
Oracle® Fusion Middleware
Understanding Oracle WebLogic Server

15c (15.1.1.0.0)
G31428-01
October 2025

Oracle Fusion Middleware Understanding Oracle WebLogic Server, 15c (15.1.1.0.0)

G31428-01

Copyright © 2007, 2025, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Documentation Accessibility i

Diversity and Inclusion i

Conventions i

1 Introduction

Product Overview 1

Programming Models 1

High Availability 2

Diagnostic Framework 3

Security 3

Client Options 4

Integration with Other Systems 4

Integration with Web Servers 4

Running Oracle WebLogic Server in Kubernetes 4

WebLogic Deploy Tooling 4

WebLogic Image Tool 5

WebLogic Kubernetes Operator 5

WebLogic Remote Console 5

WebLogic Kubernetes Toolkit UI 6

WebLogic Monitoring Exporter 6

WebLogic Server API Examples and Sample Applications 6

Upgrade 7

2 System Administration

Overview of WebLogic Server System Administration 1

Choosing the Appropriate Technology for Your Administrative Tasks 1

Summary of System Administration Tools and APIs 4

Roadmap for Administering the WebLogic Server System 7

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page i of v

3 Overview of the Administration Console

Using the WebLogic Remote Console 1

4 WebLogic Server Domains

Understanding Domains 1

Organizing Domains 1

Contents of a Domain 3

Administration Server 3

Managed Servers and Managed Server Clusters 4

Managed Coherence Servers and Coherence Clusters 4

Resources and Services 4

Roadmap for Understanding WebLogic Server Domains 5

5 WebLogic Server Clustering

Overview of WebLogic Server Clusters 1

Relationship Between Clusters and Domains 1

Relationship Between Coherence and WebLogic Server Clusters 2

Benefits of Clustering 2

Key Capabilities of Clusters 2

Objects That Can Be Clustered 3

About Dynamic Clusters 3

Roadmap for Clustering in WebLogic Server 4

6 Developing Applications in WebLogic Server

WebLogic Server and the Jakarta EE Platform 1

Overview of Jakarta EE Applications and Modules 2

Roadmap for Developing Applications in WebLogic Server 2

7 Deploying Applications in WebLogic Server

Overview of the Deployment Process 1

Jakarta EE Deployment Implementation 1

Fast Track Deployment Guide 3

Jakarta EE Deployment 3

Auto-Deployment 3

System Administrator Tools 3

JSP/HTML Deployment 4

Coherence Deployment 4

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page ii of v

Roadmap for Deploying Applications in WebLogic Server 4

8 WebLogic Server Data Sources

Understanding JDBC Data Sources 1

Understanding Generic Data Sources 1

Understanding Active GridLink Data Sources 2

Understanding JDBC Multi Data Sources 2

Understanding Universal Connection Pool Data Sources 2

Roadmap for WebLogic Server Data Sources 3

9 WebLogic Server Messaging

Overview of JMS and WebLogic Server 1

Jakarta Messaging 1

Roadmap for WebLogic Server Messaging 2

10

Understanding WebLogic Server Security

Jakarta EE Security API Support in WebLogic Server 1

Overview of the WebLogic Server Security Service 1

WebLogic Server Security Service Architecture 2

WebLogic Security Framework 3

Single Sign-on with the WebLogic Server Security Framework 5

SAML Token Profile Support in WebLogic Web Services 5

The Security Service Provider Interfaces (SSPIs) 5

WebLogic Security Providers 6

Managing WebLogic Server Security 6

Security for Coherence 6

Roadmap for Securing WebLogic Server 7

11

WebLogic Server Web Services

Anatomy of a Web Service 1

Web Service Standards 2

Roadmap for Web Services 2

12

Jakarta Enterprise Beans (EJBs)

Understanding EJBs 1

EJB Documentation in WebLogic Server 1

Additional EJB Information 1

Session EJBs Implement Business Logic 2

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page iii of v

Message-Driven Beans Implement Loosely Coupled Business Logic 3

EJB Anatomy and Environment 3

EJB Components 3

The EJB Container 4

Embeddable EJB Container 4

EJB Metadata Annotations 4

Optional EJB Deployment Descriptors 5

EJBs Clients and Communications 5

Accessing EJBs 5

EJB Communications 6

Securing EJBs 6

Roadmap for EJBs in WebLogic Server 7

13

Monitoring, Diagnosing, and Troubleshooting

WebLogic Diagnostics Framework 1

Logging Services 2

SNMP Support 2

Custom JMX Applications 3

Jakarta Management APIs 3

Roadmap for Monitoring, Diagnosing, and Troubleshooting in WebLogic Server 3

14

Sample Applications and Code Examples

Installing and Running the Examples 1

Installing the WebLogic Server Code Examples 1

Starting the WebLogic Server Samples Domain 3

Running the WebLogic Server Code Examples 3

Conventions 3

Jakarta EE 8 Examples 4

Java EE 7 Examples 4

Java EE 6 Examples 5

Additional API Examples 6

Avitek Medical Records 6

Derby Open-Source Database 7

15

WebLogic Server Compatibility

Jakarta EE 9.1 Compatibility 1

Compatibility Within a Domain 1

About WebLogic Server Version Numbers 1

WebLogic Version Compatibility 2

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page iv of v

Hardware, Operating System, and JVM Platform Compatibility 3

Node Manager Compatibility 3

Persistent Data Compatibility 3

API Compatibility 3

Protocol Compatibility 4

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page v of v

Preface

This document provides an overview of Oracle WebLogic Server 15c features and describes
how you can use them to create enterprise-ready solutions.

Audience
This document is intended for anyone interested in an overview of the key concepts and
architecture of Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit https://support.oracle.com/portal/ or visit https://
www.oracle.com/corporate/accessibility/learning-support.html#support-tab if you are
hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page i of ii

https://www.oracle.com/corporate/accessibility/
https://support.oracle.com/portal/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Preface

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page ii of ii

1
Introduction

Oracle WebLogic Server is the industry's best application server for building and deploying
Jakarta EE applications with support for new features for lowering cost of operations,
improving performance, enhancing scalability, and supporting the Oracle Applications portfolio.

The following sections provide an overview of Oracle WebLogic Server features and describe
how you can use them to create enterprise-ready solutions:

Product Overview
Oracle WebLogic Server provides a modern development platform for building applications, a
runtime platform for high performance and availability, and rich management tooling for
efficient and low cost operations.

The WebLogic Server complete implementation of the Jakarta Platform, Enterprise Edition 9.1
(Jakarta EE 9.1) specification provides a standard set of APIs for creating distributed Jakarta
applications that can access a wide variety of services, such as databases, messaging
services, and connections to external enterprise systems. End-user clients access these
applications using web browser clients or Jakarta clients. See Programming Models.

The WebLogic Server infrastructure supports the deployment of many types of distributed
applications and is an ideal foundation for building applications based on Service Oriented
Architectures (SOA). SOA is a design methodology aimed at maximizing the reuse of
application services. See Oracle SOA - Service-Oriented Architecture.

In addition to the Jakarta EE implementation, WebLogic Server enables enterprises to deploy
mission-critical applications in a robust, secure, highly available, and scalable environment.
These features allow enterprises to configure clusters of WebLogic Server instances to
distribute load, and provide extra capacity in case of hardware or other failures. New diagnostic
tools allow system administrators to monitor and tune the performance of deployed
applications and the WebLogic Server environment itself. You can also configure WebLogic
Server to monitor and tune application throughput automatically without human intervention.
Extensive security features protect access to services, keep enterprise data secure, and
prevent malicious attacks.

Programming Models
Oracle WebLogic Server provides complete support for the Jakarta Platform, Enterprise Edition
9.1 (Jakarta EE 9.1) Platform, which reduces the complexity of enterprise application
development by providing a development model, API, and runtime environment that allow
developers to concentrate on functionality. The Jakarta EE 9.1 specification is available at
https://jakarta.ee/specifications/platform/9.1/. For information about Jakarta EE
programming model support in WebLogic Server, see the following programming guides:

• Web Applications provide the basic Jakarta EE mechanism for deployment of dynamic web
pages based on the Jakarta EE standards of servlets and Jakarta Server Pages (JSP).
Web applications are also used to serve static web content such as HTML pages and
image files.

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 7

https://www.oracle.com/service-oriented-architecture-soa/
https://jakarta.ee/specifications/platform/9.1/

• Web Services provide a shared set of functions that are available to other systems on a
network and can be used as a component of distributed web-based applications.

• XML capabilities include data exchange, and a means to store content independent of its
presentation, and more.

• Jakarta Messaging (JMS) enables applications to communicate with one another through
the exchange of messages. A message is a request, report, and/or event that contains
information needed to coordinate communication between different applications.

• JDBC provides pooled access to DBMS resources.

• Resource Adapters provide connectivity to Enterprise Information Systems (EISes).

• Jakarta Enterprise Beans (EJB) provide Java objects to encapsulate data and business
logic.

• Remote Method Invocation (RMI) is the Jakarta standard for distributed object computing,
allowing applications to invoke methods on a remote object locally.

• Using the Jakarta EE Security API allow you to integrate authentication and authorization
into your Jakarta EE applications. You can also use the Security Provider APIs to create
your own custom security providers.

• WebLogic Tuxedo Connectivity (WTC) provides interoperability between WebLogic Server
applications and Tuxedo services. WTC allows WebLogic Server clients to invoke Tuxedo
services and Tuxedo clients to invoke EJBs in response to a service request.

• Coherence provides distributed caching and data grid capabilities for WebLogic Server
applications.

• Overview of WebLogic Server Application Development describes developer tools and
best practices for coding WebLogic Server applications.

High Availability
Oracle WebLogic Server provides several features and tools to support the deployment of
highly-available applications that can be automatically scaled to meet demand in a reliable and
fault-tolerant manner. The high availability features provided in WebLogic Server include the
following:

• WebLogic Server clusters provide scalability and reliability for your applications by
distributing the work load among multiple instances of WebLogic Server. Incoming
requests can be routed to a WebLogic Server instance in the cluster based on the volume
of work being processed. In case of hardware or other failures, session state is available to
other cluster nodes that can resume the work of the failed node. In addition, you can
implement clusters so that services may be hosted on a single machine with options to
migrate the service to another node in the event of failure.

In addition to replicating HTTP session state across servers within a cluster, WebLogic
Server can also replicate HTTP session state across multiple clusters, thereby expanding
availability and fault tolerance in multiple geographic regions, power grids, and internet
service providers.

• Elasticity in dynamic clusters enables the automatic scaling of dynamic clusters and re-
provisioning of their associated resources. The elasticity framework leverages the
WebLogic Diagnostic Framework (WLDF) policies and actions system.

• Coherence clusters provide scalability and fault tolerance by distributing data across any
number of cluster members ensuring that data is always available and easily accessed by
any application hosted in WebLogic Server.

Chapter 1
High Availability

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 7

In addition, web applications can choose to use a Coherence data grid for storing and
replicating HTTP session state to improve scalability, fault tolerance, and performance.

• Work Managers prioritize work based on rules you define and by monitoring actual run
time performance statistics. This information is then used to optimize the performance of
your application. Work Managers may be applied globally to a WebLogic Server domain or
to a specific application or component.

• Overload protection gives WebLogic Server the ability to detect, avoid, and recover from
overload conditions.

• Network channels facilitate the effective use of network resources by segregating network
traffic into channels based on the type of traffic.

• Simplified JMS cluster configuration and high availability allows applications to easily scale
WebLogic JMS services such as JMS servers, SAF agents, and persistent stores. Cluster-
targeted JMS servers and persistent stores allow targeting the JMS service artifacts
directly to the cluster and eliminate the need to configure artifacts individually for every
server in a cluster.

• WebLogic Server persistent store is a built-in, high-performance storage solution for
WebLogic Server subsystems and services that require persistence. For example, it can
store persistent JMS messages or temporarily store messages sent using the Store-and-
Forward feature. The persistent store supports persistence to a file-based store or to a
JDBC-enabled database.

• Store-and-forward services enable WebLogic Server to deliver messages reliably between
applications that are distributed across WebLogic Server instances. If the message
destination is not available at the moment the messages are sent, either because of
network problems or system failures, then the messages are saved on a local server
instance and are forwarded to the remote destination once it becomes available.

• Enterprise-ready deployment tools facilitate deployment and migration of applications from
the development phase to a production environment.

• Production redeployment enables enterprises to deploy a new version of their application
without interrupting work in progress on the older version.

Diagnostic Framework
The WebLogic Diagnostic Framework is a monitoring and diagnostic service that lets you
create, collect, analyze, archive, and access diagnostic data generated by a running WebLogic
Server instance and applications deployed on it. This diagnostic data provides insight into the
runtime performance of WebLogic Server instances, and deployed applications, which helps
you isolate and diagnose faults and performance bottlenecks when they occur. See What Is
the WebLogic Diagnostics Framework? in Configuring and Using the Diagnostics Framework
for Oracle WebLogic Server.

Security
The WebLogic Server security architecture provides a comprehensive, flexible security
infrastructure designed to address the security challenges of making applications available on
the Internet. WebLogic security can be used standalone to secure WebLogic Server
applications, or as part of an enterprise-wide, security management system that represents a
best-in-breed security management solution. See Overview of the WebLogic Security Service
in Understanding Security for Oracle WebLogic Server for more information.

Chapter 1
Diagnostic Framework

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 7

Client Options
In addition to support for browser-based web application clients, WebLogic Server also
supports a variety of client types for creating rich GUI applications or simple command-line
utilities. These client types include T3 clients, Java IIOP clients, CORBA clients, JMX clients,
JMS clients, Web Services clients, and WebLogic Tuxedo Connector clients. For more
information, see Overview of Standalone Clients in Developing Standalone Clients for Oracle
WebLogic Server.

Integration with Other Systems
WebLogic Server provides a variety of tools to integrate your applications with disparate
systems. These tools include web services, resource adapters, the JMS .NET client, the JMS
C client, tooling for integrating JMS providers options, advanced queuing, and RMI.

Integration with Web Servers
WebLogic Server can be used with web server plug-ins, provided separately, that allow
requests to Oracle WebLogic Server to be proxied from Oracle HTTP Server, Apache HTTP
Server or Microsoft Internet Information Server. Typically, these web servers serve static HTML
content, while requests for dynamic web content, such as JSPs, are directed to the WebLogic
Server environment.

Running Oracle WebLogic Server in Kubernetes
WebLogic Server running in Kubernetes lets you modernize your deployments and reap the
benefits of running in Kubernetes.

Some of these benefits include leveraging a modern infrastructure, a reduced time for
deployment, automated and simplified patching, automated and accelerated application
updates, built-in high availability, dynamic and automated scaling, and portability across clouds
and environments.

The WebLogic Kubernetes Toolkit lets you migrate your existing applications, manage and
update your domains, deploy and update your applications, monitor them, persist the logs, and
automate the creation and patching of images. Integration between the tools lets you automate
updates through CI/CD processes. For more information, see the Oracle WebLogic Kubernetes
Toolkit.

The following document provides Oracle recommended procedures to obtain, create, and
update WebLogic Server and Oracle Fusion Middleware (FMW) images with patches, and to
update existing containers running in production. See Obtaining, Creating, and Updating
Oracle Fusion Middleware Images with Patches in Patching with OPatch.

WebLogic Deploy Tooling
WebLogic Deploy Tooling (WDT) simplifies the automation of WebLogic Server domain
provisioning and applications deployment.

WDT creates a declarative, metadata model that describes the domain, applications, and
resources used by applications. This metadata model makes it easy to provision, deploy, and
perform domain lifecycle operations in a repeatable fashion. You can use WDT to migrate on-
premises domain configuration and applications to a Docker image or a persistent volume in

Chapter 1
Client Options

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 7

https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/kubernetes_toolkit.html
https://docs.oracle.com/en/middleware/fusion-middleware/weblogic-server/kubernetes_toolkit.html

Kubernetes. Find the complete WebLogic Deploy Tooling documentation and samples, and the
open source WebLogic Deploy Tooling GitHub project at https://github.com/oracle/
weblogic-deploy-tooling.

WebLogic Image Tool
The WebLogic Image Tool lets you automate building, patching, and updating your WebLogic
Server Docker images, including your own customized images.

With the WebLogic Image Tool, you can:

• Create a customized WebLogic Server and FMW Infrastructure Docker image.

• Patch a base install image of WebLogic Server or FMW Infrastructure.

• Create an auxiliary image containing the WDT model, WDT variables, and WDT archive
files.

In addition, you can incorporate these use cases into an automated process for patching and
updating your WebLogic Server infrastructure and applications running in Kubernetes. Find the
complete WebLogic Image Tool documentation and samples, and the open source WebLogic
Image Tool GitHub project at https://github.com/oracle/weblogic-image-tool.

WebLogic Kubernetes Operator
The WebLogic Kubernetes Operator is an application-specific controller that extends
Kubernetes to create, configure, and manage instances of complex applications. The operator
follows the standard Kubernetes operator pattern, and simplifies the management and
operation of WebLogic domains and deployments.

The operator uses a common set of Kubernetes APIs to provide an improved user experience
when automating operations such as provisioning, life cycle management, application
versioning, product patching, scaling, and security.

The operator is developed as an open source project fully supported by Oracle. The fastest
way to experience the operator is to follow the Quick Start guide. Alternatively, you can peruse
the documentation, read the blogs, or try out the samples. For project scripts, additional
samples, and source files, see the WebLogic Kubernetes Operator GitHub repository.

WebLogic Remote Console
The Oracle WebLogic Remote Console is a lightweight, open source console that you can use
to manage domain configurations of WebLogic Server Administration Servers or WebLogic
Deploy Tooling (WDT) metadata models.

The WebLogic Remote Console provides a WebLogic Server administration GUI that enables
REST-based access to WebLogic management information, in alignment with current cloud-
native trends.

For more information, see the Oracle WebLogic Remote Console Online Help.

Note

The Oracle WebLogic Server Administration Console, a GUI for managing WebLogic
domains, was removed in 14.1.2.0.0. The WebLogic Remote Console provides
comparable functionality to the removed Administration Console.

Chapter 1
WebLogic Image Tool

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 7

https://oracle.github.io/weblogic-deploy-tooling/
https://github.com/oracle/weblogic-deploy-tooling
https://github.com/oracle/weblogic-deploy-tooling
https://oracle.github.io/weblogic-image-tool/
https://github.com/oracle/weblogic-image-tool
https://oracle.github.io/weblogic-kubernetes-operator/quickstart/
https://oracle.github.io/weblogic-kubernetes-operator/
https://blogs.oracle.com/weblogicserver/how-to-weblogic-server-on-kubernetes
https://oracle.github.io/weblogic-kubernetes-operator/samples/
https://github.com/oracle/weblogic-kubernetes-operator

WebLogic Kubernetes Toolkit UI
The WebLogic Kubernetes Toolkit (WKT) UI provides a graphical user interface that wraps the
WKT tools, Helm, and the Kubernetes client to simplify the combined use of these tools for
Kubernetes deployments.

For more information, see the WebLogic Kubernetes Toolkit UI Documentation in GitHub.

WebLogic Monitoring Exporter
The WebLogic Monitoring Exporter is a web application that you can deploy on a WebLogic
Server instance that you want to monitor. The exporter uses the WebLogic Server RESTful
Management Interface for accessing runtime state and metrics and then exports Prometheus-
compatible metrics, which can be displayed in Grafana dashboards for monitoring.

For practical examples, see these blog posts: Exporting Metrics from WebLogic Server and
Using Prometheus and Grafana to Monitor WebLogic Server on Kubernetes. For a detailed
description of the WebLogic Monitoring Exporter, see the WebLogic Monitoring Exporter
project in GitHub.

WebLogic Server API Examples and Sample Applications
Oracle WebLogic Server includes a comprehensive set of code examples and sample
applications that show how to implement Jakarta EE APIs and Oracle WebLogic Server-
specific features in your applications.
Code examples demonstrating Jakarta EE APIs and other WebLogic Server features are
provided in a separate, examples JAR file, which you install in the same ORACLE_HOME as your
WebLogic Server installation. To access the code examples, launch the startWebLogic.cmd or
startWebLogic.sh command from ORACLE_HOME/user_projects/domains/wl_server, where
ORACLE_HOME is the directory you specified as the Oracle Home when you installed Oracle
WebLogic Server. As they become available, you can also download additional examples. For
more information, see Installing the WebLogic Server Code Examples.

