Oracle Fusion Middleware

Developing Custom Management Utilities
Using JMX for Oracle WebLogic Server

15¢ (15.1.1.0.0)
G31977-01
October 2025

ORACLE"

Oracle Fusion Middleware Developing Custom Management Utilities Using JMX for Oracle WebLogic Server, 15¢
(15.1.1.0.0)

G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience

Documentation Accessibility
Diversity and Inclusion
Related Documentation
Conventions

1 Introduction

2 Understanding WebLogic Server MBeans

Basic Organization of a WebLogic Server Domain
Separate MBean Types for Monitoring and Configuring
The Life Cycle of WebLogic Server MBeans
WebLogic Server MBean Data Model
Containment and Reference Relationships
Containment Relationship
Reference Relationship
WebLogic Server MBean Object Names
MBeanServerinvocationHandler
MBean Servers
Connecting to MBean Servers
Local Connections to MBean Servers
Remote Connections to MBean Servers
Using the Platform MBean Server
Service MBeans
Security for WebLogic Server MBeans
Additional Security Resources for Some Attributes and Operations

3 Overview of WebLogic Server Subsystem MBeans

© 0 00 00 0 N O & A W W WEF PP PP

[l
o o

Domain and Server Logging Configuration
JMS Server and JMS System Module Configuration

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page i of iii

JDBC Resource Configuration

4 Accessing WebLogic Server MBeans with JMX

Set Up the Classpath for Remote Clients

Make Remote Connections to an MBean Server
Example: Connecting to the Domain Runtime MBean Server
Best Practices: Choosing an MBean Server

Make Local Connections to the Runtime MBean Server

Make Local Connections to the Domain Runtime MBean Server

Navigate MBean Hierarchies

Example: Printing the Name and State of Servers

Example: Monitoring Servlets

5 Managing a Domain's Configuration with JIMX

0 00 N O AN PP

=Y
o

Editing MBean Attributes: Main Steps
Start an Edit Session
Change Attributes or Create New MBeans
Save Changes to the Pending Configuration Files
Activate Your Saved Changes
Exception Types Thrown by Edit Operations
Listing and Undoing Changes
List Unsaved Changes
List Unactivated Changes
List Changes in the Current Activation Task
Undoing Changes
Tracking the Activation of Changes
Listing the Status of the Current Activation Task
Listing All Activation Tasks Stored in Memory
Purging Completed Activation Tasks from Memory
Managing Locks
Best Practices: Recommended Pattern for Editing and Handling Exceptions
Setting and Getting Encrypted Values
Set the Value of an Encrypted Attribute (Recommended Technique)
Set the Value of an Encrypted Attribute (Compatibility Technique)
Back Up an Encrypted Value

6 Managing Security Realms with IMX

© 00 0 N N N O 0o o AP W wow NN PR

i e o
A W NN

Understanding the Hierarchy of Security MBeans
Base Provider Types and Mix-In Interfaces

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page ii of iii

Security MBeans 1
Choosing an MBean Server to Manage Security Realms 7
Working with Existing Security Providers 8

Discovering Available Services 9

Example: Adding Users to a Realm 11
Modifying the Realm Configuration 13

7 Using Notifications and Monitor MBeans

Best Practices: Listening Directly Compared to Monitoring 1
Best Practices: Listening for WebLogic Server Events 1
Best Practices: Listening or Monitoring WebLogic Server Runtime Statistics 5
Listening for Notifications from WebLogic Server MBeans: Main Steps 6
Creating a Notification Listener 7
Listening from a Remote JVM 8

Best Practices: Creating a Notification Listener 8
Configuring a Notification Filter 8
Creating a Custom Filter 9

Registering a Notification Listener and Filter 9

Packaging and Deploying Listeners on WebLogic Server 11

Example: Listening for The Registration of Configuration MBeans 12
Using Monitor MBeans to Observe Changes: Main Steps 15

Monitor MBean Types and Notification Types 15

Errors and the MonitorNotification Type Property 16
Creating a Notification Listener for a Monitor MBean 17
Registering the Monitor and Listener 17

Example: Registering a CounterMonitorMBean and Its Listener 19

8 Configuring WebLogic Server JMX Services

Determining the JMX Services Available in a Domain
Example: Using WebLogic Scripting Tool to Make a Domain Read-Only

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page iii of iii

ORACLE’

Preface

Audience

This document describes how to create JMX clients that monitor and modify WebLogic Server
resources.

This document is a resource for software vendors who develop JMX-compatible management
systems. It also contains information that is useful for business analysts and system architects
who are evaluating WebLogic Server or considering the use of JMX for a particular application.

It is assumed that the reader is familiar with Jakarta EE and general application management
concepts. This document emphasizes a hands-on approach to developing a limited but useful
set of IMX management services.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Related Documentation

The Oracle Technology Network includes a Web site that provides links to books, white papers,
and additional information on JMX: htt p: // www. oracl e. coml t echnet work/j ava/ j avase/ t ech/
| avananagenent - 140525. ht m .

WebLogic Server supports JMX 1.4 by leveraging the JMX implementation in the JDK on which
it is running. To view the JMX 1.4 specification, download it from ht t ps: //
docs. oracl e. confen/javaljavase/ 17/ mk/index. ht

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page i of ii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
https://docs.oracle.com/en/java/javase/17/jmx/index.html
https://docs.oracle.com/en/java/javase/17/jmx/index.html

ORACLE’

Preface

To view the JIMX Remote API 1.0 specification, download it from http: //| cp. or g/ about Java/
comuni typrocess/final/jsr160/index.htm.

You can view the API reference for the j avax. nanagenent * packages from: htt ps://
docs. oracle. confen/javaljavase/ 17/ docs/ api /i ndex. htni .

For guidelines on developing other types of management services for WebLogic Server
applications, see the following documents:

e Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server
describes WebLogic support for internationalization and localization of log messages, and
shows you how to use the templates and tools provided with WebLogic Server to create or
edit message catalogs that are locale-specific.

e Configuring and Using the Diagnostics Framework for Oracle WebLogic Server describes
how system administrators can collect application monitoring data that has not been
exposed through JMX, logging, or other management facilities.

For guidelines on developing and tuning WebLogic Server applications, see the following
documents:

* Developing Applications for Oracle WebLogic Server is a guide to developing WebLogic
Server applications.

« Developing Manageable Applications Using JMX for Oracle WebLogic Server describes
how to create and register custom MBeans.

New and Changed WebLogic Server Features

For a comprehensive listing of the new WebLogic Server features introduced in this release,
see What's New in Oracle WebLogic Server.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page ii of ii

http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html

Introduction

This document describes creating JMX clients that monitor and modify WebLogic Server
resources.

To integrate third-party management systems with the WebLogic Server management system,
WebLogic Server provides standards-based interfaces that are fully compliant with the Java
Management Extensions (JMX) specification. Software vendors can use these interfaces to
monitor WebLogic Server MBeans, to change the configuration of a WebLogic Server domain,
and to monitor the distribution (activation) of those changes to all server instances in the
domain. While JMX clients can perform all WebLogic Server management functions without
using Oracle's proprietary classes, Oracle recommends that remote JMX clients use WebLogic
Server protocols (such as T3) to connect to WebLogic Server instances.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 1

Understanding WebLogic Server MBeans

This chapter describes the MBeans that WebLogic Server provides that you can use to
configure, monitor, and manage WebLogic Server resources, and also explains how WebLogic
Server distributes and maintains these MBeans.

This chapter includes the following sections:

The MBean Reference for Oracle WebLogic Server provides a detailed reference for all
WebLogic Server MBeans.

Basic Organization of a WebLogic Server Domain

A WebLogic Server administration domain is a collection of one or more servers and the
applications and resources that are configured to run on the servers. Each domain must
include a special server instance that is designated as the Administration Server. The
simplest domain contains a single server instance that acts as both Administration Server and
host for applications and resources. This domain configuration is commonly used in
development environments. Domains for production environments usually contain multiple
server instances (Managed Servers) running independently or in groups called clusters. In
such environments, the Administration Server does not host production applications. For more
information about domains, refer to Understanding Oracle WebLogic Server Domains in
Understanding Domain Configuration for Oracle WebLogic Server.

Separate MBean Types for Monitoring and Configuring

All WebLogic Server MBeans can be organized into one of the following general types based
on whether the MBean monitors or configures servers and resources:

* Run-time MBeans contain information about the run-time state of a server and its
resources. They generally contain only data about the current state of a server or resource,
and they do not persist this data. When you shut down a server instance, all run-time
statistics and metrics from the run-time MBeans are destroyed.

* Configuration MBeans contain information about the configuration of servers and
resources. They represent the information that is stored in the domain's XML configuration
documents.

* Configuration MBeans for system modules contain information about the configuration of
services such as JDBC data sources and JMS topics that have been targeted at the
system level. Instead of targeting these services at the system level, you can include
services as modules within an application. These application-level resources share the life
cycle and scope of the parent application. However, WebLogic Server does not provide
MBeans for application modules. See Supported Deployment Units in Deploying
Applications to Oracle WebLogic Server.

The Life Cycle of WebLogic Server MBeans

The life cycle of a run-time MBean follows that of the resource for which it exposes run-time
data. For example, when you start a server instance, the server instantiates a
Server Runt i meMBean and populates it with the current run-time data. Each resource updates

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 11

ORACLE Chapter 2
The Life Cycle of WebLogic Server MBeans

the data in its run-time MBean as its state changes. The resource destroys its run-time
MBeans when it is stopped.

For a configuration MBean, the life cycle is as follows:

1. Each server in the domain has its own copy of the domain's configuration documents
(which consist of a confi g. xnl file and subsidiary files). During a server's startup cycle, it
contacts the Administration Server to update its configuration files with any changes that
occurred while it was shut down. Then it instantiates configuration MBeans to represent
the data in the configuration documents. (See Figure 2-1.)

@® Note

By default, a Managed Server will start even if it cannot contact the Administration
Server to update its configuration files. This default setting creates the possibility
that Managed Servers across the domain might run with inconsistent
configurations. For information about changing this default, see Starting a
Managed Server When the Administration Server Is Not Accessible in
Administering Server Startup and Shutdown for Oracle WebLogic Server.

Figure 2-1 Initializing Configuration MBeans on Administration Server

config.xml
<domain> .
<server> s WebILoglc
<name>MedRecServer</name> erver Instance
<léSten_port> — ServerMBean
7011
</listen-port> Name="MedRecServer”
</server> ListenPort="701
</domain>

The configuration MBeans enable each server instance in the domain to have an identical
in-memory representation of the domain's configuration.

2. To control changes to the domain's configuration, JMX clients have read-only access to
these configuration MBeans.

The Administration Server maintains a separate, editable copy of the domain's
configuration documents in the domain's conf i g/ pendi ng directory. It uses the data in
these pending documents to instantiate a set of configuration MBeans that JMX clients can
modify. After a JMX client modifies one of these configuration MBeans, the client directs
the Administration Server to save the modifications in the pending configuration
documents. Then the client starts a transactional process that updates the read-only
configuration documents and configuration MBeans for all server instances in the domain.

See Managing Configuration Changes in Understanding Domain Configuration for Oracle
WebLogic Server.

3. Configuration MBeans are destroyed when you shut down the server instance that hosts
them.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 11

ORACLE Chapter 2
WebLogic Server MBean Data Model

WebLogic Server MBean Data Model

The JMX specification does not impose a model for organizing MBeans. However, because the
configuration of a WebLogic Server domain is specified in an XML document, WebLogic Server
organizes its MBeans into a hierarchical model that reflects the XML document structure.

For example, the root of a domain's configuration document is <donai n> and below the root are
child elements such as <server > and <cl ust er >. Each domain maintains a single MBean of
type Donai nMBean to represent the <domai n> root element. Within Domai nMBean, JMX attributes
provide access to the MBeans that represent child elements such as <server > and <cl ust er >.

The following sections describe the patterns that WebLogic Server MBeans use to model the
underlying XML configuration:

Containment and Reference Relationships

MBean attributes that provide access to other MBeans represent one of following types of
relationships:

e Containment, which reflects a parent-child relationship between the corresponding XML
elements in the domain's configuration document.

« Reference, which reflects a sibling or other non-ancestor, non-descendant relationship.

Containment Relationship

The XML excerpt in Example 2-1 illustrates a containment relationship between <domai n> and
<server> and <domai n> and <cl ust er >.

Example 2-1 Containment Relationship in XML

<domai n>
<server>
<name>MSer ver </ nane>
</server>
<cl uster>
<name>Myd ust er </ name>
</cluster>
</ donai n>

To reflect this relationship, Donai nMBean has two attributes, Servers and O ust ers. The value
of the Server s attribute is an array of object names j avax. managenent . Cbj ect Nane[]) for all

Server MBeans that have been created in the domain. The value of the C ust er s attribute is an
array of object names for all O ust er MBeans.

Another aspect of the containment relationship is expressed in a set of MBean operations that
follow the design pattern for Java bean factory methods: for each contained (child) MBean, the
parent MBean provides a cr eat eChi | d and dest r oyChi | d operation, where Chi | d is the short

name of the MBean's type. (The short name is the MBean's unqualified type name without the

MBean suffix. For example, cr eat eSer ver).

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 11

ORACLE

Chapter 2
WebLogic Server MBean Data Model

@® Note

JMX clients cannot use j avax. managenent . MBeanSer ver. create() orregister() to
create and register instances of WebLogic Server MBeans because WebLogic Server
does not make its MBean implementation classes publicly available.

If you create and register custom MBeans (MBeans you have created to manage your
applications), you will have access to your own implementation files and you can use
the standard MBeanSer ver. create() orregi ster() methods. Custom MBeans are not
part of the WebLogic Server data model and do not participate in its factory method
model.

In some cases, an MBean's factory methods are not public because of dependencies within a
server instance. In these cases the parent manages the life cycle of its children. For example,
each Server MBean must have one and only one child LogMBean to configure the server's local
log file. The factory methods for LoghMBean are not public, and Ser ver MBean maintains the life
cycle of its LogMBean.

With a containment relationship, the parent MBean also contains a | ookupChi | d operation. If
you know the user-supplied name that was used to create a specific server or resource, you
can use the lookup operation in the parent MBean to get the object name. For example,

Domai nMBean includes an operation named | ookupServers(String name), which takes as a
parameter the name that was used to create a server instance. If you named a server Ms1, you
could pass a Stri ng object that contains M51 to the | ookupSer ver s method and the method
would return the object name for Ms1.

Reference Relationship

The XML excerpt in Example 2-2 illustrates a reference relationship between <ser ver > and
<cl uster>.

Example 2-2 Reference Relationship in XML

<domai n>
<server>
<name>M Ser ver </ nane>
<cl uster>MyC uster</cl uster>
</ server>
<cl uster>
<name>Myd ust er </ name>
</cluster>
</ domai n>

While a server logically belongs to a cluster, the <server > and <cl ust er > elements in the
domain's configuration file are siblings. To reflect this relationship, Ser ver MBean has a O ust er
attribute whose value is the object name (j avax. managenment . Cbj ect Narre) of the O ust er MBean
to which the server belongs.

MBeans in a reference relationship do not provide factory methods.

WebLogic Server MBean Object Names

All MBeans must be registered in an MBean server under an object name of type

j avax. managenent . Obj ect Name. WebLogic Server follows a convention in which object names

for child MBeans contain part of its parent MBean object name.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 11

ORACLE

@® Note

Chapter 2
WebLogic Server MBean Data Model

If you learn the WebLogic Server naming conventions, you can understand where an
MBean instance resides in the data hierarchy by observing its object name. However,
if you use containment attributes or lookup operations to get object names for
WebLogic Server MBeans, your JMX applications do not need to construct or parse

object names.

WebLogic Sever naming conventions encode its MBean object names as follows:

com bea: Nanme=nane, Type=t ype[, TypeCf Par ent MBean=NaneCOf Par ent MBean]
[, TypeOf Par ent MBean1=NaneCf Par ent MBeanl] . . .

In the preceding MBean object name convention:

e com bea: is the IMX domain name.

For WebLogic Server MBeans, the JMX domain is always com bea. If you create custom
MBeans for your applications, name them with your own JMX domain.

* Nane=nane, Type=t ype[, TypeOf Par ent MBean=NameCf Par ent MBean]
[, TypeO Par ent MBeanl=NameCf Par ent MBeanl] ... represents a set of IMX key properties.

The order of the key properties is not significant, but the name must begin with com bea: .

Table 2-1 describes the key properties that WebLogic Server encodes in its MBean object

names.

Table 2-1 WebLogic Server MBean Object Name Key Properties

This Key Property

Specifies

Nane=nane

The string that you provided when you created the resource that the

MBean represents. For example, when you create a server, you must
provide a name for the server, such as MS1. The Ser ver MBean that
represents MS1 uses Name=M51 in its JMX object name.

If you create an MBean, you must specify a value for this Nane
component that is unique amongst all other MBeans in a domain.

Type=t ype

For configuration MBeans and run-time MBeans, the short name of the
MBean's type. The short name is the unqualified type name without the
MBean suffix. For example, for an MBean that is an instance of the
Server Runt i neMBean, use Server Runti ne.

For MBeans that manage services targeted at the system level, the fully
qualified name of the MBean's type including any Bean or MBean suffix.
For example, for an MBean that manages a system-level JDBC data
source, use Webl ogi c. j 2ee. descri pt or. w . JDBCDat aSour ceBean.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 11

ORACLE Chapter 2
WebLogic Server MBean Data Model

Table 2-1 (Cont.) WebLogic Server MBean Object Name Key Properties
]

This Key Property Specifies
TypeOf Par ent MBean= To create a hierarchical namespace, WebLogic Server MBeans use one
NameOf Par ent MBean or more instances of this attribute in their object names. The levels of the

hierarchy are used to indicate scope. For example, a LogMBean at the
domain level of the hierarchy manages the domain-wide message log,
while a LogMBean at a server level manages a server-specific message
log.

WebLogic Server child MBeans with implicit creator methods use the
same value for the Name property as the parent MBean. For example,
the LogMBean that is a child of the MedRecSer ver Server MBean uses
Narme=MedRec Ser ver in its object name:

medr ec: Nane=MedRecSer ver, Type=Log, Ser ver =MedRecSer ver
WebLogic Server cannot follow this convention when a parent MBean
has multiple children of the same type.

Some MBeans use multiple instances of this component to provide
unique identification. For example, the following is the object name for an
EJBConponent Runt i me MBean in the MedRec sample application:

medr ec: Appl i cationRunti me=MedRecSer ver _MedRecEAR,
Name=MedRecSer ver _MedRecEAR _Sessi on

EJB, Server Runt i me=MedRecSer ver, Type=EJBConponent Runt i me
The Appl i cati onRunt i me=MedRecSer ver _MedRecEAR key property
indicates that the EJB instance is a module within the MedRec
enterprise application and a child of the MedRecSer ver _MedRecEAR
ApplicationRuntimeMBean. The Ser ver Runt i ne=MedRecSer ver key
property indicates that the EJB instance is currently deployed on a
server named MedRecServer and a child of the MedRec Ser ver
ServerRuntimeMBean.

Locati on=server nanme When you access run-time MBeans or configuration MBeans through
the Domain Runtime MBean Server, the MBean object names include a
Locat i on=ser ver nane key property which specifies the name of the
server instance on which that MBean is located. See MBean Servers.

Singleton MBeans, such as Donmai nRunt i meMBean and
Server Li f eCycl eRunt i meMBean exist only on the Administration
Server and do not need to include this key property.

MBeanServerlnvocationHandler

If you use the MBeanSer ver I nvocat i onHandl er to create a proxy for the MBean, as shown
here:

Intf proxy = (Intf)
MBeanSer ver | nvocat i onHandl er. newPr oxyl nst ance(nbs,
nane,
Intf.class,
fal se);

you should include the WLS extension MBeanSer ver | nvocat i onHandl er instead of
j avax. managenent . MBeanSer ver I nvocat i onHandl er, as shown here:

i mport webl ogi c. managenent . j mx. MBeanSer ver | nvocat i onHandl er;

This ensures that return exceptions are handled correctly.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 11

ORACLE Chapter 2
MBean Servers

MBean Servers

At the core of any JMX agent is the MBean server, which acts as a container for MBeans.

The JVM for an Administration Server maintains three MBean servers provided by Oracle and
optionally maintains the platform MBean server, which is provided by the JDK itself. The JVM
for a Managed Server maintains only one Oracle MBean server and the optional platform
MBean server.

Table 2-2 describes each MBean server.

Table 2-2 MBean Servers in a WebLogic Server Domain
]

This MBean server Creates, registers, and provides access to...
Domain Runtime MBean MBeans for domain-wide services. This MBean server also acts as a
Server single point of access for MBeans that reside on Managed Servers. You

can register your own (custom) MBeans in this MBean server (see
Registering Custom MBeans in the Domain Runtime MBean Server in
Developing Manageable Applications Using JMX for Oracle WebLogic
Server).

If your JMX client accesses WebLogic Server MBeans in this MBean
server by constructing object names, the client must add a

Locat i on=ser ver nane key property to the MBean object name. See
WebLogic Server MBean Object Names.

Only the Administration Server hosts an instance of this MBean server.

Runtime MBean Server MBeans that expose monitoring, run-time control, and the active
configuration of a specific WebLogic Server instance. You can also
register your own (custom) MBeans in this MBean server (see
Registering Custom MBeans in the Domain Runtime MBean Server in
Developing Manageable Applications Using JMX for Oracle WebLogic
Server).

In this release, the WebLogic Server Runtime MBean Server is
configured by default to be the platform MBean server. However, you can
configure WebLogic Server to create a separate MBean Server and use
it instead of the platform MBean Server. See Using the Platform MBean
Server.

Each server in the domain hosts an instance of this MBean server.

Edit MBean Server Pending configuration MBeans and operations that control the
configuration of a WebLogic Server domain. It exposes a
Confi gur ati onManager MBean for locking, saving, and activating
changes.

Only the Administration Server hosts an instance of this MBean server.

The JVM's platform MBean MBeans provided by the JDK that contain monitoring information for the
server JVM itself. You can register custom MBeans in this MBean server.

In this release, WebLogic Server uses the JVM's platform MBean server
to contain the WebLogic run-time MBeans by default. As such, the
platform MBean server provides access to platform MXBeans, WebLogic
run-time MBeans, and WebLogic configuration MBeans that are on a
single server instance. See Using the Platform MBean Serverand
Registering MBeans in the JVM Platform MBean Server in Developing
Manageable Applications Using JMX for Oracle WebLogic Server.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 11

ORACLE Chapter 2
MBean Servers

Connecting to MBean Servers

JMX enables both local and remote access to MBean servers, but JMX clients use different
APIs for the two types of access and WebLogic Server MBean servers expose different
capabilities to local clients and remote clients.

Local Connections to MBean Servers

JMX clients running within a WebLogic Server JVM can access the server's Runtime MBean
Server or Domain Runtime MBean Server directly through JNDI, and authentication is required
to access any MBeans that require roles. These are the only WebLogic Server MBean servers
that allow local access. When accessed from a local client, the Runtime MBean Server or
Domain Runtime MBean Server returns its j avax. managenent . MBeanSer ver interface, which
enables clients to access WebLogic Server MBeans and to create, register, and access custom
MBeans. See Make Local Connections to the Runtime MBean Server and Make Local
Connections to the Domain Runtime MBean Server.

JMX clients can also access the local JVM's platform MBean server. Any local client can
access the MBeans in this MBean server. See Registering MBeans in the JVM Platform
MBean Server in Developing Manageable Applications Using JMX for Oracle WebLogic
Server.

Remote Connections to MBean Servers

Remote JMX clients (clients running in a different JVM from the MBean server) can use the

j avax. managenent . r enot e APIs to access any WebLogic MBean server. Clients must
authenticate through the WebLogic Server security framework to do so (see Security for
WebLogic Server MBeans). When accessed from a remote client, a WebLogic Server MBean
server returns its j avax. managenent . MBeanSer ver Connect i on interface, which enables clients
to only access MBeans; remote clients cannot create and register custom MBeans. See Make
Remote Connections to an MBean Server.

