their attribute values change. To
receive this notification, register a listener with the MBean in the Domain
Runtime MBean Server.

If a run-time MBean does not emit notifications, you can create a monitor
MBean that polls the run-time MBean. See Using Monitor MBeans to
Observe Changes: Main Steps.

Chapter 7
Best Practices: Listening for WebLogic Server Events

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 20

Table 7-1 (Cont.) Events and Notification Objects

Event Listening Recommendation

A WebLogic Server
resource emits a log
message

When a WebLogic Server resource generates a log message, the server's
weblogic.management.runtime.LogBroadcasterRuntimeMBean
emits a notification of type
weblogic.management.logging.WebLogicLogNotification, which
can be cast as the standard javax.management.Notification class.

To listen for log message notifications, register a listener with
LogBroadcasterRuntimeMBean. You can listen for the standard JMX
notifications, or if you want to retrieve detailed information about the log
messages, listen for WebLogicLogNotifications, which contains
methods that you can use to retrieve detailed information. Listening for
WebLogicLogNotifications requires you to import this WebLogic
Server class into your listener class.

To see a list of error messages that WebLogic Server resources generate,
refer to Error Messages.

See WebLogicLogNotification in the Java API Reference for Oracle
WebLogic Server.

Best Practices: Listening or Monitoring WebLogic Server
Runtime Statistics

WebLogic Server MBeans provide detailed statistics on the run-time state of its services and
resources. The statistics in Table 7-2 provide a general overview of the performance of
WebLogic Server. You can listen for changes to these statistics by creating a listener and
registering it directly with the MBeans that contain the attributes or you can configure monitor
MBeans to periodically poll and report only the statistics that you consider to be significant (see
Registering a Notification Listener and Filterand Registering the Monitor and Listener).

Table 7-2 Commonly Monitored WebLogic Server Runtime Statistics

To track this statistic... Listen or monitor this MBean attribute...

The current state of server. MBean Type: ServerLifeCycleRuntimeMBean

Attribute Name: State

Activity on the server's listen
ports.

MBean Type: ServerRuntimeMBean

Attribute Name: OpenSocketsCurrentCount

MBean Type: ServerMBean

Attribute Name: AcceptBacklog

Use these two attributes together to compare the current activity on the
server's listen ports to the total number of requests that can be
backlogged on the ports.

Memory and thread use. MBean Type: ThreadPoolRuntimeMBean

Attribute Name: ExecuteThreadIdleCount

Indicates the number of threads in a server's execute queue that are
taking up memory space but are not being used to process data.

Chapter 7
Best Practices: Listening or Monitoring WebLogic Server Runtime Statistics

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 20

Table 7-2 (Cont.) Commonly Monitored WebLogic Server Runtime Statistics

To track this statistic... Listen or monitor this MBean attribute...

Memory and thread use MBean Type: ThreadPoolRuntimeMBean

Attribute Name: PendingUserRequestCount

Indicates the number of user requests waiting in a server's execute
queue.

Memory and thread use MBean Type: JVMRuntimeMBean

Attribute Name: HeapSizeCurrent

Indicates the amount of memory (in bytes) that is currently available in
the server's JVM heap.

Database connections MBean Type: JDBCDataSourceRuntimeMBean

Attribute Name: ActiveConnectionsCurrentCount

Indicates the current number of active connections in a JDBC
connection pool.

Database connections MBean Type: JDBCDataSourceRuntimeMBean

Attribute Name: ActiveConnectionsHighCount

The high water mark of active connections in a JDBC connection pool.
The count starts at zero each time the connection pool is instantiated.

Database connections MBean Type: JDBCDataSourceRuntimeMBean

Attribute Name: LeakedConnectionCount

Indicates the total number of leaked connections. Leaked connections
are connections that have been checked out but never returned to the
connection pool via a close() call; it is important to monitor the total
number of leaked connections, as a leaked connection cannot be used
to fulfill later connection requests.

Database connections MBean Type: JDBCDataSourceRuntimeMBean

Attribute Name: ConnectionDelayTime

Indicates the average time to connect to a connection pool.

Database connections MBean Type: JDBCDataSourceRuntimeMBean

Attribute Name: FailuresToReconnectCount

Indicates when the connection pool fails to reconnect to its data store.
Applications may notify a listener when this attribute increments, or
when the attribute reaches a threshold, depending on the level of
acceptable downtime.

Listening for Notifications from WebLogic Server MBeans: Main
Steps

To listen directly for the notifications that an MBean emits:

1. Create a listener class in your application. See Creating a Notification Listener.

2. Create an additional class that registers your listener and an optional filter with the MBean
whose notifications you want to receive. See Configuring a Notification Filter and
Registering a Notification Listener and Filter.

3. Package and deploy the listener and registration class. See Packaging and Deploying
Listeners on WebLogic Server.

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 20

Creating a Notification Listener
To create a notification listener:

1. Create a class that implements javax.management.NotificationListener.

See NotificationListener in the Java SE 17 API Specification at https://
docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/
NotificationListener.html.

2. Within the class, add a NotificationListener.handleNotification(Notification
notification, java.lang.Object handback) method.

Note

Your implementation of this method should return as soon as possible to avoid
blocking its notification broadcaster.

3. (Optional) In most listening situations, you want to know more than the simple fact that an
MBean has emitted a notification object. For example, you might want to know the value of
the notification object's Type attribute, which is used to classify the type of event that
caused the notification to be emitted.