Along with the code examples, two versions of a complete sample application, called Avitek
Medical Records (or MedRec), are also available.

The original MedRec is a WebLogic Server sample application suite that concisely
demonstrates all aspects of the Jakarta EE platform. MedRec is designed as an educational
tool for all levels of Jakarta EE developers. It showcases the use of each Jakarta EE
component and illustrates best practice design patterns for component interaction and client
development. MedRec also illustrates best practices for developing applications on WebLogic
Server.

The Spring version of MedRec, called MedRec-Spring is MedRec recast using the Spring
Framework. If you are developing Spring applications on WebLogic Server, you should review
the MedRec-Spring sample application. In order to illustrate how Spring can take advantage of
the enterprise features of WebLogic Server, MedRec was rearchitected to replace core Jakarta
EE components with their Spring counterparts. The functionality in the original version of
MedRec is reimplemented using Spring in MedRec-Spring. Refer to the MedRec-Spring
sample for details.

To launch MedRec, run startWebLogic.cmd or startWebLogic.sh command from
ORACLE_HOME/user_projects/domains/medrec, where ORACLE_HOME is the directory you
specified as the Oracle Home when you installed Oracle WebLogic Server.

Chapter 1
WebLogic Kubernetes Toolkit UI

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 7

https://oracle.github.io/weblogic-toolkit-ui/
https://blogs.oracle.com/weblogicserver/exporting-metrics-from-weblogic-server
https://blogs.oracle.com/weblogicserver/use-prometheus-and-grafana-to-monitor-weblogic-server-on-kubernetes
https://github.com/oracle/weblogic-monitoring-exporter

To launch MedRec-Spring, run the startWebLogic.cmd or startWebLogic.sh script from
ORACLE_HOME/user_projects/domains/medrec-spring, where ORACLE_HOME is the directory
you specified as the Oracle Home when you installed Oracle WebLogic Server.

For detailed instructions, see Installing the WebLogic Server Code Examples.

Upgrade
WebLogic Server provides robust upgrade capabilities to support migrating your application
environment from one version of WebLogic Server to the next. An application environment
includes a WebLogic domain and any applications and application data associated with the
domain. It may also include external resources, such as firewalls, load balancers, and LDAP
servers. Tools and documentation are provided to help you migrate applications implemented
on earlier versions of WebLogic Server to the current WebLogic Server environment. See
Upgrading Oracle WebLogic Server.

Chapter 1
Upgrade

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 7

2
System Administration

System administration of WebLogic Server includes a wide range of tasks: creating WebLogic
Server domains, deploying applications, migrating domains from development environments to
production environments, monitoring and managing the performance of the runtime system,
configuring and managing security for applications and system resources, diagnosing and
troubleshooting problems, and more.

This chapter includes the following topics:

Overview of WebLogic Server System Administration
WebLogic Server provides several tools for system administrators: the browser-based
WebLogic Remote Console, the WebLogic Scripting Tool (WLST), a scripting language for
automation of WebLogic system administration tasks based on Jython; a robust set of RESTful
management interfaces; SNMP; the Configuration Wizard; and several command-line utilities.

Because the WebLogic Server management system is based on Jakarta EE and other
standards, it integrates with systems that are frequently used to manage other software and
hardware components. In addition, WebLogic Server implements the JMX specification, which
allows programmatic access to the WebLogic Server management system. Using this API, you
can create custom administration utilities or automate frequent tasks using Java classes.

The following sections provide an overview of system administration for the WebLogic Server
component of your development or production environments:

• Choosing the Appropriate Technology for Your Administrative Tasks

• Summary of System Administration Tools and APIs

For information about installing WebLogic Server, see Installing and Configuring Oracle
WebLogic Server and Coherence.

Choosing the Appropriate Technology for Your Administrative
Tasks

WebLogic Server supports a wide range of technologies for performing administrative tasks,
including the browser-based WebLogic Remote Console, the Jython-based WebLogic Scripting
Tool, WebLogic RESTful management services, and several components for administering and
monitoring domains, applications, server life cycle, performance, and more.

Table 2-1 describes common system administration tasks and associated technologies.

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 9

Table 2-1 Choosing the Appropriate Management Technology

To do this... Use this technology...

Create domains The Configuration Wizard guides you through the process of creating or
extending a domain for your target environment. See Creating WebLogic
Domains Using the Configuration Wizard.

To automate the creation of domains, use the WebLogic Scripting Tool, which
is a command-line scripting interface based on Jython. See Creating Domains
Using WLST Offline in Understanding the WebLogic Scripting Tool.

Or create domain configuration XML files that conform to the WebLogic
Server schema. See Domain Configuration Files in Understanding Domain
Configuration for Oracle WebLogic Server.

Migrate domains from
development
environments to
production environments

Domain Template Builder's pack command archives a snapshot of a domain
into a JAR file. The unpack command expands the archive and creates the
necessary start scripts and certain security and configuration files. See
Creating Templates and Domains Using the Pack and Unpack Commands.

Track changes in a
domain's configuration

In environments where configuration changes to active domains are allowed,
WebLogic Server automatically maintains a versioned archive of configuration
files. See Configuration File Archiving in Understanding Domain Configuration
for Oracle WebLogic Server.

To receive real-time notifications that a domain's configuration has been
modified, enable the configuration auditing feature. See Configuring the
WebLogic Auditing Provider in Administering Security for Oracle WebLogic
Server.

For tightly controlled production environments, configure the run-time domain
to be read-only (see Restricting Configuration Changes in Understanding
Domain Configuration for Oracle WebLogic Server). You can change the read-
only setting if you need to roll in changes that have been tested and approved
in a staging environment, or you can modify and test your staging
environment, and then use a web server to re-route requests from your
production environment to the staging environment.

Configure connections to
databases or other
systems

Within individual applications, you can define your own data sources or
database connections using JDBC, or connect to external systems using
resource adapters. When you deploy such an application, WebLogic Server
creates the data sources and connections for you. See:

• Configuring WebLogic JDBC Resources in Administering JDBC Data
Sources for Oracle WebLogic Server

• Understanding Resource Adapters in Developing Resource Adapters for
Oracle WebLogic Server

If you have not defined your own data sources or connections within an
application, you can use the WebLogic Remote Console, or the WebLogic
Scripting Tool to create the resources. See the Oracle WebLogic Remote
Console Online Help or Using the WebLogic Scripting Tool in Understanding
the WebLogic Scripting Tool.

Manage the server life
cycle

The Node Manager is a utility for remote control of Administration Servers and
Managed Servers. It runs separately from WebLogic Server and lets you start
up and shut down Administration Servers and Managed Servers. While use of
Node Manager is optional, it provides additional life cycle benefits if your
WebLogic Server environment hosts applications with high availability
requirements. See Using Node Manager to Control Servers in the
Administering Node Manager for Oracle WebLogic Server.

To start Administration Servers or Managed Servers without using Node
Manager, use the WebLogic Scripting Tool or scripts that WebLogic Server
installs. See Starting and Stopping Servers in Administering Server Startup
and Shutdown for Oracle WebLogic Server.

Chapter 2
Choosing the Appropriate Technology for Your Administrative Tasks

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 9

Table 2-1 (Cont.) Choosing the Appropriate Management Technology

To do this... Use this technology...

Configure Coherence
Clusters

The WebLogic Remote Console provides a graphical user interface for
configuring and managing Coherence clusters; configuring and managing
cluster members; and deploying Coherence applications. See the Oracle
WebLogic Remote Console Online Help.

If you prefer a command-line interface, use the WebLogic Scripting Tool. See
Using the WebLogic Scripting Tool in Understanding the WebLogic Scripting
Tool.

Modify or add services
to an active domain

The WebLogic Remote Console provides a graphical user interface for
modifying or adding services to an active domain. See the Oracle WebLogic
Remote Console Online Help.

If you prefer a command-line interface, use the WebLogic Scripting Tool in
interactive mode. See Using the WebLogic Scripting Tool in Understanding
the WebLogic Scripting Tool.

Monitor application
server services and
resources

Monitor the performance of services such as the EJB container, servlet
container, and JDBC data sources from the WebLogic Remote Console or
through Fusion Middleware Control.

Configure policy expressions and actions in the WebLogic Diagnostics
Framework to automatically notify administrators of monitoring data events or
integrate automated systems through JMX or JMS. See Configuring Policies
and Actions in Configuring and Using the Diagnostics Framework for Oracle
WebLogic Server.

If you use SNMP in your operations center, you can enable WebLogic Server
to send SNMP notifications for run-time events that you define. See
Monitoring Oracle WebLogic Server with SNMP.

Deploy applications The WebLogic Remote Console helps guide you through the deployment
process. See Oracle WebLogic Remote Console Online Help.

To automate the deployment of applications, use the WebLogic Scripting Tool.
See Deployment Commands in WLST Command Reference for WebLogic
Server. You can also use the deployment API to write Java programs that
deploy applications. See Deploying Applications with the WebLogic
Deployment API.

For information about additional deployment utilities and APIs, see
Deployment Tools in Deploying Applications to Oracle WebLogic Server.

Modify applications in an
active domain

To modify the configuration of a deployed application, use a text editor or IDE
to modify the deployment descriptor. Then either redeploy the application or
use the deployment API to upload the modified deployment descriptor and
cause the application container to re-read the deployment descriptor.

See Deploying Applications to Oracle WebLogic Server.

Monitor activity within
applications

Determine which data points you want to monitor and then instrument one or
more beans to expose this data through JMX. See Developing Manageable
Applications Using JMX for Oracle WebLogic Server.

Alternatively, use the WebLogic Server Diagnostics Service to insert
instrumentation code into a running application and monitor its methods or
monitor transactions that involve the application. Use this technology to
discover the cause of problems that cannot otherwise be discovered by
scanning the available monitoring metrics. If you determine that the problem
is within your application, you can prevent the problem from recurring by using
JMX to expose attributes that indicate the application's health state is
degrading. See Configuring and Using the Diagnostics Framework for Oracle
WebLogic Server.

Chapter 2
Choosing the Appropriate Technology for Your Administrative Tasks

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 9

Table 2-1 (Cont.) Choosing the Appropriate Management Technology

To do this... Use this technology...

Optimize the
performance of your
application and maintain
service-level
agreements.

Work Managers configure how your application prioritizes the execution of its
work. Based on rules you define and by monitoring actual run-time
performance, WebLogic Server can optimize the performance of your
application and maintain service-level agreements.

See Using Work Managers to Optimize Scheduled Work in Administering
Server Environments for Oracle WebLogic Server.

Configure and secure
administration
communications

You can separate administration traffic from application traffic in your domain
by enabling the administration port. In production environments, separating
the two forms of traffic ensures that critical administration operations (starting
and stopping servers, changing a server's configuration, and deploying
applications) do not compete with high-volume application traffic on the same
network connection.

The administration port only accepts communications that use SSL, and
therefore secures your administrative requests. See Administration Port and
Administrative Channel in Administering Server Environments for Oracle
WebLogic Server.

Configure logging and
view log files

Many WebLogic Server operations generate logs of their activity. Each server
has its own log as well as a standard HTTP access log. These log files can be
configured and used in a variety of ways to monitor the health and activity of
your servers and applications.

By default, WebLogic Server uses the standard JDK logging APIs to filter and
write the messages to log files. See Understanding WebLogic Logging
Services in Configuring Log Files and Filtering Log Messages for Oracle
WebLogic Server.

Summary of System Administration Tools and APIs
WebLogic Server includes several of its own standards-based, extensible utilities that you can
use to create, manage, and monitor domains. As an alternative, you can also use WebLogic
Server's management APIs to create custom management utilities.

Table 2-2 describes the utilities that are included with WebLogic Server.

Chapter 2
Summary of System Administration Tools and APIs

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 9

Table 2-2 Management Utilities

Utility Description

WebLogic Remote
Console

The WebLogic Remote Console is a graphical user interface for the
administration of Oracle WebLogic Server domains. Use the WebLogic
Remote Console to:

• Manage WebLogic Server instances and clusters
• Create and modify WDT metadata models
• Deploy, manage, and monitor applications
• Configure security parameters, including managing users, groups, and

roles
• Configure WebLogic Server services, such as database connectivity

(JDBC), and messaging (JMS)
Through the WebLogic Remote Console, system administrators can easily
perform all WebLogic Server management tasks without having to learn the
underlying management architecture. The Administration Server persists
changes to attributes in the config.xml file for the domain you are
managing.

See:

• Overview of Administration Consoles
• Oracle WebLogic Remote Console Online Help.

WebLogic Scripting Tool The WebLogic Scripting Tool (WLST) is a command-line scripting interface
that you use to manage and monitor active or inactive WebLogic Server
domains. The WLST scripting environment is based on the Java scripting
interpreter Jython. In addition to WebLogic scripting functions, you can use
common features of interpreted languages, including local variables,
conditional variables, and flow control statements. You can extend the
WebLogic scripting language by following the Jython language syntax. See
http://www.jython.org.

See Understanding the WebLogic Scripting Tool.

WebLogic Deploy
Tooling

WebLogic Deploy Tooling (WDT) simplifies the automation of WebLogic
Server domain provisioning and applications deployment.

WDT creates a declarative, metadata model that describes the domain,
applications, and resources used by applications. This metadata model
makes it easy to provision, deploy, and perform domain lifecycle operations in
a repeatable fashion.

See WebLogic Deploy Tooling.

RESTful management
resources

WebLogic RESTful management resources provide a comprehensive public
interface for configuring, monitoring, deploying and administering WebLogic
Server in all supported environments. See About the WLS RESTful
Management Interface in Administering Oracle WebLogic Server with
RESTful Management Services.

Configuration Wizard The Configuration Wizard creates the appropriate directory structure for a
WebLogic Server domain, a config.xml file, and scripts you can use to start
the servers in your domain. The wizard uses templates to create domains,
and you can customize these templates to duplicate your own domains.

You can also use the Configuration Wizard to add or remove services from an
existing, inactive domain.

You can run the Configuration Wizard through a graphical user interface (GUI)
or in a text-based command-line environment. This command-line
environment is called console mode. You can also create user-defined
domain configuration templates for use with the Configuration Wizard.

See Creating WebLogic Domains Using the Configuration Wizard.

Chapter 2
Summary of System Administration Tools and APIs

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 9

http://www.jython.org
https://oracle.github.io/weblogic-deploy-tooling/

Table 2-2 (Cont.) Management Utilities

Utility Description

Domain Template
Builder

The Domain Template Builder provides the capability to easily create your
own domain templates, to enable, for example, the definition and propagation
of a standard domain across a development project, or to enable the
distribution of a domain along with an application that has been developed to
run on that domain. The templates you create with the Configuration Template
Builder are used as input to the Configuration Wizard as the basis for creating
a domain that is customized for your target environment. See Creating
Domain Templates Using the Domain Template Builder.

Apache Ant tasks You can use two Ant tasks provided with WebLogic Server to help you
perform common configuration tasks in a development environment. Ant is a
Java-based build tool similar to Make. The configuration tasks let you start
and stop WebLogic Server instances as well as create and configure
WebLogic Server domains. When combined with other WebLogic Ant tasks,
you can create powerful build scripts for demonstrating or testing your
application with custom domains.

See Using Ant Tasks to Configure a WebLogic Server Domain in Developing
Applications for Oracle WebLogic Server.

SNMP Agents WebLogic Server includes the ability to communicate with enterprise-wide
management systems using Simple Network Management Protocol (SNMP).
WebLogic Server SNMP agents let you integrate management of WebLogic
Servers into an SNMP-compliant management system that gives you a single
view of the various software and hardware resources of a complex, distributed
system.

See Monitoring Oracle WebLogic Server with SNMP.

Table 2-3 describes APIs that you can use to create your own management utilities.

Table 2-3 Management APIs

API Description

JMX JMX is the Jakarta EE solution for monitoring and managing resources on a
network. Like SNMP and other management standards, JMX is a public
specification and many vendors of commonly used monitoring products
support it.

The WebLogic Scripting Tool and other WebLogic Server utilities use the JMX
APIs.

See Developing Custom Management Utilities Using JMX for Oracle
WebLogic Server.

Jakarta Management
API

The Jakarta Management APIs (JSR-77) enable a software developer to
create a single Java program that can discover and browse resources, such
as JDBC connection pools and deployed applications, on any Jakarta EE web
application server. The APIs are part of the Jakarta Management
Specification, which requires all Jakarta EE web application servers to
describe their resources in a standard data model.

See Developing Jakarta Management Applications for Oracle WebLogic
Server.

Chapter 2
Summary of System Administration Tools and APIs

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 9

Table 2-3 (Cont.) Management APIs

API Description

Deployment API The WebLogic Server deployment API implements and extends the JSR-88
deployment specification. All WebLogic Server deployment tools, such as the
WebLogic Remote Console and wldeploy Ant task, use the deployment API to
configure, deploy, and redeploy applications in a domain. You can use the
deployment API to build your own WebLogic Server deployment tools, or to
integrate WebLogic Server configuration and deployment operations with an
existing JSR-88-compliant tool.

See Deploying Applications with the WebLogic Deployment API.

WebLogic Diagnostic
Service APIs

The WebLogic Diagnostic Service includes a set of standardized APIs that
enable dynamic access and control of diagnostic data, as well as improved
monitoring that provides visibility into the server. The interfaces are
standardized to facilitate future enhancement and integration of third-party
tools, while maintaining the integrity of the server code base. The service is
well suited to the server and the server's stack product components and
targets operations and administrative staff as primary users.

See Configuring and Using the Diagnostics Framework for Oracle WebLogic
Server.

Logging APIs By default, WebLogic Server uses the standard JDK logging APIs to filter and
write the messages to log files. See Understanding WebLogic Logging
Services in Configuring Log Files and Filtering Log Messages for Oracle
WebLogic Server.

Roadmap for Administering the WebLogic Server System
The WebLogic Server documentation set includes several introductory, procedural, and
reference topics, including examples, that help you understand how to use each of the
administration tools and technologies provided by WebLogic Server.

Table 2-4 Roadmap for Administering the WebLogic Server System

Major Task Subtasks and Additional Information

Understanding
WebLogic Server system
administration

• Overview of WebLogic Server domains
• Overview of WebLogic Server clusters
• Overview of WebLogic security
• Overview of administration consoles
• Developing Custom Management Utilities Using JMX for Oracle

WebLogic Server
• Tuning Performance of Oracle WebLogic Server

Installing or upgrading
WebLogic Server

• Installing and Configuring Oracle WebLogic Server and Coherence
• Creating WebLogic Domains Using the Configuration Wizard
• Oracle Fusion Middleware Supported System Configurations
• What's New in Oracle WebLogic Server
• Release Notes for Oracle WebLogic Server
• WebLogic Server compatibility
• Upgrading Oracle WebLogic Server

Chapter 2
Roadmap for Administering the WebLogic Server System

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 9

Table 2-4 (Cont.) Roadmap for Administering the WebLogic Server System

Major Task Subtasks and Additional Information

Configuring a server
environment

• Summary of system administration tools and APIs
• Managing configuration changes
• Oracle WebLogic Remote Console Online Help
• Understanding the WebLogic Scripting Tool
• Creating Domain Templates Using the Domain Template Builder

Learning about server
startup and shutdown

• Overview of starting and stopping servers
• Understanding the life cycle of WebLogic Server instances
• Server startup command-line reference
• Quick reference for starting and stopping servers

Starting or stopping a
WebLogic Server
instance

• Using shell scripts
• Using the Remote Console
• Using the WebLogic Scripting Tool (WLST)
• Using Node Manager to control remote servers
• Using the quick reference

Configuring Coherence
clusters

• Configuring and managing Coherence clusters
• Developing Oracle Coherence Applications for Oracle WebLogic Server
• Securing Oracle Coherence in Oracle WebLogic Server

Configuring security • Overview of WebLogic Server security
• Administering Security for Oracle WebLogic Server
• Securing a Production Environment for Oracle WebLogic Server
• Securing Resources Using Roles and Policies for Oracle WebLogic

Server

Managing server and
network communications

• Configuring network resources
• Configuring web server functionality
• Using Oracle WebLogic Server Proxy Plug-Ins

Configuring system
resources

• Administering JDBC Data Sources for Oracle WebLogic Server
• Administering JMS Resources for Oracle WebLogic Server
• Configuring WebLogic transactions
• Configuring the WebLogic Tuxedo Connector
• Configuring the persistent store

Configuring and
deploying applications

• Deploying Applications to Oracle WebLogic Server
• Configuring web applications
• Configuring XML resources
• Configuring resource adapters
• Understanding WebLogic Web Services for Oracle WebLogic Server

Monitoring your domain • Configuring and Using the Diagnostics Framework for Oracle WebLogic
Server

• Monitoring Oracle WebLogic Server with SNMP
• Configuring Log Files and Filtering Log Messages for Oracle WebLogic

Server
• Developing Jakarta Management Applications for Oracle WebLogic

Server
• Using the Monitoring Dashboard

Configuring server
environments for high
availability

• Understanding cluster architectures
• Setting up WebLogic Server clusters
• Using session replication across clusters
• Using Work Managers to prioritize application execution
• Avoiding and managing overload

Chapter 2
Roadmap for Administering the WebLogic Server System

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 9

Table 2-4 (Cont.) Roadmap for Administering the WebLogic Server System

Major Task Subtasks and Additional Information

Understanding the
WebLogic persistent
store

• Using the WebLogic persistent store
• Create a File Store
• Tuning the WebLogic persistent store

Troubleshooting • Viewing the WebLogic Server error message catalog
• Tuning Performance of Oracle WebLogic Server
• Troubleshooting common problems with clustering
• Administering Node Manager for Oracle WebLogic Server

Reference • Administration Console Accessibility Notes for Oracle WebLogic Server
• Command Reference for Oracle WebLogic Server
• SNMP MIB for Oracle WebLogic Server
• WLST Command Reference for WebLogic Server
• MBean Reference for Oracle WebLogic Server

Chapter 2
Roadmap for Administering the WebLogic Server System

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 9 of 9

http://docs.oracle.com/cd/E24329_01/apirefs.1211/e24404/BEA-WEBLOGIC-MIB.asn1.zip

3
Overview of the Administration Console

Use the WebLogic Remote Console for administering Oracle WebLogic Server.