You can enable remote access to the platform MBean server. See Registering MBeans in the
JVM Platform MBean Server in Developing Manageable Applications Using JMX for Oracle
WebLogic Server.

Using the Platform MBean Server

In this release of WebLogic Server, the WebLogic Server Runtime MBean Server is configured
by default to contain the platform MXBeans for the corresponding server. The Domain Runtime
MBean Server contains the platform MXBeans for all of the servers in the domain. The MBean
object names for the platform MXBeans will be the same as those provided by the JVM except
they will have the additional Locat i on=ser ver name key property.

The WLST script in Example 2-3 illustrates using platform MXBeans to monitor the resources
of a running domain.

Using the platform MBean server for the Runtime MBean Server is controlled by the

Pl at f or mvBeanSer ver Used attribute in the JMX MBean. In previous releases, the default value
for the Pl at f or mMVBeanSer ver Used attri bute was f al se so the platform MBean server was
not used unless explicitly enabled. In this release of WebLogic Server, the default value for the
Pl at f or mvBeanSer ver Used attribute is t r ue for domains that are at version 10.3.3.0 or later.
See Pl at f or mvBeanSer ver Enabl ed in the MBean Reference for Oracle WebLogic Server.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 11

ORACLE Chapter 2
MBean Servers

If desired, you can configure WebLogic Server to create a separate MBean Server and use it
instead of the platform MBean server by setting the Pl at f or mvBeanSer ver Enabl ed attribute
value to f al se using any of the administration tools listed in Summary of System
Administration Tools and APIs in Understanding Oracle WebLogic Server. In WLST, start an
edit session, navigate to the JMX directory for the domain, use

co. set Pl at f or mMvBeanSer ver Used(f al se) to change the value, and then activate the
changes.

For more information on the Platform MBean Server and Platform MXBean, see the following
JAVA SDK documentation:

e https://docs.oracle.con en/javaljavasel/ 17/ managenent/ usi ng- pl at f or m nbean-
server - and- pl at f or m mxbeans. ht m

e https://docs.oracle.comen/javaljavasel/ 17/ docs/ api/j ava. managenent/javal/l ang/
managenent / package- sunmary. ht ni

Example 2-3 Using Platform MXBeans

This W.ST script denmonstrates how to use the Platform MXBeans to nonitor

the resources of a running WS domain. It uses the domai nCustom conmand

to retrieve the nmenory usage for 2 servers in the domain. For information

about the available platform MXBeans, refer to the follow ng |ink:
https://docs.oracle.conmen/javaljavase/ 17/ docs/ api/java. managenent /| ava/ |l ang/
managenent / package- summary. ht m

connect ()
domai nCust om()
cd ("java.lang")
moni tor heap and thread usage once a minute for 5 minutes
x =0
while x < 5:
Admi n Server
cd ("java.lang: Location=Adni nServer,type=Menory")
huAdm n = get (" HeapMenor yUsage")
cd ("..")
cd ("java.lang: Locati on=Adm nServer, type=Threadi ng")
nunrhr eadsAdmi n = get (" ThreadCount")
print "Admn server menmory usage = ", huAdm n. get ("max"),
nunThr eadsAdm n
cd ("..")
ml server
cd ("java.lang: Location=nl, t ype=Menory")
huML = get (" HeapMenor yUsage")
cd ("..")
cd ("java.lang: Location=nl,type=Threadi ng")
nunithr eadML = get (" ThreadCount ")
cd ("..")
print "ML server nenmory usage = ", huML. get("max"), " nunber threads: ", nuniThreadM
Thr ead. sl eep(60000)
X =x +1

nunber threads: ",

Service MBeans

Within each MBean server, WebLogic Server registers a service MBean under a simple object
name. The attributes and operations in this MBean serve as your entry point into the WebLogic
Server MBean hierarchies and enable JMX clients to navigate to all WebLogic Server MBeans
in an MBean server after supplying only a single object name. See Table 2-3.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 11

https://docs.oracle.com/en/java/javase/17/management/using-platform-mbean-server-and-platform-mxbeans.html
https://docs.oracle.com/en/java/javase/17/management/using-platform-mbean-server-and-platform-mxbeans.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/java/lang/management/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/java/lang/management/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/java/lang/management/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/java/lang/management/package-summary.html

ORACLE

Chapter 2
Security for WebLogic Server MBeans

JMX clients that do not use the entry point (service) MBean must correctly construct an
MBean's object name to get and set the MBean's attributes or invoke its operations. Because
the object names must be unique, they are usually long and difficult to construct from a client.

Table 2-3 Service MBeans

MBean Server

Service MBean JMX object nhame:

The Domain Runtime Domai nRunt i meSer vi ceMBean com bea: Name=Donai nRunt i meS

MBean Server

Provides access to MBeans for domain-wide services such €' Vi ¢e, Type=webl ogi c.

as application deployment, JMS servers, and JDBC data ~ M&nagement . nbeanse.r vers.
sources. It also is a single point for accessing the dormai nrunt i me. Donai nRunti e
hierarchies of all run-time MBeans and all active Ser vi ceMBean

configuration MBeans for all servers in the domain.

See DomainRuntimeServiceMBean in MBean Reference
for Oracle WebLogic Server.

Runtime MBean Servers Runt i meSer vi ceMBean com bea: Name=Runt i meSer vi ce
Provides access to run-time MBeans and active , Type=webl ogi c. managenent .
configuration MBeans for the current server. nbeanservers. runtine.

See RuntimeServiceMBean in MBean Reference for Runt i meSer vi ceMBean

Oracle WebLogic Server.

The Edit MBean Server Edi t Ser vi ceMBean com bea: Nane=Edi t Servi ce,

Provides the entry point for managing the configuration of ~ 1YPe=webl ogi c. managenment .
the current WebLogic Server domain. nbeanservers. edit.

See EditServiceMBean in MBean Reference for Oracle Edi t Servi ceMBean

WebLogic Server.

Security for WebLogic Server MBeans

To connect to a WebLogic Server MBean server, a JMX client must supply credentials for a
user who has been defined in the WebLogic Server domain's security realm.

To further secure the MBeans that have been registered in an MBean server, WebLogic Server
uses security roles and policies. A security role, like a security group, grants an identity to a
user. Unlike a group, however, membership in a role can be based on a set of conditions that
are evaluated at run time. A security policy is another set of run-time conditions that specify
which users, groups, or roles can access a resource. Oracle provides a default set of roles and
policies for WebLogic Server MBeans. (See Default Security Policies for MBeans in the MBean
Reference for Oracle WebLogic Server.)

During the startup cycle for a WebLogic Server instance, the server creates a collection of

webl ogi c. security. service. JIMKResour ce objects, which are the in-memory representations
of the MBean security policies. When a JMX client attempts to get or set an MBean attribute or
invoke an operation, the MBean server asks the security realm if the user has sufficient
permission. The security realm first determines which role the user is in. (Role assignments are
determined at run time.) Then it uses the default policies and any other policies that you have
created to determine if the role is allowed access.

You can use the WebLogic Remote Console to change the default access permissions. See
Security Policies and Roles in the Oracle WebLogic Remote Console Online Help.

Additional Security Resources for Some Attributes and Operations

For MBean attributes and operations that represent particularly sensitive data or actions,
WebLogic Server provides additional security resource objects to limit which users can access

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 11

ORACLE Chapter 2
Security for WebLogic Server MBeans

the data or action. For example, the Server Li f eCycl eRunt i meMBean's shut down() operation is
protected by a JMXResour ce object and a webl ogi c. security. service. Server Resour ce
object. For a complete list of attributes and operations that are protected by multiple resources,
see Administrative Resources and Server Resources in Securing Resources Using Roles and
Policies for Oracle WebLogic Server .

The default configuration of roles and security policies for these attributes and operations work
together to create a consistent security scheme. You can, however, make modifications that
limit access in ways that you do not intend. See Maintaining a Consistent Security Scheme in
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 11

Overview of WebLogic Server Subsystem
MBeans

This chapter describes the MBeans that can be used to manage various subsystems of
WebLogic Server, including domain and server logging, JMS servers and JMS system module
resources, and JDBC resources.

This chapter includes the following sections:

In addition, for a description of MBeans that can be used to manage WebLogic Security, see
Understanding the Hierarchy of Security MBeans.

Domain and Server Logging Configuration

Within a WebLogic Server domain, several MBeans configure logging services. Table 3-1
introduces the MBeans and Figure 3-1 illustrates where the MBeans are located in the
configuration MBean hierarchy.

Table 3-1 MBeans for Domain and Server Logging
|

This MBean... Configures...
LogMBean e Threshold severity level and filter settings for logging output.
e Whether the server logging is based on the default Java Logging
APIs.

« Whether to redirect the JVM st dout and st der r output to the
registered log destinations.

The Administration Server maintains an instance of LogMBean for the

domain-wide message log, and each server instance maintains its own

instance for its local server log.

See LogMBean in the MBean Reference for Oracle WebLogic Server.

LogFi | eMBean Log file names and the location, file-rotation criteria, and number of files
that a WebLogic Server instance uses to store log messages.

See LogFileMBean in the MBean Reference for Oracle WebLogic
Server.

LogFi | t er MBean A log filter which determines which messages a server instance sends to
the registered log destinations. Each log filter is represented by its own
instance of LogFi | t er MBean.

A log filter can be defined at the domain or server level.

See LogFilterMBean in the MBean Reference for Oracle WebLogic
Server.

Ser ver MBean Path prefix for the server's JTA transaction log files.
See ServerMBean in the MBean Reference for Oracle WebLogic Server.

WebSer ver MBean Logging HTTP requests.

See WebServerMBean in the MBean Reference for Oracle WebLogic
Server.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 8

ORACLE Chapter 3
JMS Server and JMS System Module Configuration

Table 3-1 (Cont.) MBeans for Domain and Server Logging

__|
This MBean... Configures...

Vi rt ual Host MBean Logging HTTP requests for virtual hosts that you define.

See VirtualHostMBean in the MBean Reference for Oracle WebLogic
Server.

JMSSer ver MBean Message log file for this IMS Server.

See JMSServerMBean in the MBean Reference for Oracle WebLogic
Server.

Figure 3-1 Logging MBeans

=—

|
DomainMBean

— LogMBean

— LogFilterMBean

— ServerMBean

— LogMBean

— DomainLogBroadcastFilterMBean
— LogFileFilterMBean

— MemoryBuffetFilterMBean

— StdoutFilterMBean

— WebServerMBean
|— WebServerLogMBean
— VirtualHostMBean

|— WebServerLogMBean

— JMSServerMBean

|— JMSMessagel ogFileMBean

JMS Server and JMS System Module Configuration

Within a WebLogic Server domain, multiple MBeans configure JMS servers and JMS system
module resources. JMS servers are persisted in the domain's config.xml file and multiple IMS
servers can be configured on the various WebLogic Server instances in a cluster, as long as
they are uniquely named. When a JMS system module is created using JMX, WebLogic Server
creates a JMS system module descriptor file in the confi g\ j ms subdirectory of the domain

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 8

ORACLE Chapter 3
JMS Server and JMS System Module Configuration

directory, and adds a reference to the module in the domain's confi g. xni file as a
JMBSyst enResour ce element. This reference includes the path to the JMS system module file
and a list of target servers and clusters on which the system module is deployed.

Table 3-2 introduces the MBeans and Figure 3-2 illustrates where the MBeans are located in
the configuration MBean hierarchy.

Table 3-2 MBeans for JMS Servers and JMS System Module Resources

___|]
This MBean... Configures...

JMSSer ver MBean A JMS server is configuration entity that acts as a management
container for targeted destination resources (queues and topics) in a
JMS system module. A JMS server's primary responsibility for its
destinations is to maintain information on what persistent store is used
for any persistent messages that arrive on the destinations, and to
maintain the states of durable subscribers created on the destinations.
As a container for targeted destinations, any configuration or run-time
changes to a JMS server can affect all of its destinations.

See JMSServerMBean in the MBean Reference for Oracle WebLogic
Server.

JMSSyst enResour ceMBean A JMS system resource is a resource whose definition is part of the
system configuration rather than an application. The descriptor for the
resource is linked through the WebLogic configuration file, but resides in
a separate descriptor file.

See JMSSystemResourceMBean in the MBean Reference for Oracle
WebLogic Server.

SubDepl oynment MBean Subdeployments enable administrators to deploy some resources in a
JMS module to a JMS server and other JMS resources to a server
instance or cluster. Standalone queues or topics can only be targeted to
a single JMS server. Whereas, connection factories, uniform distributed
destinations (UDDs), and foreign servers can be targeted to one or more
JMS servers, one or more server instances, or to a cluster. Therefore,
standalone queues or topics cannot be associated with a subdeployment
if other members of the subdeployment are targeted to multiple IMS
servers. However, UDDs can be associated with such subdeployments
since the purpose of UDDs is to distribute its members to multiple IMS
servers in a domain.

See SubDeploymentMBean in the MBean Reference for Oracle
WebLogic Server.

JMSBean The top of the IMS module bean tree. IMS modules all have a
JMSBean as their root bean (a bean with no parent).

See JMSBean in the MBean Reference for Oracle WebLogic Server.

Desti nati onKeyBean Defines a unique sort order that destinations can apply to arriving
messages. By default messages are sorted in FIFO (first-in, first-out)
order, which sorts ascending based on each message's unique
JMSMessagelD. However, you can configure destination key to use a
different sorting scheme for a destination, such as LIFO (last-in, first-
out).

See DestinationKeyBean in the MBean Reference for Oracle WebLogic
Server.

Di stribut edQueueBean Defines a set of queues that are distributed on multiple JMS servers, but
which are accessible as a single, logical topic to JMS clients. Distributed
queues can help with load balancing and distribution, and have many of
the same properties as standalone queues.

See DistributedQueueBean in the MBean Reference for Oracle
WebLogic Server.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 8

ORACLE’

Chapter 3
JMS Server and JMS System Module Configuration

Table 3-2 (Cont.) MBeans for JMS Servers and JMS System Module Resources
]

This MBean...

Configures...

Di stributedTopi cBean

Defines a set of topics that are distributed on multiple JMS servers, but
which are accessible as a single, logical topic to JMS clients. Distributed
topics can help with load balancing and distribution, and have many of
the same properties as standalone topics.

See DistributedTopicBean in the MBean Reference for Oracle WebLogic
Server.

For ei gnSer ver Bean

Defines foreign messaging providers or remote WebLogic Server
instances that are not part of the current domain. This is useful when
integrating with another vendor's JMS product, or when referencing
remote instances of WebLogic Server in another cluster or domain in the
local WebLogic JNDI tree.

See ForeignServerBean in the MBean Reference for Oracle WebLogic
Server.

JMsConnect i onFact or yBea
n

Defines a set of connection configuration parameters that are used to
create connections for JMS clients. Connection factories can configure
properties of the connections returned to the JMS client, and also
provide configurable options for default delivery, transaction, and
message flow control parameters.

See JMSConnectionFactoryBean in the MBean Reference for Oracle
WebLogic Server.

QueueBean

Defines a point-to-point destination type, which are used for
asynchronous peer communications. A message delivered to a queue is
distributed to only one consumer. Several aspects of a queue's behavior
can be configured, including thresholds, logging, delivery overrides, and
delivery failure options.

See QueueBean in the MBean Reference for Oracle WebLogic Server.

Quot aBean

Controls the allotment of system resources available to destinations. For
example, the number of bytes a destination is allowed to store can be
configured with a Quota resource.

See QuotaBean in the MBean Reference for Oracle WebLogic Server.

SAFRenpt eCont ext Bean

Defines the URL of the remote server instance or cluster where a IMS
destination is exported from. It also contains the security credentials to
be authenticated and authorized in the remote cluster or server.

See SAFRemoteContextBean in the MBean Reference for Oracle
WebLogic Server.

SAFEr r or Handl i ngBean

Defines the action to take when the SAF service fails to forward
messages to remote destinations. Configuration options include an Error
Handling Policy (Redirect, Log, Discard, or Always-Forward), a Log
Format, and sending Retry parameters.

See SAFErrorHandlingBean in the MBean Reference for Oracle
WebLogic Server.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 8

ORACLE

Chapter 3
JMS Server and JMS System Module Configuration

Table 3-2 (Cont.) MBeans for JMS Servers and JMS System Module Resources
-

This MBean...

Configures...

SAFI nport edDest i nati ons
Bean

Defines a collection of imported store-and-forward (SAF) destinations. A
SAF destination is a representation of a queue or topic in a remote
server instance or cluster that is imported into the local cluster or server
instance, so that the local server instance or cluster can send messages
to the remote server instance or cluster. All IMS destinations are
automatically exported by default, unless the Export SAF Destination
parameter on a destination is explicitly disabled. Each collection of SAF
imported destinations is associated with a remote SAF context resource,
and, optionally, a SAF error handling resource.

See SAFImportedDestinationsBean in the MBean Reference for Oracle
WebLogic Server.

Tenpl at eBean

Defines a set of default configuration settings for multiple destinations. If
a destination specifies a template and does not explicitly set the value of
a parameter, then that parameter will take its value from the specified
template.

See TemplateBean in the MBean Reference for Oracle WebLogic
Server.

Topi cBean

Defines a publish/subscribe destination type, which are used for
asynchronous peer communications. A message delivered to a topic is
distributed to all topic consumers. Several aspects of a topic's behavior
can be configured, including thresholds, logging, delivery overrides,
delivery failure, and multicasting parameters.

See TopicBean in the MBean Reference for Oracle WebLogic Server.

Uni f or nDi st ri but edQueue
Bean

Defines a uniformly configured distributed queue, whose members have
a consistent configuration of all distributed queue parameters,
particularly in regards to weighting, security, persistence, paging, and
quotas. These uniform distributed queue members are created on JIMS
servers based on the targeting of the uniform distributed queue. Uniform
distributed queues can help with message load balancing and
distribution, and have many of the same properties as standalone
queues, including thresholds, logging, delivery overrides, and delivery
failure parameters.

See UniformDistributedQueueBean in the MBean Reference for Oracle
WebLogic Server.

Uni f or nDi st ri but edTopi ¢
Bean

Defines a uniformly configured distributed topic, whose members have a
consistent configuration of all uniform distributed queue parameters,
particularly in regards to weighting, security, persistence, paging, and
quotas. These uniform distributed topic members are created on JMS
servers based on the targeting of the uniform distributed topic. Uniform
distributed topics can help with message load balancing and distribution,
and have many of the same properties as standalone topics, including
thresholds, logging, delivery overrides, and delivery failure parameters.

See UniformDistributedTopicBean in the MBean Reference for Oracle
WebLogic Server.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 8

ORACLE Chapter 3
JDBC Resource Configuration

Figure 3-2 JMS Server and JMS System Resource MBeans

=—

|
DomainMBean

ClusterMBean
ServerMBean
JMSServerMBean

JMSSystemResourceMBean

SubdeploymentMBean
JMSBean
— QueueBean — DestinationKeyBean
— TopicBean — TemplateBean
— JMSConnectionFactoryBean — QuotaBean
— DistributedQueueBean — ForeignServerBean
— DistributedTopicBean — SAF RemoteContextBean
— UniformDistributedQueueBean — SAF ErrorHandlingBean
— UniformDistributedTopicBean — SAFImportedDestinationBean

JDBC Resource Configuration

When you create a JDBC resource (data source or multi data source) using the WebLogic
Remote Console or using the WebLogic Scripting Tool (WLST), WebLogic Server creates a
JDBC module in the confi g/ j dbc subdirectory of the domain directory, and adds a reference
to the module in the domain's configuration file (confi g. xm).

Table 3-3 introduces the MBeans and Figure 3-3 illustrates where the MBeans are located in
the configuration MBean hierarchy.

Table 3-3 MBeans for JIDBC Resources

]
This MBean... Configures...

JDBCSyst enResour ceMBean A container for the JavaBeans created from a data source module.
However, all IMX access for a JDBC data source is through the
JDBCSystemResourceMBean. You cannot directly access the individual
JavaBeans created from the data source module.

See JDBCSystemResourceMBean in the MBean Reference for Oracle
WebLogic Server.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 8

ORACLE Chapter 3
JDBC Resource Configuration

Table 3-3 (Cont.) MBeans for JDBC Resources

__|
This MBean... Configures...

JDBCDat aSour ceBean The top of the JDBC data source bean tree. JDBC data sources all have
a JDBCDataSourceBean as their root bean (a bean with no parent).

See JDBCDataSourceBean in the MBean Reference for Oracle
WebLogic Server.

JDBCDr i ver Par ansBean Contains the driver parameters of a data source. Configuration
parameters for the JDBC Driver used by a data source are specified
using a driver parameters bean.

See JDBCDriverParamsBean in the MBean Reference for Oracle
WebLogic Server.

JDBCConnect i onPool Param Contains the connection pool parameters of a data source. Configuration
sBean parameters for a data source's connection pool are specified using the
connection pool parameters bean.

See JDBCConnectionPoolBean in the MBean Reference for Oracle
WebLogic Server.

JDBCDat aSour cePar anmsBea Contains the basic usage parameters of a data source. Configuration
n parameters for the basic usage of a data source are specified using a
data source parameters bean.

See JDBCDataSourceParamsBean in the MBean Reference for Oracle
WebLogic Server.

JDBCXAPar ansBean Contains the XA-related parameters of a data source.
See JDBCXAParamsBean in the MBean Reference for Oracle WebLogic
Server.

JDBCOr acl ePar ansBean Contains the Oracle database-related parameters of a data source.

See JDBCOracleParamsBean in the MBean Reference for Oracle
WebLogic Server.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 8

ORACLE"

Chapter 3

JDBC Resource Configuration

Figure 3-3 JDBC Resource MBeans

| |
|_ DomainMBean |

—{ JDBCSystemResourceMBean |

_{ JDBCDataSourceBean |

| JDBCDriverParamsBean

| JDBCConnectionPoolParamsBean

| JDBCDataSourceParamsBean

| JDBCXAParamsBean

| JDBCOracleParamsBean

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025

Page 8 of 8

Accessing WebLogic Server MBeans with IMX

This chapter describes how to access WebLogic Server MBeans from a JMX client. It explains
how to set up the classpath for remote clients; how to make local and remote connections to
MBean servers; and how to navigate MBean hierarchies.

This chapter includes the following sections:

Set Up the Classpath for Remote Clients

If your JIMX client runs in its own JVM (that is, a JVM that is not a WebLogic Server instance),
include the following JAR file in the client's classpath:

W._HOME\ server\|lib\webl ogic.jar

where, W._HOME is the directory in which you installed WebLogic Server.

Oracle provides the wi t hi nt 3cl i ent.j ar library for remote access, and this library enables
connectivity over the T3 or T3S protocol to access MBeans for a WebLogic Server instance or
domain. The T3 protocol is an optimized, high-performance protocol for interoperating with
WebLogic Server. Oracle recommends that you use the T3 protocol whenever possible.

To use the wl thint3client.jar, include the wl thint3client.jar inthe classpath of your
client. A foreign server hosted application can use the wl t hi nt 3client.jar to act as a remote
client to a WebLogic Server instance. To provide access to remote services such as JMS,
servlets, EJBs, and start-up classes, deploy any necessary application code along with the

w thint3client.jar toyour application server. See Understanding the WebLogic Thin T3
Client.

Make Remote Connections to an MBean Server

Each WebLogic Server domain includes three types of MBean servers, each of which provides
access to different MBean hierarchies. See MBean Servers.