To retrieve information from a notification object, within your handleNotification method
invoke the object's methods. Because all notification types extend
javax.management.Notification, the following Notification methods are available for
all notifications:

• getMessage()

• getSequenceNumber()

• getTimeStamp()

• getType()

• getUserData()

See Notification in the Java SE 17 API Specification at https://docs.oracle.com/en/
java/javase/17/docs/api/java.management/javax/management/Notification.html.

Most notification types provide additional methods for retrieving data that is specific to the
notification. For example, javax.management.AttributeChangeNotification provides
getNewValue() and getOldValue(), which you can use to determine how the attribute
value has changed.

Example 7-1 Notification Listener

import javax.management.Notification;
import javax.management.NotificationFilter;
import javax.management.NotificationListener;
import javax.management.AttributeChangeNotification;

public class MyListener implements NotificationListener {

 public void handleNotification(Notification notification, Object obj) {

 if(notification instanceof AttributeChangeNotification) {
 AttributeChangeNotification attributeChange =
 (AttributeChangeNotification) notification;

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 20

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/NotificationListener.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/NotificationListener.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/NotificationListener.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/Notification.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/Notification.html

 System.out.println("This notification is an
 AttributeChangeNotification");
 System.out.println("Observed Attribute: " +
 attributeChange.getAttributeName());
 System.out.println("Old Value: " + attributeChange.getOldValue());
 System.out.println("New Value: " + attributeChange.getNewValue());
 }
 }
}

Example 7-1 is a simple listener that uses AttributeChangeNotification methods to retrieve
the name of an attribute with a changed value, and the old and new values.

Listening from a Remote JVM
As of JMX 1.2, there are no special requirements for programming a listener that runs in a
different JVM from the MBean to which it is listening.

Once you establish a connection to the remote JMX agent (using
javax.management.MBeanServerConnection), JMX takes care of sharing data between the
JVMs. See Registering a Notification Listener and Filter, for instructions on establishing a
connection from a remote JVM.

Best Practices: Creating a Notification Listener
Consider the following recommendations while creating your NotificationListener class:

• Unless you use a notification filter, your listener receives all notifications (of all notification
types) from the MBeans with which it is registered.

Instead of using one listener for all possible notifications that an MBean emits, the best
practice is to use a combination of filters and listeners. While having multiple listeners adds
to the amount of time for initializing the JVM, the trade-off is ease of code maintenance.

• If your WebLogic Server environment contains multiple instances of MBean types that you
want to monitor, you can create one notification listener and then create as many
registration classes as MBean instances that you want to monitor.

For example, if your WebLogic Server domain contains three JDBC data sources, you can
create one listener class that listens for AttributeChangeNotifications. Then, you create
three registration classes. Each registration class registers the listener with a specific
instance of JDBCDataSourceRuntimeMBean.

• While the handleNotification method signature includes an argument for a handback
object, your listener does not need to retrieve data from or otherwise manipulate the
handback object. It is an opaque object that helps the listener to associate information
regarding the MBean emitter.

• Your implementation of the handleNotification method should return as soon as possible
to avoid blocking its notification broadcaster.

• If you invoke a method from a specialized notification type, wrap the method calls in an if
statement to prevent your listener from invoking the method on notification objects of all
types.

Configuring a Notification Filter
The JDK includes two simple filter classes that you can configure to forward notifications that
match criteria that you specify. To configure one of the JDK's filter classes:

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 20

1. In the class that registers your listener with an MBean create an instance of
javax.management.NotificationFilterSupport or
AttributeChangeNotificationFilter.

2. Invoke a filter class method to specify filter criteria.

See NotificationFilterSupport (https://docs.oracle.com/en/java/javase/17/
docs/api/java.management/javax/management/NotificationFilterSupport.html) or
AttributeChangeNotificationFilter (https://docs.oracle.com/en/java/javase/17/
docs/api/java.management/javax/management/
AttributeChangeNotificationFilter.html) in the Java SE 17 API Specification.

For example, the following lines of code configure an AttributeChangeNotificationFilter
that forwards only attribute change notifications and only if there is a change in an attribute
named State:

AttributeChangeNotificationFilter filter =
 new AttributeChangeNotificationFilter();
filter.enableAttribute("State");

Creating a Custom Filter
If the JDK's filter class is too simplistic for your needs, you can create more sophisticated,
custom filter classes. (See NotificationFilter in the Java SE 17 API Specification at
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/
management/NotificationFilterSupport.html.) However, Oracle recommends that you use
the JDK filter classes whenever possible: using a custom filter complicates the packaging and
deployment of your listener and filter. See Packaging and Deploying Listeners on WebLogic
Server.

Registering a Notification Listener and Filter
After you implement a notification listener class, you create an additional class that registers
your listener (and optionally configures and registers a filter) with an MBean instance.

To register a notification listener and filter with an MBean:

1. Initialize a connection to a Runtime MBean Server or the Domain Runtime MBean Server.

See Make Remote Connections to an MBean Server.

2. To register with a WebLogic Server MBean, navigate the MBean hierarchy and retrieve an
object name for the MBean that you want to listen to. See Make Remote Connections to an
MBean Server.

To register with a custom MBean, create an ObjectName that contains the MBean's JMX
object name. See javax.management.ObjectName in the Java SE 17 API Specification at
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/
management/ObjectName.html.