This chapter includes the following topic:

Using the WebLogic Remote Console
The WebLogic Remote Console is a web browser-based, graphical user interface that you use
to manage a WebLogic Server domain. It provides the starting point for essential operations,
administration, automation, and management.

The WebLogic Remote Console relies on REST APIs to provide flexibility, enabling it to
connect to domains in varied environments: on physical or virtual machines, in containers or
Kubernetes pods, in the cloud. Additionally, you can use the WebLogic Remote Console to
manage WebLogic Deploy Tooling (WDT) metadata models - meaning you can build domain
templates and then manage them within the same environment.

The WebLogic Remote Console is compatible with WebLogic Server 12.2.1.3.0 or later and
adjusts its user interface to match the features available to the relevant WebLogic Server
release. For detailed information about installing and using the Remote Console, see the Get
to Know the Console in the Oracle WebLogic Remote Console Online Help.

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 1

4
WebLogic Server Domains

A WebLogic Server domain is a logically related group of WebLogic Server instances, and the
resources running on and connected to them, that can be managed as a single administrative
unit.

This chapter includes the following topics:

Understanding Domains
The core of a WebLogic domain consists of the Administration Server, which is the central
point from which you configure and manage all resources in the domain.

Usually, you configure a domain to include additional WebLogic Server instances called
Managed Servers. You deploy web applications, EJBs, web services, and other resources
onto the Managed Servers and use the Administration Server for configuration and
management purposes only.

Organizing Domains
A WebLogic domain is distinct from a WebLogic Server installation. You create and run multiple
domains using a single WebLogic Server installation, or you can create a single domain that
encompasses multiple installations. How you organize your domains is based on your needs.

Figure 4-1 shows the relationship between a WebLogic Server installation and a WebLogic
domain.

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 6

Figure 4-1 Oracle WebLogic Server Installations and Domains

How you organize your Oracle WebLogic Server installations into domains depends on your
business needs. You can define multiple domains based on different system administrators'
responsibilities, application boundaries, or geographical locations of the machines on which
servers run. Conversely, you might decide to use a single domain to centralize all Oracle
WebLogic Server administration activities.

Depending on your particular business needs and system administration practices, you might
decide to organize your domains based on criteria such as:

• Logical divisions of applications. For example, you might have one domain devoted to end-
user functions such as shopping carts and another domain devoted to back-end
accounting applications.

• Physical location. You might establish separate domains for different locations or branches
of your business. Each physical location requires its own Oracle WebLogic Server
installation.

• Size. You might find that domains organized in small units can be managed more
efficiently, perhaps by different system administrators. Contrarily, you might find that
maintaining a single domain or a small number of domains makes it easier to maintain a
consistent configuration.

You can create a simple domain that consists of a single server instance. This single instance
acts as an Administration Server and hosts the applications that you are developing. Although
a single server domain is typically used for development and test environments, this domain
type is fully supported for production use and may be appropriate for light-load applications.

Chapter 4
Organizing Domains

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 6

The wl_server domain that you can install with Oracle WebLogic Server is an example of this
type of domain.

Contents of a Domain
A domain consists of an Administration Server and optionally one or more Managed Servers. A
domain also contains a variety of resources and services used by the those server instances.
Figure 4-2 shows a production environment that contains an Administration Server, three
stand-alone Managed Servers, and a cluster of three Managed Servers.
Although the scope and purpose of a domain can vary significantly, most Oracle WebLogic
Server domains contain the components described in this section.

Figure 4-2 Contents of a Domain

The following topics describe the primary components of a domain, which may optionally
include managed Coherence servers and Coherence clusters:

Administration Server
The Administration Server operates as the central control entity for the configuration of the
entire domain. It maintains the domain's configuration documents and distributes changes in
the configuration documents to Managed Servers. You can also use the Administration Server
as a central location from which to monitor all resources in a domain.

To interact with the Administration Server, you can use any of the administration tools listed in
Summary of System Administration Tools and APIs. See System Administration for information
about modifying the domain's configuration.

Each Oracle WebLogic Server domain must have one server instance that acts as the
Administration Server.

Chapter 4
Contents of a Domain

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 6

For more information about the Administration Server and its role in the Oracle WebLogic
Server JMX management system, see System Administration.

Managed Servers and Managed Server Clusters
Managed Servers host business applications, application components, web services, and their
associated resources. To optimize performance, Managed Servers maintain a read-only copy
of the domain's configuration document. When a Managed Server starts up, it connects to the
domain's Administration Server to synchronize its configuration document with the document
that the Administration Server maintains.

For production environments that require increased application performance, throughput, or
high availability, you can configure two or more Managed Servers to operate as a cluster. A
cluster is a collection of multiple Oracle WebLogic Server instances running simultaneously
and working together to provide increased scalability and reliability. In a cluster, most resources
and services are deployed identically to each Managed Server (as opposed to a single
Managed Server), enabling failover and load balancing. A single domain can contain multiple
Oracle WebLogic Server clusters, as well as multiple Managed Servers that are not configured
as clusters. The key difference between clustered and non-clustered Managed Servers is
support for failover and load balancing. These features are available only in a cluster of
Managed Servers. For more information about the benefits and capabilities of an Oracle
WebLogic Server cluster, see Understanding WebLogic Server Clustering in Administering
Clusters for Oracle WebLogic Server.

Managed Coherence Servers and Coherence Clusters
Managed Coherence servers provide in-memory distributed caching for applications. A
Managed Server that is configured to be a Coherence cluster member is a managed
Coherence server. Coherence is integrated within WebLogic Server as a container subsystem.
The use of a container aligns the lifecycle of a Coherence member with the lifecycle of a
Managed Server: starting or stopping a server JVM starts and stops a Coherence cluster
member.

A domain can contain a single Coherence cluster that can be associated with multiple
WebLogic Server clusters. Managed Coherence servers that are part of a WebLogic Server
cluster inherit their Coherence settings from the WebLogic Server cluster. WebLogic Server
clusters are typically used to setup Coherence tiers that organize managed Coherence servers
based on their role in the Coherence cluster.

For details on configuring and managing Coherence clusters, see Configuring and Managing
Coherence Clusters in Administering Clusters for Oracle WebLogic Server.

Resources and Services
In addition to the Administration Server and Managed Servers, a domain also contains the
resources and services that Managed Servers and deployed applications require.

Managed Servers can use the following resources:

• Machine definitions that identify a particular, physical piece of hardware. A machine
definition is used to associate a computer with the Managed Servers it hosts. This
information is used by Node Manager in restarting a failed Managed Server, and by a
clustered Managed Server in selecting the best location for storing replicated session data.
For more information about Node Manager, see Node Manager Overview in the
Administering Node Manager for Oracle WebLogic Server.

Chapter 4
Contents of a Domain

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 6

• Network channels that define default ports, protocols, and protocol settings that a
Managed Server uses to communicate with clients. After creating a network channel, you
can assign it to any number of Managed Servers and clusters in the domain. See
Configuring Network Resources in Administering Server Environments for Oracle
WebLogic Server.

• Virtual hosting, which defines a set of host names to which Oracle WebLogic Server
instances (servers) or clusters respond. When you use virtual hosting, you use DNS to
specify one or more host names that map to the IP address of a server or cluster. You also
specify which web applications are served by each virtual host.

Applications can use the following resources and services:

• Security providers, which are modular components that handle specific aspects of security,
such as authentication and authorization.

• Resource adapters, which are system libraries specific to Enterprise Information Systems
(EIS) and provide connectivity to an EIS.

• Diagnostics and monitoring services.

• JDBC data sources, which enable applications to connect to databases.

• Mail sessions.

• XML entity caches and registry of XML parsers and transformer factories.

• Messaging services such as JMS servers and store-and-forward services.

• Persistent store, which is a physical repository for storing data, such as persistent JMS
messages. It can be either a JDBC-accessible database or a disk-based file.

• Startup classes, which are Java programs that you create to provide custom, system-wide
services for your applications.

• Work Managers, which determine how an application prioritizes the execution of its work
based on rules you define and by monitoring actual run-time performance. You can create
Work Mangers for entire Oracle WebLogic Server domains or for specific application
components.

• Work Contexts, which enable applications to pass properties to a remote context without
including the properties in a remote call.

Roadmap for Understanding WebLogic Server Domains
The WebLogic Server documentation set includes several introductory, procedural, and
reference topics, including examples, that help you understand how to create, configure, and
manage WebLogic domains.

Table 4-1 Roadmap for Understanding WebLogic Server Domains

Major Task Subtasks and Additional Information

Learning more about
WebLogic Server
domains

• What to do if the Administration Server fails
• Domain restrictions
• Domain configuration files
• Overview of change management
• System Administration

Chapter 4
Roadmap for Understanding WebLogic Server Domains

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 6

Table 4-1 (Cont.) Roadmap for Understanding WebLogic Server Domains

Major Task Subtasks and Additional Information

Creating domains • Creating WebLogic Domains Using the Configuration Wizard
• WebLogic Deploy Tooling Create Domain Tool
• Overview of the Configuration Wizard
• Extending WebLogic domains
• Creating Templates and Domains Using the Pack and Unpack

Commands
• Creating WebLogic domains using WLST offline

Configuring domains • Configuring existing WebLogic domains
• Understanding Domain Configuration for Oracle WebLogic Server
• Managing configuration changes

Working with domain
templates

• Creating Domain Templates Using the Domain Template Builder
• Creating and using a domain template (offline)

Examples • WLST Offline Sample Scripts

In addition, sample scripts are provided that configure WebLogic domain
resources using WLST offline and online on the Oracle Technology
Network site.

• WebLogic Deploy Tooling Samples

Reference • Domain Template Reference
• Domain configuration schema
• Domain security schema

Chapter 4
Roadmap for Understanding WebLogic Server Domains

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 6

https://oracle.github.io/weblogic-deploy-tooling/userguide/tools/create/
https://oracle.github.io/weblogic-deploy-tooling/samples/
http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd
http://xmlns.oracle.com/weblogic/security/1.0/security.xsd

5
WebLogic Server Clustering

The foundation of high availability in WebLogic Server is the cluster. A WebLogic Server cluster
is a group of WebLogic Server instances running simultaneously and working together to
provide increased scalability and reliability.

This chapter includes the following topics:

Overview of WebLogic Server Clusters
The server instances that constitute a cluster can run on the same machine, or be distributed
across multiple machines. A cluster appears to clients to be a single WebLogic Server
instance. You can increase a cluster's capacity by adding additional server instances to the
cluster on an existing machine, or you can add machines to the cluster to host the incremental
server instances. Each server instance in a cluster must run the same version of WebLogic
Server.

Relationship Between Clusters and Domains
A cluster is part of a particular WebLogic domain. A domain includes one or more WebLogic
Server instances. In a domain with multiple server instances, those servers can be clustered,
nonclustered, or a combination of clustered and nonclustered instances.

A domain can include multiple clusters. A domain also contains the application components
deployed in the domain, and the resources and services required by those application
components and the server instances in the domain. Examples of the resources and services
used by applications and server instances include machine definitions, optional network
channels, connectors, and startup classes.

You can use a variety of criteria for organizing WebLogic Server instances into domains. For
instance, you might choose to allocate resources to multiple domains based on logical
divisions of the hosted application, geographical considerations, or the number or complexity of
the resources under management. For additional information about domains see
Understanding Oracle WebLogic Server Domains in Understanding Domain Configuration for
Oracle WebLogic Server.

In each domain, one WebLogic Server instance acts as the Administration Server—the server
instance which configures, manages, and monitors all other server instances and resources in
the domain. Each Administration Server manages one domain only. If a domain contains
multiple clusters, each cluster in the domain has the same Administration Server. All server
instances in a cluster must reside in the same domain; you cannot "split" a cluster over multiple
domains. Similarly, you cannot share a configured resource or subsystem between domains.

Clustered WebLogic Server instances behave similarly to nonclustered instances, except that
they provide failover and load balancing. The process and tools used to configure clustered
WebLogic Server instances are the same as those used to configure nonclustered instances.
However, to achieve the load balancing and failover benefits that clustering enables, you must
adhere to certain guidelines for cluster configuration.

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 4

Relationship Between Coherence and WebLogic Server Clusters
Similar to WebLogic Server clusters, Coherence clusters consist of multiple managed
Coherence server instances that work together to distribute data in-memory to increase
application scalability, availability, and performance. However, Coherence clusters use different
clustering protocols and are configured separately from WebLogic Server clusters.

With Coherence clusters, a client interacts with the data in a local cache, and the distribution
and backup of the data is automatically performed across cluster members.

A WebLogic Server domain can contain a single Coherence cluster. Multiple WebLogic Server
clusters can be associated with a Coherence cluster.

For details on configuring and managing Coherence clusters, see Configuring and Managing
Coherence Clusters in Configuring and Managing Coherence Clusters.

Benefits of Clustering
Clustering provides two key benefits: scalability and high availability. A WebLogic Server
cluster provides the following benefits:

• Scalability

The capacity of an application deployed on a WebLogic Server cluster can be increased
dynamically to meet demand. You can add server instances to a cluster without
interruption of service—the application continues to run without impact to clients and end
users.

• High availability

In a WebLogic Server cluster, application processing can continue when a server instance
fails. You cluster application components by deploying them on multiple server instances in
the cluster—so, if a server instance on which a component is running fails, then another
server instance on which that component is deployed can continue application processing.

Key Capabilities of Clusters
A WebLogic cluster has three key capabilities that enable its primary benefits: failover,
migration, and load balancing. The key clustering capabilities that enable scalability and high
availability include the following:

• Application failover

If an application component that is doing a particular set of operations becomes
unavailable for any reason, then a copy of the failed application component finishes those
operations.

• Migration

WebLogic Server supports automatic and manual migration of a clustered server instance
from one machine to another. A Managed Server that can be migrated is referred to as a
migratable server. This feature is designed for environments with requirements for high
availability.

• Load balancing

Load balancing is the even distribution of jobs and associated communications across the
computing and networking resources in your environment.

Chapter 5
Relationship Between Coherence and WebLogic Server Clusters

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 4

Objects That Can Be Clustered
A clustered application or application component is one that is available on multiple WebLogic
Server instances in a cluster. Knowing what objects can be clustered is key to understanding
how objects should be deployed throughout your domain. If an object is clustered, failover and
load balancing for that object is available. To simplify cluster administration, maintenance, and
troubleshooting, make sure that you deploy objects homogeneously; that is, to every server
instance in your cluster.
Web applications can consist of different types of objects, including Jakarta Enterprise Beans
(EJBs), servlets, and Jakarta Server Pages (JSPs). Each object type has a unique set of
behaviors related to control, invocation, and how it functions within an application. For this
reason, the methods that WebLogic Server uses to support clustering—and hence to provide
load balancing and failover—can vary for different types of objects. The following types of
objects can be clustered in a WebLogic Server deployment:

• Servlets

• JSPs

• EJBs

• Remote Method Invocation (RMI) objects

• Jakarta Messaging (JMS) destinations

• Coherence cluster and managed Coherence servers

• Timer services

• Batch applications

About Dynamic Clusters
Dynamic clusters consist of server instances that can be dynamically scaled up to meet the
resource needs of your application. A dynamic cluster uses a single server template to define
configuration for a specified number of generated (dynamic) server instances.

When you create a dynamic cluster, the dynamic servers are preconfigured and automatically
generated for you, enabling you to easily scale up the number of server instances in your
dynamic cluster when you need additional server capacity. You can simply start the dynamic
servers without having to first manually configure and add them to the cluster.

If you need additional server instances on top of the number you originally specified, you can
increase the maximum number of servers instances (dynamic) in the dynamic cluster
configuration or manually add configured server instances to the dynamic cluster. A dynamic
cluster that contains both dynamic and configured server instances is called a mixed cluster.

The following table defines terminology associated with dynamic clusters:

Term Definition

dynamic cluster A cluster that contains one or more generated (dynamic) server instances that
are based on a single shared server template.

configured cluster A cluster in which you manually configure and add each server instance.

dynamic server A server instance that is generated by WebLogic Server when creating a
dynamic cluster. Configuration is based on a shared server template.

configured server A server instance for which you manually configure attributes.

Chapter 5
Objects That Can Be Clustered

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 4

Term Definition

mixed cluster A cluster that contains both dynamic and configured server instances.

server template A prototype server definition that contains common, non-default settings and
attributes that can be assigned to a set of server instances, which then inherit
the template configuration. For dynamic clusters, the server template is used
to generate the dynamic servers. See Server Templates in Understanding
Domain Configuration for Oracle WebLogic Server.

For more information about dynamic clusters, see Dynamic Clusters in Administering Clusters
for Oracle WebLogic Server.

Roadmap for Clustering in WebLogic Server
The WebLogic Server documentation set includes several introductory, procedural, and
reference topics, including examples, that help you understand how to configure and manage
WebLogic clusters.

Table 5-1 Roadmap for Clustering in WebLogic Server

Major Task Subtasks and Additional Information

Learning more about
WebLogic Server
clustering

• Clustering servlets and JSPs
• Clustering EJBs and RMI objects
• JMS and clustering
• Coherence clustering
• Dynamic clusters

Configuring a cluster • Understanding cluster configuration
• Communications in a cluster
• Cluster architectures
• Setting up WebLogic Server clusters
• Clustering best practices
• Setting up Coherence clusters

Configuring elasticity for
a dynamic cluster

• Performing on-demand scaling
• Configuring elastic actions
• Configuring calendar-based scaling
• Configuring policy-based scaling

Learning more about
load balancing and
failover in a cluster

• Load balancing in a cluster
• Failover and replication in a cluster
• Configuring BIG-IP hardware with clusters
• Configuring F5 load balancers for MAN/WAN failover
• Configuring Radware load balancers for MAN/WAN failover

Migrating servers and
services in a cluster

• Whole server migration
• Service migration

Troubleshooting • Troubleshooting common problems
• Troubleshooting multicast configuration

Reference • The WebLogic cluster API

Chapter 5
Roadmap for Clustering in WebLogic Server

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 4

6
Developing Applications in WebLogic Server

WebLogic Server implements Jakarta Platform, Enterprise Edition (Jakarta EE) Version 9.1
technologies. Jakarta EE is the standard platform for developing multitier enterprise
applications based on the Java programming language.