To connect to a WebLogic MBean server:

1. Describe the address of the MBean server by constructing a
j avax. managenent . r enot e. JMXSer vi ceURL object.

Pass the following parameter values to the constructor (see JMXSer vi ceURL in the Java SE
17 API Specification at htt ps: // docs. oracl e. conl en/ j avalj avase/ 17/ docs/ api /
j ava. managenent / j avax/ managenent / r enot e/ JMXSer vi ceURL. ht m):

* One of the following values as the protocol for communicating with the MBean server:
t3, t3s, http, https, iiop, iiops

e Listen address of the WebLogic Server instance that hosts the MBean server

e Listen port of the WebLogic Server instance

e Absolute JNDI name of the MBean server. The JNDI hame must start with / j ndi / and
be followed by one of the JNDI names described in Table 4-1.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 13

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/remote/JMXServiceURL.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/remote/JMXServiceURL.html

ORACLE Chapter 4
Make Remote Connections to an MBean Server

Table 4-1 JNDI Names for WebLogic MBean Servers
__|

MBean Server JNDI Name

Domain Runtime MBean webl ogi c. management . nbeanser vers. domai nrunti me
Server

Runtime MBean Server webl ogi c. managenent . mheanservers. runti me

Edit MBean Server webl ogi c. managenent . nbeanservers. edi t

2. Construct aj avax. managenent . r enot e. JMXConnect or object. This object contains
methods that JMX clients use to connect to MBean servers.

The constructor method for JMXConnect or is:

j avax. managenent . r enot e. JMXConnect or Fact ory.
connect or (JMXSer vi ceURL serviceURL, Map<String, ?> environnent)

Pass the following parameter values to the constructor (see JMXConnect or Fact ory in the
Java SE 17 API Specification at ht t ps: // docs. oracl e. conf en/ j ava/ j avase/ 17/
docs/ api / ava. managenent / | avax/ nanagenment / r enot e/ JMXConnect or Fact ory. ht m):

e The JMXServi ceURL object you created in the previous step.
* A hash map that contains the following name-value pairs:

j avax. nam ng. Cont ext . SECURI TY_PRI NCl PAL, adni n-user - nane
j avax. nam ng. Cont ext . SECURI TY_CREDENTI ALS, adni n- user - password

j avax. managerent . r enot e. JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
“webl ogi c. managenent . renot e"

The webl ogi c. management . r enot e package defines the protocols that can be used to
connect to the WebLogic MBean servers. Remote JMX clients must include the classes in
this package on their classpath. See Set Up the Classpath for Remote Clients.

Optionally include the following name-value pair in the hash map:

jmx.renote. x. request.waiting.tinmeout, mlliseconds

where i | | i seconds is aj ava. | ang. Long object that contains the number of milliseconds
that your JMX client waits for the invocation of an MBean-server method to return. If a
method does not return by the end of the time-out period, the client moves to its next set of
instructions. By default, a client waits indefinitely for a method to return; if the MBean
server is unable to complete an invocation, the JMX client will hang indefinitely.

3. Connect to the WebLogic MBean server by invoking the
JMXConnect or . get MBeanSer ver Connect i on() method.

The method returns an object of type j avax. managenent . MBeanSer ver Connect i on.

The MBeanSer ver Connect i on object is your connection to the WebLogic MBean server.
You can use it for local and remote connections. See MBeanSer ver Connect i on in the Java
SE 17 API Specification at ht t ps: // docs. oracl e. cont en/ j avalj avase/ 17/ docs/ api /

j ava. managenent /| avax/ managenment / MBeanSer ver Connection. htm .

4. Oracle recommends that when your client finishes its work, close the connection to the
MBean server by invoking the JMXConnect or. cl ose() method.

Example: Connecting to the Domain Runtime MBean Server

Note the following about the code in Example 4-1:

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 13

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/remote/JMXConnectorFactory.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/remote/JMXConnectorFactory.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerConnection.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerConnection.html

ORACLE

Chapter 4
Make Remote Connections to an MBean Server

The class uses global variables, connect i on and connect or, to represent the connection
to the MBean server. The i ni t Connecti on() method, which assigns the value to the
connect i on and connect or variables, should be called only once per class instance to
establish a single connection that can be reused within the class.

The i ni t Connecti on() method takes the username and password (along with the server's
listen address and listen port) as arguments that are passed when the class is instantiated.
Oracle recommends this approach because it prevents your code from containing
unencrypted user credentials. The St ri ng objects that contain the arguments will be
destroyed and removed from memory by the JVM's garbage collection routine.

Because the client sets the j nx. renot e. x. request . wai ti ng. ti meout environment
parameter to 10000, all of its invocations of MBean server methods will time out if the
method does not return within 10000 milliseconds of being invoked.

When the class finishes its work, it invokes JMXConnect or. cl ose() to close the connection
to the MBean server. (See JMXConnect or in the in the Java SE 17 API Specification at
https://docs.oracle.comen/javaljavase/ 17/ docs/ api/|ava. managenent/| avax/
managenent / r enot e/ JMXConnect or. htmi .)

Example 4-1 Connecting to the Domain Runtime MBean Server

public class MyConnection {

private static MBeanServer Connection connection;

private static JMXConnector connector;

private static final ObjectNane service;

/*

* |Initialize connection to the Domain Runtime MBean Server.

*/

public static void initConnection(String hostnane, String portString,
String username, String password) throws | OException,
Mal f or medURLExcept i on {

String protocol = "t3";

Integer portlnteger = Integer.val ueX (portString);

int port = portlnteger.intValue();

String jndiroot = "/jndi/";

String mserver = "webl ogi c. managenent . nbeanservers. donai nrunti me";
JMXSer vi ceURL serviceURL = new JMXServi ceURL(protocol, hostname, port,
jndiroot + mserver);

Hasht abl e h = new Hashtabl e();
h. put (Cont ext . SECURI TY_PRI NCI PAL, usernane);
h. put (Cont ext . SECURI TY_CREDENTI ALS, password);
h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
"webl ogi c. managenent.renote");
h. put (") nx. renot e. x. request . wai ting.timeout”, new Long(10000));
connect or = JMXConnect or Fact ory. connect (servi ceURL, h);
connection = connector. get MBeanSer ver Connection();

}

public static void main(String[] args) throws Exception {
String hostname = args[0];
String portString = args[1];
String username = args[2];
String password = args[3];

MyConnection c= new MyConnection();
i ni t Connection(hostnane, portString, usernane, password);

connector.close();

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 13

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/remote/JMXConnector.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/remote/JMXConnector.html

ORACLE

}

Chapter 4
Make Remote Connections to an MBean Server

Best Practices: Choosing an MBean Server

A WebLogic Server domain maintains three types of MBean servers, each of which fulfills a
specific function. Access MBeans through the MBean server that supports the task you are
trying to complete:

To modify the configuration of the domain, use the Edit MBean Server.

To monitor changes to the pending hierarchy of configuration MBeans, use the Edit MBean
Server.

To monitor only active configuration MBeans (and not run-time MBeans), use a Runtime
MBean Server.

Monitoring through a Runtime MBean Server requires less memory and network traffic
than monitoring through the Domain Runtime MBean Server. (WebLogic Server does not
initialize the Domain Runtime MBean Server until a client requests a connection to it.)

In most cases, all server instances in the domain have the same set of configuration data
and it therefore does not matter whether you monitor the Runtime MBean Server on the
Administration Server or on a Managed Server. However, if you make a change that a
server cannot consume until it is restarted, the server will no longer accept any changes
and its configuration data could become outdated. In this case, monitoring this server's
Runtime MBean Server indicates only the configuration for the specific server instance. To
understand the process of changing a WebLogic Server domain and activating the
changes, see Managing Configuration Changes in Understanding Domain Configuration
for Oracle WebLogic Server.

If your client monitors run-time MBeans for multiple servers, or if your client runs in a
separate JVM, Oracle recommends that you connect to the Domain Runtime MBean
Server on the Administration Server instead of connecting separately to each Runtime
MBean Server on each server instance in the domain.

If you register a JMX listener and filter with an MBean in the Domain Runtime MBean
Server, the JMX filter runs in the same JVM as the MBean it monitors. For example, if you
register a filter with an MBean on a Managed Server, the filter runs on the Managed Server
and forwards only messages that satisfy the filter criteria to the listener.

In general, code that uses the Domain Runtime MBean Server is easier to maintain and is
more secure for the following reasons:

— Your code only needs to construct a single URL for connecting to the Domain Runtime
MBean Server on the Administration Server. Thereafter, the code can look up values
for all server instances and optionally filter the results.

— If your code uses the Runtime MBean Server to read MBean values on multiple server
instances, it must construct a URL for each server instance, each of which has a
unigue listen address/listen port combination.

— You can route all administrative traffic in a WebLogic Server domain through the
Administration Server's secured administration port, and you can use a firewall to
prevent connections to Managed Server administration ports from outside the firewall.

The trade off for directing all IMX requests through the Domain Runtime MBean Server is
a slight degradation in performance due to network latency and increased memory usage.
Connecting directly to each Managed Servers's Runtime MBean Server to read MBean
values eliminates the network hop that the Domain Runtime MBean Server makes to
retrieve a value from a Managed Server. However, for most network topologies and

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 13

ORACLE Chapter 4
Make Remote Connections to an MBean Server

performance requirements, the simplified code maintenance and enhanced security that
the Domain Runtime MBean Server enables is preferable.

® Note

When JMX notifications are added to MBeans, the Domain Runtime MBean
Server can consume large amounts of memory. When JMX notifications are used,
two cases exist that cause the Administration Server to keep copies of all IMX
object names registered in all Runtime MBean Servers running in all Managed
Servers in the domain:

— At the WebLogic Server level, to simulate the unregister MBean notifications
when a Managed Server shuts down.

— At the JDK JMX client notification layer.

The likelihood of encountering this issue grows when both of the following
conditions exist:

— EM Fusion Middleware Control is being used to manage large domains, as it
adds notification listeners to the Domain Runtime MBean Server.

— Fusion Middleware products that significantly increase the number of IMX
runtime MBeans are included in the domain. This would include any product
with MBeans that are registered in WebLogic Server Runtime MBean Server
instances running in the domain; that is, in the Administration Server as well
as all Managed Servers. (These products include Coherence, SOA Suite,
OSB, and so on.)

To eliminate this particular scaling issue, disable the nanaged- ser ver -
notifications-enabl ed attribute. This configuration attribute disables the ability
to define notifications on MBeans that are contained in the Managed Servers
Runtime MBean Servers (these MBeans contain a Locat i on=key in the
ObjectName).

If Managed Server notifications are disabled, then the two sets of ObjectNames for
MBeans contained in the WebLogic Server and JDK components will not be kept.
Notifications listeners can still be defined on the MBeanServerDelegate and on
MBeans contained in the local Domain Runtime MBean Server. However,
notifications listeners cannot be added to the non-local MBeans.

The managed- server-notificati ons- enabl ed attribute can be set using WLST as
follows:

edit()

startEdit()

cd("IMX/ domai n- nane")

cno. set ManagedSer ver Not i fi cati onsEnabl ed(f al se)
activate()

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 13

ORACLE’

Chapter 4
Make Local Connections to the Runtime MBean Server

Figure 4-1 Domain Runtime MBean Server versus Runtime MBean Server

Not Not
Recommended Recommended
i i
I I
' 777777777 v 777777777777777777 V 777777777
MBeanServerConnection | MBeanServerConnection | | MBeanServerConnection |
,,,,,,,,, R (R
I
|
|
I
|
I
| Managed Server
I

Administration Server

Domain Runtime

MBean Server

i

|

I

|

|

|

|

|

|

i |
y b= Runtime :
|

I

|

I

|

|

|

I

|

Runtime
MBean Server

MBean Server

Managed Server

A
|

Make Local Connections to the Runtime MBean Server

Local clients can access a WebLogic Server instance's Runtime MBean Server through the
JNDI tree instead of constructing a JMXSer vi ceURL object.

@® Note

Local clients can also access a WebLogic Server's Domain Runtime MBean Server
through the JNDI tree, as described in Make Local Connections to the Domain

Runtime MBean Server.

When accessed from JNDI, the Runtime MBean Server returns its

j avax. management . MBeanSer ver interface. This interface contains all the methods in the
MBeanSer ver Connect i on interface plus additional methods such as r egi st er MBean() , which a
local process can use to register custom MBeans. (See MBeanSer ver in the Java SE 17 API
Specification at htt ps: // docs. oracl e. com en/j aval avase/ 17/ docs/ api / | ava. nanagenent /

j avax/ managenent / MBeanSer ver Connecti on. ht i .)

If the classes for the JMX client are located in a Jakarta EE module, such as an EJB or Web
application, then the JNDI name for the Runtime MBeanServer is:

webl ogi ¢/ j mx/ runtime

For example:

Initial Context ctx = new Initial Context();
server = (MBeanServer)ctx. | ookup("webl ogi c/jm/runtime");

If the classes for the JMX client are not part of a Jakarta EE module, then the JNDI name for

the Runtime MBean Server is:

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 13

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerConnection.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerConnection.html

ORACLE Chapter 4
Make Local Connections to the Domain Runtime MBean Server

java: conp/j mx/runtine

® Note

The Jakarta EE specification does not allow application severs to create JNDI bindings
automatically in j ava: conp/ env nanespace. Thus, starting WebLogic Server 12.2.1,
the following new bindings replaces the existing j ava: conp/ env/ j nx bindings:

e webl ogic/jm/runtime replaces java: conp/ env/jnx/runtine
* webl ogi ¢/j m/ domai nRunt i e replaces j ava: conp/ env/ j nx/ domai nRunt i ne

e weblogic/jm/edit replaces java: conp/ env/j nx/ edi t

The j ava: conp/ env/ j mx/ runti e, j ava: conp/ env/ j nx/ domai nRunt i me, and

j ava: conp/ env/ j nx/ edi t binds still exists. However, if you try to list them using JNDI
interfaces, you cannot see them. Applications that access these deprecated bindings
can find the bindings by performing a lookup of the object bound there.

Make Local Connections to the Domain Runtime MBean Server

Local clients can also access a WebLogic Server instance's Domain Runtime MBean Server
through the JNDI tree instead of constructing a JMXSer vi ceURL object.

When accessed from JNDI, the Domain Runtime MBean Server returns its

j avax. managenent . MBeanSer ver interface. This interface contains all the methods in the
MBeanSer ver Connect i on interface plus additional methods such as r egi st er MBean() , which a
local process can use to register custom MBeans, and other methods such as

get MBeanCount (), instatiate(), and get O assLoader (). (See MBeanSer ver in the Java SE 17
API Specification at htt ps: // docs. oracl e. coml en/ j aval j avase/ 17/ docs/ api /

j ava. managenent / j avax/ managenent / MBeanServer. ht i .)

® Note

As a best practice, Oracle recommends that you use the Domain Runtime MBean
Server only for MBeans that perform domain-wide operations. You should ensure that
any MBean processing and network activity do not slow down the Administration
Server and prevent it from processing administration operations.

If the classes for the JMX client are located in a Jakarta EE module, such as an EJB or Web
application, then the JNDI name for the Domain Runtime MBeanServer is:

webl ogi ¢/ j mx/ domai nRunt i me

For example:

Initial Context ctx = new Initial Context();
server = (MBeanServer)ctx. | ookup("webl ogi c/j mx/ domai nRunti ne");

If the classes for the JMX client are not part of a Jakarta EE module, then the JINDI name for
the Domain Runtime MBean Server is:

j ava: conp/ j nx/ domai nRunt i me

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 13

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServer.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServer.html

ORACLE’

Chapter 4
Navigate MBean Hierarchies

The Domain Runtime MBean Server is present only on the Administration Server. Because the
ctx. 1 ookup() call returns a reference to the local MBeanServer, the lookup method can only
be called when running on the Administration Server. If called when running on a Managed
Server, a NaneNot Found exception is thrown.

Navigate MBean Hierarchies

WebLogic Server organizes its MBeans in a hierarchical data model. (See WebLogic Server
MBean Data Model.) In this model, all parent MBeans include attributes that contain the object
names of their children. You use the child's object name in standard JMX APIs to get or set
values of the child MBean's attributes or invoke its methods.

To navigate the WebLogic Server MBean hierarchy:

1. Initiate a connection to an MBean server.

See the previous section, Make Remote Connections to an MBean Server.

Initiating the connection returns an object of type
j avax. managerment . MBeanSer ver Connecti on

2. Obtain the object name for an MBean at the root of an MBean hierarchy by invoking the
MBeanSer ver Connecti on.get At tri but e(Cbj ect Nane obj ect - nanme, String attribute)
method where:

e obj ect - nanme represents the object name of the service MBean that is registered in the
MBean server. (See Service MBeans.)

Table 2-3 describes the type of service MBeans that are available in each type of
MBean server.

e attribute represents the name of a service MBean attribute that contains the root
MBean.

3. Successively invoke code similar to the following:

bj ect Nane on =
MBeanSer ver Connection. get Attribute(object-nane, attribute)

In the preceding syntax:

e obj ect - nanme represents the object name of the current node (MBean) in the MBean
hierarchy.

e attribute represents the name of an attribute in the current MBean that contains one
or more instances of a child MBean. If the attribute contains multiple children, assign
the output to an object name array, Cbj ect Nang[] .

To determine an MBean's location in an MBean hierarchy, refer to the MBean's description in
MBean Reference for Oracle WebLogic Server. For each MBean, the MBean Reference for
Oracle WebLogic Server lists the parent MBean that contains the current MBean's factory
methods. For an MBean whose factory methods are not public, the MBean Reference for
Oracle WebLogic Server lists other MBeans from which you can access the current MBean.

Example: Printing the Name and State of Servers

The code example in Example 4-2 connects to the Domain Runtime MBean Server and uses
the Domai nRunt i meSer vi ceMBean to get the object name for each Ser ver Runt i neMBean in the
domain. Then it retrieves and prints the value of each server's Ser ver Runt i meMBean Nane and
St at e attributes.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 13

ORACLE

Chapter 4
Example: Printing the Name and State of Servers

Note the following about the code in Example 4-2:

In addition to the connecti on and connect or global variables, the class assigns the object
name for the WebLogic Server service MBean to a global variable. Methods within the
class will use this object name frequently, and once it is defined it does not need to
change.

The print Server Runti mes() method gets the value of the Domai nRunt i neSer vi ceMBean
Server Runt i nes attribute, which contains an array of all Ser ver Runt i meMBean instances in
the domain. (See DomainRuntimeServiceMBean in MBean Reference for Oracle
WebLogic Server.)

Example 4-2 Example: Print the Name and State of Servers

import java.io.lOException;

i mport java.net. Ml f or medURLExcept i on;

import java.util.Hashtable;

i mport j avax. managenent. MBeanSer ver Connect i on;

i mport j avax. managenent. Mal f or medCbj ect NaneExcept i on;
i mport j avax. managenent. Qbj ect Nane;

i mport j avax. managenent. renot e. JMXConnect or;

i mport j avax. managenent.renot e. JMXConnect or Fact ory;

i mport j avax. managenent.renote. JMXServi ceURL;

i mport j avax. nam ng. Cont ext ;

public class PrintServerState {

private static MBeanServer Connection connection;
private static JMXConnector connector;
private static final ObjectNane service;

/1 Initializing the object name for Domai nRuntimeServi ceMBean
/1 so it can be used throughout the class.
static {

try {
service = new Cbj ect Nang(

"com bea: Name=Domai nRunt i meSer vi ce, Type=webl ogi c. managenent . nbeanser vers. domai nrunti me. Do
mai nRunt i meSer vi ceMBean") ;

}catch (Mal for medObj ect NameException e) {
t hrow new AssertionError(e.get Message());

}
}

/*
* |nitialize connection to the Domain Runtinme MBean Server
*/
public static void initConnection(String hostnane, String portString,
String username, String password) throws | OException,
Mal f or medURLExcept i on {
String protocol = "t3";
Integer portlnteger = Integer.val ued (portString);
int port = portlnteger.intValue();
String jndiroot = "/jndi/";
String mserver = "webl ogi c. managenent . nbeanservers. donai nrunti me";
JMXSer vi ceURL serviceURL = new JMXServi ceURL(protocol, hostnamne,
port, jndiroot + nserver);
Hasht abl e h = new Hashtabl e();
h. put (Cont ext . SECURI TY_PRI NCI PAL, usernane);
h. put (Cont ext . SECURI TY_CREDENTI ALS, password);
h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
"webl ogi c. managenent . renmote");
connect or = JMXConnect or Fact ory. connect (servi ceURL, h);

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 13

ORACLE’

Chapter 4

Example: Monitoring Servlets

connection = connector. get MBeanSer ver Connection();

}

/*

* Print an array of ServerRuntinmeMBeans.

* This MBean is the root of the runtime MBean hierarchy, and

* each server in the domain hosts its own instance.

*/

public static ObjectName[] getServerRuntines() throws Exception {
return (CbjectNane[]) connection. getAttribute(service,

"ServerRuntines");

}

/*
* |terate through ServerRunti meMBeans and get the nane and state
*/
public void printNanmeAndState() throws Exception {
bj ect Nane[] serverRT = get ServerRuntimes();
Systemout. println("got server runtines");
int length = (int) serverRT.|ength;

for (int i =0; i <length; i++) {
String name = (String) connection.getAttribute(serverRT[i],
"Nare")
String state = (String) connection.getAttribute(serverRT[i],
"State");
Systemout. println("Server name: " + name + ". Server state: "
+ state);
}

}

public static void main(String[] args) throws Exception {
String hostname = args[0];
String portString = args[1];
String username = args[2];
String password = args[3];

PrintServerState s = new PrintServerState();

i ni t Connection(hostnane, portString, usernane, password);
s. print NameAndState();

connector.close();

Example: Monitoring Servlets

Each servlet in a Web application provides instance of Servl et Runt i neMBean which contains
information about the servlet's run-time state. (See ServletRuntimeMBean in MBean Reference
for Oracle WebLogic Server.)

In the WebLogic Server data model, the path to a Ser vl et Runt i mreMBean is as follows:

1.

The Domain Runtime MBean Server (for all servlets on all servers in the domain), or the

Runtime MBean Server on a specific server instance.

Domai nRunt i meSer vi ceMBean or Runt i neSer vi ceMBean, Ser ver Runt i nes attribute.

Server Runt i neMBean, Appl i cati onRunti mes attribute.

Appl i cationRunti meMBean, Conponent Runt i nes attribute.

The Conponent Runt i nes attribute contains many types of component run-time MBeans,
one of which is WebAppConponent Runt i neMBean. When you get the value of this attribute,

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 10 of 13

ORACLE Chapter 4
Example: Monitoring Servlets

you use the child MBean's Type attribute to get a specific type of component run-time
MBean.