3. Instantiate the listener class that you created.

4. (Optional) Instantiate and configure one of the JDK's filter classes or instantiate a custom
class.

5. Register the listener and filter by passing the MBean's object name, listener class, and
filter class to the MBeanServerConnection.addNotificationListener (ObjectName name,
ObjectName listener, NotificationFilter filter,Object handback) method.

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 20

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/NotificationFilterSupport.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/NotificationFilterSupport.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/AttributeChangeNotificationFilter.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/AttributeChangeNotificationFilter.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/AttributeChangeNotificationFilter.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/NotificationFilterSupport.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/NotificationFilterSupport.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/ObjectName.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/ObjectName.html

Example 7-2 Registering a Listener with ServerLifeCycleRuntimeMBean

import java.util.Hashtable;
import java.io.IOException;
import java.net.MalformedURLException;

import javax.management.MBeanServerConnection;
import javax.management.ObjectName;
import javax.management.MalformedObjectNameException;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;

import javax.management.AttributeChangeNotificationFilter;

public class RegisterListener {
 private static MBeanServerConnection connection;
 private static JMXConnector connector;
 private static final ObjectName service;
 // Initializing the object name for DomainRuntimeServiceMBean
 // so it can be used throughout the class.
 static {
 try {
 service = new ObjectName(
 "com.bea:Name=DomainRuntimeService,Type=weblogic.management.mbeanserv
 ers.domainruntime.DomainRuntimeServiceMBean");
 }catch (MalformedObjectNameException e) {
 throw new AssertionError(e.getMessage());
 }
 }

 /*
 * Initialize connection to the Domain Runtime MBean Server
 * each server in the domain hosts its own instance.
 */
 public static void initConnection(String hostname, String portString,
 String username, String password) throws IOException,
 MalformedURLException {
 String protocol = "t3";
 Integer portInteger = Integer.valueOf(portString);
 int port = portInteger.intValue();
 String jndiroot = "/jndi/";
 String mserver = "weblogic.management.mbeanservers.domainruntime";
 JMXServiceURL serviceURL = new JMXServiceURL(protocol, hostname, port,
 jndiroot + mserver);
 Hashtable h = new Hashtable();
 h.put(Context.SECURITY_PRINCIPAL, username);
 h.put(Context.SECURITY_CREDENTIALS, password);
 h.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,
 "weblogic.management.remote");
 connector = JMXConnectorFactory.connect(serviceURL, h);
 connection = connector.getMBeanServerConnection();
 }

 /*
 * Get an array of ServerLifeCycleRuntimeMBeans
 */
 public static ObjectName[] getServerLCRuntimes() throws Exception {
 ObjectName domainRT = (ObjectName) connection.getAttribute(service,
 "DomainRuntime");
 return (ObjectName[]) connection.getAttribute(domainRT,

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 10 of 20

 "ServerLifecycleRuntimes");
 }

 public static void main(String[] args) throws Exception {
 String hostname = args[0];
 String portString = args[1];
 String username = args[2];
 String password = args[3];
 try {
 //Instantiating your listener class.
 MyListener listener = new MyListener();
 AttributeChangeNotificationFilter filter =
 new AttributeChangeNotificationFilter();
 filter.enableAttribute("State");

 initConnection(hostname, portString, username, password);
 //Passing the name of the MBeans and your listener class to the
 //addNotificationListener method of MBeanServer.
 ObjectName[] serverLCRT = getServerLCRuntimes();
 int length= (int) serverLCRT.length;
 for (int i=0; i < length; i++) {
 connection.addNotificationListener(serverLCRT[i], listener,
 filter, null);
 System.out.println("\n[myListener]: Listener registered with"
 +serverLCRT[i]);
 }

 //Keeping the remote client active.
 System.out.println("pausing...........");
 System.in.read();
 } catch(Exception e) {
 System.out.println("Exception: " + e);
 }
 }
}

The example class registers the listener from Example 7-1 and the JDK's
AttributeChangeNotificationFilter with all ServerLifeCycleRuntimeMBeans in a domain.
The class does not pass a handback object.

In the example, weblogic is a user who has permission to view and modify MBean attributes.
For information about permissions to view and modify MBeans, refer to User, Groups, and
Security Roles in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

The example class also includes some code that keeps the RegisterListener class active and
not exit the main program. Usually this code is not necessary because a listener class runs in
the context of some larger application that is responsible for invoking the class and keeping it
active. It is included here so you can easily compile and see the example working.

Packaging and Deploying Listeners on WebLogic Server
You can package and deploy a JMX listener as a remote application, a WebLogic Server
startup class (which makes the listener available as soon as a server boots), or within one of
your other applications that you deploy on WebLogic Server.

If you use a filter from the JDK, you do not need to package the filter class. It is always
available through the JDK.

Table 7-3 describes how to package and deploy your listeners and any custom filters.

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 11 of 20

Table 7-3 Packaging and Deploying Listeners and Custom Filters

If you deploy the
listener...

Do this for the
listener...

Do this for a custom filter...

As a remote
application

Make the listener's
class available on
the remote client's
classpath.

Make the filter's class available on the remote client's
classpath.

Also add the filter class to the classpath of each server
instance that hosts the monitored MBeans by archiving the
class in a JAR file and copying the JAR in each server's lib
directory. See Domain Directory Contents in Understanding
Domain Configuration for Oracle WebLogic Server.