This chapter includes the following topics:

WebLogic Server and the Jakarta EE Platform
With Jakarta EE, development of Jakarta enterprise applications has never been easier or
faster. The aim of the Jakarta EE platform is to provide developers with a powerful set of APIs
while shortening development time, reducing application complexity, and improving application
performance. The technologies that make up Jakarta EE were developed collaboratively by
several software vendors. For background information on Jakarta EE, refer to https://
jakarta.ee/learn/.
Starting in earlier versions and continuing in Jakarta EE 9.1, the focus has been ease of
development. There is less code to write – much of the boilerplate code has been removed,
defaults are used whenever possible, and annotations are used extensively to reduce the need
for deployment descriptors.

• EJB 4.0 provides simplified programming and packaging model changes. The mandatory
use of Java interfaces from previous versions has been removed, allowing plain old Java
objects to be annotated and used as EJB components. The simplification is further
enhanced through the ability to place EJB modules directly inside web applications,
removing the need to produce archives to store the web and EJB components and
combine them together in an EAR file.

• Jakarta EE 9.1 continues the focus on modern web applications and broadening the range
of such applications. The key goals of the Jakarta EE platform are to modernize the
infrastructure for enterprise Java for the cloud and microservices environments, emphasize
HTML5 and HTTP/2 support, and enhance the ease of development through new Contexts
and Dependency Injection (CDI) features, and further enhance the security and reliability of
the platform.

• Constructing web applications is made easier with Jakarta Server Faces (JSF) technology
and the JSP Standard Tag Library (JSTL). Jakarta EE 9.1 supports rich thin-client
technologies such as AJAX, for building applications for Web 2.0.

WebLogic Server Jakarta EE applications are based on standardized, modular components.
WebLogic Server provides a complete set of services for those modules and handles many
details of application behavior automatically, without requiring programming. Jakarta EE
defines module behaviors and packaging in a generic, portable way, postponing runtime
configuration until the module is actually deployed on an application server.

Jakarta EE includes deployment specifications for web applications, EJB modules, web
services, enterprise applications, client applications, and connectors. Jakarta EE does not
specify how an application is deployed on the target server—only how a standard module or
application is packaged. For each module type, the specifications define the files required and
their location in the directory structure.

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 5

https://jakarta.ee/learn/
https://jakarta.ee/learn/

Jakarta EE is platform independent, so you can edit and compile code on any platform, and
test your applications on development WebLogic Servers running on other platforms. For
example, it is common to develop WebLogic Server applications on a PC running Windows or
Linux, regardless of the platform where the application is ultimately deployed.

For more information, refer to the Jakarta EE specification at: https://jakarta.ee/
specifications/platform/9.1/.

Overview of Jakarta EE Applications and Modules
At runtime, a Jakarta EE application is a type of module. A WebLogic Server Jakarta EE
application consists of one of the following modules or applications running on WebLogic
Server:

• Web application modules—HTML pages, servlets, JavaServer Pages, and related files.
See Web Application Modules in Developing Applications for Oracle WebLogic Server.

• Jakarta Enterprise Beans (EJB) modules—entity beans, session beans, and message-
driven beans. See Jakarta Enterprise Bean Modules in Developing Applications for Oracle
WebLogic Server.

• Connector modules—resource adapters. See Connector Modules in Developing
Applications for Oracle WebLogic Server.

• Enterprise applications—web application modules, EJB modules, resource adapters and
web services packaged into an application. See Enterprise Applications in Developing
Applications for Oracle WebLogic Server.

• Web services—See WebLogic Web Services in Developing Applications for Oracle
WebLogic Server.

A WebLogic application can also include the following WebLogic-specific modules:

• JDBC and JMS modules—See JMS and JDBC Modules in Developing Applications for
Oracle WebLogic Server.

• Coherence Grid modules—See Packaging Coherence Applications in Developing Oracle
Coherence Applications for Oracle WebLogic Server.

• WebLogic Diagnostic FrameWork (WLDF) modules—See WebLogic Diagnostic
Framework Modules in Developing Applications for Oracle WebLogic Server.

Roadmap for Developing Applications in WebLogic Server
The WebLogic Server documentation set includes several introductory, procedural, and
reference topics, including examples, that help you understand how to develop Jakarta EE
applications on WebLogic Server.

Table 6-1 Roadmap for Developing Applications in WebLogic Server

Major Task Subtasks and Additional Information

Learning more about
application development

• XML deployment descriptors
• Deployment plans
• Best practices for developing WebLogic Server applications
• Understanding application life cycle events
• Understanding production redeployment
• Understanding WebLogic Server application classloading
• Overview of shared Jakarta EE libraries and optional packages

Chapter 6
Overview of Jakarta EE Applications and Modules

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 5

https://jakarta.ee/specifications/platform/9.1/
https://jakarta.ee/specifications/platform/9.1/

Table 6-1 (Cont.) Roadmap for Developing Applications in WebLogic Server

Major Task Subtasks and Additional Information

Setting up your
development
environment

• Starting and stopping WebLogic Server
• Use the "split development directory" to develop your applications

Designing your
application

• Using shared Jakarta EE libraries and optional packages to share code
among deployed applications

• Programming JSF and JSTL applications
• Using life cycle listeners
• Using the HTTP publish-subscribe server
• Using Coherence to cache data
• Using Coherence to cache HTTP session data
• Developing Applications with the WebLogic Security Service
• Internationalize or localize your application
• Using threads in WebLogic Server
• Using WebSockets in WebLogic Server
• Adding WebLogic Logging Services to Applications Deployed on Oracle

WebLogic Server
• Developing Standalone Clients for Oracle WebLogic Server
• Designing manageable applications

Building your application • Developing Applications for Oracle WebLogic Server
• Deploying your "split development directory" application on WebLogic

Server
• Using Ant tasks to compile Java code

Using development tools • Development software
• Ant
• Oracle WebLogic Remote Console Online Help
• Command Reference for Oracle WebLogic Server
• Creating WebLogic Domains Using the Configuration Wizard
• Creating Domain Templates Using the Domain Template Builder
• Understanding the WebLogic Scripting Tool

Moving your application
to a production
environment

• Preparing your application or module for deployment
• Configuring your application for production deployment
• Updating your deployed application (production redeployment)

Chapter 6
Roadmap for Developing Applications in WebLogic Server

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 5

Table 6-1 (Cont.) Roadmap for Developing Applications in WebLogic Server

Major Task Subtasks and Additional Information

Application examples

Note

The WebLogic Server code examples include a
naming convention, which indicates the path
names where the samples are located. Jakarta
EE 8 Examples, Java EE 7 Examples, and Java
EE 6 Examples refers to the names of the folders
where these examples are installed and not the
version of Java EE or Jakarta EE that the
examples support. All the WebLogic Server
examples remain relevant for developing
WebLogic Server 15.1.1.0.0 applications.

• Jakarta EE 8 Examples
• Java EE 7 Examples
• Java EE 6 Examples
• Additional API Examples
• Avitek Medical Records

A complete and functional Jakarta EE application including source code.
The MedRec (Spring) sample application demonstrates Spring 3.0.x
application development practices.

Jakarta EE API
programming guides

• Developing Custom Management Utilities Using JMX for Oracle
WebLogic Server

• Developing Manageable Applications Using JMX for Oracle WebLogic
Server

• Developing Security Providers for Oracle WebLogic Server
• Developing Web Applications, Servlets, and JSPs for Oracle WebLogic

Server
• Developing Jakarta Management Applications for Oracle WebLogic

Server
• Developing Enterprise JavaBeans for Oracle WebLogic Server
• Developing JDBC Applications for Oracle WebLogic Server
• Developing JMS Applications for Oracle WebLogic Server
• Developing JNDI Applications for Oracle WebLogic Server
• Developing JTA Applications for Oracle WebLogic Server
• Developing Resource Adapters for Oracle WebLogic Server
• Developing RMI Applications for Oracle WebLogic Server
• Developing XML Applications for Oracle WebLogic Server
• Developing Standalone Clients for Oracle WebLogic Server
• Deploying Applications with the WebLogic Deployment API
• Developing JSP Tag Extensions for Oracle WebLogic Server
• Developing Applications with the WebLogic Security Service
• Developing Jakarta XML Web Services for Oracle WebLogic Server
• Developing CommonJ Applications for Oracle WebLogic Server
• Adding WebLogic Logging Services to Applications Deployed on Oracle

WebLogic Server
• Administering Clusters for Oracle WebLogic Server
• Developing Oracle WebLogic Tuxedo Connector Applications for Oracle

WebLogic Server

Chapter 6
Roadmap for Developing Applications in WebLogic Server

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 5

Table 6-1 (Cont.) Roadmap for Developing Applications in WebLogic Server

Major Task Subtasks and Additional Information

Javadoc and API
reference

• Jakarta EE Platform 9.1
• Java Platform, Standard Edition (Java SE) Version 17
• Java Platform, Standard Edition (Java SE) Version 21
• JMS C API Reference for Oracle WebLogic Server
• Java API Reference for Oracle WebLogic Server
• Microsoft .NET Messaging API for Oracle WebLogic Server

General reference • XML deployment descriptors
• WebLogic JSP cache, process, and repeat tags
• WebLogic JSP form validation tags
• Command Reference for Oracle WebLogic Server
• MBean Reference for Oracle WebLogic Server
• WebLogic Server Error Message Catalog

Chapter 6
Roadmap for Developing Applications in WebLogic Server

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 5

https://jakarta.ee/specifications/platform/9.1/apidocs/
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/21/docs/api/index.html

7
Deploying Applications in WebLogic Server

Application deployment refers to the process of making an application or module available for
processing client requests in a WebLogic Server domain.

This chapter includes the following topics:

Overview of the Deployment Process
Application deployment encompasses several discrete tasks, such as preparing and
configuring applications for deployment, exporting and redeploying applications to new
environments, and managing deployed applications.

See the following topics in Deploying Applications to Oracle WebLogic Server:

• Preparing Applications and Modules for Deployment

• Configuring Applications for Production Deployment

• Exporting an Application for Deployment to New Environments

• Deploying Applications and Modules with weblogic.Deployer

• Redeploying Applications in a Production Environment

• Managing Deployed Applications

Jakarta EE Deployment Implementation
WebLogic Server implements the Jakarta EE specification which includes a deployment
specification, JSR-88, that describes a standard API used by deployment tools and application
server providers to configure and deploy applications to an application server.

WebLogic Server implements both the JSR-88 Service Provider Interface (SPI) plug-in and
model plug-in to comply with the Jakarta EE deployment specification. You can use a basic
Jakarta EE deployment API deployment tool with the WebLogic Server plug-ins (without using
WebLogic Server extensions to the API) to configure, deploy, and redeploy Jakarta EE
applications and modules to WebLogic Server. The WebLogic Server configuration generated
by a Jakarta EE deployment API configuration process is stored in a deployment plan and one
or more generated WebLogic Server deployment descriptor files, as shown in Figure 7-1.

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 5

Figure 7-1 Configuring Applications with the Jakarta EE Deployment API

Chapter 7
Jakarta EE Deployment Implementation

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 5

WebLogic Server deployment descriptors are generated as needed to store WebLogic Server
configuration data.

The WebLogic Server deployment plan generated by a Jakarta EE deployment API
deployment tool identifies the WebLogic Server deployment descriptors that were generated
for the application during the configuration session.

Although the Jakarta EE deployment API provides a simple, standardized way to configure
applications and modules for use with a Jakarta EE-compliant application server, the
specification does not address many deployment features that were available in previous
WebLogic Server releases. For this reason, WebLogic Server provides important extensions to
the Jakarta EE deployment API specification to support capabilities described in WebLogic
Server Deployment Features in Deploying Applications to Oracle WebLogic Server.

Fast Track Deployment Guide
To support application development environments, WebLogic Server provides a robust set of
utilities and tools that you can use to deploy your applications quickly. The following topics
provide basic instructions for quickly deploying Jakarta EE applications and modules, JSP and
HTML files, and Coherence modules. They also provide pointers to tools for system
administrators. These deployment procedures are recommended for use in development
environments only; the procedures are not recommended for use in production environments.
For additional information about developing and deploying applications on WebLogic Server,
see Developing Applications for Oracle WebLogic Server and Deploying Applications to Oracle
WebLogic Server.
Complete Installing and Configuring Oracle WebLogic Server and Coherence before using the
Fast Track procedures described in the following sections:

Jakarta EE Deployment
To deploy a Jakarta EE application or module:

1. Make sure that the Jakarta EE application or module does not require additional resources
such as named JDBC data sources or JMS queues. If the application requires external
resources, you must configure them in the target WebLogic Server domain before
deploying the application.

2. Copy the archive file or exploded archive directory for the Jakarta EE application or module
into the /autodeploy directory of the examples server domain directory, ORACLE_HOME/
user_projects/domains/<wls_examples>/autodeploy.

3. Start the Examples WebLogic Server instance.

4. Access the application using either a Jakarta client or the configured URI for the
application.

Auto-Deployment
When running in development mode, WebLogic Server automatically deploys applications
copied into the /autodeploy subdirectory of the domain directory. Auto-deployment is a simple
and quick method of deploying an application for testing or evaluation. See Auto-Deploying
Applications in Development Domains in Deploying Applications to Oracle WebLogic Server.

System Administrator Tools
System Administrators can use the following tools to get started:

Chapter 7
Fast Track Deployment Guide

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 5

• WebLogic Remote Console

The WebLogic Remote Console is a browser-based web application that allows you to
configure and monitor your WebLogic Server domain, server instances, and running
applications and their associated resources. You can also use the WebLogic Remote
Console to create new server instances and clusters and tune application descriptors. See
Oracle WebLogic Remote Console Online Help.

• Configuration Wizard

Use the WebLogic Server Configuration Wizard to create new domains, and to create
templates for automating domain configuration. See Creating WebLogic Domains Using
the Configuration Wizard.

JSP/HTML Deployment
To deploy a simple JSP or HTML file:

1. Make sure your JSP file does not reference a tag library or other external resources—such
resources require additional deployment steps that are beyond the scope of these Fast
Track procedures. HTML files do not have this restriction.

2. Copy your JSP or HTML file into the EXAMPLES_HOME/wl_server/examples/build/
mainWebApp directory, where EXAMPLES_HOME represents the directory in which the
WebLogic Server code examples are configured. By default, this directory is ORACLE_HOME/
wlserver/samples/server.

3. Start the Examples WebLogic Server instance.

4. In a web browser, request the JSP or HTML file using the following URL:

http://localhost:port/myFile

where:

localhost is the host name of the machine running WebLogic Server.

port is the port number where WebLogic Server is listening for requests (7001 by default).

myFile is the full name, including the .jsp or .html extension, of the JSP or HTML file you
copied in step 2.

The JSP or HTML file has been automatically deployed from a directory preconfigured to target
the Examples Server. mainWebApp is deployed by default and you can place your own JSP and
HTML files into the mainWebApp exploded directory in order to quickly view or test them.

Coherence Deployment
WebLogic Server supports the deployment of Coherence applications that are packaged as
Grid ARchive (GAR) modules. GAR modules contain the artifacts that are required for a
Coherence application. GAR modules are deployed as standalone modules, packaged within
enterprise applications, and as shared libraries. For details on packaging and deploying
Coherence applications, see Deploying Coherence Applications in Developing Oracle
Coherence Applications for Oracle WebLogic Server.

Roadmap for Deploying Applications in WebLogic Server
The WebLogic Server documentation set includes several introductory, procedural, and
reference topics, including examples, that help you understand how to deploy applications in
the WebLogic Server environment.

Chapter 7
Roadmap for Deploying Applications in WebLogic Server

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 5

Table 7-1 Roadmap for Deploying Applications in WebLogic Server

Major Task Subtasks and Additional Information

Learning more about
application deployment

• Deployment terminology
• Jakarta EE deployment implementation
• WebLogic Server deployment features
• Understanding the deployment configuration process
• Overview of the export process
• Best practices for deploying applications

Packaging applications • Preparing applications and modules for deployment
• Archive file and exploded archive deployments
• Using the wlpackage Ant task
• Preparing Coherence applications for deployment

Using deployment tools • Overview of deployment tasks
• weblogic.Deployer utility
• WebLogic.Plan generator command-line reference
• WebLogic Maven plug-in for deployment
• wldeploy Ant task

Advanced topics • Overview of common deployment scenarios
• Configuring applications for deployment
• Redeploying a production application
• Deploying Applications with the WebLogic Deployment API
• Exporting an application for deployment to new environments
• Distributing an application to a production environment
• Changing the deployment order
• Taking an application offline
• Managing deployed applications

Reference • Understanding the WebLogic deployment API

Chapter 7
Roadmap for Deploying Applications in WebLogic Server

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 5

8
WebLogic Server Data Sources

In WebLogic Server, you can configure database connectivity by configuring JDBC data
sources and then targeting or deploying those resources to servers or clusters in your
WebLogic domain.

This chapter includes the following topics:

Understanding JDBC Data Sources
A data source is a pool of database connections that are created when the data source
instance is created, which can occur when the data source is deployed, when it is targeted, or
when the host WebLogic Server instance is started.

Oracle WebLogic Server provides five types of data sources:

• Generic data sources—Generic data sources and their connection pools provide
connection management processes that help keep your system running efficiently. You can
set options in the data source to suit your applications and your environment.

• Active GridLink data sources—An event-based data source that adaptively responds to
state changes in an Oracle RAC instance.

• Multi data sources—An abstraction around a group of generic data sources that provides
load balancing or failover processing.

• Proxy data sources—Data sources that provide the ability to switch between databases in
a WebLogic Server Multitenant environment.

• Universal Connection Pool (UCP) data sources—Data sources provided as an option for
users who wish to use Oracle Universal Connection Pooling (UCP) to connect to Oracle
Databases. UCP provides an alternative connection pooling technology to Oracle
WebLogic Server connection pooling.

WebLogic Server also supports Jakarta EE DataSource objects, which can be
programmatically defined for a more flexible and portable method of database connectivity. For
more information on Jakarta EE DataSource objects, see Using DataSource Resource
Definitions in Developing JDBC Applications for Oracle WebLogic Server.

Understanding Generic Data Sources
Generic data sources and their connection pools provide database access and database
connection management processes that help keep your system running efficiently. Each
generic data source contains a pool of database connections that are created when the data
source is created and at server startup. Applications reserve a database connection from the
data source by looking up the data source on the JNDI tree or in the local application context
and then calling getConnection(). When finished with the connection, the application should
call connection.close() as early as possible, which returns the database connection to the
pool for other applications to use.

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 3

Understanding Active GridLink Data Sources
A single Active GridLink (AGL) data source provides connectivity between WebLogic Server
and an Oracle Database service, which may include multiple Oracle RAC clusters. An AGL
data source uses the Oracle Notification Service (ONS) to adaptively respond to state changes
in an Oracle RAC instance. An Oracle Database service represents a workload with common
attributes that enables administrators to manage the workload as a single entity. You scale the
number of AGL data sources as the number of services increases in the database,
independent of the number of nodes in the cluster.
An AGL data source includes the features of generic data sources plus the following support
for Oracle RAC as described in Administering JDBC Data Sources for Oracle WebLogic
Server:

• Fast Connection Failover

• Runtime Connection Load Balancing

• Generic Data Source Handling for Oracle RAC Outages

• GridLink Affinity

• SCAN Addresses

• Secure Communication using Oracle Wallet

Understanding JDBC Multi Data Sources
Conceptually, a multi data source can be regarded as a pool of generic data sources. Multi
data sources are best used for failover or load balancing between nodes of a highly available
database system, such as redundant databases or Oracle Real Application Clusters (Oracle
RAC). A multi data source is bound to the JNDI tree or local application context, in the same
way that generic data sources are bound to the JNDI tree. Applications look up a multi data
source on the JNDI tree or in the local application context (java:comp/env), just as they do for
data sources, and then request a database connection. The multi data source determines the
data source to use that can satisfy the request depending upon the algorithm selected in the
multi data source configuration: load balancing or failover.

Understanding Universal Connection Pool Data Sources
A Universal Connection Pool (UCP) data source enables the use of Oracle Universal
Connection Pooling (UCP) for connecting to Oracle Database. A UCP data source is available
as an option for using UCP, which is an alternative connection pooling technology to WebLogic
Server connection pooling.

Note

Oracle generally recommends the use of Active GridLink data sources, multi data
sources, or generic data sources, and also the Oracle WebLogic Server connection
pooling included in these data source implementations to establish connectivity with
Oracle Database.

