
Oracle® Fusion Middleware
Administering Zero Downtime Patching
Workflows

14c (14.1.1.0.0)
F18285-06
April 2022

Oracle Fusion Middleware Administering Zero Downtime Patching Workflows, 14c (14.1.1.0.0)

F18285-06

Copyright © 2007, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience v

Documentation Accessibility v

Related Documents v

Conventions v

Guide to This Document vi

Diversity and Inclusion vi

1 Introduction to Zero Downtime Patching

What Is Zero Downtime Patching? 1-1

Identifying a Zero Downtime Patch 1-1

Types of Patching Workflows 1-2

The Patching Workflow Process 1-2

Reverting an Update 1-3

Rolling Out a Patched Oracle Home: Overview 1-4

Rolling Out a New Java Version: Overview 1-6

Rolling Out Updated Applications: Overview 1-7

In-Memory Session Replication for ZDT Rollouts 1-9

2 Preparing for Zero Downtime Patching

ZDT Patching Restrictions 2-1

Preparing to Migrate Singleton Services 2-2

Creating a JSON File for Migrating Singleton Services 2-4

Preparing to Roll Out a Patched Oracle Home 2-6

Creating a Second Oracle Home 2-6

Applying Patches to the Second Oracle Home 2-7

Creating an Archive and Distributing It to Each Node 2-7

Preparing to Upgrade to a New Java Version 2-8

Preparing to Update to New Application Versions 2-9

The Effects of Staging Modes 2-9

iii

Creating an Application Update JSON File 2-10

3 Patching an Existing WebLogic Server Installation

Using Zero Downtime Patching 3-1

Obtaining a List of Applied Patches 3-1

4 Configuring and Monitoring Workflows

Strategies for Rolling Out a Patched Oracle Home 4-1

Starting the Administration Server 4-2

Using WLST to Initiate and Monitor Workflows 4-3

Rolling Out a New Oracle Home 4-7

Updating Your Java Version 4-8

Updating Both Oracle Home and the Java Version 4-8

Rolling Out Updated Applications 4-9

Reverting to the Previous Oracle Home, Java Home, or Applications 4-10

Initiating a Rolling Restart of Servers 4-10

Monitoring Workflow Progress 4-11

Executing, Reverting, and Resuming Stopped Workflows 4-12

Useful WLST Commands for Workflows 4-12

Sample WLST Script 4-13

Using the WebLogic Server Administration Console to Create and Monitor Workflows 4-15

Accessing ZDT Workflow Functions in the WebLogic Server Administration Console 4-15

Creating a New Workflow for a Domain, Clusters, or Servers 4-15

Monitoring and Managing Workflows 4-18

Viewing Workflow Details 4-19

Viewing Server Status 4-20

Viewing Cluster Status 4-20

Workflow Statuses 4-20

Workflow Logging 4-20

Filtering the Log File 4-21

Log Message Format 4-21

5 Modifying Workflows Using Custom Hooks

About Extension Points 5-1

The Patching Workflow Process for Custom Hooks 5-3

Specifying Extensions to Modify the Workflow 5-5

iv

Preface

This document, Administering Zero Downtime Patching Workflows, describes how to move a
domain from an existing Oracle home to a patched Oracle home, update to a new Java
version, or update applications in a domain without any loss of service. It describes how to
create workflows that methodically apply the changes to the servers in the domain while
keeping the domain available. It also describes how to monitor the progress of workflow tasks
and revert the domain to its previous state.

Audience
This document is written for WebLogic Server administrators and operators who are
responsible for applying updates to a domain, such as Oracle patches to an Oracle home,
new Java versions, or application updates. It is assumed that readers are familiar with the
WebLogic Server Administration Console, WebLogic Scripting Tool (WLST), and the
operating system and platform on which Oracle WebLogic Server is installed.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. Seehttp://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
See the following Oracle Fusion Middleware documents:

• Patching with OPatch

• Administering Node Manager for Oracle WebLogic Server

• Understanding the WebLogic Scripting Tool

• WLST Command Reference for WebLogic Server

• Deploying Applications to Oracle WebLogic Server

• MBean Reference for Oracle WebLogic Server

Conventions
The following text conventions are used in this document:

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Guide to This Document
This document is organized as follows:

• Introduction to Zero Downtime Patching provides an overview of Zero Downtime
Patching, including the types of patching workflows that you can create, how the
patching workflow proceeds, and how patching is reverted.

• Preparing for Zero Downtime Patching describes the preliminary steps that must
be completed before you can configure a patching workflow.

• Configuring and Monitoring Workflows describes how to configure a patching
workflow that moves a domain to a patched Oracle home, updates the Java
version for a domain, updates the applications for a domain, or all three.

• Modifying Workflows Using Custom Hooks describes how to modify a patching
workflow by executing additional scripts at specific extension points in rollouts.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Preface

vi

1
Introduction to Zero Downtime Patching

Zero Downtime Patching in Oracle WebLogic Server provides a way to create various
workflows to apply updates across a domain without interrupting your applications to service
requests. Learn how to apply an update across a domain, revert an update, and understand
the workflow process.

• What Is Zero Downtime Patching?

• Identifying a Zero Downtime Patch

• Types of Patching Workflows

• The Patching Workflow Process

• Reverting an Update

• Rolling Out a Patched Oracle Home: Overview

• Rolling Out a New Java Version: Overview

• Rolling Out Updated Applications: Overview

• In-Memory Session Replication for ZDT Rollouts

What Is Zero Downtime Patching?
Zero Downtime Patching (ZDT Patching) automates the rollout of out-of-place patching or
updates across a domain while allowing your applications to continue servicing requests.
After defining your patching strategy, you can use either the WebLogic Scripting Tool (WLST)
or the WebLogic Server Administration Console to orchestrate the rollout of updates across
some or all the servers in your domain.
Although WebLogic Server has supported rolling upgrades since version 9.2, the process has
always been manual. ZDT Patching automates this process by using workflows that you
define. You can patch or update any number of nodes in a domain with little or no manual
intervention. Changes are rolled out to one node at a time, allowing a load balancer such as
Oracle Traffic Director to redirect incoming traffic to the remaining nodes until the node has
been updated.

ZDT Patching also provides support for custom hooks. The ZDT custom hooks provide a
flexible mechanism for modifying the patching workflow by executing additional scripts at
specific points in the patching rollout. This feature allows application developers and
administrators to include any operation that is specific to a particular type of rollout but that
may not be applicable to the base patching workflow. See Preparing to Modify Rollouts Using
Custom Hooks for information about using this feature.

Identifying a Zero Downtime Patch
You can identify a ZDT patch by the value of the patch uptime option in the patch metadata.

After you download a patch, open up patchdeploy.xml in the PATCH_HOME/etc/config
directory, where PATCH_HOME is the location of the patch directory that contains the patch.

1-1

If the value of patch-uptime-option is FMW_ROLLING_ORACLE_HOME, as shown in the
following example:

<patch-uptime-option>FMW_ROLLING_ORACLE_HOME<patch-uptime-option>

Or the value is FMW_ROLLING_SESSION:

<patch-uptime-option>FMW_ROLLING_SESSION<patch-uptime-option>

Then, the patch is suitable for ZDT patching.

If FMW_ROLLING_ORACLE_HOME or FMW_ROLLING_SESSION does not appear in the patch
metadata, then you know that the patch is not suitable for ZDT patching. As a result,
the patch is not compatible with a ZDT patch plan.

Types of Patching Workflows
You can create different types of workflows with ZDT Patching, for moving servers to a
patched Oracle home, updating to a new Java version, deploying updated
applications, and more.

You can create a workflow that performs any one of these tasks. You can also create a
workflow that performs any combination of an Oracle home update, Java version
update, and application update.

• Moving servers to a patched Oracle home:The workflow transitions the
Administration Server or clusters or both to another Oracle home that has already
been patched using the OPatch utility.

• Updating to a new Java version:The workflow updates the Administration Server
or clusters or both to use a newly installed Java home.

• Deploying updated applications:The workflow deploys updated applications to
the selected clusters.

• Performing a rolling restart of servers:The workflow sequentially restarts the
Administration Server or servers in the selected clusters or both safely, including
graceful shutdown of the servers and starting them up again.

Prior to creating a patching workflow, you must complete the preliminary steps for
each of these tasks with the exception of rolling restarts. See Preparing for Zero
Downtime Patching.

The Patching Workflow Process
A ZDT Patching workflow constitutes a systematic set of steps that are executed in a
particular order to roll out an update.

When you use a ZDT patching workflow to roll out an update, the rollout:

• Systematically works its way through each applicable node

• Identifies the servers on the node that are included in the rollout

• Gracefully shuts down those servers

• When switching to a patched Oracle home:

– Backs up the existing Oracle home to a backup directory

Chapter 1
Types of Patching Workflows

1-2

– Calls Node Manager to switch the contents of the current Oracle home to the
contents of the specified Oracle home

• When updating to a new Java version:

– Updates all scripts in the domain's Oracle home that contain a reference to Java
home to point to the new Java home

– Updates all scripts in the domain's home directory that contain a reference to Java
home to point to the new Java home

• When updating to new application versions:

– Locates the current directory for each application

– Moves the current directory for each application to a backup location

– Moves the directory for the new version of each application to the location of each
original application

• Restarts each server once the update has completed on the node

The workflow executes the appropriate steps in order and monitors the success of each step.
If a step fails, the workflow may attempt to retry it. If a step cannot be completed successfully,
then the workflow reverts each previous step in order. Updates can be reverted either
automatically or can be initiated manually, as described in Reverting an Update.

Reverting an Update
During the process of the patching workflow, ZDT Patching monitors the success and failure
of each step and provides the capability to revert to the previous step. You can configure the
revert process to execute automatically, or initiate the process manually.

ZDT Patching is able to revert an update at any point in the process, even after it has
completed. Updates can be reverted:

• Automatically—When creating a workflow, you can opt to have the update revert
automatically if there is a failure. The update will be rolled back from the point of failure,
starting with the last successfully completed step.

• Manually—While a workflow is in progress, you can stop it and revert the process at any
point. The update will then be rolled back, starting with the last successfully completed
step.

After a workflow has completed, you can create a workflow to reverse the update that
was made. The revert process differs slightly depending on the update. If you are
reverting to the previous Oracle home, then you are provided with an option to specify
that the process is a rollback. For Java and applications, to revert you can point to the
previous version of Java or the application.

For information about reverting an update, see Executing, Reverting, and Resuming Stopped
Workflows.

Chapter 1
Reverting an Update

1-3

Rolling Out a Patched Oracle Home: Overview
You can roll out a patched Oracle home across your domain by using WLST or the
WebLogic Server Administration Console while ensuring that your application
continues servicing requests.

Note:

OPatchAutoFMW (installed in OPatch/auto/fmw directory) is deprecated and
is automatically removed when you update to OPatch 13.9.4.2.2 or later. You
can continue to use OPatchAutoCore (installed in OPatch/auto/core
directory) for auto updates during Fusion Middleware installation.

Before rolling out a patched Oracle home to all nodes in your domain, ensure that the
following conditions are met:

• The domain is distributed across all nodes and stored in the same location on all
nodes.

• The existing Oracle home is in the same location on all nodes.

• Node Manager is running on all nodes.

• All Managed Servers in all clusters that will be included in the rollout are running.

See ZDT Patching Restrictions, for additional requirements and restrictions. Figure 1-1
shows the sequence of operations that are performed for an Oracle home rollout on
each node, regardless of whether you use WLST or the WebLogic Server
Administration Console to perform the rollout.

To roll out a patched Oracle home, perform the following tasks:

1. Create and distribute the patched Oracle home archive.

Manually create and distribute the patched Oracle home archive:

a. Use the copyBinary command to create an archive of your existing Oracle
home.

For details on this step and the next step, see Creating a Second Oracle
Home.

b. Use the pasteBinary command to create an Oracle home to be patched on a
development or test system that has a domain topology similar to your
production domain. This gives you an Oracle home that has the same patch
level and products as you have on your production system.

c. Use OPatch to apply the desired patch or patches to the Oracle home on your
development or test system.

See Applying Patches to the Second Oracle Home.

d. Test and verify the patched Oracle home.

e. When you are satisfied that the patched Oracle home is stable, use
copyBinary to create an archive of the patched Oracle home.

Chapter 1
Rolling Out a Patched Oracle Home: Overview

1-4

For details on this and the next step, see Creating an Archive and Distributing It to
Each Node.

f. Distribute this archive to all nodes in your production system.

Note:

There is no need to use pasteBinary to create the archive on each node.
The rollout process will create the new Oracle home on each node from the
archive.