As a WebLogic
Server startup
class

Add the listener
class to the
server's classpath
by archiving the
class in a JAR file
and copying the
JAR in the server's
lib directory.

Add the filter class to the server's classpath by archiving the
class in a JAR file and copying the JAR in the server's lib
directory. See Domain Directory Contents in Understanding
Domain Configuration for Oracle WebLogic Server.

As part of an
application that you
deploy on
WebLogic Server

Package the
listener class with
the application.

Package the listener class with the application.

Also add the filter class to the classpath of each server
instance that hosts the monitored MBeans by doing one of the
following:

• Archiving the class in a JAR file and copying the JAR in
each server's lib directory. See Domain Directory
Contents in Understanding Domain Configuration for
Oracle WebLogic Server.

• Using the JMX MLet service to make the filter class
available to the MBean server. See
javax.management.loading.MLet in the Java SE 17
API Specification (https://docs.oracle.com/en/
java/javase/17/docs/api/java.management/
javax/management/loading/MLet.html) and the
JMX 1.4 specification, which you can download from
https://docs.oracle.com/en/java/
javase/17/jmx/index.html.

Example: Listening for The Registration of Configuration MBeans
When you create a WebLogic Server resource, such as a server or a JDBC data source,
WebLogic Server creates a configuration MBean and registers it in the Domain Runtime
MBean Server.

To listen for these events, register a listener with javax.management.MBeanServerDelegate,
which emits a notification of type

javax.management.MBeanServerNotification each time an MBean is registered or
unregistered. See MBeanServerDelegate in the Java SE 17 API Specification (https://
docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/
MBeanServerDelegateMBean.html)

Note the following about the example listener in Example 7-3:

• To provide information about which type of WebLogic Server MBean has been registered,
the listener looks at the object name of the registered MBean. All WebLogic Server MBean
object names contain a key property whose name is "Type" and whose value indicates the

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 12 of 20

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/loading/MLet.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/loading/MLet.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/loading/MLet.html
https://docs.oracle.com/en/java/javase/17/jmx/index.html
https://docs.oracle.com/en/java/javase/17/jmx/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerDelegateMBean.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerDelegateMBean.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerDelegateMBean.html

type of MBean. For example, instances of ServerRuntimeMBean contain the
Type=ServerRuntime key property in their object names.

• All JMX notifications contain a Type attribute, whose value offers a way to categorize and
filter notifications. The Type attribute in MBeanServerNotification contains only one of two
possible strings: "JMX.mbean.registered" or "JMX.mbean.unregistered". JMX notifications
also contain a getType method that returns the value of the Type attribute.

The listener in Example 7-3 invokes different lines of code depending on the value of the
Type attribute.

• If a JDBCDataSourceRuntimeMBean has been registered, the listener passes the MBeans'
object name to a custom method. The custom method registers a listener and configures a
filter for the JDBCDataSourceRuntimeMBean; this MBean listener emits messages when the
MBean's Enabled attribute changes.

The implementation of the custom method is located in the registration class (not the filter
class) so that the method can reuse registration class's connection to the MBean server.
Such reuse is an efficient use of resources and eliminates the need to store credentials
and URLs in multiple classes.

Example 7-3 Example: Listening for MBeans Being Registered and Unregistered

import javax.management.Notification;
import javax.management.NotificationListener;
import javax.management.MBeanServerNotification;
import javax.management.ObjectName;

public class DelegateListener implements NotificationListener {
 public void handleNotification(Notification notification, Object obj) {
 if (notification instanceof MBeanServerNotification) {
 MBeanServerNotification msnotification =
 (MBeanServerNotification) notification;

 // Get the value of the MBeanServerNotification
 // Type attribute, which contains either
 // "JMX.mbean.registered" or "JMX.mbean.unregistered"
 String nType = msnotification.getType();

 // Get the object name of the MBean that was registered or
 // unregistered
 ObjectName mbn = msnotification.getMBeanName();

 // Object names for WebLogic Server MBeans always contain
 // a "Type" key property, which indicates the
 // MBean's type (such as ServerRuntime or Log)
 String key = mbn.getKeyProperty("Type");

 if (nType.equals("JMX.mbean.registered")) {
 System.out.println("A " + key + " has been created.");

 System.out.println("Full MBean name: " + mbn);
 System.out.println("Time: " + msnotification.getTimeStamp());
 if (key.equals("JDBCDataSourceRuntime")) {
 // Registers a listener with a ServerRuntimeMBean.
 // By defining the "registerwithServerRuntime" method
 // in the "ListenToDelegate" class, you can reuse the
 // connection that "ListenToDelegate" established;
 // in addition to being an efficient way to use resources,
 // it eliminates the need to store credentials and URLs in
 // multiple classes.
 ListenToDelegate.registerwithJDBCDataSourceRuntime(mbn);
 }

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 13 of 20

 }
 if (nType.equals("JMX.mbean.unregistered")) {
 System.out.println("An MBean has been unregistered");
 System.out.println("Server name: " +
 mbn.getKeyProperty("Name"));
 System.out.println("Time: " + msnotification.getTimeStamp());
 System.out.println("Full MBean name: "
 + msnotification.getMBeanName());
 }
 }
 }
}

Example 7-4 shows methods from a registration class. Note the following:

• The JMX object name for MBeanServerDelegate is always
"JMImplementation:type=MBeanServerDelegate".