5. VebAppConponent Runti meMBean, Ser vl et Runt i nes attribute.
Example 4-3 Monitoring Servlets

inport java.io.lCException;
inport java.net. Ml formedURLException;
inport java.util.Hashtable;

i nport javax.managenment. MBeanSer ver Connecti on;

i nport javax.managenment. Mal f or medCbj ect NaneExcepti on;
i nport javax.managenment . Obj ect Name;

i nport javax.managenent.renote. JMXConnect or;

inport javax.managenent.renote. JMXConnect or Fact ory;

i nport javax.managenent.renote. JMXServi ceURL;

inport javax.nam ng. Cont ext;

public class MnitorServliets {
private static MBeanServer Connection connection;
private static JMXConnector connector;
private static final ObjectNane service;

/1 Initializing the object nane for Domai nRunti meServi ceMBean
/1 so it can be used throughout the class.
static {

try {
service = new (bj ect Name(

"com bea: Name=Domai nRunt i neSer vi ce, Type=webl ogi c. managenent . nbeanser vers. domai nrunti me. Do
mai nRunt i meSer vi ceMBean") ;
}catch (Mal formedQbj ect NameException e) {
throw new AssertionError(e.get Message());

}
}

/*
* |nitialize connection to the Domain Runtinme MBean Server
*/
public static void initConnection(String hostnane, String portString,
String username, String password) throws | OException,
Mal f or medURLExcept i on {
String protocol = "t3";
Integer portlnteger = Integer.val ued (portString);
int port = portlnteger.intValue();
String jndiroot = "/jndi/";
String mserver = "webl ogi c. managenent . nbeanservers. donai nrunti me";

JMXSer vi ceURL serviceURL = new JMXServi ceURL(protocol, hostnane,
port, jndiroot + nserver);

Hasht abl e h = new Hashtabl e();

h. put (Cont ext . SECURI TY_PRI NCI PAL, usernane);

h. put (Cont ext . SECURI TY_CREDENTI ALS, password);

h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
"webl ogi c. managenent . renote");

connect or = JMXConnect or Fact ory. connect (servi ceURL, h);

connection = connector. get MBeanSer ver Connection();

}

/*
* Get an array of ServerRuntimeMeans
*/

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 13

ORACLE Chapter 4
Example: Monitoring Servlets

public static bjectName[] getServerRuntines() throws Exception {
return (CbjectNane[]) connection. getAttribute(service,
"ServerRuntines");

}

/*
* Get an array of WebAppConponent Runti neMBeans
*/
public void getServletData() throws Exception {
bj ect Nane[] serverRT = get ServerRuntimes();
int length = (int) serverRT.|ength;
for (int i =0; i <length; i++) {
bj ect Nane[] appRT =
(Obj ect Name[]) connection.getAttribute(serverRT[i],
"ApplicationRuntinmes");
int appLength = (int) appRT.|ength;
for (int x = 0; x < appLength; x++) {
Systemout. println("Application nane: " +
(String)connection. getAttribute(appRT[x], "Nane"));
bj ect Nane[] conpRT =
(Obj ect Nane[]) connection. getAttribute(appRT[X],
" Conponent Runt i mes");
int compLength = (int) conpRT.|ength;
for (int y =0; y < conpLength; y++) {
Systemout. println(" Conponent nane: " +
(String)connection. getAttribute(compRT[y], "Name"));
String conponent Type =
(String) connection.getAttribute(conpRT[y], "Type");
System out. println(conmponent Type.toString());
i f (component Type.toString().equal s("WbAppConponent Runtine")){
bj ect Nane[] servletRTs = (Object Nanme[])
connection. getAttribute(conpRT[y], "Servlets");
int servletLength = (int) servletRTs.|ength;
for (int z =0; z < servletLength; z++) {

Systemout. println(" Servlet nanme: " +
(String)connection. getAttribute(servletRTs|z],
"Nane"))
Systemout. println(" Servlet context path: " +

(String)connection. getAttribute(servletRTs|z],
"ContextPath"));
Systemout. println(" Invocation Total Count : " +
(Chj ect)connection. getAttribute(servletRTs|z],
"I'nvocationTotal Count"));

}

public static void main(String[] args) throws Exception {
String hostname = args[0];
String portString = args[1];
String username = args[2];
String password = args[3];

Moni tor Servlets s = new MonitorServlets();

i ni t Connection(hostnane, portString, usernane, password);
s.getServletData();

connector.close();

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 13

ORACLE Chapter 4
Example: Monitoring Servlets

The code in Example 4-3 navigates the hierarchy described in the previous paragraphs and
gets values of Ser vl et Runt i mreMBean attributes.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 13

Managing a Domain's Configuration with JMX

This chapter describes how to use JMX to manage a WebLogic Server domain's configuration.
It explains how to edit MBean attributes; how to list and undo changes; how to track the
activation of changes; and how to set and get encrypted MBean attribute values. It also
includes best practices for editing and handling exceptions.

This chapter includes the following sections:

To understand the process of changing a WebLogic Server domain and activating the changes,
see Managing Configuration Changes in Understanding Domain Configuration for Oracle
WebLogic Server.

Editing MBean Attributes: Main Steps

To edit MBean attributes:

1.

Start an Edit Session.

All edits to MBean attributes occur within the context of an edit session, and within each
WebLogic Server domain only one edit session can be active at a time. Once a user has
started an edit session, WebLogic Server locks other users from accessing the pending

configuration MBean hierarchy. See Managing Locks.

Change Attributes or Create New MBeans.

Changing an MBean attribute or creating a new MBean updates the in-memory hierarchy
of pending configuration MBeans. If you end your edit session before saving these
changes, the unsaved changes will be discarded.

Save Changes to the Pending Configuration Files.

When you are satisfied with your changes to the in-memory hierarchy, save them to the
domain's pending configuration files. Any changes that you save remain in the pending
configuration files until they have been activated or explicitly reverted. If you end your edit
session before activating the saved changes, you or someone else can activate them in a
subsequent edit session.

You can iteratively make changes and save changes before activating them. For example,
you can create and save a server. Then you can configure the new server's listen port and
listen address and save those changes. Organizing your code in this way can facilitate
correcting any validation errors.

Activate Your Saved Changes.

When you activate your changes, WebLogic Server copies the saved, pending
configuration files to all servers in the domain. Each server evaluates the changes and
indicates whether it can consume them. If it can, then it updates its active configuration
files and in-memory hierarchy of configuration MBeans.

Restart any server instances that have been updated with changes that require a server
restart.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 14

ORACLE

Chapter 5
Editing MBean Attributes: Main Steps

Start an Edit Session

To start an edit session:

1.

Initiate a connection to the Edit MBean Server.
The connection returns an object of type j ava. managenent . MBeanSer ver Connect i on.

See Make Remote Connections to an MBean Server.

Get the object name for Confi gur at i onManager MBean.

Confi gur at i onManager MBean provides methods to start and stop edit sessions, and save,
undo, and activate configuration changes. (See ConfigurationManagerMBean in MBean
Reference for Oracle WebLogic Server.)

Each domain has only one instance of Confi gurati onManager MBean and it is contained in
the Edi t Servi ceMBean Conf i gur at i onManager attribute. Edi t Ser vi ceMBean is your entry
point for all edit operations. It has a simple, fixed object name and contains attributes and
operations for accessing all other MBeans in the Edit MBean Server.

To get the Confi gur at i onManager MBean object name, use the following method:

MBeanSer ver Connection. get Attri but e(
Qbj ect Name obj ect-nane, String attribute)

In the preceding method syntax:

e obj ect - name represents the literal
"com bea: Nanme=Edi t Servi ce, Type=webl ogi c. managenent . nbeanservers.edit.EditS
ervi ceMBean", which is the object name of Edi t Ser vi ceMBean.

e attribute represents the literal Confi gur ati onManager , which is the name of the
attribute in Edi t Ser vi ceMBean that contains Confi gur at i onManager MBean.

Start an edit session.

To start an edit session, invoke the Confi gur ati onManager MBean st art Edi t (i nt
wait Time, int tineout) operation, where:

e wai t Ti ne represents the number of milliseconds Conf i gur ati onManager MBean waits to
establish a lock on the edit MBean hierarchy. You cannot establish a lock if other edits
are in progress unless you have administrator privileges (see Managing Locks).

e timeout represents the number of milliseconds you have to complete your edit
session. If the time expires before you save or activate your edits, all of your unsaved
changes are discarded.

The st art Edi t operation returns either of the following:

« If it cannot establish a lock on the edit tree within the amount of time that you specified,
it throws webl ogi c. managenent . mheanser vers. edi t. Edi t Ti medQut Excepti on.

« If it successfully locks the edit tree, it returns an object name for Donai nMBean, which is
the root of the edit MBean hierarchy.

Change Attributes or Create New MBeans

To change the attribute values of existing MBeans, create new MBeans, or delete MBeans:

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 14

ORACLE

Chapter 5
Editing MBean Attributes: Main Steps

Navigate the hierarchy of the edit tree and retrieve an object name for the MBean that you
want to edit. To create or delete MBeans, retrieve an object name for the MBean that
contains the appropriate factory methods.

See Make Remote Connections to an MBean Server.

To change the value of an MBean attribute, invoke the
MBeanSer ver Connection.set Attri but e(obj ect-name, attribute) method, where:

e obj ect - nanme represents the object name of the MBean that you want to edit.

e attribute represents ajavax. managenent. Attri but e object, which contains the
name of the MBean attribute that you want to change and its new value.

To create an MBean, invoke the MBean's create method. For example, the factory method
to create an instance of Ser ver MBean is cr eat eServer (String nanme) in Domai nMBean. In
MBean Reference for Oracle WebLogic Server, each MBean describes the location of its
factory methods (see ServerMBean).

(Optional) If you organize your edits into multiple steps, consider validating your changes
after each step by invoking the Confi gur ati onManager MBean val i dat e() operation.

The validate method verifies that all unsaved changes satisfy dependencies between
MBean attributes and makes other checks that cannot be made at the time that you set the
value of a single attribute.

If it finds validation errors, the val i dat e() operation throws an exception of type
webl ogi c. managenent . nbeanservers. edit. Val i dati onExcepti on. See Exception Types
Thrown by Edit Operations.

Validating is optional because the save() operation also validates changes before saving.

Save Changes to the Pending Configuration Files

Save your changes by invoking the Confi gur ati onManager MBean save() operation.

Activate Your Saved Changes

To activate your saved changes throughout the domain:

1.

2.

Invoke the Confi gurati onManager MBean acti vate(l ong ti meout) operation where
ti meout specifies how many milliseconds the operation has to complete.

The act i vat e operation returns an object name for an instance of Acti vati onTaskMBean,
which contains information about the activation request. See Listing and Undoing
Changes.

When the act i vat e operation succeeds or times out, it releases your lock on the editable
MBean hierarchy.

Close your connection to the MBean server by invoking JMXConnect or . cl ose() .

Exception Types Thrown by Edit Operations

Table 5-1 describes all of the exception types that WebLogic Server can throw during edit
operations. When WebLogic Server throws such an exception, the MBean server wraps the
exception in j avax. management . MBeanExcept i on. (See MBeanExcepti on in the Java SE 17 API
Specification at ht t ps: / / docs. oracl e. com en/ j aval j avase/ 17/ docs/ api / | ava. managenent /
j avax/ managenent / MBeanException. htm .)

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 3 of 14

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanException.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanException.html

ORACLE Chapter 5
Listing and Undoing Changes

Table 5-1 Exception Types Thrown by Edit Operations

Exception Type Thrown When
Edi t Ti medQut Excepti on The request to start an edit session times out.
Not Edi t or Excepti on You attempt to edit MBeans without having a lock or when an

administrative user cancels your lock and starts an edit session.

Val i dati onException You set an MBean attribute's value to the wrong data type, outside an
allowed range, not one of a specified set of values, or incompatible
with dependencies in other attributes.

Listing and Undoing Changes

The following sections describe working with changes that you have made during an edit
session:

WebLogic Server describes changes in a Change object, which is of type

j avax. managenent . opennbean. Conposi t eType. See Conposi t eType in the Java SE 17 API
Specification at ht t ps: / / docs. oracl e. com en/ j aval j avase/ 17/ docs/ api / | ava. managenent /
j avax/ managenent / opennbean/ Conposi t eType. htm .

Through JMX, you can access information about the changes to a domain's configuration that
have occurred during the current server session only. WebLogic Server maintains an archive of
configuration files, but the archived data and comparisons of archive versions is not available
through JMX.

List Unsaved Changes

For each change that you make to an MBean attribute, WebLogic Server creates a Change
object which contains information about the change. You can access these objects from the
Confi gur ati onManager MBean Changes attribute until you save the changes. See
ConfigurationManagerMBean in MBean Reference for Oracle WebLogic Server.

Any unsaved changes are discarded when your edit session ends.
To list unsaved changes:

1. Start an edit session and change at least one MBean attribute.

2. Get the value of the Confi gur ati onManager MBean Changes attribute and assign the output
to a variable of type vj ect[] .

3. For each object in the array, invoke Qbj ect.toString() to output a description of the
change.

Because Change is a j avax. managenent . opennbean. Conposi t eType, you can also cast
each item in the array as a Conposi t eType and invoke Conposi t eType methods on the
change. See Conposi t eType in the Java SE 17 API Specification at htt ps: //

docs. oracl e. confen/javaljavase/ 17/ docs/ api/j ava. managenent/j avax/ nanagenent /
opennbean/ Conposi t eType. htm .

Example 5-1 Example Method that Lists Unsaved Changes

public void IistUnsaved() throws Exception {
bj ect Nane cfgMgr = (Chj ect Nane) connection. get Attribute(service,
"ConfigurationManager");
bject[] list = (Chject[])connection. getAttribute(cfgMr, "Changes");

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 14

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html

ORACLE

Chapter 5
Listing and Undoing Changes

int length = (int) list.length;
for (int i =0; i <length; i++) {

Systemout. println("Unsaved change: " + list[i].toString());
}

}

The code in Example 5-1 creates a method that lists unsaved changes. It assumes that the
calling method has already established a connection to the Edit MBean Server.

List Unactivated Changes

When anyone saves changes, WebLogic Server persists the changes in the pending
configuration files. The changes remain in these files, even across multiple editing sessions,
unless a user who has started an edit session invokes the Confi gur at i onManager MBean
undoUnact i vat edChanges() operation, which reverts all unactivated changes from the pending
files.

The Confi gurati onManager MBean Unact i vat edChanges attribute contains Change objects for
both unsaved changes and changes that have been saved but not activated. (There is no
attribute that contains only saved but unactivated changes.) See ConfigurationManagerMBean
Unactivated Changes in MBean Reference for Oracle WebLogic Server.

To list changes that you have saved in the current editing session but not activated, or changes
that your or others have saved in previous editing sessions but not activated:

1. Start an edit session and change at least one MBean attribute.

2. Getthe value of the Confi gur ati onManager MBean Unact i vat edChanges attribute and
assign the output to a variable of type hj ect[] .

3. For each object in the array, invoke Obj ect.toString() to output a description of the
change.

Because Change is a j avax. nanagenent . opennbean. Conposi t eType, you can also cast
each item in the array as a Conposi t eType and invoke Conposi t eType methods on the
change. See Conposi t eType in the Java SE 17 API Specification at ht t ps: //

docs. oracl e. con en/javaljavase/ 17/ docs/ api / j ava. managenent / | avax/ managenent /
opennbean/ Conposi t eType. htmi .

Example 5-2 Example Method that Lists Unactivated Changes

public void listUnactivated() throws Exception {
bj ect Nane cfgMgr = (Cbj ect Nane) connection. getAttribute(service,
"ConfigurationManager");
bject[] list = (Cbject[])connection.getAttribute(cfgMr,
"Unact i vat edChanges");
int length = (int) list.length;
for (int i =0; i <length; i++) {
Systemout. println("Unactivated changes: " + list[i].toString());
}
}

The code in Example 5-2 creates a method that lists unactivated changes. It assumes that the
calling method has already established a connection to the Edit MBean Server.

List Changes in the Current Activation Task

When you activate changes, WebLogic Server creates an instance of Acti vati onTaskMBean,
which contains one Change object for each change that is being activated. You can access
these Act i vat i onTaskMBeans from either of the following:

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 14

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html

ORACLE

Chapter 5
Listing and Undoing Changes

e The Confi gurationManager MBean acti vat e() method returns an object name for the
Acti vati onTaskMBean that describes the current activation task.

e The Confi gurationManager MBean Conpl et edAct i vati onTasks attribute can potentially
contain a list of all Acti vati onTaskMBean instances that have been created during the
current Administration Server instantiation. See Listing All Activation Tasks Stored in
Memory.

To list changes in the current activation task only:

1. Start an edit session.

2. Assign the output of the act i vat e operation to an instance variable of type
j avax. managenent . Cbj ect Nane.

3. Getthe value of the Acti vati onTaskMBean Changes attribute. and assign the output to a
variable of type Chj ect[].

4. For each object in the array, invoke Obj ect.toString() to output a description of the
change.

Because Change is a j avax. managenent . opennmbean. Conposi t eType, you can also cast
each item in the array as a Conposi t eType and invoke Conposi t eType methods on the
change. See Conposi t eType in the Java SE 17 API Specification at ht t ps: //

docs. oracle. com en/ j aval j avase/ 17/ docs/ api / | ava. nanagenent / j avax/ managenent /
opennbean/ Conposi t eType. htmi .

Example 5-3 Example Method that Lists Changes in the Current Activation Task

public void activateAndList()
throws Exception {
bj ect Nane cfgMgr = (Cbj ect Nane) connection. get Attribute(service,
"Confi gurationManager");
bj ect Nane task = (Chject Nane) connection.invoke(cfgMWr, "activate",
new Object[] { new Long(120000) }, new String[] { "java.lang.Long" });
bj ect[] changes = (oject[])connection.getAttribute(task, "Changes");
int i = (int) changes.|ength;
for (int i =0; i<i; i++) {
Systemout. println("Changes activated: " + changes[i].toString());
}
}

The code in Example 5-3 creates a method that lists all changes activated in the current editing
session. It assumes that the calling method has already established a connection to the Edit
MBean Server.

Undoing Changes

Confi gur ati onManager MBean provides two operations for undoing changes made during an
editing session:

e undo
Reverts unsaved changes.
e undoUnacti vat edChanges

Reverts all changes, saved or unsaved, that have not yet been activated. If other users
have saved changes in a previous editing session but not activated those changes,
invoking the Confi gur at i onManager MBean undoUnact i vat edChanges() operation reverts
those changes as well.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 14

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/openmbean/CompositeType.html

ORACLE

Chapter 5
Tracking the Activation of Changes

After you invoke this method, the pending configuration files are identical to the working
configuration files that the active servers use.

To undo changes, start an edit session and invoke the Conf i gur at i onManager MBean undo or
undoUnact i vat edChanges operation.

For example:

connection.invoke(cfgMr, "undo", null, null);

Tracking the Activation of Changes

In addition to maintaining a list of changes, each Acti vat i onTaskMBean that WebLogic Server
creates when you invoke the act i vat e operation describes which user activated the changes,
the status of the activation task, and the time at which the changes were activated.

The Administration Server maintains instances of Acti vat i onTaskMBean in memory only; they
are not persisted and are destroyed when you shut down the Administration Server. Because
the Acti vati onTaskMBean instances contain a list of Change objects (each of which describes a
single change to an MBean attribute), they use a significant amount of memory. To save
memory, by default the Administration Server maintains only a few of the most recent

Acti vati onTaskMBean instances in memory. To change the default, increase the value of the
Confi gur ati onManager MBean Conpl et edAct i vati onTasksCount attribute.

The following sections describe working with instances of Acti vati onTaskMBean:

Listing the Status of the Current Activation Task

When you invoke the act i vat e operation, WebLogic Server returns an Acti vati onTaskMBean
instance to represent the activation task.

The Acti vat i onTaskMBean St at e attribute describes the status of the activation task. This
attribute stores an i nt value and Act i vat i onTaskMBean defines constants for each of the i nt
values. See ActivationTaskMBean in MBean Reference for Oracle WebLogic Server.

To list the status of the current activation task:

1. Start an edit session and change at least one MBean attribute.

2. Invoke the Confi gurati onManager MBean acti vate(l ong tineout) operation and assign
the output to a variable of type Acti vati onTaskMBean.

3. Get the value of the Acti vati onTaskMBean St at e attribute.

Listing All Activation Tasks Stored in Memory

The Acti vati onTaskMBean that the act i vat e operation returns describes only a single
activation task. The Administration Server keeps this Acti vati onTaskMBean in memory until
you purge it (see Purging Completed Activation Tasks from Memory) or the number of
activation tasks exceeds the value of the Confi gur at i onManager MBean

Conpl et edAct i vati onTasksCount attribute.

To access all Acti vati onTaskMBean instances that are currently stored in memory (see
Example 5-4):

1. Connect to the Edit MBean Server. (You do not need to start an edit session.)

2. Get the value of the Confi gur at i onManager MBean Conpl et edAct i vati onTasks attribute
and assign the output to a variable of type Qbj ect[].

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 14

ORACLE Chapter 5
Managing Locks

3. (Optional) For each object in the array, get and print the value of Acti vati onTaskMBean
attributes such as User and St at e.

See ActivationTaskMBean in MBean Reference for Oracle WebLogic Server.

4. (Optional) For each object in the array, get the value of the Changes attribute. Invoke
(bj ect.toString() to output the value of the Change object.

Example 5-4 Example Method that Lists All Activation Tasks in Memory

public void listActivated() throws Exception {
bj ect Nane cfgWgr = (CObj ect Nane) connection. get Attribute(service,
"Confi gurationManager");
bj ect Nane[] list = (CbjectNanme[])connection.getAttribute(cfgMr,
"Conpl et edActi vationTasks");
Systemout.println("Listing conpleted activation tasks.");
int length = (int) list.length;
for (int i =0; i <length; i++) {
Systemout.println("Activation task " + i);
Systemout. println("User who started activation: " +
connection.getAttribute(list[i], "User"));
Systemout. println("Task state: " + connection.getAttribute(list[i],
"State"));
Systemout.printIn("Start time: " + connection.getAttribute(list[i],
"StartTime"));

bj ect[] changes = (oject[])connection.getAttribute(list[i], "Changes");
int | = (int) changes.|ength;
for (int y =0,y <I; y+) {
Systemout. println("Changes activated: " + changes[y].toString());
}

}
}

Purging Completed Activation Tasks from Memory

Because the Acti vati onTaskMBean instances contain a list of Change objects (each of which
describes a single change to an MBean attribute), they use a significant amount of memory.

If the Administration Server is running out of memory, you can purge completed activation
tasks from memory. Then decrease the value of the Confi gur at i onManager MBean
Conpl et edAct i vati onTasksCount attribute.

To purge completed activation tasks from memory, connect to the Edit MBean Server and
invoke the Confi gur ati onManager MBean pur geConpl et edAct i vat i onTasks operation.

For example:

connection.invoke(cfgMr, "purgeConpletedActivationTasks", null, null);

Managing Locks

To prevent changes that could leave the pending configuration MBean hierarchy in an
inconsistent state, only one user at a time can edit MBeans. When a user invokes the

Confi gurati onManager MBean st art Edi t operation, the Confi gur ati onManager MBean prevents
other users (locks) from starting edit sessions.

The following actions remove the lock:

e The ConfigurationManager MBean act i vat e operation succeeds or times out.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 14

ORACLE’

Chapter 5
Best Practices: Recommended Pattern for Editing and Handling Exceptions

You can use the Acti vati onTaskMBean wai t For TaskConpl et i on operation to block until
the activation process is complete.

The Confi gurati onManager MBean st opEdi t operation succeeds.

A user with administrator privileges invokes the Confi gur ati onManager MBean cancel Edi t
operation while another user has the lock.

For example, connecti on.i nvoke(cfgMWr, "cancel Edit", null, null);

An edit session has been started under a user identity and another process starts an edit
session under the same user identity.

For example, if you use the WebLogic Remote Console to start an edit session and shortly
afterward, use the WebLogic Scripting Tool (WLST) to start an edit session under the same
user identity, the WLST session will remove the lock from your WebLogic Remote Console
session.

To prevent another process from starting an edit session under your user identity, get an
exclusive lock by passing a bool ean of value t r ue to the st art Edi t operation. See
startEdit(waitTinelnMIlis, timeQutinMIlis, exclusive) inthe MBean Reference
for Oracle WebLogic Server.

All unsaved changes are lost when the lock is removed.

Best Practices: Recommended Pattern for Editing and Handling

Exceptions

Oracle recommends that you organize your editing code into several try-catch blocks. Such an
organization will enable you to catch specific types of errors and respond appropriately. For
example, instead of abandoning the entire edit session if a change is invalid, your code can
save the changes, throw an exception and exit without attempting to activate invalid changes.

JMX agents wrap all exceptions in a generic exception of type
j avax. managenent . MBeanExcept i on. A JMX client can use the
MBeanExcept i on. get Tar get Excepti on() to unwrap the wrapped exception.

Consider using the following structure (see the pseudo-code in Example 5-5):

A try block that connects to the Edit MBean Server, starts an edit session, and makes and
saves changes.

After this try block, one catch block for each of the following types of exception wrapped
within MBeanExcept i on:

— Edit Ti medQut Exception

This exception is thrown if the Confi gur at i onManager MBean start Edi t () operation
cannot get a lock within the amount of time that you specify.

— Not Edi t or Excepti on

This exception is thrown if the edit session times out or an administrator cancels your
edit session. (See Managing Locks.)