2. Create a ZDT workflow to roll out the patched Oracle home to your Administration Server.
You can do this in any of the following ways:

• Use the WLST rolloutOracleHome command and specify the Administration Server
as the rollout target.

See Rolling Out a New Oracle Home.

• In the WebLogic Server Administration Console, click the ZDT Control tab and
navigate to the Servers tab. In the Servers tab, select the Administration Server, and
then initiate and configure the workflow. You can also click the Domain tab and
select the domain to initiate the workflow.

See Creating a New Workflow for a Domain, Clusters, or Servers.

3. After the workflow completes successfully, create another ZDT workflow to roll out the
patched Oracle home to the clusters in your domain. You can do this in any of the
following ways:

• Use the WLST rolloutOracleHome command and specify a comma-separated list of
clusters as the rollout target.

• In the WebLogic Server Administration Console, select the ZDT Control > Clusters
tab, select the clusters to which you want to roll out the Oracle home, and then
initiate and configure the workflow.

Note:

You can combine the last two steps into one workflow by specifying the domain
as the target in the rolloutOracleHome command, or by initiating and
configuring the workflow from the ZDT Control > Domain tab.

Figure 1-1 Oracle Home Rollout Operations

This figure shows the sequence of operations that are performed for an Oracle home rollout
on each node, regardless of whether you use WLST or the WebLogic Server Administration
Console to perform the rollout.

Chapter 1
Rolling Out a Patched Oracle Home: Overview

1-5

Rolling Out a New Java Version: Overview
You can roll out a new Java version across your domain without affecting the continuity
of servicing requests during the patching process. Use WLST or the WebLogic Server
Administration Console to roll out updates to Java home.

Before rolling out a new Java version to all nodes in your domain, ensure that the
following conditions are met:

• The domain is distributed across all nodes and is stored in the same location on all
nodes.

• Oracle home must be in the same location on all nodes.

• Node Manager is running on all nodes.

• All Managed Servers in all clusters that will be included in the rollout is running.

See ZDT Patching Restrictions, for additional requirements and restrictions.

To roll out a new Java version:

1. Install the new Java version on all nodes. The full path to this Java home must be
the same on all nodes.

See Preparing to Upgrade to a New Java Version.

2. Create a ZDT workflow to roll out the new Java home to your Administration
Server. You can do this in either of the following ways:

• Use the WLST rolloutJavaHome command and specify the Administration
Server as the rollout target.

See Updating Your Java Version.

• In the WebLogic Server Administration Console, select the ZDT Control >
Servers tab, select the Administration Server, and then initiate and configure
the workflow.

See Creating a New Workflow for a Domain, Clusters, or Servers.

3. After the workflow completes successfully, create another ZDT workflow to roll out
the new Java home to the clusters in your domain. To do this, you can either:

• Use the WLST rolloutJavaHome command and specify a comma-separated
list of clusters as the rollout target.

Chapter 1
Rolling Out a New Java Version: Overview

1-6

• In the WebLogic Server Administration Console, select the ZDT Control > Clusters
tab, select the clusters to which you want to roll out the new Java version, and then
initiate and configure the workflow.

Note:

You can combine the last two steps into one workflow by either specifying the
domain as the target in the rolloutJavaHome command or by initiating and
configuring the workflow from the ZDT Control > Domain tab.

Rolling Out Updated Applications: Overview
ZDT provides the ability to update applications deployed to your domain without causing the
application to suffer downtime. Use WLST or the WebLogic Server Administration Console to
roll out application updates.

This section provides an overview of how to roll out new application versions to Managed
Server nodes in your domain.

Prior to doing the rollout, ensure that the following conditions are met:

• The domain that is being updated is distributed across all nodes and must be stored in
the same location on all nodes.

• Oracle Home is in the same location on all nodes.

• Node Manager is running on all nodes.

• All Managed Servers in all clusters that will be included in the rollout is running.

Note:

WebLogic Server does not support the rollout of applications deployed to the
Administration Server. Applications deployed to the Administration Server cannot be
updated without downtime because session replication can be applied only to
clustered instances, whereas Administration Server is a standalone instance.

See ZDT Patching Restrictions, for additional requirements and restrictions. The figures in
this section illustrate the scenario for patching staged, no-stage, and external staged
applications. During the rollout, the patched application source will be moved to the
appropriate application source location for each stage type.

To roll out new application versions to your Managed Servers:

1. Place a copy of the updated application directory as follows:

• (Stage mode) Place a copy of each updated application directory on the domain's
Administration Server.

• (No-stage mode and external stage mode) Place a copy of each updated application
directory on each node that will be affected. The directory must be the same on each
node.

See The Effects of Staging Modes.

Chapter 1
Rolling Out Updated Applications: Overview

1-7

2. Create a JavaScript Object Notation (JSON) file that defines each application
name, the path and file name for each updated application archive, and the path
and file to which you want to back up the original application archive.

See Creating an Application Update JSON File.

3. Create a ZDT workflow to roll out the new application versions. To do this, you can
either:

• Use the WLST rolloutApplications command and specify a comma-
separated list of clusters as the rollout target.

• In the Administration Console, select the ZDT Control > Clusters tab, select
the Clusters to which you want to roll out the applications, and then initiate and
configure the workflow.

Figure 1-2 Patching Staged Applications

Figure 1-3 Patching No-Stage Applications

Chapter 1
Rolling Out Updated Applications: Overview

1-8

Figure 1-4 Patching External Staged Applications

In-Memory Session Replication for ZDT Rollouts
During ZDT rollouts, the forceful shutdown of a server could lead to loss of in-memory
sessions. To avoid any loss of session data, set the rollout command to allow time for the
graceful shutdown of the server instance before shutting it down forcefully.

For web applications that use in-memory session replication, the in-memory sessions are
never replicated or persisted to allow for failover. As a result web applications may lose
session state due to sudden failure of a server or front-end misdirection causing the request
to land on a server without the session.

With regard to Zero Downtime (ZDT) rollouts, when you shut down any server that holds the
in-memory session, the server waits for that session to complete before shutting down.
Because the default value for session timeout is 1 hour, the server may be in the
SUSPENDING state for 1 hour or even longer if sessions continue to be used or updated. If
you do not wait for the session to complete its life cycle, then the state is lost because in-
memory sessions are neither replicated nor persisted for web applications.

If you do not want to wait for an hour or longer, then Oracle recommends that you set the
shutdownTimeout argument in the WLST rolloutcommand to the time (in seconds) that you
want the server to wait before shutting down. For information about using the
shutdownTimeout argument, see Table 4-1.

Chapter 1
In-Memory Session Replication for ZDT Rollouts

1-9

2
Preparing for Zero Downtime Patching

Before configuring a patching workflow, ensure that you perform the required preliminary
steps such as installing and patching a new Oracle home, installing a new Java version, or
installing updated applications on each node. There are also known restrictions to consider
before preparing for and creating a ZDT patching workflow in Oracle WebLogic Server.

• ZDT Patching Restrictions

• Preparing to Migrate Singleton Services

• Preparing to Roll Out a Patched Oracle Home

• Preparing to Upgrade to a New Java Version

• Preparing to Update to New Application Versions

ZDT Patching Restrictions
For the rollout orchestration to be successful, you must keep in mind certain restrictions
before you configure a patching workflow.

Prior to preparing for and creating a ZDT patching workflow, consider the following
restrictions:

• The Managed Servers that are included in the workflow must be part of a cluster, and the
cluster must span two or more nodes.

• If you want to roll out an update to the Managed Servers without targeting and updating
the Administrations Server, then ensure that the Administration Server is on a different
node than any of the Managed Servers being updated.

• If you are updating to a patched Oracle home, the current Oracle home must be installed
locally on each node that will be included in the workflow. Although it is not required,
Oracle also recommends that the Oracle home be in the same location on each node.

• When you are rolling out a new Oracle home using WLST commands, you must specify
the path to the JAR archive that contains the Oracle home to roll out. Specifying a local
directory is not supported when you are rolling out a new Oracle home. Only if you are
rolling back to a previous Oracle home, you can specify the path to the local directory
which must be the backup Oracle home directory from the previous rollout that you want
to roll back to.

• If Managed Servers on a node belong to different clusters and those clusters share the
same Oracle home, then if you include one of those clusters in a workflow, you must also
include the other cluster in the workflow. For example, if Node 1 has Managed Server 1 in
Cluster 1 and Managed Server 2 in Cluster 2, and both Cluster 1 and Cluster 2 share the
same Oracle home, then if you include Cluster 1 in the workflow, you must also include
Cluster 2. This applies to Java home, Oracle home and application update rollouts.

• The domain directory must reside outside of the Oracle home directory.

• (Windows only) When you use the WebLogic Scripting Tool (WLST) to initiate a rollout of
a new Oracle home, you cannot run WLST from any Oracle home that will be updated as
part of the workflow. Instead, use one of the following options:

2-1

– Run WLST from an Oracle home on a node that will not be included in the
workflow. This Oracle home must be the same version as the Oracle home
that is being updated on other nodes.

– Run WLST from another Oracle home that is not part of the domain being
updated. This Oracle home must be the same version as the Oracle home that
is being updated. It can reside on any node, including the Administration
Server node for the domain being updated.

– Use the WebLogic Server Administration Console to initiate the workflow.

• (Windows only) Windows file locks may pose problems during the ZDT rollout
operations. You must attempt to rectify these common file handle lock issues
before executing a rollout on Windows to avoid rollout failure:

– When you deploy an application by using the Administration Console, the
Administration Server may hold a lock on the application source file. If this lock
is not released, it could prevent subsequent application rollouts from
functioning properly. To release the lock, you must log out of the
Administration Console anytime after deploying the application and before
initiating the rollout.

– Using the WLST client on the Administration Server will cause the Oracle
home directory to be locked. This will cause any rollout on that node, including
a domain rollout to fail. To avoid this, use a WLST client installed on a node
that is not targeted by the rollout, or initiate the rollout using the Administration
Console.

– Opening command terminals or applications residing in any directory under
Oracle home may cause a file lock. As a result, you will be unable to update
that particular Oracle home.

– Any command terminal or application that references the application source
file or a JAR file may cause a file lock, making it impossible to update that
particular application.

Preparing to Migrate Singleton Services
ZDT Patching rollouts provide support to migrate singleton services, such as JMS and
JTA, using the service migration feature of WebLogic Server. For better control of
service migration during a rollout, you can also use the JSON file-based migration
option that ZDT supports.

All ZDT rollouts require a restart of the servers that are included in the rollout. One
feature of the rollout is detection and handling of singleton services, such as Java
Transaction API (JTA) and Java Messaging Service (JMS). To make these singleton
services highly available during the rollout operation, ZDT patching takes advantage of
the service migration mechanisms supported by WebLogic Server. For singleton
services in your environment, service migration can be configured in either of the
following ways:

• For migrating a singleton service that is configured using migratable targets, the
service migration is configured as described in Service Migration in Administering
Clusters for Oracle WebLogic Server. If a service is configured using migratable
targets and the migration policy is set to exactly-once, then the service
automatically migrates during the graceful shutdown of a server. If, however, the
migration policy for a service is manual or failure-recovery, then you must take
steps to ensure that the service is migrated safely during server shutdown. To

Chapter 2
Preparing to Migrate Singleton Services

2-2

achieve this, you must define the migration properties in the JSON file as described in
Creating a JSON File for Migrating Singleton Services.

You must bear in mind the following issues restrictions when migrating singleton services
that is configured using migratable targets:

– The data store for JMS servers must reside at a shared location to be used by the
members of the cluster, without which the user might experience loss of messages.

– The ClusterMBean must be configured with the
setServiceActivationRequestResponseTimeout method and its value must be set
depending on the time taken for the migration to succeed.

– The JNDI NameNotFoundException is returned during lookup for JMS connection
factories and destinations. This is a known limitation. For information about this
limitation and its workaround, see note 1556832.1 at My Oracle Support.

– As services migrate during the rollout, the JNDI lookup for JMS connection factories
and destinations fail. In such cases of server failure, JMS applications attempt to
reconnect to another available server for non-deterministic time till the migration
succeeds. See Recovering from a Server Failure in Developing JMS Applications for
Oracle WebLogic Server.

• For migrating a singleton service that is configured using the JMS cluster configuration,
the service migration is configured (depending on your cluster type) as described in
Simplified JMS Cluster and High Availability Configuration in Administering JMS
Resources for Oracle WebLogic Server. If a service is configured using the JMS Cluster
configuration, then the migration-policy must be set to Always to enable the automatic
migration of services during the graceful shutdown of a server. If the migration-policy is
On-Failure or Off, then you must take steps to ensure that the service is migrated safely
during server shutdown. You must also ensure that the automatic restart-in-place
option is explicitly disabled when using this simplified HA service migration model.