The implementations of UCP data sources are loosely coupled, allowing the swapping of the
ucp.jar file to support the use of new UCP features by the applications. UCP data sources are

Chapter 8
Understanding Active GridLink Data Sources

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 3

not supported in an application-scoped, application-packaged, or standalone module
environment. See Using Universal Connection Pool Data Sources in Administering JDBC Data
Sources for Oracle WebLogic Server.

Roadmap for WebLogic Server Data Sources
The WebLogic Server documentation set includes several introductory, procedural, and
reference topics, including examples, that help you understand how to configure and use
WebLogic Server data sources.

Table 8-1 Roadmap for WebLogic Server Data Sources

Major Task Subtasks and Additional Information

Learning more about
WebLogic Server data
source

• About WebLogic JDBC resources
• JDBC resources
• JMX and WLST access for JDBCA resources
• Overview of clustered JDBC resources
• Multi data source features
• Using WebLogic JDBC in an application

Configuring JDBC • Configuring JDBC data sources
• Using GridLink data sources
• Configuring JDBC multi data sources
• Advanced configuration for Oracle drivers
• JDBC data source transaction options
• Using roles and policies to secure JDBC data sources

Jakarta EE DataSources • Using DataSource resource definitions

Managing JDBC • Managing data sources
• Monitoring data sources
• Monitoring GridLink JDBC resources

Performance and tuning • Tuning JDBC applications
• Tuning data source connection pools

Using WebLogic Server
with Oracle RAC

• Using WebLogic Server with Oracle RAC
• Using multi data sources with Oracle RAC
• Using fast connection failover with Oracle RAC

Using JDBC drivers • Overview of third-party JDBC drivers
• Derby

Derby is an all-Java DBMS product included in the WebLogic Server
distribution that is intended solely to support demonstration of WebLogic
Server examples. Documentation is not shipped with the product; it is
available at http://db.apache.org/derby/manuals/index.html.
For more information about Derby, see http://db.apache.org/derby.

Chapter 8
Roadmap for WebLogic Server Data Sources

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 3

http://db.apache.org/derby/manuals/index.html
http://db.apache.org/derby

9
WebLogic Server Messaging

Jakarta Messaging (JMS) is a standard API for accessing enterprise messaging systems. JMS
simplifies application development by providing a standard interface for creating, sending, and
receiving messages.

This chapter includes the following topics:

Overview of JMS and WebLogic Server
The WebLogic Server implementation of JMS is an enterprise-class messaging system that is
tightly integrated into the WebLogic Server platform and fully supports the JMS 2.0
Specification. The JMS 2.0 Specification is available at http://www.oracle.com/technetwork/
java/jms/index.html. WebLogic JMS provides numerous WebLogic JMS Extensions that go
beyond the standard JMS APIs.

Jakarta Messaging
An enterprise messaging system enables applications to asynchronously communicate with
one another through the exchange of messages. A message is a request, report, and/or event
that contains information needed to coordinate communication between different applications.
A message provides a level of abstraction, allowing you to separate the details about the
destination system from the application code.

The JMS is a standard API for accessing enterprise messaging systems that is implemented
by industry messaging providers. Specifically, JMS:

• Enables Jakarta applications that share a messaging system to exchange messages

• Simplifies application development by providing a standard interface for creating, sending,
and receiving messages

WebLogic JMS supports both client and server applications; in addition to Java, it has client
libraries for C APIs and Microsoft .NET. WebLogic JMS accepts messages from producer
applications and delivers them to consumer applications. For more information on JMS API
programming with WebLogic Server, see Developing JMS Applications for Oracle WebLogic
Server. For information about JMS API programming for WebLogic Server hosted consumer
applications, see Developing Message-Driven Beans for Oracle WebLogic Server.

WebLogic JMS Message Workflow

The following figure illustrates the WebLogic message workflow.

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 3

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Figure 9-1 WebLogic JMS Message Workflow

For information on the major components of the WebLogic JMS architecture, see WebLogic
JMS Architecture in Developing JMS Applications for Oracle WebLogic Server.

Roadmap for WebLogic Server Messaging
The WebLogic Server documentation set includes several introductory, procedural, and
reference topics, including examples, that help you understand how to develop and administer
WebLogic JMS resources.

Table 9-1 Roadmap for WebLogic Server Messaging

Major Task Subtasks and Additional Information

Learning more about
WebLogic Server
messaging

• WebLogic JMS architecture and environment
• JMS configuration resources
• Overview of JMS servers
• Overview of JMS modules
• Environment-related system resources for WebLogic JMS
• Understanding the messaging models
• Understanding the JMS API
• Value-added public JMS API extensions

Chapter 9
Roadmap for WebLogic Server Messaging

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 3

Table 9-1 (Cont.) Roadmap for WebLogic Server Messaging

Major Task Subtasks and Additional Information

Getting started with
WebLogic JMS

• Overview of JMS programming
• Best practices for JMS beginners and advanced users
• Developing a basic JMS application
• Overview of JMS resource configuration
• Value-added WebLogic Server JMS features
• Integrating remote and foreign JMS providers
• Sample Applications and Code Examples
• Troubleshooting WebLogic JMS

Using new WebLogic
JMS features

• Developing advanced pub/sub applications
• Interoperating with Oracle advanced queueing
• Developing JMS .NET Client Applications for Oracle WebLogic Server

Programming WebLogic
messaging

• Developing JMS Applications for Oracle WebLogic Server
• Developing advanced pub/sub applications
• Developing Message-Driven Beans for Oracle WebLogic Server

Understanding clients for
WebLogic messaging

• Understanding JMS clients
• WebLogic Server client types and features

Configuring WebLogic
messaging

• Best practices for JMS beginners and advanced users
• Administering JMS Resources for Oracle WebLogic Server
• Integrating remote and foreign JMS providers
• Administering the Store-and-Forward Service for Oracle WebLogic

Server
• Administering the WebLogic Messaging Bridge for Oracle WebLogic

Server
• Administering the WebLogic Persistent Store

Using the WebLogic
Remote Console to
configure WebLogic
messaging

• Create a JMS Server
• Create a JMS System Module
• Create a Store-and-Forward Agent
• Create a Messaging Bridge Instance

Performance and tuning • Tuning WebLogic JMS
• Tuning WebLogic JMS store-and-forward
• Tuning WebLogic messaging bridge
• Tuning message-driven beans
• Tuning logging last resource
• Tuning the WebLogic Persistent Store

Reference • Javadoc for WebLogic JMS extensions
• MBean reference
• JMS schema
• Jakarta Messaging Specification
• JMS C API Reference for Oracle WebLogic Server

Chapter 9
Roadmap for WebLogic Server Messaging

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 3

http://xmlns.oracle.com/weblogic/weblogic-jms/1.8/weblogic-jms.xsd
https://jakarta.ee/specifications/messaging/2.0/apidocs/

10
Understanding WebLogic Server Security

WebLogic Server includes a security architecture that provides a unique and secure foundation
for applications. By taking advantage of the security features in WebLogic Server, enterprises
benefit from a comprehensive, flexible security infrastructure designed to address the security
challenges of making applications available on the web.

This chapter includes the following topics:

Note

For a complete checklist of critical tasks for locking down WebLogic Server, including
specific tasks recommended for configuring a secure domain, securing the network,
files, and databases used by WebLogic Server, see Securing a Production
Environment for Oracle WebLogic Server.

Jakarta EE Security API Support in WebLogic Server
WebLogic Server 15.1.1.0.0 provides full support for the Jakarta EE Security API 2.0.

The Jakarta EE Security API defines portable authentication mechanisms (such as
HttpAuthenticationMechanism and IdentityStore), and an access point for programmatic
security using the SecurityContext interface. These portable, plug-in authentication and
identity store interfaces provide an advantage over container-provided implementations
because they allow the application to control the authentication process and the identity stores
used for that authentication in a standard and portable way. Bundling the security configuration
in the application, instead of configuring it externally, improves the management of the
application’s lifecycle, especially in a world of microservices that are distributed in containers.
You can use the built-in implementations of these APIs, or define custom implementations.

In WebLogic Server, these authentication mechanisms are supported in the web container, and
the SecurityContext interfaces are supported in the Servlet and EJB containers. WebLogic
Server also supports the requirement in the Security API that group principal names are
mapped to roles of the same name by default.

For more information about the Jakarta EE Security API in WebLogic Server, see Developing
Applications with the WebLogic Security Service.

Overview of the WebLogic Server Security Service
WebLogic Server includes a security architecture that provides a unique and secure foundation
for applications that are available through the Internet. By taking advantage of the security
features in WebLogic Server, enterprises benefit from a comprehensive, flexible security
infrastructure designed to address the security challenges of making applications publicly
available.

WebLogic security can be used standalone to secure WebLogic Server applications or as part
of an enterprise-wide, security management system that represents a best-in-breed, security
management solution. The key features of the WebLogic Security Service include:

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 8

• A comprehensive and standards-based design.

• End-to-end security for WebLogic Server-hosted applications, from the mainframe to the
web browser.

• Legacy security schemes that integrate with WebLogic Server security, allowing companies
to leverage existing investments.

• Security tools that are integrated into a flexible, unified system to ease security
management across the enterprise.

• Easy customization of application security to business requirements through mapping of
company business rules to security policies.

• A consistent model for applying security policies to Jakarta EE and application-defined
resources.

• Easy updates to security policies. This release includes usability enhancements to the
process of creating security policies as well as additional expressions that control access
to WebLogic resources.

• Easy adaptability for customized security solutions.

• A modularized architecture, so that security infrastructures can change over time to meet
the requirements of a particular company.

• Support for configuring multiple security providers, as part of a transition scheme or
upgrade path.

• A separation between security details and application infrastructure, making security easier
to deploy, manage, maintain, and modify as requirements change.

• Default WebLogic security providers that provide you with a working security scheme out
of the box. This release supports additional authentication stores such as databases and
gives the option to configure an external RDBMS system as a datastore to be used by
select security providers.

• Customization of security schemes using custom security providers.

• Unified management of security rules, security policies, and security providers through the
WebLogic Remote Console.

• Support for standard Jakarta EE security technologies such as the Java Authentication and
Authorization Service (JAAS), Java Secure Sockets Extensions (JSSE), Java
Cryptography Extensions (JCE), Java Authorization Contract for Containers (JACC), Java
Authentication Service Provider Interface for Containers (JASPIC), and the Jakarta EE
Security API (JSR 375).

• A foundation for web services security including support for Security Assertion Markup
Language (SAML) 2.0.

• Capabilities which allow WebLogic Server to participate in single sign-on (SSO) with web
sites, web applications, and desktop clients

• A framework for managing public keys which includes a certificate lookup, verification,
validation, and revocation as well as a certificate registry.

WebLogic Server Security Service Architecture
The WebLogic Server Security Service features a comprehensive and standards-based design
that delivers end-to-end security for WebLogic Server-hosted applications from the mainframe
to the web browser, easy customization of application security that can map of company
business rules to security policies, a consistent model for applying security policies to Jakarta
EE and application-defined resources, and more.

Chapter 10
WebLogic Server Security Service Architecture

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 8

This section provides a description of the architecture of the WebLogic Security Service. The
architecture encompasses the following major components:

WebLogic Security Framework
Figure 10-1 shows a high-level view of the WebLogic Security Framework. The framework
comprises interfaces, classes, and exceptions in the weblogic.security.service package.

Chapter 10
WebLogic Server Security Service Architecture

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 8

Figure 10-1 WebLogic Security Service Architecture

The primary function of the WebLogic Security Framework is to provide a simplified application
programming interface (API) that can be used by security and application developers to define
security services. Within that context, the WebLogic Security Framework also acts as an

Chapter 10
WebLogic Server Security Service Architecture

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 8

intermediary between the WebLogic containers (web and EJB), the resource containers, and
the security providers.

Single Sign-on with the WebLogic Server Security Framework
Single sign-on (SSO) is the ability to require a user to sign on to an application only once and
gain access to many different application components, even though these components may
have their own authentication schemes. SSO enables users to log in securely to all their
applications, web sites, and mainframe sessions with just one identity. The Security Assertion
Markup Language (SAML) and Windows Integrated Authentication features provide web-based
SSO functionality for WebLogic Server applications.

SAML Token Profile Support in WebLogic Web Services
The WebLogic web services and the WebLogic Security Framework support the generation,
consumption, and validation of SAML 2.0 assertions. When using SAML assertions, a web
service passes a SAML assertion and the accompanying proof material to the WebLogic
Security Framework. If the SAML assertion is valid and trusted, the framework returns an
authenticated Subject with a trusted principal back to the web service. WebLogic web services
and the WebLogic Security Framework support the following SAML assertions:

• Sender-Vouches - The asserting party (different from the subject) vouches for the
verification of the subject. The receiver must have a trust relationship with the asserting
party.

• Holder-of-Key - The purpose of SAML token with "holder-of-key" subject confirmation is to
allow the subject to use an X.509 certificate that may not be trusted by the receiver to
protect the integrity of the request messages.

Conceptually, the asserting party inserts an X.509 public certificate (or other key info) into
a SAML assertion. (More correctly, the asserting party binds a key to a subject.) In order to
protect this embedded certificate, the SAML assertion itself must be signed by the
asserting entity. For WebLogic Server, the web service client signs the SAML assertion
with its private key. That is, the signature on the assertion is the signature of the SAML
authority, and is not based on the certificate contained in, or identified by, the assertion.

• Bearer - The subject of the assertion is the bearer of the assertion, subject to optional
constraints on confirmation using attributes that may be included in the
<SubjectConfirmationData> element of the assertion.

The Security Service Provider Interfaces (SSPIs)
Security in WebLogic Server is based on a set of Security Service Provider Interfaces (SSPIs).
The SSPIs can be used by developers and third-party vendors to develop security providers for
the WebLogic Server environment. SSPIs are available for Adjudication, Auditing,
Authentication, Authorization, Credential Mapping, Identity Assertion, Role Mapping, and
Certificate Lookup and Validation.

The SSPIs allow customers to use custom security providers for securing WebLogic Server
resources. Customers can use the SSPIs to develop custom security providers or they can
purchase customer security providers from third-party vendors.

For more information on developing custom security providers, see Developing Security
Providers for Oracle WebLogic Server.

Chapter 10
WebLogic Server Security Service Architecture

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 8

WebLogic Security Providers
Security providers are modules that "plug into" a WebLogic Server security realm to provide
security services to applications. They call into the WebLogic Security Framework on behalf of
applications.

If the security providers supplied with the WebLogic Server product do not fully meet your
security requirements, you can supplement or replace them with custom security providers.
You develop a custom security provider by:

• Implementing the appropriate security service provider interfaces (SSPIs) from the
weblogic.security.spi package to create runtime classes for the security provider.

• Creating an MBean Definition File (MDF) and using the WebLogic MBeanMaker utility to
generate an MBean type, which is used to configure and manage the security provider.

See Developing Security Providers for Oracle WebLogic Server.

Managing WebLogic Server Security
When you manage WebLogic Server security, you focus primarily on two tasks: configuring
security realms, and creating security policies.

Security Realms

A security realm comprises mechanisms for protecting WebLogic resources. Each security
realm consists of a set of configured security providers, users, groups, security roles, and
security policies. A user must be defined in a security realm to be able to access any WebLogic
resources defined in that realm. When a user attempts to access a WebLogic resource,
WebLogic Server authenticates the user, and then authorizes access by determining whether
the user can be mapped to the security role that is defined in the security realm and
designated in the security policy for that WebLogic resource.

Security Policies

A security policy answers the question, "Who has access to this WebLogic resource?" A
security policy is an association between a WebLogic resource and one or more users, groups,
or security roles that protects the WebLogic resource against unauthorized access. When
creating a security policy, you can optionally define date and time constraints. A WebLogic
resource has no protection until you assign it a security policy.

You assign security policies to any of the defined WebLogic resources (for example, an EJB
resource or a JNDI resource) or to attributes or operations of a particular instance of a
WebLogic resource (an EJB method or a servlet within a web application). If you assign a
security policy to a type of WebLogic resource, all new instances of that resource inherit that
security policy. Security policies assigned to individual resources or attributes override security
policies assigned to a type of WebLogic resource.

Security for Coherence
Three key security features are available for use when you deploy Oracle Coherence within an
Oracle WebLogic Server domain: Oracle Coherence access controllers, Oracle WebLogic
Server authorization, and Oracle Coherence identity tokens.

Coherence is secured using both WebLogic Server security components and Coherence-
specific security components. The components include:

Chapter 10
Managing WebLogic Server Security

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 8

• SSL for authentication between Coherence cluster members

• SSL for authentication between extend clients (external to WebLogic Server) and a
Coherence cluster

• WebLogic Server policies and roles for authorizing Coherence services and caches

• Identity assertion between extend clients and Coherence clusters

For details about configuring Coherence security, see Securing Oracle Coherence in Oracle
WebLogic Server in Securing Oracle Coherence.

Roadmap for Securing WebLogic Server
The WebLogic Server documentation set includes several introductory, procedural, and
reference topics, including examples, that help you understand how to use the WebLogic
Security Service.

Table 10-1 Roadmap for Securing WebLogic Server

Major Task Subtasks and Additional Information

Learning more about
fundamental security
concepts

• Auditing
• Authentication
• Security Assertion Markup Language (SAML)
• Single sign-on (SSO)
• Authorization
• Identity and trust
• Secure Sockets Layer (SSL)
• WebLogic security framework
• Single sign-on with the WebLogic Server security framework
• SAML token support in WebLogic web services
• Security Service Provider Interfaces (SSPIs)
• WebLogic security providers

Administering WebLogic
Server security

• Security management concepts
• Customizing the default security configuration
• Migrating security data
• Managing the embedded LDAP server
• Managing the RDBMS security store
• Configuring keystores
• Configuring SSL
• Configuring cross-domain security
• Securing Resources Using Roles and Policies for Oracle WebLogic

Server
• Exploring security options for cluster architectures
• Configuring Security for Coherence

Chapter 10
Roadmap for Securing WebLogic Server

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 8

Table 10-1 (Cont.) Roadmap for Securing WebLogic Server

Major Task Subtasks and Additional Information

Authenticating users • Authenticating users defined in an LDAP server
• Authenticating against an RDBMS system
• Authenticating a remote user
• Using SAML
• Configuring single sign-on
• Configuring single sign-on with Microsoft clients
• Configuring single sign-on with web browsers and HTTP clients
• Using Kerberos
• Using multiple authentication providers
• Configuring password composition rules
• Managing users and groups
• Using Java Authentication SPI for Containers (JASPIC)
• Using the Jakarta EE Security API

Configuring SSL • Setting up SSL: main steps
• Configuring keystores
• Creating a keystore: example
• X.509 certificate revocation checking

Configuring
authorization

• Securing WebLogic Resources Using Roles and Policies
• Configuring an authorization provider
• Using multiple authorization providers
• Using JAAS authorization
• Configuring a role mapping provider
• Using Java Authorization Contract Containers (JACC)

Learning more about
security realms

• Introduction to security realms
• Users
• Groups
• Security roles
• Security policies
• Security providers

Programming
applications for security

• Developing Applications with the WebLogic Security Service
• Configuring resource adapter security
• WebLogic web service security topics

Guidelines for locking
down your WebLogic
Server production
environment

• Securing a Production Environment for Oracle WebLogic Server

Chapter 10
Roadmap for Securing WebLogic Server

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 8 of 8

11
WebLogic Server Web Services

A web service is a self-contained application that can be described, published, and invoked
over a network, such as a corporate intranet or the Internet. Because you access web services
using standard web protocols such as Extensible Markup Language (XML) and HTTP, the
diverse and heterogeneous applications on the web (which typically already understand XML
and HTTP) can access web services and communicate with each other automatically.

Major benefits of web services include:

• Interoperability among distributed applications that span diverse hardware and software
platforms

• Easy, widespread access to applications through firewalls using web protocols

• A cross-platform, cross-language data model (XML) that facilitates developing
heterogeneous distributed applications

For an overview of all web services supported in Oracle Fusion Middleware, see
Understanding Web Services.

This chapter includes the following topics:

Anatomy of a Web Service
Web services are characterized by three factors: what they do (the business functionality they
expose), how they can be accessed (the set of published interfaces necessary to use the
exposed functionality), and where they are (the web site which exposes that functionality).

What the web service can do is described in a standard XML vocabulary called Web Services
Description Language (WSDL). For example, a banking web service may implement functions
to check an account, print a statement, and deposit and withdraw funds. These functions are
described in a WSDL file that any consumer can invoke to access the banking web service. As
a result, a consumer does not have to know anything more about a web service than the
WSDL file that describes what it can do.