• The main method configures an instance of
javax.management.NotificationFilterSupport to forward notifications only if value of
the notification's Type attribute starts with "JMX.mbean.registered" or
"JMX.mbean.unregistered".

• The registerwithJDBCDataSourceRuntime method registers the listener in Example 7-1
with the specified JDBCDataSourceRuntimeMBean instance. The method also configures a
javax.management.AttributeChangeNotificationFilter, which forwards only
AttributeChangeNotifications that describe changes to an attribute named Enabled.

To compile and run these methods, use the supporting custom methods from Example 7-2 and
run the resulting class as a remote JMX client.

Example 7-4 Example: Registering a Listener with MBeanServerDelegate

public static void main(String[] args) throws Exception {
 String hostname = args[0];
 String portString = args[1];
 String username = args[2];
 String password = args[3];
 ObjectName delegate = new ObjectName(
 "JMImplementation:type=MBeanServerDelegate");

 try {
 //Instantiating your listener class.
 StartStopListener slistener = new StartStopListener();
 NotificationFilterSupport filter = new NotificationFilterSupport();
 filter.enableType("JMX.mbean.registered");
 filter.enableType("JMX.mbean.unregistered");

 /* Invoke a custom method that establishes a connection to the
 * Domain Runtime MBean Server and uses an instance of
 * MBeanServerConnection to represents the connection. The custom
 * method assigns the MBeanServerConnection to a class-wide, static
 * variable named "connection".
 */
 initConnection(hostname, portString, username, password);

 //Passing the name of the MBeans and your listener class to the
 //addNotificationListener method of MBeanServer.
 connection.addNotificationListener(delegate, slistener, filter,
 null);

 System.out.println("\n[myListener]: Listener registered ...");
 //Keeping the remote client active.

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 14 of 20

 System.out.println("pausing...........");
 System.in.read();
 } catch (Exception e) {
 System.out.println("Exception: " + e);
 }
}

// Called by the listener if it receives notification of a
// JDBCDataSourceRuntimeMBean being registered.
public static void registerwithJDBCDataSourceRuntime(ObjectName mbname) {
 try {
 MyListener mylistener = new MyListener();
 AttributeChangeNotificationFilter filter =
 new AttributeChangeNotificationFilter();
 filter.enableAttribute("Enabled");

 connection.addNotificationListener(mbname, mylistener,
 filter, null);
 } catch (Exception e) {
 System.out.println("Exception: " + e);
 }
}

Using Monitor MBeans to Observe Changes: Main Steps
To configure and use monitor MBeans:

1. Choose the type of monitor MBean type that supports your monitoring needs. See Monitor
MBean Types and Notification Types.

2. Create a listener class that can listen for notifications from monitor MBeans. See Creating
a Notification Listener for a Monitor MBean.

3. Create a class that creates, registers and configures a monitor MBean, registers your
listener class with the monitor MBean, and then starts the monitor MBean. See Registering
the Monitor and Listener.

Monitor MBean Types and Notification Types
JMX provides monitor MBeans that are specialized to observe specific types of changes:

• StringMonitorMBean observes attributes whose value is a String.

Use this monitor to periodically observe attributes such as ServerLifeCycleRuntimeMBean
State.

See javax.management.monitor.StringMonitor in the Java SE 17 API Specification at
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/
management/monitor/StringMonitor.html, which implements StringMonitorMBean.

• GaugeMonitorMBean observes attributes whose value is a Number.

Use this monitor to observe an attribute whose value fluctuates as a result of normal
operations. Configure the gauge monitor to emit a notification if the value of the attribute
fluctuates outside a specific range. For example, you can use it to monitor the
ThreadPoolRuntimeMBean StandbyThreadCount attribute to verify that the number of
unused but available threads in a server falls within an acceptable range.

See javax.management.monitor.GaugeMonitor in the Java SE 17 API Specification (see
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/
management/monitor/GaugeMonitor.html), which implements GaugeMonitorMBean.

Chapter 7
Using Monitor MBeans to Observe Changes: Main Steps

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 15 of 20

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/StringMonitor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/StringMonitor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/GaugeMonitor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/GaugeMonitor.html

• CounterMonitorMBean observes attributes whose value is a Number.

Use this monitor to observe an attribute whose value only increases as a result of normal
operation. Configure the counter monitor to emit a notification if the value of the attribute
crosses an upper threshold. You can also configure the counter monitor to increase the
threshold and then reset the threshold at a specified point.

For example, to track the overall number of hits on a server and to be notified each time
100 additional hits have accumulated, use a counter monitor that observes the
ServerRuntimeMBean OpenSocketsCurrentCount attribute.

See javax.management.monitor.CounterMonitor in the Java SE 17 API Specification
(see https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/
management/monitor/CounterMonitor.html), which implements CounterMonitorMBean.

All monitor MBeans emit notifications of type
javax.management.monitor.MonitorNotification. When a monitor MBean generates a
notification, it describes the event that generated the notification by writing a specific value into
the notification's Type property. Table 7-4 describes the value of the Type property that the
different types of monitor MBeans encode. A filter or listener can use the notification's
getType() method to retrieve the String in the Type property.

Table 7-4 Monitor MBeans and the MonitorNotification Type Property

A Monitor MBean of This
Type

Encodes This String in the MonitorNotification's Type Property

CounterMonitor jmx.monitor.counter.threshold when the value of the counter
reaches or exceeds a threshold known as the comparison level.