.

Note:

ZDT rollout allows you to specify whether a singleton service should be migrated
before shutting down during patching. However, during the rollout operation, the
user is not allowed to specify the migration of servers on the same machine. This is
because, all servers on a machine experience shutdown during a rollout which may
cause unavoidable downtime for users. Ensure that you always specify migration of
services to a server on a different machine, failing which the rollout might fail.

Service migration involves shutting down one or more singleton services on the first
server that is being rolled out. This means that the service is made available on the
second server while rollout is in progress. Upon successful completion of the rollout,
the services are migrated back to the newly patched first server. Since this process
involves restarting of singleton services, the users can expect a brief downtime of
services when the service is shut down on the first server and has not fully started
on the second server. This would render the service unavailable and applications
may experience a brief outage. The period of downtime of services may depend on
factors including, hardware (both machine and network) performance, cluster size,
the server startup time, and persistent message backlog in case of JMS.

Chapter 2
Preparing to Migrate Singleton Services

2-3

http://support.oracle.com/

Creating a JSON File for Migrating Singleton Services
To ensure that the singleton service is migrated safely during server shutdown, you
must perform the following tasks:

• Create a JSON file to define migration properties for such services, as described
in this section

• Configure the rollout to use the JSON file as described in Configuring and
Monitoring Workflows.

The JSON file must start with the following line:

{"migrations":[
Each singleton service migration that you need to migrate is defined using the
parameters described in the following table.

Parameter Description

source The name of the source server from which the
service is to be migrated. This parameter is
required.

destination For migrationType of jms, jta, or all, the
name of the destination server to which the
service is to be migrated.

For migrationType of server, the name of
another machine (node) in the domain on
which Node Manager is running.

This parameter is required if the
migrationType is jms, jta, server, or all.

migrationType The type of migration, which can be one of the
following types:

• jms — Migrate all JMS migratable targets
from the source server to the destination
server.

• jta — Migrate all JTA services from the
source server to the destination server.

• server — Invoke Whole Server Migration
to perform a server migration. The
destination must be a machine (node) on
which Node Manager is running.

• all — Migrate all services (for example,
JTA and JMS) from the source server to
the destination server.

• none — Disable service migration from
the source server. If you specify this type,
failback and destination are not
needed.

Chapter 2
Preparing to Migrate Singleton Services

2-4

Parameter Description

failback If set to true, a failback operation is
performed. Failback restores a service to its
original hosting server, the server on which it
was running before the rollout.

The default value is false (no failback).

Note: A JTA service automatically fails back
when it is invoked for migration. Therefore, do
not use the failback option for JTA services,
as it does not apply to them. The rollout fails if
you specify the failback option.

The following sample JSON file shows how to define various migration scenarios.

 {"migrations":[

Migrate all JMS migratable targets on server1 to server2. Perform a failback
 {
 "source":"server1",
 "destination":"server2",
 "migrationType":"jms",
 "failback":"true"
 },

Migrate only JTA services from server1 to server3. Note that JTA migration
does not support the failback option, as it is not needed.
 {
 "source":"server1",
 "destination":"server3",
 "migrationType":"jta"
 },

Disable all migrations from server2
 {
 "source":"server2",
 "migrationType":"none"
 },
 {

Migrate all services (for example, JTA and JMS) from server 3 to server1 with
no failback
 "source":"server3",
 "destination":"server1",
 "migrationType":"all"
 },

Use Whole Server Migration to migrate server4 to the node named machine 5 with
no failback
 {
 "source":"server4",
 "destination":"machine5",
 "migrationType":"server"
 }

]}

Chapter 2
Preparing to Migrate Singleton Services

2-5

Preparing to Roll Out a Patched Oracle Home
Before rolling out a patched Oracle home to your Managed Servers, you must create
an Oracle home archive and distribute it to each node.

You can manually create the second Oracle home, use the OPatch utility to apply
patches to it, use the copyBinary command to create an archive of the patched Oracle
home, and then copy the archive to the nodes in your domain. See these sections for
details:

• Creating a Second Oracle Home

• Applying Patches to the Second Oracle Home

• Creating an Archive and Distributing It to Each Node

The preparation process does not require you to shut down any of your Managed
Servers, so there is no effect on the availability of your applications.

Creating a Second Oracle Home
To manually create a patched Oracle home, you must first create a copy of your
existing Oracle home by using the copyBinary and pasteBinary commands. When
using these commands, you must keep in mind that the value of options specified
must not contain a space. For example, on Windows, you cannot pass the following as
a value to the -javaHome option:

C:\Program Files\jdk

Note:

Oracle recommends that you create and patch the second Oracle home on a
nonproduction machine so that you can test the patches you apply, but this is
not required. However, you must perform the following steps on the node
where you will patch the new Oracle home. The Oracle home on that node
must be identical to the Oracle home you are using for your production
domain.

To create the second Oracle home to which you will apply patches:

1. Change to the following directory, where ORACLE_HOME is the Oracle home that you
want to patch.

cd ORACLE_HOME/oracle_common/bin
2. Execute the following command, where archive is the full path and file name of

the archive file to create, and oracle_home is the full path to your existing Oracle
home. Note that JAVA_HOME must be defined as the Java home that was used for
your Oracle home installation:

UNIX

./copyBinary.sh -javaHome $JAVA_HOME -archiveLoc archive -
sourceOracleHomeLoc oracle_home

Chapter 2
Preparing to Roll Out a Patched Oracle Home

2-6

Windows

copyBinary.cmd -javaHome %JAVA_HOME% -archiveLoc archive -sourceOracleHomeLoc
oracle_home

For example, the following command creates the Oracle home archive wls1221.jar in
network location /net/oraclehomes/ using the Oracle home located at /u01/
oraclehomes/wls1221:

./copyBinary.sh -javaHome $JAVA_HOME -archiveLoc /net/oraclehomes/wls1221.jar -
sourceOracleHomeLoc /u01/oraclehomes/wls1221

3. Execute the following command to create the second Oracle home, where archive is the
full path and file name of the archive file you created, and patch_home is the full path to
the new Oracle home to which you will apply patches. Note that JAVA_HOME must be
defined as the Java home that was used for your original Oracle home installation:

UNIX

./pasteBinary.sh -javaHome $JAVA_HOME -archiveLoc archive -targetOracleHomeLoc
patch_home

Windows

pasteBinary.cmd -javaHome %JAVA_HOME% -archiveLoc archive -targetOracleHomeLoc
patch_home

For example, the following command creates the Oracle home wls1221_patched in /u01/
oraclehomes/ using the archive /net/oraclehomes/wls1221.jar:

./pasteBinary.sh -javaHome $JAVA_HOME -archiveLoc /net/oraclehomes/wls1221.jar -
targetOracleHomeLoc /u01/oraclehomes/wls1221_patched

Applying Patches to the Second Oracle Home
To patch the second Oracle home, use the OPatch tool to apply individual patches, bundle
patches, security patch updates, or patch set updates to the second, offline Oracle home.
Prior to applying a particular patch or group of patches, ensure that all prerequisite patches
have already been applied.

For information about how to prepare for and patch an Oracle home using OPatch, see
Patching Your Environment Using OPatch in Patching with OPatch.

Creating an Archive and Distributing It to Each Node
After you have created the patched Oracle home, use the following steps to create an Oracle
home archive and copy it to each node that will be involved in the rollout:

1. Change to the following directory, where ORACLE_HOME is the patched Oracle home that
you created.

cd ORACLE_HOME/oracle_common/bin
2. Execute the following command, where archive is the full path and file name of the

archive file to create, and patched_home is the full path to the patched Oracle home you
created. Note that JAVA_HOMEmust be defined as the Java home that was used for your
current Oracle home installation.

UNIX

Chapter 2
Preparing to Roll Out a Patched Oracle Home

2-7

./copyBinary.sh -javaHome $JAVA_HOME -archiveLoc archive -
sourceOracleHomeLoc patched_home

Windows

copyBinary.cmd -javaHome %JAVA_HOME% -archiveLoc archive -
sourceOracleHomeLoc patched_home

For example, the following command creates the Oracle home archive
wls1221.11.jar in network location /net/oraclehomes/ using a patched Oracle
home located at /01/oraclehomes/wls1221_patched:

./copyBinary.sh -javaHome $JAVA_HOME -archiveLoc /net/oraclehomes/
wls_1221.11.jar -sourceOracleHomeLoc /u01/oraclehomes/wls1221_patched

3. On each node that will be included in the patching workflow, copy the archive file
to the parent folder of the Oracle home that you want to replace. For example, if
the archive is in network location /net/oraclehomes/wls_1221.11.jar and the
Oracle home to be replaced is located in /u01/oraclehomes/wls1221:

cp /net/oraclehomes/wls1221.11.jar /u01/oraclehomes/

If you are copying to a large number of nodes, you can use third-party software
distribution applications to perform this step.

After completing these steps, you are ready to create a workflow that includes
patching your Oracle home. See Configuring and Monitoring Workflows.

Note:

If you want to also update your Java version or applications using the same
patching workflow, then perform the preparation steps for those upgrades
before you create the workflow.

Preparing to Upgrade to a New Java Version
Before upgrading to a new Java version, you must copy the new Java version to each
node you want to include in the upgrade. Before installing the new Java version, there
are certain conditions that must be met.

Preparation for upgrading to a new version of Java does not require you to shut down
Managed Servers, so there will be no interruption to application availability.

To upgrade to a new version of Java:

1. Prior to installing the new Java version, ensure that Node Manager and the
Managed Servers are running on all nodes on which you plan to install the new
version. This prevents the Java installer from changing the existing Java home
path. However, you do not need to have the Node Manager running on the node
on which the Administration Server is running.

2. On each node to be included in the upgrade, install the new Java version to the
same path on each node. The full path to the new Java version must be the same
on each node for the upgrade to be successful.

Chapter 2
Preparing to Upgrade to a New Java Version

2-8

After copying the new Java version to each node, you are ready to create a workflow that
includes upgrading to a new Java home. See Configuring and Monitoring Workflows.

Preparing to Update to New Application Versions
Before rolling out an application update, the new application version is distributed to all
affected nodes depending on the staging mode you used when you staged the application.
You must create a JSON file to specify the properties of applications that require an update.

This section describes how to prepare for updating to new applications using a ZDT workflow.
It contains the following sections:

• The Effects of Staging Modes

• Creating an Application Update JSON File

The Effects of Staging Modes
Applications deployed across Managed Servers can be deployed using one of three staging
modes: stage mode, no-stage mode, and external-stage mode. The selected mode indicates
how the application will be distributed and kept up-to-date.

How you prepare for an application update workflow depends on the mode you used when
you staged the application.

Staging Mode Required Preparation and Result

Stage Place a copy of the updated application directory
on the domain's Administration Server.

Result: The workflow will replace the original
application directory on the Administration Server
and WebLogic Server will copy it to each Managed
Server.

No-stage Place a copy of the updated application directory
on each node that will be affected. This directory
must be in the same location on each node.

Result: The workflow will update each node in
turn by replacing the existing application directory
with the updated application directory, and will
move the original application directory to the
specified backup location.

External stage Place a copy of the updated application directory
on each node that will be affected. This directory
must be in the same location on each node.

Result: The workflow will detect that the
application is an external-stage application, figure
out the correct path for the stage directory for each
Managed Server on the node, copy the updated
application to that location, and move the original
application to the specified backup location.

For detailed information about the various staging modes, see Staging Mode Descriptions
and Best Practices in Deploying Applications to Oracle WebLogic Server.

Chapter 2
Preparing to Update to New Application Versions

2-9

Creating an Application Update JSON File
You can update one or more applications in your domain with a single workflow.
Application updates are accomplished by creating a JSON file that, for each
application, defines:

• The application name (applicationName)

• The path and file name for the updated application archive (patchedLocation)

• The path and file to which you want to back up the original application archive
(backupLocation).

Note:

Oracle recommends that you avoid using backslash (Windows) while
specifying the paths in the JSON file. This is because these paths are
interpreted by Java and a backslash may trigger a different character
representation.

When configuring the workflow either using WLST or the WebLogic Server
Administration Console, you must specify the name of the JSON file to use for the
update.

The following example shows the structure of a JSON file that is intended to update
two applications, MyApp and AnotherApp, to a new version. You can use a single JSON
file to update as many applications as necessary.