— ValidationException

This exception is thrown if you set a value in an MBean that is the wrong data type,
outside an allowed range, not one of a specified set of values, or incompatible with
dependencies in other attributes.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 14

ORACLE

Chapter 5
Best Practices: Recommended Pattern for Editing and Handling Exceptions

Within the code that handles Val i dati onExcepti on, include a try block that either
attempts to correct the validation error or stops the edit session by invoking the
Confi gur ati onManager MBean st opEdi t () operation. If the try block stops the edit
session, its catch block should ignore the Not Edi t or Except i on. This exception
indicates that you no longer have a lock on the pending configuration MBean
hierarchy; however, because you want to abandon changes and release your lock
anyway, it is not an error condition for this exception to be thrown.

A try block that activates the changes that have been saved.

The Confi gurationManager activate(long tinmeout) operation returns an instance of
Activati onTaskMBean, which contains information about the activation task. Oracle
recommends that you set the timeout period for act i vat e() to a minute and then check
the value of the Acti vati onTaskMBean St at e attribute.

If St at e contains the constant STATE_COW TTED, then your changes have been
successfully activated in the domain. You can use ar et ur n statement at this point to end
your editing work. The lock that you created with start Edi t () releases after the activation
task succeeds.

If St at e contains a different value, the activation has not succeeded in the timeout period
that you specified in acti vate(l ong tineout). You can get the value of the
ActivationTaskMBean Error attribute to find out why.

After this try block, one catch block to catch the following type of wrapped exception:
Not Edi t or Excepti on

If this exception is thrown while trying to activate changes, your changes were not
activated because your edit session timed out or was cancelled by an administrator.
(Optional) A try block that undoes the saved changes.

If your class does not return in the activation try block, then your activation task was not
successful. If you do not want these saved changes to be activated by a future attempt to
activate changes, then invoke the Confi gur at i onManager MBean

undoUnact i vat edChanges() operation.

Otherwise, the pending configuration files retain your saved changes. The next time any
user attempts to activate saved changes, WebLogic Server will attempt to activate your
saved changes along with any other saved changes.

After this try block, one catch block to ignore the following type of wrapped exception:
Not Edi t or Excepti on
A try block to stop the edit session.

If your activation attempt fails and you are ready to abandon changes, there is no need to
wait until your original timeout period to expire. You can stop editing immediately.

After this try block, one catch block to ignore the following type of exception:
Not Edi t or Excepti on

Throw the exception that is stored in the Acti vati onTaskMBean Error attribute.

Example 5-5 Code Outline for Editing and Exception Handling

try {

[llnitialize the connection and start the edit session

bj ect Nane domai nConfi gRoot = (Cbj ect Nane) connecti on. i nvoke(cfgMr,

"startEdit",
new Qbject[] { new Integer(30000), new Integer(300000) },

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 14

ORACLE Chapter 5
Best Practices: Recommended Pattern for Editing and Handling Exceptions

new String[] { "java.lang.Integer", "java.lang.Integer" });
/1 Mdify the domain

/1 Save your changes
connection.invoke(cfgMr, "save", null, null);

} catch (MBeanException e) {
Exception target Exception = e. get Target Exception();
if (targetException instanceof EditTi nedQut Exception) {
/1 Could not get the lock. Notify user

t hrow new MyAppCoul dNot St art Edi t Exception(e);
if (targetException instanceof NotEditorException) {
t hrow new MyAppEdi t Sessi onFai | ed(e);
if (targetException instanceof ValidationException) {
try {
connection.invoke(cfgMr, "stopEdit", null, null);
/1 A wrapped Not EditorException here indicates that you no | onger have a
/1 1ock on the pending configuration MBean hierarchy; however,
/1 because you want to abandon changes and rel ease your |ock anyway,
/1 it is not an error condition for this exception to be thrown
/1 and you can safely ignore it.
} catch (MBeanException e) {
Exception target Exception = e. get Target Exception();

if (targetException instanceof NotEditorException) {
/lignore
}
}

t hrow new MyAppEdi t Changesl nval i d(e);
}
el se {
t hrow MBeanException (e);
}
}

/1 Changes have been saved, now activate them
try {
/1 Activate the changes
ActivationTaskMBean task = (ChjectNane) connection.invoke(cfgMr,
"activate",
new Qbject[] { new Long(60000) },
new String[] { "java.lang.Long" });
/1 Everything worked, just return.
String status = (String) connection.getAttribute(task, "State");
if (status.equals("4"))
return;
/1 1f there is an activation error, use ActivationTaskMBean. get Error
/1 to get information about the error
failure = connection.getAttribute(task, "Error");
/1 1f you catch a wapped Not EditorException, your changes were not activated
/'l because your edit session ended or was cancelled by an administrator.
/1 Throw the wapped exception.
} catch (MBeanException e) {
Exception target Exception = e. get Target Exception();
if (targetException instanceof NotEditorException) {

t hrow new MyAppEdi t Sessi onFai | ed(e);

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 14

ORACLE’

Chapter 5
Setting and Getting Encrypted Values

}
}

/1 1f your class executes the remaining lines, it is because activating your
/1 saved changes fail ed.

/1 Optional: You can undo the saved changes that failed to activate. If you
/1 do not undo your saved changes, they will be activated the next time

/] soneone attenpts to activate changes.

Il try {
Il {
/1l connection. invoke(cfgMyr, "undoUnactivatedChanges", null, null);

/| catch(MBeanException e) {

/1l Exception target Exception = e. get Target Exception();
/1l if (targetException instanceof NotEditorException) {
Il o

/1l t hrow new MyAppEdi t Sessi onFai | ed(e);

I}

I}

/1 Stop the edit session
try {
connection.invoke(cfgMr, "stopEdit", null, null)
/1 1f your activation attenpt fails and you are ready to abandon
/1 changes, there is no need to wait until your original tinmeout
/] period to expire. You can stop editing imediately
/1 and you can safely ignore any w apped Not Editor Exception
} catch (MBeanException e) {
Exception target Exception = e. get Target Exception()
if (targetException instanceof NotEditorException) {
/lignore
}

}

/1 Qutput the information about the error that caused the activation to
Il fail.
t hrow new MyAppEdi t Sessi onFai | ed(connection.getAttribute(task, "Error"));

Setting and Getting Encrypted Values

To prevent unauthorized access to sensitive data such as passwords, some attributes in
WebLogic Server configuration MBeans are encrypted. The attributes persist their values in the
domain's confi g. xnl file as an encrypted string and represent the in-memory value in the form
of an encrypted byte array. The names of encrypted attributes end with Encr ypt ed. For
example, the Server MBean exposes the password that is used to secure access through the
IIOP protocol in an attribute named Def aul t | | OPPasswor dEncr ypt ed. To support backwards
compatibility, and to enable remote JMX clients to set passwords for WebLogic Server
MBeans, each encrypted attribute provides a less secure means to encrypt and set its value.

The following sections describe how to work with encrypted attributes:

Set the Value of an Encrypted Attribute (Recommended Technique)

To use this technique (see Example 5-6):

1. Inthe same WebLogic Server JVM that hosts the MBean attribute, write a value to a byte
array.

2. Pass the byte array to the webl ogi c. managenent . Encrypt i onHel per. encrypt (byte[])
method and pass its return value to the MBeanSer ver Connecti on. set Att ri but e method.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 12 of 14

ORACLE

Chapter 5
Setting and Getting Encrypted Values

Avoid assigning the encrypted byte array to a variable because this causes the
unencrypted byte array to remain in memory until it is garbage collected and the memory is
reallocated.

Clear the original byte array using the webl ogi c. managenent . Encrypti onHel per. cl ear ()
method.

Example 5-6 Example: Set the Value of an Encrypted Attribute (Recommended
Technique)

public void editDefaul t|1OPPassword(Object Name cfgRoot) throws Exception {

/1 Get the ServerMBean fromthe Domai nMBean
bj ect Nane server = (ChjectNane) connection.invoke(cfgRoot,
"l ookupServer", new oject[] { "myserver" },
new String[] { "java.lang.String" });
/1l Get new password fromstandard in. Assign it to a byte array.
Systemout. println("Enter new password and press enter: ");
byte userinput[] = new byte[10];
Systemin.read(userinput);
/1 Encrypt the byte array and set it as the encrypted
/1 attribute val ue.
Attribute newpassword = new Attribute("Defaul t1IOPPasswordEncrypted”,
webl ogi c. managenent . Encrypti onHel per. encrypt (userinput));
connection.setAttribute(server, newpassword);
Systemout. println("New password is set to: " +
connection. getAttribute(server, "DefaultllOPPasswordEncrypted"));
/1 Cear the byte array.
webl ogi c. managenent . Encrypti onHel per. cl ear (userinput);

}

Set the Value of an Encrypted Attribute (Compatibility Technique)

Prior to 9.0, JMX clients used a different technique for setting encrypted values. JMX clients
can continue to use this compatibility technique, and if you want to set encrypted values from a
remote JMX client, this is the only technique available. The compatibility technique is less
secure because it creates a St ri ng that contains your unencrypted password. Even though
WebLogic Server converts the St ri ng to an encrypted byte array, the St ri ng will remain in
memory until it is garbage collected and the memory is reallocated.

To use the compatibility technique:

1. Write avaluetoaString.

2. Passthe String as a parameter to the MBeanSer ver Connect i on. set Attri but e method,
but instead of setting the value of the encrypted attribute, set the value for the
corresponding non-encrypted attribute.

WebLogic Server converts the St ri ng to an encrypted byte array and sets it as
Cust om dent i t yKeySt or ePassPhr aseEncrypt ed. (It does not set a value for
Cust om dent i t yKeySt or ePassPhr ase).

For example, to set the Cust o dent i t yKeySt or ePassPhr aseEncr ypt ed from a remote
JMX client, invoke the MBeanSer ver Connect i on. set Attri but e for an attribute named
Cust o dent i t yKeySt or ePassPhr ase.

For example:

public void editDefaul t||OPPassword(bj ect Name cfgRoot, String password)
throws Exception {
/] Get the ServerMBean fromthe Donai nMBean
(bj ect Nane server = (Object Name) connection.invoke(cfgRoot, "lookupServer",
new Qbject[]{"myserver"},new String[]{"java.lang.String"});

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 13 of 14

ORACLE Chapter 5
Setting and Getting Encrypted Values

Attribute newpassword = new Attribute("Defaul t|l OPPassword",
"password");
connection.setAttribute(server, newpassword);

}

Back Up an Encrypted Value

To make a backup copy of a password, use the getter method of the MBean's encrypted value
to retrieve the encrypted byte array. Then write the value of the byte array to a file. WebLogic
Server does not provide APIs or other utilities for decrypting values that it has encrypted.

If you need to restore the password value, you can load the saved value into a byte array and
pass it as a parameter to the MBeanSer ver Connecti on. set Attri but e method (see Set the
Value of an Encrypted Attribute (Recommended Technigue)).

® Note

Because each WebLogic Sever domain uses its own encryption algorithm, you must
back up and restore passwords separately for each domain even if the unencrypted
value for the password is the same for all domains.

Instead of backing up the same encrypted password for each domain, you can use the
getter method of an MBean's corresponding unencrypted value. This getter
unencrypts the password and copies into a Stri ng. The Stri ng will not be erased from
memory until it is garbage collected and the memory is reallocated.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 14

Managing Security Realms with JMX

This chapter describes how to use JMX to manage security realms, which comprise the
mechanisms for protecting WebLogic resources. Each security realm consists of a set of
configured security providers, which are modular components that handle specific aspects of
security. You can create a JMX client that uses the providers in a realm to add or remove
security data such as users and groups. You can also create a client that adds or removes
providers and makes other changes to the realm configuration.

This chapter includes the following sections:

For more information about WebLogic Security, see Understanding Security for Oracle
WebLogic Server.

Understanding the Hierarchy of Security MBeans

Like other subsystems, the WebLogic Server security framework organizes its MBeans in a
hierarchy that JMX clients can navigate without constructing JMX object names. However, the
set of MBean types that are available in a security realm depends on which security providers
you have installed in the realm, and the set of services that each security provider enables
depends on how the provider was created.

The root of the security realm hierarchy is the Real mvBean. It contains all of the providers that
have been configured for the realm. For example, its Aut hori zer s attribute contains all
authorization providers that have been configured for the realm. WebLogic Server installs a
default set of security providers; therefore, by default the Real mvBean Aut hori zer s attribute
contains a Def aul t Aut hor i zer MBean. However, you can uninstall these default providers and
replace them with any number of your own providers or third-party providers. For information
about the default security providers, see Configuring WebLogic Security Providers and
Configuring Authorization Providers in Administering Security for Oracle WebLogic Server.

Base Provider Types and Mix-In Interfaces

Each security provider must extend a base provider type. For example,

Def aul t Aut hor i zer MBean extends Aut hori zer MBean, and any custom or third-party
authorization provider also extends Aut hori zer MBean. If a JMX client gets the value of the
Real mVBean Aut hori zer s attribute, the MBean server returns all MBeans in the realm that
extend Aut hori zer MBean. The JMX client can iterate through the list of providers and select
one based on the value of its Nane attribute or other criteria.

Base provider types can be enhanced by extending a set of optional mix-in interfaces. For
example, if an authentication provider extends the User Edi t or MBean, then the provider can add
users to the realm.

Security MBeans

WebLogic Server's Security MBeans configure security providers in a security realm. The
following tables describe the MBeans that configure different types of security providers.

e Table 6-1 describes the MBeans that configure Authentication security providers, as well
as the abstract MBean classes that Authentication providers must extend. In addition to the

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 13

ORACLE

Chapter 6
Understanding the Hierarchy of Security MBeans

MBeans in this table, WebLogic Server includes configuration MBeans for each out-of-the-
box Authentication provider.

e Table 6-2 describes the MBeans that configure security providers, other than
Authentication security providers.

* Table 6-3 describes optional MBean mixin interfaces that security providers can support for
management and utility purposes.

For more information about configuring WebLogic security providers, see Configuring
WebLogic Security Providers and Configuring Authorization Providers in Administering Security
for Oracle WebLogic Server. Figure 6-1 illustrates where the MBeans are located in the
configuration MBean hierarchy.

Table 6-1 MBeans for Authentication Security Providers

This MBean...

Configures...

Aut henti cati onProvi derM
Bean

The base MBean for all MBean implementations that manage
Authentication providers. If your Authentication provider uses the
WebLogic Security SSPI to provide login services, then your MBean
must extend

webl ogi c. management . security. aut hentication. Authenticato
I . If your Authentication provider uses the WebLogic Security SPI to
provide identity-assertion services, then your MBean must extend

webl ogi c. management . security. authentication.|dentityAsse
rter.

See AuthenticationProviderMBean in the MBean Reference for Oracle
WebLogic Server.

Aut hent i cat or MBean

The SSPI MBean that all Authentication providers with login services
must extend. This MBean provides a Cont r ol Fl ag to determine
whether the Authentication provider is a REQUIRED, REQUISITE,
SUFFICENT, or OPTIONAL part of the login sequence.

See AuthenticatorMBean in the MBean Reference for Oracle WebLogic
Server.

I dentityAsserter MBean

The SSPI MBean that all Identity Assertion providers must extend. This
MBean enables an Identity Assertion provider to specify the token types
for which it is capable of asserting identity.

See |ldentityAsserterMBean in the MBean Reference for Oracle
WebLogic Server.

Servl et Aut henti cati onFi
| t er MBean

The SSPI MBean that all Servlet Authentication Filter providers must
extend. This MBean is just a marker interface. It has no methods on it.

See ServletAuthenticationFilterMBean in the MBean Reference for
Oracle WebLogic Server.

Table 6-2 MBeans for Other Security Providers

This MBean...

Configures...

Adj udi cat or MBean

The SSPI MBean that all Adjudication providers must extend.

See AdjudicatorMBean in the MBean Reference for Oracle WebLogic
Server.

Def aul t Adj udi cat or MBean

Configuration attributes for the WebLogic Adjudication provider.

See DefaultAdjudicatorMBean in the MBean Reference for Oracle
WebLogic Server.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 13

ORACLE’

Chapter 6
Understanding the Hierarchy of Security MBeans

Table 6-2 (Cont.) MBeans for Other Security Providers
]

This MBean...

Configures...

Audi t or MBean

The SSPI MBean that all Auditing providers must extend.

See AuditorMBean in the MBean Reference for Oracle WebLogic
Server.

Def aul t Audi t or MBean

Configuration attributes for the WebLogic Auditing provider.

See DefaultAuditorMBean in the MBean Reference for Oracle WebLogic
Server.

Aut hor i zer MBean

The SSPI MBean that all Authorization providers must extend.

See AuthorizerMBean in the MBean Reference for Oracle WebLogic
Server.

Depl oyabl eAut hori zer MBe
an

The SSPI MBean that must be extended by all Authorization providers
that can store policies created while deploying a Web application or EJB.

See DeployableAuthorizerMBean in the MBean Reference for Oracle
WebLogic Server.

Def aul t Aut hori zer MBean

Configuration attributes for the WebLogic Authorization provider.

See DefaultAuthorizerMBean in the MBean Reference for Oracle
WebLogic Server.

Credent i al Mapper MBean

The SSPI MBean that all Credential Mapping providers must extend.

See CredentialMapperMBean in the MBean Reference for Oracle
WebLogic Server.

Depl oyabl eCredent i al Map
per MBean

The SSPI MBean that must be extended by all Credential Mapper
providers that can store credential maps created while deploying a
component.

See DeployableCredentialMapperMBean in the MBean Reference for
Oracle WebLogic Server.

Def aul t Cr edent i al Mapper
MBean

Configuration attributes for the WebLogic Credential Mapping provider, a
username/password Credential Mapping provider.

See DefaultCredentialMapperMBean in the MBean Reference for Oracle
WebLogic Server.

PKI Cr edent i al Mapper MBea
n

Configuration attributes for the PKI Credential Mapping provider, a key
pair Credential Mapping provider.

See PKICredentialMapperMBean in the MBean Reference for Oracle
WebLogic Server.

SAMLCr edent i al Mapper MBe
an

Configuration attributes for the SAML Credential Mapping provider, a
Security Assertion Markup Language Credential Mapping provider.

See SAMLCredentialMapperMBean in the MBean Reference for Oracle
WebLogic Server.

Cer t Pat hProvi der MBean

The base MBean for all certification path providers.

See CertPathProviderMBean in the MBean Reference for Oracle
WebLogic Server.

Cer t Pat hBui | der MBean

The SSPI MBean that all certification path providers with
CertPathBuilder services must extend.

See CertPathBuilderMBean in the MBean Reference for Oracle
WebLogic Server.

Cert Pat hVal i dat or MBean

The SSPI MBean that all certification path providers with
CertPathValidator services must extend.

See CertPathValidatorMBean in the MBean Reference for Oracle
WebLogic Server.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 13

ORACLE’

Chapter 6
Understanding the Hierarchy of Security MBeans

Table 6-2 (Cont.) MBeans for Other Security Providers
]

This MBean...

Configures...

CertificateRegistryMea
n

Configures and manages the certificate registry. It is both a builder and a
validator. It supports building from the end certificate, the end
certificate's subject DN, the end certificate's issuer DN and serial
number, and the end certificate's subject key identifier.

See CertificateRegistryMBean in the MBean Reference for Oracle
WebLogic Server.

\WebLogi cCert Pat hProvi de
r MBean

The SSPI MBean that all certification path providers with
CertPathBuilder services must extend.

See WeblLogicCertPathProviderMBean in the MBean Reference for
Oracle WebLogic Server.

Rol eMapper MBean

The base MBean for Role Mapping providers. A Role Mapping provider
for a non-deployable module must extend this MBean directly. A Role
Mapping provider for a deployable module must extend the

Depl oyabl eRol eMapper MBean.

See RoleMapperMBean in the MBean Reference for Oracle WebLogic
Server.

Depl oyabl eRol eMapper MBe
an

The SSPI MBean that must be extended by Role Mapping providers that
can store roles created while deploying a Web application or EJB.

See DeployableRoleMapperMBean in the MBean Reference for Oracle
WebLogic Server.

Def aul t Rol eMapper MBean

Configuration attributes for the WebLogic Role Mapping provider.

See DefaultRoleMapperMBean in the MBean Reference for Oracle
WebLogic Server.

Table 6-3 MBean Mixin Interfaces for Security Providers

This MBean...

Configures...

Cont ext Handl er MBean

Provides a set of attributes for ContextHandler support. An Auditor
provider MBean can optionally implement this MBean.

See ContextHandlerMBean in the MBean Reference for Oracle
WebLogic Server.

G oupEdi t or MBean

Provides a set of methods for creating, editing, and removing groups. An
Authentication provider MBean can optionally implement this MBean.

See GroupEditorMBean in the MBean Reference for Oracle WebLogic
Server.

G oupMenber Li st er MBean

Provides a method for listing a group's members. An Authentication
provider MBean can optionally implement this MBean.

See GroupMemberListerMBean in the MBean Reference for Oracle
WebLogic Server.

G oupMenber shi pHi erarch
yCacheMBean

Provides configuration attributes that are required to support the Group
Membership Hierarchy Cache. An Authentication provider MBean can
optionally implement this MBean.

See GroupMembershipHierarchyCacheMBean in the MBean Reference
for Oracle WebLogic Server.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 13

ORACLE Chapter 6
Understanding the Hierarchy of Security MBeans

Table 6-3 (Cont.) MBean Mixin Interfaces for Security Providers

__|
This MBean... Configures...

G oupReader MBean Provides a set of methods for reading data about groups. An
Authentication provider MBean can optionally implement this MBean.

See GroupReaderMBean in the MBean Reference for Oracle WebLogic
Server.

Menber GrouplLi st er MBean Provides a method for listing the groups that contain a member. An
Authentication provider MBean can optionally implement this MBean.

See MemberGroupListerMBean in the MBean Reference for Oracle
WebLogic Server.

User Edi t or MBean Provides a set of methods for creating, editing, and removing users. An
Authentication provider MBean can optionally implement this MBean.

See UserEditorMBean in the MBean Reference for Oracle WebLogic
Server.

User Lockout Manager MBean Lists and manages lockouts on user accounts. An Authentication
provider MBean can optionally implement this MBean.

See UserLockoutManagerMBean in the MBean Reference for Oracle
WebLogic Server.

User Passwor dEdi t or MBean Provides two methods for changing a user's password. An
Authentication provider MBean can optionally implement this MBean.

See UserPasswordEditorMBean in the MBean Reference for Oracle
WebLogic Server.

User Reader MBean Provides a set of methods for reading data about users. An
Authentication provider MBean can optionally implement this MBean.

See UserReaderMBean in the MBean Reference for Oracle WebLogic
Server.

User Renover MBean Provides a method for removing users. An Authentication provider
MBean can optionally implement this MBean.

See UserRemoverMBean in the MBean Reference for Oracle WebLogic
Server.

Rol eEdi t or MBean Provides a set of methods for creating, editing, and removing roles. A
Role Mapping provider MBean can optionally implement this MBean.

See RoleEditorMBean in the MBean Reference for Oracle WebLogic
Server.

Rol eLi st er MBean Provides a set of methods for listing data about roles. A Role Mapping
provider MBean can optionally implement this MBean.

See RoleListerMBean in the MBean Reference for Oracle WebLogic
Server.

Rol eReader MBean Provides a set of methods for reading roles. A Role Mapping provider
MBean can optionally implement this MBean.

See RoleReaderMBean in the MBean Reference for Oracle WebLogic
Server.

Pol i cyEdi t or MBean Provides a set of methods for creating, editing, and removing policies.
An Authorization provider MBean can optionally implement this MBean.

See PolicyEditorMBean in the MBean Reference for Oracle WebLogic
Server.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 5 of 13

ORACLE Chapter 6
Understanding the Hierarchy of Security MBeans

Table 6-3 (Cont.) MBean Mixin Interfaces for Security Providers

__|
This MBean... Configures...

Pol i cyLi st er MBean Provides a set of methods for listing data about policies. An
Authorization provider MBean can optionally implement this MBean.