GaugeMonitor jmx.monitor.gauge.high if the observed attribute value is
increasing and becomes equal to or greater than the high threshold
value. Subsequent crossings of the high threshold value do not cause
further notifications unless the attribute value becomes equal to or less
than the low threshold value.

jmx.monitor.gauge.low if the observed attribute value is decreasing
and becomes equal to or less than the low threshold value. Subsequent
crossings of the low threshold value do not cause further notifications
unless the attribute value becomes equal to or greater than the high
threshold value.

StringMonitor jmx.monitor.string.matches if the observed attribute value
matches the string to compare value. Subsequent matches of the string
to compare values do not cause further notifications unless the attribute
value differs from the string to compare value.

jmx.monitor.string.differs if the attribute value differs from the
string to compare value. Subsequent differences from the string to
compare value do not cause further notifications unless the attribute
value matches the string to compare value.

Errors and the MonitorNotification Type Property
If an error occurs, all monitors encode one of the following values in the notification's Type
property:

• jmx.monitor.error.mbean, which indicates that the observed MBean is not registered in
the MBean Server. The observed object name is provided in the notification.

Chapter 7
Using Monitor MBeans to Observe Changes: Main Steps

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 16 of 20

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/CounterMonitor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/CounterMonitor.html

• jmx.monitor.error.attribute, which indicates that the observed attribute does not exist
in the observed object. The observed object name and observed attribute name are
provided in the notification.

• jmx.monitor.error.type, which indicates that the object instance of the observed
attribute value is null or not of the appropriate type for the given monitor. The observed
object name and observed attribute name are provided in the notification.

• jmx.monitor.error.runtime, which contains exceptions that are thrown while trying to get
the value of the observed attribute (for reasons other than the cases described above).

The counter and the gauge monitors can also encode jmx.monitor.error.threshold into the
Type property under the following circumstances:

• For a counter monitor, when the threshold, the offset, or the modulus is not of the same
type as the observed counter attribute.

• For a gauge monitor, when the low threshold or high threshold is not of the same type as
the observed gauge attribute.

Creating a Notification Listener for a Monitor MBean
When an observed attributes meets the criteria that you specify, a monitor MBean emits a
notification. There are no special requirements for creating a listener for a
MonitorNotification. The steps are the same as those described in Creating a Notification
Listener, except:

• You listen for notifications of type MonitorNotification.

• Optionally, you can import the javax.management.monitor.MonitorNotification class
and invoke its methods to retrieve additional information about the event that generated
the notification.

See Example 7-5.

Example 7-5 Listener for Monitor Notifications

import javax.management.Notification;
import javax.management.NotificationListener;
import javax.management.monitor.MonitorNotification;
public class MonitorListener implements NotificationListener {
 public void handleNotification(Notification notification, Object obj) {
 if(notification instanceof Notification) {
 Notification notif = (Notification) notification;
 System.out.println("Notification type" + notif.getType());
 System.out.println("Message: " + notif.getMessage());
 }
 if (notification instanceof MonitorNotification) {
 MonitorNotification mn = (MonitorNotification) notification;
 System.out.println("Observed Attribute: " +
 mn.getObservedAttribute());
 System.out.println("Trigger: " + mn.getTrigger());
 }
 }
}

Registering the Monitor and Listener
Recall that to use a monitor MBean, you first must create and register an instance of the
monitor MBean in the MBean server. Then you register a listener with the monitor MBean that
you created. You can do all of this in a single class.

Chapter 7
Using Monitor MBeans to Observe Changes: Main Steps

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 17 of 20

To register a monitor MBean, register your listener, and start the monitor MBean:

1. Initialize a connection to the Domain Runtime MBean Server.

See Make Remote Connections to an MBean Server.

2. Create an ObjectName for your monitor MBean instance.

See javax.management.ObjectName in the Java SE 17 API Specification at https://
docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/
ObjectName.html.

Oracle recommends that your object name starts with the name of your organization and
includes key properties that clearly identifies the purpose of the monitor MBean instance.

For example, mycompany:Name=SocketMonitor,Type=CounterMonitor

3. Create and register one of the monitor MBeans.

Use javax.management.MBeanServerConnection.createMBean(String classname
ObjectName name) method, where:

• classname represents one of the following values:

– javax.management.monitor.CounterMonitor

– javax.management.monitor.GaugeMonitor

– javax.management.monitor.StringMonitor

• name represents the object name that you created for the monitor MBean instance.

4. Configure the monitor MBean by setting the value of its attributes.

For guidelines on which attributes to set, see the javax.management.monitoring package
in the Java SE 17 API Specification at https://docs.oracle.com/en/java/javase/17/
docs/api/java.management/javax/management/monitor/package-summary.html.

5. To specify the MBean that your monitor MBean monitors (the observed MBean), invoke the
monitor MBean's addObservedObject(ObjectName objectname) and
addObservedAttribute(String attributename) operations where.

• objectname is the ObjectName of the observed MBean

• attributename is the name of the attribute in the observed MBean that you want to
monitor

A single instance of a monitor MBean can monitor multiple MBeans. Invoke the
addObservedObject and addObservedAttribute operation for each MBean instance that
you want to monitor.

6. Instantiate the listener object that you created in Creating a Notification Listener for a
Monitor MBean.

7. Optionally instantiate and configure a filter.

8. Register the listener and optional filter with the monitor MBean. Do not register the
listener with the observed MBean.

Invoke the monitor MBean's addNotificationListener(NotificationListener
listener, NotificationFilter filter, Object handback) method.