A web service client (or consumer)--such as, a desktop application or a Jakarta Platform,
Enterprise Edition portlet-- invokes a web service by submitting a request in the form of an
XML document to the web service. The web service processes the request and returns the
result to the web service client in an XML document.

The web service client can send a request in the form of a Simple Object Access Protocol
(SOAP) message. SOAP is an XML messaging framework designed to allow heterogeneous
applications to exchange structured information in a distributed environment. In turn, the web
service processes the request and returns the response in a SOAP message.

You can also develop Representational State Transfer (REST) web services, or "RESTful" web
services. REST describes any simple interface that transmits data over a standardized
interface (such as HTTP) without an additional messaging layer, such as SOAP. REST
provides a set of design rules for creating stateless services that are viewed as resources, or
sources of specific information, and can be identified by their unique URIs. A client accesses
the resource using the URI, a standardized fixed set of methods, and a representation of the
resource is returned. The client is said to transfer state with each new resource representation.

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 3

To secure the message exchange, the web service may require credentials to access the
service, for example a username and a password, or encrypt the response.

Web Service Standards
Many specifications that define web service standards are written so as to allow for broad use
of the specification throughout the industry. The implementation of a particular specification in
Oracle WebLogic Server might not cover all possible usage scenarios covered by the
specification. However, Oracle considers interoperability of web service platforms to be more
important than providing support for all possible edge cases of the web service specifications.

Web services rely on a set of XML-based industry standards, including the following:

• XML, a data format that allows uniform communication between services consumers and
services providers

• XML Schema, a framework that describes XML vocabularies used in business transactions

• SOAP, a protocol for exchanging structured information in the implementation of services

• WSDL, an XML-based language providing a model for describing services

• WS-Policy, a framework that provides a flexible and extensible grammar for describing the
capabilities, requirements, and general characteristics of services using policies

Roadmap for Web Services
The WebLogic Server documentation set includes several introductory, procedural, and
reference topics, including examples, that help you understand how to develop and manage
WebLogic web services.

Table 11-1 Roadmap for Web Services

Major Task Subtasks and Additional Information

Learning more about
WebLogic web services

• Features and standards supported by WebLogic web services
• Overview of WebLogic web services
• Choose between Jakarta XML and RESTful web service
• Overview of web services security

Using the samples (for
WebLogic web service
developers)

• Sample application and code examples
• Jakarta XML Web Services example
• Examples of developing Jakarta XML Web Services clients
• JDeveloper web services tutorials

Chapter 11
Web Service Standards

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 3

https://docs.oracle.com/cd/E37547_01/tutorials/tut_web_services/tut_web_services.html

Table 11-1 (Cont.) Roadmap for Web Services

Major Task Subtasks and Additional Information

Developing web services
using Jakarta XML Web
Services

• Starting from Java
• Starting from WSDL
• Programming the JWS file
• Using JAX binding
• Invoking a web service
• Invoking a web service asynchronously
• Using web services reliable messaging
• Managing web service persistence
• Configuring message buffering for web services
• Managing web services in a cluster
• Using web services atomic transactions
• Publishing a web service endpoint
• Using callbacks
• Optimizing binary data transmissions using MTOM/XOP
• Using XML catalogs
• Handling exceptions using SOAP
• Creating and using SOAP message handlers
• Programming stateful Jakarta XML Web Services using HTTP session

Developing RESTful web
services

• Standards to use for RESTful web srevice development on WebLogic
Server

• Learning about RESTful web service development
• Defining the root resource class
• Defining the relative URI of the root resource class
• Customizing request and response message types
• More advanced RESTful web service tasks
• Developing RESTful web service clients
• Packaging and Deploying RESTful web service applications
• Securing RESTful web services and clients
• Testing RESTful web services
• Monitoring RESTful web services
• Using server-sent events

Deploying and
administering WebLogic
web services

• Packaging and deploying RESTful web services
• Developing Jakarta XML Web Services

Securing WebLogic web
services

• Securing WebLogic Web Services for Oracle WebLogic Server

Interoperability with
WebLogic web services

• Interoperability with Microsoft WCF/.NET

Chapter 11
Roadmap for Web Services

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 3

12
Jakarta Enterprise Beans (EJBs)

Jakarta Enterprise Beans (EJBs) are Jakarta EE components that implement EJB technology.
EJBs run in the EJB container, a runtime environment within Oracle WebLogic Server.
Although transparent to the application developer, the EJB container provides system-level
services, such as transactions and security, to the EJBs deployed in it. These services enable
you to quickly build and deploy EJBs, which form the core of transactional Jakarta EE
applications.

This chapter includes the following topics:

Understanding EJBs
EJB 4.0 technology is the server-side component architecture for the development and
deployment of component-based business applications. EJB technology enables rapid and
simplified development of distributed, transactional, secure, and portable applications based on
Jakarta EE technology.

The EJB 4.0 specification provides simplified programming and packaging model changes.
The mandatory use of Jakarta interfaces from previous versions has been removed, allowing
plain old Java objects to be annotated and used as EJB components. The simplification is
further enhanced through the ability to place EJB modules directly inside of web applications,
removing the need to produce archives to store the web and EJB components and combine
them together in an EAR file.

This topic contains the following sections:

EJB Documentation in WebLogic Server
See the following documents to know about using EJBs with WebLogic Server:

• For instructions on how to program, package, and deploy EJB 4.0 on WebLogic Server,
see Developing Enterprise JavaBeans for Oracle WebLogic Server.

• For instructions on how to organize and build WebLogic Server EJBs in a split directory
environment, see Developing Applications for Oracle WebLogic Server.

• For more information on programming and packaging 3.2 EJBs, see Developing Enterprise
JavaBeans, Using Deployment Descriptors.

Additional EJB Information
To learn more about EJB concepts, such as the benefits of enterprise beans, the types of
enterprise beans, and their life cycles, then visit the following web sites:

• Jakarta Enterprise Beans 4.0 Specification at https://jakarta.ee/specifications/
enterprise-beans/4.0/

• The "Enterprise Beans" section in the Java EE 8 Tutorial at https://javaee.github.io/
tutorial/partentbeans.html#BNBLR

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 7

https://jakarta.ee/specifications/enterprise-beans/4.0/
https://jakarta.ee/specifications/enterprise-beans/4.0/
https://javaee.github.io/tutorial/partentbeans.html#BNBLR
https://javaee.github.io/tutorial/partentbeans.html#BNBLR

Session EJBs Implement Business Logic
Session beans implement business logic. A session bean instance serves one client at a time.
There are three types of session beans: stateful, stateless, and singleton.

For detailed information about the types of session beans and when to use them, see What Is
a Session Bean in the Java EE 8 Tutorial.

Stateful Session Beans

Stateful session beans maintain state information that reflects the interaction between the bean
and a particular client across methods and transactions. A stateful session bean can manage
interactions between a client and other enterprise beans, or manage a workflow.

Example: A company web site that allows employees to view and update personal profile
information could use a stateful session bean to call a variety of other beans to provide the
services required by a user, after the user clicks "View my Data" on a page:

• Accept the login data from a JSP, and invoke another EJB that validates the login data.

• Send confirmation of authorization to the JSP.

• Call a bean that accesses profile information for the authorized user.

Stateless Session Beans

A stateless session bean does not store session or client state information between
invocations—the only state it might contain is not specific to a client, for instance, a cached
database connection or a reference to another EJB. At most, a stateless session bean may
store state for the duration of a method invocation. When a method completes, state
information is not retained.

Any instance of a stateless session bean can serve any client—any instance is equivalent.
Stateless session beans can provide better performance than stateful session beans, because
each stateless session bean instance can support multiple clients, albeit one at a time. The
client of a stateless session bean can be a web service endpoint.

Example: An Internet application that allows visitors to click a "Contact Us" link and send an
email could use a stateless session bean to generate the email, based on the "to" and "from"
information gathered from the user by a JSP.

Singleton Session Beans

Singleton session beans provide a formal programming construct that guarantees a session
bean will be instantiated once per application in a particular Java Virtual Machine (JVM), and
that it will exist for the life cycle of the application. With singletons, you can easily share state
between multiple instances of an enterprise bean component or between multiple enterprise
bean components in the application.

Singleton session beans offer similar functionality to stateless session beans but differ from
them in that there is only one singleton session bean per application, as opposed to a pool of
stateless session beans, any of which may respond to a client request. Like stateless session
beans, singleton session beans can implement web service endpoints. Singleton session
beans maintain their state between client invocations but are not required to maintain their
state across server crashes or shutdowns.

Example: An Internet application that provides a central counter service. A stateless singleton
bean can be called from a Jakarta client, with the count being consistently incremented by 1 as
the client is invoked multiple times.

Chapter 12
Understanding EJBs

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 7

https://javaee.github.io/tutorial/ejb-intro002.html
https://javaee.github.io/tutorial/ejb-intro002.html

Message-Driven Beans Implement Loosely Coupled Business Logic
A message-driven bean (MDB) implements loosely coupled or asynchronous business logic in
which the response to a request need not be immediate. A message-driven bean receives
messages from a JMS Queue or Topic, and performs business logic based on the message
contents. It is an asynchronous interface between EJBs and JMS.

Throughout its life cycle, an MDB instance can process messages from multiple clients,
although not simultaneously. It does not retain state for a specific client. All instances of a
message-driven bean are equivalent—the EJB container can assign a message to any MDB
instance. The container can pool these instances to allow streams of messages to be
processed concurrently.

The EJB container interacts directly with a message-driven bean—creating bean instances and
passing JMS messages to those instances as necessary. The container creates bean
instances at deployment time, adding and removing instances during operation based on
message traffic.

See Developing Message-Driven Beans for Oracle WebLogic Server.

Example: In an online shopping application, where the process of taking an order from a
customer results in a process that issues a purchase order to a supplier, the supplier ordering
process could be implemented by a message-driven bean. While taking the customer order
always results in placing a supplier order, the steps are loosely coupled because it is not
necessary to generate the supplier order before confirming the customer order. It is acceptable
or beneficial for customer orders to "stack up" before the associated supplier orders are
issued.

EJB Anatomy and Environment
To develop an EJB, you must provide files for the EJB class, the business interfaces, and the
helper classes. The environment for the EJB includes an EJB container and, optionally, one or
more deployment descriptor files.

The following sections briefly describe classes required for each bean type, the EJB runtime
environment, and the deployment descriptor files that govern a bean's runtime behavior:

EJB Components
The composition of a bean varies by bean type. Table 12-1 defines the classes that make up
each type of EJB, and defines the purpose of the class type.

Table 12-1 EJB Components

EJB
Component

Description Stateless
Session

Stateful
Session

Singleton
Session

MDB

Remote
business
interface

The remote business interface
exposes business logic to remote
clients—clients running in a
separate application from the EJB.
It defines the business methods a
remote client can call.

Yes Yes Yes No

Chapter 12
EJB Anatomy and Environment

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 7

Table 12-1 (Cont.) EJB Components

EJB
Component

Description Stateless
Session

Stateful
Session

Singleton
Session

MDB

Local business
interface

The local business interface
exposes business logic to local
clients—those running in the same
application as the EJB. It defines
the business methods a local client
can call.

Yes Yes Yes No

Local No-
interface

The no-interface view is a variation
of the Local view that exposes the
public methods of the bean class
without the use of a separate
business interface.

Yes Yes Yes Yes

Bean class The bean class implements
business logic.

Yes Yes Yes Yes

The EJB Container
An EJB container is a runtime container for beans that are deployed to an application server.
The container is automatically created when the application server starts up, and serves as an
interface between a bean and runtime services such as:

• Life cycle management

• Code generation

• Security

• Transaction management

• Locking and concurrency control

Embeddable EJB Container
Unlike traditional Jakarta EE server-based execution, embeddable usage allows client code
and its corresponding enterprise beans to run within the same virtual machine and class
loader. This provides better support for testing, offline processing (for example, batch jobs),
and the use of the EJB programming model in desktop applications.

Most of the services present in the enterprise bean container in a Jakarta EE server are
available in the embedded enterprise bean container, including injection, container-managed
transactions, and security. Enterprise bean components execute similarly in both embedded
and Jakarta EE environments, and therefore the same enterprise bean can be easily reused in
both standalone and networked applications.

For more information about the Embedded Enterprise Bean Container, see Using an
Embedded EJB Container in Oracle WebLogic Server in Developing Enterprise JavaBeans for
Oracle WebLogic Server.

EJB Metadata Annotations
The WebLogic Server EJB programming model uses the metadata annotations feature in
which you create an annotated EJB bean file, and then use the WebLogic compile tool
weblogic.appc (or its Ant equivalent wlappc) to compile the bean file into a Java class file and

Chapter 12
EJB Anatomy and Environment

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 7

generate the associated EJB artifacts, such as the required EJB interfaces and optional
deployment descriptors.

See Programming the Annotated EJB Class in Developing Enterprise JavaBeans for Oracle
WebLogic Server.

Optional EJB Deployment Descriptors
As of EJB 3.0, you are no longer required to create the EJB deployment descriptor files (such
as ejb-jar.xml). However, you can still use XML deployment descriptors if you want. In the
case of conflicts, the deployment descriptor value overrides the annotation value.

If you are continuing to use deployment descriptors in your EJB implementation, refer to EJB
Deployment Descriptors in Developing Enterprise JavaBeans, Version 3.2, for Oracle
WebLogic Server.

WebLogic Server EJB has three deployment descriptors:

• ejb-jar.xml—The standard Jakarta EE deployment descriptor. All beans must be
specified in an ejb-jar.xml. An ejb-jar.xml can specify multiple beans that will be
deployed together.

• weblogic-ejb-jar.xml—WebLogic Server-specific deployment descriptor that contains
elements related to WebLogic Server features such as clustering, caching, and
transactions. This file is required if your beans take advantage of WebLogic Server-specific
features. Similar to ejb-jar.xml, weblogic-ejb-jar.xml can specify multiple beans that
will be deployed together.

• weblogic-cmp-jar.xml—WebLogic Server-specific deployment descriptor that contains
elements related to container-managed persistence for entity beans. Entity beans that use
container-managed persistence must be specified in a weblogic-cmp-jar.xml file.

For descriptions of the WebLogic Server EJB deployment descriptors, refer to Deployment
Descriptor Schema and Document Type Definitions Reference in Developing Enterprise
JavaBeans, Version 3.2, for Oracle WebLogic Server.

EJBs Clients and Communications
An EJB can be accessed by server-side or client-side objects such as servlets, Jakarta client
applications, other EJBs, web services, and non-Jakarta clients. Any client of an EJB, whether
in the same or a different application, accesses it in a similar fashion. WebLogic Server
automatically creates implementations of an EJB's home and business interfaces that can
function remotely, unless the bean has only a local interface.
This topic includes the following sections:

Accessing EJBs
Clients access enterprise beans either through a no-interface view or through a business
interface. A no-interface view of an enterprise bean exposes the public methods of the
enterprise bean implementation class to clients. Clients using the no-interface view of an
enterprise bean may invoke any public methods in the enterprise bean implementation class or
any superclasses of the implementation class. A business interface is a standard Java
programming language interface that contains the business methods of the enterprise bean.

The client of an enterprise bean obtains a reference to an instance of an enterprise bean
through either dependency injection, using Java programming language annotations, or JNDI

Chapter 12
EJBs Clients and Communications

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 7

lookup, using the Java Naming and Directory Interface syntax to find the enterprise bean
instance.

Dependency injection is the simplest way of obtaining an enterprise bean reference. Clients
that run within a Jakarta EE server-managed environment, JavaServer Faces web
applications, other enterprise beans, or Jakarta EE application clients, support dependency
injection using the jakarta.ejb.EJB annotation.

Applications that run outside a Jakarta EE server-managed environment, such as Java SE
applications, must perform an explicit lookup. JNDI supports a global syntax for identifying
Jakarta EE components to simplify this explicit lookup. For more information see, Programming
Access to EJB Clients in Developing Enterprise JavaBeans for Oracle WebLogic Server.

Because of network overhead, it is more efficient to access beans from a client on the same
machine than from a remote client, and even more efficient if the client is in the same
application.

EJB Communications
WebLogic Server EJBs use:

• T3—To communicate with remote objects. T3 is a WebLogic-proprietary remote network
protocol that implements the Remote Method Invocation (RMI) protocol.

• RMI—To communicate with remote objects. RMI enables an application to obtain a
reference to an object located elsewhere in the network, and to invoke methods on that
object as though it were co-located with the client on the same JVM locally in the client's
virtual machine.

An EJB with a remote interface is an RMI object. An EJB's remote interface extends
java.rmi.remote. For more information on WebLogic RMI, see Developing RMI
Applications for Oracle WebLogic Server.

• HTTP—An EJB can obtain an HTTP connection to a web server external to the WebLogic
Server environment by using the java.net.URL resource connection factory. See
Configuring EJBs to Send Requests to an URL in Developing Enterprise JavaBeans,
Version 3.2, for Oracle WebLogic Server.

You can specify the attributes of the network connection an EJB uses by binding the EJB to a
WebLogic Server custom network channel. See Configuring Network Resources in
Administering Server Environments for Oracle WebLogic Server.

Securing EJBs
By default, any user defined in the security realm can invoke the public methods of an EJB.
Therefore, if you want to restrict access to EJBs, you can create security policies for them, or
use security-related annotations, to specify the roles that are allowed to invoke all, or a subset,
of its methods. For information about restricting access to EJBs using annotations within the
EJBs themselves, see Securing Access to the EJB in Developing Enterprise JavaBeans for
Oracle WebLogic Server.
In addition, you create security roles and map users to roles using the WebLogic Remote
Console to update your security realm. For details, see Security Roles in Oracle WebLogic
Remote Console Online Help.

For more information about security and EJBs:

• Security Fundamentals in Understanding Security for Oracle WebLogic Server has
introductory information about authentication, authorization and other security topics.

Chapter 12
Securing EJBs

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 7

• Securing Enterprise JavaBeans (EJBs) in Developing Applications with the WebLogic
Security Service provides instructions on configuring authentication and authorization for
EJBs.

• Securing Resources Using Roles and Policies for Oracle WebLogic Server contains
instructions on configuring authentication and authorization for your EJBs using the
WebLogic Remote Console.

Roadmap for EJBs in WebLogic Server
The WebLogic Server documentation set includes several introductory, procedural, and
reference topics, including examples, that help you understand how to develop, deploy, and
secure EJBs in the WebLogic Server environment.

Table 12-2 Roadmap for EJBs in WebLogic Server

Major Task Subtasks and Additional Information

Understanding EJBs • New Features and Changes in EJB
• What Is New and Changed in EJB 4.0

Simple EJB examples • Example of a simple stateless EJB
• Example of a simple stateful EJB
• Example of an interceptor class
• Packaged EJB 3.2 Examples in WebLogic Server
• Example of invoking an entity from a session bean

Iterative EJB developing • Overview of the EJB development process
• Creating a source directory
• Programming access to EJB clients
• Programming and configuring transactions
• Programming the EJB interface
• Programming the EJB timer service
• Programming the annotated EJB class
• Programming optional interceptors
• Compiling Java source code
• Optionally creating and editing deployment descriptors
• Packaging EJBs
• Deploying EJBs

Programming the
annotated EJB class

• Overview of metadata annotations and EJB bean files
• Programming the bean file: typical steps
• Complete list of metadata annotations by function

Deployment guidelines
for EJBs

• Before you deploy an EJB
• Understanding and performing deployment tasks
• Deployment guidelines for EJBs

Using an embedded EJB
container in Oracle
WebLogic Server

• Overview of the embeddable EJB container

Configuring the
Persistence Provider in
Oracle WebLogic Server

• Overview of Oracle TopLink
• Specifying a persistence provider
• Using Oracle TopLink in Oracle WebLogic Server

Reference • EJB metadata annotations reference

Chapter 12
Roadmap for EJBs in WebLogic Server

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 7

13
Monitoring, Diagnosing, and Troubleshooting

Oracle WebLogic Server provides several built-in management, diagnostic, and automation
tools to increase management and operational efficiency of the server, the underlying JVM,
deployed applications, and configured resources. These tools include the WebLogic Diagnostic
Framework (WLDF), WebLogic logging services, integration with Oracle HotSpot, SNMP
support, and more.