{"applications":[
{
"applicationName":"MyApp",
"patchedLocation":"/u01/applications/MyAppv2.war",
"backupLocation": "/u01/applications/MyAppv1.war"
},
{
"applicationName":"AnotherApp",
"patchedLocation":"/u01/applications/AnotherAppv2.war",
"backupLocation": "/u01/applications/AnotherAppv1.war"
}
]}

After copying the updated application to all required locations and creating the JSON
file, you are ready to create a workflow that includes application updates. See
Configuring and Monitoring Workflows.

Chapter 2
Preparing to Update to New Application Versions

2-10

3
Patching an Existing WebLogic Server
Installation

You can patch an existing WebLogic Server installation using either ZDT Patching or
manually rolling update of your servers.

Use ZDT Patching only if your domain contains three or more nodes and all the servers that
you want to patch are assigned to clusters.

Manually performing a rolling update of your servers results in no loss of service to your
customers. Use this method to patch individual servers that are not part of a cluster or if the
domain contains fewer than three nodes. See Using Zero Downtime Patching.

You can also check the list of patches that have already been applied to a WebLogic Server
instance. See Obtaining a List of Applied Patches.

• Using Zero Downtime Patching

• Obtaining a List of Applied Patches

Using Zero Downtime Patching
As of WebLogic Server 12.2.1, you can use ZDT Patching to automate the process of
applying individual patches, bundle patches or patch set updates to a WebLogic Server
installation.

With ZDT patching, you can use the WLST or the WebLogic Server Administration Console
to:

• Create and patch a second Oracle Home.

• Distribute the patched Oracle Home to all of your nodes.

• Configure a patching workflow to update the desired servers in your domain.

Use a patching workflow to revert patches that you have previously applied to a WebLogic
Server installation using ZDT Patching.

For more details about ZDT Patching, see Introduction to Zero Downtime Patching .

Note:

OPatchAutoFMW (installed in OPatch/auto/fmw directory) is deprecated and is
automatically removed when you update to OPatch 13.9.4.2.2 or later.

Obtaining a List of Applied Patches

3-1

Oracle WebLogic Server provides the ability to display the list of patches that have
been applied to a WebLogic Server instance. The patch list can be obtained from
either of the following sources:

• Using the weblogic.log.DisplayPatchInfo System Property

• Using the ServerRuntimeMBean.PatchList Attribute

When you use one of the preceding sources, the following details are provided for
each applied patch:

• Associated bug number

• Patch number

• Date the patch was applied

• Brief description

Using the weblogic.log.DisplayPatchInfo System Property

The weblogic.log.DisplayPatchInfo system property contains a log of all patches
that have been applied to a WebLogic Server instance, and can be accessed by either
of the following methods:

• Specifying the -Dweblogic.log.DisplayPatchInfo=true JVM option in the
command line that starts the server instance. As the server starts, the startup
messages in stdout include the list of applied patches, and they are also retained
in the server log file. Note that to minimize logging overhead during startup, the
default value of this option is false.

• Running the weblogic.version utility. This utility can obtain the patch list
regardless of whether the -Dweblogic.log.DisplayPatchInfo=true startup option
is used, and does not require the WebLogic Server instance to be starting or
running.

The following example shows running the weblogic.version utility. This example
includes specifying the classpath of the weblogic.jar file corresponding to the specific
server instance whose patch list is to be displayed.

bash-4.1$ java -classpath wlserver/server/lib/weblogic.jar weblogic.version

WebLogic Server 12.2.1.1.0 Thu Jun 2 16:21:58 PDT 2016 1784838
24907328;20845986;Mon Mar 13 14:40:42 PDT 2017;WLS PATCH SET UPDATE
12.2.1.1.170117
19795066;19149348;Mon Mar 13 14:33:28 PDT 2017;One-off
18905788;18668039;Mon Mar 13 14:32:57 PDT 2017;One-off
19632480;19278519;Mon Mar 13 14:32:26 PDT 2017;One-off
19002423;18804275;Mon Mar 13 14:31:50 PDT 2017;One-off
19030178;19234068;Mon Mar 13 14:31:22 PDT 2017;One-off
19154304;19278518;Mon Mar 13 14:30:54 PDT 2017;One-off

Use 'weblogic.version -verbose' to get subsystem information

Use 'weblogic.utils.Versions' to get version information for all modules

Using the ServerRuntimeMBean.PatchList Attribute

The list of patches that have been applied to a WebLogic Server instance is also
available from the ServerRuntimeMBean.PatchList attribute. The value of this attribute

Chapter 3
Obtaining a List of Applied Patches

3-2

is independent of the weblogic.log.DisplayPatchInfo system property. You can access the
ServerRuntimeMBean.PatchList attribute using any of the following clients:

• WLST - See Example 3-1

• REST API - See Example 3-2

• WebLogic Server Administration Console - See Example 3-3

• JMX - See Example 3-4

Note:

To access the patch list from ServerRuntimeMBean, you must be an authenticated
user whose identity can be mapped to the Admin role.

Regardless of the client that you use to obtain the patch information, each patch entry has
the following format:

<BugNumber>;<PatchID>;<DateApplied>;<Description>
Example 3-1 Using WLST

The following example shows using WLST to connect to a server instance and obtain its list
of applied patches:

wls:/offline> connect('username','password','t3://localhost:7001')
Connecting to t3://localhost:7001 with userid weblogic ...
Successfully connected to Admin Server "myserver" that belongs to domain "mydomain".

Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port should be used instead.

wls:/mydomain/serverConfig/> serverRuntime()
Location changed to serverRuntime tree.
 This is a read-only tree with ServerRuntimeMBean as the root.
For more help, use help('serverRuntime').

wls:/mydomain/serverRuntime/> print cmo.getPatchList()
array(java.lang.String,['24907328;20845986;Mon Mar 13 14:40:42 PDT 2017;WLS PATCH SET
UPDATE 12.2.1.1.170117', '19795066;19149348;Mon Mar 13 14:33:28 PDT 2017;One-off',
'18905788;18668039;Mon Mar 13 14:32:57 PDT 2017;One-off', '19632480;19278519;Mon Mar
13 14:32:26 PDT 2017;One-off', '19002423;18804275;Mon Mar 13 14:31:50 PDT 2017;One-
off', '19030178;19234068;Mon Mar 13 14:31:22 PDT 2017;One-off', '19154304;19278518;Mon
Mar 13 14:30:54 PDT 2017;One-off'])
wls:/mydomain/serverRuntime/>

Example 3-2 Using the REST API

The following example shows using the REST API to return the patch list:

Request:
http://localhost:7001/management/weblogic/latest/serverRuntime?
links=none&fields=name,patchList

Response: {
 "patchList": [
 "24907328;20845986;Mon Mar 13 14:40:42 PDT 2017;WLS PATCH SET UPDATE
12.2.1.1.170117",
 "19795066;19149348;Mon Mar 13 14:33:28 PDT 2017;One-off",

Chapter 3
Obtaining a List of Applied Patches

3-3

 "18905788;18668039;Mon Mar 13 14:32:57 PDT 2017;One-off",
 "19632480;19278519;Mon Mar 13 14:32:26 PDT 2017;One-off",
 "19002423;18804275;Mon Mar 13 14:31:50 PDT 2017;One-off",
 "19030178;19234068;Mon Mar 13 14:31:22 PDT 2017;One-off",
 "19154304;19278518;Mon Mar 13 14:30:54 PDT 2017;One-off"
],
 "name": "myserver"
}

Example 3-3 Using the WebLogic Server Administration Console

To use the WebLogic Server Administration Console:

1. In the left pane of the Console, expand Environment and select Servers.

2. Select the name of the server whose applied patch list you want to view.

3. Select Configuration > General > Monitoring.

The list of applied patches is displayed beneath the field labeled Patch List.

Example 3-4 Using a JMX Client

Using a JMX application, you can access the applied patch list of a WebLogic Server
instance by invoking the getPatchList method, as in the following example:

/**
 * @include-api for-public-api
 * Returns array of informational strings for installed patches. Each info string
 * is of the form: <bug-id>;<patch-id>;<date-applied>;<patch-description>
 * For example:
 * 24907328;20845986;Mon Mar 13 14:40:42 PDT 2017;WLS PATCH SET UPDATE
12.2.1.1.170117
 *
 * @return Array of informational strings for installed patches at a server.
 * @roleAllowed Monitor
 * @unharvestable
 */
public String[] getPatchList();

Chapter 3
Obtaining a List of Applied Patches

3-4

4
Configuring and Monitoring Workflows

Configure ZDT Patching workflows in Oracle WebLogic Server to rollout a patched Oracle
home, upgrade to a new Java version, update the applications on your Managed Servers, or
a combination of these tasks. Use WLST or WebLogic Server Administration Console to
create and monitor workflows.
This chapter describes how to configure and monitor a patching workflow that moves
Managed Servers to a patched Oracle home, updates the Java version on your Managed
Servers, updates the applications on your Managed Servers, or any combination of these
update tasks.

Note:

Before initiating the update process, you must have completed all appropriate
preparation steps for the type of update you are doing, as described in Preparing for
Zero Downtime Patching.

For Windows-based domains, before initiating a workflow to update an Oracle
home, on each node, ensure that there are no locked directories or files in the
Oracle home being updated, as this can prevent the Oracle home from being
moved to the specified backup directory. A directory can be locked by something as
simple as having a DOS command window open to that directory. A file can be
locked by having it open in an application.

• Strategies for Rolling Out a Patched Oracle Home

• Starting the Administration Server

• Using WLST to Initiate and Monitor Workflows

• Using the WebLogic Server Administration Console to Create and Monitor Workflows

Strategies for Rolling Out a Patched Oracle Home
You must roll out the patched Oracle home to the Administration Server first before rolling it
out to the targeted clusters. You can do this by either using two sequential workflows or by
using a single workflow.

When you roll out a new Oracle home using either WLST or the Administration Console, you
must ensure that the patched Oracle home is first rolled out to the Administration Server.
There are two approaches you can take to do this:

• Use one workflow to roll out the patched Oracle home to the Administration Server, and
then use a second workflow to roll out the patched Oracle home to your clusters. Oracle
recommends using this approach, but it is not required.

In this scenario:

4-1

– If using WLST, you would execute either the rolloutOracleHome or
rolloutUpdate command, and specify the name of the Administration Server
as the target. You would then execute rolloutOracleHome or rolloutUpdate
again, and specify cluster targets.

– If using the WebLogic Server Administration Console, you would create one
workflow from the Servers tab and select your Administration Server as the
target. After that workflow completes, you would create a second workflow
from the Clusters tab and select the clusters to include.

• Use only one workflow to roll out the patched Oracle home to the entire domain.
The workflow will automatically roll out the patched Oracle home first before rolling
it out to the target clusters.

In this scenario:

– If using WLST, you would execute either the rolloutOracleHome or
rolloutUpdate command, and specify the domain name as the target.

– If using the Administration Console, you would create one workflow from the
Domain tab.

Starting the Administration Server
Before you initiate the rollout operation, it is important that you start the Administration
Server using Node Manager. If there is no Node Manager configured for the
Administration Server, then you can start the Administration Server by using the
startWebLogic script.

If the Administration Server will be included in a workflow, then you can start the
Administration server using either the startWebLogic script or the Node Manager. The
Administration Server will be automatically restarted during the rollout operation if the
specified target for the rollout is a domain. However, when the rollout operation
restarts the Administration Server, you might experience a brief downtime when you
will not be able to connect to either WLST or Administration Console. As a
workaround, you must wait and then reconnect when the Administration Server has
reached the RUNNING state in order to receive updates on the progress of the rollout
operation.

To start the Administration Server before you initiate the rollout operation, you can start
the Administration server in one of the following ways:

• Using the startWebLogic script

If there is no Node Manager configured for the Administration Server, then you can
start the Administration Server by using the startWebLogic script. To start the
Administration Server using this script, see Starting an Administration Server with
a Startup Script in Administering Server Startup and Shutdown for Oracle
WebLogic Server.

• Using the Node Manager

If a Node Manager is configured for the Administration Server, then you must start
the Administration Server using the Node Manager. To start the Administration
Server using the Node Manager, perform the following steps:

1. If the Administration Server is running and was started using the startWebLogic
script in the domain home, use the stopWebLogic command to shut it down:

UNIX

Chapter 4
Starting the Administration Server

4-2

cd domain_home/bin
./stopWebLogic.sh

Windows

cd domain_home\bin
stopWebLogic.cmd

2. Ensure that Node Manager is running on the host.

3. Start WLST. See Invoking WLST in Understanding the WebLogic Scripting Tool.

4. Use the nmConnect command to establish a Node Manager session. For example, use
the following command to connect to the domain mydomain located in /domains/mydomain
using SSL, where the NodeManager port is 5556:

wls:/myserver/serverConfig> nmConnect('username', 'password, 'localhost',
'5556', 'mydomain', '/domains/mydomain','ssl')

5. After successfully connecting, run the nmStart command. For example, use the following
command if the Administration Server is called AdminServer and the domain is located
in /domains/mydomain:

nmStart('AdminServer', '/domains/mydomain')
See Starting the Administration Server Using Node Manager in Administering Node Manager
for Oracle WebLogic Server.