9. Start the monitor by invoking the monitor MBean's start() operation.

Chapter 7
Using Monitor MBeans to Observe Changes: Main Steps

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 18 of 20

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/ObjectName.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/ObjectName.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/ObjectName.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/package-summary.html

Example: Registering a CounterMonitorMBean and Its Listener
Example 7-6 shows the main() method of a class that creates and configures a
CounterMonitorMBean to observe the OpenSocketsCurrentCount attribute in each
ServerRuntimeMBean instance in a domain. (See OpenSocketsCurrentCount in MBean
Reference for Oracle WebLogic Server.)

The code example connects to the Domain Runtime MBean Server so that it can monitor
multiple instances of ServerRuntimeMBean. Note the following:

• Only one instance of CounterMonitorMBean monitors all instances of ServerRuntimeMBean.
The Domain Runtime MBean Server gives the CounterMonitorMBean federated access to
instances of ServerRuntimeMBean that are running in a different JVM.

• Only one instance of your listener class and the filter class listens and filters notifications
from the CounterMonitorMBean.

To compile and run this main method, use the supporting custom methods from Example 7-2
and run the resulting class as a remote JMX client.

Example 7-6 Example: Registering a CounterMonitorMBean and Its Listener

public static void main(String[] args) throws Exception {
 String hostname = args[0];
 String portString = args[1];
 String username = args[2];
 String password = args[3];

 try {
 /* Invokes a custom method that establishes a connection to the
 * Domain Runtime MBean Server and uses an instance of
 * MBeanServerConnection to represents the connection. The custom
 * method assigns the MBeanServerConnection to a class-wide, static
 * variable named "connection".
 */
 initConnection(hostname, portString, username, password);
 //Creates and registers the monitor MBean.
 ObjectName monitorON =
 new ObjectName("mycompany:Name=mySocketMonitor,Type=CounterMonitor");
 String classname = "javax.management.monitor.CounterMonitor";
 System.out.println("===> create mbean "+monitorON);
 connection.createMBean(classname, monitorON);

 //Configure the monitor MBean.
 Number initThreshold = new Long(2);
 Number offset = new Long(1);
 connection.setAttribute(monitorON,
 new Attribute("InitThreshold", initThreshold));
 connection.setAttribute(monitorON, new Attribute("Offset", offset));
 connection.setAttribute(monitorON,
 new Attribute("Notify", new Boolean(true)));

 //Gets the object names of the MBeans that you want to monitor.
 ObjectName[] serverRT = getServerRuntimes();
 int length= (int) serverRT.length;
 for (int i=0; i < length; i++) {
 //Sets each instance of ServerRuntime MBean as a monitored MBean.
 System.out.println("===> add observed mbean "+serverRT[i]);
 connection.invoke(monitorON, "addObservedObject",
 new Object[] { serverRT[i] },
 new String[] { "javax.management.ObjectName" });

Chapter 7
Using Monitor MBeans to Observe Changes: Main Steps

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 19 of 20

 Attribute attr = new Attribute("ObservedAttribute",
 "OpenSocketsCurrentCount");
 connection.setAttribute(monitorON, attr);
 }

 // Instantiates your listener class and configures a filter to
 // forward only counter monitor messages.
 MonitorListener listener = new MonitorListener();
 NotificationFilterSupport filter = new NotificationFilterSupport();
 filter.enableType("jmx.monitor.counter");
 filter.enableType("jmx.monitor.error");

 //Uses the MBean server's addNotificationListener method to
 //register the listener and filter with the monitor MBean.
 System.out.println("===> ADD NOTIFICATION LISTENER TO "+monitorON);
 connection.addNotificationListener(monitorON, listener, filter, null);
 System.out.println("\n[myListener]: Listener registered ...");

 //Starts the monitor.
 connection.invoke(monitorON, "start", new Object[] { }, new String[] { });

 //Keeps the remote client active.
 System.out.println("pausing...........");
 System.in.read();
 } catch(Exception e) {
 System.out.println("Exception: " + e);
 e.printStackTrace();
 }
}

Chapter 7
Using Monitor MBeans to Observe Changes: Main Steps

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 20 of 20

8
Configuring WebLogic Server JMX Services

This chapter describes how to establish and configure the specific set of JMX services that are
to be available within a WebLogic Server domain. For example, in a production environment
you can disable the WebLogic Server editing service and therefore prevent most run-time
changes to the domain.
This chapter includes the following sections:

Determining the JMX Services Available in a Domain
Within a WebLogic domain, you can specify which JMX services are available.

The following attributes of JMXMBean determine which JMX services are available in a domain
(see JMXMBean in MBean Reference for Oracle WebLogic Server):

• EditMBeanServerEnabled controls whether JMX clients, including utilities such as the
WebLogic Remote Console and the WebLogic Scripting Tool, can modify a domain's
configuration.

• DomainMBeanServerEnabled controls whether JMX clients can access all run-time MBeans
and read-only configuration MBeans through a single connection to the Domain Runtime
MBean Server.

• RuntimeMBeanServerEnabled controls whether JMX clients can access a specific server's
run-time MBeans and read-only configuration MBeans through the server's Runtime
MBean Server.

• PlatformMBeanServerEnabled controls whether all WebLogic Server instances initialize the
JDK platform MBean server. PlatformMBeanServerUsed controls whether all WebLogic
server instances start their Runtime MBean Servers as the JDK platform MBean server.
This makes it possible to access WebLogic Server MBeans and the JVM platform MBeans
from a single MBean server.