See PolicyListerMBean in the MBean Reference for Oracle WebLogic
Server.

Pol i cyReader MBean Provides a set of methods for reading policies. An Authorization provider
MBean can optionally implement this MBean.

See PolicyReaderMBean in the MBean Reference for Oracle WebLogic
Server.

PKI Credent i al MapEdi t or M Provides a set of methods for creating, editing, and removing a

Bean credential map that matches users, resources and credential action to
keystore aliases and the corresponding passwords. A
PKICredentialMapping provider MBean can optionally implement this
MBean.

See PKICredentialMapEditorMBean in the MBean Reference for Oracle
WebLogic Server.

PKI Cr edent i al MapReader M Provides a set of methods for reading a credential map that matches

Bean users and resources to keystore aliases and their corresponding
passwords that can then be used to retrieve key information or public
certificate information from the configured keystores. A
PKICredentialMapping provider MBean can optionally implement this
MBean.

See PKICredentialMapReaderMBean in the MBean Reference for
Oracle WebLogic Server.

User Passwor dCr edent i al M Provides a set of methods for creating, editing, and removing a

apEdi t or MBean credential map that matches WebLogic users to remote user names and
their corresponding passwords. A Credential Mapping provider MBean
can optionally extend this MBean.

See UserPasswordCredentialMapEditorMBean in the MBean Reference
for Oracle WebLogic Server.

User Passwor dCr edent i al M Provides a set of methods for reading credentials and credential

apExt endedReader MBean mappings. Credential mappings match WebLogic users to remote
usernames and passwords. A Credential Mapping provider MBean can
optionally extend this MBean.

See UserPasswordCredentialMapExtendedReaderMBean in the MBean
Reference for Oracle WebLogic Server.

User Passwor dCr edent i al M Provides a set of methods for reading credentials and credential

apReader MBean mappings. Credential mappings match WebLogic users to remote
usernames and passwords. A Credential Mapping provider MBean can
optionally extend this MBean.

See UserPasswordCredentialMapReaderMBean in the MBean
Reference for Oracle WebLogic Server.

| npor t MBean Provides a set of methods for importing provider specific data. An
optional mixin interface that any security provider may extend.

See ImportMBean in the MBean Reference for Oracle WebLogic Server

Expor t MBean Provides a set of methods for exporting provider specific data. An
optional mixin interface that any security provider may extend.

See ExportMBean in the MBean Reference for Oracle WebLogic Server

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 13

ORACLE Chapter 6
Choosing an MBean Server to Manage Security Realms

Table 6-3 (Cont.) MBean Mixin Interfaces for Security Providers

__|
This MBean... Configures...

Li st er MBean Provides a general mechanism for returning lists. Derived MBeans
extend this interface to add methods that access the data of the current
object in the list. An optional mixin interface that any security provider
may extend.

See ListerMBean in the MBean Reference for Oracle WebLogic Server

NaneLi st er MBean Defines a method used to return lists of names. An optional mixin
interface that any security provider may extend.

See NamelisterMBean in the MBean Reference for Oracle WebLogic
Server

LDAPSer ver MBean Provides methods to get configuration parameters needed for
connecting to an external LDAP server. An optional mixin interface that
any security provider may extend.

See LDAPServerMBean in the MBean Reference for Oracle WebLogic
Server

Appl i cationVersi oner MBe The SSPI MBean that security providers extend to indicate that the

an provider supports versionable applications. An optional mixin interface
that a RoleMapper, Authorizer, or CredentialMapper provider MBean
may extend.

See ApplicationerVersionMBean in the MBean Reference for Oracle
WebLogic Server

Figure 6-1 Security MBeans

=—

|
DomainMBean

|— SecurityConfigurationMBean

|— RealmMBean

— AdjudicatorMBean AuthenticationProviderMBean
— AuthorizerMBean AuthenticationMBean

— AuditorMBean IdentityAsserterMBean

— CertPathProviderMBean

— CredentialMapperMBean KeyStoreMBean

— RoleMapperMBean ————— UserLockoutManagerMBean

Choosing an MBean Server to Manage Security Realms

When using JMX to manage security realms, you must use two different MBean servers
depending on your task:

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 13

ORACLE

Chapter 6
Working with Existing Security Providers

* To set the value of a security MBean attribute, you must use the Edit MBean Server.

e To add users, groups, roles, and policies, or to invoke other operations in a security
provider MBean, you must use a Runtime MBean Server or the Domain Runtime MBean
Server.

In addition, to prevent the possibility of incompatible changes, you cannot invoke
operations in security provider MBeans if your client or another JMX client has an edit
session currently active.

For example, the value of the M ni munPasswor dLengt h attribute in

Def aul t Aut hent i cat or MBean is stored in the domain's configuration document. Because all
modifications to this document are controlled by WebLogic Server, to change the value of this
attribute you must use the Edit MBean Server and acquire a lock on the domain's
configuration. The cr eat eUser operation in Def aul t Aut hent i cat or MBean adds data to an
LDAP server, which is not controlled by WebLogic Server. To prevent incompatible changes
between the Def aul t Aut hent i cat or MBean's configuration and the data that it uses in the LDAP
server, you cannot invoke the cr eat eUser operation if you or other users are in the process of
modifying the M ni nunPasswor dLengt h attribute. In addition, because changing this attribute
requires you to restart WebLogic Server, you cannot invoke the cr eat eUser operation until you
have restarted the server.

Working with Existing Security Providers

Because security providers can extend optional mix-in interfaces, not all security providers can
perform all tasks. This flexibility enables your organization's security architect to design a realm
for your security needs. The flexibility also makes the design of your JMX clients dependent
upon the design and configuration of each realm.

For example, some realms might contain three types of Authentication providers:

e One that extends User Edi t or MBean to save administrative users to an LDAP server

e One that extends User Edi t or MBean to save customers to a database management system
* One that does not extend User Edi t or MBean and is used only to authenticate existing users

To work with the Authentication providers in this realm, your JMX client must be able to
determine which one can add users to the appropriate repository.

Table 6-4 discusses techniques for finding a security provider that is appropriate for your task.

Table 6-4 Finding a Provider in the Realm

___|
Technique Description

Find by name Each security provider instance is assigned a short name when an
administrator configures it for the realm. Your JMX client can look up
all providers of a specific type (such as all Authentication providers)
and choose the one that matches a name.

If you use this technique, consider saving the name of the security
provider in a configuration file instead of hard-coding it in your JMX
client. The configuration file enables system administrators to change
the providers in the realm and update the properties file instead of
requiring you to update and recompile the JMX client.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 13

ORACLE

Chapter 6
Working with Existing Security Providers

Table 6-4 (Cont.) Finding a Provider in the Realm
]

Technique

Description

Find by MBean type

If the system administrator always wants to use the same type of
provider for a task, then your JMX client can find the provider MBean
that is of the specified type.

For example, if the system administrator always wants to use a

SQLAut hent i cat or MBean to add customers to a realm, your JMX

client can find an instance of SQLAut hent i cat or MBean.

While this technique requires no user input, it assumes:

e There will always be an instance of SQLAut hent i cat or MBean in
the realm and this one instance extends User Edi t or MBean.

« If there are multiple instances of SQLAut hent i cat or MBean, alll
of them extend User Edi t or MBean and it does not matter which
instance is used.

See Discovering Available Services.

Use any provider that extends
the mix-in interface you need

You can create a JMX client that learns about the class hierarchy for
each provider MBean instance and chooses an instance that extends
the mix-in interface you need for your task. For example, your client
can discover which Authentication provider extends

User Edi t or MBean. See Discovering Available Services.

Use this technique if you know that your security realm will contain
only one MBean that extends the needed mix-in interface, or if it does
not matter which one you use.

Discovering Available Services

To create a JMX client that finds MBeans by type or mix-in interface:

1. Connect to a WebLogic Server Runtime MBean Server.

See Make Remote Connections to an MBean Server.

All WebLogic Server instances maintain their own Runtime MBean Server, and you can
connect to any server's Runtime MBean Server.

2. Get all security provider MBeans of a specific type in the realm (for example, get all
Authentication provider MBeans):

a. Use either the Runt i meServi ceMBean or Donai nRunt i meSer vi ceMBean to navigate the
following path through the WebLogic Server MBean hierarchy:

Domai nMBean to Securit yConfi gur at i onMBean to Real mvBean

See Make Remote Connections to an MBean Server.

b. Get the value of the Real mvBean attribute that contains instances of the security

provider type.

For example, to get all authentication providers, get the value of the Real m\VBean
Aut henti cati onProvi ders attribute.

3. For each security provider MBean in the Real m\VBean attribute, get the name of the

MBean's class.

See Example 6-1.

a. Get the provider MBean's | avax. managenent . Model MBeanl nf o object.

Use MBeanSer ver Connect i on. get MBeanl nf o(Pr ovi der - MBean)

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 13

ORACLE

Chapter 6
Working with Existing Security Providers

where Provi der - MBean is a provider MBean that you retrieved from Real mvBean.

b. Getthe MBean info's j avax. managenent . Descri pt or object, and then get the value of
the Descriptor's i nt er f aced assNane field.

4. Use the WebLogic Server MBean type service to find all security provider MBean classes

that extend a particular base type or mix-in interface.

See Example 6-1.
a. Determine the fully-qualified interface name of the base type or mix-in interface.

Each entry in the MBean Reference for Oracle WebLogic Server lists the fully-qualified
interface name of WebLogic Server provider MBeans. If you use a third-party provider,
refer to the third-party documentation for this information.

For example, the fully-qualified interface name of the User Edi t or MBean mix-in interface
is webl ogi c. managenent . security. aut henti cati on. User Edi t or MBean. (See
UserEditorMBean in MBean Reference for Oracle WebLogic Server.)

b. Construct the MBeanTypeSer vi ce MBean's object name.

The MBeanTypeSer vi ce MBean is always registered under the following
j avax. managenent . Cbj ect Nane:

com bea: Name=MBeanTypeSer vi ce, Type=webl ogi c. managenent . nbeanser vers. MBeanTypeServ
ice
c. Invoke the MBeanTypeSer vi ce MBean's get Subt ypes(j ava. |l ang. String

beanl nt er f ace) operation, where beanl nt er f ace represents the fully-qualified
interface name that you determined in Step 1.

The operation returns an array of j ava. | ang. Stri ng objects.

Compare the output of the MBean type service with the class name of each provider
MBean instance.

See Example 6-1.

If the provider MBean's class implements or extends the interface from step 4a, invoke
operations on the provider MBean.

Example 6-1 Example: Determine If a Provider MBean Instance Extends
UserEditorMBean Mix-In Interface

bj ect Nanme MBTservi ce = new Obj ect Name(

"com bea: Name=MBeanTypeSer vi ce, Type=webl ogi ¢. nenagenent . nheanservers.
MBeanTypeServi ce");

for (int p =0; atnProviders != null & p < atnProviders.length; p++) {

Model MBeanl nfo info = (Mdel MBeanl nf o)
mBeanSer ver Connect i on. get MBeanl nf o(at nProvi ders[p]);
Descriptor desc = info.get MBeanDescriptor();
String className = (String)desc. getFiel dval ue("interfaceC assNane");
String[] nba = (String[]) nBeanServerConnection.invoke(MBTservice,
"get Subtypes", new Qhject[] {
"webl ogi c. managenent . security. aut hentication. User Edi t or MBean" 1},
new String[] { "java.lang.String" });
bool ean i sEditor = fal se;
for (int i =0; i < nba.length; i++) {
if (mbali].equal s(classNane)){
userEditor = atnProviders[p];
i sEditor = true;
break;

}
if (isEditor = true) break;

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 10 of 13

ORACLE

}

Chapter 6
Working with Existing Security Providers

Example: Adding Users to a Realm

The code example in Example 6-2 adds a user to a security realm and adds the user to the
Adnmi ni strat ors group by searching through all of the authentication providers in the realm
and using the first one that extends User Edi t or MBean.

Note the following about the code example:

The user name and password come from a JavaBean that was created from an Apache
Struts action.

The code does not need to lock the domain's configuration because it is not modifying the
configuration of the security MBean itself. Instead, it is invoking an operation in the default
Authorization provider which saves security data in an LDAP server.

Example 6-2 Example: Adding Users to a Realm

public ActionForward createNewAdm n(Acti onMappi ng mappi ng,

ActionFormform

Ht t pServl et Request request,

Ht t pSer vl et Response response)

throws CientException, Exception {

| ogger.info("Create New Admin");

Creat eAdm nBean user = (CreateAdm nBean) form
| ogger . debug(user.toString());

MBeanSer ver Connect i on nmBeanSer ver Connection =
thi s. get Domai nMBeanSer ver Connect i on(request);
(oj ect Nare service = new
(oj ect Narre(" com bea: Nane=Domai nRunt i neSer vi ce, " +
" Type=webl ogi c. managenent . mheanser ver s. donai nrunt i ne.
Donai nRunt i meSer vi ceMBean") ;
(bj ect Nare dorai nMBean =
(Obj ect Nane) nBeanSer ver Connecti on. get Attri but e(servi ce,
"Domai nConfi guration");
(bj ect Nare securityConfiguration =
(Obj ect Nane) nBeanSer ver Connecti on. get Attri but e(domai nMBean,
"SecurityConfiguration");
bj ect Name def aul t Real m =
(Obj ect Nane) nBeanSer ver Connecti on.
get Attribute(securityConfiguration, "DefaultRealnt);
(oj ect Nane[] atnProviders =
(Obj ect Nane[]) nBeanServer Connection. getAttribut e(defaul t Real m
"Aut henti cati onProvi ders");

bj ect Narre user Edi t or nul | ;

(bj ect Name MBTservice = new Obj ect Nang(
"com bea: Nane=MBeanTypeSer vi ce, Type=webl ogi c. managenent . mheanser vers.
MBeanTypeServi ce");

for (int p =0; atnProviders !'= null & p < atnProviders.length; p++) {

Model MBeanl nfo info = (Mdel MBeanl nf o)

mBeanSer ver Connect i on. get MBeanl nf o(at nProvi ders[p]);

Descriptor desc = info.get MBeanDescriptor();

String classNane = (String)desc.getFieldValue("interfaceC assNane");

String[] nba = (String[]) nBeanServerConnection.invoke(MBTservice,
"get Subt ypes", new bject[] {
"webl ogi c. management . security. aut henticati on. User Edi t or MBean" 1},
new String[] { "java.lang.String" });

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 11 of 13

ORACLE Chapter 6
Working with Existing Security Providers

bool ean i sEditor = fal se;
for (int i =0; i <nba length; i++) {
if (mbali].equals(classNane)){
userEditor = atnProviders[p];
i sEditor = true;
br eak;

if (isEditor = true) break;
}

try {

mBeanSer ver Connect i on. i nvoke(
userEditor, "createUser",
new Object[] {user.getUsername(), user.getPassword(),

"MedRec Adnmininistator"},
new String[] {"java.lang. String", "java.lang.String",
"java.lang.String"}
);
} catch (MBeanException ex) {

Exception e = ex. get Target Exception();

if (e instanceof AlreadyExistsException) {
| ogger.info("User, " + user.getUsernane() + ", already exists.");
ActionErrors errors = new ActionErrors();
errors.add("inval i dUser Nane",

new ActionError("invalid. usernane. al ready. exi sts"));

saveErrors(request, errors);
return napping. findForward("create. new. adnmin");

} else {
| ogger . debug(e);
return napping. findForward("create. new. adnmin");

}
}
try {
mBeanSer ver Connect i on. i nvoke(
user Edi tor, "addMenber ToG oup”,
new Object[] {"Adnministrators", user.getUsername()},
new String [] {"java.lang.String", "java.lang.String"}
);

nBeanSer ver Connecti on. i nvoke(
user Edi tor, "addMenber ToG oup”,
new Object[] {"MedRecAdnins", user.getUsername()},
new String [] {"java.lang.String", "java.lang.String"}
);
} catch (MBeanException ex) {
Exception e = ex. get Target Exception();
if (e instanceof NameNot FoundException) {
| ogger.info("lInvalid Goup Nane.");
ex. printStackTrace();
return napping. findForward("create. new. adnmin");
} else {
| ogger . debug(e);
return napping. findForward("create. new. adnmin");
}
}
| ogger.info("MedRec Administrator successfully created.");
return mappi ng. fi ndForwar d("creat e. new. adni n. successful ");

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 12 of 13

ORACLE Chapter 6
Modifying the Realm Configuration

Modifying the Realm Configuration

While security provider MBeans handle specific aspects of security, such as authentication and
authorization, two other MBeans handle general, realm-wide and domain-wide aspects of
security:

e Real m\VBean represents a security realm. JMX clients can use it to add or remove security
providers and to specify such behaviors as whether Web and EJB containers call the
security framework on every access or only when security is set in the deployment
descriptors.

e SecurityConfigurationMBean specifies domain-wide security settings such as connection
filters and URL-pattern matching behavior for security constraints, servlets, filters, and
virtual-hosts in the WebApp container and external security policies.

These two MBeans persist their data in WebLogic Server configuration files. Therefore, to
modify attribute values in Real mvBean or Securi t yConfi gur ati onMBean, you must use the Edit
MBean Server and Conf i gur ati onManager MBean as described in Managing a Domain's
Configuration with JMX.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025
Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 13

Using Notifications and Monitor MBeans

This chapter describes how to use JMX to monitor MBeans. JMX provides two ways to monitor
MBeans: MBeans can emit notifications when specific events occur (such as a change in an
attribute value), or a special type of MBean called a monitor MBean can poll another MBean
and periodically emit notifications to describe an attribute value. You create Java classes called
listeners that listen for these notifications and respond appropriately. For example, your
management utility can include a listener that receives notifications when applications are
deployed, undeployed, or redeployed. All WebLogic Server configuration MBeans emit
notifications when attribute values change, and some run-time MBeans do.

This chapter includes the following sections:

Best Practices: Listening Directly Compared to Monitoring

If the MBean that you want to monitor emits notifications, you can choose whether to create a
listener object that listens for changes in the MBean or a monitor MBean that periodically polls
the MBean and emits notifications only when its attributes change in specific ways. The
technique that you choose depends mostly on the complexity of the situations in which you
want to receive notifications.

If your requirements are simple, registering a listener directly with an MBean is the preferred
technique because the MBean pushes its notifications to your listener and you are notified of a
change almost immediately. However, the base classes that you implement for a listener and
optional filter (j avax. managenent . Noti fi cati onLi stener and Notificati onFilter) provide
few facilities for comparing values with thresholds and other values. (See the

j avax. managenent package in the Java SE 17 API Specification at htt ps: //

docs. oracl e. com en/javal j avase/ 17/ docs/ api / j ava. managenent / j avax/ managenent /
package-sunmmary. htm .)

If your notification requirements are sufficiently complex, or if you want to monitor a group of
changes that are not directly associated with a single change in the value of an MBean
attribute, use a monitor MBean. (See the j avax. managenent . moni t or package in the Java SE
17 API Specification at htt ps: // docs. oracl e. com en/ | ava/ j avase/ 17/ docs/ api /

j ava. managenent / j avax/ management / noni t or / package- sunmary. ht nl .) The monitor MBeans
provide a rich set of tools for comparing data and sending notifications only under specific
circumstances. However, the monitor periodically polls the observed MBean for changes in
attribute value and you are notified of a change only as frequently as the polling interval that

you specify.

Best Practices: Listening for WebLogic Server Events

The WebLogic Server IMX agent and WebLogic Server MBeans emit different types of
notification objects for different types of events. Many event types trigger multiple MBeans to
emit notifications at different points within the event process. Table 7-1 describes common
event types and recommends the MBean with which a IMX monitoring application should
register to listen for notifications.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 20

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/package-summary.html

ORACLE’

Chapter 7
Best Practices: Listening for WebLogic Server Events

@® Note

Each JMX notification object contains an attribute named Type, which contains a dot-
delimited string. Do not confuse discussions of this Type attribute with a naotification's
object type.

The Type attribute offers a way to categorize and filter notifications. For example, if
your custom MBeans emit notifications, JIMX conventions suggest that you set your
notification object's Type attribute to a string that starts with your company name:
myconpany. myapp. val uel ncr eased.

All IMX natification objects extend the j avax. managenent . Noti fi cati on object type.
JMX and WebLogic Server define additional notification object types, such as

j avax. managenent . Attri but eChangeNot i fi cati on. The additional object types
contain specialized sets of information that are appropriate for different types of
events. (See the list of Not i fi cati on subclasses for j avax. managenent . Noti fication
in the Java SE 17 API Specification at htt ps: //docs. oracl e. cont en/j ava/

javase/ 17/ docs/ api /j ava. managenent / j avax/ managenent / Notification. htm . Also
see weblogic.management.logging.WebLogicLogNoatification in the Java API
Reference for Oracle WebLogic Server.)

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 20

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/Notification.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/Notification.html

ORACLE

Chapter 7
Best Practices: Listening for WebLogic Server Events

Table 7-1 Events and Notification Objects

Event

Listening Recommendation

A WebLogic Server instance
starts or stops

To receive a notification when a server starts or stops, register a listener
with each server's Ser ver Li f eCycl eRunt i neMBean in the Domain
Runtime MBean Server and configure an
AttributeChangeNotificationFilter.

Each server in a domain provides its own

Server Li f eCycl eRunt i meMBean, which is available through the Domain
Runtime MBean Server even if the server itself is not active. When you
start a server instance, the server's Server Li f eCycl eRunt i meMBean
updates the value of its St at e attribute and emits an
AttributeChangeNotification.

For an example of such a listener and filter, see Listening for Notifications
from WebLogic Server MBeans: Main Steps.

Note: This recommendation assumes that you start a domain's
Administration Server before starting Managed Servers. If a Managed
Server starts before the Administration Server, a listener in the Domain
Runtime MBean Server (which runs only on the Administration Server) will
not be initialized at the time the Managed Server's

Server Li f eCycl eRunt i meMBean changes its state to RUNNI NG. If you
cannot guarantee that the Administration Server starts first, use the JIMX
timer service to periodically query the Domain Runtime MBean Server for
MBeans whose object name contains the Type=Ser ver Runt i ne key
property. An MBean that matches this query is a Ser ver Runt i meMBean,
which each server instance creates as part of its startup process. If the
query finds a newly created Ser ver Runt i meMBean, you know that a new
server instance has been started. See MBeanSer ver Connect i on

quer yNames (see htt ps: //docs. oracl e. com en/ | aval j avase/ 17/
docs/ api /| ava. managenent /| avax/ managenent /

MBeanSer ver Connect i on. ht m #quer yNanes(j avax. managenent . b
j ect Name, 920 avax. managenent . Quer yExp) .

Prior to WebLogic Server 15.1.1.0.0, the Managed Server JIMX
notifications are enabled by default. Starting with WebLogic Server
15.1.1.0.0, the Managed Server JMX notifications are changed to be
disabled by default. This helps to reduce JMX notifications which occur
between the Administration Server and Managed Servers whenever any
new servers are added, any states change, and so on. This saves CPU
and memory resources if there are large numbers of runtime MBeans and
large numbers of servers in the domain. To access the configuration or
runtime MBeans from the Managed Servers and the Administration Server
in a domain, Oracle recommends the user JMX applications to connect
directly to the Runtime MBean Server on the Managed Servers and the
Administration Server, and not to rely on the Domain Runtime MBean
Server on the Administration Server. To enable the Managed Server JIMX
notifications, set a flag -

Dwebl ogi c. managenent . di sabl eManagedSer ver Noti fi cati ons=fa
| se during the Administration Server startup, and not during the Managed
Server's startup.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 20

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerConnection.html#queryNames(javax.management.ObjectName,%20javax.management.QueryExp)
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerConnection.html#queryNames(javax.management.ObjectName,%20javax.management.QueryExp)
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerConnection.html#queryNames(javax.management.ObjectName,%20javax.management.QueryExp)
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerConnection.html#queryNames(javax.management.ObjectName,%20javax.management.QueryExp)

ORACLE Chapter 7
Best Practices: Listening for WebLogic Server Events

Table 7-1 (Cont.) Events and Notification Objects

Event Listening Recommendation

A WebLogic Server When you create a resource such as a server or a JDBC data source,
resource is created or WebLogic Server registers the resource's configuration MBean in the
destroyed MBean server. When you delete a resource, WebLogic Server unregisters

the configuration MBean.