Using WLST to Initiate and Monitor Workflows
WLST includes a set of ZDT Patching commands that you can use to roll out a patched
Oracle home, a new Java version or a combination of both, or new application versions.

This section describes the WLST commands that you can use to initiate workflows to update
your Managed Servers, and provides sample WLST scripts demonstrating various workflow
(rollout) scenarios.

Note:

When using the WLST rolloutOracleHome or rolloutUpdate commands to initiate
a rollout of a new Oracle home for a Windows-based domain, you cannot run WLST
from any Oracle home that will be updated as part of the workflow. See ZDT
Patching Restrictions.

Use the following WLST commands to perform automated rolling updates of your servers.
You must execute these commands from the Administration Server for the target domain.

• rolloutOracleHome — Rolls out a patched Oracle home to your Managed Servers or
reverts your Managed Servers to a previous Oracle home. The patched Oracle home
archive that you use in this command can be one that was created using the copyBinary
and pasteBinary commands.

• rolloutJavaHome — Updates your Managed Servers to use a new Java version.

Chapter 4
Using WLST to Initiate and Monitor Workflows

4-3

• rolloutUpdate — Updates your Managed Servers to use a patched Oracle home
and a new Java version. The patched Oracle home archive that you use in this
command can be one that was created using the copyBinary and pasteBinary
commands.

• rolloutApplications—Updates specified applications that are running on your
Managed Servers.

Note:

When specifying paths for Windows in rollout commands, you must use
backslashes instead of forward slashes. To avoid unnecessary errors, ensure
that the backslashes are escaped. (For example, C:\\myhome\\files\
\apps.json). See Syntax for WLST Commands in Understanding the
WebLogic Scripting Tool.

When you execute one of these WLST commands, the command determines which
servers need to be updated and in which order, and creates a patching workflow to
update them safely. This workflow includes:

• Performing a graceful shutdown of Managed Servers one at a time. This does not
include Managed Servers that are currently in ADMIN or STANDBY mode. This
includes migration of singleton services if the migrationProperties option is
included in the rollout command.

• Replacing the Oracle home directory (if applicable)

• Replacing the Java home directory (if applicable)

• Replacing application directories (if applicable)

• Restarting Node Manager on the node

• Restarting the Managed Servers on the node

Table 4-1 describes the parameters available for the WLSTrolloutcommands.

Chapter 4
Using WLST to Initiate and Monitor Workflows

4-4

Table 4-1 Arguments for WLST rollout Commands

Argument Description

target Required for all rollout commands.

Specifies which Managed Servers will be included in the update. target can be
one of the following:

domain_name — Specify a domain name as the target if you want the
Administration Server and all Managed Servers in that domain to be updated.

clusters — Specify a cluster name or a comma-separated list of cluster names
if you want to update all Managed Servers in the specified cluster or clusters, but
not Managed Servers in other clusters.

servers — Specify a server name or a comma-separated list of server names if
you only want to update those Managed Servers. Note that the servers you
specify must still be part of a cluster; they cannot be unclustered servers.

Note: Typically, you should specify a server target only when updating the
Administration Server. Oracle recommends that you not update individual
Managed Servers in most cases as sessions may not be preserved and downtime
for users may not be avoided. However, you can safely specify Managed Server
targets if you have added one or more new Managed Servers and they are not at
the same Java version as your other Managed Servers.

rolloutOracleHo
me

Applies only to and is required for the rolloutOracleHome command.

Specifies the location of the Oracle home archive (JAR file) or local Oracle home
directory to roll out, thereby replacing the existing Oracle home.

backupOracleHom
e

Applies only to and is required for the rolloutOracleHome command.

Specifies the full path of the directory to which the existing Oracle home will be
moved. This effectively renames the original Oracle home. For example, if your
original Oracle home is /u01/Oracle_Homeand you specify /u01/
Oracle_Home_backupfor this parameter, /u01/Oracle_Homewill be moved
(renamed) to /u01/Oracle_Home_backup.

isRollback Optional. Applies only to the rolloutOracleHome and rolloutUpdate
commands.

javaHome Applies to and is required for the rolloutJavaHome command. Optionally, this
argument may be required by the rolloutUpdate command.

Specifies the location of the new Java home to use.

applicationProp
erties

Applies to and is required for the rolloutApplications command. Optionally,
this argument may be required by the rolloutUpdate command.

Specifies the full path to the JSON file that defines one or more application
names, application archive locations, and application backup locations.

Chapter 4
Using WLST to Initiate and Monitor Workflows

4-5

Table 4-1 (Cont.) Arguments for WLST rollout Commands

Argument Description

options One or more of the following options can be included in the rollout commands:

• isDryRun — If TRUE, the workflow operation will be evaluated but not
executed. The default is FALSE.

• isAutoRevertOnFailure — If TRUE, the workflow operation should
automatically revert on failure. If FALSE, the workflow operation will stop on a
failure and you can resume or revert it. The default is TRUE.

• isSessionCompatible — This option is applicable to all
rolloutcommands, as it affects rollout time regardless of whether the rollout
impacts session handling.

The default is FALSE, which means that the last server to be updated on
each cluster waits for all existing sessions to complete. This ensures that a
compatible server is available in the cluster to handle sessions that must be
served by a Managed Server that is still running on the existing version.

If set to TRUE, this indicates that the session state in servers is 100%
compatible between the existing version and the new version. Therefore, the
last Managed Server in the update sequence in a cluster will shut down
without waiting for all existing sessions to complete.

Oracle recommends that you set this to FALSE unless you are absolutely
sure that the session state is identical. This may cause the rollout to take
longer due to the wait for session completion.

Note: Serialization and deserialization in WebLogic Server differs slightly
from Java serialization and deserialization. Therefore, additional fields on
classes may result in a session being incompatible with servers on the new
version, requiring that they be served by a server on the existing version. For
example, a User class that adds a field such as Information will cause that
session to be incompatible between versions.

• migrationProperties — The full path to a JSON file that defines singleton
service migrations to be performed during the rollout. For more information
about this file and service migration, see Preparing to Migrate Singleton
Services.

• shutdownTimeout — Time (in seconds) WLST waits for a server to shut
down gracefully before shutting it down forcefully. The forceful shutdown of
servers may cause undesirable consequences, such as loss of session data
and loss of in-flight transactions. A value of less than 1 second is ignored.

If isSessionCompatible is set to TRUE, then the shutdownTimeout option
defaults to zero, which means that WLST waits forever for the server to shut
down gracefully.

If isSessionCompatible is set to FALSE, then the user must specify a
value for the shutdownTimeout option. Oracle recommends that you specify
a value that gives typical applications plenty of time to complete. Because
different applications have different behaviors, this value must be decided by
the user.

• DelayBetweenNodes — Use this option to specify the number of seconds to
wait between the shutdown of servers on one node and the shutdown of
servers on the next node in the workflow. This delay allows for:

– The servers on the first node to be restarted and join the cluster
– The load balancer to evenly distribute traffic
– Any slow (lazy) stateful session bean clients to continue making

requests before shutdown of the servers on the next node begins

Chapter 4
Using WLST to Initiate and Monitor Workflows

4-6

Table 4-1 (Cont.) Arguments for WLST rollout Commands

Argument Description

If not specified, this value defaults to 60 seconds. If you are not concerned
about the lazy stateful session bean clients, you can include this option and
set it to a lower value.

• coherenceServiceHATarget — Use this option to specify the High
Availability (HA) Status of Coherence services on a managed Coherence
server which must be met before the server is shutdown. The ZDT workflow
checks and waits until all Coherence services attain the specified status. The
rollout workflow can prevent cache data loss by waiting until the HA Status is
met. The valid values are none, machine-safe, and node-safe. A value of
machine-safe is generally preferred and ensures that a machine loss
during the rollout process does not result in data loss. A value of node-safe
ensures that loss to a single Coherence node does not result in data loss.

• coherenceServiceHAWaitTimeout — Use this option to specify the
amount of time to wait for the Coherence HA Status task in the workflow. If
the HA Status is not met within the specified time, then the task times-out.
The task completes and managed Coherence servers are shutdown as soon
as the HA Status is met within the specified time. The default value is 60
seconds.

• extension—The full path to the location of the extension jar file, optionally
followed by a comma-separated list of script parameters specified as name-
value pairs. If you specify the script parameters using this option, then these
parameter values will override the values specified in the
extensionConfiguration.json file.

• extensionProperties—The full path to the extensionProperties.json
file that is used to specify one or more extension jars. The
extensionProperties.json file is typically used to specify multiple
extension jars and additional extension parameters.

You can also use WLST to monitor the progress of a workflow. See Monitoring Workflow
Progress.

Rolling Out a New Oracle Home
Use the rolloutOracleHome command if you only want to do one of the following tasks:

• Update your Administration Server to use a patched Oracle home.

• Update your entire domain (Administration Server and clustered Managed Servers) to
use a patched Oracle home.

• Update clustered Managed Servers to use a patched Oracle home.

• Revert your Administration Server, clustered Managed Servers, or domain to use the
previous unpatched Oracle home.

rolloutOracleHome has the following syntax:

rolloutOracleHome(target, rolloutOracleHome, backupOracleHome, [isRollback],
[options=options])

This command supports the isDryRun, isAutoRevertOnFailure, and isSessionCompatible
options. You can include a comma-separated list of one or more options in this command. For
information about these options, see Using WLST to Initiate and Monitor Workflows.

Chapter 4
Using WLST to Initiate and Monitor Workflows

4-7

The following example shows how to roll out a new Oracle home to the domain
mydomain. The JAR file for the patched Oracle home is located at /net/wls/
wls_patched.jar. The original Oracle home will be moved (renamed) to /u01/
Oracle_Home_backup. The process will not automatically revert if it fails.

connect('adminname', 'adminpassword', 't3://hostname:port')
domain='/domains/mydomain'
progress=rolloutOracleHome(domain, '/net/wls/wls_patched.jar',
'/u01/Oracle_Home_backup', options='isAutoRevertOnFailure=FALSE')

Note:

Specifying a local Oracle home directory in the rolloutOracleHome
command is not supported when you are rolling out a new Oracle home. See
ZDT Patching Restrictions.

Updating Your Java Version
Use the rolloutJavaHome command if you only want to do one of the following tasks:

• Update your Administration Server to use a new Java version.

• Update your entire domain (Administration Server and Managed Servers) to use a
new Java version.

• Update your Managed Servers to use a new Java version.

• Revert your Administration Server, Managed Servers, or domain to use the
previous Java version.

rolloutJavaHome has the following syntax:

rolloutJavaHome(target, javaHome, [options=options])

This command supports the isDryRun and isAutoRevertOnFailure options. You can
include one or more options in a comma-separated list in this command. For
information about these options, see Using WLST to Initiate and Monitor Workflows.

The following example shows how to roll out a new Java home to clusters Cluster1,
Cluster2, Cluster3. The new Java home location is /u01/jdk1.8.0_50. The
isAutoRevertOnFailure option is not included in this example; therefore, the workflow
will automatically revert if the process fails.

connect('adminname', 'adminpassword', 't3://hostname:port')
clusters='Cluster1,Cluster2,Cluster3'
progress=rolloutJavaHome(clusters, '/u01/jdk1.8.0_50')

Updating Both Oracle Home and the Java Version
Use the rolloutUpdate command if you only want to do one of the following tasks:

• Update your Administration Server to use both a patched Oracle home and a new
Java version.

Chapter 4
Using WLST to Initiate and Monitor Workflows

4-8

• Update your entire domain (Administration Server and clustered Managed Servers) to
use both a patched Oracle home and a new Java version.

• Update your Managed Servers to use both a patched Oracle home and a new Java
version.

• Revert your Administration Server, Managed Servers, or domain to the previous Oracle
home and previous Java version.

rolloutUpdate has the following syntax:

rolloutUpdate(target, rolloutOracleHome, backupOracleHome, [isRollback], [javaHome],
[options=options])

This command supports the isDryRun, isAutoRevertOnFailure, and isSessionCompatible
options. You can include one or more options in a comma-separated list in this command. For
information about these options, see Using WLST to Initiate and Monitor Workflows.