• CompatibilityMBeanServerEnabled enables JMX clients to use the deprecated
weblogic.management.MBeanHome interface to access WebLogic Server MBeans.

• ManagementEJBEnabled controls whether the current WebLogic Server domain supports the
Jakarta Management APIs.

Example: Using WebLogic Scripting Tool to Make a Domain
Read-Only

The following example uses the WebLogic Scripting Tool (WLST) to set the JMXMBean
EditMBeanServerEnabled attribute to false. It assumes that you are running WLST on a
Windows computer, that you created a domain under c:\mydomain, and that you have not
deleted the scripts that WebLogic Server creates along with your domain.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 2

Note

The following steps prevent JMX clients (including the WebLogic Remote Console and
the WebLogic Scripting Tool in online mode) from modifying the domain's
configuration. You can still modify the domain configuration through the offline editing
feature of WebLogic Scripting Tool.

These steps do not prevent JMX clients from deploying or undeploying modules
because the WebLogic Server deployment service does not use JMX.

1. Start the domain's Administration Server.

2. In a command prompt, set up the required environment by running the following script:

c:\mydomain\bin\setDomainEnv.cmd

3. In the command prompt, enter the following commands:

a. %ORACLE_HOME%\oracle_common\bin\wlst.sh

b. connect('weblogic','weblogic')

c. edit()

d. startEdit()

e. cd('JMX/mydomain')

f. set('EditMBeanServerEnabled','false')

g. activate()

h. exit()

Chapter 8
Example: Using WebLogic Scripting Tool to Make a Domain Read-Only

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Introduction
	2 Understanding WebLogic Server MBeans
	Basic Organization of a WebLogic Server Domain
	Separate MBean Types for Monitoring and Configuring
	The Life Cycle of WebLogic Server MBeans
	WebLogic Server MBean Data Model
	Containment and Reference Relationships
	Containment Relationship
	Reference Relationship

	WebLogic Server MBean Object Names
	MBeanServerInvocationHandler

	MBean Servers
	Connecting to MBean Servers
	Local Connections to MBean Servers
	Remote Connections to MBean Servers

	Using the Platform MBean Server
	Service MBeans

	Security for WebLogic Server MBeans
	Additional Security Resources for Some Attributes and Operations

	3 Overview of WebLogic Server Subsystem MBeans
	Domain and Server Logging Configuration
	JMS Server and JMS System Module Configuration
	JDBC Resource Configuration

	4 Accessing WebLogic Server MBeans with JMX
	Set Up the Classpath for Remote Clients
	Make Remote Connections to an MBean Server
	Example: Connecting to the Domain Runtime MBean Server
	Best Practices: Choosing an MBean Server

	Make Local Connections to the Runtime MBean Server
	Make Local Connections to the Domain Runtime MBean Server
	Navigate MBean Hierarchies
	Example: Printing the Name and State of Servers
	Example: Monitoring Servlets

	5 Managing a Domain's Configuration with JMX
	Editing MBean Attributes: Main Steps
	Start an Edit Session
	Change Attributes or Create New MBeans
	Save Changes to the Pending Configuration Files
	Activate Your Saved Changes
	Exception Types Thrown by Edit Operations

	Listing and Undoing Changes
	List Unsaved Changes
	List Unactivated Changes
	List Changes in the Current Activation Task
	Undoing Changes

	Tracking the Activation of Changes
	Listing the Status of the Current Activation Task
	Listing All Activation Tasks Stored in Memory
	Purging Completed Activation Tasks from Memory

	Managing Locks
	Best Practices: Recommended Pattern for Editing and Handling Exceptions
	Setting and Getting Encrypted Values
	Set the Value of an Encrypted Attribute (Recommended Technique)
	Set the Value of an Encrypted Attribute (Compatibility Technique)
	Back Up an Encrypted Value

	6 Managing Security Realms with JMX
	Understanding the Hierarchy of Security MBeans
	Base Provider Types and Mix-In Interfaces
	Security MBeans

	Choosing an MBean Server to Manage Security Realms
	Working with Existing Security Providers
	Discovering Available Services
	Example: Adding Users to a Realm

	Modifying the Realm Configuration

	7 Using Notifications and Monitor MBeans
	Best Practices: Listening Directly Compared to Monitoring
	Best Practices: Listening for WebLogic Server Events
	Best Practices: Listening or Monitoring WebLogic Server Runtime Statistics
	Listening for Notifications from WebLogic Server MBeans: Main Steps
	Creating a Notification Listener
	Listening from a Remote JVM
	Best Practices: Creating a Notification Listener

	Configuring a Notification Filter
	Creating a Custom Filter

	Registering a Notification Listener and Filter
	Packaging and Deploying Listeners on WebLogic Server
	Example: Listening for The Registration of Configuration MBeans

	Using Monitor MBeans to Observe Changes: Main Steps
	Monitor MBean Types and Notification Types
	Errors and the MonitorNotification Type Property

	Creating a Notification Listener for a Monitor MBean
	Registering the Monitor and Listener
	Example: Registering a CounterMonitorMBean and Its Listener

	8 Configuring WebLogic Server JMX Services
	Determining the JMX Services Available in a Domain
	Example: Using WebLogic Scripting Tool to Make a Domain Read-Only