To listen for the registration and unregistration of MBeans, register a
listener with j avax. management . MBeanSer ver Del egat e, which emits
notifications of type j avax. managenent . MBeanSer ver Noti fication

when MBeans are registered or unregistered.

If you register a listener with MBeanSer ver Del egat e in the Edit MBean
Server, you receive notifications when someone modifies the pending
MBean hierarchy.

If you register a listener in the Runtime MBean Server or the Domain
Runtime MBean Server, you receive notifications only when pending
changes have been successfully activated in the domain. If you are
interested solely in monitoring configuration data (and are not interested in
monitoring run-time statistics), register your listener in only one Runtime
MBean Server. See Best Practices: Choosing an MBean Server.

See Example: Listening for The Registration of Configuration MBeans.

The configuration of a All configuration MBeans emit natifications of type
WebLogic Server resource At tri but eChangeNoti fi cati on when their attribute values change.

is modified To receive this notification, register a listener with the MBean that is in the
Domain Runtime MBean Server or Runtime MBean Server (see Best
Practices: Choosing an MBean Server).

If you register an MBean in the Edit MBean Server, you receive
notifications when someone modifies the pending MBean hierarchy.

If you register a listener in the Runtime MBean Server or the Domain
Runtime MBean Server, you receive notifications only when pending
changes have been successfully activated in the domain. If you are
interested solely in monitoring configuration data (and are not interested in
monitoring run-time statistics), register your listener in only one Runtime
MBean Server. See Best Practices: Choosing an MBean Server.

The run-time state of a Some run-time MBeans emit notifications of type

WebLogic Server resource At tri but eChangeNoti fi cati on when their attribute values change. To

changes receive this notification, register a listener with the MBean in the Domain
Runtime MBean Server.

If a run-time MBean does not emit notifications, you can create a monitor
MBean that polls the run-time MBean. See Using Monitor MBeans to
Observe Changes: Main Steps.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 4 of 20

ORACLE’

Chapter 7
Best Practices: Listening or Monitoring WebLogic Server Runtime Statistics

Table 7-1 (Cont.) Events and Notification Objects
]

Event

Listening Recommendation

A WebLogic Server
resource emits a log
message

When a WebLogic Server resource generates a log message, the server's
webl ogi c. managenent . runt i me. LogBr oadcast er Runt i neMBean
emits a notification of type

webl ogi c. managenent . | oggi ng. WebLogi cLogNot i fi cati on, which
can be cast as the standard j avax. managenent . Noti fi cati on class.

To listen for log message natifications, register a listener with

LogBr oadcast er Runt i meMBean. You can listen for the standard JMX
notifications, or if you want to retrieve detailed information about the log
messages, listen for WebLogi cLogNot i fi cat i ons, which contains
methods that you can use to retrieve detailed information. Listening for
WebLogi cLogNot i fi cati ons requires you to import this WebLogic
Server class into your listener class.

To see a list of error messages that WebLogic Server resources generate,
refer to Error Messages.

See Weblogi cLogNot i fi cati on in the Java API Reference for Oracle
WebLogic Server.

Best Practices: Listening or Monitoring WebLogic Server

Runtime Statistics

WebLogic Server MBeans provide detailed statistics on the run-time state of its services and
resources. The statistics in Table 7-2 provide a general overview of the performance of
WebLogic Server. You can listen for changes to these statistics by creating a listener and
registering it directly with the MBeans that contain the attributes or you can configure monitor
MBeans to periodically poll and report only the statistics that you consider to be significant (see
Registering a Notification Listener and Filterand Registering the Monitor and Listener).

Table 7-2 Commonly Monitored WebLogic Server Runtime Statistics

To track this statistic...

Listen or monitor this MBean attribute...

The current state of server.

MBean Type: ServerLifeCycleRuntimeMBean
Attribute Name: St at e

Activity on the server's listen
ports.

MBean Type: ServerRuntimeMBean

Attribute Name: OpenSocket sCur r ent Count
MBean Type: ServerMBean

Attribute Name: Accept Backl og

Use these two attributes together to compare the current activity on the
server's listen ports to the total number of requests that can be
backlogged on the ports.

Memory and thread use.

MBean Type: ThreadPoolRuntimeMBean
Attribute Name: Execut eThr ead! dl eCount

Indicates the number of threads in a server's execute queue that are
taking up memory space but are not being used to process data.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 20

ORACLE Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

Table 7-2 (Cont.) Commonly Monitored WebLogic Server Runtime Statistics

|
To track this statistic... Listen or monitor this MBean attribute...

Memory and thread use MBean Type: ThreadPoolRuntimeMBean
Attribute Name: Pendi ngUser Request Count

Indicates the number of user requests waiting in a server's execute
queue.

Memory and thread use MBean Type: JVMRuntimeMBean
Attribute Name: HeapSi zeCur r ent

Indicates the amount of memory (in bytes) that is currently available in
the server's JVM heap.

Database connections MBean Type: JDBCDataSourceRuntimeMBean
Attribute Name: Act i veConnect i onsCur r ent Count

Indicates the current number of active connections in a JDBC
connection pool.

Database connections MBean Type: JDBCDataSourceRuntimeMBean
Attribute Name: Act i veConnect i onsH ghCount

The high water mark of active connections in a JDBC connection pool.
The count starts at zero each time the connection pool is instantiated.

Database connections MBean Type: JDBCDataSourceRuntimeMBean
Attribute Name: LeakedConnect i onCount

Indicates the total number of leaked connections. Leaked connections
are connections that have been checked out but never returned to the
connection pool via a ¢l 0se() call; it is important to monitor the total
number of leaked connections, as a leaked connection cannot be used
to fulfill later connection requests.

Database connections MBean Type: JDBCDataSourceRuntimeMBean
Attribute Name: Connect i onDel ayTi e
Indicates the average time to connect to a connection pool.

Database connections MBean Type: JDBCDataSourceRuntimeMBean
Attribute Name: Fai | ur esToReconnect Count

Indicates when the connection pool fails to reconnect to its data store.
Applications may notify a listener when this attribute increments, or
when the attribute reaches a threshold, depending on the level of
acceptable downtime.

Listening for Notifications from WebLogic Server MBeans: Main
Steps

To listen directly for the notifications that an MBean emits:

1. Create a listener class in your application. See Creating a Notification Listener.

2. Create an additional class that registers your listener and an optional filter with the MBean
whose notifications you want to receive. See Configuring a Notification Filter and
Registering a Notification Listener and Filter.

3. Package and deploy the listener and registration class. See Packaging and Deploying
Listeners on Webl ogic Server.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 6 of 20

ORACLE’

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

Creating a Notification Listener

To create a notification listener:

1.

Create a class that implements j avax. management . Not i fi cati onLi st ener.

See Noti ficationListener inthe Java SE 17 API Specification at https: //
docs. oracl e. coml en/javalj avase/ 17/ docs/ api /| ava. nenagenent / | avax/ managenent /
NotificationListener.htm .

Within the class, add a Not i fi cati onLi st ener. handl eNoti fication(Notification
notification, java.lang. Chject handback) method.

@ Note

Your implementation of this method should return as soon as possible to avoid
blocking its notification broadcaster.

(Optional) In most listening situations, you want to know more than the simple fact that an
MBean has emitted a notification object. For example, you might want to know the value of
the notification object's Type attribute, which is used to classify the type of event that
caused the natification to be emitted.

To retrieve information from a notification object, within your handl eNot i fi cati on method
invoke the object's methods. Because all notification types extend

j avax. managenent . Noti fi cati on, the following Noti fi cati on methods are available for
all notifications:

e get Message()

e get SequenceNunber ()
e getTimeStanp()

© getType()

e getUserData()

See Noti ficationinthe Java SE 17 API Specification at htt ps: //docs. oracl e. conf en/
javal j avase/ 17/ docs/ api /| ava. managenent / j avax/ managenent / Noti fication. htm .

Most notification types provide additional methods for retrieving data that is specific to the
notification. For example, j avax. managenent . Attri but eChangeNoti fi cati on provides
get Newval ue() and get O dVal ue(), which you can use to determine how the attribute
value has changed.

Example 7-1 Notification Listener

i mport javax.managenent. Notification;

i mport javax. managenent. NotificationFilter;

i mport javax. managenent. NotificationLi stener;

i mport javax. managenent. AttributeChangeNotification;

public class MyListener inplenents NotificationListener {

public void handl eNotification(Notification notification, Chject obj) {

if(notification instanceof AttributeChangeNotification) {
AttributeChangeNotification attributeChange =
(AttributeChangeNotification) notification;

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 7 of 20

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/NotificationListener.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/NotificationListener.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/NotificationListener.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/Notification.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/Notification.html

ORACLE

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

Systemout.println("This notification is an
Attribut eChangeNotification");
Systemout.println("Coserved Attribute: " +
attributeChange. get Attri buteNane());
Systemout.printin("Ad Value: " + attributeChange. getd dVval ue());
Systemout. println("New Val ue: " + attributeChange. get Newval ue());

}

Example 7-1 is a simple listener that uses At t ri but eChangeNot i fi cati on methods to retrieve
the name of an attribute with a changed value, and the old and new values.

Listening from a Remote JVM

As of JIMX 1.2, there are no special requirements for programming a listener that runs in a
different JVM from the MBean to which it is listening.

Once you establish a connection to the remote JMX agent (using

j avax. managenent . MBeanSer ver Connect i on), JMX takes care of sharing data between the
JVMs. See Registering a Notification Listener and Filter, for instructions on establishing a
connection from a remote JVM.

Best Practices: Creating a Notification Listener

Consider the following recommendations while creating your Not i fi cati onLi st ener class:

e Unless you use a notification filter, your listener receives all notifications (of all notification
types) from the MBeans with which it is registered.

Instead of using one listener for all possible notifications that an MBean emits, the best
practice is to use a combination of filters and listeners. While having multiple listeners adds
to the amount of time for initializing the JVM, the trade-off is ease of code maintenance.

e If your WebLogic Server environment contains multiple instances of MBean types that you
want to monitor, you can create one notification listener and then create as many
registration classes as MBean instances that you want to monitor.

For example, if your WebLogic Server domain contains three JDBC data sources, you can
create one listener class that listens for At t ri but eChangeNot i fi cati ons. Then, you create
three registration classes. Each registration class registers the listener with a specific
instance of JDBCDat aSour ceRunt i meMBean.

e While the handl eNot i fi cati on method signature includes an argument for a handback
object, your listener does not need to retrieve data from or otherwise manipulate the
handback object. It is an opaque object that helps the listener to associate information
regarding the MBean emitter.

e Your implementation of the handl eNot i fi cati on method should return as soon as possible
to avoid blocking its notification broadcaster.

e If you invoke a method from a specialized notification type, wrap the method calls in an i f
statement to prevent your listener from invoking the method on notification objects of all

types.

Configuring a Notification Filter

The JDK includes two simple filter classes that you can configure to forward notifications that
match criteria that you specify. To configure one of the JDK's filter classes:

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 8 of 20

ORACLE’

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

1. Inthe class that registers your listener with an MBean create an instance of
j avax. managenent. Noti fi cationFilterSupport or
AttributeChangeNotificationFilter.

2. Invoke a filter class method to specify filter criteria.

See NotificationFilterSupport (https://docs.oracle.comen/javaljavasel/17/
docs/ api /] ava. managenent /| avax/ managenent / Not i fi cati onFilterSupport.htm) or
Attribut eChangeNotificationFilter (https://docs.oracle.confen/javaljavasel 17/
docs/ api /| ava. managenent / j avax/ nanagenent /
AttributeChangeNotificationFilter.htm) inthe Java SE 17 API Specification.

For example, the following lines of code configure an Attri but eChangeNotificationFilter
that forwards only attribute change notifications and only if there is a change in an attribute
named St at e:

AttributeChangeNotificationFilter filter =
new AttributeChangeNotificationFilter();
filter.enabl eAttribute("State");

Creating a Custom Filter

If the JDK's filter class is too simplistic for your needs, you can create more sophisticated,
custom filter classes. (See Noti fi cationFilter inthe Java SE 17 API Specification at
https://docs.oracle.com en/javaljavase/ 17/ docs/ api /| ava. managenent /j avax/
managenent / NotificationFilterSupport.htn .) However, Oracle recommends that you use
the JDK filter classes whenever possible: using a custom filter complicates the packaging and
deployment of your listener and filter. See Packaging and Deploying Listeners on WebLogic
Server.

Registering a Notification Listener and Filter

After you implement a notification listener class, you create an additional class that registers
your listener (and optionally configures and registers a filter) with an MBean instance.

To register a notification listener and filter with an MBean:

1. Initialize a connection to a Runtime MBean Server or the Domain Runtime MBean Server.

See Make Remote Connections to an MBean Server.

2. To register with a WebLogic Server MBean, navigate the MBean hierarchy and retrieve an
object name for the MBean that you want to listen to. See Make Remote Connections to an
MBean Server.

To register with a custom MBean, create an Obj ect Nane that contains the MBean's JMX
object name. See j avax. managenent . Obj ect Nane in the Java SE 17 API Specification at
https://docs.oracl e.com en/javaljavase/ 17/ docs/ api/j ava. managenent /j avax/
managenent / Obj ect Nane. ht m .

3. Instantiate the listener class that you created.

4. (Optional) Instantiate and configure one of the JDK's filter classes or instantiate a custom
class.

5. Register the listener and filter by passing the MBean's object name, listener class, and
filter class to the MBeanSer ver Connect i on. addNot i fi cati onLi stener ((bject Name nane,
oj ect Name |istener, NotificationFilter filter,Cbject handback) method.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 9 of 20

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/NotificationFilterSupport.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/NotificationFilterSupport.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/AttributeChangeNotificationFilter.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/AttributeChangeNotificationFilter.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/AttributeChangeNotificationFilter.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/NotificationFilterSupport.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/NotificationFilterSupport.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/ObjectName.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/ObjectName.html

ORACLE

Chapter 7

Listening for Notifications from WebLogic Server MBeans: Main Steps

Example 7-2 Registering a Listener with ServerLifeCycleRuntimeMBean

import java.util.Hashtable;
i mport java.io.lOException;
i mport java.net. Ml formedURLExcept i on;

i mport j avax. managenent. MBeanSer ver Connect i on;

i mport j avax. managenent. Qbj ect Nane;

i mport j avax. managenent. Mal f or medCbj ect NaneExcepti on;
i mport j avax. managenent. renot e. JMXConnect or;

i mport j avax. managenent.renote. JMXConnect or Fact ory;

i mport j avax. managenent.renote. JMXServi ceURL;

i mport j avax.nam ng. Cont ext ;

i mport javax.managenent. AttributeChangeNotificationFilter;

public class RegisterlListener {

private static MBeanServer Connection connecti on;
private static JMXConnector connector;
private static final ObjectNane service;
/1 Initializing the object name for Domai nRuntimeServi ceMBean
/1 so it can be used throughout the class.
static {
try {
service = new Obj ect Nang(
"com bea: Name=Domai nRunt i meSer vi ce, Type=webl ogi c. managenent . mbeanseryv
ers. donai nrunt i me. Donmai nRunt i meSer vi ceMBean") ;
}catch (Ml formedObj ect NameException e) {
t hrow new AssertionError(e. get Message());
}
}

/*

* Initialize connection to the Domain Runtime MBean Server

* each server in the domain hosts its own instance.

*/

public static void initConnection(String hostnane, String portString,
String username, String password) throws | OException,
Mal f or medURLExcept i on {
String protocol = "t3";
Integer portlnteger = Integer.val ued (portString);
int port = portlnteger.intValue();
String jndiroot = "/jndi/";
String mserver = "webl ogi c. managenent . nbeanservers. donai nrunti me";
JMXSer vi ceURL serviceURL = new JMXServi ceURL(protocol, hostname, port,
jndiroot + nserver);
Hasht abl e h = new Hashtabl e();
h. put (Cont ext . SECURI TY_PRI NCI PAL, usernane);
h. put (Cont ext . SECURI TY_CREDENTI ALS, password);
h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
"webl ogi c. managenent . renmote");

connect or = JMXConnect or Fact ory. connect (servi ceURL, h);
connection = connector. get MBeanSer ver Connection();

}

/*
* CGet an array of ServerlLifeCycl eRunti meMBeans
*/
public static ObjectNanme[] getServerLCRuntines() throws Exception {
bj ect Nanme domai nRT = (Cbj ect Nane) connection. get Attribute(service,
" Domai nRunt i ne");
return (ObjectName[]) connection.getAttribute(domainRT,

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates.

Page 10 of 20

ORACLE

Chapter 7

Listening for Notifications from WebLogic Server MBeans: Main Steps

"ServerlLifecycl eRunti mes");

}

public static void main(String[] args) throws Exception {

String hostname = args[0];

String portString = args[1];

String username = args[2];

String password = args[3];

try {
/llnstantiating your |istener class.
M/Li stener |istener = new MyListener();
AttributeChangeNotificationFilter filter =

new AttributeChangeNotificationFilter();

filter.enabl eAttribute("State");

i ni t Connection(hostnane, portString, usernane, password);
/| Passing the name of the MBeans and your listener class to the
/'addNot i ficationListener nethod of MBeanServer.
(bj ect Nane[] server LCRT = get Server LCRunti mes();
int length= (int) serverLCRT.|ength;
for (int i=0; i < length; i++) {
connection. addNoti ficationLi stener(serverLCRT[i], |istener,
filter, null);

Systemout. println("\n[nmyListener]: Listener registered with"

+serverLCRT[i]);
}

/| Keeping the remote client active.
Systemout.println("pausing........... ");
Systemin.read();

} catch(Exception e) {

Systemout. println("Exception: " + e);

}
}

The example class registers the listener from Example 7-1 and the JDK's

AttributeChangeNotificationFilter with all ServerLifeCycl eRunti meMBeans in a domain.

The class does not pass a handback object.

In the example, webl ogi ¢ is a user who has permission to view and modify MBean attributes.
For information about permissions to view and modify MBeans, refer to User, Groups, and
Security Roles in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

The example class also includes some code that keeps the Regi st er Li st ener class active and
not exit the main program. Usually this code is not necessary because a listener class runs in
the context of some larger application that is responsible for invoking the class and keeping it

active. It is included here so you can easily compile and see the example working.

Packaging and Deploying Listeners on WebLogic Server

You can package and deploy a JMX listener as a remote application, a WebLogic Server
startup class (which makes the listener available as soon as a server boots), or within one of

your other applications that you deploy on WebLogic Server.

If you use a filter from the JDK, you do not need to package the filter class. It is always

available through the JDK.

Table 7-3 describes how to package and deploy your listeners and any custom filters.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 11 of 20

ORACLE’

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

Table 7-3 Packaging and Deploying Listeners and Custom Filters

If you deploy the

Do this for the

Do this for a custom filter...

listener... listener...
As a remote Make the listener's Make the filter's class available on the remote client's
application class available on classpath.

the remote client's
classpath.

Also add the filter class to the classpath of each server
instance that hosts the monitored MBeans by archiving the
class in a JAR file and copying the JAR in each server's | i b
directory. See Domain Directory Contents in Understanding
Domain Configuration for Oracle WebLogic Server.

As a WebLogic
Server startup
class

Add the listener
class to the
server's classpath
by archiving the
class in a JAR file
and copying the
JAR in the server's
l'i b directory.

Add the filter class to the server's classpath by archiving the
class in a JAR file and copying the JAR in the server's | i b
directory. See Domain Directory Contents in Understanding
Domain Configuration for Oracle WebLogic Server.

As part of an
application that you
deploy on
WebLogic Server

Package the
listener class with
the application.

Package the listener class with the application.

Also add the filter class to the classpath of each server
instance that hosts the monitored MBeans by doing one of the
following:

e Archiving the class in a JAR file and copying the JAR in
each server's | i b directory. See Domain Directory
Contents in Understanding Domain Configuration for
Oracle WebLogic Server.

e Using the JMX MLet service to make the filter class
available to the MBean server. See
j avax. managenent . | oadi ng. M_et in the Java SE 17
API Specification (ht t ps: // docs. oracl e. conml en/
javaljavase/ 17/ docs/ api /] ava. managenent /

j avax/ managenent /| oadi ng/ M.et . ht i) and the
JMX 1.4 specification, which you can download from
https://docs. oracle.confen/javal

javase/ 17/j mx/index. htm .

Example: Listening for The Registration of Configuration MBeans

When you create a WebLogic Server resource, such as a server or a JDBC data source,
WebLogic Server creates a configuration MBean and registers it in the Domain Runtime

MBean Server.

To listen for these events, register a listener with j avax. managenent . MBeanSer ver Del egat e,
which emits a notification of type

j avax. managenent . MBeanSer ver Noti fi cati on each time an MBean is registered or
unregistered. See MBeanSer ver Del egat e in the Java SE 17 API Specification (https://
docs. oracle. con en/javaljavase/ 17/ docs/ api / j ava. managenent / | avax/ managenent /

MBeanSer ver Del egat eMBean. ht ml)

Note the following about the example listener in Example 7-3:

« To provide information about which type of WebLogic Server MBean has been registered,
the listener looks at the object name of the registered MBean. All WebLogic Server MBean
object names contain a key property whose name is "Type" and whose value indicates the

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 12 of 20

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/loading/MLet.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/loading/MLet.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/loading/MLet.html
https://docs.oracle.com/en/java/javase/17/jmx/index.html
https://docs.oracle.com/en/java/javase/17/jmx/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerDelegateMBean.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerDelegateMBean.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/MBeanServerDelegateMBean.html

ORACLE

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

type of MBean. For example, instances of Ser ver Runt i meMBean contain the
Type=Ser ver Runt i me key property in their object names.

All IMX notifications contain a Type attribute, whose value offers a way to categorize and
filter notifications. The Type attribute in MBeanSer ver Not i f i cati on contains only one of two
possible strings: "JMX.mbean.registered" or "JMX.mbean.unregistered". JMX natifications
also contain a get Type method that returns the value of the Type attribute.

The listener in Example 7-3 invokes different lines of code depending on the value of the
Type attribute.

If a JDBCDat aSour ceRunt i meMBean has been registered, the listener passes the MBeans'
object name to a custom method. The custom method registers a listener and configures a
filter for the JDBCDat aSour ceRunt i meMBean; this MBean listener emits messages when the
MBean's Enabl ed attribute changes.

The implementation of the custom method is located in the registration class (not the filter
class) so that the method can reuse registration class's connection to the MBean server.
Such reuse is an efficient use of resources and eliminates the need to store credentials
and URLs in multiple classes.