This chapter includes the following topics:

WebLogic Diagnostics Framework
The WebLogic Diagnostics Framework (WLDF) is a monitoring and diagnostic framework that
defines and implements a set of services that run within WebLogic Server processes and
participate in the standard server life cycle. Using WLDF, you can create, collect, analyze,
archive, and access diagnostic data generated by a running server and the applications
deployed within its containers.

The data you collect using WLDF provides insight into the runtime performance of servers and
applications and enables you to isolate and diagnose faults when they occur.

WLDF includes several components for collecting and analyzing data:

• WebLogic Server events can optionally be propagated to the Java Flight Recorder, a
performance monitoring and profiling tool. WebLogic Server provides specific integration
points with Java Flight Recorder:

– WebLogic Server events are propagated to Java Flight Recorder for inclusion in a
common data set for runtime or post-incident analysis.

– The flight recording data is also included in WLDF diagnostic image captures, enabling
you to capture flight recording snapshots based on WLDF watch rules. This full set of
functionality enables you to capture and analyze runtime system information for both
the JVM and the Fusion Middleware components running on it, in a single view.

• Diagnostic Image Capture—Creates a diagnostic snapshot from the server that can be
used for post-failure analysis. The diagnostic image capture includes Java Flight Recorder
data, if it is available, that can be viewed in Java Mission Control.

• Built-in Diagnostic Modules—Provides a simple and easy-to-use mechanism for
performing basic health and performance monitoring of a WebLogic Server instance. The
built-in diagnostic modules collect data from key WebLogic Server runtime MBeans that
monitor the main components of a server instance, such as the WebLogic Server runtime,
JDBC, JMS, and Jakarta EE containers hosting servlets and EJBs.

• Archive—Captures and persists data events, log records, and metrics from server
instances and applications.

• Instrumentation—Adds diagnostic code to WebLogic Server instances and the applications
running on them to execute diagnostic actions at specified locations in the code. The
Instrumentation component provides the means for associating a diagnostic context with
requests so they can be tracked as they flow through the system. The WebLogic Remote
Console shows real-time and historical views of method performance information that has

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 5

been captured through the WLDF instrumentation capabilities, serving as a tool that can
help identify performance problems in applications.

• Harvester—Captures metrics from runtime MBeans, including WebLogic Server MBeans
and custom MBeans, which can be archived and later accessed for viewing historical data.

• Policies and Actions—Provides the means for monitoring server and application states and
sending notifications based on criteria set in the watches.

• Monitoring Dashboard—The Monitoring Dashboard provides views and tools for
graphically presenting diagnostic data about servers and applications running on them.
The underlying functionality for generating, retrieving, and persisting diagnostic data is
provided by the WebLogic Diagnostics Framework. The Monitoring Dashboard provides
additional tools for presenting that data in charts and graphs.

The diagnostic data displayed by the Monitoring Dashboard consists of runtime MBean
attributes with numeric or Boolean values that are useful to measure, either as their current
values or as their changes over time. These values, referred to in the Monitoring
Dashboard as metrics, originate from one or more runtime MBean instances from one or
more servers in the domain.

WLDF provides a set of standardized application programming interfaces (APIs) that enable
dynamic access and control of diagnostic data, as well as improved monitoring that provides
visibility into the server. Independent Software Vendors (ISVs) can use these APIs to develop
custom monitoring and diagnostic tools for integration with WLDF.

WLDF enables dynamic access to server data through standard interfaces, and the volume of
data accessed at any given time can be modified without shutting down and restarting the
server.

Logging Services
WebLogic logging services provide facilities for writing, viewing, filtering, and listening for log
messages. These log messages are generated by WebLogic Server instances, subsystems,
and Jakarta EE applications that run on WebLogic Server or in client JVMs.

WebLogic Server subsystems use logging services to provide information about events such
as the deployment of new applications or the failure of one or more subsystems. A server
instance uses them to communicate its status and respond to specific events. For example,
you can use WebLogic logging services to report error conditions or listen for log messages
from a specific subsystem.

By default, WebLogic logging services use an implementation based on the Logging APIs. In
addition, WebLogic Server also provides the Server Logging Bridge, which provides a
lightweight mechanism for applications that currently use Java Logging to have their log
messages redirected to WebLogic logging services. Applications can use the Server Logging
Bridge with their existing configuration; no code changes or programmatic use of the WebLogic
Logging APIs is required.

SNMP Support
WebLogic Server includes support for the Simple Network Management Protocol (SNMP),
which you can use to enable enterprise-wide management systems for managing
heterogeneous software and hardware environments from a single management console.

With SNMP, a manager sends a request for information about managed resources to an agent.
The agent gathers the requested data and returns a response. You can also configure agents

Chapter 13
Logging Services

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 5

to issue unsolicited reports (notifications) to managers when they detect predefined thresholds
or conditions on a managed resource.

To request data about a specific managed resource, a manager must be able to uniquely
identify the resource. In SNMP, each type of managed resource is described in a Management
Information Base (MIB) as a managed object with a unique object identifier (OID). Individual
organizations define their specific managed objects in MIB modules. Both manager and agent
must have access to the same MIB module to communicate about specific managed
resources.

Custom JMX Applications
To integrate custom management systems with the WebLogic Server management system,
WebLogic Server provides standards-based interfaces that are fully compliant with the Java
Management Extensions (JMX) specification.

Software vendors can use these interfaces to monitor WebLogic Server MBeans, to change
the configuration of a WebLogic Server domain, and to monitor the distribution (activation) of
those changes to all server instances in the domain. While JMX clients can perform all
WebLogic Server management functions without using Oracle's proprietary classes, Oracle
recommends that remote JMX clients use WebLogic Server protocols (such as T3) to connect
to WebLogic Server instances.

Jakarta Management APIs
The Jakarta Management specification describes a standard data model for monitoring and
managing the runtime state of any Jakarta EE web application server and its resources. It
includes standard mappings of the model through a Jakarta Management EJB Component
(MEJB).

The Jakarta Management APIs enable a software developer to create a single Java program
that can discover and browse resources, such as JDBC connection pools and deployed
applications, on any Jakarta EE web application server. The APIs are part of the Jakarta
Management Specification, which requires all Jakarta EE web application servers to describe
their resources in a standard data model.

Roadmap for Monitoring, Diagnosing, and Troubleshooting in
WebLogic Server

The WebLogic Server documentation set includes several introductory, procedural, and
reference topics, including examples, that help you understand how to monitor, diagnose, and
troubleshoot performance in WebLogic Server.

Chapter 13
Custom JMX Applications

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 5

Table 13-1 Roadmap for Monitoring, Diagnosing, and Troubleshooting in WebLogic
Server

Major Task Subtasks and Additional Information

Learning more about
WLDF components

• Data creation, collection, and instrumentation
• Archive
• Policy and Action
• Data accessor
• Monitoring dashboard and request performance pages
• Diagnostic image capture
• Understanding WLDF configuration

Learning more about
WebLogic logging
services

• What you can do with WebLogic logging services
• Using message catalogs with WebLogic Server
• Logging components and environment
• Terminology
• Overview of the logging process
• Best practices for integrating Java logging with WebLogic logging

services
• Server log files and domain log files
• Server and subsystem logs
• Log message format
• Message attributes
• Message severity
• Viewing WebLogic logging services
• Configuring WebLogic logging services
• Filtering WebLogic Server log messages
• Subscribing to messages
• Using the Server Logging Bridge

Using the Monitoring
Dashboard

• About the monitoring dashboard interface
• Understanding how metrics are collected and presented
• The parts of a chart

Using SNMP with
WebLogic Server

• WebLogic Server SNMP agents
• Security for SNMP
• MIB module for WebLogic Server
• Monitoring custom MBeans
• WebLogic Server notifications
• SNMP proxies
• WebLogic SNMP command-line utility

Creating JMX
applications to manage
WebLogic Server

• Developing custom management utilities with JMX
• Developing manageable applications with JMX
• Programming WebLogic deployment

Learning more about the
Jakarta Management
APIs

• JMO hierarchy
• JMO object names
• Optional features of JMOs
• Accessing JMOs
• Accessing the MEJB on WebLogic Server
• WebLogic Server extensions

Chapter 13
Roadmap for Monitoring, Diagnosing, and Troubleshooting in WebLogic Server

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 5

Table 13-1 (Cont.) Roadmap for Monitoring, Diagnosing, and Troubleshooting in
WebLogic Server

Major Task Subtasks and Additional Information

Servers do not start If you restart the server and encounter the following error, then follow the
instructions in Doc ID 2691299.1 to solve the issue.

<BEA-090402> <Authentication denied: Boot identity not
valid; The user name and/or password
 from the boot identity file (boot.properties) is
not valid.

Chapter 13
Roadmap for Monitoring, Diagnosing, and Troubleshooting in WebLogic Server

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 5

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2691299.1

14
Sample Applications and Code Examples

WebLogic Server provides a rich set of code examples and sample applications that show
several approaches to learning about and working with WebLogic Server. These examples and
sample applications are available through a separate WLS examples installer.

The WebLogic Server code examples include a naming convention, which indicates the path
names where the samples are located. Jakarta EE 8 Examples, Java EE 7 Examples, and
Java EE 6 Examples refers to the names of the folders where these examples are installed
and not the version of Java EE or Jakarta EE that the examples support. All the WebLogic
Server examples remain relevant for developing WebLogic Server 15.1.1.0.0 applications.

This chapter includes the following topics:

Installing and Running the Examples
You can create a complete WebLogic domain that is configured with the full set of deployed
code examples and sample applications by using the WLS examples installation program.

This section contains the following topics:

Installing the WebLogic Server Code Examples
You obtain the WebLogic Server and Coherence examples in a separate, examples JAR file,
fmw_15.1.1.0.0_wls_examples_generic.jar, which you install in the same ORACLE_HOME as
your WebLogic Server installation. For more information about obtaining and installing
WebLogic Server, see Installing the Oracle WebLogic Server and Coherence Software.

To set up the WebLogic Server samples domains, you run the Configuration Wizard in Quick
Start mode. Select to Automatically Launch the Quickstart Configuration Wizard on the
last WLS Examples Installation screen. The Quick Start Wizard creates the three sample
domains: wl_server, medrec, and medrec-spring, under
ORACLE_HOME\user_projects\domains.

If you run the Quick Start Configuration Wizard manually, as described in the following steps,
then you must create the sample domains one at a time. This process requires you to run the
Quick Start Wizard three times to create all three domains. For more information, see Running
the Quick Start Configuration Wizard in Creating WebLogic Domains Using the Configuration
Wizard.

Note

During manual domain configuration, you provide the name for each sample domain,
so it might be something other than medrec, medrec-spring, and wl_server.

• First, set the CONFIG_JVM_ARGS environment variable to specify the full path and JAR file
name for each template that you want to use. For example, to create the MedRec domain:

– On Windows:

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 7

set "CONFIG_JVM_ARGS=-DuserTemplates=C:\Oracle\Middleware\wlserver\common\
templates\wls\wls.jar,C:\Oracle\Middleware\wlserver\common\templates\
wls\medrec.jar"

– On UNIX:

export CONFIG_JVM_ARGS="-DuserTemplates=/Oracle/Middleware/wlserver/common/
templates/wls/wls.jar,/Oracle/Middleware/wlserver/common/templates/
wls/medrec.jar"

• Then, run the Configuration Wizard in Quick Start mode with the following command:

– On Windows:

cd ORACLE_HOME\oracle_common\common\bin
config.cmd -target=config-oneclick

– On UNIX:

cd ORACLE_HOME/oracle_common/common/bin
config.sh -target=config-oneclick

For detailed information, see Using Quick Start to Create the WebLogic Sample Domains in
Creating WebLogic Domains Using the Configuration Wizard.

MedRec-Spring

Before starting the MedRec-Spring domain, you have to copy the required Spring Framework
6.2.0 JAR files, which first must be downloaded from the https://repo1.maven.org/
maven2/org/springframework repository. If needed, set your proxy settings for downloading
the Spring Framework JAR files from the repository.

On Windows:

cd ORACLE_HOME\wlserver\samples\server
setExamplesEnv.cmd
cd medrec-spring
Edit project.properties to change the attribute “medrec-
spring.domain.dir=ORACLE_HOME\wlserver\samples\server\medrec-spring”
cd modules
ant -f module-build-commons.xml download.spring.pkgs // Download the Spring JAR files
copy "ORACLE_HOME\wlserver\samples\server\medrec-spring\lib\runtime*.jar"
"ORACLE_HOME\wlserver\samples\server\medrec-
spring\modules\medrec\web\target\exploded\medrec\WEB-INF\lib\" All
copy "ORACLE_HOME\wlserver\samples\server\medrec-spring\lib\runtime*.jar"
"ORACLE_HOME\wlserver\samples\server\medrec-
spring\modules\physician\web\target\exploded\physician\WEB-INF\lib\" All
cd ORACLE_HOME\user_projects\domains\medrec-spring
startWebLogic.cmd

On Linux/UNIX:

cd ORACLE_HOME/wlserver/samples/server/
sh setExamplesEnv.sh
cd medrec-spring/modules/
ant -f module-build-commons.xml download.spring.pkgs // Download the Spring JAR files
cp -rf ORACLE_HOME/wlserver/samples/server/medrec-spring/lib/runtime/*.jar ORACLE_HOME/
wlserver/samples/server/medrec-spring/modules/physician/web/target/exploded/physician/
WEB-INF/lib/
cp -rf ORACLE_HOME/wlserver/samples/server/medrec-spring/lib/runtime/*.jar ORACLE_HOME/
wlserver/samples//server/medrec-spring/modules/medrec/web/target/exploded/medrec/WEB-
INF/lib
cd ORACLE_HOME/user_projects/domains/medrec-spring
sh startWebLogic.sh

Chapter 14
Installing and Running the Examples

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 7

https://repo1.maven.org/maven2/org/springframework
https://repo1.maven.org/maven2/org/springframework

Starting the WebLogic Server Samples Domain
Start the examples server using one of the following procedures. In these procedures,
DOMAIN_HOME represents the location where the samples domain is configured on your
machine; for example, C:\ORACLE_HOME\user_projects\domains.

On Windows: Use a command shell and navigate to the DOMAIN_HOME\<samples_domain>
directory. Enter the following command:

startWebLogic.cmd
On UNIX Bourne Shell: Navigate to the DOMAIN_HOME/<samples_domain> directory. Enter the
following command:

sh ./startWebLogic.sh

Note

By default, the examples server uses port 7001 to listen for incoming connections. The
MedRec server also uses the same listen port by default, which means that you
cannot run both domains at the same time without changing one of the listen ports. If
you want to run both domains at the same time, use the WebLogic Server Remote
Console to change the listen port of the examples server to something other than
7001, and then restart it. You can then run the MedRec server using its default listen
port at the same that you run the examples server.

Running the WebLogic Server Code Examples
Review the instructions provided with the code examples for information about building,
deploying and running the code examples. When you start the WebLogic Server examples
domain, a browser is automatically launched that displays a web page from which you can
browse the code examples and obtain instructions for building, deploying, and running them.

All the WLS code examples and sample applications run on the current release of WebLogic
Server and support Jakarta EE 9.1.

Conventions
The instructions for building, deploying, and running the WebLogic Server code examples
include a number of typographical conventions for indicating the path names for entities such
as the WebLogic Server installation directory, the samples domain home directory, Apache
Derby, and so on, in a platform-neutral way.

The following conventions are used:

• The instructions generally are for Windows command shells. If you are using a UNIX or
Linux-based shell, substitute \ for / in path names.

• ORACLE_HOME represents the directory you specified as the Oracle Home when you installed
WebLogic Server; for example, C:\Oracle\Middleware\Oracle_Home.

• WL_HOME represents the top-level installation directory for Oracle WebLogic Server. The
default path is ORACLE_HOME\wlserver. (However, you are not required to install WebLogic
Server in the Oracle Home directory.)

Chapter 14
Conventions

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 7

• EXAMPLES_HOME represents the directory in which the WebLogic Server code examples are
configured. The default path is ORACLE_HOME\wlserver\samples\server.

• DOMAIN_HOME represents the directory in which the WebLogic Server sample domains are
configured. The default path is ORACLE_HOME\user_projects\domains.

Source files for the code examples are separated from the domain configuration files, just as
they should be in a real-world scenario. They are installed in the EXAMPLES_HOME directory.

The DOMAIN_HOME\<samples_domain> directory contains a WebLogic Server samples domain; it
contains your applications and the XML configuration files that define how your applications
and Oracle WebLogic Server will behave, as well as startup and environment scripts.

The EXAMPLES_HOME\examples\build directory contains client and server classes required by
the examples and Derby database.

The WL_HOME\common\derby directory contains Derby, a demonstration database that the
examples are configured to use. It also contains scripts that start and stop the database. For
more information about Derby, see http://db.apache.org/derby.

Jakarta EE 8 Examples
The Jakarta EE 8 examples demonstrate how to implement Jakarta EE 8 APIs and Oracle
WebLogic Server-specific features. The Jakarta EE 8 examples are grouped into the following
categories:

• Jakarta JSON Binding—Use Jakarta JSON Binding with JAX-RS.

• Jakarta Security—Configure a DatabaseIdentityStore to point to a backend database
and then use it as an IdentityStore.

• Jakarta JSON Processing—Use JSON Patch, JSON Merge Patch, and JSON Pointer to
update a JSON document.

• Servlet 4.0—Use the Servlet Mapping API, HTTP/2 Server Push, and the HTTP Trailer
headers API.

• JAX-RS 2.1—Use the new Server-Sent Events (SSE) and the new REST Reactive Client
API.

• JSF 2.3—Use the new features of JSF 2.3 such as direct support for WebSockets, class-
level bean validation, CDI-compatible @ManagedProperty annotation feature, and Java date
and time.

• JPA 2.2—Use injection in @AttributeConverter annotation, new Jakarta EE 8 Date and
Time, and also use support for retrieving the results of Query and TypedQuery as streams.

• CDI 2.0—Use asynchronous events, observer ordering, and also use interception factory.

Java EE 7 Examples
The Java EE 7 examples demonstrate how to implement Java EE 7 APIs and Oracle
WebLogic Server-specific features. The Java EE 7 examples are grouped into the following
categories:

• Batch Application Processing 1.0—Submit batch jobs and obtain information about
submitted jobs using the JobOperator interface, and use the batch parallelization model to
run partitioned job steps.

• Bean Validation 1.1—Use the bean validation group constraint and method level validation
APIs.

Chapter 14
Jakarta EE 8 Examples

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 7

http://db.apache.org/derby

• Context and Dependency Injection (CDI) 1.1—Use CDI events and
the @TransactionScoped and @Transactional annotations.

• Concurrency Utilities 1.0—Create dynamic proxy objects using
the ContextService interface, submit tasks using the ManagedExecutorService interface,
submit delayed or periodic tasks using the ManagedScheduledExecutorService interface,
and obtain a managed thread from the Java EE container using
the ManagedThreadFactory interface.

• Enterprise JavaBeans 3.2—Use the new session bean life cycle callback interceptor
methods API and also use a message-driven bean to implement a listener interface with
no methods.

• Expression Language 3.0—Use new EL features, including support for a standalone
environment, static field or method references, new operators, Lambda expressions, and
collection constructions and operations.

• Java API for RESTful Web Services (JAX-RS) 2.0—Use asynchronous processing, filters
and interceptors, and server-sent events (SSE) Jersey support.

• Java EE Connector Architecture 1.7—Develop a resource adapter and deploy connector
resources with annotations defined in the Java EE Connector Architecture 1.7
specification.

• Java Message Service API 2.0—Use the JMS API in EJBs and servlets.

• Java Persistence 2.1—Use JPA criteria update and criteria delete APIs, and the stored
procedures API.

• JSF 2.2—Use Java Server Faces (JSF) resource library contracts, file upload, faces flows,
and HTML5 features.

• JSON Processing 1.0—Use the Java API for JSON processing with JAX-RS.

• Servlet 3.1—Use the HTTP protocol upgrade API, use non-blocking I/O for asynchronous
reads and writes, change a session ID, and handle uncovered HTTP methods.

• WebSocket—Process JSON-format data, using CDI and EJBs in WebSocket endpoints,
enable a server to echo text sent by a client, and enable fallback to HTTP long polling as
an alternative for WebSocket messaging.