The following example shows how to roll out a new Oracle home and a new Java home to the
Administration Server. The JAR file for the patched Oracle home is located at /net/wls/
wls_patched.jar. The original Oracle home will be moved (renamed) to /u01/
Oracle_Home_backup. The new Java home location is /u01/jdk1.8.0_50. The
isAutoRevertOnFailure option is not included in this example; therefore, the workflow will
automatically revert if the process fails.

connect('adminname', 'adminpassword', 't3://hostname:port')
server='AdminServer'
progress=rolloutUpdate(server, '/net/wls/wls_patched.jar',
'/u01/Oracle_Home_backup', '/u01/jdk1.8.0_50')

Rolling Out Updated Applications
Use the rolloutApplications command if you want to do one of the following tasks:

• Update your Managed Servers to use a new version of one or more applications.

• Revert your Managed Servers to the previous version of one or more applications.

rolloutApplications has the following syntax:

rolloutApplications(target, applicationProperties, [options=options])

This command supports the isDryRun, isAutoRevertOnFailure, and isSessionCompatible
options. You can include one or more options in a comma-separated list in this command. For
information about these options, see Using WLST to Initiate and Monitor Workflows.

The following example shows how to roll out the applications defined in the JSON-formatted
application properties file /u01/scratch/app_update.json to all clusters Cluster1, Cluster2,
Cluster3 on a UNIX system.

connect('adminname', 'adminpassword', 't3://hostname:port')
clusters='Cluster1,Cluster2,Cluster3'
progress=rolloutApplications(clusters, '/u01/scratch/app_update.json')

Chapter 4
Using WLST to Initiate and Monitor Workflows

4-9

Reverting to the Previous Oracle Home, Java Home, or Applications
After a successful rollout, if you want to roll back to the previous Oracle home, Java
home, or application version, you must perform the following two steps to complete the
rollback operation:

• Use the rolloutUpdate command to roll back to the previous Oracle home and
Java home. However, you must keep the following restrictions in mind before you
execute the rolloutUpdate command to roll back:

– You must specify the backed up Oracle home as the Oracle home directory to
roll out. This directory should be the backup directory from the previous rollout.

– Once you specify the backup Oracle home directory as the Oracle home
directory to roll back to, you must not specify the new Java home in the
command. The Java home will be automatically rolled back to the original Java
home that was used in the previous Oracle home that you have specified to
roll back to.

• Use the rolloutApplications command to rollback to the previous application
version by specifying the old application archive in the json file. For more
information about using this command, see Rolling Out Updated Applications

.

The following example shows how to roll back to the previous Oracle home, Java
home and applications. In this example, myDomain is the name of the domain to roll
back to, /pathto/unpatchedOracleHomeBackup/ is the location of the backup Oracle
home directory from the previous rollout, /pathto/unpatchedOracleHomeBackup1/ is
the path of the directory to which the existing Oracle home will be moved. To enable
the roll back operation, the isRollback parameter must be set to true as shown in the
example:

rolloutUpdate('myDomain', '/pathto/unpatchedOracleHomeBackup/', '/
pathto/unpatchedOracleHomeBackup1/', 'true')

Initiating a Rolling Restart of Servers
Use the rollingRestart command if you want to do one of the following tasks:

• Initiate a rolling restart of all servers in a domain.

• Initiate a rolling restart of all servers in a specific cluster or clusters.

rollingRestart has the following syntax:

rolloutRestart(target, [options=options])

This command can include one or more options in a comma-separated list.

The following example shows how to perform a rolling restart of all servers in Cluster1
and Cluster2.

connect('adminname', 'adminpassword', 't3://hostname:port')
clusters='Cluster1,Cluster2'
progress=rollingRestart(clusters)

Chapter 4
Using WLST to Initiate and Monitor Workflows

4-10

Monitoring Workflow Progress
Each rollout command returns a WorkFlowTaskRuntimeMBean that you can use to poll the
current status of the workflow. To monitor the progress of a rollout, use a rolloutcommand in
the following format:

progress=rollout_command

For example, use this command if you are rolling out a new Oracle home:

progress=rolloutOracleHome(DomainA, '/net/patched/wls1221p.jar',
'/net/backups/wls1221', options='isAutoRevertOnFailure=FALSE')

You can then use the methods of the WorkflowTaskRuntimeMBean to return information about
the workflow. See WorkflowTaskRuntimeMBean in the MBean Reference for Oracle WebLogic
Server. Here are some examples:

progress.getWorkflowId()

Returns the ID of the workflow.

progress.getProgressString()
'Workflow wf0011 Running: 13/36'

Returns a human-readable message containing information about the current workflow
progress. In this example, workflow wf0011is currently running and has completed 13 of the
36 workflow commands.

progress.getStatus()
STARTED

Returns the current status of the workflow, which can be STARTED, SUCCESS, RETRY,
REVERTING, FAIL, REVERTED, REVERT_FAIL, CANCELED, or REVERT_CANCELED.

The following Python script segment demonstrates one way to use the progress object to
monitor a workflow and output the progress of a rollout task. Sample output is shown after the
script.

Print the starting information
rolloutName = progress.getName()
startTime = progress.getStartTime()
print "Started rollout task \"" + rolloutName + "\" at " + str(startTime)

Check the state every 2 minutes
domainRuntime()
cd('RolloutService/rollout-service/ActiveWorkflows')
cd(progress.getWorkflowId())
while(get('Running')==1):
 progressString = progress.getProgressString()
 print progressString
 time.sleep(120)

Print the ending information
endTime = progress.getEndTime()

Chapter 4
Using WLST to Initiate and Monitor Workflows

4-11

state = progress.getState()
print "rollout \"" + rolloutName + "\" finished with state

Output
Started rollout task "Domain1Rollout" at 2014-07-22 07:29:06.528971
Running step 1 of 9
Running step 2 of 9
Running step 3 of 9
Running step 4 of 9
Running step 5 of 9
Running step 6 of 9
Running step 7 of 9
Running step 8 of 9
Running step 9 of 9
rollout "Domain1Rollout" finished with state "SUCCESS" at
2014-07-22 07:47:15.538299

Executing, Reverting, and Resuming Stopped Workflows
A workflow can stop in either the executing or reverting direction for the following
reasons:

• The workflow failed while executing, with the isAutoRevertOnFailure option set to
FALSE.

• The workflow was manually canceled.

• An unrecoverable error occurred during a revert operation.

When a workflow is stopped, you can resolve any errors manually. You can then set
the workflow to continue to execute or revert by using the following methods on the
RolloutServiceRuntimeMBean:

Method Description

executeWorkflow(Wor
kflowTaskRuntimeMBe
an)

Takes a progress object that is eligible to be resumed and resumes it
in the execute direction. If the last successful operation on the
workflow was an execute, then the execute will resume with the next
execute step. If the last successful operation on the workflow was a
revert, then the execute will resume by executing that revert step.

revertWorkflow(Work
flowTaskRuntimeMBea
n)

Takes a progress object that is eligible to be resumed and resumes it
in the revert direction. If the last successful operation on the
workflow was an execute, then the revert will resume with that step.
If the last successful operation on the workflow was a revert, then
the revert will resume by reverting the next step in the revert
sequence.

canResume(WorkflowT
askRuntimeMBean)

Returns true if the workflow stopped before it was completed and is
not currently running in either direction. A workflow in this state is
eligible to be resumed in either the execute or revert direction.

Useful WLST Commands for Workflows
This section describes several WLST commands that you may find useful.

• To get a list of completed workflows:

Chapter 4
Using WLST to Initiate and Monitor Workflows

4-12

wls:/domain_name/domainRuntime/RolloutService/rollout-service> completeWfs=
cmo.getCompleteWorkflows()

• To get a list of active workflows:

wls:/domain_name/domainRuntime/RolloutService/rollout-service> activeWfs =
cmo.getActiveWorkflows()

• To look up a workflow by ID and retrieve its status:

wls:/domain_name/domainRuntime/RolloutService/rollout-service>
 progress=cmo.getWorkflowTask('workflow_id')
wls:/Domain1221/domainRuntime/RolloutService/rollout-service> progress.getStatus()

• To cancel a running workflow:

wls:/domain_name/domainRuntime/RolloutService/rollout-service>
 progress=cmo.getWorkflowTask('workflow_id')
wls:/domain_name/domainRuntime/RolloutService/rollout-service> progress.cancel()

• To delete a completed workflow:

wls:/domain_name/domainRuntime/RolloutService/rollout-service>
cmo.deleteWorkflow('workflow_id')

Sample WLST Script
This section contains a sample WLST script that illustrates how to perform a rolling restart of
all servers in a cluster called cluster1 with single service migration. In this script, the
following arguments are defined:

• username — The WebLogic Server administrator user name.

• password — The WebLogic Server administrator password.

• adminURL — The host name and port number of the domain's Administration Server.

• target — The target or targets for the operation. See Table 4-1.

• options — The rollout option or options for the operation. See Table 4-1.

The following example shows a sample WLST script for a rollout operation.

import sys, socket
import os
import time
from java.util import Date
from java.text import SimpleDateFormat

argUsername = sys.argv[1]
argPassword = sys.argv[2]
argAdminURL = sys.argv[3]
argTarget = sys.argv[4]
argTarget = sys.argv[5]

try:
 connect(argUsername, argPassword, argAdminURL)
 progress = rollingRestart(argTarget, argTarget)

Chapter 4
Using WLST to Initiate and Monitor Workflows

4-13

 lastProgressString = ""

 progressString=progress.getProgressString()
 # for testing progressString="12 / 12"
 steps=progressString.split('/')

 while not (steps[0].strip() == steps[1].strip()):
 if not (progressString == lastProgressString):
 print "Completed step " + steps[0].strip() + " of " +
steps[1].strip()
 lastProgressString = progressString

 java.lang.Thread.sleep(1000)

 progressString=progress.getProgressString()
 steps=progressString.split('/')
 if(len(steps) == 1):
 print steps[0]
 break;

 if(len(steps) == 2):
 print "Completed step " + steps[0].strip() + " of " +
steps[1].strip()

 t = Date()
 endTime=SimpleDateFormat("hh:mm:ss").format(t)

 print ""
 print "RolloutDirectory task finished at " + endTime
 print ""

 state = progress.getStatus()
 error = progress.getError()

 stateString = '%s' % state
 if stateString != 'SUCCESS':
 #msg = 'State is %s and error is: %s' % (state,error)
 msg = "State is: " + state
 raise(msg)
 elif error is not None:
 msg = "Error not null for state: " + state
 print msg
 #raise("Error not null for state: %s and error is: %s" +
(state,error))
 raise(error)
except Exception, e:
 e.printStackTrace()
 dumpStack()
 raise("Rollout failed")

exit()

Chapter 4
Using WLST to Initiate and Monitor Workflows

4-14

To execute this script, save it in a Python (.py) file and then enter commands similar to this. If
you are running WLST on Windows, see ZDT Patching Restrictions, for important information
about using WLST on Windows.

$ORACLE_HOME/oracle_common/common/bin/wlst.sh
/u01/scripts/rollout/RollingRestart.py username password
t3://hostname:port cluster1 "migrationProperties=/u01/json/mig.txt"

Using the WebLogic Server Administration Console to Create
and Monitor Workflows

Use the Administration Console to create and monitor a patching workflow that rolls out a
patched Oracle home, a new Java version, new application versions or a combination of
these tasks.

This section contains the following topics:

• Accessing ZDT Workflow Functions in the WebLogic Server Administration Console

• Creating a New Workflow for a Domain, Clusters, or Servers

• Monitoring and Managing Workflows

• Workflow Statuses

• Workflow Logging

Accessing ZDT Workflow Functions in the WebLogic Server Administration
Console

To access the ZDT workflow functions in the WebLogic Server Administration Console:

1. In the WebLogic Server Administration Console, click the domain name under Domain
Structure.

2. On the Settings for domain_name page, select the ZDT Control tab.

This displays the four tabs (Domain, Clusters, Servers, and Workflow Progress) from
which you can manage all workflow-related tasks.

Creating a New Workflow for a Domain, Clusters, or Servers
You can create a workflow to roll out an update to all servers in a domain, all servers in one
or more clusters, or only selected servers. The workflow can be for rolling out a new Java
version, rolling out a new patched Oracle home, rolling out one or more updated applications,
or any combination of these. You can also create a patching workflow to roll back to a
previous Oracle home, Java home, or application versions, or create a workflow to perform a
rolling restart of servers.

Prior to following this procedure, access the ZDT Control tabs as described in Accessing ZDT
Workflow Functions in the WebLogic Server Administration Console.