Example 7-3 Example: Listening for MBeans Being Registered and Unregistered

i mport javax.managenent. Notification;

i mport javax.managenent. NotificationLi stener;

i mport j avax. managenent. MBeanServer Notifi cati on;
i nport javax.management . Obj ect Name;

public class Del egateListener inplenments NotificationListener {

public void handl eNotification(Notification notification, Object obj) {
if (notification instanceof MBeanServerNotification) {
MBeanServer Notification msnotification =
(MBeanServer Notification) notification;

Il CGet the value of the MBeanServerNotification

/] Type attribute, which contains either

Il "JIMX nbean. registered" or "JMX mbean. unregistered"
String nType = msnotification.get Type();

Il CGet the object name of the MBean that was registered or
/'l unregistered
oj ect Name nbn = nsnoti fication. get MBeanNane();

/'l oject nanes for WebLogi c Server MBeans always contain
Il a "Type" key property, which indicates the

/1 MBean's type (such as ServerRuntine or Log)

String key = nbn. get KeyProperty("Type");

if (nType.equal s("JMX nbean. registered")) {
Systemout.printin("A" + key + " has been created.");

Systemout. println("Full MBean name: " + nbn);
Systemout.printIn("Tine: " + nenotification.getTimeStanp());
i f (key.equal s("JDBCDat aSourceRuntine")) {
Il Registers a listener with a ServerRuntineMBean.
Il By defining the "registerw thServerRuntine" method
/1 in the "ListenToDel egate" class, you can reuse the
/'l connection that "ListenToDel egate" established;
/1 in addition to being an efficient way to use resources,
Il it elimnates the need to store credentials and URLS in
Il multiple classes.
Li stenToDel egat e. regi st erwi t hJDBCDat aSour ceRunt i me(nbn) ;

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 13 of 20

ORACLE

}

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

}
if (nType.equal s("JMX nbean. unregistered")) {
Systemout. println("An MBean has been unregistered");
Systemout. println("Server name: " +
mbn. get KeyPr operty("Name"));
Systemout.printIn("Tine: " + nenotification.getTinmeStanp());
Systemout.printin("Full Mean name: "
+ menotification. get MBeanNange());

Example 7-4 shows methods from a registration class. Note the following:

The JMX object name for MBeanSer ver Del egat e is always
"JM npl ement at i on: t ype=MBeanSer ver Del egat e".

The mai n method configures an instance of

j avax. managenent . Noti ficationFilterSupport to forward notifications only if value of
the notification's Type attribute starts with "JMX.mbean.registered" or
"JMX.mbean.unregistered".

The regi st erw t hJDBCDat aSour ceRunt i me method registers the listener in Example 7-1
with the specified JDBCDat aSour ceRunt i neMBean instance. The method also configures a
j avax. managenent . Attri but eChangeNoti fi cati onFi | t er, which forwards only
AttributeChangeNotificati ons that describe changes to an attribute named Enabl ed.

To compile and run these methods, use the supporting custom methods from Example 7-2 and
run the resulting class as a remote JMX client.

Example 7-4 Example: Registering a Listener with MBeanServerDelegate

public static void main(String[] args) throws Exception {

String hostname = args[0];
String portString = args[1];
String username = args[2];
String password = args[3];
bj ect Nane del egate = new bj ect Name(
"JM npl enent ati on: t ype=MBeanSer ver Del egat e") ;

try {
/llnstantiating your |istener class.
Start StopLi stener slistener = new Start StopListener();
NotificationFilterSupport filter = new NotificationFilterSupport();
filter.enabl eType("JMX nbean.registered");
filter.enabl eType("JMX nmbean. unregi stered");

/* Invoke a custom method that establishes a connection to the

* Donmain Runtine MBean Server and uses an instance of

* MBeanSer ver Connection to represents the connection. The custom
* nmethod assigns the MBeanServerConnection to a class-wide, static
* variabl e named "connection".

*/

i ni t Connection(hostnanme, portString, usernane, password);

/I Passing the nane of the MBeans and your |istener class to the

I/ addNot i ficationLi stener method of MBeanServer.

connection. addNoti fi cationLi stener(del egate, slistener, filter,
null);

Systemout. println("\n[myListener]: Listener registered ...");
/| Keeping the renpte client active.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 14 of 20

ORACLE’

}

Chapter 7
Using Monitor MBeans to Observe Changes: Main Steps

Systemout.println("pausing........... ");
Systemin.read();

} catch (Exception e) {
Systemout. println("Exception: " + e);

}

/] Called by the listener if it receives notification of a
/1 JDBCDat aSour ceRunt i meMBean bei ng regi stered.
public static void registerw thJDBCDat aSour ceRunt i me(Cbj ect Nane nbnane) {

try {
M/Li stener nylistener = new MyListener();
AttributeChangeNotificationFilter filter =
new AttributeChangeNotificationFilter();
filter.enabl eAttribute("Enabled");

connection. addNoti ficati onLi st ener (nbnane, nylistener,
filter, null);
} catch (Exception e) {
Systemout. println("Exception: " + e);
}

Using Monitor MBeans to Observe Changes: Main Steps

To configure and use monitor MBeans:

1.

Choose the type of monitor MBean type that supports your monitoring needs. See Monitor
MBean Types and Notification Types.

Create a listener class that can listen for notifications from monitor MBeans. See Creating
a Notification Listener for a Monitor MBean.

Create a class that creates, registers and configures a monitor MBean, registers your
listener class with the monitor MBean, and then starts the monitor MBean. See Registering
the Monitor and Listener.

Monitor MBean Types and Notification Types

JMX provides monitor MBeans that are specialized to observe specific types of changes:

Stringhoni t or MBean observes attributes whose value is a St ri ng.

Use this monitor to periodically observe attributes such as Ser ver Li f eCycl eRunt i meMBean
State.

See j avax. managenent . noni tor. Stringhonit or in the Java SE 17 API Specification at
https://docs.oracle.com en/javaljavase/ 17/ docs/ api/j ava. managenent /j avax/
managenent / noni t or/ Stringhonitor. htm , which implements St ri nghbni t or MBean.

GaugelMbni t or MBean observes attributes whose value is a Nunber .

Use this monitor to observe an attribute whose value fluctuates as a result of normal
operations. Configure the gauge monitor to emit a notification if the value of the attribute
fluctuates outside a specific range. For example, you can use it to monitor the

Thr eadPool Runt i meMBean St andby Thr eadCount attribute to verify that the number of
unused but available threads in a server falls within an acceptable range.

See j avax. managenent . noni t or. Gaugehbni t or in the Java SE 17 API Specification (see
https://docs. oracle. com en/javaljavase/ 17/ docs/ api/java. managenent/j avax/
managenent / noni t or / GaugeMbni t or . ht ml), which implements GaugeMbni t or MBean.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 15 of 20

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/StringMonitor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/StringMonitor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/GaugeMonitor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/GaugeMonitor.html

ORACLE

Chapter 7
Using Monitor MBeans to Observe Changes: Main Steps

* Count er Moni t or MBean observes attributes whose value is a Nunber .

Use this monitor to observe an attribute whose value only increases as a result of normal
operation. Configure the counter monitor to emit a notification if the value of the attribute
crosses an upper threshold. You can also configure the counter monitor to increase the
threshold and then reset the threshold at a specified point.

For example, to track the overall number of hits on a server and to be notified each time
100 additional hits have accumulated, use a counter monitor that observes the
Server Runt i meMBean OpenSocket sCur r ent Count attribute.

See j avax. managenent . noni t or. Count er Moni t or in the Java SE 17 API Specification
(see https://docs.oracle.comen/javaljavase/ 17/ docs/ api/java. managenent/j avax/
managenent / moni t or/ Count er Moni t or. ht ml), which implements Count er Moni t or MBean.

All monitor MBeans emit notifications of type

j avax. managenent . noni t or. Moni t or Noti fi cati on. When a monitor MBean generates a
notification, it describes the event that generated the natification by writing a specific value into
the notification's Type property. Table 7-4 describes the value of the Type property that the
different types of monitor MBeans encode. A filter or listener can use the notification's

get Type() method to retrieve the String in the Type property.

Table 7-4 Monitor MBeans and the MonitorNotification Type Property

__|
A Monitor MBean of This Encodes This String in the MonitorNotification's Type Property
Type
Count er Moni t or j m. moni tor. count er. t hreshol d when the value of the counter

reaches or exceeds a threshold known as the comparison level.

GaugeMoni t or j m. moni t or . gauge. hi gh if the observed attribute value is
increasing and becomes equal to or greater than the high threshold
value. Subsequent crossings of the high threshold value do not cause
further notifications unless the attribute value becomes equal to or less
than the low threshold value.

j m. moni t or . gauge. | owif the observed attribute value is decreasing
and becomes equal to or less than the low threshold value. Subsequent
crossings of the low threshold value do not cause further notifications
unless the attribute value becomes equal to or greater than the high
threshold value.

StringMonitor j m. moni tor. string. mat ches if the observed attribute value
matches the string to compare value. Subsequent matches of the string
to compare values do not cause further notifications unless the attribute
value differs from the string to compare value.

j m. moni tor. string.differs if the attribute value differs from the
string to compare value. Subsequent differences from the string to
compare value do not cause further notifications unless the attribute
value matches the string to compare value.

Errors and the MonitorNotification Type Property

If an error occurs, all monitors encode one of the following values in the notification's Type
property:

e jnx.nonitor.error.nbean, which indicates that the observed MBean is not registered in
the MBean Server. The observed object name is provided in the notification.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 16 of 20

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/CounterMonitor.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/CounterMonitor.html

ORACLE Chapter 7
Using Monitor MBeans to Observe Changes: Main Steps

e jmx.nonitor.error.attribute, which indicates that the observed attribute does not exist
in the observed object. The observed object name and observed attribute name are
provided in the notification.

e jnx.nonitor.error.type, which indicates that the object instance of the observed
attribute value is nul I or not of the appropriate type for the given monitor. The observed
object name and observed attribute name are provided in the notification.

e jmx.nonitor.error.runtine, which contains exceptions that are thrown while trying to get
the value of the observed attribute (for reasons other than the cases described above).

The counter and the gauge monitors can also encode j nx. noni tor. error.threshol d into the
Type property under the following circumstances:

* For a counter monitor, when the threshold, the offset, or the modulus is not of the same
type as the observed counter attribute.

* For a gauge monitor, when the low threshold or high threshold is not of the same type as
the observed gauge attribute.

Creating a Notification Listener for a Monitor MBean

When an observed attributes meets the criteria that you specify, a monitor MBean emits a
notification. There are no special requirements for creating a listener for a

Moni tor Noti fi cation. The steps are the same as those described in Creating a Notification
Listener, except:

* You listen for notifications of type Moni t or Noti fi cation.

e Optionally, you can import the j avax. managenent . noni t or. Moni t or Noti fi cati on class
and invoke its methods to retrieve additional information about the event that generated
the notification.

See Example 7-5.
Example 7-5 Listener for Monitor Notifications

i mport javax.managenent. Notification;

i mport javax.managenent. NotificationLi stener;

i mport j avax.managenent. monitor. MonitorNotification;

public class MonitorListener inplements NotificationListener {

public void handl eNotification(Notification notification, Cbject obj) {
if(notification instanceof Notification) {

Notification notif = (Notification) notification;
Systemout. printIn("Notification type" + notif.getType());
Systemout. println("Mssage: " + notif.getMessage());

if (notification instanceof MonitorNotification) {
Moni torNotification mm = (MonitorNotification) notification;
Systemout.println("Coserved Attribute: " +
m. get CbservedAttribute());
Systemout.printIn("Trigger: " + m.getTrigger());

}

Registering the Monitor and Listener

Recall that to use a monitor MBean, you first must create and register an instance of the
monitor MBean in the MBean server. Then you register a listener with the monitor MBean that
you created. You can do all of this in a single class.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 17 of 20

ORACLE’

Chapter 7
Using Monitor MBeans to Observe Changes: Main Steps

To register a monitor MBean, register your listener, and start the monitor MBean:

1.

Initialize a connection to the Domain Runtime MBean Server.

See Make Remote Connections to an MBean Server.

Create an bj ect Nanme for your monitor MBean instance.

See j avax. managenent . Cbj ect Nane in the Java SE 17 API Specification at htt ps: //
docs. oracl e. coml en/javalj avase/ 17/ docs/ api /| ava. nenagenent / | avax/ managenent /
(bj ect Nane. htnl .

Oracle recommends that your object name starts with the name of your organization and
includes key properties that clearly identifies the purpose of the monitor MBean instance.

For example, myconpany: Nane=Socket Moni t or, Type=Count er Moni t or
Create and register one of the monitor MBeans.

Use | avax. managenent . MBeanSer ver Connect i on. creat eMBean(String cl assnane
hj ect Name name) method, where:

e cl assnane represents one of the following values:

— javax. managenent . nonit or. Count er Moni t or

— javax. managenent . nonit or. Gaugehbni t or

— javax.management. nonitor. Stringhonitor
* nane represents the object name that you created for the monitor MBean instance.
Configure the monitor MBean by setting the value of its attributes.

For guidelines on which attributes to set, see the j avax. managenent . noni t ori ng package
in the Java SE 17 API Specification at htt ps: // docs. oracl e. com en/ j avalj avase/ 17/
docs/ api /| ava. managenent /| avax/ managenent / noni t or / package- sunmary. ht i .

To specify the MBean that your monitor MBean monitors (the observed MBean), invoke the
monitor MBean's addObser vedChj ect (bj ect Nare obj ect nane) and
addCbservedAttribute(String attributenane) operations where.

e obj ect nane is the Chj ect Nane of the observed MBean

e attributename is the name of the attribute in the observed MBean that you want to
monitor

A single instance of a monitor MBean can monitor multiple MBeans. Invoke the
addCbser vedOhj ect and addCbser vedAt t ri but e operation for each MBean instance that
you want to monitor.

Instantiate the listener object that you created in Creating a Notification Listener for a
Monitor MBean.

Optionally instantiate and configure a filter.

Register the listener and optional filter with the monitor MBean. Do not register the
listener with the observed MBean.

Invoke the monitor MBean's addNot i fi cati onLi st ener (Noti ficationLi stener
listener, NotificationFilter filter, Object handback) method.

Start the monitor by invoking the monitor MBean's st art () operation.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 18 of 20

https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/ObjectName.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/ObjectName.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/ObjectName.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.management/javax/management/monitor/package-summary.html

ORACLE Chapter 7
Using Monitor MBeans to Observe Changes: Main Steps

Example: Registering a CounterMonitorMBean and Its Listener

Example 7-6 shows the mai n() method of a class that creates and configures a

Count er Moni t or MBean to observe the OpenSocket sCur r ent Count attribute in each
Server Runt i meMBean instance in a domain. (See OpenSocketsCurrentCount in MBean
Reference for Oracle WebLogic Server.)

The code example connects to the Domain Runtime MBean Server so that it can monitor
multiple instances of Ser ver Runt i meMBean. Note the following:

e Only one instance of Count er Moni t or MBean monitors all instances of Ser ver Runt i meMBean.
The Domain Runtime MBean Server gives the Count er Moni t or MBean federated access to
instances of Server Runt i meMBean that are running in a different JVM.

* Only one instance of your listener class and the filter class listens and filters notifications
from the Count er Moni t or MBean.

To compile and run this main method, use the supporting custom methods from Example 7-2
and run the resulting class as a remote JMX client.

Example 7-6 Example: Registering a CounterMonitorMBean and Its Listener

public static void main(String[] args) throws Exception {
String hostname = args[0];
String portString = args[1];
String username = args[2];
String password = args[3];

I nvokes a custom nethod that establishes a connection to the
Domai n Runtime MBean Server and uses an instance of
MBeanSer ver Connection to represents the connection. The custom
met hod assi gns the MBeanServer Connection to a class-w de, static
variabl e named "connection".

i ni t Connection(hostnane, portString, usernane, password);
/I Creates and registers the nonitor Mean.
bj ect Nane monitorON =
new Obj ect Name(" myconpany: Name=ny Socket Moni t or, Type=Count er Monitor");
String classnane = "javax. managenent. noni tor. CounterMnitor";

connection. creat eMBean(cl assname, monitorON);

/] Configure the nonitor MBean.
Nurber initThreshold = new Long(2);
Nurmber of fset = new Long(1);
connection. set Attribute(monitorON,

new Attribute("InitThreshold", initThreshold));
connection.setAttribute(monitorON, new Attribute("Ofset”, offset));
connection. set Attribute(monitorON,

new Attribute("Notify", new Bool ean(true)));

/1 Gets the object names of the MBeans that you want to nonitor.
bj ect Nane[] serverRT = get ServerRuntimes();
int length= (int) serverRT.length;
for (int i=0; i < length; i++) {
I/ Sets each instance of ServerRuntine MBean as a nonitored MBean.

connection.invoke(nonitorON, "addChservedQhject",
new Object[] { serverRT[i] },
new String[] { "javax.managenment. bject Nane" });

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 19 of 20

ORACLE’

Chapter 7

Using Monitor MBeans to Observe Changes: Main Steps

Attribute attr = new Attribute("CbservedAttribute",
" OpenSocket sCurrent Count ") ;
connection.setAttribute(nonitorON, attr);

}

/1 Instantiates your listener class and configures a filter to

/1 forward only counter nonitor nessages.

Moni tor Li stener |istener = new MonitorListener();
NotificationFilterSupport filter = new NotificationFilterSupport();
filter.enabl eType("jnx. monitor.counter");

filter.enabl eType("jnx.monitor.error");

/I'Uses the MBean server's addNotificationListener nethod to
/lregister the listener and filter with the nonitor MBean.

System out. println("===> ADD NOTI FI CATI ON LI STENER TO " +noni t or ON) ;
connection. addNoti ficationListener(nmonitorQN, listener, filter, null);
Systemout. println("\n[nyListener]: Listener registered ...");

//Starts the nonitor.
connection.invoke(nonitorON, "start", new Qbject[] { }, new String[] { });

|/ Keeps the remote client active.
Systemout.println("pausing........... ");
Systemin.read();

} catch(Exception e) {

Systemout. println("Exception: " + e);
e.printStackTrace();

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025

Page 20 of 20

Configuring WebLogic Server IMX Services

This chapter describes how to establish and configure the specific set of IMX services that are
to be available within a WebLogic Server domain. For example, in a production environment
you can disable the WebLogic Server editing service and therefore prevent most run-time
changes to the domain.

This chapter includes the following sections:

Determining the JMX Services Available in a Domain

Within a WebLogic domain, you can specify which JMX services are available.

The following attributes of JMXMBean determine which JMX services are available in a domain
(see IMXMBean in MBean Reference for Oracle WebLogic Server):

Edi t MBeanSer ver Enabl ed controls whether JMX clients, including utilities such as the
WebLogic Remote Console and the WebLogic Scripting Tool, can modify a domain's
configuration.

Donmai nMBeanSer ver Enabl ed controls whether JMX clients can access all run-time MBeans
and read-only configuration MBeans through a single connection to the Domain Runtime
MBean Server.

Runt i meMBeanSer ver Enabl ed controls whether JMX clients can access a specific server's
run-time MBeans and read-only configuration MBeans through the server's Runtime
MBean Server.

Pl at f or mvBeanSer ver Enabl ed controls whether all WebLogic Server instances initialize the
JDK platform MBean server. Pl at f or mvBeanSer ver Used controls whether all WebLogic
server instances start their Runtime MBean Servers as the JDK platform MBean server.
This makes it possible to access WebLogic Server MBeans and the JVM platform MBeans
from a single MBean server.

Conpati bi | i t yMBeanSer ver Enabl ed enables JMX clients to use the deprecated
webl ogi c. management . MBeanHone interface to access WebLogic Server MBeans.

Managenent EJBEnabl ed controls whether the current WebLogic Server domain supports the
Jakarta Management APIs.

Example: Using WebLogic Scripting Tool to Make a Domain

Read-Only

The following example uses the WebLogic Scripting Tool (WLST) to set the JMXMBean

Edi t MBeanSer ver Enabl ed attribute to f al se. It assumes that you are running WLST on a
Windows computer, that you created a domain under c: \ nydonai n, and that you have not
deleted the scripts that WebLogic Server creates along with your domain.

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server

G31977-01

October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 1 of 2

ORACLE Chapter 8
Example: Using WebLogic Scripting Tool to Make a Domain Read-Only

@® Note

The following steps prevent JMX clients (including the WebLogic Remote Console and
the WebLogic Scripting Tool in online mode) from modifying the domain's
configuration. You can still modify the domain configuration through the offline editing
feature of WebLogic Scripting Tool.

These steps do not prevent JMX clients from deploying or undeploying modules
because the WebLogic Server deployment service does not use JMX.

1. Start the domain's Administration Server.
2. Ina command prompt, set up the required environment by running the following script:
c: \ mydomai n\ bi n\ set Domai nEnv. cmd
3. Inthe command prompt, enter the following commands:
a. YORACLE HOVE% or acl e_comon\ bi n\wl st . sh
b. connect (' webl ogic',' webl ogic')
c. edit()
d. startEdit()
e. cd('IMX nydomain')
f. set('EditMeanServerEnabled','false')
g. activate()

h. exit()

Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
G31977-01 October 7, 2025

Copyright © 2007, 2025, Oracle and/or its affiliates. Page 2 of 2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documentation
	Conventions

	1 Introduction
	2 Understanding WebLogic Server MBeans
	Basic Organization of a WebLogic Server Domain
	Separate MBean Types for Monitoring and Configuring
	The Life Cycle of WebLogic Server MBeans
	WebLogic Server MBean Data Model
	Containment and Reference Relationships
	Containment Relationship
	Reference Relationship

	WebLogic Server MBean Object Names
	MBeanServerInvocationHandler

	MBean Servers
	Connecting to MBean Servers
	Local Connections to MBean Servers
	Remote Connections to MBean Servers

	Using the Platform MBean Server
	Service MBeans

	Security for WebLogic Server MBeans
	Additional Security Resources for Some Attributes and Operations

	3 Overview of WebLogic Server Subsystem MBeans
	Domain and Server Logging Configuration
	JMS Server and JMS System Module Configuration
	JDBC Resource Configuration

	4 Accessing WebLogic Server MBeans with JMX
	Set Up the Classpath for Remote Clients
	Make Remote Connections to an MBean Server
	Example: Connecting to the Domain Runtime MBean Server
	Best Practices: Choosing an MBean Server

	Make Local Connections to the Runtime MBean Server
	Make Local Connections to the Domain Runtime MBean Server
	Navigate MBean Hierarchies
	Example: Printing the Name and State of Servers
	Example: Monitoring Servlets

	5 Managing a Domain's Configuration with JMX
	Editing MBean Attributes: Main Steps
	Start an Edit Session
	Change Attributes or Create New MBeans
	Save Changes to the Pending Configuration Files
	Activate Your Saved Changes
	Exception Types Thrown by Edit Operations

	Listing and Undoing Changes
	List Unsaved Changes
	List Unactivated Changes
	List Changes in the Current Activation Task
	Undoing Changes

	Tracking the Activation of Changes
	Listing the Status of the Current Activation Task
	Listing All Activation Tasks Stored in Memory
	Purging Completed Activation Tasks from Memory

	Managing Locks
	Best Practices: Recommended Pattern for Editing and Handling Exceptions
	Setting and Getting Encrypted Values
	Set the Value of an Encrypted Attribute (Recommended Technique)
	Set the Value of an Encrypted Attribute (Compatibility Technique)
	Back Up an Encrypted Value

	6 Managing Security Realms with JMX
	Understanding the Hierarchy of Security MBeans
	Base Provider Types and Mix-In Interfaces
	Security MBeans

	Choosing an MBean Server to Manage Security Realms
	Working with Existing Security Providers
	Discovering Available Services
	Example: Adding Users to a Realm

	Modifying the Realm Configuration

	7 Using Notifications and Monitor MBeans
	Best Practices: Listening Directly Compared to Monitoring
	Best Practices: Listening for WebLogic Server Events
	Best Practices: Listening or Monitoring WebLogic Server Runtime Statistics
	Listening for Notifications from WebLogic Server MBeans: Main Steps
	Creating a Notification Listener
	Listening from a Remote JVM
	Best Practices: Creating a Notification Listener

	Configuring a Notification Filter
	Creating a Custom Filter

	Registering a Notification Listener and Filter
	Packaging and Deploying Listeners on WebLogic Server
	Example: Listening for The Registration of Configuration MBeans

	Using Monitor MBeans to Observe Changes: Main Steps
	Monitor MBean Types and Notification Types
	Errors and the MonitorNotification Type Property

	Creating a Notification Listener for a Monitor MBean
	Registering the Monitor and Listener
	Example: Registering a CounterMonitorMBean and Its Listener

	8 Configuring WebLogic Server JMX Services
	Determining the JMX Services Available in a Domain
	Example: Using WebLogic Scripting Tool to Make a Domain Read-Only