Java EE 6 Examples
Oracle WebLogic Server includes code examples that demonstrate how to implement Java EE
6 APIs and WebLogic Server-specific features. The Java EE 6 examples are grouped in the
following categories:

• Bean Validation 1.0: Use bean validation with JPA entities, JPA from Java SE, and JSF
managed beans.

• Context and Dependency Injection (CDI) 1.0: Introduces CDI with type-safe dependency
injection, interceptors, and producers.

• Data Source: Use the @DataSourceDefinition annotation.

• Enterprise JavaBeans 3.1: Use asynchronous methods, a calendar-based timer, simplified
programming model and packaging in a WAR file, portable global JNDI names, and
singleton session beans.

• Java API for RESTful Web Services (JAX-RS) 1.1: Build RESTful web services with JAX-
RS.

• Java EE Connector Architecture 1.6: Use the Java EE Connector Architecture to connect
two applications together using a stock trading application.

Chapter 14
Java EE 6 Examples

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 7

• JPA 2.0: Use the JPA Criteria Query API and the @ElementCollection mapping type.

• JSF 2.0: Incorporate Ajax in web applications, create bookmarkable web applications, and
use facelets and templating.

• Servlet 3.0: Use annotations for servlets, filters, and listeners, handle file uploads with
multipart files, and use asynchronous servlet and request handling, programmatic security,
and servlet web fragments.

Additional API Examples
Oracle WebLogic Server also includes a set of examples that demonstrate how to implement
additional Java and Jakarta EE APIs and Oracle WebLogic Server-specific features. These
examples are grouped in the following categories:

• Database Connectivity—Use Data Sources, Multi Data Sources, and Rowsets.

• EJB—Create stateless, stateful, entity, and message-driven EJBs, and more.

• Internationalization—Internationalize an application using simple message catalogs.

• Messaging—Use JMS topics, queues, and message-driven beans.

• Resource Adapter—Use an entity EJB to interact with a Jakarta Connector Architecture
resource adapter.

• Security—Use the Java Authentication and Authorization Service, SAML, and outbound
and two-way SSL.

• Transactions—Use JTA to perform distributed transactions using the two phase commit
protocol across two XA resources.

• Web Application—Create simple servlets and JSPs, use the HTTP Publish-Subscribe
server, and more.

• Web Services—Create a variety of web services using JWS annotations.

• XML—Use the STAX API and XMLBeans

• Cluster—Cluster an EJB and use HTTP session state replication.

• Coherence—Use the Coherence container to host Coherence applications

• WebLogic Scripting Tool—Use the WebLogic Scripting Tool (WLST) to configure and
manage a running Administration Server instance.

• Split Development—Use the WebLogic split development directory structure to build,
package, and deploy Enterprise Applications.

• Service Component Architecture—Use WebLogic SCA, a lightweight Spring 2.5 (or later)
container, in a shopping cart application that demonstrates many of its key features.

• Spring—Use Spring-simplified configuration in a Spring-based web application.

Avitek Medical Records
Avitek Medical Records (also known as MedRec) is a comprehensive educational sample
application that demonstrates WebLogic Server and Jakarta EE features, as well as best
practices. Avitek Medical Records is optionally installed with the WebLogic Server installation.

You can start MedRec from the ORACLE_HOME/user_projects/domains/medrec directory, where
ORACLE_HOME is the directory you specified as the Oracle Home when you installed Oracle
WebLogic Server.

Chapter 14
Additional API Examples

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 6 of 7

The sample application, MedRec (Spring) demonstrates Spring Framework application
development practices.

Derby Open-Source Database
Derby is an open source relational database management system based on Java, JDBC, and
SQL standards. Derby is bundled with WebLogic Server for use by the sample applications and
code examples as a demonstration database.

For more information about Derby, see http://db.apache.org/derby.

Chapter 14
Derby Open-Source Database

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 7 of 7

http://db.apache.org/derby

15
WebLogic Server Compatibility

Oracle attempts to support binary and source-level compatibility between Oracle WebLogic
Server 15c (15.1.1.0.0) and versions 12.2.1.4.0, 14.1.1.0.0, and 14.1.2.0.0 in the areas of
persistent data, generated classes, and API compatibility. In some cases, it is impossible to
avoid incompatibilities. Where incompatibilities arise, they are fully documented in Upgrading
Oracle WebLogic Server.
This chapter includes the following topics:

Jakarta EE 9.1 Compatibility
WebLogic Server 15c (15.1.1.0.0) is Jakarta EE 9.1 compatible. This compatibility allows a
Jakarta EE 9.1 compliant application to be developed on one operating system platform and
deployed for production on another, without requiring Jakarta EE 9.1 application code changes.

Oracle ensures this compatibility of Jakarta EE 9.1 application portability within a WebLogic
Server release level.

Compatibility Within a Domain
Within the scope of a WebLogic domain, Oracle WebLogic Server supports a wide range of
compatibility with respect to the specific versions of WebLogic Server instances that can run in
that domain, as well as the mix of hardware, operating system, and JVM platforms on which
those server instances can run.

However, depending upon the specific configurations present in the domain, such as WebLogic
clusters, Oracle has specific recommendations for how you can achieve optimal performance.
The following topics provide key information regarding compatibility within WebLogic domains:

About WebLogic Server Version Numbers
Within a WebLogic domain, the Administration Server, Managed Server instances, and the
domain itself each have a WebLogic Server version number. The version number contains five
decimal places; for example, WebLogic Server 15.1.1.0.0. The meaning of each decimal place
is described below:

• The first two decimal places together describe the Major Version number, for example
"15.1" in 15.1.1.0.0. The WebLogic Server 14.1 Major Version release is also branded as
the WebLogic Server 14c Major Version release.

• The first three decimal places together describe the Minor Version number, for example
"15.1.1" in 15.1.1.0.0. WebLogic Server 15.1.1 (or 15.1.1.0.0) is the first Minor Version
release of the WebLogic Server 15.1 Major Version release. WebLogic Server 15.1.2 (or
15.1.2.0.0) would be the second Minor Version release of the WebLogic Server 15.1 Major
Version release.

• Patch Set releases for WebLogic Server 15.1.1.0.0 will increment the fourth decimal place.
For example, 15.1.1.1.0 would be the first patch set release.

• Patch Set Update releases are named uniquely by incrementing the fifth decimal place
with the date of the Patch Set Update release in YYMMDD format; for example,

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 1 of 5

15.1.1.0.251130. This convention is used for Patch Set Update naming purposes; for
example, naming downloads available on My Oracle Support. However, the application of
a Patch Set Update does not change the version number of an existing WebLogic Server
installation as referenced in the Oracle inventory directory (oraInventory) used by
WebLogic Server 15.1.1 installers.

You can obtain the version number and Patch Set level of a WebLogic Server instance or
domain several different ways. For example:

• For an Administration Server or Managed Server instance, you can view the version
message sent to stdout when the server is started. For example:

<Version: WebLogic Server 15.1.1.0.0 Sat Nov 11 12:34:37 PDT 2025 1960751 >

• For a domain, you can view the value of the <domain-version> element in the domain
configuration file, config.xml. For example:

<domain-version>15.1.1.0.0</domain-version>

WebLogic Version Compatibility
Within a WebLogic domain, the Administration Server, all Managed Server instances, and the
WebLogic domain must be at the same WebLogic Server Major and Minor Version. This
means that in WebLogic Server 15.1.1.0.0, the Administration Server, Managed Servers, and
the WebLogic domain must all be at version 15.1.1.0.0. Note the following guidelines for
maintaining consistency in Patch Set Update and Interim or One-off Patch levels within a
domain.

• In general, the best practice is for all server instances within a domain to be at the same
Patch Set Update (PSU) and Interim or One-off Patch level during steady-state operation.
However, there may be cases where server instances are required to run at different PSUs
and Interim or One-off Patch levels within a domain. The primary examples include:

– When applying PSUs, Interim or One-off Patches in rolling fashion across server
instances in the domain. In such cases, the maintenance should be applied to the
Administration Server first, so that the Administration Server is at the same PSU and
Interim or One-off Patch level (or higher) than its Managed Servers. See About Rolling
Upgrade in Upgrading Oracle WebLogic Server.

– When there are specific requirements to run Managed Servers within a domain at
different PSU and Interim or One-off Patch levels in steady-state operation. In such
cases, the Administration Server should be at the highest PSU level, so that the
Administration Server is at the same PSU level or higher than all of the Managed
Servers. If Managed Servers within a domain are running with different Interim or One-
off Patches, it will not be possible to apply a consistent set of Interim or One-off
Patches to the Administration Server. Because this maintenance complexity may be
difficult to manage, the general best practice is to use the same PSU and Interim or
One-off Patch level across all servers in the domain.

• Server instances within a cluster or domain can run on any hardware and operating
systems as long as the hardware and operating systems are listed on the Oracle Fusion
Middleware Supported System Configurations page on Oracle Technology Network.
However, note that running clustered Managed Server instances on different hardware and
operating systems may impact load balancing and performance. In general, the best
practice is to run all Managed Servers within a cluster on the same hardware and
operating system.

• If the WebLogic domain is part of an Oracle Enterprise Manager Cloud Control installation,
additional requirements exist regarding the combinations of hardware, operating system,

Chapter 15
Compatibility Within a Domain

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 2 of 5

and JVMs, that may be configured in the domain. See Oracle Enterprise Manager Cloud
Control Administrator's Guide.

For more information about WebLogic domains and additional details about domain
compatibility, see Domain Restrictions in Understanding Domain Configuration for Oracle
WebLogic Server.

Hardware, Operating System, and JVM Platform Compatibility
WebLogic Server instances within a domain can run on any hardware, operating system, and
JVM platform as long as the hardware, operating systems, and JVMs are supported for the
current version of WebLogic Server. For details, see the Oracle Fusion Middleware Supported
System Configurations page on the Oracle Technology Network.

Note

Although this platform compatibility support extends to Managed Server instances
within a cluster, Oracle strongly recommends that clusters be homogeneous with
respect to the underlying hardware, operating system, and JVM. Managed Server
instances running in the same cluster are assumed to be equivalent, so running
clustered server instances on mixed platforms may have a negative impact on load
balancing and performance. If you must operate a cluster on a mixed platform, Oracle
strongly recommends that you understand the load balancing and performance
implications.

Node Manager Compatibility
As a best practice, Oracle recommends that the version of Node Manager used in a WebLogic
domain should match the version of the Administration Server.

Persistent Data Compatibility
If you are upgrading Oracle WebLogic Server from release 12.2.1.4.0, 14.1.1.0.0, or 14.1.2.0.0
to release 15c (15.1.1.0.0), a number of updates are required to several configuration files.
However, Oracle WebLogic Server upgrade tooling makes those configuration file updates for
you automatically.

API Compatibility
WebLogic Server 12.2.1.4.0, 14.1.1.0.0, and 14.1.2.0.0 applications deployed on WebLogic
Server must be modified and recompiled to run in the WebLogic Server 15.1.1.0.0 application
environment.
Oracle recommends using Rewrite WebLogic recipes to apply the changes required for
migrating applications to WebLogic Server 15.1.1.0.0 and Jakarta EE 9.1. You can use Rewrite
WebLogic recipes for migrating WebLogic Server applications to newer versions of WebLogic
Server, Java, Jakarta EE, and related versions of Jakarta Server Faces and Spring
Framework. For more information, see Upgrade Your Applications in Upgrading Oracle
WebLogic Server.

For a list of previously deprecated APIs that are removed in Oracle WebLogic Server
15.1.1.0.0, see Removed Functionality and Components in What’s New in Oracle WebLogic
Server 15.1.1.0.0.

Chapter 15
Persistent Data Compatibility

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 3 of 5

https://www.oracle.com/pls/topic/lookup?ctx=fmw122140&id=EMADM10644
https://www.oracle.com/pls/topic/lookup?ctx=fmw122140&id=EMADM10644
https://github.com/oracle/rewrite-recipes/tree/main/rewrite-weblogic/README.md#recipes

Protocol Compatibility
Interoperability between WebLogic Server 15c (15.1.1.0.0) and WebLogic Server 12.2.1.4.0,
4.1.1.0.0, and 14.1.2.0.0 is supported in several scenarios with regard to WebLogic clients,
transport protocols, and WebLogic proxy plug-ins.

The supported client-server interoperability scenario is as follows: a WebLogic Server
15.1.1.0.0 server acting as a client can invoke RMI-based applications hosted on a WebLogic
Server 14.1.2.0.0 server using IIOP*, T3, T3S, HTTP, and HTTPS. JMS applications can be
invoked using T3, T3S, HTTP, and HTTPS.

The supported server-server interoperability scenarios are as follows:

• WLS 15.1.1.0.0 <-> WLS 14.1.2.0.0

• WLS 15.1.1.0.0 <-> WLS 14.1.1.0.0

• WLS 15.1.1.0.0 <-> WLS 12.2.1.4.0

The following clients can interoperate with WebLogic 15.1.1.0.0 servers. The parentheses
indicate which version of WLS provides the client in its installation and whether the client itself
uses javax or jakarta packages.

• WL Thin T3 Client (15.1.1.0.0 jakarta)

• WL Thin T3 Client (14.1.2.0.0 javax)

• WL Thin T3 Client (14.1.1.0.0 javax)

• WL Thin T3 Client (12.2.1.4.0 javax)

• Install Client (T3) (15.1.1.0.0 jakarta)

• Install Client (T3) (14.1.2.0.0 javax)

• Install Client (T3) (14.1.1.0.0 javax)

• Install Client (T3) (12.2.1.4.0 javax)

• Web Services (15.1.1.0.0 jakarta)

• Web Services (14.1.2.0.0 javax)

• Web Services (14.1.1.0.0 javax)

• Web Services (12.2.1.4.0 javax)

• RESTful Webservices Client (15.1.1.0.0 jakarta)

• RESTful Webservices Client (14.1.2.0.0 javax)

• RESTful Webservices Client (14.1.1.0.0 javax)

• RESTful Webservices Client (12.2.1.4.0 javax)

WebLogic Server 15c (15.1.1.0.0) supports client to server IIOP communications and
interoperability with the following restrictions:

• The only supported WebLogic Java IIOP clients are:

– A weblogic.jar install client from 15.1.1.0.0 or earlier WebLogic Server versions that
are supported and under error correction.

– A wlfullclient.jar, available in earlier versions of WebLogic Server that are
supported and under error correction. The wlfullclient.jar is included but

Chapter 15
Protocol Compatibility

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 4 of 5

deprecated in 12.2.1.4.0. WebLogic Server versions 14.1.1.0.0 and 14.1.2.0.0 do not
include wlfullclient.jar.

– A wlclient.jar from earlier WebLogic Server versions that are supported and under
error correction. WebLogic Server 15c (15.1.1.0.0) does not include wlclient.jar.

• A Jakarta SE client (no JAR file from WebLogic Server in the class path) is not supported.

• For WebLogic Server 15c (15.1.1.0.0) instances running on JDK17 or 21, IIOP
interoperability with Jakarta clients is only available with a WebLogic Server 15c
(15.1.1.0.0) install client running on JDK 17 or 21.

• Interoperability support is not available between WebLogic Server 15c (15.1.1.0.0)
instances running on JDK 17 or 21, and WebLogic Java IIOP clients running on JDK 17 or
21.

Note

Oracle recommends using a T3 capable WebLogic Java client and the T3 protocol
instead of IIOP when possible. It is rare that the IIOP protocol is required for Java to
Java communications; T3 is more efficient than IIOP. For more information, see
Overview of Standalone Clients in Developing Standalone Clients for Oracle
WebLogic Server.

Chapter 15
Protocol Compatibility

Understanding Oracle WebLogic Server
G31428-01
Copyright © 2007, 2025, Oracle and/or its affiliates.

October 7, 2025
Page 5 of 5

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Conventions

	1 Introduction
	Product Overview
	Programming Models
	High Availability
	Diagnostic Framework
	Security
	Client Options
	Integration with Other Systems
	Integration with Web Servers
	Running Oracle WebLogic Server in Kubernetes
	WebLogic Deploy Tooling
	WebLogic Image Tool
	WebLogic Kubernetes Operator
	WebLogic Remote Console
	WebLogic Kubernetes Toolkit UI
	WebLogic Monitoring Exporter
	WebLogic Server API Examples and Sample Applications
	Upgrade

	2 System Administration
	Overview of WebLogic Server System Administration
	Choosing the Appropriate Technology for Your Administrative Tasks
	Summary of System Administration Tools and APIs
	Roadmap for Administering the WebLogic Server System

	3 Overview of the Administration Console
	Using the WebLogic Remote Console

	4 WebLogic Server Domains
	Understanding Domains
	Organizing Domains
	Contents of a Domain
	Administration Server
	Managed Servers and Managed Server Clusters
	Managed Coherence Servers and Coherence Clusters
	Resources and Services

	Roadmap for Understanding WebLogic Server Domains

	5 WebLogic Server Clustering
	Overview of WebLogic Server Clusters
	Relationship Between Clusters and Domains
	Relationship Between Coherence and WebLogic Server Clusters
	Benefits of Clustering
	Key Capabilities of Clusters
	Objects That Can Be Clustered
	About Dynamic Clusters
	Roadmap for Clustering in WebLogic Server

	6 Developing Applications in WebLogic Server
	WebLogic Server and the Jakarta EE Platform
	Overview of Jakarta EE Applications and Modules
	Roadmap for Developing Applications in WebLogic Server

	7 Deploying Applications in WebLogic Server
	Overview of the Deployment Process
	Jakarta EE Deployment Implementation
	Fast Track Deployment Guide
	Jakarta EE Deployment
	Auto-Deployment

	System Administrator Tools
	JSP/HTML Deployment
	Coherence Deployment

	Roadmap for Deploying Applications in WebLogic Server

	8 WebLogic Server Data Sources
	Understanding JDBC Data Sources
	Understanding Generic Data Sources
	Understanding Active GridLink Data Sources
	Understanding JDBC Multi Data Sources
	Understanding Universal Connection Pool Data Sources
	Roadmap for WebLogic Server Data Sources

	9 WebLogic Server Messaging
	Overview of JMS and WebLogic Server
	Jakarta Messaging
	Roadmap for WebLogic Server Messaging

	10 Understanding WebLogic Server Security
	Jakarta EE Security API Support in WebLogic Server
	Overview of the WebLogic Server Security Service
	WebLogic Server Security Service Architecture
	WebLogic Security Framework
	Single Sign-on with the WebLogic Server Security Framework
	SAML Token Profile Support in WebLogic Web Services
	The Security Service Provider Interfaces (SSPIs)
	WebLogic Security Providers

	Managing WebLogic Server Security
	Security for Coherence
	Roadmap for Securing WebLogic Server

	11 WebLogic Server Web Services
	Anatomy of a Web Service
	Web Service Standards
	Roadmap for Web Services

	12 Jakarta Enterprise Beans (EJBs)
	Understanding EJBs
	EJB Documentation in WebLogic Server
	Additional EJB Information
	Session EJBs Implement Business Logic
	Message-Driven Beans Implement Loosely Coupled Business Logic

	EJB Anatomy and Environment
	EJB Components
	The EJB Container
	Embeddable EJB Container
	EJB Metadata Annotations
	Optional EJB Deployment Descriptors

	EJBs Clients and Communications
	Accessing EJBs
	EJB Communications

	Securing EJBs
	Roadmap for EJBs in WebLogic Server

	13 Monitoring, Diagnosing, and Troubleshooting
	WebLogic Diagnostics Framework
	Logging Services
	SNMP Support
	Custom JMX Applications
	Jakarta Management APIs
	Roadmap for Monitoring, Diagnosing, and Troubleshooting in WebLogic Server

	14 Sample Applications and Code Examples
	Installing and Running the Examples
	Installing the WebLogic Server Code Examples
	Starting the WebLogic Server Samples Domain
	Running the WebLogic Server Code Examples

	Conventions
	Jakarta EE 8 Examples
	Java EE 7 Examples
	Java EE 6 Examples
	Additional API Examples
	Avitek Medical Records
	Derby Open-Source Database

	15 WebLogic Server Compatibility
	Jakarta EE 9.1 Compatibility
	Compatibility Within a Domain
	About WebLogic Server Version Numbers
	WebLogic Version Compatibility
	Hardware, Operating System, and JVM Platform Compatibility
	Node Manager Compatibility

	Persistent Data Compatibility
	API Compatibility
	Protocol Compatibility