To create a new workflow:

1. Select one of the following tabs:

• Domain: Select this tab if you want to create a workflow for the Administration Server
and all clustered servers in the domain.

Chapter 4
Using the WebLogic Server Administration Console to Create and Monitor Workflows

4-15

• Clusters: Select this tab if you want to create a workflow only for servers in
specific clusters.

• Servers: Select this tab if you want to create a workflow only for specific
servers. Typically, you would select this option only in the following situations:

– The Administration Server is the only server that will be included in the
workflow.

– A situation exists in which a Managed Server is out-of-sync with other
Managed Servers that were already updated. For example, you may have
added a new server to a cluster, but that server is using an older version
of Java than the other Managed Servers in the cluster.

Note:

Oracle recommends that you not use the Servers tab to perform
updates to individual Managed Servers unless it is absolutely
necessary. When you update individual Managed Servers, there is
no guarantee that sessions will be preserved and downtime will be
avoided.

2. If you selected the Clusters tab, then select the clusters to include in the workflow.
All servers in the selected clusters will be included in the workflow.

If you selected the Servers tab, then select the servers to include in the workflow.

3. Click Patch to configure the workflow tasks.

4. Select the type of rollout (or rollback) that you want to perform:

• Java home: Select if you only want to change to another Java version.

• Oracle home: Select if you only want to roll out a new Oracle home or roll
back to a previous Oracle home.

• Application: Select if you only want to roll out one or more updated
applications or roll back to one or more previous application versions.

• All Combinations: Select if you want to roll out or roll back any combination
of Java home, Oracle home, and application updates.

• Rolling Restart: Select if you want to perform a rolling restart of the selected
targets.

5. Click Next.

The displayed fields and options depend on the type of rollout or rollback you are
performing.

6. If you are changing the Java home, in the Java Home field, enter the full path to
the Java home to change to. For example:

UNIX

/jdks/jdk1.8.0_50

Windows

C:\jdks\jdk1.8.0_50
7. If you are rolling out a new Oracle home or rolling back to a previous Oracle home:

Chapter 4
Using the WebLogic Server Administration Console to Create and Monitor Workflows

4-16

a. In Rollout Oracle Home, enter the full path to the JAR archive. Only if you are rolling
back to a previous Oracle home, you can specify the path to the local directory that
contains the Oracle home to roll back to. For more information about rolling back to a
previous Oracle home, see Reverting to the Previous Oracle Home, Java Home, or
Applications.

b. In Backup Oracle Home, enter the full path to the directory in which you want to
back up the current Oracle home. For example, if your original Oracle home is /u01/
Oracle_Home and you specify /u01/Oracle_Home_backup for this field, then /u01/
Oracle_Home will be moved (renamed) to /u01/Oracle_Home_backup.

c. If you are rolling back to a previous Oracle home, select the Rollback check box.

8. If you are rolling out one or more new application versions, in the Application Properties
field, enter the full path to a JSON-formatted text file that contains the information needed
to upgrade the applications. For more information about creating this file, see Creating an
Application Update JSON File.

9. If you only want to evaluate the patching workflow before executing it, then select the Dry
Run check box.

10. If you want to migrate singleton services, such as JTA or JMS, during the rollout, then in
the Migration Properties field, enter the full path to a JSON-formatted file that contains
the migration information. For more information about creating this file, see Preparing to
Migrate Singleton Services.

11. By default, the Auto Revert on Failure check box is already selected. This will cause the
patching operation to automatically revert everything if there is a failure while the
workflow is executing. If you clear this check box, then the patching operation will not
automatically revert if there is a failure; the operation will stop and wait for you to resume
it or revert it.

12. The Session Compatibility option determines whether or not the very last server being
updated on a cluster will wait for sessions to complete on that server.

• If not selected, the last server in a cluster waits for sessions to complete.This ensures
that a compatible server is available in the cluster to handle sessions that must be
served by a Managed Server that is still running on the existing version.

• If selected, this indicates that the session state in servers is 100% compatible
between the existing version and the new version. Therefore, the last Managed
Server in the update sequence in a cluster will shut down without waiting for all
existing sessions to complete.

Oracle recommends that you not select this option unless you are absolutely sure that
the session state is identical. This may cause the rollout to take longer due to the wait for
session completion. The default session timeout value is 1 hour.

Note:

Serialization and deserialization in WebLogic Server differs slightly from Java
serialization and deserialization. Therefore, additional fields on classes may
result in a session being incompatible with servers on the new version,
requiring that they be served by a server on the existing version. For example,
a User class that adds a field such as Information will cause that session to be
incompatible between versions.

13. Click Finish to initiate the patching workflow.

Chapter 4
Using the WebLogic Server Administration Console to Create and Monitor Workflows

4-17

The workflow will be added to the Workflow Progress table.

After the workflow has started, you can monitor and manage its progress from the
Workflow Progress page as described in Monitoring and Managing Workflows.

Monitoring and Managing Workflows
This section describes how to monitor and manage the progress of all running or
completed workflows.

Prior to following this procedure, if you have not already done so, access the ZDT
patching tabs as described in Accessing ZDT Workflow Functions in the WebLogic
Server Administration Console.

To monitor and manage workflows, select the Workflow Progress tab. This page
contains two tables:

• The Workflows in Progress table shows all workflows that are not yet completed
(active); that is, they are in an executing, reverting, stopped, canceled, or failed
state. Depending on its status, you can perform various actions on an active
workflow:

– You can Cancel any workflow that is in a STARTED, REVERTING, or RETRY
state.

To cancel one or more workflows, select the check box for each workflow that
you want to cancel, and then click Cancel. You can then revert the workflow
by clicking Revert or resume it by clicking Execute.

– You can Execute any workflow that is in a CANCELED,
REVERT_CANCELED, FAIL, or REVERT_FAIL state.

To execute one or more stopped (canceled) workflows, select the check box
for each workflow that you want to resume, and then click Execute. The
workflow will continue executing, starting with the step after the last
successfully completed step.

– You can Revert any workflow that is in a CANCELED, REVERT_CANCELED,
FAIL, or REVERT_FAIL state.

To revert one or more stopped (canceled) workflows, select the check box for
each workflow that you want to revert, and then click Revert. The workflow will
revert, starting with the last successfully completed step.

– You can Delete any workflow that is in a CANCELED, REVERT_CANCELED,
FAIL or REVERT_FAIL state. You can delete only one workflow at a time.

To delete a workflow, select the check box for each workflow that you want to
delete, and then click Delete.

• The Completed Workflows table shows all workflows that have completed. This
table is sorted based on when the workflow completed, with the most recently
completed workflow at the top of the table.

To delete completed workflows, select one or more of them and click Delete.

From these tables, you can also view additional details about the status of a workflow.
To do so, click the workflow ID in the Workflow ID column. See Viewing Workflow
Details. For information about workflow statuses, see Workflow Statuses.

Chapter 4
Using the WebLogic Server Administration Console to Create and Monitor Workflows

4-18

Viewing Workflow Details
This section describes how to view the details of an active or completed workflow, and also
describes the information that is displayed for the workflow.

To view the details for a workflow, click the workflow ID (for example, wf00071) in the
Workflow ID column of either the Workflows in Progress or Completed Workflows table on the
Workflow Progress page. A page is displayed with the information described in the following
table.

Field Description

Workflow ID The workflow that was automatically assigned when you created it

Type The type of workflow, which can be:

• rolloutJavaHome: You are rolling out or rolling back to a different Java
home version.

• rolloutOracleHome: You are rolling out or rolling back to a different
Oracle home.

• rolloutApplications: You are rolling out one or more new application
versions or rolling back to one or more previous application versions.

• rolloutUpdate: You are rolling out or rolling back to any combination of
Java home, Oracle home, or application version.

Target The servers to which the workflow is targeted, which can be:

• Domain: The workflow is targeted to all eligible servers in the domain,
including the Administration Server.

• Comma-separated list of cluster names: The workflow is targeted to
all eligible servers in the listed clusters.

• Comma-separated list of servers: The workflow is targeted only to
those servers that are listed.

Status The current status of the workflow. See Workflow Statuses.

Can Resume Indicates whether or not the workflow can be resumed or reverted. If false,
you will not be able to use the Execute or Revert functions on the workflow.

of Completed
Commands

The number of workflow commands that have currently been completed

of Total Commands The total number of commands in the workflow that need to be executed to
complete the workflow

Progress String A detailed message about the progress of the workflow, such as:

Workflow wf0008 finished successfully. 36 steps completed.
Next Execute Step If the workflow is still active and is not reverting, then this field shows the

next command that will be executed after the current command completes.

Next Revert Step If the workflow is still active and is reverting, this field shows the next
command that will be executed in the revert process after the current
command completes.

Begin Time The time at which the workflow was started

End Time If the workflow has completed, then this field displays the time of completion.

Exception If the workflow failed, then this field displays the exception that occurred
when it failed.

Advanced Click the arrow to expand the Advanced section, which shows all steps that
have been executed for the workflow up to the current time. If the workflow
has completed, then this section lists all commands that were completed by
the workflow.

Chapter 4
Using the WebLogic Server Administration Console to Create and Monitor Workflows

4-19

Viewing Server Status
From the Servers page, you can view the current status of all your servers before and
after running a workflow and while workflows are in progress. When you click the
Servers tab, you can view the workflow-related information about each server in your
domain. For information about the columns in the Servers table and additional
columns that you can add to the table, see View Server Patching Status in
Administration Console Online Help.

When a workflow is running, you can monitor and refresh the information on this page
to get up-to-date status for each server.

Viewing Cluster Status
From the Clusters page, you can view information about all clusters in your domain
before and after running a workflow and while workflows are in progress. For
information about the columns in the Clusters table and additional columns that you
can add to the table, see View Cluster Patching Status in Administration Console
Online Help.

When a workflow is running, you can monitor and refresh the information on this page
to get up-to-date information for each cluster.

Workflow Statuses
An active workflow can have any of the following statuses:

Status Description

STARTED The workflow has started and is currently
running.

RESUME A stopped workflow has been resumed.

REVERTING A workflow that failed or was stopped is
reverting.

FAIL The workflow has failed to execute completely.
This status appears only if the Auto Revert on
Failure option was not configured for the
workflow when it was started.

REVERTED A workflow that was either automatically or
manually reverted has successfully completed
the revert process.

REVERT_FAIL A workflow that was either automatically or
manually reverted failed to revert successfully.

CANCELED The workflow was canceled (paused).

REVERT_CANCELED A workflow that was either automatically or
manually reverted was canceled (paused).

Workflow Logging
A rollout consists of a series of steps. Each step logs a message to the Administration
Server log when it starts and when it finishes. Messages are also logged if a step
reverts, fails, or retries. The Administration Server log is located at

Chapter 4
Using the WebLogic Server Administration Console to Create and Monitor Workflows

4-20

domain_home/servers/AdminServer/logs

Filtering the Log File
The workflow ID is included in every log message related to a given workflow. Use the
workflow ID to filter the Administration Server log file for messages related to a given
workflow. If you initiated the workflow from the WebLogic Server Administration Console, then
you can get the workflow ID from the ZDT Control > Workflow Progress tab. From WLST,
you can use the following command to get the workflow ID:

progress.getWorkflowId()
To filter the log file, enter the following command:

fgrep wf0001 domain_home/servers/AdminServer/logs/AdminServer.log

Log Message Format
The log messages for ZDT patching are formatted as follows:.

Message Type Message Format

A step begins executing. Workflow workflowId is executing step
name on target.

A step is complete. Workflow workflowId successfully
completed step name on target.

A step is being reverted. Workflow workflowId is reverting step
name on target.

A step has successfully reverted. Workflow workflowId successfully
completed revert of step name on
target.

A step is being retried. Workflow workflowId is retrying step
name on target.

A step could not be completed successfully. Workflow workflowId failed to complete
step name on target.

A step could not be completed successfully due to
an exception.

Workflow workflowId failed to complete
step name on target due to error
exception.

A step could not be reverted successfully. Workflow workflowId failed to revert
step name on target.

A step could not be reverted successfully due to
an exception.

Workflow workflowId failed to revert
step name on target due to error
exception.

Chapter 4
Using the WebLogic Server Administration Console to Create and Monitor Workflows

4-21

5
Modifying Workflows Using Custom Hooks

Modify the existing ZDT Patching workflow in Oracle WebLogic Server by adding custom
logic specific to your business at predefined points called extension points.

• About Extension Points

• The Patching Workflow Process for Custom Hooks

• Specifying Extensions to Modify the Workflow

About Extension Points
Extension points are placeholders in the ZDT Patching workflow where you can insert custom
logic. ZDT Patching provides extension points and predefined environment variables for
rollouts.

The ZDT custom hooks feature identifies certain points in a patching workflow where
additional commands can be executed to customize its behavior. These points are referred to
as extension points. You can customize the behavior of a workflow by inserting collections of
resources, called extensions, at each predefined extension point.

Table 5-1 lists the available extension points for workflows along with their descriptions and
use cases.

Table 5-1 Extension Points Available for Workflows

Name Description Use Cases

ep_OnlineBeforeUpdate Use this extension point at the
initial stage of the workflow before
the patching operation starts on
each node. This is typically the
point where prerequisite checks
can be performed.

• Pre-upgrade quiesce to
disable or pause external
domains that are fed into
the cluster.

• Run any SQL script that
may be needed to
prepare for an application
update.

ep_EachNode Use this extension point when the
workflow needs to perform any
additional operation across each
node.

• Add checks to ensure that
there is enough disk
space on all the nodes for
the rollout of Oracle
home.

• Ensure that any new
shared file system
artifacts are accessible
on each node.

ep_OfflineBeforeUpdate Use this extension point at the
stage of the workflow when all
servers are shut down, just before
the Oracle home or Java home
update starts.

• Back up files or
directories.

5-1

Table 5-1 (Cont.) Extension Points Available for Workflows

Name Description Use Cases

ep_OfflineAfterUpdate Use this extension point to perform
any custom operation after Oracle
home or Java home have been
patched and before the servers
start.

• Validate the versions of
software components
included in the rollout.

• Modify any Java
properties in the Java
home.

ep_OnlineAfterServerStart Use this extension point to perform
any custom operation after the
update has completed on each
node and the server has restarted.

Perform server and
application-level administrative
tasks, such as:
• Check JDBC, JTA or JMS

subsystem.
• Deploy or redeploy any

additional application at
this point.

• Directing administrative
requests to applications
to ensure that the
applications behave as
expected.

ep_OnlineAfterUpdate Use this extension point to perform
any additional operation after the
servers have restarted, and the
application is continuing servicing
requests.

• Perform any basic checks
to ensure that affected
applications are
functional and accessible.

ep_RolloutSuccess Use this extension point to define
any custom logic, such as sending
notifications, after the patching is
successful.

• Send out an e-mail to the
administrator to notify the
status of the upgrade.

This feature also provides certain predefined environment variables that can be
passed at the extension points. Some predefined environment variables are available
for use with online extension points, while others can be used with offline extension
points. Online extension points can be executed when the server is running, whereas
offline extension points are available for use when the server is shut down. Both offline
and online extension points can be executed either on the remote node or on the local
node. Table 5-2 provides a list of all the environment variables that are available for
use with online and offline extension points.

Table 5-2 Predefined Environment Variables for Extension Points

Variable Name Description Available for Use with
Offline or Online Extension
points

javaHome The location of the existing
Java home

Offline

newJavaHome The location of the new Java
home to use

Offline

mwHome The location of the Middleware
home

Offline

Chapter 5
About Extension Points

5-2

Table 5-2 (Cont.) Predefined Environment Variables for Extension Points

Variable Name Description Available for Use with
Offline or Online Extension
points

domainDir The location of the domain
directory

Offline

domainTmp The location of the directory
under the domain home where
temporary files may be stored

Offline

patched The location of patched Oracle
home

Offline

backupDir The location where the
existing Oracle home will be
moved

Offline

isRevert Controls execute or revert
operations in scripts

Offline

currentNodeName The full name of the node
currently being updated. This
variable is not applicable to
the ep_OnlineBeforUpdate
or ep_RolloutSuccess
extension points.

Online

currentServerNames A comma-separated list of
names of servers on the
targeted node. This variable is
not applicable to
ep_OnlineBeforeUpdate or
ep_RolloutSuccess
extension points.

Online

applicationInfo The application name,
application location, and
application backup, separated
by commas for each
application. Separate multiple
applications by colon:

<appName>,<appLoc>,<app
BackUp>:<appName2>,<app
Loc2>,<appBackUp2>
For example, "scrabble,/
pathTo/scrabblev2,/
pathTo/
scrabbleV1Backup:cart,/
pathTo/cartV3,/pathTo/
cartV2Backup

Online

The Patching Workflow Process for Custom Hooks
You can customize operations in the workflow that is executed either on the Administration
server node or on a remote node.

Chapter 5
The Patching Workflow Process for Custom Hooks

5-3

When the workflow process reaches a user hook, the user specified extension at that
extension point is executed. Any script that exits with a code of zero is considered to
have completed successfully, whereas a script that returns a non-zero exit code is
considered failed. If no errors occur, the processing resumes. If an error occurs during
the execution of an extension, then the workflow is rolled back to its previous state.
Note that the scripts do not have in-built retry or resume methods. A script is
attempted once, and if it fails, the workflow does not retry it. Therefore, if your script
performs an operation that needs to be retried, then you must write the retry logic in
the script.

During the workflow, the output generated by offline scripts to STDOUT or STDERR is
propagated to the Administration Server log file. Similarly, output generated by a script
that is executed locally is also written to the Administration Server log file. This
includes error output or non-error output.

Figure 5-1 illustrates the typical scenarios for workflows, and how they include different
extension points.

Figure 5-1 Patching Workflow with Extension Points

This figure shows the extension points available in a typical workflow for updating
Oracle home or Java home.

Chapter 5
The Patching Workflow Process for Custom Hooks

5-4

Specifying Extensions to Modify the Workflow
The custom hooks feature provides several ways to introduce extensions in the workflow. You
can specify the extensions in either of the two JSON files, extensionConfiguration.json or
extensionProperties.json, or pass them directly as options in the rollout commands.
Regardless of how you pass the extension parameters, these parameters ultimately map to
script parameters that are translated into environment variables.

This flexibility lets you override or customize parameters at different levels. When you use
more than one way of specifying extension parameters, then the following is the order in
which script parameters are overridden:

• Extension parameters specified in the extensionConfiguration.json file.

• Extension parameters specified in the extension properties JSON file to override the
parameters set in the extensionConfiguration.json file.

• Extension parameters specified as options in the WLST rollout commands to override the
parameters specified in the two JSON files. You can use the same extension JAR in
different environments by customizing only the options in the rollout commands for each
workflow.

The following sections provide more information about using these methods to specify
extensions.

Creating a JSON Configuration File

The extensionConfiguration.json file is a JSON format file that contains an array of
extension definitions. Each extension definition must specify the following:

• The name of the predefined extension point where the extension is inserted in the
workflow.

• The fully qualified name of the class file to execute at that extension point.

Optionally, any additional parameters used by the extension. The additional extension
parameters must be declared in the JSON format. The specified class file can use one of the
standard extensions supplied by WebLogic Server. The following sample
extensionConfiguration.json file shows how to define extensions.

{"extensions":[
{
"extensionPoint":"ep_OnlineBeforeUpdate",
"extensionClass":"weblogic.management.patching.extensions.ScriptExecutorExten
sion",
"extensionParameters":{"scriptName":"checkJar.sh","jarPath":"/tmp/
extension.jar"}
},
{
"extensionPoint":"ep_EachNode",
"extensionClass":"weblogic.management.patching.extensions.ScriptExecutorExten
sion",
"extensionParameters":{"scriptName":"checkDiskSpace.sh"}
},
{
"extensionPoint":"ep_OnlineAfterUpdate",

Chapter 5
Specifying Extensions to Modify the Workflow

5-5

"extensionClass":"weblogic.management.patching.extensions.ScriptExecuto
rExtension",
"extensionParameters":{"scriptName":"checkApps.sh","appUrls":"http://
localhost:8004/Coke/Simple_stage/handle,http://localhost:8006/Coke/
Simple_stage/handle"}
},
{
"extensionPoint":"ep_RolloutSuccess",
"extensionClass":"weblogic.management.patching.extensions.ScriptExecuto
rExtension",
"extensionParameters":{"scriptName":"emailSuccess.sh"}
}
]}

After you create the extensionConfiguration.json file, you must place it along with
other related native scripts in a JAR file, such as, sampleExtension.jar. The JAR file
that you create must have a directory structure that adheres to Oracle standards. If
more than one extension is specified at a single extension point, then the extensions
are executed in the order in which they appear in the extensionConfiguration.json
file. Each JAR file should contain only one extensionConfiguration.json file.
Figure 5-2 shows the structure of an extension JAR file.

During the rollout, the scripts are extracted in the patching directory under
DOMAIN_HOME/bin.

Figure 5-2 Extension Jar File Structure

Creating a JSON Properties File

Alternatively, you can specify the extension information in another JSON file, such as,
extensionProperties.json file. You can use this file when you need to pass multiple

Chapter 5
Specifying Extensions to Modify the Workflow

5-6

extensions in a workflow and when these extensions are placed in multiple JAR files. Note
that the JSON properties file is different from the extensionConfiguration.json file; the
extensionConfiguration.json file is specific to the scripts within its own JAR file, whereas
the JSON properties file gives you a convenient way to include multiple extension JAR files in
the workflow. Each JSON properties file includes the path to one or more JAR files that
contain the extension configuration information and optionally includes any additional
parameters.

The following snippet shows the format of a sample extensionProperties.json file.

{"extensionProperties":[
{
"extensionJar":"/pathTo/extension.jar",
"extensionParameters":{"scriptName":"updateProperties.sh", "appURL":"http://
localhost:7005/context?param1=val1¶m2=val2,http://localhost:7006/
context2?param1=val1¶m2=val2"}
}
]}

Including Options in the WLST Rollout Commands

You can pass extension parameters in either of the two JSON files or pass them directly to
the WLST rollout commands using the extension or extensionProperties options. For more
information about how to use these options to specify extension parameters, see the
arguments for WLST rollout commands in Using WLST to Initiate and Monitor Workflows.

Note:

When you create JSON files to include your extensions and place them in
extensions jars, be sure to meet the following conditions:

• Place extension jars on all remote nodes before the rollout.

• Specify the path to the extension jar that contains the extension parameters to
roll out. The same path must exist on all nodes.

• On a Windows system, avoid using the backslash character when you specify
the paths in the JSON file.

• Do not include commas in the values of the script parameters in the JSON files.

Chapter 5
Specifying Extensions to Modify the Workflow

5-7

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	Guide to This Document
	Diversity and Inclusion

	1 Introduction to Zero Downtime Patching
	What Is Zero Downtime Patching?
	Identifying a Zero Downtime Patch
	Types of Patching Workflows
	The Patching Workflow Process
	Reverting an Update
	Rolling Out a Patched Oracle Home: Overview
	Rolling Out a New Java Version: Overview
	Rolling Out Updated Applications: Overview
	In-Memory Session Replication for ZDT Rollouts

	2 Preparing for Zero Downtime Patching
	ZDT Patching Restrictions
	Preparing to Migrate Singleton Services
	Creating a JSON File for Migrating Singleton Services

	Preparing to Roll Out a Patched Oracle Home
	Creating a Second Oracle Home
	Applying Patches to the Second Oracle Home
	Creating an Archive and Distributing It to Each Node

	Preparing to Upgrade to a New Java Version
	Preparing to Update to New Application Versions
	The Effects of Staging Modes
	Creating an Application Update JSON File

	3 Patching an Existing WebLogic Server Installation
	Using Zero Downtime Patching
	Obtaining a List of Applied Patches

	4 Configuring and Monitoring Workflows
	Strategies for Rolling Out a Patched Oracle Home
	Starting the Administration Server
	Using WLST to Initiate and Monitor Workflows
	Rolling Out a New Oracle Home
	Updating Your Java Version
	Updating Both Oracle Home and the Java Version
	Rolling Out Updated Applications
	Reverting to the Previous Oracle Home, Java Home, or Applications
	Initiating a Rolling Restart of Servers
	Monitoring Workflow Progress
	Executing, Reverting, and Resuming Stopped Workflows
	Useful WLST Commands for Workflows
	Sample WLST Script

	Using the WebLogic Server Administration Console to Create and Monitor Workflows
	Accessing ZDT Workflow Functions in the WebLogic Server Administration Console
	Creating a New Workflow for a Domain, Clusters, or Servers
	Monitoring and Managing Workflows
	Viewing Workflow Details
	Viewing Server Status
	Viewing Cluster Status

	Workflow Statuses
	Workflow Logging
	Filtering the Log File
	Log Message Format

	5 Modifying Workflows Using Custom Hooks
	About Extension Points
	The Patching Workflow Process for Custom Hooks
	Specifying Extensions to Modify the Workflow

